Efficient Trace and Revoke Schemes

Moni Naor* Benny Pinkas'

Abstract

Our goal is to design encryption schemes for mass distribution of data that enable to
(1) deter users from leaking their personal keys, (2) trace the identities of users whose
keys were used to construct illegal decryption devices, and (3) revoke these keys as to
render the devices dysfunctional.

We start by designing an efficient revocation scheme, based on secret sharing. It can
remove up to ¢ parties, is secure against coalitions of up to ¢ users, and is more efficient
than previous schemes with the same properties. We then show how to enhance the
revocation scheme with traitor tracing and self enforcement properties. More precisely,
how to construct schemes such that (1) Each user’s personal key contains some sensitive
information of that user (e.g., the user’s credit card number), in order to make users
reluctant to disclose their keys. (2) An illegal decryption device discloses the identity
of users that contributed keys to construct the device. And, (3) it is possible to revoke
the keys of corrupt users. For the last point it is important to be able to do so without
publicly disclosing the sensitive information.

Keywords: User revocation, broadcast encryption, tracing traitors, self enforce-
ment, copyright protection.

1 Introduction

Digital media is easy to copy and manipulate. While this has brought many useful applica-
tions it has also made pirate copying of digital content, such as music, video, or software,
a significant problem. This copying is done by users who are authorized to use the con-
tent but are not authorized to redistribute it, and incurs great losses to the producers and
distributors of the digital content. This problem affects all forms of digital distribution
in various types of media such as music, DVDs, satellite and cable television programs,
access to premium database, etc. Our goal is to design systems that prevent the abuse of
legitimate distribution channels. In particular we design schemes that support distribution
of encrypted versions of content, while enabling the following features:

1. Deterring users from disclosing their keys to other parties.

2. Tracing users who leak their decryption keys to pirates in order to construct an illegal
decryption box, and

*Dept. of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail: naor@wisdom.weizmann.ac.il. Part of this work was done while visiting Stanford University. Partly
supported by DARPA contract F30602-99-1-0530.

fSTAR Lab, Intertrust Technologies. Most of this work was done while at the Dept. of Computer Science
and Applied Math, Weizmann Institute of Science, Israel. E-mail: bpinkas@intertrust.com.

3. Revoking those keys so as to render the pirate decryption box useless.

The schemes we propose address the tracing and revocation issues simultaneously. We call
such schemes trace and revoke schemes. Furthermore, the schemes have a self-enforcement
property whereby users are deterred from leaking their keys by embedding personal infor-
mation in them. For ease of presentation we start by describing the revocation problem
separately and then go on to deal with traitor tracing and self-enforcement.

User revocation: This work presents simple and efficient methods for user revocation
(a process also known as user exclusion, or blacklisting). These methods operate in the
following scenario: a group of users receives digital content from a group controller. The
content might be, for example, TV programs or digital music transmitted over channels
such as the Internet, satellite broadcasting, cables, or DVDs. The content is encrypted,
and the decryption key is known to all members of the group. At some point the group
controller learns that some users are violating the terms of their usage license (for example,
the users might be set-top TV decoders that are known to be used for piracy, or, in the
case of DVD systems in which the players have keys for decrypting DVDs, players whose
keys were leaked). There are tracing methods for finding which users are responsible for
distributing illegal copies of the content. See [8, 27, 5, 12], and the discussion below. The
group controller must then revoke the decryption capabilities of these users. In a broader
scenario, user revocation schemes can be used in a multicast environment for fast rekeying
of a multicast group after some parties leave the group [6].

For a given revocation scheme the important factors that determine its efficiency are (1)
The communication overhead, i.e. the length of the messages sent by the center to renew
the key. This represents the wasted bandwidth (or in case of DVDs the wasted storage). (2)
Storage overhead by the users, e.g. how many keys they should store. (3) The computational
overhead of key update, especially by the users.

The schemes we present enable the revocation of the keys of up to ¢ users from a universe
of n users (where t is a parameter), and are secure against coalitions of up to ¢ revoked
users. Our schemes are efficient in all three criteria : key length, communication overhead,
and computation of the new group key. In particular, none of these parameters depends on
the total number of users, n. The personal key length is constant, the communication and
computation overheads are only linear in ¢.

We present a very appealing mode of operation for revocation. It enables to remove up
to t users in the worst case, with the overhead specified above, but performs much better
when only a few users have to be removed. In particular when ¢ users should be removed
(where ¢ < t), the communication overhead is just c. After removing ¢ users the scheme
is ready to remove up to ¢t — ¢ additional users. The group controller can send additional
maintenance messages to the users (possibly in periods when the bandwidth of the network
is not fully utilized) to regain the original worst-case guarantee of the scheme and prepare for
a revocation of up to ¢ new users (this maintenance mode is more appropriate for connected
devices such as PCs and set-top boxes, than to an “off-line” device such as DVDs).

We note that a revocation scheme similar to the one we present in Section 2 was dis-
covered independently by Anzai et al [1] (but without the tracing or self-enforcement ex-
tensions).

Tracing and self enforcement: While revocation may be applied in several scenarios
(e.g. to enforce payments) in this work we emphasize its deployment in conjunction with
methods that combat leaking of keys. There are two non-exclusive approaches for combating
leakage: (1) Tracing the corrupt users which leaked their keys. I.e. given a pirate box finding
the source of its keys; this is known as traitor tracing. (2) Deterring users from revealing
their personal keys to others, a task we denote as self enforcement.

The self enforcement property is obtained by giving each user a personal key which
contains some sensitive information private to him/her, for example the user’s credit card
number. This personal key is required for the decryption of the content. It is reasonable to
assume that users would be reluctant to disclose such personal and sensitive keys to pirates,
and even that few users would be willing to give these keys to their friends and neighbors.

Self enforcement schemes achieve two goals: They prevent small scale piracy (e.g. a
user giving his key to a friend), a task not managed by other copyright protection schemes.
They also make it harder for pirates to obtain users’ keys. This goal is very important since
most of the complementing schemes that fight piracy (such as our revocation schemes) are
successful only if the pirate obtains less than a threshold of ¢ keys, where ¢ is a parameter
which affects the overhead of the scheme. Using a self enforcement scheme justifies the use
of a smaller threshold ¢, thus improving the efficiency of the schemes.

We describe in Section 3 schemes that enable self enforcement, traitor tracing, and user
revocation. The combination of these properties is not limited to revoking users that are
found to be corrupt. Section 3.6 describes how to perform periodic refresh of the group key,
such that only users that have a personal key (which contains their sensitive information)
can compute an updated group key and continue to use the system, while users that only
have the group key and no personal key cannot keep the value of the group key updated.
This is a very strong security property that is important even for scenarios where it is not
expected that users be revoked on a regular basis. In addition, we describe how to combine
revocation with combinatorial tracing schemes, such as those in [8, 27].

1.1 Overview of the Results

The scenario: We consider the following scenario. There is a group of n users that share
the same key (i.e., the key with which the content is encrypted). A group controller GC is
responsible for controlling the decryption capabilities of these users. The GC might have a
common secret key with each of the users, which enables them to communicate via a private
channel, but these channels are not directly used by our schemes. The GC prepares keys for
the trace and revoke scheme in an initialization phase, and gives each user a personal key.
At a certain point a subgroup of up to ¢ users is disallowed from continuing to decrypt the
content and therefore a new key should be generated by the GC and become known to all
other n — ¢ users. Further group communication should be encrypted with the new key.

Revocation can be trivially achieved in the following way. The GC generates a new group
key and sends it independently to each of the n —¢ remaining members of the group, using a
private channel between them. This scheme is, however, very inefficient. Its communication
overhead is O(n — t) and might be very large. (A typical a group might include a million
users, from which a hundred users should be removed.) The overhead of our schemes, in
contrast, depends only on ¢.

The basic idea: The basic idea of our revocation scheme is to use secret sharing in
the following way: The group controller prepares in advance a key to be used after the
revocation. In the initialization phase each user receives a share of this key. In the revocation
phase the GC broadcasts the shares of the revoked users. Each other user can combine this
information with its own share and obtain the new key, while even a coalition of all the
revoked users does not have enough shares to compute any information about the new key.

The schemes: We present three types of revocation schemes that can be used to revoke
the keys of up to ¢ users, where ¢ is a parameter. The overhead of all schemes is the
following: each user has a key of constant length, essentially an element in a field, the
revocation message is of length O(t), and the overhead of computing a new key by a user
depends only on ¢.

e Schemes for a single revocation. These schemes are information theoretic secure and
can be used for one revocation of up to ¢ users.

e Schemes for many revocations. These schemes can be used to perform many revocations
of up to t users in each revocation. They are based on a number theoretic assumption
— The Decisional Diffie-Hellman assumption [3]. These schemes are important if the
keys are to be changed periodically.

e A Scheme with tracing and self enforcement. We present a scheme for many revoca-
tions/key changes, which relies on the Decisional Diffie-Hellman assumption.

In addition, we present three preferred modes of operation:

e A usage mode for the single revocation schemes, which enables better efficiency if the
common operation is the revocation of only a single or a few users.

e Using the self enforcement scheme for periodic key refreshment: The group key is
changed periodically using the self enforcement scheme. This ensures that every user
that is capable of decrypting the content has a personal key that contains sensitive
information.

e Combining revocation with combinatorial tracing schemes.

The most interesting aspect of our schemes is the combination of all three features -
revocation, traitor tracing and self enforcement.

1.2 Related Work
Revocation

Broadcast encryption schemes (Fiat and Naor [17]) enable the GC to encrypt messages to
an arbitrary and dynamically changing subset of the users. Therefore they address a more
general problem than revocation schemes, or at least a different parameterization (which
allows removal of an arbitrary number of users from the group with an overhead that does
not depend on the number of removed users). When applied to the removal scenario the

broadcast encryption schemes can remove any number of users under the assumption that at
most k£ of them collude. Broadcast encryption schemes are, therefore, asymptotically more
efficient than revocation schemes if the number of users that must leave the group is large.
In particular, the size of a personal key in the most efficient broadcast scheme is logarithmic
in k, and the communication overhead is proportional to klog?k and independent of the
number of removed elements (the users do need to know the identity of the revoked users,
but this is independent of the revocation message).

The goals of the work of Kumar et al. [21] are similar to those of our basic revocation
scheme (Section 2.1). Their method enables a one-time revocation of up to ¢ users, secure
against a coalition of all the revoked users. They present several constructions based on
cover-free sets with revocation messages of length O(tlogn) as well as O(t2).

The tree based revocation scheme of [33, 35] uses a basic procedure that revokes the key
of a single user and updates the keys of all other users in the group. This procedure can be
used repeatedly to remove any number of users from the group, and is secure against any
coalition of corrupt users. Each user has to store logn keys, and the revocation of each user
requires a broadcast message of length 21log n (the length of this message is reduced to logn
in [6]). The lower bound of [7] demonstrates that these schemes are optimal in some sense.
A major problem of revocation schemes of this type is that they require users to receive
and process all previous revocation messages in order to be able to update the group key.
In particular, a user that rejoins the group after being offline for a while must process all
the revocation messages that were sent in his absence. If these schemes are adapted for the
scenario considered in this paper, then we get the following performance: a revocation of
t users implies sending a message with O(tlogn) keys, as well as a similar computational
overhead. The key of each users contains O(logn) encryption keys.

Tracing and self enforcement

The goal of traitor tracing is to trace the source of keys of illegal decryption devices. Traitor
tracing schemes distribute decryption keys to users in a way that guarantees that a pirate
decryption device that is constructed using the keys of at most ¢ users (traitors) reveals
the identity of at least one of them. The schemes of [8, 27, 9] are based on combinatorial
and probabilistic constructions, and ensure tracing with high probability. They enable
“black box tracing”, i.e., tracing when there is no way to examine the inner contents of the
pirate decryption device, and where it is only possible to examine the reply of the device
to different ciphertexts.

The public key tracing scheme of Boneh and Franklin [4] is based on a number theoretic
assumption (the Decisional Diffie-Hellman assumption), and has a deterministic tracing
guarantee given extracted keys in canonical form. It also has a black-box confirmation test
(see discussion at Section 3). In addition, it supports public key encryption in the sense
that any party can encrypt messages to the group. Our multi-revocation traitor tracing
scheme uses many of the ideas of [4], in particular the concepts of black-box confirmation
and the tracing via decoding. A one-time and a multi-time tracing schemes, based on
polynomials, are described in [22]. The multi-time tracing scheme of [22] was shown to be
insecure in [31, 4]. The flaw in the design of that scheme is that although it enables to trace
the source of any single key, it does not prevent the traitors from generating an untraceable

combination of their keys, which can serve as a decryption key.

In a recent work Kiayias and Yung [20] examined the conditions that enable a tracing
scheme to support “black-box tracing”, namely tracing the identities of corrupt users while
treating the pirate decoding device as a black-box that need not be opened (this is compared
to a tracing algorithm that requires to reverse engineer the pirate decoder and reveal the
keys that it uses). One of the results in [20] shows that the public key tracing schemes
of [4, 22] cannot support black-box tracing if the number of traitors is w(logn), while the
schemes of [8, 27, 9] support black-box tracing in these situations. The tracing schemes we
suggest fall into the former category and therefore cannot support black-box tracing if the
number of traitors is w(logn).

Naor, Naor and Lotspiech [26] describe two very efficient methods supporting both
revocation and tracing. The schemes are secure against coalitions of any size. They require
users to store personal keys of length logn and %loan keys respectively (where n is the
total number of users). Revocation of r users is done using messages of length rlog N and
2r keys respectively.

The notion of self enforcement was suggested by Dwork, Lotspiech and Naor [14] who
also proposed a signets scheme with this property. The signets scheme is rather efficient
— the computational overhead (for the users) of changing the group key involves a constant
number of modular exponentiations and does not depend on the group size or on the size
of the coalitions against which the system is secure. The schemes we develop in this paper
can be seen as a combination of the signets scheme [14] and public-key tracing [4].

Combinatorial tracing constructions are further discussed in [32, 18]. They use a basic
set of independent keys, and assign each user’s personal key to be a subset of the set of keys.
In particular, the work of [18] discusses the combination of such scheme with revocation
schemes (although in the terminology of [18] “broadcast encryption” refers to schemes
that we denoted as revocation schemes). It describes two methods for integrating tracing
and revocation schemes: adding revocation capabilities to any tracing scheme (at the cost
of implementing the revocation using an OR protocol, whose communication overhead is
high), and adding tracing capabilities to any revocation scheme (at the cost of increasing
the number of keys by a factor of 2t?).

2 Revocation Schemes

Secret sharing: We base our work on threshold secret sharing [29, 2]. A k-out-of-n thresh-
old secret sharing scheme divides a secret into n shares such that no k — 1 of them disclose
any information about the secret while any k shares suffice to recover it. In principle we
could apply any secret sharing scheme that maintains a sharp threshold, however, we choose
to use Shamir’s polynomial based secret sharing scheme [29] that operates in the following
way. Let F be a field, and let S € F be the secret to be shared. In order to share the
secret a random polynomial P of degree k — 1 is generated over F subject to the constraint
P(0) = S. The ith share is defined as P(i). Given any k shares it is easy to interpolate
the polynomial and reveal S = P(0) (this requires O(k log? k) multiplications using FFT,
or O(k?) multiplications using Lagrange’s interpolation formula). It is straightforward to
verify that any k£ — 1 shares do not disclose any information about the secret.

2.1 A Scheme for a Single Revocation

The following scheme can be used for a single revocation of up to t users with a communi-
cation overhead of O(t) and security against a coalition of all the ¢ revoked users.

2.1.1 The basic scheme

The scheme operates over a field F such that a random element in F can be used as an
encryption key of a symmetric encryption scheme (e.g. |F| > 280). (This is required since
this key is used as the group key after the revocation.) Each user u receives an arbitrary
identifier I,, € F.

Initialization: The GC generates a random polynomial P of degree ¢ over F, (this poly-
nomial can be used for (¢ + 1)-out-of-n secret sharing). It sets the secret key S, to be used
after the revocation, to be S = P(0). The GC provides each user u, over a private channel,
with a personal key K,, = (I,,, P(I,)).

Revocation: The group controller learns the identities of ¢ users I, ..., I,, whose keys
should be revoked. The GC broadcasts the identities and the personal keys of these users:

(Tugs P(Luy))s -+ (Tugs P(Iuy)

Each other user u can combine its personal key K, with these ¢ keys, and using these ¢ + 1
shares interpolate P and compute the key S = P(0). The GC uses S as the new group key
with which it encrypts messages to the non-revoked users.

If the GC prepares a scheme to revoke ¢ users, and only ' < ¢ users should be removed,
it can perform the revocation by sending the shares of these ¢’ users and additional ¢ — ¢’
values of P, at locations that are different from the identity I, of any other user.

Theorem 1 In the above scheme a coalition of all the t revoked users does not have any
information about the new key.

Proof: The property follows immediately from the security of Shamir’s secret sharing
scheme, since the coalition has only ¢ shares. O

Note that the GC can add new users to the group even if they join the group after
the initialization stage. It simply assigns them an identity and provides them with the
corresponding value of P.

Storage and communication overhead: The secret key that each user has to keep is
a single element of F, i.e. of the same length as the keys that are used to encrypt the
communication (the identity I, need not be secret). The revocation message is of length
2t|F| (where |F| is the size of a representation of an element from F). To further reduce
the communication overhead the identities of the users can be defined in a small subset of
F, resulting in a revocation message of length ¢(|F| 4 logn).

Reducing the computation overhead: The computation of the new group key by a
user involves an interpolation of the free coefficient of P, and requires O(tlog? t) multiplica-
tions using FFT, or O(#?) multiplications using Lagrange interpolation. This computation
overhead can be reduced in two ways:

e The Lagrange interpolation formula is, given P(I,),..., P(Iy,),

t
L.
PO)=%" H#i%P(Iui).
i=0 wj i

The GC knows the identities of ¢ of the wu;’s, namely the revoked users, and can
therefore precompute and broadcast, for ¢ Lagrange coefficients, the corresponding
multiplications between these values. This reduces the computation that a user has
to perform in order to compute P(0) to O(¢) multiplications, at the cost of increasing
the communication overhead by |F|¢ more bits.

e Instead of using a single polynomial (say, over a field F of 80 bits), the scheme can use
¢ independent polynomials over a field of size F/c bits, and use the concatenation of
their values at 0 as the new group key. The computation of the new group key involves
multiplications over the smaller field and is therefore more efficient (furthermore, the
Lagrange coefficients should be computed only once, since the same coefficients are
used for all the polynomials).

2.1.2 Preferred usage mode

In a typical scenario the GC should be ready to simultaneously revoke up to ¢ users in the
worst case, but most of the times it is required to revoke only a single user or a few users. In
such cases t copies of the basic revocation scheme can be used to enable revocation of up to
t users in the worst case, and enable more efficient revocation of fewer users. In particular,
a single user can be revoked with only O(1) communication and O(t) computation (between
the time that the need for revocation of the user arises and the actual revocation). After
the revocation, the GC sends short maintenance messages to the users, to return the scheme
to its original state (i.e., being capable of removing up to ¢ users in the worst case).

Initialization: In the initialization phase the GC prepares ¢ revocation schemes RS1, ..., RSy,
such that scheme RS; can be used to remove ¢ users. That is, scheme R.S; uses a polynomial
F; of degree i. Each user u is given a share from each of the schemes, i.e., u is given a key
of length t + 1, consisting of (I, P1(Iy), ..., Pi(Iy)).

The schemes are used one after the other. Scheme RS; is used to remove the ith user
that should be revoked (and still prevent the previous i — 1 revoked users from learning the
new key).

First revocation: Suppose that the first user to be revoked is u;. The GC broadcasts
(I,,, P(Iy,)), and all other users use scheme RS; to compute P;(0), which is defined to be
the new group key. Both the communication and computation overhead of this revocation
are O(1).

Maintenance: After removing user u; the GC can restore the system to its original state,
ready for the revocation of up to ¢ users. It broadcasts the shares of the other polynomials
that were known to wuy, namely Py(I,,),...,P;(I,,). This broadcast is not urgent (since
uy is already revoked) and can be done when the network has idle bandwidth. After this
broadcast every polynomial P;, 2 <7 < ¢, has only i — 1 missing shares. For the purpose of
secret sharing this reduces the degree of the polynomial by 1, and we can, therefore, denote
these polynomials as P{,..., P/_;, of degrees 1,...,t — 1 respectively. At this time the GC
can revoke up to ¢ — 1 additional users. To be able to revoke ¢ users it prepares a new
polynomial P/ of degree ¢, and P/(0) is defined to be the new key after ¢ more users would
be removed. The GC uses private channels with the users to send shares of P/ to all users
who are currently active (non-revoked).

Note that additional revocations can be performed during the maintenance phase (i.e.,
before all the shares of P} are sent), as long as at most ¢ — 1 additional users have to be
removed. At the end of the maintenance phase the system returns to the state it had before
the first revocation and can be used to revoke up to t users. This combination of instant
revocation, and system maintenance during off-peak usage, seems optimal for systems that
need prepare for the worst case, but expect only a few revocations during normal operation.

Additional Revocations: The first revocation uses a linear polynomial P;, and, there-
fore, P;(0) is computed in constant time. Future revocations of single users employ poly-
nomials of higher degrees, up to degree t. After the tth revocation, all revocations use
polynomials of degree ¢. Consider a revocation with a polynomial of degree ¢ that ¢ — 1 of
its shares were broadcast in maintenance phases. Denote such a polynomial as P*. In the
revocation itself users should compute P*(0). Each user obtained ¢ of the shares in advance
(his own share plus the ¢ — 1 shares that were broadcast). The user can start the compu-
tation of P*(0) before the last share is broadcast, i.e. before the revocation, and therefore
the online overhead of computing P*(0) is only O(¢) (using Lagrange’s interpolation), while
the communication overhead is only O(1).

Security: Fach polynomial can be used to revoke up to ¢ users. Since the maintenance
steps generate new a polynomial whenever a new polynomial is used, the system can be
used to revoke the keys of an unlimited number of users, as long as at most ¢ of them collude
before their revocation.

Overhead: Each user keeps a secret key of length ¢ that contains his shares for each of the
polynomials. In addition, he might keep O(#?) shares that were broadcast in maintenance
phases. The center keeps a secret key of length O(t?), i.e., the coefficients of ¢ secret
polynomials of degree ¢ + 1.

The online communication overhead of a revocation is O(1) (a single share). The online
computation overhead of revoking a single user is O(t) (although the overhead of revoking
each of the first ¢ users is smaller), and the online computation overhead of a revocation
of t <t users is O(t#t'). Each maintenance stage involves the GC sending a single share to
each of the users in the group. This overhead should be less important since these messages
can be sent when the network is idle.

2.2 A Scheme for Many Revocations

The basic polynomial based scheme is good for a single revocation and requires the group
controller to distribute additional keys (shares) to support more revocations. In the fol-
lowing scheme each user has a single key that is good for a virtually unlimited number of
revocations, as long as at most ¢ revoked users collude together to compute keys they should
not receive. The scheme is based on the Decisional Diffie-Hellman assumption.

2.2.1 The Decisional Diffie-Hellman assumption

The Decisional Diffie-Hellman assumption (DDH) is useful for constructing efficient crypto-
graphic primitives with very strong security guarantees. These include the Diffie-Hellman
key agreement protocol [13], the El Gamal encryption scheme [15], pseudo-random func-
tions [28], a construction of a cryptosystem secure against chosen ciphertext attacks [10],
and more.

The DDH assumption involves a cyclic group G and a generator g. Loosely speaking, it
states that no efficient algorithm can distinguish between the two distributions (g2, g°, ¢*)
and (g%, g%, g°), where a, b, c are randomly chosen in [1,|G|]. We refer the reader to [3, 28]
for further discussions of the assumption.

2.2.2 Revocation schemes

The schemes operate over a group Z, of prime order. More specifically, Z, can be a subgroup
of order ¢ in Z;, where p is prime and g|p — 1. Let g be a generator of Z,, such that the
Decisional Diffie-Hellman assumption holds for Z; and g. The schemes applies an idea first
suggested by Feldman [16] of doing Shamir’s secret sharing in the exponents.

Initialization: This process is performed once, for all future revocations. The GC gener-
ates a random polynomial P of degree ¢ over Z,. It publishes p and ¢ and sends to user u
(via a private channel) a personal key K, = (I, P(I,)), where I, is a non-secret identifier
associated with u.

We suggest two variants of revocation. The first can be used for many revocations as
long as at most ¢ users are prevented from learning the group key at any given time. The
second method can be used for many revocations of an unlimited number of users, as long
as less then ¢ of them should be revoked in a single revocation.

Revocation method 1: The GC learns the identities of ¢ users I, , ..., I, that should
be revoked. It then chooses a random r € Z; and sets ¢""0) to be the new key that should
be unknown to the removed users. The GC broadcasts the following message (in the clear):

9" Ly, g Py (1, g7 P)

Each non-revoked user u can compute (¢")’('») and combine it with the broadcasted

values, to interpolate the key ¢"”(®). This is done as follows: Recall Lagrange’s interpolation
formula for a polynomial P of degree ¢ from its ¢ 4+ 1 values at points zo, ..., z¢,

10

where the \;’s are Lagrange coefficients that depend on the z;’s, i.e. \; = H#iz—_x%. There-
7 [
fore

rP(0) _ _rxt

g t_oNiP(xi)

— ngogr/\ip(zi) .

Given t 4 1 pairs (I, g""("»)) this formula shows how to compute ¢""(©).

Revocation method 2: This method is identical to method 1, except for the GC broad-
casting the revocation message (¢, (I, 9" (w1, ..., (I,,,g"P"«))) encrypted using the
current group key. This ensures that only current group members can read this message.

Theorem 2 Revocation method 1 can be used for repeated revocations as long as up to
t users should be prevented from learning the group key at any given time. The method
is secure against coalitions of at most t revoked users. Namely, such a coalition cannot
distinguish between a group key it should not learn and a random value.

Proof: The proof is based on the Decisional Diffie-Hellman assumption. For the sake of
clarity we first present the details for the case of ¢t = 1.

Assume that the scheme with parameter ¢ = 1 is insecure and can be broken by user v.
This user runs an algorithm D’ that receives the following inputs: a value P(I,) of the linear
polynomial P and polynomially many tuples (", g"i"(I2) g7iP(0)} generated with randomly
chosen r;’s , and a pair ¢",¢""U»). (The tuples (¢"i,g" ") ¢"iP©)) become known to
the user during revocation operations in which other users were revoked. In addition the
user might of course learn other values of exponents of the polynomial, but these can be
computed from the values in (g"i, g""("), g"P(©)}) If the scheme is insecure then D’ can
then distinguish between ¢"F(©) and a random value.

Construct an algorithm D that uses D’ to break the DDH assumption. D is given input
g% g°, and a value C that is either g or random. D generates inputs to D' (planning
to set P(0) = b and r = a). Tt generates a random key (I, P(I,)) and gives it to D'. Tt
then generates random r;’s and gives the tuples (g"i, g"i"("»), g"i%) to D'. Then it gives the
values (g“,g“P(I”), C) to D', and outputs the same answer that D' outputs for the decision
whether C is equal to g% or not. D’s success probability in breaking the DDH assumption
is the same as the probability of D' breaking the revocation scheme.

Now consider a coalition of ¢ corrupt users, say users 1,...,¢. These users run an algo-
rithm D' that receives the following inputs: values P(Iy),..., P(I;) of the linear polynomial
P at locations Iy, ..., I;, polynomially many tuples (g"i,g""0) . griP(It) griP(0)} gener-
ated with randomly chosen r;’s (these values became known to the coalition from revocation
messages in which at least one of the coalition members was not revoked), and a tuple of
the form ¢", ¢""UV) ..., ¢g"PU) (that is, for every value P(I,) known to the coalition, there
is a corresponding value ¢"”+) in the tuple). If the scheme is insecure then given this
information D’ can distinguish between ¢"”(©) and a random value.

Using D' we can construct an algorithm D that breaks the DDH assumption. It is given
input ¢%,¢%, and a value C that is either g% or random. D then generates inputs to D’
(planning to set P(0) = b and r = a). Tt generates random keys {(;, P(I;))}:_; and gives
them to D’. Tt then generates random r;’s and gives the tuples (¢, grib) o griP(I) g"i?)
to D'. Then it gives the values (¢%,¢*"V) ... ¢) to D', and outputs the same
answer that D’ outputs regarding whether C' is equal to ¢®* or not. D’s success probability

11

in breaking the DDH assumption is the same as D"’s probability of breaking the revocation
scheme. O

Theorem 3 Revocation method 2 can be used for repeated revocations of an unlimited num-
ber of users, and supports revoking up to t users at any invocation. It is secure against
coalitions of at most t revoked users.

Proof: Consider any coalition of ¢ revoked users. The revocations of these users could
have occurred in several rounds. Denote the group key that is communicated in the ith
revocation as S;. Suppose that all members of the coalition were revoked and consider
the round, say round /, in which the last coalition member was revoked (it could be that
coalition members move in and out of the group, but we are interested in a time in which
none of them is a group member, and in particular Sy_; is the last group key that any of
the coalition members should know). Theorem 2 ensures that the coalition members cannot
distinguish between Sy, the group key sent in round ¢, and a random value. Any future
group key, Sy,, m > £, is independent of the information sent before the mth revocation. If
the coalition can distinguish S, from a random value then (assuming that the encryption
functions that use S, are secure) it can distinguish between the information sent in the mth
revocation and random. Assuming that the encryption function is secure, this means that
the coalition can distinguish between S,,_1, the group key with which the mth revocation
message was encrypted, and random. Repeating this argument m — £ times we get that the
coalition can distinguish between S; and random. A contradiction. O

Note that the scheme enables the GC to add users to the group even if their identities
become known only after the initialization stage.

Overhead: The secret key that each user keeps is just a single element of Z,. In order
to compute the new key a user should perform ¢ exponentiations; note that the overhead
can be considerably reduced by using simultaneous multiple exponentiations (See Chapter
14.6.1 in [25]). The revocation message is of length O(t). More specifically, it contains ¢+ 1
elements in Z7, and ¢ elements in Z;. (|Z,| can be considerably shorter than [Z;|. For
example, it is common to set |Z;| = 160 and |Z;| = 1024.)

2.2.3 Usage

After revoking a certain user the GC can decide to restore the access permissions of the
user. This does not require the GC to give a new key to that user, and more importantly,
does not require sending new keys to any other user. The users can use their old keys for
processing all future revocation messages that the GC sends.

The scheme is appropriate for scenarios in which very fast revocation is required, but it
should also be possible to easily retrieve the capabilities of users whose keys were mistakenly
revoked. Consider for example a GC that learns that one of a certain group of users leaked
keys to pirates. The GC can quickly revoke the permissions of all the users in the group and
prevent further leakage of encrypted content. It is then possible to verify which of these
users is helping the pirates, and restore the permissions of all other users in this group. This
process does not require changing the revocation keys of these users or of the users who

12

were not revoked (in fact, they can remain oblivious to the fact that revoked users rejoined
the group).

Another useful application is where the group controller wishes to degrade the quality
of the keys of some users (say the keys of users who are late in payments). This can be
done by revoking them temporarily out of some content, where the censored information is
chosen at random. In more detail, assume that there is a list of £ users uy,...,uy that are
late in their payments. To encourage these users to pay their debts the group controller
chooses, once every short period of time, a random subset of ¢ of these £ users and uses the
above scheme to distribute a group key that these users cannot decrypt. This key is used to
encrypt the content during the next time period. In the following time period these users
will be able to decrypt correctly without additional communication with the GC.

3 Combining Revocation with Self Enforcement and Tracing

We present a user revocation construction with self enforcement and tracing capabilities.
The construction is for many revocations, and builds upon the signets construction of [14]
and the public key tracing construction of [4]. A delicate issue in self enforcement is that
the scheme must preserve the privacy of the revoked users. Namely, the revocation message
must not reveal the sensitive information of these users. (In other words, although users
that give their keys to pirates reveal their sensitive information to the pirates, we do not
want the revocation mechanism to reveal this information to other users.)

In order to obtain the self enforcement property the GC should incorporate in each
user’s personal key some private information, for example the user’s credit card number or
social security number (in these cases it is clear that the center is not allowed to publicly
reveal the private information even if the user has abused the system.). Few users would
be willing to hand this information to others, and in particular not to pirates who are
doing illegal activities. The tracing property enables to identify, given an illegal decryption
device, which users’ keys were used in constructing the device. The combination of these
two properties provides a very powerful tool against piracy.

There is of course a trivial method for incorporating each user’s sensitive information in
the personal key: The personal key can simply be the sensitive information concatenated
to some random data, so that keys of different users are essentially independent. This
approach requires the GC to encrypt messages independently to each user, and results in
an O(n) communication overhead for a key change in a group of n parties. The schemes
that we describe perform much better, in particular the communication overhead per key
change does not depend on the number of users in the group.

The scenario: When a user u registers with the GC it provides some private information,
Sy. This can be, for example, u’s credit card number, which becomes known to the GC as
part of the payment process for the content that w is purchasing. The GC then gives u a
personal key K, that operates in conjunction with S,. Loosely speaking, self enforcement
means that any useful key that the user gives to a pirate must contain S,. Tracing means
that using the personal keys of the members of a coalition of ¢ members uq,...,u;, it is
impossible to construct a decoder that does not disclose the identity of one of wuq,...,u;
and has the same functionality as one of the personal keys.

13

There are different kinds of tracing properties that are supported by our scheme:

e Black-box confirmation: Given a pirate box and a suspected subset of at most
t users we present an effective method for testing whether the box was constructed
with the help of the suspected users, as long as the keys of at most ¢ corrupt users
were used to generate the pirate decoding box. This is called black-box confirmation
since there is no need to “open” the box and find the explicit key that it uses. It is
sufficient to treat the decoder as a black box and examine how it reacts to different
messages it receives.

e Tracing: Better tracing can be achieved if the tracing process is able to to examine
the contents of the decoding device and extract the keys that it uses. In this case, if
the keys are in a canonical form (defined below), and at most ¢/2 users contributed
keys to the pirate, the tracing algorithm can find all the contributors to the key.

A note on black-box tracing: Black-box tracing is of course preferable to a tracing al-
gorithm that requires to “open” the pirate decoding device and identify the key that it uses.
We were not able to design a black-box tracing algorithm, except for an O((’t’)) algorithm
that uses black-box confirmation by starting from a group of suspects that contains the set
of traitors and then narrowing it down until a traitor is identified. Our inability to support
black-box tracing is not surprising given the recent result of Kiayias and Yung [20], which
showed that black-box tracing is impossible in a system like ours if the number of traitors
is w(logn).

3.1 A Simple Scheme for Many Revocations

A natural approach for embedding the user’s sensitive information in a scheme like that of
Section 2.2 is to make the user identity I, equal to his or her sensitive information. The
problem however is that the revocation message includes I,, in the clear, thus revealing the
sensitive information of the revoked user to everyone. Instead we define the key of each user
to be a pair (x,, P(z,)) such that P(z,) enables the extraction of the sensitive information
of the user. This allows sending revocation messages that contain the coordinate z, in
which a user’s share is defined, but do not disclose the sensitive information of the revoked
users. We describe the scheme, first with a simplification of the key assignment.

The simplified scheme operates over a group Z; of prime order, for example where Z; is
a subgroup of order ¢ in Z;, where p is prime and g|p — 1. Let g be a generator of Z;, such
that the Decisional Diffie-Hellman assumption holds for Z; and g. The scheme operates as
follows:

e Secret key of the group controller: a polynomial P(z) = 3.¢_,a;z" in Zy.

e Key of user u: The user has sensitive information S,. It receives a key that is a
pair (zy, P(zy)), s.t. P(z,) = S,. (Warning - this step is refined below).

¢ Replacing the group key: When the GC wishes to replace the key (without any
user revocation), it chooses a random value r, and sets the new key to be ¢g"" ©). The
GC broadcasts a key change message that contains ¢" and ¢ pairs (i,g”P(z)) (The 1

14

values can be arbitrary as long as they do not equal z, for any user u). Each user
computes (g’")P(I“) and interpolates ¢"7(©) using the t+1 values of ¢"P() that it knows.

e Revocation: It is possible to revoke up to ¢ users vy,...,v;. The GC replaces
the group key, but instead of broadcasting pairs (i,¢"" (1)), it broadcasts t pairs
(z0,,9"F (#;)), which are generated using the personal keys of the revoked users.

Generating the users keys: In order to generate the personal key of user u the GC
should solve the equation P(z,) = S,. This can be done efficiently using the algorithm of
Berlekamp for factoring polynomials in finite fields [11]. There are however several problems
with this approach that require refining it:

e There is a chance that the equation P(x,) = S, has no solution. This happens with
the same probability that a random polynomial of degree ¢ is irreducible, which is
roughly 1/t.

e While random polynomials of degree t are (¢ + 1)-wise independent, we do not know
how to show that this independence is preserved when the query is “in reverse” (i.e.
where the result of the polynomial P(z) is given and the point z is then computed,
as is the case with this scheme).

e One possible remedy to both problems is to use two polynomials P; and P» and two
user keys z. and x2 such that Pj(zl) + Py(22) = S,. The new group key will be
g"P1(0) 4 g7P2(0) " Thig solution could provide tracing but is not self enforcing since a
user can sell “half” a key, i.e. only one of the x,’s.

e The fact that the sensitive information S, is not being broadcast prevents someone
with no information about S, from retrieving it, but the protocol does not prevent
verification of an a-priori guess about S, by any user who was not revoked. (For
example, if S, is the user’s mother maiden name and u is revoked, one could check
whether this name is one of the 100 most common English names, by checking if g"
to the power of any of these names is equal to g"7(%).)

3.2 The Revised Scheme

In order to avoid the problems listed above the scheme should set the personal keys of users
to be the values of P at randomly chosen locations. In other words, the scheme should be
identical to the description given in Section 3.1, except for the following exception:

Each user is provided with a random z, and y, = P(z,). In addition a public
file is published, where S, is encrypted using y,,.

Note that the public file should be available for any interested party, but there is no need to
send the file itself to every user (say, broadcast or distribute it together with the content). Tt
is sufficient to provide links to the public file, and make it clear that any party that obtains
the personal key of a user can use the public file to obtain the user’s private information.
The encryption of the information in the public file should be done using El Gamal
encryption method, in the following way. The GC chooses a random s, publishes ¢® in the

15

file, and for each user w encrypts the information S, using ¢*¥* as the key. Using the prefix-
truncation method of [26], the encryption can be done as ¢*, {H(g*¥*) ® Sy}, where H is
a pair-wise independent hash function. Note that the length of the encrypted information
is only about |S,| times the number of users, although public-key cryptography is used.
This encryption method should be recommended since its security is based on the DDH
assumption, as is the security of the revocation scheme. (A naive solution that uses 1y,
as the key for a symmetric encryption scheme might not be secure, since it requires gy, to
be used as the secret key in two different encryption schemes, the revocation scheme and
the symmetric scheme. Although y, can be securely used as a key in one cryptosystem,
it is not clear whether a combined use in two cryptosystems affects the overall security.
See [30] for an analysis of the use of dependent keys in two cryptosystems.) The public file
should also include information that allows searching for a value given the key ¢*¥+, e.g. by
using a prefix from this string as an index. Therefore any user who leaks 1, is immediately
supplying the pirate with a way to obtain S,.

A note on privacy: Any coalition that obtains the secret keys of ¢ + 1 users can
compute any value g% = g¢sP(@u) given the value x,. Therefore such a coalition can
learn the sensitive information of revoked users, since their z, values are published in the
revocation message, and their personal information is available, encrypted with ¢*¥+, in the
public file.

3.3 Analysis

Overhead of revocation: The overhead of the revocation is as in the scheme of Sec-
tion 2.2.2 since the revocation properties are essentially the same. In more detail, the secret
key that each user keeps is a single element of Z,. A user should perform ¢ exponentiations
in order to compute a new key, and this overhead can be reduced by using simultaneous
multiple exponentiations (Chapter 14.6.1 in [25]). The revocation message is of length O(%),
containing ¢ + 1 elements in Z7 and ¢ elements in Z,.

Properties: The scheme has the following properties:

e Revocation: It is possible to revoke up to ¢ users, and the revocation is secure against
a coalition of all the ¢ revoked users. This property follows from Theorem 2.

e Self enforcement: By disclosing its personal key, a user u discloses its sensitive infor-
mation S,. This follows from the discussion given above.

e Tracing: Once the GC obtains an illegal decryption device it would like to trace
the users whose keys were used to construct the device. The tracing properties and
methods for our method are similar to those suggested in [4]. We show below that

1. The scheme has a black-box confirmation test, i.e. given a pirate decryption device
and a suspected subset of at most ¢ users, one can test whether the members of
the subset contributed keys that were used to generate the device.

2. Given a key of a pirate device that is in canonical form and that was constructed
using the keys of at most £/2 users it is possible to extract the subset of users
whose keys were used to generate the key.

16

3.4 Black-box confirmation

Consider a scenario in which the tracing system is given a subset of users that are suspected
of providing keys for the pirate device. We define a “black-box confirmation test” for the
schemes in Sections 3.1,3.2. This test confirms whether these users are indeed traitors.

Definition 4 (black-box confirmation test) A black-box confirmation test is an algo-
rithm whose input is a pirate decryption device as well as subset C' of candidate (ab)users,
and whose output is either “Yes” or “No.” Suppose that the box was really constructed by
a pirate group T of traitors. Then the output of the test should obey:

e IfCNT =T (namely, the real group of traitors is contained in the subset of candidate
suspects) then the algorithm should output “Yes” with high probability.

o IfCNT =10 (the subset of suspects does not contain any of the real traitors) then the
algorithm should output “No” with high probability.

Note that if CNT # 0 and CNT # T then the test does not guarantee any result.

Construction 1 (Black-box confirmation test) If |C| < t then the confirmation test
generates a random set C of users, subject to the constraints that C' C C and C = t.
Otherwise it sets C = C. The confirmation test then generates a random polynomial P' of
degree t, subject to the constraint that it agrees with the keys of C. Namely, for every u € C
it holds that P(u) = P'(u) and for any other value v, P(v) is independent of P'(v).

The confirmation test then picks a set R of t random wvalues ri,...,ry € F, and sends
a revocation message using P, revoking the keys of the users whose identities are in R
(namely, the revocation message uses the values g’"P'(“), . ,grpl(”)). The group key is set

to g"F'(O) and the test ezamines whether the decryption device is able to decrypt messages
encrypted with the new key. If the decryption succeeds the output of the test is “Yes”,
otherwise the output is “No”.

Claim 5 Given black-box access to a pirate decryption device generated with the keys of at
most t users, and given a subset C of at most t users, Construction 1 above is a black-box
confirmation test for C.

Proof: First, note that with high probability the set R of ¢ random values in F does not
contain any element from C' or T'.

If CNT =T then the pirate decryption device cannot distinguish between a regular
revocation message and the revocation message sent in the test. The pirate device should
therefore be able to decrypt messages using the new group key and the output of the
confirmation test is therefore “Yes”.

If CNT = § then the new key ¢"” "(9) is independent of the keys that were used to
generate the pirate device. The pirate device therefore fails to decrypt messages encrypted
with ¢"”'(®) and the output of the test is “No”. 0O

17

From confirmation to tracing: A confirmation test can be used to trace identities of
specific traitors. This can be done using the following tracing algorithm:

1. Find a group C for which the confirmation test answers “Yes”.
2. Remove an arbitrary member u from C, obtaining C’. (C = C" U {u}.)
3. Run the confirmation test with C’ as the subset of suspects.

e If the test answers “Yes” then reset the decryption device, set C = C’ and goto
step 2.

e If the test answers “No” declare that u is a traitor.
Lemma 6 The tracing algorithm always outputs an identity of a suspected traitor.

Proof: Denote by C; the set C that is tested in the tracing algorithm after the ith user is
removed. Cp = C,...,Cj¢| = (). The algorithm begins with a set Cj for which the output
of the confirmation algorithm is “Yes”. For C)¢| the confirmation algorithm always answers
“No”, since C|¢ NT = (). There is therefore an 1 < i < |C] for which the output of the
confirmation algorithm is different for C;_; and C;. The output of the tracing algorithm is
u € Ci\Cifl- O

Lemma 7 If C = C' U {u} and the confirmation test answers “Yes” for C and “No” for
C', then with high probability u is a traitor (namely u € T).

Proof: (sketch) Assume to the contrary that « € T. In this case CNT = C'NT. Therefore
the view of the pirate decryption device during the confirmation test is the same whether
the input to the test is C' or C’. In both cases there is a revocation message containing ¢
values of P’ in random locations. The polynomial P’ agrees with the values in C' N'T and
conflicts with the other values in T'. The output of the confirmation test should therefore
be the same in both cases. A contradiction. O

Theorem 8 Given a group of suspects for which the confirmation algorithm answers “Yes”
it 1s possible to trace the identity of a specific traitor.

Proof: Given a group of suspects for which the confirmation algorithm answers “Yes” we
can run the tracing algorithm. The theorem then follows from lemmas 6 and 7. O

Corollary 9 There is a black-box tracing algorithm with running time O((’tl)) that can trace
traitors without any a-priori information about their identities.

Proof: The algorithm tests each subset C of ¢ users using the black-box confirmation
algorithm. Since |T| < |C| = ¢ there is such an experiment in which 7' C C and then the
output of the confirmation algorithm is guaranteed to be “Yes”. When this event happens
the tracing algorithm is run, and it is guaranteed by Theorem 8 to output the identify of
an individual traitor. O

18

3.5 Tracing given a key

Suppose now that the GC is able to “open” a pirate device and reveal the key that the device
contains. This enables us to use a deterministic tracing method, based on error-correction
codes, which is similar to a tracing method suggested in [4]. This method ensures that if
the device key is given in a canonical form (defined below) and was generated using the
keys of at most #/2 users, then it is possible to identify these users.

Canonical form of keys: The key that a user receives can be defined as a vector K, =
(1,zy,22,...,2!) and a value y, that is its inner product with @ = (ag,a1,...a;), the
coefficients of the polynomial P. Any such key allows reconstruction of new group keys
that are sent using the revocation scheme. Keys of this exact type are not the only useful
keys a small coalition of corrupt users can generate. Consider a coalition of m < t users,
{u1,u9,...un}. Then for any b= (bo,b1,...,b) that is a linear combination of the vectors
{KZ,}?Q it is possible for the coalition to compute the inner product of b and @. Such
a vector allows reconstructing new keys following revocation messages (assuming not all
coalition members were revoked). The coalition cannot generate the inner product of @ and
a vector b’ that is not a linear combination of the vectors {KLZ}:”:I, since any result for this
inner product is equiprobable given the information known to the coalition.

Definition 10 (Key in canonical form) A key in canonical form is composed of a vector
b and its inner product with a, the coefficients of the polynomial.

It seems (although we have no proof for that) that keys in canonical form are the only
viable option the pirates can take if they want to generate keys allowing reconstruction.
This is stated in the following assumption.

Assumption 11 A pirate decoder that decrypts messages with non-negligible probability
contains a canonical form key.

Theorem 12 (Tracing given access to the key of a pirate device) Given a pirate decoder
that was generated using at most t/2 keys, it is possible to trace the source of at least one
key.

Proof: Based on Assumption 11 the only keys that the decoder can store are in canonical
form. Namely, they are a linear combination of at most ¢/2 keys. The tracing problem is
essentially the following: given a vector that is the linear combination of at most ¢/2 vectors
out of the set of all vectors given to users, find this linear combination. To be more precise
assume that the n users are named uyq, ..., u, and consider the following matrix B with n
rows and ¢ + 1 columns:

]_ (3] (’u,l)i (Ul)z
B 1 U9 (UQ) (UQ)
U (m)? o)

19

Define this to be the parity check matrix of a linear code and let the matrix A of size
(n —t — 1) x n be the corresponding generating matrix of the code, namely A - B = 0.
The code is dual to a Generalized Reed-Solomon code and is therefore a Generalized Reed-
Solomon code by itself (see Chapter 10.8 in [24]). It can therefore be decoded in polynomial
time using the decoding algorithm of Welch and Berlekamp [34].

Now consider a pirate decoding device. Based on Assumption 11 it contains a key in
canonical form, generated using the keys of at most /2 users. This key is a vector d that
is a linear combination of at most ¢/2 rows of the matrix B. Namely, there is a vector @ of
length n, with at most ¢/2 entries different than 0, such that WB = d.

The tracing algorithm is given the vector d. Tts first step is to find an arbitrary vector
7 of length n, such that 7B = d. Now, it holds that (7 — @)B = 0 and therefore (7 —)
is in the span of the rows of the matrix A. This means that (¥ — @) is a codeword of
the code generated by the matrix A, and therefore ¥ is different from a codeword in at
most £/2 locations. The tracing algorithm feeds @ to a decoding algorithm (e.g. the Welsh-
Berklekamp algorithm [34]) and finds the locations in which it is different from the codeword
(i.e. the error locations). These locations correspond to the non zero entries in the vector
i and therefore to the identities of the traitors. 0O

Remark 1 We do not know how to get full-strength black-boz tracing as in [8, 27]. Namely,
when all the tracing algorithm gets to examine is the input/output behavior of the pirate-box

and the time it has is much smaller than (TZ)

Remark 2 The full version of [4] describes a black-bozx tracing algorithm against single-key
pirates. This algorithm is based on the assumption that the pirate decoder contains only a
single convex combination of the keys of the traitors, as well as that it always outputs a
decryption of the message sent by the traitor tracing scheme. We do not explore this type
of tracing algorithm for our revocation methods.

3.6 Using the scheme for periodic group key refresh

A very appealing mode of operation of the self enforcement revocation scheme is where the
group controller uses it to change the group key every short period of time (say, once an
hour). That is, at the beginning of each period the GC chooses a random value r, sets the
group key to be ¢"" () and uses the scheme to let users learn the new key (or, if necessary,
to revoke corrupt users).

This usage mode ensures that a party that receives the group key from one of the group
members can only use it to decrypt the content until the next group key update. It must
know a personal key in order to compute the new group key and decrypt by itself the content
that is being broadcast. Therefore, a legitimate user that wants to enable illegitimate parties
to receive the content must either constantly send them the updated values of the group
key, or send them a personal key that contains sensitive information.

3.7 Public key encryption

A variant of the scheme can be used to enable any party to encrypt messages to the group
(even if that party is not a group member), while preserving the revocation, self enforcement,

20

and tracing properties. It is based on a similar idea to that of the public key tracing scheme
of [4].

Initialization: To enable public key encryption, the GC generates the keys as in Sec-
tion 3.1. Tt publishes a public key {g7(®), ¢PM) . .. ¢P®} (assuming that no z, is in the
range [0, 1]).

Encryption: Any party can encrypt a message M € G, by choosing a random r and
sending the encryption

(g7, g" " O M, g PO g POy,

To decrypt, each user u computes (¢")7(@+) and uses it to interpolate ¢"7(®). (Note that

if it is required to encrypt messages M ¢ G, then the encryption can use H(g"” Oy M
rather than ¢’7(®) . M, where H is modeled as a random function.)

Revocation: To revoke the keys of up to ¢ users uq,...,u;, the GC chooses a random
r’ and publishes a new public key:

{gr’P(O)’a’,u1 : gT’P(Iul)’ o ,xu“gr’P(zut)}

Note that the scheme is identical to revocation method 1 in Section 2.2.2. The value
¢"P(©) that is used there as the new group key is used here as a key with which the message
M is encrypted. In its basic form the public key scheme presented here corresponds to
revoking the users with identities 1, ..., ¢, which do not include any of the real users. If the
GC decides to revoke users in the public key scheme presented here then this corresponds
to revoking the same users with method 1 of Section 2.2.2. The theorems regarding the
security, traceability and self-enforcement of that scheme are therefore valid here too.

3.8 Combining Revocation with Combinatorial Tracing Schemes

Most tracing schemes (such as those in [8, 27]) are based on combinatorial constructions.
In these constructions there is a large set of independently chosen basic keys. Each user’s
personal key is a subset of the basic keys. The schemes encrypt messages in a way that
ensures that each personal key enables decryption. On the other hand, the union of the
personal keys (i.e., subsets of basic keys) of a coalition of corrupt users (traitors) and the
way the are used by a pirate box reveal at least one of the users in that coalition.

Revocation schemes can be combined with tracing schemes in a multiplicative way: A
revocation scheme is constructed for each basic key (the basic key corresponds to the group
key in the revocation scheme, and the group members are the users whose personal keys
include the basic key). Tracing is done as in the underlying combinatorial method. Once
a user is traced to be a traitor, the basic keys that are included in the user’s personal key
should be replaced using the corresponding revocation schemes. This would render the
pirate decryption device useless (or otherwise, it would be possible to trace another traitor
that contributed keys to the device, and revoke its keys as well).

Overhead: the bandwidth loss is precisely that of the tracing method. The storage
overhead of this combined scheme is the multiplication of the storage overhead of the tracing
scheme by the storage overhead of the revocation scheme. The overhead of removing a
traitor is the overhead of a revocation in the revocation scheme, multiplied by the number

21

of basic keys in the personal key of the tracing method. It is appealing to use our revocation
schemes in this scenario, since their storage, communication, and computation overheads
are low.

Acknowledgments

We thank Russell Impagliazzo for insisting that maintaining the privacy of abusers is im-
portant and Ronny Roth and Dan Boneh for helpful advice. We also thank the anonymous
referees for useful comments.

References

[1]

J. Anzai, N. Matsuzaki and T. Matsumoto, A Quick Group Key Distribution Scheme
with Entity Revocation. Adv. in Cryptology — Asiacrypt’99, LNCS 1716, Springer, 1999,
pp. 333-347.

G.R. Blakley, Safequarding cryptographic keys, AFIPS Conference Proceedings, 48:
313-317, 1979.

D. Boneh, The Decision Diffie-Hellman Problem, in Proceedings of the Third Algo-
rithmic Number Theory Symposium, LNCS Vol. 1423, Springer, pp. 48-63, 1998.

D. Boneh and M. Franklin, An efficient public key traitor tracing scheme, Adv. in
Cryptology — Crypto 99, Springr- LNCS 1666 (1999), 338-353, and a full version
available at http://crypto.stanford.edu/"dabo/pubs.html.

D. Boneh and J. Shaw, Collusion-Secure Fingerprinting for Digital date, Proc. Ad-
vances in Cryptology — Crypto '95 (1995), 452-465.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast Secu-
rity: A Tazonomy and Some Efficient Constructions, In Proc. INFOCOM ’99, Vol. 2,
pp- 708-716, New York, NY, March 1999.

R. Canetti. T. Malkin and K. Nissim, Efficient Communication-Storage Tradeoffs for
Multicast Encryption, Proc. Advances in Cryptology — Eurocrypt '99, Springr-Verlag
LNCS 1592 (1999), 459-474.

B. Chor, A. Fiat and M. Naor, Tracing Traitors, Proc. Advances in Cryptology —
Crypto ’94, Springr-Verlag LNCS 839 (1994), 257-270.

B. Chor, A. Fiat, M. Naor and B. Pinkas, Tracing Traitors, IEEE Transactions on
Information Theory, Vol. 46, No. 3, pp. 893-910, May 2000.

R. Cramer and V. Shoup, A practical public key cryptosystem provably secure against
adaptove chosen ciphertext attacks, Proc. Advances in Cryptology — Crypto ’98,
Springr-Verlag LNCS 1462 (1998), 13-25.

22

[11]

[12]

[13]

[14]

H. Cohen, A course in computational algebraic number theory, Springer-Verlag,
1996.

I. Cox, J. Kilian, T. Leighton and T. Shamoon, A Secure, Robust Watermark for
Multimedia, Information Hiding Workshop, Cambridge, UK, Springer-Verlag LNCS
1174, (1996), 185-206.

Diffie W. and Hellman M. E., New Directions in Cryptography, IEEE Trans. on Infor-
mation Theory, Nov. 1976, 644-654.

C. Dwork, J. Lotspiech and M. Naor, Digital Signets: Self-Enforcing Protection of
Digital Information, 28th Symposium on the Theory of Computation (1996), 489-498.

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete loga-
rithms, Proc. Advances in Cryptology — Crypto ’84, Springr-Verlag LNCS 196 (1985),
10-18.

P. Feldman, A practical scheme for non-interactive verifiable secret sharing, Proc. 28th
IEEE Symp. on Foundations of Computer Science, 1987, pp. 427-437.

A. Fiat and M. Naor, Broadcast Encryption, Advances in Cryptology — CRYPTO ’93,
Springer-Verlag LNCS vol. 773, 1994, pp. 480-491.

E. Gafni, J. Staddon and Y. L. Yin, Efficient methods for integrating traceability
and broadcast encryption, Proc. Advances in Cryptology — Crypto 99, LNCS 1666,
Springer, 1999, 372-387.

O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, J. of
the ACM., vol. 33, 1986, pp. 792-807.

A. Kiayias and M. Yung, Self protecting pirates and black-box traitor tracing, Adv. in
Cryptology — Crypto 2001, Springr-Verlag LNCS 2139, pp. 63-79, 2001.

R. Kumar, S. Rajagopalan and A. Sahai, Coding constructions for blacklisting problems
without computational assumptions, Adv. in Cryptology — Crypto ’99, Springr-Verlag
LNCS 1666, pp. 609-623, 1999.

K. Kurosawa and Y. Desmedt, Optimum traitor tracing and asymmetric schemes, Ad-
vances in Cryptology — Eurocrypt ’98, Springer-Verlag LNCS 1403, pp. 145-157. 1998.

M. Luby, Pseudo-randomness and applications, Princeton University Press, 1996.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Corecting Codes,
North Holland, Amsterdam, 1977.

Alfred J. Menezes, Paul C. van Qorschot and Scott A. Vanstone, Handbook of Ap-
plied Cryptography, CRC Press, 1996.

D. Naor, M. Naor and J.B. Lotspiech, Revocation and Tracing Schemes for Stateless
Receivers, Proc. Advances in Cryptology — Crypto '01, LNCS 2139, Springer-Verlag,
2001, 41-62.

23

[27]

[28]

M. Naor and B. Pinkas, Threshold Traitor Tracing, Proc. Advances in Cryptology —
Crypto 98, LNCS 1462, Springer-Verlag, 502-517, 1998.

M. Naor and O. Reingold, Number-Theoretic constructions of efficient pseudo-random
functions, Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997, pp.
458-467.

A. Shamir, How to share a secret, Comm. ACM, Vol. 22, No. 11, 1979, 612-613.

S. Haber and B. Pinkas, Combining Public Key Cryptosystems, Proceedings of the
ACM Computer and Security Conference, November 2001.

D.R. Stinson and R. Wei, Key preassigned traceability schemes for broadcast encryption,
SAC’98, Springer-Verlag LNCS 1556, 1998.

D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability
schemes and frameproof codes, STAM J. on Discrete Math, Vol. 11, 1, 1998, 41-53.

D.M. Wallner, E.J. Harder and R.C. Agee, Key Management for Multicast: Is-
sues and Architectures, Internet Request for Comments 2627, June, 1999. Available:
ftp.ietf.org/rfc/rfc2627.txt

L.R. Welch and E.R. Berlekamp, Error correction for algebraic blockcodes, U.S. Patent
4633470, issued Dec. 30 1986.

C.K. Wong, M. Gouda and S. Lam, Secure Group Communications Using Key Graphs,
Proc. of ACM Sigcomm ’98, Sept. 2-4, Vancouver, Canada, pp. 68-79.

24

