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Abstra
t

Our goal is to design en
ryption s
hemes for mass distribution of data that enable to

(1) deter users from leaking their personal keys, (2) tra
e the identities of users whose

keys were used to 
onstru
t illegal de
ryption devi
es, and (3) revoke these keys as to

render the devi
es dysfun
tional.

We start by designing an eÆ
ient revo
ation s
heme, based on se
ret sharing. It 
an

remove up to t parties, is se
ure against 
oalitions of up to t users, and is more eÆ
ient

than previous s
hemes with the same properties. We then show how to enhan
e the

revo
ation s
heme with traitor tra
ing and self enfor
ement properties. More pre
isely,

how to 
onstru
t s
hemes su
h that (1) Ea
h user's personal key 
ontains some sensitive

information of that user (e.g., the user's 
redit 
ard number), in order to make users

relu
tant to dis
lose their keys. (2) An illegal de
ryption devi
e dis
loses the identity

of users that 
ontributed keys to 
onstru
t the devi
e. And, (3) it is possible to revoke

the keys of 
orrupt users. For the last point it is important to be able to do so without

publi
ly dis
losing the sensitive information.

Keywords: User revo
ation, broad
ast en
ryption, tra
ing traitors, self enfor
e-

ment, 
opyright prote
tion.

1 Introdu
tion

Digital media is easy to 
opy and manipulate. While this has brought many useful appli
a-

tions it has also made pirate 
opying of digital 
ontent, su
h as musi
, video, or software,

a signi�
ant problem. This 
opying is done by users who are authorized to use the 
on-

tent but are not authorized to redistribute it, and in
urs great losses to the produ
ers and

distributors of the digital 
ontent. This problem a�e
ts all forms of digital distribution

in various types of media su
h as musi
, DVDs, satellite and 
able television programs,

a

ess to premium database, et
. Our goal is to design systems that prevent the abuse of

legitimate distribution 
hannels. In parti
ular we design s
hemes that support distribution

of en
rypted versions of 
ontent, while enabling the following features:

1. Deterring users from dis
losing their keys to other parties.

2. Tra
ing users who leak their de
ryption keys to pirates in order to 
onstru
t an illegal

de
ryption box, and

�
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3. Revoking those keys so as to render the pirate de
ryption box useless.

The s
hemes we propose address the tra
ing and revo
ation issues simultaneously. We 
all

su
h s
hemes tra
e and revoke s
hemes. Furthermore, the s
hemes have a self-enfor
ement

property whereby users are deterred from leaking their keys by embedding personal infor-

mation in them. For ease of presentation we start by des
ribing the revo
ation problem

separately and then go on to deal with traitor tra
ing and self-enfor
ement.

User revo
ation: This work presents simple and eÆ
ient methods for user revo
ation

(a pro
ess also known as user ex
lusion, or bla
klisting). These methods operate in the

following s
enario: a group of users re
eives digital 
ontent from a group 
ontroller. The


ontent might be, for example, TV programs or digital musi
 transmitted over 
hannels

su
h as the Internet, satellite broad
asting, 
ables, or DVDs. The 
ontent is en
rypted,

and the de
ryption key is known to all members of the group. At some point the group


ontroller learns that some users are violating the terms of their usage li
ense (for example,

the users might be set-top TV de
oders that are known to be used for pira
y, or, in the


ase of DVD systems in whi
h the players have keys for de
rypting DVDs, players whose

keys were leaked). There are tra
ing methods for �nding whi
h users are responsible for

distributing illegal 
opies of the 
ontent. See [8, 27, 5, 12℄, and the dis
ussion below. The

group 
ontroller must then revoke the de
ryption 
apabilities of these users. In a broader

s
enario, user revo
ation s
hemes 
an be used in a multi
ast environment for fast rekeying

of a multi
ast group after some parties leave the group [6℄.

For a given revo
ation s
heme the important fa
tors that determine its eÆ
ien
y are (1)

The 
ommuni
ation overhead, i.e. the length of the messages sent by the 
enter to renew

the key. This represents the wasted bandwidth (or in 
ase of DVDs the wasted storage). (2)

Storage overhead by the users, e.g. how many keys they should store. (3) The 
omputational

overhead of key update, espe
ially by the users.

The s
hemes we present enable the revo
ation of the keys of up to t users from a universe

of n users (where t is a parameter), and are se
ure against 
oalitions of up to t revoked

users. Our s
hemes are eÆ
ient in all three 
riteria : key length, 
ommuni
ation overhead,

and 
omputation of the new group key. In parti
ular, none of these parameters depends on

the total number of users, n. The personal key length is 
onstant, the 
ommuni
ation and


omputation overheads are only linear in t.

We present a very appealing mode of operation for revo
ation. It enables to remove up

to t users in the worst 
ase, with the overhead spe
i�ed above, but performs mu
h better

when only a few users have to be removed. In parti
ular when 
 users should be removed

(where 
 < t), the 
ommuni
ation overhead is just 
. After removing 
 users the s
heme

is ready to remove up to t � 
 additional users. The group 
ontroller 
an send additional

maintenan
e messages to the users (possibly in periods when the bandwidth of the network

is not fully utilized) to regain the original worst-
ase guarantee of the s
heme and prepare for

a revo
ation of up to t new users (this maintenan
e mode is more appropriate for 
onne
ted

devi
es su
h as PCs and set-top boxes, than to an \o�-line" devi
e su
h as DVDs).

We note that a revo
ation s
heme similar to the one we present in Se
tion 2 was dis-


overed independently by Anzai et al [1℄ (but without the tra
ing or self-enfor
ement ex-

tensions).
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Tra
ing and self enfor
ement: While revo
ation may be applied in several s
enarios

(e.g. to enfor
e payments) in this work we emphasize its deployment in 
onjun
tion with

methods that 
ombat leaking of keys. There are two non-ex
lusive approa
hes for 
ombating

leakage: (1) Tra
ing the 
orrupt users whi
h leaked their keys. I.e. given a pirate box �nding

the sour
e of its keys; this is known as traitor tra
ing. (2) Deterring users from revealing

their personal keys to others, a task we denote as self enfor
ement.

The self enfor
ement property is obtained by giving ea
h user a personal key whi
h


ontains some sensitive information private to him/her, for example the user's 
redit 
ard

number. This personal key is required for the de
ryption of the 
ontent. It is reasonable to

assume that users would be relu
tant to dis
lose su
h personal and sensitive keys to pirates,

and even that few users would be willing to give these keys to their friends and neighbors.

Self enfor
ement s
hemes a
hieve two goals: They prevent small s
ale pira
y (e.g. a

user giving his key to a friend), a task not managed by other 
opyright prote
tion s
hemes.

They also make it harder for pirates to obtain users' keys. This goal is very important sin
e

most of the 
omplementing s
hemes that �ght pira
y (su
h as our revo
ation s
hemes) are

su

essful only if the pirate obtains less than a threshold of t keys, where t is a parameter

whi
h a�e
ts the overhead of the s
heme. Using a self enfor
ement s
heme justi�es the use

of a smaller threshold t, thus improving the eÆ
ien
y of the s
hemes.

We des
ribe in Se
tion 3 s
hemes that enable self enfor
ement, traitor tra
ing, and user

revo
ation. The 
ombination of these properties is not limited to revoking users that are

found to be 
orrupt. Se
tion 3.6 des
ribes how to perform periodi
 refresh of the group key,

su
h that only users that have a personal key (whi
h 
ontains their sensitive information)


an 
ompute an updated group key and 
ontinue to use the system, while users that only

have the group key and no personal key 
annot keep the value of the group key updated.

This is a very strong se
urity property that is important even for s
enarios where it is not

expe
ted that users be revoked on a regular basis. In addition, we des
ribe how to 
ombine

revo
ation with 
ombinatorial tra
ing s
hemes, su
h as those in [8, 27℄.

1.1 Overview of the Results

The s
enario: We 
onsider the following s
enario. There is a group of n users that share

the same key (i.e., the key with whi
h the 
ontent is en
rypted). A group 
ontroller GC is

responsible for 
ontrolling the de
ryption 
apabilities of these users. The GC might have a


ommon se
ret key with ea
h of the users, whi
h enables them to 
ommuni
ate via a private


hannel, but these 
hannels are not dire
tly used by our s
hemes. The GC prepares keys for

the tra
e and revoke s
heme in an initialization phase, and gives ea
h user a personal key.

At a 
ertain point a subgroup of up to t users is disallowed from 
ontinuing to de
rypt the


ontent and therefore a new key should be generated by the GC and be
ome known to all

other n� t users. Further group 
ommuni
ation should be en
rypted with the new key.

Revo
ation 
an be trivially a
hieved in the following way. The GC generates a new group

key and sends it independently to ea
h of the n� t remaining members of the group, using a

private 
hannel between them. This s
heme is, however, very ineÆ
ient. Its 
ommuni
ation

overhead is O(n � t) and might be very large. (A typi
al a group might in
lude a million

users, from whi
h a hundred users should be removed.) The overhead of our s
hemes, in


ontrast, depends only on t.
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The basi
 idea: The basi
 idea of our revo
ation s
heme is to use se
ret sharing in

the following way: The group 
ontroller prepares in advan
e a key to be used after the

revo
ation. In the initialization phase ea
h user re
eives a share of this key. In the revo
ation

phase the GC broad
asts the shares of the revoked users. Ea
h other user 
an 
ombine this

information with its own share and obtain the new key, while even a 
oalition of all the

revoked users does not have enough shares to 
ompute any information about the new key.

The s
hemes: We present three types of revo
ation s
hemes that 
an be used to revoke

the keys of up to t users, where t is a parameter. The overhead of all s
hemes is the

following: ea
h user has a key of 
onstant length, essentially an element in a �eld, the

revo
ation message is of length O(t), and the overhead of 
omputing a new key by a user

depends only on t.

� S
hemes for a single revo
ation. These s
hemes are information theoreti
 se
ure and


an be used for one revo
ation of up to t users.

� S
hemes for many revo
ations. These s
hemes 
an be used to perform many revo
ations

of up to t users in ea
h revo
ation. They are based on a number theoreti
 assumption

{ The De
isional DiÆe-Hellman assumption [3℄. These s
hemes are important if the

keys are to be 
hanged periodi
ally.

� A S
heme with tra
ing and self enfor
ement. We present a s
heme for many revo
a-

tions/key 
hanges, whi
h relies on the De
isional DiÆe-Hellman assumption.

In addition, we present three preferred modes of operation:

� A usage mode for the single revo
ation s
hemes, whi
h enables better eÆ
ien
y if the


ommon operation is the revo
ation of only a single or a few users.

� Using the self enfor
ement s
heme for periodi
 key refreshment: The group key is


hanged periodi
ally using the self enfor
ement s
heme. This ensures that every user

that is 
apable of de
rypting the 
ontent has a personal key that 
ontains sensitive

information.

� Combining revo
ation with 
ombinatorial tra
ing s
hemes.

The most interesting aspe
t of our s
hemes is the 
ombination of all three features -

revo
ation, traitor tra
ing and self enfor
ement.

1.2 Related Work

Revo
ation

Broad
ast en
ryption s
hemes (Fiat and Naor [17℄) enable the GC to en
rypt messages to

an arbitrary and dynami
ally 
hanging subset of the users. Therefore they address a more

general problem than revo
ation s
hemes, or at least a di�erent parameterization (whi
h

allows removal of an arbitrary number of users from the group with an overhead that does

not depend on the number of removed users). When applied to the removal s
enario the
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broad
ast en
ryption s
hemes 
an remove any number of users under the assumption that at

most k of them 
ollude. Broad
ast en
ryption s
hemes are, therefore, asymptoti
ally more

eÆ
ient than revo
ation s
hemes if the number of users that must leave the group is large.

In parti
ular, the size of a personal key in the most eÆ
ient broad
ast s
heme is logarithmi


in k, and the 
ommuni
ation overhead is proportional to k log

2

k and independent of the

number of removed elements (the users do need to know the identity of the revoked users,

but this is independent of the revo
ation message).

The goals of the work of Kumar et al. [21℄ are similar to those of our basi
 revo
ation

s
heme (Se
tion 2.1). Their method enables a one-time revo
ation of up to t users, se
ure

against a 
oalition of all the revoked users. They present several 
onstru
tions based on


over-free sets with revo
ation messages of length O(t log n) as well as O(t

2

).

The tree based revo
ation s
heme of [33, 35℄ uses a basi
 pro
edure that revokes the key

of a single user and updates the keys of all other users in the group. This pro
edure 
an be

used repeatedly to remove any number of users from the group, and is se
ure against any


oalition of 
orrupt users. Ea
h user has to store logn keys, and the revo
ation of ea
h user

requires a broad
ast message of length 2 log n (the length of this message is redu
ed to logn

in [6℄). The lower bound of [7℄ demonstrates that these s
hemes are optimal in some sense.

A major problem of revo
ation s
hemes of this type is that they require users to re
eive

and pro
ess all previous revo
ation messages in order to be able to update the group key.

In parti
ular, a user that rejoins the group after being o�ine for a while must pro
ess all

the revo
ation messages that were sent in his absen
e. If these s
hemes are adapted for the

s
enario 
onsidered in this paper, then we get the following performan
e: a revo
ation of

t users implies sending a message with O(t log n) keys, as well as a similar 
omputational

overhead. The key of ea
h users 
ontains O(log n) en
ryption keys.

Tra
ing and self enfor
ement

The goal of traitor tra
ing is to tra
e the sour
e of keys of illegal de
ryption devi
es. Traitor

tra
ing s
hemes distribute de
ryption keys to users in a way that guarantees that a pirate

de
ryption devi
e that is 
onstru
ted using the keys of at most t users (traitors) reveals

the identity of at least one of them. The s
hemes of [8, 27, 9℄ are based on 
ombinatorial

and probabilisti
 
onstru
tions, and ensure tra
ing with high probability. They enable

\bla
k box tra
ing", i.e., tra
ing when there is no way to examine the inner 
ontents of the

pirate de
ryption devi
e, and where it is only possible to examine the reply of the devi
e

to di�erent 
iphertexts.

The publi
 key tra
ing s
heme of Boneh and Franklin [4℄ is based on a number theoreti


assumption (the De
isional DiÆe-Hellman assumption), and has a deterministi
 tra
ing

guarantee given extra
ted keys in 
anoni
al form. It also has a bla
k-box 
on�rmation test

(see dis
ussion at Se
tion 3). In addition, it supports publi
 key en
ryption in the sense

that any party 
an en
rypt messages to the group. Our multi-revo
ation traitor tra
ing

s
heme uses many of the ideas of [4℄, in parti
ular the 
on
epts of bla
k-box 
on�rmation

and the tra
ing via de
oding. A one-time and a multi-time tra
ing s
hemes, based on

polynomials, are des
ribed in [22℄. The multi-time tra
ing s
heme of [22℄ was shown to be

inse
ure in [31, 4℄. The 
aw in the design of that s
heme is that although it enables to tra
e

the sour
e of any single key, it does not prevent the traitors from generating an untra
eable
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ombination of their keys, whi
h 
an serve as a de
ryption key.

In a re
ent work Kiayias and Yung [20℄ examined the 
onditions that enable a tra
ing

s
heme to support \bla
k-box tra
ing", namely tra
ing the identities of 
orrupt users while

treating the pirate de
oding devi
e as a bla
k-box that need not be opened (this is 
ompared

to a tra
ing algorithm that requires to reverse engineer the pirate de
oder and reveal the

keys that it uses). One of the results in [20℄ shows that the publi
 key tra
ing s
hemes

of [4, 22℄ 
annot support bla
k-box tra
ing if the number of traitors is !(log n), while the

s
hemes of [8, 27, 9℄ support bla
k-box tra
ing in these situations. The tra
ing s
hemes we

suggest fall into the former 
ategory and therefore 
annot support bla
k-box tra
ing if the

number of traitors is !(log n).

Naor, Naor and Lotspie
h [26℄ des
ribe two very eÆ
ient methods supporting both

revo
ation and tra
ing. The s
hemes are se
ure against 
oalitions of any size. They require

users to store personal keys of length log n and

1

2

log

2

n keys respe
tively (where n is the

total number of users). Revo
ation of r users is done using messages of length r logN and

2r keys respe
tively.

The notion of self enfor
ement was suggested by Dwork, Lotspie
h and Naor [14℄ who

also proposed a signets s
heme with this property. The signets s
heme is rather eÆ
ient

{ the 
omputational overhead (for the users) of 
hanging the group key involves a 
onstant

number of modular exponentiations and does not depend on the group size or on the size

of the 
oalitions against whi
h the system is se
ure. The s
hemes we develop in this paper


an be seen as a 
ombination of the signets s
heme [14℄ and publi
-key tra
ing [4℄.

Combinatorial tra
ing 
onstru
tions are further dis
ussed in [32, 18℄. They use a basi


set of independent keys, and assign ea
h user's personal key to be a subset of the set of keys.

In parti
ular, the work of [18℄ dis
usses the 
ombination of su
h s
heme with revo
ation

s
hemes (although in the terminology of [18℄ \broad
ast en
ryption" refers to s
hemes

that we denoted as revo
ation s
hemes). It des
ribes two methods for integrating tra
ing

and revo
ation s
hemes: adding revo
ation 
apabilities to any tra
ing s
heme (at the 
ost

of implementing the revo
ation using an OR proto
ol, whose 
ommuni
ation overhead is

high), and adding tra
ing 
apabilities to any revo
ation s
heme (at the 
ost of in
reasing

the number of keys by a fa
tor of 2t

2

).

2 Revo
ation S
hemes

Se
ret sharing: We base our work on threshold se
ret sharing [29, 2℄. A k-out-of-n thresh-

old se
ret sharing s
heme divides a se
ret into n shares su
h that no k� 1 of them dis
lose

any information about the se
ret while any k shares suÆ
e to re
over it. In prin
iple we


ould apply any se
ret sharing s
heme that maintains a sharp threshold, however, we 
hoose

to use Shamir's polynomial based se
ret sharing s
heme [29℄ that operates in the following

way. Let F be a �eld, and let S 2 F be the se
ret to be shared. In order to share the

se
ret a random polynomial P of degree k� 1 is generated over F subje
t to the 
onstraint

P (0) = S. The ith share is de�ned as P (i). Given any k shares it is easy to interpolate

the polynomial and reveal S = P (0) (this requires O(k log

2

k) multipli
ations using FFT,

or O(k

2

) multipli
ations using Lagrange's interpolation formula). It is straightforward to

verify that any k � 1 shares do not dis
lose any information about the se
ret.
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2.1 A S
heme for a Single Revo
ation

The following s
heme 
an be used for a single revo
ation of up to t users with a 
ommuni-


ation overhead of O(t) and se
urity against a 
oalition of all the t revoked users.

2.1.1 The basi
 s
heme

The s
heme operates over a �eld F su
h that a random element in F 
an be used as an

en
ryption key of a symmetri
 en
ryption s
heme (e.g. jFj > 2

80

). (This is required sin
e

this key is used as the group key after the revo
ation.) Ea
h user u re
eives an arbitrary

identi�er I

u

2 F .

Initialization: The GC generates a random polynomial P of degree t over F , (this poly-

nomial 
an be used for (t+ 1)-out-of-n se
ret sharing). It sets the se
ret key S, to be used

after the revo
ation, to be S = P (0). The GC provides ea
h user u, over a private 
hannel,

with a personal key K

u

= hI

u

; P (I

u

)i.

Revo
ation: The group 
ontroller learns the identities of t users I

u

1

; : : : ; I

u

t

whose keys

should be revoked. The GC broad
asts the identities and the personal keys of these users:

hI

u

1

; P (I

u

1

)i; : : : ; hI

u

t

; P (I

u

t

)i

Ea
h other user u 
an 
ombine its personal key K

u

with these t keys, and using these t+1

shares interpolate P and 
ompute the key S = P (0). The GC uses S as the new group key

with whi
h it en
rypts messages to the non-revoked users.

If the GC prepares a s
heme to revoke t users, and only t

0

< t users should be removed,

it 
an perform the revo
ation by sending the shares of these t

0

users and additional t � t

0

values of P , at lo
ations that are di�erent from the identity I

u

of any other user.

Theorem 1 In the above s
heme a 
oalition of all the t revoked users does not have any

information about the new key.

Proof: The property follows immediately from the se
urity of Shamir's se
ret sharing

s
heme, sin
e the 
oalition has only t shares. 2

Note that the GC 
an add new users to the group even if they join the group after

the initialization stage. It simply assigns them an identity and provides them with the


orresponding value of P .

Storage and 
ommuni
ation overhead: The se
ret key that ea
h user has to keep is

a single element of F , i.e. of the same length as the keys that are used to en
rypt the


ommuni
ation (the identity I

u

need not be se
ret). The revo
ation message is of length

2tjFj (where jFj is the size of a representation of an element from F). To further redu
e

the 
ommuni
ation overhead the identities of the users 
an be de�ned in a small subset of

F , resulting in a revo
ation message of length t(jFj+ log n).
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Redu
ing the 
omputation overhead: The 
omputation of the new group key by a

user involves an interpolation of the free 
oeÆ
ient of P , and requires O(t log

2

t) multipli
a-

tions using FFT, or O(t

2

) multipli
ations using Lagrange interpolation. This 
omputation

overhead 
an be redu
ed in two ways:

� The Lagrange interpolation formula is, given P (I

u

0

); : : : ; P (I

u

t

),

P (0) =

t

X

i=0

�

j 6=i

I

u

j

I

u

j

� I

u

i

P (I

u

i

):

The GC knows the identities of t of the u

i

's, namely the revoked users, and 
an

therefore pre
ompute and broad
ast, for t Lagrange 
oeÆ
ients, the 
orresponding

multipli
ations between these values. This redu
es the 
omputation that a user has

to perform in order to 
ompute P (0) to O(t) multipli
ations, at the 
ost of in
reasing

the 
ommuni
ation overhead by jFjt more bits.

� Instead of using a single polynomial (say, over a �eld F of 80 bits), the s
heme 
an use


 independent polynomials over a �eld of size F=
 bits, and use the 
on
atenation of

their values at 0 as the new group key. The 
omputation of the new group key involves

multipli
ations over the smaller �eld and is therefore more eÆ
ient (furthermore, the

Lagrange 
oeÆ
ients should be 
omputed only on
e, sin
e the same 
oeÆ
ients are

used for all the polynomials).

2.1.2 Preferred usage mode

In a typi
al s
enario the GC should be ready to simultaneously revoke up to t users in the

worst 
ase, but most of the times it is required to revoke only a single user or a few users. In

su
h 
ases t 
opies of the basi
 revo
ation s
heme 
an be used to enable revo
ation of up to

t users in the worst 
ase, and enable more eÆ
ient revo
ation of fewer users. In parti
ular,

a single user 
an be revoked with only O(1) 
ommuni
ation and O(t) 
omputation (between

the time that the need for revo
ation of the user arises and the a
tual revo
ation). After

the revo
ation, the GC sends short maintenan
e messages to the users, to return the s
heme

to its original state (i.e., being 
apable of removing up to t users in the worst 
ase).

Initialization: In the initialization phase the GC prepares t revo
ation s
hemes RS

1

; : : : ; RS

t

,

su
h that s
heme RS

i


an be used to remove i users. That is, s
heme RS

i

uses a polynomial

P

i

of degree i. Ea
h user u is given a share from ea
h of the s
hemes, i.e., u is given a key

of length t+ 1, 
onsisting of hI

u

; P

1

(I

u

); : : : ; P

t

(I

u

)i.

The s
hemes are used one after the other. S
heme RS

i

is used to remove the ith user

that should be revoked (and still prevent the previous i� 1 revoked users from learning the

new key).

First revo
ation: Suppose that the �rst user to be revoked is u

1

. The GC broad
asts

hI

u

1

; P (I

u

1

)i, and all other users use s
heme RS

1

to 
ompute P

1

(0), whi
h is de�ned to be

the new group key. Both the 
ommuni
ation and 
omputation overhead of this revo
ation

are O(1).
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Maintenan
e: After removing user u

1

the GC 
an restore the system to its original state,

ready for the revo
ation of up to t users. It broad
asts the shares of the other polynomials

that were known to u

1

, namely P

2

(I

u

1

); : : : ; P

t

(I

u

1

). This broad
ast is not urgent (sin
e

u

1

is already revoked) and 
an be done when the network has idle bandwidth. After this

broad
ast every polynomial P

i

, 2 � i � t, has only i� 1 missing shares. For the purpose of

se
ret sharing this redu
es the degree of the polynomial by 1, and we 
an, therefore, denote

these polynomials as P

0

1

; : : : ; P

0

t�1

, of degrees 1; : : : ; t� 1 respe
tively. At this time the GC


an revoke up to t � 1 additional users. To be able to revoke t users it prepares a new

polynomial P

0

t

of degree t, and P

0

t

(0) is de�ned to be the new key after t more users would

be removed. The GC uses private 
hannels with the users to send shares of P

0

t

to all users

who are 
urrently a
tive (non-revoked).

Note that additional revo
ations 
an be performed during the maintenan
e phase (i.e.,

before all the shares of P

0

t

are sent), as long as at most t � 1 additional users have to be

removed. At the end of the maintenan
e phase the system returns to the state it had before

the �rst revo
ation and 
an be used to revoke up to t users. This 
ombination of instant

revo
ation, and system maintenan
e during o�-peak usage, seems optimal for systems that

need prepare for the worst 
ase, but expe
t only a few revo
ations during normal operation.

Additional Revo
ations: The �rst revo
ation uses a linear polynomial P

1

, and, there-

fore, P

1

(0) is 
omputed in 
onstant time. Future revo
ations of single users employ poly-

nomials of higher degrees, up to degree t. After the tth revo
ation, all revo
ations use

polynomials of degree t. Consider a revo
ation with a polynomial of degree t that t� 1 of

its shares were broad
ast in maintenan
e phases. Denote su
h a polynomial as P

�

. In the

revo
ation itself users should 
ompute P

�

(0). Ea
h user obtained t of the shares in advan
e

(his own share plus the t � 1 shares that were broad
ast). The user 
an start the 
ompu-

tation of P

�

(0) before the last share is broad
ast, i.e. before the revo
ation, and therefore

the online overhead of 
omputing P

�

(0) is only O(t) (using Lagrange's interpolation), while

the 
ommuni
ation overhead is only O(1).

Se
urity: Ea
h polynomial 
an be used to revoke up to t users. Sin
e the maintenan
e

steps generate new a polynomial whenever a new polynomial is used, the system 
an be

used to revoke the keys of an unlimited number of users, as long as at most t of them 
ollude

before their revo
ation.

Overhead: Ea
h user keeps a se
ret key of length t that 
ontains his shares for ea
h of the

polynomials. In addition, he might keep O(t

2

) shares that were broad
ast in maintenan
e

phases. The 
enter keeps a se
ret key of length O(t

2

), i.e., the 
oeÆ
ients of t se
ret

polynomials of degree t+ 1.

The online 
ommuni
ation overhead of a revo
ation is O(1) (a single share). The online


omputation overhead of revoking a single user is O(t) (although the overhead of revoking

ea
h of the �rst t users is smaller), and the online 
omputation overhead of a revo
ation

of t

0

� t users is O(tt

0

). Ea
h maintenan
e stage involves the GC sending a single share to

ea
h of the users in the group. This overhead should be less important sin
e these messages


an be sent when the network is idle.
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2.2 A S
heme for Many Revo
ations

The basi
 polynomial based s
heme is good for a single revo
ation and requires the group


ontroller to distribute additional keys (shares) to support more revo
ations. In the fol-

lowing s
heme ea
h user has a single key that is good for a virtually unlimited number of

revo
ations, as long as at most t revoked users 
ollude together to 
ompute keys they should

not re
eive. The s
heme is based on the De
isional DiÆe-Hellman assumption.

2.2.1 The De
isional DiÆe-Hellman assumption

The De
isional DiÆe-Hellman assumption (DDH) is useful for 
onstru
ting eÆ
ient 
rypto-

graphi
 primitives with very strong se
urity guarantees. These in
lude the DiÆe-Hellman

key agreement proto
ol [13℄, the El Gamal en
ryption s
heme [15℄, pseudo-random fun
-

tions [28℄, a 
onstru
tion of a 
ryptosystem se
ure against 
hosen 
iphertext atta
ks [10℄,

and more.

The DDH assumption involves a 
y
li
 group G and a generator g. Loosely speaking, it

states that no eÆ
ient algorithm 
an distinguish between the two distributions hg

a

; g

b

; g

ab

i

and hg

a

; g

b

; g




i, where a; b; 
 are randomly 
hosen in [1; jGj℄. We refer the reader to [3, 28℄

for further dis
ussions of the assumption.

2.2.2 Revo
ation s
hemes

The s
hemes operate over a group Z

q

of prime order. More spe
i�
ally, Z

q


an be a subgroup

of order q in Z

�

p

, where p is prime and qjp � 1. Let g be a generator of Z

q

, su
h that the

De
isional DiÆe-Hellman assumption holds for Z

q

and g. The s
hemes applies an idea �rst

suggested by Feldman [16℄ of doing Shamir's se
ret sharing in the exponents.

Initialization: This pro
ess is performed on
e, for all future revo
ations. The GC gener-

ates a random polynomial P of degree t over Z

q

. It publishes p and q and sends to user u

(via a private 
hannel) a personal key K

u

= hI

u

; P (I

u

)i, where I

u

is a non-se
ret identi�er

asso
iated with u.

We suggest two variants of revo
ation. The �rst 
an be used for many revo
ations as

long as at most t users are prevented from learning the group key at any given time. The

se
ond method 
an be used for many revo
ations of an unlimited number of users, as long

as less then t of them should be revoked in a single revo
ation.

Revo
ation method 1: The GC learns the identities of t users I

u

1

; : : : ; I

u

t

that should

be revoked. It then 
hooses a random r 2 Z

q

and sets g

rP (0)

to be the new key that should

be unknown to the removed users. The GC broad
asts the following message (in the 
lear):

g

r

; hI

u

1

; g

rP (I

u

1

)

i; : : : ; hI

u

t

; g

rP (I

u

t

)

i

Ea
h non-revoked user u 
an 
ompute (g

r

)

P (I

u

)

and 
ombine it with the broad
asted

values, to interpolate the key g

rP (0)

. This is done as follows: Re
all Lagrange's interpolation

formula for a polynomial P of degree t from its t+ 1 values at points x

0

; : : : ; x

t

,

P (0) = �

t

i=0

�

i

P (x

i

);
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where the �

i

's are Lagrange 
oeÆ
ients that depend on the x

i

's, i.e. �

i

= �

j 6=i

x

j

x

j

�x

i

. There-

fore

g

rP (0)

= g

r�

t

i=0

�

i

P (x

i

)

= �

t

i=0

g

r�

i

P (x

i

)

:

Given t+ 1 pairs hI

u

; g

rP (I

u

)

i this formula shows how to 
ompute g

rP (0)

.

Revo
ation method 2: This method is identi
al to method 1, ex
ept for the GC broad-


asting the revo
ation message (g

r

; hI

u

1

; g

rP (I

u

1

)

i; : : : ; hI

u

t

; g

rP (I

u

t

)

i) en
rypted using the


urrent group key. This ensures that only 
urrent group members 
an read this message.

Theorem 2 Revo
ation method 1 
an be used for repeated revo
ations as long as up to

t users should be prevented from learning the group key at any given time. The method

is se
ure against 
oalitions of at most t revoked users. Namely, su
h a 
oalition 
annot

distinguish between a group key it should not learn and a random value.

Proof: The proof is based on the De
isional DiÆe-Hellman assumption. For the sake of


larity we �rst present the details for the 
ase of t = 1.

Assume that the s
heme with parameter t = 1 is inse
ure and 
an be broken by user v.

This user runs an algorithmD

0

that re
eives the following inputs: a value P (I

v

) of the linear

polynomial P and polynomially many tuples hg

r

i

; g

r

i

P (I

v

)

; g

r

i

P (0)

i generated with randomly


hosen r

i

's , and a pair g

r

; g

rP (I

v

)

. (The tuples hg

r

i

; g

r

i

P (I

v

)

; g

r

i

P (0)

i be
ome known to

the user during revo
ation operations in whi
h other users were revoked. In addition the

user might of 
ourse learn other values of exponents of the polynomial, but these 
an be


omputed from the values in hg

r

i

; g

r

i

P (I

v

)

; g

r

i

P (0)

i). If the s
heme is inse
ure then D

0


an

then distinguish between g

rP (0)

and a random value.

Constru
t an algorithm D that uses D

0

to break the DDH assumption. D is given input

g

a

; g

b

, and a value C that is either g

ab

or random. D generates inputs to D

0

(planning

to set P (0) = b and r = a). It generates a random key hI

v

; P (I

v

)i and gives it to D

0

. It

then generates random r

i

's and gives the tuples hg

r

i

; g

r

i

P (I

v

)

; g

r

i

b

i to D

0

. Then it gives the

values (g

a

; g

aP (I

v

)

; C) to D

0

, and outputs the same answer that D

0

outputs for the de
ision

whether C is equal to g

ab

or not. D's su

ess probability in breaking the DDH assumption

is the same as the probability of D

0

breaking the revo
ation s
heme.

Now 
onsider a 
oalition of t 
orrupt users, say users 1; : : : ; t. These users run an algo-

rithm D

0

that re
eives the following inputs: values P (I

1

); : : : ; P (I

t

) of the linear polynomial

P at lo
ations I

1

; : : : ; I

t

, polynomially many tuples hg

r

i

; g

r

i

P (I

1

)

; : : : ; g

r

i

P (I

t

)

; g

r

i

P (0)

i gener-

ated with randomly 
hosen r

i

's (these values be
ame known to the 
oalition from revo
ation

messages in whi
h at least one of the 
oalition members was not revoked), and a tuple of

the form g

r

; g

rP (I

1

)

; : : : ; g

rP (I

t

)

(that is, for every value P (I

u

) known to the 
oalition, there

is a 
orresponding value g

rP (I

u

)

in the tuple). If the s
heme is inse
ure then given this

information D

0


an distinguish between g

rP (0)

and a random value.

Using D

0

we 
an 
onstru
t an algorithm D that breaks the DDH assumption. It is given

input g

a

; g

b

, and a value C that is either g

ab

or random. D then generates inputs to D

0

(planning to set P (0) = b and r = a). It generates random keys fhI

j

; P (I

j

)ig

t

j=1

and gives

them toD

0

. It then generates random r

i

's and gives the tuples hg

r

i

; g

r

i

P (I

1

)

; : : : ; g

r

i

P (I

t

)

; g

r

i

b

i

to D

0

. Then it gives the values (g

a

; g

aP (I

1

)

; : : : ; g

aP (I

t

)

; C) to D

0

, and outputs the same

answer that D

0

outputs regarding whether C is equal to g

ab

or not. D's su

ess probability
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in breaking the DDH assumption is the same as D

0

's probability of breaking the revo
ation

s
heme. 2

Theorem 3 Revo
ation method 2 
an be used for repeated revo
ations of an unlimited num-

ber of users, and supports revoking up to t users at any invo
ation. It is se
ure against


oalitions of at most t revoked users.

Proof: Consider any 
oalition of t revoked users. The revo
ations of these users 
ould

have o

urred in several rounds. Denote the group key that is 
ommuni
ated in the ith

revo
ation as S

i

. Suppose that all members of the 
oalition were revoked and 
onsider

the round, say round `, in whi
h the last 
oalition member was revoked (it 
ould be that


oalition members move in and out of the group, but we are interested in a time in whi
h

none of them is a group member, and in parti
ular S

`�1

is the last group key that any of

the 
oalition members should know). Theorem 2 ensures that the 
oalition members 
annot

distinguish between S

`

, the group key sent in round `, and a random value. Any future

group key, S

m

, m > `, is independent of the information sent before the mth revo
ation. If

the 
oalition 
an distinguish S

m

from a random value then (assuming that the en
ryption

fun
tions that use S

m

are se
ure) it 
an distinguish between the information sent in themth

revo
ation and random. Assuming that the en
ryption fun
tion is se
ure, this means that

the 
oalition 
an distinguish between S

m�1

, the group key with whi
h the mth revo
ation

message was en
rypted, and random. Repeating this argument m� ` times we get that the


oalition 
an distinguish between S

`

and random. A 
ontradi
tion. 2

Note that the s
heme enables the GC to add users to the group even if their identities

be
ome known only after the initialization stage.

Overhead: The se
ret key that ea
h user keeps is just a single element of Z

q

. In order

to 
ompute the new key a user should perform t exponentiations; note that the overhead


an be 
onsiderably redu
ed by using simultaneous multiple exponentiations (See Chapter

14.6.1 in [25℄). The revo
ation message is of length O(t). More spe
i�
ally, it 
ontains t+1

elements in Z

�

p

, and t elements in Z

q

. (jZ

q

j 
an be 
onsiderably shorter than jZ

�

p

j. For

example, it is 
ommon to set jZ

q

j = 160 and jZ

�

p

j = 1024.)

2.2.3 Usage

After revoking a 
ertain user the GC 
an de
ide to restore the a

ess permissions of the

user. This does not require the GC to give a new key to that user, and more importantly,

does not require sending new keys to any other user. The users 
an use their old keys for

pro
essing all future revo
ation messages that the GC sends.

The s
heme is appropriate for s
enarios in whi
h very fast revo
ation is required, but it

should also be possible to easily retrieve the 
apabilities of users whose keys were mistakenly

revoked. Consider for example a GC that learns that one of a 
ertain group of users leaked

keys to pirates. The GC 
an qui
kly revoke the permissions of all the users in the group and

prevent further leakage of en
rypted 
ontent. It is then possible to verify whi
h of these

users is helping the pirates, and restore the permissions of all other users in this group. This

pro
ess does not require 
hanging the revo
ation keys of these users or of the users who
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were not revoked (in fa
t, they 
an remain oblivious to the fa
t that revoked users rejoined

the group).

Another useful appli
ation is where the group 
ontroller wishes to degrade the quality

of the keys of some users (say the keys of users who are late in payments). This 
an be

done by revoking them temporarily out of some 
ontent, where the 
ensored information is


hosen at random. In more detail, assume that there is a list of ` users u

1

; : : : ; u

`

that are

late in their payments. To en
ourage these users to pay their debts the group 
ontroller


hooses, on
e every short period of time, a random subset of t of these ` users and uses the

above s
heme to distribute a group key that these users 
annot de
rypt. This key is used to

en
rypt the 
ontent during the next time period. In the following time period these users

will be able to de
rypt 
orre
tly without additional 
ommuni
ation with the GC.

3 Combining Revo
ation with Self Enfor
ement and Tra
ing

We present a user revo
ation 
onstru
tion with self enfor
ement and tra
ing 
apabilities.

The 
onstru
tion is for many revo
ations, and builds upon the signets 
onstru
tion of [14℄

and the publi
 key tra
ing 
onstru
tion of [4℄. A deli
ate issue in self enfor
ement is that

the s
heme must preserve the priva
y of the revoked users. Namely, the revo
ation message

must not reveal the sensitive information of these users. (In other words, although users

that give their keys to pirates reveal their sensitive information to the pirates, we do not

want the revo
ation me
hanism to reveal this information to other users.)

In order to obtain the self enfor
ement property the GC should in
orporate in ea
h

user's personal key some private information, for example the user's 
redit 
ard number or

so
ial se
urity number (in these 
ases it is 
lear that the 
enter is not allowed to publi
ly

reveal the private information even if the user has abused the system.). Few users would

be willing to hand this information to others, and in parti
ular not to pirates who are

doing illegal a
tivities. The tra
ing property enables to identify, given an illegal de
ryption

devi
e, whi
h users' keys were used in 
onstru
ting the devi
e. The 
ombination of these

two properties provides a very powerful tool against pira
y.

There is of 
ourse a trivial method for in
orporating ea
h user's sensitive information in

the personal key: The personal key 
an simply be the sensitive information 
on
atenated

to some random data, so that keys of di�erent users are essentially independent. This

approa
h requires the GC to en
rypt messages independently to ea
h user, and results in

an O(n) 
ommuni
ation overhead for a key 
hange in a group of n parties. The s
hemes

that we des
ribe perform mu
h better, in parti
ular the 
ommuni
ation overhead per key


hange does not depend on the number of users in the group.

The s
enario: When a user u registers with the GC it provides some private information,

S

u

. This 
an be, for example, u's 
redit 
ard number, whi
h be
omes known to the GC as

part of the payment pro
ess for the 
ontent that u is pur
hasing. The GC then gives u a

personal key K

u

that operates in 
onjun
tion with S

u

. Loosely speaking, self enfor
ement

means that any useful key that the user gives to a pirate must 
ontain S

u

. Tra
ing means

that using the personal keys of the members of a 
oalition of t members u

1

; : : : ; u

t

, it is

impossible to 
onstru
t a de
oder that does not dis
lose the identity of one of u

1

; : : : ; u

t

and has the same fun
tionality as one of the personal keys.

13



There are di�erent kinds of tra
ing properties that are supported by our s
heme:

� Bla
k-box 
on�rmation: Given a pirate box and a suspe
ted subset of at most

t users we present an e�e
tive method for testing whether the box was 
onstru
ted

with the help of the suspe
ted users, as long as the keys of at most t 
orrupt users

were used to generate the pirate de
oding box. This is 
alled bla
k-box 
on�rmation

sin
e there is no need to \open" the box and �nd the expli
it key that it uses. It is

suÆ
ient to treat the de
oder as a bla
k box and examine how it rea
ts to di�erent

messages it re
eives.

� Tra
ing: Better tra
ing 
an be a
hieved if the tra
ing pro
ess is able to to examine

the 
ontents of the de
oding devi
e and extra
t the keys that it uses. In this 
ase, if

the keys are in a 
anoni
al form (de�ned below), and at most t=2 users 
ontributed

keys to the pirate, the tra
ing algorithm 
an �nd all the 
ontributors to the key.

A note on bla
k-box tra
ing: Bla
k-box tra
ing is of 
ourse preferable to a tra
ing al-

gorithm that requires to \open" the pirate de
oding devi
e and identify the key that it uses.

We were not able to design a bla
k-box tra
ing algorithm, ex
ept for an O(

�

n

t

�

) algorithm

that uses bla
k-box 
on�rmation by starting from a group of suspe
ts that 
ontains the set

of traitors and then narrowing it down until a traitor is identi�ed. Our inability to support

bla
k-box tra
ing is not surprising given the re
ent result of Kiayias and Yung [20℄, whi
h

showed that bla
k-box tra
ing is impossible in a system like ours if the number of traitors

is !(log n).

3.1 A Simple S
heme for Many Revo
ations

A natural approa
h for embedding the user's sensitive information in a s
heme like that of

Se
tion 2.2 is to make the user identity I

u

equal to his or her sensitive information. The

problem however is that the revo
ation message in
ludes I

u

in the 
lear, thus revealing the

sensitive information of the revoked user to everyone. Instead we de�ne the key of ea
h user

to be a pair hx

u

; P (x

u

)i su
h that P (x

u

) enables the extra
tion of the sensitive information

of the user. This allows sending revo
ation messages that 
ontain the 
oordinate x

u

in

whi
h a user's share is de�ned, but do not dis
lose the sensitive information of the revoked

users. We des
ribe the s
heme, �rst with a simpli�
ation of the key assignment.

The simpli�ed s
heme operates over a group Z

q

of prime order, for example where Z

q

is

a subgroup of order q in Z

�

p

, where p is prime and qjp� 1. Let g be a generator of Z

q

, su
h

that the De
isional DiÆe-Hellman assumption holds for Z

q

and g. The s
heme operates as

follows:

� Se
ret key of the group 
ontroller: a polynomial P (x) =

P

t

i=0

a

i

x

i

in Z

q

.

� Key of user u: The user has sensitive information S

u

. It re
eives a key that is a

pair (x

u

; P (x

u

)), s.t. P (x

u

) = S

u

. (Warning - this step is re�ned below).

� Repla
ing the group key: When the GC wishes to repla
e the key (without any

user revo
ation), it 
hooses a random value r, and sets the new key to be g

rP (0)

. The

GC broad
asts a key 
hange message that 
ontains g

r

and t pairs (i; g

rP (i)

) (The i

14



values 
an be arbitrary as long as they do not equal x

u

for any user u). Ea
h user


omputes (g

r

)

P (x

u

)

and interpolates g

rP (0)

using the t+1 values of g

rP (�)

that it knows.

� Revo
ation: It is possible to revoke up to t users v

1

; : : : ; v

t

. The GC repla
es

the group key, but instead of broad
asting pairs (i; g

rP (i)

), it broad
asts t pairs

(x

v

i

; g

rP (x

v

i

)

), whi
h are generated using the personal keys of the revoked users.

Generating the users keys: In order to generate the personal key of user u the GC

should solve the equation P (x

u

) = S

u

. This 
an be done eÆ
iently using the algorithm of

Berlekamp for fa
toring polynomials in �nite �elds [11℄. There are however several problems

with this approa
h that require re�ning it:

� There is a 
han
e that the equation P (x

u

) = S

u

has no solution. This happens with

the same probability that a random polynomial of degree t is irredu
ible, whi
h is

roughly 1=t.

� While random polynomials of degree t are (t+ 1)-wise independent, we do not know

how to show that this independen
e is preserved when the query is \in reverse" (i.e.

where the result of the polynomial P (x) is given and the point x is then 
omputed,

as is the 
ase with this s
heme).

� One possible remedy to both problems is to use two polynomials P

1

and P

2

and two

user keys x

1

u

and x

2

u

su
h that P

1

(x

1

u

) + P

2

(x

2

u

) = S

u

. The new group key will be

g

rP

1

(0)

+ g

rP

2

(0)

. This solution 
ould provide tra
ing but is not self enfor
ing sin
e a

user 
an sell \half" a key, i.e. only one of the x

u

's.

� The fa
t that the sensitive information S

u

is not being broad
ast prevents someone

with no information about S

u

from retrieving it, but the proto
ol does not prevent

veri�
ation of an a-priori guess about S

u

by any user who was not revoked. (For

example, if S

u

is the user's mother maiden name and u is revoked, one 
ould 
he
k

whether this name is one of the 100 most 
ommon English names, by 
he
king if g

r

to the power of any of these names is equal to g

rP (u)

.)

3.2 The Revised S
heme

In order to avoid the problems listed above the s
heme should set the personal keys of users

to be the values of P at randomly 
hosen lo
ations. In other words, the s
heme should be

identi
al to the des
ription given in Se
tion 3.1, ex
ept for the following ex
eption:

Ea
h user is provided with a random x

u

and y

u

= P (x

u

). In addition a publi


�le is published, where S

u

is en
rypted using y

u

.

Note that the publi
 �le should be available for any interested party, but there is no need to

send the �le itself to every user (say, broad
ast or distribute it together with the 
ontent). It

is suÆ
ient to provide links to the publi
 �le, and make it 
lear that any party that obtains

the personal key of a user 
an use the publi
 �le to obtain the user's private information.

The en
ryption of the information in the publi
 �le should be done using El Gamal

en
ryption method, in the following way. The GC 
hooses a random s, publishes g

s

in the
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�le, and for ea
h user u en
rypts the information S

u

using g

sy

u

as the key. Using the pre�x-

trun
ation method of [26℄, the en
ryption 
an be done as g

s

; fH(g

sy

u

) � S

u

g, where H is

a pair-wise independent hash fun
tion. Note that the length of the en
rypted information

is only about jS

u

j times the number of users, although publi
-key 
ryptography is used.

This en
ryption method should be re
ommended sin
e its se
urity is based on the DDH

assumption, as is the se
urity of the revo
ation s
heme. (A naive solution that uses y

u

as the key for a symmetri
 en
ryption s
heme might not be se
ure, sin
e it requires y

u

to

be used as the se
ret key in two di�erent en
ryption s
hemes, the revo
ation s
heme and

the symmetri
 s
heme. Although y

u


an be se
urely used as a key in one 
ryptosystem,

it is not 
lear whether a 
ombined use in two 
ryptosystems a�e
ts the overall se
urity.

See [30℄ for an analysis of the use of dependent keys in two 
ryptosystems.) The publi
 �le

should also in
lude information that allows sear
hing for a value given the key g

sy

u

, e.g. by

using a pre�x from this string as an index. Therefore any user who leaks y

u

is immediately

supplying the pirate with a way to obtain S

u

.

A note on priva
y: Any 
oalition that obtains the se
ret keys of t + 1 users 
an


ompute any value g

sy

u

= g

sP (x

u

)

given the value x

u

. Therefore su
h a 
oalition 
an

learn the sensitive information of revoked users, sin
e their x

u

values are published in the

revo
ation message, and their personal information is available, en
rypted with g

sy

u

, in the

publi
 �le.

3.3 Analysis

Overhead of revo
ation: The overhead of the revo
ation is as in the s
heme of Se
-

tion 2.2.2 sin
e the revo
ation properties are essentially the same. In more detail, the se
ret

key that ea
h user keeps is a single element of Z

q

. A user should perform t exponentiations

in order to 
ompute a new key, and this overhead 
an be redu
ed by using simultaneous

multiple exponentiations (Chapter 14.6.1 in [25℄). The revo
ation message is of length O(t),


ontaining t+ 1 elements in Z

�

p

and t elements in Z

q

.

Properties: The s
heme has the following properties:

� Revo
ation: It is possible to revoke up to t users, and the revo
ation is se
ure against

a 
oalition of all the t revoked users. This property follows from Theorem 2.

� Self enfor
ement: By dis
losing its personal key, a user u dis
loses its sensitive infor-

mation S

u

. This follows from the dis
ussion given above.

� Tra
ing: On
e the GC obtains an illegal de
ryption devi
e it would like to tra
e

the users whose keys were used to 
onstru
t the devi
e. The tra
ing properties and

methods for our method are similar to those suggested in [4℄. We show below that

1. The s
heme has a bla
k-box 
on�rmation test, i.e. given a pirate de
ryption devi
e

and a suspe
ted subset of at most t users, one 
an test whether the members of

the subset 
ontributed keys that were used to generate the devi
e.

2. Given a key of a pirate devi
e that is in 
anoni
al form and that was 
onstru
ted

using the keys of at most t=2 users it is possible to extra
t the subset of users

whose keys were used to generate the key.
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3.4 Bla
k-box 
on�rmation

Consider a s
enario in whi
h the tra
ing system is given a subset of users that are suspe
ted

of providing keys for the pirate devi
e. We de�ne a \bla
k-box 
on�rmation test" for the

s
hemes in Se
tions 3.1,3.2. This test 
on�rms whether these users are indeed traitors.

De�nition 4 (bla
k-box 
on�rmation test) A bla
k-box 
on�rmation test is an algo-

rithm whose input is a pirate de
ryption devi
e as well as subset C of 
andidate (ab)users,

and whose output is either \Yes" or \No." Suppose that the box was really 
onstru
ted by

a pirate group T of traitors. Then the output of the test should obey:

� If C\T = T (namely, the real group of traitors is 
ontained in the subset of 
andidate

suspe
ts) then the algorithm should output \Yes" with high probability.

� If C \ T = ; (the subset of suspe
ts does not 
ontain any of the real traitors) then the

algorithm should output \No" with high probability.

Note that if C \ T 6= ; and C \ T 6= T then the test does not guarantee any result.

Constru
tion 1 (Bla
k-box 
on�rmation test) If jCj < t then the 
on�rmation test

generates a random set

^

C of users, subje
t to the 
onstraints that C �

^

C and

^

C = t.

Otherwise it sets

^

C = C. The 
on�rmation test then generates a random polynomial P

0

of

degree t, subje
t to the 
onstraint that it agrees with the keys of

^

C. Namely, for every u 2

^

C

it holds that P (u) = P

0

(u) and for any other value v, P (v) is independent of P

0

(v).

The 
on�rmation test then pi
ks a set R of t random values r

1

; : : : ; r

t

2 F , and sends

a revo
ation message using P

0

, revoking the keys of the users whose identities are in R

(namely, the revo
ation message uses the values g

rP

0

(r

1

)

; : : : ; g

rP

0

(r

t

)

). The group key is set

to g

rP

0

(0)

and the test examines whether the de
ryption devi
e is able to de
rypt messages

en
rypted with the new key. If the de
ryption su

eeds the output of the test is \Yes",

otherwise the output is \No".

Claim 5 Given bla
k-box a

ess to a pirate de
ryption devi
e generated with the keys of at

most t users, and given a subset C of at most t users, Constru
tion 1 above is a bla
k-box


on�rmation test for C.

Proof: First, note that with high probability the set R of t random values in F does not


ontain any element from C or T .

If C \ T = T then the pirate de
ryption devi
e 
annot distinguish between a regular

revo
ation message and the revo
ation message sent in the test. The pirate devi
e should

therefore be able to de
rypt messages using the new group key and the output of the


on�rmation test is therefore \Yes".

If C \ T = ; then the new key g

rP

0

(0)

is independent of the keys that were used to

generate the pirate devi
e. The pirate devi
e therefore fails to de
rypt messages en
rypted

with g

rP

0

(0)

and the output of the test is \No". 2
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From 
on�rmation to tra
ing: A 
on�rmation test 
an be used to tra
e identities of

spe
i�
 traitors. This 
an be done using the following tra
ing algorithm:

1. Find a group C for whi
h the 
on�rmation test answers \Yes".

2. Remove an arbitrary member u from C, obtaining C

0

. (C = C

0

[ fug.)

3. Run the 
on�rmation test with C

0

as the subset of suspe
ts.

� If the test answers \Yes" then reset the de
ryption devi
e, set C = C

0

and goto

step 2.

� If the test answers \No" de
lare that u is a traitor.

Lemma 6 The tra
ing algorithm always outputs an identity of a suspe
ted traitor.

Proof: Denote by C

i

the set C that is tested in the tra
ing algorithm after the ith user is

removed. C

0

= C; : : : ; C

jCj

= ;. The algorithm begins with a set C

0

for whi
h the output

of the 
on�rmation algorithm is \Yes". For C

jCj

the 
on�rmation algorithm always answers

\No", sin
e C

jCj

\ T = ;. There is therefore an 1 � i � jCj for whi
h the output of the


on�rmation algorithm is di�erent for C

i�1

and C

i

. The output of the tra
ing algorithm is

u 2 C

i

nC

i�1

. 2

Lemma 7 If C = C

0

[ fug and the 
on�rmation test answers \Yes" for C and \No" for

C

0

, then with high probability u is a traitor (namely u 2 T ).

Proof: (sket
h) Assume to the 
ontrary that u 62 T . In this 
ase C\T = C

0

\T . Therefore

the view of the pirate de
ryption devi
e during the 
on�rmation test is the same whether

the input to the test is C or C

0

. In both 
ases there is a revo
ation message 
ontaining t

values of P

0

in random lo
ations. The polynomial P

0

agrees with the values in C

0

\ T and


on
i
ts with the other values in T . The output of the 
on�rmation test should therefore

be the same in both 
ases. A 
ontradi
tion. 2

Theorem 8 Given a group of suspe
ts for whi
h the 
on�rmation algorithm answers \Yes"

it is possible to tra
e the identity of a spe
i�
 traitor.

Proof: Given a group of suspe
ts for whi
h the 
on�rmation algorithm answers \Yes" we


an run the tra
ing algorithm. The theorem then follows from lemmas 6 and 7. 2

Corollary 9 There is a bla
k-box tra
ing algorithm with running time O(

�

n

t

�

) that 
an tra
e

traitors without any a-priori information about their identities.

Proof: The algorithm tests ea
h subset C of t users using the bla
k-box 
on�rmation

algorithm. Sin
e jT j � jCj = t there is su
h an experiment in whi
h T � C and then the

output of the 
on�rmation algorithm is guaranteed to be \Yes". When this event happens

the tra
ing algorithm is run, and it is guaranteed by Theorem 8 to output the identify of

an individual traitor. 2
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3.5 Tra
ing given a key

Suppose now that the GC is able to \open" a pirate devi
e and reveal the key that the devi
e


ontains. This enables us to use a deterministi
 tra
ing method, based on error-
orre
tion


odes, whi
h is similar to a tra
ing method suggested in [4℄. This method ensures that if

the devi
e key is given in a 
anoni
al form (de�ned below) and was generated using the

keys of at most t=2 users, then it is possible to identify these users.

Canoni
al form of keys: The key that a user re
eives 
an be de�ned as a ve
tor

~

K

u

=

(1; x

u

; x

2

u

; : : : ; x

t

u

) and a value y

u

that is its inner produ
t with ~a = (a

0

; a

1

; : : : a

t

), the


oeÆ
ients of the polynomial P . Any su
h key allows re
onstru
tion of new group keys

that are sent using the revo
ation s
heme. Keys of this exa
t type are not the only useful

keys a small 
oalition of 
orrupt users 
an generate. Consider a 
oalition of m � t users,

fu

1

; u

2

; : : : u

m

g. Then for any

~

b = (b

0

; b

1

; : : : ; b

t

) that is a linear 
ombination of the ve
tors

f

~

K

u

i

g

m

i=1

it is possible for the 
oalition to 
ompute the inner produ
t of

~

b and ~a. Su
h

a ve
tor allows re
onstru
ting new keys following revo
ation messages (assuming not all


oalition members were revoked). The 
oalition 
annot generate the inner produ
t of ~a and

a ve
tor

~

b

0

that is not a linear 
ombination of the ve
tors f

~

K

u

i

g

m

i=1

, sin
e any result for this

inner produ
t is equiprobable given the information known to the 
oalition.

De�nition 10 (Key in 
anoni
al form) A key in 
anoni
al form is 
omposed of a ve
tor

~

b and its inner produ
t with ~a, the 
oeÆ
ients of the polynomial.

It seems (although we have no proof for that) that keys in 
anoni
al form are the only

viable option the pirates 
an take if they want to generate keys allowing re
onstru
tion.

This is stated in the following assumption.

Assumption 11 A pirate de
oder that de
rypts messages with non-negligible probability


ontains a 
anoni
al form key.

Theorem 12 (Tra
ing given a

ess to the key of a pirate devi
e) Given a pirate de
oder

that was generated using at most t=2 keys, it is possible to tra
e the sour
e of at least one

key.

Proof: Based on Assumption 11 the only keys that the de
oder 
an store are in 
anoni
al

form. Namely, they are a linear 
ombination of at most t=2 keys. The tra
ing problem is

essentially the following: given a ve
tor that is the linear 
ombination of at most t=2 ve
tors

out of the set of all ve
tors given to users, �nd this linear 
ombination. To be more pre
ise

assume that the n users are named u

1

; : : : ; u

n

and 
onsider the following matrix B with n

rows and t+ 1 
olumns:

B =

0

B

B

B

B

�

1 u

1

(u

1

)

2

: : : (u

1

)

t

1 u

2

(u

2

)

2

: : : (u

2

)

t

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 u

n

(u

n

)

2

: : : (u

n

)

t

1

C

C

C

C

A
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De�ne this to be the parity 
he
k matrix of a linear 
ode and let the matrix A of size

(n � t � 1) � n be the 
orresponding generating matrix of the 
ode, namely A � B = 0.

The 
ode is dual to a Generalized Reed-Solomon 
ode and is therefore a Generalized Reed-

Solomon 
ode by itself (see Chapter 10.8 in [24℄). It 
an therefore be de
oded in polynomial

time using the de
oding algorithm of Wel
h and Berlekamp [34℄.

Now 
onsider a pirate de
oding devi
e. Based on Assumption 11 it 
ontains a key in


anoni
al form, generated using the keys of at most t=2 users. This key is a ve
tor

~

d that

is a linear 
ombination of at most t=2 rows of the matrix B. Namely, there is a ve
tor ~w of

length n, with at most t=2 entries di�erent than 0, su
h that ~wB =

~

d.

The tra
ing algorithm is given the ve
tor

~

d. Its �rst step is to �nd an arbitrary ve
tor

~v of length n, su
h that ~vB =

~

d. Now, it holds that (~v � ~w)B = 0 and therefore (~v � ~w)

is in the span of the rows of the matrix A. This means that (~v � ~w) is a 
odeword of

the 
ode generated by the matrix A, and therefore ~v is di�erent from a 
odeword in at

most t=2 lo
ations. The tra
ing algorithm feeds ~w to a de
oding algorithm (e.g. the Welsh-

Berklekamp algorithm [34℄) and �nds the lo
ations in whi
h it is di�erent from the 
odeword

(i.e. the error lo
ations). These lo
ations 
orrespond to the non zero entries in the ve
tor

~w and therefore to the identities of the traitors. 2

Remark 1 We do not know how to get full-strength bla
k-box tra
ing as in [8, 27℄. Namely,

when all the tra
ing algorithm gets to examine is the input/output behavior of the pirate-box

and the time it has is mu
h smaller than

�

n

t

�

.

Remark 2 The full version of [4℄ des
ribes a bla
k-box tra
ing algorithm against single-key

pirates. This algorithm is based on the assumption that the pirate de
oder 
ontains only a

single 
onvex 
ombination of the keys of the traitors, as well as that it always outputs a

de
ryption of the message sent by the traitor tra
ing s
heme. We do not explore this type

of tra
ing algorithm for our revo
ation methods.

3.6 Using the s
heme for periodi
 group key refresh

A very appealing mode of operation of the self enfor
ement revo
ation s
heme is where the

group 
ontroller uses it to 
hange the group key every short period of time (say, on
e an

hour). That is, at the beginning of ea
h period the GC 
hooses a random value r, sets the

group key to be g

rP (0)

, and uses the s
heme to let users learn the new key (or, if ne
essary,

to revoke 
orrupt users).

This usage mode ensures that a party that re
eives the group key from one of the group

members 
an only use it to de
rypt the 
ontent until the next group key update. It must

know a personal key in order to 
ompute the new group key and de
rypt by itself the 
ontent

that is being broad
ast. Therefore, a legitimate user that wants to enable illegitimate parties

to re
eive the 
ontent must either 
onstantly send them the updated values of the group

key, or send them a personal key that 
ontains sensitive information.

3.7 Publi
 key en
ryption

A variant of the s
heme 
an be used to enable any party to en
rypt messages to the group

(even if that party is not a group member), while preserving the revo
ation, self enfor
ement,
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and tra
ing properties. It is based on a similar idea to that of the publi
 key tra
ing s
heme

of [4℄.

Initialization: To enable publi
 key en
ryption, the GC generates the keys as in Se
-

tion 3.1. It publishes a publi
 key fg

P (0)

; g

P (1)

; : : : ; g

P (t)

g (assuming that no x

u

is in the

range [0; t℄).

En
ryption: Any party 
an en
rypt a message M 2 G

q

by 
hoosing a random r and

sending the en
ryption

hg

r

; g

rP (0)

�M; g

rP (1)

; : : : ; g

rP (t)

i:

To de
rypt, ea
h user u 
omputes (g

r

)

P (x

u

)

and uses it to interpolate g

rP (0)

. (Note that

if it is required to en
rypt messages M 62 G

q

then the en
ryption 
an use H(g

rP (0)

) �M

rather than g

rP (0)

�M , where H is modeled as a random fun
tion.)

Revo
ation: To revoke the keys of up to t users u

1

; : : : ; u

t

, the GC 
hooses a random

r

0

and publishes a new publi
 key:

fg

r

0

P (0)

; x

u

1

; g

r

0

P (x

u

1

)

; : : : ; x

u

t

; g

r

0

P (x

u

t

)

g

Note that the s
heme is identi
al to revo
ation method 1 in Se
tion 2.2.2. The value

g

rP (0)

that is used there as the new group key is used here as a key with whi
h the message

M is en
rypted. In its basi
 form the publi
 key s
heme presented here 
orresponds to

revoking the users with identities 1; : : : ; t, whi
h do not in
lude any of the real users. If the

GC de
ides to revoke users in the publi
 key s
heme presented here then this 
orresponds

to revoking the same users with method 1 of Se
tion 2.2.2. The theorems regarding the

se
urity, tra
eability and self-enfor
ement of that s
heme are therefore valid here too.

3.8 Combining Revo
ation with Combinatorial Tra
ing S
hemes

Most tra
ing s
hemes (su
h as those in [8, 27℄) are based on 
ombinatorial 
onstru
tions.

In these 
onstru
tions there is a large set of independently 
hosen basi
 keys. Ea
h user's

personal key is a subset of the basi
 keys. The s
hemes en
rypt messages in a way that

ensures that ea
h personal key enables de
ryption. On the other hand, the union of the

personal keys (i.e., subsets of basi
 keys) of a 
oalition of 
orrupt users (traitors) and the

way the are used by a pirate box reveal at least one of the users in that 
oalition.

Revo
ation s
hemes 
an be 
ombined with tra
ing s
hemes in a multipli
ative way: A

revo
ation s
heme is 
onstru
ted for ea
h basi
 key (the basi
 key 
orresponds to the group

key in the revo
ation s
heme, and the group members are the users whose personal keys

in
lude the basi
 key). Tra
ing is done as in the underlying 
ombinatorial method. On
e

a user is tra
ed to be a traitor, the basi
 keys that are in
luded in the user's personal key

should be repla
ed using the 
orresponding revo
ation s
hemes. This would render the

pirate de
ryption devi
e useless (or otherwise, it would be possible to tra
e another traitor

that 
ontributed keys to the devi
e, and revoke its keys as well).

Overhead: the bandwidth loss is pre
isely that of the tra
ing method. The storage

overhead of this 
ombined s
heme is the multipli
ation of the storage overhead of the tra
ing

s
heme by the storage overhead of the revo
ation s
heme. The overhead of removing a

traitor is the overhead of a revo
ation in the revo
ation s
heme, multiplied by the number

21



of basi
 keys in the personal key of the tra
ing method. It is appealing to use our revo
ation

s
hemes in this s
enario, sin
e their storage, 
ommuni
ation, and 
omputation overheads

are low.
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