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Abstract

We present a computational technique for combatting junk mail, in particular,

and controlling access to a shared resource, in general. The main idea is to require

a user to compute a moderately hard, but not intractable, function in order to gain

access to the resource, thus preventing frivolous use. To this end we suggest several

pricing functions, based on, respectively, extracting square roots modulo a prime,

the Fiat-Shamir signature scheme, and the Ong-Schnorr-Shamir (cracked) signature

scheme.
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1 Introduction

Some time ago one of us returned from a brief vacation, only to �nd 241 messages in

our reader. While junk mail has long been a nuisance in hard (snail) mail, we believe

that electronic junk mail presents a much greater problem. In particular, the ease

and low cost of sending electronic mail, and in particular the simplicity of sending

the same message to many parties, all but invite abuse. In this paper we suggest a

computational approach to combatting the proliferation of electronic mail. More

generally, we have designed an access control mechanism that can be used whenever

it is desirable to restrain, but not prohibit, access to a resource.

Two general approaches have been used for limiting access to a resource: legisla-

tion and usage fees. For example, it has been suggested that sending an unsolicited

FAX message should be a misdemeanor. This approach encounters obvious de�ni-

tional problems. Usage fees may be a deterrent; however, we do not want a system

in which to send a letter or note between friends should have a cost similar to that of

a postage stamp; similarly we do not wish to charge a high fee to transmit long �les

between professional collaborators. Such an approach could lead to underutilization

of the electronic medium.

Since we believe the real cost of using the medium (plus the pro�t to the provider)

will not serve as a deterrent to junk mail, we propose a system that imposes another

type of cost on transmissions. These costs will deter junk mail but will not interfere

with other uses of the system. The main idea is for the mail system to require the

sender to compute some moderately expensive, but not intractable, function of the

message and some additional information. Such a function is called a pricing function.

In the more general setting, in which we have an arbitrary resource and a resource

manager, a user desiring access to the resource would compute a moderately hard

function of the request id. (The request id could be composed of the user's identi�er

together with, say the date and time of the request.)

The pricing function may be chosen to have something like a trap door: given some

additional information the computation would be considerably less expensive. We call

this a shortcut. The shortcut may be used by the resource manager to allocate cheap

access to the resource, as the manager sees �t, by bypassing the control mechanism.

For example, in the case of electronic mail the shortcut permits the post o�ce to

grant bulk mailings at a price chosen by the post o�ce, circumventing the cost of

directly evaluating the pricing function for each recipient.

We believe our approach to be of practical interest. It also raises the point that,

unlike the situation with one-way functions (functions that are easy to compute but

hard to invert) and Cryptography, there is virtually no complexity theory of moder-

ately hard functions, and therefore yields excellent motivation for the development of

such a theory.

The rest of this paper is organized as follows. Section 2 contains a description of

the properties we require of pricing functions. Section 3 focusses on combatting junk
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mail. Section 4 describes three possible candidates for pricing functions. We require

a family of hash functions satisfying certain properties. Potentially suitable hash

functions are discussed in more detail in Section 5. Section 6 contains conclusions

and open problems.

2 De�nitions and Properties

We must distinguish between several grades of di�culty of computation. Rather than

describe the hardness of computing a function in terms of asymptotic growth, or in

terms of times on a particular machine, we focus on the relative di�culty of certain

computational tasks.

We require three classes of di�culty: easy,moderate, and hard. The termmoderate

can be viewed in two di�erent ways. As an upper bound, it means that computa-

tion should be at most moderately hard (as opposed to hard); as a lower bound it

means that computation should be at least moderately easy (as opposed to easy).

The precise de�nition of easy and moderate and hard will depend on the particular

implementation. However, there must be some signi�cant gap between easy and mod-

erately easy. As usual, hard means intractable in reasonable time, such as factoring

a 1024-bit product of two large primes.

The functions we consider for implementing our scheme have a di�erence param-

eter that serves a role analogous to that of a security parameter in a cryptosystem.

A larger di�erence parameter stretches the di�erence between easy and moderate.

Thus, if it is desired that, on a given machine, checking that a function has been cor-

rectly evaluated should require only, say, 10

�2

seconds of CPU time, while evaluating

the function directly, without access to the shortcut information, should require 10

seconds, the di�erence parameter can be chosen appropriately.

A function f is a pricing function if

1. f is moderately easy to compute;

2. f is not amenable to amortization: given ` values m

1

; : : :m

`

, the amortized

cost of computing f(m

1

); : : : ; f(m

`

) is comparable to computing f(m

i

) for any

1 � i � `;

3. given x and y it is easy to determine if y = f(x).

We use the term \function" loosely: sometimes f will be a relation. That is, given x

it should be moderately easy to �nd a y such that the pair (x; y) satis�es the relation,

but given (x; y) it should be easy to determine whether it satis�es the relation.

Let S � f0; 1g

�

be a set that can be easily sampled (i.e. there is an e�cient

algorithm for selecting a random s 2 S). F = ff

s

js 2 Sg is a family of pricing

functions indexed by s 2 S � f0; 1g

�

if, given s, f

s

is a pricing function. We will be

interested in a collection of families of pricing function F = fF

k

jk � 1g, indexed by
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a di�erence parameter k, where the hardness of evaluating f

s

2 F

k

should increase

with k.

Remark 2.1 It is important not to choose a function that after some preprocessing

can be computed very e�ciently. Consider the following family of pricing functions

F , based on subset sum. The index s is a set of ` numbers a

1

; a

2

; : : : a

`

, 1 � a

i

� 2

`

,

such that 2

`

is moderately large. For a given request x, f

s

(x) is a subset of a

1

; a

2

; : : : a

`

that sums to x. Computing f

s

seems to require time proportional to 2

`

. As was shown

by Schroepel and Shamir [24], after preprocessing, using only a moderate amount of

storage, such problems can be solved much more e�ciently. Thus, there could be large

di�erence between the time spent evaluating f

s

on a large number k of di�erent inputs,

such as would be necessary for sending bulk mail, and k individual computations of

f

s

from scratch. This is clearly undesirable.

We now introduce the notion of a shortcut, similar in spirit to a trapdoor one-

way permutation, introduced by Di�e and Hellman [10]. A pricing function with a

shortcut is easy to evaluate given the shortcut. In particular, the shortcut is used for

bypassing the access control mechanism, at the discretion of the resource manager.

A collection F of families of pricing functions is said to have the shortcut property

if for k � 1 there exists an e�cient algorithm that generates a pair (s; c) where

1. s is uniformly distributed in S.

2. given s (but not c) f

s

is a function in F .

3. c is a shortcut: computing f

s

is easy given s and c.

Note that since f

s

is a pricing function, it is not amenable to amortization. Thus,

given s, �nding c or an equivalent shortcut, should be hard.

Remark 2.2 The consequences of a \broken" function are not severe. For example,

if a cheating sender actually sends few messages, then little harm is done; if it sends

many messages then the cheating will be suspected, if not actually detected, and the

pricing function or its key can be changed.

In the context of junk mail we use hash functions so that we never apply the

pricing function to a message, which may be long, but only to its hash value. Ideally,

the hash function should be very easy to compute. However, given m, h, and m

0

, it

should not be easy to �nd m

00

closely related to m

0

such that h(m

00

) = h(m). For

example, if Macy's sends an announcement m of a sale, and later wishes to send an

announcement m

0

of another sale, it should not be easy to �nd a su�x z such that

h(m

0

� z) = h(m).

Suitable hash functions could be based on DES, subset sum, MD4, MD5, and

Snefru. We briey discuss each of these in Section 5.
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3 Junk Mail

The primary motivation for our work is combatting electronic junk mail. We envision

an environment in which people have computers that are connected to a communica-

tion network. The computers may be used for various anticipated activities, such as,

for example, updating one's personal database (learning that a check has cleared),

subscribing to a news service, and so on. This communication requires no human

participation. This is di�erent from the situation when one receives a personal let-

ter, or an advertisement of a product in which one is likely to be interested, which

clearly require one's attention. Our interest is in controlling mail of this second kind.

The system requires a single pricing function f

s

, with shortcut c, and a hash

function h. The selection of the pricing function and the setting of usage fees are

controlled by a pricing authority. All users agree to obey the authority. There

can be any number of trusted agents that receive the shortcut information from the

pricing authority. The functions h and f

s

are known to all users, but only the pricing

authority and its trusted agents know c.

To send a message m at time t to destination d, the sender computes y =

f

s

(h(hm; t; di) and sends hy;m; ti to d. The recipient's mail program veri�es that

y = f

s

(h(hm; t; di). If the veri�cation fails, or if t is signi�cantly di�erent from the

current time, then the message is discarded and (optionally) the sender is noti�ed

that transmission failed. If the veri�cation succeeds and the message is timely, then

the message is routed to the reader.

Suppose the pricing function f has no short-cut. In this case, if one wants to write

a personal letter, the computation of f

s

may take time proportional to the time taken

to compose the letter. For typical private use that may be acceptable. In contrast, the

computational cost of a bulk mailing, even a \desirable" (not junk) mailing, would

be prohibitive, defeating the whole point of high bandwidth communication.

In our approach bulk mail, such as a call for papers for a professional conference,

or an announcement of a new product, is sent using the shortcut c, which necessarily

requires the participation of the system manager. The sender pays a fee and prepares

a set of letters, and one of the trusted agents evaluates the pricing function as needed

for all the letters, using the shortcut. Since the fee is levied to deter junk mail,

and not to cover the actual costs of the mailing, it can simply be turned over to the

recipients of the message (and used to pay for the services of the authority) .

Finally, each user can have a frequent correspondent list of senders from whom

messages are accepted without veri�cation. Thus, friends and relatives could circum-

vent the system entirely. Moreover, one could join a mailing list by adding the name

of the distributor to one's list of frequent correspondents

1

. The list, which is main-

tained locally by the recipient, can be changed as needed. Thus, when submitting a

paper to a conference, an author can add the name of the conference to the list of

frequent corresponders. In this way the conference is spared the fees of bulk mailing.

1

Similarly, one could have a list of senders to whom access is categorically denied.
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4 Pricing Functions

In this section we list three candidate families of pricing functions. All the candidates

use number-theoretic algorithms. For a good introduction to this area see [9, 13].

The �rst pricing function is the simplest, but has no shortcut. The other two do have

good shortcuts.

4.1 Extracting Square Roots

The simplest implementation of our idea is to base the di�culty of sending on the

di�culty (but not infeasibility) of extracting square roots modulo a prime p. Again,

there is no known shortcut for this function.

� Index: A prime p of length depending on the di�erence parameter; a reasonable

length would be 1024 bits.

� De�nition of f

p

: The domain of f

p

is Z

p

. f

p

(x) =

p

x mod p.

� Veri�cation: Given x; y, check that y

2

� x mod p.

The checking step requires only one multiplication. In contrast, no method of

extracting square roots modp is known that requires fewer than about log p multipli-

cations. Thus, the larger we take the length of p, the larger the di�erence between

the time needed to evaluate f

p

and the time needed for veri�cation.

4.2 A Fiat-Shamir Based Scheme

This pricing function described in this section is based on the signature scheme of

Fiat and Shamir [11]. The idea is to reduce the di�culty of forging signatures in that

scheme. The security of the Fiat-Shamir signature Scheme is based on

� The di�culty of factoring large numbers (or equivalently of extracting square-

roots modulo a composite).

� A hash function whose range size is (exponential in) the security parameter.

Ideally, this hash function should behave as a random function and the time it

takes to forge a message should be proportional to the range size.

The proposed pricing function is obtained by taking the Fiat-Shamir signature

scheme with a smaller security parameter for the hash function. Searching a range

of size exponential in the security parameter should be feasible, but time-consuming.

The scheme is as follows:
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� Index: Let N = pq, where p and q are primes of su�cient length to make

factoring N infeasible (currently 512 bits each su�ces, but if there is further

progress in factoring algorithms, then 1024 bits should be used). Let y

1

=

x

2

1

; : : : ; y

k

= x

2

k

be k squares modulo N , where k depends on the di�erence

parameter. Finally, let h be a hash function whose domain is Z

�

N

� Z

�

N

, and

whose range is f0; 1g

k

. h can be obtained from any of the hash functions

described in Section 5 by taking the k least signi�cant bits of the output. The

index s is the (k + 2)-tuple (N; y

1

; : : : ; y

k

; h).

� Shortcut: The square roots x

1

; : : : ; x

k

.

� De�nition of f

s

: The domain of f

s

is Z

�

N

. Below, we describe a moderately

easy algorithm for �nding z and r

2

satisfying the following conditions. Let us

write h(x; r

2

) = b

1

: : : b

k

, where each b

i

is a single bit. Then z and r

2

must

satisfy

z

2

= r

2

x

2

k

Y

i=1

y

i

b

i

mod N:

f

s

(x) = (z; r

2

) (note that f

s

is a relation).

� Veri�cation: Given x; z; r

2

, compute b

1

: : : b

k

= h(x; r

2

) and check that

z

2

= r

2

x

2

k

Y

i=1

y

i

b

i

mod N:

� To Evaluate f

s

with Shortcut Information: Choose an r at random, com-

pute h(x; r

2

) = b

1

: : : b

k

, and set z = rx

Q

k

i=1

x

i

b

i

. f

s

(x) = (z; r

2

).

� Evaluating f

s

without Shortcut Information:

f

s

(x) = (z; r

2

) can be computed as follows.

Guess b

1

: : : b

k

2 f0; 1g

k

.

Compute B =

Q

k

i=1

y

i

b

i

mod N .

Repeat:

Choose random z 2 Z

�

N

De�ne r

2

to be r

2

= (z

2

=Bx

2

) mod N

Until h(x; r

2

) = b

1

: : : b

k

.

In the evaluation of f

s

without the shortcut the expected number of iterations is

2

k

, which, based on the intuition driving the Fiat-Shamir signature scheme, seems

to be the best one can hope for. In particular, if h is random, then one can do no

better. In particular, retrieving the shortcut x

1

; : : : ; x

k

is as hard as factoring [21]. In

contrast, the veri�cation procedure involves about k multiplications (actually k=2+1

expected multiplications) and one evaluation of the hash function. Similarly, given
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the shortcut the function can be evaluated using about k multiplications and one

evaluation of the hash function. Thus, k is the di�erence parameter. A reasonable

choice is k = 10.

4.3 An Ong-Schnorr-Shamir Based Scheme, or, Recycling

Broken Signature Schemes

A source of suggestions for pricing functions with short cuts is signature schemes

that have been broken. The \right" type of breaking applicable for our purposes is

one that does not retrieve the private signature key (analogous to factoring N in the

previous subsection), but nevertheless allows forging signatures by some moderately

easy algorithm.

In this section we describe an implementation based on the proposed signature

scheme of Ong, Schnorr and Shamir and the Pollard algorithm for breaking it. In

[18, 19] Ong, Schnorr, and Shamir suggested a very e�cient signature scheme based

on quadratic equations modulo a composite: the public key is a modulus N (whose

factorization remains secret) and an element ` 2 Z

�

N

. The private key is u such that

u

2

= �`

�1

mod N , (i.e a square root of the inverse of �` modulo N). A signature

for a message m (which we assume is in the range 0 : : : N � 1) is a solution (x

1

; x

2

) of

the equation x

2

1

+ ` �x

2

2

= m mod N . There is an e�cient signing algorithm, requiring

knowledge of the private key:

� choose random r

1

; r

2

2 Z

�

n

such that r

1

� r

2

= m mod N

� set x

1

=

1

2

� (r

1

+ r

2

) mod N and x

2

=

1

2

� u � (r

1

� r

2

) mod N .

Note that verifying a signature is extremely easy, requiring only 3 modular multipli-

cation.

Pollard (reported and extended in [20]) suggested a method of solving the equation

without prior knowledge of the private key (�nding the private key itself is hard {

equivalent to factoring [21]). The method requires roughly logN iterations, and thus

can be considered moderately hard, as compared with the veri�cation and signing

algorithms, which require only a constant number of multiplications and inversions.

For excellent descriptions of Pollard's method and related work see [6, 14].

We now describe how to use the Ong-Schnorr-Shamir signature scheme as a pricing

function.

� Index: Let N = pq where p and q are primes let ` 2 Z

�

n

. Then s = (N; `).

� Shortcut: u such that u

2

= `

�1

mod N

� De�nition of f

s

: The domain of f

s

is Z

�

N

. Then f

s

(x) = (x

1

; x

2

), where

x

2

1

+ `x

2

2

= x mod N . f

s

is computed using Pollard's algorithm, as described

above.
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� Veri�cation: Given x

1

; x

2

; x, verify that x = x

2

1

+ `x

2

2

.

� To Evaluate f

s

with Shortcut Information: Use the Ong-Schnorr-Shamir

algorithm for signing.

5 Hash Functions

Recall that we need hash functions for two purposes. First, in the context of junk

mail, we hash messages down to some reasonable length, say 512 bits, and apply the

pricing function to the hashed value of the message. In addition, we need hashing in

the pricing function based on the signature scheme of Fiat-Shamir.

We briey discuss four candidate hash functions. Each of these can be computed

very quickly.

� DES: Severalmethods have been suggested for creating a one-way hash function

based on DES (e.g. [16] and the references contained therein). Since DES is

implemented in VLSI, and such a chip might become widely used for other

purposes, this approach would be very e�cient. Note that various attacks based

on the \birthday paradox" [8] are not really relevant to our application since

the e�ort needed to carry out such attacks is moderately hard.

� MD4 & MD5 : MD4 and MD5 are candidate one-way hash functions pro-

posed by Rivest [22, 23]. They were designed explicitly to have a high speed

software implementation and are in wide use. The length of the output is either

128 or 256 bits. Although a simpli�ed version of MD4 has been successfully

attacked [3], we know of no attack on the full MD4. Also, [4] �nds \pseudo-

collisions" in MD5, but it is not clear whether this can be converted into a

collision �nding algorithm.

� Subset Sum: Impagliazzo and Naor [12] have proposed using \high density"

subset sum problems as one-way hash functions. They showed that �nding

colliding pairs is as hard as solving the subset sum problem for this density.

Although this approach is probably less e�cient than the others mentioned here,

the function enjoys many useful statistical properties (viz. [12]). Moreover, it is

parameterized and therefore exible.

� Snefru: Snefru was proposed by Merkle [17] as a one-way hash function suitable

for software, and was broken by Biham and Shamir [2]. However, the Biham

and Shamir attack still requires about 2

24

operations to �nd a partner of a given

message. Thus, it may still be viable for our purposes.
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6 Discussion and Further Research

Of the three pricing functions described in Section 4, the Fiat-Shamir is the most

exible and enjoys the greatest di�erence function: changing k by 1 doubles the dif-

ference. The disadvantage is that this function, like the Fiat-Shamir scheme, requires

the \extra" hash function.

As mentioned in the Introduction, there is no theory of moderately hard functions.

The most obvious theoretical open question is to develop such a theory, analogous,

perhaps, to the theory of one-way functions. Another area of research is to �nd

additional candidates for pricing functions. Fortunately, a trial and error approach

here is not so risky as in cryptography, since as discussed earlier, the consequences

of a \broken" pricing function are not severe. If someone tries to make money from

having found cheaper ways of evaluating the pricing function, then he or she under-

prices the pricing authority. Either few people will know about this, in which case

the damage is slight, or it will become public.

A growing area of research is the economics of networks [15, 7, 5] where issues

such as the e�ect of pricing on the network behavior are investigated. It is interesting

to see whether there are connection between this direction and the ideas suggested in

this paper.

Finally, the evaluation of the pricing function serves no useful purpose, except

serving as a deterrent. It would be exciting to come up with a scheme in which

evaluating the pricing function serves some additional purpose.
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