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Abstract

In this paper we consider a new type of cryptographic scheme, which can decode concealed

images without any cryptographic computations. The scheme is perfectly secure and very

easy to implement. We extend it into a visual variant of the k out of n secret sharing

problem, in which a dealer provides a transparency to each one of the n users; any k of

them can see the image by stacking their transparencies, but any k � 1 of them gain no

information about it.
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1 Introduction

In this paper we consider the problem of encrypting written material (printed text, hand-

written notes, pictures, etc.) in a perfectly secure way which can be decoded directly by

the human visual system. The basic model consists of a printed page of ciphertext (which

can be sent by mail or faxed) and a printed transparency (which serves as a secret key).

The original cleartext is revealed by placing the transparency with the key over the page

with the ciphertext, even though each one of them is indistinguishable from random noise.

The system is similar to a one time pad in the sense that each page of ciphertext is de-

crypted with a di�erent transparency. Due to its simplicity, the system can be used by

anyone without any knowledge of cryptography and without performing any cryptographic

computations.

The best way to visualize the visual cryptographic scheme is to consider a concrete

example. At the end of the paper we enclose two random looking dot patterns. To decrypt

the secret message, the reader should photocopy each pattern on a separate transparency,

align them carefully, and project the result with an overhead projector.

This basic model can be extended into a visual variant of the k out of n secret sharing

problem: Given a written message, we would like to generate n transparencies so that the

original message is visible if any k (or more) of them are stacked together, but totally

invisible if fewer than k transparencies are stacked together (or analysed by any other

method). The original encryption problem can be considered as a 2 out of 2 secret sharing

problem.

The main results of this paper (besides introducing this new paradigm of cryptographic

schemes) include practical implementations of a k out of n visual secret sharing scheme for

small values of k and n, as well as e�cient asymptotic constructions which can be proven

optimal within certain classes of schemes.

2 The Model

The simplest version of the visual secret sharing problem assumes that the message consists

of a collection of black and white pixels and each pixel is handled separately

1

. Each original

pixel appears in n modi�ed versions (called shares), one for each transparency. Each share

is a collection of m black and white subpixels, which are printed in close proximity to each

other so that the human visual system averages their individual black/white contributions.

The resulting structure can be described by an n�m Boolean matrix S = [s

ij

] where s

ij

= 1

i� the jth subpixel in the ith transparency is black. When transparencies i

1

; i

2

; : : : i

r

are

stacked together in a way which properly aligns the subpixels, we see a combined share

whose black subpixels are represented by the Boolean \or" of rows i

1

; i

2

; : : :i

r

in S. The

grey level of this combined share is proportional to the Hamming weight H(V ) of the

\or"ed m-vector V. This grey level is interpreted by the visual system of the users as black

if H(V ) � d and as white if H(V ) < d � �m for some �xed threshold 1 � d � m and

relative di�erence � > 0.

This framework resembles the framework of linear codes, with the important di�erence

1

It is conceivable that handling larger groups of pixels simultaneously yields better results
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that the underlying algebraic structure is a semi-group rather than a group. In particular,

the visual e�ect of a black subpixel in one of the transparencies cannot be undone by the

colour of that subpixel in other transparencies which are laid over it. This monotonicity

rules out common encryption techniques which add random noise to the cleartext during the

encryption process, and subtracts the same noise from the ciphertext during the decryption

process. It also rules out the more natural model in which a white pixel is represented by

a completely white collection of subpixels and a black pixel is represented by a completely

black collection of subpixels, and thus we have to use a threshold d and relative di�erence

� > 0 to distinguish between the colours.

De�nition 2.1 A solution to the k out of n visual secret sharing scheme consists of two

collections of n�m Boolean matrices C

0

and C

1

. To share a white pixel, the dealer randomly

chooses one of the matrices in C

0

, and to share a black pixel, the dealer randomly chooses

one of the matrices in C

1

. The chosen matrix de�nes the colour of the m subpixels in each

one of the n transparencies. The solution is considered valid if the following three conditions

are met:

1. For any S in C

0

, the \or" V of any k of the n rows satis�es H(V ) � d� � �m.

2. For any S in C

1

, the \or" V of any k of the n rows satis�es H(V ) � d.

3. For any subset fi

1

; i

2

; : : : i

q

g of f1; 2; : : :ng with q < k, the two collections of q � m

matrices D

t

for t 2 f0; 1g obtained by restricting each n � m matrix in C

t

(where

t = 0; 1) to rows i

1

; i

2

; :::; i

q

are indistinguishable in the sense that they contain the

same matrices with the same frequencies.

Condition 3 implies that by inspecting fewer than k shares, even an in�nitely powerful

cryptanalyst cannot gain any advantage in deciding whether the shared pixel was white or

black. In most of our constructions, there is a function f such that the combined shares

from q < k transparencies consist of all the V 's with H(V ) = f(q) with uniform probability

distribution, regardless of whether the matrices were taken from C

0

or C

1

. Such a scheme is

called uniform. The �rst two conditions are called contrast and the third condition is called

security.

The important parameters of a scheme are:

� m, the number of pixels in a share. This represents the loss in resolution from the

original picture to the shared one. We would like m to be as small as possible.

� �, the relative di�erence in weight between combined shares that come from a white

pixel and a black pixel in the original picture. This represents the loss in contrast.

We would like � to be as large as possible.

� r, the size of the collections C

0

and C

1

(they need not be the same size, but in all of

our constructions they are). log r represents the number of random bits needed to

generate the shares and does not e�ect the quality of the picture.

Results: We have a number of constructions for speci�c values of k and n. For general

k we have a construction for the k out k problem with m = 2

k�1

and � =

1

2

k�1

and we

have a proof of optimality of this scheme. For general k and n we have a construction with

m = logn � 2

O(k log k)

and � =

1

2


(k)

.
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Figure 1:

3 E�cient solutions for small k and n

The 2 out of n visual secret sharing problem can be solved by the following collections of

n� n matrices:

C

0

= fall the matrices obtained by permuting the columns of

2

6

6

6

4

100 : : :0

100 : : :0

: : :

100 : : :0

3

7

7

7

5

g

C

1

= fall the matrices obtained by permuting the columns of

2

6

6

6

4

100 : : :0

010 : : :0

: : :

000 : : :1

3

7

7

7

5

g

Any single share in either C

0

or C

1

is a random choice of one black and n�1 white subpix-

els. Any two shares of a white pixel have a combined Hamming weight of 1, whereas any two

shares of a 1 pixel have a combined Hamming weight of 2, which looks darker. The visual

di�erence between the two cases becomes clearer as we stack additional transparencies.

The original problem of visual cryptography is the special case of a 2 out of 2 visual

secret sharing problem. It can be solved with two subpixels per pixel, but in practice this

can distort the aspect ratio of the original image. It is thus recommended to use 4 subpixels

arranged in a 2� 2 array where each share has one of the visual forms in Figure 1. A white

pixel is shared into two identical arrays from this list, and a black pixel is shared into two

complementary arrays from this list. Any single share is a random choice of two black and

two white subpixels, which looks medium grey. When two shares are stacked together, the

result is either medium grey (which represents white) or completely black (which represents

black).

The next case is the 3 out of 3 visual secret sharing problem, which is solved by the

following scheme:

C

0

= fall the matrices obtained by permuting the columns of

2

6

4

0011

0101

0110

3

7

5

g

C

1

= fall the matrices obtained by permuting the columns of

2

6

4

1100

1010

1001

3

7

5

g
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           shares     of     a     white     pixel

           shares     of     a     black     pixel

Figure 2:

Note that the six shares described by the rows of C

0

and C

1

are exactly the six 2 � 2

arrays of subpixels from Fig. 1. Each matrix in either C

0

or C

1

contains one horizontal

share, one vertical share and one diagonal share. Each share contains a random selection

of two black subpixels, and any pair of shares from one of the matrices contains a random

selection of one common black subpixel and two individual black subpixels. Consequently,

the analysis of one or two shares makes it impossible to distinguish between C

0

and C

1

.

However, a stack of three transparencies from C

0

is only 3/4 black, whereas a stack of three

transparencies from C

1

is completely black.

The following scheme generalizes this 3 out of 3 scheme into a 3 out of n scheme for an

arbitrary n � 3. Let B be the black n � (n� 2) matrix which contains only 1's, and let I

be the identity n� n matrix which contains 1's on the diagonal and 0's elsewhere. Let BI

denote the n � (2n � 2) matrix obtained by concatenating B and I, and let c(BI) be the

Boolean complement of the matrix BI . Then

C

0

= fall the matrices obtained by permuting the columns of c(BI)g

C

1

= fall the matrices obtained by permuting the columns of BIg

has the following properties: Any single share contains an arbitrary collection of n� 1

black and n � 1 white subpixels; any pair of shares have n � 2 common black and two

individual black subpixels; any stacked triplet of shares from C

0

has n black subpixels,

whereas any stacked triplet of shares from C

1

has n+ 1 black subpixels.

The 4 out of 4 visual secret sharing problem can be solved by the shares described in

Figure 2 (along with all their permutations).

Any single share contains 5 black subpixels, any stacked pair of shares contains 7 black

subpixels, any stacked triplet of shares contains 8 black subpixels, and any stacked quadruple

of shares contains either 8 or 9 black subpixels, depending on whether the shares were taken

from C

0

or C

1

. It is possible to reduce the number of subpixels from 9 to 8, but then they

cannot be packed into a square array without distorting their aspect ratio.
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Finally, we describe an e�cient 2 out of 6 scheme. The scheme is de�ned by

C

0

= f all the matrices obtained by permuting the columns of

2

6

6

6

6

6

6

6

4

1100

1100

1100

1100

1100

1100

3

7

7

7

7

7

7

7

5

g

C

1

= fall the matrices obtained by permuting the columns of

2

6

6

6

6

6

6

6

4

0101

1010

1100

0011

0110

1001

3

7

7

7

7

7

7

7

5

g

The scheme has contrast

1

4

: any two shares of C

0

cover 2 out of 4 of the pixels, while any

pair of shares from C

1

covers at least 3 out of 4 pixels (some cover all four). The security

of the scheme follows from the fact that in both C

0

and C

1

each share is random subset of

2 black pixels out of 4.

One possible generalization of this scheme to a 2 out of n scheme is to �x m so that

�

m

m=2

�

� n and consider all subsets of size m=2 of some ground set of size m. The ith row is

S

1

corresponds to the ith subset, i.e. S

1

[i; j] = 1 i� the jth element is in the ith subset. S

0

is the n �m matrix where each row is 1

m=2

0

m=2

. C

0

and C

1

are obtained from all column

permutations of S

0

and S

1

. The contrast achieved this way is 1=m. As we shall see in

Section 5, we can do better than that.

4 A general k out of k scheme

We now describe two general constructions which can solve any k out of k visual secret

sharing problem by using 2

k

and 2

k�1

subpixels respectively. We then prove that the

second construction is optimal in that any k out k scheme must use at least 2

k�1

pixels.

4.1 Construction 1

To de�ne the two collections of matrices we make use of two lists of vectors J

0

1

; J

0

2

; : : :J

0

k

and J

1

1

; J

1

2

; : : :J

1

k

. Let J

0

1

; J

0

2

; : : :J

0

k

be vectors of length k over GF [2] with the property

that every k � 1 of them are linearly independent over GF [2], but the set of all k vectors

is not independent. Such a collection can be easily constructed, e.g. let J

0

i

= 0

i�1

10

k�i

for

1 � i � k and J

0

k

= 1

k�1

0. Let J

1

1

; J

1

2

; : : :J

1

k

be vectors of length k over GF [2] with the

property that they are linearly independent over GF [2]. (This can be thought of as a �rst

order Reed-Muller code [7])

Each list de�nes a k � 2

k

matrix S

t

for t 2 f0; 1g and the collections C

0

and C

1

are

obtained by permuting the columns of the corresponding matrix in all possible ways. We

index the columns of S

t

by vectors of length k over GF [2]. For t 2 f0; 1g let S

t

be de�ned

5



as follows: S

t

[i; x]

:

=< J

t

i

; x > for any 1 � i � k and any vector x of length k over GF [2]

where < x; y > denotes the inner product over GF [2].

Lemma 4.1 The above scheme is a k out of k scheme with parameters m = 2

k

, � = 1=2

k

and r = 2

k

!.

Proof: In order to show contrast, note that in matrix S

0

there are two columns that are all

zero; in the example given these are the column indexed by ~x = 0

k

and the column indexed

by ~x = 0

k�1

1. On the other hand, in S

1

there is only one column that is all 0, the one

corresponding to ~x = 0

k

. Therefore in any permutation of S

0

the \or" of the k rows yields

2

k

� 2 ones, whereas in any permutation of S

1

the \or" of the k rows yields 2

k

� 1 ones.

In order to show security, note that the vectors corresponding to any k � 1 rows in

both S

0

and S

1

are linearly independent over GF [2]. Therefore if one considers the rows as

subsets of a ground set of size 2

k

, then every intersection of k� 1 rows or their complement

has the same size, two. (Note that we include complemented sets, and thus if all possible

intersections of k � 1 are the same, then all smaller intersections are the same as well.) In

other words, consider the columns in S

0

and S

1

obtained by restricting to the k� 1 chosen

rows. Then every possible assignment to the k � 1 entries appears exactly twice. Hence,

a random permutation of the columns, as is used to generate C

0

and C

1

, yields the same

distribution regardless of which k � 1 rows were chosen. 2

4.2 Construction 2

We now show a slightly better scheme with parametersm = 2

k�1

, � = 1=2

k�1

and r = 2

k�1

!.

Consider a ground set W = fe

1

; e

2

; : : :e

k

g of k elements and let �

1

; �

2

; : : :�

2

k�1

be a list of

all the subsets of even cardinality and let �

1

; �

2

; : : :�

2

k�1

be a list of all the subsets of W

of odd cardinality (the order is not important).

Each list de�nes the following k � 2

k�1

matrices S

0

and S

1

: For 1 � i � k and 1 � j �

2

k�1

let S

0

[i; j] = 1 i� e

i

2 �

j

and S

1

[i; j] = 1 i� e

i

2 �

j

.

As in the construction above, the collections C

0

and C

1

are obtained by permuting all

the columns of the corresponding matrix.

Lemma 4.2 The above scheme is a k out of k scheme with parameters m = 2

k�1

, � =

1=2

k�1

and r = 2

k�1

!.

Proof: In order to show contrast, note the in matrix S

0

there is one column that is all

zero, the one indexed by the empty set. On the other hand, in S

1

there is no column that is

all 0. Therefore in any permutation of S

0

the \or" of the k rows yields only 2

k�1

� 1 ones,

whereas in any permutation of S

1

the \or" of the k rows yields 2

k�1

ones.

In order to show security, note that if one examines any k � 1 rows in either S

0

and

S

1

then the structure discovered is similar: consider the rows as subsets of a ground set

of size 2

k�1

; every intersection of k � 1 rows or their complement has the same size, two.

Hence, as in the proof of Lemma 4.1, a random permutation of the columns yields the same

distribution regardless of which k � 1 rows were chosen. 2
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4.3 Upper bound on �

We show that � must be exponentially small as a function of k and, in fact, get a tight

bound that � � 2

k�1

. The key combinatorial fact used is the following (see [5, 6]: given

two sequences of sets A

1

; A

2

; : : :A

k

and B

1

; B

2

; : : :B

k

of some ground set G such that

for every subset U � f1; ::kg of size at most k � 1 we have j

T

i2U

A

i

j = j

T

i2U

B

i

j, then

j [

k

i=1

A

i

j �

1

2

k�1

� jGj+ j [

k

1=1

B

i

j. In other words, if the intersections of the A

i

's and B

i

's

agree in size for all subsets smaller than k elements, then the di�erence in the union cannot

be too large.

Consider now a k out k scheme C with parameters m, � and r. Let the two collections

be C

0

and C

1

. We construct from the collections two sequences of sets A

1

; A

2

; : : :A

k

and

B

1

; B

2

; : : :B

k

. The ground set is of size m � r and its elements are indexed by (x; y) where

1 � x � r and 1 � y � m. Element (x; y) is in A

i

i� S

0

x

[iy] = 1 and element (x; y) is in B

i

i� S

1

x

[iy] = 1.

We claim that for any U � f1; ::kg of size q < k the equality j

T

i2U

A

i

j = j

T

i2U

B

i

j

holds: the security condition of C implies that we can construct a 1-1 mapping between all

the q �m matrices obtained from considering only rows corresponding to U in C

0

and the

q �m matrices of C

1

such that any two matched matrices are identical. (Strictly speaking,

the security condition is not strong enough to imply it, but given any scheme we can convert

it into one that has this property without changing � and m.) Therefore when considering

j

T

i2U

A

i

j and j

T

i2U

B

i

j the contribution of each member of a pair of matched matrices is

identical and hence j

T

i2U

A

i

j = j

T

i2U

B

i

j.

Applying now the combinatorial fact mentioned above yields that

j [

k

i=1

B

i

j �

1

2

k�1

� rm+ j [

k

1=1

A

i

j:

This means that for at least one matrix in C

1

and one matrix in C

0

the di�erence between

the Hamming weight of the \or" of their rows is at most

1

2

k�1

�m. Hence we have:

Theorem 4.3 In any k out k scheme � �

1

2

k�1

and m � 2

k�1

.

5 A general k out of n scheme

In this section we construct a k out of n scheme. What we show is how to go from a k out

of k scheme to a k out of n scheme.

Let C be an k out of k visual secret sharing scheme with parameters m; r; �. The

scheme C consists of two collections of k � m Boolean matrices C

0

= T

0

1

; T

0

2

; : : :T

0

r

and

C

1

= T

1

1

; T

1

2

; : : :T

1

r

. Furthermore, assume the scheme is uniform, i.e. there is a function

f(q) such that for any matrix T

t

i

where t 2 f0; 1g and 1 � i � r and for every 1 � q � k� 1

rows of T

t

i

the Hamming weight of the \or" of the q rows is f(q). Note that all our previous

constructions have this property.

Let H be a collection of ` functions such that

1. 8h 2 H we have h : f1::ng 7! f1::kg

2. For all subsets B � f1::ng of size k and for all 1 � q � k the probability that a

randomly chosen h 2 H yields q di�erent values on B is the same. Denote this

probability by �

q

7



We construct from C and H a k out of n scheme C

0

as follows:

� The ground set is V = U �H (i.e. it is of size m � ` and we consider its elements as

indexed by a member of U and a member of H).

� Each 1 � t � r

`

is indexed by a vector (t

1

; t

2

; : : :t

`

) where each 1 � t

i

� r.

� The matrix S

b

t

for t = (t

1

; t

2

; : : : t

`

)) where b 2 f0; 1g is de�ned as

S

b

t

[i; (j; h)] = T

b

t

h

[h(i); j]

Note that in the above expression t

h

means the hth entry in t, where h is simply interpreted

as a number between 1 and `.

Lemma 5.1 If C is a scheme with parameters m;�; r, then C

0

is a scheme with parameters

m

0

= m � `; �

0

= � � �

k

; r

0

= r

`

.

Proof: In order to show contrast, note that for any k rows in a matrix S

b

t

and any h 2 H ,

if the subset corresponding to the k rows is mapped to q < k di�erent values by h, then

we know by the assumption of uniformity that the weight of the \or" of the q rows in C

is f(q). The di�erence between white pixels and black pixels occurs only when h is 1 � 1

which happens at �

k

of the h 2 H and it is � �m in this case. Therefore the Hamming

weight of an \or" of k rows of a white pixel is at most

`(�

k

� (d� �m) +

k�1

X

q=1

�

q

� f(q))

and the weight of a black pixel is

`(�

k

� d+

k�1

X

q=1

�

q

� f(q))

which means that the relative di�erence between them is at least �

k

� �.

In order to see the security of the scheme, note that we are essentially repeating ` times

the scheme C where each instance is independent of all other instances. Therefore from the

security of C we get the security of S. 2

5.1 Construction of H

One can construct H from a collection of k-wise independent hash functions (see e.g. [3],

[4], [9]). Suppose that H is such that for any k values x

1

; x

2

; : : :x

k

2 f1; ::ng the k random

variables de�ned by X

1

:

= h(x

1

); X

2

:

= h(x

2

); : : :X

k

:

= h(x

k

) for a randomly chosen h 2 H

are completely independent. Since they are independent, the probability that they yield

q di�erent values is the same, no matter what x

1

; x

2

; : : :x

k

are. For a concrete example,

assume that k is a prime (otherwise we have to deal with its factors), and let l be such that

k

l

� n. The family H is based on the set of polynomials of degree k� 1 over GF [k

l

], where

8



for ever h 2 H there is a corresponding polynomial q(x), and h(x) = q(x) mod k. The size

of H is about n

k

. The probability �

k

that a random h is 1� 1 on a set of k elements is

k!

k

k

�

(k=e)

k

k

k

p

2�k

=

e

�k

p

2�k

:

We can therefore conclude by applying Lemma 5.1:

Theorem 5.2 For any n and k there exists a visual secret sharing scheme with parameters

m = n

k

� 2

k�1

, � = (2e)

�k

=

p

2�k and r = n

k

(2

k�1

!).

5.2 Relaxing the conditions on H

Suppose now that we relax Condition 2 in the de�nition of H to the following: there exists

an � such that for all subsets B � f1::ng of size k and for all 1 � q � k the probability that

a randomly chosen h 2 H yields q di�erent values on B is the same to within �. As we shall

see, this leeway allows for much smaller H 's.

Taking � to be small, say smaller than ��

k

=4, cannot make a big di�erence in the quality

of our construction: The Hamming weight of an \or" of k rows of a white pixel is at most

`((�

k

+ �) � (d� �m) +

k�1

X

q=1

(�

q

+ �) � f(q))

and the weight of a black pixel is at least

`((1� �)�

k

� d+

k�1

X

q=1

(1� �) � �

q

� f(q)):

The relative di�erence between black and white is therefore at least �

k

� � � 2�.

Note that the security of the scheme is not e�ected at all, since fewer than k shares

never map to k di�erent values.

Construction of relaxed H:

We use small-bias probability spaces to construct such a relaxed family (see [8], [2], [3] for

de�nitions and constructions). A probability space with random variables that are �-bias

is an approximation to a probability space with completely independent random variables,

in that the bias (i.e. the di�erence between the probability that there parity is 0 and 1)

is bounded by � (as opposed to 0 in the complete independence). Similarly, a probability

space which is k-wise �-bias is an approximation to k-wise independent probability spaces.

Assume that k is a power of 2. Let R be a k log k-wise �-bias probability space on

n log k random variables which takes values in f0; 1g. They are indexed as Y

ij

for 1 � i � n

and 1 � j � log k. There are explicit constructions of such probability spaces of size

2

O(k log k)

log n (see [8] [1]).

Each function h corresponds to a point in the probability space. h(x) is the value of

Y

x1

; Y

x2

; : : : ; Y

x log k

treated as a number between 0 and 2

k

� 1. It can be shown that for all

x

1

; x

2

; : : :x

k

2 f1; ::ng and for all y

1

; y

2

; : : :y

k

2 f0; ::2

k

� 1g we have

1

k

k

� � � k

k

� Prob[h(x

1

) = y

1

; h(x

2

) = y

2

; : : :h(x

k

) = y

k

] �

1

k

k

+ �k

k

:
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  first share second share stacked share

Figure 3:

Therefore taking � =

1

4k

2k

implies that � � 2

�2k

and we get a scheme in which the

number of subpixels grows only logarithmically with the number of shares n.

Theorem 5.3 For any n and k there exists a visual secret sharing scheme with parameters

m = logn � 2

O(k log k)

, � = 2

�
(k)

.

We do not know whether the bound onm in the above theorem is tight, but we conjecture

that log n2

O(k)

is the right answer.

6 Extensions

There are many possible enhancements and extensions of the basic model introduced in this

paper. Consider, for example, the problem of visual encryption of a continuous tone image

whose pixels have grey levels ranging from 0 to 255. A brute force solution can divide an

original pixel with grey level g into an 8� 8 array of g black and 256-g white subpixels, and

then encrypt each black and white subpixel separately by dividing it further into an array of

subsubpixels with our techniques. However, we propose a more direct and elegant solution

to the continuous tone visual encryption problem by using the following observation:

Each pixel in each one of the two transparencies is represented by a rotated half circle.

When the two half circles (with rotation angles a and b) are carefully aligned, the super-

position of the two half circles can range in colour from medium grey (representing white)

to completely black (representing black) depending on the relative angle a� b between the

two rotated half circles (see Figure 3). If we choose for each pixel in each share a random

absolute rotation angle (with the desired relative rotation angle between them), then each

transparency will look uniformly grey and will reveal absolutely no information, but the

superposition of the two transparencies will be a darker version of the original continuous

tone image.

Another interesting extension of the original model deals with the problem of concealing

the very existence of the secret message. Is it possible to send (by mail or fax) an innocent

looking image of a house, superimpose on it an innocent looking transparency of a dog, and

get a spy message with no trace of either the house or the dog? To construct such a scheme,

we consider 2 � 2 arrays of subpixels, and de�ne two types of shares (white with 2 black

subpixels and black with 3 black subpixels) and two types of superimposed results (white

with 3 black subpixels and black with 4 black subpixels). If the desired result is white, we

use the shares presented in the top row of Figure 4 (along with their permutations). If the

10



   two white shares white and black shares    two black shares

   two white shares white and black shares    two black shares

Figure 4: Use top row for white and bottom row for black

desired result is black, we use the shares presented in the bottom row of Figure 4 (along

with their permutations):

The reader can easily convince himself that each transparency can contain an arbitrary

image which reveals no information whatsoever about the superimposed image.
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