
Universal One-Way Hash Functions and their Cryptographic

Applications

�

Moni Naor

y

Moti Yung

z

Revised March 13, 1995

Abstract

We de�ne a Universal One-Way Hash Function family, a new primitive which enables the

compression of elements in the function domain. The main property of this primitive

is that given an element x in the domain, it is computationally hard to �nd a di�erent

domain element which collides with x. We prove constructively that universal one-way hash

functions exist if any 1-1 one-way functions exist.

Among the various applications of the primitive is a One-Way based Secure Digital

Signature Scheme which is existentially secure against adoptive attacks. Previously, all

provably secure signature schemes were based on the stronger mathematical assumption

that trapdoor one-way functions exist.

Key words. cryptography, randomized algorithms

AMS subject classi�cations. 68M10, 68Q20, 68Q22, 68R05, 68R10

�

Part of this work was done while the authors were at the IBM Almaden Research Center. The �rst

author was supported in part by NSF grant CCR-88 13632. A preliminary version of this work appeared in

Proc. of the 21st ACM Symposium on Theory of Computing

y

Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathe-

matics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Most of this work

performed while at the IBM Almaden Research Center. Research supported by an Alon Fellowship and

a grant from the Israel Science Foundation administered by the Israeli Academy of Sciences. E-mail:

naor@wisdom.weizmann.ac.il.

z

IBM Research Division, T.J Watson Research Center, Yorktown Heights, NY 10598, USA. E-mail:

moti@watson.ibm.com.



1 Introduction

Consider an environment in which users share computer programs that reside in the com-

mon (read/write) space. We assume that a small read-only area is available in the shared

memory. To prevent computer viruses from modifying the programs, the users would like to

authenticate the programs before their use. A possible way to do it is to use the read-only

area as a common security server which stores the hash value of the �les of the common

space, where the hash function h itself is publicly known and can be stored in the read-only

space as well. The property required from the hash function h is that for a given value x it

is computationally hard to �nd a y such that h(y) = h(x) and y 6= x.

We call the hashing of a large �le a public �ngerprint. Notice that this scheme does

not require the user to own a private secure space, the compression method is public, and

(in the spirit of modern cryptography) private keys are not required. Furthermore, it can

provide authentication even to a new or a casual user; this cannot be achieved by previously

suggested (private) �ngerprinting techniques [34, 29]. This scenario exempli�es the setting

of this paper which combines cryptographic security and data compression; as we shall see,

this setting includes a variety of applications.

We consider cryptographic primitives that implement such hash functions: In the �rst

part of the paper we give a computational complexity de�nition of a new primitive, which we

call universal one-way hash functions, and then show how to construct the primitive based

on any 1-1 one-way function. In the second part we present applications; in particular, we

show how to use the primitive to construct a digital signature which is provably secure and

is based on the existence of any 1-1 one-way functions.

In the rest of the introduction, we discuss cryptographic assumptions and primitives in

section 1.1, and de�ne and provide the history of digital signatures in section 1.2.

1.1 Cryptographic Assumptions and Primitives

A current research program in cryptography is to provide constructions of basic primitives

under assumptions that are as general as possible. Usually, these primitives are �rst intro-

duced and implemented based on speci�c assumptions (e.g. factoring of a speci�c family

of composite numbers is hard); these implementations rely on certain algebraic properties

of the assumption involved. On the other hand, basing cryptography on general assump-

tions provides a uni�ed cohesive complexity-theoretic formalism and it enriches the choice

of candidates for underlying mathematical tools for implementations. Therefore, general

assumptions are appealing to both theorists and practitioners.

Di�e and Hellman [6], who initiated public-key cryptography in 1976, suggested the

general tools of one-way functions and one-way trapdoor functions. Basically, a function

F is one-way if for a random x, given F (x) it is hard to compute x. A function E is one-

way trapdoor if it is one-way, and in addition, there exists a secret piece of information D,

called a trapdoor, which represents the inverse function, such that D(E(x)) = E(D(x)) = x

and the knowledge of D enables easy inversion. The idea of Di�e and Hellman has since

been formalized, and proof techniques based on complexity theory have been developed. In

particular, Yao [35] has initiated the research program of basing cryptographic primitives

on general assumptions.

1



Examples of cryptographic primitives (in addition to the new one mentioned above)

are: (a) secure message sending [6, 31, 30, 13], (b) cryptographically secure pseudo-random

generation [33, 2], and (c) general zero-knowledge interactive proofs [14]. In recent years, all

these primitives have been constructed under formal general assumptions: message sending

on trapdoor one-way functions [35, 17], pseudo random bit generator [35, 22, 11, 17], and

general zero-knowledge interactive proofs [12, 20, 27] on one-way functions.

1.2 One-way hash

The need for a primitive that allows hashing so that it would be hard to �nd collisions was

recognized since the earlier days of modern cryptography: Di�e and Hellman [6] mention

such functions and Rabin [28] lists required properties of such functions. Other examples

of work involving such functions are Merkle's [24, 25, 23] and Damgard [5]. One usage of

such functions was in conjunction with digital signatures: instead of signing a long message,

apply the hash function and sign the result.

The property that all previous researcher looked for was that given the description of

the hash function h it should be hard to �nd x 6= y such that h(x) 6= h(y). We deviate

from this scenario and relax the rules somewhat. In our game, �rst x is chosen arbitrarily

by an adversary, then and h is chosen at random and the adversary is challenged to come

up with a y 6= x such that h(x) = h(y). This relaxation proves to be very useful: it

allows construction given any 1-1 one-way function, yet it is su�ciently strong to support

applications such as public �ngerprints and digital signatures. No provably secure general

construction for one-way hash functions that previous researchers considered is known.

1.3 Digital Signatures

The history of digital signature started by Di�e and Hellman [6] where a signature scheme

based on trapdoor one-way function was provided. Each user has a public key E and its

secret inverse D as a private key. The signer sends the messageM and signs by applying and

sending D(M), any receiver can verify the signature by computing E(D(M)) and checking

that this value matches the message M . The above scheme was developed without a precise

notion of security; the argument was that since inversion is hard to compute, a forgery is

intractable and the system is secure. The �rst implementations of public-key cryptography

(the Merkle-Hellman, RSA and Rabin`s schemes [26, 31, 30]) gave signature schemes of this

kind.

Following [6], signature systems design has become an extensive �eld of research (see

[15]); we concentrate here only on provably secure systems. The �rst scheme to deal formally

with the notion of security of signature scheme was suggested by Goldwasser, Micali and Yao

[16] who also pointed out aws in the Di�e-Hellman scheme. They based their probabilistic

scheme on the problem of factoring. Then, the strongest known de�nition of security was

formalized by Goldwasser, Micali, and Rivest [15]; they de�ned what it means for a system

to be existentially unforgeable under an adaptive chosen plaintext attack; (this is what we

call \secure" in the rest of the paper). This is an attack by an adversary (forger) who

initially computes a plaintext and receives from the signature algorithm a corresponding

valid signature; this is repeated in an adaptive fashion, for polynomially many iterations.

Then the forger has to produce, without the cooperation of the signature algorithm, an extra

2



signature for a message that was not previously signed. A secure system was designed under

the assumption that factoring is hard, or a more general assumption that claw-free trapdoor

permutations exist [15]. Recently, Bellare and Micali [1] have shown how to construct a

secure signature system based on the assumption that trapdoor one-way permutations exist;

this matches the original suggestion of Di�e and Hellman, but this time the system has a

proof of security.

As one can see in the above history, the entire research in provably secure signatures

was directed towards designing secure signature schemes based on the trapdoor property.

In [15] the trapdoor property was even included as part of the de�nition of a signature

scheme. Furthermore, there is no system which was proved secure even under a very weak

attack and is based on a one-way function (even a special one) which is not trapdoor.

In this work, we present a one-way based secure signature scheme, a system based on

the existence of 1-1 one-way functions; the system makes use of the primitive of universal

one-way hash functions. Unlike the philosophy of previous systems, the signature algorithm

is not based on a user's advantage of \knowing some trapdoor information" and can use a

one-way key without a trapdoor. Nevertheless, the system is provably secure.

Two signature schemes not based on trapdoor functions were suggested previously, how-

ever neither of them was proved secure, even in the weakest sense of [15]: Fiat and Shamir

[8] suggested a method on converting zero knowledge proofs for identi�cation into e�cient

signatures schemes. Merkle [23] provided a pragmatic signature scheme based on any \en-

cryption function". Our construction follows Merkle's paradigm and turns it into a provably

secure scheme.

Besides the fact that we have reduced the su�cient conditions for having a secure

signature, the scheme has other practical advantages. For example, even if the source of

cryptographic security is a single instance of a one-way function (assumed to be hard to all

participants) which is published by a central server (say, the NSA), still any individual in

the community of users can base a signature-key of his own on this function instance and

sign safely (a scenario similar to the identi�cation scheme of [8]). Furthermore, concrete

functions which are believed to be one-way require less time to compute than ones assumed

to be trapdoor functions. Thus, basing a construction on one-way functions yields a more

e�cient one (unless the construction is very ine�cient, which is not the case here).

Recently, Impagliazzo and Rudich [19] have shown a separation between the assumption

that one-way functions exist and the assumption that trapdoor functions exist, at least in

a certain restricted model. This provides even more incentive to try to weaken underlying

assumptions, and to ascertain when the trapdoor property is needed.

Organization of the paper: In section 2 we present and construct universal one-way

hash functions. In Section 3 we formally de�ne secure signature schemes and in section 4

we construct our scheme and sketch the proof of its security. In section 5 we conclude at

least some open problems.

2 Universal One-way Hash Functions

In this section we de�ne universal one-way hash functions (UOWHF) and show how to

construct them given any 1-1 one-way function. After we de�ne UOWHF, in section 2.1

we show that composing families of UOWHF yields a family of UOWHF. In section 2.2

3



we show how to construct a family of universal one-way hash functions that compresses

one bit. Combining this and the composition property allows us to construct a family for

any input and output size that are polynomially related. Section 2.3 shows how to make

UOWHF that have a more succinct representation and are more e�cient to compute.

Let fn

1

i

g and fn

0

i

g be two increasing sequences such that for all i n

0

i

� n

1

i

, but 9q, a

polynomial, such that q(n

0

i

) � n

1

i

(we say that these sequences are polynomially related).

Let H

k

be a collection of functions such that for all h 2 H

k

, h : f0; 1g

n

1

k

7! f0; 1g

n

0

k

and let U =

S

k

H

k

. Let A be a probabilistic polynomial time algorithm (A is a collision

adversary) that on input k outputs x 2 f0; 1g

n

1

k

which we call an initial value, then given

a random h 2 H

k

attempts to �nd y 2 f0; 1g

n

1

k

such that h(x) = h(y) but x 6= y. In other

words, after getting a hash function it tries to �nd a collision with the initial value.

De�nition: Such a U is called a family of universal one-way hash functions if for all

polynomials p and for all polynomial time probabilistic algorithms A the following holds for

su�ciently large k.

1. If x 2 f0; 1g

n

1

k

is A's initial value, then Prob[A(h; x) = y; h(x) = h(y); y 6= x] <

1=p(n

1

k

) where the probability is taken over all h 2 H

k

and the random choices of A.

2. 8h 2 H

k

there is a description of h of length polynomial in n

1

k

, such that given h's

description and x, h(x) is computable in polynomial time.

3. H

k

is accessible : there exists an algorithm G such that G on input k generates

uniformly at random a description of h 2 H

k

.

We note that we treat H

k

as a collection of descriptions of functions; two di�erent descrip-

tions might correspond to the same function.

In this de�nition the collision adversaryA is a (uniform) algorithm. We can alternatively

de�ne UOWHF where A is a polynomial sized circuit (the non-uniform case). In this case,

all our results still hold, but we require the one-way functions that we use to be one-way in

the non-uniform setting as well.

2.1 Composition of UOWHF

An important property of UOWHF families that we will make use of (and is probably im-

portant in applications) is that a composition of such families remains a family of UOWHF.

Let H

1

; H

2

; : : :H

l

be families of functions such that 8i and 8h

i

2 H

i

h

i

: f0; 1g

n

i

7!

f0; 1g

n

i�1

and n

i

< n

i+1

. We call H = fhjh = h

1

� h

2

� : : : � h

l

g an l-composition of

H

1

; H

2

; : : : ; H

l

. H is a multiset; if h

1

�h

2

�: : :�h

l

= h

0

1

�h

0

2

�: : :�h

0

l

for di�erent (h

1

; h

2

; : : : ; h

l

)

and (h

0

1

; h

0

2

; : : : ; h

0

l

), both instances are members of H .

Lemma 2.1 Let H be an l-composition as above. If there exists an algorithm A that pro-

duces an initial value x and when given a uniformly random h 2 H Prob[A(h; x) = y; h(x) =

h(y); y 6= x] > �, then there exists an 1 � i � l and an algorithm A

0

such that

� A

0

produces an initial value x

i

2 f0; 1g

n

i

� then on input h

i

2 H

i

tries to �nd a y

i

that collides with x

i

.

4



� Prob[A

0

(h

i

; x

i

) = y

i

; h(x

i

) = h(y

i

); y

i

6= x

i

] > �=l where the probabilities are taken

over h

i

2 H

i

and A

0

's random choices.

� The running time of A

0

is polynomially related to that of A.

Proof: Suppose that such an A exists and suppose that A's initial value is x and then A

is given h = h

1

� h

2

� : : : � h

l

. Whenever A succeeds in �nding a y such that h(y) = h(x)

but y 6= x there is the �rst 1 � i � l where the composition of the h

j

's on x and y becomes

equal, i.e. h

i+1

� : : : � h

l

(y) 6= h

i+1

� : : : � h

l

(x) but h

i

� : : : � h

l

(y) = h

i

� : : : � h

l

(x). Hence,

by the pigeon hole principle, there must exist an 1 � i � l where this occurs in at least 1=l

of the cases. For that i, if A(h; x) = y, then

Prob[(h

i+1

� : : : � h

l

(y) 6= h

i+1

� : : : � h

l

(x))^ (h

i

� : : : � h

l

(y) = h

i

� : : : � h

l

(x))] > �=l

where the probability is over uniformly random h = h

1

� h

2

� : : : � h

l

2 H and A's random

choices. This i would be the one for which we can \break" H

i

(i.e. �nd collisions).

We can now de�ne an algorithm A

0

that �rst produces an initial x

i

, then given a ran-

domly chosen h

i

2 H

i

tries to �nd y

i

that collides with x

i

:

1. Given A's initial value x.

2. Choose at random h

i+1

2 H

i+1

; h

i+2

2 H

i+2

; : : :h

l

2 H

l

and output x

i

= h

i+1

� : : : �

h

l

(x).

3. on input h

i

, choose at random h

1

2 H

1

; : : : ; h

i�1

2 H

i�1

4. run algorithm A on input h = h

1

� : : : � h

i�1

� h

i

� h

i+1

: : : h

l

.

5. if the output of A is y output y

i

= h

i+1

� : : : � h

l

(y).

All the functions h

1

; h

2

; : : : ; h

l

are chosen uniformly at random from their respective

families H

1

; H

2

; : : :H

l

, and thus h is uniformly distributed in H . Therefore the distribution

on inputs that the simulated A sees is identical to the usual one and

Prob[(h

i+1

� : : : � h

l

(y) 6= h

i+1

� : : : � h

l

(x))^ (h

i

� : : : � h

l

(y) = h

i

� : : : � h

l

(x))] > �=l:

Therefore Prob[^h(x

i

) = h(y

i

) ^ y

i

6= x

i

] > �=l. Note that the running time of A

0

is the

running time of A plus some polynomial amount of work. 2

Remark: The composition lemma motivates the separation of choosing x from that of h in

our de�nition of UOWHF families. If we had de�ned it di�erently, with x being part of the

input chosen at random uniformly, the lemma wouldn't have been true. Counter-examples

can be constructed similarly to ones in [11]. Note that in step 1 of algorithm A

0

the x

i

is

not necessarily chosen uniformly at random over all f0; 1g

n

i

.

Lemma 2.1 is a key component in the proof of the next theorem: Let fn

0

i

g; fn

1

i

g; fn

2

i

g; : : :

be a sequence of increasing sequences, let U

1

; U

2

; : : : be a sequence of families of UOWHF

such that U

i

=

S

k

H

i;k

where 8h 2 H

i;k

h : f0; 1g

n

i

k

7! f0; 1g

n

(i�1)

k

. We also require that

the U

i

's be simultaneously hard: for every polynomial p and every probabilistic polynomial-

time algorithm A, there is a K such that 8k > K and for all i � 1, A cannot succeed in

5



�nding collisions in H

i;k

with probability greater than

1

p(n

i

k

)

. Let l : N 7! N be a polyno-

mial computable function such that q(n

0

k

) > n

l(k)

k

for some polynomial q. Let H

k

be the

l(k)-composition of H

1;k

; H

2;k

; : : :H

l(k);k

and let U =

S

k

H

k

.

Theorem 1 U is a family of UOWHF.

Proof: It is easy to see that H

k

is accessible, and that given h 2 H

k

computing h(x) can be

done in polynomial time. As for the hardness of �nding collisions, assume the contrary, i.e.

there exists an algorithm A such that for every polynomial p. for in�nite k's, the probability

that A succeeds in �nding collisions for H

k

is larger than 1=p(k).

Lemma 2.1 and the fact the U

i

's are simultaneously hard imply that otherwise one of

the U

i

's would not be a family of UOWHF. 2

2.2 Compressing One Bit

Theorem 1 (the composition theorem) tells us that in order to construct any family of

UOWHF it su�ces to have a construction for a family of UOWHF that compresses one bit,

i.e that h : f0; 1g

k

7! f0; 1g

k�1

8h 2 H

k

. In this subsection we show how to compress

one bit, assuming that a 1-1 one-way function is available. The construction is achieved

by composing a universal hash function with the one-way function. We start by assuming

that the one-way function is a permutation, then relax this condition to a 1-1 one-way

function. A one-way permutation is a 1-1 length preserving function f that is polynomial-

time computable, but for any polynomial p and any probabilistic polynomial time algorithm

A (an inversion adversary) and su�ciently large k, Prob [A(f(x)) = x] � 1=p(k) where the

probability is taken uniformly over all x 2 f0; 1g

k

and A's internal random choices.

We will �rst assume that we have a one-way permutation f .

The source of the compression will be a family of strongly universal hash functions.

Carter and Wegman [34, 4] de�ned strongly universal

2

functions as a family of functions G

where g : C 7! B for all g 2 G if for every pair of inputs (a

1

; a

2

) and pair of outputs (b

1

; b

2

),

the number of functions that map a

1

to b

1

and a

2

to b

2

is jGj=jBj

2

. If g 2 G is chosen

uniformly then the the values of g(x) and g(y) are independent and uniformly distributed

in B for any x; y 2 C,

Collision Accessibilityproperty: We require another property from the strongly universal

2

family G. Given that g(x) = g(y) it is possible to generate in polynomial time a function

g 2 G such that g(x) = g(y) with equal probability over all functions in G which obey the

restriction g(x) = g(y).

For an example of such a family, consider the lines in the �nite �eld GF [2

k

], ax+b with

the last bit chopped for the compression. G

k

= fg

a;b

jg

a;b

(x) = chop(ax+ b); a; b 2 GF [2

k

]g

where all the computation are in GF [2

k

] and chop : f0; 1g

k

7! f0; 1g

k�1

simply chops the

last bit.

De�ne H

k

= fh = g � f jg 2 G

k

g, where G

k

is a strongly universal

2

family which has the

collision accessibility property. The number of bits required to specify a member of H

k

is

the number needed to specify a member of G

k

. In our example this is 2k.

Lemma 2.2 U =

S

k

H

k

is a UOWHF family.

6



proof: We will show that if U is not a UOWHF family then we have an algorithm to

invert a randomly chosen f on a random input, i.e. given a randomly chosen f(w) we

apply a randomized reduction from a collision adversary to an inversion adversary which

will succeed in �nding w with non-negligible probability.

Suppose that A is an algorithm that on a length k produces an initial x 2 f0; 1g

k

and

when given h 2 H

k

Prob [A(x; h) = y ^ h(x) = h(y) ^ y 6= x] � � when the probability is

over all h 2 H

k

and A's random choices. We can de�ne an algorithm A

0

so that given a

random z = f(w) tries to �nd w:

1. run A to produce x

2. choose a random g 2 G such that z and f(x) collide, i.e., g(f(x)) = g(z).

3. run A on input h = g � f and x, let the output be y.

Step 2 is easy to perform (by choosing a random element to which g maps f(x)); the

construction gives a 2-1 function and exactly one element collides with f(x). Hence, if step

3 is successful, i.e. h(x) = h(y) but y 6= x, then f(y) = z and y = w.

Claim: if w was chosen at random, then the above procedure chooses h at random from

H

k

.

Proof: We can de�ne a partition of H according to which element collides with f(x). All

parts are of equal size (by the property of strongly universal

2

hash functions). Since w was

chosen at random and f is a permutation, a random part was chosen uniformly. Step 2

chooses with equal probability an h from that part. Hence, the whole procedure de�nes a

random choice of h.

Since h is chosen uniformly at random, step 3 of the algorithm succeeds with probability

at least �, by assumption. Hence, the inversion succeeds with probability at least �.2

This lemma in conjunction with theorem 1 and the fact that one-way functions over

strings of polynomially related sizes are simultaneously hard yield the following:

Theorem 2 If one-way permutations exist, then for any two increasing sequences fn

1

i

g

and fn

0

i

g that are polynomially related there exists a family of UOWHF U =

S

k

H

k

such

that h : f0; 1g

n

1

k

7! f0; 1g

n

0

k

for h 2 H

k

.

The number of bits required to specify h 2 H

k

using our example is

P

n

1

k

i=n

0

k

+1

2i =

n

1

k

(n

1

k

� 1)� n

0

k

(n

0

k

� 1).

Suppose we only have a 1-1 one-way function, i.e. unlike a one-way permutation it is not

necessarily length preserving. It can be shown that the construction we gave for one-way

permutation still works. We only have to use strongly universal functions over the range

and de�ne the chopping to be all but the last k � 1 bits.

2.3 E�cient and Succinct UOWHF

Suppose we want to have public �ngerprint, i.e. we have large �les, stored in an insecure

area, that we wish to hash down to a compact size which �ts in the secure area. A hash

function whose description is as long as the �le would not help much; storing it in the

secure area would require as much space as storing the �le itself. Hence we develop in

this section constructions for UOWHF families which have a more succinct representation.

7



Furthermore, these functions can be computed more e�ciently then the ones of the previous

section.

The �rst observation is that at each stage we can compress more than one bit. If, instead

of using a 2-1 strongly universal hash function we used in the previous section, we use a

t-1 strongly universal hashing, then the probability that step 3 of the algorithm suggested

in the proof of lemma 2 produces the pre-image we want will be �=t. Hence, as long as t

is polynomial in the length, we have a polynomial algorithm to break f . If we compress

a logarithmic number of bits, then t is polynomial. The total number of bits to specify

a compression from n

1

to n

2

is therefore n

1

2

= logn

1

. There is a similar reduction in the

number of stages. (Furthermore, if we have a 1-1 one-way function whose inversion is hard

for algorithms that run in time O(2

�k

), then we can compress as many as �k bits at each

stage.)

A much greater saving can be achieved by employing a block hashing technique similar

to the one in [34]. Let m be large enough so that inverting f on m bits is infeasible.

Divide the input into blocks of size 2m. Let H be a UOWHF family whose members are

f0; 1g

2m

7! f0; 1g

m

. Let H

0

be the family you get by applying the same hash function

that compresses from 2m to m bits on every block of the input. The members of H

0

are

functions f0; 1g

n

1

7! f0; 1g

n

1

=2

. Breaking it requires breaking the f0; 1g

2m

7! f0; 1g

m

function on one of the blocks. Hence, when the number of blocks is polynomial in m (as

we assume here), breaking H

0

means that at least one of the blocks has 1=poly(m) chance

of being inverted and this can be used as an algorithm for breaking H . The number of bits

needed to specify a member in H

0

is the same number needed to specify one in H , i.e., m

2

.

To further hash the �le, we will use a new UOWHF family that again halves the number of

bits. To hash from n

1

bits to n

0

bits we will continue inductively and will need to compose

log(n

1

� n

0

) such functions. By the composition theorem this is still a UOWHF family.

Thus to specify a function that compresses from n

1

bits to n

0

bits requires O(m

2

logn

1

)

bits. An additional advantage is that the one-way permutation (1-1 functions) has to be

computed only on inputs of size m and the time complexity is essentially linear in n

1

.

3 One-way based Signature Scheme

In this section we give our de�nition of a signature scheme (based on [15, 1]) and its security.

3.1 De�nition of a Signature Scheme

A signature scheme includes the following components:

1. A security parameter k which determines the size of keys, messages and other re-

sources; all sizes and algorithms are polynomial in k.

2. A message space MS; we allow all messages of a given size polynomial in k

3. A key component which includes a key space KS(k), a family from which keys are

being drawn and a generation algorithm KAL which chooses random keys.

4. A signature bound SB, a polynomial representing a bound on the number of messages

signed; any polynomial should work.

8



5. A system state s which represents the state of the system; there are an initial state

and execution states.

6. A signing algorithm SAL which is given a message, a system state, and a key, generates

a signature and updates the system's state.

7. A veri�cation algorithm VAL which is given a message, a signature and a system's

state, checks the validity of the signature.

A signature system is a distributed system in which each user is a polynomial-time

machine which initiates its instance of the signature scheme.

3.2 Security of a Signature Scheme

The most general attack on a signature scheme ([15]) has two phases. First, it allows

a polynomial-time adversary F (a forger) to use the signature algorithm in an adaptive

fashion, getting signatures to polynomially many plaintexts of its choice. Next, the attack

has an existential nature, i.e., the forger itself has to come up with a valid signature of a new

message of its choice, in which case we say that it was successful. A scheme is p-forgeable if

for a polynomial p there is a forger F which for in�nitely many k's, succeeds in the attack

with probability larger than 1=p(k), where the probability is taken over the random choices

of keys by KAL, the choices of the signatures by SAL, and the coin ips of F itself. We

say that a system is secure if it is not p-forgeable for any polynomial p.

4 The Signature Scheme

Here we present our one-way based scheme: its components, algorithms, and security proof.

4.1 Background: Tagging System- \One-Time Signature"

The starting point of our system is the Di�e-Lamport tagging system [21]; both the system

of Bellare and Micali [2] and the practical system of Merkle [23] which motivated us were

based on it. The suggestion of [21] is to make public a one-way function f and a window,

which is an ordered pair of values < f(x

0

); f(x

1

) >, for randomly chosen x

0

, x

1

in the

function domain. The user, then, is committed to the window and later on when it sends

a bit b, it is done by publishing a tag x

b

, an operation we call opening half a window. We

say that the other half of the window remains unused.

The construction can be extended to tag a message of length m bits, by initially pub-

lishing (committing) to a row of windows [< f(x

i

0

); f(x

i

1

) >; i = 1; : : : ; m] and then opening

the halves corresponding to the bits of the message. Since f is one-way, only the committed

user can open a tag, and no one else can tag a di�erent message unless it can invert a

random value of f , furthermore, anyone can verify tags; in this sense the system resembles

a signature scheme. However, the drawback is that the size of the initial commitment limits

the number of bits which can be tagged; in this sense it is not a signature scheme, which

requires that once the initial key is placed in the public-key directory the system should be

active \polynomially forever".

9



A tagging system provides what we may call a one-time signature (analogous to a �nite

one-time pad), which cannot be extended beyond a given length. Merkle gave a more

space-e�cient tagging system based on a tree structure [25].

4.2 An Overview

Here we present the simplest version of our system; in section 4.5 we suggest other versions.

The general strategy of the system is to extend the tagging system, enhancing it with

the capability of \regenerating rows of windows". The system is represented as a linked

list; a system's state is a list consisting of nodes. Each node is associated with a message,

i.e., it tags that message. The node is also connected to its successor in the list; i.e., it tags

the successor node as well.

The node N

i

contains three data �elds: h

i

a universal one-way hash function, and two

rows of windows rm

i

and rs

i

; the �rst will tag the next message M

i+1

while the second

one will tag the successor node in the list, N

i+1

. The set of one-way permutations (1-1

functions) used in the tag encryption and in the hashing will be called the one-way function

f . It is publicly known, or is otherwise produced by each user.

4.3 The System's Algorithms

Next we sketch the algorithms and the dynamic behavior of the system. The system has

an initial state (state 0) in which a user deposits an initial (root) node N

0

in the public

directory.

In a typical situation the system is in state s

i�1

where there is a list of i � 1 nodes

and the last-node N

i�1

is unused. The connection between nodes will be explained in the

following sketch of the signature and the veri�cation algorithms.

SAL: Each message signing changes the state of the system, the list grows by a node

which becomes the new last-node. At state s

i�1

the user sends a message M

i

and tags

it using the row rm

i�1

. Furthermore, a new node N

i

is generated by algorithm KAL:

N

i

=< h

i

; rm

i

; rs

i

> where its components are chosen at random: h

i

is a random element

of the UOWHF family based on f , and the rows are encryption by f of random tag values.

In order to link the new node into the list, the user has to tag the new node by its

predecessor. Notice that the new node as a string of random bits is larger than the tagging

capabilities of the row rs

i�1

which was given this tagging task! Here is where the one-way

hash is needed in a non-trivial way. The algorithm �rst computes the hash value of the

new node by evaluating n

i

= h

i�1

(N

i

), then the smaller string n

i

is tagged by opening the

corresponding half-windows in rs

i�1

. This de�nes a signature on M

i

and a new valid state

of the system s

i

.

VAL: Veri�cation of the validity of a message can be done by checking the tagging of

the message M

i

by rm

i�1

and testing the validity of the system's state by checking that the

tagging of n

j

= h

j�1

(N

j

) is a valid one, namely, it was done by a proper opening of rs

j�1

for all j = 1; : : : ; i� 1. This is done all the way to the root and if all checks are valid the

user accepts the signature.

Remark: In practice, once old messages and signatures are out of date, a user can keep

on-line only the relevant and previously veri�ed su�x of the list; this saves time and space.

With respect to a forger, though, the worst assumption is that it has access to the entire

10



history at any time. In case not all users are following all message transmissions, a user can

have a separate system dedicated to each other user, or a practical tree-like system can be

used (to be described later).

Lemma 4.1 The key-generation, signing, and veri�cation algorithms are polynomial-time.

4.4 Security of the Signature Scheme

The security of our scheme is based on a randomized reduction from a forgery to an inversion

adversary of the one-way function f ; it translates an existential attack to an attack which

tries to invert a random element in the range of the function. The following lemma describes

how a forger may be successful.

Lemma 4.2 Assume a forger is successful in its attack after i = poly(k) signature steps,

then either (1) a half-window unused by the signature algorithm is opened, or (2) a node

not generated by the signature algorithm (SAL) is tagged by a predecessor node generated

by SAL.

Given a successful forger F , we will use the lemma to generate an inversion adversary to

the underlying one-way function f . Assume we are given a signature scheme, and assume a

forger can successfully attack with a non-negligible success probability � = �(k). Using the

lemma above we know that either case (1) or (2) occurs with probability �=2 for in�nitely

many k's, (we say that the more frequent case dominates). If case (1) dominates then we can

invert a random tag value; the reduction algorithm plays the role of SAL but plugs this value

at a random location as half a window (this does not change the probability distribution of

system states). With probability 1/2 the forger may ask to sign a message which contains

a bit corresponding to this half a window, in which case we fail and stop. Otherwise, with

probability inverse polynomial in the size of the history, the successful forger inverts this

speci�c window. If case (2) dominates, the reduction algorithm plays the role of SAL again,

generating random nodes, but at a random step it chooses a successor node �rst and then

a hash function which will collide and, by theorem 2, will invert a random given element

in the range of one of the one-way functions used in the hashing with probability inverse

polynomial in the size of the history. (This construction does not change the probability

distribution of system states.) Thus a successful forgery implies a successful inversion of the

underlying one-way function f with probability polynomially related to �, a contradiction.

We summarize the above:

Theorem 3 If 1-1 one-way functions exist, then the one-way based signature scheme de-

scribed above is secure.

4.5 E�ciency

Suggestions for improving the e�ciency from [15, 9, 24, 1] are applicable to our scheme as

well. Instead of a linked list we can arrange the one-time signatures in a d-way tree, where

the parent tags all its d children. If k is the value of the security parameter and t messages

have been signed so far, then the length of a signature in such a system is O(k

2

log

d

t).

11



Using pseudo-random functions of [10] we can make our scheme \memoryless", in the

sense that the signer need not remember the messages that he has signed or even their

number. In particular many (authorized) signers can exist simultaneously without the need

to coordinate their signatures. This is done by using the techniques of Levin and Goldreich

[9] which were also used by [15, 1].

5 Conclusions

The signi�cance of the this work is in identifying a \good" de�nition for one-way hash

functions. We have seen that the de�nition is strong enough to implement construction

such a public �ngerprints and digital signature. On the other hand we have seen how any

1-1 one-way function can support the construction of such families. Very recently Rompel

[32] has extended our work and showed how to construct a UOWHF from any one-way

function.

It would be interesting to see more e�cient constructions, perhaps based on more re-

strictive assumptions. One such construction was given by Impagliazzo and Naor in [18].

based of on the hardness of random subset sum problems of certain dimensions.

6 Acknowledgments

We would like to thank Manuel Blum, Benny Chor, Cynthia Dwork, Amos Fiat, Oded Gol-

dreich, Stuart Haber, Ralph Merkle, and Silvio Micali for discussions and helpful comments.

References

[1] Bellare M. and S. Micali How to Sign Given any Trapdoor Function , Proc. 20th Annual

Symposium on the Theory of Computing, Chicago, Il, 1988, pp. 32-42.

[2] Blum M. and S. Micali How to Generate Cryptographically Strong Sequences of Pseudo-

Random Bits, SIAM Journal on Computing, V. 13, No. 4, Nov. 84, pp. 850-864.

[3] G. Brassard, C. Crepeau and M. Yung, All NP Can Be Proved in Perfect Zero-

Knowledge in Constant Rounds, ICALP 1989, to appear.

[4] J. L. Carter and M. N. Wegman, Universal Classes of Hash Functions, Journal of

Computer and System Sciences 18 (1979), pp. 143-154.

[5] I. B. Damgard, Collision Free Hash Functions and Public Key Signature Schemes ,

Eurocrypt, 1987.

[6] W. Di�e and M. Hellman, New Directions in Cryptography , IEEE Trans. on Informa-

tion Theory, vol. IT-22, 6 (1976), pp. 644-654.

[7] S. Even, O. Goldreich, and S. Micali, On-line/O�-line Digital Signatures, Proc. Ad-

vances in Cryptology { Crypto '89, Springer Verlag, pp. 263{275, 1990.

12



[8] A. Fiat and A. Shamir, How to Prove Yourself: Practical Solutions to Identi�cation

Problems and Signature Problems, Proc_of Crypto 86, pp. 186-194.

[9] O. Goldreich, Two Remarks Concerning the GMR Signature Scheme, Proc_of Crypto

86, pp. 104-110.

[10] O. Goldreich, S. Goldwasser and S. Micali, How to Construct Random Functions Jour-

nal of the ACM (1986).

[11] O. Goldreich, H. Krawczyk and M. Luby, On the existence of Pseudorandom Gener-

ators, Proceedings of the 29th Symposium on the Foundation of Computer Science ,

1988, pp. 12-24.

[12] S. Goldreich, S. Micali and A. Wigderson, Proofs that Yields Nothing But their Va-

lidity, and a Methodology of Cryptographic Protocol Design, Proceedings of the 27th

Symposium on the Foundation of Computer Science, 1986, pp. 174-187.

[13] S. Goldwasser and S. Micali, Probabilistic Encryption, J. Com. Sys. Sci. 28 (1984), pp.

270-299.

[14] S. Goldwasser, S. Micali and C. Racko�, The Knowledge Complexity of Interactive

Proof-Systems, Proc. 17th Annual Symposium on the Theory of Computing, Provi-

dence RI,, 1985, pp. 291-304.

[15] S. Goldwasser, S. Micali and R. Rivest, A secure digital signature scheme , Siam Journal

on Computing, Vol. 17, 2 (1988), pp. 281-308.

[16] S. Goldwasser, S. Micali and A. C. Yao, Strong signature schemes , Proc. 15th Annual

Symposium on the Theory of Computing, Boston, Ma, 1983, pp. 431-439.

[17] R. Impagliazzo, L. Levin and M. Luby, Pseudo-random Generation given from a One-

way Function, STOC 89.

[18] R. Impagliazzo and M. Naor, E�cient Cryptographic Schemes Provably as Secure as

Subset Sum, Proc. of the 30th Symp. on Foundations of Computer Science, 1989, pp.

236{241. Full version: Technical Report CS93-12, Weizmann Institute.

[19] R. Impagliazzo and S. Rudich, Limits on the Provable Consequences of One-way Per-

mutations, These Proc.

[20] R. Impagliazzo and M. Yung, Direct Minimum-Knowledge Computations , Proc. of

Crypto 87, Springer Verlag.

[21] L. Lamport, Constructing digital signatures from one-way functions, SRI intl. CSL-98,

October 1979.

[22] L. Levin, One-way Functions and Pseudorandom Generators, Proc. 17th Annual Sym-

posium on the Theory of Computing, 1985, pp. 363-365.

[23] R. Merkle, A Digital Signature based on Conventional Encryption Function, Crypto

1987, Springer Verlag.

13



[24] R. Merkle, Secrecy, Authentication and Public Key Systems, Ph.D. Thesis (1982), UMI

Research Press, Ann Arbor, Michigan.

[25] R. Merkle, A Certi�ed Digital Signature, Manuscript 1979.

[26] R. Merkle and M. Hellman, Hiding Information and Signature in Trapdoor Knapsack,

IEEE Trans. on Information Theory, vol. IT-24, 5 (1978), pp. 525-530.

[27] M. Naor, Bit commitment using pseudo-randomness Proc. of Crypto 89.

[28] M. O. Rabin digitalized signatures , in Foundation of Secure Computation, Academic

Press, R.A. DeMillo, D. Dobkin, A. Jones and R. Lipton, eds., Academic Press, 1977.

[29] M. O. Rabin Fingerprinting by Random Polynomials , Harvard University, TR-15-81,

1981.

[30] M. O. Rabin Digital Signatures and Public Key Functions as Intractable as Factoring,

Technical Memo TM-212, Lab. for Computer Science, MIT, 1979.

[31] R. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signature and

Public Key Cryptosystems, Comm. of ACM, 21 (1978), pp. 120-126.

[32] J. Rompel, One-way functions are necessary and su�cent for secure signatures, Proc.

22nd ACM Annual Symposium on the Theory of Computing, 1990, pp. 387{394.

[33] A. Shamir, On the Generation of Cryptographically Strong Pseudo-Random Number

Sequences, ACM Trans. Comput. Sys., 1 (1983), pp. 38-44.

[34] M. N. Wegman and J. L. Carter, New Hash Functions and Their Use in Authentication

and Set Equality, Journal of Computer and System Sciences 22, pp. 265-279 (1981).

[35] A. C. Yao, Theory and Applications of Trapdoor functions, Proceedings of the 23th

Symposium on the Foundation of Computer Science, 1982, pp. 80-91.

14


