
Math. Systems Theory 25, 141-159 (1992) Mathematical
Systems Theory
�9 1992 Springer-Verlag New York Inc.

On the Time and Space Complexity of Computation Using
Write-Once Memory*
or
Is Pen Really Much Worse than Pencil?

Sandy Irani, 1 Moni Naor, 2 and Ronitt Rubinfeld 1

1 Computer Science Division, University of California,
Berkeley, CA 94720, USA

2 IBM Almaden Research Center, San Jose, CA, USA

Abstract. We introduce a model of computation based on the use of
write-once memory. Write-once memory has the property that bits may be
set but not reset. Our model consists of a RAM with a small amount of regular
memory (such as logarithmic or n = for ~ < 1, where n is the size of the problem)
and a polynomial amount of write-once memory. Bounds are given on the
time required to simulate on write-once memory algorithms which originally
run on a RAM with a polynomial amount of regular memory. We attempt
to characterize algorithms that can be simulated on our write-once memory
model with very little slow-down. A persistent computation is one in which,
at all times, the memory state of the computation at any previous point in
time can be reconstructed. We show that any data structure or computation
implemented on this write-once memory model can be made persistent
without sacrificing much in the way of running time or space. The space
requirements of algorithms running on the write-once model are studied. We
show that general simulations of algorithms originally running on a RAM
with regular memory by algorithms running on our write-once memory model
require space proportional to the number of steps simulated. In order to study
the space complexity further, we define an analogue of the pebbling game,
called the pebble-sticker game. A sticker is different from a pebble in that it

* The research of S. lrani was supported by NSF Grant No. DCF-85-13926, and a Tandem
Corporation Fellowship. R. Rubinfeld's research was supported by NSF Grant No. CCR 88-13632 and
an IBM Graduate Fellowship.

142 s. Irani, M. Naor, and R. Rubinfeld

cannot be removed once placed on a node of the computation graph. As
placing pebbles correspond to writes to regular memory, placing stickers
correspond to writes to the write-once memory. Bounds are shown on
pebble-sticker tradeoffs required to evaluate trees and planar graphs. Finally,
we define the complexity class WO-PSPACE as the class of problems which
can be solved with a polynomial amount of write-once memory, and show
that it is equal to P.

1. Introduction

Write-once memory is memory where bits may only be "used" once, in that they
can be set but not reset. This is the same difficulty we encounter when using pen
rather than pencil and eraser. The write-once property is interesting for several
reasons:

1. It occurs naturally in more and more sophisticated technologies from stone
tablets to punch cards and paper tapes to optical disks.

2. It may be a good way to view memory where the time required to erase
is much greater than the read/write time so that we would not want to
erase during the computation. This property occurs in the optical disk of
the NEXT computer.

3. It models the restriction in P R O L O G that allows variables to be bound
only once [PMN-I.

4. Implementations of parallel operations on data structures are made difficult
by synchronization issues. I-structures, which use write-once restrictions,
have been introduced as a simple and elegant way to enforce synchroniza-
tion [ANP].

We investigate the implications that the write-once property has on both the
time and space requirements of computation and we show that, in fact, write-once
memory can be used very effectively, though not always without some loss in time
and space.

Previous work in this area has been done by Vitter with the emphasis on the
use of optical disks in databases IVi2-1. Rivest and Shamir give codes which allow
making updates to a variable using asymptotically less storage than the size of
the variable times the number of updates made to the variable [RS]. We are
interested in the more general question of the complexity of computation using
write-once memory. Though the questions that are addressed in this paper are
not unrelated to previous work, the differences suggest a different model and
approach.

In the write-once model of computation presented here, there are a small
number of regular memory registers, each of which can store log n bits, where n
is the problem size. The number of registers is given by some predetermined
function of n, i.e., f (n) . = c, f (n) = log n, f (n) = n ~'. The amount of write-once
memory available is polynomial in the problem size. We assume that O(log n)
consecutive bits can be read from or written to in one time step. This is a natural
assumption, because it allows us to read polynomially bounded numbers in

Time and Space Complexity of Computation Using Write-Once Memory 143

constant time. In particular, this allows addressing to be performed in constant
time. In addition, it is natural to assume that when executing a graph algorithm
we can access a label of a node in constant time, or that in sorting elements, we
can access the value of an element in constant time. The models in [Vi2] are
different in that they assume that only a constant number of bits can be read from
or written to in one time step. Their assumption is appropriate when looking at
database problems, because there is no natural notion of problem size, i.e., address
size and register size are considered to be a hardware-dependent constant. An
additional difference in [Vi2] is that they do not allow the regular memory registers
to be used as intermediate storage. In our model this would be equivalent to the
assumption that an adversary may clear the regular memory registers between
updates to the write-once memory machine. We call this version of our model the
register-restricted version.

Techniques in [Vi2] give a method for converting any algorithm written for
the conventional model of computation into an algorithm for the write-once model
of computation which increase the running time by a factor of O(log n). (Their
techniques are optimal on their model.) We show that the order of the running
time need only be increased by a multiplicative factor of O(log n/log log n) on our
model. There is an online problem in [Vi2] which requires f~(n log n/log log n)
steps on the register-restricted write-once memory model, but only n steps on a
regular memory model.

A slowdown of O(log n/log log n) is not required for all problems, and, in fact,
standard algorithms for many well-known problems can be converted to algo-
rithms that run on the write-once memory model of computation with no loss in
speed, e.g., matrix multiplication, sorting, and shortest path computation. What
are the properties which allow some algorithms to be converted with no loss in
speed? One such property is obliviousness. An algorithm is oblivious if its
read/write access pattern is the same for all inputs of the same length, and therefore
depends only on the input size. We show that if there exists an oblivious algorithm
for a problem running in time t on a regular memory machine, then there exists
a nonuniform algorithm for the problem running in time O(t) on the write-once
memory model. The write-once algorithm can be found by preprocessing for a
specific input size in O(t) steps on a regular memory model or in O(t "log t/log log n)
steps on the write-once memory model. The preprocessing need only be done once
for every input size, and therefore could be of practical use if the algorithm were
to be run on many inputs of the same or similar size. In general, though, our
feeling is that nonoblivious algorithms which involve complex data structures,
especially ones in which elements may be pointed to from more than one other
location, are likely to require some blowup in running time when simulated on
write-once memory.

We show that any algorithm on regular memory using s space can be
simulated with a multiplicative factor of O(log s) increase in the running time on
write-once memory. When the value of s is small enough, this is an improvement
over other techniques. We do not know if any multiplicative increase in running
time is actually required for any problem on the general write-once memory model.

A persistent computation is one in which, at all times, the memory state of
the computation at any previous point in time can be reconstructed. In [Vi2]

144 S. Irani, M. Naor, and R. Rubinfeld

Vitter suggests the use of write-once memory in applications that require persistent
data-structures. We show that any data-structure or computation on our write-
once memory model can be made persistent with only an O(log log n) multi-
plicative increase in time and an O(log n) multiplicative increase in space. Queries
about the contents of memory location i at time j in the original (nonpersistent)
computation can be answered in O(log log n) time.

We consider a closely related but more restrictive model, where the write-once
memory is replaced by memory in which a word may only be written to once.
This model is interesting for two reasons: error detection can be done easily at
the word level (i.e., parity check) and P R O L O G is more accurately modeled. The
proof of the previously described result also shows that any computation on the
original write-once memory model can be simulated on the more restrictive model
with only an O(log log n) multiplicative increase in time and an O(log n) multi-
plicative increase in space.

The space requirements affect the cost-effectiveness of computing on write-
once memory because it is not reusable. Rivest and Shamir investigate codes which
allow making updates to a variable using asymptotically less storage than the size
of the variable times the number of updates made to the variable [RS]. We examine
the space requirements on write-once memory and consider the question of how
to design algorithms so that the available regular memory can be used to conserve
write-once memory space. On our model, many problems seem to require space
proportional to the time required to solve them on a regular memory machine.
It is easy to prove that on the register-restricted write-once memory model, the
problem of maintaining variables through t on-line updates requires f2(t) space.
In fact, the results in [RS] show that maintaining a v-bit variable through t on-line
updates on the register-restricted write-once memory model requires at least t + v
bits. We show that ~(t) space is required on the general write-once memory model
to maintain several variables. This implies that no general simulation technique
exists which uses significantly less space than the number of steps being simulated.
However, on the general write-once memory model, there are problems for which
less space is needed because the regular memory can be used very effectively. In
the pebble-sticker game there are pebbles and strickers. Pebbles correspond to the
regular memory words, and stickers correspond to write-once memory words. We
discuss the relationship between the number of stickers and pebbles required for
trees and planar graphs.

Finally, the complexity class WO-PSPACE is defined to be the class of
problems that can be solved in polynomial space on our model of a write-once
memory machine with a constant number of regular registers. We show that it is
equal to P.

The next section contains a description of the model. In Section 3 we discuss
the time complexity of computing using write-once memory, and in Section 4 we
discuss the space complexity. In Section 5 we define the complexity class WO-
PSPACE and show that it is equal to P. We present our conclusions and open
questions in Section 6.

Time and Space Complexity of Computation Using Write-Once Memory 145

2. The Model

Definition of Write-Once Memory. A bit of write-once memory may be set
(changed from 0 to 1) but never reset (changed from 1 to 0). We assume that the
hardware ignores commands that violate this restiction, and that initially all
memory is set to 0.

Definition of Word-Write-Once Memory. A word in word-write-once memory
may be written to only once. We assume that the hardware ignores commands
that violate this restriction, and that initially all memory is set to 0.

Description of Model for Random Access Write-Once Memory Machine (WOMM).
The model we use is a RAM with a small amount of regular memory and a
polynomial amount of write-once memory. A memory word is defined to be
1 + d- log n bits where d is a constant and n is the problem size. (The first bit is
used to decided whether to index into write-once memory or regular memory.)
There are C(n) regular memory words and n d write-once memory words. C(n) is
a function which may vary. For example, we might choose either C (n) = c or
C(n) = n ~, depending on the amount of regular memory available. As long as the
amount of regular memory is smaller than the amount of write-once memory, one
memory word is large enough to address any word in the write-once or regular
memory. We assume that all bits of write-once memory are initialized to 0 (except
where the input data is stored). The space used by an algorithm is defined to be
the number of memory words used by the algorithm. W O M M denotes the
Write-Once Memory Model, w o r d - W O M M denotes this same model with n ~
words of word-write-once memory, and R M M denotes this same model with n d
words of regular memory instead of write-once memory.

We assume the normal constant time RAM operations on memory words
such as copy, write, arithmetic operations, bit operations, jump, and two-way
branches.

Disk Model. Current technology makes write-once memory available in disk
form, thus it is appropriate to look at the effects of seek time on the computat ion
time. We adopt the assumptions of I'Vi2] with respect to seek time. In [Vi2] the
seek time is considered to be the time required to access a single fixed length B-bit
block different from the previously accessed block. The seek time is counted as a
constant regardless of where the blocks are located in memory. There are various
more complicated ways to model seek time, but since the effects of seek time are
not well understood, even in the case of computing on regular memory, we adopt
a relatively simple model as a first step. Clearly, whatever the assumptions, an
upper bound on the number of steps is an upper bound on the number of seeks.
The lower bound in [Vi2] yields a lower bound on the number of seeks on a
model closely related to ours that has the same assumptions on seek time.

146 S. lrani, M. Naor, and R. Rubinfeld

3. The Time Complexity of Computing on Write-Once Memory

3.1. Simulating Common Data Structures

We begin by showing how to maintain some simple common data structures in
write-once memory. It is easy to see that on both the W O M M and word-WOMM
we can perform n queue operations (enqueue and dequeue) in O(n) time and n
space using only two regular memory words to point to the head and the tail of
the queue. We can also perform n stack operations (push and pop) in O(n) time
using only two regular memory registers on both the W O M M and word-WOMM.
The write-once memory space required is 2- n. The regular memory locations point
to the top of the stack and to the first unused write-once memory location. When
a push is done, the value of the push and the previous top of stack is written down
at the first unused memory location. The regular memory locations are then
updated accordingly.

In the next subsection we show that every data structure can be simulated
with an extra O(log n/log log n) multiplicative time factor on the W O M M and an
extra O(log n) multiplicative time factor on the word-WOMM. The question of
what operations on various data structures can be simulated in less time is an
important one. Unfortunately, it seems that very few of them can be simulated in
the same order of time as on a regular machine.

One data structure which can be handled in on the WOMM and word-
W O M M as quickly as it can be handled in regular memory is a binary tree in
which the only pointers are from parents to children.

Claim. We can perform n instert and delete operations on a binary tree of height
h in O(h) steps per operation, and O(n) additional write-once memory space. Only
two regular memory words are required.

Proof. The tree operations can be done using the persistent search trees in [ST]
in O(n) space. We outline a simpler method that requires O(n. h) space. The pointer
to the root of the tree is kept in a dedicated regular memory word. The internal
nodes of the tree are kept in the write-once memory and contain pointers to the
children of the node. Whenever node i is changed, all of the nodes along the path
from the root to node i are copied to new locations in the write-once memory,
updating the pointers appropriately and writing in the new value for node i. []

Surprisingly, the union-find data structure can also be implemented as quickly
on a W O M M as on an RMM. To do this we first make the following observation:

Observation. We can implement a log n bit unary counter, using O(n) additional
space and O(log n) preprocessing time, such that increments and reads can be
made in constant time.

The implementation uses a table that maps binary to unary and unary to
binary. An entry in the table can be accessed in constant time.

Time and Space Complexity of Computation Using Write-Once Memory 147

Claim. We can implement the set union algorithm with path compression and union
by rank in O(mt(m, n)) time on a W O M M , where n is the number of set-union
operations and m is the number of elements in the set.

Proof We assume familiarity with the set union operations given in [Ta]. We
say that an element is involved in a path compression step if the path compression
step changes the pointer of the element. We say that an element is affected by a
set union operation if, previous to the union operation, the element points to the
root node, and the element is in the set with smaller rank (thus after the union
operation, the element is no longer pointing to the root node). It is easy to see
that in the time period between being affected by two union operations an element
may be involved in at most one path compression step. Notice that when we
implement the set union algorithm using union by rank, no element will be affected
by more than log n + 1 union operations because each time an element is affected,
the size of the set that it is a member of must at least double. Thus, no element
will be involved in more than log n + 1 path compression steps. Since the pointer
of the element changes only during a path compression step, or, in the case of the
root element, during a union step, no element's pointer will be changed more than
O(log n) times. Instead of allocating one pointer location to each element as is
done on regular memory, O(log n) pointer locations are allocated to each element.
Each time a pointer is changed, the new value of the pointer is written in the next
consecutive location. In order to determine in constant time the location of the
current value of the pointer, an O(log n) bit unary counter is kept, to which access
(increment and read) can be made in constant time. []

It is interesting to note that in general it is not known how to maintain trees
where the children point to the parent (such as the linking and cutting trees in
[Ta]) as efficiently on write-once memory as on regular memory.

3.2. Simulating an R M M by a W O M M and w o r d - W O M M

We discuss three upper bounds for simulating an RMM with a WOMM, which
bound the simulation time by different quantities. None of the simulation upper
bounds are better than the others in all cases, but the third is most general. All
but the third also work on the word-WOMM. In each of the following we assume
that the running times of the simulated algorithms are polynomial in n, where n
is the size of the input.

Theorem 3.1. I ra program runs in time t and space s on an R M M , then it can be
simulated on the W O M M / w o r d - W O M M in O(t-log s) steps and using a constant
number of regular memory words and O(t + s) write-once memory space.

Proof The values of the memory locations in the RMM are organized into a
balanced binary search tree ordered by memory address. The pointer to the root
of the tree is kept in a dedicated regular memory register. The values of the s
memory locations are kept at the leaves of the tree. Whenever a memory location

148 S. lrani, M. Naor, and R. Rubinfeld

in the simulated algorithm is changed, the value of the leaf associated with it is
also changed. As explained in the previous section, each tree operation can be
performed in O(h) time where h is the height of the tree. The height of the tree is
log s. []

The following theorem follows from some elegant methods discussed in [Vi2]
involving allocation trees. The proof presented here uses a different approach, but
it is useful because it is simple and requires the storage of very few pointers.

Theorem 3.2. Let A be an algorithm running on the RMM, whose running time is
bounded by t, whose space requirement is bounded by s, and such that the number
of updates to each location is bounded by b. Then A can be simulated in O(t log b)
steps, a constant number of regular memory locations, and O(t + s) write-once
memory space on a WOMM/word.WOMM.

Proof. In order to clarify the discussion, we refer to each memory location on
the R M M as a variable. A k-block for a variable is a sequence of 2 k + 1 consecutive
locations, initially all 0. 2 k locations will be used to store 2 k updated versions of
the variable, and the last location will be used as a pointer. The idea is to allocate
initially to each variable a 0-block in write-once memory. When a k-block for a
variable is filled up, a (k + 1)-block is allocated to the variable and the k-block is
made to point to the (k + 1)-block. In order to find the value of the variable, a
search is made for the most recently allocated block by following the address
pointers until a block is reached.that has no pointer filled in yet (this means the
last one has been reached). Then a binary search is done on the block to find the
last place in which a value was written. To change the value of the variable, the
new value of the variable is written to the next location in the block. If at most
b changes are made to a variable, then at most log b blocks are allocated to it.
Therefore, following the addresses to the newest block takes at most O(log b) steps.
The size of the block is O(b) words, so the binary search to find the current value
of the variable also takes at most O(log b) steps.

As stated, this scheme does not allow us to assign the value 0 to a variable.
To fix this, another bit string can be used to represent the value 0. However, this
still decreases the number of values that can be represented in a word by one.
Another alternative is to keep a unary counter of 2 k bits with every block. The
value of the counter indicates where the current value of the variable is stored in
the block. This requires only o(2k/log n) extra words. The binary search for the
location of the current value is then done on the counter instead of the block
itself. []

This last simulation is desirable, because it uses space efficiently. However,
we can reduce the number of steps required if we are willing to use some extra
space.

Theorem 3.3. Let A be an algorithm whose running time is bounded by t, whose
space requirements are bounded by s, and such that the number of updates to each

Time and Space Complexity of Computation Using Write-Once Memory 149

location is bounded by b, on an R M M . Then A can be simulated on a W O M M usin9
O(t" (log b/log log n)) steps and O(t + s ' log n log b/tog log n) space.

Corollary 3.I. An algorithm that runs in O(t) time on an R M M can be simulated
in O((t'log t)/log log n) steps on a W O M M .

Proof. We describe a method which requires more space, but it is easy to
see that it can be modified to run in the claimed space bound. We again refer to
each memory location on the RMM as a variable. We show how to keep track
of the current value of each variable in the program being simulated with
O(log b/log log n) steps per access (read, write) to the variable, thus giving a method
of simulating t steps of an algorithm in O(t. log b)/log log n). The idea is to maintain
for each variable a tree with log n degree at each node and b leaves. The jth leaf
corresponds to the jth value that the variable takes on during the execution of
the program. At any point in the computation, if the variable has changed fewer
than j times, then the kth leaf is all O's for all k > j. The internal nodes of the tree
contain an address which is the address of the child that is on the path that leads
to the leaf with the current value of the variable. It is not necessary for each
internal node to contain pointers to all of its children, only the child which leads
to the leaf with the current value of the variable. Therefore it is only necessary to
store the children in log n addresses which are compatible in the sense that the
address of the ith child can be changed into the address of the (i + 1)st child by
only setting bits. This can be done by letting the first child be an address in which
the last log n bits of the addresses are 0 and the ith address differs from the (i - 1)st
address only in that the ith bit from the last is changed to 1.

By assumption, each variable can be changed at most b times during the
execution of the algorithm. The depth of the tree, which is O(log b/log log n), is a
bound on the time to access the corresponding variable. []

The proof of this theorem also shows that if B is the number of bits in a block,
there is an O(log n/log B) upper bound on the number of disk accesses required
on write-once memory per disk access on regular memory. A lower bound in [Vi2]
shows that this is tight on the register-restricted model.

Some algorithms can be solved on a W O M M in the same amount of time as
on an RMM, even though only a small amount of information can be stored in
the regular memory of a WOMM. In fact standard algorithms for determinants,
matrix multiplication, and sorting work as quickly on a W O M M as they do on
an RMM. We would like to characterize those properties of algorithms that allow
this to be true. One such property, though by no means the only one, is the
following:

Definition. An algorithm is oblivious if the read/write access pattern depends only
on the size of the input, and not on its value.

Theorem 3.4. I f there is an oblivious aloorithm for a problem that runs in time t
on an R M M for input size n, then there exists a nonuniform (oblivious) aloorithm

150 s. Irani, M. Naor, and R. Rubinfeld

which produces the same output and runs in time O(t) on a W O M M / w o r d - W O M M
and uses O(t) space. The preprocessing necessary to find the corresponding algorithm
for a particular input size takes O(t) time on an R M M , O(t-(log t/log log n)) time
on a W O M M and O(t log t) time on a word-WOMM.

Proof. All of the operations defined in Section 2 can be decomposed into a
constant number of read and/or write operations on at most a constant number
of words, and arithmetic and logical operations on regular memory registers.
Therefore we only need to show how to simulate t reads and writes in a total of
O(t) steps. A table is kept with an entry for each time step. When simulating a
read at step i, the algorithm reads the ith entry in the table. We now show how
to simulate a write of ~ to location j at step i. Suppose the next write after time
i to location j is at time step i'. We write ~ to all entries in the table which
correspond to the time steps in the original algorithm in which location j is read
between steps i and i'. Because the algorithm is oblivious, the read/write accesses
and therefore the information telling where to write in the table is the same for
any input of size n. A total of t reads are made and, since the total number of
writes in the simulation is bounded by the total number of reads, the nonuniform
algorithm runs in time O(t).

Finding the W O M M algorithm for a particular input size takes only
O(t- (log t/log log n)) steps of preprocessing. It is done in two passes. In the first pass
the algorithm is simulated on any input of size n. For each location, a list is kept
of the time-steps in which reads and writes are made to that location. The lists
can be constructed in O(t.(log t/log log n)) steps by keeping a counter for each
variable indicating the number of times the variable has been accessed, t consecu-
tive memory slots are alloted to contain descriptions of the accesses. The descrip-
tion consists of the type of access (read or write) and the time at which it occurs.
The counter points to the next free slot in which to write the description of the
next access to that variable.

In the second pass a table is made that has an entry for each time step. Each
entry points to a linked list containing the locations which the simulation must
write to at each time step. This table can be made in O(t) time by running through
the information gathered in the first phase and filling it into the table. If no write
is made at that time step, the list is empty. []

The simulation can be of practical use in cases when the same program is
used many times on data sets of similar sizes.

There is a lower bound implied by a proof in [Vi2] on the simulation time
for a problem on the register-restricted version of our model. The problem is that
of maintaining a variable through n updates, such that, at any point in time, the
value of the variable can be correctly determined. The problem can be solved
trivially in n total steps on an RMM. The problem requires f~(n-log n/log log n)
steps on the register-restricted W O M M and f2(n-log n) steps on the register-
restricted word-WOMM. This proof does not apply to the general write-once
memory models.

In light of Theorem 3.4, showing that a problem in P requires asymptotically

Time and Space Complexity of Computation Using Write-Once Memory 151

more time on a WOMM than an RMM is a hard task: it would imply the problem
cannot be solved by a linear-sized circuit, a major open problem in computational
complexity. This is so because a circuit is an oblivious algorithm. (Actually, if only
a uniform separation exists, then it shows that there are no (logspace, linear
time)-uniform linear-size circuits, which is open as well).

Short of a major breakthrough in computational complexity, this gives hope
only for showing lower bounds on on-line simulations of an RMM by a WOMM.
By on-line simulations, we mean a simulation that keeps track of the value of each
memory cell of the RMM. Our success in this task has not been better. However,
we can identify a problem that is "complete" for the on-line simulation problem.
The problem is the counter-maintenance problem: there are n counters initial-
ized to 0, and we are given a series of t requests to either increment counter
i or to report its value. The best-known algorithm on a W O M M requires
O(t-log t/log log n) steps. On the RMM, this problem can be done in O(t) time,
regardless of the number of times a counter is incremented. This problem is
complete in the sense that if this problem can be solved in O(u) total time on a
WOMM, then any program requiring t steps and polynomial space can be
simulated in O(u) total time.

3.3. Making a Computation Persistent

Definition. A computation is called persistent if at any point in the computation,
the state of the memory at any previous time of the computation can be
reconstructed.

Theorem 3.5. Any computation on a W O M M requiring t steps and s space can be
made into a persistent computation running in O(t log log n) steps and t 'C(n) +
s log n space (where C(n) is the number of regular memory words). Determining the
contents of location i at time j can be done in O(log log n) steps.

Proof For general C(n), the state of the regular memory words at each point in
time is kept in priority queues which allow accesses and predecessor computations
in O(log log n) time [EKZ]. There will be one priority queue for each regular
memory word in the simulated computation. If the regular memory word in the
simulated computation is updated to i at t imej, j . (n + 1) + i will be inserted into
the priority queue associated with that regular memory word. The value of regular
memory word i at time j can be retrieved by asking for the predecessor of
(j + 1)'(n + 1) and taking the value to be the value of the predecessor mod n.
O(C(n)) of these data structures can be implemented using O(C(n)) registers of
regular memory and the write-once memory.

In order to keep the state of the write-once memory words at each point in
time, we first observe that a write-once memory word can only be changed
i + d log n times because each change sets at least one bit and each bit can be
set at most once. Thus we can simulate each location i in the original computation
using 2(1 + d log n) + 1 consecutive locations in the persistent computation (where
1 + d log n is the number of bits in a memory word) in the following way: Initially

152 s. Irani, M. Naor, and R. Rubinfeld

blank, the first 2(1 + d log n) consecutive locations will contain a "his tory" of
location i in the original computation. The history will be of the form of
(1 + d log n) ordered pairs (time stamp, value). If the j th change of location i in
the original computation was made at time u by writing v, then the j th ordered
pair will be (u, v). When location i is changed in the original computation, a new
ordered pair can be inserted in the next consecutive blank locations. Letting the
last location act as a unary counter, the next blank location can be found in
constant time. The value of location i at time u in the original computation can
be found by binary search on the time stamps. []

This proof also shows that any computation on the W O M M can be simulated
on the word-WOMM with only an O(log log n) multiplicative increase in time and
an O(log n) multiplicative increase in space.

4. The Space Complexity of Computing on Write-Once Memory

In this section we investigate how efficiently space can be used in write-once
memory. In the situation where we would like to keep track of a variable through
several changes without using any regular memory, I-RS] shows how to conserve
the number of write-once memory bits required. However, if t changes are to be
made to the variable, t write-once bits are necessary. Our emphasis is different
because a W O M M has a certain amount of regular memory which can be used.
We are interested in modifying algorithms in order to use the regular memory to
conserve space.

It seems that many algorithms on the W O M M require space proportional to
the running time. The following theorem shows that space proportional to the
number of simulated steps is required for any general simulation of a program
originally running on an RMM.

Theorem 4.1. l f k > c.d + 1, where c is the number o fd ' log n bit regular memory
words available, then maintaining k variables given n on-line updates requires ~(n)
bits of write-once memory. Each update changes exactly one variable to any value
in [1 n].

Proof. We prove the theorem for the case k = cd + 1. The general theorem
follows trivially from this. We show that an adversary can force a write to a
write-once memory location after every k steps. Define a register configuration to
be a snapshot of the registers, and a memory configuration to be a snapshot of the
registers and the write-once memory. Note that there are only ncd possible register
configurations. Define a state of the k variables to be a k-tuple (x~ Xk) where
x~ ~ [1 n] is the current value of the ith variable. Since the algorithm is
maintaining the variables, it must be able to find out the value of each variable
at all times. As the information about the variables can be assumed to be contained
solely in the memory, we know that no two states of the k variables can have the
same memory configuration. (On the other hand, it is possible that more than one
memory configuration could indicate the same state since the memory configura-

Time and Space Complexity of Computation Using Write-Once Memory 153

tion may be dependent on the order of the updates.) Starting from any state, any
one of at least n k different states can be reached after k steps. Since n k > n c~, there
is at least one pair of states that have the same register configuration. Since the
memory configurations must be different for different states, there must have been
a write to the write-once memory for at least one of these two states. Therefore,
there is a way of updating the variables in order to force a write to the write-once
memory every k = cd + 1 steps. []

A similar proof shows that for large enough k the lower bound holds even
when the variablcs are counters that may only be incremented by one at each
update.

Theorem 4.2. Maintaining n I -~ counters given n on-line updates requires F2(n)

write-once bits.

There are, however, algorithms that require significantly less write-once space
than their running time on an RAM. For example, the "high school" method for
Gaussian elimination takes time O(n3). At each phase, the new matrix that is
calculated after doing the row operations is written down. This method takes O(n 3)
space. However, a factor of n can be saved in the space without affecting the
running time by saving the row operations rather than the current values of each
row. Therefore, the space required is only O(n2). In order to study space require-
ments further, we define a variant of the pebbling game, called the pebble-sticker
game.

Pebbling graphs is a common tool used in examining the space requirements
and the time-space tradeoffs in oblivious computation (see [P] for a survey). The
idea is to model an algorithm by a directed acyclic graph. The nodes with zero
indegree correspond to the inputs and the nodes with zero outdegree correspond
to the outputs. The interior nodes correspond to operations. There is a directed
edge from a node u to a node v if the output of node u is an operand for v. We
say that u is a direct predecessor of v. The object of the pebbling game is to cover
each vertex of a graph with a pebble, subject to the condition that before a pebble
can be placed on a vertex v, all direct predecessors of v must be covered by pebbles.
A pebble can be removed from a vertex at any time. The number of pebbles
required to pebble a graph represents the space requirements of the computation
and the number of steps corresponds to the computation time. The problem is to
find the minimum number of pebbles needed to cover the graph or to find tradeoffs
between the number of pebbles and the number of steps.

The analogous problem with write-once memory uses stickers in addition to
pebbles. A sticker is different from a pebble in that once a sticker has been placed
on a node, it cannot be removed. As placing pebbles correspond to writes to the
regular memory, placing stickers correspond to writes to write-once memory. The
problem is to find the minimum number of stickers required to cover a graph,
given only a limited number of pebbles. Bounded degree planar graphs can be

covered with O(x/~) pebbles [LT], and there exist bounded degree planar graphs

which require f2(x/~) pebbles [M]. Bounded degree trees can be covered with

154 s. lrani, M. Naor, and R. Rubinfeld

O(log n) pebbles, and balanced binary trees require log n + 1 pebbles [PH] . The
following four theorems show tight bounds on the number of stickers required to
pebble directed acyclic planar graphs and trees, given a limited number of pebbles.

Theorem 4.3. Directed acyclic planar graphs of indegree less than p/(4 log p) can
be covered with O(n/p) stickers, where n is the size of the graph and p is the number
of pebbles.

Proof The method in [LT] for pebbling planar graphs uses the fact that, for any
planar graph G = (V, E), the vertices of G can be partitioned into three sets, A, B,

C, where n/3 < I al < 2n/3 and I C I - 2 2 x / ~ , such that there is no edge in G
between a vertex of A and a vertex of B. We use this fact to define a tree structure,
T(G), on the graph such that each node in the tree is associated with a "small"
subset of the nodes in the graph G. We say that a node in the tree contains the
set of nodes in G that it is associated with. For a node v in the graph, let Node
(v) be the node in the tree T(G) where v is contained. The sets contained in each
node of the tree form a partition of the nodes in G. Let A, B, and C be the
compoinents of G as defined above (note that A, B, and C form a partition of V).
Let G a be the subgraph induced by the vertex set A and G B be the subgraph
induced by the vertex set B. Define T(G) recursively as follows: if IV[< p2/4, then
T(G) is just a one-node tree that contains the set V. Otherwise, the root of tree
T(G) contains the nodes in component C. The right subtree of T(G) is T(Ga) and
the left subtree is T(Gn).

Observation. I f two nodes, u and v, are adjacent in G, then either Node (u) = Node
(v), Node (u) is an ancestor of Node (v), or Node (v) is an ancestor of Node (u).

We use stickers to cover all graph nodes v such that Node (v) is an interior
node in the tree T(G). We call these nodes sticker nodes. All other nodes are called
pebble nodes and are covered by pebbles. We cover the graph in topological order.
It follows directly from the results of [LT'J that if the degree of the graph is bounded
by p/(4" log p), then the subgraph induced by the nodes at each leaf in T(G) can
be covered using only p/2 pebbles and without using any stickers. Therefore, if a
node v is a pebble node and all of the sticker nodes that precede v in the topological
ordering are already covered, then any node having an unblocked path (a path
with no sticker or pebble on it) to v is contained in Node (v) and thus v can be
covered using p/2 pebbles. To cover a sticker node v in the graph, we assume that
all sticker nodes that precede v in the topological ordering have been covered. If
u is an uncovered direct predecessor of v, then u is a pebble node such that all of
u's predecessors that are sticker nodes have been covered. We cover u using p/2
pebbles and leave the pebble on u. When all of the direct predecessors of v have
been covered, then v can also be covered.

Let S(n, p) be the number of stickers required to cover a planar graph on n
vertices, using only p/2 pebbles. We then have

S(n, p) < 2x/2" n + S(~n, p) + S((1 - ~t)m, p),

Time and Space Complexity of Computation Using Write-Once Memory 155

where

and

) S , p = 0 ,

which gives S(n, p) = O(n/p). []

Theorem 4.4. For all 0 < p < v/n/3, there is a family of bounded degree planar
graphs that requires ~(n/p) stickers given at most p pebbles.

Proof. A mountain range is a directed, acyclic, planar graph with vertex set
{1 n}. The edge set is defined in terms of an auxiliary height function h from
the vertex set into the nonnegative integers satisfying h(1)= h(n)= 0 and
[h(i + 1) - h(i)[= 1. There is an edge from i to j if and only i f j = i + I or j =
min{k > i[h(k) = h(i)}. We define a peak of a mountain range to be a subgraph
induced by a sequence of nodes, [i j] , where h(0 = h(j) = 0 and h(k) :~ 0 for
k ~ [i + l j - l] .

At least r pebbles are required to pebble a mountain range that has r peaks
of height r. The size of the smallest such graph is n = 2r 2 + 1. The case where
r = 3 is shown in Figure 1. (See [M].)

Now examine the mountain range of size n with n/3p peaks each of height
3p/2. Divide the peaks into sections of 3p/2 consecutive peaks. This gives 2n/9p z

sections. Since p < ~/-n/3, there is at least one section of peaks. Each section
requires 3p/2 pebbles to be covered [M]. If only p pebbles are available, then at
least p/2 stickers are required for each section because the number of pebbles plus
the number of stickers must be at least 3p/2 for each section. Since stickers cannot
be reused, and there are 2n/gp 2 sections, n/9p stickers are required to cover the
whole graph. []

T h e o r e m 4.5. Any binary tree can be covered using O(n/2 p) stickers where n is the
number of nodes in the tree and p is the number of available pebbles.

/\ /\
1 \ 1 \ 1 \

�9 \! ,Y ,.

Fig. 1

156 S. lrani, M. Naor, and R. Rubinfeld

Proof. We show that there are O(n/2 p) nodes whose removal results in compo-
nents which are all of size smaller than 2 p nodes. Any tree of size 2 p nodes can be
pebbled with p pebbles. The entire graph can be covered by using stickers to cover
O(n/2 p) nodes that partion the tree into subtrees of size at most 2 p and using p
pebbles to cover each of the nodes in the subtree. Such a partition can be shown
to exist as we now describe. Every binary degree tree has a node, v, such that

�89 < T o < In,

where T~ is the number of nodes in the subtree rooted at v [B]. If this node is
removed, then there are two subgraphs, each with fewer than 2.n/3 nodes. Let
T(n, p) be the number of nodes that must be removed from any binary tree on n
nodes to obtain components that are all smaller than 2 ~ nodes:

T(n, p) < T(~ . n, p) + T((1 -- a)n, p) + 1,

where

and

T(2 p, p) = 0.

Hence,

[]

The next theorem shows that this is the best possible.

Theorem 4.6. ~(n/2 ~+1) stickers are required in order to cover balanced binary
trees with edges directed toward the root, where n is the number of nodes in the tree
and p is the number of available pebbles.

Proof. Let T be the complete binary tree of height h with n = 2 k + 1 nodes. Let v
be a node in such a tree and let P(v) be the number of pebbles required to cover
v. It is known that h + 1 pebbles are required to cover T [PH]. Now consider the
nodes in the tree that are at distance p from the leaves. There are 2 h-p such nodes.
A subtree rooted at one of these nodes is balanced and has 2 p+t nodes. Thus, it
takes p + 1 pebbles to pebble one of these subtrees. If we only have p pebbles
available, we must use at least one sticker to cover the subtree. Since there are
2 h-~ such subtrees, we must use at least 2 h-z = n/2 p+~ stickers to cover the entire
binary tree. []

5. Relationships Between Write-Once Complexity Classes and
Other Complexity Classes

Definition. WO-PSPACE is the class of problems that can be solved in poly-
nomial space on a W O M M where the number of regular memory registers
available is C(n) = c.

Time and Space Complexity of Computation Using Write-Once Memory 157

Theorem 5.1. WO-PSPACE = P.

Proof. As a result of our simulation upper bounds, it is clear that anything that
is in P is also in WO-PSPACE. We now show that a problem in WO-PSPACE
is in P. First notice that only a polynomial number of writes to the write-once
memory can be made, because each write sets at least one bit. This implies that
the write-once memory can only be in a polynomial number of configurations
throughout the course of the computation. Since there are only c -d - l og n bits of
regular memory, the regular memory can only be in one of n c" ~ configurations.
Therefore the number of memory configurations is bounded by a polynomial in
n. Each operation depends on the current instruction (of which there are a fixed
number) and on the memory configuration. Since the computation terminates, no
two time steps have the same memory configuration and current instruction.
Therefore there can only be a polynomial number of operations. []

6. Conclusions and Further Questions

In this paper we have introduced a model for computation with write-once
memory. We found that several algorithms can be easily converted to run as
quickly on this model as on an RAM with regular memory, but that others seem
to require some slowdown. We make an attempt to characterize the reasons for
this difference.

All of our simulation time upper bounds use only a constant number of regular
memory words. What better time bounds can be found for simulations on the
W O M M when the number of regular memory words is more than a constant?

As noted before, it would be of interest to find problems for which the time
or space complexity is provably greater on the W O M M than it is on the RMM.
On the other hand, as is the case in parallel complexity classes, there are many
problems for which it should be possible to find upper bounds on time and space
which are better than those given by simulation results. For example, can
maximum flow problems be solved as quickly on a W O M M ?

The branching program model was used to investigate t ime-space tradeoffs
of general computation. There is a natural analogue of this model in write-once
memory. Is there a stronger t ime-space tradeoff lower bound for sorting on this
model than the f~(n 2) lower bound in [BC] for branching programs on regular
memory? Given o(n) write-once memory words for free, can it be shown that there
is an f~(n z) lower bound on the t ime-regular-memory-space tradeoff? On the other
hand, there are a few known O(n log n)-time randomized algorithms for sorting
which use O(n) words on a W O M M , but are there any such deterministic
algorithms?

Can algorithms for maintaining persistent data-structures be found which run
on a W O M M with comparable bounds on time and space as those achieved on
an R M M in [DSST'I?

We could consider extensions of this model to models of parallel computation.
Similar simulation results could again be used to give algorithms on PRAMs with

158 S. Irani, M. Naor, and R. Rubinfeld

write-once memory with slightly worse running times than those on PRAMs with
regular memory, but the above questions for sequential complexity are still
relevant with respect to parallel complexity.

Though this model is incomparable with the Hierarchical Memory Model
with Block Transfer model defined in [ACS], it seems that many of the same
problems that can be done with little slowdown on that model can also be done
with little slowdown on a WOMM. It would be interesting to find out if this is
because of the oblivious nature of the algorithms exhibited in [ACSI, or if there
is a deeper reason for this to be the case.

Finally, the model could be extended to incorporate more sophisticated ways
of modeling seek time. For example, it would be more accurate to distinguish
between consecutive and nonconsecutive reads when charging for a step. If no
seek is required for a consecutive read, how is the number of seeks required
affected?

Acknowledgments

We than Manuel Blum and Raimund Seidel for suggesting this area of research, for many helpful
conversations, and for Raimund's suggestion of the use of persistent data structures to improve the
space bound on the claim in Section 3.1. We thank Mike Fredman for pointing us to O(log log n)
priority queues. We also thank Mike Luby for his careful reading and comments on this paper, and
Russell Impagliazzo, Ron Rivest, Steven Rudich, and Umesh Vazirani for several interesting discus-
sions.

References

[ACS]

[ANP]

[BC]

IS]

[DMMU]

[DSST]

I-EKZ]

[LT]

I'M]

Aggarwal, A., Chandra, A., Snir, M., Hierarchical Memory with Block Transfer, Proceed-
ings of the 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
CA, October 1987, pp. 204-216.
Arvind, Nikhil, R. S., Pingali, K. K., I-structures: Data Structures for Parallel Computing,
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 4, October
1989, pp. 598-632.
Borodin, A., Cook, S., A Time-Space Tradeoff for Sorting on a General Sequential Model
of Computation, SIAM Journal on Computing, Vol. 11, No. 2, May 1982, pp. 287-297.
Brent, R. P., The Parallel Evaluation of General Arithmetic Expressions, Journal of the
Association for Computing Machinery, Vol. 21, 1974, pp. 201-208.
Dolev, D., Maier, D., Mairson, H., Ullman, J., Correcting Faults in a Write-Once Memory,
Proceedings of the 16th Annual ACM Symposium on Theory of Computing, Washington,
DC, May 1984, pp. 225-229.
Drisr J., Sarnak, N., Sleator, D., Tarjan, R., Making Data Structures Persistent,
Proceedtngs of the 18th Annual A CM Symposium on Theory of Computing, Berkeley, CA,
May 1986, pp. 109-121.
Erode Boas, P. v., Kass, R., Zijlstra, E., Design and Implementation of an Efficient Priority
Queue, Mathematical Systems Theory, Vol. 10, 1977, pp. 99-127.
Lipton, R., Tarjan, R., Applications of a Planar Separator Theorem, SIAM Journal on
Computing, VoJ. 9, No. 3, August 1980, pp. 615-626.
Mehlhorn, K., Pebbling Mountain Ranges and Its Application to DCFL-Recognition,
1979.

Time and Space Complexity of Computation Using Write-Once Memory 159

[PH]

[p]

[PMN]

[RS]

[ST]

[Ta]

[To]
[Va]

[Vii]

[Vi2]

Paterson, M. S., Hewitt, C. E., Comparative Schematology, Proceedings of the MA C
Conference on Concurrent Systems and Parallel Computation, 1970, pp. 119-127.
Pippenger, N., Pebbling, Proceedings of the 5th 1BM Symposium on Mathematical
Foundations of Computer Science: Computational Complexity, May 19, 1980.
Ponder, C., McGerr, P., Ng, A., Are Applicative Languages Inefficient? SIGPLAN
Notices, Vol. 23, No. 6.
Rivest, R. L., Shamir, A., How To Reuse a "Write-Once" Memory, Information and
Control, Vol. 55, Nos. 1-3, 1982, pp. 1-19.
Sarnak, N., Tarjan, R. E., Planar Point Location Using Persistent Search Trees, Communi-
cations of the ACM, July 1986, Vol. 29, No. 7, pp. 669-679.
Tarjan, R. E., Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, 1983.
Touati, H., Personal communication.
Valiant, L. G., Graph-Theoretic Arguments in Low-Level Complexity, Theoretical Com-
puter Science, 1977.
Vitter, J. S., Computational Complexity of an Optical Disk Interface, Proceedings of the
ll th Annual International Colloquium on Automata, Languages, and Programming
(ICALP), Antwerp, July 1984, pp. 490-502.
Vitter, J. S., An Efficient I/O Interface for Optical Disks, A CM Transactions on Database
Systems, Vol. 10, No. 2, June 1985, pp. 129-162.

Received May 2, 1991.

