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Abstract

A zap is a two-round, public coin witness-indistinguishable protocol in which the first round, con-
sisting of a message from the verifier to the prover, can be fixed “once and for all” and applied to any
instance. We present a zap for every language in NP, based on the existence of non-interactive zero-
knowledge proofs in the shared random string model. The zap is in thestandardmodel, and hence
requires no common guaranteed random string.

We present several applications for zaps, including 3-round concurrent zero knowledge and 2-round
concurrent deniable authentication, in the timing model of Dwork, Naor and Sahai [23], using moderately
hard functions [20]. We also characterize the existence of zaps in terms of a primitive calledverifiable
pseudo-random bit generators(VPRGs).

1 Introduction

The concept of zero-knowledge, introduced in the ground-breaking paper of Goldwasser, Micali, and Rack-
off [35], has proved to be an invaluable tool in the design of cryptographic primitives and protocols. For
example, consider an identification protocol based on pseudo-random function evaluation: I am identified
by my ability to evaluate a functionfs, where only I know the seeds and there is some form of public
commitment tofs. Given a challengex, I producey and prove thaty = fs(x) critically without revealing
any information abouts.

An appealing and frequently useful relaxation of zero-knowledge, calledwitness-indistinguishability,
was proposed by Feige and Shamir [26]. Roughly speaking, in the context of NP, the difference is as follows:
An interactive proof system is zero-knowledge if a prover, knowing a witness for membership of a stringx in
an NP langaugeL, can correctly “convince” a verifier to acceptx while revealing no information whatsoever
about the witness. If there are two witnesses forx ∈ L, a proof system is witness-indistinguishable if the
verifier cannot tell which of the two witnesses is being used by the prover to carry out the proof, even if
the verifier knows both witnesses. We restrict our attention to NP because we are interested in the realistic
setting in which parties are restricted to probabilistic polynomial time computations1.

In this work we obtain surprising results on the numbers of rounds needed in order to achieve zero-
knowledge and witness-indistinguishability. For this purpose we introduce and investigate zaps. A zap is a
two-round witness indistinguishable protocol in which
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(i) the first round, consisting of a message from the verifier to the prover, can be fixed “once-and-for-
all” and applied to any instance and

(ii) the verifier uses onlypublic coins.
That is, the system remains sound and witness-indistinguishable even if the statements to be proven are

chosen after the first-round message is fixed. Thus, if we think of the participating parties as families of
non-uniform, rather than uniform, probabilistic polynomial time-bounded Turing machines, the existence of
a zap for a languageL implies the existence of a 1-message witness-indistinguishable proof system forL.

Throughout the paper we will distinguish between theshared random string model, in which the parties
have access to a commonguaranteed randomstring, and what we call thestandardmodel, in which no such
assumption is made. Whenever we refer to noninteractive zero-knowledge proofs (NIZKs), we mean in
the shared random string model (the definition of NIZK forces a shared object). We present zaps for every
languageL ∈ NP based on the existence of a noninteractive zero-knowledge proof system forL in the
shared random string model. The zap is in the standard model, and hence requires no common guaranteed-
random string. Using current NIZK technology this means that zaps can be based on any family of enhanced
certified trapdoor permutation [29].

Not only can zaps be constructed from NIZKs, but the converse holds as well: if every langauge in NP
has a zap and one-way functions exist, then every language in NP has a NIZK. In fact, the NIZKs we obtain
from zaps are zero-knowledge against adaptive selection of the theorem to be proved. This yields a proof
that if NIZKs secure against non-adaptive selection exist and one-way functions exist, then adaptive NIZKs
exist.

This result (and its proof) gives a somewhat formal view of zaps, but yields little intuition for why zaps
and NIZKs exist at all. Indeed, our first constructions of zaps were not based on NIZKs, but relied on the
new notion of averifiable pseudo-random bit generator, or VPRG. Roughly speaking, a pseudo-random
sequence isverifiable if a party knowing the pseudo-random seed can construct verifiable “proofs” of the
bits of the pseudo-random sequence. Moreover, a VPRG with some numberk of output bits passes what we
call the “ith bit test” for all1 ≤ i ≤ k: given proofs of the values of all but theith bit in the sequence, it
is computationally infeasible to guess theith bit with a non-negligible advantage over1/2. Thus, VPRGs
can be viewed as a special case of the verifiable pseudo-random functions (VPRF’s) of Micali, Rabin,
and Vadhan [44], in which the domain is very small. We give constructions for VPRGs and a relaxation,
approximate VPRGs.

The importance of VPRGs is this: Zaps (and NIZKs) exist if and only if approximate VPRGs exist in
the standard model. In this paper we construct VPRGs using multiple certified trapdoor permutations with
a common domain; this yields the first NIZK construction for which the trapdoor permutations need not be
enhanced. In addition, recent constructions of VPRFs based on assumptions on bilinear maps [42, 16, 17]
also necessarily yield NIZKs (and zaps).

1.1 Applications of Zaps

We present applications of zaps in several models. Specifically, we construct faster implementations of
important cryptographic primitives in each of the standard, timing-based, and resettable models. Although
in some cases the absolute improvement in rounds may be modest, the number of rounds that we achieve
in each case is within 1 of the best possible. For example, all previous witness-indistinguishable proof
systems require at leastthreerounds of communication, while zaps achieve witness indistinguishability in
two rounds. The fact that zaps also yield non-uniform one-round witness-indistinguishability suggests that
provinga lower bound of two rounds is unlikely (see also the very recent work of Barak, Ong and Vadhan
[2]).

An interesting set of applications for zaps is in thetimingmodel of Dwork, Naor, and Sahai [23], where,

2



using moderately hard functions [20] and timed commitments [11], we obtain 3-roundconcurrentblack-
box2 zero knowledge proofs of knowledge for all of NP. A 3-round black-box zero-knowledge protocol with
timing (even without concurrency) is interesting in its own right: it is known that in the standard model (no
timing) this is impossible to achieve (with negligible soundness error assuming NP6⊂ BPP) [31], while the
possibility of concurrency implies that at leastΩ(log n/ log log n) rounds are required [14]; thus, adding
timing allows us to go well below the lower bounds in the standard model. Recently, using zaps, Dwork and
Stockmeyer have obtained 2-round timing-based black-box (concurrent) zero-knowledge interactive proofs
under the assumption that certain functions have no fastauditors; they also provide a prover-advice based
variant for which soundness is absolute (in this variant the prover can have arbitrary computation time) [24].
We note that even in the timing-based model, zero-knowledge proof systems for languages outside of BPP
require two rounds of interaction. No such result is known for the bounded-advice model.

Still more recently, Barak and Pass obtained one-roundweakzero knowledge arguments, under (less)
non-standard assumptions [4]. Under the weakened definition, soundness holds only against uniform prob-
abilistic polynomial time cheating provers, and the zero-knowledge condition is obtained using a simulator
that runs in quasi-polynomial (rather than polynomial) time.

We also use zaps to construct 2-round deniable authentication protocols [18, 21, 23, 24]. Intuitively,
deniable authentication is like a signature scheme in that it permits one party to authenticate messages to
another party, based on a public key; however, unlike in the case of digital signatures, the authenticating
conversation “leaves no trace,” for example, it may be simulatable, and hence can beeffectivelyrepudiated.

The relative ease with which we are able to reduce the amount of interaction provides further motivation
for the timing model of [23] – in our opinion a more realistic one than the shared guaranteed random string
model (see e.g. [15])– and a complexity theory of moderately hard functions [20].

Using zaps and timed commitments we also obtain a different type of improvement on the results in [23,
24]. The timing model requires a mild “(α, β)” assumption about the relative rates of the clocks of non-
faulty processors, and the protocols in [23] require processors (typically, the prover), to wait until an interval
of at leastβ ≥ α time has elapsed (as measured on the processor’s own clock).α andβ are chosen so as
to tolerate actual system and communication delays. The proofs in [23, 24] require the parameters to be
set according to the slowest non-faulty processors. Our new techniques permit flexibility in this respect:
fast verifiers with good communication links to the prover are not forced to suffer delays due to slower
concurrent verifiers.

In the standard model, without timing assumptions, we give a 2-round oblivious transfer protocol based
on the quadratic residuousity assumption and using public keys; without previously established public keys
the protocol requires three rounds.

Finally, we consider a model of computation in which the prover’s use of randomness is severely re-
stricted, as, for example, in the case of a smart card, in which the prover may have a short embedded truly
random seed and read-only memory. Canetti, Goldreich, Goldwasser, and Micali [13] give one formal-
ization, termedresettablezero-knowledge (rZK). Informally, a protocol protects a witness (either in the
zero-knowledge sense or in the indistinguishability sense) in the resettable model if the protection holds
even if the prover may be re-started (reset) many times and forced to repeatedly use the same random tape
(the prover may also be re-started using a different, but still random, tape).

Using zaps and timed commitments, we construct a 3-round timing-based rZK proof system for any
language in NP. As noted in [13], rZK proofscannotbe proofs of knowledge, so, despite the connections
between the smart-card setting as described above, resettable, and concurrent zero-knowledge [13, 37], this
result is incomparable with our 3-round concurrent-ZK proofs of knowledge.

2A protocol is ‘black-box zero-knowledge’ if there is a universal simulator, which when given “black box” access to any verifier
strategy, is able to simulate an interaction of that verifier with the prover. Virtually all zero-knowledge proofs until very recently
where black-box (but see [1] for an example of a protocol which does not fit this category).

3



We also observe that 2-round (and even non-constructive 1-round) resettable witness-indistinguishability
is easily obtained from a zap, simply by having the prover’s “random” bits in the zap be a pseudo-random
function of the verifier’s initial message and the input. This improves (both in conceptual and round com-
plexity) upon the 5-round resettable witness-indistinguishability results in [13].

In all our protocols that employ timing, only the verifier needs access to a (local) clock. This is partic-
ularly appealing in the resettable case, in which the prover may be a smart card, since the card may not be
equipped with a clock.

1.2 Outline

In Section 2 we review the definitions of known cryptographic primitives. A formal definition of a zap is
given in Section 3. In Section 4 we prove the existential equivalence of zaps (in the standard model) and
NIZKs (in the shared random string model). Section 5 defines and constructs verifiable pseudo-random bit
generators (VPRGs) and approximate VPRGs, together with a proof that zaps (and hence, by the above-
mentioned result, NIZKs) exist if and only if approximate VPRGs exist in the standard model. Section 6
contains our zap-based oblivious transfer protocol. In Section 7 we discuss the timing-based applications
(3-round concurrent zero knowledge and 2-round deniable authentication). In Section 8 we discuss uses of
zaps in the resettable model of [13]. Finally, open questions are discussed in Section 9.

2 Brief Review of Cryptographic Primitives

We now review the cryptographic primitives used in this paper. For the standard ones we follow Goldreich
[28]. Throughout this paper, unless otherwise noted, all “good” parties (the non-faulty prover and veri-
fier) are uniform probabilistic polynomial time Turing machines. However, our protocols remain sound
regardless of the computational power of the prover, and we achieve zero-knowledge against non-uniform
probabilistic polynomial time cheating verifiers (this is assuming the classical underlying primitives are
secure against non-uniform adversaries). (Security against non-uniform adversaries is not essential to our
work and we chose to express it this way for simplicity.)

In general we will be usingn as our security parameter and the input length, but in some places we
will also be usingks to denote the length of the input to a cryptographic primitive which is sufficient for
obtaining hardness, for instance a one-way function or a trapdoor permutation. In generaln andks are
polynomially related. While we do not emphasize efficiency in this paper (rather our aim is to point out
feasibility of various constructions), we prefer to have two parameters for future comparisons. Letν(n)
denote a function that grows more slowly than the inverse of any polynomial,i.e., for all c > 0 there is ann0

such thatν(n) < 1/nc for all n ≥ n0. We say such aν(·) is negligible. We use the termwith overwhelming
probability to mean with probability that is at least1− ν(n) for negligibleν.

2.1 Witness Indistinguishability

The concept ofwitness indistinguishabilitywas proposed by Feige and Shamir [26] as a relaxation of zero-
knowledge. Unlike the case with zero-knowledge, witness indistinguishability is closed under parallel and
concurrent composition. LetL be an NP language accepted by a nondeterministic polynomial time Turing
machineML. A computation path is a sequence of nondeterministic choices made byML. The set of
accepting computation paths on inputx ∈ L is thewitness setof x, denotedw(x).

Definition 2.1 (Witness Indistinguishability) A proof system(P, V ) for languageL is witness indistin-
guishable if for any polynomial timeV ′, for all x ∈ L, for all w1, w2 ∈ w(x), and for all auxiliary inputsz
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to V ′, the distribution on the views ofV ′ following an execution(P, V ′)(x,w1, z) is indistinguishable from
the distribution on the views ofV ′ following an execution(P, V ′)(x,w2, z) to a non-uniform probabilistic
polynomial time distinguisher receiving one of the above transcripts as well as(x, w1, w2, z).

Note that the auxiliary inputz can even be the two witnessesw1, w2. Thus,even knowing both witnesses,
V ′ should not be able to distinguish which witness is being used byP .

Theorem 2.1 ([26]) Every zero-knowledge protocol is witness indistinguishable.

Theorem 2.2 ([26]) Witness indistinguishability is preserved under parallel and concurrent composition of
protocols.

2.2 Noninteractive Zero-Knowledge Proof Systems

The following discussion is based on [18, 27, 48]: A (single theorem) non-interactive proof system for a
languageL allows one partyP to prove membership inL to another partyV for any x ∈ L. P andV
initially share a stringσ, of length polynomial in the security parametern, which is trusted to have been
chosen at random. To prove membership of a stringx in Ln = L∩ {0, 1}n, P sends a messageπ as a proof
of membership.V decides whether to accept or to reject the proofπ as function ofx andσ. Non-interactive
zero knowledge proof systems were introduced in [8, 7]. Non-interactive zero-knowledge schemes for
proving membership in any language in NP may be based on any enhanced certified trapdoor permutation
(see [27, 39] and [29] for a discussion of enhancement). As for the complexity of the NIZKs, assuming a
trapdoor permutation onks bits, the length of a proof of a satisfiable circuit of sizeM (and the size of the
shared random string) isO(Mk2

s).
We assume that the shared stringσ is generated according to the uniform distribution on strings of

length polynomial in the security parametern, where the polynomial depends on the particular protocol.
The running time of the verifier is also polynomial inn.

Let L be in NP and for anyx ∈ L, n = |x|, letw(x) be the set of strings that witness the membership of
x in L, as described above. For the proof system to be of any use,P must be able to operate in polynomial
in n time if it is given a witnessw ∈ w(x). We call this thetractability assumption forP . In generalw is
notavailable toV .

Let PN(x, w, σ) be the distribution of the proofs generated byP on inputx, witnessw, and shared
stringσ. Suppose thatP sendsV a proofπ when the shared random string isσ. Then the pair(σ, π) is
called the “conversation”. Any x ∈ L andw ∈ w(x) induces a probability distributionCONV (x,w) on
conversations(σ, π) whereσ is a shared string andπ ∈ PN(x,w, σ) is a proof.

For the system to be zero-knowledge, there must exist a simulatorSim which, on inputx, generates a
conversation(σ, p). Let Sim(x) be the distribution on the conversations thatSim generates on inputx, let
SimU (x) = SimU be the distribution on theσ part of the conversation, and letSimP (x) be the distribution
on the proof component. In the definitions of [7, 27] the simulator has two steps: it first outputsSimU

without knowingx, and then, givenx, it outputsSimP (x).

Definition 2.2 A pair of probabilistic polynomial time machines(P, V ) with shared random stringσ is a
non-interactive zero-knowledge proof systemfor the languageL ∈ NP if:

Completeness: For allx ∈ Ln, for all w ∈ w(x) and for randomσ, with overwhelming probability over
π ∈R PN(x,w, σ), we have thatV accepts on input(σ, x, π). The probability is over the choice of
the shared stringσ and the internal coin flips ofP .

Soundness: For ally 6∈ L we have thatPrσ[∃π′ ∈ {0, 1}∗ s.t.V accepts(σ, y, π′)] is negligible. Note that
the probability isonly over the choices of the shared stringσ.
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Zero-knowledge: There is a probabilistic polynomial time machineSim which is a simulator for the sys-
tem: For all non-uniform polynomial time distinguishersT , for all non-negligibleν(·), for all suffi-
ciently largex ∈ L, andw ∈ w(x),

|Pr[T (s, x, w) = 1|s ∈R Sim(x)]− Pr[T (s, x, w) = 1|s ∈R CONV(x,w)]| ≤ ν(n)

where the probability space is taken over the random choices ofσ and over the random choices of the
Sim andP.

Remark 2.3 This definition of NIZK does not require that the system besoundif the instancex is adaptively
chosen, that is selected after the public random string is known. Nevertheless, it is sufficiently strong for our
purposes; also it is easy to reduce the soundness error in NIZK by parallel repetition. Similarly, we do not
assume zero-knowledge against adaptive choice ofx. As we will see in Corollary 4.4, going through zaps
allows us to transform any NIZK satisfying Definition 2.2 into one that allows adaptive selection ofx.

As shown in [27], any NIZK satisfying Definition 2.2 is alsogeneral witness indistinguishablein the
following sense:

Claim 2.1 ([27]) Any NIZK for a languageL in NP is general witness indistinguishable; that is, for all poly-
nomial distinguishersT for a random stringσ, for any (non-adaptively chosen3) sequence{(xi, w

1
i , w

2
i )}m

i=1

chosen byT wherexi ∈ Ln andw1
i , w

2
i ∈ w(xi) for all 1 ≤ i ≤ m we have

|Pr[T (π1
1, π

1
2, . . . π

1
m) = 1]− Pr[T (π2

1, π
2
2, . . . π

2
m) = 1]| < ν(n)

where for all1 ≤ i ≤ m andb ∈ {0, 1} we letπb
i ∈R PN(xi, w

b
i , σ). The probability space is overP ’s and

T ’s random coins and the choice ofσ.

Note that general witness indistinguishability implies witness indistinguishability even ifx1 = . . . =
xm, which will be the case of interest here.

2.3 Deniable Authentication

A public key authenticationscheme permits an authenticatorAP to convince a second partyV , only having
access toAP ’s public key, thatAP is willing to authenticate a messagem. However, unlike in the case
of digital signatures, deniable authentication does not permitV to convince a third party thatAP has au-
thenticatedm – there is no “paper trail” of the conversation (say, other than what could be produced byV
alone). Thus, deniable authentication is incomparable with digital signatures. Deniable authentication first
appeared in [18, 21]; and was formalized in [23] (see also [24]). Several 4-round timed concurrent deniable
authentication protocols are given in [23, 24].
The authentication protocol should satisfy:

Completeness: For any messagem, if the prover and verifier follow the protocol for authenticatingm, then
the verifier accepts.

Soundness – Existential Unforgeability Against Concurrent Chosen Message Attack: Suppose that the
copies ofAP are willing to authenticate any polynomial number of messagesm1,m2, . . ., which may
be chosen adaptively and in a concurrent manner by an adversaryA who also controls the verifierV ′.
We say thatA successfully attacks the scheme if a forgerC, under control ofA and pretending to be
AP, succeeds in authenticating to a third partyD (running the protocol of the original verifierV ) a
messagem 6= mi, i = 1, 2, . . .. The soundness requirement is that all probabilistic polynomial time
A will succeed with at most negligible probability.

3If the NIZK is non-adaptive, then the Claim refers to non-adaptively chosen sequences; if the NIZK is adaptive, then the Claim
also holds for adaptively chosen sequences. In our case, we have assumed the weaker NIZK.
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Zero-Knowledge - Deniability: Consider an adversaryA as above and suppose that the copies ofAP
are willing to authenticate any polynomial number of messages. Then for eachA there exists a
polynomial-time simulator that outputs an indistinguishable transcript from the oneA produces from
its interaction withAP.

Two natural variants are: (1) the distinguisher has access to the secret authentication key and (2) the
distinguisher does not have access to the secret authentication key. The first best captures our intuitive
notion of deniable authentication, since even obtaining access to the key, say, via legal compulsion,
will not destroy the deniability.

2.4 Security of Encryption

We will need public-key cryptosystems for two of our applications: Resettable Zero-Knowledge (Section
8.2) and Deniable Authentication (Section 7.2). The security requirements of these two applications are
different. To specify the security of an encryption scheme one must describe the power of the attacker in
terms of access to the system (chosen plaintext, chosen ciphertext) and what it means to break the system
(semantic-security, non-malleability). See [18] or [5] for a discussion of notions of security. The deniable
authentication application requires a system that is non-malleable against chosen-ciphertext attacks in the
post-processing mode (called CCA-2 in [5]). The resettable zero-knowledge application requires semantic
security against chosen plaintext attacks (there are some other requirements from the encryption scheme
which transcend security).

2.5 Using Time in the Design of Protocols

Dwork, Naor and Sahai [23] have shown the power of time in the design of zero-knowledge protocols
through the use of an(α, β) assumption. This says that all good parties are assumed to have clocks that
satisfy the(α, β)-constraint(whereα ≤ β): for any two (possibly the same) non-faulty partiesP1 andP2,
if P1 measuresα elapsed time on its local clock andP2 measuresβ elapsed time on its local clock, andP2

begins its measurement in real time afterP1 begins, thenP2 will finish afterP1 does.
The protocols in [23, 24] use time in two explicit ways: (i) Delays: one party must delay the sending

of some message until at least some specified timeβ has elapsed on its local clock; (ii) Time-outs: one
party requires that the other deliver its next message before some specified timeα has elapsed on its (first
party’s) local clock. In this work we are able to eliminate the use of delays; the protocols only use time-outs.
Furthermore we do not require aglobal (α, β)-constraint, rather each instantiation of the protocol can fix
its own values based on the local characteristics of the network. An essential ingredient of our protocols is
the implicit use of time viamoderately hard functions[20]. In particular, we usetimed commitments with
verifiable recovery,described next.

Timed Commitment. A string commitment protocol allows a sender to commit, to a receiver, to some
value. The protocol has two phases. At the end of thecommitphase the receiver has gained no information
about the committed value, while after therevealphase the receiver is assured that the revealed value is
indeed the one to which the sender originally committed. Timed commitments, defined and constructed by
Boneh and Naor [11], are an extension of the standard notion of commitments in which there is a potential
forced opening phase permitting the receiver, by computation of some moderately hard function, to recover
the committed value without the help of the committer. The price paid in terms of security is that the
committed value is hidden for only a limited amount of time.

Definition 2.3 A (T, t, ε) timed commitmentscheme for a stringy ∈R {0, 1}n enables Alice to give Bob a
commitmentC to the string. At a later time, Alice can prove to Bob thatC represents a commitment to the
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valuey. However, if Alice refuses to reveal the value ofC, then Bob can spend timeT to forcibly retrieve this
value. Alice is assured that within timet on a parallel machine with polynomially many processors, where
t < T , Bob will succeed in obtainingy with probability at mostε. Formally, a(T, t, ε) timed commitment
scheme consists of three phases:

Commit phase: To commit to a stringy ∈ {0, 1}n Alice and Bob execute a protocol whose outcome is a
commitment stringC = TC(y) which is given to Bob.

Open phase: At a later time Alice may reveal the stringy to Bob. They execute a protocol so that at the
end of the protocol Bob has a proof thaty is the committed value.

Forced open phase:Suppose Alice refuses to execute theopen phase and does not revealy. Then there
exists an algorithm, calledforced-open, that takes the commitment stringC as input and outputsy
and a proof thaty is the committed value. The algorithm’s running time is at mostT .

The commitment scheme must satisfy a number of security constraints:

Binding: During the open phase Alice cannot convince Bob thatC is a commitment toy′ 6= y. That is,
binding is absolute, independent of computational power: there is at most one “de-commitment,”y,
consistent withTC(y).

Soundness:At the end of thecommit phase Bob is convinced that, givenC, the forced open algorithm
will produce the committed stringy in timeT .

Privacy: every PRAM algorithmA whose running time is at mostt for t < T on polynomially many
processors, will succeed in distinguishingy from a random string, given the transcript of the commit
protocol as input, with advantage at mostε. In other words,∣∣∣∣Pr[A(transcript, y) = “yes” ]− Pr[A(transcript, R) = “yes” ]

∣∣∣∣ < ε

where the probability is over the random choice ofy andR and the random bits used to createC from
y during the commit phase.

The important requirements of timed commitments are (i) The future recoverability of the committed
value is verifiable: if the commit phase ends successfully, then the receiver is correctly convinced that forced
opening will yield the value. (ii) Forcibly recovered values and decommitments are verifiable: the receiver
not only obtains the value, but also a proof of its validity, so that anyone who has the commitment (or the
transcript of the commit phase) can verify the valuewithout going through a recovery process, i.e. in fixed
amount of time. (iii) The commitment is immune to parallel attacks, i.e. even if the receiver has much
more computing power than assumed, it cannot recover the value substantially more quickly than a single-
processor receiver. We denote byT the bound on the time below which it is safe to assume that the timed
commitment cannot be broken with non-negligible probability, even by a PRAM.

Specifically, we are interested in timed commitment schemes with the following structure. The commit-
ter sends to the receiver a stringζ, which constitutes the commitment. For every “valid” commitmentζ, it
is possible, through moderately hard computation, to recover a pair(y, π) such thatπ is an easily checked
witness to the fact thatζ is a commitment toy. The set of valid commitments is in NP: For every valid
commitmentζ there is a witness to the statement “ζ is a valid commitment to a string that can be recov-
ered through the forced recovery process.” Finally, the forced recovery time is relatively large compared to
the time of all other operations in the protocol (such as, constructingζ, verifying a correctly decommitted
value, verifying future recoverability, etc.) Thus, we think of all other operations as “easy” while recovery is

8



“moderately hard.” The scheme in [11] has this structure and properties, albeit based on a non-standard as-
sumption regarding the computation of number of the formg2k

mod N for compositesN without knowing
the factorization ofN .

2.6 Oblivious Transfer

In a 1-out-of-2 Oblivious Transfer protocol one party, thesender, has two strings(M1,M2) as its input,
and the second party, thechooser, has a bitb. The chooser should learnMb and nothing regardingM1−b

while the sender should gain no information aboutb. 1-out-2 OT was suggested by Even, Goldreich and
Lempel [25], as a generalization of Rabin’s “oblivious transfer” [49].

3 Formal Definition of a Zap

A zapis a 2-round (2-message) protocol for proving membership ofx ∈ L, whereL is a language in NP. Let
the first-round (verifier to prover) message be denotedρ and the second-round (prover to verifier) response
be denotedπ satisfying the following conditions:

Public Coins: There is a polynomialk(·) such that the first round messages form a distribution on strings
of lengthk(n) which depends only on thelengthn of x. The verifier’s decision whether to accept or
reject is a polynomial time function ofx, ρ, andπ only.

Completeness: Givenx, a witnessw ∈ w(x), and a first-roundρ, the prover, running in time polynomial in
|x|, can generate a proofπ that will be accepted by the verifier. Note that this isperfect completeness.
We can relax this requirement and ask the prover to succeed with overwhelming probability over the
choices made by the prover and the verifier.

Soundness: With overwhelming probability over the choice ofρ, there exists nox′ /∈ L and second round
messageπ such that the verifier accepts(x′, ρ, π).

Witness-Indistinguishability: Letw,w′ ∈ w(x) for x ∈ L. Then∀ρ, the distribution onπ when the
prover has input(x,w) and the distribution onπ when the prover has input(x,w′) are nonuniform
probabilistic polynomial time (inn = |x|) indistinguishable, even given both witnessesw,w′.

It follows immediately from the definitions that every zap yields anon-constructivenon-uniform single
round witness-indistinguishable protocol; that is, the first-round message can be fixed once and for all. Also
since we require ‘unconditional’ soundness (soundness against unbounded provers) the private coins vs.
secret coins really does not show up.

Claim 3.1 Every zap yields anon-constructivenon-uniform single round witness-indistinguishable proto-
col: for eachn, there exists a strinĝρn such that, lettingLn = L ∩ {0, 1}n,

1. Givenx ∈ Ln and a witnessw ∈ w(x), the prover can generate a proofπ that will be accepted by
the verifier. Moreover, the verifier’s decision whether to accept or reject is a polynomial time function
of x, ρ̂n, andπ.

2. There exists nox′ /∈ Ln and messageπ such that the verifier accepts(x′, ρ̂n, π).

3. For all x ∈ Ln and all w,w′ ∈ w(x), the distributionsP(x,w, ρ̂n) andP(x,w′, ρ̂n) are indistin-
guishable by any non-uniform probabilistic polynomial time distinguisher.
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Comparison with NIZKs. Zaps differ from non-interactive zero-knowledge proof systems (NIZKs) in
two respects, making the two concepts incomparable. On the one hand, zaps do not require that the prover
and verifier have access to a common guaranteed random string. On the other hand, NIZKs provide more
provable protection of the witness than do zaps, since NIZKs can be simulated without access to the witness
while zaps provide no such guarantee.

4 The NIZK-Based Construction

Assume we have a NIZK system (in the shared string model) satisfying Definition 2.2 for a languageL. We
will construct a zap forL (in the standard model). We will first provide some intuition for the construction.
Consider a NIZK in the shared string model; we try to convert it into a zap by somehow generating the
shared stringσ. Suppose we let the verifier choose a stringB and fixσ = B. The danger with this approach
is that there may be “bad” choices forσ that leak information about the witness, and the verifier might
chooseB to be one of them, thus harming the witness protection. If, to compensate, we have the prover
choose its own random stringC and we setσ = B ⊕C (that is,σ is the bit-wise exclusive-or ofB with C),
then the danger is that the prover will use the simulator to come up with aσ′ that “proves” thatx ∈ L (that
is, causingV to acceptx), even forx 6∈ L. The prover could then setC = σ′ ⊕B, violating soundness.

The actual protocol strikes a balance between these two ideas: a NIZK is repeated many times in parallel,
but not quite independently, as follows. Thejth instance has common stringσj , defined to be the bitwise
exclusive-or of two strings, one chosen by the prover and the other chosen by the verifier. The verifier’s
choice for thejth instance may be any stringBj ; however the prover may only choose a single stringC
that is used in all instances. This sort of idea can be called ‘reverse randomization’ and has been previously
used in the bit commitment protocol of Naor [45] and can be traced back to Lautmann’s proof that BPP is
in the second level of the hierarchy [41]; it has since been applied by Dwork, Naor and Reingold [22] for
removing decryption errors.

Choice of Parameters (General Construction). We now specify the parameters we need. Note that
in general it is possible to reduce the soundness error of a NIZK by repetition (with a fresh part of the
shared random string for each repetition) without hurting the zero-knowledge properties. Note that parallel
repetition reduces the error here in a straightforward manner here, since it is ‘combinatorial’. The price of
course is in the string and proof length.

Assume that we have a NIZK forL which, for proving membership of strings of length|x|, with security
parametern, uses a common shared string of length` = `(n, |x|). Assume further that on any inputy 6∈ L
of length|x| the NIZK errs with probability at mostq = q(n) over the choice of the common random string
σ. In Equation 1,k = k(n, |x|) = |ρ|, the number of random bits sent by the verifier in the first-round
message. The number of copiesm = m(n, |x|) of the NIZK will be k/`. To achieve soundness guaranteeδ
for the zap (that is, a cheating prover should succeed with probability at mostδ), we choosek satisfying

qk/` <
δ

2|x|+`
. (1)

4.1 Protocol Z: A Zap

In order to achieve soundness against an arbitrarily powerful prover and yet to require only feasible compu-
tation from the “good” prover, we must assume the existence of a NIZK with these properties, such as the
systems in [27, 39].

Let x ∈ L be an NP-statement to be proved to the verifier. We do not needx to be fixed before execution
of the protocol begins. Letw be the witness tox ∈ L known by the prover, letn be the security parameter,
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and letPN(x,w, σ) be the distribution on messages sent in the NIZK by a (non-cheating) prover when
the common random string isσ of length`(n, |x|). For simplicity, in the remainder of this discussion we
assumen and|x| are related by some fixed polynomial so that it suffices to think of`(n, |x|) as a function
solely ofn. Let k = k(n) andm = m(n) satisfy Equation 1.

First Round: V −→ P : The verifier sends to the prover a randomk-bit stringρ = b1 . . . bk, which is
interpreted asB1 . . . Bm, whereBj denotes thejth block of ` consecutive bits and̀ is the length of the
common random string used by the NIZK.

Second Round: P −→ V : The prover responds as follows. First, it chooses a random`-bit string
C = c1 . . . c`. Forj = 1 . . .m defineσj to be the bitwise exclusive-OR ofBj andC:

σj = Bj ⊕ C.

Then the prover sends to the verifierx, C, and them noninteractive proofs

{πj ∈R PN(x, w, σj)}j=1...m.

Final Check: The verifierV checks that each of them NIZKs π1, π2, . . . , πm with common strings
σ1, σ2, . . . σm whereσj = C ⊕ Bj results in acceptance; if so, then the verifier accepts the zap; other-
wise the verifier rejects. This completes the description of Protocol Z.

Lemma 4.1 Protocol Z is sound; moreover, for alln, there exists a choicêρn = b̂1 . . . b̂k(n) for the first
round message that yields perfect soundness:∀x /∈ Ln ∀π V (x, ρ̂n, π) rejects.

Proof. Let ` = `(n) andk = k(n). Fix anx /∈ L and random bit stringC = c1 . . . c`. Recall that in a
NIZK the faulty prover’s probability of succeeding on anx /∈ L are a function of the common random string
only, and this probability is at mostq. We will show that with overwhelming probability, over the choice of
b1, . . . , bk, the prover will fail to convince the verifier to acceptx. The key point is that once everything but
theb’s has been fixed, theσj ’s are truly random – because theBj ’s are. Therefore each copy of the NIZK
proof has probability at mostq of failing to cause rejection. Since each proof is independent (because the
randombi’s used in each copy of the NIZK proof are independent), the overall probability that allm = k/`
copies fail to reject is at mostqm.

The number of possible assignments to thec’s, andx /∈ L is at most2`+|x|. Hence, as long as

2`+|x|qm = 2`+|x|qk/` ≤ δ

(which is guaranteed by our choice ofk in (1)) the probability overb1, . . . , bk, that there even exists a “bad”
choice ofc1 . . . c`, anx /∈ L, and a zapπ that erroneously causes the verifier to acceptx, is at mostδ (cf. the
soundness requirement in Definition 2.2). Sinceδ < 1, there must exist somêρn = b̂1 . . . b̂k that provides
soundness against allx /∈ Ln: ∀x /∈ Ln ∀π V (x, ρ̂n, π) rejects.

♦

Lemma 4.2 Protocol Z is witness indistinguishable.
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Proof.
We prove witness indistinguishabilityfor everyρ. We will be using only the witness indistinguishability

property of the proof system (Theorem 2.1). Thus, fix an arbitraryρ for the entire proof. We will carry out
a standard hybrid argument with the following steps along the chain. Letw andw′ be two witnesses that
x ∈ L, and letn = |x|. At one extreme of the chain the witnessw is used in each of them NIZKs; at the
other extreme the witnessw′ is used in every copy. At each step along the chain we increase by one the
number of copies of the NIZK in whichw′ is used (and decrease the number in whichw is used).

Let 〈w,w′, i〉 denote the distribution on transcripts in which the firsti copies of the NIZK are constructed
usingw and the remainingm − i copies are constructed usingw′. The transcripts also includex,w,w′.
The distribution is over random choices made by the prover (sinceρ is fixed). LetT be a non-uniform
polynomial-time test that takes as input a transcript and outputs a single bit. We writeT (〈w,w′, i〉) to
denoteT ’s behavior on a transcript chosen uniformly from〈w,w′, i〉.

Assume for the sake of contradiction that there exists a probabilistic polynomial time testT and1 ≤
j ≤ m such that for some fixeda and infinitely manyn:

Pr[T (〈w,w′, j − 1〉) = 1]− Pr[T (〈w,w′, j〉) = 1] ≥ 1
na

The probability space is over the choices made by the prover and the randomness ofT . We will show that
this contradicts the witness-indistinguishability of the underlying NIZK.

Let (P̂ , V̂ ) be the underlying NIZK protocol (running in the shared random string model). Letτ be
a truly random string of̀ bits. Chooseu ∈R {w,w′} and giveu to P̂ . Let P̂ generate a proofπ ∈R

PN(x, u, τ). By the witness-indistinguishability of the NIZK, with overwhelming probability over choice
of τ , no non-uniform probabilistic polynomial time machine, even givenw and w′, has non-negligible
advantage of guessing the value ofu from π. We will show how to useT to violate this indistinguishability.

Usingw andw′, construct a simulated transcript of Protocol Z as follows. Breakρ = b1, . . . , bk into
m = k/` blocksB1, . . . , Bm. SetC = τ ⊕ Bj , so thatσj = Bj ⊕ C = τ , which is truly random by
assumption. For alli < j, constructπi ∈R PN(x,w, σi). For all i > j, constructπi ∈R PN(x,w′, σi).
Setπj = π which, by assumption, is a uniformly chosen element ofPN(x, u, τ). LetΠ denote the resulting
transcript.

RunT on Π. Sinceτ is truly random and uniformly distributed,C is uniformly distributed as well, so
the resulting transcript ofm NIZKs is a uniformly chosen element of either〈w,w′, j − 1〉 (if u = w′) or
〈w,w′, j〉 (if u = w). We can therefore useT ’s assumed ability to distinguish these two cases to obtain a
non-negligible advantage in guessing whetheru = w or u = w′. ♦

Theorem 4.3 Protocol Z is a zap.

Proof. Soundness and witness-indistinguishability have been argued. If the underlying NIZK has perfect
completeness, then the resulting zap inherits this property. Otherwise, if the underlying NIZK has negligible
chance of failure, then completeness for Protocol Z follows from the fact that, for anyρ̂, sinceC is random,
the probability that there is some block̂Bi such thatπ ∈R PN(x, w, B̂i⊕C) butV ∗(B̂i⊕C, x, π) does not
accept, is negligible. (Here, as earlier,B̂i is theith consecutive block of̀ bits in ρ̂.) In fact, by re-sampling
C, the prover can actually achieve perfect completeness even if the underlying NIZK has negligible chance
of failure. ♦

Our main conclusion is therefore:

Corollary 4.4 LetL ∈ NP be arbitrary.
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1. If there exists a NIZK forL in the common guaranteed-random string model, then there exists a zap
for L in the standard model.

2. If there exist zaps in the standard model forevery language in NP, and if there exist non-uniform
one-way functions, then there is a NIZK forL in the common guaranteed-random string model. Fur-
thermore, this NIZK is remains zero-knowledge under an adaptive selection ofx, that is, whenx may
depend onσ.

Proof. The first claim is immediate from the construction and correctness of Protocol Z.
For the second claim we directly apply the idea of Feige, Lapidot, and Shamir [27] of transforming the

proof of the statementx ∈ L into a witness-indistinguishable proof for the statement “the common shared
random stringσ is pseudo-random ORx ∈ L”. As we will explain, to carry out this approach it is sufficient
to have

• a pseudo-random generatorG that, say, doubles the length of the seed (in this case a random string is
unlikely to be the output of the generator for any seed) and

• a zap for the languageL′ = {(x, σ)|x ∈ L or ∃s σ = G(s)}.

The desired pseudorandom generators exist iff non-uniform one-way functions exist [36]; moreover, since
L′ is clearly in NP, it has a zap by the hypothesis. We assume for simplicity (and without loss of generality)
that the verifier’s message in the zap is chosen uniformly at random.

Recall we are trying to show that if one-way functions and zaps exist, then there exists a NIZK in the
shared random string model. Given a shared random string, treat it as(σ, ρ) whereρ is the verifier’s first-
round message in the zap for the languageL′. The prover simply transforms its witness forx ∈ L to a
witness for(x, σ) ∈ L′. Soundness follows from the fact that mostσ’s are not equal toG(s) for anys (this
holds becauseG is length-doubling andσ is truly random).

The system is zero-knowledge since, critically, the simulator for a NIZK is permitted to choose the
common string and may in particular choose it to beG(s) for some randoms. Then for a randomρ it uses
s as the witness for(x,G(s)) ∈ L′. The non-uniform probabilistic polynomial time indistinguishability of
outputs ofG from truly random strings, and the witness indistinguishability of the zaps forL′, imply that
the output of the simulator is indistinguishable from a real transcript.

Note that since a zap maintains its witness indistinguishability even whenx is chosen after the first round
message is known, we get that the zero-knowledge is maintained even ifx is selected in an adaptive manner.

♦

5 Zaps and Verifiable Pseudo-Random Bit Generators

In this section we characterize zaps in terms of a new cryptographic primitive:verifiable pseudo-random
sequence generator(VPRG) which is inspired by the definition of VPRF [44] (but note the differences). A
VPRG is a pseudo-random generator where the holder of the seed can generate “proofs” of consistency for
some parts of the sequence without hurting the unpredictability of the remaining bits. In the standard model
we will exhibit a construction of zaps from VPRGs (Protocol VZ below). As we will see, the construction
works even if the VPRG isapproximate, in that the “proofs” of the bit values are occasionally incorrectly
accepted, so it is possible to “cheat” a little (this “little” need not be polynomial). We will also show
that if zaps exist then so do approximate VPRGs. Very roughly,approximateVPRGs can be designed to
have multiple witnesses, so zaps, with their witness-indistinguishability, are sufficiently strong to yield the
necessary proofsπ of consistency with some member of the set of vectors related to the public verification
string (denotedS(VK)). In contrast, we do not know how to designstrict VPRGs to have multiple witnesses.
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The following summarizes the relationships between zaps, VPRGs, and NIZKs, both in the standard
model and in the common guaranteed random string model.

Summary 5.1 1. NIZKs exist in the common guaranteed random string model if and only if VPRGs
exist in the common guaranteed random string model (Theorem 5.9).

2. NIZKs exist in the common guaranteed random string model if and only if zaps exist in the standard
model (Theorem 4.3 and Corollary 4.4).

3. Zaps exists in the standard model if and only if approximate VPRGs (with certain parameters) exist
in the standard model (Corollary 5.6 and Theorem 5.7).

Definition 5.1 An(s, k) verifiable pseudo-random generator (VPRG)is a pseudo-random sequence genera-
tor which, for security parameter1n, maps a random seedv of lengths(n) to an output sequencea1, . . . , ak

of lengthk = k(n) and a verification keyVK wheres(n) andk(n) and the length ofVK are fixed polyno-
mials. The mapping should satisfy the following requirements:

Verifiability: For any subsetI ⊆ {1, . . . , k} of indices, given the seedv ∈ {0, 1}s(n) it is possible to
construct a proofπ of the consistency, withVK, of the values of{ai}i∈I . We call this aproof for
{ai}i∈I . The construction takes polynomial time and the proof is of polynomial length. GivenVK,
the verifier can check the proofπ in polynomial time. The generation ofπ may be randomized.

Binding: The public verification keyVK binds the sequence. That is, for eachVK there isat most one
associated sequencea1, a2, . . . , ak:

1. This sequence is in the range of the generator on input a seed of lengths(n);

2. For all subsetsI ⊆ {1, . . . , k}, if the verifier accepts a proofπ of values{bi}i∈I , then there exists
a sequencea1, . . . , ak associated withVK andbi = ai for all i ∈ I. (There can be two different
seedsv andv′ that yield that sameVK; in this case they will yield the samea1, a2, . . . ak.)

Passing theith Bit Test: For all 1 ≤ i ≤ k and non-uniform polynomial time adversariesT the following
holds. Suppose thatT receives for a randomv ∈ {0, 1}s(n) the verification keyVK and

a1, a2, . . . ai−1, ai+1, . . . ak.

The adversaryT selectsI ⊂ {1, . . . , k} such thati 6∈ I and receives a randomly generated proofπ
for {aj}j∈I . It then attempts to guessai. The probability, over the choice of the seed, the random
choices in the construction of the proofπ, and the random choices byT that T guessesai correctly
is negligibly inn close to1/2.

Remark 5.2 : Consider asubsettest, i.e. instead of a single1 ≤ i ≤ k there is a missing subset of indices
and the distinguisher gets the values ofai′ at all other locations plus candidate values for the missing
locations. It can then ask to see a proof of consistency for any subsetI not including any of the missing
indices and then has to guess if the candidate values are correct or just random. This test is equivalent to
theith bit test, just as the distinguishing test and the next bit test are equivalent for regular pseudo-random
generators. Note that in the case of verifiable pseudo-randomfunctions(VPRF) such an equivalence is not
clear. The relation between VPRGs and VPRFs is further discussed in Sections 5.2 and 9.

We also use a relaxation of VPRGs, which we calld(n)-approximateVPRGs. The differences are
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Relaxed Binding: Intuitively, for anyVK, there are at mostd(n) values for the revealed string that are
accepted as consistent withVK. Rigorously, for each seedv (of lengths(n)) there are at mostd(n)
associated sequences of lengthk, Sv = {~a1,~a2, . . . ,~ad(n)} such that for all subsetsI ⊆ {1, . . . , k},
if the verifier accepts a proofπ of values{bi}i∈I , then exits a1 ≤ j ≤ d(n) such that{bi}i∈I is
consistent with~aj (samej for all thei ∈ I). In addition, for each “claimed”VK (including those for
which there is no corresponding seed) there exists at most one consistentS, and thisS is in factSv

for somev ∈ {0, 1}s(n).

Two-Round Communication: The proof of consistency may be “zap-like”. On a first round the verifier
sends a public-coins messageρ and only thenVK and the subset to be proven are chosen. The Binding
and Verifiability conditions hold with high probability over the choice of message of the first round.

Finally, for completeness, we also consider VPRGs in the shared random string model. The Binding and
Verifiability conditions hold with high probability over the choice of the shared string.

5.1 Zaps based on VPRG

Proofs Based on Hidden Random Strings: We find the following “physical” intuition helpful for de-
scribing certain types of proofs of membership. The prover is dealt a sequence of` binary cards, where each
card has value 1 with probability 1/2. The prover knows the values of the cards and can choose any subset to
reveal to the verifier. The verifier learns absolutely nothing about the values of cards that are not explicitly
revealed. The prover has no control over the values of the cards. The sequence of cards is ahidden random
string (HRS).

To prove thatx ∈ L, the prover, holding witnessw ∈ w(x), can choose any subset of the hidden bits to
reveal to the verifier (cards to turn over). Letα be the locations and values of the revealed bits in the HRS.
In addition toα, the prover may send extra information,β, to the verifier. The verifier decides whether to
accept or rejectx as a function ofα, β, andx.

Thesoundnessrequirement is that for someq < 1 such that1 − q is non-negligible (that is,q is non-
negligibly far from 1), the probability (over the values of the hidden random bits) that the prover can cause
the verifier to accept anx /∈ L is at mostq, even if the prover is arbitrarily powerful. That is, with non-
negligible probability1− q there is no triple(x, α, β) such thatx 6∈ L and the verifier accepts(x, α, β).

The witness protectionrequirement is that there exist a simulator that on inputx ∈ L (but without a
witnesses tox ∈ L),

1. can create(α, β) identically distributed to the(α, β) pairs created in real executions of the proof;

2. givenα, β, andany witnessw∗ to x ∈ L, can generate an assignment to the remaining cards so
that the distribution onextended transcripts, that is, the hidden cards, the revealed cardsα, andβ, is
identicalto the distribution on extended transcripts in real executions by a prover holding witnessw∗.
We call this “completing the simulation withw∗, or “forming a completion withw∗”.

Again: α andβ are chosen without access to a witness; then, given any witnessw∗ ∈ w(x), the simulator
can create a completion withw∗, that is, an assignment to all the cards, hidden and exposed, so that the
distribution on triples containingα, β, and the values for all the cards is exactly the distribution on these
values in real executions with witnessw∗.

The concept of an HRS-based proof is exemplified by the noninteractive zero-knowledge proof systems
of Feige, Lapidot and Shamir [27] and of Kilian and Petrank [39]. The idea is to implement the hidden
random string using the output of the VPRG and the opening using the proof capabilities of the VPRG (in
contrast to the reliance on the trapdoor properties in [27, 39]). We do not provide new HRS-based proofs in
this paper. Our results work with any (existing or future) HRS-based scheme.
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Note that although an implementation of an HRS-based proof may be cryptographic, an HRS-based
proof is itself a combinatorial, and hence unconditional, object.

Protocol VZ: A VPRG-based Zap

The choice of parameters for VPRG-based zaps differs slightly from the choice in the case of NIZK-based
zaps. This is because in the case of the VPRG we have less freedom:k = k(n) (the length ofρ) is tied to
the parameters of the VPRG.

Choice of Parameters: Assume we have an HRS-based proof that for stringx and security parameter
n polynomially related to|x| uses`(n) cards, and on any inputx errs with probability at mostq. Let
s = s(n) be the length of a seed permitting the VPRG to outputk = k(n, |x|) bits. To achieve soundness
guaranteeδ (that is, a cheating prover should succeed with probability at mostδ), we require thatk(n, |x|)
will sufficiently expand the input: it should satisfy

qk(n,|x|)/`(n) <
δ

2n+s(n)+`(n)
.

The Protocol: Let m = k/`. The HRS proof will be repeatedm times. The verifier sends to the prover
random bitsρ = b1, . . . , bk.

The prover chooses̀random bitsC = c1, . . . , c` and a random seedv ∈ {0, 1}s for the VPRG. LetVK
anda1, a2, . . . , ak be the output of the VPRG onv. Theith bit of the HRS is defined to be

ai ⊕ bi ⊕ c(i−1 mod `)+1.

The prover sends to the verifier:VK, c1, . . . , c`, andm HRS-based proofs thatx ∈ L, where thejth
proof uses thejth block of` bits of the HRS. For all revealed cards1 ≤ i ≤ k the prover providesai and a
proofπ for the consistency of the revealed values.

Let (αj , βj) be the values of the revealed cards and additional information in thejth copy of the HRS-
based proof, forj = 1, . . . ,m. For the revealed cards the verifier, usingVK, checks that the value revealed
is the correct one. If not, the verifier rejects; otherwise the verifier accepts iff for allm instances of the
HRS-based proof, the HRS-based verifier accepts.

Lemma 5.3 Protocol VZ is witness-indistinguishable.

Proof. The proof involves a pair of nested hybrid arguments. The outer hybrid moves from a case in which
all copies of the NIZK use one witness (w) to a case in which all copies use the other witness (w′). Once a
distinguishing gap has been identified, the inner hybrid is over proof strings: one extreme has completionγ
consistent withw, and the other has completionγ′ consistent withw′.

Let w andw′ be two witnesses thatx ∈ L. Assume there exists a sequenceb∗1, . . . , b
∗
k and a distinguisher

T that, given(x,w,w′) and a transcript consisting ofb∗1, . . . , b
∗
k followed by the responses of them HRS-

based proofs ofx ∈ L, succeeds with non-negligible advantageε to guess which witness,w or w′, was used
by the prover in generating the response.

By the pigeonhole argument used in hybrid argument, for some1 ≤ j ≤ m there exists a distinguisher
for the following two types of transcripts, that distinguishes between them with advantage at leastε/m:

1. The prover uses witnessw for the firstj− 1 copies of the HRS-based proof andw′ for copiesj . . .m.

2. The prover uses witnessw for the firstj copies of the HRS-based proof andw′ for copiesj +1 . . .m.
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Let us fix such aj for the remainder of the proof.
We first use the simulator, whose existence is guaranteed by the definition of an HRS-based proof, to

chooseα andβ for thejth copy of the HRS-based proof. For a given seedv to the VPRG, for the positions
1 ≤ i ≤ ` indicated byα, we chooseci so that the valuea(j−1)`+i ⊕ b(j−1)`+i ⊕ ci opened is the value
indicated byα.

By the definition of witness-indistinguishability for an HRS-based proof, the simulator, now givenw
andw′, can efficiently find a completion (choices for the unopened values)γ corresponding to the case in
which the witness used isw, as well as a completionγ′, corresponding to the case in which the witness used
is w′. Together with the seedv, the completionsγ andγ′ determine, respectively, the values of the bitsci

for each positioni that isnot indicated byα (the values for the positions indicated byα were fixed above
and will remain unchanged throughout the rest of the proof). Letr = |γ| = |γ′|. For0 ≤ d ≤ r, we denote
by c(γ, γ′)[d] values for thec’s not indicated byα that agree withγ in positions1, . . . , d and agree withγ′

in positionsd + 1, . . . , r. Thus, whend = 0 the values all agree withγ′, while whend = r the values all
agree withγ.

We will now form a hybrid chain on proof strings. In every element in the chain, the seedv remains
unchanged, as do theb∗’s and the values for thec’s in the positions indicated byα. Only thec’s not indicated
by α will change as we move from one element in the chain to the next. The first element in the chain has
valuesc(γ, γ′)[r] for thec’s not indicated byα. Thus, these values all agree withγ, where the witness isw.
Having fixed all thec’s for this element of the chain, we can complete the description of the first element of
the chain. The firstj−1 blocks are HRS-based proofs constructed with witnessw, and blocksj +1 through
m are constructed with witnessw′. Moreover, by choice of thec’s, thejth block has been completed with
w.

The next element in the chain has valuesc(γ, γ′)[r−1] for the c’s not indicated byα. Everything else
remains the same: the values for the remainingc’s that were fixed in the description of the first element in
the chain are again used here. Then, having again fixed all thec’s, the firstj − 1 blocks are HRS-based
proofs constructed with witnessw, and blocksj + 1 throughm are constructed with witnessw′. Note that
the jth block might not really be something that could have been generated by the prover, since it is not
completely consistent with a proof constructed using eitherw or w′.

In general, for0 ≤ d ≤ r, thed+1th element in the chain has valuesc(γ, γ′)[r−d] for thec’s not indicated
by α, for 0 ≤ d ≤ r. The last element in the chain has valuesc(γ, γ′)[0], that is, it agrees completely with
γ′.

We note that the chain is non-empty, since otherwise the behavior of the prover on witnessesw andw′ is
identical and therefore yields no possibility of distinguishing between the two witnesses. Thus, the number
of steps in theγ → γ′ hybrid chain is1 ≤ r ≤ ` (including the endpoints, the chain hasr + 1 elements).
We assumed anε/m advantage in distinguishing the two endpoints of the chain, hence there is ani ≤ ` + 1
where the adversary has advantage at leastε/(m`) to distinguish between thei − 1 and ith elements in
the chain. The pseudo-randomness of the VPRG can be broken at this location. The subsetI is the one
determined byα and the HRS proofs used in the otherm− 1 blocks. ♦

Lemma 5.4 Protocol VZ is sound; moreover, the first round can be fixed non-uniformly.

Proof. Let x /∈ L, c1, . . . , c`, and the VPRG verification keyVK be fixed. We will show that with over-
whelming probability, over the choice ofb1, . . . , bk, the prover will fail to convince the verifier to acceptx.
The key point is that once everything but theb’s has been fixed, the hidden random string is truly random
– becauseb1, . . . , bk have not been chosen yet and are to be chosen at random. Therefore each copy of the
HRS-based proof has probability at mostq of failing to cause rejection. Since each proof is independent
(because thebi’s used in each copy of the HRS-based proof are independent), the overall probability that all
m = k/` copies fail is at mostqm.

17



The number of possible assignments to thec’s, VK’s4, andx /∈ L is at most2`+s+|x|. Hence, as long as

2`+s+|x|qm ≤ δ

for a randomb1, . . . , bk, the probability that there even exists a “bad” choice ofc1, . . . , c`, VK, andx that
erroneously causes the verifier to accept, is at mostδ. Thus, not only is the protocol sound, but the first
message (theb’s) can be fixed non-uniformly. ♦

Theorem 5.5 Given an HRS proof system for a languageL using` cards and with probability of error at
mostq and given a VPRG mapping a seeds to k bits, if

qk/` <
δ

2|x|+s+`

then protocol VZ is a zap forL.

Note that if instead of a VPRG we use ad(n)-approximate VPRG, then we can obtain a similar result
by adjusting the counting argument to accommodate thed(n) possible openings consistent withVK:

Corollary 5.6 Given an HRS proof system forL using` cards and with probability of error at mostq and
given ad(n)-approximate VPRG mapping a seeds to k bits, if

qk/` <
1

d(n)
δ

2|x|+s+`

then protocol VZ is a zap forL.

As we show next, the converse holds as well and we can use zaps in order to obtainapproximateVPRGs.

Theorem 5.7 Let `(n) be any polynomial. Fixm ≥ 2. Let G be any pseudo-random generator taking a
seed of lengths(n) and producing an output of length̀(n). Then, assuming every languageL ∈ NP has a
zap, one can construct ad(n)-approximate VPRG expanding a seed of lengthm · s(n) to a string of length
k(n) = m · `(n), whered(n) = m2`(n).

Note that the expansion is arbitrary, since`(n) is an arbitrary polynomial and pseudo-random generators
exist for any polynomial expansion, based on any one-way function.

Proof. We use the commitment scheme of [45] (in this scheme, the receiver sends an initial message, which
can be fixed non-uniformly). The prover commits tom seeds of lengths(n); VK is the concatenation of the
m commitments. Using the pseudo-random generator, each seed yields a block of length`(n), for a total
output length ofm · `(n). For any setI of indices, the prover can reveal the values of the pseudo-random
bits {ai}i∈I , and can prove using a zap that the revealed bits in at leastm − 1 of the blocks are consistent
with VK (this is certainly in NP, so it has a zap by assumption).

Verifiability is immediate from the zap. Relaxed binding is also simple, since givenVK, the number of
possible strings the prover can convince the verifier to accept ism2`(n) = d(n) (the prover has freedom to
choose one ofm blocks on which he can cheat and which of2`(n) values to plug in there).

It remains to show passing of theith bit test. Suppose the construction fails this test with some biasδ.
We will use the blockB containingi, to distinguish pairs of the form(C(v), τ) from (C(v), G(v)), where

4Note that we should only count the number of seedsv ∈ {0, 1}s and not the various possible public commitment strings, since
what matters is the valuea1, a2 . . . ak of the sequence associated withVK and this sequence, by Definition 5.1, must correspond
to one in the range of the generator on input a seed of lengths(n). .
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C(v) is a commitment to a seedv of lengths(n) andτ is random of lengthk(n). Given a pair(C(v), µ),
construct a keyVK as follows. Choosem − 1 seedsv1, . . . , vm−1, and arrange commitments to these
seeds and the commitmentC(v) so thatC(v) is the commitment to the supposed seed for blockB. Open
the values for all positions other thani, and provide a zap of approximate consistency withVK, using the
chosen seedsv1, . . . , vm−1 as the witnesses to the fact that the revealed bits in at leastm − 1 of the blocks
are consistent withVK.

If µ is pseudo-random with seedv, then by the witness-indistinguishability of the zap, the advantage
in guessing theith bit is close toδ (the witness-indistinguishability may introduce a negligible error, so we
don’t get exact advantageδ). On the other hand, ifµ is truly random, then there can be no bias. Therefore
we have a distinguisher for(C(v), τ) from (C(v), G(v)). ♦

Remark 5.8 In the case of ordinary pseudo-random generators, it is known that the ability to expand by
even one bit can be used to obtain arbitrary expansion. Is the same true of (approximate) verifiable pseudo-
random generators? From Corollary 4.4, Theorem 5.9, and Corollary 5.6 we have only a higher threshold:
if any polynomialexpansion is possible (fromn to n1+ε for fixedε), then we can build zaps and hence
arbitrary expansion. See more open problems in Section 9.

5.2 Construction of VPRGs

A non-trivial VPRG, with a given desired (polynomial) expansion from seed to output, can be constructed
from anyverifiable pseudo-random function(VPRF). The idea is simply that if the domain of a VPRF is
small, then one obtains a (non-approximate) VPRG. This is almost true, as there is a difference in the binding
requirement from a VPRF, according to the definition in [44], and the binding requirement from a VPRG
(Definition 5.1): a VPRF allows the total number of ‘legitimate’ functions (accepted by the verifier) to be
proportional to the number of public-keys, whereas a VPRG counts them according to the seeds. However
this can be resolved, since the length of the domain can be taken to be larger than the length of the public-
keys of the VPRF (any polynomial is possible) and allowing seeds that simply map their value to the output
(the probability of choosing such a seed under regular operation should be small which can be achieved by
having a prefix that if it is all zeros the the suffix is the public-key).

However, such a construction is an “overkill;” moreover, the only known constructions we have of
VPRFs require specific assumptions such the Strong-RSA assumption [44] or various “Diffie-Hellman”
assumptions for groups with bilinear mappings [42, 16, 17]5.

The goal of this section is to provide an alternate construction of VPRGs, based on general trapdoor
permutations. We do not require the “enhanced” property, as defined in [29]. The construction follows
along the lines of the trapdoor-based synthesizer construction of Naor and Reingold [47]. To obtain (non
approximate) VPRGs we require that the trapdoor permutation be certified (see [6]).

We assume the existence of a familyFn of certified trapdoor permutations with common domainDn,
together with a hard-core predicate (n is a security parameter). The VPRG output is given as a binary
matrix (say, in row-major order). The matrix hasr rows andc columns, whererc = k. Chooser functions
f1, . . . fr, fromF (one for each row) andc randomy’s (one for each column) in the common range of all
the trapdoor permutations,Dn. The(i, j) entry of the matrix will be the hard-core predicate off−1

i (yj).
Let VK = f1, . . . , fr, y1, . . . , yc. To prove the value of the(i, j) entry, revealf−1

i (yj). Verification
is immediate usingVK and the fact that eachfi is a permutation that is easy to compute in the forward
direction.

The length of the seeds is r log |Fn| + c log |Dn|. As n is fixed andk grows, the expansion is roughly
quadratic. This completes the description of our VPRG construction. The proof that it satisfies theith bit

5In light of Corollary 4.4 and Theorem 5.5, we therefore get zaps and NIZKs based on the same assumptions.
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test closely follows the proof in [47].
An alternative to trapdoor permutations is to use Diffie-Hellman in groups with efficient bilinear map-

pings where the Computational Diffie-Hellman is assumed to be hard [10, 38]. The easiness of the De-
cisional Diffie-Hellman problem in these groups yields a simple method for verification. (These are less
stringent requirements than in the existing constructions of VPRFs in [42, 16, 17].)

The standard example of a certifiable trapdoor function is RSA with aprimepublic exponente satisfying
e > N . This assures thate andφ(N) are relatively prime. If we relax theperfectbinding requirement and
instead aim for an approximate VPRG, then we can use certain uncertified trapdoor permutations, as in the
next example which is inspired by Shamir’s pseudo-random generator [51].

Consider RSA with small exponent: Choose a random RSA modulusN andy1, . . . , yc ∈ ZN∗ . These
form the verification key. Associate with theith row theith smallest prime. The(i, j)th output bit is the

hard-core bit ofy1/pi

j mod N . The possible problem is thatpi may divideφ(N). In this caseyj may
have multiplepith roots, possibly with different hard-core bits, and the owner of the generator can “cheat.”
However, even if the key is incorrectly chosen, so thatN is nota product of two primes, there can be at most
log N/ log log N such primes, and hence we getrelaxedbinding. (Note that ifN is not a product of two
primes then presumably the output sequence is not even close to that of a legal (two prime modulus) output;
but this can be resolved by allowing a small probability of anyN being chosen, which dose not affect the
pseudo-randomness property). We can take this into account in setting the parameters.

5.3 Shared string VPRGs and NIZKs

Theorem 5.9 VPRGs in theshared random stringmodel exist if and only if NIZKs exist in the shared random
string model. Moreover, in theshared random stringmodel NIZKs imply VPRGs of arbitrary expansion.

Proof.(Sketch) To construct VPRGs from NIZKs in the shared random string model, commit (say, using the
protocol of [45], taking the first several bits of the common random string to be the “first-round” message
of the receiver) to the seed of a pseudo-random sequence and use a NIZK to prove that the revealed value is
the correct one. For the converse, given a VPRG in the common random string model, construct essentially
the NIZK of Feige, Lapidot, and Shamir [27], in which the bits of the hidden random string (see more about
them above) are the bits of the VPRG.♦

6 Oblivious Transfer in the Standard Model

Although there are many protocols under various assumptions for oblivious transfer, to date no 3-round
protocol has been shown secure, without resorting to a random oracle model. We provide a protocol for
1-out-of-2 OT for which we are able to prove that the chooser’s privacy is protected by the quadratic residu-
ousity assumption (QRA) [34], and the sender’s privacy is protected statistically (that is, with overwhelming
probability over choices made by the sender, at most one value is transmitted to the chooser)6. The protocol
is not known to ensure correctness, that is, the sender may choose what to send as a function of the chooser’s
message.

For simplicity, we describe the protocol for the case in which the sender’s two inputs are bitsb0, b1 The
first round of the protocol, described next, can be eliminated if the Sender has a public key. In this case, the
public key is chosen to be a random first-round messageρ for zaps.

1. If the Sender has no public key, then it chooses a first-round messageρ for a zap and sends it to the
Chooser. (If the Sender instead has a public key, then this round is not needed.)

6Previous applications of QRA to OT appear, for example, in [12, 40].
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2. Let i ∈ {0, 1} be the Chooser’s input. The Chooser chooses a random 2-prime modulusN and two
random stringsy0, y1 in ZZ∗

N such thaty1−i is a quadratic residue moduloN andyi is a non-residue
with Jacobi symbol 1. Usingρ, the Chooser gives a zapπ of the statement: “y0 is a QRmod N OR
y1 is a QRmod N .”

3. The Sender verifies the zap(ρ, π) and, if verification fails, the Sender aborts. If verification succeeds,
the Sender choosesx0, x1 ∈R ZZ∗

N and sends the following two values to the Chooser in any order:
{yb0

b0
x2

0 mod N, yb1
b1

x2
1 mod N}.

We now give a proof sketch of correctness of the protocol. Assume first that both parties are following
the protocol correctly. Letyi be the unique quadratic non-residue moduloN amongy0, y1. Thenybi

i x2
i is

a quadratic residue moduloN if and only if bi = 0. On the other hand, sincey1−i is a quadratic residue
moduloN , so isy

b1−i

1−i x2
1−i, independent of the value ofb1−i. Thus, the ability of the Chooser to compute

quadratic residuousity yields only and exactly the value ofbi.
Now assume the Sender follows the protocol correctly but the Chooser does not. The soundness of the

zap ensures that at least one ofy0, y1 is a quadratic residue moduloN . Assume then thatyj is a quadratic

residue moduloN . Theny
bj

j x2
j mod N is always a quadratic residue, independent ofbj , and independent

of how N is chosen. Thus, the Chooser can learn at most one ofb0, b1. Finally, by the QRA and the way
in which a good Chooser constructsN, y0, y1, the sender cannot distinguish which ofy0, y1 is the quadratic
residue. In particular, the (polynomial time bounded) sender cannot distinguish among the following four
distributions(N, y0, y1, (ρ, π)) whereρ is fixed in Step 1,N is chosen according to the protocol, and the
other elements are chosen as follows:

1. y0 is a random quadratic residue moduloN , y1 is a random non-residue with Jacobi symbol 1, andy0

is the witness used in constructingπ;

2. y0 andy1 are both quadratic residues moduloN andy0 is the witness used in constructingπ;

3. y0 andy1 are both quadratic residues moduloN andy1 is the witness used in constructingπ;

4. y1 is a random quadratic residue moduloN , y0 is a random non-residue with Jacobi symbol 1, andy1

is the witness used in constructingπ;

Distributions 2 and 3 are indistinguishable by the witness-indistinguishability of the zap. Distributions 1
and 2 (and, similarly, distributions 3 and 4) are indistinguishable by the QRA. Thus, distributions 1 and 4
are computationally indistinguishable, so the Sender does not learn which ofb0, b1 has been transferred to
the Chooser.

Remark 6.1 Naor and Pinkas [46] were able to modify this approach to produce a different protocol with
similar security properties; their protocol is based on DDH and does not explicitly use zaps.

7 Timing-Based Applications

In this section we describe two delay-free timing-based (see Section 2.5) applications for zaps:

• 3-round concurrent zero-knowledge proofs of knowledge for any languageL ∈ NP

• 2-round deniable authentication
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7.1 3-round Concurrent Zero-Knowledge Proofs of Knowledge

At a high level, the protocol consists of two steps. Letx ∈ L be the statement to be proved. (1) The verifier
chooses a statementS and proves, using a zap, thatS is true; (2) the prover gives a proof of knowledge of
a witness to the statement “x ∈ L ∨ S”. Intuitively, soundness comes from the fact that the verifier’s proof
does not reveal a witness toS. This is achieved by constructingS to be the logical-or of two independent
statements – in such a case witness-indistinguishability is known to imply witness-hiding [26]. A single pre-
processing step is needed for both the proof of knowledge and to provide the first-roundρ for the verifier’s
zap ofS.

In a little more detail, the statementS is a claim that of two given timed commitments to two random
strings, at least one isvalid – forced recovery of the committed value is possible (see the discussion in
Section 2.5). Verifiable recovery implies the existence of a knowledge extractor. The extractor is used in
constructing the simulator for proving zero-knowledge.

Let f be a one-way function. Letf (k)(s) be thekth iterate off applied tos. Associated with any
randomly chosens, there is ak-bit pseudo-random stringB consisting of the hard-core bits of

s, f(s), f (2)(s), . . . , f (k−1)(s),

respectively (this is the Blum-Micali [9] generator). The basic technique for proving knowledge of a witness
w ∈ w(x) is to commit toB0 andB1 by giving a pairf (k)(s0), f (k)(s1). The verifier then chooses one of
the two blocks, say,Bi, to be revealed. The prover releasessi and givesw⊕B1−i, together with a proof of
consistency with the initial commitmentf (k)(s1−i). Because this only gives a probability 1/2 of detecting
cheating, the process is repeatedp many times in parallel. (Choosep, the number of parallel repetitions,
according to the required probability of soundness error.) The pre-processing step (Step 1 in the protocol)
is just the transmission of sufficiently many pairs of the formf (k)(s0), f (k)(s1), together with aρ for the
verifier’s zap in Step 2.

3-round Timed Concurrent ZK POK for L ∈ NP. Common inputx ∈ L, input to proverw ∈ w(x).

1. (a) Letf be a fixed one-way permutation (f is part of the protocol, known to both parties). The
prover sends to the verifier2p pairs(f (k)(s0

1), f
(k)(s1

1), . . . , (f
(k)(s0

2p), f
(k)(s1

2p))) for randomly

chosensj
i , i = 1, . . . , 2p andj = 0, 1.

(b) The prover also sends to the verifierρ, a round-one message for a zap.

2. (a) The verifier selects a random2p-bit stringc1 . . . c2p.

(b) The verifier chooses two random valuesy0 andy1 of lengthp, and constructs from them two
commitment stringsζ0 ∈R TC(y0) andζ1 ∈R TC(y1) using the timed commitment protocol.
Usingρ, the verifier sendsπ proving that at least one of theζi is valid ((ρ, π) constitutes a zap).

(c) The verifier sends to the prover a new round-one messageρ′.

3. (a) For each1 ≤ i ≤ p, the prover sends to the verifiersci
i . For each suchi the prover also computes

Bi, the pseudo-randomk-bit string consisting of the hard-core bits of

s1−ci
i , f(s1−ci

i ), f (2)(s1−ci
i ), . . . , f (k−1)(s1−ci

i ).

(b) The prover checks the zap(ζ0, ζ1, ρ, π). If the proof is invalid, the prover terminates the protocol.

(c) The prover choosesz at random.
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(d) UsingB1, . . . , Bp the prover commits toz andw. Specifically, it sendsz ⊕ B1, . . . , z ⊕ Bp;
similarly it commits tow, using blocksBp+1 . . . B2p. We call the commitments toz the first
group, and the commitments tow thesecond group. Usingρ′, the prover constructs a proofπ′

that at least one of the following two statements holds: (1) there existsz consistent with all of the
commitments in the first group andz is the value committed to in one of the timed commitments
ζ0 or ζ1; or (2) there existsw consistent with all of the commitments in the second group and
w ∈ w(x). The witness used for constructing the zap is the set of strings{s1−cp+1

p+1 , . . . , s
1−c2p

2p }.

Timing constraints: V acceptsP ’s Round 3 message only if arrives within timeα on V ’s local clock from
the time at whichV sent its Round 2 message.α andβ (for the timing assumption) should be chosen to
satisfyα ≤ β and2β + γ < t, where the valuet is the time below which it is safe to assume that the timed
commitment cannot be broken, even by a PRAM, andγ is an upper bound on the time it takes to create a zap
by a program that is given a witness. For completeness,α must be sufficiently large to permit the necessary
computations byP , and the round-trip message delay.

The protocol is concurrent zero knowledge because it isstraight-line simulatablevia the forced open-
ings: every interaction can be simulated without rewinding the prover [24]. To see this, consider a single
interaction. The simulator generates a real round-one message, which is given to the verifier. The verifier
constructs its timed commitments and their proofπ. The simulator checksπ and, if it is correct, continues
with the protocol. The clocks are frozen and the simulator computes the forced opening of the timed com-
mitments, obtainingy, the de-commitment of one ofζ0 andζ1. The clocks are started again, the simulator
setsz = y, commits toz and a random string (instead ofw), and constructsπ′ using the commitment toz
as the witness. When the adversarial scheduler schedulesP ’s next message, the simulator sendsπ′.

Now consider four classes of transcripts: they differ according to the value committed to in the first
block (random orz = y), the value committed to in the second block (w or random), and which witness is
used in creating the zapπ′ (w or z). Only 4 of the eight possibilities are relevant.

1. First block: random; Second block:w; witness isw.

2. First block:z = y; Second block: random; witness isy.

3. First block:z = y; Second block:w; witness isw.

4. First block:z = y; Second block:w; witness isy.

The real transcripts are the first class. The simulator outputs the second class. Classes 1 and 3 are com-
putationally indistinguishable by the one-wayness off and the properties of hard-core bits. Classes 2
and 4 are indistinguishable for the same reason. Classes 3 and 4 are indistinguishable by the witness-
indistinguishability of zaps. Hence, classes 1 and 2 are computationally indistinguishable.

We now argue that the interaction is sound and a proof of knowledge. If the prover completes the proof
with probabilityδ, then standard extraction techniques, i.e., forcingP to explore two computational paths,
can be used to obtain a witness (stringss1−ci

i for the appropriate set of indicesi) with probability negligibly
close toδ2.

Supposex /∈ L, and that a cheating prover succeeds with non-negligible probabilityδ to cause the
verifier to accept. Then the timed commitment scheme can be broken with probability negligibly close to
δ2/2, as follows. Consider a (possibly fictitious) non-faulty process running a perfect clock. By the(α, β)
assumption, ifV is non-faulty and measures time at mostα on its own clock between the time at which it
sent its round 2 message and the time at which it receivedP ’s round 3 reply, at mostβ real time has elapsed.

Assume we are given a timed commitmentξ1 ∈R TC(y). Run the cheating prover for one step. Choose
c1 . . . cp at random. Choosey′ and giveξ1 ∈R TC(y′); then, using the witness based ony′, act as the
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verifier and in Step 2 give a zap that at least one ofξ1 andξ2 is valid. By definition, such a zap can be
constructed within timeγ. If the prover responds (which it will do with probability at leastδ), repeat Steps
2 and 3, using the same timed commitments and zap in Step 2, but with a new random stringc′1, . . . , c

′
p.

If the prover responds again, use the revealedsc′i
to obtain at least one ofy, y′, w ∈ w(x). Sincex /∈ L,

the value obtained is eithery or y′. By the witness-indistinguishability of the verifier’s zap, the value will
be y with probability 1/2. The total time required for extraction is at most2β + γ < t contradicting the
assumption that breaking the timed commitment requires time at leastt < T . Thus, the system is sound.
That the system is a proof of knowledge is immediate from the extraction procedure described above.

Theorem 7.1 If TC is a timed commitment protocol satisfying the requirements of Section 2.5, then The
protocol described above is a 3-round timed concurrent zero-knowledge proof of knowledge system for any
languageL in NP.

Remark 7.2 The straight-line simulability also permits the prover to use differing(α, β) pairs for the dif-
ferent verifiers.

7.2 Timed 2-round Deniable Authentication

We now describe a 2-round timed concurrent deniable authentication protocol (see Section 2.3 for definition
and discussion), based on zaps and timed commitments.

TheAP has a public key〈E1, E2, ρ〉, whereE1 andE2 are public encryption keys chosen according
to a public-key cryptosystem generator that is non-malleable against chosen-ciphertext attacks in the post-
processing mode, andρ is a first-round message for a zap.

1. The verifier chooses random stringsy0, y1, r and sends to the proverc ∈R E1(m ◦ r) and timed
commitmentsζ0 ∈R TC(y0) andζ1 ∈R TC(y1). In addition, usingρ, the verifier gives a zap that at
least one of theζi is valid. Finally, the verifier also sends to the prover a first-round messageρ′ for a
zap.

2. The prover checks the zap(ρ, π) and aborts if verification fails. Otherwise, the prover sends to the
verifierη ∈R E1(r), δ ∈R E2(s) for a randomly chosens. Usingρ′, the prover sends a zapπ′ that at
least one of the following holds:η ∈ E1(r) or s ∈ {y0, y1} (more specifically,π′ is a proof thatη is
an encryption underE1 of the suffix of the message encrypted by ciphertextc OR δ is an encryption
underE2 of one of the values committed to byζ1, ζ2). The witness used in creatingπ′ is the set of
random bits in creatingη or δ. In a regular executionη is used.

V accepts if and only if both (1) the zap(ρ′, π′) is accepted and (2)P ’s response is received in atimely
fashion, as specified in the timing constraints.

Timing constraints: P ’s Round 2 message must arrive within timeα on V ’s local clock from the time
at whichV sent its Round 1 message.α andβ are chosen to satisfyα ≤ β andβ + γ < t, where the
valuet is the time below which it is safe to assume that the timed commitment cannot be broken, even by a
PRAM, andγ is an upper bound on the time it takes to create a zap by a program that is given a witness. For
completeness,α must be sufficiently large to permit the necessary computations byP , and the round-trip
message delay.

This completes the description of the deniable authentication protocol.

Theorem 7.3 If TC is a timed commitment protocol satisfying the requirements of Section 2.5, then the
2-round protocol is sound and deniable to a distinguisher that has access to the public key ofAP.
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Proof. We first argue unforgeability. Suppose that the adversary is trying to forge messagem and is given
by the verifier the “challenge”E(m ◦ r). Then by the non-malleability ofE1 it cannot produceE1(r), even
if it has access to a decrypting oracle forE1 on all messages with prefix different thanm7. Therefore, given
that the adversary provides a zap at Step 2, it must be the case thats = yi for somei ∈ {0, 1}. In this
case, the real prover, who knowsD2, and the adversary together can be used to break the timed commitment
scheme with probability1/2: givenTC(y), choosey′ at random and giveTC(y′); then, using the witness
based ony′, give a zap that at least one ofTC(y) or TC(y′) (in random order) is recoverable. By definition,
such a zap can be constructed within timeγ. If the forger gives backs = y within timeα, thenTC has been
broken in time at mostβ + γ < T .

We now argue deniability. The simulator extracts fromTC(y0) andTC(y1) eithery0 or y1 (for at least
one of them this should be possible). It then createsη = E1(r′) for a randomr′ and createsδ = E2(yi) and
uses it as a witness to a zap thatη ∈ E1(r) or s = yi. The proof of indistinguishability of simulated and real
transcripts is analogous to the proof of Theorem 7.1 and relies on the indistinguishability of encryptions of
E1 andE2.

Note that there is no real need to chooseE2 different fromE1. ♦

The need to addρ to the public key of the authenticator may increase its size significantly. However,
ρ is used only to show the recoverability ofTC. If we are equipped with a timed commitment where
recoverability is self-evident, then there is no need to have it at all and we can use any public key of a
sufficiently strong encryption.

Deniability When the Distinguisher has the Private Keys ofAP. We now describe a protocol that is
deniable even for a distinguisher who has the private keys ofAP, based on the (not deniable) authentication
protocol given in [18]. TheAP has a public key〈E, σ〉, whereE is a public encryption key chosen according
to a public-key cryptosystem generator that is non-malleable against chosen-ciphertext attacks in the post-
processing mode, andσ is a random string to be used in a NIZK of a language defined below.

1. The verifier chooses a random stringr and sends to the proverc ∈R E1(m◦r) and timed commitment
ζ ∈R TC(r). In addition, usingσ, the verifier gives a NIZK proofπ thatζ is valid and the committed
value equals the suffix of the plaintext ofc.

2. The prover checks the proof(σ, π) and aborts if verification fails. Otherwise, the prover decryptsc
and obtainsm andr and sends to the verifierr in the clear (of course only if the decryptedm equals
the value it wishes to authenticate).

V accepts if and only if both (1) the receivedr′ equals the valuer he selected and (2)P ’s response is
received in atimelyfashion, as specified in the timing constraints.

Timing constraints: P ’s Round 2 message must arrive within timeα onV ’s local clock from the time at
whichV sent its Round 1 message.α andβ are chosen to satisfyα ≤ β andβ < t, where the valuet is the
time below which it is safe to assume that the timed commitment cannot be broken, even by a PRAM. For
completeness,α must be sufficiently large to permit the necessary computations byP , and the round-trip
message delay.

Theorem 7.4 If TC is a timed commitment protocol satisfying the requirements of Section 2.5, then the
2-round protocol is sound and deniable to a distinguisher that has access to the public and private keys of
AP.

7Actually it seems that we do not needE1 to resist any chosen ciphertext attacks and it is enough that it is non-malleable against
chosen plaintext attacks. The reason is that we can give the adversary an encryption of a random string instead ofE1(r) and use
the forced opening of the timed commitment in order to obtain a zap in the second step.
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Proof. Unforgeability follows along the lines of the unforgeabiltiy in [18], the zero-knowledge property of
(σ, π), and the timing requirements. We now argue deniability. The simulator extracts fromζ = TC(r) the
valuer and by the soundness of the NIZK proof system this is the samer as in the ciphertext. It then adds
r to the transcript.

♦

8 Witness Protection in the Resettable Model

8.1 Resettable Witness-Indistinguishability

For a formal definition of resettable witness indistinguishability, see [13]. We will motivate the definition
informally by focusing on smart cards. Intuitively, a smart card is loaded withx, w ∈ w(x), and a seed
s for a pseudo-random function, at the time it is created. This seed is the only source of randomness the
card has; furthermore, we assume that the card is stateless, i.e. does not change its internal memory between
sessions (so it cannot store a counter and use it in conjunction with the seed to define the randomness of the
current session). Our interest is in protecting the prover from a verifierV ∗ that runs the prover many times
on the samex,w, s. Let us use the notation(P (x,w, s), V ∗(x, z)) denote the transcript of exactly this kind
of attack wherez is auxiliary information known toV ∗ (in particular, we may even havez = w,w′). Letting
w,w′ ∈ w(x), a proof thatx ∈ L is resettable witness-indistinguishable if for all probabilistic polynomial
timeT, V ∗ andz:

|Pr(V ∗,s)[T (P (x,w, s)V ∗(x, z))]− Pr(V ∗,s′)[T (P (x,w′, s′)V ∗(x, z))]| ≤ ν(n).

Every zap for a languageL ∈ NP yields a 2-round resettable witness-indistinguishable proof system
for L as follows. On inputρ, the prover computesR = fs(x, ρ), wherefs is a pseudo-random function with
seeds. It then uses the bitsR as the “random” bits in computing the zap responseπ.

Soundness holds because the round-one messageρ is not needed forunpredictability– indeed, soundness
holds even if somêρ is fixed non-uniformly and beforex is chosen. As for witness-indistinguishability, from
the WI of the zap it follows that an assumed distinguisher for the resettable system can be used to distinguish
the output of the pseudo-random function from truly random, a contradiction.

8.2 Resettable Zero-Knowledge

We first present our 3-round timing-based rZK protocol for anyL ∈ NP , and then compare it to previous
results.

Let (E,D) be the encryption and decryption algorithms of a semantically secure against chosen plain-
text attack (CPA) encryption method. The scheme need not be public-key, but there should be a public
descriptionpd of the encryption key with the following two properties. (1) It is easy to verify that decryp-
tion is unique, that is, given ciphertextc and a public descriptionpd there should be at most onep satisfying
c ∈ E(p). (2) Givenpd it is easy to verify that there exists decryption keydk such that givenc ∈ E(p) we
haveDdk(c) = p.

An example of such an encryption scheme can be based on RSA with large public exponent, as in
Section 5.2. That is, the public key is(e,N), in which the exponente is prime and sufficiently large (so
that e cannot possibly divideφ(N)); pd = (e,N) in this case and the actual encryption is done using
the hardcore predicate of the exponentiation withe function. Alternatively,E could be a pseudo-random
permutation cipher, which can be turned into a semantically secure against CPA encryption scheme using
random padding, and wherepd is a (perfectly binding) commitment to the seed. The fact thatE is a
permutation assures unique decryption.
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For this application, we require that the timed commitment scheme be securenon-uniformly, i.e. that
there does not exist a PRAM with fixed advice tape that can break the commitment scheme with non-
negligible probability in time less thant. This is one of the cases where security against non-uniform
adversaries is used in an essential way.

3-round Timing-Based rZK for L ∈ NP

1. The prover choosespd (the public description of the encryption key ofE) and a random stringρ and
sends both to the verifier.

2. The verifier checks that encryptions underE are uniquely decryptable (as discussed above) and if not,
rejects. AssumingE passes the test, the verifier chooses random stringsy0, y1 and sends to the prover
timed commitmentsζ0 ∈R TC(y0), ζ1 ∈R TC(y1) and, usingρ, a zapπ that at least one of the two
timed-commitments is valid. The verifier also sends a stringρ′ to the prover.

3. The prover checks(π, ρ). If it is accepted, then the prover uses the random bits defined by an appli-
cation of its pseudo-random function on the message sent by the verifier to generatea ∈R E(w) and
b ∈R E(z) wherew ∈ w(x) andz is random. Usingρ′ and part of the output of the pseudo-random
function the prover also generates a zapπ′ thatw ∈ w(x) ORz ∈ {y0, y1}. The witness used consists
of the random bits used in generatinga. a, b andπ′ are sent.

The verifier checks that(ρ′, π′) is accepted, thatb has unique decryption and that the prover’s response was
timely, as defined by the timing constraints, accepting if and only if all conditions are satisfied.
Timing Constraints: P ’s Round 2 message must arrive within timeα on V ’s local clock from the time at
whichV sent its Round 1 message.α andβ (from the timing assumption) are chosen to satisfyα ≤ β and
β + γ < t, where the valuet is the time below which it is safe to assume that the timed commitment cannot
be broken, even by a PRAM, andγ is an upper bound on the time it takes to create a zap by a program that
is given a witness. For completeness,α must be sufficiently large to permit the necessary computations by
P , and the round-trip message delay.

Note that the only party that has to measure time isV , which is considered more resourceful than the
prover (who may be a smart-card with no independent clock) in the resettable setting

Theorem 8.1 If TC is a timed commitment protocol satisfying the requirements of Section 2.5, then for any
L ∈ NP the above protocol is rZK.

Proof. A straight-line simulator can be constructed in a similar fashion to the construction in the proof of
Theorem 7.1, thus settling the zero-knowledge issue. For soundness we use theexistenceof a decryption
algorithmD with decryption keydk. If the protocol is not sound, then this key can be used to break the
timed commitment in exactly the same way as the proof of knowledge was used in the proof of Theorem 7.1,
violating the assumed non-uniform security of the timed commitment.

The properties of the encryption and decryption algorithms(E,D) assure us that givenpd a decryption
keydk exists (or the verifier will reject in Step 2). Suppose now that there is a soundness adversary, succeed-
ing on infinitely many sizes to make the verifier accept non-true statements. For each such size we can have
a slightly different prover, one that sends for sizen the same keypdn, the key that maximizes his chance
of proving a false statement. This prover has at least as high a chance of proving false statements that the
original adversary. Letdkn be the decryption key ofpdn. Since the zaps generally prove true statements, the
prover’s chance of giving a false proof is only ifb ∈R E(z) (uniquely) corresponds to az ∈ {y0, y1}. Given
dkn as the advice for sizen, it is possible to obtainz ∈ {y0, y1} and guess the value of the timed commit-
ments. So the non-uniform advice for breaking the timed commitments isdn, contradicting the assumption
that it is secure against non-uniform adversaries.
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We therefore have a non-constructive reduction: given an algorithm for providing false proofs forL we
know that there exists an algorithm for breaking the timed-commitment; however, the reduction does not
yield an effective method for the conversion (since there is no effective way of findingdk).

Note that a proof of security which does not yield an effective procedure to break the underlying as-
sumptions is rare.

♦

9 Open Questions

One vein of open problems induced by this work is with respect to the new primitive VPRG: Can VPRGs
be composed “́a la GGM”, as can ordinary pseudo-random generators? This is related to the issue of con-
structing VPRGs with better expansion as well as to the question whether there is a general construction
of VPRFs from VPRGs. A different issue is whether VPRGs can be based on an assumption weaker than
trapdoor permutations? For example, is it possible to base VPRGs on the Diffie-Hellman assumption (either
computational or the decisional version, for groups without a bilinear mapping)?

What is the relationship between NIZKs in the public parameters model and NIZKs in the public random
string model? The answer to this will clarify the relationship between VPRGs and NIZKs in the public
parameters model.

A second vein of questions deals with efficiency and practicality. We have used general NIZKs; thus any
proof must go through a reduction to an NP-complete problem. It would be useful to have more efficient,
special-purpose zaps, for instance, a zap that one ofx andy is a quadratic residue moduloN . Another
concrete question regarding zaps is to construct one in conjunction with a timed-commitment, so that it will
be simple to prove consistency.

A third vein of questions deals with round-efficiency: in which cases are our protocols round-optimal?
It is not hard to argue that 2-round (non-black-box) zero-knowledge proofsof knowledgeare impossible,
even using timing. It is also known that, assumingP 6= NP , there is no 2-round proof systemwith perfect
completenessfor NP-hard languages either with [33] or without [3] auxiliary input. As mentioned earlier,
2-round and 1-round argument systems do exist under non-standard assumptions [24, 4].
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