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Abstract

We suggest a method of controlling the access to a secure database via quorum

systems. A quorum system is a collection of sets (quorums) every two of which have a

nonempty intersection. Quorum systems have been used for a number of applications

in the area of distributed systems.

We propose a separation between access servers which are protected and trustwor-

thy, but may be outdated, and the data servers which may all be compromised. The

main paradigm is that only the servers in a complete quorum can collectively grant (or

revoke) access permission. The method we suggest ensures that after authorization is

revoked, a cheating user Alice will not be able to access the data even if many access

servers still consider her authorized, and even if the complete raw database is available

to her. The method has a low overhead in terms of communication and computation.

It can also be converted into a distributed system for issuing secure signatures.

An important building block in our method is the use of secret sharing schemes

that realize the access structures of quorum systems. We provide several e�cient

constructions of such schemes, which may be of interest in their own right.
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1 Introduction

1.1 Motivation

Consider the following scenario, regarding access control to a database. The satellite pho-

tography company GlobePic has a large digitized pictures database of various parts of the

earth. This database is updated periodically, as new photographs are added. GlobePic

customers buy the license to access a set of photographs, say of some geographic area, and

this license is limited in time. When the license expires, the customer is not allowed access

any more. Furthermore, the company would like to be able to quickly revoke the customers

privileges at any time due to, say, unauthorized transfer of information. The company needs

a distributed protocol to enforce this licensing policy. The protocol should run using a wide-

spread collection of access servers, which may be completely separate from the actual data

servers. A basic part of this protocol is just maintaining a consistent view of the licensing

status of every customer, which is a classical question concerning replicated databases. Note

that servers may be unavailable due to crashes or communication failures, so the protocol

needs to overcome this and allow high availability of the service. On the other hand, the

protocol should keep the load on any single server at a minimum.

The information in the database is highly sensitive so it must be protected. The protec-

tion should be against cheating users, rather than against dishonest access server personnel.

The �rst requirement is that a user may not know any partial data relating to photographs

that were not paid for, so the protection needs to be done per record. A second requirement

is that after the license expires, and GlobePic takes the few necessary measures to update

the access servers, the user is not allowed to access any photographs at all. A crucial point

is that a typical replicated-database protocol does not update all the servers that the license

has expired, so a cheating user may attempt to access the outdated servers, who still believe

the license is valid, and thus obtain access to the photographs. Note that the access control

needs to be enforced even when the whole raw database is available to a cheating user.

A closely related problem concerns distributed signatures. Suppose that the SolarCard

credit company has an agreement with the LunarBank, which speci�es a secure signature

scheme. Any card-holder showing an o�cially signed letter of credit from SolarCard is

entitled to receive from LunarBank the amount requested in the letter, and the credit card

company is bound to reimburse the bank of the sum. Now SolarCard wishes to create an

automatic signing service for its customers, via some signature servers.

A common approach to such a problem is that the user must obtain partial signatures

from k of the n servers, so that fewer than k servers cannot forge a complete signature. This

approach ensures both a high availability, and minimal trust in the servers. We choose to

separate these issues, by trusting the servers to a large extent. However, as in the previous

scenario, we assume that the servers may not all have the updated status of each customer.

We argue that an important issue here is consistency: if the request is valid then it should be

signed, but if it is not then no matter which servers the user applies to, the request must not

be signed. Note that k-of-n signature schemes with k < n=2 do not guarantee this type of

consistency even when all the servers are not corrupt. And of course a basic requirement is
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that cheating user should not be able to forge a signature even after receiving several partial

signatures.

A solution to the problems of both scenarios includes the idea of a quorum system. This

is a collection of sets (called quorums) every two of which have a non-empty intersection.

Quorum systems are a standard tool used to maintain consistency in replicated databases. A

natural formulation for the access control problem is that access to the data may be granted

only by a quorum of servers. Then the intersection property guarantees that notifying all the

servers in some quorum that a license has expired would make the license useless. Similarly

in the signature problem, we say that only a quorum of partial signatures can be combined

into a full signature, and then the intersection property guarantees the consistency.

Our purpose in this paper is to show how to add the security requirements to some of

the better quorum systems, via secret sharing. The security we guarantee is against user's

actions; we assume that the servers are trustworthy, but possibly unavailable or out of date.

We obtain an access control protocol that has the following properties:

� Access controlled at record (rather than database) granularity.

� Very low overhead in terms of communication and computation for gaining the access.

� Low probability of denial-of-service or of giving service to an unauthorized user.

� No on-line coordination required between the servers; i.e., a user simply gets informa-

tion from the servers.

We believe that the level of trust which we assume for the servers is reasonable in applications

similar to the ones sketched above. However we consider decreasing this trust, without

signi�cant degradation of the protocol's advantages, to be a major open question.

1.2 Related Work

Herlihy and Tygar [22] have suggested a scheme to protect quorum based replicated databases.

However, their scheme has several drawbacks: access is controlled over the whole database

and not at record granularity, there is no way to revoke a user's access once it is obtained,

and the scheme uses a k-of-n threshold access structure, which implies a large communica-

tion overhead and high load since the threshold must be k > n=2 for the structure to be a

quorum system.

Reiter and Birman [41] considered a database protection scheme in a scenario which is

the reverse of ours, namely against servers being corrupted (rather then the users, as is the

underlining assumption in our paper). In their scheme it is the responsibility of the users to

verify that the the data sent by the servers is genuine. They too rely on a k-of-n threshold

scheme, and do not separate between the data servers and the access servers.

The issue of availability is addressed by Gong [19], in the context of a secure authen-

tication service. The suggested protocol uses a k-of-n threshold scheme, however, in fact

any secret sharing scheme could be used instead. Therefore if we replace the k-of-n scheme

2



by our quorum secret sharing schemes, the protocol would then gain their e�ciency, high

availability and low load.

A related line of research is that of group signatures [11] and function sharing [10]: for

processors to share a function F means that only a group of k processors can evaluate F (x),

and no information is transferred about F from the shares related to x. Hence, the issue

of granularity is dealt with. However, their model of failures and security requirements are

much more severe: the servers themselves may be corrupted, and no set of < k corrupt

servers is allowed to know any information about F . The corrupted servers are controlled by

a malicious adversary, who knows all the secret information they may possess. The authors

showed how to share the RSA function (i.e., modular exponentiation) over a threshold access

structure. However, since their security requirements are stronger than ours, the problems

they face are more di�cult and therefore: (i) The solutions obtained are more complex than

ours. (ii) They work only over threshold structures. (iii) It is not clear how to solve the

problem of database encryption given this assumption on the faulty servers. The problem

is in sharing a pseudo-random function.

1

(iv) As for signatures, their scheme is restricted

to RSA and is not general. In particular it is not clear whether any of the provably secure

signature schemes may be implemented.

1.3 Tools

Quorum systems: Quorum systems have been used in the study of distributed control and

management problems such as mutual exclusion (cf. [14, 40]), data replication protocols

(cf. [9, 21, 25]), name servers (cf. [35]) and selective dissemination of information (cf.

[49]). We apply some recent constructions suggested in [1, 28, 36, 39].

Secret sharing: Secret sharing (cf. [44]) was originally suggested for threshold access struc-

tures by Shamir and Blakley [43, 5]. It was extended to arbitrary access structures

in [24]. The issue of e�ciency (i.e., share sizes) of such schemes has been considered

in several papers (cf. [7, 6, 3]). Schemes suggested in [4] for structures represented

by monotone formulas turn out to be important for our quorum systems. The most

general access structures for which e�cient secret sharing schemes are known is that of

span programs [26]. All our schemes fall into this category. Krawczyk [27] suggested

the notion of computational secret sharing which we adopt for our purposes.

Pseudo-random functions: Our constructions employ pseudo-random functions (cf. [17,

31]) for two purposes: encrypting the database and generating coin 
ips for the secret

sharing schemes we use. As a heuristic, it is possible to replace the pseudo-random

function with a private-key encryption function, such as DES.

Signatures: Digital signatures have been investigated extensively (cf. [18, 12] and the ref-

erences therein). Our scheme can take any signature scheme and transform it into a

distributed quorum based scheme, without altering its security. The notion of secu-

rity we consider is that of existential unforgeability. However, our transformation is

1
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independent of the basic signature scheme itself, so we can as easily create a quorum

signature scheme out of heuristic signature schemes, such as RSA with MD5.

1.4 New Results

In this work we propose a separation between the access servers and the data servers. The

data servers need not be physically protected, since all the information on them will be

encrypted. We shall assume, however, that none of the access servers has been compromised,

although some of them may not be up-to-date regarding the access privileges of users. This

may be due to communication failure or high load, or since quorum based data replication

schemes allow data not to be updated at all the servers. The access servers have relatively

low storage requirements, typically much less than that of the database itself.

We make use of quorum systems to enforce consistency of the access information. When

a legitimate user Bob wants to access a record from the database, or to obtain a signature,

he sends a request to all the servers in some quorum of access servers. Each of these servers,

after checking authorization, sends back a message. In the case where Bob wants to get a

record from the database, he also accesses the data servers and gets the encrypted record. No

protection (other than encryption) is assumed on the data servers. Combining the messages

Bob gets from the access servers yields the key to decrypting the record, or yields the desired

signature. However, if an unauthorized user Alice attempts the same procedure, she will get

only a subset of replies (from the outdated servers). We show that this partial information

will not help her to forge the signature or to learn any information regarding the database

which she did not have before.

The properties that interest us in a quorum system are:

� Low load (and high capacity): the load of a quorum system is the fraction of the

time that a member of the quorum system (server) is accessed under the best possible

strategy of choosing quorums. Thus to allow many accesses to the database, we need

a low load.

� High availability: we want a quorum of available servers to exist with high probability

even when individual servers may fail. This ensures that privileges may be revoked, and

that legitimate users may continue accessing the database (or obtaining signatures).

� Small quorum sizes: to make the communication overhead small.

Note that not all quorum systems enjoy these properties. For instance, the majority system

[47], i.e., the

n+1

2

-of-n threshold system, has optimal availability but induces a high load and

has large quorums. At the other extreme, the �nite projective plane [32] has optimal load

but very poor availability.

We suggest using some recent constructions of quorum systems that have optimal per-

formance according to the above criteria. We show how to convert secret sharing schemes

for access structures corresponding to these quorum systems into solutions for our problems.

Our main results, speci�ed in Theorems 3.1 and 5.1, show how the transformations work,
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and their security properties. As a consequence we get very e�cient methods for protecting

information in a database, or generating shared signatures. The work done at a server given

a request is the evaluation of an encryption function at two points. Reconstruction by a

user is also very e�cient and involves XORing mostly. Our schemes require no coordination

between the servers. Each server replies to a request based only on information it holds

locally, and the consistency is guaranteed by the fact that obtaining replies from less than a

quorum of servers does not leak information to the user.

Secret sharing schemes realizing the access structures of quorum systems are essential to

our method, and we provide several e�cient constructions of such schemes. However, recently

it has been shown in [2] that quorum secret sharing schemes are a fundamental primitive in

the solution of other problems in security, namely secure multi-party computation. Moreover,

[2] uses some of our speci�c secret sharing schemes to build e�cient protocols that compute

arbitrary circuits and are secure against passive adversaries.

Organization: the next section contains the de�nitions of quorum systems, their properties,

and secret sharing schemes. Section 3 presents how to use a quorum secret sharing scheme to

control the access to a database. Section 4 includes some variants to the basic protocol, with

stronger security guarantees. Section 5 shows how a secret sharing scheme can be used to

convert signature schemes into ones controlled by a quorum system. Section 6 gives e�cient

secret sharing schemes for various quorum systems, that may be used in the methods of

Section 3 and 5. Section 7 describes two protocol variants which require less trust in the

servers, and Section 8 lists some open problems.

2 Preliminaries

2.1 Quorum Systems, Availability and Load

De�nition 2.1 A Set System Q = fQ

1

; : : : ; Q

m

g is a collection of subsets Q

i

� U of a

�nite universe U . A Quorum System is a set system Q that has the Intersection property:

Q \R 6= ? for all Q;R 2 Q.

Alternatively, quorum systems are known as intersecting set systems or as intersecting hyper-

graphs. The sets of the system are called quorums. The number of elements in the underlying

universe is denoted by n = jU j.

De�nition 2.2 A set system A � 2

U

such that ? 62 A is called an access structure if it is

monotone increasing: if A 2 A then B 2 A for every B � A. If Q is a quorum system then

the collection A(Q) = fA � Q : Q 2 Qg is an access structure, called the quorum access

structure of Q.

De�nition 2.3 A Coterie is a quorum system S that has the Minimality property: there

are no S;R 2 S, s.t. S � R.

De�nition 2.4 Let R;S be coteries (over the same universe U). Then R dominates S,

denoted R � S, if R 6= S and for each S 2 S there is R 2 R such that R � S. A coterie
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S is called dominated if there exists a coterie R such that R � S. If no such coterie exists

then S is non-dominated.

Lemma 2.5 [23] Let S be a coterie and let A(S) be its access structure. Then S is non-

dominated i� for all X � U , either X 2 A(S) or U nX 2 A(S) (but not both).

The availability of a quorum system is de�ned using a simple probabilistic model of the

failures in the system. We assume that the elements (servers) fail independently with a

�xed uniform probability p. We assume that the failures are transient, that the failures are

fail-stop failures (i.e., a failed element stops to function rather than functions incorrectly, cf.

[42]), and that they are detectable. Following [37] we de�ne:

De�nition 2.6 For every quorum Q 2 Q let E

Q

be the event that Q is hit, i.e., at least one

element i 2 Q has failed. Let fail(Q) be the event that all the quorums Q 2 Q were hit, i.e.,

fail(Q) =

T

Q2Q

E

Q

. Let the system failure probability be F

p

(Q) = P(fail(Q)).

The failure probability F

p

(Q) measures the un-availability of the quorum system Q.

In order to de�ne the load, we �rst need the notion of a strategy. A protocol using

a quorum system occasionally needs to access quorums during its run. A strategy is a

probabilistic rule that governs which quorum is chosen each time. In other words, a strategy

gives the frequency of picking quorum Q

j

.

De�nition 2.7 Let a quorum system Q = (Q

1

; : : : ; Q

m

) be given over a universe U . Then

w 2 [0; 1]

m

is a strategy for Q if it is a probability distribution over the quorums Q

j

2 Q,

i.e.,

P

m

j=1

w

j

= 1.

For every element i 2 U , a strategy w of picking quorums induces the frequency of

accessing element i, which we call the load on i. The system load, L(Q), is the load on the

busiest element induced by the best possible strategy. Formally, following [36]:

De�nition 2.8 Let a strategy w be given for a quorum system Q = (Q

1

; : : : ; Q

m

) over a

universe U . For an element i 2 U , the load induced by w on i is `

w

(i) =

P

Q

j

3i

w

j

. The

load induced by a strategy w on a quorum system Q is L

w

(Q) = max

i2U

`

w

(i): The system

load on a quorum system Q is L(Q) = min

w

fL

w

(Q)g; where the minimum is taken over all

strategies w.

2.2 Secret Sharing

De�nition 2.9 Let U = f1; : : : ; ng and let S be a �nite set of secrets. A secret-sharing

scheme (SSS) is a mapping � : S �R 7! S

1

� � � � � S

n

, where R is a set of random strings,

and for each i 2 U , S

i

is a set of secret shares. � is said to realize an access structure A if

it satis�es the following conditions:

1. The secret can be reconstructed by any subset in A. That is, associated with every set

A 2 A (A = fi

1

; : : : ; i

jAj

g) there is a function h

A

: S

i

1

� � � � � S

i

jAj

7! S such that for

every (s; r) 2 S �R, if �(s; r) = fs

1

; : : : ; s

n

g then h

A

(s

i

1

; : : : ; s

i

jAj

) = s.

2. No subset, unless it is a member of A, can reveal any partial information about the

secret (in the information theoretic sense). Formally, for any subset Z 62 A, for every
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two secrets a; b 2 S, and for every possible collection of shares fs

i

g

i2Z

:

P(fs

i

g

i2Z

ja) = P(fs

i

g

i2Z

jb) ;

where the probability is taken over the random string r.

We denote the i'th component of �(s; r) by �

i

(s; r) (called the share of element i).

Let jxj denote the bit length of a value x. For a secret s we cannot expect the length

of the shares to be j�

i

(s; r)j < jsj, hence the total length of the shares is at least njsj. The

following de�nition lets us measure the deviation of an SSS from the ideal space requirement.

De�nition 2.10 The blowup factor of an SSS � is �(�) =

P

n

i=1

j�

i

(s;r)j

njsj

:

3 Access Control via Quorum Secret Sharing

3.1 Overview

In this section we show that an SSS � that realizes a quorum access structure A(Q) can be

used to build a distributed access control mechanism for a database.

The main elements of the access control are the access servers, which form the universe U .

Each server holds a list of all the users it knows to be currently authorized to access the

database. However a server's authorization list may be outdated . It may be the case that

user Alice has had her authorization revoked, but a set Z � U of servers is still unaware of

this change when Alice requests access permission. Our requirement is that if all the servers

in some quorum Q 2 Q are informed that Alice is no longer authorized, then no matter from

which set of servers Alice chooses to request access permission, she will not be able to access

the database. This requirement leads naturally to our basic paradigm:

To access the database, a user must obtain permission from a quorum of access servers.

The intersection property of a quorum system then ensures that in any set A 2 A(Q) (which

can collectively grant permission to Alice), at least one server is informed that the request

is not legitimate.

We assume also that an access server may be unavailable (due to a crash or communi-

cation failure). We would like such failures not to prevent legitimate users from obtaining

access, and not to allow non-legitimate users to break in.

A further assumption we make is that each user has a secure and authenticated channel

of communication with the servers. Therefore we assume that Alice cannot masquerade as

Bob and obtain access permission by this.

The protocol ACP of �gure 1 shows how to transform an SSS to an access control mech-

anism. We use the standard notion of a pseudo-random function (PRF), cf. [17, 31].
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(A1) For an index x let y(x) denote the content of database item x. The encrypted

database item is D(x) = y(x) � Key

�

(x), where Key

�

(x) is a PRF with a

seed �.

(A2) Let � be an SSS that realizes an access structure A. Each server i has a

procedure to compute its share, �

i

(s; r).

(A3) The servers have the encryption PRFKey

�

(x), and an additional PRFR




(x),

with a private seed 
, used to generate pseudo-random coin 
ips for the SSS.

Authorization check: When server i receives a request to access data item x from

a user, it checks the authorization. If the request is from an unauthorized user,

the server replies \REFUSE".

Share Generation: If the request is from an authorized user Bob, the server

generates k = Key

�

(x) and a pseudo-random string r = R




(x). Server i then

computes its share of the key, s

i

= �

i

(k; r) using the SSS, and sends s

i

to

Bob.

Reconstruction: When Bob collects the shares s

i

from a set of servers A 2 A,

he obtains the key using the reconstruction function for the set A, k =

h

A

(fs

i

g

i2A

). With the key he can decrypt y(x) = D(x) � k.

Figure 1: The access control protocol ACP.

3.2 The Notion of Security

To specify the security of a cryptographic scheme we should describe (i) the type of attack

assumed, i.e., the power of the adversary, and (ii) what is meant by breaking the system,

i.e., what tasks the adversary can perform as a result of the attack that it could not perform

before. Usually there is some \ideal" situation that we are trying to imitate. In the case

of encryption of messages, a common metaphor used for the ideal is a sealed envelope.

Below we �rst specify the model of the ideal environment and then the model of the given

environment. The notion of security shall be that for any computational challenge and every

user operating in the latter environment, there is a user in the ideal environment that has the

same probability of succeeding in the challenge. This is an adaptation of semantic security

for the scenario considered in this paper.

In our scenario, the ideal situation is when a user Alice

0

interacts with the database as a

black box, requesting and obtaining information about records in the database. Alice

0

gets

no information (concealed or not) about records she does not speci�cally request. At some

point her access privileges are revoked and she gets no more information about the database.

Her challenge is to compute some function G of the contents of the database (including both

the parts that were revealed to her and those that were concealed). Depending on the

distribution of the the items in the database, her requests, and the function G, she has a
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certain probability of answering this challenge correctly.

Consider now a user Alice using protocol ACP of Figure 1. We assume that her compu-

tational power is that of a probabilistic Turing machine whose running time is polynomial

(in some security parameter). Alice has the complete encrypted database D as input from

the data servers. Alice �rst performs t authorized rounds of:

� She adaptively chooses a data index x

j

, and a set A

j

2 A(Q) containing a quorum

(based on the entire history). She requests access to item x

j

from all the servers in A

j

according to ACP.

� The servers i 2 A

j

generate the shares and send them to Alice, i.e., she can then

decrypt D(x

j

).

Then her authorization is revoked, so she performs ` further rounds of the same type, however

now she chooses the set Z

j

62 A(Q) (since in every quorum some server will refuse her

request). Again all the servers in Z

j

send her their shares of the requested item x

j

.

Let G be a function on t+ ` variables. At the end of the t+ ` rounds, Alice computes a

guess g of the value G(y(x

1

); : : : ; y(x

t+`

)), based on the database contents of the indices she

requested.

Our notion of security is: for any function G (computable in probabilistic polynomial

time) and every Alice operating in the mode described above, there is a (probabilistic poly-

nomial time) Alice

0

operating in the ideal black box model such that the di�erence between

the probability that Alice computes G correctly and the probability that Alice

0

computes G

correctly is negligible.

3.3 The Theorem

Theorem 3.1 If the access structure A is a quorum access structure A(Q) then ACP has

the following properties:

1. If all the servers in a live quorum are informed that Bob is authorized, then he can

access item x.

2. If a quorum of servers is informed that Alice is not authorized, then she cannot learn

any partial information about the database, in the sense de�ned above.

Proof of property 1: If all the servers in a quorum Q 2 Q are alive and informed of Bob's

authorization, Bob can request permission from them. He will receive the shares s

i

from all

i 2 Q and by the de�nition of the SSS � he would then be able to reconstruct k = Key

�

(x)

correctly and decrypt D(x).

Proof of property 2: We must show how to construct Alice

0

, given a description of

Alice. The key point will be that if Alice and Alice

0

have di�erent probabilities of success in

evaluating G, than we have a distinguisher between the pseudo-random functions used and

truly random functions.
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The machine Alice

0

runs a simulation of Alice. To perform the simulation, Alice

0

�rst gives

(the simulated) Alice an \encrypted" database D = D(1);D(2); : : :, by choosing completely

random values for it. Then, for the �rst t rounds, Alice chooses x

j

and A

j

2 A(Q) and

sends this request to Alice

0

. Alice

0

asks the database for the contents y

j

of record x

j

. She

then derives k

j

= D(x

j

)�y

j

, computes the shares f�

i

(k

j

; r)g

i2Z

j

of this key using a random

string r, and provides Alice with the appropriate shares.

Then the privileges of Alice

0

are revoked, as well the privileges of the simulated Alice.

Alice

0

simulates Alice a further ` rounds. For each x

j

and set Z

j

62 A(Q) requested by the

box Alice, Alice

0

chooses an arbitrary value y

0

j

and computes k

0

j

= D(x

j

) � y

0

j

. Then Alice

0

computes the shares f�

i

(k

0

j

; r)g

i2Z

j

of this \key" using a random string r, and sends the

appropriate parts to Alice. At the end of these ` simulated rounds, Alice outputs her guess

of the function value G, which Alice

0

outputs as the guess g

0

.

Suppose that the probability that Alice

0

evaluates G correctly is signi�cantly smaller

than that of Alice. To obtain a contradiction, consider a machine Alice

00

that operates in the

same environment as Alice, modi�ed so the functions R




(x) and Key

�

(x) of protocol ACP are

replaced by truly random functions. We claim that the distribution on the communication

that Alice

00

sees and the distribution on the communication that the simulated Alice sees

are identical. This is true since the encrypted database is completely random, and by the

de�nition of the SSS � the shares on a set Z

j

62 A(Q) are independent of the secret. Therefore

the probability that Alice

0

is correct on G is identical to the probability that Alice

00

is correct

on G.

If the di�erence in the probabilities of success of Alice and Alice

00

is non-negligible, then

we have a method of distinguishing the pseudo-random functions (R




(x) and Key

�

(x)) from

truly random functions, which violates the security assumption of PRF's.

Remarks:

� For the proof we required that the database is encrypted by D(x) = y(x) � Key

�

(x)

(so the simulator would be able to create a random \key" that will decode D(x) into

the random value y

0

). This forces jKey

�

(x)j to be as long as jy(x)j, which could be

undesirable if the value is, say, a large photograph �le. It seems that using Key

�

(x) as

the (short) seed for some other PRF whose (long) output then encrypts the data would

yield an equally secure protocol (this is an adaptation of Krawczyk's [27] computational

secret sharing). However we do not know how to prove the security of such a modi�ed

protocol against an adaptive Alice who dynamically chooses which set Z

j

to request

shares from. (If Alice's choices are �xed in advance, then this scheme can be proved

to be secure, and furthermore, each separate record is semantically secure.)

� Instead of a quorum system as in de�nition 2.1, we can use it's standard generalization

to a read/write system, i.e., a pair of set systems (R;W) such that R \W 6= ? for

any sets R 2 R and W 2 W (cf., [21, 13]). With this formulation, the basic paradigm

is that to gain access a user must obtain permission from a read-quorum R 2 R. To

revoke a user's access, a write-quorum W 2 W must be informed. This allows more


exibility in the choice of systems, however, there is a tradeo� between the availability

10



of the read and write operations. For simplicity, we choose to concentrate on regular

quorum systems.

3.4 Comparison with Alternative Solutions

Given that one desires to separate the access servers from the data servers, and given the

idea of using quorums to overcome the problem of outdated servers, protocol ACP is not

the only solution. The following is an alternative protocol for the access control problem

(with two variants), which is more naive and eliminates the need for quorum secret sharing.

Instead, the consistency is enforced by gateways. Each such gateway holds all the keys to

the database.

In the �rst variant a user Bob requests the key from a gateway. Then the gateway

requests authorization from the access servers on Bob's behalf (the gateway needs secure

channels of communication with the access servers). If a quorum of access servers authorizes

the gateway to honor Bob's request, the gateway sends the key to Bob, in one piece. This

can be done since the gateway knows all the keys.

The second variant of this protocol works in the \Kerberos model" [46]. Here again

there are gateways which hold all the database keys. In addition, the access servers have a

signature scheme

2

which the gateways can verify. In this variant, Bob requests permission

from the access servers directly. Each access server that knows Bob to be authorized replies

with a signed permission token which Bob collects. Bob then sends all the collected tokens

to a gateway. The gateway sends the requested key to Bob after it veri�es the signatures

on the tokens, and ensures that Bob indeed collected permissions from a quorum of access

servers.

In order not to impair the availability and load, many gateways must be used. For

example, 
(

p

n) gateways are required to obtain an availability and a load roughly equivalent

to those of the Paths quorum system of Section 6.1.2. Therefore we see that these alternative

solutions require essentially the same amount of trust as protocol ACP, i.e., many servers

that hold all the keys.

In terms of the computations required, the gateway needs to verify 
(

p

n) signatures,

which could be a costly computation, especially if the permission tokens are signed using

public-key signatures. Instead, the e�cient QSS schemes of Section 6 require the servers to

perform only a few XOR operations for share generation. The key reconstruction, which is

equally e�cient, is performed separately by each user, thus it does not restrict the capacity

of the system.

Moreover, both gateway-based variants require an extra round of communication, coor-

dinated either by the gateway or by the user. Finally, the introduction of another type of

servers (the gateways) to the system increases its complexity.

We conclude that both variants of this seemingly simple protocol, are in fact inferior to

our protocol ACP. Protocol ACP has a lower communication overhead, a similar (or lower)

computation complexity, requires less coordination, and has less components. In fact, the

2

A private-key-based authentication scheme can be used as well.
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alternatives are simpler than our protocol only in that they eliminate the concept of a QSS.

4 Stronger Notions of Security

4.1 Protecting Against Collaborative Attacks

The security guaranteed by Theorem 3.1 is against an attack by a single user. However, as

presented, the protocol is vulnerable to an attack by a set of two (or more) unauthorized

collaborating users, as follows. Let V be a set of users unauthorized to access item x. If

each user v 2 V obtains the shares from a di�erent set of servers Z

v

(none of which contains

a quorum), it may be the case that the set [

v2V

Z

v

does contain a quorum, so by pooling

their information, the users in V can access the database item x.

To protect the data against such an attack, we use a slightly modi�ed protocol, ACP

0

, in

which the shares are generated depending both on the requested item x and the requesting

user's ID (see [20]). Figure 2 contains the description of the modi�ed share generation.

All the other parts of the protocol remain the same, and there are no additional costs in

communication or time.

(A4) Each user v has a unique identi�er, denoted by ID(v).

Share Generation: If the request is from an authorized user Bob, the server

generates k = Key

�

(x) and a pseudo-random string r = R




(x� ID(Bob)).

Server i then computes its share of the key, s

i

= �

i

(k; r) using the SSS, and

sends s

i

to Bob.

Figure 2: Protocol ACP

0

. Steps not shown are as in protocol ACP.

Theorem 4.1 If the access structure A is a quorum access structure A(Q) then ACP

0

has

the following properties:

1. If all the servers in a live quorum are informed that Bob is authorized, then he can

access item x.

2. For any set V of users, if for every user v 2 V some quorum of servers Q

v

is informed

that v is not authorized, then V collectively cannot learn any partial information about

the database, in the sense de�ned in Section 3.2.

Proof Sketch: The only di�erence from the proof of Theorem 3.1 is noting that a set of

shares fs

v

i

g

i2Z

v

generated by ACP

0

for any user v 6= Alice and any set of servers Z

v

not

containing a quorum, can be indistinguishably generated by the simulating machine Alice

0

.

12



4.2 Ensuring that the Shares Expire

In many applications it is undesirable to let users accumulate shares over a long period of

time. As an example, consider how the accounting for such a database could work. A user

should be billed for every key she obtains, i.e., for every data item x for which she received

shares from a quorum of servers. Therefore, every month (say) the logs from all the servers

need to be collected and tallied. If the logs are then deleted, then an authorized user Alice

can avoid payment by choosing some quorum Q 2 Q, requesting one share for item x from

some server i 2 Q in January and requesting the rest of shares from Q n fig in February. By

this she will not be logged as receiving a quorum of shares during any billing month.

The solution to this problem is to generate the shares depending on the item x and on

the current time, in much the same way as the user-ID is used in protocol ACP

0

. Note that

the servers must all use the same time value otherwise the key cannot be reconstructed.

However, maintaining synchronized clocks is a non-trivial and costly task (cf., [45]) which

we prefer to avoid. Instead, in our modi�ed protocol ACP

00

(see Figure 3) the user attaches

a timestamp t to the request for item x, which is then used by the servers in the share

generation. This might allow a cheating user to use fake timestamps, so on receiving such

a request, the servers verify that the timestamp is \reasonable" before using it. For this

purpose we assume that the maximal drift between any legitimate user's clock and a server's

clock or between any two servers' clocks is at most � (which includes the time delays caused

by the communication network). This � may be a fairly large value (e.g., 3 hours), as long

as it is signi�cantly smaller than the time period between accounting log deletions.

(A5) Each server i has a local clock T

i

, and they all have the maximal clock drift

value �.

Request: Bob sends the tuple (t; x) to some quorum of servers, where t is Bob's

local clock value and x the requested data item.

Authorization check: When server i receives a request (t; x) from a user, it

checks the user's authorization and the timestamp validity. If the request

is from an unauthorized user, or if jT

i

� tj > �, the server replies \REFUSE".

Share Generation: If the request is from an authorized user Bob, with a valid

timestamp t, the server generates k = Key

�

(x) and a pseudo-random string

r = R




(x� t). Server i then computes its share of the key, s

i

= �

i

(k; r) using

the SSS, and sends s

i

to Bob.

Figure 3: Protocol ACP

00

. Steps not shown are as in protocol ACP.

Clearly Theorem 3.1 holds for protocol ACP

00

. The following proposition, which we state

without proof, shows its additional security guarantee. The statement is in terms of an

imaginary global clock that works at the rate of the slowest server's local clock (we are not

assuming that all the clocks have the same rate).

Proposition 4.2 Assume that Alice sends a request (t; x) to server i, using protocol ACP

00

,

13



(A1) For a messagem let Sig

�

(m) denote the secure signature of m using a private

key �.

(A2) Let � be an SSS that realizes an access structure A. Each server i has a

procedure to compute its share, �

i

(s; r).

(A3) Every server knows the private key � and can generate the signature Sig

�

(m),

and additionally the servers have a PRF R




(m), with a private seed 
, used

to generate pseudo-random coin 
ips for the SSS.

Authorization check: When server i receives a request to sign message m from

a user, it checks if the message is legitimate for this user. If it is not then the

server replies \REFUSE".

Share Generation: If the message from Bob is legitimate, the server generates

the signature s = Sig

�

(m) and a pseudo-random string r = R




(m). It then

computes its share of the signature, s

i

= �

i

(s; r) using the SSS, and sends s

i

to Bob.

Reconstruction: When Bob collects the shares s

i

from a set of servers A 2 A,

he obtains the signature using the reconstruction function for set A, s =

h

A

(fs

i

g

i2A

).

Figure 4: The quorum signature scheme QSig.

which is received at global time � and found to be legitimate. Then any request (t; x) sent by

Alice that is received by any server j at global time > � + 3�, will be refused.

Remark: A request by Alice for the same item x but with a di�erent timestamp t

0

6= t may

be honored later, if t

0

is legitimate. However, as in Theorem 4.1, shares generated for such

a request cannot be combined with shares generated for request (t; x).

5 Signatures via Quorum Secret Sharing

In this section we show that an SSS � that realizes a quorum access structure A(Q) can be

used to build a distributed signature scheme. The model of the user interacting with the

servers is identical to that of Section 3, except that there are no data servers. Let us stress

that unlike [11], the faults we allow in the servers are all benign, and therefore our scheme

has a high level of trust in them. A server in our scheme that \turns traitor" can generate

a complete signature for any message.

There are signature servers, which form the universe U . Each server holds a list of all

the users it knows to be currently authorized to get signatures, and perhaps some more

information, regarding the types of messages which should be signed. Again, it may be the

case that a server's authorization list is outdated . Our requirement is that if all the servers
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in some quorum Q 2 Q are informed that Alice is no longer authorized to get a signature on

message m, then no matter from which set of servers Alice chooses to request a signature,

she will not be able to obtain or forge it. This requirement leads naturally to our basic

paradigm:

To obtain a signature, a user must obtain permission from a quorum of servers.

The intersection property of a quorum system then ensures that in any set A 2 A(Q) (which

can collectively sign the message m), at least one server is informed that the request is not

legitimate.

Our protocol can be based on any signature scheme, without altering the security prop-

erties of the scheme. Speci�cally, consider the \existentially unforgeable against adaptive

chosen message attacks" de�nition of security, as de�ned by [18]. Let Sig

�

(m) be a signa-

ture scheme obeying this requirement

3

. Suppose that a user Alice was authorized to get

signatures for a while and then this authorization was revoked. Alice should not be able

to generate a signature on any message for which it has not received a signature prior to

revocation.

The idea of the distributed signature protocol is to imagine a database where at location

m the value Sig

�

(m) is stored and apply protocol ACP to that virtual database. The protocol

QSig of Figure 4 shows in detail how to transform an SSS into a distributed signature scheme.

Theorem 5.1 If the access structure A is a quorum access structure A(Q) then QSig has

the following properties:

1. If all the servers in a live quorum are informed that Bob's message m is legitimate,

then he can get a signature on m.

2. If a quorum of servers is informed that Alice's message m

0

is not legitimate, then she

cannot generate a signature for m

0

, unless she obtained the signature legally beforehand.

The proof is very similar to the proof of Theorem 3.1.

6 E�cient Quorum Secret Sharing Schemes

In this section we show how to build quorum secret sharing schemes from several known

quorum systems, with di�erent availability and load properties. All the schemes we present

are extremely e�cient, with blowup factors of at most 2 and linear time complexities both

for the share generation and secret reconstruction operations.

6.1 The Paths System

6.1.1 The System

The Paths system [36] is based on paths in the following grid.

3

Note that using [15] we can convert any signature scheme into one where each message has a unique

15



(0,0)

Figure 5: The grids G(3) (full lines) and G

�

(3) (dotted lines).

De�nition 6.1 Let G(d) be the planar grid with vertex set f(v

1

; v

2

) : 0 � v

1

� d + 1; 0 �

v

2

� dg and edge set consisting of all edges joining neighboring vertices except those joining

vertices u, v with either u

1

= v

1

= 0 or u

1

= v

1

= d + 1. Let G

�

(d), be the dual of G(d)

with vertex set fv + (

1

2

;

1

2

) : 0 � v

1

� d;�1 � v

2

� dg and edge set consisting of all edges

joining neighboring vertices except those joining vertices u, v with either u

2

= v

2

= �

1

2

or

u

2

= v

2

= d+

1

2

.

See Figure 5 for a drawing of G(d) and G

�

(d). Note that every edge e 2 G(d) has a dual

edge e

�

2 G

�

(d) which crosses it. We call such e and e

�

a dual pair of edges.

De�nition 6.2 We identify an element in the Paths quorum system with a dual pair of

edges e 2 G(d) and e

�

2 G

�

(d). A quorum in the system is the union of (elements identi�ed

with) the edges of a left-right path in G(d) and the edges of a top-bottom path in G

�

(d).

In [36] it is shown that the Paths system has an optimal load of L(Paths) = O(1=

p

n). It

also achieves the highest availability possible for such a load, namelyF

p

(Paths) = exp(�
(

p

n)).

The smallest quorums in the Paths system have cardinality O(

p

n).

6.1.2 The Scheme Paths-SSS

The scheme is based on the construction of Rudich for s�t connectivity that was generalized

in [26] for span programs. The system elements in the Paths system are the edges of the

grid, however we �rst assign intermediate values to the vertices, from which we compute the

shares.

The basic secret unit s is a single bit. The secret is �rst randomly split into four bits l,

r, t and b, such that l � r � t� b = s.

We describe how the l and r bits are shared by the left-right paths. Every vertex v is

assigned a bit x

v

. The vertices on the left boundary of the grid all get x

v

 l, and those

on the right boundary get x

v

 r. For every other v the bit x

v

is chosen independently at

random. An edge e = (u; v) is assigned a left-right share bit, s

lr

e

= x

v

� x

u

.

signature.
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This procedure is now repeated on the dual grid, with bits t and b assigned to the top

and bottom vertices, resp., and random values assigned to all the other vertices. The dual

edges e

�

are assigned shares s

tb

e

�

analogously. Finally, the share of a system element identi�ed

with the dual pair of edges e; e

�

is both the s

lr

e

and s

tb

e

bits.

Proposition 6.3 Paths-SSS is a secret sharing scheme realizing the quorum access structure

A(Paths), with �(Paths-SSS) = 2.

In order to prove Proposition 6.3 we need to show the reconstruction function for a

quorum, and the independence of shares of a non-quorum from the secret. We do this via

the following two lemmas.

Lemma 6.4 A quorum Q in the Paths system can reconstruct the secret bit s from the

shares fs

e

g

e2Q

generated by Paths-SSS.

Proof: By the de�nition of the quorums, there exists a set F � Q such that the edges e 2 F

form a left-right path, and a set H � Q forming a top-bottom path on the dual grid. We

claim that

s =

�

�

e2F

s

lr

e

�

�

�

�

e

�

2H

s

tb

e

�

�

:

This is since in the �rst XOR the random values assigned to intermediate vertices in G(d)

cancel out and only l � r remains, and similarly for t� b on the dual grid.

Lemma 6.5 A set Z not containing a quorum can reveal no partial information of the secret

s from the Paths-SSS shares fs

e

g

e2Z

.

Proof: Assume w.l.o.g. that Z contains a top-bottom path, i.e., the value t� b is known to

the adversary (this only helps the adversary). Consider a set of shares � = fs

e

g

e2Z

. Since

these are legitimate shares, they have an extension to a full set of shares. Speci�cally, there

exist bits x

v

and a secret l� r which de�ne shares � = fs

e

g

e2U

such that � encodes l� r by

the Paths-SSS scheme, and �j

Z

= �. We show that for every such � there exists a di�erent

set of shares �

0

which encodes the secret l � r, and for which �

0

j

Z

= � as well.

Since Z does not have a quorum, it does not contain any left-right path. Therefore we

can partition the vertices into two disjoint sets V andW such that V contains all the vertices

that have a path to the left boundary of G(d) in Z, and W contains the vertices with a path

to the right. Note that there is no edge in Z connecting a vertex v 2 V with w 2 W .

We now construct the corresponding shares �

0

= fs

0

e

g

e2U

, as follows. Every vertex v is

assigned a bit y

v

. Set y

v

= x

v

for all the vertices v 2 V , and set y

w

= �x

w

for all w 2 W

(including the right boundary vertices which have x

w

= r). The shares are computed as

before: for every edge e = (v;w), regardless of whether e 2 Z or not, set s

0

e

= y

v

� y

w

.

Now XORing the shares s

0

e

on a left-right path would compute l � r, since we 
ipped the

r bit. However, �

0

j

Z

= �j

Z

= �. This is since the endpoints of an edge e 2 Z can be either

both in V or both in W , so either s

0

e

is not touched (if both endpoints are in V ), or remains

the same after 
ipping the bits at both endpoints.

This shows that for every set of shares � on Z there is a 1{1 correspondence between an

extension � encoding l�r and an extension �

0

encoding l � r. Hence P(�jl�r) = P(�jl� r).
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6.2 The HQS and Tree Systems

6.2.1 The Systems

The hierarchical quorum system (HQS) is due to [28]. In this system the elements are the

leaves of a complete ternary tree, in which the internal nodes are 2-of-3 majority gates.

In [36] the availability and load of the HQS are analyzed. It is shown that L(HQS) =

n

�0:37

. The HQS has the highest availability possible for such load, namely F

p

(HQS) �

exp(�
(n

0:63

)) when p <

1

3

and F

p

(HQS) � n

��(p)

when p <

1

2

(for some function �

independent of n). The quorums in the HQS are all of size n

0:63

.

The Tree quorum system of [1] can also be described as a ternary tree, with internal nodes

which are 2-of-3 majority gates. However only two input lines of each internal majority gate

are connected to lower level gates; the middle input line is directly labeled with a system

element. Note that the standard description of this quorum system is via a binary tree; the

description given here is from [23].

The smallest quorums in the Tree are of size log n. In [37, 36] it is shown that the Tree

has optimal availability and load among the quorum systems with logarithmic size quorums,

namely F

p

(Tree) = O(n

�"

) for some constant "(p) > 0, and

L(Tree) = O(

1

log n

):

6.2.2 The Schemes HQS-SSS and Tree-SSS

The building block for both the Tree and HQS systems is the 2-of-3 majority gate, which

is a threshold function. As such, it has an SSS, which is Shamir's scheme [43]. However

a 2-of-3 majority gate is a very simple case of the general scheme. The underlying �eld

is the GF (4) �eld, i.e., the basic secret unit is a pair of bits. The random polynomials

of the scheme are simply lines (of degree 1). Therefore both the share generation and

secret reconstruction require only the few instructions in GF (4) arithmetic needed for linear

interpolation. Applying this scheme recursively in the natural way, from the root of the tree

towards the leaves, yields secret sharing schemes for both the HQS and Tree systems.

Note that in each internal majority gate, the three shares generated from a secret value

s (a pair of bits) are of two bits each. Since in both the Tree and HQS systems each element

is identi�ed with a single input line, the shares in the full HQS or Tree scheme are also of

two bits each, so there is no blowup, and �(HQS-SSS) = �(Tree-SSS) = 1.

Remark: The above scheme works for any quorum system having a description in the form

of a tree of 2-of-3 majority gates, with the system elements labeling the input lines. In

[34, 23, 29] it is shown that any maximal quorum system has such a description. However

no bounds are shown for the of number times that an element can appear on input lines, so

using our scheme on such a description could potentially cause a high blowup.
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6.3 The Crumbling Wall System

6.3.1 The System

The CrumblingWalls (CW) are a family of quorum systems due to [39]. This family includes,

among others, the CWlog system (see Figure 6), the grid of [8] and the triangular wall of

[30].

Figure 6: A CWlog with n = 49 elements and d = 15 rows, with one quorum shaded.

The elements of a wall are logically arranged in rows of varying widths. A quorum in

a wall is the union of one full row and a representative from every row below the full row.

Here we concentrate on walls in which the top row has width n

1

= 1 and every other row

has width n

i

� 2. In [39] it is shown that such walls are non-dominated coteries (recall

De�nition 2.4).

In the CWlog system, the width of row i is n

i

= blg 2ic. In [38] it is shown that the

CWlog system is essentially the only high availability wall. It has small quorums, of size

O(log n), and optimal availability and load among the quorum systems with logarithmic size

quorums, namely F

p

(CWlog) = O(n

�"

) for some constant "(p) > 0, and

L(CWlog) = O(1= log n):

6.3.2 The Scheme CW-SSS

Consider a wall CW of d rows, with row 1 having width n

1

= 1 and n

i

� 2 for all i � 2. The

basic secret unit s is a single bit. This secret s is �rst randomly split into d bits such that

v

1

� � � � � v

d

= s. Using these v

i

bits we can de�ne their partial parities, t

i

= v

1

� � � �� v

i�1

,

and t

1

= 0. For a row i, split t

i

randomly into n

i

bits h

j

i

such that h

1

i

� � � � � h

n

i

i

= t

i

. The

share s

j

i

of the j'th element in row i is two bits: v

i

and h

j

i

.

Lemma 6.6 A quorum Q in the wall can reconstruct the secret bit s from the shares fs

j

i

g

generated by CW-SSS.
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Proof: By de�nition the quorum Q contains a full row i and a representative in each row

k > i. We claim that

s =

 

n

i

�

j=1

h

j

i

!

�

 

�

k�i

v

k

!

: (�)

The �rst XOR computes the value t

i

of row i, which is the partial parity of v

k

's above row

i, so the whole expression is precisely the parity of all v

k

's.

Lemma 6.7 A set Z not containing a quorum can reveal no partial information of the

secret s from the CW-SSS shares.

Proof: Let � be a set of shares encoding the secret bit s. We show a corresponding set of

shares �

0

such that �j

Z

= �

0

j

Z

but �

0

encodes the bit �s.

As noted above, CW is a non-dominated coterie. Since Z 62 A(CW) then by Lemma 2.5

it follows that U n Z 2 A(CW). Therefore there exists a quorum Q � U n Z. By de�nition

Q contains all the elements of some row `, and a representative in every row i > `.

To obtain the shares �

0

, we 
ip the v

`

values for all the elements in row ` (in the quorum

Q), and 
ip the h

j

i

values for every representative element of Q which is in row i > `. This

procedure generates correct shares for the secret �s, since:

� A quorum R based on a full row i � ` necessarily contains an element of row ` (or

possibly the whole row `). So the 
ipped value v

`

enters the computation in the second

XOR in (�) and every other value is una�ected, hence the shares of R construct the

secret �s.

� A quorum T based on a full row i > ` contains a representative element of Q in row i,

say element j in this row. Then the 
ipped value of this h

j

i

will appear in the �rst

XOR in (�), and again the shares will reconstruct �s.

However note that the shares on the set Z in � are identical to those in �

0

, since changes

were only made at elements of the quorum Q, which is disjoint from Z. Therefore for every

set of shares � on Z we have shown a 1{1 correspondence between an extension � encoding

s and an extension �

0

encoding �s. Hence P(�js) = P(�j�s), and we are done.

Proposition 6.8 For any crumbling wall CW, CW-SSS is a secret sharing scheme realizing

the quorum access structure A(CW), with �(CW-SSS) = 2.

6.4 The AndOr System

6.4.1 The System

The AndOr system appears in [36], and applies the analysis of AND/OR trees of [48].

Consider a complete rooted binary tree of height h, and identify the n = 2

h

leaves of the

tree with the system elements.

The AndOr system is the conjunction of two monotone boolean functions, de�ned by

assigning AND and OR gates to the internal nodes of the tree, over the same inputs. The
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gates alternate between AND and OR, level by level. The only di�erence between the two

functions is that one function has an AND gate at the root while the other has an OR gate

there.

In [36] it is shown that this indeed is a quorum system, with quorums of size O(

p

n). It

has an optimal load of L(AndOr) = O(1=

p

n). The availability is as high as possible, namely

F

p

(AndOr) � exp(�
(

p

n)) when p <

1

4

, and F

p

� exp(�
(n

0:19

)) if p � 0:38 � 
(n

�0:19

).

6.4.2 The Scheme AndOr-SSS

Since the AndOr system has a very simple description in terms of boolean functions, we can

apply the scheme of [4]. The basic secret unit is a single bit. A secret s is (recursively) split

over an OR gate by assigning each input a copy of s, and over an AND gate by assigning

the inputs with random values s

1

; s

2

such that s

1

� s

2

= s. In [4] it is proved that this is an

SSS for any monotone boolean function.

In the formula for the AndOr system each element appears on two input gates (one in

each alternating tree), so each element will end with a share of two bits from the original

secret bit s, hence the blowup is �(AndOr-SSS) = 2.

7 Towards Decreasing the Trust

7.1 A General Approach

First, we present a simple solution to the access control problem, in which a coalition of

servers that does not contain a quorum cannot grant access to any data item x. This is

a general solution, that works for any quorum access structure. The protocol relies on

additional information attached to the database by the dealer, the all-knowing entity that

prepares the database.

We assume that every access server i has a PRF E

i

, and that the dealer knows all the

private seeds of these PRF's. However the servers do not have the encryption PRF, Key

�

(x).

The protocol also uses an SSS � for a quorum access structure A = A(Q).

When the dealer writes data item x into the database, encrypted by k = Key

�

(x), it also

creates all n shares fs

i

= �

i

(k; r)g

n

i=1

, using a random (or private pseudo-random) string

r. Then the dealer generates the values F

i

(x) = E

i

(x) � s

i

using the servers' PRF's, and

attaches the set of fF

i

(x)g

n

i=1

to the data item x.

The access server's role is extremely simple. If a user Bob is authorized to access item x,

server i sends back the value E

i

(x). Once Bob collects replies from a set of servers A 2 A

containing a quorum, he can decode the shares s

i

= F

i

(x) � E

i

(x) for all i 2 A, since the

values F

i

(x) are available to him. Then he obtains the key using the reconstruction function

for the set A, k = h

A

(fs

i

g

i2A

).

It is not hard to see that this protocol has minimal trust in the servers. In fact, any set

Z 62 A(Q) of malicious servers can learn nothing about the contents of the database, in the
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sense of Section 3.2. However the protocol has several drawbacks:

� The size of each data item is increased by n � jKey

�

(x)j bits. This makes the protocol

ridiculous if we make the assumptions of protocol ACP, namely, that the key is as long

as the data item itself, since the database size increases by a factor of n+ 1. However

if the key is much shorter than the data (cf. [27]), then this overhead can be tolerated.

� The protocol is not 
exible, in that it requires the number of servers n and their private

functions E

i

to be �xed when the database is created. In contrast, in our approach a

data item is always encrypted with the same key. Thus if the quorum system is changed

there is no need to modify the data, and it su�ces to update the access servers.

� The protocol cannot be used as a group signature scheme, since this would require the

dealer to pre-compute and store every possible signature in advance.

� As presented, the scheme is vulnerable to the attacks mentioned in Section 4, namely

collaborating users can access the data, and keys do not expire. The solutions we

suggested there are not applicable, since the servers cannot generate the shares \on-

the-
y" (only the dealer knows the random string r). This can be overcome by running

protocol ACP

0

(say) in parallel, using a separate key k

0

. The content y(x) of item x

would then be encrypted by D(x) = y(x)� k � k

0

.

7.2 The Case of the Paths System

Here we construct another access control protocol, based speci�cally on the scheme Paths-

SSS of Section 6.1. This protocol has the same security guarantee as that of the general ACP

protocol (Theorem 3.1). However it needs less trust and can tolerate some malicious servers.

More precisely, there are two classes of servers: the class T of trusted servers (jT j < 4

p

n)

and the class of regular servers R = U n T . The security is compromised only if at least

two trusted servers \turn traitor" (in the worst possible choice of traitors). Any number of

regular servers can turn traitor without compromising the security.

Instead of the PRF Key

�

(x) used in ACP, we have four distinguished PRF's, denoted

by K

l

(x), K

r

(x), K

t

(x) and K

b

(x). The content y(x) of item x is encrypted by D(x) =

y(x) � K

l

(x) � K

r

(x) � K

t

(x) � K

b

(x). We place a copy of K

l

at each vertex on the left

boundary of the grid G(d) and a copy of K

r

on the right boundary (see Figure 5), and

similarly K

t

and K

b

at the top and bottom vertices of G

�

(d). At each internal grid vertex

v 2 G(d) or v 2 G

�

(d) we place a di�erent PRF K

v

(x), which is unique to that vertex. Note

that the PRF's placed at the internal vertices play no part in the encryption of the database.

Recall that the elements (servers) are identi�ed with dual pairs of grid edges. Therefore

a server identi�ed with the dual edges e = (v

1

; v

2

) and e

�

= (u

1

; u

2

) is given the four PRF's

that were placed at the vertices v

1

; v

2

; u

1

; u

2

. The share that such a server generates for

item x is comprised of a left-right share, s

lr

e

= K

v

1

(x) � K

v

2

(x) and a top-bottom share,

s

tb

e

�

= K

u

1

(x)�K

u

2

(x).
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As in Proposition 6.3, if e

1

; : : : ; e

p

is a left-right path in G(d) then s

lr

e

1

� � � � � s

lr

e

p

=

K

l

(x) � K

r

(x); and similarly on the dual grid. Therefore by collecting the shares from a

quorum of servers, the user can reconstruct the key and access the data item.

A moment's re
ection shows that Theorem 3.1 holds for this protocol as well. However

here we have the stronger guarantee of the following proposition.

Proposition 7.1 Let T

1

; T

2

; T

3

; T

4

be the (non-disjoint) sets of servers whose corresponding

edges touch the left, right, top and bottom boundaries of the grid, respectively. Then any set

of traitor servers Z for which Z \ T

j

= ? (for some 1 � j � 4) can learn nothing about the

contents of the database, in the sense of Section 3.2.

Call T = [

1�j�4

T

j

the set of trusted servers, and call R = U n T the set of regular servers.

Clearly jT j < 4

p

n. If Z is a coalition of traitor servers, then some immediate corollaries of

Proposition 7.1 are:

� If Z � R then Z can learn nothing of the database.

� If jZj = 1 then Z can learn nothing of the database.

� If jZj = 2 and Z is not a pair of diagonally opposite corners, then Z can learn nothing

of the database.

� If all four corners are not traitors, and jZj < 4, then Z can learn nothing of the

database.

8 Open Problems

This work suggests several lines of research, which we outline below.

� Make the protocols work with less trust. Ideally, assume that a subset of the access

servers are faulty and pool together all their information. Find an e�cient scheme to

protect the information so that a faulty set of the access servers that does not contain

a quorum can learn nothing about the database, but from a set of the servers that

includes a quorum it is easy to extract a key for decrypting any database item x

4

.

Note that the availability measures the probability that the faulty processors contain

a quorum system (assuming that each processor becomes faulty independently with

probability p).

� We have found secret sharing schemes for many interesting quorum systems (falling

into the category of span programs), however there are some for which it is not clear

whether a good scheme exists, for example the projective plane [32]. Find secret sharing

schemes for these quorum systems, or better, derive a general construction.

4

We can show that any quorum system has such a scheme, but the key sizes are, in general, exponential

in the number of elements.
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� In the remarks following the proof of Theorem 3.1 we pointed out a delicate problem:

what happens when there are many large �les encrypted on, say, a CD-ROM, and

keys for decrypting them may be obtained for a fee. After some keys have been

obtained, how secure are the remaining �les? If the keys encrypting the �les are

chosen independently, then at �rst it seems obvious that nothing can be learned about

the other �les. However, note that the �les are opened at the user's request after

seeing their encrypted versions. To the best of our knowledge, the common de�nition

of security of encryption (semantic, see [16, 31]) does not allow us to conclude the

following: if the keys for decrypting 50 out of the 100 �les (say) are given, then nothing

can be learned about the remaining 50 �les. Find either a way of showing that the

security of the remaining �les does follow from the semantic security of the encryption

scheme, or �nd an encryption scheme for which you can prove the security with keys

which are signi�cantly shorter than the �les themselves.
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