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Abstract

We formalize a realistic model for computations over massive data sets. The model, re-
ferred to as the adversarial sketch model, unifies the well-studied sketch and data stream models
together with a cryptographic flavor that considers the execution of protocols in “hostile en-
vironments”, and provides a framework for studying the complexity of many tasks involving
massive data sets.

In the adversarial sketch model several parties are interested in computing a joint function in
the presence of an adversary that dynamically chooses their inputs. These inputs are provided to
the parties in an on-line manner, and each party incrementally updates a compressed sketch of
its input. The parties are not allowed to communicate, they do not share any secret information,
and any public information they share is known to the adversary in advance. Then, the parties
engage in a protocol in order to evaluate the function on their current inputs using only the
compressed sketches.

In this paper we settle the complexity of two fundamental problems in this model: testing
whether two massive data sets are equal, and approximating the size of their symmetric differ-
ence. For these problems we construct explicit and efficient protocols that are optimal up to
poly-logarithmic factors. Our main technical contribution is an explicit and deterministic encod-
ing scheme that enjoys two seemingly conflicting properties: incrementality and high distance,
which may be of independent interest.
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1 Introduction

The past two decades have witnessed striking technological breakthroughs in information collection
and storage capabilities. These breakthroughs allowed the emergence of enormous collections of
data, referred to as massive data sets, such as the World Wide Web, Internet traffic logs, finan-
cial transactions, census data and many more. This state of affairs introduces new and exciting
challenges in analyzing massive data sets and extracting useful information.

From a computational point of view, most of the traditional computational models consider
settings in which the input data is easily and efficiently accessible. This is, however, usually not
the case when dealing with massive data sets. Such data sets may either be stored on highly
constrained devices or may only be accessed in an on-line manner without the ability to actually
store any significant fraction of the data. In recent years several computational models which
are suitable for computing over massive data sets have been developed, such as sketch and lossy
compression schemes [12, 23], data stream computations [3, 20, 26], and property testing [25, 37].

Motivated by the challenges posed by computational tasks involving massive data sets, and by
the existing approaches for modeling such tasks, we formalize a realistic model of computation which
we refer to as the adversarial sketch model. This model can be seen as unifying the standard sketch
model and the data stream model together with a cryptographic flavor that considers the execution
of protocols in “hostile environments”. The model under consideration provides a framework for
studying the complexity of many fundamental and realistic problems that arise in the context of
massive data sets. In what follows we briefly describe the standard sketch model and the data
stream model, as well as our approach for modeling computations in hostile environments in this
context.

The standard sketch model. In the standard sketch model the input is distributed among
several parties. Each party runs a compression procedure to obtain a compact “sketch” of its input,
and these sketches are then delivered to a referee. The referee has to compute (or to approximate)
the value of a pre-determined function applied to the inputs of the parties by using only the sketches
and not the actual inputs. The parties are not allowed to communicate with each other, but are
allowed to share a random reference string which is chosen independently of their inputs. This
string can be used, for example, to choose a random hash function that will be applied by each
party to obtain a compressed sketch of its input. This model fits many scenarios in which a massive
data set is partitioned and stored in a distributed manner in several locations. In each location a
compressed sketch of the stored data is computed, and then sent to a central processing unit that
uses only the sketches and not the actual data. The main performance criterion for protocols in
this model is the size of the sketches. We note that this model is essentially the public-coin variant
of the simultaneous communication model introduced by Yao [42].

The data stream model. In the data stream model the input is received as a one-way stream.
Once an element from the stream has been processed it is discarded and cannot be retrieved unless
it is explicitly stored in memory, which is typically small relative to the size of the data stream. The
data stream model captures scenarios in which computations involve either data sets that are stored
on sequential magnetic devices (for which one-way access is the most efficient access method), or
on-line data which is continuously generated and not necessarily stored. The main performance
criteria for algorithms in this model is the amount of storage they consume and the amount of time
required for processing each element in the stream. For a more complete description of this model,
its variants and the main results we refer the reader the surveys by Muthukrishnan [33] and by
Babcock et al. [5].
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The adversarial factor. In the standard sketch model described above, it is assumed that the
parties share a random string, which is chosen independently of the inputs held by the parties1. In
many real-life scenarios, however, it is not at all clear that such an assumption is valid. First, since
the parties are assumed not to communicate with each other, this enforces the introduction of trust
in a third party to set up the random string. In many situations such trust may not be available,
and if the shared string is set up in an adversarial manner there are usually no guarantees on the
behavior of the protocol. That is, there may be “bad” choices of the shared string that cause the
protocol to fail with very high probability. Second, even when a truly random string is available,
this string may be known to an adversary as well (and in advance), and serve as a crucial tool
in attacking the system. For example, an adversary may be able to set the inputs of the parties
after having seen the random string. Thus, when considering computations in a setting where the
inputs of the parties may be adversarially chosen, it is usually not justified to assume independence
between the shared random string and the inputs of the parties.

Typical examples for such settings are plagiarism detection and routers comparing traffic logs.
In the first, two parties wish to compute some similarity measure between documents, and their
inputs (i.e., the documents) are chosen by the assumed plagiarizer. In the second, two internet
routers wish to compare their recent traffic logs, and their inputs (i.e., the logs) can be influenced
by any party that can send packets to the routers. In addition, a concrete example for such a
setting was provided by Crosby and Wallach [16]. They showed that adversarially and carefully
chosen input can trigger the worst-case behavior of a hash table, degrading its performance from
expected O(n) time to Θ(n2) time in the insertion of n elements.

For these reasons we are interested in exploring the feasibility and efficiency of computations
over massive data sets in hostile environments. In such environments the honest parties do not
share any secret information, and any public information they share is known to the adversary
in advance who may then set the inputs of the parties. Protocols designed in such a model have
significant security and robustness benefits.

Sketching in adversarial environments. We consider a model with three participating parties:
two honest parties, Alice and Bob, and an adversarial party. Computation in this model proceeds
in two phases. In the first phase, referred to the as the sketch phase, the adversarial party chooses
the inputs of Alice and Bob. These inputs are sets of elements taken from a large universe U , and
provided to the honest parties in an on-line manner in the form of a sequence of insert and delete
operations. Once an operation from the sequence has been processed it is discarded and cannot be
retrieved unless explicitly stored. This phase defines the input sets SA ⊆ U and SB ⊆ U of Alice
and Bob, respectively. During this phase the honest parties are completely isolated in the sense
that (1) they are not allowed to communicate with each other, and (2) the sequence of operations
communicated to each party is hidden from the other party. In addition, we assume that the honest
parties do not share any secret information, and that any public information they share is known
to the adversary in advance. In the second phase, referred to as the interaction phase, Alice and
Bob engage in a protocol in order to compute (or approximate) a pre-determined function of their
input sets.

When designing protocols in the adversarial sketch model we are mainly interested in the
following performance criteria: (1) the amount of storage (i.e., the size of the sketches), (2) the
update time during the sketch phase (i.e., the time required for processing each of the insert and
delete operations), and (3) the communication and computation complexity during the interaction

1In the data stream model, when dealing only with insertions, several deterministic algorithms are known, most
notably those based on the notion of core-sets (see, for example, [2, 6]).
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phase.
The most natural question that arises in this setting is to characterize the class of functions

that can be computed or approximated in this model with sublinear sketches and poly-logarithmic
update time, communication and computation2. In the standard sketch model a large class of
functions was shown to be computed or approximated with highly compressed sketches whose size
is only poly-logarithmic in the size of the input. Therefore, one can ask the rather general question
of whether the adversarial sketch model “preserves sublinearity and efficiency”. That is, informally:

Is any function, computable in the standard sketch model with highly compressed sketches
and poly-logarithmic update time, also computable in the adversarial sketch model with
sublinear sketches and poly-logarithmic update time, communication and computation?

1.1 Our Contributions

In this paper we study the two fundamental problems of testing whether two massive data sets are
equal, and approximating the size of their symmetric difference. For these problems we provide
an affirmative answer to the above question. We construct protocols with sketches of essentially
optimal sublinear size, poly-logarithmic update time during the sketch phase, and poly-logarithmic
communication and computation during the interaction phase. In what follows we formally state
our results3.

Equality testing. An equality testing protocol in the adversarial sketch model is parameterized
by the size N of the universe of elements from which the sets are taken, and by an upper bound K
on the size of the sets to be tested4. Our construction provides an explicit protocol, and in addition
a non-constructive proof for the existence of a protocol that enjoys slightly better guarantees5. We
prove the following theorem:

Theorem 1.1. In the adversarial sketch model, for every N , K and 0 < δ < 1 there exists a
protocol for testing the equality of two sets of size at most K taken from a universe of size N with
the following properties:

1. Perfect completeness: For any two sequences of insert and delete operations communicated to
the parties that lead to the same set of elements, the parties always output Equal.

2. Soundness: For any two sequences of insert and delete operations communicated to the parties
that do not lead to the same set of elements, the parties output Not Equal with probability6

at least 1− δ.

3. The size of the sketches, the update time during the sketch phase, and the communication
complexity during the interaction phase are described below in Table 1.

2Various relaxations may be interesting as well, for instance, allowing rather high communication complexity.
3Our protocols have the property that, during the interaction phase, the amount of computation is linear in the

amount of communication. Therefore, for simplicity, we omit the computation cost and only state the communication
complexity.

4We note that the upper bound K on the size of the sets only imposes a restriction on the size of the sets at
the end of the sketch phase. During the sketch phase the parties should be able to deal with sets of arbitrary size,
and nevertheless the size of the sketches refers to their maximal size during the sketch phase. A possible adversarial
strategy, for example, is to insert all the N possible elements and then to delete N −K of them.

5The poly-logarithmic gap between the parameters of the non-explicit and explicit protocols is due to a poly-
logarithmic gap between the optimal and the known explicit constructions of dispersers (see, for example, [39]). Any
improved explicit construction of dispersers will, in turn, improve our explicit protocols.

6The probability is taken only over the internal coin tosses of the honest parties.
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Non-explicit protocol Explicit protocol

Size of sketches O
(√

K · logN · log(1/δ)
) √

K · polylog(N) · log(1/δ)

Update time O (logK · logN) polylog(N)

Communication O
((
log2K + logK · log logN

)
· log(1/δ)

)
polylog(N) · log(1/δ)

Table 1: The parameters of our equality testing protocols.

A rather straightforward reduction of computations in the private-coin simultaneous communi-
cation model to computations in the adversarial sketch model (see Section 2) implies that the size
the sketches in our protocols is essentially optimal (the following theorem is stated for protocols
with constant error).

Theorem 1.2. Any equality testing protocol in the adversarial sketch model requires sketches of

size Ω
(√

K · log(N/K)
)
.

Approximating the size of the symmetric difference. We construct a protocol that en-
ables two parties to approximate the size of the symmetric difference between their two input sets
determined during the sketch phase. We prove the following theorem:

Theorem 1.3. In the adversarial sketch model, for every N , K, 0 < δ < 1 and constant 0 < ρ ≤ 1,
there exists a protocol for approximating the size of the symmetric difference between two sets of
size at most K taken from a universe of size N with the following properties:

1. For any two sequences of insert and delete operations communicated to the parties that lead
to sets with symmetric difference of size ∆∗, the parties output ∆ such that

Pr [∆∗ ≤ ∆ ≤ (1 + ρ)∆∗] > 1− δ .

2. Sketches of size O
(√

K · logN · (log logK + log(1/δ))
)
.

3. Update time O (logK · logN).

4. Communication complexity O
((
log2K + logK · log logN

)
· (log logK + log(1/δ))

)
.

As with the equality testing protocol, our construction provides an explicit protocol as well. The
explicit protocol guarantees that Pr [∆∗ ≤ ∆ ≤ polylog(N)∆∗] > 1−δ, and the size of sketches, up-
date time and communication complexity match those stated in Theorem 1.3 up to poly-logarithmic
factors.

Dealing with multisets and real-valued vectors. For simplicity, we stated the above results
assuming that the inputs of the parties are sets. Both of our protocols, however, can in fact be
used when the inputs of the parties are multisets containing at most K distinct elements each, and
even real-valued vectors of length N with at most K non-zero entries. In these cases, the equality
protocol determines whether the inputs are equal as multisets or as real-valued vectors, and the
symmetric difference protocol approximates the number of distinct elements in the symmetric
difference between the multisets or the number of non-zero entries in the difference between the
vectors.
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For concreteness, in this paper we present our protocols for multisets, and note that they can
be easily adapted for real-valued vectors given an appropriate representation. When applied to
multisets, an additional parameter of the problems under consideration is an upper bound, M , on
the number of appearances of any element in each multiset. This generalization, however, hardly
affects the performance of our protocols. The only change is that the size of sketches, the update
time, the communication and the computation increase by a multiplicative factor of logM .

1.2 Related Work

Extensive work has been devoted to designing sketch-based algorithms for many tasks, such as
estimating various similarity and distance measures, compressed data structures, histogram main-
tenance, and more. It is far beyond the scope of this paper to present an exhaustive overview of
this ever-growing line of work. The reader may find Bar-Yossef’s Ph.D. thesis [7] (and the many
references therein) and the Handbook of Massive Data Sets [1] as sources of preliminary information
and reference. We focus only on the main results that are relevant to our setting.

Sketch computations were found useful in particular for approximate nearest-neighbor algo-
rithms in high-dimensional spaces by Indyk and Motwani [29] and by Kushilevitz, Ostrovsky and
Rabani [31] (see the work of Woodruff [41] for lower bounds). Both of these approaches are based
on dimensionality-reduction techniques that lead to compressed sketches for estimating various
distance measures, such as the Hamming distance and Lp norms. Dimensionality-reduction tech-
niques are typically easily applicable in the two-party communication model due to linearity of
projection-based sketches, and we adopt linear sketches as the basis for our approach.

Sketch computations are of key importance in compressed sensing [17, 14], a rapidly developing
field of research in signal processing. Algorithms for compressed sensing receive as input a signal
and output a short sketch of the signal, usually via a small set of non-adaptive linear measurements,
that can be used to approximate the signal (see, for example, [14, 15, 24, 28]). Compressed sensing
is most effective when the signal can be well approximated using much fewer vectors from some
fixed basis than the signal’s nominal dimension.

Early results on compressed sensing showed that the set of measurements can be chosen from
some distribution, and the reconstruction algorithm was guaranteed to be correct for any specific
signal with high probability over the choice of the set of measurements. However, for any set of
measurements it may be possible to choose a specific signal on which the reconstruction algorithm
fails. Recently, sets of measurements with significantly stronger uniform recovery properties have
been discovered, showing that it is possible to choose one set of measurements which is “good” (in
the above sense) for all signals. Although this coincides with the approach underlying the adver-
sarial sketch model, two desiderata of protocols in the adversarial sketch model are incompatible
with existing compressed sensing algorithms: poly-logarithmic update time and sublinear space
requirement. Specifically, known compressed sketching algorithms for signals of length N with K
non-zero entries require O(K ·polylog(N)) update time and space, whereas we aim for performance
guarantees that are sublinear inK ·polylog(N) (note that the interesting range of parameters is typ-
ically where K is significantly larger than polylog(N)). In addition, the known compressed sensing
algorithms that achieve these performance guarantees rely on non-explicit constructions of matrices
and expander graphs, and explicit constructions are known to achieve only quasi-polylogarithmic
guarantees (see Section 8).
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1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we formally describe the adversarial
sketch model. In Section 3 we provide an informal overview of the main techniques underlying our
protocols. In Section 4 we describe the encoding scheme which serves as a building block of our
protocols. In Section 5 we present an equality testing protocol, and in Section 6 we present a
protocol for approximating the size of the symmetric difference between two sets. In Section 7 we
present constructions of bounded-neighbor dispersers that are used to instantiate our protocols.
Section 8 provides some concluding remarks and open problems.

2 The Adversarial Sketch Model

In this section we formally describe the adversarial sketch model and its relation to the private-coin
simultaneous communication model (which yields the lower bound of Theorem 1.2). The adversarial
sketch model consists of several honest parties and an adversarial party. In this paper we consider an
information theoretic setting, and do not impose any restrictions on the computational capabilities
of the adversary. At the same time, however, our protocols are efficient and can be executed by
probabilistic polynomial-time parties. For concreteness we focus on the simplest case where there
are only two honest parties, Alice and Bob, and note that the model naturally generalizes to any
number of honest parties. Computation in this model proceeds in two phases:

Sketch phase. In the first phase the adversarial party chooses the inputs of Alice and Bob. These
inputs are sets (or, more generally, multisets) of elements taken from a large universe U , and
provided to the honest parties in an on-line manner in the form of a sequence of insert and
delete operations. Once an operation from the sequence has been processed it is discarded
and cannot be retrieved unless explicitly stored. This phase defines the inputs SA ⊆ U and
SB ⊆ U of Alice and Bob, respectively. During this phase the honest parties are completely
isolated in the sense that (1) they are not allowed to communicate with each other, and (2)
the sequence of operations communicated to each party is hidden from the other party. In
addition, we assume that the honest parties do not share any secret information, and that
any public information they share is known to the adversary in advance.

Interaction phase. In the second phase Alice and Bob engage in a (possibly interactive) protocol
in order to compute (or approximate) a pre-determined function of SA and SB. The adversary
is not active during this phase.

When designing protocols in the adversarial sketch model we are mainly interested in the
following performance criteria:

1. Size of sketches: The amount of storage required by the honest parties during the sketch
phase. We note that these sketches are the only information about the inputs SA and SB

that is available to Alice and Bob during the interaction phase.

2. Update time: The time required by the honest parties for processing each of the insert
and delete operations. More specifically, at any point in time during the sketch phase, each
honest party holds a sketch corresponding to the sequence of insert and delete operation
communicated from the adversary so far. Given an additional insert or delete operation, the
sketch is usually modified, and the update time is the time required for such a modification.

3. Communication complexity: The number of bits communicated by the honest parties
during the interaction phase.
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4. Computation complexity: The amount of computation required by the honest parties
during the interaction phase.

5. Round complexity: The number of communication rounds during the interaction phase.
The number of communication rounds in our protocols is at most 3, and therefore we omit
this parameter when stating our results7.

6. Accuracy: The probability that the computation is successful. In case of an approximation
protocol, the approximation guarantee is considered as well.

Lower bounds via simultaneous communication complexity. The private-coin simultane-
ous communication model is a relaxation of the adversarial sketch model. Any protocol in the
adversarial sketch model can be transformed into a simultaneous protocol: the parties send their
sketches to the referee, who then internally simulates the interaction phase. Therefore, any com-
munication lower bound in the private-coin simultaneous communication model serves as a lower
bound on the size of the sketches in the adversarial sketch model. This simple observation is used
for establishing the optimality of the sketches in our protocols (up to poly-logarithmic factors),
by using the following lower bound for equality [4, 35]: In any equality testing protocol for K-bit
strings in the private-coin communication complexity model it holds that s × t = Ω(K), where s
and t are the number of bits sent to the referee by Alice and Bob, respectively.

3 Overview of Our Techniques

In this section we provide an informal overview of the main techniques underlying our protocols.
We focus here on the problem of testing whether two massive data sets are equal, as it already
illustrates the main ideas. We first make an attempt to point out the difficulties of designing an
efficient equality testing protocol in the adversarial sketch model by demonstrating that known
solutions to several relaxations do not seem to extend to the model under consideration.

Relaxation 1: The standard sketch model. In the standard sketch model there are highly
efficient solutions which take advantage of the fact that the parties share a random string which is
chosen independently of their inputs. A very simple protocol proceeds as follow: The shared random
string is a description of a randomly chosen function h from a family of pair-wise independent
functions that map sets of size K to {0, 1}. The sketch of each party consists of a single bit
obtained by applying h to its input set8. Clearly, if the sets are equal then the sketches are equal
as well, and if the sets are not equal then the sketches differ with probability 1/2 over the choice of
h. Such an approach was demonstrated by Blum et al. [10] (in the context of memory checking) to
efficiently support incremental updates by using ϵ-biased hash functions [34] instead of pair-wise
independent hash functions.

Relaxation 2: The private-coin simultaneous communication model. The above solution
heavily relies on the shared random string available to the parties. When such a string is not avail-
able, but arbitrary access to the inputs during the sketch phase is allowed, the model is equivalent
to the private-coin simultaneous communication model [30, 42] (this is exactly the standard sketch

7More specifically, our protocols consist of 3 messages, where after the second message one of the parties already
learns the result. This result is sent to the other party as the third message.

8More specifically, the parties agree ahead of time on a canonical representation for sets, and apply h to the
representations of their sets.
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model without shared randomness). In this model the complexity of the equality function is well-
studied and tight bounds are known. Babai and Kimmel [4] (generalizing Newman and Szegedy
[35]) proved that in any equality testing protocol in this model it holds that s × t = Ω(K) where
s and t are the amount of communication sent to the referee by the parties when comparing two
K-bit strings.

In the simultaneous communication model there exists a protocol that matches this lower bound.
For simplicity we present the protocol for comparing two K-bit strings. Alice and Bob agree ahead
of time on an error-correcting code C : {0, 1}K → {0, 1}O(K) for which any two distinct codewords
differ on at least a (1 − ϵ)-fraction of their entries (for some constant 0 < ϵ < 1). Alice and Bob
encode their inputs, and view the codewords as O(

√
K)×O(

√
K) matrices. Alice sends a random

row to the referee and Bob send a random column. The referee compares the bits at the intersection
of these row and column, and outputs Equal if and only if they match. Clearly, if the inputs of
the parties are equal then the bits in the intersection always match, and if the inputs are not equal
then bits differ with probability at least 1− ϵ.

Such a solution does not seem to extend to the adversarial sketch model in which the parties
are given only restricted access to their inputs. The inputs are provided in an on-line manner and
once an operation from the sequence has been processed it is discarded and cannot be retrieved.
Therefore it does not seem possible for the parties to encode their inputs in an incremental manner
(i.e., with only a small cost for each update operation) and still obtain codewords that differ on a
constant fraction of their entries. Overcoming the inherent difficulty of constructing an incremental
encoding scheme with high distance is the main idea underlying our protocols.

Relaxation 3: Comparing “close” sets. The final relaxation we consider is not a relaxation
of the model, but a relaxation of the problem. Suppose that we are guaranteed that the symmetric
difference between the inputs sets SA and SB of the honest parties is rather small. In this case there
is a simple protocol with highly compressed sketches, very fast updates and low communication.
Denote by ℓ the maximal size of the symmetric difference between the two sets. The honest
parties agree ahead of time on a mapping T from the universe U of elements to vectors over some
domain with the following simple property: For every ℓ distinct elements x1, . . . , xℓ ∈ U the vectors
T (x1), . . . , T (xℓ) are linearly independent. As a concrete mapping, for example, we assume that
U = [N ] and use T : [N ] → GF(Q)ℓ defined by T (x) = (1, x, . . . , xℓ−1) for some prime Q in the
range [N, 2N ]. The sketch of a set S is given by

∑
x∈S T (x), and is clearly easily updated given

an on-line sequence of insert and delete operations that determine the set S. In the interaction
phase the parties compare their sketches and output Equal if and only if the sketches are equal.
Then, for equal sets the sketches are always equal. If the sets are not equal but the size of their
symmetric difference is at most ℓ then the sketches always differ. The property of this solution is
that the size of the sketch and the communication complexity are proportional to the size of the
assumed symmetric difference between the sets and not to the size of the sets. We use this solution
as a tool in our construction9.

Seemingly conflicting properties: incrementality vs. high distance. Our main technical
contribution is a deterministic encoding scheme that enjoys two seemingly conflicting properties:

9Similar ideas are well-known in coding theory and also found applications in various other settings (for example,
public-key traitor tracing [11], amortized communication complexity [18], signal processing [40], secure computation of
approximations [19], and many more). The set of linearly-independent vectors is usually derived from the parity-check
matrix of a linear error-correcting code.
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• Incrementality: Given an encoding of a set S ⊆ U and an additional element x ∈ U , the
encodings of the sets S ∪ {x} and S \ {x} can be easily computed from the encoding of S
without having to recompute the entire encoding of the new set. By “easily computed” we
mean that only a small number of modifications is required (for example, poly-logarithmic in
the size of the encoding of S).

• High distance: For any two distinct sets SA, SB ⊆ U of size at most K, the encodings of
the sets significantly differ.

Clearly, if we consider the Hamming distance between codewords then such an encoding scheme
does not exist: take any set S ⊆ U of size less than K, and an element x /∈ S. Then, on one hand
the incrementality property implies that the encodings of S and of S ∪ {x} differ only on very few
entries, while on the other hand the high distance property implies that they differ on a significant
fraction of the entries.

In our construction we manage to circumvent this conflict by considering a more generalized
weighted distance, in which different entries are associated with different weights. More specifically,
we map each set S ⊆ U to a logarithmic number of codewords C(S) = {CS

1 , . . . , C
S
k }, and consider

the following distance measure:

dist (C(SA), C(SB)) = 1−
k∏

i=1

(
1− dH

(
CSA
i , CSB

i

))
,

where dH denotes the normalized Hamming distance. This approach enables us to construct an
incremental encoding scheme in which the above distance between any two distinct codewords is at
least 1−ϵ, for constant ϵ. The challenge in constructing such an encoding is to minimize the number
k of codewords while enabling incremental updates. The number k of codewords corresponds in our
protocols to the communication complexity during the interaction phase. When k = 1, the above
distance is the normalized Hamming distance and in this case, as discussed above, the encoding
cannot be incremental. When k is rather large, the encoding may be incremental, but this will
lead to high communication complexity in our protocols. In our encoding, we show that k ≈ logK
suffices in order to enjoy “the best of the two worlds”: updates require only a poly-logarithmic
number of modifications, and the normalized distance between any two distinct codewords at least
is 1− ϵ.

We make a concentrated effort to provide an explicit encoding without relying on public random-
ness. The construction is based on a certain form of unbalanced bipartite graphs with random-like
properties, that can be easily shown to be satisfied by random graphs. Obtaining explicit construc-
tions, however, is much more subtle. In many cases, one can replace random bipartite graphs with
explicit constructions of extractors, as was very recently done by Indyk [28] in the context of ex-
plicit constructions for compressed sensing [14, 17]. Explicit constructions of extractors, however,
are still rather far from optimal. In this paper we emphasize the importance of identifying the
minimal properties needed for the constructions, and as a result of identifying these properties we
manage to base our constructions on “weaker” objects – dispersers, instead of extractors. Explicit
constructions of dispersers are more practical, and are optimal up to poly-logarithmic factors.

More specifically, the encoding scheme is based on unbalanced bipartite graphs, which we refer to
as bounded-neighbor dispersers. Informally, we use these graphs as a deterministic way of mapping
elements into “buckets” such that any set of elements of certain size does not lead to too many
“overflowing buckets”. In each bucket we apply a local encoding that “resolves collisions” among
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the elements mapped to the bucket10. Although a global balls-and-bins approach together with a
local encoding is a rather standard tool, we emphasize that the main exception in our setting is
that the global mapping is deterministic.

The equality testing protocol. Given such an incremental encoding scheme, our protocol
proceeds as follows: During the sketch phase each party incrementally updates an encoding that
corresponds to the set defined by the sequence of insert and delete operations it receives from the
adversary. That is, at the end of the sketch phase the sketches held by the parties are the encodings
of their inputs sets. In the interaction phase, the parties compare a few entries of their sketches,
and output Equal if and only if they all match. The size of the sketches in this protocol, however,
is not sublinear in the size of the sets. In order to overcome this difficulty, we follow the approach
described above in the simultaneous communication model, and have each party store and update
only a small random sample of the entries of its codeword. Such a small sample (of size square-root
of the size of a codeword) will still allow the parties to compare a few random entries. This results
in a very efficient protocol with sketches of size Õ(

√
K), poly-logarithmic update time during the

sketch phase and poly-logarithmic communication and computation during the interaction phase.
Moreover, the above mentioned lower bound of Babai and Kimmel [4] implies that the size of the
sketches in our protocol is essentially optimal.

4 An Incremental Encoding Scheme

In this section we present the encoding scheme that serves as the basis of our protocols. The scheme
encodes multisets, and is parameterized as follows:

• N - the size of the universe U of elements. For simplicity we assume that U = [N ].

• K - the maximal number of distinct elements in each multiset.

• M - the maximal number of appearances of each element in any multiset.

4.1 The Encoding

The encoding of a multiset S ⊆ [N ] consists of a sequence of codewords C(S) = {CS
0 , . . . , C

S
k+1},

where k = ⌈log1+ρK⌉ for some constant ρ > 0, and each codeword CS
i is a vector over some domain

that will be described later on. The scheme incorporates two encodings: a global encoding that
maps each element x ∈ [N ] to several entries of each of the k + 2 codewords, and a local encoding
that applies to the sets of elements mapped to each entry. More specifically, given a multiset
S ⊆ [N ], we denote by Si,y ⊆ S the set of elements in S that are mapped to entry y of the i-th
codeword, denoted CS

i [y] (note that we consider Si,y as a set and not as a multiset). We construct
a mapping with the following property: for any two distinct multisets A,B ⊆ [N ] that contain at
most K distinct elements each, there exists an index i for which 1 ≤ |Ai,y∆Bi,y| ≤ ℓ for a significant
fraction of the entries y and for some integer ℓ (where ∆ denotes symmetric difference, and the
parameter ℓ in our constructions is at most poly-logarithmic in the size of the universe). The local
encoding will then guarantee that CA

i [y] ̸= CB
i [y] by using the solution for “close” sets described

in Section 3 as relaxation 3.
For each codeword Ci, we view the global encoding as a bipartite graph G = (L,R,E), where

the set of vertices on the left, L, is identified with the universe of elements [N ], and the vertices on

10Ideas along these lines were also used by Moran et al. [32] for designing history-independent data structures and
conflict resolution algorithms.
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the right, R, are identified with the entries of Ci. An element x ∈ [N ] is mapped to entry Ci[y] if
and only if the edge (x, y) exists. We are interested in bipartite graphs with the following property:
For every set S ⊆ [N ] of size roughly K ′, at least (1− ϵ)-fraction of the vertices y ∈ R have at least
one and at most ℓ neighbors from S. Now consider any two different multisets A,B ⊆ [N ] that
contain at most K distinct elements each, and suppose that the number of distinct elements in the
multiset S = A∆B is roughly K ′. Then, such a property of the bipartite graph corresponding to
the i-th codeword implies that 1 ≤ |Ai,y∆Bi,y| ≤ ℓ for at least (1− ϵ)-fraction of the entries Ci[y].
We refer to such graphs as bounded-neighbor dispersers. Formally, we define:

Definition 4.1. Let G = (L,R,E) be a bipartite graph. For a set S ⊆ L and an integer ℓ we
denote by Γ(S, ℓ) the set of all vertices in R that have at least one and at most ℓ neighbors in S.

Definition 4.2. A bipartite graph G = (L,R,E) is a (K, ϵ, ρ, ℓ)-bounded-neighbor disperser if for
every S ⊆ L such that K ≤ |S| < (1 + ρ)K, it holds that |Γ(S, ℓ)| ≥ (1− ϵ)|R|.

For such graphs we denote |L| = N , and in addition we assume that all the vertices on the
left have the same degree D, which is called the left-degree of the graph. We discuss and provide
constructions of bounded-neighbor dispersers in Section 7.

The local encoding uses the solution described in Section 3 that applies whenever we are guaran-
teed to compare multisets for which the number of distinct elements in their symmetric difference is
rather small. Denote by ℓ the bound on the size of the symmetric difference provided by the global
encoding. That is, for any two different multisets A,B ⊆ [N ] that contain at most K distinct ele-
ments each the global encoding guarantees that there exists an index i for which 1 ≤ |Ai,y∆Bi,y| ≤ ℓ
for a significant fraction of the entries y. The local encoding consists of a mapping T from the
universe U of elements to vectors over some domain with the following property: For every ℓ dis-
tinct elements x1, . . . , xℓ ∈ U the vectors T (x1), . . . , T (xℓ) are linearly-independent. As a concrete
mapping, for example, we use T : [N ]→ GF(Q)ℓ defined by T (x) = (1, x, . . . , xℓ−1) for some prime
Q such that max{N,M} < Q ≤ 2max{N,M}. The local encoding in each entry CS

i [y] is given by∑
x∈Si,y

♯(x, S) · T (x), where ♯(x, S) denotes the number of appearances of x in S. This is clearly
easily updated given an on-line sequence of insert and delete operations that determine the multiset
S.

A formal description. Let G0, . . . , Gk+1 denote a sequence of bipartite graphs Gi = (L =
[N ], Ri, Ei) with left-degree Di. The graphs are constructed such that each Gi is a (Ki = (1 +
ρ)i, ϵ, ρ, ℓ)-bounded-neighbor disperser for some constant 0 < ϵ < 1 and an integer ℓ ≥ 1. The
encoding consists of a sequence of codewords C0, . . . , Ck+1 (initialized with all zero entries). Each
codeword Ci is identified with the right side Ri of the bipartite graph Gi, and contains |Ri| entries
denoted by Ci[1], . . . , Ci[|Ri|]. An additional tool in our construction is the mapping T from the
universe [N ] to GF(Q)ℓ that was described above. This mapping is used to encode the content of
each entry Ci[y] (in particular, each such entry is an element of GF(Q)ℓ).

Figure 1 describes the incremental update operations of the encoding. That is, given an encoding
{C0, . . . , Ck+1} of a multiset S ⊆ [N ] and an element x ∈ [N ], Figure 1 describes the required
modifications to the codewords in order to obtain the encodings of S ∪{x} and of S \{x}. We note
that the update operations naturally extend to deal with real-valued multiplicities of elements.

In the remainder of this section we state and prove some useful properties of the encoding
scheme that will be used for analyzing our protocols. In the following lemma we show that the
encoding of a multiset is independent of the sequence of operations that led to the multiset. That
is, each multiset has a unique encoding.
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Insert(x, {C0, . . . , Ck+1}):
1: for i = 0 to k + 1 do
2: for all neighbors y of x in the graph Gi do
3: Ci[y]← Ci[y] + T (x)

Delete(x, {C0, . . . , Ck+1}):
1: for i = 0 to k + 1 do
2: for all neighbors y of x in the graph Gi do
3: Ci[y]← Ci[y]− T (x)

Figure 1: The insert and delete operations.

Lemma 4.3. Any two sequences of insert and delete operations that lead to the same multiset
result in the same encoding.

Proof. It is rather straightforward to verify that for any multiset S ⊆ [N ] and for any sequence of
insert and delete operations that lead to S, the resulting encoding is as follows: For every codeword
Ci and entry y ∈ Ri it holds that

Ci[y] =
∑

x∈S∩Γ(y)

♯(x, S) · T (x) ,

where Γ(y) ⊆ [N ] is the set of all neighbors of y in the graph Gi.

The following lemma states that any two different multisets, each containing at most K distinct
elements and no element appears more than M times, have significantly different encodings.

Lemma 4.4. Fix any two distinct multisets A,B ⊆ [N ], each containing at most K distinct
elements and no element appears more than M times. Denote by CA = {CA

0 , . . . , C
A
k+1} and by

CB = {CB
0 , . . . , CB

k+1} the encodings of A and B, respectively, and denote by d the number of

distinct elements in A∆B. Then, for i =
⌊
log1+ρ d

⌋
, the codewords CA

i and CB
i differ on at least

(1− ϵ)-fraction of their entries.

Proof. Fix A,B ⊆ [N ] as in the lemma, and let CA = {CA
0 , . . . , C

A
k+1} and CB = {CB

0 , . . . , CB
k+1}

denote their encodings. Denote by S ⊆ [N ] the set of distinct elements in the symmetric difference
between A and B, and let i =

⌊
log1+ρ |S|

⌋
. Notice that this implies that Ki ≤ |S| < (1+ ρ)Ki. We

now consider the set S as a set in the left side of the bipartite graph Gi = ([N ], Ri, Ei), and prove
that for every y ∈ Γ(S, ℓ) it holds that CA

i [y] ̸= CB
i [y] (recall that Γ(S, ℓ) is the set of all elements

y ∈ Ri that have at least one and at most ℓ neighbors in S). The lemma then follows since Gi is
(Ki, ϵ, ρ, ℓ)-bounded-neighbor disperser and therefore |Γ(S, ℓ)| ≥ (1− ϵ)|Ri|.

Fix any y ∈ Γ(S, ℓ), and assume towards a contradiction that CB
i [y] = CA

i [y]. Denote by
a1, . . . , atA the distinct elements in the multiset A \ B which are neighbors of y in Gi, and denote
by b1, . . . , btB the distinct elements in the multiset B\A which are neighbors of y in Gi. In addition,
denote by s1, . . . , st the distinct elements in the multiset A ∩ B which are neighbors of y in Gi.
Then,

CA
i [y] =

tA∑
j=1

♯(aj , A \B) · T (aj) +
t∑

j=1

♯(sj , A ∩B) · T (sj)

CB
i [y] =

tB∑
j=1

♯(bj , B \A) · T (bj) +
t∑

j=1

♯(sj , A ∩B) · T (sj)
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and therefore
tA∑
j=1

♯(aj , A \B) · T (aj) =
tB∑
j=1

♯(bj , B \A) · T (bj) . (4.1)

Note that the fact y ∈ Γ(S, ℓ) implies by definition 1 ≤ tA + tB ≤ ℓ. The mapping T has
the property that any ℓ distinct elements are mapped to linearly-independent vectors, and this
contradicts Equation 4.1 (note that all the coefficients in the linear combination in Equation 4.1
are bounded by M , which is less than the characteristic of the field). Therefore CB

i [y] ̸= CA
i [y] for

every y ∈ Γ(S, ℓ), and the lemma follows.

In Table 2 we describe the size of the codewords and the update time. The generic parameters
are obtained directly from the parameters of the bounded-neighbor dispersers G0, . . . , Gk+1. For
simplicity, we assume in Table 2 thatM ≤ N , but note that this is not essential for our construction.
The parameters of the non-explicit and explicit protocols are obtained by instantiating these graphs
with the non-explicit and explicit constructions from Theorem 7.1 and Corollary 7.6, respectively.

Generic parameters Non-explicit Explicit

Codeword size O
(
ℓ logN ·

∑k+1
i=0 |Ri|

)
O
(
K · log2N

)
K · polylog(N)

Update time O
(
ℓ logN ·

∑k+1
i=0 Di

)
O
(
logK · log2N

)
polylog(N)

Table 2: The codeword size and update time of the encoding scheme.

Finally, we note that for the parameters of the non-explicit scheme (where the construction of
bounded-neighbor dispersers guarantees ℓ = 1) in the special case that M = 1 (i.e., we consider
sets and not multisets), it is not necessary to use the mapping T described above over GF(Q).
Instead, it is possible to only store the parity of the number of elements mapped to each entry of
the codeword. This enables us to reduce the codeword size to O(K · log(N/K)) and the update
time to O(logK · logN).

4.2 Enabling Fast Decoding

An additional property of the encoding scheme is that it can be augmented in a way that enables
fast decoding, while increasing the size of the codewords and the update time by only a poly-
logarithmic factor. By fast decoding we mean decoding in time Õ(K) instead of O(N). Although
our protocols in this paper do not take advantage of this property, an encoding scheme with the
three properties of incrementality, high distance and fast decoding may be of independent interest
and find additional applications beyond the setting of this paper. We note, however, that unlike
the basic version of the encoding scheme, the decoding does not extend to arbitrary real-valued
vectors, but only to real-valued vectors with non-negative entries.

In order to enable fast decoding we apply a more subtle local encoding. That is, each element
x ∈ [N ] will be associated with a vector T (x) such that the collection of vectors {T (x)}x∈[N ] will
have a slightly stronger property than the property required in the basic scheme. Recall that the
encoding of a multiset S ⊆ [N ] is of the form C(S) = {C0, . . . , Ck+1}. The global encoding maps
each element x ∈ [N ] to several entries of each of the k + 2 codewords. Informally, we view each
entry CS

i [y] as a bucket that contains the elements of S which are mapped to it by the global
encoding. In each such bucket we apply a local encoding with the following two properties:
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1. If S contains at most ℓ distinct elements that are mapped to the bucket, then we are able to
reconstruct all of them together with their frequencies (i.e., the number of times that each of
these elements appears in S).

2. We are able to identify whether S contains more than ℓ elements that are mapped to the
bucket. That is, we can identify “overflowing buckets”.

An encoding with these properties was explicitly constructed by Indyk [27, Section 3.1], where
the length of each vector T (x) is ℓ · polylog(N), and the reconstruction can be done in time
ℓ·polylog(N). We note that although Indyk’s construction encoded sets of elements, it can be easily
extended for multisets as well. In addition, we note that the property of identifying overflowing
buckets is the reason that prevents the decoding procedure to extend to arbitrary real-valued vectors
(see also the difference between strong k-sets and weak k-sets in [21]). Although we do not get into
the details here, we note that it is possible to overcome this difficulty by basing our constructions on
extractors and not on dispersers. This will result, however, with codewords of size K · 2O(log2 logN)

and update time 2O(log2 logN) (see the approach of Indyk [28] for more details).
In the remainder of this section we describe and analyze the decoding procedure given a local

encoding with these properties.

The decoding. Given an encoding C(S) = {C0, . . . , Ck+1} of a multiset S ⊆ [N ] containing at
most K distinct elements, the decoding proceeds as follows. We examine the codeword Ck (for
the decoding process we do not need the codeword Ck+1), and identify all the buckets Ck[y] that
contain at least one and at most ℓ distinct elements. If the fraction of such buckets is less than
1−ϵ, then we continue to the next codeword Ck−1. Otherwise, we reconstruct all the elements from
these buckets together with their frequencies. Denote by X the multiset of reconstructed elements.
Now, we compute the encoding of the multiset S \X by using the delete operation from Figure 1.
We repeat this process with Ck−1, and continue similarly until we go over all the codewords.

We now prove that the decoding scheme indeed reconstructs a multiset S from its encoding.
For every 0 ≤ i ≤ k denote by Si the multiset of unreconstructed elements when the procedure
begins to process codeword Ci.

Lemma 4.5. For every 0 ≤ i ≤ k, the number of distinct elements in Si is less than (1 + ρ)i+1.

Proof. We prove the lemma by induction on i, starting from i = k. By the definition of the Si’s, we
have that Sk = S, which has at most K distinct elements, and K < (1+ρ)k+1 = (1+ρ)⌈log1+ρ K⌉+1.
Now assume that the number of distinct elements in Si is less than (1+ρ)i+1, and we prove that the
number of distinct elements in Si−1 is less than (1+ρ)i. Assume for contradiction that the number
of distinct elements in Si−1 is at least (1 + ρ)i. Since Si−1 ⊆ Si, then it is at most (1 + ρ)i+1. On
one hand, the property of the graph Gi guarantees that the fraction of buckets in the codeword Ci

that contain at least one and at most ℓ elements is at least 1− ϵ. On the other hand, the fact that
we continued to Ci−1 implies that the latter fraction is less than 1− ϵ, and this is a contradiction.
Thus, the number of distinct elements in Si−1 is at most (1 + ρ)i.

The above lemma directly implies that the decoding procedure reconstructs the multiset S: By
the time the procedure begins processing the final codeword C0, at most a single element is not
reconstructed, and this element is reconstructed from C0. The following lemma settles the decoding
time, when the bounded-neighbor dispersers are instantiated with the explicit construction from
Corollary 7.6.

Lemma 4.6. The decoding terminates in time K · polylog(N).
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Proof. When processing each codeword Ci, Lemma 4.5 implies that the number of distinct unre-
constructed elements is at most (1 + ρ)i+1. In each iteration there are two possible cases: In the
first case, at least (1− ϵ)-fraction of the buckets in Ci contain at least one and at most ℓ elements.

In this case we reconstruct at least (1−ϵ)|Ri|
Di

= (1+ρ)i

polylog(N) distinct elements (recall that Di is the

left-degree of the graph Gi). Therefore, after at most polylog(N) such iterations, the number of
distinct unreconstructed elements is at most (1+ρ)i. In the second case, less than (1−ϵ)-fraction of
the buckets in Ci contain at least one and at most ℓ elements, and we continue to the next codeword
Ci−1. In this case, Lemma 4.5 implies that the number of distinct unreconstructed elements is at
most (1 + ρ)i. Therefore, the total number of iterations during the decoding process is polylog(N)
(recall that ρ is a constant), and each such iteration can be done in time K · polylog(N).

5 The Equality Testing Protocol

The incremental encoding scheme described in Section 4 serves as our main tool in designing an
equality testing protocol in the adversarial sketch model. The following theorem summarizes the
properties of our protocol. It is stated using the parameters of the sequence of graphs G0, . . . , Gk+1

used to construct the incremental encoding scheme in Section 4 (with parameter ρ = 1, or any other
constant ρ). Recall that each Gi = (L = [N ], Ri, Ei) is a (Ki, ϵ, ρ, ℓ)-bounded-neighbor disperser
with left-degree Di. Theorem 1.1 follows by instantiating the graphs with the bounded-neighbor
dispersers from Theorem 7.1 and Corollary 7.611.

Theorem 5.1. In the adversarial sketch model, for every N , K, M and 0 < δ < 1 there exists a
protocol for testing the equality of two multisets from a universe of size N , each containing at most
K distinct elements with the property that no element appears more than M times, such that the
following hold:

1. Perfect completeness: For any two sequences of insert and delete operations communicated to
the parties that lead to the same multiset of elements, the parties always output Equal.

2. Soundness: For any two sequences of insert and delete operations communicated to the parties
that do not lead to the same multiset of elements, the parties output Not Equal with probability
at least 1− δ.

3. Sketches of size O
(√

log 1
δ · ℓ log (max{N,M}) ·

∑k+1
i=0

√
|Ri|

)
.

4. Worst-case update time O
(
ℓ log (max{N,M}) ·

∑k+1
i=0 Di

)
.

5. Communication complexity O
(
log 1

δ ·
(
ℓ log (max{N,M}) logK +

∑k+1
i=0 log |Ri|

))
.

First attempt. In the sketch phase, Alice and Bob incrementally encode the sequences of insert
and delete operations they receive (using the encoding scheme from Section 4 with parameter ρ = 1)
and obtain the encodings CA = {CA

0 , . . . , C
A
k+1} and CB = {CB

0 , . . . , CB
k+1} of their multisets SA

and SB, respectively. In the interaction phase, the honest parties compare a random entry from
each of the codewords. More specifically, Alice picks k+2 uniformly distributed entries y0, . . . , yk+1

and sends the values (y0, C
A
0 [y0]), . . . , (yk+1, C

A
k+1[yk+1]) to Bob. Bob compares these entries to the

11We note that in the parameters of the non-explicit protocol stated in Theorem 1.1 we are able to eliminate the
logN factors from the generic parameters in case that M = 1, exactly as in the encoding scheme.
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corresponding entries of his codewords, and if CB
i [yi] = CA

i [yi] for every 0 ≤ i ≤ k + 1 then they
output Equal. Otherwise, they output Not Equal.

Lemma 4.3 guarantees that the protocol is perfectly complete. That is, any two sequences of
insert and delete operations that lead to the same multiset of elements induce the same represen-
tation, and therefore the parties will always output Equal. Lemma 4.4 guarantees the soundness
of the protocol. That is, if Alice and Bob are given two sequences of operations that do not lead to
the same multisets, then there exists an integer 0 ≤ i ≤ k+1 for which the codewords CA

i and CB
i

differ on at least (1−ϵ)-fraction of their entries (recall that this is the distance property guaranteed
by the encoding scheme). In this case the parties output Not Equal with probability at least 1− ϵ.

The protocol. A drawback of the above protocol is that the size of the sketches (i.e., the size of
the encodings CA and CB) is not sublinear in the size of the input sets SA and SB. To overcome
this undesirable property, we modify the protocol as follows: The parties view each codeword
Ci (corresponding to CA

i and to CB
i ) as a square matrix. Prior to the sketch phase, Alice chooses

uniformly distributed rows a0, . . . , ak+1 and Bob chooses uniformly distributed columns b0, . . . , bk+1.
During the sketch phase Alice only stores and updates the entries of each codeword CA

i along row
ai, and Bob only stores and updates the entries of each codeword CB

i along column bi. Notice that
each party now stores only a square-root of the entries of each codeword, and this leads to sketches
which are of size Õ(

√
K). In the interaction phase, for every 0 ≤ i ≤ k+1 Alice and Bob compare

the entry at the intersection of row ai and column bi in the codewords CA
i and CB

i , and output
Equal if and only if they all match.

Amplifying the success probability. The protocol described above guarantees that if Alice
and Bob are given two sequences of operations that do not lead to the same sets, then they both
output Not Equal with probability at least 1−ϵ (where ϵ in our constructions of bounded neighbor-
dispersers is some constant). More generally, given an accuracy parameter 0 < δ < 1, we would
like to amplify the probability that they output Not Equal to 1− δ. Naively, this can be achieved

by having Alice and Bob compare s = O
(

1
1−ϵ log

1
δ

)
uniformly and independently chosen entries

of each codeword. This will require each party to store and update s rows or columns of each
codeword, resulting in sketches of size Õ(

√
K · log(1/δ)). We now show that it is possible, however,

to reduce this amount to only Õ
(√

K · log(1/δ)
)
. We partition each codeword Ci (corresponding

to CA
i and to CB

i ) to s disjoint parts of roughly equal size (the partition is part of the description
of the protocol, and is known to the adversary in advance). Alice and Bob will compare a random
entry from each such part. This will require each of them to store and update only O(

√
|Ci|/s)

entries from each part, and therefore a total of O(
√
|Ci|s) entries from each codeword. This turns

out to have essentially the same effect as comparing s independently chosen entries from each

codeword, and results in sketches of size Õ
(√

K · log(1/δ)
)
. A formal proof of the properties of

the protocol follows.

Proof of Theorem 5.1. The perfect completeness follows directly from the canonical representa-
tion of the encoding scheme (see Lemma 4.3). Now fix two sequences of insert and delete operations
that do not lead to the same multiset of elements, and denote by SA and SB the resulting multisets
(each containing at most K distinct elements with the property that no element appears more than
M times). We show that the parties output Not Equal with probability at least 1 − δ. Denote
by CA = {CA

0 , . . . , C
A
k+1} and by CB = {CB

0 , . . . , CB
k+1} the encodings of SA and SB, respectively,

and denote by d the number of distinct elements in SA∆SB. Then, for i =
⌊
log1+ρ d

⌋
, Lemma
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4.4 states that the codewords CA
i and CB

i differ on at least (1− ϵ)-fraction of their entries. These

codewords are partitioned to s = Θ
(

1
1−ϵ log

1
δ

)
disjoint parts of roughly equal size, and from each

part the parties compare a single entry. Denote by γ(1), . . . , γ(s) the fraction of differing entries in
each part. Then, the probability that Alice and Bob output Equal is given by

s∏
j=1

(
1− γ(j)

)
≤ exp

− s∑
j=1

γ(j)

 ≤ exp (−(1− ϵ)s) ≤ δ .

Each codeword Ci contains |Ri| entries, from which each party stores and updates O(
√

s|Ri|)
entries, where s = O

(
1

1−ϵ log
1
δ

)
. The content of each entry is an element of GF(Q)ℓ where Q ≤

2max{N,M}. Therefore the sketches are of size O
(√

log 1
δ · ℓ log (max{N,M}) ·

∑k+1
i=0

√
|Ri|

)
(recall that 0 < ϵ < 1 is a constant).

The update time is bounded by the update time of the encoding scheme (although the parties
only need to update a small fraction of each codeword). The update time of the encoding scheme

is at most O
(
ℓ log (max{N,M}) ·

∑k+1
i=0 Di

)
since each insert and delete operation affects only Di

entries of each codeword Ci.
During the interaction phase, the parties compare s = O

(
log 1

δ

)
entries from each table. More

specifically, one party sends the indices of the rows or columns that it holds for each codeword,
and the other party replies with the elements in the intersection of the corresponding rows or
columns. Therefore, the communication and computation during the interaction phase are bounded

by O
(
log 1

δ ·
(
ℓ log (max{N,M}) logK +

∑k+1
i=0 log |Ri|

))
.

6 Symmetric Difference Approximation

We present a protocol for approximating the size of the symmetric difference of two massive data
sets in the adversarial sketch model. We note that the protocol can be applied also when the inputs
of the parties are multisets, and in this case it approximates the number of distinct elements in the
symmetric difference.

The approximation ratio of our protocol depends on the properties of the graphs G0, . . . , Gk+1

used to construct the incremental encoding scheme in Section 4, and stating the result requires
introducing the following notation. Recall that each Gi = (L = [N ], Ri, Ei) is a (Ki, ϵ, ρ, ℓ)-
bounded-neighbor disperser with left-degree Di. We let r = max0≤i≤k+1

KiDi
(1−ϵ)|Ri| . Theorem 7.1

shows that such graphs exist with r ≈ 1, and Corollary 7.6 provides an explicit construction with
r = polylog(N). We prove the following theorem:

Theorem 6.1. In the adversarial sketch model, for every N , K, M , 0 < δ < 1 and constant
0 < ρ ≤ 1 there exists a protocol for approximating the number of distinct elements in the symmetric
difference between multisets from a universe of size N , each containing at most K distinct elements
with the property that no element appears more than M times, such that the following hold:

1. For any two sequences of insert and delete operations communicated to the parties that lead
to multisets with symmetric difference that contains ∆∗ distinct elements, the parties output
∆ such that

Pr
[
∆∗ ≤ ∆ ≤ (1 + ρ)3r∆∗] > 1− δ .

2. Sketches of size O
((

log logK + log 1
δ

)
· ℓ log (max{N,M}) ·

∑k+1
i=0

√
|Ri|

)
.
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3. Worst-case update time O
(
ℓ log (max{N,M}) ·

∑k+1
i=0 Di

)
.

4. Communication O
((

log logK + log 1
δ

)
·
(
ℓ log (max{N,M}) logK +

∑k+1
i=0 log |Ri|

))
.

The protocol. In the sketch phase, Alice and Bob incrementally encode the sequences of insert
and delete operations they receive (using the encoding scheme from Section 4 with parameter ρ),
and obtain the encodings CA = {CA

0 , . . . , C
A
k+1} and CB = {CB

0 , . . . , CB
k+1} of their multisets SA

and SB, respectively. In the interaction phase, the parties compare s = Θ
(

1
(1−ϵ)ρ2

log
log1+ρ K

δ

)
independently chosen and uniformly distributed entries from each of the k + 2 codewords. For
every 0 ≤ i ≤ k+1 denote by di the number of differing entries out of the s entries that the parties
compare from the i-th codeword. The parties output ∆ = (1 + ρ)i+1 for the maximal i for which

di ≥ 1
2

(
1 + 1

1+ρ

)
(1− ϵ)s. If there is no such i, then the parties output ∆ = 0.

In order to reduce the size of the sketches, we observe once again that the parties are not required
to store and update their entire codewords. The parties view each codeword Ci (corresponding to
CA
i and to CB

i ) as a square matrix, and store and update only the entries that correspond to s
random rows or columns from each codeword

In the following two lemmata we prove that the approximation guarantee is as claimed in
Theorem 6.1.

Lemma 6.2. For any two sequences of operations received by the parties, it holds that ∆∗ ≤ ∆
with probability at least 1− δ/2.

Proof. Fix any two multisets SA, SB ⊆ [N ], each containing at most K distinct elements with
the property that no element appears more than M times. Denote by CA = {CA

0 , . . . , C
A
k+1} and

CB = {CB
0 , . . . , CB

k+1} their encodings, respectively. If ∆∗ = 0 (that is, SA = SB) then the encoding

scheme (see Lemma 4.3) guarantees that CA = CB, and therefore the parties always output ∆ = 0.
Now suppose that ∆∗ ≥ 1, and let iOPT =

⌊
log1+ρ∆

∗⌋. Lemma 4.4 states that the codewords CA
iOPT

and CB
iOPT

differ on a (1− ϵ)-fraction of their entries. Alice and Bob compare s = Ω
(

1
(1−ϵ)ρ2

log 1
δ

)
random entries, and therefore a standard Chernoff bound implies that with probability at least

1− δ/2, it holds that di ≥ 1
2

(
1 + 1

1+ρ

)
(1− ϵ)s. Therefore,

∆ ≥ (1 + ρ)iOPT+1 = (1 + ρ)⌊log1+ρ ∆∗⌋+1 ≥ (1 + ρ)log1+ρ ∆∗
= ∆∗ .

Lemma 6.3. For any two sequences of operations received by the parties, it holds that ∆ ≤ (1 +
ρ)3r∆∗ with probability at least 1− δ/2.

Proof. Fix any two multisets SA, SB ⊆ [N ], each containing at most K distinct elements with
the property that no element appears more than M times, and let S = SA∆SB. Denote by
CA = {CA

0 , . . . , C
A
k+1} and CB = {CB

0 , . . . , CB
k+1} their encodings, respectively. As in the proof of

the previous lemma, if ∆∗ = 0 then the parties always output ∆ = 0. Now suppose that ∆∗ ≥ 1,
and let iOPT =

⌊
log1+ρ∆

∗⌋. We argue that for sufficiently large i > iOPT, the expected value of

di is at most 1
1+ρ · (1 − ϵ)s. In this case, by our choice of s, a Chernoff bound guarantees that

di <
1
2

(
1 + 1

1+ρ

)
(1 − ϵ)s with probability at least 1 − δ/(2 log1+ρK) (which suffices for a union

bound over all the sufficiently large i’s).
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Let i = iOPT + j for some j ≥ 1. We now consider the set S ⊆ [N ] as a set in the left side of the
bipartite graph Gi = ([N ], Ri, Ei). As in the proof of Lemma 4.3, for every y ∈ Ri \ Γ(S), it holds
that CA

i [y] = CB
i [y] (since no elements from the symmetric difference are mapped to such entries).

Therefore,

E [di] ≤
|Γ(S)|
|Ri|

· s

≤ ∆∗Di

|Ri|
· s

≤ (1 + ρ)iOPT+1Di

|Ri|
· s

=
(1 + ρ)iDi

(1 + ρ)j−1|Ri|
· s

=
KiDi

(1 + ρ)j−1|Ri|
· s

=
1

(1 + ρ)j−1
· KiDi

(1− ϵ)|Ri|
· (1− ϵ)s .

Therefore, for every j ≥ 2 + log1+ρ r it holds that

E [diOPT+j ] ≤
1

(1 + ρ)j−1
· r · (1− ϵ)s

≤ 1

(1 + ρ)r
· r · (1− ϵ)s

=
1

1 + ρ
· (1− ϵ)s .

When setting s = Ω
(

1
(1−ϵ)ρ2

log
log1+ρ K

δ

)
, a Chernoff bound implies that

Pr

[
diOPT+j ≥

1

2

(
1 +

1

1 + ρ

)
(1− ϵ)s

]
≤ δ

2 log1+ρK
,

for every such j. This implies that with probability at least 1− δ/2 it holds that

∆ < (1 + ρ)iOPT+2+log1+ρ r+1

= (1 + ρ)3r ·∆∗ .

In what follows we conclude the proof of Theorem 6.1, and then prove Theorem 1.3 by in-
stantiating the protocol with the bounded-neighbor dispersers from Theorem 7.1 and Corollary
7.6.

Proof of Theorem 6.1. Lemmata 6.2 and 6.3 settle the approximation guarantee. It remains to
upper bound the size of sketches, the update time during the sketch phase and the communication
complexity during the interaction phase.

Each codeword Ci contains |Ri| entries, from which each party stores and updates O(s
√
|Ri|)

entries, where s = Θ
(
log logK + log 1

δ

)
. The content of each entry is an element of GF(Q)ℓ,
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where Q ≤ 2max{N,M}. Therefore, the size of the sketches in the protocol is bounded by

O
((

log logK + log 1
δ

)
· ℓ log (max{N,M}) ·

∑k+1
i=0

√
|Ri|

)
.

The update time is bounded by the update time of the encoding scheme (although the parties
only need to update a small fraction of each codeword). The update time of the encoding scheme

is at most O
(
ℓ log (max{N,M}) ·

∑k+1
i=0 Di

)
since each insert and delete operation affects only Di

entries of each codeword Ci.
During the interaction phase, the parties compare s = Θ

(
log logK + log 1

δ

)
entries from each

table. More specifically, one party sends the indices of the rows or columns that it holds for each
codeword, and the other party replies with the elements in the intersection of the correspond-
ing rows or columns. Therefore the communication complexity during the interaction phase is

O
((

log logK + log 1
δ

)
·
(
ℓ log (max{N,M}) logK +

∑k+1
i=0 log |Ri|

))
.

Proof of Theorem 1.3. Given N , K and constant 0 < ρ ≤ 1, Theorem 7.1 shows the graphs
G0, . . . , Gk+1 can be chosen such that each Gi = (L = [N ], Ri, Ei) is a (Ki = (1 + ρ)i, ϵ, ρ, ℓ)-
bounded-neighbor disperser with left-degree Di = O(log(N/Ki)), |Ri| = O(Ki log(N/Ki)), ℓ = 1,
constant ϵ and r ≤ (1 + ρ)2. In this case applying Theorem 6.1 with ρ/31 implies that

∆∗ ≤ ∆ ≤ (1 + ρ/31)5∆∗ ≤ (1 + ρ)∆∗ .

The parameters of the bounded-neighbor dispersers together with Theorem 6.1 imply the following:

• The sketches are of size O
(√

K logN ·
(
log logK + log 1

δ

)
· log (max{N,M})

)
.

• Update time O (logK · logN · log (max{N,M})).

• Communication complexity O
((
log logK + log 1

δ

)
· log (max{N,M}) · logK

)
.

As with the parameters of the non-explicit encoding scheme stated in Table 2, since the con-
struction of bounded-neighbor dispersers guarantees ℓ = 1, in the special case that M = 1 (i.e.,
we consider sets and not multisets) it is not necessary to use the mapping T described above over
GF(Q). Instead, it is possible to only store the parity of the number of elements mapped to each
entry of the codeword. This enables us to eliminate the log (max{N,M}) factors from the above
parameters.

Finally, when instantiating the protocol with the explicit construction of bounded-neighbor
dispersers from Corollary 7.6, we have that r = polylog(N) and therefore

∆∗ ≤ ∆ ≤ polylog(N)∆∗ .

In addition, the explicit construction guarantees that the size of the sketches, the update time and
the communication match those of the non-explicit construction to within poly-logarithmic factors.

7 Constructions of Bounded-Neighbor Dispersers

Given N , K and ρ we are interested in constructing a (K, ϵ, ρ, ℓ)-bounded-neighbor disperser G =
(L = [N ], R,E), such that ϵ, ℓ and |R| are minimized. We first present a non-constructive proof
of the existence of a bounded-neighbor disperser with essentially optimal parameters: a constant
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ϵ, ℓ = 1 and |R| = O(K log(N/K)). Then, we provide an explicit construction of bounded-
neighbor dispersers, by showing that any disperser [38] is also a bounded-neighbor disperser for
some parameters12.

7.1 A Non-Constructive Proof

We prove the following theorem:

Theorem 7.1. For every N , K ≤ N and constant 0 < ρ ≤ 1, there exists a (K, ϵ = 1− ρ
(1+ρ)4

, ρ, ℓ =

1)-bounded-neighbor disperser G = (L,R,E), with |L| = N , left-degree D = O(log(N/K)), and

|R| =
⌈
(1+ρ)2

ρ KD
⌉
.

Lemma 7.2. Let X denote the number of bins that contain exactly one ball, when at least n and

at most (1 + ρ)n balls are placed independently and uniformly at random in m =
⌈
(1+ρ)2n

ρ

⌉
bins,

for some 0 < ρ ≤ 1. Then,

Pr

[
X <

n

(1 + ρ)2

]
< exp

(
− ρ2

2(1 + ρ)3
· n
)

.

Proof. For every 1 ≤ i ≤ n, denote by Xi the Boolean random variable that equals 1 if and only
if the i-th ball is placed in a bin that does not contain any other balls. Then X ≥

∑n
i=1Xi since

the number of balls is at least n. At most (1 + ρ)n balls are placed in m =
⌈
(1+ρ)2n

ρ

⌉
bins, and

therefore for every u⃗ ∈ {0, 1}n−1 and for every 1 ≤ i ≤ n,

Pr [Xi = 1 | (X1, . . . , Xi−1, Xi+1, . . . , Xn) = u⃗] ≥ 1− (1 + ρ)n

m

≥ 1

1 + ρ
.

Let Y1, . . . , Yn denote n independent and identically distributed Boolean random variables with
the property that Pr [Y1 = 1] = 1/(1 + ρ), and let Y =

∑m
i=1 Yi. A standard coupling argument

shows that for every t > 0 it holds that Pr [X < t] ≤ Pr [Y < t]. Therefore, by applying a Chernoff
bound for Y , we obtain

Pr

[
X <

n

(1 + ρ)2

]
≤ Pr

[
Y <

1

1 + ρ
· n

1 + ρ

]
≤ exp

(
−1

2
· n

1 + ρ
·
(
1− 1

1 + ρ

)2
)

= exp

(
− ρ2

2(1 + ρ)3
· n
)

.

12A similar observation was used by Moran et al. [32] who defined the notion of bounded-neighbor expanders, and
showed that it can be satisfied by any disperser with certain parameters. Our graphs have slightly weaker properties,
and this enables more efficient constructions. That is, the parameters of dispersers are better preserved.
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Proof of Theorem 7.1. Fix N , K ≤ N and constant 0 < ρ ≤ 1. We apply a standard
probabilistic argument and show that with positive probability a random bipartite graph satisfies
the required property. Let G = (L,R,E) be a random bipartite graph with |L| = N , left-degree

D = O(log(N/K)) and |R| =
⌈
(1+ρ)2

ρ KD
⌉
. That is, for every vertex x ∈ L we choose D neighbors

independently and uniformly at random from R (this process may actually result in a multi-graph,
and in this case we ignore any parallel edges). Lemma 7.2 (when setting n = KD) implies that for
every set S ⊆ L such thatK ≤ S < (1+ρ)K, the probability over the choice of the edges of the graph
that |Γ(S, 1)| < KD

(1+ρ)2
is at most exp(−cKD), for some constant c > 0. Therefore, the probability

that there exists a set S ⊆ L such that K ≤ S < (1+ ρ)K and for which |Γ(S, 1)| < KD
(1+ρ)2

is upper

bounded by

⌊(1+ρ)K⌋∑
i=K

(
N

i

)
exp (−cKD) < 1 ,

for an appropriate choice of D = O(log(N/K)). In particular, there exists a choice of edges for
which for every set S ⊆ L such that K ≤ S < (1 + ρ)K it holds that

|Γ(S, 1)| ≥ KD

(1 + ρ)2
≥ (1− ϵ)|R| ,

where the second inequality follows from the setting of parameters ϵ = 1 − ρ
(1+ρ)4

and |R| =⌈
(1+ρ)2

ρ KD
⌉
.

7.2 An Explicit Construction

We provide an explicit construction of bounded-neighbor dispersers by showing that any disperser
is a bounded-neighbor disperser for some parameters. We again emphasize the importance of basing
our protocols on dispersers and not on extractors: whereas the existing explicit constructions of
extractors are rather far from optimal, the existing explicit constructions of disperser are optimal
up to poly-logarithmic factors. This yields a significant difference in performance.

Dispersers [38] are combinatorial objects with many random-like properties. Dispersers can be
viewed as functions that take two inputs: a string that is not uniformly distributed, but has some
randomness; and a shorter string that is completely random, and output a string whose distribution
is guaranteed to have a large support. Dispersers have found many applications in computer science,
such as simulation with weak sources, deterministic amplification, and many more (see [36] for a
comprehensive survey). We now formally define dispersers, and then show that any disperser is a
bounded-neighbor disperser for some parameters.

Definition 7.3. A bipartite graph G = (L,R,E) is a (K, ϵ)-disperser if for every S ⊆ L of size at
least K, it holds that |Γ(S)| ≥ (1− ϵ)|R|, where Γ(S) denotes the set of neighbors of the vertices in
S.

Lemma 7.4. Any (K, ϵ)-disperser G = (L,R,E) with left-degree D is a (K, ϵ′, ρ = 1, ℓ)-bounded-

neighbor disperser, for ϵ′ = 1+ϵ
2 and ℓ =

⌈
4DK

(1−ϵ)|R|

⌉
.

Proof. Let G = (L,R,E) be a (K, ϵ)-disperser with left-degree D, and define ϵ′ = 1−ϵ
2 and

ℓ = 4DK
(1−ϵ)|R| . We show that for every set S ⊆ L such that K ≤ |S| < 2K, it holds that |Γ(S, ℓ)| ≥

(1− ϵ′)|R|. First, since G is a (K, ϵ)-disperser and |S| ≥ K, then |Γ(S)| ≥ (1− ϵ)|R|. Now consider
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the subgraph G′ = (S,Γ(S), E′), where E′ are all the outgoing edges of S. The assumption |S| ≤ 2K
implies that there are at most 2DK edges in G′, and therefore the average degree of the vertices
of Γ(S) in G′ is at most

|E′|
|Γ(S)|

≤ 2DK

(1− ϵ)|R|
≤ ℓ

2
.

This implies that at least |Γ(S)|/2 vertices in Γ(S) have degree at most ℓ in G′. Therefore,

|Γ(S, ℓ)| ≥ |Γ(S)|
2
≥ 1− ϵ

2
· |R| = (1− ϵ′) · |R| .

Lemma 7.4 can be instantiated, for example, with the following disperser construction of Ta-
Shma, Umans and Zuckerman [39].

Theorem 7.5 ([39]). For every n, k, and constant ϵ > 0, there exists an efficiently computable
(K = 2k, ϵ)-disperser G = (L,R,E), with |L| = N = 2n, |R| = Θ(K/ log3(N)) and left-degree
D = polylog(N).

Corollary 7.6. For every n and k there exists an efficiently computable (K = 2k, ϵ = 3/4, ρ = 1, ℓ)-
bounded-neighbor disperser G = (L,R,E), with |L| = N = 2n, |R| = Θ(K/ log3(N)), left-degree
D = polylog(N) and ℓ = polylog(N).

8 Concluding Remarks and Open Problems

Relying on computational assumptions. In this paper we considered the adversarial sketch
model in the information-theoretic setting (i.e., we did not impose any restrictions on the compu-
tational capabilities of the adversary). It is reasonable to assume, however, that the adversary is
polynomially bounded in any realistic setting. It will be interesting to explore whether computa-
tional assumptions can significantly improve the efficiency of protocols in the adversarial sketch
model. For example, the existence of incremental collision resistant hash functions [8, 9] implies
an equality testing protocol with highly compressed sketches which dramatically circumvents the
lower bound stated in Theorem 1.2 in the computational setting. A major drawback of existing
constructions of such hash functions is that they either rely on a random oracle, or are inefficient
(more specifically, the construction of Bellare, Goldreich and Goldwasser [8] can be proved secure
without a random oracle, but in this case the size of the description of each hash function is too
large to be used in practice – linear in the number of input blocks)13.

In addition, for the problem of approximating the size of the symmetric difference we are not
aware of any protocol in the computational setting that similarly improves our protocol. It would
be very interesting to take advantage of computational assumptions and construct such a protocol
with highly compressed sketches.

Preserving sublinearity and efficiency without a shared random string. As discussed
in Section 1, the most natural question that arises in the context of the adversarial sketch model
is to characterize the class of functions that can be computed or approximated in this model with

13An additional construction that does not rely on random oracles can be based on the techniques of Gennaro,
Halevi and Rabin [22] that require hash functions that output prime numbers, but this again does not result in an
efficient construction.
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sublinear sketches and poly-logarithmic update time, communication and computation. In partic-
ular, we have asked whether the adversarial sketch model “preserves sublinearity and efficiency” of
problems from the standard sketch model.

In this paper we provided an affirmative answer for the problems of testing whether two massive
data sets are equal, and approximating the size of their symmetric difference. It would be interesting
to consider other distances and similarity measures that can be efficiently approximated in the
standard sketch model (see Section 1.2). For example, an intriguing measure, due to its application
in eliminating near-duplicates of web pages is the resemblance measure (also known as the Jaccard
index) [13], defined as

r(S, T ) =
|S ∩ T |
|S ∪ T |

.

There are highly compressed sketches for estimating the resemblance between two sets using a
collection of min-wise independent permutations [12]. It is not clear, however, that without shared
randomness this technique can result in sketches that can be updated in an efficient incremental
manner. It would be interesting to construct an efficient protocol for approximating resemblance
in the adversarial sketch model.

Compressed sensing: explicit reconstruction of sparse signals. Indyk [28] showed that
any signal of length N with at most K non-zero entries can be compressed (and efficiently recon-

structed) using a fixed set of K · 2O(log2 logN) non-adaptive linear measurements. Indyk’s construc-
tion of the set of measurements is explicit and is based on unbalanced bipartite graphs, similar
to the ideas underlying our encoding scheme. However, his construction requires extractors and
not dispersers, and this leads to the 2O(log2 logN) factor. It would be interesting to find explicit
compressed sensing algorithms while relying on dispersers instead of extractors, and this may lead
to a set of measurements of size K · polylog(N), which is optimal up to poly-logarithmic factors.
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