
Splitters and near-optimal derandomization

(Preliminary Version)

Moni Naor

�

Leonard J. Schulman

y

Aravind Srinivasan

z

Abstract

We present a fairly general method for �nding

deterministic constructions obeying what we call k-

restrictions; this yields structures of size not much

larger than the probabilistic bound. The structures

constructed by our method include (n; k)-universal sets

(a collection of binary vectors of length n such that for

any subset of size k of the indices, all 2

k

con�gurations

appear) and families of perfect hash functions. The

near-optimal constructions of these objects imply the

very e�cient derandomization of algorithms in learn-

ing, of �xed-subgraph �nding algorithms, and of near

optimal ��� threshold formulae. In addition, they

derandomize the reduction showing the hardness of ap-

proximation of set cover. They also yield determinis-

tic constructions for a local-coloring protocol, and for

exhaustive testing of circuits.

1 Introduction

Research conducted over the last decades has

demonstrated the signi�cance of the Probabilistic

Method and of probabilistic algorithms and proce-

dures (see [6, 28] for recent reviews of these achieve-

ments). However, there are many reasons why one

should not be satis�ed with a probabilistic construc-

tion of an object or with a probabilistic algorithm.

This is especially true in cases where there is no pro-

cedure for checking the correctness of the result. Also,

probabilistic algorithms often behave less satisfacto-

�

Incumbent of the Morris and Rose Goldman Career De-

velopment Chair, Dept. of Applied Mathematics and Com-

puter Science, Weizmann Institute. Supported by an Alon

Fellowship and by a grant from the Israel Science Founda-

tion administered by the Israeli Academy of Sciences. E-mail:

naor@wisdom.weizmann.ac.il.

y

College of Computing, Georgia Inst. Technology, At-

lanta GA 30332-0280, USA. Most of this work was done

while the author was with the Dept. of Applied Mathe-

matics and Computer Science, Weizmann Institute. E-mail:

schulman@cc.gatech.edu.

z

Dept. of Information Systems & Computer Science, Na-

tional University of Singapore, Singapore 0511, Republic of

Singapore. Most of this work was done while the author was

visiting the Dept. of Applied Mathematics and Computer Sci-

ence, Weizmann Institute. Part of this work was done while

visiting the Dept. of Computer Science, University of War-

wick, England, supported in part by the ESPRIT Basic Re-

search Action Programme of the EC under contract No. 7141

(project ALCOM II). Part was done while visiting the Max-

Planck-Institut f�ur Informatik, Saarbr�ucken, Germany. E-mail:

aravind@iscs.nus.sg.

rily than deterministic ones under recursion, since this

can require resource-expensive boosting of the success

probability. Hence, a lot of e�ort has been devoted to

�nding ways of removing randomness from algorithms.

Unfortunately, the resulting algorithm is often much

less e�cient than the original one. Exceptions to this

are, e.g., the results of [5, 10, 24], where there is no

signi�cant penalty in time (or number of processors,

in the case of parallel algorithms).

The goal of this paper is to present a fairly gen-

eral method for constructing some combinatorial ob-

jects which we call k-restriction collections. All k-

restriction problems have a probabilistic construction

obtained by picking a random collection of vectors.

One can show a \union bound" for such a collection

(see Section 3.1), and our method achieves determin-

istic constructions of sizes close to that of the union

bound. These constructions in turn allow us to remove

the randomness from a large variety of algorithms. A

k-restriction problem is, roughly speaking, a collection

of vectors of length n over an alphabet of size b such

that for any k out the n indices, we will �nd some

\nice" con�gurations; see Section 2.2 for the formal

de�nition.

At the heart of our method are splitters: an

(n; k; `)-splitter H is a family of functions from

f1; :::; ng to f1; :::; `g such that for all S � f1; :::; ng

with jSj = k, there is a h 2 H that splits S perfectly,

i.e., into equal-sized parts (h

�1

(j)) \ S, j = 1; 2; : : : `

(or as equal as possible, if ` does not divide k). Split-

ters themselves fall into the category of k-restriction

problems for which our construction is applicable: the

alphabet size is ` and each vector corresponds to a

function h, where the ith entry of the vector is h(i).

The nice con�gurations for a speci�ed k-set S are

therefore those where each letter in the alphabet ap-

pears the same number of times, when restricted to

S.

1.1 Method

We give here a brief overview of our method. Start-

ing with a universe of size n, we �rst reduce our

problem to one with a universe of size k

2

by �nd-

ing a poly-time computable family H of (n; k; k

2

)-

splitters, i.e., a family H of maps from f1; : : : ; ng

to f1; : : : ; k

2

g such that for every k-sized subset S of

f1; : : : ; ng, there is some function in H which is injec-

tive on S. A construction for the [k

2

]-sized universe

will then be \pulled back" to one on the [n]-universe,

at a poly(k) � logn cost in the size of the family.

Next we �nd a poly-time computable family of



(k

2

; k; l) splitters, typically for ` � log k. This gives

us, for each k-set in [k

2

], a function which partitions

the k-set into l evenly sized blocks. We then give an

application-dependent construction within each block.

This construction will be of the same size guaranteed

by the existence proof, and its computation will not be

poly-time in the size of the construction; yet it will be

poly-time in the parameters of the original problem.

Finally the constructions for the di�erent blocks are

combined into a construction for the [k

2

]-universe in

an application-speci�c manner.

1.2 Problems

There are several problems (combinatorial struc-

tures) falling into our framework for which our method

yields improved and near-optimal bounds. For most

of these problems the improvement is most apparent

when k = �(logn). These problems are de�ned in

Section 2.2 and their constructions and applications

are described in detail in Section 5. These k-restriction

problems include the following.

(i) Splitters are both a means (as mentioned above)

and an end of our work. They are rather basic combi-

natorial objects. We use them for constructing near-

optimal size depth-3 formulae for threshold functions,

in Section 5.4; this constructivizes the probabilistic

existential proof of [35]. An important special case of

splitters is:

(ii) Perfect hashing. Let H be a family of functions

mapping a domain of size n into a range of size k. H

is an (n; k)-family of perfect hash functions if for all

subsets S of size k from the domain there is an h 2 H

that is 1-1 on S. Thus these are (n; k; k)-splitters.

The union bound shows the existence of a family H

such that jH j = O(e

k

p

k logn), while it is known that

jH j � 
(e

k

logn=

p

k) [17, 21, 34, 32]. The previously

best-known explicit construction (based on [40] and

described in [7]), is of size 
(11

k

logn) (this bound

was not made explicit in these papers).

In section 4.4 we present a deterministic construc-

tion of size e

k

k

O(log k)

logn, for this problem. Perfect

hash functions have many applications, e.g. in table

look-up and communication complexity [18, 26, 33].

The area where our method is most relevant is in

derandomizing the color-coding method of [7], where

we obtain deterministic algorithms with performance

close to the randomized ones.

(iii) (n; k)-universal sets. This problem is to con-

struct a small set of vectors T � f0; 1g

n

such that

for any index set S � f1; 2; : : : ; ng with jSj = k, the

projection of T on S contains all possible 2

k

con�g-

urations. The problem originated in the testing of

circuits, since it allows exhaustive testing of a circuit

where each component relies on at most k inputs. The

union bound shows the existence of (n; k)-universal

sets of size dk2

k

lnne. A lower bound of 
(2

k

lnn) is

known [20]. Previously, the best explicit construction

was of size O(minfk2

3k

logn; k

2

2

2k

log

2

ng) [3, 4, 30].

In section 5.2 we present a near-optimal determinis-

tic construction of size 2

k

k

O(log k)

logn and discuss the

applications of this construction for the fault-tolerance

of the hypercube, learning algorithms, distributive col-

oring, and the hardness of the set-cover problem. An-

other class of structures related to the hardness of set-

cover, anti-universal sets, is discussed in Section 5.3.

1.3 Explicit Constructions: Global vs.

Local

There is a distinction to be made, when discussing

explicit constructions, between what we call local and

global constructions. For instance, if we were asked to

construct an undirected graph G = (V;E) on n ver-

tices satisfying a certain property, we could give a de-

terministic construction which would list the edges in

E in poly(n) time; we would call this a globally explicit

construction. However, a stronger type of construc-

tion is possible: given any node v 2 V , outputting its

neighborhood N(v) in poly(logn; jN(v)j) time; this is

what we would call a locally explicit construction, and

is what is usually called for in the explicit construc-

tion of dispersers and constant-degree expanders, for

instance. Clearly, local is stronger than global, in anal-

ogy to the distinction between log-space and polyno-

mial time.

In our context of, say, universal test sets and perfect

hash functions, globally explicit constructions would

refer to listing out the corresponding families F in

time polynomial in their size. Locally explicit con-

structions would just ask for h

i

(j) to be evaluated in

time polynomial in the representation of n; i and j,

i.e., O(log(n+ jF j)). (Here h

i

stands for the ith func-

tion in the family F , and j is any index in f1; :::; ng.)

When applying the construction for removing random-

ness, we require only globally explicit constructions

and hence, in describing our results above, we referred

to globally explicit ones. However, we also provide lo-

cally explicit constructions; these too come to within

a 2

o(k)

factor of optimal, but the 2

o(k)

term is worse.

1.4 A brief review of derandomization

The random choices made by a probabilistic algo-

rithm naturally de�ne a probability space where each

choice corresponds to a random variable. To remove

randomness from an algorithm, we need a way of �nd-

ing a successful assignment to these choices, determin-

istically.

One such approach, the method of conditional prob-

abilities ([39, 36]), is to search the probability space

for a good choice by shrinking the probability space

at every iteration, by �xing an additional choice. A

di�erent approach for �nding a good point is to show

that if the random choices satisfy only some limited

form of independence (in which case we may have a

smaller space), the algorithm is successful. This ap-

proach is taken in [23, 2, 19, 30, 4].

These two approaches have been combined in two

di�erent ways in the past, in [9, 24, 29] and [5]. The

framework suggested in this paper is a synthesis of

many known techniques. Finding the \right" combi-

nation for achieving near-optimality seems to be the

main contribution of this work.



2 Tools and de�nitions

Notation. Let [n] denote the set f1; 2; : : : ; ng. For

any k, 1 � k � n, the family of k-sized subsets (or

k-sets) of [n] is denoted by

�

[n]

k

�

.

2.1 Limited independence and small-bias

probability spaces

Let 
 be a probability space with n random vari-

ables x

1

; x

2

; : : : x

n

, each taking values in a �nite set

A. Recall that 
 is called k-wise independent if

for any fi

1

; i

2

; : : : ; i

k

g � [n], the random variables

x

i

1

; x

i

2

; : : : ; x

i

k

are mutually independent. Often, as

will be the case in this paper, it is also assumed that

each x

j

is uniformly distributed in A.

Fairly tight bounds are known on the size of k-

wise independent spaces: there are explicit construc-

tions of k-wise independent probability spaces of size

O(n

a�1

a

k

) (assuming a is prime and n+1 is a power of

a), where a (= jAj) is the alphabet size. On the other

hand, there is a lower bound of

P

bk=2c

j=0

(

n

j

), which for

�xed k is 
(n

bk=2c

), for the size of such a sample space

(see [6, 2, 15]). An important property of these con-

structions is that it is possible to list all members of

the probability space in linear time.

When A = f0; 1g, we say that 
 is a k-wise �-

biased probability space if for any nonempty subset

S of [n] of size at most k we have jPr[

L

i2S

x

i

=

0] � Pr[

L

i2S

x

i

= 1]j � �: A key property of

any k-wise �-biased probability space is that 8s �

k 8fi

1

; i

2

; : : : ; i

s

g �

�

[n]

s

�

8b

1

; b

2

; : : : ; b

s

2 f0; 1g

jPr(

s

^

j=1

(x

i

j

= b

j

))� 1=2

s

j � �:

Therefore k-wise �-biased probability spaces are de-

scribed as \almost k-wise independent" or \k-wise �-

dependent". The construction of small-bias spaces due

to [30], as optimized in [3], yields a probability space

of size O(

k logn

�

3

); those of [4] yield probability spaces

of size O(

k

2

log

2

n

�

2

).

2.2 k-restriction problems

An instance of a k-restriction problem is speci-

�ed by (i) positive integers b; k; n;m, and (ii) a list

C = C

1

; C

2

; :::; C

m

where each C

i

� [b]

k

, and with

the collection C being invariant under permutations of

[k].

For a vector v = (v

1

; v

2

; : : : ; v

n

) 2 [b]

n

and a subset

S 2

�

[n]

k

�

, we say that v satis�es the restriction C

j

at

S if v(S) 2 C

j

. (Here v(S) is the vector (v

i

1

; :::; v

i

s

),

for S = fi

1

; :::; i

s

g and i

1

< ::: < i

s

.) We say that a

collection of vectors V � [b]

n

satis�es the constraints

C if 8S 2

�

[n]

k

�

and 8j : 1 � j � m there exists v 2 V

such that v(S) 2 C

j

. An important parameter of a

k-restriction problem is c = min

1�j�m

jC

j

j. We call

c=b

k

the density of the problem.

We now de�ne the problems we deal with in this

paper and explain why they fall into the category of

k-restriction problems. See the introduction for the

de�nition of splitters, (n; k)-universal sets, and per-

fect hash families.

(i) The (n; k; `)-Splitters problem. (In case ` does

not divide k, we require the �rst (k mod `) parts to

be of size dk=`e and the remaining ones to be of size

bk=`c.) To specify splitters as a restriction problem,

let b = ` and let C consist of one set C

1

containing all

vectors from [b]

k

such that each value in [b] appears

exactly k=` times. Here, c =

�

k

k=`;k=`;:::;k=`

�

.

(ii) Perfect hashing. In this case, b = k and C has

exactly one element C

1

� [k]

k

, which contains pre-

cisely all the permutations of [k]. Hence, c = k! and

the density is k!=k

k

. Note that perfect hash families

are splitters with ` = k.

(iii) The (n; k)-universal set problem. In this

problem, b = 2 and C consists of 2

k

sets C

x

= fxg

for all x 2 f0; 1g

k

. In this case, c = 1.

(iv) In order to prove improved non-approximability

results for the set-cover problem, Feige has recently in-

troduced the following sets [16], which we call (n; k; b)

anti-universal sets as suggested by Oded Goldreich:

a family of functions from [n] to [b] where for every k-

set in [n] and every vector v 2 [b]

k

, there is a function

that disagrees with v in every coordinate. Formally,

it is a collection of functions mapping [n] to [b] such

that

8(i

1

; i

2

; : : : ; i

k

) 2 [n]

k

8(a

1

; a

2

; : : : ; a

k

) 2 [b]

k

9h 2 H 8j 2 [k] h(i

j

) 6= a

j

:

In this case C consists of b

k

sets

C

x

= fy 2 [b]

k

: y

j

6= x

j

81 � j � kg;

for all x 2 [b]

k

. Note that for b = 2, anti-universal

sets are identical to (n; k)-universal sets. However for

general b, we have c = (b� 1)

k

; the density is

((b� 1)=b)

k

.

Note that C is implicitly presented in all the above

four problems, and hence, we do not need an explicit

list of the constraints for any of these problems. Thus

by (globally) e�cient algorithms for these four prob-

lems, we just mean algorithms taking time polynomial

in n and in the output size.

3 Probabilistic and exhaustive bounds

for k-restriction problems

3.1 The union bound for k-restriction

problems

Suppose that for a k-restriction problem speci�ed

by C = C

1

; C

2

; :::; C

m

� [b]

k

such that jC

j

j � c, we at-

tempt a probabilistic construction. If a random vector

v 2 [b]

n

is chosen and we consider a speci�c S 2

�

[n]

k

�



and some C

j

2 C, then the probability that v satis-

�es C

j

at S is

jC

j

j

b

k

�

c

b

k

. Therefore, if we choose

t random vectors, we get via the union bound that

the probability that the collection does not satisfy C

is bounded above by

X

S2

(

[n]

k

)

m

X

j=1

Pr[no v satis�es C

j

at S]

=

�

n

k

�

m

X

i=1

�

1�

jC

i

j

b

k

�

t

�

�

n

k

�

m

�

1�

c

b

k

�

t

(1)

Restricting (1) to be less than 1 implies that

t � d

k lnn+ lnm

ln (b

k

=(b

k

� c))

e (2)

su�ces; thus, for any given k-restriction problem of

density c, there exists a solution of at most this size.

We will refer to (2) as the union bound. For many

k-restriction problems the union bound is very close

to the best (smallest) possible construction: e.g., for

(n; k)-universal sets and perfect hash functions.

3.2 \Smart" exhaustive search

We now show how to get a construction that is of

size equaling that given by the union bound, for any

k-restriction problem. This phase of the construction

is computationally expensive in its own right, i.e., not

polynomial time in its parameters; however with the

parameters we will be using it, it will take time poly-

nomial in the parameters of the main problem. The

reason for dubbing this \smart" search is that though

it does brute-force search, the search domain is much

smaller than that of the class of all functions mapping

[n] to [b].

Typically, for a \main problem" with parameters

N;K and B we apply this phase with n = K

2

,

k = K=(logK logB) orK= logK, and b = B. Since we

are discussing general k-restriction problems here, we

assume that the collection of constraints C is presented

by a membership oracle: a procedure that, given any

v 2 [b]

n

, S 2

�

[n]

k

�

and j 2 [m], says whether or not

v(S) 2 C

j

, within some time bound T . For the exam-

ples we are interested in, this oracle computation will

be easy, usually taking just O(k) time.

Let H

n;k;b

be a k-wise independent probability

space with n random variables taking values in [b],

such as the one mentioned in section 2.1. Henceforth,

we assume that b � n for k-restriction problems for

simplicity, since this is the case for all our applica-

tions; thus, jH

n;k;b

j � n

k

. First note that the union

bound (2) is applicable even when the vectors are not

chosen uniformly at random from [b]

n

, but chosen uni-

formly at random from the much smaller space H

n;k;b

| this follows from the fact that (1) examines only

k-sets of [n].

Theorem 1 For any k-restriction problem with b �

n, there is a deterministic algorithm that outputs a col-

lection obeying the k-restrictions, with the size of the

collection equaling the union bound. The time taken

to output the collection is

O(

b

k

c

�

�

n

k

�

�m � T � jH

n;k;b

j;

where T is the time complexity of the membership

oracle. There is a parallel algorithm that outputs a

collection at most a constant times larger than the

union bound in time poly(T + k logn + logm), using

O(

�

n

k

�

�m � jH

n;k;b

j) EREW PRAM processors.

Proof . Consider a set-system in which the universe

(ground set) is H

n;k;b

. The sets are T

S;j

, indexed by

pairs (S; j) such that S 2

�

[n]

k

�

and 1 � j � m. T

S;j

consists of all h 2 H

n;k;b

that satisfy C

j

at S. We

do not explicitly list out the sets T

S;j

: note that any

given h can be tested for membership in T

S;j

in time

T , using the given membership oracle. Any subset

of H

n;k;b

that hits (intersects) all subsets T

S;j

is a

good collection (i.e. is a collection satisfying the k-

restriction problem). This is the well-known hitting

set or transversal, problem for hypergraphs.

We can �nd such a collection by a greedy algo-

rithm via a simple observation, which follows fairly

easily by inspecting (1) and by using the fact that (1)

holds even if we pick vectors at random from H

n;k;b

;

the observation is that there must be an h 2 H

n;k;b

such that h hits at least fraction c=b

k

of the sets T

S;j

.

The obvious idea then is to �nd such an h using the

membership oracle and add it to our current (partial)

hitting set, \removing" the sets hit by h from the set-

system, and repeating. Finding such an h takes time

at most O(

�

n

k

�

� m � T � jH

n;k;b

j); also, the number of

sets in our set-system is e�ectively \shrunk" to at most

m

�

n

k

�

(1� c=b

k

) after picking h.

Therefore the results of a greedy algorithm would

produce a construction of size d

k lnn+lnm

ln b

k

=(b

k

�c)

e, same as

that of (2). Also, the total time taken is at most

O(

�

n

k

�

�m � T � jH

n;k;b

j(

1

X

i=0

�

1� c=b

k

�

i

)); i.e.,

O(

b

k

c

�

�

n

k

�

�m � T � jH

n;k;b

j):

This is the same as running the method of conditional

probabilities on the small space H

n;k;b

; if we were to

run this method on the entire [b]

n

space, the time

taken would be enormous.

Alternatively, any approximation algorithm for the

hitting set problem is applicable here. (This is rel-

evant in the parallel context, where one cannot use

the greedy algorithm directly.) Berger, Rompel and

Shor [10] have presented an e�cient parallel algorithm

for approximating the hitting set problem. This al-

gorithm �nds a hitting set that is within a constant

factor of the output of the greedy algorithm. 2

For two of our main applications, we explicitly state

the time complexity of smart search; Theorem 2 fol-

lows directly from Theorem 1.



Theorem 2 (i) An (n; k)-family of perfect hash func-

tions C(n; k) of cardinality O(e

k

p

k logn), can be con-

structed deterministically in time O(k

k+1

�

n

k

�

n

k

=k!).

(ii) For any given n and k � n, an (n; k)-universal

set of cardinality O(k2

k

logn) can be constructed de-

terministically in time O(

�

n

k

�

k2

2k

n

bk=2c

).

Note that this is not our �nal construction of per-

fect hash families and universal sets! The time com-

plexities are too high in theorems 1 and 2, but the

advantage o�ered by them is that the function fami-

lies constructed are of \small" size (equaling the union

bound). Theorems 1 and 2 will be invoked later on,

with \small" values for n and k; this will keep the

time taken low, while presenting function families of

reasonable size.

4 Splitters

We now present a globally e�cient construction for

(n; k; `)-splitters. Whenever ` < k, we assume for no-

tational convenience that ` j k (the argument for the

general case is similar). We �rst present a probabilistic

argument for (n; k; `)-splitters when ` < k, in Section

4.1. Sections 4.2 and 4.3 then provide some simple

splitting families, which will be used to solve some ba-

sic sub-problems arising in our applications. Section

4.4 presents a near-optimal construction, building on

the results of Sections 3.2, 4.2 and 4.3.

4.1 Probabilistic argument for splitters

Suppose ` < k, ` j k. If we pick s independent

random functions from [n] to [`] where

s = d

`

k

((k=`)!)

`

k lnn

k!

e;

then we see from (1) that we have an (n; k; `)-splitter

with positive probability. Using Robbins' formula{

e

1=(12a+1)

p

2�a(a=e)

a

� a! � e

1=(12a)

p

2�a(a=e)

a

[38]

in the above de�nition of s and de�ning

�(k; `)

:

= (2�k=`)

`=2

e

`

2

=(12k)

for notational convenience, we see that s =

�(

p

k�(k; `) logn). Hence we get

Lemma 1 If ` j k, then for every n � k, there exists

an (n; k; `)-splitter of size O(

p

k�(k; `) logn).

4.2 Splitters for size-reduction

In our applications, it will be useful to have the pa-

rameter n \small" as a function of k; this would then

help us invoke Theorems 1 and 2, while still keeping

the time complexity low. The splitter of Lemma 2

shows how to do this \size-reduction", which essen-

tially allows us to replace n by k

2

. This makes our

upper bounds for the applications have a linear de-

pendence on logn. Lemma 2 involves constructing a

family of functions A : [n] ! [k

2

] such that for all

S 2

�

[n]

k

�

, there is some function in A that is injective

on S.

Lemma 2 There is an explicit (n; k; k

2

)-splitter

A(n; k) of size O(k

6

log k logn).

Proof We follow the well-known trick of using an

asymptotically good error correcting code with n code-

words over the alphabet [k

2

], with a minimum rela-

tive distance of at least 1 � 2=k

2

between any pair

of codewords. Such explicit codes of length L =

O(k

6

logn log k) exist [3]. There is a natural corre-

spondence between the code and a family of splitters:

the splitting family corresponds to the index set [L].

By summing the distances, we get that for any subset

of k codewords there is an index where they all di�er.

This index corresponds to the good split. 2

Alternatively, if we use the FKS functions (Corol-

lary 2 and Lemma 2 [18]) then we get a family of size

�(k

4

log

2

n= log(k logn)).

4.3 Splitters for decomposition

Our applications will need small splitting families,

and here we use a simple \intervals" family of splitters.

This family is not very e�cient but we will be using

it in the range n = k

2

and ` = k

o(1)

(principally ` =

O(log k)) where its overhead is modest compared to

the complexity of the overall construction.

Lemma 3 For any k � n and for all ` � n, there is

an explicit family B(n; k; `) of (n; k; `)-splitters of size

�

n

`�1

�

.

Proof For every choice of 1 � i

1

< i

2

< � � � < i

`�1

�

n, de�ne a function h : [n] 7! [`] by h(s) = j i� i

j�1

<

s � i

j

, for all s 2 [n] (taking i

0

� 0 and i

`

� n). 2

4.4 Globally Explicit Splitter Construc-

tion

We now describe our best constructions of splitters.

The form of the construction depends on the relative

sizes of k and l.

First we note a lemma which follows from Theo-

rem 1.

Lemma 4 For ` � k, an (n; k; `)-splitter of cardinal-

ity O(�(k; `)

p

k logn) can be constructed determinis-

tically in time O(

p

k

�

n

k

�

n

k

�(k; `)).

Theorem 3

(i) For ` = O(

p

k), we can produce an (n; k; `)-

splitter of size

s = O(k

2`+O(1)

logn=(`!))

= O((�(k; `))

6+o(1)

k

O(1)

logn)

in poly(n; s) time, where the o(1) term decreases

monotonically and goes to 0, as `=

p

k decreases

and goes to 0.

(ii) For ` < k and ` = !(

p

k), we can produce an

(n; k; `)-splitter of size

s = O(�(k; `)

1+o(1)

logn)



in poly(n; s) time, where the o(1) term goes to 0

as `=

p

k !1.

(iii) Perfect Hash Functions: For k � ` <

k

2

, we can produce an (n; k; `)-splitter of size

e

k

k

O(log k)

logn in time linear in the output size.

(Also, for any ` < k, an (n; k)-perfect family of

hash functions of cardinality

e

k

k

O(1)

(logn)

�

k

2

`

�

�

ln k

p

2k=(�`)

�

`

can be con-

structed deterministically in time

poly(n) (k=`)

k=`+1

�

k

2

k=`

�

k

2k=`

=(k=`)!:)

(iv) For l � k

2

, we can produce an (n; k; `)-splitter of

size O(k

6

log k logn) in time poly(n; k).

Proof . 1. Let A = A(n; k) and B = B(k

2

; k; `) be

the respective function families (splitters) presented

by Lemmas 2 and 3. For every a 2 A and b 2 B,

consider the function g

a;b

(x) = b(a(x)); our function

family F

1

will contain all the jAjjBj such functions

g

a;b

. To see that F

1

is an (n; k; `)-splitter, consider

any S 2

�

[n]

k

�

. There exists an a 2 A which is 1-1 on

S, and a b 2 B that splits the image of S under a cor-

rectly; hence F

1

is all we need. Now jF

1

j = jAjjBj =

O(k

2`+O(1)

logn=(`!)) = O((�(k; `))

6+o(1)

k

O(1)

logn),

for families of splitting problems with ` = O(

p

k).

This is not too far from the bound of Lemma 4; this

method will, however, lead to huge splitters as ` grows

further (` = !(

p

k)), and hence we use a di�erent ap-

proach in part (2).

2. For this part of the theorem, the o(�) and !(�)

notation refers to k tending to in�nity. We will need

an integral parameter 1 < r < `,

r = �(k log `=(` log(2k=`))):

Note that r = o(`) since ` = !(

p

k); a similar easily

veri�ed fact that we will need is

(k=r)

k=r

= (2k=`)

O(`)

and k

O(r)

= O(�(k; `)

1+o(1)

):

(3)

We will assume for notational convenience that

r j ` j k. De�ne the function families A

1

=

A(n; k), B = B(k

2

; k; r) and C = A(k

2

; k=r) as pre-

sented by Lemmas 2 and 3, and the family D to be

the ((k=r)

2

; k=r; `=r)-splitter presented by Lemma 4.

Fix any a 2 A

1

, b 2 B, any sequence of ele-

ments c

1

; c

2

; : : : ; c

r

of C, and any sequence of ele-

ments d

1

; d

2

; : : : ; d

r

of D. Then we de�ne a function

g

a;b;c

1

;:::;c

r

;d

1

;:::;d

r

: [n] 7! [`] by

g

a;b;c

1

;:::;c

r

;d

1

;:::;d

r

(x)

= (b(a(x))� 1)`=r + d

b(a(x))

(c

b(a(x))

(a(x))):

Our function family F

2

is composed of precisely all

such functions g

a;b;c

1

;:::;c

r

;d

1

;:::;d

r

. We �rst consider

jF

2

j and the time to construct F

2

, and then prove that

F

2

is an (n; k; `)-splitter. Note that

jF

2

j = jA

1

jjBj(jCjjDj)

r

= O(k

O(1)

(logn)

�

k

2

r

�

�

�

(k=r)

O(1)

(log r)�(k=r; `=r)

�

r

)

= O(k

O(r)

�(k; `) logn)

= O(�(k; `)

1+o(1)

logn); by (3).

The total time to construct the families A

1

, B, C and

D is, by Lemmas 2, 3 and 4,

poly(jA

1

j; jBj; jCj) +

O(

p

k=r

�

(k=r)

2

k=r

�

(k=r)

2k=r

�(k=r; `=r) log(k=r)):

Thus by (3), the time to construct F

2

is poly(jF

2

j; n).

To see that F

2

is an (n; k; `)-splitter, take any S 2

�

[n]

k

�

. By the de�nition of A

1

and b,

9a 2 A

1

9b 2 B 8i 2 [r]; jS

i

j = k=r;

where S

i

= S \ (b � a)

�1

(i): Fix such an a and b.

Again by the de�nition of A, there exist c

1

; c

2

; : : : ; c

r

2

C such that c

i

is 1-1 on S

i

; �x such a sequence

c

1

; c

2

; : : : ; c

r

. Finally by the de�nition of D, there is a

sequence d

1

; d

2

; : : : ; d

r

2 D such that d

i

splits S

i

into

`=r pieces of size (k=r)=(`=r) = k=` each. It is now

not hard to verify that g

a;b;c

1

;:::;c

r

;d

1

;:::;d

r

splits S.

3. Let ` = c log k for some constant c (chosen suit-

ably to minimize the running time, or the lower-order

terms in the size of the perfect hash family). Let

A = A(n; k), B = B(k

2

; k; `) and C = C(k

2

; k=`) be

the respective function families presented by Lemmas

2 and 3, and by Theorem 2(i).

The intuition is as follows; as mentioned above, we

assume for now that `jk. A generic function f in our

desired perfect hash family H is de�ned by a function

a 2 A, a function b 2 B, and ` functions c

1

; : : : ; c

`

2

C; any such choice of the functions a, b, and c

i

is

allowed. Now f is de�ned by f(x) = c

b(a(x))

(a(x)).

Observe that for any �xed S 2

�

[n]

k

�

, Lemmas 2 and

3 provide some pair a; b so that each c

i

will be applied

to k=` points a(x), x 2 S. Now using Theorem 2(i),

ranging over all choices for c

i

2 C, there will be a

function f 2 H that is 1-1 on S.

More formally, let j be de�ned (arbitrarily) to be

1 if `jk, and otherwise to be the integer given by

k = (` � j)bk=`c + jdk=`e. Let P

1

; P

2

; : : : ; P

`

be the

following function families: (i) P

i

, for 1 � i � j, is

a (k

2

; dk=`e)-perfect family of hash functions, as pre-

sented by Theorem 2(i), and (ii) P

i

, for j+1 � i � `, is

a (k

2

; bk=`c)-perfect family of hash functions, as pre-

sented by Theorem 2(i).

Now for every f

1

2 A, f

2

2 B and g

i

2 P

i

, de�ne,

8s 2 [n], h

(f

1

;f

2

;g

1

;g

2

;:::;g

`

)

(s) to be

dk=`e(f

2

(f

1

(s))� 1) + P

f

2

(f

1

(s))

(f

1

(s))



if f

2

(f

1

(s)) � j + 1, and

dk=`ej + bk=`c(f

2

(f

1

(s))� j � 1) + P

f

2

(f

1

(s))

(f

1

(s))

otherwise.

As sketched in the intuitive description above, we

de�ne our desired family H of functions to be the col-

lection of all such functions h

(f

1

;f

2

;g

1

;g

2

;:::;g

`

)

. Now,

jAj = O(k

6

log k logn), jBj =

�

k

2

`�1

�

= k

O(log k)

, and

Q

`

i=1

jP

i

j = e

k

k

O(`)

= e

k

k

O(log k)

. Hence,

jH j = jAjjBj

`

Y

i=1

jP

i

j = e

k

k

O(log k)

logn: (4)

It is not hard to verify that each h 2 H maps [n] to

[k]. We now show that H is indeed (n; k)-perfect. Let

S be an arbitrary element of

�

[n]

k

�

. By the properties

of A and B, we know the existence of f

1

2 A and

f

2

2 B such that

j(f

2

� f

1

)

�1

(i) \ Sj = dk=`e for all i 2 [j], and

j(f

2

�f

1

)

�1

(i)\Sj = bk=`c for all i 2 fj + 1; j + 2; : : : ; `g:

For each i 2 [`], we are also assured of the existence of

a g

i

2 P

i

which is 1-1 on (f

2

� f

1

)

�1

(i) \ S. Thus,

h

(f

1

;f

2

;g

1

;g

2

;:::;g

`

)

is 1-1 on S, which is what we set

about to show.

By Theorem 2(i), each P

i

can be constructed in

k

O(k=`)

= 2

O(k)

time. (This is the reason for our

choice of ` to be 
(log k); since larger values of ` will

make the splitter of Lemma 3 ine�cient, we settled

for ` = �(log k).) The other operations take at most

poly(2

k

; n) time.

In some situations, it would be good to have the de-

pendence on ` explicit, rather than �xing ` = �(log k).

By keeping ` unspeci�ed above, we obtained the pa-

rameterized version of the statement (using Robbins'

formula).

4. From Lemma 2. 2

A locally explicit construction for (n; k)-universal

sets is presented by Theorem 7; similar locally explicit

constructions of splitters and perfect hash families will

be presented in the �nal version of this work.

5 Applications

In this section, we show how to apply our method

to achieve good linear-time constructions of the k-

restriction problems de�ned in Section 2.2 (but for

splitters and perfect hash families, which we have al-

ready discussed). We also discuss the implication of

these constructions for e�cient derandomization.

5.1 Applications of Perfect Hash func-

tions

Perfect hash functions have been used in [7] to

derandomize many algorithms for �nding subgraphs,

such as paths and cycles of length k. We provide some

improvement to these methods.

Theorem 4 ([7]) A simple (directed) path of

length k�1 in a (directed) graph G = (V;E) that con-

tains such a path can be found in (2e)

k

� poly(k) � jV j

expected time in the undirected case and in (2e)

k

�

poly(k) � jEj expected time in the directed case. A

simple (directed) cycle of size k in a (directed) graph

G = (V;E) that contains such a path can be found in

either (2e)

k

�poly(k) � jV jjEj or (2e)

k

�poly(k) � jV j

!

ex-

pected time, where ! < 2:376 is the exponent of matrix

multiplication.

As pointed out in [7], explicit (jV j; k)-perfect hash

functions can be used to derandomize their algorithm.

Thus, we get near-optimal derandomization using our

improved constructions of perfect hash functions. If

k = o(log jV j), Theorem 3(3) can be used as stated;

if k = �(log jV j), we have to appeal to its parameter-

ized version to get the best constant in the exponent.

Analogous results hold for �nding an isomorphic copy

of a �xed directed forest with k vertices in a graph, as

shown in [7].

Theorem 5 A simple (directed) path of length k � 1

in a (directed) graph G = (V;E) that contains such a

path can be found in (2e)

k

�k

O(log k)

� jV j log jV j time in

the undirected case and in (2e)

k

� k

O(log k)

� jEj log jV j

time in the directed case. A simple (directed) cycle of

size k in a (directed) graph G = (V;E) that contains

such a path can be found in either (2e)

k

� k

O(log k)

�

jV jjEj log jV j or (2e)

k

� k

O(log k)

� jV j

!

log jV j time.

Note that if we are given an arbitrary graph (with

no assurance about the existence of the desired ob-

ject) then the [7] algorithms may err and to reduce

the probability of error signi�cantly, to, say, at most

2

�jV j

, one may need to run the algorithm many times

(
(jV j)), incurring a cost larger than our deterministic

algorithm!

5.2 (n; k)-universal sets

The idea for (n; k)-universal sets is similar to that

behind Theorem 3, with the only modi�cation being

that we now need the universal sets guaranteed by

Theorem 2(ii). We thus get

Theorem 6 We have a deterministic construction

for (n; k)-universal sets of size 2

k

k

O(log k)

logn. The

collection may be listed in linear time.

We also present locally explicit constructions of (n; k)-

universal sets; the proof of Theorem 7 is sketched be-

low. Analogous results hold for perfect hash families

and splitters; we shall present the details in the full

version.

Theorem 7 There is a locally explicit construction of

(n; k)-universal sets of cardinality 2

k+o(k)

logn:

Proof Sketch: The reason why the constructions of

Theorems 3 and 6 and are not locally explicit lies in

their usage of the smart search. This brings an expo-

nential dependence on k to the time complexity. In



order to get a local construction we must reduce the

problem to parameters that allow \smart"-search in

the allowed time (polynomial in logn and k). Note

that this construction is not local in the sense of pre-

senting an explicit structure, since some search is in-

volved; however, it is local in the sense of Section 1.3.

To achieve the above-stated locally explicit con-

struction, we need the following lemma. See, e.g.,

Lemma 2.3 in [11] for a proof of Lemma 5.

Lemma 5 Let r; k and n be positive integers such

that r < k � n and such that k=r � log k. Then

for any �xed c > 0, there exist constants a; b > 0

such that the following holds. If a random func-

tion [n] ! [r] is picked so that the random variables

fh(1); h(2); : : : ; h(n)g are uniform in [r] and (a log k)-

wise independent, then 8S 2

�

[n]

k

�

8i 2 [r] :

Pr

�

j jS \ h

�1

(i)j � k=r j � b

p

(k=r) log r

�

� r

�c

:

We can use the a log k-wise independent sample

space H as discussed in Section 2.1. Briey, our pro-

cedure involves a recursion of depth two:

(i) \Reduce" n to k

2

, using Lemma 2; hence we may

assume that n = k

2

henceforth.

(ii) Take r

1

=

k

log

d

k

for some large enough (but �xed)

d. Apply Lemma 5 using the above-seen small proba-

bility space H of size k

O(log k)

, to reduce the problem

to r

1

subproblems, each of which is to construct a

(k

2

; k

1

= k=r

1

+ b

p

(k=r

1

) log r

1

)-universal set.

(iii) Solve one of these subproblems recursively (see

below) and take the r

1

-fold directed product of the

constructed universal test set.

(iv) To solve the subproblem, take r

2

= 2 log

d�1

k; ap-

ply the hash functions as in Step (ii) and in order to

solve the resulting problem apply Theorem 6 above.

Note that the resulting k

2

is O(log k) and hence that

the search needed takes time only polynomial in k.

A di�erent approach toward a local construction

which may yield improved results is to use a re�ned

version of Lemma 5 that will allow a very large frac-

tion of the elements of S to be mapped into bins that

do not contain much more than the expected number

(at most a standard deviation above the mean). The

good bins are handled recursively, as above. Those el-

ements that were not mapped into empty bins are then

taken care of via a separate construction of a (n; k

0

)-

universal set, where k

0

� k. The two collections are

merged by adding (bit-wise Xor) all possible pairs of

vectors from the two constructions.

We shall present the detailed proofs in the full ver-

sion, both because of lack of space and also since our

applications require just globally e�cient construc-

tions. 2

The problem of constructing (n; k)-universal sets

has received much attention in the fault-diagnostic lit-

erature. See [41] for a bibliography on the problem.

We can also phrase the problem as follows: for any

S � [n], let S

0

:

= S and S

1

:

= [n] � S. Then, our

problem is equivalent to �nding a collection C of n

subsets of a ground set X that is as small as pos-

sible, such that for all S

1

; S

2

; : : : ; S

k

2 C and for all

b

1

; b

2

; : : : ; b

k

2 f0; 1g,

T

k

i=1

S

b

i

i

6= �: This was called k-

independent by Kleitman and Spencer [20]. An equiv-

alent formulation of this problem is related to a fault-

tolerance property of the hypercube [13].

Discussion of Krichevsky's result. Krichevsky

[22] claims a deterministic construction of size

(1 + o(1))k2

k

ln n. However, this appears to be

wrong and his construction is of size at least

2

k+
(k= log log log k)

logn, as shown in the full version

[31].

Application to learning algorithms: Blum and

Rudich [9] have applied the construction of (n; k)-

universal sets to obtain a deterministic algorithm to

learn k-term DNFs. Bshouty [14] provided a learning

algorithm for k-CNF running in time polynomial in

the DNF size. The time in both algorithms is pro-

portional to the size of the (n; k)-universal sets. Our

construction for (n; k)-universal sets yields improved

algorithms; the improvement is most signi�cant when

k = �(logn).

Application to the hardness of approximat-

ing the set cover problem: Under the assumption

that NP 6� DTIME[n

polylog(n)

], Lund & Yannakakis

showed that for any �xed c < 1=4, one cannot approxi-

mate set cover to within a factor of c log

2

N in polyno-

mial time, where N is the size of the ground set of the

set cover instance [25]. What is striking about this re-

sult is the existence of well-known polynomial-time al-

gorithms achieving a performance ratio of lnN+O(1).

One of the main ingredients of this result was an ex-

plicit construction of (n; k)-universal sets. Since the

randomized construction of (n; k)-universal sets is bet-

ter than the previously known deterministic construc-

tions, they also used the randomized construction to

show that if NP 6� ZTIME[n

polylog(n)

], then for any

�xed c < 1=2, one cannot approximate set cover to

within a factor of c log

2

N in random polynomial time

(ZTIME denotes zero-error probabilistic polynomial

time, corresponding to Las Vegas algorithms). Bellare

et al. [8] improved the time bounds of Lund & Yan-

nakakis above while losing a bit in the constants. How-

ever, taken together with the recent result of Raz [37]

we get that that the time complexity can be reduced

to n

O(log log n)

. The constants of logn are still 1=4 and

1=2 for the deterministic and randomized cases respec-

tively. Our explicit construction improves these non-

approximability results by making the deterministic

and randomized case have the same performance; we

thus conclude that

Theorem 8 If NP 6� DTIME[n

O(log log(n))

], then

for any �xed c < 1=2, one cannot approximate set

cover to within a factor of c log

2

N in deterministic

polynomial time.

Application to distributed coloring: Szegedy and

Vishwanathan [42] considered the local coloring prob-

lem (see their paper for de�nition). They showed, via



a non-constructive argument, the existence of recolor-

ing protocols that starting with a graph of max de-

gree d colored with c colors go (in a single step) to

O(d2

d

log log c) colors. Mayer et al [27] showed that

the key property used by [42] is (n; d)-universal sets.

Using the improved construction of this paper we get a

constructive version of [42], to within a factor d

O(log d)

of the color bound of O(d2

d

log log c).

5.3 Anti-Universal Sets

In this section we show the construction of anti-

universal sets (see de�nition in section 2.2). The

union bound guarantees such a family of size s =

d(b=(b� 1))

k

k ln(bn)e and as before, we have a simple

deterministic construction of such a family, running in

time (nb)

O(k)

s. To make this more e�cient, we �rst

reduce n to k

2

, as before. Next if b = O(1), then

we can split to ` = log k log b parts, and get a �nal

output of size sk

O(log k log b)

. On the other hand, if b

increases with the parameters of the problem, we can

split to ` = b log k parts, and get a �nal output of size

sk

O(b log k)

.

Theorem 9 For any �xed b, there is a globally ex-

plicit construction for (n; k; b) anti-universal sets of

size (b=b � 1)

k

k

O(log k)

logn. The collection may be

listed in linear time.

The hardness result of [25] was very recently im-

proved by Feige [16] to get the best possible result for

the approximation ratio, (1� o(1)) lnN . The type of

family he requires is what we termed an (n; k; b) anti-

universal set. Thus he obtains:

Theorem 10 [16] If NP 6� DTIME[n

O(log log(n))

],

then for any �xed c < 1, one cannot approximate set

cover to within a factor of c lnN in polynomial time.

5.4 Depth-3 formulae for threshold func-

tions

We now show an application of our splitter con-

struction. The kth threshold function T

n

k

of n Boolean

variables is a Boolean function which is 1 i� at least

k of the variables are 1. In a formula, each non-

output gate has fanout exactly one, and a ��� for-

mula has the form

W

u

V

v

W

w

L

uvw

, where each L is

either a variable or a negated variable. The size

of a formula is the total number of literals in it.

The work of [35] shows that for k and n large and

k � n=2, every ��� formula for T

n

k

has size at

least exp(
(

p

k= ln k))n logn, where exp(x) denotes

e

x

. For k and n large and k � n

2=3

, it is also shown

in [35] that there exist ��� formulas for computing

T

n

k

with size at most exp(2

p

k ln k)n logn; this proof

is probabilistic. By using some ideas from [35] and by

invoking some of our ideas from above, we present an

explicit version of this upper bound, with a little loss.

The proof of Theorem 11 is given in the full version.

Theorem 11 For any pair of positive integers n and

k with k � n, a monotone ��� formula G of size

e

p

k+2

p

k ln k

k

O(1)

n logn exists, to compute the func-

tion T

n

k

; G can be constructed deterministically in

time polynomial in its size.

Acknowledgments. We thank Oded Goldreich

and Ravi Sundaram for explaining the implication of

the construction of (n; k)-universal sets to the non-

approximability of set cover; and we thank Mike Luby

for a discussion. We thank Uri Feige for explaining his

results.

References

[1] N. Alon, Explicit constructions of exponential

sized families of k-independent sets, Discrete

Math, 58, pp. 191-193 (1986).

[2] N. Alon, L. Babai and A. Itai, A fast and sim-

ple randomized parallel algorithm for the maximal

independent set problem, Journal of Algorithms 7

(1986), pp. 567{583.

[3] N. Alon, J. Bruck, J. Naor, M. Naor and

R. Roth, Construction of asymptotically good,

low-rate error-correcting codes through pseudo-

random graphs, IEEE Transactions on Informa-

tion Theory, 38 (1992), 509{516.

[4] N. Alon, O. Goldreich, J. Hastad and R. Peralta,

Simple constructions of almost k-wise indepen-

dent random variables, Random Structures and

Algorithms 3 (1992), 289-304. (Addendum: Ran-

dom Structures and Algorithms 4 (1993), 119-

120.)

[5] N. Alon and M. Naor, Derandomization, wit-

nesses for Boolean matrix multiplication and con-

struction of perfect hash functions, to appear, Al-

gorithmica. Available as Weizmann Institute TR

CS94-11.

[6] N. Alon and J. H. Spencer, The probabilistic

method, John Wiley and Sons Inc., New York,

1991.

[7] N. Alon, R. Yuster and U. Zwick, Color-coding:

a new method for �nding simple paths, cycles and

other small subgraphs within large graphs, Proc.

26th ACM Symposium on Theory of Computing

(1994), 326{355.

[8] M. Bellare, S. Goldwasser, C. Lund and A.

Russell, E�cient probabilistically checkable proofs

and application to approximation, Proc. 25th

ACM Symposium on Theory of Computing

(1993), 294{304.

[9] B. Berger and J. Rompel, Simulating (log

c

n)-

wise independence in NC, J. of the ACM 38

(1991), pp. 1026{1046.

[10] B. Berger, J. Rompel and P. Shor, E�cient NC

Algorithms for Set Cover with Applications to

Learning and Geometry, Journal of Computer

and System Sciences 49, 1994, 454{477.



[11] M. Bellare and J. Rompel, Randomness-e�cient

oblivious sampling, Proc. 35th IEEE Symposium

on Foundations of Computer Science (1994), 276{

287.

[12] A. Blum and S. Rudich, Fast learning of k-term

DNF formulas with queries, Proc. ACM Sympo-

sium on Theory of Computing (1992), 382{389.

[13] B. Becker and H. U. Simon, How robust is the

n-cube?, Information and Computation 77, 1988,

pp. 162{178.

[14] N. Bshouty, Exact Learning via the Monotone

Theory Proc. 34th IEEE Symposium on Foun-

dations of Computer Science (1993).

[15] B. Chor, O. Goldreich, J. Hastad, J. Friedman,

S. Rudich and R. Smolensky, The Bit Extraction

Problem or t-Resilient Functions, Proceedings of

the 26th Annual Symposium on Foundations of

Computer Science, 1985, 396-407.

[16] U. Feige, A threshold of lnn for approximating

set cover, manuscript, 1995.

[17] M.L. Fredman and J. Koml�os, On the size of sep-

arating systems and families of perfect hash func-

tions, SIAM Journal on Algebraic and Discrete

Methods 5 (1984), pp. 61{68,

[18] M. L. Fredman, J. Koml�os and E. Szemer�edi,

Storing a Sparse Table with O(1) Worst Case Ac-

cess Time, J. of the ACM 31 (1984), 538{544.

[19] R. M. Karp and A. Wigderson, A Fast Parallel

Algorithm for the Maximal Independent Set Prob-

lem, J. of the ACM 32 (1985), 762{773.

[20] D. J. Kleitman and J. H. Spencer, Families of

k-independent sets, Discrete Math. 6 (1973), pp.

255{262.

[21] J. K�orner, Fredman-Koml�os bounds and informa-

tion theory, SIAM. J. Alg. Disc. Meth. 7 (1986),

pp. 560{570.

[22] R. E. Krichevsky, Occam's razor, partially speci-

�ed Boolean functions, String matching and inde-

pendent sets, Information and Computation 108,

1994, pp. 158{174.

[23] M. Luby, A simple parallel algorithm for the max-

imal independent set problem, SIAM J. Comp. 15

(1986), pp. 1036{1053.

[24] M. Luby, Removing randomness in parallel com-

putation without a processor penalty, Journal of

Computer and System Sciences 47 (1993), pp.

250{286.

[25] C. Lund and M. Yannakakis, On the hardness of

approximating minimization problems, J. of the

ACM 41 (1994), pp. 960{981.

[26] K. Mehlhorn, Data Structures and Algo-

rithms 1: Sorting and Searching, Springer-

Verlag, Berlin, 1984.

[27] A. Mayer, M. Naor and L. Stockmeyer, Local

computations on static and dynamic graphs, Pro-

ceeding of the third ISTCS, 1995, pp. 268{278.

Full version available as Weizmann Institute TR

CS95-05.

[28] R. Motwani and P. Raghavan,Randomized Al-

gorithms, Cambridge University Press, 1995.

[29] R. Motwani, J. Naor and M. Naor, The proba-

bilistic method yields deterministic parallel algo-

rithms, Journal of Computer and System Sciences

(1994), pp. 130{143.

[30] J. Naor and M. Naor, Small-bias probability

spaces: e�cient constructions and applications,

SIAM J. on Computing 22, 1993, pp. 838{856.

[31] M. Naor, L. J. Schulman and A. Srinivasan, Split-

ters and near-optimal derandomization, In prepa-

ration.

[32] A. Nilli, Perfect hashing and probability, Combi-

natorics, Probability and Computing 3, 1994, pp.

407{409.

[33] A. Orlitsky, Worst-case interactive communica-

tion I: two messages are almost optimal IEEE

Trans. Infor. Theory 36, pp. 1111-1126, 1990.

[34] J. Radhakrishnan, Improved Bounds for Cover-

ing Complete Uniform Hypergraphs, Information

Processing Letters 41 (1992), pp. 203{207.

[35] J. Radhakrishnan, ��� threshold formulas,

Combinatorica 14 (1994), pp. 345{374.

[36] P. Raghavan, Probabilistic construction of deter-

ministic algorithms: approximating packing inte-

ger programs, Journal of Computer and System

Sciences 37 (1988), pp. 130{143.

[37] R. Raz, A parallel repetition theorem, Proc.

27th ACM Symposium on Theory of Computing

(1995), pp. 447{456.

[38] H. Robbins, A remark on Stirling's formula,

Amer. Math. Monthly, 62 (1955), pp. 26{29.

[39] J. H. Spencer, Ten Lectures on the Proba-

bilistic Method, SIAM, Philadelphia, 1987.

[40] J. P. Schmidt and A. Siegel, The Spatial Com-

plexity of oblivious k-probe hash functions, SIAM

J. Comp. 19 (1990), pp. 775{786.

[41] G. Seroussi and N. Bshouty, Vector sets for ex-

haustive testing of logic circuits, IEEE Transac-

tions on Information Theory 34 (1988), pp. 513-

522.

[42] M. Szegedy and S. Vishwanathan, Locality based

graph coloring, Proc. 25th ACM Symposium on

Theory of Computing (1993), pp. 201{207.


