
Synthesizers and Their Application to the Parallel Construction of

Pseudo-Random Functions

�

Moni Naor

y

Omer Reingold

z

Abstract

A pseudo-random function is a fundamental cryptographic primitive that is essential for encryp-

tion, identi�cation and authentication. We present a new cryptographic primitive called pseudo-

random synthesizer and show how to use it in order to get a parallel construction of a pseudo-random

function. We show several NC

1

implementations of synthesizers based on concrete intractability

assumptions as factoring and the Di�e-Hellman assumption. This yields the �rst parallel pseudo-

random functions (based on standard intractability assumptions) and the only alternative to the

original construction of Goldreich, Goldwasser and Micali. In addition, we show parallel construc-

tions of synthesizers based on other primitives such as weak pseudo-random functions or trapdoor

one-way permutations. The security of all our constructions is similar to the security of the under-

lying assumptions. The connection with problems in Computational Learning Theory is discussed.

�

A preliminary version of this paper appeared at the Proc. 35th IEEE Symp. on Foundations of Computer Science

(1995) pp. 170-181

y

Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics and

Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Research supported by BSF grant no.

94-00032 and a grant from the Israel Science Foundation administered by the Israeli Academy of Sciences. E-mail:

naor@wisdom.weizmann.ac.il.

z

Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel.

Research supported by a Clore Scholars award and by a grant from the Israel Science Foundation administered by

the Israeli Academy of Sciences. E-mail: reingold@wisdom.weizmann.ac.il.



1 Introduction

A pseudo-random function, as de�ned by Goldreich, Goldwasser and Micali [26], is a function that

is indistinguishable from a truly random function to a (polynomial-time bounded) observer who

can access the function as a black-box (i.e. can provide inputs of his choice and gets to see the value

of the function on these inputs). Pseudo-random functions are the key component of private-key

cryptography. They allow parties who share a common key to send secret messages to each other,

to identify themselves and to authenticate messages [16, 27, 40]. In addition, they have many

other applications, essentially in any setting that calls for a random function that is provided as a

black-box [9, 12, 19, 23, 24, 41, 51].

Goldreich, Goldwasser and Micali provided a construction of such functions. For roughly a

decade, this was the only known construction even under speci�c assumptions such as \factoring

is hard". Their construction is sequential in nature and consists of n successive invocations of a

pseudo-random generator (where n is the number of bits in the input to the function). Our goal

in this paper is to present an alternative construction for pseudo-random functions that can be

implemented in logn phases.

We introduce a new cryptographic primitive which we call pseudo-random synthesizer. A

pseudo-random synthesizer is a two variable function, S(�; �), so that if many (but polynomially

bounded) random assignments, hx

1

; : : : ; x

m

i and hy

1

; : : : ; y

m

i, are chosen to both variables, then

the output of S on all the combinations of these assignments, (f(x

i

; y

j

))

m

i;j=1

, is indistinguishable

from random to a polynomial-time observer. Our main results are:

1. A construction of pseudo-random functions based on pseudo-random synthesizers. Evaluating

such a function involves logn phases, where each phase consists of several parallel invocations

of a synthesizer (with a total of n invocations altogether).

2. Constructions of parallel (NC

1

) synthesizers based on standard number-theoretic assumptions

such as "factoring is hard", RSA (it is hard to extract roots modulo a composite) and Di�e-

Hellman. In addition, a very simple construction based on a problem from learning. The

key-generating algorithm of these constructions is sequential for RSA and factoring, non-

uniformly parallel for Di�e-Hellman and parallel for the learning problem.

3. An extremely simple (and also parallel) construction of synthesizers based on what we call

a weak pseudo-random function. A weak pseudo-random function is indistinguishable from

a truly random function to a (polynomial-time bounded) observer who gets to see the value

of the function on uniformly distributed inputs (instead of any input of its choice). This

construction almost immediately implies constructions of synthesizers based on trapdoor one-

way permutations and based on any hard-to-learn problem (under the de�nition of [13]).

Taking (1) and (2) together we get a pseudo-random function that can be evaluated in NC

2

.

We note that our constructions do not weaken the security of the underlying assumptions. Take

for instance the construction that is based on factoring. If there is an algorithm for breaking this

construction in time t and success � (success � means that the observer has advantage of at least

� in distinguishing the pseudo-random function from the random one), then there is an algorithm

that works in time poly(t) and factors Blum-integers with probability �=poly(t). See [32, 40] for a

discussion of security preserving reductions

1

.

1

In their terminology, such a reduction is called poly-preserving. In fact, most of our reductions (as the reduction

from the security of the pseudo-random functions to the security of the pseudo-random synthesizers) are linear-

preserving. The only place were our reductions are not linear-preserving is when they rely on the hard-card bits of

[2, 28].

1



Our constructions of pseudo-random functions have additional attractive properties. First, it

is possible to obtain from the constructions a sharp time-space tradeo�. Loosely speaking, by

keeping m strings as the key we can reduce the amount of work for computing the functions from

n invocations of the synthesizer to about

n

logm

invocations in log n � log logm phases (thus, also

reducing the parallel-time complexity). In addition, the construction obtains a nice incremental

property. For any y of Hamming distance one from x, given the computation of f(x) we can

compute f(y) with only logn invocations of the synthesizer (we can also make this property hold

for y = x+ 1). We discuss both properties in Section 6.

Applications of NC-Computable Pseudo-Random Functions

The class NC has been criticized as a model for parallel computation for two main reasons:

� It ignores communication delays and other parameters that determine the execution time on

an actual parallel machine.

� It over-emphasizes latency rather than the speed-up of problems.

These criticisms seem less valid for the problem of constructing pseudo-random functions, since

(a) It is likely that it will be implemented in a special purpose circuit (as there are DES chips)

and (b) For some applications of pseudo-random functions minimizing the latency of computing

the functions is essential. Such an application is the encryption of messages on a network, where

the latency of computing the function is added to the latency of the network. Furthermore, if the

complexity of evaluating a synthesizer on a given input is comparable to that of a pseudo-random

generator, then the work performed by our construction is comparable to the one in [26] and we

can get optimal speed-up.

Note that many of the applications of pseudo-random functions preserve the parallel-time com-

plexity of the functions. An important example is the Luby and Racko� [41] construction of

pseudo-random permutations from pseudo-random functions. Their construction is very simple

and involves four invocations of a pseudo-random function in order to evaluate the pseudo-random

permutation at a given point (see also [45] for an \optimal" construction that requires only two

invocations). Therefore, our constructions yield (strong) pseudo-random permutations in NC as

well.

There is a deep connection between pseudo-random functions and hardness results for learning.

Since a random function cannot be learned, if a concept class is strong enough to contain pseudo-

random functions we cannot hope to learn it e�ciently. Since no construction of pseudo-random

functions in NC was known, several ways of bypassing this were suggested [3, 37, 38]. However,

these are weaker unlearnability-results than the one obtained by pseudo-random functions. The

existence of pseudo-random functions in a concept class implies that there exists a distribution of

concepts in this class that is hard for every learning algorithm, for every \non-trivial" distribution

on inputs even when membership queries are allowed. Finding such a distribution of concepts is still

of interest to learning theory [33]. We discuss the connection between our work and learning-theory

in Section 9.

Another application of pseudo-random functions in complexity was suggested by the work of

Razborov and Rudich [53] on Natural Proofs. They showed that if a circuit-class contains pseudo-

random functions (that are secure against a subexponential-time adversary) then there are no,

what they called, Natural Proofs (which include all known lower bound techniques) for separating

this class from P=poly. Given our constructions, the existence of Natural Proofs for separating NC

from P=poly would imply that several well-established intractability assumptions are false.

2



The question of whether pseudo-random functions exist in NC is also interesting in contrast to

the lower bound of Linial, Mansour and Nisan [39] that there are no pseudo-random functions in

AC

0

.

Previous Work

In addition to introducing pseudo-random functions, Goldreich, Goldwasser and Micali [26] have

suggested a construction of such functions from pseudo-random generators that expand the input

by a factor of two (like the one in [34]). As mentioned above, the GGM construction is sequential

in nature. An idea of Levin [42] is to select some secret hash function h and apply the GGM

construction to h(x) instead of x. If jh(x)j = log

2

n, then the depth of the GGM-tree is only log

2

n

and presumably we get a pseudo-random function in NC. The problem with this idea is that

we have decreased the security signi�cantly: with probability 1=n

logn

the function can be broken,

irrespective of the security guaranteed by the pseudo-random generator. To put this construction

in the \correct" light, suppose that for security parameter k we have some problem whose solution

requires time 2

k

(on instance of length polynomial in k). If we would like to have security 1=2

k

for

our pseudo-random function, then the Levin construction requires depth k whereas our construction

requires depth log k.

Impagliazzo and Naor [34] have provided parallel constructions for several other cryptographic

primitives based on the hardness of subset sum (and factoring). The primitives include pseudo-

random generators that expand the input by a constant factor

2

, universal one-way hash functions

and strong bit-commitments.

Blum et. al. [13] proposed a way of constructing in parallel several cryptographic primitives

based on problems that are hard to learn. We extend their result by showing that hard-to-learn

problems can be used to obtain synthesizers and thus pseudo-random functions.

A di�erent line of work [1, 4, 47, 48, 49, 50, 54], more relevant to derandomization and saving

random bits, is to construct bit-generators such that their output is indistinguishable from a truly

random source to an observer of restricted computational power (e.g. generators against polynomial-

size constant-depth circuits). Most of these constructions need no unproven assumptions.

In a subsequent work [46] we describe constructions of pseudo-random functions (and other

cryptographic primitives) that are at least as secure as the decisional version of the Di�e-Hellman

assumption or as the assumption that factoring is hard. These functions can be computed in NC

1

(in fact, even in TC

0

) and are much more e�cient than the concrete constructions of this paper.

It is interesting to note that [46] is motivated by this paper and in particular by the concept of

pseudo-random synthesizers.

Organization of the Paper

In Section 3 we de�ne pseudo-random synthesizers and collections of pseudo-random synthesizers

and discuss their properties. In Section 4 we describe our parallel construction of pseudo-random

functions from pseudo-random synthesizers and in Section 5 we prove its security. In Section 6 we

describe a related construction of pseudo-random functions. In addition, we discuss the time-space

tradeo� and the incremental property of our constructions. In Section 7 we discuss the relations

between pseudo-random synthesizers and other cryptographic primitives. In Section 8 we describe

constructions of pseudo-random synthesizers based on several number-theoretic assumptions. In

Section 9 we show how to construct pseudo-random synthesizers from hard-to-learn problems and

2

They also provided a construction of AC

0

pseudo-random generators with small expansion.

3



consider a very simple concrete example. We also discuss the application of parallel pseudo-random

functions to learning-theory. In Section 10 we suggest topics for further research.

2 Preliminaries

2.1 Notation

� N denotes the set of all natural numbers.

� I

n

denotes the set of all n-bit strings, f0; 1g

n

.

� U

n

denotes the random variable uniformly distributed over I

n

.

� Let X be any random variable, we denote by X

k�̀

the k�` matrix whose entries are inde-

pendently identically distributed according to X . We denote by X

k

the vector X

1�k

.

� We identify functions of two variables and functions of one variable in the natural way. I.e,

by letting f : I

n

�I

n

7! I

k

be equivalent to f : I

2n

7! I

k

and letting f(x; y) be the same value

as f(x � y) (where x � y stands for x concatenated with y).

� Let x be any bit-string, we denote by jxj its length (i.e. the number of bits in x). This should

not be confused with the usage of j � j as absolute value.

� For any two bit-strings of the same length, x and y, the inner product mod 2 of x and y is

denoted by x � y.

2.2 Pseudo-Random Functions

For the sake of completeness and concreteness, we brie
y review in this section the concept of

pseudo-random functions almost as it appears in [25]. Another good reference on pseudo-random

functions is [40]. Informally, a pseudo-random function ensemble is an e�cient distribution of

functions that cannot be e�ciently distinguished from the uniform distribution. That is, an e�cient

algorithm that gets a function as a black box cannot tell (with non-negligible success probability)

from which of the distributions it was sampled. To formalize this, we �rst de�ne function ensembles

and e�cient function ensembles:

De�nition 2.1 (function ensemble) Let ` and k be any two N 7! N functions. An I

`

7! I

k

function ensemble is a sequence F = fF

n

g

n2N

of random variables, such that the random variable

F

n

assumes values in the set of I

`(n)

7! I

k(n)

functions. The uniform I

`

7! I

k

function ensemble,

R = fR

n

g

n2N

, has R

n

uniformly distributed over the set of I

`(n)

7! I

k(n)

functions.

De�nition 2.2 (e�ciently computable function ensemble)

A function ensemble, F = fF

n

g

n2N

, is e�ciently computable if there exist probabilistic polynomial-

time algorithms, I and V, and a mapping from strings to functions, �, such that �(I(1

n

)) and F

n

are identically distributed and V(i; x) = (�(i))(x).

We denote by f

i

the function assigned to i (i.e. f

i

def

= �(i)). We refer to i as the key of f

i

and

to I as the key-generating algorithm of F .

4



For simplicity, we concentrate in the de�nition of pseudo-random functions and in their con-

struction on length-preserving functions. The distinguisher, in our setting, is de�ned to be an

oracle machine that can make queries to a length preserving function (which is either sampled from

the pseudo-random function ensemble or from the uniform function ensemble). We assume that on

input 1

n

the oracle machine makes only n-bit queries. For any probabilistic oracle machine, M,

and any I

n

7! I

n

function, O, we denote by M

O

(1

n

) the distribution of M's output on input 1

n

and with access to O.

De�nition 2.3 (e�ciently computable pseudo-random function ensemble) An e�ciently

computable I

n

7! I

n

function ensemble, F = fF

n

g

n2N

, is pseudo-random if for every probabilistic

polynomial-time oracle machine M, every polynomial p(�), and all su�ciently large n's

�

�

�
Pr

h

M

F

n

(1

n

) = 1

i

� Pr

h

M

R

n

(1

n

) = 1

i

�

�

�
<

1

p(n)

where R = fR

n

g

n2N

is the uniform I

n

7! I

n

function ensemble.

At the rest of this paper the term \pseudo-random functions" is used as an abbreviation for

\e�ciently computable pseudo-random function ensemble".

Remark 2.1 In the de�nition above and in the rest of the paper, we interpret \e�cient computa-

tion" as \probabilistic polynomial-time" and \negligible" as \smaller than 1=poly". This is a rather

standard choice and it signi�cantly simpli�es the presentation of the paper. However, from each one

of the proofs in this paper one can easily extract a more quantitative version of the corresponding re-

sult. As mentioned in the introduction, the di�erent reductions of this paper are security-preserving

in the sense of [32, 40].

3 Pseudo-random Synthesizers

As mentioned above, we introduce in this paper a new cryptographic primitive called a pseudo-

random synthesizer. In this section we de�ne pseudo-random synthesizers and describe their prop-

erties.

3.1 Motivation

Pseudo-random synthesizers are e�ciently computable functions of two variables. The signi�cant

feature of such a function, S, is that given polynomially-many uniformly distributed assignments,

hx

1

; : : : ; x

m

i and hy

1

; : : : ; y

m

i, for both variables, the output of S on all the combinations of these as-

signments, (f(x

i

; y

j

))

m

i;j=1

, is pseudo-random (i.e, is indistinguishable from random to a polynomial-

time observer). This is a strengthening of an important property of pseudo-random generators |

the indistinguishability of a polynomial sample:

A pseudo-random (bit) generator [14, 61], is a polynomial-time computable function, G :

f0; 1g

�

7! f0; 1g

�

, such that 8x 2 I

n

; jG(x)j = `(n) > n and G(U

n

) is pseudo-random (i.e.

fG(U

n

)g

n2N

and fU

`(n)

g

n2N

are computationally indistinguishable). It turns out that this de�-

nition implies that: Given polynomially-many uniformly distributed assignments, hz

1

; : : : ; z

m

i, the

sequence f(G(z

i

)g

m

i=1

, is pseudo-random.

The major idea behind the de�nition of pseudo-random synthesizers is to obtain a function, S,

such that f(S(z

i

)g

m

i=1

remains pseudo-random even when the z

i

's are not completely independent.

5



More speci�cally, pseudo-random synthesizers require that f(S(z

i

)g

m

i=1

remains pseudo-random

even when the z

i

's are of the form fx

i

� y

j

g

m

i;j=1

. This paper shows that (under some standard

intractability assumptions) it is possible to obtain such a function S and that this property is

indeed very powerful. As a demonstration to their strength, we note below that pseudo-random

synthesizers are useful even when no restriction is made on their output length (which is very

di�erent than what we have for pseudo-random generators).

Remark 3.1 It is important to note that there exist pseudo-random generators that are not pseudo-

random synthesizers. An immediate example is a generator which is de�ned by G(x�y)

def

= G

0

(x)�y,

where G

0

is also a pseudo-random generator. A more natural example is the subset-sum generator

[34], G = G

a

1

;a

2

;:::;a

n

, which is de�ned by G(z) =

P

z

i

=1

a

i

. This is not a pseudo-random synthesizer

(for �xed values a

1

; a

2

; : : : ; a

n

) since for every four n=2-bit strings, x

1

; x

2

; y

1

and y

2

, we have that

G(x

1

� y

1

) +G(x

2

� y

2

) = G(x

1

� y

2

) + G(x

2

� y

1

).

3.2 Formal De�nition

We �rst introduce an additional notation to formalize the phrase \all di�erent combinations":

Notation 3.1 Let f be an I

2n

7! I

`

function and let X = fx

1

; : : : ; x

k

g and Y = fy

1

; : : : ; y

m

g be

two sequences of n-bit strings. We de�ne C

f

(X; Y ) to be the k�m matrix (f(x

i

; y

j

))

i;j

(C stands

for combinations).

We can now de�ne what a pseudo-random synthesizer is:

De�nition 3.1 (pseudo-random synthesizer) Let ` be any N 7! N function and let S : f0; 1g

�

�

f0; 1g

�

7! f0; 1g

�

be a polynomial-time computable function such that 8x; y 2 I

n

; jS(x; y)j = `(n).

Then S is a pseudo-random synthesizer if for every probabilistic polynomial-time algorithm, D,

every two polynomials p(�) and m(�), and all su�ciently large n's

�

�

�
Pr [D(C

S

(X; Y )) = 1]� Pr

h

D((U

`(n)

)

m(n)�m(n)

) = 1

i

�

�

�
<

1

p(n)

where X and Y are independently drawn from (U

n

)

m(n)

. (I.e. for random X and Y the matrix

C

S

(X; Y ) cannot be e�ciently distinguished from a random matrix.)

3.3 Expanding the Output Length

In De�nition 3.1 no restriction was made on the output-length function, `, of the pseudo-random

synthesizer. However, our parallel construction of pseudo-random functions uses (parallel) pseudo-

random synthesizers with linear output length, `(n) = n. The following lemma shows that any

synthesizer, S, can be used to construct another synthesizer S

0

, with large output-length, such that

S and S

0

have the same parallel time complexity. Therefore, for the construction of pseudo-random

functions in NC it is enough to show the existence of synthesizers with constant output length in

NC.

Lemma 3.1 Let S be a pseudo-random synthesizer with arbitrary output-length function, `, in

NC

i

(resp. AC

i

). Then for every constant 0 < � < 2, there exists a pseudo-random synthesizer S

0

in NC

i

(resp. AC

i

) such that its output-length function, `

0

, satis�es `

0

(n) = 
(n

2��

).

6



Proof. For every constant c > 0, de�ne S

c

as follows: Let k

n

def

= maxfk 2Z: k

c+1

< ng. On input

x; y 2 I

n

, regard the �rst k

c+1

n

bits of x and y as two length-k

c

n

sequences, X and Y , of k

n

-bit

strings. S

c

(x; y) is de�ned to be C

S

(X; Y ) (viewed as a single bit-string rather than a matrix).

Notice that the following properties hold for S

c

:

1. S

c

is indeed a pseudo-random synthesizer: For any polynomial m(�), let X

0

and Y

0

be inde-

pendently drawn from (U

n

)

m(n)

and let X and Y be independently drawn from (U

k

n

)

m(n)�k

c

n

.

By the de�nition of S

c

, the distributions C

S

c

(X

0

; Y

0

) and C

S

(X; Y ) are identical. Taking

into account the fact that n is polynomial in k

n

, we conclude that every polynomial-time

distinguisher for S

c

is also a polynomial-time distinguisher for S. Since S is a pseudo-random

synthesizer so is S

c

.

2. Let `

c

denote the output-length function of S

c

, then `

c

(n) = 
(n

2�

2

c+1

)

): Since c is a constant

and n < (k

n

+ 1)

c+1

, for every n it holds that

`

c

(n) = (k

n

)

2c

� l(k

n

) � (k

n

)

2c

= 
(n

2c

c+1

)

) = 
(n

2�

2

c+1

)

)

3. S

c

is in NC

i

(resp. AC

i

): Immediate from the de�nition of S

c

.

Thus, by taking S

0

to be S

c

for some c >

2

�

� 1 we obtain the lemma. 2

The construction of Lemma 3.1 has the advantage that it is very simple and that the parallel

time complexity of S and S

0

is identical. Nevertheless, it has an obvious disadvantage: The security

of S

0

is related to the security of S on a much smaller input length. For example, if `(n) = 1 and

`

0

(n) = n then the security of S

0

on k

2

-bit strings is related to the security S on k-bit strings. This

results in a substantial increase in the time and space complexity of any construction that uses S

0

.

We now show an alternative construction to the one of Lemma 3.1 that is more security-

preserving. The alternative construction uses a pseudo-random generator G that expands the

input by a factor of 2 and relies on the GGM-Construction:

Corollary 3.2 (of [26]) Let G be a pseudo-random generator in NC

i

(resp. AC

i

) such that

8s; jG(s)j = 2 jsj. Then for every polynomial p(�) there exists a pseudo-random generator G

0

in

NC

i+1

(resp. AC

i+1

) such that 8s; jG

0

(s)j = p(jsj) � jsj.

G

0

is de�ned as follows: On input s it computes G(s) = s

0

�s

1

and recursively generates

p(jsj)�jsj

2

bits from s

0

and

p(jsj)�jsj

2

bits from s

1

. The number of levels required is dlog p(jsj)e = O(log jsj).

Using Corollary 3.2 we get:

Lemma 3.3 Let S be a pseudo-random synthesizer with arbitrary output-length function, `, in NC

i

(resp. AC

i

). Let G be a pseudo-random generator in NC

j

(resp. AC

j

) such that 8s; jG(s)j = 2 jsj.

Let k denote maxfi; j + 1g. Then for every positive constant c, there exists a pseudo-random

synthesizer S

0

in NC

k

(resp. AC

k

) such that its output-length function, `

0

, satis�es `

0

(n) = 
(n

2c

�

l(n)).

Furthermore, the construction of S

0

is linear-preserving in the sense of [32, 40] (the exact

meaning of this claim is described below).

Proof.(sketch) S

0

is de�ned as follows: On input x; y 2 I

n

, compute X = G

0

(x) = fx

0

1

; : : : ; x

0

dn

c

e

g

and Y = G

0

(y) = fy

0

1

; : : : ; y

0

dn

c

e

g, where G

0

is the pseudo-random generator that is guaranteed to

exist by Corollary 3.2. S

0

(x; y) is de�ned to be C

S

(X; Y ).

7



It is immediate that S

0

is in NC

k

(resp. AC

k

) and that `

0

(n) = 
(n

2c

� l(n)). It is also not hard

to verify that S

0

is indeed a pseudo-random synthesizer and (from the proof of Corollary 3.2) that

the construction of S

0

is linear-preserving in the following sense:

Assume that there exists an algorithm that works in time t(n) and distinguishes C

S

0

(X

0

; Y

0

)

from (U

`

0

(n)

)

m

0

(n)�m

0

(n)

with bias �(n), where X

0

and Y

0

are independently drawn from (U

n

)

m

0

(n)

.

Let m(n) = m

0

(n) � dn

c

e. Then one of the following holds:

1. The same algorithm distinguishes C

S

(X; Y ) from (U

`(n)

)

m(n)�m(n)

with bias �(n)=2, where X

and Y are independently drawn from (U

n

)

m(n)

.

2. There exists an algorithm that works in time t(n) +m

2

(n) � poly(n) and distinguishes G(U

n

)

from random with bias �(n)=O(m(n)).

2

The construction of Lemma 3.3 is indeed more security-preserving than the construction of

Lemma 3.1 (since the security of S

0

relates to the security of S and G on the same input length).

However, the time complexity of S

0

is still substantially larger than the time complexity of S, and

the parallel time complexity of S

0

might also be larger. Given the drawbacks of both construction,

it seems that a direct construction of e�cient and parallel synthesizers with linear output length

is very desirable.

3.4 Collection of Pseudo-Random Synthesizers

A natural way to relax the de�nition of a pseudo-random synthesizer is to allow a distribution of

functions for every input length rather than a single function. To formalize this we use the concept

of an e�ciently computable function ensemble (of De�nition 2.2).

De�nition 3.2 (collection of pseudo-random synthesizers) Let ` be any N 7! N function

and let S = fS

n

g

n2N

be an e�ciently computable I

2n

7! I

`

function ensemble. S is a collection of

I

2n

7! I

`

pseudo-random synthesizers if for every probabilistic polynomial-time algorithm, D, every

two polynomials p(�) and m(�), and all su�ciently large n's

�

�

�
Pr [D(C

S

n

(X; Y )) = 1]� Pr

h

D((U

`(n)

)

m(n)�m(n)

) = 1

i

�

�

�
<

1

p(n)

where X and Y are independently drawn from (U

n

)

m(n)

.

As shown below, a collection of pseudo-random synthesizers is su�cient for our construction

of pseudo-random functions. Working with a collection of synthesizers (rather than a single syn-

thesizer) enables us to move some of the computation into a preprocessing stage during the key-

generation. This is especially useful if all other computations can be done in parallel.

Note that Lemma 3.1 and Lemma 3.3 easily extend to collections of synthesizers.

4 A Parallel Construction of Pseudo-Random Functions

This section describes the construction of pseudo-random functions, using pseudo-random synthe-

sizers as building blocks. The intuition of this construction is best explained through the concept

of a k-dimensional pseudo-random synthesizer. This is a natural generalization of the "regular"

(two-dimensional) synthesizer. Informally, an e�ciently computable function of k variables, S

k

, is

a k-dimensional pseudo-random synthesizer if:

8



Given polynomially-many, uniformly-chosen, assignments for each variable,

�

fa

j;i

g

m

i=1

	

k

j=1

,

the output of S

k

on all the combinations M =

�

S

k

(a

1;i

1

; a

2;i

2

; : : : ; a

k;i

k

)

�

m

i

1

;i

2

;:::;i

k

=1

can-

not be e�ciently distinguished from uniform by an algorithm that can accessM at points

of its choice

Note that this de�nition is somewhat di�erent from the two-dimensional case. For any constant k

(and in particular for k = 2) the matrix M is of polynomial size and we can give it as an input to

the distinguisher. In general, M might be too large and therefore we let the distinguisher \access

M at points of its choice".

Using this concept, the construction of pseudo-random functions can be described in two steps:

1. A parallel construction of an n-dimensional synthesizer, S

n

, from a two-dimensional syn-

thesizer, S, that has output length `(n) = n. This is a recursive construction, where the

2k-dimensional synthesizer, S

2k

, is de�ned using a k-dimensional synthesizer, S

k

:

S

2k

(x

1

; x

2

; : : : ; x

2k

)

def

= S

k

(S(x

1

; x

2

); S(x

3

; x

4

); : : : ; S(x

2k�1

; x

2k

))

2. An immediate construction of the pseudo-random function, f , from S

n

:

f

ha

1;0

;a

1;1

;a

2;0

;a

2;1

;:::a

n;0

;a

n;1

i

(x)

def

= S

n

(a

1;x

1

; a

2;x

2

; : : : ; a

n;x

n

)

In fact, pseudo-random functions can be constructed from a collection of synthesizers. In this

case, for each level of the recursion a di�erent synthesizer is sampled from the collection. As will be

noted below, for some collections of synthesizers (as those constructed in this paper) it is enough

to sample a single synthesizer for all levels.

4.1 Formal De�nition

The following operation on sequences is used in the construction:

De�nition 4.1 For every function S : I

2n

7! I

n

and every sequence, L = f`

1

; `

2

; : : : ; `

k

g, of n-bit

strings de�ne SQ

S

(L) to be the sequence L

0

= f`

0

1

; : : : ; `

0

d

k

2

e

g, where `

0

i

= S(l

2i�1

; `

2i

) for i � b

k

2

c

and if k is odd, then `

0

d

k

2

e

= `

k

(SQ stands for squeeze).

We now turn to the construction itself:

Construction 4.1 (Pseudo-Random Functions) Let S = fS

n

g

n2N

be a collection of I

2n

7! I

n

pseudo-random synthesizers and let I

S

be a probabilistic polynomial-time key-generating algorithm

for S (as in De�nition 2.2). For every possible value, k, of I

S

(1

n

), denote by s

k

the corresponding

I

2n

7! I

n

function. The function ensemble F = fF

n

g

n2N

is de�ned as follows:

� (key-generation) On input 1

n

, the probabilistic polynomial-time key-generating algorithm I

F

outputs a pair (~a;

~

k), where ~a = fa

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

g is sampled from (U

n

)

2n

and

~

k = fk

1

; k

2

; : : : ; k

dlogne

g is generated by dlogne independent executions of I

S

on input 1

n

(i.e. is sampled from (I

S

(1

n

))

dlogne

).

� (evaluation) For every possible value, (~a;

~

k), of I

F

(1

n

) the function f

~a;

~

k

: I

n

7! I

n

is de�ned

as follows: On an n-bit input, x = x

1

x

2

: : :x

n

, the function outputs the single value in

SQ

s

k

1

(SQ

s

k

2

(: : :SQ

s

k

dlog ne

(fa

1;x

1

; a

2;x

2

; : : : ; a

n;x

n

g) : : :))

9



m m m m mm m m m m

m

m

~a:

f

~a;i

(

0

01001

0

)

a

0

1

a

1

1

a

0

2

a

1

2

a

0

3

a

1

3

a

0

4

a

1

4

a

0

5

a

1

5

a

1

5

a

1

5

s

k

3

s

k

3

s

k

2

s

k

1

6

�

�

�*

H

H

HY

�

�

�*

A

AK

@

@I

6

X

X

X

X

X

Xy

�

�

�

�

�1

P

P

P

P

Pi

�

�

�

�

�

�:

Figure 1: Computing the Value of the Pseudo-Random Function for n = 5

Finally, F

n

is de�ned to be the random variable that assumes as values the functions f

~a;

~

k

with

the probability space induced by I

F

(1

n

).

The evaluation of f

~a;

~

k

(x) can be thought of as a recursive labeling process of a binary tree with

n leaves and depth dlogne. The i

th

leaf has two possible labels, a

i;0

and a

i;1

. The i

th

input bit, x

i

selects one of these labels a

i;x

i

. The label of each internal node at depth d is the value of s

k

d+1

on

the labels of its children. The value of f

~a;

~

k

(x) is simply the label of the root. (Figure 1 illustrates

the evaluation of f

~a;

~

k

for n = 5.) We note that this labeling process is very di�erent than the one

associated with the GGM-Construction [26]. First, the binary tree is of depth dlog ne instead of

depth n as in [26]. Secondly, the labeling process is bottom-up instead of top-down as in [26] (i.e.

starting at leaves instead of the root). Moreover, here each input de�nes a di�erent labeling of

the tree whereas in [26] the labeling of the tree is fully determined by the key (and the input only

determines a leaf such that its label is the value of the function on this input).

4.2 E�ciency of the Construction

It is clear that F is e�ciently computable (given that S is e�ciently computable). Furthermore,

the parallel time complexity of functions in F

n

is larger by a factor of O(logn) than the parallel

time complexity of functions in S

n

. The parallel time complexity of I

S

and I

F

is identical.

We note that, for simplicity, the parameter n serves a double role. n is both the length of inputs

to f

~a;

~

k

2 F

n

and the security parameter for such a function (the second role is expressed by the

fact that the strings in ~a are n-bit long). In practice, however, these roles would be separated. The

security parameter would be determined by the quality of the synthesizers and the length of inputs

to the pseudo-random functions would be determined by their application. In fact, one can usually

use a pseudo-random function with a reasonably small input-length (say 160-bit long to prevent a

\birthday attack"). This is implied by the suggestion of Levin [42] to pair-wise independently hash

the input before applying the pseudo-random function (this idea is described with more details in

the introduction).

4.3 Reducing the Key-Length

An apparent disadvantage of Construction 4.1 is the large key-length of a function f

~a;

~

k

2 F

n

. In

particular, the sequence ~a is de�ned by 2n

2

bits. However, this is not truly a problem since: (a)

In Section 6.1 a related construction is described (Construction 6.1) where ~a consists of a constant

number of strings (and is therefore de�ned by O(n) bits). (b) The truly random sequence ~a can be

10



replaced by a pseudo-random sequence without increasing the depth of the construction (by more

than a constant factor). This is achieved as follows: Let G be a pseudo-random generator that

expands the input by a factor of 2. Let G

0

be the pseudo-random generator that can be constructed

from G according to Corollary 3.2 for p(n) = 2n (i.e. by using dlog n+ 1e levels of the recursion).

Then ~a can be replaced by G

0

(~a), where ~a is an n-bit seed.

In addition to ~a, the key of f

~a;

~

k

2 F

n

consists of dlogne keys of functions in S

n

. It turns out

that for some collections of synthesizers (such as those described in this paper) this overhead can

be eliminated as well. This is certainly true when using a single synthesizer instead of a collection.

Moreover, from the proof of security for Construction 4.1 one can easily extract the following claim:

If the collection of synthesizers remains secure even when it uses a public key (i.e. if C

s

k

(X; Y )

remains pseudo-random even when the distinguisher sees k), then the dlog ne keys can be replaced

with a single one (i.e. the same key can be used at all levels of the recursion).

5 Security of the Construction

Theorem 5.1 Let S and F be as in Construction 4.1 and let R = fR

n

g

n2N

be the uniform I

n

7!

I

n

function ensemble. Then F is an e�ciently computable pseudo-random function ensemble.

Furthermore, any e�cient distinguisher, M, between F and R yields an e�cient distinguisher, D,

for S such that the success probability of D is smaller by a factor of at most dlogne than the success

probability of M.

To prove Theorem 5.1, we use of a hybrid argument (for details about this proof technique, see

[25]): We �rst de�ne a sequence of dlogne + 1 function distributions such that the two extreme

distributions are R

n

and F

n

. We then show that any distinguisher for two neighboring distributions

can be transformed into a distinguisher for the pseudo-random synthesizers. For simplicity, we

de�ne those hybrid-distributions in case n = 2

`

. The de�nition easily extends to a general value of

n such that Claim 5.1 still holds.

For any 0 � j � `, denote by H

j

n

the j

th

hybrid-distribution. The computation of functions in

H

j

n

may be described as a labeling process of a binary tree with n leaves and depth ` (an analogous

description for F

n

appears in Section 4). Here, the labeling process starts with nodes at depth `�j.

The i

th

such node has 2

2

j

possible labels, fa

i;s

: s 2 I

2

j

g (which are part of the key). The i

th

2

j

-bit

substring of the input, x

i

, selects one of these labels, a

i;x

i

. The rest of the labeling process is the

same as it was for functions in F

n

: The label of each node at depth d < `� j is the value of s

k

d+1

on the labels of its children. The value of the function on this input is simply the label of the root.

Another way to think of H

j

n

is via the concept of a k-dimensional synthesizer (see Section 4).

As was the case for F

n

, the construction of functions in H

j

n

can be described in two steps: (1) A

recursive construction of a 2

`�j

-dimensional synthesizer, S

2

`�j

, from a two-dimensional synthesizer,

S. (2) An immediate construction of the pseudo-random function, f , from S

2

`�j

:

f

fa

r;s

:1�r�2

`�j

;s2I

2

j

g

(x

1

� x

2

: : : � x

2

`�j
)

def

= S

2

`�j

(a

1;x

1

; a

2;x

2

; : : : ; a

2

`�j

;x

2

`�j

)

We turn to the formal de�nition of the hybrid-distributions:

De�nition 5.1 Let I

S

be the key-generating algorithms of S. Let n; ` and j be three integers such

that n = 2

`

and 0 � j � `. For every sequence,

~

k = fk

1

; k

2

; : : : ; k

`�j

g of possible values of I

S

(1

n

)

and for every length-2

2

j

2

`�j

sequence of n-bit strings, ~a = fa

r;s

: 1 � r � 2

`�j

; s 2 I

2

j

g the function

11



f

~a;

~

k

: I

n

7! I

n

is de�ned as follows: On input x = x

1

� x

2

: : : � x

2

`�j
, where 81 � i � 2

`�j

; x

i

2 I

2

j

the function outputs the single value in

SQ

s

k

1

(SQ

s

k

2

(: : :SQ

s

k

`�j

(a

1;x

1

; a

2;x

2

; : : : ; a

2

`�j

;x

2

`�j

) : : :))

H

j

n

is the random variable that assumes as values the functions f

~a;

~

k

de�ned above, where the

k

i

's are independently distributed according to I

S

(1

n

) and ~a is independently distributed according

to (U

n

)

2

2

j

2

`�j

.

This de�nition immediately implies that:

Claim 5.1 H

0

n

and F

n

are identically distributed and H

dlogne

n

and R

n

are identically distributed.

The proof below shows that for every 0 � j < ` the two neighboring ensembles H

j

n

and H

j+1

n

are

computationally indistinguishable. As shown below, this implies Theorem 5.1 by a standard hybrid

argument.

Proof. (of Theorem 5.1) As mentioned in Section 4, it is obvious that F is an e�ciently computable

function ensemble. Assume that F is not pseudo-random. By the de�nition of pseudo-random

function ensembles, there exists a polynomial-time oracle machine, M, and a polynomial p(�) so

that for in�nitely many n's

�

�

�
Pr

h

M

F

n

(1

n

) = 1

i

� Pr

h

M

R

n

(1

n

) = 1

i

�

�

�
>

1

p(n)

where R = fR

n

g

n2N

is the uniform I

n

7! I

n

function ensemble. Let t(�) be a polynomial that

bounds the number queries that M makes on input 1

n

.

GivenM, we de�ne the probabilistic polynomial-time algorithm D that distinguishes the output

of S

n

from random. Let m = m(n) be de�ned by m(n)

def

= t(n) �n. For every n, the input of D is an

m(n)�m(n) matrix, B = (b

i;j

), whose entries are n-bit strings. As part of its algorithm, D invokes

M on input 1

n

. The de�nition of m allows D to answer all the queries of M (which are bounded

by t(n)). It will be shown below that D distinguishes between the following two distributions of B:

(a) C

S

n

(X; Y ) where X and Y are independently drawn from (U

n

)

m(n)

. (b) (U

n

)

m(n)�m(n)

.

For simplicity of presentation, we only de�ne the algorithm that D performs for n = 2

`

. It is

easy to extend this de�nition to a general value of n such that Claim 5.2 and Claim 5.3 still hold.

On input B = (b

i;j

)

m(n)

i;j=1

, the algorithm is de�ned as follows:

1. Choose 0 � J < ` uniformly at random.

2. Generate

~

k = fk

1

; k

2

; : : : ; k

`�J�1

g by `� J � 1 independent executions of I

S

on input 1

n

.

3. Extract 2

`�J�1

sub-matrices of B: For 1 � i � 2

`�J�1

, denote by B

i

=

�

b

i

u;v

�

t(n)

u;v=1

the

t(n)�t(n) diagonal sub-matrix of B de�ned by

b

i

u;v

def

= b

u+((i�1)�t(n)+1);v+((i�1)�t(n)+1)

4. Invoke M on input 1

n

. Denote by q

r

= q

r

1

� q

r

2

: : : � q

r

2

`�J

the r

th

query M makes, where

q

r

i

2 I

2

J

for 1 � i � 2

`�J

. On each of these queries D answers as follows:

12



For every 1 � i � 2

`�J�1

, denote by a

i;q

r

2i�1

�q

r

2i

the entry b

i

u;v

of B

i

where

u = minf1 � j � r : q

j

2i�1

= q

r

2i�1

g and v = minf1 � j � r : q

j

2i

= q

r

2i

g

Answer the query with the single value in

SQ

s

k

1

(: : :SQ

s

k

`�J�1

(fa

1;q

r

1

�q

r

2

; : : : ; a

2

`�J�1

;q

r

2

`�J

�1

�q

r

2

`�J

g) : : :)

5. Output whatever M outputs.

It is obvious that D is a polynomial-time algorithm. To show that D is also a distinguisher for

the pseudo-random synthesizers, we �rst state and prove the following two claims:

Claim 5.2 For every 0 � J < `,

Pr

h

D((U

n

)

m(n)�m(n)

) = 1jJ = j

i

= Pr

h

M

H

j+1

n

(1

n

) = 1

i

Proof. As part of its algorithm, D denotes some of B's entries by names of the form \a

r;s

", where

1 � r � 2

`�J�1

and s 2 I

2

J+1

. Note that D never denotes an entry of B by two di�erent names.

Assume, for the sake of the proof, that any name a

r;s

that was not used by D is assigned an

independently and uniformly distributed n-bit string. Denote by ~a the sequence fa

r;s

: 1 � r �

2

`�J�1

; s 2 I

2

J+1

g. It is easy to verify that:

1. When B is uniformly distributed, the distribution of ~a is identical to (U

n

)

2

2

J+1

2

`�J�1

.

2. D answers every query, q, of M with the value f

~a;

~

k

(q), where f

~a;

~

k

is as in the de�nition of

H

J+1

n

.

The claim immediately follows from (1) and (2) and from the de�nition of

~

k. 2

Claim 5.3 Let X and Y be independently drawn from (U

n

)

m(n)

. Then for every 0 � J < `,

Pr [D(C

S

n

(X; Y )) = 1jJ = j] = Pr

h

M

H

j

n

(1

n

) = 1

i

Proof. Let X = fx

1

; x

2

; : : : ; x

m(n)

g and Y = fy

1

; y

2

; : : : ; y

m(n)

g be independently drawn from

(U

n

)

m(n)

and let s

k

be drawn from S

n

. Assume that the input of D is B = C

s

k

(X; Y ). For the

sake of the proof, de�ne the vector

~

a

0

= fa

0

i;s

: 1 � i � 2

`�J

; s 2 I

2

J

g as follows:

� If D denoted by a

i;q

r

2i�1

�q

r

2i

the entry b

i

u;v

of B

i

, then de�ne a

0

2i�1;q

r

2i�1

to be x

(i�1)�t(n)+u

and

a

0

2i;q

r

2i

to be y

(i�1)�t(n)+v

. Note that a

i;q

r

2i�1

�q

r

2i

= s

k

(a

0

2i�1;q

r

2i�1

; a

0

2i;q

r

2i

).

� For all other values in

~

a

0

assign an independently and uniformly distributed n-bit string.

It is easy to verify that the distribution of

~

a

0

is identical to (U

n

)

2

2

J

2

`�J

. Let

~

k

0

be the sequence

fk

1

; k

2

; : : : ; k

`�J�1

; kg and let f

~

a

0

;

~

k

0

be as in the de�nition of H

J

n

. We now have that the answer D

gives to the r

th

query, q

r

, of M is:

SQ

s

k

1

(: : :SQ

s

k

`�J�1

(fa

1;q

r

1

�q

r

2

; : : : ; a

2

`�J�1

;q

r

2

`�J

�1

�q

r

2

`�J

g) : : :)

= SQ

s

k

1

(: : :SQ

s

k

`�J�1

(SQ

s

k

(fa

0

1;q

r

1

; a

0

2;q

r

2

; : : : ; a

0

2

`�J

;q

r

2

`�J

g)) : : :)

= f

~

a

0

;

~

k

0

(q

r

)

From this fact and from the de�nition of

~

a

0

and

~

k

0

, we immediately get the claim. 2

13



By Claims 5.1, 5.2 and 5.3, we can now conclude the following: Let X and Y be independently

drawn from (U

n

)

m(n)

, then for in�nitely many n's

�

�

�
Pr [D(C

S

n

(X; Y )) = 1]� Pr

h

D((U

n

)

m(n)�m(n)

) = 1

i
�

�

�

=

1

dlog ne

�

�

�

�

�

�

�

dlogne�1

X

j=0

Pr [D(C

S

n

(X; Y )) = 1jJ = j]�

dlogne�1

X

j=0

Pr

h

D((U

n

)

m(n)�m(n)

) = 1jJ = j

i

�

�

�

�

�

�

=

1

dlog ne

�

�

�

�

�

�

�

dlogne�1

X

j=0

Pr

h

M

H

j

n

(1

n

) = 1

i

�

dlogne�1

X

j=0

Pr

h

M

H

j+1

n

(1

n

) = 1

i

�

�

�

�

�

�

=

1

dlog ne

�

�

�

�

�

Pr

h

M

H

0

n

(1

n

) = 1

i

� Pr

�

M

H

dlog ne

n

(1

n

) = 1

�

�

�

�

�

=

1

dlog ne

�

�

�

�
Pr

h

M

F

n

(1

n

) = 1

i

� Pr

h

M

R

n

(1

n

) = 1

i
�

�

�

>

1

p(n) � dlogne

This contradicts the assumption that S is a collection of pseudo-random synthesizers and com-

pletes the proof of Theorem 5.1. 2

Corollary 5.2 For any collection of pseudo-random synthesizers, S, such that its functions are

computable in NC

i

there exists an e�ciently computable pseudo-random function ensemble, F ,

such that its functions are computable in NC

i+1

. Furthermore, the corresponding key-generating

algorithms, I

S

and I

F

, have the same parallel time complexity.

Proof. By Lemma 3.1, we can construct from, S, a new collection of I

2n

7! I

n

pseudo-random

synthesizers, S

0

, such that its functions are computable in NC

i

. By Theorem 5.1, we can construct

from S

0

an e�ciently computable pseudo-random function ensemble, F , such that its functions

are computable in NC

i+1

. Both constructions preserve the parallel time complexity of the key-

generating algorithms. 2

6 A Related Construction and Additional Properties

Though designed to enable e�cient computation in parallel, Construction 4.1 obtains some addi-

tional useful properties. In this section we describe two such properties: a rather sharp time-space

tradeo� and an incremental property. We also show how to adjust the construction in order to

improve upon these properties.

6.1 Time-Space Tradeo�

Construction 4.1 has the advantage of a sharp time-space tradeo�. In order to get an even sharper

tradeo�, we describe an alternative construction of pseudo-random functions. The best way to

understand the revised construction is by viewing the computation process backwards: Every

function on n-bits is de�ned by the length-2

n

sequence of all its values. Assume that we could

sample and store two length-d

p

2

n

e sequences, X and Y , of random strings as the key of a pseudo-

random function. In this case, given a pseudo-random synthesizer, S, we can de�ne the 2

n

values

of the pseudo-random function to be the entries of the matrix C

S

(X; Y ). In order to reduce the

key size, we can replace the random sequences, X and Y , with pseudo-random sequences. Such

14



m-keys

2

Values

n

Figure 2: Illustration of the Alternative Construction

sequences X and Y can be obtained together from C

S

(X

0

; Y

0

), where X

0

and Y

0

are two shorter

random sequences (of length approximately

p

2 � 2

n=2

). By continuing this process of reducing the

key size log n times, we get a key with constant number of strings (see Figure 2 for an illustration

of the construction).

In order to understand where the original construction is \wasteful" in the size of the key we

can describe it in similar terms: The 2

n

values of the function are still the values of C

S

(X; Y ) for

two sequences X and Y (in the description of the computation as a tree labeling process these are

all the possible labels of the root's children) but then we get X and Y separately as C

S

(X

0

; Y

0

)

and C

S

(X

00

; Y

00

). By the time the sequences have constant-length, there are O(n) of those.

Returning to the new construction, note that if we allow a key of m strings we only need

t � logn� log logm of the steps described above. Computing such functions requires t phases and

in each phase several parallel invocations of S. The total number of invocations of S is 2

t

�1 �

n

logm

.

This seems to be a relatively sharp time-space tradeo� and, to the best of our knowledge, one that

cannot be obtained by the GGM-construction.

For some applications, like the protection of the data on a disk, we need pseudo-random func-

tions with reasonably small amount of entries. In this case, by storing relatively few strings, we can

achieve a very easy-to-compute function. For example, 512 random `-bit strings de�ne a pseudo-

random I

30

7! I

`

function. Computing this function requires only 3 invocations of a pseudo-random

synthesizer in 2 phases.

We formalize the de�nition of the alternative construction:

Construction 6.1 (Alternative Construction of Pseudo-Random Functions)

Let S = fS

n

g

n2N

be a collection of I

2n

7! I

n

pseudo-random synthesizers and let I

S

be a probabilistic

polynomial-time key-generating algorithm for S (as in De�nition 2.2). For every possible value, k,

of I

S

(1

n

), denote by s

k

the corresponding I

2n

7! I

n

function. The function ensemble F = fF

n

g

n2N

is de�ned as follows:

� (key-generation) Let m

j

denote the value 2

j

+ 2 and let t

n

denote the smallest integer t such

15



that m

t

� n. On input 1

n

, the probabilistic polynomial-time key-generating algorithm I

F

outputs a pair (~a;

~

k), where ~a = fa

0

; a

1

; : : : ; a

2

m

0

�1

g is generated according to (U

n

)

2

m

0

and

~

k = fk

1

; k

2

; : : : ; k

t

n

g is generated by t

n

independent executions of I

S

on input 1

n

(i.e. is

sampled from (I

S

(1

n

))

t

n

).

� (evaluation) For every possible value, (~a;

~

k), of I

F

(1

n

) and every j such that 0 � j � t

n

,

de�ne the function f

j

~a;

~

k

: I

m

j

7! I

n

in recursion on j: For x 2 I

m

0

, de�ne f

0

~a;

~

k

(x) to be a

x

.

For any j > 0 and x = x

1

� x

2

2 I

m

j

(x

1

and x

2

are (2

j�1

+ 1)-bit strings) de�ne f

j

~a;

~

k

(x) to

be s

k

j

(f

j�1

~a;

~

k

(0; x

1

); f

j�1

~a;

~

k

(1; x

2

)).

For every x 2 I

n

the value of the function f

~a;

~

k

: I

n

7! I

n

on x is de�ned to be f

t

n

~a;

~

k

(x

0

), where

x

0

is obtained by padding x with m

t

n

� n zeros.

Finally, F

n

is de�ned to be the random variable that assumes as values the functions f

~a;

~

k

with

the probability space induced by I

F

(1

n

).

The proof of security for Construction 6.1 is omitted since it is almost identical to the proof of

security for Construction 4.1.

We can now state the exact form of the time-space tradeo� under the notation of Construc-

tion 6.1. If ~a contains 2

m

i

strings instead of 2

m

0

, then we can de�ne f

i

~a;

~

k

(x) to be a distinct value

in ~a for every x 2 I

m

i

and keep the recursive de�nition of f

j

~a;

~

k

as before for j > i. In this case, com-

puting f

~a;

~

k

(x) can be done in t

n

� i phases with a total of 2

t

n

�i

� 1 invocations of the synthesizers.

The next lemma follows (for simplicity this lemma is stated in terms of a synthesizer instead of a

collection of synthesizers):

Lemma 6.1 Let S be a pseudo-random synthesizer with output-length function `(n) = n. Assume

that S can be computed in parallel-time D(n) and work W (n) (on n-bit inputs). Then for every m =

m(n) such that 2

m

0

� m(n) < 2

n

there exists an e�ciently computable pseudo-random function

ensemble F = fF

n

g

n2N

such that the key of a function in F

n

is a sequence of at most m(n) random

n-bit strings and this function can be computed in parallel-time (logn � log logm(n) + O(1))D(n)

and using work of O(

n

logm(n)

)W (n).

6.2 Incremental Property

We now describe an observation of Mihir Bellare that gives rise to an interesting incremental

property of our construction. (For the formulation and treatment of incremental cryptography, see

the work of Bellare, Goldreich and Goldwasser [7, 8].)

Let f be any function in F

n

, where F = fF

n

g

n2N

is the pseudo-random function ensemble

de�ned in Construction 4.1. Let x; y 2 I

n

be of Hamming distance one (x and y di�er on exactly

one bit). Then given the computation of f(x) (including all intermediate values), we only need

additional logn invocations of the pseudo-random synthesizers (instead of n) in order to evaluate

f(y). The easiest way to see the correctness of this observation is to recall the description of the

computation of f(x) as a labeling process on a depth-log n binary tree. The only labels that change

as a result of 
ipping one bit of x are those of the nodes on a path from one leaf to the root (i.e.

logn + 1 labels).

16



If a Gray-code representation

3

of numbers is used, we get a similar observation for the compu-

tation of f(x) and f(x + 1): Given the computation of one of these values, computing the other

requires only additional logn invocations of the pseudo-random synthesizers. It is not hard to

imagine situations where one of these incremental properties is useful.

The observation regarding the computation of f(x) and f(y), for x and y of Hamming distance

one, also holds for the functions of Construction 6.1. The observation regarding the computation

of f(x) and f(x + 1) holds if we use a di�erent representation of numbers (this representation is

similar to a Gray-code, though a bit more complicated).

7 Construction of Pseudo-Random Synthesizers Based on Gen-

eral Cryptographic Primitives

Sections 7-9 are mostly devoted to showing parallel constructions of pseudo-random synthesizers. In

this section we provide a simple construction of pseudo-random synthesizers based on what we call

weak pseudo-random functions. This construction immediately implies a construction of pseudo-

random synthesizers based on trapdoor one-way permutations (and an additional construction,

based on any hard-to-learn problem, which is considered in Section 9). An interesting line for

further research is the parallel construction of pseudo-random synthesizers from other cryptographic

primitives. In particular, we do not know of such a construction from pseudo-random generators

or directly from one-way functions.

7.1 Weak Pseudo-Random Functions

The reason pseudo-random functions are hard to construct is that they must endure a very powerful

kind of an attack. The adversary (the distinguisher) may query their values at every point and may

adapt its queries based on the answers it gets. We can weaken the opponent by letting the only

access it has to the function be a polynomial sample of random points and the value of the function

at these points. We call functions that look random to such an adversary weak pseudo-random

functions. In this section it is shown that weak pseudo-random functions yield pseudo-random

synthesizers in a straightforward manner. We therefore get a parallel construction of (standard)

pseudo-random functions from weak pseudo-random functions.

For simplicity, we de�ne weak pseudo-random functions as length-preserving. In their de�nition

we use the following notation:

Notation 7.1 For every function f and every sequence X = fx

1

: : : x

k

g of values in the domain

of f , denote by V(X; f) the sequence fx

1

; f(x

1

); x

2

; f(x

2

) : : :x

k

; f(x

k

)g (Vstands for values).

De�nition 7.1 (collection of weak pseudo-random functions) An e�ciently computable

I

n

7! I

n

function ensemble F = fF

n

g

n2N

, is a collection of weak pseudo-random functions if

for every probabilistic polynomial-time algorithm, D, every two polynomials p(�) and m(�), and all

su�ciently large n's

�

�

�
Pr

h

D(V((U

n

)

m(n)

; F

n

)) = 1

i

� Pr

h

D((U

n

)

2m(n)

) = 1

i

�

�

�
<

1

p(n)

3

A permutation, P, on I

n

is called a Gray-code representation if for every 0 � x < 2

n

the Hamming distance

between P (x) and P (x+ 1 mod 2

n

) is one. Such a P de�nes a Hamiltonian-cycle on the n-dimensional cube. It is

not hard to see that an easy-to-compute P can be de�ned.

17



Let F be a collection of weak pseudo-random functions and let I be the polynomial-time key-

generating algorithm for F . Lemma 7.1 shows how to construct a pseudo-random synthesizer from

F and I. Since the random bits of I can be replaced by pseudo-random bits, we can assume that

I only uses n truly random bits on input 1

n

. In fact, this is only a simplifying assumption which

is not really required for the construction of pseudo-random synthesizers. For every r 2 I

n

, denote

by I

r

(1

n

) the value of I(1

n

) when I uses r as its random bits.

Lemma 7.1 Let F and I be as above and de�ne S : f0; 1g

�

�f0; 1g

�

7! f0; 1g

�

such that 8x; y 2

I

n

; S(x; y) = f

I

y

(1

n

)

(x). Then S is a pseudo-random synthesizer.

Proof. It is obvious that S is e�ciently computable. Assume, in contradiction to the lemma, that

S is not a pseudo-random synthesizer. Then there exists a probabilistic polynomial-time algorithm,

D, and polynomials p(�) and m(�), such that for in�nitely many n's

�

�

�
Pr [D(C

S

(X; Y )) = 1]� Pr

h

D((U

n

)

m(n)�m(n)

) = 1

i

�

�

�
>

1

p(n)

where X and Y are independently drawn from (U

n

)

m(n)

.

For every n and every 0 � i � m(n), de�ne the i

th

hybrid distribution H

i

n

over m(n)�

m(n) matrices as follows: The �rst i columns are distributed according to C

S

(X; Y ), where X is

drawn from (U

n

)

m(n)

and Y is independently drawn from (U

n

)

i

. The last m(n) � i columns are

independently distributed according to (U

n

)

m(n)�(m(n)�i)

. It is immediate that for in�nitely many

n's

�

�

�
Pr

h

D(H

m(n)

n

) = 1

i

� Pr

h

D(H

0

n

) = 1

i

�

�

�
>

1

p(n)

We now de�ne a distinguisher D

0

for F . Given fx

1

; z

1

; x

2

; z

2

; : : : ; x

m(n)

; z

m(n)

g as its input, D

0

performs the following algorithm:

1. De�ne X = fx

1

; : : : ; x

m(n)

g and Z = fz

1

; : : : ; z

m(n)

g.

2. Uniformly choose 0 < J � m(n).

3. Sample Y from (U

n

)

J�1

and generate an m(n)�m(n) matrix B whose �rst J � 1 columns are

C

S

(X; Y ), its J

th

column is Z

t

and the last m(n)� J columns are independently distributed

according to (U

n

)

m(n)�(m(n)�J)

.

4. Output D(B).

It is obvious that D

0

is e�ciently computable. It is also easy to verify that

Pr

h

D

0

(V((U

n

)

m(n)

; F

n

)) = 1jJ = j

i

= Pr

h

D(H

j

n

) = 1

i

and that

Pr

h

D

0

((U

n

)

2m(n)

) = 1jJ = j

i

= Pr

h

D(H

j�1

n

) = 1

i

Thus, by a standard hybrid argument, we get that for in�nitely many n's

�

�

�
Pr

h

D

0

(V((U

n

)

m(n)

; F

n

)) = 1

i

� Pr

h

D

0

((U

n

)

2m(n)

) = 1

i

�

�

�
>

1

p(n)m(n)

in contradiction to the assumption that F is a collection of weak pseudo-random functions. We

can therefore conclude the lemma. 2

18



Notice that S (as in Lemma 7.1) obeys an even more powerful requirement than is needed by

the de�nition of a pseudo-random synthesizer: For random X and Y the matrix C

S

(X; Y ) cannot

be e�ciently distinguished from a random matrix even if we allow the distinguisher access to X .

Corollary 7.2 (of Lemma 7.1) If there exist weak pseudo-random functions that can be sampled

and evaluated in NC, then there also exist a pseudo-random synthesizer in NC and (standard)

pseudo-random functions that can be sampled and evaluated in NC.

7.2 Trapdoor One-Way Permutations

We now describe a rather simple construction of weak pseudo-random functions from a collection

of trapdoor permutations. Therefore, given Lemma 7.1, we get a construction of a pseudo-random

synthesizer out of a collection of trapdoor permutations. This pseudo-random synthesizer is in NC

if the trapdoor permutations can be sampled and inverted in NC (in fact, there is an additional

requirement of a hard-core predicate in NC but this is already satis�ed by [28]). Since we have no

concrete example of this sort, we only give a brief and informal description of the construction (for

formal de�nitions of trapdoor one-way permutations and hard-core bits, see e.g. [25, 40]).

Let F = fF

n

g

n2N

be a permutation ensemble such that every f

i

2 F

n

is a permutation over a

domain D

n

. Informally, F is a collection of trapdoor one-way permutations if the key generating

algorithm I

F

of F outputs both a public-key, i, and a trapdoor-key, t(i), and we have that:

� Given i, the function f

i

is easy to compute everywhere but hard to invert on the average.

� Given t(i) the function f

i

is easy to compute and to invert everywhere.

Let F = fF

n

: D

n

7! D

n

g

n2N

be a collection of trapdoor one-way permutations. Assume that

the collection is one-way for the uniform distribution over the inputs (i.e. it is hard to compute x

given F

n

(x), where x is uniformly distributed in D

n

). Let the sequence of functions fb

n

: D

n

7!

I

1

g

n2N

be a hard-core predicate for F . Informally, this means that given F

n

(x) for a uniformly

distributed x, it is hard to guess b

n

(x) with probability which is non-negligibly better than half.

We can now de�ne a collection of weak pseudo-random functions G = fG

n

g

n2N

in the following

way:

For every x 2 I

n

, denote by D

n

(x) the element in D

n

sampled using x as the random

bits. For every key i of f

i

2 F

n

, de�ne g

i

: I

n

7! I

1

as follows:

8x 2 I

n

; g

i

(x)

def

= b

n

(f

�1

i

(D

n

(x)))

(Note that computing g

i

(x) requires knowledge of the trapdoor-key t(i).) Let G

n

be

the random variable that assumes as values the functions g

i

with the probability space

induced by the distribution over the keys in F

n

.

Claim 7.1 (without proof) The function ensemble G which is de�ned above is a collection of weak

pseudo-random functions.

8 Number-Theoretic Constructions of Pseudo-Random Synthe-

sizers

In this section we present several NC

1

constructions of pseudo-random synthesizers based on con-

crete, frequently-used, intractability assumptions. The �rst construction is at least as secure as

19



the Di�e-Hellman [21] assumption. As we shall see in Section 8.3, we also get a construction that

is at least as secure as factoring (since the Di�e-Hellman assumption modulo a composite is not

stronger than factoring [44, 58] (also see [10])). Finally, we show two constructions that are at

least as secure as the RSA assumption [55]. Although the RSA assumption is not weaker than

factoring, the constructions based on RSA might have other advantages. For example, under the

assumption that 
(n) least-signi�cant bits are simultaneously hard for RSA, we get pseudo-random

synthesizers with linear output length. In addition, the constructions based on RSA and their proof

of security use several interesting ideas that might be useful elsewhere. We �rst address issues that

are common to all constructions.

The evaluation of our pseudo-random synthesizers in NC

1

relies on a preprocessing stage. This

stage can be performed as part of the (sequential) key-generating algorithm. In this idea we follow

the work of Kearns and Valiant, [37]. In their context, the additional data is \forced" into the

input whereas in our context it is added to the key.

The analysis of the parallel-time complexity of the synthesizers uses previous results on the

parallel-time complexity of arithmetic operations (see Karp and Ramachandran [36] for a review).

In particular, we use the result of Beame, Cook and Hoover, [6]. They showed that iterated multi-

plication (multiplying n numbers of length n) and additional related operations can be performed

by log-depth circuits (these circuits can be constructed e�ciently, though sequentially). The re-

sults of [6] enable the computation of modular exponentiation in NC

1

given preprocessing that

only depends on the base. This follows from the fact that computing b

e

mod N is reduced to an

iterated multiplication (and an additional modular reduction) given the values b

i

mod N (where

0 � i � the length of e).

The pseudo-random synthesizers constructed in this section are Boolean functions

4

. Section 3.3

showed two methods for expanding the output-length of pseudo-random synthesizers. The method

of Lemma 3.1 requires a pseudo-random generator that expands the input by a factor of two. A

natural choice for this purpose (in the case of the synthesizers which are described in this section)

is the pseudo-random generators of Blum, Blum and Shub [11] or the one of Hastad, Schrift and

Shamir [30]. Given appropriate preprocessing, both generators can be computed in NC

1

and their

security is based on the assumption that factoring integers (Blum-integers in [30]) is hard.

We note that all the constructions of this section give collections of pseudo-random synthesizers.

However, the security of theses synthesizers does not rely on keeping their key private. As discussed

in Section 4.3, this allows us to use a single synthesizer at all the levels of Construction 4.1 (and of

Construction 6.1).

8.1 Common Tools

In our constructions, we use the result of Goldreich and Levin [28] which gives a hard-core predicate

for \any" one-way function:

Theorem 8.1 ([28]) Let f be any one-way function. For every probabilistic polynomial-time algo-

rithm, A, for every polynomial, p(�) and all su�ciently large n's

Pr [A(f(x); r) = r � x] <

1

2

+

1

p(n)

where x and r are independently drawn from U

n

(recall that r�x denotes the inner product mod 2

of r and x).

4

In fact, all these synthesizers can be made to output a logarithmic number of bits. Furthermore, given stronger

assumptions they may output an even larger number of bits. See Remark 8.2 for an example

20



In fact, we use their result in a slightly di�erent context. Loosely speaking, if given f(x) it is

hard to compute g(x), then given f(x) it is also hard to guess g(x)�r. An important improvement

on the application of [28] in the context of the Di�e-Hellman assumption was made by Shoup [57].

In addition, the proof of security for all the constructions uses the next-bit prediction tests of

Blum and Micali [14]. The equivalence between pseudo-random ensembles and ensembles that pass

all polynomial-time next-bit tests was shown by Yao [61].

8.2 The Di�e-Hellman Assumption

We now de�ne a collection of pseudo-random synthesizers that are at least as secure as the Di�e-

Hellman assumption (DH-Assumption). This assumption was introduced in the seminal paper

of Di�e and Hellman [21] (as a requirement for the security of their key-exchange protocol). The

validity of the DH-Assumption was studied quite extensively over the last two decades. A few

notable representatives of this research are [15, 43, 57]. Maurer [43] and Boneh and Lipton [15] have

shown that in several settings the DH-Assumption is equivalent to the assumption that computing

the discrete-log is hard. In particular, for any speci�c prime P there is an e�cient reduction (given

some information that only depends on P ) of the discrete-log problem in Z

�

P

to the DH-Problem

in Z

�

P

. Shoup [57] has shown that the DH-Assumption holds against what he calls \generic"-

algorithms.

For concreteness, we state the DH-Assumption in the group Z

�

P

, where P is a prime. However,

our construction works just as well given the DH-Assumption in other groups. We use this fact in

Section 8.3 to get pseudo-random synthesizers which are at least as secure as factoring. In order to

formalize the DH-Assumption in Z

�

P

, we need to specify the distribution of P . One possible choice

is to let P be a uniformly distributed prime of a given length. However, there are other possible

choices. For example, it is not inconceivable that P can be �xed for any given length. To keep our

results general, we let P be generated by some polynomial-time algorithm IG

DH

(where IG stands

for instance generator):

De�nition 8.1 (IG

DH

) The Di�e-Hellman instance generator, IG

DH

, is a probabilistic polynomial-

time algorithm such that on input 1

n

the output of IG

DH

is distributed over n-bit primes.

In addition, we need to specify the distribution of a generator, g, of Z

�

P

. It can be shown that

if the DH-Assumption holds for some distribution of g, then it also holds if we let g be a uniformly

distributed generator of Z

�

P

(since there exists a simple randomized-reduction of the DH-Problem

for any g to the DH-Problem with a uniformly distributed g).

All exponentiations in the rest of this subsection are in Z

�

P

(the de�nition of P will be clear by

the context). To simplify the notations, we omit the expression \mod P" from now on. We can

now formally state the DH-Assumption (for the instance generator given IG

DH

):

Assumption 8.1 (Di�e-Hellman [21]) For every probabilistic polynomial-time algorithm, A, for

every polynomial, q(�) and all su�ciently large n's

Pr

h

A(P; g; g

a

; g

b

) = g

ab

i

<

1

q(n)

where the distribution of P is IG

DH

(1

n

), the distribution of g is uniform over the set of generators

of Z

�

P

and the distribution of ha; bi is (U

n

)

2

.

Based on this assumption we de�ne a collection of I

2n

7! I

1

pseudo-random synthesizers, S

DH

:

21



De�nition 8.2 For every n-bit prime, P , every generator, g, of Z

�

P

and every r 2 I

n

, de�ne

s

P;g;r

: I

2n

7! I

1

by:

8x; y 2 I

n

; s

P;g;r

(x; y)

def

= g

xy

� r

Let S

n

to be the random variable that assumes as values the functions s

P;g;r

, where the distribution of

P is IG

DH

(1

n

), the distribution of g is uniform over the set of generators of Z

�

P

and the distribution

of r is U

n

. The function ensemble S

DH

is de�ned to be fS

n

g

n2N

.

Note that in a subsequent work [46] we show a direct and e�cient construction of n-dimensional

pseudo-random synthesizers based on the (stronger) decisional version of the DH-Assumption. This

construction gives very e�cient pseudo-random functions.

Theorem 8.2 If the DH-Assumption (Assumption 8.1) holds, then S

DH

is a collection of I

2n

7! I

1

pseudo-random synthesizers.

Proof. It is obvious that S

DH

= fS

n

g

n2N

is e�ciently computable. Assume that S

DH

is not a col-

lection of pseudo-random synthesizers. Then there exists a polynomial m(�) such that the ensemble

E = fE

n

g is not pseudo-random, where E

n

= C

S

n

(X; Y ) forX and Y that are independently drawn

from (U

n

)

m(n)

. Therefore, there exists an e�cient next-bit prediction test, T , and a polynomial q(�)

such that for in�nitely many n's it holds that:

Given a pre�x of E

n

of uniformly chosen length, T succeeds to predict the next bit with

probability greater than

1

2

+

1

q(n)

.

We now show how to use T in order to de�ne an e�cient algorithm A such that for in�nitely

many n's

Pr

h

A(P; g; g

a

; g

b

; r) = g

ab

� r

i

>

1

2

+

1

q(n)

where the distribution of P; g; a and b is as in the DH-Assumption and r is drawn from U

n

. By

Theorem 8.1, this means that g

ab

can also be e�ciently computed which contradicts the DH-

Assumption and completes the proof of the lemma.

In the de�nition of A we use the fact that in order to compute g

xy

= (g

x

)

y

= (g

y

)

x

it is enough

to either know g

x

and y or g

y

and x (i.e. it is not required to know both x and y). This enables A

to de�ne a matrix which is distributed according to E

n

such that one of its entries is g

ab

� r (the

value A tries to guess) and all other entries can be computed by A. It is now possible for A to

guess g

ab

� r by invoking T on the appropriate pre�x of this matrix.

In more details, on input hP; g; g

a

; g

b

; ri the algorithm A is de�ned as follows:

1. Uniformly choose 1 � i; j � m(n).

2. De�ne X = fx

1

; : : : ; x

m(n)

g and Y = fy

1

; : : : ; y

m(n)

g by setting x

i

= a, y

j

= b and indepen-

dently drawing all other values from U

n

.

3. De�ne B = (b

u;v

)

m(n)

u;v=1

to be C

s

P;g;r

(X; Y ).

Note that A knows all the values of X and Y except x

i

and y

j

. Therefore, A can compute all

the entries of B except b

i;j

= g

ab

� r.

4. Invoke T and feed it with all the entries of B up to b

i;j

(i.e. the �rst i� 1 rows and the �rst

j � 1 entries of the i

th

row).

5. Output T 's prediction of b

i;j

.

22



It is obvious that A is e�cient. Furthermore, since the distribution of B is exactly E

n

, it

is immediate that for in�nitely many n's Pr

h

A(P; g; g

a

; g

b

; r) = g

ab

� r

i

>

1

2

+

1

q(n)

, where the

distribution of P; g; a; b and r is as above. This contradicts the DH-Assumption and proves the

lemma. 2

Corollary 8.3 If the DH assumption (Assumption 8.1) holds, then there exist pseudo-random

functions that are computable in NC

2

(given a sequential precomputation which is part of the key-

generating algorithm).

Proof. By Theorem 8.2, given that the DH-Assumption holds, S

DH

is a collection of pseudo-random

synthesizers. If the key-generating algorithm precomputes g

2

i

mod P for 1 � i � n, then the func-

tions of S

DH

can be evaluated in NC

1

. This precomputation reduces any modular exponentiation

(with g as the base) to an iterated multiplication and an additional modular reduction (see also the

discussion at the beginning of this section). By Corollary 5.2, there exist pseudo-random functions

in NC

2

(the key-generating algorithm in both cases is sequential). 2

Remark 8.1 Assume that IG

DH

(1

n

) has a single possible value, P , for every n. Then S

DH

can

be transformed into a synthesizer rather than a collection of synthesizers. In this case, the key-

generating algorithm of the pseudo-random functions we get is in \non-uniform" NC.

8.3 Composite Di�e-Hellman Assumption and Factoring

The collection of pseudo-random synthesizers, S

DH

, is at least as secure as the DH-Assumption

modulo a prime. As mentioned above, the DH-Assumption in any other group gives a corresponding

construction of pseudo-random synthesizers with practically the same proof of security. We now

consider the DH-Assumption modulo a Blum-integer (composite DH-Assumption). McCurley

[44] and Shmuely [58] have shown that the composite DH-Assumption is implied by the assumption

that factoring Blum-integers is hard (see also [10] for de�nitions and proof that are more consistent

with our setting). We therefore get a simple construction of pseudo-random synthesizers which is

at least as secure as factoring. In the subsequent, we give the relevant de�nitions and claims. We

omit the proofs (since they are practically the same as in Section 8.2).

To formalize the composite DH-Assumption we let this composite be generated by some polynomial-

time algorithm IG

F

. We restrict the output of IG

F

to the set of Blum-integers. This restriction

is quite standard and it is meant to simplify the reduction of the composite DH-Assumption to

factoring.

De�nition 8.3 (IG

F

) The factoring instance generator, IG

F

, is a probabilistic polynomial-time

algorithm such that on input 1

n

its output, N , is distributed over 2n-bit integers, where N = P �Q

for two n-bit primes, P and Q, such that P � Q � 3 mod 4 (such an integer is known as a

Blum-integer).

We note that the most natural distribution of IG

F

(1

n

) is the uniform distribution over 2n-bit

Blum-integers. Furthermore, it is essential that IG

F

(1

n

) would have many possible values since

otherwise factoring would be non-uniformly easy (in this respect it is very di�erent from the case

of the Di�e-Hellman instance generator, IG

DH

).

All exponentiations in the rest of this subsection are in Z

�

N

(the de�nition of N will be clear by

the context). To simplify the notations, we omit the expression \mod N" from now on. We can

now de�ne both the composite DH-Assumption and the assumption that factoring Blum-integers

is hard (for the instance generator given IG

F

):

23



Assumption 8.2 (Composite Di�e-Hellman) For every probabilistic polynomial-time algorithm,

A, for every polynomial, q(�) and all su�ciently large n's

Pr

h

A(N; g; g

a

; g

b

) = g

ab

i

<

1

q(n)

where the distribution of N is IG

F

(1

n

), the distribution of g is uniform over the set of quadratic-

residues in Z

�

N

and the distribution of ha; bi is (U

2n

)

2

.

Assumption 8.3 (Factoring) For every probabilistic polynomial-time algorithm, A, for every poly-

nomial, q(�) and all su�ciently large n's

Pr[A(P �Q) 2 fP;Qg] <

1

q(n)

where the distribution of N = P �Q is IG

F

(1

n

).

We de�ne a collection of I

4n

7! I

1

pseudo-random synthesizers, S

F

(in analogy to the de�nition

of S

DH

):

De�nition 8.4 For every 2n-bit Blum-integer, N , every quadratic-residue, g, in Z

�

N

and every

r 2 I

2n

, de�ne s

N;g;r

: I

2n

7! I

1

by:

8x; y 2 I

2n

; s

N;g;r

(x; y)

def

= g

xy

� r

Let S

n

to be the random variable that assumes as values the functions s

N;g;r

, where the distribution

of N is IG

F

(1

n

), the distribution of g is uniform over the set of quadratic-residues in Z

�

N

and the

distribution of r is U

2n

. The function ensemble S

DH

is de�ned to be fS

n

g

n2N

.

In the same way Theorem 8.2 was proven we get that:

Theorem 8.4 If the composite DH-Assumption (Assumption 8.2) holds, then S

F

is a collection of

I

4n

7! I

1

pseudo-random synthesizers.

Since the composite DH-Assumption (Assumption 8.2) is implied by the factoring assumption

(Assumption 8.3) we get that:

Corollary 8.5 (of Theorem 8.4 and of [10, 44, 58]) If factoring Blum-integers is hard (Assump-

tion 8.3), then S

F

is a collection of I

4n

7! I

1

pseudo-random synthesizers.

Finally, we can conclude that:

Corollary 8.6 If factoring Blum-integers is hard (Assumption 8.3), then there exist pseudo-random

functions that are computable in NC

2

(given a sequential precomputation which is part of the key-

generating algorithm).

24



8.4 The RSA Assumption

We now de�ne two collections of pseudo-random synthesizers under the assumption that the RSA-

permutations of Rivest, Shamir and Adleman [55] are indeed one-way (i.e. under the assumption

that it is hard to extract roots modulo a composite). This assumption is not weaker than the

factoring assumption. However, the constructions based on RSA might have other advantages. For

example, the second RSA-construction gives pseudo-random synthesizers with linear output length

under the assumption that 
(n) least-signi�cant bits are simultaneously hard for RSA. Another

reason to include these constructions is that they use several interesting techniques that might be

useful elsewhere (e.g. the multiple role played by the subset product function).

As was the case with the previous assumptions, we keep the de�nition of the RSA-Assumption

general by using some polynomial-time instance generator, IG

RSA

:

De�nition 8.5 (IG

RSA

) The RSA instance generator, IG

RSA

, is a probabilistic polynomial-time

algorithm such that on input 1

n

its output is distributed over pairs hN; ei. Where N = P � Q is a

2n-bit integer, P and Q are two n-bit primes and e 2 Z

�

'(N)

(i.e. e is relatively prime to the order

of Z

�

N

which is denoted by '(N)).

All exponentiations in the rest of this subsection are in Z

�

N

(the de�nition of N will be clear by

the context). To simplify the notations, we omit the expression \mod N" from now on. We can

now de�ne the RSA-Assumption (for the instance generator given IG

RSA

):

Assumption 8.4 (RSA [55]) For every probabilistic polynomial-time algorithm, A, for every poly-

nomial, q(�) and all su�ciently large n's

Pr [A(N; e;m

e

) = m] <

1

q(n)

where the distribution of hN; ei is IG

RSA

(1

n

) and m is uniformly distributed in Z

�

N

.

The RSA-Assumption gives a collection of trapdoor one-way permutations: the public key is

hN; ei, the function f

N;e

is de�ned by f

N;e

(m) = m

e

and the trapdoor-key is hN; e; di, where

d = e

�1

modZ

�

'(N)

(which enables e�cient inversion by the formula m = (m

e

)

d

). In Section 7 we

showed a general construction of pseudo-random synthesizers out of trapdoor one-way permuta-

tions. However, a straightforward application of this construction to the RSA collection gives very

ine�cient synthesizers. In the following few paragraphs we describe this construction, the reasons

it is ine�cient and some of the ideas and tools that allow us to get more e�cient synthesizers

(which are also computable in NC

1

).

Applying the construction of Section 7 to the RSA collection (using the Goldreich-Levin [28]

hard-core predicate) gives the following collection of synthesizers: The key of each synthesizer

is a uniformly distributed string r and for every x; y 2 I

n

, s

r

(x; y)

def

= m

d

� r, where x sam-

ples the trapdoor-key hN; e; di and y samples a uniformly chosen element m 2 Z

�

N

. The most

obvious drawback of this de�nition is that computing the value s

r

(x; y) consists of sampling an

RSA trapdoor-key. In particular, computing s

r

(x; y) consists of sampling a Blum-integer, N . This

(rather heavy) operation might be acceptable as part of the key-generating algorithm of the pseudo-

random synthesizers (or functions) but is extremely undesirable as part of their evaluation.

In the direct constructions of pseudo-random synthesizers based on RSA, we manage to \push"

the composite N into the key of the synthesizers (thus overcoming the drawback described in the

previous paragraph). Nevertheless, we are still left with the following problem: Computing m

d

in

25



NC

1

requires precomputation that depends on m. To enable this precomputation, it seems that

m needs to be part of the key as well. However, in the construction which is described above, m

depends on the input and is uniformly distributed for a random input. In order to overcome this

problem, we show a method of sampling m almost uniformly at random in a way that facilitates

the necessary preprocessing. This method uses the subset product functions. We �rst de�ne these

functions and then describe the way they are used in our context.

De�nition 8.6 Let G be a �nite group and let ~y = fy

1

; : : : ; y

n

g be an n-tuple of elements in G.

For any n-bit string, x = x

1

: : : x

n

, de�ne the subset product SP

G;~y

(x) to be the product in G of the

elements y

i

such that x

i

= 1.

The following lemma was shown by Impagliazzo and Naor [34] and is based on the leftover hash

lemma of [31, 35]:

Lemma 8.7 ([34]) Let G be a �nite group, n > c log jGj and c > 1. Then for all but an ex-

ponentially small fraction of the choices of ~y 2 (G)

n

, the distribution SP

G;~y

(U

n

) is statistically

indistinguishable within an exponentially small amount from the uniform distribution over G.

LetN be a 2n-bit integer, Lemma 8.7 gives a way of de�ning a collection of functions ff

k

: I

3n

7!

Z

�

N

g

k

which solves the problem of sampling an almost uniformly distributed element m 2 Z

�

N

for

which m

d

can be computed in NC

1

. This collection is ff

~g

g

~g

= fSP

Z

�

N

;~g

g

~g

, where ~g = fg

1

; : : : ; g

3n

g

is a sequence of 3n elements in Z

�

N

. The functions ff

~g

g

~g

have the following properties:

1. For almost all choices of the key ~g we have that f

~g

(U

3n

) is almost uniformly distributed in

Z

�

N

.

2. Following preprocessing that depends only on the key, ~g, each value (f

~g

(x))

y

can be computed

in NC

1

. The values that need to be precomputed are g

2

j

i

, where 1 � i � 3n and 0 � j �

the length of y. With these values the computation of (f

~g

(x))

y

is reduced to a single iterated

multiplication (and an additional modular reduction).

8.4.1 The First RSA Construction

For our �rst RSA construction we need to assume that it is hard to extract the e

th

root modulo

a composite when e is a large prime. To formalize this, we assume that for every possible value

hN; ei of IG

RSA

(1

n

) we have that e is a 2n-bit prime (which in particular means that e 2 Z

�

'(N)

).

Based on this version of the RSA-Assumption we de�ne a collection of I

6n

7! I

1

pseudo-random

synthesizers, S

RSA1

:

De�nition 8.7 Let N be a 2n-bit integer, let ~g = fg

1

; : : : ; g

3n

g be a sequence of 3n elements in

Z

�

N

and let r be a 2n-bit string. De�ne the function s

N;~g;r

: I

6n

7! I

1

by:

8x; y 2 I

3n

; s

N;~g;r

(x; y)

def

= (g

x

)

y

� r

where g

x

= SP

Z

�

N

;~g

(x). Let S

n

to be the random variable that assumes as values the functions s

N;~g;r

,

where the distribution of N is induced by IG

RSA

(1

n

) and ~g and r are uniformly distributed in their

range. The function ensemble S

RSA1

is de�ned to be fS

n

g

n2N

.

Note that the only reason we let y be a 3n-bit number (instead of a 2n-bit number) is to make

both inputs of s

N;~g;r

be of the same length (which not really necessary for our constructions).

26



Theorem 8.8 If the RSA-Assumption (Assumption 8.4) holds when for every possible value hN; ei

of IG

RSA

(1

n

) we have that e is a 2n-bit prime. Then S

RSA1

is a collection of I

6n

7! I

1

pseudo-

random synthesizers.

Proof. It is obvious that S

RSA1

= fS

n

g

n2N

is e�ciently computable. Assume that S

RSA1

is

not a collection of pseudo-random synthesizers. Then there exists a polynomial m(�) such that

the ensemble E = fE

n

g is not pseudo-random, where E

n

= C

S

n

(X; Y ) for X and Y that are

independently drawn from (U

3n

)

m(n)

. Therefore, there exists an e�cient next-bit prediction test,

T , and a polynomial q(�) such that for in�nitely many n's it holds that:

Given a pre�x of E

n

of uniformly chosen length, T succeeds to predict the next bit with

probability greater than

1

2

+

1

q(n)

.

We now show how to use T in order to de�ne an e�cient algorithm A such that for in�nitely

many n's

Pr [A(N; e;m

e

; z; r) = m

z

� r] >

1

2

+

1

2q(n)

where the distribution of N; e and m is as in the RSA-Assumption (with the restriction that e

is a 2n-bit prime), r is drawn from U

2n

and z is uniformly distributed over the set of 3n-bit

integers that are relatively prime to e. By Theorem 8.1, this means that m

z

can also be e�ciently

computed. Following Shamir [56], we note that given any z such that gcd(e; z) = 1 and given m

z

it

is easy to compute m. The reason is that if gcd(e; z) = 1 then m can be computed by the formula

m = (m

e

)

a

(m

z

)

b

where a; b 2Zsatisfy that ae+ bz = 1 (and can be e�ciently computed as well).

Thus, the existence of such an algorithm A contradicts the RSA-Assumption and completes the

proof of the lemma.

The algorithm A de�nes a matrix B which is almost identically distributed as E

n

. One of the

entries of B is m

z

� r (the value A tries to guess) and all other entries can be computed by A. It

is now possible for A to guess m

z

� r by invoking T on the appropriate pre�x of this matrix. In

more details, on input hN; e;m

e

; z; ri the algorithm A is de�ned as follows:

1. Uniformly choose 1 � i; j � m(n).

2. De�ne the values fh

1

; : : : ; h

m(n)

g and fd

1

; : : : ; d

m(n)

g by setting h

i

= m, uniformly drawing

all other h

u

's from Z

�

N

, setting d

j

= z � e

�1

mod '(N) and drawing all other d

v

's from U

3n

.

3. De�ne B = (b

u;v

)

m(n)

u;v=1

by setting b

u;v

=

�

((h

u

)

e

)

d

v

�

� r.

Note thatA can compute any entry b

u;v

except b

i;j

= m

z

�r. The reason is that if v 6= j then A

knows both d

v

and (h

u

)

e

and if u 6= i then A can compute b

u;j

=

�

((h

u

)

e

)

z�e

�1

�

�r = (h

u

)

z

�r

since it knows both h

u

and z.

4. Invoke T and feed it with all the entries of B up to b

i;j

(i.e. the �rst i� 1 rows and the �rst

j � 1 entries of the i

th

row).

5. Output T 's prediction of b

i;j

.

It is obvious that A is e�cient. In order to complete the proof, we need to show that if

hN; e;m

e

; z; ri are distributed as above, then B and E

n

are of exponentially small statistical dis-

tance. This would imply that (for in�nitely many n's) if we feed T with the bits of B up to b

i;j

it

predicts b

i;j

= m

z

� r with probability greater than, say,

1

2

+

1

2q(n)

. As argued above, this would

contradict the RSA-Assumption and would complete the proof.

To see that B and E

n

are indeed statistically close notice that:

27



� Since e 2 Z

�

'(N)

and 81 � u � m(n) the value m

u

is uniformly distributed in Z

�

N

, we have

that 81 � u � m(n) the value (m

u

)

e

is also uniformly distributed in Z

�

N

.

By Lemma 8.7, we therefore have that the distribution of f(m

u

)

e

g

1�u�m(n)

is statistically

close to the distribution of fg

x

u

= SP

Z

�

N

;~g

(x

u

)g

1�u�m(n)

for uniformly distributed values

fx

1

; : : : ; x

m(n)

g 2

�

I

3n

�

m(n)

and ~g = fg

1

; : : : ; g

3n

g 2 (Z

�

N

)

3n

.

� For z that is chosen from U

3n

the distribution of z � e

�1

mod '(N) and U

3n

mod '(N) are

statistically close. Since e is a large prime, even given the restriction that z is relatively prime

to e these distributions are statistically close.

Given these two observations it is easy to verify that B and E

n

are indeed of exponentially small

statistical distance. 2

Claim 8.1 The functions in S

RSA1

can be evaluated in NC

1

(given a sequential precomputation

which is part of the key-generating algorithm).

Proof. Given that the key-generating algorithm precomputes (g

i

)

2

j

for 1 � i; j � 3n, the evaluation

of functions in S

RSA1

is reduced to an iterated multiplication and an additional modular reduction.

2

8.4.2 The Second RSA Construction

The security of S

RSA1

depends on the assumption that it is hard to extract the e

th

root modulo a

composite, where e is a large prime. Here, we de�ne another collection of synthesizers under the

assumption that it is hard to extract the e

th

root modulo a composite, N , without any restriction

on the distribution of e 2Z

�

'(N)

. However, we introduce a new restriction on the possible values of

the composite N :

De�nition 8.8 Let G

n

be the set of 2n-bit integers N = P � Q such that P and Q are two n-bit

primes and '(N) has no odd factor smaller than n

2

.

It is easy to verify that if N 2 G

n

then a sequence of 3n uniformly-chosen odd-values,

~

d =

fd

1

; : : : ; d

3n

g 2 Z

N

, have a constant probability to be in

�

Z

�

'(N)

�

3n

. By Lemma 8.7, given such

a sequence, it is easy to almost uniformly sample any polynomial number of values in Z

�

'(N)

even

without knowledge of '(N). This can be done by using the subset product function

5

SP

Z

�

'(N)

;

~

d

.

Notice that here the subset product function serves an additional role to the one already described

above.

Sieve theory shows that G

n

is not too sparse. For example, denote by B(x) the number of

primes p smaller than x such that (p � 1)=2 is the product of two primes each of which is larger

than p

1=4

. Then there exists a positive constant c such that B(x) �

cx

log

2

x

. See [52] for several

results of this sort (which are more than su�cient for our purpose). As a result we get that: (a)

If the RSA-assumption holds for a uniformly distributed value of N , then it also holds under the

restriction N 2 G

n

. (b) The uniform distribution over G

n

can be e�ciently sampled (using Bach's

algorithm [5]). Given (a) and (b) it seems that this restriction is rather reasonable.

5

Actually, without knowledge of '(N), we cannot really compute SP

Z

�

'(N)

;

~

d

. However, for every input x, we can

still compute y such that SP

Z

�

'(N)

;

~

d

(x) = y mod '(N). Such a value y would be just as good as SP

Z

�

'(N)

;

~

d

(x) for our

proof.

28



Based on the RSA-Assumption with the restriction that N 2 G

n

, we de�ne a collection of

I

6n

7! I

1

pseudo-random synthesizers, S

RSA2

. In the de�nition of S

RSA2

, we use the least-signi�cant

bit (LSB) instead of the Goldreich-Levin hard-core bit. Alexi et. al. [2] showed that LSB is a hard-

core bit for RSA. Fischlin and Schnorr [22] have recently provided a stronger reduction for this

bit.

De�nition 8.9 Let N be a 2n-bit integer, let ~g = fg

1

; : : : ; g

3n

g be a sequence of 3n elements

in Z

�

N

and let

~

d = fd

1

; : : : ; d

3n

g be a sequence of 3n elements in Z

�

'(N)

. De�ne the function

s

N;~g;

~

d

: I

6n

7! I

1

by:

8x; y 2 I

3n

; s

N;~g;

~

d

(x; y)

def

= LSB((g

x

)

d

y

)

where g

x

= SP

Z

�

N

;~g

(x). and d

y

= SP

Z

�

'(N)

;

~

d

(y). Let S

n

to be the random variable that assumes as

values the functions s

N;~g;

~

d

, where the distribution of N is induced by IG

RSA

(1

n

) and ~g and

~

d are

uniformly distributed in their range. The function ensemble S

RSA2

is de�ned to be fS

n

g

n2N

.

Theorem 8.9 If the RSA-Assumption (Assumption 8.4) holds when for every possible value hN; ei

of IG

RSA

(1

n

) we have that N 2 G

n

. Then S

RSA2

is a collection of I

6n

7! I

1

pseudo-random

synthesizers.

Proof. It is obvious that S

RSA2

= fS

n

g

n2N

is e�ciently computable. Assume that S

RSA2

is

not a collection of pseudo-random synthesizers. Then there exists a polynomial m(�) such that

the ensemble E = fE

n

g is not pseudo-random, where E

n

= C

S

n

(X; Y ) for X and Y that are

independently drawn from (U

3n

)

m(n)

. Therefore, there exists an e�cient next-bit prediction test,

T , and a polynomial q(�) such that for in�nitely many n's it holds that:

Given a pre�x of E

n

of uniformly chosen length, T succeeds to predict the next bit with

probability greater than

1

2

+

1

q(n)

.

We now show how to use T in order to de�ne an e�cient algorithm A such that for in�nitely

many n's

Pr [A(N; e;m

e

) = LSB(m)] >

1

2

+

1

2q(n)

where the distribution of N; e and m is as in the RSA-Assumption (with the restriction that

N 2 G

n

). By [2], this contradicts the RSA-Assumption and completes the proof of the lemma.

The basic idea in the de�nition of the algorithm A is similar to the proof of Theorem 8.8: the

algorithm A de�nes a matrix B which is almost identically distributed as E

n

. One of the entries

of B is LSB(m) (the value A tries to guess) and all other entries can be computed by A. It is now

possible for A to guess LSB(m) by invoking T on the appropriate pre�x of this matrix. In more

details, on input hN; e;m

e

i as above, the algorithm A is de�ned as follows:

1. Uniformly choose 1 � i; j � m(n).

2. De�ne ê to be e � d, where d is almost uniformly distributed in Z

�

'(N)

(such a value d can be

sampled because N 2 G

n

).

Note that ê is almost uniformly distributed in Z

�

'(N)

3. De�ne the values fh

1

; : : : ; h

m(n)

g and fd

1

; : : : ; d

m(n)

g by setting h

i

= m, uniformly drawing all

other h

u

's fromZ

�

N

, setting d

j

= ê

�1

mod '(N) and sampling all other d

v

's almost uniformly

from Z

�

'(N)

.

29



4. De�ne B = (b

u;v

)

m(n)

u;v=1

by setting b

u;v

= LSB

�

�

(h

u

)

ê

�

d

v

�

.

Note that A can compute any entry b

u;v

except b

i;j

= LSB(m). The reason is that if v 6= j

then A knows both d

v

and (h

u

)

ê

and if u 6= i then A can compute b

u;j

= LSB

�

�

(h

u

)

ê

�

ê

�1

�

=

LSB((h

u

)) since it knows h

u

.

5. Invoke T and feed it with all the entries of B up to b

i;j

(i.e. the �rst i� 1 rows and the �rst

j � 1 entries of the i

th

row).

6. Output T 's prediction of b

i;j

.

It is obvious that A is e�cient. It is also easy to verify that if hN; e;m

e

i is distributed as above,

then B and E

n

are of exponentially small statistical distance. Therefore, for in�nitely many n's if

we feed T with the bits of B up to b

i;j

it predicts b

i;j

= LSB(m) with probability greater than,

say,

1

2

+

1

2q(n)

. As argued above, this contradicts the RSA-Assumption and completes the proof of

the lemma. 2

Claim 8.2 The functions in S

RSA2

can be evaluated in NC

1

(given a sequential precomputation

which is part of the key-generating algorithm).

Proof. Given that the key-generating algorithm precomputes (g

i

)

2

j

for 1 � i; j � 3n, the evaluation

of functions in S

RSA2

is reduced to two iterated multiplication and two modular reductions. 2

Remark 8.2 Since Alexi et. al. [2] showed that the logn least-signi�cant bits are simultaneously

hard for RSA we can adjust the functions in S

RSA2

to output logn bits. If we make a stronger

assumption, that 
(n) bits are simultaneously hard for RSA, we get a direct construction of pseudo-

random synthesizers with linear output size. Although the stronger assumption is not known to be

equivalent to the RSA-Assumption it is still quite standard.

9 Pseudo-Randomness and Learning-Theory

9.1 Synthesizers Based on Hard-to-Learn Problems

The \traditional" connection between cryptography and learning theory is using cryptographic

assumptions to deduce computational non-learnability results. Blum, Furst, Kearns and Lipton [13]

have suggested that the other direction is interesting as well. They have shown how to construct

several cryptographic primitives out of hard-to-learn functions, in a way that preserves the degree of

parallelism of the functions. A major motivation for presenting such constructions is the simplicity

of function classes that are believed to be hard for e�cient learning.

We show that, under the de�nitions of [13], pseudo-random synthesizers can easily be con-

structed from distributions of functions that are hard to learn. Thus (by the constructions shown

in this paper), two additional cryptographic primitives can be constructed in parallel out of hard-

to-learn functions: (1) pseudo-random generators with large expansion ratio (without assuming,

as in [13], that the functions are hard to learn with membership queries) and (2) pseudo-random

functions.

There is a di�erence between standard learning-theory de�nitions and standard cryptographic

de�nitions. Loosely speaking, a collection of concepts is hard to learn if for every e�cient algorithm

there exists a distribution over the concepts that is hard to learn for this speci�c algorithm. In

30



cryptographic settings the order of quanti�ers is reversed: the hard distribution should be hard for

every e�cient algorithm. In order for hard-to-learn problems to be useful in cryptographic settings

an average-case learning model is introduced in [13].

Informally describing one of the de�nitions in [13], we can say that a distribution ensemble of

functions, F = fF

n

g

2N

, is not weakly predictable on the average with respect to a distribution D

on the inputs, if the following holds: There is no e�cient algorithm that can predict f(~x) with

probability

1

2

+

1

poly(n)

, given ~x and a polynomial sequence fhx

i

; f(x

i

)ig, where f is distributed

according to F

n

and all the inputs are independently distributed according to D.

It is easy to verify that a distribution ensemble of functions, F , is not weakly predictable on

the average with respect to the uniform distribution if and only if it is a collection of weak pseudo-

random functions. Thus, by Lemma 7.1, such a distribution de�nes a pseudo-random synthesizer S,

where S(x; y) is simply f

I

y

(1

n

)

(x) (recall that f

I

y

(1

n

)

denotes the function that is sampled from F

n

using y as random bits). Using S we can construct pseudo-random generators and pseudo-random

functions. Moreover, by Lemma 3.1. the pseudo-random generator we construct may have a large

expansion ratio (n

1��

for every � > 0). The pseudo-random generator constructed in [13] under the

same assumption has expansion ratio bounded by 1 + 1=n.

9.1.1 A Concrete Hard-to-Learn Problem

Consider the following distribution on functions with parameters k and n. Each function is de�ned

by two, uniformly distributed, disjoint sets A;B � f1; : : : ; ng each of size k. Given an n-bit input,

the output of the function is the exclusive-or of two values: the parity of the bits indexed by

A and the majority of the bits indexed by B. In [13], it is estimated that these functions (for

k = logn) cannot be weakly predictable without using \profoundly" new ideas. If indeed this

distribution of functions is not weakly predictable on the average (for any k), then it de�nes an

extremely e�cient synthesizer. Therefore, using the constructions of this paper, we get e�cient

parallel pseudo-random functions.

9.2 The Application of Pseudo-Random Functions to Learning Theory

As observed by Valiant [59], if a concept class contains pseudo-random functions, then we can

deduce a very strong unlearnability result for this class. Informally, it means that there exists a

distribution of concepts in this class that is hard for every learning algorithm, for every \non-trivial"

distribution on inputs even when membership queries are allowed. Since no parallel pseudo-random

functions were known before the current work, this observation could not have been applied to NC.

Nevertheless, other techniques based on cryptographic assumptions were used in [3, 37, 38]

to show hardness results for NC

1

and additional classes. For example, Kharitonov [38] used the

following fact: after preprocessing, a polynomial-length pseudo-random bit-string (based on [11])

can be produced in NC

1

(the length of the string can stay undetermined at the preprocessing stage).

The existence of pseudo-random functions in NC might still be of interest to computational learning

theory because the result it implies is stronger than previous results. To brie
y state the di�erence,

we note that the results of [3, 37] use a very speci�c distribution on the inputs that is hard-to-learn

and the results of [38] strongly rely on the order of quanti�ers in learning-theory models which was

mentioned above (e.g. for any given learning algorithm [38] shows a di�erent hard concept which

can still be easily learned by an algorithm which has a somewhat larger running-time).

31



10 Further Research

In Sections 7-9 we discussed the existence of pseudo-random synthesizers in NC. Additional work

should be done in this area. The most obvious question is what are the general assumptions (in

cryptography or in other �elds) that imply the existence of pseudo-random synthesizers in NC. In

particular, whether there exist parallel constructions of pseudo-random synthesizers out of pseudo-

random generators or directly from one-way functions.

It is also of interest to �nd parallel constructions of pseudo-random synthesizers based on

other concrete intractability assumptions. A task of practical importance is to derive more e�-

cient concrete constructions of pseudo-random synthesizers in order to get e�cient constructions of

pseudo-random functions. As described in Section 3.3, an important contribution to the e�ciency

of the pseudo-random functions would be a direct construction of synthesizers with linear output

length.

An extensive research �eld deals with pseudo-random generators that \fool" algorithms per-

forming space-bounded computations. This kind of generators can be constructed without any

(unproven) assumptions; see [4, 47, 48, 50] for de�nitions, constructions and applications. It is

possible that the concept of pseudo-random synthesizers and the idea of our construction can be

applied to the \world" of space-bounded computations. As a motivation remark, note that the

construction in [47] bares some resemblance to the GGM construction.

In some sense we can think of the inner product function as a pseudo-random synthesizer for

space bounded computation. Let IP (x; y) be the inner product of x and y (mod 2) and let X

and Y be random length-m sequences of n-bit strings. For some constant 0 < � < 1 and s = �n

it can be shown that C

IP

(X; Y ) is a pseudo-random generator for SPACE(s) with parameter

� = 2

�
(s)

m

2

(when C

IP

(X; Y ) is given row by row). The only fact we use is that approximating

IP is \hard" in the communication complexity model (see [20, 60]).

One might also try to apply the concept of pseudo-random synthesizers for other classes of

algorithms. For example [1, 49] construct pseudo-random generators for polynomial-size constant-

depth circuits, and in general for any class for which hard problems are known.

Our primary motivation for introducing pseudo-random synthesizers is the parallel construction

of pseudo-random functions. The special characteristics of pseudo-random synthesizers lead us to

believe that other desired applications may exist. For instance, pseudo-random synthesizers easily

de�ne a pseudo-random generator with large output length and the ability to directly compute

subsequences of the output. This and the properties discussed in Section 6 suggests that pseudo-

random synthesizers may be useful for software implementations of pseudo-random generators or

functions. Another possible application of the idea of Construction 4.1 that should be examined is

to convert encryption methods that are not immune to chosen plain-text attacks into ones that are

immune.

As mentioned in the introduction, in a subsequent work [46] we describe constructions of pseudo-

random functions (and other cryptographic primitives) based on several number-theoretic assump-

tions. These functions can be computed in NC

1

(in fact, even in TC

0

) and are very e�cient. We

note that [46] is motivated by the current work and that it can be described as a direct and e�cient

construction of n-dimensional pseudo-random synthesizers (see Section 4). The question that arises

is whether there exist other such constructions of n-dimensional pseudo-random synthesizers.

An alternative direction for constructing parallel pseudo-random functions is to try and gener-

alize the philosophy behind the Data Encryption Standard (DES) while maintaining its apparent

e�ciency. Some interesting ideas and results on the generalization of DES can be found in Cleve's

work [17, 18].

32



Acknowledgments

We thank the two anonymous referees and Benny Pinkas for their many helpful comments. We

thank Sha� Goldwasser and Jon Sorenson who brought [52] to our attention and Mihir Bellare for

his observation described in Section 6.2.

References

[1] M. Ajtai and A. Wigderson, Deterministic simulations of probabilistic constant depth circuits, ADVCR:

Advances in Computing Research, vol. 5, 1989. Preliminary version: Proc. 26th Symp. on Foundations

of Computer Science, 1985, pp. 11-19.

[2] W. B. Alexi, B. Chor, O. Goldreich and C. P. Schnorr, RSA and Rabin functions: certain parts are as

hard as the whole, SIAM J. Comput., vol. 17(2), 1988, pp. 194-209.

[3] D. Angluin and M. Kharitonov, When won't membership queries help?, J. Comput. System Sci., vol. 50,

1995, pp. 336-355.

[4] L. Babai, N. Nisan and M. Szegedy, Multiparty protocols, pseudorandom generators for logspace, and

time-space tradeo�s, J. Comput. System Sci., vol. 45(2), 1992, pp. 204-232.

[5] E. Bach, How to generate factored random numbers, SIAM J. Comput., vol. 17(2), 1988, pp. 179-193.

[6] P. W. Beame, S. A. Cook and H. J. Hoover, Log depth circuits for division and related problems, SIAM

J. Comput., vol. 15, 1986, pp. 994-1003.

[7] M. Bellare, O. Goldreich and S. Goldwasser, Incremental cryptography: the case of hashing and signing,

Advances in Cryptology - CRYPTO '94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag,

1994, pp. 216-233.

[8] M. Bellare, O. Goldreich and S. Goldwasser, Incremental Cryptography with Application to Virus Pro-

tection, Proc. 27th Ann. ACM Symp. on Theory of Computing, 1995, pp. 45-56.

[9] M. Bellare and S. Goldwasser, New paradigms for digital signatures and message authentication based

on non-interactive zero knowledge proofs, Advances in Cryptology - CRYPTO '89, Lecture Notes in

Computer Science, vol. 435, Springer-Verlag, 1990, pp. 194-211.

[10] E. Biham, D. Boneh and O. Reingold, Generalized Di�e-Hellman modulo a composite is not weaker

than factoring, Theory of Cryptography Library, Record 97-14 at:

http://theory.lcs.mit.edu/~tcryptol/homepage.html

[11] L. Blum, M. Blum and M. Shub, A simple secure unpredictable pseudo-random number generator,

SIAM J. Comput., vol. 15, 1986, pp. 364-383.

[12] M. Blum, W. Evans, P. Gemmell, S. Kannan, M. Naor, Checking the correctness of memories, Algorith-

mica, 1994, pp. 225-244. Preliminary version: Proc. 31st Symp. on Foundations of Computer Science,

1990.

[13] A. Blum, M. Furst, M. Kearns and R. J. Lipton, Cryptographic primitives based on hard learning

problems,Advances in Cryptology - CRYPTO '93, Lecture Notes in Computer Science, vol. 773, Springer-

Verlag, 1994, pp. 278-291.

[14] M. Blum and S. Micali, How to generate cryptographically strong sequence of pseudo-random bits,

SIAM J. Comput., vol. 13, 1984, pp. 850-864.

[15] D. Boneh and R. Lipton, Algorithms for Black-Box �elds and their application to cryptography, Ad-

vances in Cryptology - CRYPTO '96, LNCS, vol. 1109, Springer, 1996, pp. 283-297.

33



[16] G. Brassard, Modern cryptology, Lecture Notes in Computer Science, vol. 325, Springer-Verlag,

1988.

[17] R. Cleve, Methodologies for designing block ciphers and cryptographic protocols, Part I, Ph.D. Thesis,

University of Toronto, 1989.

[18] R. Cleve, Complexity theoretic issues concerning block ciphers related to D.E.S.,Advances in Cryptology

- CRYPTO '90, Lecture Notes in Computer Science, vol. 537, Springer-Verlag, 1991, pp. 530-544.

[19] B. Chor, A. Fiat and M. Naor, Tracing traitors, Advances in Cryptology - CRYPTO '94, Springer-Verlag,

1994, pp. 257-270.

[20] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic communi-

cation complexity, SIAM J. Comput., vol 17, 1988, pp. 230-261. Preliminary version in: Proc. 26th IEEE

Symp. on Foundations of Computer Science, 1985, pp. 429-442.

[21] W. Di�e and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, vol. 22(6),

1976, pp. 644-654.

[22] R. Fischlin and C. P. Schnorr, Stronger security proofs for RSA and Rabin bits, Advances in Cryptology

- EUROCRYPT '97, Lecture Notes in Computer Science, vol. 1233, Springer-Verlag, 1997, pp. 267-279.

[23] O. Goldreich, Two remarks concerning the Goldwasser-Micali-Rivest signature scheme, Advances in

Cryptology - CRYPTO '86, Lecture Notes in Computer Science, vol. 263, Springer-Verlag, 1987, pp. 104-

110.

[24] O. Goldreich, Towards a theory of software protection, Proc. 19th Ann. ACM Symp. on Theory of

Computing, 1987, pp. 182-194.

[25] O. Goldreich, Foundations of Cryptography (Fragments of a Book), 1995. Electronic publi-

cation: http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html (Electronic Col-

loquium on Computational Complexity).

[26] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, J. of the ACM., vol. 33,

1986, pp. 792-807.

[27] O. Goldreich, S. Goldwasser and S. Micali, On the cryptographic applications of random functions,

Advances in Cryptology - CRYPTO '84, Lecture Notes in Computer Science, vol. 196, Springer-Verlag,

1985, pp. 276-288.

[28] O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, Proc. 21st Ann. ACM Symp.

on Theory of Computing, 1989, pp. 25-32.

[29] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., vol. 28(2), 1984, pp. 270-

299.

[30] J. Hastad, A. W. Schrift and A. Shamir, The discrete logarithm modulo a composite hides O(n) bits,

J. of Computer and System Sciences, vol. 47, 1993, pp. 376-404.

[31] J. Hastad, R. Impagliazzo, L. A. Levin and M. Luby, Construction of a pseudo-random generator from

any one-way function, To appear in SIAM J. Comput. Preliminary versions by Impagliazzo et. al. in 21st

STOC, 1989 and Hastad in 22nd STOC, 1990.

[32] A. Herzberg and M. Luby, Public randomness in cryptography, Advances in Cryptology - CRYPTO '92,

Lecture Notes in Computer Science, vol. 740, Springer-Verlag, 1992, pp. 421-432.

[33] R. Impagliazzo and L. Levin, No better ways to generate hard NP instances than picking uniformly at

random, Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990 pp. 812-821.

34



[34] R. Impagliazzo and M. Naor, E�cient Cryptographic schemes provably secure as subset sum, J. of

Cryptology, vol 9, 1996, pp. 199-216.

[35] R. Impagliazzo and D. Zuckerman, Recycling random bits, Proc. 30th IEEE Symposium on Foundations

of Computer Science, 1989, pp. 248-253.

[36] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memorymachines, in: J. van Leeuwen,

ed., Handbook of Theoretical Computer Science, vol. A MIT Press, 1990, pp. 869-941.

[37] M. Kearns and L. Valiant, Cryptographic limitations on learning Boolean formulae and �nite automata,

J. of the ACM., vol. 41(1), 1994, pp. 67-95.

[38] M. Kharitonov, Cryptographic hardness of distribution-speci�c learning, Proc. 25th ACM Symp. on

Theory of Computing, 1993, pp. 372-381.

[39] N. Linial, Y. Mansour and N. Nisan, Constant depth circuits, Fourier transform, and learnability, J. of

the ACM., vol 40(3), 1993, pp. 607-620.

[40] M. Luby, Pseudo-randomness and applications, Princeton University Press, 1996.

[41] M. Luby and C. Racko�, How to construct pseudorandom permutations and pseudorandom functions,

SIAM J. Comput., vol. 17, 1988, pp. 373-386.

[42] L. A. Levin, One-way function and pseudorandom generators, Proc. 17th Ann. ACM Symp. on Theory

of Computing, 1985, pp. 363-365.

[43] U. Maurer, Towards the equivalence of breaking the Di�e-Hellman protocol and computing discrete

logarithms, Advances in Cryptology - CRYPTO '94, LNCS, vol. 740, Springer, 1994, pp. 271-281.

[44] K. McCurley, A key distribution system equivalent to factoring, J. of Cryptology, vol 1, 1988, pp. 95-105.

[45] M. Naor and O. Reingold, On the construction of pseudo-random permutations: Luby-Racko� revisited,

To appear in: J. of Cryptology. Preliminary version in: Proc. 29th Ann. ACM Symp. on Theory of

Computing, 1997. pp. 189-199.

[46] M. Naor and O. Reingold, Number-Theoretic constructions of e�cient pseudo-random functions, Proc.

38th IEEE Symp. on Foundations of Computer Science, 1997.

[47] Nisan, N., Pseudorandom generators for space-bounded computation, Combinatorica, vol. 12(4), 1992,

pp. 449-461.

[48] N. Nisan, RL � SC, Proc. 24th Ann. ACM Symp. on Theory of Computing, 1992, pp. 619-623.

[49] N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci., vol. 49(2), 1994, pp.

149-167. Preliminary version: Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988, pp. 2-

12.

[50] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., vol. 52, 1996,

pp. 43{52. Preliminary version: More deterministic simulations in logspace Proc. 25th Ann. ACM Symp.

on Theory of Computing, 1993, pp. 235-244.

[51] R. Ostrovsky, An e�cient software protection scheme, Proc. 22nd Ann. ACM Symp. on Theory of

Computing, 1990, pp. 514-523.

[52] M. Ram Murty, Artin's conjecture for primitive roots, The Mathematical Intelligencer, vol. 10(4),

Springer-Verlag, 1988 pp. 59-67.

[53] A. Razborov and S. Rudich, Natural proofs, J. of Computer and System Sciences, vol. 55(1), 1997, pp.

24-35. Preliminary version: Proc. 26th Ann. ACM Symp. on Theory of Computing, 1994, pp. 204-213.

35



[54] J. H. Reif and J. D. Tygar, E�cient parallel pseudorandom number generation, SIAM J. Comput.,

vol. 17(2), 1988, pp. 404-411.

[55] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signature and public key

cryptosystems, Comma. ACM, vol. 21, 1978, pp. 120-126.

[56] A. Shamir, On the generation of cryptographically strong pseudo-random number sequences, ACM

Trans. Comput. Sys., 1983, pp. 38-44.

[57] V. Shoup, Lower bounds for discrete logarithms and related problems, Proc. Advances in Cryptology -

EUROCRYPT '97, Lecture Notes in Computer Science, Springer-Verlag, 1997, pp. 256-266.

[58] Z. Shmuely, Composite Di�e-Hellman public-key generating systems are hard to break, Technical Re-

port No. 356, Computer Science Department, Technion, Israel, 1985.

[59] L. G. Valiant, A theory of the learnable, Comm. ACM, vol. 27, 1984, pp. 1134-1142.

[60] U. V. Vazirani, Strong communication complexity or generating quasi-random sequences from two

communicating semi-random sources, Combinatorica, vol. 7, 1987. Preliminary version in: Proc. 17th

Ann. ACM Symp. on Theory of Computing, 1985, pp. 366-378.

[61] A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE Symp. on Foundations of

Computer Science, 1982, pp. 80-91.

36


