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Prefa
eThe strive for eÆ
ien
y is an
ient and universal, as time and other resour
es arealways in shortage. Thus, the question of whi
h tasks 
an be performed eÆ
ientlyis 
entral to the human experien
e.A key step towards the systemati
 study of the aforementioned question is arigorous de�nition of the notion of a task and of pro
edures for solving tasks. Thesede�nitions were provided by 
omputability theory, whi
h emerged in the 1930's.This theory fo
uses on 
omputational tasks, and 
onsiders automated pro
edures(i.e., 
omputing devi
es and algorithms) that may solve su
h tasks.In fo
using attention on 
omputational tasks and algorithms, 
omputabilitytheory has set the stage for the study of the 
omputational resour
es (like time) thatare required by su
h algorithms. When this study fo
uses on the resour
es that arene
essary for any algorithm that solves a parti
ular task (or a task of a parti
ulartype), the study be
omes part of the theory of Computational Complexity (alsoknown as Complexity Theory). In 
ontrast, when the fo
us is on the design andanalysis of spe
i�
 algorithms (rather than on the intrinsi
 
omplexity of the task),the study be
omes part of a related sub�eld that may be 
alled Algorithmi
 Designand Analysis. Furthermore, Algorithmi
 Design and Analysis tends to be sub-divided a

ording to the domain of mathemati
s, s
ien
e and engineering in whi
hthe 
omputational tasks arise. In 
ontrast, Complexity Theory typi
ally maintainsa unity of the study of tasks solvable within 
ertain resour
es (regardless of theorigins of these tasks).Complexity Theory is a 
entral �eld of the theoreti
al foundations of ComputerS
ien
e. It is 
on
erned with the study of the intrinsi
 
omplexity of 
omputationaltasks. That is, a typi
al Complexity theoreti
 study refers to the 
omputationalresour
es required to solve a 
omputational task (or a 
lass of su
h tasks), ratherthan referring to a spe
i�
 algorithm or an algorithmi
 s
hema. A
tually, resear
hin Complexity Theory tends to start with and fo
us on the 
omputational resour
esthemselves, and addresses the e�e
t of limiting these resour
es on the 
lass oftasks that 
an be solved. Thus, Computational Complexity is the general studyof the what 
an be a
hieved within limited time (and/or other limited natural
omputational resour
es).The most famous question of 
omplexity theory is the P-vs-NP Question, andthe 
urrent book is fo
used on it. The P-vs-NP Question 
an be phrased as askingwhether or not �nding solutions is harder than 
he
king the 
orre
tness of solu-III



IVtions. An alternative formulation asks whether or not dis
overing proofs is harderthan verifying their 
orre
tness; that is, is proving harder than verifying. The fun-damental nature of this question is evident in ea
h of these formulations, whi
hare in fa
t equivalent. It is widely believed that the answer to these equivalent for-mulations is that �nding (resp., proving) is harder than 
he
king (resp., verifying);that is, it is believed that P is di�erent from NP.At present, when fa
ed with a seemingly hard problem in NP, we 
an only hopeto prove that it is not in P assuming that NP is di�erent from P. This is wherethe theory of NP-
ompleteness, whi
h is based on the notion of an eÆ
ient redu
-tion, 
omes into the pi
ture. In general, one 
omputational problem is (eÆ
iently)redu
ible to another problem if it is possible to (eÆ
iently) solve the former whenprovided with an (eÆ
ient) algorithm for solving the latter. A problem (in NP)is NP-
omplete if any problem in NP is eÆ
iently redu
ible to it, whi
h meansthat no NP-
omplete problem 
an be solved eÆ
iently (unless all problems in NP
an be solved eÆ
iently). Amazingly enough, NP-
omplete problems exist, andfurthermore hundreds of natural 
omputational problems arising in many di�erentareas of mathemati
s and s
ien
e are NP-
omplete.The main fo
us of the 
urrent book is on the P-vs-NP Question and on the the-ory of NP-
ompleteness. Additional topi
s that are 
overed in
lude the treatmentof the general notion of an eÆ
ient redu
tion between 
omputational problems,whi
h provides a tighter relation between the aforementioned sear
h and de
isionproblems. The book also provides adequate preliminaries regarding 
omputationalproblems and 
omputational models.Relation to a di�erent book of the author. The 
urrent book is a revision ofChapter 2 and Se
tion 1.2 of the author's book Computational Complexity: A Con-
eptual Perspe
tive [13℄. The revision was aimed at making the book more friendlyto the novi
e. In parti
ular, several proofs were further detailed and numerousexer
ises were added.Web-site for noti
es regarding this book. We intend to maintain a web-sitelisting 
orre
tions of various types. The lo
ation of the site ishttp://www.wisdom.weizmann.a
.il/�oded/b
-book.html



OverviewThis book starts by providing the relevant ba
kground on 
omputability theory,whi
h is the setting in whi
h 
omplexity theoreti
 questions are being studied.Most importantly, this preliminary 
hapter (i.e., Chapter 1) provides a treatmentof 
entral notions su
h as sear
h and de
ision problems, algorithms that solvesu
h problems, and their 
omplexity. Spe
ial attention is given to the notion of auniversal algorithm.The main part of this book (i.e., Chapters 2{5) is fo
used on the P-vs-NPQuestion and on the theory of NP-
ompleteness. Additional topi
s 
overed in thispart in
lude the general notion of an eÆ
ient redu
tion (with a spe
ial emphasison self-redu
ibility), the existen
e of problems in NP that are neither NP-
ompletenor in P, the 
lass 
oNP, optimal sear
h algorithms, and promise problems. A briefoverview of this main part follows.Loosely speaking, the P-vs-NP Question refers to sear
h problems for whi
h the
orre
tness of solutions 
an be eÆ
iently 
he
ked (i.e., there is an eÆ
ient algorithmthat given a solution to a given instan
e determines whether or not the solutionis 
orre
t). Su
h sear
h problems 
orrespond to the 
lass NP, and the question iswhether or not all these sear
h problems 
an be solved eÆ
iently (i.e., is there aneÆ
ient algorithm that given an instan
e �nds a 
orre
t solution). Thus, the P-vs-NP Question 
an be phrased as asking whether or not �nding solutions is harderthan 
he
king the 
orre
tness of solutions.An alternative formulation, in terms of de
ision problems, refers to assertionsthat have eÆ
iently veri�able proofs (of relatively short length). Su
h sets ofassertions 
orrespond to the 
lass NP, and the question is whether or not proofsfor su
h assertions 
an be found eÆ
iently (i.e., is there an eÆ
ient algorithm thatgiven an assertion determines its validity and/or �nds a proof for its validity).Thus, the P-vs-NP Question 
an be phrased as asking whether or not dis
overingproofs is harder than verifying their 
orre
tness; that is, is proving harder thanverifying (or are proofs valuable at all).In both the (equivalent) formulations of the P-vs-NP Question, P 
orrespondsto the 
lass of eÆ
iently solvable problems, whereas NP 
orresponds to a natural
lass of problems for whi
h it is reasonable to seek eÆ
ient solvability. We also notethat, in both 
ases, equality between P and NP 
ontradi
ts our intuitions regardingthe notions that underlie the formulation of NP (i.e., the notions of solving sear
hproblems and proving theorems). V



VI Indeed, it is widely believed that the answer to these two equivalent formu-lations of the P-vs-NP Question is that P is di�erent than NP; that is, �nding(resp., dis
overing) is harder than 
he
king (resp., verifying). The fa
t that thisnatural 
onje
ture is unsettled seems to be one of the big sour
es of frustration of
omplexity theory. The author's opinion, however, is that this feeling of frustrationis out of pla
e. In any 
ase, at present, when fa
ed with a seemingly hard problemin NP, we 
annot expe
t to prove that the problem is not in P (un
onditionally).The best we 
an expe
t is a 
onditional proof that the said problem is not in P,based on the assumption that NP is di�erent from P. The 
ontrapositive is provingthat if the said problem is in P, then so is any problem in NP (i.e., NP equals P).This is where the theory of NP-
ompleteness 
omes into the pi
ture.The theory of NP-
ompleteness is based on the notion of an eÆ
ient redu
tion,whi
h is a relation between 
omputational problems. Loosely speaking, one 
om-putational problem is eÆ
iently redu
ible to another problem if it is possible toeÆ
iently solve the former when provided with an (eÆ
ient) algorithm for solvingthe latter. Thus, the �rst problem is not harder to solve than the se
ond one. Aproblem (in NP) is NP-
omplete if any problem in NP is eÆ
iently redu
ible toit. Thus, the fate of the entire 
lass NP (with respe
t to in
lusion in P) rests withea
h individual NP-
omplete problem. In parti
ular, showing that a problem isNP-
omplete implies that this problem is not in P unless NP equals P. Amazinglyenough, NP-
omplete problems exist, and furthermore hundreds of natural 
ompu-tational problems arising in many di�erent areas of mathemati
s and s
ien
e areNP-
omplete.The foregoing paragraphs refer to material that is 
overed in Chapters 2-4.Spe
i�
ally, Chapter 2 is devoted to the P-vs-NP Question per se, Chapter 3 isdevoted to the notion of an eÆ
ient redu
tion, and Chapter 4 is devoted to thetheory of NP-
ompleteness. We mention that that NP-
omplete problems are notthe only seemingly hard problems in NP; that is, if P is di�erent than NP, then NP
ontains problems that are neither NP-
omplete nor in P (see Se
tion 4.4).Additional related topi
s are dis
ussed in Chapter 5. In parti
ular, in Se
-tion 5.2, it is shown that the P-vs-NP Question is not about inventing sophisti
atedalgorithms or ruling out their existen
e, but rather boils down to the analysis ofa single known algorithm; that is, we will present an optimal sear
h algorithm forany problem in NP, while having not 
lue about its time-
omplexity.Ea
h 
hapter starts with a short overview, whi
h is followed by tea
hing notes.These tea
hing notes assume familiarity with the material and thus are betterskipped by the novi
e. Ea
h 
hapter ends with exer
ises, whi
h are designed tohelp and verify the basi
 understanding of the main text (and not to test or inspire
reativity). In few 
ases, exer
ises (augmented by adequate guidelines) are usedfor presenting related advan
ed material.The book also in
ludes a short histori
al a

ount (see Histori
al Notes), a briefoverview of 
omplexity theory at large (see Epilogue), and a la
oni
 review of somepopular 
omputational problems (see Appendix).



To the Tea
herA

ording to a 
ommon opinion, the most important aspe
t of a s
ienti�
 workis the te
hni
al result that it a
hieves, whereas explanations and motivations aremerely redundan
y introdu
ed for the sake of \error 
orre
tion" and/or 
omfort. Itis further believed that, like in a work of art, the interpretation of the work shouldbe left with the reader.The author strongly disagrees with the aforementioned opinions, and arguesthat there is a fundamental di�eren
e between art and s
ien
e, and that this dif-feren
e refers exa
tly to the meaning of a pie
e of work. S
ien
e is 
on
erned withmeaning (and not with form), and in its quest for truth and/or understanding s
i-en
e follows philosophy (and not art). The author holds the opinion that the mostimportant aspe
ts of a s
ienti�
 work are the intuitive question that it addresses,the reason that it addresses this question, the way it phrases the question, the ap-proa
h that underlies its answer, and the ideas that are embedded in the answer.Following this view, it is important to 
ommuni
ate these aspe
ts of the work.The foregoing issues are even more a
ute when it 
omes to 
omplexity theory,�rstly be
ause 
on
eptual 
onsiderations seems to play an even more 
entral rolein 
omplexity theory (than in other s
ienti�
 �elds). Se
ondly (and even moreimportantly), 
omplexity theory is extremely ri
h in 
on
eptual 
ontent. Thus,
ommuni
ating this 
ontent is of primary importan
e, and failing to do so missesthe most important aspe
ts of 
omplexity theory.Unfortunately, the 
on
eptual 
ontent of 
omplexity theory is rarely 
ommuni-
ated (expli
itly) in books and/or surveys of the area. The annoying (and quiteamazing) 
onsequen
es are students that have only a vague understanding of themeaning and general relevan
e of the fundamental notions and results that theywere taught. The author's view is that these 
onsequen
es are easy to avoid by tak-ing the time to expli
itly dis
uss the meaning of de�nitions and results. A 
loselyrelated issue is using the \right" de�nitions (i.e., those that re
e
t better the fun-damental nature of the notion being de�ned) and emphasizing the (
on
eptually)\right" results. The 
urrent book is written a

ordingly; two 
on
rete and 
entralexamples follow.The �rst example refers to the presentation of the P-vs-NP Question, wherewe avoid using (polynomial-time) non-deterministi
 ma
hines. We believe thatthese �
titious \ma
hines" have a negative e�e
t both from a 
on
eptual and ate
hni
al point of view. The 
on
eptual damage 
aused by de�ning NP in terms ofVII



VIII(polynomial-time) non-deterministi
 ma
hines is that it is un
lear why one should
are about what su
h ma
hines 
an do. Needless to say, the reason to 
are is
lear when noting that these �
titious \ma
hines" o�er a (
onvenient but ratherslothful) way of phrasing fundamental issues. The te
hni
al damage 
aused byusing non-deterministi
 ma
hines is that they tend to 
onfuse the students.In 
ontrast to using a �
titious model as a pivot, we de�ne NP in terms ofproof systems su
h that the fundamental nature of this 
lass and the P-vs-NPQuestion are apparent. We also push to the front a formulation of the P-vs-NPQuestion in terms of sear
h problems. We believe that this formulation may appealto non-experts even more than the formulation of the P-vs-NP Question in termsof de
ision problems. The aforementioned formulation refers to 
lasses of sear
hproblems that are analogous to the de
ision problem 
lasses P and NP. Spe
i�
ally,we 
onsider the 
lasses PF and PC (see De�nitions 2.2 and 2.3), where PF 
onsistsof sear
h problems that are eÆ
iently solvable and PC 
onsists of sear
h problemshaving eÆ
iently 
he
kable solutions.To summarize, we suggest presenting the P-vs-NP Question both in terms ofsear
h problems and in terms of de
ision problems. Furthermore, when presentingthe de
ision-problem version, we suggest introdu
ing NP by expli
itly referring tothe terminology of proof systems (rather than using the more standard formulation,whi
h is based on non-deterministi
 ma
hines). We mention that the formulation ofNP as proof systems is also a better starting point for the study of more advan
edissues (e.g., 
ounting 
lasses, let alone probabilisti
 proof systems).Turning to the se
ond example, whi
h refers to the theory of NP-
ompleteness,we highlight a 
entral re
ommendation regarding the presentation of this theory.We believe that, from a 
on
eptual point of view, the mere existen
e of NP-
ompleteproblems is an amazing fa
t. We thus suggest emphasizing and dis
ussing thisfa
t per se. In parti
ular, we re
ommend �rst proving the mere existen
e of NP-
omplete problems, and only later establishing the fa
t that 
ertain natural prob-lems su
h as SAT are NP-
omplete. Also, when establishing the NP-
ompletenessof SAT, we re
ommend de
oupling the emulation of Turing ma
hines by 
ir
uits(used for establishing the NP-
ompleteness of CSAT) from the emulation of 
ir
uitsby formulae (used in the redu
tion of CSAT to SAT).Organization: In Chapter 1, we present the basi
 framework of 
omputational
omplexity, whi
h serves as a stage for the rest of the book. In parti
ular, weformalize the notions of sear
h and de
ision problems (see Se
tion 1.2), algorithmssolving them (see Se
tion 1.3), and their time 
omplexity (see Se
tion 1.3.5). InChapter 2 we present the two formulations of the P-vs-NP Question. The generalnotion of a redu
tion is presented in Chapter 3, where we highlight its appli
abilityoutside the domain of NP-
ompleteness. Chapter 4 is devoted to the theory ofNP-
ompleteness, whereas Chapter 5 treats three relatively advan
ed topi
s (i.e.,the framework of promise problems, the existen
e of optimal sear
h algorithmsfor NP, and the 
lass 
oNP). The book ends with an Epilogue, whi
h provides abrief overview of 
omplexity theory, and an Appendix that reviews some popular
omputational problems (whi
h are used as examples in the main text).



IXAdditional tea
hing notes: Ea
h 
hapter starts with an overview, whi
h isfollowed by additional tea
hing notes. These notes arti
ulate various 
hoi
es madein the presentation of the material in the 
orresponding 
hapter.Basing a 
ourse on the 
urrent book. The book 
an serve as a basis for anundergraduate 
ourse, whi
h may be 
alled Basi
s Computational Complexity. The
ore material for this 
ourse is provided by Chapters 1-4 of this book. Spe
i�
ally,Se
tions 1.1{1.3 provide the required elements of 
omputability theory, and Chap-ters 2{4 provide the basi
 elements of 
omplexity theory. In addition, x1.4.1.1 andx1.4.3.1 (or, alternatively, Appendix A.2) provide preliminaries regarding Boolean
ir
uits and formulae that is required in Se
tion 4.3 (whi
h refers to CSAT andSAT). For a s
hemati
 outline of the 
ourse, see Figure 0.1.topi
 se
tionsElements of 
omputability theory 1.1-1.3The P-vs-NP Question 2.1-2.4, 2.7Optional: de�nitional variations 2.5, 2.6Polynomial-time redu
tions 3.1-3.3The existen
e of NP-
omplete problems 4.1-4.2Natural NP-
omplete problems (e.g., CSAT, SAT, VC) 4.3Preliminaries on Boolean 
ir
uits and formulae 1.4.1, 1.4.3, A.2add'l basi
 topi
s: NPI, promise problems, optimal sear
h 4.4, 5.1, 5.2advan
ed topi
s, if time permits... from [13, 1℄Figure 0.1: Outline of the suggested 
ourseA revision of the CS 
urri
ulum. The best integration of the aforementioned
ourse in undergraduate CS edu
ation 
alls for a revision of the standard CS 
ur-ri
ulum. Indeed, we believe that there is no real need for a semester-long 
oursein Computability (i.e., a 
ourse that fo
uses on what 
an be 
omputed rather thanon what 
an be 
omputed eÆ
iently). Instead, CS undergraduates should takea 
ourse in Computational Complexity, whi
h should 
ontain the 
omputabilityaspe
ts that serve as a basis for the study of eÆ
ient 
omputation (i.e., the restof this 
ourse). Spe
i�
ally, the 
omputability aspe
ts should o

upy at most onethird of the 
ourse, and the fo
us should be on basi
 
omplexity issues (
apturedby P, NP, and NP-
ompleteness), whi
h may be augmented by a sele
tion of somemore advan
ed material. Indeed, su
h a 
ourse 
an be based on the 
urrent book(possibly augmented by a sele
tion of some topi
s from, say, [13, 1℄).
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Chapter 1Computational Tasks andModelsOverview: We assume that the reader is familiar with 
omputingdevi
es, but may asso
iate the notion of 
omputation with spe
i�
 in-
arnations of it. Our �rst goal is to view 
omputation as a generalphenomenon whi
h may 
apture both arti�
ial and natural pro
esses.Loosely speaking, a 
omputation is a pro
ess that modi�es a relativelylarge environment via repeated appli
ations of a simple and predeter-mined rule. Although ea
h appli
ation of the rule has a very limitede�e
t, the e�e
t of many appli
ations of the rule may be very 
omplex.We are interested in the transformation of the environment e�e
ted bythe 
omputational pro
ess (or 
omputation). Typi
ally, the initial en-vironment to whi
h the 
omputation is applied en
odes an input string,and the end environment (i.e., at termination of the 
omputation) en-
odes an output string. Thus, the 
omputation de�nes a mapping frominputs to outputs, and su
h a mapping 
an be viewed as solving a sear
hproblem (i.e., given an instan
e x �nd a solution y that relates to x insome predetermined way) or a de
ision problem (i.e., given an instan
ex determine whether or not x has some predetermined property).In order to provide a basis for a rigorous study of the 
omplexity of 
om-putational tasks, we need to de�ne 
omputation (and its 
omplexity)rigorously. This, in turn, requires spe
ifying a 
on
rete model of 
om-putation, whi
h 
orresponds to an abstra
tion of a real 
omputer (beit a PC, mainframe or network of 
omputers) and yet is simpler (andthus fa
ilitates further study). We will refer to the model of Turingma
hines, but any reasonable alternative model will do.We also dis
uss two fundamental features of any reasonable model of
omputation: the existen
e of problems that 
annot be solved by any
omputing devi
e and the existen
e of universal 
omputing devi
es.1



2 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSWe start by introdu
ing the general framework for our dis
ussion of 
omputationaltasks (or problems). This framework refers to the representation of instan
es asbinary sequen
es (see Se
tion 1.1) and fo
uses on two types of tasks: sear
hing forsolutions and making de
isions (see Se
tion 1.2). On
e 
omputational tasks arede�ned, we turn to methods for solving su
h tasks, whi
h are des
ribed in terms ofsome model of 
omputation. The des
ription of su
h models is the main 
ontentsof this 
hapter. Spe
i�
ally, we 
onsider two types of models of 
omputation:uniform models and non-uniform models (see Se
tions 1.3 and 1.4, respe
tively).The uniform models 
orrespond to the intuitive notion of an algorithm, and willprovide the stage for the rest of the book (whi
h fo
uses on eÆ
ient algorithms).In 
ontrast, non-uniform models (e.g., Boolean 
ir
uits) fa
ilitate a 
loser look atthe way a 
omputation progresses, and will be only used sporadi
ally in this book.Thus, whereas Se
tions 1.1{1.3 are absolute prerequisites for the rest of this book,Se
tion 1.4 is not.Tea
hing NotesThis 
hapter provides the ne
essary preliminaries for the rest of the book; that is,we dis
uss the notion of a 
omputational task and present 
omputational modelsfor des
ribing methods for solving su
h tasks.Se
tions 1.1{1.3 
orresponds to the 
ontents of a traditional Computability
ourse, ex
ept that our presentation emphasizes some aspe
ts and deemphasizesothers. In parti
ular, the presentation highlights the notion of a universal ma-
hine (see Se
tion 1.3.4), expli
itly dis
usses the 
omplexity of 
omputation (Se
-tion 1.3.5), and provides a de�nition of ora
le ma
hines (Se
tion 1.3.6). This mate-rial (with the ex
eption of Kolmogorov Complexity) is taken for granted in the restof the 
urrent book. In 
ontrast, Se
tion 1.4 presents basi
 preliminaries regardingnon-uniform models of 
omputation (e.g., various types of Boolean 
ir
uits), andthese are only used lightly in the rest of the book.We strongly re
ommend avoiding the standard pra
ti
e of tea
hing the studentto program with Turing ma
hines. These exer
ises seem very painful and pointless.Instead, one should prove that the Turing ma
hine model is exa
tly as powerful as amodel that is 
loser to a real-life 
omputer (see the \sanity 
he
k" in x1.3.2.2); thatis, a fun
tion 
an be 
omputed by a Turing ma
hine if and only if it is 
omputableby a ma
hine of the latter model. For starters, one may prove that a fun
tion 
anbe 
omputed by a single-tape Turing ma
hine if and only if it is 
omputable by amulti-tape (e.g., two-tape) Turing ma
hine.As hinted in Se
tion 1.3.7, we reje
t the 
ommon 
oupling of 
omputabilitytheory with the theory of automata and formal languages. Although the histori
allinks between these two theories (at least in the West) 
an not be denied, this fa
t
annot justify 
oupling two fundamentally di�erent theories (espe
ially when su
ha 
oupling promotes a wrong perspe
tive on 
omputability theory). Thus, in ouropinion, the study of any of the lower levels of Chomsky's Hierar
hy [15, Chap. 9℄should be de
oupled from the study of 
omputability theory (let alone the studyof 
omplexity theory). Indeed, this is related to the dis
ussion of the \revision of



1.1. REPRESENTATION 3the CS 
urri
ulum" in the preliminary se
tion To the Tea
her.The perspe
tive on non-uniform models of 
omputation provided by Se
tion 1.4is more than the very minimum that is required for the rest of this book. If pressedfor time, then the tea
her may want to skip all of Se
tion 1.4.2 as well as someof the material in Se
tion 1.4.1 and Se
tion 1.4.3 (i.e., avoid x1.4.1.2 as well asx1.4.3.2). Furthermore, for a minimal presentation of Boolean formulae, one mayuse Appendix A.2 instead of x1.4.3.1.1.1 RepresentationIn mathemati
s and most other s
ien
es, it is 
ustomary to dis
uss obje
ts withoutspe
ifying their representation. This is not possible in the theory of 
omputation,where the representation of obje
ts plays a 
entral role. In a sense, a 
omputationmerely transforms one representation of an obje
t to another representation of thesame obje
t. In parti
ular, a 
omputation designed to solve some problem merelytransforms the problem instan
e to its solution, where the latter 
an be thoughof as a (possibly partial) representation of the instan
e. Indeed, the answer toany fully spe
i�ed question is impli
it in the question itself, and 
omputation isemployed to make this answer expli
it.Computational tasks refers to obje
ts that are represented in some 
anoni
alway, where su
h 
anoni
al representation provides an \expli
it" and \full" (but not\overly redundant") des
ription of the 
orresponding obje
t. Furthermore, whenwe dis
uss natural 
omputational problems, we always use a natural representationof the 
orresponding obje
ts. We will only 
onsider �nite obje
ts like numbers, sets,graphs, and fun
tions (and keep distinguishing these types of obje
ts although,a
tually, they are all equivalent). While the representation of numbers, sets, andfun
tions is quite straightforward (see below), we refer the reader to Appendix A.1for a dis
ussion of the representation of graphs.In order to fa
ilitate a study of methods for solving 
omputational tasks, thelatter are de�ned with respe
t to in�nitely many possible instan
es (ea
h being a�nite obje
t). Indeed, the 
omparison of di�erent methods seems to require the
onsideration of in�nitely many possible instan
es; otherwise, the 
hoi
e of the lan-guage in whi
h the methods are des
ribed may totally dominated and even distortthe dis
ussion (
f., e.g., the dis
ussion of Kolmogorov Complexity in x1.3.4.2).Strings. We 
onsider �nite obje
ts, ea
h represented by a �nite binary sequen
e,
alled a string. For a natural number n, we denote by f0; 1gn the set of all stringsof length n, hereafter referred to as n-bit (long) strings. The set of all strings isdenoted f0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. For x2 f0; 1g�, we denote by jxjthe length of x (i.e., x 2 f0; 1gjxj), and often denote by xi the ith bit of x (i.e.,x = x1x2 � � �xjxj). For x; y 2 f0; 1g�, we denote by xy the string resulting from
on
atenation of the strings x and y.At times, we asso
iate f0; 1g��f0; 1g� with f0; 1g�; the reader should merely
onsider an adequate en
oding (e.g., the pair (x1 � � �xm; y1 � � � yn)2f0; 1g��f0; 1g�may be en
oded by the string x1x1 � � �xmxm01y1 � � � yn 2 f0; 1g�). Likewise, we



4 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSmay represent sequen
es of strings (of �xed or varying length) as single strings.When we wish to emphasize that su
h a sequen
e (or some other obje
t) is to be
onsidered as a single obje
t we use the notation h�i (e.g., \the pair (x; y) is en
odedas the string hx; yi").Numbers. Unless stated di�erently, natural numbers will be en
oded by theirbinary expansion; that is, the string bn�1 � � � b1b0 2 f0; 1gn en
odes the numberPn�1i=0 bi � 2i, where typi
ally we assume that this representation has no leadingzeros (i.e., bn�1 = 1). Rational numbers will be represented as pairs of naturalnumbers. In the rare 
ases in whi
h one 
onsiders real numbers as part of theinput to a 
omputational problem, one a
tually mean rational approximations ofthese real numbers.Sets are usually represented as lists, whi
h means that the representation in-trodu
es an order that is not spe
i�ed by the set itself. Indeed, in general, therepresentation may have features that are not present in the represented obje
t.Fun
tions are usually represented as sets of argument{value pairs (i.e., fun
tionsare represented as binary relations, whi
h in turn are sets of ordered pairs).Spe
ial symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0),and the empty set by ;. It will be 
onvenient to use some spe
ial symbols that arenot in f0; 1g�. One su
h symbol is ?, whi
h typi
ally denotes an indi
ation (e.g.,produ
ed by some algorithm) that something is wrong.1.2 Computational TasksTwo fundamental types of 
omputational tasks are the so-
alled sear
h problemsand de
ision problems. In both 
ases, the key notions are the problem's instan
esand the problem's spe
i�
ation.1.2.1 Sear
h ProblemsA sear
h problem 
onsists of a spe
i�
ation of a set of valid solutions (possibly anempty one) for ea
h possible instan
e. That is, given an instan
e, one is requiredto �nd a 
orresponding solution (or to determine that no su
h solution exists).For example, 
onsider the problem in whi
h one is given a system of equationsand is asked to �nd a valid solution. Needless to say, mu
h of 
omputer s
ien
eis 
on
erned with solving various sear
h problems (e.g., �nding shortest paths ina graph, sorting a list of numbers, �nding an o

urren
e of a given pattern in agiven string, et
). Furthermore, sear
h problems 
orrespond to the daily notionof \solving a problem" (e.g., �nding one's way between two lo
ations), and thus adis
ussion of the possibility and 
omplexity of solving sear
h problems 
orrespondsto the natural 
on
erns of most people.In the following de�nition of solving sear
h problems, the potential solver is afun
tion (whi
h may be thought of as a solving strategy), and the sets of possible



1.2. COMPUTATIONAL TASKS 5solutions asso
iated with ea
h of the various instan
es are \pa
ked" into a singlebinary relation.De�nition 1.1 (solving a sear
h problem): Let R � f0; 1g��f0; 1g� and R(x) def=fy : (x; y) 2 Rg denote the set of solutions for the instan
e x. A fun
tion f :f0; 1g� ! f0; 1g� [ f?g solves the sear
h problem of R if for every x the followingholds: if R(x) 6= ; then f(x) 2 R(x) and otherwise f(x) = ?.Indeed, R = f(x; y)2f0; 1g� � f0; 1g� : y2R(x)g, and the solver f is required to�nd a solution (i.e., given x output y 2 R(x)) whenever one exists (i.e., the setR(x) is not empty). It is also required that the solver f never outputs a wrongsolution (i.e., if R(x) 6= ; then f(x) 2 R(x) and if R(x) = ; then f(x) = ?), whi
hin turn means that f indi
ates whether x has any solution. Note that the solveris not ne
essarily determined by the sear
h problem (i.e., the solver is uniquelydetermined if and only if jR(x)j � 1 holds for every x).A spe
ial 
ase of interest is the 
ase of sear
h problems having a unique solution(for ea
h possible instan
e); that is, the 
ase that jR(x)j = 1 for every x. In this
ase, R is essentially a (total) fun
tion, and solving the sear
h problem of R means
omputing (or evaluating) the fun
tion R (or rather the fun
tion R0 de�ned byR0(x) def= y if and only if R(x) = fyg). Popular examples in
lude sorting a sequen
eof numbers, multiplying integers, �nding the prime fa
torization of a 
ompositenumber, et
.1.2.2 De
ision ProblemsA de
ision problem 
onsists of a spe
i�
ation of a subset of the possible instan
es.Given an instan
e, one is required to determine whether the instan
e is in thespe
i�ed set (e.g., the set of prime numbers, the set of 
onne
ted graphs, or theset of sorted sequen
es). For example, 
onsider the problem where one is given anatural number, and is asked to determine whether or not the number is a prime(or the problem of determining whether a given graph is 
onne
ted).One important 
ase of de
ision problems, whi
h refers to sear
h problems, isthe 
ase of the set of instan
es having a solution with respe
t to some �xed sear
hproblem; that is, for any binary relation R � f0; 1g� � f0; 1g� we 
onsider the setfx : R(x) 6= ;g. Indeed, being able to determine whether or not a solution existsis a prerequisite to being able to solve the 
orresponding sear
h problem (as perDe�nition 1.1).In general, de
ision problems refer to the natural task of making binary de
ision,a task that is not un
ommon in daily life (e.g., determining whether a traÆ
 lightis red). In any 
ase, in the following de�nition of solving de
ision problems, thepotential solver is again a fun
tion; spe
i�
ally, in this 
ase the solver is a Booleanfun
tion, whi
h is supposed to indi
ate membership in a predetermined set.De�nition 1.2 (solving a de
ision problem): Let S � f0; 1g�. A fun
tion f :f0; 1g� ! f0; 1g solves the de
ision problem of S (or de
ides membership in S) if forevery x it holds that f(x) = 1 if and only if x 2 S.



6 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSWe often identify the de
ision problem of S with S itself, and identify S withits 
hara
teristi
 fun
tion (i.e., with the fun
tion �S : f0; 1g� ! f0; 1g de�nedsu
h that �S(x) = 1 if and only if x 2 S). Note that the fun
tion that solves ade
ision problem is uniquely determined by the de
ision problem (i.e., it equals the
hara
teristi
 fun
tion of the 
orresponding set).We note that if f solves the sear
h problem of R, then the Boolean fun
tionf 0 : f0; 1g� ! f0; 1g de�ned by f 0(x) def= 1 if and only if f(x) 6= ? solves thede
ision problem of fx : R(x) 6= ;g.Re
e
tion: Most people would 
onsider sear
h problems to be more natural thande
ision problems: typi
ally, people seeks solutions more often than they stop towonder whether or not solutions exist. De�nitely, sear
h problems are not lessimportant than de
ision problems, it is merely that their study tends to requiremore 
umbersome formulations. This is the main reason that most expositions
hoose to fo
us on de
ision problems. The 
urrent book attempts to devote atleast a signi�
ant amount of attention also to sear
h problems.1.2.3 Promise Problems (an advan
ed 
omment)Many natural sear
h and de
ision problems are 
aptured more naturally by theterminology of promise problems, in whi
h the domain of possible instan
es is asubset of f0; 1g� rather than f0; 1g� itself. In parti
ular, note that the naturalformulation of many sear
h and de
ision problems refers to instan
es of a 
ertaintype (e.g., a system of equations, a pair of numbers, a graph), whereas the naturalrepresentation of these obje
ts uses only a stri
t subset of f0; 1g�. For the timebeing, we ignore this issue, but we shall re-visit it in Se
tion 5.1. Here we just notethat, in typi
al 
ases, the issue 
an be ignored by postulating that every stringrepresents some legitimate obje
t (e.g., ea
h string that is not used in the naturalrepresentation of these obje
ts is postulated to be a representation of some �xedobje
t).11.3 Uniform Models (Algorithms)We �nally rea
h the heart of the 
urrent 
hapter, whi
h is the de�nition of (uniform)models of 
omputation. Before presenting su
h models, let us brie
y motivate theneed for their formal de�nitions.Indeed, we are all familiar with 
omputers and with the ability of 
omputerprograms to manipulate data. But this familiarity is rooted in positive experien
e;that is, we have some experien
e regarding some things that 
omputers 
an do. In
ontrast, 
omplexity theory is fo
used at what 
omputers 
annot do, or rather withdrawing the line between what 
an be done and what 
annot be done. Drawingsu
h a line requires a pre
ise formulation of all possible 
omputational pro
esses;1For example, when representing graphs, we may postulate that ea
h string that is not usedin the natural representation of graphs is in fa
t a representation of the 1-vertex graph.



1.3. UNIFORM MODELS (ALGORITHMS) 7that is, we should have a 
lear de�nition of all possible 
omputational pro
esses(rather than some familiarity with some 
omputational pro
esses).Organization of Se
tion 1.3. We start, in Se
tion 1.3.1, with a general andabstra
t dis
ussion of the notion of 
omputation. Next, in Se
tion 1.3.2, we providea high-level des
ription of the model of Turing ma
hines. This is done merely forsake of providing a 
on
rete model that supports the study of 
omputation and its
omplexity, whereas the material in this book will not depend on the spe
i�
s of thismodel. In Se
tion 1.3.3 and Se
tion 1.3.4 we dis
uss two fundamental propertiesof any reasonable model of 
omputation: the existen
e of un
omputable fun
tionsand the existen
e of universal 
omputations. The time (and spa
e) 
omplexityof 
omputation is de�ned in Se
tion 1.3.5. We also dis
uss ora
le ma
hines andrestri
ted models of 
omputation (in Se
tion 1.3.6 and Se
tion 1.3.7, respe
tively).1.3.1 Overview and General Prin
iplesBefore being formal, let we o�er a general and abstra
t des
ription of the notionof 
omputation. This des
ription applies both to arti�
ial pro
esses (taking pla
ein 
omputers) and to pro
esses that are aimed at modeling the evolution of thenatural reality (be it physi
al, biologi
al, or even so
ial).A 
omputation is a pro
ess that modi�es an environment via repeated appli
a-tions of a predetermined rule. The key restri
tion is that this rule is simple: in ea
happli
ation it depends and a�e
ts only a (small) portion of the environment, 
alledthe a
tive zone. We 
ontrast the a-priori bounded size of the a
tive zone (and ofthe modi�
ation rule) with the a-priori unbounded size of the entire environment.We note that, although ea
h appli
ation of the rule has a very limited e�e
t, thee�e
t of many appli
ations of the rule may be very 
omplex. Put in other words, a
omputation may modify the relevant environment in a very 
omplex way, althoughit is merely a pro
ess of repeatedly applying a simple rule.As hinted, the notion of 
omputation 
an be used to model the \me
hani
al"aspe
ts of the natural reality; that is, the rules that determine the evolution ofthe reality (rather than the spe
i�
 state of the reality at a spe
i�
 time). In this
ase, the starting point of the study is the a
tual evolution pro
ess that takes pla
ein the natural reality, and the goal of the study is �nding the (
omputation) rulethat underlies this natural pro
ess. In a sense, the goal of s
ien
e at large 
an bephrased as �nding (simple) rules that govern various aspe
ts of reality (or ratherone's abstra
tion of these aspe
ts of reality).Our fo
us, however, is on arti�
ial 
omputation rules designed by humans inorder to a
hieve spe
i�
 desired e�e
ts on a 
orresponding arti�
ial environment.Thus, our starting point is a desired fun
tionality, and our aim is to design 
ompu-tation rules that e�e
t it. Su
h a 
omputation rule is referred to as an algorithm.Loosely speaking, an algorithm 
orresponds to a 
omputer program written in ahigh-level (abstra
t) programming language. Let us elaborate.We are interested in the transformation of the environment as e�e
ted by the
omputational pro
ess (or the algorithm). Throughout (almost all of) this book, we



8 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSwill assume that, when invoked on any �nite initial environment, the 
omputationhalts after a �nite number of steps. Typi
ally, the initial environment to whi
hthe 
omputation is applied en
odes an input string, and the end environment (i.e.,at termination of the 
omputation) en
odes an output string. We 
onsider themapping from inputs to outputs indu
ed by the 
omputation; that is, for ea
hpossible input x, we 
onsider the output y obtained at the end of a 
omputationinitiated with input x, and say that the 
omputation maps input x to output y.Thus, a 
omputation rule (or an algorithm) determines a fun
tion (
omputed byit): this fun
tion is exa
tly the aforementioned mapping of inputs to outputs.In the rest of this book (i.e., outside the 
urrent 
hapter), we will also 
onsiderthe number of steps (i.e., appli
ations of the rule) taken by the 
omputation onea
h possible input. The latter fun
tion is 
alled the time 
omplexity of the 
om-putational pro
ess (or algorithm). While time 
omplexity is de�ned per input, wewill often 
onsiders it per input length, taking the maximum over all inputs of thesame length.In order to de�ne 
omputation (and 
omputation time) rigorously, one needsto spe
ify some model of 
omputation; that is, provide a 
on
rete de�nition ofenvironments and a 
lass of rules that may be applied to them. Su
h a model
orresponds to an abstra
tion of a real 
omputer (be it a PC, mainframe or net-work of 
omputers). One simple abstra
t model that is 
ommonly used is thatof Turing ma
hines (see Se
tion 1.3.2). Thus, spe
i�
 algorithms are typi
allyformalized by 
orresponding Turing ma
hines (and their time 
omplexity is repre-sented by the time 
omplexity of the 
orresponding Turing ma
hines). We stress,however, that almost all results in the Theory of Computation hold regardless ofthe spe
i�
 
omputational model used, as long as it is \reasonable" (i.e., satis�esthe aforementioned simpli
ity 
ondition and 
an perform some apparently simple
omputations).What is being 
omputed? The foregoing dis
ussion has impli
itly referredto algorithms (i.e., 
omputational pro
esses) as means of 
omputing fun
tions.Spe
i�
ally, an algorithm A 
omputes the fun
tion fA : f0; 1g� ! f0; 1g� [ f?gde�ned by fA(x) = y if, when invoked on input x, algorithm A halts with outputy. However, algorithms 
an also serve as means of \solving sear
h problems" or\making de
isions" (as in De�nitions 1.1 and 1.2). Spe
i�
ally, we will say thatalgorithm A solves the sear
h problem of R (resp., de
ides membership in S) if fAsolves the sear
h problem of R (resp., de
ides membership in S). In the rest of thisexposition we asso
iate the algorithm A with the fun
tion fA 
omputed by it; thatis, we write A(x) instead of fA(x). For sake of future referen
e, we summarize theforegoing dis
ussion in a de�nition.De�nition 1.3 (algorithms as problem-solvers): We denote by A(x) the outputof algorithm A on input x. Algorithm A solves the sear
h problem R (resp., thede
ision problem S) if A, viewed as a fun
tion, solves R (resp., S).
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rete Model: Turing Ma
hinesThe model of Turing ma
hines o�er a relatively simple formulation of the notionof an algorithm. The fa
t that the model is very simple 
ompli
ates the design ofma
hines that solve problems of interest, but makes the analysis of su
h ma
hinessimpler. Sin
e the fo
us of 
omplexity theory is on the analysis of ma
hines and noton their design, the trade-o� o�ers by this model is suitable for our purposes. Westress again that the model is merely used as a 
on
rete formulation of the intuitivenotion of an algorithm, whereas we a
tually 
are about the intuitive notion andnot about its formulation. In parti
ular, all results mentioned in this book hold forany other \reasonable" formulation of the notion of an algorithm.The model of Turing ma
hines is not meant to provide an a

urate (or \tight")model of real-life 
omputers, but rather to 
apture their inherent limitations andabilities (i.e., a 
omputational task 
an be solved by a real-life 
omputer if and onlyif it 
an be solved by a Turing ma
hine). In 
omparison to real-life 
omputers, themodel of Turing ma
hines is extremely over-simpli�ed and abstra
t away manyissues that are of great 
on
ern to 
omputer pra
ti
e. However, these issues areirrelevant to the higher-level questions addressed by 
omplexity theory. Indeed, asusual, good pra
ti
e requires more re�ned understanding than the one provided bya good theory, but one should �rst provide the latter.Histori
ally, the model of Turing ma
hines was invented before modern 
om-puters were even built, and was meant to provide a 
on
rete model of 
omputationand a de�nition of 
omputable fun
tions.2 Indeed, this 
on
rete model 
lari�edfundamental properties of 
omputable fun
tions and plays a key role in de�ningthe 
omplexity of 
omputable fun
tions.The model of Turing ma
hines was envisioned as an abstra
tion of the pro
essof an algebrai
 
omputation 
arried out by a human using a sheet of paper. Insu
h a pro
ess, at ea
h time, the human looks at some lo
ation on the paper, anddepending on what he/she sees and what he/she has in mind (whi
h is little...),he/she modi�es the 
ontents of this lo
ation and shifts his/her look to an adja
entlo
ation.1.3.2.1 The a
tual modelFollowing is a high-level des
ription of the model of Turing ma
hines. While thisdes
ription should suÆ
e for our purposes, more detailed (low-level) des
riptions
an be found in numerous textbooks (e.g., [28℄). Re
all that, in order to des
ribe a
omputational model, we need to spe
ify the set of possible environments, the setof ma
hines (or 
omputation rules), and the e�e
t of applying su
h a rule on anenvironment.The environment. The main 
omponent in the environment of a Turing ma-
hine is an in�nite sequen
e of 
ells, ea
h 
apable of holding a single symbol (i.e.,2In 
ontrast, the abstra
t de�nition of \re
ursive fun
tions" yields a 
lass of \
omputable"fun
tions without referring to any model of 
omputation (but rather based on the intuition thatany su
h model should support re
ursive fun
tional 
omposition).



10 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSmember of a �nite set � � f0; 1g). This sequen
e is envisioned as starting at aleft-most 
ell, and extending in�nitely to the right (
f., Figure 1.1). In addition,the environment 
ontains the 
urrent lo
ation of the ma
hine on this sequen
e, andthe internal state of the ma
hine (whi
h is a member of a �nite set Q). The afore-mentioned sequen
e of 
ells is 
alled the tape, and its 
ontents 
ombined with thema
hine's lo
ation and its internal state is 
alled the instantaneous 
on�guration ofthe ma
hine.
3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -Figure 1.1: A single step by a Turing ma
hine.The ma
hine itself (i.e., the 
omputation rule). The main 
omponent inthe Turing ma
hine itself is a �nite rule (i.e., a �nite fun
tion), 
alled the transitionfun
tion, whi
h is de�ned over the set of all possible symbol-state pairs. Spe
i�
ally,the transition fun
tion is a mapping from � � Q to � � Q � f�1; 0;+1g, wheref�1;+1; 0g 
orrespond to a movement instru
tion (whi
h is either \left" or \right"or \stay", respe
tively). In addition, the ma
hine's des
ription spe
i�es an initialstate and a halting state, and the 
omputation of the ma
hine halts when thema
hine enters its halting state. (Envisioning the tape as in Figure 1.1, we use the
onvention by whi
h if the ma
hine ever tries to move left of the end of the tapethen it is 
onsidered to have halted.)We stress that, in 
ontrast to the �nite des
ription of the ma
hine, the tape hasan a priori unbounded length (and is 
onsidered, for simpli
ity, as being in�nite).A single appli
ation of the 
omputation rule. A single 
omputation step ofsu
h a Turing ma
hine depends on its 
urrent lo
ation on the tape, on the 
ontentsof the 
orresponding 
ell, and on the internal state of the ma
hine. Based on thelatter two elements, the transition fun
tion determines a new symbol-state pair aswell as a movement instru
tion (i.e., \left" or \right" or \stay"). The ma
hinemodi�es the 
ontents of the said 
ell and its internal state a

ordingly, and movesas dire
ted. That is, suppose that the ma
hine is in state q and resides in a 
ell
ontaining the symbol �, and suppose that the transition fun
tion maps (�; q) to(�0; q0; D). Then, the ma
hine modi�es the 
ontents of the said 
ell to �0, modi�esits internal state to q0, and moves one 
ell in dire
tion D. Figure 1.1 shows a
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hine that, when in state `b' and seeing a binary symbol�, repla
es � with the symbol � + 2, maintains its internal state, and moves oneposition to the right.3Formally, we de�ne the su

essive 
on�guration fun
tion whi
h maps ea
h in-stantaneous 
on�guration to the one resulting by letting the ma
hine take a singlestep. This fun
tion modi�es its argument in a very minor manner, as des
ribedin the foregoing paragraph; that is, the 
ontents of at most one 
ell (i.e., at whi
hthe ma
hine 
urrently resides) is 
hanged, and in addition the internal state of thema
hine and its lo
ation may 
hange too.(Providing a 
on
rete representation of the su

essive 
on�guration fun
tionrequires providing a 
on
rete representation of instantaneous 
on�gurations. Forexample, we may represent ea
h instantaneous 
on�guration of a ma
hine withsymbol set � and states set Q as a triple (�; q; i), where � 2 ��, q 2 Q andi 2 f1; 2; :::; j�jg. Let T : ��Q! ��Q�f�1; 0;+1g be the transition fun
tion ofthe ma
hine. Then, essentially, the su

essive 
on�guration fun
tion maps (�; q; i)to (�0; q0; i + d) if and only if T (�i; q) = (�0i; q0; d) and �0j = �j for every j 6= i,where �j (resp., �0j) denotes the jth symbol of � (resp., �0).)4Initial and �nal environments. The initial environment (or 
on�guration) ofa Turing ma
hine 
onsists of the ma
hine residing in the �rst (i.e., left-most) 
elland being in its initial state. Typi
ally, one also mandates that, in the initial 
on-�guration, a pre�x of the tape's 
ells hold bit values, whi
h 
on
atenated togetherare 
onsidered the input, and the rest of the tape's 
ells hold a spe
ial (\blank")symbol (whi
h in Figure 1.1 is denoted by `-'). Thus, the initial 
on�guration ofa Turing ma
hine has a �nite (expli
it) des
ription. On
e the ma
hine halts, theoutput is de�ned as the 
ontents of the 
ells that are to the left of its lo
ation(at termination time).5 Thus, ea
h ma
hine de�nes a (possibly partial) fun
tionmapping inputs to outputs, 
alled the fun
tion 
omputed by the ma
hine. That is,the fun
tion 
omputed by ma
hine M maps x to y if, when invoked on input x,ma
hine M halts with output y, and is unde�ned on x if ma
hine M does halt oninput x.As stated up-front, the Turing ma
hine model is not meant to provide an a

u-rate (or \tight") model of real-life 
omputers, but rather to 
apture their inherentlimitations and abilities. Thus, it is important to verify that the Turing ma
hinemodel is exa
tly as powerful as a model that is 
loser to a real-life 
omputer (see3Figure 1.1 
orresponds to a ma
hine that, when in the initial state (i.e., `a'), repla
es thesymbol � by �+4, modi�es its internal state to `b', and moves one position to the right. Indeed,\marking" the leftmost 
ell (in order to allow for re
ognizing it in the future), is a 
ommonpra
ti
e in the design of Turing ma
hines.4This des
ription avoids a few pathologi
al 
ases. One su
h 
ase is the 
ase that i = 1 andd = �1, whi
h 
auses the ma
hine to halt (rather than move left of the left boundary of thetape). Another 
ase refers to i = j�j and d = +1, where we extend �0 by a blank symbol `-' (i.e.,j�0j = j�j+ 1 and �0j�j+1 = -).5By an alternative 
onvention, the ma
hine must halt when residing in the left-most 
ell, andthe output is de�ned as the maximal pre�x of the tape 
ontents that 
ontains only bit values. Insu
h a 
ase, the spe
ial non-Boolean output ? is indi
ated by the ma
hine's state (and indeed inthis 
ase the set of states, Q, 
ontains several halting states).



12 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSthe \sanity 
he
k" in x1.3.2.2); that is, a fun
tion 
an be 
omputed by a Turingma
hine if and only if it is 
omputable by a ma
hine of the latter model. Forstarters, one may prove that a fun
tion 
an be 
omputed by a single-tape Turingma
hine if and only if it is 
omputable by a multi-tape (e.g., two-tape) Turingma
hine (as de�ned next); see Exer
ise 1.3.Multi-tape Turing ma
hines. We 
omment that in most expositions, onerefers to the lo
ation of the \head of the ma
hine" on the tape (rather than tothe \lo
ation of the ma
hine on the tape"). The standard terminology is moreintuitive when extending the basi
 model, whi
h refers to a single tape, to a modelthat supports a 
onstant number of tapes. In the 
orresponding model of so-
alledmulti-tape ma
hines, the ma
hine maintains a single head on ea
h su
h tape, andea
h step of the ma
hine depends and e�e
ts the 
ells that are at the ma
hine'shead lo
ation on ea
h tape. The input is given on one designated tape, and theoutput is required to appear on some other designated tape. As we shall see inSe
tion 1.3.5, the extension of the model to multi-tape Turing ma
hines is 
ru
ialto the de�nition of spa
e 
omplexity. A less fundamental advantage of the modelof multi-tape Turing ma
hines is that it fa
ilitates the design of ma
hines that
ompute fun
tions of interest.1.3.2.2 The Chur
h-Turing ThesisThe entire point of the model of Turing ma
hines is its simpli
ity. That is, in
omparison to more \realisti
" models of 
omputation, it is simpler to formu-late the model of Turing ma
hines and to analyze ma
hines in this model. TheChur
h-Turing Thesis asserts that nothing is lost by 
onsidering the Turing ma-
hine model: A fun
tion 
an be 
omputed by some Turing ma
hine if and only ifit 
an be 
omputed by some ma
hine of any other \reasonable and general" modelof 
omputation.This is a thesis, rather than a theorem, be
ause it refers to an intuitive notion(i.e., the notion of a reasonable and general model of 
omputation) that is left unde-�ned on purpose. The model should be reasonable in the sense that it should allowonly 
omputation rules that are \simple" in some intuitive sense. For example,we should be able to envision a me
hani
al implementation of these 
omputationrules. On the other hand, the model should allow to 
ompute \simple" fun
tionsthat are de�nitely 
omputable a

ording to our intuition. At the very least themodel should allow to emulate Turing ma
hines (i.e., 
ompute the fun
tion that,given a des
ription of a Turing ma
hine and an instantaneous 
on�guration, returnsthe su

essive 
on�guration).A philosophi
al 
omment. The fa
t that a thesis is used to link an intuitive
on
ept to a formal de�nition is 
ommon pra
ti
e in any s
ien
e (or, more broadly,in any attempt to reason rigorously about intuitive 
on
epts). Any attempt torigorously de�ne an intuitive 
on
ept yields a formal de�nition that ne
essarilydi�ers from the original intuition, and the question of 
orresponden
e between thesetwo obje
ts arises. This question 
an never be rigorously treated, be
ause one of
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ts that it relates to is unde�ned. That is, the question of 
orresponden
ebetween the intuition and the de�nition always trans
ends a rigorous treatment(i.e., it always belongs to the domain of the intuition).A sanity 
he
k: Turing ma
hines 
an emulate an abstra
t RAM. To gain
on�den
e in the Chur
h-Turing Thesis, one may attempt to de�ne an abstra
tRandom-A

ess Ma
hine (RAM), and verify that it 
an be emulated by a Turingma
hine. An abstra
t RAM 
onsists of an in�nite number of memory 
ells, ea
h
apable of holding an integer, a �nite number of similar registers, one designatedas program 
ounter, and a program 
onsisting of instru
tions sele
ted from a �niteset. The set of possible instru
tions in
ludes the following instru
tions:� reset(r), where r is an index of a register, results in setting the value ofregister r to zero.� in
(r), where r is an index of a register, results in in
rementing the 
ontentof register r. Similarly de
(r) 
auses a de
rement.� load(r1; r2), where r1 and r2 are indi
es of registers, results in loading toregister r1 the 
ontents of the memory lo
ation m, where m is the 
urrent
ontents of register r2.� store(r1; r2), stores the 
ontents of register r1 in the memory, analogouslyto load.� 
ond-goto(r; `), where r is an index of a register and ` does not ex
eed theprogram length, results in setting the program 
ounter to `� 1 if the 
ontentof register r is non-negative.The program 
ounter is in
remented after the exe
ution of ea
h instru
tion, andthe next instru
tion to be exe
uted by the ma
hine is the one to whi
h the program
ounter points (and the ma
hine halts if the program 
ounter ex
eeds the program'slength). The input to the ma
hine may be de�ned as the 
ontents of the �rst nmemory 
ells, where n is pla
ed in a spe
ial input register, and all other memory
ells are assumed to be empty (i.e., 
ontain blanks).We note that the abstra
t RAM model (as de�ned above) is as powerful asthe Turing ma
hine model (see the following details). However, in order to makethe RAM model 
loser to real-life 
omputers, we may augment it with additionalinstru
tions that are available on real-life 
omputers like the instru
tion add(r1; r2)(resp., mult(r1; r2)) that results in adding (resp., multiplying) the 
ontents of reg-isters r1 and r2 (and pla
ing the result in register r1). We suggest proving thatthis abstra
t RAM 
an be emulated by a Turing ma
hine: see Exer
ise 1.5. Weemphasize this dire
tion of the equivalen
e of the two models, be
ause the RAMmodel is introdu
ed in order to 
onvin
e the reader that Turing ma
hines are nottoo weak (as a model of general 
omputation). The fa
t that they are not toostrong seems self-evident. Thus, it seems pointless to prove that the RAM model
an emulate Turing ma
hines. (Still, note that this is indeed the 
ase, by usingthe RAM's memory 
ells to store the 
ontents of the 
ells of the Turing ma
hine'stape, and holding its head lo
ation in a spe
ial register.)
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e
tions: Observe that the abstra
t RAM model is signi�
antly more 
um-bersome than the Turing ma
hine model. Furthermore, seeking a sound 
hoi
eof the instru
tion set (i.e., the instru
tions to be allowed in the model) 
reatesa vi
ious 
y
le (be
ause the sound guideline for su
h a 
hoi
e should have beenallowing only instru
tions that 
orrespond to \simple" operations, whereas the lat-ter 
orrespond to easily 
omputable fun
tions...). This vi
ious 
y
le was avoided inthe foregoing paragraph by trusting the reader to in
lude only instru
tions that areavailable in some real-life 
omputer. (We 
omment that this empiri
al 
onsidera-tion is justi�able in the 
urrent 
ontext, be
ause our 
urrent goal is merely linkingthe Turing ma
hine model with the reader's experien
e of real-life 
omputers.)1.3.3 Un
omputable Fun
tionsStri
tly speaking, the 
urrent subse
tion is not ne
essary for the rest of this book,but we feel that it provides a useful perspe
tive.1.3.3.1 On the existen
e of un
omputable fun
tionsIn 
ontrast to what every layman would think, we know that not all fun
tions are
omputable. Indeed, an important message to be 
ommuni
ated to the world isthat not every well-de�ned task 
an be solved by applying a \reasonable" automatedpro
edure (i.e., a pro
edure that has a simple des
ription that 
an be applied toany instan
e of the problem at hand). Furthermore, not only is it the 
ase thatthere exist un
omputable fun
tions, but it is rather the 
ase that most fun
tionsare un
omputable. In fa
t, only relatively few fun
tions are 
omputable.Theorem 1.4 (on the s
ar
ity of 
omputable fun
tions): The set of 
omputablefun
tions is 
ountable, whereas the set of all fun
tions (from strings to string) has
ardinality �.We stress that the theorem holds for any reasonable model of 
omputation. Infa
t, it only relies on the postulate that ea
h ma
hine in the model has a �nitedes
ription (i.e., 
an be des
ribed by a string).Proof: Sin
e ea
h 
omputable fun
tion is 
omputable by a ma
hine that hasa �nite des
ription, there is a 1-1 mapping of 
omputable fun
tions to strings(whereas the set of all strings is in 1-1 
orresponden
e to the natural numbers). Onthe other hand, there is a 1-1 
orresponden
e between the set of Boolean fun
tions(i.e., fun
tions from strings to a single bit) and the set of real number in [0; 1).This 
orresponden
e asso
iates ea
h real r 2 [0; 1) to the fun
tion f : N ! f0; 1gsu
h that f(i) is the ith bit in the in�nite binary expansion of r.1.3.3.2 The Halting ProblemIn 
ontrast to the dis
ussion in Se
tion 1.3.1, at this point we 
onsider also ma
hinesthat may not halt on some inputs. The fun
tions 
omputed by su
h ma
hines arepartial fun
tions that are de�ned only on inputs on whi
h the ma
hine halts. Again,



1.3. UNIFORM MODELS (ALGORITHMS) 15we rely on the postulate that ea
h ma
hine in the model has a �nite des
ription,and denote the des
ription of ma
hine M by hMi 2 f0; 1g�. The halting fun
tion,h : f0; 1g� � f0; 1g� ! f0; 1g, is de�ned su
h that h(hMi; x) def= 1 if and only if Mhalts on input x. The following result goes beyond Theorem 1.4 by pointing to anexpli
it fun
tion (of natural interest) that is not 
omputable.Theorem 1.5 (unde
idability of the halting problem): The halting fun
tion is not
omputable.The term unde
idability means that the 
orresponding de
ision problem 
annot besolved by an algorithm. That is, Theorem 1.5 asserts that the de
ision problemasso
iated with the set h�1(1) = f(hMi; x) : h(hMi; x) = 1g is not solvable byan algorithm (i.e., there exists no algorithm that, given a pair (hMi; x), de
ideswhether or notM halts on input x). A
tually, the following proof shows that thereexists no algorithm that, given hMi, de
ides whether or not M halts on inputhMi. The 
on
eptual signi�
an
e of Theorem 1.5 is dis
ussed in x1.3.3.3 (followingTheorem 1.6).Proof: We will show that even the restri
tion of h to its \diagonal" (i.e., the fun
-tion d(hMi) def= h(hMi; hMi)) is not 
omputable. Note that the value of d(hMi)refers to the question of what happens when we feed M with its own des
ription,whi
h is indeed a \nasty" (but legitimate) thing to do. We will a
tually do some-thing \worse": towards the 
ontradi
tion, we will 
onsider the value of d whenevaluated at a (ma
hine that is related to a) hypotheti
al ma
hine that supposedly
omputes d.We start by 
onsidering a related fun
tion, d0, and showing that this fun
tionis un
omputable. The fun
tion d0 is de�ned on purpose so to foil any attempt to
ompute it; that is, for every ma
hine M , the value d0(hMi) is de�ned to di�erfrom M(hMi). Spe
i�
ally, the fun
tion d0 : f0; 1g� ! f0; 1g is de�ned su
hthat d0(hMi) def= 1 if and only if M halts on input hMi with output 0. That is,d0(hMi) = 0 if either M does not halt on input hMi or its output does not equalthe value 0. Now, suppose, towards the 
ontradi
tion, that d0 is 
omputable bysome ma
hine, denoted Md0 . Note that ma
hine Md0 is supposed to halt on everyinput, and so Md0 halts on input hMd0i. But, by de�nition of d0, it holds thatd0(hMd0i) = 1 if and only if Md0 halts on input hMd0i with output 0 (i.e., if andonly if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in 
ontradi
tion to thehypothesis that Md0 
omputes d0.We next prove that d is un
omputable, and thus h is un
omputable (be
aused(z) = h(z; z) for every z). To prove that d is un
omputable, we show that if dis 
omputable then so is d0 (whi
h we already know not to be the 
ase). Indeed,suppose towards the 
ontradi
tion that A is an algorithm for 
omputing d (i.e.,A(hMi) = d(hMi) for every ma
hine M). Then, we 
onstru
t an algorithm for
omputing d0, whi
h given hM 0i, invokes A on hM 00i, where M 00 is de�ned tooperate as follows:1. On input x, ma
hine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.



16 CHAPTER 1. COMPUTATIONAL TASKS AND MODELS3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters anin�nite loop (and thus does not halt).Otherwise (i.e., M 0 does not halt on input x), then ma
hine M 00 does nothalt (be
ause it just stays stu
k in Step 1 forever).Note that the mapping from hM 0i to hM 00i is easily 
omputable (by augmentingM 0 with instru
tions to test its output and enter an in�nite loop if ne
essary), andthat d(hM 00i) = d0(hM 0i), be
auseM 00 halts on x if and only ifM 00 halts on x withoutput 0. We thus derived an algorithm for 
omputing d0 (i.e., transform the inputhM 0i into hM 00i and output A(hM 00i)), whi
h 
ontradi
ts the already establishedfa
t by whi
h d0 is un
omputable.Digest. The 
ore of the se
ond part of the proof of Theorem 1.5 is an algorithmthat solves one problem (i.e., 
omputes d0) by using as a subroutine an algorithmthat solves another problem (i.e., 
omputes d (or h)). In fa
t, the �rst algorithm isa
tually an algorithmi
 s
heme that refers to a \fun
tionally spe
i�ed" subroutinerather than to an a
tual (implementation of su
h a) subroutine, whi
h may notexist. Su
h an algorithmi
 s
heme is 
alled a Turing-redu
tion (see formulationin Se
tion 1.3.6). Hen
e, we have Turing-redu
ed the 
omputation of d0 to the
omputation of d, whi
h in turn Turing-redu
es to h. The \natural" (\positive")meaning of a Turing-redu
tion of f 0 to f is that, when given an algorithm for
omputing f , we obtain an algorithm for 
omputing f 0. In 
ontrast, the proof ofTheorem 1.5 uses the \unnatural" (\negative") 
ounter-positive: if (as we know)there exists no algorithm for 
omputing f 0 = d0 then there exists no algorithm for
omputing f = d (whi
h is what we wanted to prove). Jumping ahead, we mentionthat resour
e-bounded Turing-redu
tions (e.g., polynomial-time redu
tions) play a
entral role in 
omplexity theory itself, and again they are used mostly in a \nega-tive" way. We will de�ne su
h redu
tions and extensively use them in subsequent
hapters.1.3.3.3 A few more unde
idability resultsWe brie
y review a few appealing results regarding unde
idable problems.Ri
e's Theorem. The unde
idability of the halting problem (or rather the fa
tthat the fun
tion d is un
omputable) is a spe
ial 
ase of a more general phe-nomenon: Every non-trivial de
ision problem regarding the fun
tion 
omputed bya given Turing ma
hine has no algorithmi
 solution. We state this fa
t next, 
lar-ifying the de�nition of the aforementioned 
lass of problems. (Again, we refer toTuring ma
hines that may not halt on all inputs.)Theorem 1.6 (Ri
e's Theorem): Let F be any non-trivial subset6 of the set of all
omputable partial fun
tions, and let SF be the set of strings that des
ribe ma
hines6The set S is 
alled a non-trivial subset of U if both S and U n S are non-empty. Clearly, if Fis a trivial set of 
omputable fun
tions then the 
orresponding de
ision problem 
an be solved bya \trivial" algorithm that outputs the 
orresponding 
onstant bit.
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ompute fun
tions in F . Then de
iding membership in SF 
annot be solved byan algorithm.Theorem 1.6 
an be proved by a Turing-redu
tion from d. We do not provide aproof be
ause this is too remote from the main subje
t matter of the book. (Still,the interested reader is referred to Exer
ise 1.6.)We stress that Theorems 1.5 and 1.6 hold for any reasonable model of 
ompu-tation (referring both to the potential solvers and to the ma
hines the des
riptionof whi
h is given as input to these solvers). Thus, Theorem 1.6 means that noalgorithm 
an determine any non-trivial property of the fun
tion 
omputed by agiven 
omputer program (written in any programming language). For example, noalgorithm 
an determine whether or not a given 
omputer program halts on ea
hpossible input. The relevan
e of this assertion to the proje
t of program veri�
ationis obvious. See further dis
ussion of this issue at the end of Se
tion 4.2.The Post Corresponden
e Problem. We mention that unde
idability arisesalso outside of the domain of questions regarding 
omputing devi
es (given asinput). Spe
i�
ally, we 
onsider the Post Corresponden
e Problem in whi
h the input
onsists of two sequen
es of (non-empty) strings, (�1; :::; �k) and (�1; :::; �k), andthe question is whether or not there exists a sequen
e of indi
es i1; :::; i` 2 f1; :::; kgsu
h that �i1 � � ��i` = �i1 � � ��i` . (We stress that the length of this sequen
e is nota priori bounded.)7Theorem 1.7 The Post Corresponden
e Problem is unde
idable.Again, the omitted proof is by a Turing-redu
tion from d (or h), and the interestedreader is referred to Exer
ise 1.8.1.3.4 Universal AlgorithmsSo far we have used the postulate that, in any reasonable model of 
omputation,ea
h ma
hine (or 
omputation rule) has a �nite des
ription. Furthermore, in theproof of Theorem 1.5, we also used the postulate that su
h a model allows for easymodi�
ation of a des
ription of a ma
hine that 
omputes a fun
tion into a des
rip-tion of a ma
hine that 
omputes a 
losely related fun
tion. Here, we go one stepfurther and postulate that the des
ription of ma
hines (in this model) is \e�e
tive"in the following natural sense: there exists an algorithm that, given a des
riptionof a ma
hine (resp., 
omputation rule) and a 
orresponding environment, deter-mines the environment that results from performing a single step of this ma
hineon this environment (resp., the e�e
t of a single appli
ation of the 
omputationrule).8 This algorithm 
an, in turn, be implemented in the said model of 
ompu-tation (assuming this model is general; see the Chur
h-Turing Thesis). Su

essiveappli
ations of this algorithm leads to the notion of a universal ma
hine, whi
h (for
on
reteness) is formulated next in terms of Turing ma
hines.7In 
ontrast, the existen
e of an adequate sequen
e of a spe
i�ed length 
an be determined intime that is exponential in this length.8For details, see Exer
ise 1.9.
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hines): A universal Turing ma
hine is a Turing ma-
hine that on input a des
ription of a ma
hine M and an input x returns the valueof M(x) if M halts on x and otherwise does not halt.That is, a universal Turing ma
hine 
omputes the partial fun
tion u that is de-�ned on pairs (hMi; x) su
h that M halts on input x, in whi
h 
ase it holds thatu(hMi; x) = M(x). That is, u(hMi; x) = M(x) if M halts on input x, and u isunde�ned on (hMi; x) otherwise. We note that if M halts on all possible inputsthen u(hMi; x) is de�ned for every x.1.3.4.1 The existen
e of universal algorithmsWe stress that the mere fa
t that we have de�ned something (i.e., a universal Turingma
hine) does not mean that it exists. Yet, as hinted in the foregoing dis
ussionand obvious to anyone who has written a 
omputer program (and thought aboutwhat he/she was doing), universal Turing ma
hines do exist.Theorem 1.9 There exists a universal Turing ma
hine.Theorem 1.9 asserts that the partial fun
tion u is 
omputable. In 
ontrast, it 
anbe shown that any extension of u to a total fun
tion is un
omputable. That is, forany total fun
tion û that agrees with the partial fun
tion u on all the inputs onwhi
h the latter is de�ned, it holds that û is un
omputable (see Exer
ise 1.10).Proof: Given a pair (hMi; x), we just emulate the 
omputation of ma
hine Mon input x. This emulation is straightforward, be
ause (by the e�e
tiveness of thedes
ription ofM) we 
an iteratively determine the next instantaneous 
on�gurationof the 
omputation of M on input x. If the said 
omputation halts, then we willobtain its output and 
an output it (and so, on input (hMi; x), our algorithmreturns M(x)). Otherwise, we turn out emulating an in�nite 
omputation, whi
hmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoingemulation pro
edure 
onstitutes a universal ma
hine (i.e., yields an algorithm for
omputing u).As hinted already, the existen
e of universal ma
hines is the fundamental fa
tunderlying the paradigm of general-purpose 
omputers. Indeed, a spe
i�
 Turingma
hine (or algorithm) is a devi
e that solves a spe
i�
 problem. A priori, solvingea
h problem would have required building a new physi
al devi
e that allows forthis problem to be solved in the physi
al world (rather than as a thought experi-ment). The existen
e of a universal ma
hine asserts that it is enough to build onephysi
al devi
e; that is, a general purpose 
omputer. Any spe
i�
 problem 
anthen be solved by writing a 
orresponding program to be exe
uted (or emulated)by the general-purpose 
omputer. Thus, universal ma
hines 
orrespond to general-purpose 
omputers, and provide the philosophi
al basis for separating hardwarefrom software. Furthermore, the existen
e of universal ma
hines says that software
an be viewed as (part of the) input.In addition to their pra
ti
al importan
e, the existen
e of universal ma
hines(and their variants) has important 
onsequen
es in the theories of 
omputing and
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omputational 
omplexity. To demonstrate the point, we note that Theorem 1.6implies that many questions about the behavior of a �xed (universal) ma
hine on
ertain input types are unde
idable. For example, it follows that, for some �xedma
hines (i.e., universal ones), there is no algorithm that determines whether ornot the (�xed) ma
hine halts on a given input (see Exer
ise 1.7). Also, revisitingthe proof of Theorem 1.7 (see Exer
ise 1.8), it follows that the Post Corresponden
eProblem remains unde
idable even if the input sequen
es are restri
ted to have aspe
i�
 length (i.e., k is �xed). A more important appli
ation of universal ma
hinesto the theory of 
omputing is presented next (i.e., in x1.3.4.2).1.3.4.2 A detour: Kolmogorov ComplexityThe existen
e of universal ma
hines, whi
h may be viewed as universal languagesfor writing e�e
tive and su

in
t des
riptions of obje
ts, plays a 
entral role inKolmogorov Complexity. Loosely speaking, the latter theory is 
on
erned with thelength of (e�e
tive) des
riptions of obje
ts, and views the minimum su
h length asthe inherent \
omplexity" of the obje
t; that is, \simple" obje
ts (or phenomena)are those having short des
ription (resp., short explanation), whereas \
omplex"obje
ts have no short des
ription. Needless to say, these (e�e
tive) des
riptionshave to refer to some �xed \language" (i.e., to a �xed ma
hine that, given a su

in
tdes
ription of an obje
t, produ
es its expli
it des
ription). Fixing any ma
hineM ,a string x is 
alled a des
ription of s with respe
t toM ifM(x) = s. The 
omplexityof s with respe
t to M , denoted KM (s), is the length of the shortest des
riptionof s with respe
t to M . Certainly, we want to �x M su
h that every string has ades
ription with respe
t to M , and furthermore su
h that this des
ription is not\signi�
antly" longer than the des
ription with respe
t to a di�erent ma
hineM 0.The following theorem makes it natural to use a universal ma
hine as the \pointof referen
e" (i.e., as the aforementionedM).Theorem 1.10 (
omplexity w.r.t a universal ma
hine): Let U be a universal ma-
hine. Then, for every ma
hine M 0, there exists a 
onstant 
 su
h that KU (s) �KM 0(s) + 
 for every string s.The theorem follows by (setting 
 = O(jhM 0ij) and) observing that if x is a de-s
ription of s with respe
t to M 0 then (hM 0i; x) is a des
ription of s with respe
tto U . Here it is important to use an adequate en
oding of pairs of strings (e.g.,the pair (�1 � � ��k ; �1 � � � �`) is en
oded by the string �1�1 � � ��k�k01�1 � � � �`). Fix-ing any universal ma
hine U , we de�ne the Kolmogorov Complexity of a string s asK(s) def= KU (s). The reader may easily verify the following fa
ts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 1.10 to a ma
hine that 
omputes the identity map-ping.)2. There exist in�nitely many strings s su
h that K(s)� jsj.(Hint: 
onsider s = 1n. Alternatively, 
onsider any ma
hine M su
h thatjM(x)j � jxj for every x.)
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omplexity at least n. Furthermore, for everyn and i, jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent des
riptions with respe
t to U .)It 
an be shown that the fun
tion K is un
omputable: see Exer
ise 1.11. Theproof is related to the paradox 
aptured by the following \des
ription" of a nat-ural number: the smallest natural number that 
an not be des
ribed byan English senten
e of up-to a thousand letters. (The paradox amountsto observing that if the foregoing number is well-de�ned then we rea
h 
ontradi
-tion by noting that the foregoing senten
e uses less than one thousand letters.)Needless to say, the foregoing senten
e presupposes that any English senten
e isa legitimate des
ription in some adequate sense (e.g., in the sense 
aptured byKolmogorov Complexity). Spe
i�
ally, the foregoing senten
e presupposes that we
an determine the Kolmogorov Complexity of ea
h natural number, and thus thatwe 
an e�e
tively produ
e the smallest number that has Kolmogorov Complexityex
eeding some threshold (by relying on the fa
t that natural numbers have arbi-trary large Kolmogorov Complexity). Indeed, the paradox suggests a proof to thefa
t that the latter task 
annot be performed; that is, there exists no algorithmthat given t produ
es the lexi
ographi
ally �rst string s su
h that K(s) > t, be-
ause if su
h an algorithm A would have existed then K(s) � O(jhAij) + log t in
ontradi
tion to the de�nition of s.1.3.5 Time (and Spa
e) ComplexityFixing a model of 
omputation (e.g., Turing ma
hines) and fo
using on algorithmsthat halt on ea
h input, we 
onsider the number of steps (i.e., appli
ations ofthe 
omputation rule) taken by the algorithm on ea
h possible input. The lat-ter fun
tion is 
alled the time 
omplexity of the algorithm (or ma
hine); that is,tA : f0; 1g� ! N is 
alled the time 
omplexity of algorithm A if, for every x, oninput x algorithm A halts after exa
tly tA(x) steps.We will be mostly interested in the dependen
e of the time 
omplexity on theinput length, when taking the maximum over all inputs of the relevant length.That is, for tA as in the foregoing paragraph, we will 
onsider TA : N ! N de�nedby TA(n) def= maxx2f0;1gnftA(x)g. Abusing terminology, we sometimes refer to TAas the time 
omplexity of A.A small detour: linear speed-up and the O-notation. Many models of 
om-putation allow to speed-up 
omputation by any 
onstant fa
tor; see Exer
ise 1.13,whi
h refers to the Turing ma
hine model. This motivates ignoring 
onstant fa
torsin stating (time) 
omplexity upper bounds, and leads to an extensive usage of the
orresponding O-notation in 
omputer s
ien
e. Re
all that we say that f : N ! Nis O(g), where g : N ! N , if there exists a 
onstant 
 su
h that for every n 2 N itholds that f(n) � 
 � g(n).



1.3. UNIFORM MODELS (ALGORITHMS) 21The time 
omplexity of a problem. As stated in the prefa
e, typi
ally 
om-plexity theory is not 
on
erned with the (time) 
omplexity of a spe
i�
 algorithm.It is rather 
on
erned with the (time) 
omplexity of a problem, assuming that thisproblem is solvable at all (by some algorithm). Intuitively, the time 
omplexity ofsu
h a problem is de�ned as the time 
omplexity of the fastest algorithm that solvesthis problem (assuming that the latter term is well-de�ned).9 A
tually, we shall beinterested in upper- and lower-bounds on the (time) 
omplexity of algorithms thatsolve the problem. Thus, when we say that a 
ertain problem � has 
omplexity T ,we a
tually mean that � has 
omplexity at most T . Likewise, when we say that �requires time T , we a
tually mean that � has time-
omplexity at least T .Re
all that the foregoing dis
ussion refers to some �xed model of 
omputa-tion. Indeed, the 
omplexity of a problem � may depend on the spe
i�
 modelof 
omputation in whi
h algorithms that solve � are implemented. The followingCobham-Edmonds Thesis asserts that the variation (in the time 
omplexity) is nottoo big, and in parti
ular is irrelevant to the P-vs-NP Question (as well as to almostall of the 
urrent fo
us of 
omplexity theory).The Cobham-Edmonds Thesis. As just stated, the time 
omplexity of a prob-lem may depend on the model of 
omputation. For example, de
iding membershipin the set fxx : x 2 f0; 1g�g 
an be done in linear-time on a two-tape Turingma
hine, but requires quadrati
-time on a single-tape Turing ma
hine (see Exer-
ise 1.12). On the other hand, any problem that has time 
omplexity t in the modelof multi-tape Turing ma
hines, has 
omplexity O(t2) in the model of single-tapeTuring ma
hines (see Exer
ise 1.3). The Cobham-Edmonds Thesis asserts that thetime-
omplexities in any two \reasonable and general" models of 
omputation arepolynomially related. That is, a problem has time-
omplexity t in some \reasonableand general" model of 
omputation if and only if it has time 
omplexity poly(t) inthe model of (single-tape) Turing ma
hines.Indeed, the Cobham-Edmonds Thesis strengthens the Chur
h-Turing Thesis.It asserts not only that the 
lass of solvable problems is invariant as far as \rea-sonable and general" models of 
omputation are 
on
erned, but also that the time
omplexity (of the solvable problems) in su
h models is polynomially related.EÆ
ient algorithms. As hinted in the foregoing dis
ussions, mu
h of 
omplexitytheory is 
on
erned with eÆ
ient algorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have time-
omplexity that is upper-boundedby a polynomial in the length of the input). By the Cobham-Edmonds Thesis,the de�nition of this 
lass is invariant under the 
hoi
e of a \reasonable and gen-eral" model of 
omputation. For further dis
ussion of the asso
iation of eÆ
ientalgorithms with polynomial-time 
omputation see Se
tion 2.1.9Advan
ed 
omment: We note that the naive assumption that a \fastest algorithm" (forsolving a problem) exists is not always justi�ed (even when ignoring 
onstant fa
tors, see [13,Se
. 4.2.2℄). On the other hand, the assumption is essentially justi�ed in some important 
ases(see, e.g., Theorem 5.5). But even in these 
ases the said algorithm is \fastest" (or \optimal")only up to a 
onstant fa
tor.
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hines, revisited. The notion of time 
omplexity gives rise toa time-bounded version of the universal fun
tion u (presented in Se
tion 1.3.4).Spe
i�
ally, we de�ne u0(hMi; x; t) def= y if on input xma
hineM halts within t stepsand outputs the string y, and u0(hMi; x; t) def= ? if on input x ma
hine M makesmore than t steps. Unlike u, the fun
tion u0 is a total fun
tion. Furthermore, unlikeany extension of u to a total fun
tion, the fun
tion u0 is 
omputable. Moreover,u0 is 
omputable by a ma
hine U 0 that, on input X = (hMi; x; t), halts afterpoly(jhMij+ jxj+ t) steps. Indeed, ma
hine U 0 is a variant of a universal ma
hine(i.e., on input X , ma
hine U 0 merely emulatesM for t steps rather than emulatingM till it halts (and potentially inde�nitely)). Note that the number of steps takenby U 0 depends on the spe
i�
 model of 
omputation (and that some overhead isunavoidable be
ause emulating ea
h step ofM requires reading the relevant portionof the des
ription of M).Spa
e 
omplexity. Another natural measure of the \
omplexity" of an algo-rithm (or a task) is the amount of memory 
onsumed by the 
omputation. Werefer to the memory used for storing some intermediate results of the 
omputation.Sin
e 
omputations that utilize memory that is sub-linear in their input length areof natural interest, it is important to use a model in whi
h one 
an di�erentiatememory used for 
omputation from memory used for storing the initial input orthe �nal output. In the 
ontext of Turing ma
hines, this is done by 
onsideringmulti-tape Turing ma
hines su
h that the input is presented on a spe
ial read-onlytape (
alled the input tape), the output is written on a spe
ial write-only tape(
alled the output tape), and intermediate results are stored on a work-tape. Thus,the input and output tapes 
annot be used for storing intermediate results. Thespa
e 
omplexity of su
h a ma
hineM is de�ned as a fun
tion sM su
h that sM (x)is the number of 
ells of the work-tape that are s
anned by M on input x. As inthe 
ase of time 
omplexity, we will usually refer to SA(n) def= maxx2f0;1gnfsA(x)g.In this book we do not dis
uss spa
e 
omplexity any further, but rather refer theinterested reader to [13, Chap. 5℄.1.3.6 Ora
le Ma
hines and Turing Redu
tionsThe notion of Turing-redu
tions, whi
h was dis
ussed in Se
tion 1.3.3, is 
apturedby the following de�nition of so-
alled ora
le ma
hines. Loosely speaking, an ora
lema
hine is a ma
hine that is augmented su
h that it may pose questions to theoutside. We 
onsider the 
ase in whi
h these questions, 
alled queries, are answered
onsistently by some fun
tion f : f0; 1g� ! f0; 1g�, 
alled the ora
le. That is, ifthe ma
hine makes a query q then the answer it obtains is f(q). In su
h a 
ase, wesay that the ora
le ma
hine is given a

ess to the ora
le f . For an ora
le ma
hineM , a string x and a fun
tion f , we denote by Mf (x) the output of M on inputx when given a

ess to the ora
le f . (Re-examining the se
ond part of the proofof Theorem 1.5, observe that we have a
tually des
ribed an ora
le ma
hine that
omputes d0 when given a

ess to the ora
le d.)
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le ma
hine extends the notion of a standard 
omputingdevi
e (ma
hine), and thus a rigorous formulation of the former extends a formalmodel of the latter. Spe
i�
ally, extending the model of Turing ma
hines, we derivethe following model of ora
le Turing ma
hines.De�nition 1.11 (using an ora
le):� An ora
le ma
hine is a Turing ma
hine with a spe
ial additional tape, 
alledthe ora
le tape, and two spe
ial states, 
alled ora
le invo
ation and ora
le spoke.� The 
omputation of the ora
le ma
hine M on input x and a

ess to the ora
lef : f0; 1g� ! f0; 1g� is de�ned based on the su

essive 
on�guration fun
tion.For 
on�gurations with state di�erent from ora
le invo
ation the next 
on�g-uration is de�ned as usual. Let 
 be a 
on�guration in whi
h the ma
hine'sstate is ora
le invo
ation and suppose that the a
tual 
ontents of the ora
letape is q (i.e., q is the 
ontents of the maximal pre�x of the tape that holds bitvalues).10 Then, the 
on�guration following 
 is identi
al to 
, ex
ept thatthe state is ora
le spoke, and the a
tual 
ontents of the ora
le tape is f(q).The string q is 
alled M 's query and f(q) is 
alled the ora
le's reply.� The output of the ora
le ma
hine M on input x when given ora
le a

ess tof is denote Mf (x).We stress that the running time of an ora
le ma
hine is the number of steps madeduring its (own) 
omputation, and that the ora
le's reply on ea
h query is obtainedin a single step. Combining De�nition 1.11 with the notion of solving a problem,we obtain the de�nition of a Turing-redu
tion.De�nition 1.12 (Turing redu
tion): A problem � is Turing-redu
ible to a problem�0 if there exists an ora
le ma
hine M su
h that for every fun
tion f that solves�0 it holds that Mf solves �.1.3.7 Restri
ted ModelsWe mention that restri
ted models of 
omputation are often mentioned in the
ontext of a 
ourse on 
omputability, but they will play no role in the 
urrent book.One su
h model is the model of �nite automata, whi
h in some variant 
oin
ideswith Turing ma
hines that have spa
e-
omplexity zero (equiv., 
onstant).In our opinion, the most important motivation for the study of these restri
tedmodels of 
omputation is that they provide simple models for some natural (orarti�
ial) phenomena. This motivation, however, seems only remotely related tothe study of the 
omplexity of various 
omputational tasks, whi
h 
alls for the 
on-sideration of general models of 
omputation and the evaluation of the 
omplexityof 
omputation with respe
t to su
h models.10This �ts the de�nition of the a
tual initial 
ontents of a tape of a Turing ma
hine (
f.Se
tion 1.3.2). A 
ommon 
onvention is that the ora
le 
an be invoked only when the ma
hine'shead resides at the left-most 
ell of the ora
le tape.
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uits and Advi
e)In the 
urrent book, we only use non-uniform models of 
omputation as a sour
e ofsome natural 
omputational problems (
f. Se
tion 4.3.1). Spe
i�
ally, we will referto the satis�ability of Boolean 
ir
uits (de�ned in x1.4.1.1) and formulae (de�nedin x1.4.3.1). We mention, however, that these models are typi
ally 
onsidered forother purposes (see a brief dis
ussion that follows).By a non-uniform model of 
omputation we mean a model in whi
h for ea
hpossible input length a di�erent 
omputing devi
e is 
onsidered, while there isno \uniformity" requirement relating devi
es that 
orrespond to di�erent inputlengths. Furthermore, this 
olle
tion of devi
es is in�nite by nature, and (in absen
eof a uniformity requirement) this 
olle
tion may not even have a �nite des
ription.Nevertheless, ea
h devi
e in the 
olle
tion has a �nite des
ription. In fa
t, therelationship between the size of the devi
e (resp., the length of its des
ription)and the length of the input that it handles will be of major 
on
ern. Spe
i�
ally,the size of these devi
es gives rise to a 
omplexity measure that 
an be used toupper-bound the time 
omplexity of 
orresponding algorithms.Non-uniform models of 
omputation are 
onsidered either towards the develop-ment of te
hniques for proving 
omplexity lower bounds or as providing simpli�edupper bounds on the ability of eÆ
ient algorithms.11 In both 
ases, the uniformity
ondition is eliminated in the interest of simpli
ity and with the hope (and belief)that nothing substantial is lost as far as the issues at hand are 
on
erned. In the
ontext of developing lower-bound, the hope is that the �niteness of all parameters(i.e., the input length and the devi
e's des
ription) will allow for the appli
ationof 
ombinatorial te
hniques to analyze the limitations of 
ertain settings of param-eters. We mention that this hope has materialized in some restri
ted 
ases (seeSe
tion 1.4.3).We will fo
us on two related models of non-uniform 
omputing devi
es: Boolean
ir
uits (Se
tion 1.4.1) and \ma
hines that take advi
e" (Se
tion 1.4.2). The for-mer model is more adequate for the study of the evolution of 
omputation (i.e.,development of lower-bound te
hniques), whereas the latter is more adequate formodeling purposes (e.g., limiting the ability of eÆ
ient algorithms).1.4.1 Boolean Cir
uitsThe most popular model of non-uniform 
omputation is the one of Boolean 
ir
uits.Histori
ally, this model was introdu
ed for the purpose of des
ribing the \logi
operation" of real-life ele
troni
 
ir
uits. Ironi
ally, nowadays this model providesthe stage for some of the most pra
ti
ally removed studies in 
omplexity theory(whi
h aim at developing methods that may eventually lead to an understandingof the inherent limitations of eÆ
ient algorithms).11Advan
ed 
omment: The se
ond 
ase refers mainly to eÆ
ient algorithms that are givena pair of inputs (of (polynomially) related length) su
h that these algorithms are analyzed withrespe
t to �xing one input (arbitrarily) and varying the other input (typi
ally, at random). Typi
alexamples in
lude the 
ontext of de-randomization (
f. [13, Se
. 8.3℄) and the setting of zero-knowledge (
f. [13, Se
. 9.2℄).



1.4. NON-UNIFORM MODELS (CIRCUITS AND ADVICE) 251.4.1.1 The basi
 modelA Boolean 
ir
uit is a dire
ted a
y
li
 graph12 with labels on the verti
es, to bedis
ussed shortly. For sake of simpli
ity, we disallow isolated verti
es (i.e., verti
eswith no in
oming or outgoing edges), and thus the graph's verti
es are of threetypes: sour
es, sinks, and internal verti
es.1. Internal verti
es are verti
es having in
oming and outgoing edges (i.e., theyhave in-degree and out-degree at least 1). In the 
ontext of Boolean 
ir-
uits, internal verti
es are 
alled gates. Ea
h gate is labeled by a Booleanoperation, where the operations that are typi
ally 
onsidered are ^, _ and :(
orresponding to and, or and neg). In addition, we require that gates la-beled : have in-degree 1. The in-degree of ^-gates and _-gates may be anynumber greater than zero, and the same holds for the outdegree of any gate.2. The graph sour
es (i.e., verti
es with no in
oming edges) are 
alled inputterminals. Ea
h input terminal is labeled by a natural number (whi
h is tobe thought of the index of an input variable). (For sake of de�ning formulae(see x1.4.3.1), we allow di�erent input terminals to be labeled by the samenumber.)133. The graph sinks (i.e., verti
es with no outgoing edges) are 
alled output ter-minals, and we require that they have in-degree 1. Ea
h output terminal islabeled by a natural number su
h that if the 
ir
uit has m output terminalsthen they are labeled 1; 2; :::;m. That is, we disallow di�erent output ter-minals to be labeled by the same number, and insist that the labels of theoutput terminals are 
onse
utive numbers. (Indeed, the labels of the outputterminals will 
orrespond to the indi
es of lo
ations in the 
ir
uit's output.)See example in Figure 1.2. For sake of simpli
ity, we also mandate that the labelsof the input terminals are 
onse
utive numbers.14A Boolean 
ir
uit with n di�erent input labels and m output terminals indu
es(and indeed 
omputes) a fun
tion from f0; 1gn to f0; 1gm de�ned as follows. Forany �xed string x 2 f0; 1gn, we iteratively de�ne the value of verti
es in the 
ir
uitsu
h that the input terminals are assigned the 
orresponding bits in x = x1 � � �xnand the values of other verti
es are determined in the natural manner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e.,the value xi).12See Appendix A.1.13This is not needed in 
ase of general 
ir
uits, be
ause we 
an just feed outgoing edges of thesame input terminal to many gates. Note, however, that this is not allowed in 
ase of formulae,where all non-sinks are required to have out-degree exa
tly 1.14This 
onvention slightly 
ompli
ates the 
onstru
tion of 
ir
uits that ignore some of the inputvalues. Spe
i�
ally, we use arti�
ial gadgets that have in
oming edges from the 
orrespondinginput terminals, and 
ompute an adequate 
onstant. To avoid having this 
onstant as an outputterminal, we feed it into an auxiliary gate su
h that the value of the latter is determined by theother in
oming edge (e.g., a 
onstant 0 fed into an _-gate). See example of dealing with x3 inFigure 1.2.
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Figure 1.2: A 
ir
uit 
omputing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).� If the 
hildren of a gate (of in-degree d) that is labeled^ have values v1; v2; :::; vd,then the gate is assigned the value ^di=1vi. The value of a gate labeled _ (or :)is determined analogously.Indeed, the hypothesis that the 
ir
uit is a
y
li
 implies that the followingnatural pro
ess of determining values for the 
ir
uit's verti
es is well-de�ned:As long as the value of some vertex is undetermined, there exists a vertexsu
h that its value is undetermined but the values of all its 
hildren aredetermined. Thus, the pro
ess 
an make progress, and terminates when thevalues of all verti
es (in
luding the output terminals) are determined.The value of the 
ir
uit on input x (i.e., the output 
omputed by the 
ir
uit oninput x) is y = y1 � � � ym, where yi is the value assigned by the foregoing pro
essto the output terminal labeled i. We note that there exists a polynomial-timealgorithm that, given a 
ir
uit C and a 
orresponding input x, outputs the value ofC on input x. This algorithm determines the values of the 
ir
uit's verti
es, goingfrom the 
ir
uit's input terminals to its output terminals.We say that a family of 
ir
uits (Cn)n2N 
omputes a fun
tion f : f0; 1g� ! f0; 1g�if for every n the 
ir
uit Cn 
omputes the restri
tion of f to strings of length n. Inother words, for every x 2 f0; 1g�, it must hold that Cjxj(x) = f(x).Bounded and unbounded fan-in. One is often interested in 
ir
uits in whi
hea
h gate has at most two in
oming edges. In this 
ase, the types of (two-argument)Boolean operations that we allow is immaterial (as long as we 
onsider a \fullbasis" of su
h operations; i.e., a set of operations that 
an implement any othertwo-argument Boolean operation). Su
h 
ir
uits are 
alled 
ir
uits of bounded fan-in. In 
ontrast, other studies are 
on
erned with 
ir
uits of unbounded fan-in, whereea
h gate may have an arbitrary number of in
oming edges. Needless to say, in



1.4. NON-UNIFORM MODELS (CIRCUITS AND ADVICE) 27the 
ase of 
ir
uits of unbounded fan-in, the 
hoi
e of allowed Boolean operationsis important and one fo
uses on operations that are \uniform" (a
ross the numberof operants; e.g., ^ and _).1.4.1.2 Cir
uit 
omplexityAs stated earlier, the Boolean 
ir
uit model is used in 
omplexity theory mainly as abasis for de�ning a (non-uniform) 
omplexity measure. Spe
i�
ally, the 
omplexityof 
ir
uits is de�ned as their size.Cir
uit size as a 
omplexity measure. The size of a 
ir
uit is the number ofits edges. When 
onsidering a family of 
ir
uits (Cn)n2N that 
omputes a fun
tionf : f0; 1g� ! f0; 1g�, we are interested in the size of Cn as a fun
tion of n.Spe
i�
ally, we say that this family has size 
omplexity s : N ! N if for every n thesize of Cn is s(n). The 
ir
uit 
omplexity of a fun
tion f , denoted sf , is the in�mumof the size 
omplexity of all families of 
ir
uits that 
ompute f . Alternatively, forea
h n we may 
onsider the size of the smallest 
ir
uit that 
omputes the restri
tionof f to n-bit strings (denoted fn), and set sf (n) a

ordingly. We stress that non-uniformity is impli
it in this de�nition, be
ause no 
onditions are made regardingthe relation between the various 
ir
uits used to 
ompute the fun
tion on di�erentinput lengths.15On the 
ir
uit 
omplexity of fun
tions. We highlight some simple fa
ts re-garding the 
ir
uit 
omplexity of fun
tions. These fa
ts are in 
lear 
orresponden
eto fa
ts regarding Kolmogorov Complexity mentioned in x1.3.4.2, and establishingthem is left as an exer
ise (see Exer
ise 1.14).1. Most importantly, any Boolean fun
tion 
an be 
omputed by some familyof 
ir
uits, and thus the 
ir
uit 
omplexity of any fun
tion is well-de�ned.Furthermore, ea
h fun
tion has at most exponential 
ir
uit 
omplexity.2. Some fun
tions have polynomial 
ir
uit 
omplexity. In parti
ular, any fun
-tion that has time 
omplexity t (i.e., is 
omputed by an algorithm of time
omplexity t) has 
ir
uit 
omplexity at most poly(t). Furthermore, the 
or-responding 
ir
uit family is uniform (in a natural sense to be dis
ussed in thenext paragraph).3. Almost all Boolean fun
tions require exponential 
ir
uit 
omplexity. Spe
i�-
ally, the number of fun
tions mapping f0; 1gn to f0; 1g that 
an be 
omputedby some 
ir
uit of size s is smaller than s2s.Note that the �rst fa
t implies that families of 
ir
uits 
an 
ompute fun
tions thatare un
omputable by algorithms. Furthermore, this phenomenon o

urs also when15Advan
ed 
omment: We also note that, in 
ontrast to Footnote 9, the 
ir
uit model andthe 
orresponding (
ir
uit size) 
omplexity measure support the notion of an optimal 
omputingdevi
e: ea
h fun
tion f has a unique size 
omplexity sf (and not merely upper- and lower-boundson its 
omplexity).
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ting attention to families of polynomial-size 
ir
uits. See further dis
ussionin Se
tion 1.4.2.Uniform families. A family of polynomial-size 
ir
uits (Cn)n2N is 
alled uniformif given n one 
an 
onstru
t the 
ir
uit Cn in poly(n)-time. Note that if a fun
tionis 
omputable by a uniform family of polynomial-size 
ir
uits then it is 
omputableby a polynomial-time algorithm. This algorithm �rst 
onstru
ts the adequate 
ir-
uit (whi
h 
an be done in polynomial-time by the uniformity hypothesis), andthen evaluate this 
ir
uit on the given input (whi
h 
an be done in time that ispolynomial in the size of the 
ir
uit).Note that limitations on the 
omputing power of arbitrary families of polynomial-size 
ir
uits 
ertainly hold for uniform families (of polynomial-size 
ir
uits), whi
hin turn yield limitations on the 
omputing power of polynomial-time algorithms.Thus, lower-bounds on the 
ir
uit-
omplexity of fun
tions yield analogous lower-bounds on their time-
omplexity. Furthermore, as is often the 
ase in mathemati
sand s
ien
e, disposing of an auxiliary 
ondition that is not well-understood (i.e.,uniformity) may turn out fruitful. Indeed, this has o

ured in the study of 
lassesof restri
ted 
ir
uits, whi
h is reviewed in Se
tion 1.4.3.1.4.2 Ma
hines That Take Advi
eGeneral (non-uniform) 
ir
uit families and uniform 
ir
uit families are two extremeswith respe
t to the \amounts of non-uniformity" in the 
omputing devi
e. Intu-itively, in the former, non-uniformity is only bounded by the size of the devi
e,whereas in the latter the amounts of non-uniformity is zero. Here we 
onsider amodel that allows to de
ouple the size of the 
omputing devi
e from the amountof non-uniformity, whi
h may range from zero to the devi
e's size. Spe
i�
ally, we
onsider algorithms that \take a non-uniform advi
e" that depends only on theinput length. The amount of non-uniformity will be de�ned to equal the length ofthe 
orresponding advi
e (as a fun
tion of the input length).De�nition 1.13 (taking advi
e): We say that algorithm A 
omputes the fun
tionf using advi
e of length ` : N ! N if there exists an in�nite sequen
e (an)n2N su
hthat1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).The sequen
e (an)n2N is 
alled the advi
e sequen
e.Note that any fun
tion having 
ir
uit 
omplexity s 
an be 
omputed using advi
eof length O(s log s), where the length upper-bound is due to the fa
t that a graphwith v verti
es and e edges 
an be des
ribed by a string of length 2e log2 v. Notethat the model of ma
hines that use advi
e allows for some sharper bounds thanthe ones stated in x1.4.1.2: every fun
tion 
an be 
omputed using advi
e of length` su
h that `(n) = 2n, and some un
omputable fun
tions 
an be 
omputed usingadvi
e of length 1.
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e): There exist fun
tions that 
an be 
omputedusing one-bit advi
e but 
annot be 
omputed without advi
e.Proof: Starting with any un
omputable Boolean fun
tion f : N ! f0; 1g, 
onsiderthe fun
tion f 0 de�ned as f 0(x) = f(jxj); that is, the value of f 0(x) only dependson the length of x (and, spe
i�
ally, equals f(jxj)). Note that f is Turing-redu
ibleto f 0 (e.g., on input n make any n-bit query to f 0, and return the answer).16Thus, f 0 
annot be 
omputed without advi
e. On the other hand, f 0 
an be easily
omputed by using the advi
e sequen
e (an)n2N su
h that an = f(n); that is, thealgorithm merely outputs the advi
e bit (and indeed ajxj = f(jxj) = f 0(x), forevery x 2 f0; 1g�).1.4.3 Restri
ted ModelsThe model of Boolean 
ir
uits (
f. x1.4.1.1) allows for the introdu
tion of manynatural sub
lasses of 
omputing devi
es. Following is a la
oni
 review of a few ofthese sub
lasses. (For further detail regarding the study of these sub
lasses, theinterested reader is referred to [1℄.)1.4.3.1 Boolean formulaeIn (general) Boolean 
ir
uits the non-sink verti
es are allowed arbitrary out-degree.This means that the same intermediate value 
an be re-used without being re-
omputed (and while in
reasing the size 
omplexity by only one unit). Su
h \free"re-usage of intermediate values is disallowed in Boolean formulae, whi
h are for-mally de�ned as Boolean 
ir
uits in whi
h all non-sink verti
es have out-degree 1.This means that the underlying graph of a Boolean formula is a tree (see Ap-pendix A.2), and it 
an be written as a Boolean expression over Boolean variablesby traversing this tree (and registering the verti
es' labels in the order traversed).Indeed, we have allowed di�erent input terminals to be assigned the same label inorder to allow formulae in whi
h the same variable o

urs multiple times.As in 
ase of general 
ir
uits, one is interested in the size of these restri
ted
ir
uits (i.e., the size of families of formulae 
omputing various fun
tions). Wemention that quadrati
 lower bounds are known for the formula size of simplefun
tions (e.g., parity), whereas these fun
tions have linear 
ir
uit 
omplexity.This dis
repan
y is depi
ted in Figure 1.3.Formulae in CNF and DNF. A restri
ted type of Boolean formulae 
onsistsof formulae that are in 
onjun
tive normal form (CNF). Su
h a formula 
onsists of a
onjun
tion of 
lauses, where ea
h 
lause is a disjun
tion of literals ea
h being eithera variable or its negation. That is, su
h formulae are represented by layered 
ir
uitsof unbounded fan-in in whi
h the �rst layer 
onsists of neg-gates that 
ompute thenegation of input variables, the se
ond layer 
onsist of or-gates that 
ompute the16Indeed, this Turing-redu
tion is not eÆ
ient (i.e., it runs in exponential time in jnj = log2 n),but this is immaterial in the 
urrent 
ontext.
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Figure 1.3: Re
ursive 
onstru
tion of parity 
ir
uits and formulae.logi
al-or of subsets of inputs and negated inputs, and the third layer 
onsists of asingle and-gate that 
omputes the logi
al-and of the values 
omputed in the se
ondlayer. Note that ea
h Boolean fun
tion 
an be 
omputed by a family of CNFformulae of exponential size (see Exer
ise 1.16), and that the size of CNF formulaemay be exponentially larger than the size of ordinary formulae 
omputing the samefun
tion (e.g., parity).17 For a 
onstant k (e.g., k = 2; 3), a formula is said to be ink-CNF if its CNF has disjun
tions of size at most k. An analogous restri
ted typeof Boolean formulae refers to formulae that are in disjun
tive normal form (DNF).Su
h a formula 
onsists of a disjun
tion of a 
onjun
tions of literals, and when ea
h
onjun
tion has at most k literals we say that the formula is in k-DNF. (Figure 1.4depi
ts a 3DNF formula that 
omputes the parity of three variables.)
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1Figure 1.4: A 3DNF 
omputing x1�x2� x3 as (x1 ^x2 ^ x3)_ (x1 ^:x2 ^:x3)_(:x1 ^ x2 ^ :x3) _ (:x1 ^ :x2 ^ x3).17See Exer
ise 1.17.



1.5. COMPLEXITY CLASSES 311.4.3.2 Other restri
ted 
lasses of 
ir
uitsTwo other restri
ted 
lasses of 
ir
uits, whi
h have re
eived a lot of attention in
omplexity theory (but are not used in this book), are the 
lasses of 
onstant-depth
ir
uits and monotone 
ir
uits.Constant-depth 
ir
uits. Cir
uits have a \natural stru
ture" (i.e., their stru
-ture as graphs). One natural parameter regarding this stru
ture is the depth of a
ir
uit, whi
h is de�ned as the longest dire
ted path from any sour
e to any sink. Ofspe
ial interest are 
onstant-depth 
ir
uits of unbounded fan-in. We mention thatsub-exponential lower bounds are known for the size of su
h 
ir
uits that 
omputea simple fun
tion (e.g., parity).Monotone 
ir
uits. The 
ir
uit model also allows for the 
onsideration of mono-tone 
omputing devi
es: a monotone 
ir
uit is one having only monotone gates(e.g., gates 
omputing ^ and _, but no negation gates (i.e., :-gates)). Needlessto say, monotone 
ir
uits 
an only 
ompute monotone fun
tions, where a fun
tionf : f0; 1gn ! f0; 1g is 
alled monotone if for any x � y it holds that f(x) � f(y)(where x1 � � �xn � y1 � � � yn if and only if for every bit position i it holds thatxi � yi). One natural question is whether, as far as monotone fun
tions are 
on-
erned, there is a substantial loss in using only monotone 
ir
uits. The answer isyes: there exist monotone fun
tions that have polynomial 
ir
uit 
omplexity butrequire sub-exponential size monotone 
ir
uits.1.5 Complexity ClassesComplexity 
lasses are sets of 
omputational problems. Typi
ally, su
h 
lasses arede�ned by �xing three parameters:1. A type of 
omputational problems (see Se
tion 1.2). Indeed, the most stan-dard 
omplexity 
lasses refer to de
ision problems, but 
lasses of sear
h prob-lems, promise problems, and other types of problems are also 
onsidered.2. A model of 
omputation, whi
h may be either uniform (see Se
tion 1.3) ornon-uniform (see Se
tion 1.4).3. A 
omplexity measure and a limiting fun
tion (or a set of fun
tions), whi
hput together limit the 
lass of 
omputations of the previous item; that is,we refer to the 
lass of 
omputations that have 
omplexity not ex
eeding thespe
i�ed fun
tion (or set of fun
tions).For example, in Se
tion 1.3.5, we mentioned time-
omplexity and spa
e-
omplexity, whi
h apply to any uniform model of 
omputation. We alsomentioned polynomial-time 
omputations, whi
h are 
omputations in whi
hthe time-
omplexity (as a fun
tion) does not ex
eed some polynomial (i.e., isa member of the set of polynomial fun
tions).



32 CHAPTER 1. COMPUTATIONAL TASKS AND MODELSThe most 
ommon 
omplexity 
lasses refer to de
ision problems, and are sometimesde�ned as 
lasses of sets rather than 
lasses of the 
orresponding de
ision problems.That is, one often says that a set S � f0; 1g� is in the 
lass C rather than sayingthat the problem of de
iding membership in S is in the 
lass C. Likewise, one talksof 
lasses of relations rather than 
lasses of the 
orresponding sear
h problems (i.e.,saying that R � f0; 1g��f0; 1g� is in the 
lass C means that the sear
h problem ofR is in the 
lass C).Exer
isesExer
ise 1.1 (a quiz)1. What is the default representation of integers (in 
omplexity theory)?2. What are sear
h and de
ision problems?3. What is the motivation for 
onsidering the model of Turing ma
hines?4. What does the Chur
h-Turing Thesis assert?5. What is a universal algorithm?6. What does unde
idability mean?7. What is the time 
omplexity of an algorithm?8. What does the Cobham-Edmonds Thesis assert?9. What are Boolean 
ir
uits and formulae?Exer
ise 1.2 Prove that any fun
tion that 
an be 
omputed by a Turing ma
hine
an be 
omputed by a ma
hine that never moves left of the end of the tape.Guideline: Modify the original ma
hine by \marking" the leftmost 
ell of the tape (byusing spe
ial symbols su
h that the original 
ontents is maintained). Needless to say, thismarking 
orresponds to an extension of the tape's symbols.Exer
ise 1.3 (single-tape versus multi-tape Turing ma
hines) Prove thata fun
tion 
an be 
omputed by a single-tape Turing ma
hine if and only if it is
omputable by a multi-tape (e.g., two-tape) Turing ma
hine.Guideline: The emulation of the multi-tape Turing ma
hine on a single-tape ma
hine isbased on storing all the original tapes on a single tape su
h that the ith 
ell of the singletape re
ords the 
ontents of the ith 
ell of ea
h of the original tapes. In addition, the ith
ell of the single tape re
ords an indi
ation as to whi
h of the original heads reside inthe ith 
ell of the 
orresponding original tapes. To emulate a single step of the originalma
hine, the new ma
hine s
ans its tape, �nds all original head lo
ations, and retrievesthe 
orresponding 
ell 
ontents. Based on this information, the emulating ma
hine e�e
tsthe 
orresponding step (a

ording to the original transition fun
tion), by modifying its(single) tape's 
ontents in an analogous manner.
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ise 1.4 (
omputing the sum of natural numbers) Prove that a Tur-ing ma
hine 
an add natural numbers; that is, outline a (multi-tape) Turing ma-
hine that on input a pair of integers (in binary representation), outputs their sum.Spe
i�
ally, show that the straightforward addition algorithm 
an be implementedin linear time by a multi-tape Turing ma
hine.Guideline: A straightforward implementation of addition on a two-tape Turing ma
hinestarts by 
opying the two (input) integers (from the input tape) to the se
ond tape su
hthat the ith least signi�
ant bits of both integers resides in the ith 
ell (of the se
ondtape).Exer
ise 1.5 (Turing ma
hines vs abstra
t RAM) Prove that abstra
t RAMs
an be emulated by a Turing ma
hine.Guideline: Re
all that by our 
onventions, the abstra
t RAM 
omputation is initializedsu
h that only a pre�x of the memory 
ells 
ontains meaningful data, and (the length of)this pre�x is spe
i�ed in a spe
ial register. Thus, during the emulation (of the abstra
tRAM), we only need to keep tra
k of the 
ontents of these memory 
ells as well as the
ontents of any other memory 
ells that were a

essed during the 
omputation (and the
ontents of all registers). Consequently, during the emulation, the Turing ma
hine's tapewill 
ontain a list of the RAM's memory 
ells that were a

essed so far as well as their
urrent 
ontents. When we emulate a RAM instru
tion that refers to some memorylo
ation (whi
h is spe
i�ed in the 
ontents of a �xed register), we �rst 
he
k whetherthe relevant RAM 
ell appears on our list, and a

ordingly either augment the list by a
orresponding entry or modify this entry as required.Exer
ise 1.6 (Ri
e's Theorem (Theorem 1.6)) Let F and SF be as in The-orem 1.6. Present a Turing-redu
tion of d to SF .Guideline: Let f? denote the fun
tion that is unde�ned on all inputs. Assume, withoutloss of generality, that f? 62 F , let f1 denote an arbitrary fun
tion in F , and let M1 bean arbitrary �x ma
hine that 
omputes f1. Then, the redu
tion maps an input hMi ford to the input hM 0i for SF su
h that ma
hine M 0 operates as follows on input x:1. First, ma
hine M 0 emulates M on input hMi.2. If M halts (in Step 1), then M 0 emulates M1(x), and outputs whatever it does.Note that the mapping from hMi to hM 0i is easily 
omputable (by augmenting M withthe �xed ma
hine M1). Now, if d(hMi) = 1, then ma
hine M 0 rea
hes Step 2, and thusM 0(x) = f1(x) for every x, whi
h in turn implies hM 0i 2 SF (be
ause M 0 
omputesf1 2 F). On the other hand, if d(hMi) = 0, then ma
hine M 0 remains stu
k in Step 1,and thus M 0 does not halt on any x, whi
h in turn implies hM 0i 62 SF (be
ause M 0
omputes f? 62 F).Exer
ise 1.7 Prove that there exists a Turing ma
hine M su
h that there is noalgorithm that determines whether or not M halts on a given input.Guideline: Let M be a universal ma
hine, and present a Turing-redu
tion from h to hM ,where hM (x) = h(hMi; x).
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ise 1.8 (Post Corresponden
e Problem (Theorem 1.7)) Present a Turing-redu
tion of h to the Post Corresponden
e Problem, denoted PCP. Furthermore, usea redu
tion that maps an instan
e (hMi; x) of h to a pair of sequen
es ((�1; :::; �k); (�1; :::; �k))su
h that only �1 and �1 depend on x, whereas k as well as the other strings dependonly on M .Guideline: Consider a modi�ed version of the Post Corresponden
e Problem, denotedMPCP, in whi
h the �rst index in the solution sequen
e must equal 1 (i.e., i1 = 1). Redu
e hto MPCP, and next redu
e MPCP to PCP. The main redu
tion (i.e., of h to MPCP) maps (hMi; x)to ((�1; :::; �k); (�1; :::; �k)) su
h that a solution sequen
e (i.e., i1; :::; i` s.t. �i1 � � ��i` =�1 � � � �i`) yields a full des
ription of the 
omputation of M on input x (i.e., the sequen
eof all instantaneous 
on�gurations in this 
omputation). Spe
i�
ally, �1 will des
ribe theinitial 
on�guration of M on input x, whereas �1 will be essentially empty (ex
ept for adelimiter, denoted #, whi
h is also used at the beginning and at the end of �1). Assumingthat the set of tape-symbols and the set of states of M are disjoint (i.e., � \ Q = ;),
on�gurations will be des
ribed as sequen
es over their union (i.e., sequen
es over �\Q,where # 62 � [Q). Other pairs (�i; �i) in
lude� For every tape-symbol �, we shall have �i = �i = � (for some i). We shall alsohave �i = �i = # (for some i). Su
h pairs re
e
t the preservation of the tape's
ontents (whenever the head lo
ation is not present at the 
urrent 
ell).� For every non-halting state q and every transition regarding q, we shall have a pairre
e
ting this transition. For example, if the transition fun
tion maps (q; �) to(q0; �0;+1), then we have �i = q� and �i = �0q0 (for some i). For left movement(i.e., if the transition fun
tion maps (q; �) to (q0; �0;�1)) we have �i = �q� and�i = q0��0. Assuming that blank symbols (i.e., ) are only written to the left ofother bla
k symbols (and when moving left), if the transition fun
tion maps (q; �)to (q0; ;�1), then we have �i = �q� and �i = q0� (rather than �i = q0� ).� Assuming that the ma
hine halts in state p only when it resides in the leftmost 
ell(and after writing blanks in all 
ells), we have �i = p ## and �i = # (for some i).Note that in a solution sequen
e i1; :::; i` su
h that �i1 � � ��i` = �1 � � � �i` , for every t < `it holds that �i1 � � � �it is a pre�x of �i1 � � ��it su
h that the latter 
ontains exa
tly one
on�guration less than the former. The relations between the pairs (�i; �i) guaranteethat these pre�xes are pre�xes of the sequen
e of all instantaneous 
on�gurations in the
omputation of M on input x, and a solution 
an be 
ompleted only if this 
omputationhalts. For details see [15, Se
. 8.5℄ or [28, Se
. 5.2℄.Exer
ise 1.9 (total fun
tions extending the universal fun
tion) Present analgorithm that, given a des
ription of a Turning ma
hine and a 
orresponding in-stantaneous 
on�guration, determines the instantaneous 
on�guration that resultsby performing a single step of the given ma
hine on the given instantaneous 
on�g-uration. Note that this exer
ise requires �xing a 
on
rete representation of Turingma
hines and 
orresponding 
on�gurations.Guideline: Use the representation of 
on�gurations provided in x1.3.2.1.Exer
ise 1.10 (total fun
tions extending the universal fun
tion) Let u bethe fun
tion 
omputed by any universal ma
hine (for a �xed reasonable model of
omputation). Prove that any extension of u to a total fun
tion (i.e., any total
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tion û that agrees with the partial fun
tion u on all the inputs on whi
h thelatter is de�ned) is un
omputable.Guideline: The 
laim is easy to prove for the spe
ial 
ase of the total fun
tion û thatextends u su
h that the spe
ial symbol ? is assigned to inputs on whi
h u is unde�ned(i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x) and û(hMi; x) def= u(hMi; x) otherwise).In this 
ase h(hMi; x) = 1 if and only if û(hMi; x) 6= ?, and so the halting fun
tion h isTuring-redu
ible to û. In the general 
ase, we may adapt the proof of Theorem 1.5 byusing the fa
t that, for any ma
hineM that halts on every input, it holds that û(hMi; x) =u(hMi; x) for every x (and in parti
ular for x = hMi).Exer
ise 1.11 (un
omputability of Kolmogorov Complexity) Prove that Kol-mogorov Complexity fun
tion, denoted K, is un
omputable.Guideline: Consider, for every integer t, the string st that is de�ned as the lexi
ograph-i
ally �rst string of Kolmogorov Complexity ex
eeding t (i.e., st def= mins2f0;1g�fK(s) >tg). Note that st is well de�ned and has length at most t (see Fa
t 3 in x1.3.4.2). Assumingthat K is 
omputable, we rea
h a 
ontradi
tion by noting that st has des
ription lengthO(1) + log2 t (be
ause it may be des
ribed by 
ombining a �xed ma
hine that 
omputesK with the integer t).Exer
ise 1.12 (single-tape vs two-tape Turing ma
hines, revisited) Provethat de
iding membership in the set fxx : x 2 f0; 1g�g requires quadrati
-time ona single-tape Turing ma
hine. Note that this de
ision problem 
an be solved inlinear-time on a two-tape Turing ma
hine.Guideline: Proving the former fa
t is quite non-trivial. One proof is by a \redu
tion"from a 
ommuni
ation 
omplexity problem [18, Se
. 12.2℄. Intuitively, a single-tape Turingma
hine that de
ides membership in the aforementioned set 
an be viewed as a 
hannel of
ommuni
ation between the two parts of the input. Spe
i�
ally, fo
using our attention oninputs of the form y0nz0n, for y; z 2 f0; 1gn, note that ea
h time that the ma
hine passesfrom the one part to the other part it 
arries O(1) bits of information (in its internalstate) while making at least n steps. The proof is 
ompleted by invoking the linear lower-bound on the 
ommuni
ation 
omplexity of the (two-argument) identity fun
tion (i.e,id(y; z) = 1 if y = z and id(y; z) = 0 otherwise); 
f. [18, Chap. 1℄.Exer
ise 1.13 (linear speed-up of Turing ma
hine) Prove that any problemthat 
an be solved by a two-tape Turing ma
hine that has time-
omplexity t 
anbe solved by another two-tape Turing ma
hine having time-
omplexity t0, wheret0(n) = O(n) + (t(n)=2). Prove an analogous result for one-tape Turing ma
hine,where t0(n) = O(n2) + (t(n)=2).Guideline: Consider a ma
hine that uses a larger alphabet, 
apable of en
oding a 
on-stant (denoted 
) number of symbols of the original ma
hine, and thus 
apable of emu-lating 
 steps of the original ma
hine in O(1) steps, where the 
onstant in the O-notationis a universal 
onstant (independent of 
). Note that the O(n) term a

ounts to a pre-pro
essing that 
onverts the binary input to work-alphabet of the new ma
hine (whi
hen
oding 
 input bits in one alphabet symbol). Thus, a similar result for one-tape Turingma
hine seems to require an additive O(n2) term.
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ise 1.14 (on the 
ir
uit 
omplexity of fun
tions) Prove the followingfa
ts:1. The 
ir
uit 
omplexity of any Boolean fun
tion is at most exponential.Guideline: fn : f0; 1gn ! f0; 1g 
an be 
omputed by a 
ir
uit of size O(n2n)that implements a look-up table.2. Some fun
tions have polynomial 
ir
uit 
omplexity. In parti
ular, any fun
-tion that has time 
omplexity t (i.e., is 
omputed by an algorithm of time
omplexity t), has 
ir
uit 
omplexity poly(t). Furthermore, the 
orrespond-ing 
ir
uit family is uniform.Guideline: Consider a Turing ma
hine that 
omputes the fun
tion, and 
onsiderits 
omputation on a generi
 n-bit long input. The 
orresponding 
omputation 
anbe emulated by a 
ir
uit that 
onsists of t(n) layers su
h that ea
h layer representsan instantaneous 
on�guration of the ma
hine, and the relation between 
onse
utive
on�gurations is 
aptured by (\uniform") lo
al gadgets in the 
ir
uit. For furtherdetails see the proof of Theorem 4.5, whi
h presents a similar emulation.3. Almost all Boolean fun
tions require exponential 
ir
uit 
omplexity. Spe
i�-
ally, the number of fun
tions mapping f0; 1gn to f0; 1g that 
an be 
omputedby some 
ir
uit of size s is smaller than s2s.Guideline: Show that, without loss of generality, we may 
onsider 
ir
uits ofbounded fan-in. The number of su
h 
ir
uits having v verti
es and e edges is atmost �2 � �v2�+ v�e.Exer
ise 1.15 (the 
lass P=poly) We denote by P=` the 
lass of de
ision prob-lems that 
an be solved in polynomial-time with advi
e of length `, and by P=polythe union of P=p taken over all polynomials p. Prove that a de
ision problem is inP=poly if and only if it has polynomial 
ir
uit 
omplexity.Guideline: Suppose that a problem 
an be solved by a polynomial-time algorithmA using the polynomially bounded advi
e sequen
e (an)n2N. We obtain a family ofpolynomial-size 
ir
uits that solves the same problem by observing that the 
omputa-tion of A(ajxj; x) 
an be emulated by a 
ir
uit of poly(jxj)-size, whi
h in
orporates ajxjand is given x as input. That is, we 
onstru
t a 
ir
uit Cn su
h that Cn(x) = A(an; x)holds for every x 2 f0; 1gn (analogously to the way Cx is 
onstru
ted in the proof ofTheorem 4.5, where it holds that Cx(y) = MR(x; y) for every y of adequate length). Onthe other hand, given a family of polynomial-size 
ir
uits, we obtain a polynomial-timeadvi
e-taking ma
hine that emulates this family when using advi
e that provide the de-s
ription of the relevant 
ir
uits. (Indeed, we use the fa
t that a 
ir
uit of size s 
an bedes
ribed by a string of length O(s log s).)Exer
ise 1.16 (generi
 DNF and CNF formulae) Prove that every Booleanfun
tion 
an be 
omputed by a family of DNF (resp., CNF) formulae of exponentialsize.Guideline: For any a 2 f0; 1gn, 
onsider the fun
tion Æa : f0; 1gn ! f0; 1g su
h thatÆa(x) = 1 if x = a and Æa(x) = 0 otherwise. Note that any fun
tion Æa 
an be 
omputed by
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onjun
tion of n literals, and that any Boolean fun
tion f : f0; 1gn ! f0; 1g 
anbe written as Wa:f(a)=1 Æa. A 
orresponding CNF formula 
an be obtained by applyingde-Morgan's Law to the DNF obtained for :f .Exer
ise 1.17 (on the size of general vs DNF formulae) Prove that everyDNF (resp., CNF) formulae for 
omputing parity must have exponential size. Onthe other hand, show that parity has quadrati
 size formulae (and linear size 
ir-
uits).Guideline: For the lower-bound, observe that ea
h 
onjun
tion in the 
andidate DNFmust 
ontain a literal for ea
h variable. The upper-bound follows by Figure 1.3.
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Chapter 2The P versus NP QuestionOverview: Our daily experien
e is that it is harder to solve problemsthan it is to 
he
k the 
orre
tness of solutions to these problems. Is thisexperien
e merely a 
oin
iden
e or does it represent a fundamental fa
tof life (or a property of the world)? This is the essen
e of the P versusNP Question, where P represents sear
h problems that are eÆ
ientlysolvable and NP represents sear
h problems for whi
h solutions 
an beeÆ
iently 
he
ked.Another natural question 
aptured by the P versus NP Question iswhether proving theorems is harder that verifying the validity of theseproofs. In other words, the question is whether de
iding membershipin a set is harder than being 
onvin
ed of this membership by an ad-equate proof. In this 
ase, P represents de
ision problems that areeÆ
iently solvable, whereas NP represents sets that have eÆ
iently ver-i�able proofs of membership.These two formulations of the P versus NP Question are indeed equiv-alent, and the 
ommon belief is that P is di�erent from NP. That is,we believe that solving sear
h problems is harder than 
he
king the
orre
tness of solutions for them and that �nding proofs is harder thanverifying their validity.The two formulations of the P versus NP Question are rigorously presented anddis
ussed in Se
tions 2.2 and 2.3, respe
tively. The equivalen
e of these formula-tions is shown in Se
tion 2.4, and the 
ommon belief that P is di�erent from NPis further dis
ussed in Se
tion 2.7. We start by dis
ussing the notion of eÆ
ient
omputation (see Se
tion 2.1).Tea
hing NotesMost students have heard of P and NP before, but we suspe
t that many of themhave not obtained a good explanation of what the P-vs-NP Question a
tually repre-39



40 CHAPTER 2. THE P VERSUS NP QUESTIONsents. This unfortunate situation is due to using the standard te
hni
al de�nition ofNP (whi
h refers to the �
titious and 
onfusing devi
e 
alled a non-deterministi
polynomial-time ma
hine). Instead, we advo
ate the use of slightly more 
um-bersome de�nitions, sket
hed in the foregoing paragraphs (and elaborated in Se
-tions 2.2 and 2.3), whi
h 
learly 
apture the fundamental nature of NP. Indeed,we advo
ate 
ommuni
ating the fundamental nature of the P-vs-NP Question byusing two equivalent formulations, whi
h refer to sear
h problems (Se
tion 2.2) andde
ision problems (Se
tion 2.3) respe
tively.On the sear
h problems formulation. Complexity theorists are so a

us-tomed to fo
us on de
ision problems that they seem to forget that sear
h problemsare at least as natural as de
ision problems. Furthermore, to many non-experts,sear
h problems may seem even more natural than de
ision problems: Typi
ally,people seek solutions more often than they pause to wonder whether or not so-lutions exist. Thus, we re
ommend starting with a formulation of the P-vs-NPQuestion in terms of sear
h problems. Admittingly, the 
ost is more 
umbersomeformulations, but it is more than worthwhile.In order to re
e
t the importan
e of the sear
h version as well as to fa
ili-tate less 
umbersome formulations, we 
hose to introdu
e 
on
ise notations for thetwo 
lasses of sear
h problems that 
orrespond to P and NP: these 
lasses are de-noted PF and PC (standing for Polynomial-time Find and Polynomial-time Che
k,respe
tively). The tea
her may prefer using notations and terms that are moreevo
ative of P and NP (su
h as P-sear
h and NP-sear
h), and a
tually we also doso in some motivational dis
ussions. (Still, in our opinion, in the long run, thestudents and the �eld may be served better by using standard-looking notations.)On the de
ision problems formulation. When presenting the P-vs-NP Ques-tion in terms of de
ision problems, we de�ne NP as a 
lass of sets having eÆ
ientlyveri�able proofs of membership (see De�nition 2.5). This de�nition 
lari�es thefundamental nature of the 
lass NP, but is admittingly more 
umbersome thanthe more traditional de�nition of NP in terms of �
titious \non-deterministi
 ma-
hines" (see De�nition 2.7).Although De�nitions 2.5 and 2.7 are equivalent (see Theorem 2.8), we believethat it is important to present NP as in De�nition 2.5. Con
eptually, this is theright 
hoi
e be
ause De�nition 2.5 
lari�es the fundamental nature of the 
lassNP, whereas De�nition 2.7 fails to do it. Indeed, a �
titious model 
an provide abasis for a sound de�nition, but it typi
ally fails to provide motivation for its study(whi
h may be provided by an equivalen
e to a natural de�nition). Furthermore,not all sound de�nitions are equally a

essible. Spe
i�
ally, many students �ndDe�nition 2.7 quite 
onfusing, be
ause they assume that it represents some naturalmodel of 
omputation and 
onsequently they allow themselves to be fooled by theirintuition regarding su
h models. (Needless to say, the students' intuition regarding
omputation is irrelevant when applied to a �
titious model.) Thus, De�nition 2.5is preferable to De�nition 2.7 also from a te
hni
al point of view.



2.1. EFFICIENT COMPUTATION 412.1 EÆ
ient ComputationAs hinted in the foregoing dis
ussions, mu
h of 
omplexity theory is 
on
ernedwith eÆ
ient algorithms. The latter are de�ned as polynomial-time algorithms(i.e., algorithms that have time-
omplexity that is upper-bounded by a polynomialin the length of the input). By the Cobham-Edmonds Thesis (see Se
tion 1.3.5), thede�nition of this 
lass is invariant under the 
hoi
e of a \reasonable and general"model of 
omputation. The asso
iation of eÆ
ient algorithmswith polynomial-time
omputation is grounded in the following two 
onsiderations:� Philosophi
al 
onsideration: Intuitively, eÆ
ient algorithms are those that
an be implemented within a number of steps that is a moderately growingfun
tion of the input length. To allow for reading the entire input, at leastlinear time should be allowed. On the other hand, apparently slow algorithmsand in parti
ular \exhaustive sear
h" algorithms, whi
h take exponentialtime, must be avoided. Furthermore, a good de�nition of the 
lass of eÆ
ientalgorithms should be 
losed under natural 
omposition of algorithms (as wellas be robust with respe
t to reasonable models of 
omputation and withrespe
t to simple 
hanges in the en
oding of problems' instan
es).Choosing polynomials as the set of time-bounds for eÆ
ient algorithms sat-isfy all the foregoing requirements: polynomials 
onstitute a \
losed" set ofmoderately growing fun
tions, where \
losure" means 
losure under addition,multipli
ation and fun
tional 
omposition. These 
losure properties guaran-tee the 
losure of the 
lass of eÆ
ient algorithm under natural 
ompositionof algorithms (as well as its robustness with respe
t to any reasonable andgeneral model of 
omputation). Furthermore, polynomial-time algorithms
an 
ondu
t 
omputations that are apparently simple (although not ne
es-sarily trivial), and on the other hand they do not in
lude algorithms that areapparently ineÆ
ient (like exhaustive sear
h).� Empiri
al 
onsideration: It is 
lear that algorithms that are 
onsidered eÆ-
ient in pra
ti
e have running-time that is bounded by a small polynomial(at least on the inputs that o

ur in pra
ti
e). The question is whether anypolynomial-time algorithm 
an be 
onsidered eÆ
ient in an intuitive sense.The belief, whi
h is supported by past experien
e, is that every natural prob-lem that 
an be solved in polynomial-time also has a \reasonably eÆ
ient"algorithm.Although the asso
iation of eÆ
ient algorithms with polynomial-time 
omputationis 
entral to our exposition, we wish to highlight the fa
t that this asso
iationis not the sour
e of any of the phenomena dis
ussed in this book. That is, thesame phenomena o

ur also when using other reasonable interpretations of the
on
ept of eÆ
ient algorithms. A related 
omment applies to the formulation of
omputational problems that refer only to instan
es of a 
ertain predeterminedtype. Both issues are further dis
ussed in the following advan
ed 
omments.



42 CHAPTER 2. THE P VERSUS NP QUESTIONOn other notions of eÆ
ient algorithms. We stress that the asso
iation ofeÆ
ient algorithms with polynomial-time 
omputation is not essential to most ofthe notions, results and questions of 
omplexity theory. Any other 
lass of algo-rithms that supports the aforementioned 
losure properties and allows to 
ondu
tsome simple 
omputations but not overly 
omplex ones gives rise to a similar the-ory, albeit the formulation of su
h a theory may be more 
ompli
ated. Spe
i�
ally,all results and questions treated in this book are 
on
erned with the relation amongthe 
omplexities of di�erent 
omputational tasks (rather than with providing abso-lute assertions about the 
omplexity of some 
omputational tasks). These relations
an be stated expli
itly, by stating how any upper-bound on the time 
omplexityof one task gets translated to an upper-bound on the time 
omplexity of anothertask.1 Su
h 
umbersome statements will maintain the 
ontents of the standardstatements; they will merely be mu
h more 
ompli
ated. Thus, we follow the tra-dition of fo
using on polynomial-time 
omputations, while stressing that this fo
usis both natural and provides the simplest way of addressing the fundamental issuesunderlying the nature of eÆ
ient 
omputation.On the representation of problem instan
es. As noted in Se
tion 1.2.3,many natural (sear
h and de
ision) problems are 
aptured more naturally by theterminology of promise problems (
f. Se
tion 5.1), where the domain of possible in-stan
es is a subset of f0; 1g� rather than f0; 1g� itself. For example, 
omputationalproblems in graph theory presume some simple en
oding of graphs as strings, butthis en
oding is typi
ally not onto (i.e., not all strings en
ode graphs), and thus notall strings are legitimate instan
es. However, in these 
ases, the set of legitimateinstan
es (e.g., en
odings of graphs) is eÆ
iently re
ognizable (i.e., membershipin it 
an be de
ided in polynomial-time). Thus, arti�
ially extending the set ofinstan
es to the set of all possible strings (and allowing trivial solutions for the
orresponding dummy instan
es) does not 
hange the 
omplexity of the originalproblem. We further dis
uss this issue in Se
tion 5.1.Summary. We asso
iate eÆ
ient 
omputation with polynomial-timealgorithms.2Re
all that this asso
iation is justi�ed by the fa
t that polynomials are moderatelygrowing fun
tions and the set of polynomials is 
losed under operations that 
orre-spond to natural 
omposition of algorithms. Furthermore, the 
lass of polynomial-time algorithms is independent of the spe
i�
 model of 
omputation, as long as thelatter is \reasonable" (
f. the Cobham-Edmonds Thesis).1For example, the NP-
ompleteness of SAT (
f. Theorem 4.6) implies that any algorithmsolving SAT in time T yields an algorithm that fa
tors 
omposite numbers in time T 0 su
h thatT 0(n) = poly(n) � (1 + T (poly(n))). (More generally, if the 
orre
tness of solutions for n-bitinstan
es of some sear
h problem R 
an be veri�ed in time t(n) then the hypothesis regardingSAT implies that solutions (for n-bit instan
es of R) 
an be found in time T 0 su
h that T 0(n) =t(n) � (1 + T (O(t(n))2)).)2Advan
ed 
omment: In this book, we 
onsider deterministi
 (polynomial-time) algorithmsas the basi
 model of eÆ
ient 
omputation. A more liberal view in
ludes also probabilisti
(polynomial-time) algorithms (see [23℄ or [13, Chap. 6℄). We stress that the most important fa
tsand questions that are addressed in the 
urrent book have parallels with respe
t to probabilisti
polynomial-time algorithms.



2.2. THE SEARCH VERSION: FINDING VERSUS CHECKING 432.2 The Sear
h Version: Finding Versus Che
k-ingMu
h of 
omputer s
ien
e is 
on
erned with solving various sear
h problems (as inDe�nition 1.1). Examples of su
h problems in
lude �nding a solution to a system oflinear (or polynomial) equations, �nding a prime fa
tor of a given integer, �nding aspanning tree in a graph, �nding a short traveling salesman tour in a metri
 spa
e,and �nding a s
heduling of jobs to ma
hines su
h that various 
onstraints aresatis�ed. Furthermore, sear
h problems 
orrespond to the daily notion of \solvingproblems" and are thus of natural general interest. In the 
urrent se
tion, we will
onsider the question of whi
h sear
h problems 
an be solved eÆ
iently.EÆ
iently solvable sear
h problems are the subje
t matter of most basi
 
ourseson algorithmi
 design. Examples in
lude sorting, �nding patterns in strings, �nding(rational) solutions to linear systems of (rational) equations, �nding shortest pathsin graphs, and many other graph theoreti
 sear
h problems. In 
ontrast to these
ourses, our fo
us will be on sear
h problems that 
annot be solved eÆ
iently.One type of sear
h problems that 
annot be solved eÆ
iently 
onsists of sear
hproblems for whi
h the solutions are too long in terms of the length of the problem'sinstan
es. In su
h a 
ase, merely typing the solution amounts to an a
tivity that isdeemed ineÆ
ient, and so this 
ase is not really interesting (from a 
omputationalpoint of view). Thus, we fo
us our attention on sear
h problems that are not inthis 
lass. That is, we 
onsider only sear
h problems in whi
h the length of thesolution is bounded by a polynomial in the length of the instan
e. Re
alling thatsear
h problems are asso
iated with binary relations (see De�nition 1.1), we fo
usour attention on polynomially bounded relations.De�nition 2.1 (polynomially bounded relations): We say that R � f0; 1g� �f0; 1g� is polynomially-bounded if there exists a polynomial p su
h that for every(x; y) 2 R it holds that jyj � p(jxj).Re
all that (x; y) 2 R means that y is a solution to the problem instan
e x, whereR represents the problem itself. For example, in the 
ase of �nding a prime fa
torof a given integer, we refer to a relation R su
h that (x; y) 2 R if the integer y is aprime fa
tor of the integer x. Likewise, in the 
ase of �nding a spanning tree in agiven graph, we refer to a relation R su
h that (x; y) 2 R if y is a spanning tree ofthe graph x.For a polynomially bounded relation R it makes sense to ask whether or not,given a problem instan
e x, one 
an eÆ
iently �nd an adequate solution y (i.e.,�nd y su
h that (x; y) 2 R). The polynomial bound on the length of the solution(i.e., y) guarantees that a negative answer is not merely due to the length of therequired solution.2.2.1 The Class P as a Natural Class of Sear
h ProblemsRe
all that we are interested in the 
lass of sear
h problems that 
an be solved ef-�
iently; that is, problems for whi
h solutions (whenever they exist) 
an be found
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iently. Restri
ting our attention to polynomially bounded relations, we identifythe 
orresponding fundamental 
lass of sear
h problems (or binary relations), de-noted PF (standing for \Polynomial-time Find"). (The relationship between PFand the standard de�nition of P will be dis
ussed in Se
tions 2.4 and 3.3.) Thefollowing de�nition refers to the formulation of solving sear
h problems providedin De�nition 1.1.De�nition 2.2 (eÆ
iently solvable sear
h problems):� The sear
h problem of a polynomially bounded relation R � f0; 1g� � f0; 1g�is eÆ
iently solvable if there exists a polynomial time algorithm A su
h that,for every x, it holds that A(x) 2 R(x) def= fy : (x; y) 2 Rg if and only if R(x)is not empty. Furthermore, if R(x) = ; then A(x) = ?, indi
ating that x hasno solution.� We denote by PF the 
lass of sear
h problems that are eÆ
iently solvable(and 
orrespond to polynomially bounded relations). That is, R 2 PF ifR is polynomially bounded and there exists a polynomial time algorithm thatgiven x �nds y su
h that (x; y) 2 R (or asserts that no su
h y exists).Note that R(x) denotes the set of valid solutions for the problem instan
e x. Thus,the solver A is required to �nd a valid solution (i.e., satisfy A(x) 2 R(x)) wheneversu
h a solution exists (i.e., R(x) is not empty). On the other hand, if the instan
ex has no solution (i.e., R(x) = ;) then 
learly A(x) 62 R(x). The extra 
ondition(also made in De�nition 1.1) requires that in this 
ase A(x) = ?. Thus, algorithmA always outputs a 
orre
t answer, whi
h is a valid solution in the 
ase that su
ha solution exists (and provides an indi
ation that no solution exists otherwise).We have de�ned a fundamental 
lass of problems, and we do know of manynatural problems in this 
lass (e.g., solving linear equations over the rationals,�nding shortest paths in graphs, et
.).3 However, these fa
ts per se do not meanthat we are able to 
hara
terize natural problems with respe
t to membership inthis 
lass. For example, we do not know whether or not the problem of �nding theprime fa
tors of a given integer is in this 
lass (i.e., in PF).In fa
t, 
urrently, we do not have a good understanding regarding the a
tual
ontents of the 
lass PF ; that is, we are unable to 
hara
terize many naturalproblems with respe
t to membership in this 
lass. This situation is quite 
ommonin 
omplexity theory, and seems to be a 
onsequen
e of the fa
t that 
omplexity
lasses are de�ned in terms of the \external behavior" (of potential algorithms)rather than in terms of the \internal stru
ture" (of the problem).Turning ba
k to PF , we note that, while it 
ontains many natural sear
h prob-lems, there are also many natural sear
h problems that are not known to be in PF .A natural 
lass 
ontaining a host of su
h problems is presented next.3Additional examples in
lude sorting integers, �nding patterns in strings, �nding a perfe
tmat
hing in a graph, and a variety of other tasks that are typi
ally the fo
us of various 
ourseson algorithms.



2.2. THE SEARCH VERSION: FINDING VERSUS CHECKING 452.2.2 The Class NP as Another Natural Class of Sear
hProblemsNatural sear
h problems have the property that valid solutions (for them) 
an beeÆ
iently re
ognized. That is, given an instan
e x of the problemR and a 
andidatesolution y, one 
an eÆ
iently determine whether or not y is a valid solution for x(with respe
t to the problem R; i.e., whether or not y 2 R(x)). The 
lass of all su
hsear
h problems is a natural 
lass per se, be
ause it is not 
lear why one should 
areabout a solution unless one 
an re
ognize a valid solution on
e given. Furthermore,this 
lass is a natural domain of 
andidates for PF , be
ause the ability to eÆ
ientlyre
ognize a valid solution seems to be a natural (albeit not absolute) prerequisitefor a dis
ussion regarding the 
omplexity of �nding su
h solutions.We restri
t our attention again to polynomially bounded relations, and 
onsiderthe 
lass of relations for whi
h membership of pairs in the relation 
an be de
idedeÆ
iently. We stress that we 
onsider de
iding membership of given pairs of theform (x; y) in a �xed relation R, and not de
iding membership of x in the setSR def= fx : R(x) 6= ;g. (The relationship between the following de�nition and thestandard de�nition of NP will be dis
ussed in Se
tions 2.4{2.6 and 3.3.)De�nition 2.3 (sear
h problems with eÆ
iently 
he
kable solutions):� The sear
h problem of a polynomially bounded relation R � f0; 1g� � f0; 1g�has eÆ
iently 
he
kable solutions if there exists a polynomial time algorithm Asu
h that, for every x and y, it holds that A(x; y) = 1 if and only if (x; y) 2 R.� We denote by PC (standing for \Polynomial-time Che
k") the 
lass of sear
hproblems that 
orrespond to polynomially-bounded binary relations that haveeÆ
iently 
he
kable solutions. That is, R 2 PC if the following two 
onditionshold:1. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determineswhether or not (x; y) 2 R.Note that the algorithm postulated in Item 2 must also handle inputs of the form(x; y) su
h that jyj > p(jxj). Su
h inputs, whi
h are evidently not in R (by Item 1),are easy to handle by merely determining jxj; jyj and p(jxj). Thus, the 
rux ofItem 2 is typi
ally in the 
ase that the input (x; y) satis�es jyj � p(jxj).The 
lass PC 
ontains thousands of natural problems (e.g., �nding a travelingsalesman tour4 of length that does not ex
eed a given threshold, �nding the primefa
torization of a given 
omposite, �nding a truth assignment that satis�es a givenBoolean formula, et
). In ea
h of these natural problems, the 
orre
tness of solu-tions 
an be 
he
ked eÆ
iently (e.g., given a traveling salesman tour it is easy to4In the traveling salesman problem (TSP), the instan
e is a matrix of distan
es between 
itiesand a threshold, and the task is to �nd a tour that passes all 
ities and 
overs a total distan
ethat does not ex
eed the threshold.
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ompute its length and 
he
k whether or not it ex
eeds the given threshold); seeExer
ise 2.4.The 
lass PC is the natural domain for the study of whi
h problems are in PF ,be
ause the ability to eÆ
iently re
ognize a valid solution is a natural prerequisitefor a dis
ussion regarding the 
omplexity of �nding su
h solutions. We warn, how-ever, that PF 
ontains (unnatural) problems that are not in PC (see Exer
ise 2.2).2.2.3 The P Versus NP Question in Terms of Sear
h Prob-lemsIs it the 
ase that every sear
h problem in PC is in PF? That is, is it the 
asethat the ability to eÆ
iently 
he
k the 
orre
tness of solutions, with respe
t tosome (polynomially-bounded) relation R, implies the ability to �nd solutions withrespe
t to R? In other words, if it is easy to 
he
k whether or not a given solutionfor a given instan
e is 
orre
t, then is it also easy to �nd a solution to a giveninstan
e?If PC � PF then this would mean that whenever solutions to given instan
es
an be eÆ
iently 
he
ked (for 
orre
tness) it is also the 
ase that su
h solutions
an be eÆ
iently found (when given only the instan
e). This would mean that allreasonable sear
h problems (i.e., all problems in PC) are easy to solve. Needless tosay, su
h a situation would 
ontradi
t the intuitive feeling (and the daily experien
e)that some reasonable sear
h problems are hard to solve. Furthermore, in su
h a
ase, the notion of \solving a problem" would lose its meaning (be
ause �nding asolution will not be signi�
antly more diÆ
ult than 
he
king its validity).On the other hand, if PC nPF 6= ; then there exist reasonable sear
h problems(i.e., some problems in PC) that are hard to solve. This 
onforms with our basi
intuition by whi
h some reasonable problems are easy to solve whereas others arehard to solve. Furthermore, it re
on�rms the intuitive gap between the notions ofsolving and 
he
king (asserting that at least in some 
ases \solving" is signi�
antlyharder than \
he
king").As an illustration to the foregoing paragraph, 
onsider various puzzles (e.g.,Jigsaw puzzles, mazes, 
rossword puzzles, Sudoku puzzles, et
). In ea
h of thesepuzzles 
he
king the 
orre
tness of a solution is very easy, whereas �nding a solutionis sometimes extremely hard.2.3 The De
ision Version: Proving Versus Veri-fyingAs we shall see in the sequel, the study of sear
h problems (e.g., the PC-vs-PFQuestion) 
an be \redu
ed" to the study of de
ision problems. Sin
e the latterproblems have a less 
umbersome terminology, 
omplexity theory tends to fo
uson them (and maintains its relevan
e to the study of sear
h problems via the afore-mentioned redu
tion). Thus, the study of de
ision problems provides a 
onvenient
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h problems. For example, the study of the 
omplexity of de-
iding the satis�ability of Boolean formulae provides a 
onvenient way for studyingthe 
omplexity of �nding satisfying assignments for su
h formulae.We wish to stress, however, that de
ision problems are interesting and naturalper se (i.e., beyond their role in the study of sear
h problems). After all, somepeople do 
are about the truth, and so determining whether 
ertain 
laims are trueis a natural 
omputational problem. Spe
i�
ally, determining whether a given ob-je
t (e.g., a Boolean formula) has some predetermined property (e.g., is satis�able)
onstitutes an appealing 
omputational problem. The P-vs-NP Question refers tothe 
omplexity of solving su
h problems for a wide and natural 
lass of propertiesasso
iated with the 
lass NP. The latter 
lass refers to properties that have \eÆ-
ient proof systems" allowing for the veri�
ation of the 
laim that a given obje
thas a predetermined property (i.e., is a member of a predetermined set). Jumpingahead, we mention that the P-vs-NP Question refers to the question of whetherproperties that have eÆ
ient proof systems 
an also be de
ided eÆ
iently (withoutproofs). Let us 
larify all these notions.Properties of obje
ts are modeled as subsets of the set of all possible obje
ts(i.e., a property is asso
iated with the set of obje
ts having this property). Forexample, the property of being a prime is asso
iated with the set of prime numbers,and the property of being 
onne
ted (resp., having a Hamiltonian path) is asso-
iated with the set of 
onne
ted (resp., Hamiltonian) graphs. Thus, we fo
us onde
iding membership in sets (as in De�nition 1.2). The standard formulation of theP-vs-NP Question refers to the questionable equality of two natural 
lasses of de
i-sion problems, denoted P and NP (and de�ned in Se
tion 2.3.1 and Se
tion 2.3.2,respe
tively).2.3.1 The Class P as a Natural Class of De
ision ProblemsNeedless to say, we are interested in the 
lass of de
ision problems that are eÆ
ientlysolvable. This 
lass is traditionally denoted P (standing for Polynomial-time). Thefollowing de�nition refers to the formulation of solving de
ision problems (providedin De�nition 1.2).De�nition 2.4 (eÆ
iently solvable de
ision problems):� A de
ision problem S � f0; 1g� is eÆ
iently solvable if there exists a polyno-mial time algorithm A su
h that, for every x, it holds that A(x) = 1 if andonly if x 2 S.� We denote by P the 
lass of de
ision problems that are eÆ
iently solvable.As in the 
ase of De�nition 2.2, we have de�ned a fundamental 
lass of problems,whi
h 
ontains many natural problems (e.g., determining whether or not a givengraph is 
onne
ted), but we do not have a good understanding regarding its a
tual
ontents (i.e., we are unable to 
hara
terize many natural problems with respe
tto membership in this 
lass). In fa
t, there are many natural de
ision problemsthat are not known to reside in P , and a natural 
lass 
ontaining a host of su
h



48 CHAPTER 2. THE P VERSUS NP QUESTIONproblems is presented next. This 
lass of de
ision problems is denoted NP (forreasons that will be
ome evident in Se
tion 2.6).2.3.2 The Class NP and NP-Proof SystemsWe de�ne NP as the 
lass of de
ision problems that have eÆ
iently veri�able proofsystems. This de�nitional path requires 
larifying the notion of a proof system.Loosely speaking, we say that a set S has a proof system if instan
es in S havevalid proofs of membership (i.e., proofs a

epted as valid by the system), whereasinstan
es not in S have no valid proofs. Indeed, proofs are de�ned as stringsthat (when a

ompanying the instan
e) are a

epted by the (eÆ
ient) veri�
ationpro
edure. That is, we say that V is a veri�
ation pro
edure for membership in Sif it satis�es the following two 
onditions:1. Completeness: True assertions have valid proofs (i.e., proofs a

epted as validby V ). Bearing in mind that assertions refer to membership in S, this meansthat for every x 2 S there exists a string y su
h that V (x; y) = 1; that is, Va

epts y as a valid proof for the membership of x in S.2. Soundness: False assertions have no valid proofs. That is, for every x 62 Sand every string y it holds that V (x; y) = 0, whi
h means that V reje
ts y asa proof for the membership of x in S.We note that the soundness 
ondition 
aptures the \se
urity" of the veri�
ationpro
edure, that is, its ability not to be fooled (by anything) into pro
laiming awrong assertion. The 
ompleteness 
ondition 
aptures the \viability" of the veri-�
ation pro
edure, that is, its ability to be 
onvin
ed of any valid assertion (whenpresented with an adequate proof).We stress that, in general, proof systems are de�ned in terms of their veri�
ationpro
edures, whi
h must satisfy adequate 
ompleteness and soundness 
onditions.Our fo
us here is on eÆ
ient veri�
ation pro
edures that utilize relatively shortproofs (i.e., proofs that are of length that is polynomially bounded by the lengthof the 
orresponding assertion).5Let us 
onsider a 
ouple of examples before turning to the a
tual de�nition (ofeÆ
iently veri�able proof systems). Starting with the set of Hamiltonian graphs,we note that this set has a veri�
ation pro
edure that, given a pair (G; �), a

epts ifand only if � is a Hamiltonian path in the graph G. In this 
ase � serves as a proofthat G is Hamiltonian. Note that su
h proofs are relatively short (i.e., the path is5Advan
ed 
omment: In 
ontinuation of Footnote 2, we note that in this book we 
onsiderdeterministi
 (polynomial-time) veri�
ation pro
edures, and 
onsequently the 
ompleteness andsoundness 
onditions that we state here are error-less. In 
ontrast, we mention that various typesof probabilisti
 (polynomial-time) veri�
ation pro
edures as well as probabilisti
 
ompletenessand soundness 
onditions are also of interest (see, e.g., [13, Chap. 9℄). A 
ommon theme thatunderlies both treatments is that eÆ
ient veri�
ation is interpreted as meaning veri�
ation by apro
ess that runs in time that is polynomial in the length of the assertion. In the 
urrent book,we use the equivalent formulation that 
onsiders the running time as a fun
tion of the total lengthof the assertion and the proof, but require that the latter has length that is polynomially boundedby the length of the assertion. (The latter issue is dis
ussed in Se
tion 2.5.)
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tually shorter than the des
ription of the graph) and are easy to verify. Needlessto say, this proof system satis�es the aforementioned 
ompleteness and soundness
onditions. Turning to the 
ase of satis�able Boolean formulae, given a formula �and a truth assignment � , the veri�
ation pro
edure instantiates � (a

ording to�), and a

epts if and only if simplifying the resulting Boolean expression yieldsthe value true. In this 
ase � serves as a proof that � is satis�able, and the allegedproofs are indeed relatively short and easy to verify.De�nition 2.5 (eÆ
iently veri�able proof systems):� A de
ision problem S � f0; 1g� has an eÆ
iently veri�able proof system ifthere exists a polynomial p and a polynomial-time (veri�
ation) algorithm Vsu
h that the following two 
onditions hold:1. Completeness: For every x 2 S, there exists y of length at most p(jxj)su
h that V (x; y) = 1.(Su
h a string y is 
alled an NP-witness for x 2 S.)2. Soundness: For every x 62 S and every y, it holds that V (x; y) = 0.Thus, x 2 S if and only if there exists y of length at most p(jxj) su
h thatV (x; y) = 1.In su
h a 
ase, we say that S has an NP-proof system, and refer to V as itsveri�
ation pro
edure (or as the proof system itself).� We denote by NP the 
lass of de
ision problems that have eÆ
iently veri�ableproof systems.We note that the term NP-witness is 
ommonly used.6 In some 
ases, V (or theset of pairs a

epted by V ) is 
alled a witness relation of S. We stress that the sameset S may have many di�erent NP-proof systems (see Exer
ise 2.5), and that insome 
ases the di�eren
e is not arti�
ial (see Exer
ise 2.6).Typi
ally, for natural de
ision problems in NP , it is easy to show that theseproblems are in NP by using De�nition 2.5. This is done by designing adequateNP-proofs of membership, whi
h are typi
ally quite straightforward, be
ause nat-ural de
ision problems are typi
ally phrased as asking about the existen
e of astru
ture (or an obje
t) that 
an be easily veri�ed as valid. For example, SAT isde�ned as the set of satis�able Boolean formulae, whi
h means asking about theexisten
e of satisfying assignments. Indeed, we 
an eÆ
iently 
he
k whether a givenassignment satis�es a given formula, whi
h means that we have (a veri�
ation pro-
edure for) an NP-proof system for SAT. Likewise, Hamiltonian graphs are de�nedas graphs 
ontaining simple paths that passes through all verti
es.Note that for any sear
h problem R in PC, the set of instan
es that have a so-lution with respe
t to R (i.e., the set SR def= fx : R(x) 6= ;g) is in NP . Spe
i�
ally,6In most 
ases this is done without expli
itly de�ning V , whi
h is understood from the 
ontextand/or by 
ommon pra
ti
e. In many texts, V is not 
alled a proof system (nor a veri�
ationpro
edure of su
h a system), although this term is most adequate.
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onsider the veri�
ation pro
edure V su
h that V (x; y) def= 1 if andonly if (x; y) 2R, and note that the latter 
ondition 
an be de
ided in poly(jxj)-time. Thus, any sear
h problem in PC 
an be viewed as a problem of sear
hingfor (eÆ
iently veri�able) proofs (i.e., NP-witnesses for membership in the set ofinstan
es having solutions). On the other hand, any NP-proof system gives rise toa natural sear
h problem in PC, that is, the problem of sear
hing for a valid proof(i.e., an NP-witness) for the given instan
e. (Spe
i�
ally, the veri�
ation pro
edureV yields the sear
h problem that 
orresponds to R = f(x; y) : V (x; y)=1g.) Thus,S 2 NP if and only if there exists R 2 PC su
h that S = fx : R(x) 6= ;g.The last paragraph suggests another easy way of showing that natural de
isionproblems are in NP : just thinking of the 
orresponding natural sear
h problem.The point is that natural de
ision problems (in NP) are phrased as referring towhether a solution exists for the 
orresponding natural sear
h problem. (For exam-ple, in the 
ase of SAT, the question is whether there exists a satisfying assignmentto given Boolean formula, and the 
orresponding sear
h problem is �nding su
han assignment.) In all these 
ases, it is easy to 
he
k the 
orre
tness of solutions;that is, the 
orresponding sear
h problem is in PC, whi
h implies that the de
isionproblem is in NP .Observe that P � NP holds: A veri�
ation pro
edure for 
laims of member-ship in a set S 2 P may just ignore the alleged NP-witness and run the de
i-sion pro
edure that is guaranteed by the hypothesis S 2 P ; that is, we may letV (x; y) = A(x), where A is the aforementioned de
ision pro
edure. Indeed, thelatter veri�
ation pro
edure is quite an abuse of the term (be
ause it makes nouse of the proof); however, it is a legitimate one. As we shall shortly see, theP-vs-NP Question refers to the question of whether su
h proof-oblivious veri�
a-tion pro
edures 
an be used for every set that has some eÆ
iently veri�able proofsystem. (Indeed, given that P � NP holds, the P-vs-NP Question is whether ornot NP � P .)2.3.3 The P Versus NP Question in Terms of De
ision Prob-lemsIs it the 
ase that NP-proofs are useless? That is, is it the 
ase that for everyeÆ
iently veri�able proof system one 
an easily determine the validity of asser-tions without looking at the proof? If that were the 
ase, then proofs would bemeaningless, be
ause they would o�er no fundamental advantage over dire
tly de-termining the validity of the assertion. The 
onje
ture P 6= NP asserts that proofsare useful: there exists sets in NP that 
annot be de
ided by a polynomial-timealgorithm, whi
h means that for these sets obtaining a proof of membership (forsome instan
es) is useful (be
ause we 
annot eÆ
iently determine membership inthese sets by ourselves).In the foregoing paragraph we viewed P 6= NP as asserting the advantage ofobtaining proofs over de
iding the truth by ourselves. That is, P 6= NP assertsthat (at least in some 
ases) verifying is easier than de
iding. A slightly di�erentperspe
tive is that P 6= NP asserts that �nding proofs is harder than verifying
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ase be
ause, for any set S that has an NP-proof system,the ability to eÆ
iently �nd proofs of membership with respe
t to this system (i.e.,�nding an NP-witness of membership in S for any given x 2 S), yields the abilityto de
ide membership in S. Thus, for S 2 NP nP , it must be harder to �nd proofsof membership in S than to verify the validity of su
h proofs (whi
h 
an be donein polynomial-time).2.4 Equivalen
e of the two FormulationsAs hinted several times, the two formulations of the P-vs-NP Questions are equiva-lent. That is, every sear
h problem having eÆ
iently 
he
kable solutions is solvablein polynomial time (i.e., PC � PF) if and only if membership in any set that hasan NP-proof system 
an be de
ided in polynomial time (i.e., NP � P). Re
allingthat P � NP (whereas PF is not 
ontained in PC (Exer
ise 2.2)), we prove thefollowing.Theorem 2.6 PC � PF if and only if P = NP.Proof: Suppose, on the one hand, that the in
lusion holds for the sear
h version(i.e., PC � PF). We will show that, for any set in NP , this hypothesis impliesthe existen
e of an eÆ
ient algorithm for �nding NP-witnesses for this set, whi
hin turn implies that this set is in P . Spe
i�
ally, let S be an arbitrary set in NP ,and V be the 
orresponding veri�
ation pro
edure (i.e., satisfying the 
onditionsin De�nition 2.5). Without loss of generality, there exists a polynomial p su
h thatV (x; y) = 1 holds only if jyj � p(jxj). Considering the (polynomially bounded)relation R def= f(x; y) : V (x; y) = 1g ; (2.1)note that R is in PC (sin
e V de
ides membership in R). Using the hypothesisPC � PF it follows that the sear
h problem of R is solvable in polynomial time.Denoting by A the polynomial-time algorithm solving the sear
h problem of R, wede
ide membership in S in the obvious way: That is, on input x, we output 1 ifand only if A(x) 6= ?. Note that A(x) 6= ? holds if and only if A(x) 2 R(x), whi
hin turn o

urs if and only if R(x) 6= ; (equiv., x 2 S).7 Thus, S 2 P . Sin
e westarted with an arbitrary set in NP , it follows NP � P (and NP = P).Suppose, on the other hand, that NP = P . We will show that, for anysear
h problem in PC, this hypothesis implies an eÆ
ient algorithm for determin-ing whether a given string y0 is a pre�x of some solution to a given instan
e x ofthis sear
h problem, whi
h in turn yields an eÆ
ient algorithm for �nding solutions(for this sear
h problem). Spe
i�
ally, let R be an arbitrary sear
h problem in PC.Considering the set S0R def= fhx; y0i : 9y00 s.t. (x; y0y00)2Rg ; (2.2)7Indeed, an alternative de
ision pro
edure outputs 1 if and only if (x;A(x)) 2 R, whi
h in turnholds if and only if V (x;A(x)) = 1. The latter alternative appears as Alternative 2 in Figure 2.1.



52 CHAPTER 2. THE P VERSUS NP QUESTIONInput: xSubroutine: a solver A for the sear
h problem of R.Alternative 1: Output 1 if A(x) 6= ? and 0 otherwise.Alternative 2: Output V (x;A(x)).Figure 2.1: Solving S by using a solver for R.note that S0R is in NP (be
ause R 2 PC). Using the hypothesis NP � P it followsthat S0R is in P . This yields a polynomial-time algorithm for solving the sear
hproblem of R, by extending a pre�x of a potential solution bit-by-bit while usingthe de
ision pro
edure to determine whether or not the 
urrent pre�x is valid. Thatis, on input x, we �rst 
he
k whether or not hx; �i 2 S0R and output ? (indi
atingR(x) = ;) in 
ase hx; �i 62 S0R. Otherwise, hx; �i 2 S0R, and we set y0  �. Next, wepro
eed in iterations, maintaining the invariant that hx; y0i 2 S0R. In ea
h iteration,we set y0  y00 if hx; y00i 2 S0R and y0  y01 if hx; y01i 2 S0R. If none of these
onditions hold (whi
h happens after at most polynomially many iterations) thenthe 
urrent y0 satis�es (x; y0) 2 R. (An alternative termination 
ondition amountsto 
he
king expli
itly whether the 
urrent y0 satis�es (x; y0) 2 R; see Figure 2.2.)Thus, for every x 2 SR (i.e., x su
h that R(x) 6= ;), we output some string in R(x).It follows that, for an arbitrary R 2 PC, we have R 2 PF , and hen
e PC � PF .Input: x(Che
king whether solutions exists)If hx; �i 62 S0R then halt with output ?.(Comment: hx; �i 62 S0R if and only if R(x) = ;.)(Finding a solution (i.e., a string in R(x) 6= ;))Initialize y0  �.While (x; y0) 62 R repeatIf hx; y00i 2 S0R then y0  y00 else y0  y01.(Comment: Sin
e hx; y0i 2 S0R but (x; y0) 62 R,either hx; y00i or hx; y01i must be in S0R.)Output y0 (whi
h is indeed in R(x)).Figure 2.2: Solving R by using a solver for S0R.Re
e
tion: The �rst part of the proof of Theorem 2.6 asso
iates with ea
h set SinNP a natural relationR (in PC). Spe
i�
ally, R (as de�ned in Eq. (2.1)) 
onsistsof all pairs (x; y) su
h that y is an NP-witness for membership of x in S. Thus,the sear
h problem of R 
onsists of �nding su
h an NP-witness, when given x as
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alled the witness relation of S, and solving the sear
h problemof R allows to de
ide membership in S. Thus, R 2 PC � PF implies S 2 P . Inthe se
ond part of the proof, we asso
iate with ea
h R 2 PC a set S0R (in NP),but S0R is more \expressive" than the set SR def= fx : 9y s.t. (x; y) 2 Rg (whi
his the natural NP-set arising from R). Spe
i�
ally, S0R (as de�ned in Eq. (2.2))
onsists of strings that en
ode pairs (x; y0) su
h that y0 is a pre�x of some stringin R(x) = fy : (x; y) 2 Rg. The key observation is that de
iding membership inS0R allows to solve the sear
h problem of R; that is, S0R 2 P implies R 2 PF .Con
lusion: Theorem 2.6 justi�es the traditional fo
us on the de
ision versionof the P-vs-NP Question. Indeed, given that both formulations of the question areequivalent, we may just study the less 
umbersome one.2.5 Te
hni
al Comments Regarding NPThe following 
omments are rather te
hni
al, and only the �rst one is used in therest of this book.A simplifying 
onvention. We shall often assume that the length of solutionsfor any sear
h problem in PC (resp., NP-witnesses for a set in NP) is determined(rather than upper-bounded) by the length of the instan
e. That is, for any R 2 PC(resp., veri�
ation pro
edure V for a set in NP), we shall assume that, for some�xed polynomial p, if (x; y) 2 R (resp., V (x; y) = 1) then jyj = p(jxj) rather thanjyj � p(jxj). This assumption 
an be justi�ed by trivial modi�
ation of R (resp.,V ); see Exer
ise 2.7.Solving problems in NP via exhaustive sear
h. Every problem in PC (resp.,NP) 
an be solved in exponential-time (i.e., time exp(poly(jxj)) for input x). This
an be done by an exhaustive sear
h among all possible 
andidate solutions (resp.,all possible 
andidate NP-witnesses). Thus, NP � EXP , where EXP denotethe 
lass of de
ision problems that 
an be solved in exponential-time (i.e., timeexp(poly(jxj)) for input x).An alternative formulation. Re
all that when de�ning PC (resp., NP) wehave expli
itly 
on�ned our attention to sear
h problems of polynomially boundedrelations (resp., NP-witnesses of polynomial length). In this 
ase a polynomial-timealgorithm that de
ides membership of a given pair (x; y) in a relationR 2 PC (resp.,
he
k the validity of an NP-witness y for membership of x in S 2 NP) runs intime that is polynomial in the length of x. This observation leads to an alternativeformulation of the 
lass PC (resp., NP), in whi
h one allows solutions (resp., NP-witnesses) of arbitrary length but requires that the 
orresponding algorithms runin time that is polynomial in the length of x rather than polynomial in the length of(x; y). That is, by the alternative formulation a binary relation R is in PC (resp.,S 2 NP) if membership of (x; y) in R 
an be de
ided in time that is polynomial in
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ation of a 
andidate NP-witness y for membershipof x in S is required to be performed in poly(jxj)-time). Although this alternativeformulation does not upper-bound the length of the solutions (resp., NP-witnesses),su
h an upper-bound e�e
tively follows in the sense that it suÆ
es to inspe
t apoly(jxj)-bit long pre�x of the solution (resp., NP-witness) in order to determineits validity. Indeed, su
h a pre�x is as good as the full-length solution (resp., NP-witness) itself. Thus, the alternative formulation is essentially equivalent to theoriginal one.2.6 The Traditional De�nition of NPUnfortunately, De�nition 2.5 is not the 
ommonly used de�nition of NP . Instead,traditionally, NP is de�ned as the 
lass of sets that 
an be de
ided by a �
ti-tious devi
e 
alled a non-deterministi
 polynomial-time ma
hine (whi
h explainsthe sour
e of the notation NP). The reason that this 
lass of �
titious devi
es isinteresting is due to the fa
t that it 
aptures (indire
tly) the de�nition of NP-proofsystems (i.e., De�nition 2.5). Sin
e the reader may 
ome a
ross the traditionalde�nition of NP when studying di�erent works, we feel obliged to provide thetraditional de�nition as well as a proof of its equivalen
e to De�nition 2.5.De�nition 2.7 (non-deterministi
 polynomial-time Turing ma
hines):� A non-deterministi
 Turing ma
hine is de�ne as in Se
tion 1.3.2, ex
ept thatthe transition fun
tion maps symbol-state pairs to subsets of triples (ratherthan to a single triple) in ��Q�f�1; 0;+1g. A

ordingly, the 
on�gurationfollowing a spe
i�
 instantaneous 
on�guration may be one of several possi-bilities, ea
h determine by a di�erent possible triple. Thus, the 
omputationsof a non-deterministi
 ma
hine on a �xed input may result in di�erent outputs.In the 
ontext of de
ision problems one typi
ally 
onsiders the question ofwhether or not there exists a 
omputation that starting with a �xed inputhalts with output 1.{ We say that the non-deterministi
 ma
hine M a

ept x if there exists a
omputation of M , on input x, that halts with output 1.{ The set a

epted by a non-deterministi
 ma
hine is the set of inputs thatare a

epted by the ma
hine.� A non-deterministi
 polynomial-time Turing ma
hine is de�ned as one thatmakes a number of steps that is polynomial in the length of the input. Tra-ditionally, NP is de�ned as the 
lass of sets that are ea
h a

epted by somenon-deterministi
 polynomial-time Turing ma
hine.We stress that De�nition 2.7 refers to a �
titious model of 
omputation. Spe
if-i
ally, De�nition 2.7 makes no referen
e to the number (or fra
tion) of possible
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omputations of the ma
hine (on a spe
i�
 input) that yield a spe
i�
 output.8De�nition 2.7 only refers to whether or not 
omputations leading to a 
ertain out-put exist (for a spe
i�
 input). The question of what does the mere existen
e ofsu
h possible 
omputations mean (in terms of real-life) is not addressed, be
ausethe model of a non-deterministi
 ma
hine is not meant to provide a reasonablemodel of a (real-life) 
omputer. The model is meant to 
apture something 
om-pletely di�erent (i.e., it is meant to provide an \elegant" de�nition of the 
lassNP ,while relying on the fa
t that De�nition 2.7 is equivalent to De�nition 2.5).9Note that, unlike other de�nitions in this book, De�nition 2.7 makes expli
itreferen
e to a spe
i�
 model of 
omputation. Still, a similar (non-deterministi
)extension 
an be applied to other models of 
omputation by 
onsidering adequatenon-deterministi
 
omputation rules. Also note that, without loss of generality, wemay assume that the transition fun
tion maps ea
h possible symbol-state pair toexa
tly two triples (see Exer
ise 2.11).Theorem 2.8 De�nition 2.5 is equivalent to De�nition 2.7. That is, a set S hasan NP-proof system if and only if there exists a non-deterministi
 polynomial-timema
hine that a

epts S.Proof: Suppose, on the one hand, that the set S has an NP-proof system, and letus denote the 
orresponding veri�
ation pro
edure by V . Let p be a polynomial thatdetermines the length of NP-witnesses with respe
t to V (i.e., V (x; y) = 1 impliesjyj = p(jxj)). Consider the following non-deterministi
 polynomial-time ma
hine,denoted M , that (on input x) �rst produ
es non-deterministi
ally a potential NP-witness (i.e., y 2 f0; 1gp(jxj)) and then a

epts if and only if this witness is indeedvalid (i.e., V (x; y) = 1). That is, on input x, ma
hine M pro
eeds as follows:1. Makes m = p(jxj) non-deterministi
 steps, produ
ing (non-deterministi
ally)a string y 2 f0; 1gm.2. Emulates V (x; y) and outputs whatever it does.We stress that the non-deterministi
 steps (taken in Step 1) may result in produ
ingany m-bit string y. Re
all that x 2 S if and only if there exists y 2 f0; 1gp(jxj) su
hthat V (x; y) = 1. It follows that x 2 S if and only if there exists a 
omputationof M on input x that halts with output 1 (and thus x 2 S if and only if Ma

epts x). This implies that the set a

epted by M equals S, and sin
e M is anon-deterministi
 polynomial-time ma
hine it follows that S is in NP a

ordingto De�nition 2.7.Suppose, on the other hand, that there exists a non-deterministi
 polynomial-time ma
hineM that a

epts the set S, and let p be a polynomial upper-bounding8Advan
ed 
omment: In 
ontrast, the de�nition of a probabilisti
 ma
hine refers to thisnumber (or, equivalently, to the probability that the ma
hine produ
es a spe
i�
 output, when theprobability is taken (essentially) uniformly over all possible 
omputations). Thus, a probabilisti
ma
hine refers to a natural model of 
omputation that 
an be realized provided we 
an equip thema
hine with a sour
e of randomness. For details, see [13, Se
. 6.1℄.9Whether or not De�nition 2.7 is elegant is a matter of taste. For sure, many students �ndDe�nition 2.7 quite 
onfusing; see further dis
ussion in the tea
hing notes to this 
hapter.
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omplexity of M . Consider the following deterministi
 polynomial-timema
hine, denoted M 0, that on input (x; y) views y as a des
ription of the non-deterministi
 
hoi
es of ma
hine M on input x, and emulates the 
orresponding
omputation. That is, on input (x; y), where y has length m = p(jxj), ma
hineM 0emulates a 
omputation of M on input x while using the bits of y to determinethe non-deterministi
 steps of M . Spe
i�
ally, the ith step of M on input x isdetermined by the ith bit of y su
h that the ith step ofM follows the �rst possibility(in the transition fun
tion) if and only if ith bit of y equals 1. Note that x 2 S ifand only if there exists y of length p(jxj) su
h that M 0(x; y) = 1. Thus, M 0 givesrise to an NP-proof system for S, and so S is in NP a

ording to De�nition 2.5.2.7 In Support of P Being Di�erent from NPIntuition and 
on
epts 
onstitute... the elements of all our knowl-edge, so that neither 
on
epts without an intuition in some way
orresponding to them, nor intuition without 
on
epts, 
an yieldknowledge. Immanuel Kant (1724{1804)Kant speaks of the importan
e of both philosophi
al 
onsiderations (referred toas \
on
epts") and empiri
al 
onsiderations (referred to as \intuition") to s
ien
e(referred to as (sound) \knowledge"). We shall indeed follow his lead.It is widely believed that P is di�erent than NP; that is, that PC 
ontainssear
h problems that are not eÆ
iently solvable, and that there are NP-proof sys-tems for sets that 
annot be de
ided eÆ
iently. This belief is supported by bothphilosophi
al and empiri
al 
onsiderations.Philosophi
al 
onsiderations: Both formulations of the P-vs-NP Question re-fer to natural questions about whi
h we have strong 
on
eptions. The notion ofsolving a (sear
h) problem seems to presume that, at least in some 
ases (or in gen-eral), �nding a solution is signi�
antly harder than 
he
king whether a presentedsolution is 
orre
t. This translates to PC nPF 6= ;. Likewise, the notion of a proofseems to presume that, at least in some 
ases (or in general), the proof is useful indetermining the validity of the assertion; that is, that verifying the validity of anassertion may be made signi�
antly easier when provided with a proof. This trans-lates to P 6= NP , whi
h also implies that it is signi�
antly harder to �nd proofsthan to verify their 
orre
tness, whi
h again 
oin
ides with the daily experien
e ofresear
hers and students.Empiri
al 
onsiderations: The 
lass NP (or rather PC) 
ontains thousandsof di�erent problems for whi
h no eÆ
ient solving pro
edure is known. Many ofthese problems have arisen in vastly di�erent dis
iplines, and were the subje
t ofextensive resear
h of numerous di�erent 
ommunities of s
ientists and engineers.



2.8. PHILOSOPHICAL MEDITATIONS 57These essentially independent studies have all failed to provide eÆ
ient algorithmsfor solving these problems, a failure that is extremely hard to attribute to sheer
oin
iden
e or to a strike of bad lu
k.The 
ommon belief (or 
onje
ture) that P 6= NP is indeed very appealing andintuitive. The fa
t that this natural 
onje
ture is unsettled seems to be one ofthe sour
es of frustration of 
omplexity theory. The author's opinion, however, isthat this feeling of frustration is not in pla
e. In 
ontrast, the fa
t that 
omplexitytheory evolves around natural and simply-stated questions that are so diÆ
ult toresolve makes its study very ex
iting.Throughout the rest of this book, we will adopt the 
onje
ture that P is di�erentfrom NP. In few pla
es, we will expli
itly use this 
onje
ture, whereas in other pla
eswe will present results that are interesting (if and) only if P 6= NP (e.g., the entiretheory of NP-
ompleteness be
omes uninteresting if P = NP).2.8 Philosophi
al MeditationsWhoever does not value preo

upation with thoughts, 
an skip this 
hapter.Robert Musil, The Man without Qualities, Chap. 28The inherent limitations of our s
ienti�
 knowledge were arti
ulated by Kant, whoargued that our knowledge 
annot trans
end our way of understanding. The \waysof understanding" are predetermined; they pre
ede any knowledge a
quisition andare the pre
ondition to su
h a
quisition. In a sense, Wittgenstein re�ned theanalysis, arguing that knowledge must be formulated in a language, and the lattermust be subje
t to a (sound) me
hanism of assigning meaning. Thus, the inherentlimitations of any possible \meaning assigning me
hanism" impose limitations onwhat 
an be (meaningfully) said.Both philosophers spoke of the relation between the world and our thoughts.They took for granted (or rather assumed) that, in the domain of well-formulatedthoughts (e.g., logi
), every valid 
on
lusion 
an be e�e
tively rea
hed (i.e., everyvalid assertion 
an be e�e
tively proved). Indeed, this naive assumption was refutedby G�odel. In a similar vain, Turing's work asserts that there exist well-de�nedproblems that 
annot be solved by well-de�ned methods.Turing's assertion trans
ends the philosophi
al 
onsiderations of the �rst para-graph: It asserts that the limitations of our ability are not only due to the gapbetween the \world as is" and our model of it. In 
ontrast, Turing's assertionrefers to inherent limitations on any rational pro
ess even when this pro
ess isapplied to well-formulated information and is aimed at a well-formulated goal. In-deed, in 
ontrast to naive presumptions, not every well-formulated problem 
an be(e�e
tively) solved.The P 6= NP 
onje
ture goes even beyond Turing's assertion. It limits thedomain of the dis
ussion to \fair" problems; that is, to problems for whi
h validsolutions 
an be eÆ
iently re
ognized as su
h. Indeed, there is something feigned inproblems for whi
h one 
annot eÆ
iently re
ognize valid solutions. Avoiding su
h



58 CHAPTER 2. THE P VERSUS NP QUESTIONfeigned and/or unfair problems, P 6= NP means that (even with this limitation)there exist problems that are inherently unsolvable in the sense that they 
annotbe solved eÆ
iently. That is, in 
ontrast to naive presumptions, not every problemthat refers to eÆ
iently re
ognizable solutions 
an be solved eÆ
iently. In fa
t, thegap between the 
omplexity of re
ognizing solutions and the 
omplexity of �ndingthem vou
hes for the meaningfulness of the notion of a problem.Exer
isesExer
ise 2.1 (a quiz)1. What are the justi�
ations for asso
iating eÆ
ient 
omputation with polynomial-time algorithms?2. What are the 
lasses PF and PC?3. What are the 
lasses P and NP?4. List a few 
omputational problems in PF (resp., P).5. Going beyond the list of the previous question, list a few problems in PC(resp., NP).6. What does PC 6� PF mean in intuitive terms?7. What does P 6= NP mean in intuitive terms?8. Is it the 
ase that PC 6� PF if and only if P 6= NP?9. What are the justi�
ations for believing that P 6= NP?Exer
ise 2.2 (PF 
ontains problems that are not in PC) Show that PF 
on-tains some (unnatural) problems that are not in PC.Guideline: Consider the relation R = f(x; 1) : x 2 f0; 1g�g [ f(x; 0) : x 2 Sg, where S issome unde
idable set. Note that R is the disjoint union of two binary relations, denotedR1 and R2, where R1 is in PF whereas R2 is not in PC. Furthermore, for every x it holdsthat R1(x) 6= ;.Exer
ise 2.3 In 
ontrast to Exer
ise 2.2, show that if R 2 PF and ea
h instan
eof R has at most one solution (i.e., jR(x)j � 1 for every x), then R 2 PC.Exer
ise 2.4 Show that the following sear
h problems are in PC.1. Finding a traveling salesman tour of length that does not ex
eed a giventhreshold (when also given a matrix of distan
es between 
ities);2. Finding the prime fa
torization of a given 
omposite;3. Solving a given system of quadrati
 equations over a �nite �eld;4. Finding a truth assignment that satis�es a given Boolean formula.(For Item 2, use the fa
t that primality 
an be tested in polynomial-time.)



2.8. PHILOSOPHICAL MEDITATIONS 59Exer
ise 2.5 Show that any S 2 NP has many di�erent NP-proof systems (i.e.,veri�
ation pro
edures V1; V2; ::: su
h that Vi(x; y) = 1 does not imply Vj(x; y) = 1for i 6= j).Guideline: For V and p be as in De�nition 2.5, de�ne Vi(x; y) = 1 if jyj = p(jxj)+ i andthere exists a pre�x y0 of y su
h that V (x; y0) = 1.Exer
ise 2.6 Relying on the fa
t that primality is de
idable in polynomial-timeand assuming that there is no polynomial-time fa
torization algorithm, present two\natural but fundamentally di�erent" NP-proof systems for the set of 
ompositenumbers.Guideline: Consider the following veri�
ation pro
edures V1 and V2 for the set of 
om-posite numbers. Let V1(n; y) = 1 if and only if y = n and n is not a prime, andV2(n;m) = 1 if and only if m is a non-trivial divisor of n. Show that valid proofs withrespe
t to V1 are easy to �nd, whereas valid proofs with respe
t to V2 are hard to �nd.Exer
ise 2.7 Show that for every R 2 PC there exists R0 2 PC and a polynomialp su
h that for every x it holds that R0(x) � f0; 1gp(jxj), and R0 2 PF if and onlyif R 2 PF . Formulate and prove a similar fa
t for NP-proof systems.Guideline: Note that for every R 2 PC there exists a polynomial p su
h that for every(x; y) 2 R it holds that jyj < p(jxj). De�ne R0 su
h that R0(x) def= fy01p(jxj)�(jyj+1) :(x; y) 2 Rg, and prove that R0 2 PF if and only if R 2 PF .Exer
ise 2.8 In 
ontinuation of Exer
ise 2.7, show that for every set S 2 NP andevery suÆ
iently large polynomial p there exists an NP-proof system V su
h thatall NP-witnesses to x 2 S are of length p(jxj) (i.e., if V (x; y) = 1 then jyj = p(jxj)).Guideline: Starting with an NP-proof system V0 for S and a polynomial p0 su
h thatV0(x; y) = 1 implies jyj � p0(jxj), for every polynomial p > p0, de�ne V su
h thatV (x; y001p(jxj)�(jy0j+1)) = 1 if V0(x; y0) = 1 and V (x; y) = 0 otherwise.Exer
ise 2.9 In 
ontinuation of Exer
ise 2.8, show that for every set S 2 NPand every bije
tion ` : N ! N su
h that both ` and `�1 are upper-bounded bypolynomials, there exists set S0 2 NP su
h that (1) S0 2 P if and only if S0 2 P ,and (2) there exists an NP-proof system V 0 su
h that all NP-witnesses to x 2 S0are of length `(jxj).Guideline: For an adequate bije
tive polynomial p0, 
onsider S0 def= fx0p0(jxj)�jxjg andthe NP-proof system V 0 su
h that V 0(x0p0(jxj)�jxj; y) = V (x; y) and V 0(x0; y) = 0 ifjx0j 62 fp0(n) : n 2 Ng. Now, use Exer
ise 2.8.Exer
ise 2.10 Show that for every S 2 NP there exists an NP-proof system Vsu
h that the witness sets Wx def= fy : V (x; y) = 1g are disjoint.Guideline: Starting with an NP-proof system V0 for S, 
onsider V su
h that V (x; y) = 1if y = hx; y0i and V0(x; y0) = 1 (and V (x; y) = 0 otherwise).



60 CHAPTER 2. THE P VERSUS NP QUESTIONExer
ise 2.11 Regarding De�nition 2.7, show that if S is a

epted by some non-deterministi
ma
hine of time 
omplexity t then it is a

epted by a non-deterministi
ma
hine of time 
omplexityO(t) that has a transition fun
tion that maps ea
h pos-sible symbol-state pair to exa
tly two triples.Guideline: First note that a k-way (non-deterministi
) 
hoi
e 
an be emulated by log2 k(non-deterministi
) binary 
hoi
es. (Indeed this requires 
reating O(k) new states forea
h su
h k-way 
hoi
e.) Also note that one 
an introdu
e �
titious (non-deterministi
)
hoi
es by dupli
ating the set of states of the ma
hine.



Chapter 3Polynomial-time Redu
tionsOverview: Redu
tions are pro
edures that use \fun
tionally spe
i�ed"subroutines. That is, the fun
tionality of the subroutine is spe
i�ed,but its operation remains unspe
i�ed and its running-time is 
ountedat unit 
ost. Thus, a redu
tion solves one 
omputational problem byusing ora
le (or subroutine) 
alls to another 
omputational problem.Analogously to our fo
us on eÆ
ient (i.e., polynomial-time) algorithms,here we fo
us on eÆ
ient (i.e., polynomial-time) redu
tions.We present a general notion of (polynomial-time) redu
tions among
omputational problems, and view the notion of a \Karp-redu
tion"(a.k.a. \many-to-one redu
tion") as an important spe
ial 
ase that suf-�
es (and is more 
onvenient) in many 
ases. Redu
tions play a keyrole in the theory of NP-
ompleteness, whi
h is the topi
 of Chapter 4.In the 
urrent 
hapter, we stress the fundamental nature of the no-tion of a redu
tion per se and highlight two spe
i�
 appli
ations: re-du
ing sear
h problems and optimization problems to de
ision prob-lems. Furthermore, in these appli
ations, it will be important to usethe general notion of a redu
tion (i.e., \Cook-redu
tion" rather than\Karp-redu
tion"). We 
omment that the aforementioned redu
tionsof sear
h and optimization problems to de
ision problems, further jus-tify the 
ommon fo
us on the study of the de
ision problems.Tea
hing NotesWe assume that many students have heard of redu
tions, but we fear that most haveobtained a 
on
eptually distorted view of their fundamental nature. In parti
ular,we fear that redu
tions are identi�ed with the theory of NP-
ompleteness, whileredu
tions have numerous other important appli
ations that have little to do withNP-
ompleteness (or 
ompleteness with respe
t to any other 
lass). In parti
ular,61



62 CHAPTER 3. POLYNOMIAL-TIME REDUCTIONSwe believe that it is important to show that (natural) sear
h and optimizationproblems 
an be redu
ed to (natural) de
ision problems.On our terminology. We prefer the terms Cook-redu
tions and Karp-redu
tionsover the terms \general (polynomial-time) redu
tions" and \many-to-one (polynomial-time) redu
tions". Also, we use the term self-redu
ibility in a non-traditional way;that is, we say that the sear
h problem of R is self-redu
ible if it 
an be redu
edto the de
ision problem of SR = fx : 9y s.t. (x; y)2Rg, whereas traditionally self-redu
ibility refers to de
ision problems and 
oin
ides with our notion of downwardsself-redu
ible (presented in Exer
ise 3.13).A minor warning. In Se
tion 3.3.2, whi
h is an advan
ed se
tion, we assumethat the students have heard of NP-
ompleteness. A
tually, we only need thestudents to know the de�nition of NP-
ompleteness. Yet, the tea
her may preferpostponing the presentation of this material to Se
tion 4.1 (or even to a later stage).3.1 The General Notion of a Redu
tionRedu
tions are pro
edures that use \fun
tionally spe
i�ed" subroutines. That is,the fun
tionality of the subroutine is spe
i�ed, but its operation remains unspe
i�edand its running-time is 
ounted at unit 
ost. Analogously to algorithms, whi
hare modeled by Turing ma
hines, redu
tions 
an be modeled as ora
le (Turing)ma
hines. A redu
tion solves one 
omputational problem (whi
h may be eithera sear
h problem or a de
ision problem) by using ora
le (or subroutine) 
alls toanother 
omputational problem (whi
h again may be either a sear
h or a de
isionproblem).3.1.1 The A
tual FormulationThe notion of a general algorithmi
 redu
tion was dis
ussed in Se
tion 1.3.3 andformally de�ned in Se
tion 1.3.6. These redu
tions, 
alled Turing-redu
tions andmodeled by ora
le ma
hines (
f. Se
tion 1.3.6), made no referen
e to the time
omplexity of the main algorithm (i.e., the ora
le ma
hine). Here, we fo
us oneÆ
ient (i.e., polynomial-time) redu
tions, whi
h are often 
alled Cook redu
tions.That is, we 
onsider ora
le ma
hines (as in De�nition 1.11) that run in time thatis polynomial in the length of their input. We stress that the running time of anora
le ma
hine is the number of steps made during its (own) 
omputation, andthat the ora
le's reply on ea
h query is obtained in a single step.The key property of eÆ
ient redu
tions is that they allow for the transformationof eÆ
ient implementations of the subroutine (or the ora
le) into eÆ
ient imple-mentations of the task redu
ed to it. That is, as we shall see, if one problem isCook-redu
ible to another problem and the latter is polynomial-time solvable thenso is the former.



3.1. THE GENERAL NOTION OF A REDUCTION 63The most popular 
ase is that of redu
ing de
ision problems to de
ision prob-lems, but we will also expli
itly 
onsider redu
ing sear
h problems to sear
h prob-lems and redu
ing sear
h problems to de
ision problems. Note that when redu
ingto a de
ision problem, the ora
le is determined as the unique valid solver of the de-
ision problem (sin
e the fun
tion f : f0; 1g� ! f0; 1g solves the de
ision problemof membership in S if, for every x, it holds that f(x) = 1 if x 2 S and f(x) = 0 oth-erwise). In 
ontrast, when redu
ing to a sear
h problem the ora
le is not uniquelydetermined, be
ause there may be many di�erent valid solvers (sin
e the fun
tionf : f0; 1g� ! f0; 1g� [ f?g solves the sear
h problem of R if, for every x, it holdsthat f(x) 2 R(x) def= fy : (x; y) 2 Rg if R(x) 6= ; and f(x) = ? otherwise).1 We
apture both 
ases in the following de�nition.De�nition 3.1 (Cook redu
tion): A problem � is Cook-redu
ible to a problem �0if there exists a polynomial-time ora
le ma
hine M su
h that for every fun
tion fthat solves �0 it holds that Mf solves �, where Mf (x) denotes the output of M oninput x when given ora
le a

ess to f .Note that � (resp., �0) may be either a sear
h problem or a de
ision problem (oreven a yet unde�ned type of a problem). At this point the reader should verifythat if � is Cook-redu
ible to �0 and �0 is solvable in polynomial-time then so is�; see Exer
ise 3.2 (whi
h also asserts other properties of Cook-redu
tions).Observe that the se
ond part of the proof of Theorem 2.6 is a
tually a Cook-redu
tion of the sear
h problem of any R in PC to a de
ision problem regarding arelated set S0R = fhx; y0i : 9y00 s.t. (x; y0y00)2Rg, whi
h in NP . Thus, that proofestablishes the following result.Theorem 3.2 Every sear
h problem in PC is Cook-redu
ible to some de
isionproblem in NP.We shall see a tighter relation between sear
h and de
ision problems in Se
tion 3.3;that is, in some 
ases, R will be redu
ed to SR = fx : 9y s.t. (x; y) 2Rg ratherthan to S0R.3.1.2 Spe
ial CasesWe shall 
onsider two restri
ted types of Cook-redu
tions, where the �rst typeapplies only to de
ision problems, whereas the se
ond type applies only to sear
hproblems. In both 
ases, the redu
tions are restri
ted to make a single query.Restri
ted redu
tions among de
ision problems. A Karp-redu
tion is arestri
ted type of a redu
tion (from one de
ision problem to another de
ision prob-lem) that makes a single query, and furthermore replies with the very answer thatit has re
eived. Spe
i�
ally, for de
ision problems S and S0, we say that S is Karp-redu
ible to S0 if there is a Cook-redu
tion of S to S0 that operates as follows: Oninput x (an instan
e for S), the redu
tion 
omputes x0, makes query x0 to the ora
le1Indeed, the solver is unique only if for every x it holds that jR(x)j � 1.



64 CHAPTER 3. POLYNOMIAL-TIME REDUCTIONSS0 (i.e., invokes the subroutine for S0 on input x0), and answers whatever the latterreturns. This redu
tion is often represented by the polynomial-time 
omputablemapping of x to x0; that is, the standard de�nition of a Karp-redu
tion is a
tuallyas follows.De�nition 3.3 (Karp redu
tion): A polynomial-time 
omputable fun
tion f is
alled a Karp-redu
tion of S to S0 if, for every x, it holds that x 2 S if and only iff(x) 2 S0.Thus, synta
ti
ally speaking, a Karp-redu
tion is not a Cook-redu
tion, but ittrivially gives rise to one (i.e., on input x, the ora
le ma
hine makes query f(x), andreturns the ora
le answer; see Figure 3.1). Being slightly ina

urate but essentially
orre
t, we shall say that Karp-redu
tions are spe
ial 
ases of Cook-redu
tions.
x f f(x)

oracle for S’Figure 3.1: The Cook-redu
tion that arises from a Karp-redu
tionNeedless to say, Karp-redu
tions 
onstitute a very restri
ted 
ase of Cook-redu
tions. Spe
i�
ally, Karp-redu
tions refer only to redu
tions among de
isionproblems, and are restri
ted to a single query (and to the way in whi
h the answeris used). Still, Karp-redu
tions suÆ
e for many appli
ations (most importantly, forthe theory of NP-
ompleteness (when developed for de
ision problems)). On theother hand, Karp-redu
tions are 
learly not adequate for redu
ing sear
h problemsto de
ision problems. Furthermore, Cook-redu
tions that make a single query areinadequate for redu
ing (hard) sear
h problems to any de
ision problem (see Ex-er
ise 3.9). We note that, even within the domain of redu
tions among de
isionproblems, Karp-redu
tions are less powerful than Cook-redu
tions. Spe
i�
ally,whereas ea
h de
ision problem is Cook-redu
ible to its 
omplement, some de
isionproblems are not Karp-redu
ible to their 
omplement (see Exer
ises 3.4 and 5.6).Augmentation for redu
tions among sear
h problems. Karp-redu
tionsmay (and should) be augmented in order to handle redu
tions among sear
h prob-lems. The augmentation should provide a way of obtaining a solution for theoriginal instan
e from any solution for the redu
ed instan
e. Indeed, su
h an re-du
tion of the sear
h problem of R to the sear
h problem of R0 operates as follows:On input x (an instan
e for R), the redu
tion 
omputes x0, makes query x0 to theora
le R0 (i.e., invokes the subroutine for sear
hing R0 on input x0) obtaining y0su
h that (x0; y0) 2 R0, and uses y0 to 
ompute a solution y to x (i.e., y 2 R(x)).



3.1. THE GENERAL NOTION OF A REDUCTION 65Thus, su
h a redu
tion 
an be represented by two polynomial-time 
omputablemappings, f and g, su
h that (x; g(x; y0)) 2 R for any y0 that is a solution off(x) (i.e., for y0 that satis�es (f(x); y0) 2 R0). Indeed, f is a Karp-redu
tion (ofSR = fx : R(x) 6= ;g to SR0 = fx0 : R0(x0) 6= ;g), but (unlike in the 
ase ofde
ision problems) the fun
tion g may be non-trivial (i.e., we 
annot always haveg(x; y0) = y0). This type of redu
tion is 
alled a Levin-redu
tion and, analogouslyto the 
ase of a Karp-redu
tion, it is often identi�ed with the two aforementionedmappings themselves (i.e., the (polynomial-time 
omputable) mappings f of x tox0, and the (polynomial-time 
omputable) mappings g of (x; y0) to y).De�nition 3.4 (Levin redu
tion): A pair of polynomial-time 
omputable fun
-tions, f and g, is 
alled a Levin-redu
tion of R to R0 if f is a Karp redu
tion ofSR = fx : 9y s.t. (x; y) 2 Rg to SR0 = fx0 : 9y0 s.t. (x0; y0) 2 R0g and for everyx 2 SR and y0 2 R0(f(x)) it holds that (x; g(x; y0)) 2 R, where R0(x0) = fy0 :(x0; y0)2R0g.Indeed, the fun
tion f preserves the existen
e of solutions; that is, for any x, itholds that R(x) 6= ; if and only if R0(f(x)) 6= ;. As for the se
ond fun
tion (i.e., g),it maps any solution y0 for the redu
ed instan
e f(x) to a solution for the originalinstan
e x (where this mapping may also depend on x). We mention that it isnatural to 
onsider also a third fun
tion that maps solutions for R to solutions forR0 (see Exer
ise 4.17).Again, synta
ti
ally speaking, a Levin-redu
tion is not a Cook-redu
tion, butit trivially gives rise to one (i.e., on input x, the ora
le ma
hine makes query f(x),and returns g(x; y0) if the ora
le answers with y 6= ? (and returns ? otherwise);see Figure 3.2).
f f(x)

oracle for R’

g
y’

(in R’(x))
g(x,y’)

x

Figure 3.2: The Cook-redu
tion that arises from a Levin-redu
tion3.1.3 Terminology and a Brief Dis
ussionCook-redu
tions are often 
alled general (polynomial-time) redu
tions, whereas Karp-redu
tions are often 
alled many-to-one (polynomial-time) redu
tions. Indeed, in the



66 CHAPTER 3. POLYNOMIAL-TIME REDUCTIONSsequel, whenever we negle
t to mention the type of a redu
tion, we a
tually meana Cook-redu
tion.Two 
ompound notions. The following terms, whi
h refer to the existen
e ofseveral redu
tions, are often used in advan
ed studies.1. We say that two problems are 
omputationally equivalent if they are redu
ibleto one another. This means that the two problems are essentially as hard (oras easy). Note that 
omputationally equivalent problems need not reside inthe same 
omplexity 
lass.For example, as we shall see in Se
tion 3.3, for many natural relationsR 2 PC,the sear
h problem of R and the de
ision problem of SR = fx : 9y s.t. (x; y)2Rg are 
omputationally equivalent, although (even synta
ti
ally) the twoproblems do not belong to the same 
lass (i.e., R 2 PC whereas SR 2 NP).Also, ea
h de
ision problem is 
omputationally equivalent to its 
omplement,although the two problems may not belong to the same 
lass (see, e.g., Se
-tion 5.3).2. We say that a 
lass of problems, C, is redu
ible to a problem �0 if everyproblem in C, is redu
ible to �0. We say that the 
lass C is redu
ible to the
lass C0 if for every � 2 C there exists �0 2 C0 su
h that � is redu
ible to �0.For example, Theorem 3.2 asserts that PC is redu
ible to NP . Also note thatNP is redu
ible to PC (see Exer
ise 3.7).On the greater 
exibility of Cook-redu
tions. The fa
t that we allow Cook-redu
tions (rather than 
on�ning ourselves to Karp-redu
tions) is essential to var-ious important 
onne
tions between de
ision problems and other 
omputationalproblems. For example, as will be shown in Se
tion 3.2, a natural 
lass of opti-mization problems is redu
ible to NP . Also re
all that PC is redu
ible to NP (
f.Theorem 3.2). Furthermore, as will be shown in Se
tion 3.3, many natural sear
hproblems in PC are redu
ible to a 
orresponding natural de
ision problem in NP(rather than merely to some problem in NP). In all these results, the redu
tionsin use are (and must be) Cook-redu
tions.3.2 Redu
ing Optimization Problems to Sear
hProblemsMany sear
h problems refer to a set of potential solutions, asso
iated with ea
hproblem instan
e, su
h that di�erent solutions are assigned di�erent \values" (resp.,\
osts"). For example, in the 
ontext of �nding a 
lique in a given graph, the sizeof the 
lique may be 
onsidered the value of the solution. Likewise, in the 
ontextof �nding a 2-partition of a given graph, the number of edges with both endpointsin the same side of the partition may be 
onsidered the 
ost of the solution. Insu
h 
ases, one may be interested in �nding a solution that has value ex
eeding



3.2. REDUCING OPTIMIZATION PROBLEMS TO SEARCH PROBLEMS 67some threshold (resp., 
ost below some threshold). Alternatively, one may seek asolution of maximum value (resp., minimum 
ost).For simpli
ity, let us fo
us on the 
ase of a value that we wish to maximize.Still, the two di�erent aforementioned obje
tives (i.e., ex
eeding a threshold andoptimization), give rise to two di�erent (auxiliary) sear
h problems related to thesame relation R. Spe
i�
ally, for a binary relation R and a value fun
tion f :f0; 1g� � f0; 1g� ! R, we 
onsider two sear
h problems.1. Ex
eeding a threshold: Given a pair (x; v) the task is to �nd y 2 R(x) su
hthat f(x; y) � v, where R(x) = fy : (x; y) 2 Rg. That is, we are a
tuallyreferring to the sear
h problem of the relationRf def= f(hx; vi; y) : (x; y)2R ^ f(x; y) � vg; (3.1)where hx; vi denotes a string that en
odes the pair (x; v).2. Maximization: Given x the task is to �nd y 2 R(x) su
h that f(x; y) = vx,where vx is the maximum value of f(x; y0) over all y0 2 R(x). That is, we area
tually referring to the sear
h problem of the relationR0f def= f(x; y)2R : f(x; y) = maxy02R(x)ff(x; y0)gg: (3.2)(If R(x) = ;, then we de�ne R0f (x) = ;.)Examples of value fun
tions in
lude the size of a 
lique in a graph, the amount of
ow in a network (with link 
apa
ities), et
. The task may be to �nd a 
lique ofsize ex
eeding a given threshold in a given graph or to �nd a maximum-size 
liquein a given graph. Note that, in these examples, the \base" sear
h problem (i.e.,the relation R) is quite easy to solve, and the diÆ
ulty arises from the auxiliary
ondition on the value of a solution (presented in Rf and R0f ). Indeed, one maytrivialize R (i.e., let R(x) = f0; 1gpoly(jxj) for every x), and impose all ne
essarystru
ture by the fun
tion f (see Exer
ise 3.5).We 
on�ne ourselves to the 
ase that f is polynomial-time 
omputable, whi
hin parti
ular means that f(x; y) 
an be represented by a rational number of lengthpolynomial in jxj+jyj. We will show next that, in this 
ase, the two aforementionedsear
h problems (i.e., of Rf and R0f ) are 
omputationally equivalent.Theorem 3.5 For any polynomial-time 
omputable f : f0; 1g��f0; 1g�! R anda polynomially bounded binary relation R, let Rf and R0f be as in Eq. (3.1) andEq. (3.2), respe
tively. Then, the sear
h problems of Rf and R0f are 
omputationallyequivalent.Note that, for R 2 PC and polynomial-time 
omputable f , it holds that Rf 2 PC.Combining Theorems 3.2 and 3.5, it follows that in this 
ase both Rf and R0f areredu
ible to NP . We note, however, that even in this 
ase it does not ne
essarilyhold that R0f 2 PC. See further dis
ussion following the proof.



68 CHAPTER 3. POLYNOMIAL-TIME REDUCTIONSProof: The sear
h problem of Rf is redu
ed to the sear
h problem of R0f by�nding an optimal solution (for the given instan
e) and 
omparing its value to thegiven threshold value. That is, we 
onstru
t an ora
le ma
hine that solves Rf bymaking a single query to R0f . Spe
i�
ally, on input (x; v), the ma
hine issues thequery x (to a solver for R0f ), obtaining the optimal solution y (or an indi
ation ?that R(x) = ;), 
omputes f(x; y), and returns y if f(x; y) � v. Otherwise (i.e.,either y = ? or f(x; y) < v), the ma
hine returns an indi
ation that Rf (hx; vi) = ;.Turning to the opposite dire
tion, we redu
e the sear
h problem of R0f to thesear
h problem of Rf by �rst �nding the optimal value vx = maxy2R(x)ff(x; y)g(by binary sear
h on its possible values), and next �nding a solution of value vx.In both steps, we use ora
le 
alls to Rf . For simpli
ity, we assume that f assignspositive integer values, and let ` = poly(jxj) be su
h that f(x; y) � 2`� 1 for everyy 2 R(x). Then, on input x, we �rst �nd vx = maxff(x; y) : y2R(x)g, by makingora
le 
alls of the form hx; vi. The point is that vx < v if any only if Rf (hx; vi) = ;,whi
h in turn is indi
ated by the ora
le answer ? (to the query hx; vi). Making` queries, we determine vx (see Exer
ise 3.6). Note that in 
ase R(x) = ;, all theanswers will indi
ate that Rf (hx; vi) = ;, and we halt indi
ating that R0f (x) = ;(whi
h is indeed due to R(x) = ;). Thus, we 
ontinue only if vx > 0, whi
hindi
ates that R0f (x) 6= ;. At this point, we make the query (x; vx), and haltreturning the ora
le's answer, whi
h is a string y 2 R(x) su
h that f(x; y) = vx.Comments regarding the proof of Theorem 3.5. The �rst dire
tion of theproof uses the hypothesis that f is polynomial-time 
omputable, whereas the op-posite dire
tion only used the fa
t that the optimal value lies in a �nite spa
eof exponential size that 
an be \eÆ
iently sear
hed". While the �rst dire
tion isproved using a Levin-redu
tion, this seems impossible for the opposite dire
tion(i.e., �nding an optimal solution does not seem to be Levin-redu
ible to �nding asolution ex
eeding a threshold).On the 
omplexity of Rf and R0f . We fo
us on the natural 
ase in whi
hR 2 PC and f is polynomial-time 
omputable. In this 
ase, Theorem 3.5 assertsthat Rf and R0f are 
omputationally equivalent. A 
loser look reveals, however,that Rf 2 PC always holds, whereas R0f 2 PC does not ne
essarily hold. Thatis, the problem of �nding a solution (for a given instan
e) that ex
eeds a giventhreshold is in the 
lass PC, whereas the problem of �nding an optimal solutionis not ne
essarily in the 
lass PC. For example, the problem of �nding a 
liqueof a given size K in a given graph G is in PC, whereas the problem of �nding amaximum size 
lique in a given graph G is not known (and is quite unlikely)2 tobe in PC (although it is Cook-redu
ible to PC).The foregoing dis
ussion suggests that the 
lass of problems that are redu
ibleto PC, whi
h seems di�erent from PC itself, is a natural and interesting 
lass.Indeed, for every R 2 PC and polynomial-time 
omputable f , the former 
lass2See Exer
ise 5.9.



3.3. SELF-REDUCIBILITY OF SEARCH PROBLEMS 69
ontains R0f .3.3 Self-Redu
ibility of Sear
h ProblemsThe results to be presented in this se
tion further justify the fo
us on de
isionproblems. Loosely speaking, these results show that for many natural relations R,the question of whether or not the sear
h problem of R is eÆ
iently solvable (i.e.,is in PF) is equivalent to the question of whether or not the \de
ision problemimpli
it in R" (i.e., SR = fx : 9y s.t. (x; y) 2 Rg) is eÆ
iently solvable (i.e.,is in P). In fa
t, we will show that these two 
omputational problems (i.e., Rand SR) are 
omputationally equivalent. Note that the de
ision problem of SRis easily redu
ible to the sear
h problem of R, and so our fo
us is on the otherdire
tion. That is, we are interested in relations R for whi
h the sear
h problemof R is redu
ible to the de
ision problem of SR. In su
h a 
ase, we say that R isself-redu
ible.3De�nition 3.6 (the de
ision impli
it in a sear
h and self-redu
ibility): The de-
ision problem impli
it the sear
h problem of R is de
iding membership in the setSR = fx : R(x) 6= ;g, where R(x) = fy : (x; y) 2 Rg. The sear
h problem of R is
alled self-redu
ible if it 
an be redu
ed to the de
ision problem of SR.Note that the sear
h problem of R and the problem of de
iding membership inSR refer to the same instan
es: The sear
h problem requires �nding an adequatesolution (i.e., given x �nd y 2 R(x)), whereas the de
ision problem refers to thequestion of whether su
h solutions exist (i.e., given x determine whether or notR(x) is non-empty). Thus, SR 
orresponds to the intuitive notion of a \de
isionproblem impli
it in R," be
ause SR is a de
ision problem that one impli
itly solveswhen solving the sear
h problem of R. Indeed, for any R, the de
ision problem ofSR is easily redu
ible to the sear
h problem for R (see Exer
ise 3.8). It follows thatif a sear
h problem R is self-redu
ible then it is 
omputationally equivalent to thede
ision problem SR.Note that the general notion of a redu
tion (i.e., Cook-redu
tion) seems inher-ent to the notion of self-redu
ibility. This is the 
ase not only due to synta
ti

onsiderations, but rather due to the following inherent reason. An ora
le to anyde
ision problem returns a single bit per invo
ation, while the intra
tability of asear
h problem in PC must be due to la
kingmore than a \single bit of information"(see Exer
ise 3.9).We shall see that self-redu
ibility is a property of many natural sear
h problems(in
luding all NP-
omplete sear
h problems). This justi�es the relevan
e of de
isionproblems to sear
h problems in a stronger sense than established in Se
tion 2.4:3Our usage of the term self-redu
ibility di�ers from the traditional one. Traditionally, ade
ision problem is 
alled (downwards) self-redu
ible if it is Cook-redu
ible to itself via a redu
tionthat on input x only makes queries that are smaller than x (a

ording to some appropriate measureon the size of instan
es). Under some natural restri
tions (i.e., the redu
tion takes the disjun
tionof the ora
le answers) su
h redu
tions yield redu
tions of sear
h to de
ision (as dis
ussed in themain text). For further details, see Exer
ise 3.13.
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all that in Se
tion 2.4 we showed that the fate of the sear
h problem 
lass PC(w.r.t PF) is determined by the fate of the de
ision problem 
lass NP (w.r.t P).Here we show that, for many natural sear
h problems in PC (i.e., self-redu
ibleones), the fate of su
h an individual problem R (w.r.t PF) is determined by thefate of the individual de
ision problem SR (w.r.t P), where SR is the de
isionproblem impli
it in R. (Re
all that R 2 PC implies SR 2 NP .) Thus, here wehave \fate redu
tions" at the level of individual problems, rather than only at thelevel of 
lasses of problems (as established in Se
tion 2.4).3.3.1 ExamplesWe now present a few sear
h problems that are self-redu
ible. We start with SAT(see Se
tion A.2), the set of satis�able Boolean formulae (in CNF), and 
onsider thesear
h problem in whi
h given a formula one should �nd a truth assignment thatsatis�es it. The 
orresponding relation is denoted RSAT; that is, (�; �) 2 RSATif � is a satisfying assignment to the formula �. Indeed, the de
ision problemimpli
it in RSAT is SAT. Note that RSAT is in PC (i.e., it is polynomially-boundedand membership of (�; �) in RSAT is easy to de
ide (by evaluating a Booleanexpression)).Proposition 3.7 (RSAT is self-redu
ible): The sear
h problem of RSAT is redu
ibleto SAT.Thus, the sear
h problem of RSAT is 
omputationally equivalent to de
iding mem-bership in SAT. Hen
e, in studying the 
omplexity of SAT, we also address the
omplexity of the sear
h problem of RSAT.Proof: We present an ora
le ma
hine that solves the sear
h problem of RSAT bymaking ora
le 
alls to SAT. Given a formula �, we �nd a satisfying assignment to �(in 
ase su
h an assignment exists) as follows. First, we query SAT on � itself, andreturn an indi
ation that there is no solution if the ora
le answer is 0 (indi
ating� 62 SAT). Otherwise, we let � , initiated to the empty string, denote a pre�x of asatisfying assignment of �. We pro
eed in iterations, where in ea
h iteration weextend � by one bit (as long as � does not set all variables of �). This is done asfollows: First we derive a formula, denoted �0, by setting the �rst j� j+1 variablesof � a

ording to the values �0. We then query SAT on �0 (whi
h means that weask whether or not �0 is a pre�x of a satisfying assignment of �). If the answeris positive then we set �  �0 else we set �  �1. This pro
edure relies on thefa
t that if � is a pre�x of a satisfying assignment of � and �0 is not a pre�x of asatisfying assignment of � then �1 must be a pre�x of a satisfying assignment of �.We wish to highlight a key point that has been blurred in the foregoing de-s
ription. Re
all that the formula �0 is obtained by repla
ing some variables by
onstants, whi
h means that �0 per se 
ontains Boolean variables as well as Boolean
onstants. However, the standard de�nition of SAT disallows Boolean 
onstants inits instan
es.4 Nevertheless, �0 
an be simpli�ed su
h that the resulting formula4While the problem seems rather te
hni
al in the 
urrent setting (sin
e it merely amounts towhether or not the de�nition of SAT allows Boolean 
onstants in its instan
es), the analogous
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ontains no Boolean 
onstants. This simpli�
ation is performed a

ording to thestraightforward Boolean rules: That is, the 
onstant false 
an be omitted fromany 
lause, but if a 
lause 
ontains only o

urren
es of the 
onstant false thenthe entire formula simpli�es to false. Likewise, if the 
onstant true appears ina 
lause then the entire 
lause 
an be omitted, and if all 
lauses are omitted thenthe entire formula simpli�es to true. Needless to say, if the simpli�
ation pro
essyields a Boolean 
onstant then we may skip the query, and otherwise we just usethe simpli�ed form of �0 as our query.Other examples: Redu
tions analogous to the one used in the proof of Propo-sition 3.7 
an be presented also for other sear
h problems (and not only for NP-
omplete ones). Two su
h examples are sear
hing for a 3-
oloring of a given graphand sear
hing for an isomorphism between a given pair of graphs (where the �rstproblem is known to be NP-
omplete and the se
ond problem is believed not tobe NP-
omplete). In both 
ases, the redu
tion of the sear
h problem to the 
or-responding de
ision problem 
onsists of iteratively extending a pre�x of a validsolution, by making suitable queries in order to de
ide whi
h extension to use.Note, however, that in these two 
ases the pro
ess of getting rid of 
onstants (rep-resenting partial solutions) is more involved. Spe
i�
ally, in the 
ase of Graph3-Colorability (resp., Graph Isomorphism) we need to enfor
e a partial 
oloring ofa given graph (resp., a partial isomorphism between a given pair of graphs); seeExer
ises 3.10 and 3.11, respe
tively.Re
e
tion: The proof of Proposition 3.7 (as well as the proofs of similar results)
onsists of two observations.1. For every relation R in PC, it holds that the sear
h problem of R is redu
ibleto the de
ision problem of S0R = fhx; y0i : 9y00 s.t. (x; y0y00) 2 Rg. Su
h aredu
tion is expli
it in the proof of Theorem 2.6 and is impli
it in the proofof Proposition 3.7.2. For spe
i�
 R 2 PC (e.g., SSAT), de
iding membership in S0R is redu
ible tode
iding membership in SR = fx : 9y s.t. (x; y) 2 Rg. This is where thespe
i�
 stru
ture of SAT was used, allowing for a dire
t and natural transfor-mation of instan
es of S0R to instan
es of SR.We 
omment that if SR is NP-
omplete, then S0R, whi
h is always in NP , isredu
ible to SR by the mere hypothesis that SR is NP-
omplete; this 
ommentis elaborated in the following Se
tion 3.3.2.For an arbitraryR 2 PC, de
iding membership in S0R is not ne
essarily redu
ible tode
iding membership in SR. Furthermore, de
iding membership in S0R is not ne
-essarily redu
ible to the sear
h problem of R. (See Exer
ises 3.14, 3.15, and 3.16.)In general, self-redu
ibility is a property of the sear
h problem and not of thede
ision problem impli
it in it. Furthermore, under plausible assumptions (e.g.,problem is far from being so te
hni
al in other 
ases (see Exer
ises 3.10 and 3.11).
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tability of fa
toring), there exists relations R1; R2 2 PC having the sameimpli
it-de
ision problem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) su
h that R1 isself-redu
ible but R2 is not (see Exer
ise 3.17). However, for many natural de
isionproblems this phenomenon does not arise; that is, for many natural NP-de
isionproblems S, any NP-witness relation asso
iated with S (i.e., R 2 PC su
h thatfx : R(x) 6= ;g = S) is self-redu
ible. For details, see the following Se
tion 3.3.2.3.3.2 Self-Redu
ibility of NP-Complete ProblemsIn this se
tion, we assume that the reader has heard of NP-
ompleteness. A
tually,we only need the reader to know the de�nition of NP-
ompleteness (i.e., a set Sis NP-
omplete if S 2 NP and every set in NP is redu
ible to S). Indeed, thereader may prefer to skip this se
tion and return to it after reading Se
tion 4.1 (oreven later).Re
all that, in general, self-redu
ibility is a property of the sear
h problem Rand not of the de
ision problem impli
it in it (i.e., SR = fx : R(x) 6= ;g). In
ontrast, in the spe
ial 
ase of NP-
omplete problems, self-redu
ibility holds forany witness relation asso
iated with the (NP-
omplete) de
ision problem. That is,all sear
h problems that refer to �nding NP-witnesses for any NP-
omplete de
isionproblem are self-redu
ible.Theorem 3.8 For every R in PC su
h that SR is NP-
omplete, the sear
h problemof R is redu
ible to de
iding membership in SR.In many 
ases, as in the proof of Proposition 3.7, the redu
tion of the sear
hproblem to the 
orresponding de
ision problem is quite natural. The followingproof presents a generi
 redu
tion (whi
h may be \unnatural" in some 
ases).Proof: In order to redu
e the sear
h problem of R to de
iding SR, we 
omposethe following two redu
tions:1. A redu
tion of the sear
h problem of R to de
iding membership in S0R =fhx; y0i : 9y00 s.t. (x; y0y00)2Rg.As stated in Se
tion 3.3.1 (in the paragraph titled \re
e
tion"), su
h a re-du
tion is impli
it in the proof of Proposition 3.7 (as well as being expli
it inthe proof of Theorem 2.6).2. A redu
tion of S0R to SR.This redu
tion exists by the hypothesis that SR is NP-
omplete and thefa
t that S0R 2 NP . (Note that we do not assume that this redu
tion is aKarp-redu
tion, and furthermore it may be an \unnatural" redu
tion).The theorem follows.
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tiveRe
all that we presented (polynomial-time) redu
tions as (eÆ
ient) algorithms thatuse fun
tionally spe
i�ed subroutines. That is, an eÆ
ient redu
tion of problem �to problem �0 is an eÆ
ient algorithm that solves � while making subroutine 
allsto any pro
edure that solves �0. This presentation �ts the \natural" (\positive")appli
ation of su
h a redu
tion; that is, 
ombining su
h a redu
tion with an eÆ
ientimplementation of the subroutine (solving �0), we obtain an eÆ
ient algorithm forsolving �. We note that the existen
e of a polynomial-time redu
tion of � to �0a
tually means more than the latter impli
ation. For example, also a moderatelyineÆ
ient algorithm for solving �0 yields something for �; that is, if �0 is solvablein time t0 then � is solvable in time t su
h that t(n) = poly(n) � t0(poly(n)); forexample, if t0(n) = nlog2 n then t(n) = poly(n)1+log2 poly(n) = nO(log n). Thus, theexisten
e of a polynomial-time redu
tion of � to �0 yields an upper-bound on thetime-
omplexity of � in terms of the time-
omplexity of �0.We note that tighter relations between the 
omplexity of � and �0 
an beestablished whenever the redu
tion satis�es additional properties. For example,suppose that � is polynomial-time redu
ible to �0 by a redu
tion that makes queriesof linear-length (i.e., on input x ea
h query has length O(jxj)). Then, if �0 issolvable in time t0 then � is solvable in time t su
h that t(n) = poly(n) � t0(O(n));for example, if t0(n) = 2pn then t(n) = 2O(logn)+pO(n) = 2O(pn). We furthernote that bounding other 
omplexity measures of the redu
tion (e.g., its spa
e-
omplexity) allows to relate the 
orresponding 
omplexities of the problems.In 
ontrast to the foregoing \positive" appli
ations of polynomial-time redu
-tions, the theory of NP-
ompleteness (presented in Chapter 4) is famous for its\negative" appli
ation of su
h redu
tions. Let us elaborate. The fa
t that � ispolynomial-time redu
ible to �0 means that if solving �0 is feasible then solving �is feasible. The dire
t \positive" appli
ation starts with the hypothesis that �0 isfeasibly solvable and infers that so is �. In 
ontrast, the \negative" appli
ationuses the 
ounter-positive: it starts with the hypothesis that solving � is infeasibleand infers that the same holds for �0.Exer
isesExer
ise 3.1 (a quiz)1. What are Cook-redu
tions?2. What are Karp-redu
tions and Levin-redu
tions?3. What is the motivation for de�ning all these types of redu
tions?4. Can any problem in PC be redu
ed to some problem in NP?5. What is self-redu
ibility and how does it relate to the previous question?6. List �ve sear
h problems that are self-redu
ible. (See Exer
ise 3.12.)Exer
ise 3.2 Verify the following properties of Cook-redu
tions:
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tions preserve eÆ
ient solvability: If � is Cook-redu
ible to �0and �0 is solvable in polynomial-time, then so is �.2. Cook-redu
tions are transitive: If � is Cook-redu
ible to �0 and �0 is Cook-redu
ible to �00, then � is Cook-redu
ible to �00.3. Cook-redu
tions generalize eÆ
ient de
ision pro
edures: If � is solvable inpolynomial-time then it is Cook-redu
ible to any problem �0.In 
ontinuation of the last item, show that a problem � is solvable in polynomial-time if and only if it is Cook-redu
ible to a trivial problem (e.g., de
iding member-ship in the empty set).Exer
ise 3.3 Show that Karp-redu
tions (and Levin-redu
tions) are transitive.Exer
ise 3.4 Show that some de
ision problems are not Karp-redu
ible to their
omplement (e.g., the empty set is not Karp-redu
ible to f0; 1g�).A popular exer
ise of dubious nature is showing that any de
ision problem in Pis Karp-redu
ible to any non-trivial de
ision problem, where the de
ision problemregarding a set S is 
alled non-trivial if S 6= ; and S 6= f0; 1g�. It follows thatevery non-trivial set in P is Karp-redu
ible to its 
omplement.Exer
ise 3.5 (redu
ing sear
h problems to optimization problems) For ev-ery polynomially bounded relation R (resp., R 2 PC), present a fun
tion f (resp.,a polynomial-time 
omputable fun
tion f) su
h that the sear
h problem of R is
omputationally equivalent to the sear
h problem in whi
h given (x; v) one has to�nd a y 2 f0; 1gpoly(jxj) su
h that f(x; y) � v.Guideline: Let f(x; y) = 1 if (x; y) 2 R and f(x; y) = 0 otherwise.Exer
ise 3.6 (binary sear
h) Show that using ` binary queries of the form \isz < v" it is possible to determine the value of an integer z that is a priori knownto reside in the interval [0; 2` � 1℄.Guideline: Consider a pro
ess that iteratively halves the interval in whi
h z is knownto reside in.Exer
ise 3.7 Prove that NP is redu
ible to PC.Guideline: Consider the sear
h problem de�ned in Eq. (2.1).Exer
ise 3.8 Prove that for any R, the de
ision problem of SR is easily redu
ibleto the sear
h problem for R, and that if R is in PC then SR is in NP.Guideline: Consider a redu
tion that invokes the sear
h ora
le and answer 1 if and onlyif the ora
le returns some string (rather than the \no solution" symbol).Exer
ise 3.9 Prove that if R 2 PC nPF is self-redu
ible then the relevant Cook-redu
tion makes more than a logarithmi
 number of queries to SR. More generally,prove that if R 2 PC n PF is Cook-redu
ible to any de
ision problem, then thisredu
tion makes more than a logarithmi
 number of queries.
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le answers 
an be emulated by trying all possibilities, andthat (for R 2 PC) the 
orre
tness of the output of the ora
le ma
hine 
an be eÆ
ientlytested.Exer
ise 3.10 Show that the standard sear
h problem of Graph 3-Colorability isself-redu
ible, where this sear
h problem 
onsists of �nding a 3-
oloring for a giveninput graph.Guideline: Iteratively extend the 
urrent pre�x of a 3-
oloring of the graph by makingadequate ora
le 
alls to the de
ision problem of Graph 3-Colorability. Spe
i�
ally, en
odethe question of whether or not (�1; :::; �t) 2 f1; 2; 3gt is a pre�x of a 3-
oloring of the graphG as a query regarding the 3-
olorability of an auxiliary graph G0. Note that we merelyneed to 
he
k whether G has a 3-
oloring in whi
h the equalities and inequalities indu
edby the (pre�x of the) 
oloring (�1; :::; �t) hold. This 
an be done by adequate gadgets (e.g.,inequality is enfor
ed by an edge between the 
orresponding verti
es, whereas equality isenfor
ed by an adequate subgraph that in
ludes the relevant verti
es as well as auxiliaryverti
es).Exer
ise 3.11 Show that the standard sear
h problem of Graph Isomorphismis self-redu
ible, where this sear
h problem 
onsists of �nding an isomorphismbetween a given pair of graphs.Guideline: Iteratively extend the 
urrent pre�x of an isomorphism between the twoN -vertex graphs by making adequate ora
le 
alls to the de
ision problem of Graph Iso-morphism. Spe
i�
ally, en
ode the question of whether or not (�1; :::; �t) 2 [N ℄t is apre�x of an isomorphism between G1 = ([N ℄; E1) and G2 = ([N ℄; E2) as a query regard-ing isomorphism between two auxiliary graphs G01 and G02. This 
an be done by atta
hingadequate gadgets to pairs of verti
es that we wish to be mapped to one another (by theisomorphism). For example, we may 
onne
t ea
h of the verti
es in the ith pair to anauxiliary star 
onsisting of (N + i) verti
es.Exer
ise 3.12 List �ve sear
h problems that are self-redu
ible.Guideline: Note that three su
h problems were mentioned in Se
tion 3.3.1. Additionalexamples may in
lude any NP-
omplete sear
h problem (see Se
tion 3.3.2) as well as anyproblem in PF .Exer
ise 3.13 (downwards self-redu
ibility) We say that a set S is down-wards self-redu
ible if there exists a Cook-redu
tion of S to itself that only makesqueries that are ea
h shorter than the redu
tion's input (i.e., if on input x theredu
tion makes the query q then jqj < jxj).51. Show that SAT is downwards self-redu
ible with respe
t to a natural en
odingof CNF formulae. Note that this en
oding should have the property thatinstantiating a variable in a formula results in a shorter formula.5Note that on some instan
es the redu
tion may make no queries at all. (This option preventsa possible non-viability of the de�nition due to very short instan
es.)
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ise 
onsists of showing that Graph 3-Colorability is downwardsself-redu
ible with respe
t to some reasonable en
oding of graphs. Note thatthis en
oding has to be sele
ted 
arefully.Guideline: For the 
ase of SAT use the fa
t that � 2 SAT if and only if either�0 2 SAT or �1 2 SAT, where �� denotes the formula � with the �rst variable instan-tiated to �. For the 
ase of Graph 3-Colorability, partition all possible 3-
oloringa

ording to whether or not they assign the �rst pair of un
onne
ted verti
es thesame 
olor. Enfor
e an inequality 
onstraint by 
onne
ting the two verti
es, and en-for
e an equality 
onstraint by 
ombining the two verti
es (rather than by 
onne
t-ing them via a gadget that 
ontains auxiliary verti
es as suggested in the guidelineto Exer
ise 3.10). Use an en
oding that guarantees that any (n + 1)-vertex graphhas a longer des
ription than any n-vertex graph, and that adding edges de
reasesthe des
ription length.62. Suppose that S is downwards self-redu
ible by a redu
tion that outputs thedisjun
tion of the ora
le answers.7 Show that, in this 
ase, S is 
hara
terizedby a witness relation R 2 PC (i.e., S = fx : R(x) 6= ;g) that is self-redu
ible(i.e., the sear
h problem of R is Cook-redu
ible to S). Needless to say, itfollows that S 2 NP .Guideline: De�ne R su
h that (x0; hx1; :::; xti) is in R if xt 2 S \ f0; 1gO(1) and,for every i 2 f0; 1; :::; t�1g, on input xi the self-redu
tion makes a set of queries that
ontains the string xi+1. Prove that if x0 2 S then a sequen
e (x0; hx1; :::; xti) 2 Rexists (by forward indu
tion (whi
h sele
ts for ea
h xi 2 S a query xi+1 in S)).Next, prove that (x0; hx1; :::; xti) 2 R implies x0 2 S (by ba
kward indu
tion fromxt 2 S (whi
h infers from the hypothesis xi+1 2 S that xi is in S))). Finally, provethat R 2 PC (by noting that t � jx0j).Note that the notion of downwards self-redu
ibility may be generalized in somenatural ways. For example, we may say that S is downwards self-redu
ible alsoin 
ase it is 
omputationally equivalent via Karp-redu
tions to some set that isdownwards self-redu
ible (in the foregoing stri
t sense). Note that Part 2 stillholds.Exer
ise 3.14 (NP problems that are not self-redu
ible)1. Prove that if a sear
h problem R is not self-redu
ible then (1) R 62 PF and(2) the set S0R = fhx; y0i : 9y00 s.t. (x; y0y00) 2 Rg is not Cook-redu
ible toSR = fx : 9y s.t. (x; y)2Rg.2. Assuming that P 6= NP \ 
oNP , where 
oNP def= ff0; 1g�nS : S 2 NPg,show that there exists a sear
h problem that is in PC but is not self-redu
ible.Guideline: Given S 2 (NP \ 
oNP) n P, present relations R1; R2 2 PC su
hthat S = fx : R1(x) 6= ;g = fx : R2(x) = ;g. Then, 
onsider the relation6For example, en
ode any n-vertex graph that has m edges as an (n3 � 2m log2 n)-bit longstring that 
ontains the (adequately padded) list of all pairs of un
onne
ted verti
es.7Note that this 
ondition holds for both problems 
onsidered in the previous item.



3.4. DIGEST AND GENERAL PERSPECTIVE 77R = f(x; 1y) : (x; y) 2 R1g [ f(x; 0y) : (x; y) 2 R2g, and prove that R 2 PC n PF .Noting that SR = f0; 1g�, infer that R is not self-redu
ible.Exer
ise 3.15 (extending generi
 solutions' pre�xes versus PC and PF)In 
ontrast to what one may guess, extending solutions' pre�xes (equiv., de
idingmembership in S0R = fhx; y0i : 9y00 s.t. (x; y0y00) 2 Rg) may not be easy even if�nding solutions is easy (i.e., R 2 PF). Spe
i�
ally, assuming that P 6= NP ,present a sear
h problem R in PC \ PF su
h that de
iding S0R is not redu
ible tothe sear
h problem of R.Guideline: Consider the relation R = f(x; 0x) : x 2 f0; 1g�g [ f(x; 1y) : (x; y) 2 R0g,where R0 is an arbitrary relation in PC nPF , and note that R 2 PC. Prove that R 2 PFbut S0R 62 P.Exer
ise 3.16 In 
ontinuation of Exer
ise 3.14, present a natural sear
h problemR in PC su
h that if fa
toring integers is intra
table then the sear
h problem R(and so also S0R) is not redu
ible to SR.Guideline: As in Exer
ise 2.6, 
onsider the relation R su
h that (n; q) 2 R if the integerq is a non-trivial divisor of the integer n. Use the fa
t that the set of prime numbers isin P.Exer
ise 3.17 In 
ontinuation of Exer
ises 3.14 and 3.16, show that under suitableassumptions there exists relations R1; R2 2 PC having the same impli
it-de
isionproblem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) su
h that R1 is self-redu
iblebut R2 is not. Spe
i�
ally, prove the existen
e of su
h relations assuming thatP 6= NP \ 
oNP , and present natural relations assuming the intra
tability offa
toring.Exer
ise 3.18 Provide an alternative proof of Theorem 3.8 without referring tothe set S0R = fhx; y0i : 9y00 s.t. (x; y0y00)2Rg. Hint: Use Theorem 3.2.Guideline: Theorem 3.2 implies that R is Cook-redu
ible to some de
ision problem inNP, whi
h in turn is redu
ible to SR (due to the NP-
ompleteness of SR).
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Chapter 4NP-CompletenessOverview: In light of the diÆ
ulty of settling the P-vs-NP Question,when fa
ed with a hard problem H in NP, we 
annot expe
t to provethat H is not in P (un
onditionally). The best we 
an expe
t is a
onditional proof that H is not in P, based on the assumption that NPis di�erent from P. The 
ontrapositive is proving that if H is in P, thenso is any problem in NP (i.e., NP equals P). One possible way of provingsu
h an assertion is showing that any problem in NP is polynomial-timeredu
ible to H. This is the essen
e of the theory of NP-
ompleteness.In this 
hapter we prove the existen
e of NP-
omplete problems; thatis, the existen
e of individual problems that \e�e
tively en
ode" a wide
lass of seemingly unrelated problems (i.e., all problems in NP). Wealso prove that de
iding the satis�ability of a given Boolean formula isNP-
omplete. Other NP-
omplete problems in
lude de
iding whether agiven graph is 3-
olorable, and de
iding whether a given graph 
ontainsa 
lique of a given size.Tea
hing NotesWe are sure that some students have heard of NP-
ompleteness before, but wesuspe
t that many of them have missed some important 
on
eptual points. Spe
if-i
ally, we fear that they have missed the point that the mere existen
e of NP-
omplete problems is amazing (let alone that these problems in
lude natural onessu
h as SAT). We believe that this situation is a 
onsequen
e of presenting the de-tailed proof of Cook's Theorem right after de�ning NP-
ompleteness. In 
ontrast,we suggest starting with a proof that Bounded Halting is NP-
omplete.We suggest establishing the NP-
ompleteness of SAT by a redu
tion from the
ir
uit satisfa
tion problem (CSAT), after establishing the NP-
ompleteness of thelatter. Doing so allows to de
ouple two important parts of the proof of the NP-
ompleteness of SAT: the emulation of Turing ma
hines by 
ir
uits, and the emu-lation of 
ir
uits by formulae with auxiliary variables.79
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hapter 
ontains some advan
ed material, whi
h is 
ertainly not intendedfor presentation in 
lass. One su
h example is the assertion of the existen
e ofproblems in NP that are neither in P nor NP-
omplete (i.e., Theorem 4.12). Indeed,we re
ommend either stating Theorem 4.12 without a proof or merely presentingthe proof idea. Another example is Se
tion 4.5, whi
h seems unsuitable for mostundergraduate students. Needless to say, Se
tion 4.5 is de�nitely unsuitable forpresentation in an undergraduate 
lass, but it may be useful for guiding a dis
ussionin a small group of interested students.4.1 De�nitionsThe standard de�nition of NP-
ompleteness refers to de
ision problems. Belowwe will also present a de�nition of NP-
omplete (or rather PC-
omplete) sear
hproblems. In both 
ases, NP-
ompleteness of a problem � 
ombines two 
onditions:1. � is in the 
lass (i.e., � being in NP or PC, depending on whether � is ade
ision or a sear
h problem).2. Ea
h problem in the 
lass is redu
ible to �. This 
ondition is 
alled NP-hardness.Although a perfe
tly good de�nition of NP-hardness 
ould have allowed arbitraryCook-redu
tions, it turns out that Karp-redu
tions (resp., Levin-redu
tions) suÆ
efor establishing the NP-hardness of all natural NP-
omplete de
ision (resp., sear
h)problems. Consequently, NP-
ompleteness is usually de�ned using this restri
tednotion of a polynomial-time redu
tion.De�nition 4.1 (NP-
ompleteness of de
ision problems, restri
ted notion): A setS is NP-
omplete if it is in NP and every set in NP is Karp-redu
ible to S.A set is NP-hard if every set in NP is Karp-redu
ible to it (i.e., the 
lass NPis Karp-redu
ible to it). Indeed, there is no reason to insist on Karp-redu
tions(rather than using arbitrary Cook-redu
tions), ex
ept that the restri
ted notionsuÆ
es for all known demonstrations of NP-
ompleteness and is easier to workwith. An analogous de�nition applies to sear
h problems.De�nition 4.2 (NP-
ompleteness of sear
h problems, restri
ted notion): A binaryrelation R is PC-
omplete if it is in PC and every relation in PC is Levin-redu
ibleto R.In the sequel, we will sometimes abuse the terminology and refer to sear
h problemsas NP-
omplete (rather than PC-
omplete). Likewise, we will say that a sear
hproblem is NP-hard (rather than PC-hard) if every relation in PC is Levin-redu
ibleto it.We stress that the mere fa
t that we have de�ned a property (i.e., NP-
ompleteness)does not mean that there exist obje
ts that satisfy this property. It is indeed re-markable that NP-
omplete problems do exist. Su
h problems are \universal" in thesense that eÆ
iently solving them allows to eÆ
iently solve any other (reasonable)problem (i.e., problems in NP).
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e of NP-Complete ProblemsWe suggest not to 
onfuse the mere existen
e of NP-
omplete problems, whi
his remarkable by itself, with the even more remarkable existen
e of \natural" NP-
omplete problems. The following proof delivers the �rst message as well as fo
useson the essen
e of NP-
ompleteness, rather than on more 
ompli
ated te
hni
aldetails. The essen
e of NP-
ompleteness is that a single 
omputational problemmay \e�e
tively en
ode" a wide 
lass of seemingly unrelated problems.Theorem 4.3 There exist NP-
omplete relations and sets.Proof: The proof (as well as any other NP-
ompleteness proofs) is based on theobservation that some de
ision problems in NP (resp., sear
h problems in PC) are\ri
h enough" to en
ode all de
ision problems in NP (resp., all sear
h problemsin PC). This fa
t is most obvious for the \generi
" de
ision and sear
h problems,denoted Su and Ru (and de�ned next), whi
h are used to derive the simplest proofof the 
urrent theorem.We 
onsider the following relation Ru and the de
ision problem Su impli
it inRu (i.e., Su = fx : 9y s.t. (x; y)2Rug). Both problems refer to the same type ofinstan
es, whi
h in turn have the form x = hM;x; 1ti, whereM is a des
ription of a(standard deterministi
) Turing ma
hine, x is a string, and t is a natural number.The number t is given in unary (rather than in binary) in order to guaranteethat bounds of the form poly(t) are polynomial (rather than exponential) in theinstan
e's length. (This implies that various 
omplexity measures (e.g., time andlength) that 
an be upper-bounded by a polynomial in t yield upper bounds thatare polynomial in the length of the instan
e (i.e., jhM;x; 1tij, whi
h is linearlyrelated to jM j + jxj + t).) A solution to the instan
e x = hM;x; 1ti (of Ru) is astring y (of length at most t)1 su
h that M a

epts the input pair (x; y) within tsteps.De�nition: The relation Ru 
onsists of pairs (hM;x; 1ti; y) su
h that M a

eptsthe input pair (x; y) within t steps, where jyj � t.The 
orresponding set Su def= fx : 9y s.t. (x; y) 2 Rug 
onsists of triples hM;x; 1tisu
h that ma
hine M a

epts some input of the form (x; �) within t steps.It is easy to see that Ru is in PC and that Su is in NP . Indeed, Ru isre
ognizable by a universal Turing ma
hine, whi
h on input (hM;x; 1ti; y) emulates(t steps of) the 
omputation of M on (x; y). Note that this emulation 
an be
ondu
ted in poly(jM j + jxj + t) = poly(j(hM;x; 1ti; y)j) steps, and re
all thatRu is polynomially bounded (by its very de�nition). (The fa
t that Su 2 NPfollows similarly.)2 We 
omment that u indeed stands for universal (i.e., universal1Instead of requiring that jyj � t, one may require that M is \
anoni
al" in the sense that itreads its entire input before halting. Thus, if jyj > t, then su
h a 
anoni
al ma
hine M does nothalt (let alone a

ept) within t steps when given the input pair (x; y).2Alternatively, Su 2 NP follows from Ru 2 PC, be
ause for every R 2 PC it holds thatSR = fx : 9y s.t. (x; y) 2 Rg is in NP .



82 CHAPTER 4. NP-COMPLETENESSma
hine), and the proof extends to any reasonable model of 
omputation (whi
hhas adequate universal ma
hines).We now turn to show that Ru and Su are NP-hard in the adequate sense (i.e.,Ru is PC-hard and Su is NP-hard). We �rst show that any set in NP is Karp-redu
ible to Su. Let S be a set in NP and let us denote its witness relation byR; that is, R is in PC and x 2 S if and only if there exists y su
h that (x; y) 2 R.Let pR be a polynomial bounding the length of solutions in R (i.e., jyj � pR(jxj)for every (x; y) 2 R), let MR be a polynomial-time ma
hine de
iding membership(of alleged (x; y) pairs) in R, and let tR be a polynomial bounding its running-time. Then, the desired Karp-redu
tion maps an instan
e x (for S) to the instan
ehMR; x; 1tR(jxj+pR(jxj))i (for Su); that is,x 7! f(x) def= hMR; x; 1tR(jxj+pR(jxj))i: (4.1)Note that this mapping 
an be 
omputed in polynomial-time, and that x 2 S ifand only if f(x) = hMR; x; 1tR(jxj+pR(jxj))i 2 Su. Details follow.First, note that the mapping f does depend (of 
ourse) on S, and so it maydepend on the �xed obje
tsMR, pR and TR (whi
h depend on S). Thus, 
omputingf on input x 
alls for printing the �xed stringMR, 
opying x, and printing a numberof 1's that is a �xed polynomial in the length of x. Hen
e, f is polynomial-time
omputable. Se
ond, re
all that x 2 S if and only if there exists y su
h thatjyj � pR(jxj) and (x; y) 2 R. Sin
e MR a

epts (x; y) 2 R within tR(jxj + jyj)steps, it follows that x 2 S if and only if there exists y su
h that jyj � pR(jxj) andMR a

epts (x; y) within tR(jxj + jyj) steps. It follows that x 2 S if and only iff(x) 2 Su.We now turn to the sear
h version. For redu
ing the sear
h problem of anyR 2 PC to the sear
h problem of Ru, we use essentially the same redu
tion. Oninput an instan
e x (for R), we make the query hMR; x; 1tR(jxj+pR(jxj))i to thesear
h problem of Ru and return whatever the latter returns. Note that if x 62 Sthen the answer will be \no solution", whereas for every x and y it holds that(x; y) 2 R if and only if (hMR; x; 1tR(jxj+pR(jxj))i; y) 2 Ru. Thus, a Levin-redu
tionof R to Ru 
onsists of the pair of fun
tions (f; g), where f is the foregoing Karp-redu
tion and g(x; y) = y. Note that, indeed, for every (f(x); y) 2 Ru, it holdsthat (x; g(x; y)) = (x; y) 2 R.Digest: the role of 1t in the de�nition of Ru. The role in
luding 1t inthe des
ription of the problem instan
e is to allow pla
ing Ru in PC (resp., Suin NP). In 
ontrast, 
onsider the relation R0u that 
onsists of pairs (hM;x; ti; y)su
h that M a

epts hx; yi within t steps. Indeed, the di�eren
e between Ru andR0u is that in Ru the time-bound t appears in unary notation, whereas in R0uit appears in binary. Note that, although R0u is PC-hard (see Exer
ise 4.2), itis not in PC (be
ause membership in R0u 
annot be de
ided in polynomial time(see [13, x4.2.1.2℄)). Going even further, we note that omitting t altogether fromthe problem instan
e yields a sear
h problem that is not solvable at all. Thatis, 
onsider the relation RH def= f(hM;xi; y) : M(x; y) = 1g (whi
h is related to



4.2. THE EXISTENCE OF NP-COMPLETE PROBLEMS 83the halting problem). Indeed, the sear
h problem of any relation in PC is Karp-redu
ible to the sear
h problem of RH , but RH is not solvable at all (i.e., thereexists no algorithm that halts on every input su
h that on input x = hM;xi thealgorithm outputs a string y in RH(x) if su
h a y exists).Bounded Halting and Non-HaltingWe note that the problem shown to be NP-
omplete in the proof of Theorem 4.3is related to the following two problems, 
alled Bounded Halting and BoundedNon-Halting. Fixing any programming language, the instan
e to ea
h of theseproblems 
onsists of a program � and a time bound t (presented in unary).1. The de
ision version of Bounded Halting 
onsists of determining whether ornot there exists an input (of length at most t) on whi
h the program � haltsin t steps, whereas the sear
h problem 
onsists of �nding su
h an input.2. The de
ision version of Bounded Non-Halting 
onsists of determining whetheror not there exists an input (of length at most t) on whi
h the program � doesnot halt in t steps, whereas the sear
h problem 
onsists of �nding su
h aninput.It is easy to prove that both problems are NP-
omplete (see Exer
ise 4.3). Notethat the two (de
ision) problems are not 
omplementary (i.e., (�; 1t) may be ayes-instan
e of both de
ision problems).3The de
ision version of Bounded Non-Halting refers to a fundamental 
ompu-tational problem in the area of program veri�
ation; spe
i�
ally, to the problemof determining whether a given program halts within a given time-bound on all in-puts of a given length.4 We have mentioned Bounded Halting be
ause it is oftenreferred to in the literature, but we believe that Bounded Non-Halting is mu
hmore relevant to the proje
t of program veri�
ation (be
ause one seeks programsthat halt on all inputs (i.e., no-instan
es of Bounded Non-Halting) rather thanprograms that halt on some input).Re
e
tion: The fa
t that Bounded Non-Halting is probably intra
table (i.e., isintra
table provided that P 6= NP) is even more relevant to the proje
t of programveri�
ation than the fa
t that the Halting Problem is unde
idable. The reason3Indeed, (�; 1t) 
an not be a no-instan
e of both de
ision problems, but this does not make theproblems 
omplementary. In fa
t, the two de
ision problems yield a three-way partition of theinstan
es (�; 1t): (1) pairs (�; 1t) su
h that for every input x (of length at most t) the 
omputationof �(x) halts within t steps, (2) pairs (�; 1t) for whi
h su
h halting o

urs on some inputs butnot on all inputs, and (3) pairs (�; 1t) su
h that there exists no input (of length at most t) onwhi
h � halts in t steps. Note that instan
es of type (1) are exa
tly the no-instan
es of BoundedNon-Halting, whereas instan
es of type (3) are exa
tly the no-instan
es of Bounded Halting.4The length parameter need not equal the time-bound. Indeed, a more general version of theproblem refers to two bounds, ` and t, and to whether the given program halts within t steps onea
h possible `-bit input. It is easy to prove that the problem remains NP-
omplete also in the
ase that the instan
es are restri
ted to have parameters ` and t su
h that t = p(`), for any �xedpolynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).



84 CHAPTER 4. NP-COMPLETENESSbeing that the latter problem (as well as other related unde
idable problems) refersto arbitrarily long 
omputations, whereas the former problem refers to an expli
itlybounded number of 
omputational steps. Spe
i�
ally, Bounded Non-Halting is
on
erned with the existen
e of an input that 
auses the program to violate a 
ertain
ondition (i.e., halting) within a given time-bound.In light of the foregoing dis
ussion, the 
ommon pra
ti
e of bashing Bounded(Non-)Halting as an \unnatural" problem seems very odd at an age in whi
h 
om-puter programs plays su
h a 
entral role. (Nevertheless, we will use the term\natural" in this traditionally and odd sense in the next title, whi
h a
tually refersto natural 
omputational problems that seem unrelated to 
omputation.)4.3 Some Natural NP-Complete ProblemsHaving established the mere existen
e of NP-
omplete problems, we now turn toprove the existen
e of NP-
omplete problems that do not (expli
itly) refer to 
om-putation in the problem's de�nition. We stress that thousands of su
h problemsare known (and a list of several hundreds 
an be found in [11℄).We will prove that de
iding the satis�ability of propositional formulae is NP-
omplete (i.e., Cook's Theorem), and also present some 
ombinatorial problemsthat are NP-
omplete. This presentation is aimed at providing a (small) sampleof natural NP-
ompleteness results as well as some tools towards proving NP-
ompleteness of new problems of interest. We start by making a 
omment regardingthe latter issue.The redu
tion presented in the proof of Theorem 4.3 is 
alled \generi
" be
auseit (expli
itly) refers to any (generi
) NP-problem. That is, we a
tually presenteda s
heme for the design of redu
tions from any desired NP-problem to the singleproblem proved to be NP-
omplete. Indeed, in doing so, we have followed the def-inition of NP-
ompleteness. However, on
e we know some NP-
omplete problems,a di�erent route is open to us. We may establish the NP-
ompleteness of a newproblem by redu
ing a known NP-
omplete problem to the new problem. Thisalternative route is indeed a 
ommon pra
ti
e, and it is based on the followingsimple proposition.Proposition 4.4 If an NP-
omplete problem � is redu
ible to some problem �0 inNP then �0 is NP-
omplete. Furthermore, redu
ibility via Karp-redu
tions (resp.,Levin-redu
tions) is preserved.Proof: The proof boils down to asserting the transitivity of redu
tions. Spe
if-i
ally, the NP-hardness of � means that every problem in NP is redu
ible to �,whi
h in turn is redu
ible to �0 (by the hypothesis). Thus, by transitivity of re-du
tion (see Exer
ise 3.3), every problem in NP is redu
ible to �0, whi
h meansthat �0 is NP-hard and the proposition follows.



4.3. SOME NATURAL NP-COMPLETE PROBLEMS 854.3.1 Cir
uit and Formula Satis�ability: CSAT and SATWe 
onsider two related 
omputational problems, CSAT and SAT, whi
h refer (inthe de
ision version) to the satis�ability of Boolean 
ir
uits and formulae, respe
-tively. (We refer the reader to the de�nition of Boolean 
ir
uits, formulae and CNFformulae (see x1.4.1.1 and x1.4.3.1).)We suggest establishing the NP-
ompleteness of SAT by a redu
tion from the
ir
uit satisfa
tion problem (CSAT), after establishing the NP-
ompleteness of thelatter. Doing so allows to de
ouple two important parts of the proof of the NP-
ompleteness of SAT: the emulation of Turing ma
hines by 
ir
uits, and the emu-lation of 
ir
uits by formulae with auxiliary variables.4.3.1.1 The NP-Completeness of CSATRe
all that Boolean 
ir
uits are dire
ted a
y
li
 graphs with internal verti
es, 
alledgates, labeled by Boolean operations (of arity either 2 or 1), and external verti
es
alled terminals that are asso
iated with either inputs or outputs. When settingthe inputs of su
h a 
ir
uit, all internal nodes are assigned values in the naturalway, and this yields a value to the output(s), 
alled an evaluation of the 
ir
uit onthe given input. The evaluation of 
ir
uit C on input z is denoted C(z). We fo
uson 
ir
uits with a single output, and let CSAT denote the set of satis�able Boolean
ir
uits; that is, a 
ir
uit C is in CSAT if there exists an input z su
h that C(z) = 1.We also 
onsider the related relation RCSAT = f(C; z) : C(z) = 1g.Theorem 4.5 (NP-
ompleteness of CSAT): The set (resp., relation) CSAT (resp.,RCSAT) is NP-
omplete (resp., PC-
omplete).Proof: It is easy to see that CSAT 2 NP (resp., RCSAT 2 PC). Thus, we turn toshowing that these problems are NP-hard. We will fo
us on the de
ision version(but also dis
uss the sear
h version).We will present (again, but for the last time in this book) a generi
 redu
tion,this time of any NP-problem to CSAT. The redu
tion is based on the observa-tion, mentioned in Se
tion 1.4.1 (see also Exer
ise 1.14), that the 
omputation ofpolynomial-time algorithms 
an be emulated by polynomial-size 
ir
uits. We startwith a des
ription of the basi
 idea.In the 
urrent 
ontext, we wish to emulate the 
omputation of a �xed ma
hineM on input (x; y), where x is �xed and y varies (but jyj = poly(jxj) and the totalnumber of steps ofM(x; y) is polynomial in jxj+ jyj). Thus, x will be \hard-wired"into the 
ir
uit, whereas y will serve as the input to the 
ir
uit. The 
ir
uit itself,denoted Cx, will 
onsists of \layers" su
h that ea
h layer will represent an in-stantaneous 
on�guration of the ma
hineM , and the relation between 
onse
utive
on�gurations in a 
omputation of this ma
hine will be 
aptured by (\uniform")lo
al gadgets in the 
ir
uit. The number of layers will depend on (x and on) thepolynomial that upper-bounds the running-time of M , and an additional gadgetwill be used to dete
t whether the last 
on�guration is a

epting. Thus, only the�rst layer of the 
ir
uit Cx (whi
h will represent an initial 
on�guration with input



86 CHAPTER 4. NP-COMPLETENESSpre�xed by x) will depend on x. (See Figure 4.1.) The pun
h-line is that determin-ing whether, for a given x, there exists a y 2 f0; 1gpoly(jxj) su
h that M(x; y) = 1(in a given number of steps) will be redu
ed to whether there exists a y su
h thatCx(y) = 1. Performing this redu
tion for any ma
hine MR that 
orresponds toany R 2 PC (as in the proof of Theorem 4.3), we establish the fa
t that CSAT isNP-
omplete. Details follow.
x ---y

y

x ---

2nd layer

3rd layer

4th layer

last layer

2nd configuration

3rd configuration

4th configuration

last configurationFigure 4.1: The s
hemati
 
orresponden
e between the 
on�gurations in the 
om-putation of M(x; y) (on the left) and the evaluation of the 
ir
uit Cx on input y(on the right), where x is �xed and y varies. The value of x (as well as a sequen
eof blanks) is hard-wired (marked grey) in the �rst layer of Cx, and dire
ted edges
onne
t 
onse
utive layers.Re
all that we wish to redu
e an arbitrary set S 2 NP to CSAT. Let R, pR,MR and tR be as in the proof of Theorem 4.3 (i.e., R is the witness relation of S,whereas pR bounds the length of the NP-witnesses, MR is the ma
hine de
idingmembership in R, and tR is its polynomial time-bound). Without loss of generality(and for simpli
ity), suppose that MR is a one-tape Turing ma
hine. We will
onstru
t a Karp-redu
tion that maps an instan
e x (for S) to a 
ir
uit, denotedf(x) def= Cx, su
h that Cx(y) = 1 if and only if MR a

epts the input (x; y) withintR(jxj + pR(jxj)) steps. Thus, it will follow that x 2 S if and only if there existsy 2 f0; 1gpR(jxj) su
h that Cx(y) = 1 (i.e., if and only if Cx 2 CSAT). The 
ir
uitCx will depend on x as well as on MR; pR and tR. (We stress that MR; pR and tRare �xed, whereas x varies and is thus expli
it in our notation.)Before des
ribing the 
ir
uit Cx, let us 
onsider a possible 
omputation of MRon input (x; y), where x is �xed and y represents a generi
 string of length pR(jxj).Su
h a 
omputation pro
eeds for (at most) t = tR(jxj + pR(jxj)) steps, and 
orre-sponds to a sequen
e of (at most) t+1 instantaneous 
on�gurations, ea
h of lengtht. Ea
h su
h 
on�guration 
an be en
oded by t pairs of symbols, where the �rstsymbol in ea
h pair indi
ates the 
ontents of a 
ell and the se
ond symbol indi
ateseither a state of the ma
hine or the fa
t that the ma
hine is not lo
ated in this
ell. Thus, ea
h pair is a member of � � (Q [ f?g), where � is the �nite \workalphabet" of MR, and Q is its �nite set of internal states, whi
h does not 
ontain
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ial symbol ? (whi
h is used as indi
ation that the ma
hine is not presentat a 
ell). The initial 
on�guration 
onsists of hx; yi as input, and is padded bybla
ks to a total length of t, whereas the de
ision ofMR(x; y) 
an be read from (theleftmost 
ell of) the last 
on�guration.5 We view these t+1 possible 
on�gurationsas rows in an array, where the ith row des
ribes the instantaneous 
on�guration ofM(x; y) after i�1 steps. For every i > 1, the values of the entries in the ith row aredetermined by the entries of the (i�1)st row (whi
h resides just above the ith row),where this determination re
e
ts the transition fun
tion of MR. Furthermore, thevalue of ea
h entry in the said row is determined by the values of (up to) threeentries that reside in the row above it (see Exer
ise 4.4). Thus, the aforementioned
omputation is represented by a (t + 1) � t array, depi
ted in Figure 4.2, whereea
h entry en
odes one out of a 
onstant number of possibilities, whi
h in turn 
anbe en
oded by a 
onstant-length bit string.

last  configuration

initial  configuration (1,a) (1,-) (0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(-,-) (-,-) (-,-)(-,-) (-,-)

(1,b)

(0,b)(1,-)

(3,-)

(3,-)

(0,-)(1,c)(3,-)

(0,-)

(0,-)

(1,-)(3,c)

(y ,-)1

(y ,-)1

(y ,-)1 (y ,-)2

(y ,-)2

(y ,-)2

(with input 110 2 y 1 ) y 

(1,-) (1,f)

Figure 4.2: An array representing ten 
onse
utive 
omputation steps on input110y1y2. Blank 
hara
ters as well as the indi
ation that the ma
hine is not presentin the 
ell are marked by a hyphen (-). The state of the ma
hine in ea
h 
on�gu-ration is represented in the 
ell in whi
h it resides, where the set of states of thisma
hine equals fa; b; 
; d; e; fg. The three arrows represent the determination ofan entry by the three entries that reside above it. The ma
hine underlying thisexample a

epts the input if and only if the input 
ontains a zero.The a
tual des
ription of Cx. The 
ir
uit Cx has a stru
ture that 
orresponds to theaforementioned array (see, indeed, Figure 4.1). Spe
i�
ally, ea
h row in the arrayis represented by a 
orresponding layer in the 
ir
uit Cx su
h that ea
h entry in the5We refer to the output 
onvention presented in Se
tion 1.3.2, by whi
h the output is writtenin the leftmost 
ells and the ma
hine halts at the 
ell to its right.



88 CHAPTER 4. NP-COMPLETENESSarray is represented by a 
onstant number of gates in Cx. When Cx is evaluated aty these gates will be assigned values that en
ode the 
ontents of the 
orrespondingentry in the array that des
ribes the 
omputation of MR(x; y). In parti
ular, theentries of the �rst row of the array are \en
oded" (in the �rst layer of Cx) by hard-wiring the redu
tion's input (i.e., x), and feeding the 
ir
uit's input (i.e., y) to theadequate input terminals. That is, the 
ir
uit has pR(jxj) (\real") input terminals(
orresponding to y), and the hard-wiring of 
onstants to the other O(t)� pR(jxj)gates (of the �rst layer) that represent the �rst row is done by simple gadgets (asin Figure 1.2). Indeed, the additional hard-wiring in the �rst layer 
orrespondsto the other �xed elements of the initial 
on�guration (i.e., the blank symbols,and the en
oding of the initial state and of the initial lo
ation; 
f. Figure 4.2).The entries of subsequent rows will be \en
oded" in 
orresponding layers of Cx(or rather 
omputed at evaluation time). Spe
i�
ally, the values that en
ode anentry in the array will be 
omputed by using 
onstant-size 
ir
uits that determinethe value of an entry based on the three relevant entries that are en
oded in thelayer above it. Re
all that ea
h entry is en
oded by a 
onstant number of gates(in the 
orresponding layer), and thus these 
onstant-size 
ir
uits merely 
omputethe 
onstant-size fun
tion des
ribed in Exer
ise 4.4. In addition, the 
ir
uit Cx hasa few extra gates that 
he
k the values of the entries of the last row in order todetermine whether or not it en
odes an a

epting 
on�guration.6Advan
ed 
omment: We note that, although the foregoing 
onstru
tion of Cx
apitalizes on various spe
i�
 details of the (one-tape) Turing ma
hine model,it 
an be easily adapted to other natural models of eÆ
ient 
omputation (byshowing that in su
h models the transformation from one 
on�guration to thesubsequent one 
an be emulated by a (polynomial-time 
onstru
tible) 
ir
uit).Alternatively, we re
all the Cobham-Edmonds Thesis asserting that any problemthat is solvable in polynomial-time (on some \reasonable" model) 
an be solvedin polynomial-time by a (one-tape) Turing ma
hine.The 
omplexity of the mapping of x to f(x) = Cx. Given x, the 
ir
uit Cx 
anbe 
onstru
ted in polynomial time, by en
oding x in an appropriate manner (inthe �rst layer) and generating a \highly uniform" grid-like 
ir
uit of size t, wheret = O(tR(jxj + pR(jxj))2). Spe
i�
ally, the gates of the �rst layer are determinedby x su
h that ea
h gate is determined by at most a single bit of x, whereas the
onstant-size 
ir
uits 
onne
ting 
onse
utive layers only depend on the transitionfun
tion of MR (whi
h is �xed in the 
ontext of redu
ing S to CSAT). Finally, notethat the total number of gates is quadrati
ally related to tR(jxj+ pR(jxj), whi
h isa �xed polynomial in jxj (again, be
ause pR and tR are �xed (polynomials) in the
ontext of redu
ing S to CSAT).The validity of the mapping of x to f(x) = Cx. By its 
onstru
tion, the 
ir
uitCx emulates tR(jxj + pR(jxj)) steps of 
omputation of MR on input (x; �). Thus,6In 
ontinuation of Footnote 5, we note that it suÆ
es to 
he
k the values of the two leftmostentries of the last row. We assumed here that the 
ir
uit propagates a halting 
on�guration tothe last row. Alternatively, we may 
he
k for the existen
e of an a

epting/halting 
on�gurationin the entire array, sin
e this 
ondition is quite simple.
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epts the input (x; y) while making at mosttR(jxj + pR(jxj)) steps. Re
alling that S = fx : 9y s.t. jyj � pR(jxj) ^ (x; y)2Rgand that MR de
ides membership in R in time tR, we infer that x 2 S if and onlyif f(x) = Cx 2 CSAT. Furthermore, (x; y) 2 R if and only if (f(x); y) 2 RCSAT.It follows that f is a Karp-redu
tion of S to CSAT, and, for g(x; y) def= y, it holdsthat (f; g) is a Levin-redu
tion of R to RCSAT. The theorem follows.4.3.1.2 The NP-Completeness of SATRe
all that Boolean formulae are spe
ial types of Boolean 
ir
uits (i.e., 
ir
uitshaving a tree stru
ture).7 We further restri
t our attention to formulae given in
onjun
tive normal form (CNF). We denote by SAT the set of satis�able CNFformulae (i.e., a CNF formula � is in SAT if there exists an truth assignment � su
hthat �(�) = 1). We also 
onsider the related relation RSAT = f(�; �) : �(�) = 1g.Theorem 4.6 (NP-
ompleteness of SAT): The set (resp., relation) SAT (resp.,RSAT) is NP-
omplete (resp., PC-
omplete).Proof: Sin
e the set of possible instan
es of SAT is a subset of the set of instan
esof CSAT, it is 
lear that SAT 2 NP (resp., RSAT 2 PC). To prove that SAT is NP-hard, we redu
e CSAT to SAT (and use Proposition 4.4). The redu
tion boils downto introdu
ing auxiliary variables in order to \
ut" the 
omputation of an arbitrary(\deep") 
ir
uit into a 
onjun
tion of related 
omputations of \shallow" 
ir
uits(i.e., depth-2 
ir
uits) of unbounded fan-in, whi
h in turn may be presented as aCNF formula. The aforementioned auxiliary variables hold the possible values ofthe internal gates of the original 
ir
uit, and the 
lauses of the CNF formula enfor
ethe 
onsisten
y of these values with the 
orresponding gate operation. For example,if gatei and gatej feed into gatek, whi
h is a ^-gate, then the 
orrespondingauxiliary variables gi; gj ; gk should satisfy the Boolean 
ondition gk � (gi ^ gj),whi
h 
an be written as a 3CNF with four 
lauses. Details follow.We start by Karp-redu
ing CSAT to SAT. Given a Boolean 
ir
uit C, with ninput terminals and m gates, we �rst 
onstru
t m 
onstant-size formulae on n+mvariables, where the �rst n variables 
orrespond to the input terminals of the 
ir
uit,and the other m variables 
orrespond to its gates. The ith formula will depend onthe variable that 
orrespond to the ith gate and the 1-2 variables that 
orrespondto the verti
es that feed into this gate (i.e., 2 verti
es in 
ase of ^-gate or _-gateand a single vertex in 
ase of a :-gate, where these verti
es may be either inputterminals or other gates). This (
onstant-size) formula will be satis�ed by a truthassignment if and only if this assignment mat
hes the gate's fun
tionality (i.e.,feeding this gate with the 
orresponding values result in the 
orresponding outputvalue). Note that these 
onstant-size formulae 
an be written as 
onstant-size CNFformulae (in fa
t, as 3CNF formulae).8 Taking the 
onjun
tion of these m formulae7For an alternative de�nition, see Se
tion A.2.8Re
all that any Boolean fun
tion 
an be written as a CNF formula having size that is ex-ponential in the length of its input (
f. Exer
ise 1.16), whi
h in this 
ase is a 
onstant (i.e.,either 2 or 3). Indeed, note that the Boolean fun
tions that we refer to here depends on 2-3
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Figure 4.3: Using auxiliary variables (i.e., the gi's) to \
ut" a depth-5 
ir
uit (intoa CNF). The dashed regions will be repla
ed by equivalent CNF formulae. Thedashed 
y
le, representing an unbounded fan-in and-gate, is the 
onjun
tion of all
onstant-size 
ir
uits (whi
h enfor
e the fun
tionalities of the original gates) andthe variable that represents the (gate that feed the) output terminal in the original
ir
uit.and the variable asso
iated with the (gate that feeds into the) output terminal, weobtain a formula � in CNF. An example, where n = 3 and m = 4, is presented inFigure 4.3.Note that � 
an be 
onstru
ted in polynomial-time from the 
ir
uit C; that is,the mapping of C to � = f(C) is polynomial-time 
omputable. We 
laim that Cis in CSAT if and only if � is in SAT.1. Suppose that for some string s it holds that C(s) = 1. Then, assigning tothe ith auxiliary variable the value that is assigned to the ith gate of C whenevaluated on s, we obtain (together with s) a truth assignment that satis�es�. This is the 
ase be
ause su
h an assignment satis�es all m 
onstant-sizeCNFs as well as the variable asso
iated with the output of C.2. On the other hand, if � satis�es � then the �rst n bits in � 
orrespond to aninput on whi
h C evaluates to 1. This is the 
ase be
ause the m 
onstant-sizeCNFs guarantee that the variables of � are assigned values that 
orrespondto the evaluation of C on the �rst n bits of � , while the fa
t that the variableasso
iated with the output of C has value true guarantees that this evaluationof C yields the value 1.Thus, we have established that f is a Karp-redu
tion of CSAT to SAT. Note that themapping (of � to its n-bit pre�x) used in Item 2 is the se
ond mapping required bythe de�nition of a Levin-redu
tion. Thus, augmenting f with the aforementionedse
ond mapping yields a Levin-redu
tion of RCSAT to RSAT.Boolean variables (sin
e they indi
ate whether or not the 
orresponding values respe
t the gate'sfun
tionality).
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tive. The fa
t that the se
ond mapping required by the def-inition of a Levin-redu
tion is expli
it in the proof of the validity of the 
orrespond-ing Karp-redu
tion is a fairly 
ommon phenomenon. A
tually (see Exer
ise 4.17),typi
al presentations of Karp-redu
tions provide two auxiliary polynomial-time
omputable mappings (in addition to the main mapping of instan
es from oneproblem (e.g., CSAT) to instan
es of another problem (e.g., SAT)): The �rst auxil-iary mapping is of solutions for the preimage instan
e (e.g., of CSAT) to solutionsfor the image instan
e of the redu
tion (e.g., of SAT), whereas the se
ond mappinggoes the other way around. For example, the proof of the validity of the Karp-redu
tion of CSAT to SAT, denoted f , spe
i�ed two additional mappings h and gsu
h that (C; s) 2 RCSAT implies (f(C); h(C; s)) 2 RSAT and (f(C); �) 2 RSATimplies (C; g(C; �)) 2 RCSAT. Spe
i�
ally, in the proof of Theorem 4.6, we usedh(C; s) = (s; a1; :::; am) where ai is the value assigned to the ith gate in the eval-uation of C(s), and g(C; �) being the n-bit pre�x of � . (Note that only the mainmapping (i.e., f) and the se
ond auxiliary mapping (i.e., g) are required in thede�nition of a Levin-redu
tion.)3SAT. Observe that the formulae resulting from the Karp-redu
tion presentedin the proof of Theorem 4.6 are a
tually 3CNF formulae; that is, ea
h su
h formulais in 
onjun
tive normal form (CNF) and ea
h of its 
lauses 
ontains at most threeliterals. Thus, the foregoing redu
tion a
tually establishes the NP-
ompleteness of3SAT (i.e., SAT restri
ted to CNF formula with up to three literals per 
lause). Al-ternatively, one may Karp-redu
e SAT (i.e., satis�ability of CNF formula) to 3SAT(i.e., satis�ability of 3CNF formula) by repla
ing long 
lauses with 
onjun
tions ofthree-variable 
lauses (using auxiliary variables; see Exer
ise 4.5). Either way, weget the following result, where the furthermore part is proved by an additionalredu
tion.Proposition 4.7 3SAT is NP-
omplete. Furthermore, the problem remains NP-
omplete also if we restri
t the instan
es su
h that ea
h variable appears in at mostthree 
lauses.Proof: The furthermore part is proved by a redu
tion from 3SAT. We just repla
eea
h o

urren
e of ea
h Boolean variable by a new 
opy of this variable, and add
lauses to enfor
e that all these 
opies are assigned the same value. Spe
i�
ally, ifvariable z o

urs t times in the original 3CNF formula �, then we introdu
e t newvariables (i.e., its \
opies"), denoted z(1); :::; z(t), and repla
e the ith o

urren
e ofz in � by z(i). In addition, we add the 
lauses z(i+1)_:z(i) for i = 1:::; t (where t+1is understood as 1). Thus, ea
h variable appears at most three times in the newformula. Note that the 
lause z(i+1) _:z(i) is logi
ally equivalent to z(i) ) z(i+1),and thus the 
onjun
tion of the aforementioned t 
lauses is logi
ally equivalent toz(1) , z(2) , � � � , z(t). The validity of the redu
tion follows.Related problems. Note that instan
es of SAT 
an be viewed as systems ofBoolean 
onditions over Boolean variables. Su
h systems 
an be emulated by vari-ous types of systems of arithmeti
 
onditions, implying the NP-hardness of solving



92 CHAPTER 4. NP-COMPLETENESSthe latter types of systems. Examples in
lude systems of integer linear inequalities(see Exer
ise 4.7), and systems of quadrati
 equalities (see Exer
ise 4.9).4.3.2 Combinatori
s and Graph TheoryThe purpose of this se
tion is to expose the reader to a sample of NP-
ompletenessresults and proof te
hniques (i.e., the design of redu
tions among 
omputationalproblems). We present just a few of the many appealing 
ombinatorial problemsthat are known to be NP-
omplete. Throughout this se
tion, we fo
us on the de
i-sion versions of the various problems, and adopt a more informal style. Spe
i�
ally,we will present a typi
al de
ision problem as a problem of de
iding whether a giveninstan
e, whi
h belongs to a set of relevant instan
es, is a \yes-instan
e" or a \no-instan
e" (rather than referring to de
iding membership of arbitrary strings in a setof yes-instan
es). For further dis
ussion of this style and its rigorous formulation,see Se
tion 5.1. We will also negle
t showing that these de
ision problems are inNP; indeed, for natural problems in NP, showing membership in NP is typi
allystraightforward.Set Cover. We start with the set 
over problem, in whi
h an instan
e 
onsists of a
olle
tion of �nite sets S1; :::; Sm and an integer K and the question (for de
ision)is whether or not there exist (at most)9 K sets that 
over Smi=1 Si (i.e., indi
esi1; :::; iK su
h that SKj=1 Sij = Smi=1 Si).Proposition 4.8 Set Cover is NP-
omplete.Proof: We present a Karp-redu
tion of SAT to Set Cover. For a CNF formula� with m 
lauses and n variables, we 
onsider the sets S1;t; S1;f; ::; Sn;t; Sn;f �f1; :::;mg su
h that Si;t (resp., Si;f) is the set of the indi
es of the 
lauses (of �)that are satis�ed by setting the ith variable to true (resp., false). That is, if theith variable appears unnegated in the jth 
lause then j 2 Si;t, whereas if the ithvariable appears negated in the jth 
lause then j 2 Si;f. Indeed, Si;t [Si;f equalsthe set of 
lauses 
ontaining an o

urren
e of the ith variable, and the union of allthese 2n sets equals [m℄ def= f1; :::;mg. In order to for
e any 
over to 
ontain eitherSi;t or Si;f, we augment the universe with n additional elements and add the ithsu
h element to both Si;t and Si;f. Thus, the redu
tion pro
eeds as follows.1. On input a CNF formula � (with n variables and m 
lauses), the redu
tion
omputes the sets S1;t; S1;f; ::; Sn;t; Sn;f su
h that Si;t (resp., Si;f) is theset of the indi
es of the 
lauses in whi
h the ith variable appears unnegated(resp., negated).2. The redu
tion outputs the instan
e f(�) def= ((S1; ::; S2n); n), where for i =1; :::; n it holds that S2i�1 = Si;t [ fm+ ig and S2i = Si;f [ fm+ ig.9Clearly, in 
ase of Set Cover, the two formulations (i.e., asking for exa
tly K sets or at mostK sets) are 
omputationally equivalent.
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e of Set Cover if and only if the 
olle
tion (S1; ::; S2n)
ontains a sub-
olle
tion of n sets that 
overs [m + n℄. Observing that f is 
om-putable in polynomial-time, we 
omplete the proof by showing that f is a validKarp-redu
tion of SAT to Set Cover.Assume, on the one hand, that � is satis�ed by �1 � � � �n. Then, for everyj 2 [m℄ there exists an i 2 [n℄ su
h that setting the ith variable to �i satis�es thejth 
lause, and so j 2 S2i��i . It follows that the 
olle
tion fS2i��i : i = 1; :::; ng
overs f1; :::;m + ng, be
ause fS2i��i \ [m℄ : i = 1; :::; ng 
overs f1; :::;mg whilefS2i��i n [m℄ : i = 1; :::; ng 
overs fm + 1; :::;m+ ng. Thus, � 2 SAT implies thatf(�) is a yes-instan
e of Set Cover.On the other hand, for every i 2 [n℄, ea
h 
over of fm + 1; :::;m + ng �f1; :::;m+ng must in
lude either S2i�1 or S2i, be
ause these are the only sets that
over the element m + i. Thus, a 
over of f1; :::;m+ ng using n of the Sj 's must
ontain, for every i, either S2i�1 or S2i but not both. Setting �i a

ordingly (i.e.,�i = 1 if and only if S2i�1 is in the 
over) implies that fS2i��i : i = 1; :::; ng (orrather fS2i��i\ [m℄ : i = 1; :::; ng) 
overs f1; :::;mg. It follows that �1 � � � �n satis�es�, be
ause for every j 2 [m℄ there exists an i 2 [n℄ su
h that j 2 S2i��i (whi
himplies that setting the ith variable to �i satis�es the jth 
lause). Thus, if f(�) is ayes-instan
e of Set Cover (i.e., there is a 
over of [m+ n℄ that uses n of the Sj 's),then � 2 SAT.Exa
t Cover and 3XC. The exa
t 
over problem is similar to the set 
over prob-lem, ex
ept that here the sets that are used in the 
over are not allowed to interse
t.That is, ea
h element in the universe should be 
overed by exa
tly one set in the
over. Restri
ting the set of instan
es to sequen
es of 3-sets (i.e., sets of size three),we get the restri
ted problem 
alled 3-Exa
t Cover (3XC), in whi
h it is unne
es-sary to spe
ify the number of sets to be used in the exa
t 
over (sin
e this numbermust equal the size of the universe divided by three). The problem 3XC is ratherte
hni
al, but it is quite useful for demonstrating the NP-
ompleteness of otherproblems (by redu
ing 3XC to them); see, for example, Exer
ises 4.15 and 4.16.Proposition 4.9 3-Exa
t Cover is NP-
omplete.Indeed, it follows that the Exa
t Cover (in whi
h sets of arbitrary size are allowed)is NP-
omplete. This follows both for the 
ase that the number of sets in the desired
over is unspe
i�ed and for the various 
ases in whi
h this number is bounded (i.e.,upper-bounded or lower-bounded or both).Proof: The redu
tion is obtained by 
omposing four redu
tions, whi
h involvethree intermediate 
omputational problems. The �rst of these problems is a re-stri
ted 
ase of 3SAT, denoted r3SAT, in whi
h ea
h literal appears in at mosttwo 
lauses. Note that, by Proposition 4.7, 3SAT is NP-
omplete even when theinstan
es are restri
ted su
h that ea
h variable appears in at most three 
lauses.A
tually, the redu
tion presented in the proof of Proposition 4.7 
an be slightlymodi�ed in order to redu
e 3SAT to r3SAT (see Exer
ise 4.10).1010Alternatively, a 
loser look at the redu
tion presented in the proof of Proposition 4.7 revealsthat it always produ
es instan
es of r3SAT.
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ond intermediate problem that we 
onsider is a restri
ted version of SetCover, denoted 3SC, in whi
h ea
h set has at most three elements. (Indeed, as inthe general 
ase of Set Cover, an instan
e 
onsists of a sequen
e of �nite sets aswell as an integer K, and the question is whether there exists a 
over with at mostK sets.) We redu
e r3SAT to 3SC by using the (very same) redu
tion presentedin the proof of Proposition 4.8, while observing that the size of ea
h set in theredu
ed instan
e is at most three (i.e., one more than the number of o

urren
esof the 
orresponding literal in 
lauses of the original formula).Next, we redu
e 3SC to the following restri
ted version of Exa
t Cover, denoted3XC0, in whi
h ea
h set has at most three elements. An instan
e of 3XC0 
onsistsof a sequen
e of �nite sets as well as an integer K, and the question is whetherthere exists an exa
t 
over with at most K sets. The redu
tion maps an instan
e((S1; :::; Sm);K) of 3SC to the instan
e (C 0;K) su
h that C 0 is a 
olle
tion of allsubsets of ea
h of the sets S1; :::; Sm. Sin
e ea
h Si has size at most three, weintrodu
e at most seven non-empty subsets per ea
h su
h set, and the redu
tion
an be 
omputed in polynomial-time. The reader may easily verify the validity ofthis redu
tion (see Exer
ise 4.11).Finally, we redu
e 3XC0 to 3XC. Consider an instan
e ((S1; :::; Sm);K) of 3XC0,and suppose that Smi=1 Si = [n℄. If n > 3K then this is de�nitely a no-instan
e,whi
h 
an be mapped to a dummy no-instan
e of 3XC, and so we assume thatx def= 3K � n � 0. Intuitively, x represents the \ex
ess" 
overing ability of ahypotheti
al exa
t 
over that 
onsists of K sets, ea
h having three elements. Thus,we augment the set system with x new elements, denoted n+1; :::; 3K, and repla
eea
h Si su
h that jSij < 3 by a sub-
olle
tion of 3-sets that 
over Si as well asarbitrary elements from fn + 1; :::; 3Kg. That is, in 
ase jSij = 2, the set Si isrepla
ed by the sub-
olle
tion (Si [ fn+1g; :::; Si [ f3Kg), whereas a singleton Siis repla
ed by the sets Si[fj1; j2g for every j1 < j2 in fn+1; :::; 3Kg. In addition,we add all possible 3-subsets of fn+ 1; :::; 3Kg. This 
ompletes the des
ription ofthe last redu
tion, the validity of whi
h is left as an exer
ise (see Exer
ise 4.11).Let us 
on
lude. We have introdu
ed the intermediate problems r3SAT, 3SC,and 3XC0, and presented a sequen
e of Karp-redu
tions leading from 3SAT to 3XCvia these intermediate problems. Spe
i�
ally, we redu
ed 3SAT to r3SAT, thenredu
ed r3SAT to 3SC, next redu
ed 3SC to 3XC0, and �nally redu
ed 3XC0 to 3XC.Composing these four redu
tions, we obtain a Karp-redu
tion of 3SAT to 3XC, andthe proposition follows.Vertex Cover, Independent Set, and Clique. Turning to graph theoreti
problems (see Se
tion A.1), we start with the Vertex Cover problem, whi
h isa spe
ial 
ase of the Set Cover problem. The instan
es 
onsists of pairs (G;K),where G = (V;E) is a simple graph andK is an integer, and the problem is whetheror not there exists a set of (at most) K verti
es that is in
ident to all graph edges(i.e., ea
h edge in G has at least one endpoint in this set). Indeed, this instan
eof Vertex Cover 
an be viewed as an instan
e of Set Cover by 
onsidering the
olle
tion of sets (Sv)v2V , where Sv denotes the set of edges in
ident at vertex v(i.e., Sv = fe 2 E : v 2 eg). Thus, the NP-hardness of Set Cover follows from the



4.3. SOME NATURAL NP-COMPLETE PROBLEMS 95NP-hardness of Vertex Cover (but this impli
ation is unhelpful for us here: wealready know that Set Cover is NP-hard and we wish to prove that Vertex Coveris NP-hard). We also note that the Vertex Cover problem is 
omputationallyequivalent to the Independent Set and Clique problems (see Exer
ise 4.12), andthus it suÆ
es to establish the NP-hardness of one of these problems.Proposition 4.10 The problems Vertex Cover, Independent Set and Cliqueare NP-
omplete.The following redu
tion is not the \standard" one (see Exer
ise 4.13), but is ratheradapted from the FGLSS-redu
tion (see [9℄). This is done in anti
ipation of the useof the FGLSS-redu
tion in the 
ontext of the study of the 
omplexity of approx-imation (
f., e.g., [14℄ or [13, Se
. 10.1.1℄). Furthermore, although the followingredu
tion 
reates a larger graph, we �nd it more 
lear than the \standard" redu
-tion.Proof: We show a redu
tion from 3SAT to Independent Set. On input a 3CNFformula � with m 
lauses and n variables, we 
onstru
t a graph with 7m verti
es,denoted G�, as follows.� The verti
es are grouped in m equal sized sets, ea
h 
orresponding to oneof the 
lauses, and edges are pla
ed among all verti
es that belong to ea
hof these 7-sets (thus obtaining m disjoint 7-vertex 
liques). The 7-set 
orre-sponding to a spe
i�
 
lause 
ontains seven verti
es that 
orrespond to theseven truth assignments (to the three variables in the 
lause) that satisfythe 
lause. That is, the verti
es in the graph 
orrespond to partial assign-ments su
h that the seven verti
es that belong to the ith 7-set 
orrespondto the seven partial assignments that instantiate the variables in the ith
lause in a way that satisfy this 
lause. For example, if the ith 
lause equalsxj1 _ xj2 _:xj3 , then the ith 7-set 
onsists of verti
es that 
orrespond to theseven Boolean fun
tions � that are de�ned on fj1; j2; j3g � [n℄ and satisfy�(j1) _ �(j2) _ :�(j3).� In addition to the edges that are internal to these m 7-sets (whi
h form 7-vertex 
liques), we add an edge between ea
h pair of verti
es that 
orrespondto partial assignments that are mutually in
onsistent. That is, if a spe
i�
(satisfying) assignment to the variables of the ith 
lause is in
onsistent withsome (satisfying) assignment to the variables of the jth 
lause, then we 
on-ne
t the 
orresponding verti
es by an edge. In parti
ular, no edges are pla
edbetween 7-sets that represent 
lauses that share no 
ommon variable. (In 
on-trast, the edges that are internal to the m 7-sets may be viewed as a spe
ial
ase of the edges 
onne
ting mutually in
onsistent partial assignments.)To summarize, on input �, the redu
tion outputs the pair (G�;m), where G� isthe aforementioned graph and m is the number of 
lauses in �.We stress that ea
h 7-set of the graph G� 
ontains only verti
es that 
orrespondto partial assignments that satisfy the 
orresponding 
lause; that is, the singlepartial assignments that does not satisfy this 
lause is not represented as a vertex
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all that the edges pla
ed among verti
es represent partial assignmentsthat are mutually in
onsistent. Thus, ea
h truth assignment � to the entire formula� yields an independent set in G�, whi
h 
ontains all the verti
es that 
orrespondto partial assignments that are 
onsistent with � and satisfy the 
orresponding
lauses. Indeed, the size of this independent set equals the number of 
lauses thatare satis�ed by the assignment � . These observations underlie the validity of theredu
tion, whi
h is argued next.Suppose, on the one hand, that � is satis�able by the truth assignment � .Consider the partial assignments, to the m 
lauses, that are derived from � . We
laim that these partial assignments 
orrespond to an independent set of size m inG�. The 
laim holds be
ause these m partial assignments satisfy the 
orrespondingm 
lauses (sin
e � satis�es �) and are mutually 
onsistent (be
ause they are allderived from �). It follows that the these m partial assignments 
orrespond to mverti
es (residing in di�erent 7-sets), and there are no edges between these verti
es.Thus, � 2 SAT implies that G� has an independent set of size m.On the other hand, any independent set of size m in G� must 
ontain exa
tlyone vertex in ea
h of the m 7-sets, be
ause no independent set may 
ontain twoverti
es that reside in the same 7-set. Furthermore, ea
h independent set in G�indu
es a (possibly partial) truth assignment to �, be
ause the partial assignments\sele
ted" in the various 7-sets must be 
onsistent (or else an edge would haveexisted among the 
orresponding verti
es). Re
alling that an independent set that
ontains a vertex from a spe
i�
 7-set indu
es a partial truth assignment thatsatis�es the 
orresponding 
lause, it follows that an independent set that 
ontainsa vertex of ea
h 7-set indu
es a truth assignment that satis�es �. Thus, if G� hasan independent set of size m then � 2 SAT.Graph 3-Colorability (G3C). In this problem the instan
es are graphs and thequestion is whether or not the graph's verti
es 
an be 
olored using three 
olorssu
h that neighboring verti
es are not assigned the same 
olor.Proposition 4.11 Graph 3-Colorability is NP-
omplete.Proof: We redu
e 3SAT to G3C by mapping a 3CNF formula � to the graph G�that 
onsists of two spe
ial (\designated") verti
es, a gadget per ea
h variable of�, a gadget per ea
h 
lause of �, and edges 
onne
ting some of these 
omponentsas follows.� The two designated verti
es are 
alled ground and false, and are 
onne
tedby an edge that ensures that they must be given di�erent 
olors in any legal3-
oloring of G�. We will refer to the 
olor assigned to the vertex ground(resp., false) by the name ground (resp., false). The third 
olor will be
alled true.� The gadget asso
iated with variable x is a pair of verti
es, asso
iated withthe two literals of x (i.e., x and :x). These verti
es are 
onne
ted by an edge,and ea
h of them is also 
onne
ted to the vertex ground. Thus, in any legal
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oloring of G� one of the verti
es asso
iated with the variable is 
oloredtrue and the other is 
olored false.
1

2

3

x

y
M

T1

T2

T3Figure 4.4: The 
lause gadget and its sub-gadget. The l.h.s depi
ts the sub-gadgetand a generi
 legal 3-
oloring of it. Note that if x = y, in this 3-
oloring, thenx = y = 1. The 
lause gadget is shown on the r.h.s. For any legal 3-
oloring ofthis gadget it holds that if the three terminals of the gadget are assigned the same
olor, �, then M is also assigned the 
olor �.� The gadget asso
iated with a 
lause C is depi
ted in Figure 4.4. It 
ontainsa master vertex, denoted M, and three terminal verti
es, denoted T1, T2and T3. The master vertex is 
onne
ted by edges to the verti
es groundand false, and thus in any legal 3-
oloring of G� the master vertex mustbe 
olored true. The gadget has the property that it is possible to 
olorthe terminals with any 
ombination of the 
olors true and false, ex
ept for
oloring all terminals with false. That is, in any legal 3-
oloring of G�, ifno terminal of a 
lause-gadget is 
olored ground, then at least one of theseterminals is 
olored true.The terminals of the gadget asso
iated with 
lause C will be identi�ed withthe verti
es (of variable-gadgets) that are asso
iated with the 
orrespondingliterals appearing in C. This means that ea
h 
lause-gadget shares its ter-minals with the 
orresponding variable-gadgets, and that the various 
lause-gadgets are not vertex-disjoint but may rather share some terminals (i.e.,those asso
iated with literals that appear in several 
lauses).11 See Figure 4.5.The aforementioned asso
iation for
es ea
h terminal to be 
olored either trueor false (in any legal 3-
oloring of G�). By the foregoing dis
ussion it followsthat, in any legal 3-
oloring of G�, at least one terminal of ea
h 
lause-gadgetmust be 
olored true.Verifying the validity of the redu
tion is left as an exer
ise (see Exer
ise 4.14).Digest. The redu
tions presented in the 
urrent se
tion are depi
ted in Fig-ure 4.6, where bold arrows indi
ate redu
tions presented expli
itly in the proofs ofthe various propositions (indi
ated by their index). Note that r3SAT and 3SC areonly mentioned inside the proof of Proposition 4.9.11Alternatively, we may use disjoint gadgets and \
onne
t" ea
h terminal with the 
orrespond-ing literal (in the 
orresponding vertex gadget). Su
h a 
onne
tion (i.e., an auxiliary gadget)should for
e the two end-points to have the same 
olor in any legal 3-
oloring of the graph.
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variable   gadgets

clause  gadgets

GROUND FALSE
the  two  designated  verices

Figure 4.5: A single 
lause gadget and the relevant variables gadgets.4.3.3 Additional Properties of the Standard Redu
tionsWemention that the standard redu
tions used to establish natural NP-
ompletenessresults have several additional properties or 
an be modi�ed to have su
h properties.These properties in
lude an eÆ
ient transformation of solutions in the dire
tion ofthe redu
tion (see Exer
ise 4.17), the preservation of the number of solutions (seeExer
ise 4.18), and being invertible in polynomial-time (see Exer
ise 4.19 as well asExer
ise 4.20). Furthermore, these redu
tions are relatively \simple" in the sensethat they 
an be 
omputed by restri
ted 
lasses of polynomial-time algorithms(e.g., algorithms of logarithmi
 spa
e 
omplexity).We also mention the fa
t that all known NP-
omplete sets are (e�e
tively)isomorphi
 in the sense that every two su
h sets are isomorphi
 via a polynomial-
SAT 3SAT SC

r3SAT 3SC 3XC

IS

VC

Clique

G3C

4.7 4.8

(4.9)

(4.9) (4.9)

4.10

4.11

4.6
CSAT

Figure 4.6: The (non-generi
) redu
tions presented in Se
tion 4.3
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omputable and invertible mapping (see Exer
ise 4.21).4.4 NP sets that are Neither in P nor NP-CompleteAs stated in Se
tion 4.3, thousands of problems have been shown to be NP-
omplete(
f., [11, Apdx.℄, whi
h 
ontains a list of more than three hundreds main entries).Things rea
hed a situation in whi
h people seem to expe
t any NP-set to be eitherNP-
omplete or in P . This naive view is wrong: Assuming NP 6= P, there existsets in NP that are neither NP-
omplete nor in P, where here NP-hardness allowsalso Cook-redu
tions.Theorem 4.12 Assuming NP 6= P, there exist a set T in NP nP su
h that somesets in NP are not Cook-redu
ible to T .Theorem 4.12 asserts that if NP 6= P then NP is partitioned into three non-empty
lasses: the 
lass P , the 
lass of problems to whi
h NP is Cook-redu
ible, and therest, denote NPI. We already know that the �rst two 
lasses are not empty,and Theorem 4.12 establishes the non-emptiness of NPI under the 
ondition thatNP 6= P , whi
h is a
tually a ne
essary 
ondition (be
ause if NP = P then everyset in NP is Cook-redu
ible to any other set in NP).The following proof of Theorem 4.12 presents an unnatural de
ision problemin NPI. We mention that some natural de
ision problems (e.g., some that are
omputationally equivalent to fa
toring) are 
onje
tured to be in NPI. We alsomention that if NP 6= 
oNP , where 
oNP = ff0; 1g� n S : S 2 NPg, then� def= NP \ 
oNP � P [ NPI holds (as a 
orollary to Theorem 5.7). Thus, ifNP 6= 
oNP then � n P is a (natural) subset of NPI, and the non-emptinessof NPI follows provided that � 6= P . Re
all that Theorem 4.12 establishes thenon-emptiness of NPI under the seemingly weaker assumption that NP 6= P .Proof Sket
h: The basi
 idea is modifying an arbitrary set in NP n P so as tofail all possible redu
tions (from NP to the modi�ed set) as well as all possiblepolynomial-time de
ision pro
edures (for the modi�ed set). Spe
i�
ally, startingwith S 2 NP nP , we derive S0 � S su
h that on one hand there is no polynomial-time redu
tion of S to S0 while on the other hand S0 2 NP n P . The pro
ess ofmodifying S into S0 pro
eeds in iterations, alternatively failing a potential redu
tion(by dropping suÆ
iently many strings from the rest of S) and failing a potentialde
ision pro
edure (by in
luding suÆ
iently many strings from the rest of S).Spe
i�
ally, ea
h potential redu
tion of S to S0 
an be failed by dropping �nitelymany elements from the 
urrent S0, whereas ea
h potential de
ision pro
edure 
anbe failed by keeping �nitely many elements of the 
urrent S0. These two assertionsare based on the following two 
orresponding fa
ts:1. Any polynomial-time redu
tion (of any set not in P) to any �nite set (e.g.,a �nite subset of S) must fail, be
ause only sets in P are Cook-redu
ible toa �nite set. Thus, for any �nite set F1 and any potential redu
tion (i.e.,a polynomial-time ora
le ma
hine), there exists an input x on whi
h thisredu
tion to F1 fails.
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tion fails while the only queries thatare answered positively are those residing in F1. Furthermore, the aforemen-tioned failure is due to a �nite set of queries (i.e., the set of all queries madeby the redu
tion when invoked on an input that is smaller or equal to x).Thus, for every �nite set F1 � S0 � S, any redu
tion of S to S0 
an befailed by dropping a �nite number of elements from S0 and without droppingelements of F1.2. For every �nite set F2, any polynomial-time de
ision pro
edure for S n F2must fail, be
ause S is Cook-redu
ible to S n F2. Thus, for any potentialde
ision pro
edure (i.e., a polynomial-time algorithm), there exists an inputx on whi
h this pro
edure fails.We stress that this failure is due to a �nite \pre�x" of S n F2 (i.e., the setfz 2 S n F2 : z � xg). Thus, for every �nite set F2, any polynomial-timede
ision pro
edure for S nF2 
an be failed by keeping a �nite subset of S nF2.As stated, the pro
ess of modifying S into S0 pro
eeds in iterations, alternativelyfailing a potential redu
tion (by dropping �nitely many strings from the rest of S)and failing a potential de
ision pro
edure (by in
luding �nitely many strings fromthe rest of S). This 
an be done eÆ
iently be
ause it is inessential to determine the�rst possible points of alternation (in whi
h suÆ
iently many strings were dropped(resp., in
luded) to fail the next potential redu
tion (resp., de
ision pro
edure)). ItsuÆ
es to guarantee that adequate points of alternation (albeit highly non-optimalones) 
an be eÆ
iently determined. Thus, S0 is the interse
tion of S and some setin P , whi
h implies that S0 2 NP . Following are some 
omments regarding theimplementation of the foregoing idea.The �rst issue is that the foregoing plan 
alls for an (\e�e
tive") enumeration ofall polynomial-time ora
le ma
hines (resp., polynomial-time algorithms). However,none of these sets 
an be enumerated (by an algorithm). Instead, we enumerateall 
orresponding ma
hines along with all possible polynomials, and for ea
h pair(M;p) we 
onsider exe
utions of ma
hine M with time bound spe
i�ed by thepolynomial p. That is, we use the ma
hine Mp obtained from the pair (M;p) bysuspending the exe
ution of M on input x after p(jxj) steps. We stress that we donot know whether ma
hine M runs in polynomial-time, but the 
omputations ofany polynomial-time ma
hine is \
overed" by some pair (M;p).Next, let us 
larify the pro
ess in whi
h redu
tions and de
ision pro
edures areruled out. We present a 
onstru
tion of a \�lter" set F in P su
h that the �nal setS0 will equal S \ F . Re
all that we need to sele
t F su
h that ea
h polynomial-time redu
tion of S to S\F fails, and ea
h polynomial-time pro
edure for de
idingS \ F fails. The key observation is that for every �nite F 0 ea
h polynomial-timeredu
tion of S to (S \ F ) \ F 0 fails, whereas for every �nite F 0 ea
h polynomial-time pro
edure for de
iding (S \ F ) n F 0 fails. Furthermore, ea
h of these failureso

ur on some input, and su
h an input 
an be determined by �nite portions ofS and F . Thus, we alternate between failing possible redu
tions and de
isionpro
edures on some inputs, while not trying to determine the \optimal" pointsof alternation but rather determining points of alternation in an eÆ
ient manner
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h in turn allows for eÆ
iently de
iding membership in F ). Spe
i�
ally, welet F = fx : f(jxj) � 1 mod 2g, where f : N ! f0g [ N will be de�ned su
h that(i) ea
h of the �rst f(n)� 1 ma
hines is failed by some input of length at most n,and (ii) the value f(n) 
an be 
omputed in poly(n)-time.The value of f(n) is de�ned by the following pro
ess that performs exa
tlyn3 
omputation steps (where 
ubi
-time is a rather arbitrary 
hoi
e). The pro
esspro
eeds in (an a priori unknown number of) iterations, where in the i+1st iterationwe try to �nd an input on whi
h the i+ 1st (modi�ed) ma
hine fails. Spe
i�
ally,in the i + 1st iteration we s
an all inputs, in lexi
ographi
 order, until we �nd aninput on whi
h the i+1st (modi�ed) ma
hine fails, where this ma
hine is an ora
lema
hine if i+1 is odd and a standard ma
hine otherwise. If we dete
t a failure ofthe i+ 1st ma
hine, then we in
rement i and pro
eed to the next iteration. Whenwe rea
h the allowed number of steps (i.e., n3 steps), we halt outputting the 
urrentvalue of i (i.e., the 
urrent i is output as the value of f(n)). Needless to say, thisdes
ription is heavily based on determining whether or not the i+1st ma
hine failson spe
i�
 inputs. Intuitively, these inputs will be mu
h shorter than n, and soperforming these de
isions in time n3 (or so) is not out of the question { see nextparagraph.In order to determine whether or not a failure (of the i + 1st ma
hine) o

urson a parti
ular input x, we need to emulate the 
omputation of this ma
hine oninput x as well as determine whether x is in the relevant set (whi
h is either S orS0 = S \ F ). Re
all that if i+ 1 is even then we need to fail a standard ma
hine(whi
h attempts to de
ide S0) and otherwise we need to fail an ora
le ma
hine(whi
h attempts to redu
e S to S0). Thus, for even i + 1 we need to determinewhether x is in S0 = S \ F , whereas for odd i + 1 we need to determine whetherx is in S as well as whether some other strings (whi
h appear as queries) are inS0. De
iding membership in S 2 NP 
an be done in exponential-time (by usingthe exhaustive sear
h algorithm that tries all possible NP-witnesses). Indeed, thismeans that when 
omputing f(n) we may only 
omplete the treatment of inputsthat are of logarithmi
 (in n) length, but anyhow in n3 steps we 
an not hope torea
h (in our lexi
ographi
 s
anning) strings of length greater than 3 log2 n. As forde
iding membership in F , this requires ability to 
ompute f on adequate integers.That is, we may need to 
ompute the value of f(n0) for various integers n0, but asnoted n0 will be mu
h smaller than n (sin
e n0 � poly(jxj) � poly(logn)). Thus,the value of f(n0) is just 
omputed re
ursively (while 
ounting the re
ursive stepsin our total number of steps).12 The point is that, when 
onsidering an input x,we may need the values of f only on f1; :::; pi+1(jxj)g, where pi+1 is the polynomialbounding the running-time of the i + 1st (modi�ed) ma
hine, and obtaining su
ha value takes at most pi+1(jxj)3 steps. We 
on
lude that the number of stepsperformed towards determining whether or not a failure (of the i + 1st ma
hine)o

urs on the input x is upper-bounded by an (exponential) fun
tion of jxj.As hinted in the foregoing paragraph, the pro
edure will 
omplete n3 stepsmu
h before examining inputs of length greater than 3 log2 n, but this does not12We do not bother to present a more eÆ
ient implementation of this pro
ess. That is, we maya�ord to re
ompute f(n0) every time we need it (rather than store it for later use).
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ise 4.22). Furthermore,by 
onstru
tion, f(n) is 
omputed in poly(n) time.Comment: The proof of Theorem 4.12 a
tually establishes that for every S 62 Pthere exists S0 62 P su
h that S0 is Karp-redu
ible to S but S is not Cook-redu
ibleto S0.13 Thus, if P 6= NP then there exists an in�nite sequen
e of sets S1; S2; :::in NP n P su
h that Si+1 is Karp-redu
ible to Si but Si is not Cook-redu
ibleto Si+1. That is, there exists an in�nite hierar
hy of problems (albeit unnaturalones), all in NP , su
h that ea
h problem is \easier" than the previous ones (in thesense that it 
an be redu
ed to the previous problems while these problems 
annotbe redu
ed to it).4.5 Re
e
tions on Complete ProblemsThis book will perhaps only be understood by those who havethemselves already thought the thoughts whi
h are expressed init { or similar thoughts. It is therefore not a text-book. Its obje
twould be attained if it a�orded pleasure to one who read it withunderstanding.Ludwig Wittgenstein, Tra
tatus Logi
o-Philosophi
usIndeed, this se
tion should be viewed as an invitation to meditate together onquestions of the type what enables the existen
e of 
omplete problems? A

ordingly,the style is intentionally naive and impre
ise; this entire se
tion may be viewed asan open-ended exer
ise, asking the interested reader to 
onsider substantiations ofthe vague text.14We know that NP-
omplete problems exist. The question we ask here is whataspe
ts in our modeling of problems enables the existen
e of 
omplete problems.We should, of 
ourse, bear in mind that 
ompleteness refers to a 
lass of problems;the 
omplete problem should \en
ode" ea
h problem in the 
lass and be itself inthe 
lass. Sin
e the �rst aspe
t, hereafter referred to as en
odability of a 
lass, isamazing enough (at least to a layman), we start by asking what enables it. Weidentify two fundamental paradigms, regarding the modeling of problems, thatseem essential to the en
odability of any (in�nite) 
lass of problems:1. Ea
h problem refer to an in�nite set of possible instan
es.2. The spe
i�
ation of ea
h problem uses a �nite des
ription (e.g., an algorithmthat enumerates all the possible solutions for any given instan
e).1513The said Karp-redu
tion (of S0 to S) maps x to itself if x 2 F and otherwise maps x to a�xed no-instan
e of S.14We warn that this exer
ise may be unsuitable for most undergraduate students.15This seems the most naive notion of a des
ription of a problem. An alternative notion ofa des
ription refers to an algorithm that re
ognizes all valid instan
e-solution pairs (as in thede�nition of NP). However, at this point, we allow also \non-e�e
tive" des
riptions (as giving riseto the Halting Problem).
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on
i
ting, yet put together they suggest thede�nition of a universal problem. Spe
i�
ally, this problem refers to instan
es ofthe form (D; x), where D is a des
ription of a problem and x is an instan
e to thatproblem, and a solution to the instan
e (D; x) is a solution to x with respe
t tothe problem (des
ribed by) D. Intuitively, this universal problem 
an en
ode anyother problem (provided that problems are modeled in a way that 
onforms withthe foregoing paradigms): solving the universal problem allows solving any otherproblem.16Note that the foregoing universal problem is a
tually 
omplete with respe
tto the 
lass of all problems, but it is not 
omplete with respe
t to any 
lass that
ontains only (algorithmi
ally) solvable problems (be
ause this universal problemis not solvable). Turning our attention to 
lasses of solvable problems, we seek ver-sions of the universal problem that are 
omplete for these 
lasses. One ar
hetypi
aldiÆ
ulty that arises is that, given a des
ription D (as part of the instan
e to theuniversal problem), we 
annot tell whether or not D is a des
ription of a problemin a predetermined 
lass C (be
ause this de
ision problem is unsolvable). This fa
tis relevant be
ause17 if the universal problem requires solving instan
es that referto a problem not in C then intuitively it 
annot be itself in C.Before turning to the resolution of the foregoing diÆ
ulty, we note that theaforementioned modeling paradigms are pivotal to the theory of 
omputation atlarge. In parti
ular, so far we made no referen
e to any 
omplexity 
onsideration.Indeed, a 
omplexity 
onsideration is the key to resolving the foregoing diÆ
ulty:The idea is modifying any des
ription D into a des
ription D0 su
h that D0 isalways in C, and D0 agrees with D in the 
ase that D is in C (i.e., in this 
asethey des
ribed exa
tly the same problem). We stress that in the 
ase that D isnot in C, the 
orresponding problem D0 may be arbitrary (as long as it is in C).Su
h a modi�
ation is possible with respe
t to many 
omplexity theoreti
 
lasses.We 
onsider two di�erent types of 
lasses, where in both 
ases the 
lass is de�nedin terms of the time-
omplexity of algorithms that do something related to theproblem (e.g., re
ognize valid solutions, as in the de�nition of NP).1. Classes de�ned by a single time-bound fun
tion t (e.g., t(n) = n3). In this
ase, any algorithm D is modi�ed to the algorithm D0 that, on input x,emulates (up to) t(jxj) steps of the exe
ution of D(x). The modi�ed versionof the universal problem treats the instan
e (D; x) as (D0; x). This version
an en
ode any problem in the said 
lass C (
orresponding to time 
omplexityt).But will this (version of the universal) problem be itself in C? The answerdepends both on the eÆ
ien
y of emulation in the 
orresponding 
omputa-tional model and on the growth rate of t. For example, for triple-exponential16Re
all, however, that the universal problem is not (algorithmi
ally) solvable. Thus, bothparts of the impli
ation are false (i.e., this problem is not solvable and, needless to say, thereexists unsolvable problems). Indeed, the notion of a problem is rather vague at this stage; it
ertainly extends beyond the set of all solvable problems.17Here we ignore the possibility of using promise problems, whi
h do enable avoiding su
hinstan
es without requiring anybody to re
ognize them. Indeed, using promise problems resolvesthis diÆ
ulty, but the issues dis
ussed following the next paragraph remain valid.



104 CHAPTER 4. NP-COMPLETENESSt, the answer will be de�nitely yes, be
ause t(jxj) steps 
an be emulated inpoly(t(jxj)) time (in any reasonable model) while t(j(D; x)j) > t(jxj + 1) >poly(t(jxj)). On the other hand, in most reasonable models, the emulationof t(jxj) steps requires !(t(jxj)) time, whereas for any polynomial t it holdsthat t(n+O(1)) < 2t(n).2. Classes de�ned by a family of in�nitely many fun
tions of di�erent growthrate (e.g., polynomials). We 
an, of 
ourse, sele
t a fun
tion t that growsfaster than any fun
tion in the family and pro
eed as in the prior 
ase, butthen the resulting universal problem will de�nitely not be in the 
lass.Note that in the 
urrent 
ase, a 
omplete problem will indeed be striking be-
ause, in parti
ular, it will be asso
iated with one fun
tion t0 that grows moremoderately than some other fun
tions in the family (e.g., a �xed polynomialgrows more moderately than other polynomials). Seemingly this means thatthe algorithm des
ribing the universal ma
hine should be faster than somealgorithms that des
ribe some other problems in the 
lass. This impressionpresumes that the instan
es of both problems are (approximately) of the samelength, and so we intensionally violate this presumption by arti�
ially in
reas-ing the length of the des
ription of the instan
es to the universal problem. Forexample, if D is asso
iated with the time bound tD, then the instan
e (D; x)to the universal problem is presented as, say, (D; x; 1t�10 (tD(jxj)2)), where inthe 
ase of NP we used t0(n) = n.We believe that the last item explains the existen
e of NP-
omplete problems. Butwhat about the NP-
ompleteness of SAT?We �rst note that the NP-hardness of CSAT is an immediate 
onsequen
e ofthe fa
t that Boolean 
ir
uits 
an emulate algorithms.18 This fundamental fa
t isrooted in the notion of an algorithm (whi
h postulates the simpli
ity of a single
omputational step) and holds for any reasonable model of 
omputation. Thus, forevery D and x, the problem of �nding a string y su
h that D(x; y) = 1 is \en
oded"as �nding a string y su
h that CD;x(y) = 1, where CD;x is a Boolean 
ir
uit thatis easily derived from (D; x). In 
ontrast to the fundamental fa
t underlying theNP-hardness of CSAT, the NP-hardness of SAT relies on a 
lever tri
k that allowsto en
ode instan
es of CSAT as instan
es of SAT.As stated, the NP-
ompleteness of SAT is proved by en
oding instan
es ofCSAT as instan
es of SAT. Similarly, the NP-
ompleteness of other new problemsis proved by en
oding instan
es of problems that are already known to be NP-
omplete. Typi
ally, these en
odings operate in a lo
al manner, mapping small
omponents of the original instan
e to lo
al gadgets in the produ
ed instan
e.Indeed, these problem-spe
i�
 gadgets are the 
ore of the en
oding phenomenon.Presented with su
h a gadget, it is typi
ally easy to verify that it works. Thus, maynot be surprised by most of these individual gadgets, but the fa
t that they exist forthousands of natural problem is de�nitely amazing.18The fa
t that CSAT is in NP is a 
onsequen
e of the fa
t that the 
ir
uit evaluation problemis solvable in polynomial-time.
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isesExer
ise 4.1 (a quiz)1. What are NP-
omplete (sear
h and de
ision) problems?2. Is it likely that the problem of �nding a perfe
t mat
hing in a given graph isNP-
omplete?3. Prove the existen
e of NP-
omplete problems.4. How does the 
omplexity of solving one NP-
omplete problem e�e
t the 
om-plexity of solving any problem in NP (resp., PC)?5. In 
ontinuation of the previous question, assuming that some NP-
ompleteproblem 
an be solved in time t, upper-bound the 
omplexity of solving anyproblem in NP (resp., PC).6. List �ve NP-
omplete problems.7. Why does the fa
t that SAT is Karp-redu
ible to Set Cover imply that SetCover is NP-
omplete?8. Are there problems in NP n P that are not NP-
omplete?Exer
ise 4.2 Prove that any R 2 PC is Levin-redu
ible to R0u, where R0u 
onsistsof pairs (hM;x; ti; y) su
h that M a

epts the input pair (x; y) within t steps (andjyj � t). Re
all that R0u 62 PC (see [13, x4.2.1.2℄)).Guideline: A minor modi�
ation of the redu
tion used in the proof of Theorem 4.3 willdo.Exer
ise 4.3 Prove that Bounded Halting and Bounded Non-Halting are NP-
omplete, where the problems are de�ned as follows. The instan
e 
onsists of a pair(M; 1t), where M is a Turing ma
hine and t is an integer. The de
ision version ofBounded Halting (resp., Bounded Non-Halting) 
onsists of determining whetheror not there exists an input (of length at most t) on whi
hM halts (resp., does nothalt) in t steps, whereas the sear
h problem 
onsists of �nding su
h an input.Guideline: Either modify the proof of Theorem 4.3 or present a redu
tion of (say) thesear
h problem of Ru to the sear
h problem of Bounded (Non-)Halting. (Indeed, theexer
ise is more straightforward in the 
ase of Bounded Halting.)Exer
ise 4.4 In the proof of Theorem 4.5, we 
laimed that the value of ea
h entryin the \array of 
on�gurations" of a ma
hineM is determined by the values of thethree entries that reside in the row above it (as in Figure 4.2). Present a fun
tionfM : �3 ! �, where � = �� (Q [ f?g), that substantiates this 
laim.Guideline: For example, for every �1; �2; �3 2 �, it holds that fM((�1;?); (�2;?); (�3;?)) =(�2;?). More interestingly, if the transition fun
tion of M maps (�; q) to (�; p;+1)then, for every �1; �2; �3 2 Q, it holds that fM ((�; q); (�2;?); (�3;?)) = (�2; p) andfM ((�1;?); (�; q); (�3;?)) = (�;?).
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ise 4.5 Present and analyze a redu
tion of SAT to 3SAT.Guideline: For a 
lause C, 
onsider auxiliary variables su
h that the ith variable indi
ateswhether one of the �rst i literals is satis�ed, and repla
e C by a 3CNF that uses theoriginal variables of C as well as the auxiliary variables. For example, the 
lause _ti=1xiis repla
ed by the 
onjun
tion of 3CNFs that are logi
ally equivalent to the formulae(y2 � (x1 _ x2)), (yi � (yi�1 _ xi)) for i = 3; :::; t, and yt. We 
omment that this isnot the standard redu
tion, but we �nd it 
on
eptually more appealing. (The standardredu
tion repla
es the 
lause _ti=1xi by the 
onjun
tion of the 3CNFs (x1 _ x2 _ y2),((:yi�1) _ xi _ yi) for i = 3; :::; t, and :yt.)Exer
ise 4.6 (eÆ
ient solvability of 2SAT) In 
ontrast to the NP-
ompletenessof 3SAT, prove that 2SAT (i.e., the satis�ability of 2CNF formulae) is in P .Guideline: Consider the following for
ing pro
ess for CNF formulae. If the formula
ontains a singleton 
lause (i.e., a 
lause having a single literal), then the 
orrespondingvariable is assigned the only value that satis�es the 
lause, and the formula is simpli�eda

ordingly (possibly yielding a 
onstant formula, whi
h is either true or false). Thepro
ess is repeated until the formula is either a 
onstant or 
ontains only non-singleton
lauses. Note that a formula � is satis�able if and only if the formula obtained from �by the for
ing pro
ess is satis�able. Now, 
onsider the following algorithm for solving thesear
h problem asso
iated with 2SAT.1. Choose an arbitrary variable in �. For ea
h � 2 f0; 1g, denote by �� the formulaobtained from � by assigning this variable the value � and applying the for
ingpro
ess to the resulting formula.Note that �� is either a Boolean 
onstant or a 2CNF formula (whi
h is a 
onjun
tionof some 
lauses of �).2. If, for some � 2 f0; 1g, the formula �� equals the 
onstant true, then we halt witha satisfying assignment for the original formula.3. If both assignments yield the 
onstant false (i.e., for every � 2 f0; 1g the formula�� equals false), then we halt asserting that the original formula is unsatis�able.4. Otherwise (i.e.,, for ea
h � 2 f0; 1g, the formula �� is a (non-
onstant) 2CNFformula), we sele
t � 2 f0; 1g arbitrarily, set � ��, and goto Step 1.Proving the 
orre
tness of this algorithm boils down to observing that the arbitrary 
hoi
emade in Step 4 is immaterial. Indeed, this observation relies on the fa
t that we refer to2CNF formulae, whi
h implies that the for
ing pro
ess either yields a 
onstant or a 2CNFformula (whi
h is a 
onjun
tion of some 
lauses of the original �).Exer
ise 4.7 (Integer Linear Programming) Prove that the following prob-lem is NP-hard.19 An instan
e of the problem is a systems of linear inequalities(say with integer 
onstants), and the problem is to determine whether the systemhas an integer solution. A typi
al instan
e of this de
ision problem follows.x+ 2y � z � 319Proving that the problem is in NP requires showing that if a system of linear inequalitieshas an integer solution, then it has an integer solution in whi
h all numbers are of length that ispolynomial in the length of the des
ription of the system. Su
h a proof is beyond the s
ope ofthe 
urrent textbook.



4.5. REFLECTIONS ON COMPLETE PROBLEMS 107�3x� z � �5x � 0�x � �1Guideline: Redu
e from SAT. Spe
i�
ally, 
onsider an arithmetization of the input CNFby repla
ing _ with addition and :x by 1�x. Thus, ea
h 
lause gives rise to an inequality(e.g., the 
lause x _ :y is repla
ed by the inequality x + (1 � y) � 1, whi
h simpli�esto x � y � 0). Enfor
e a 0-1 solution by introdu
ing inequalities of the form x � 0 and�x � �1, for every variable x.Exer
ise 4.8 (Maximum Satis�ability of Linear Systems over GF(2)) Provethat the following problem is NP-
omplete. An instan
e of the problem 
onsists ofa systems of linear equations over GF(2) and an integer k, and the problem is todetermine whether there exists an assignment that satis�es at least k equations.(Note that the problem of determining whether there exists an assignment thatsatis�es all the equations is in P .)Guideline: Redu
e from 3SAT, using the following arithmetization. Repla
e ea
h 
lausethat 
ontains t � 3 literals by 2t � 1 linear GF(2) equations that 
orrespond to thedi�erent non-empty subsets of these literals, and assert that their sum (modulo 2) equalsone; for example, the 
lause x_:y is repla
ed by the equations x+(1�y) = 1, x = 1, and1�y = 1. Identifying ffalse; trueg with f0; 1g, prove that if the original 
lause is satis�edby a Boolean assignment v then exa
tly 2t�1 of the 
orresponding equations are satis�edby v, whereas if the original 
lause is unsatis�ed by v then none of the 
orrespondingequations is satis�ed by v.Exer
ise 4.9 (Satis�ability of Quadrati
 Systems over GF(2)) Prove that thefollowing problem is NP-
omplete. An instan
e of the problem 
onsists of a systemof quadrati
 equations over GF(2), and the problem is to determine whether thereexists an assignment that satis�es all the equations. Note that the result holds alsofor systems of quadrati
 equations over the reals (by adding 
onditions that for
evalues in f0; 1g).Guideline: Start by showing that the 
orresponding problem for 
ubi
 equations is NP-
omplete, by a redu
tion from 3SAT that maps the 
lause x _ :y _ z to the equation(1 � x) � y � (1 � z) = 0. Redu
e the problem for 
ubi
 equations to the problem forquadrati
 equations by introdu
ing auxiliary variables; that is, given an instan
e withvariables x1; :::; xn, introdu
e the auxiliary variables xi;j 's and add equations of the formxi;j = xi � xj .Exer
ise 4.10 (restri
ted versions of 3SAT) Prove that the following restri
tedversion of 3SAT, denoted r3SAT, is NP-
omplete. An instan
e of the problem 
on-sists of a 3CNF formula su
h that ea
h literal appears in at most two 
lauses, andthe problem is to determine whether this formula is satis�able.Guideline: Re
all that Proposition 4.7 establishes the NP-
ompleteness of a version of3SAT in whi
h the instan
es are restri
ted su
h that ea
h variable appears in at most three
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lauses. So it suÆ
es to redu
e this restri
ted problem to r3SAT. This redu
tion is basedon the fa
t that if all (three) o

urren
es of a variable are of the same type (i.e., they areall negated or all non-negated), then this variable 
an be assigned a value that satis�es all
lauses in whi
h it appears (and so the variable and the 
lauses in whi
h it appear 
an beomitted from the instan
e). Thus, the desired redu
tion 
onsists of applying the foregoingsimpli�
ation to all relevant variables. Alternatively, a 
loser look at the redu
tion used inthe proof of Proposition 4.7 reveals the fa
t that this redu
tion maps any 3CNF formulato a 3CNF formula in whi
h ea
h literal appears in at most two 
lauses.Exer
ise 4.11 Verify the validity of the three main redu
tions presented in theproof of Proposition 4.9; that is, we refer to the redu
tion of r3SAT to 3SC, theredu
tion of 3SC to 3XC0, and the redu
tion of 3XC0 to 3XC.Exer
ise 4.12 (Clique and Independent Set) An instan
e of the IndependentSet problem 
onsists of a pair (G;K), where G is a graph and K is an integer,and the question is whether or not the graph G 
ontains an independent set (i.e.,a set with no edges between its members) of size (at least) K. The Clique prob-lem is analogous. Prove that both problems are 
omputationally equivalent viaKarp-redu
tions to the Vertex Cover problem.Exer
ise 4.13 (an alternative proof of Proposition 4.10) Consider the fol-lowing sket
h of a redu
tion of 3SAT to Independent Set. On input a 3CNFformula � with m 
lauses and n variables, we 
onstru
t a graph G� 
onsisting of mtriangles (
orresponding to the (three literals in the) m 
lauses) augmented withedges that link 
on
i
ting literals. That is, if x appears as the ith1 literal of the jth1
lause and :x appears as the ith2 literal of the jth2 
lause, then we draw an edgebetween the ith1 vertex of the jth1 triangle and the ith2 vertex of the jth2 triangle.Prove that � 2 3SAT if and only if G� has an independent set of size m.Exer
ise 4.14 Verify the validity of the redu
tion presented in the proof of Propo-sition 4.11.Exer
ise 4.15 (Subset Sum) Prove that the following problem is NP-
omplete.The instan
e 
onsists of a list of n+1 integers, denoted a1; :::; an; b, and the questionis whether or not a subset of the ai's sums up to b (i.e., exists I � [n℄ su
h thatPi2I ai = b). Establish the NP-
ompleteness of this problem, 
alled subset sum,by a redu
tion from 3XC.Guideline: Given an instan
e (S1; :::; Sm) of 3XC, where (without loss of generality)S1; :::; Sm � [3k℄, 
onsider the following instan
e of subset sum that 
onsists of a list ofm+ 1 integers su
h that b =P3kj=1(m+ 1)j and ai =Pj2Si(m+ 1)j for every i 2 [m℄.(Some intuition may be gained by writing all integers in base m+ 1.)Exer
ise 4.16 Prove that the following problem is NP-
omplete. The instan
e
onsists of a list of permutations over [n℄, denoted �1; :::; �m, a target permutation� (over [n℄), and an integer t presented in unary (i.e., 1t). The question is whether ornot there exists a sequen
e, i1; :::; i` 2 [m℄, su
h that ` � t and � = �i` Æ� � �Æ�i2Æ�i1 ,
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omposition of permutations. Establish the NP-
ompletenessof this problem by a redu
tion from 3XC.Guideline: Given an instan
e (S1; :::; Sm) of 3XC, where (without loss of generality)S1; :::; Sm � [3k℄, 
onsider the following instan
e ((�1; :::; �m); �; 1k) of the permutationproblem (over [6k℄). The target permutation � is the involution (over [6k℄) that satis�es�(2i) = 2i � 1 for every i 2 [3k℄. For j = 1; :::; m, the jth permutation in the list (i.e.,�j), is the involution that satis�es �(2i) = 2i � 1 if i 2 Sj and �(2i) = 2i (as well as�(2i� 1) = 2i� 1) otherwise.Exer
ise 4.17 (an augmented form of Levin-redu
tions) In 
ontinuation ofthe dis
ussion in the main text, 
onsider the following augmented form of Levin-redu
tions. Su
h a redu
tion of R to R0 
onsists of three polynomial-timemappings(f; h; g) su
h that f is a Karp-redu
tion of SR to SR0 and the following two 
ondi-tions hold:1. For every (x; y) 2 R it holds that (f(x); h(x; y)) 2 R0.2. For every (f(x); y0) 2 R0 it holds that (x; g(x; y0)) 2 R.(We note that this de�nition is a
tually the one used by Levin in [20℄, ex
ept thathe restri
ted h and g to only depend on their se
ond argument.)Prove that su
h a redu
tion implies both a Karp-redu
tion and a Levin-Redu
tion,and show that all redu
tions presented in this 
hapter satisfy this augmented re-quirement.Exer
ise 4.18 (parsimonious redu
tions) Let R;R0 2 PC and let f be a Karp-redu
tion of SR = fx : R(x) 6=;g to SR0 = fx : R0(x) 6=;g. We say that f is parsi-monious (with respe
t to R and R0) if for every x it holds that jR(x)j = jR0(f(x))j.For ea
h of the redu
tions presented in this 
hapter, 
he
ked whether or not itis parsimonious. For the redu
tions that are not parsimonious, �nd alternativeredu
tions that are parsimonious (
f. [11, Se
. 7.3℄).Exer
ise 4.19 (polynomial-time invertible redu
tions) Show that all Karp-redu
tions presented in this 
hapter are one-to-one and polynomial-time invertible;that is, show that for every su
h redu
tion f there exists a polynomial-time algo-rithm that, on any input in the image of f , returns the unique preimage under f .Needless to say, without loss of generality, when given a string that is not in theimage of f , the inverting algorithm returns a spe
ial symbol.Exer
ise 4.20 (on polynomial-time invertible redu
tions (following [2℄))In 
ontinuation of Exer
ise 4.19, we 
onsider a general 
ondition on sets that impliesthat any Karp-redu
tion to them 
an be modi�ed into a one-to-one and polynomial-time invertible Karp-redu
tion. Loosely speaking, a set is markable if it is feasibleto \mark" any instan
e x by a label � su
h that the resulting instan
e M(x; �)preserves the \membership bit" of x (w.r.t the set) and the label is easily re
ov-erable from M(x; �). That is, we say that a set S is markable if there exists apolynomial-time (marking) algorithmM su
h that1. For every x; � 2 f0; 1g� it holds that



110 CHAPTER 4. NP-COMPLETENESS(a) M(x; �) 2 S if and only if x 2 S.(b) jM(x; �)j > jxj.2. There exists a polynomial-time (de-marking) algorithmD su
h that, for everyx; � 2 f0; 1g�, it holds that D(M(x; �)) = �.Note that all natural NP-sets (e.g., those 
onsidered in this 
hapter) are mark-able (e.g., for SAT, one may mark a formula by augmenting it with additionalsatis�able 
lauses that use spe
ially designated auxiliary variables). Prove that ifS0 is Karp-redu
ible to S and S is markable then S0 is Karp-redu
ible to S by alength-in
reasing, one-to-one, and polynomial-time invertible mapping. Infer thatfor any natural NP-
omplete problem S, any set in NP is Karp-redu
ible to S bya length-in
reasing, one-to-one, and polynomial-time invertible mapping.Guideline: Let f be a Karp-redu
tion of S0 to S, and let M be the guaranteed markingalgorithm. Consider the redu
tion that maps x to M(f(x); x).Exer
ise 4.21 (on the isomorphism of NP-
omplete sets (following [2℄))Suppose that S and T are Karp-redu
ible to one another by length-in
reasing, one-to-one, and polynomial-time invertible mappings, denoted f and g respe
tively.Using the following guidelines, prove that S and T are \e�e
tively" isomorphi
;that is, present a polynomial-time 
omputable and invertible one-to-one mapping� su
h that T = �(S) def= f�(x) : x2Sg.1. Let F def= ff(x) : x 2 f0; 1g�g and G def= fg(x) : x 2 f0; 1g�g. Using thelength-preserving 
ondition of f (resp., g), prove that F (resp., G) is a propersubset of f0; 1g�. Prove that for every y 2 f0; 1g� there exists a unique triple(j; x; i) 2 f1; 2g � f0; 1g� � (f0g [ N) that satis�es one of the following two
onditions:(a) j = 1, x 2 G def= f0; 1g� nG, and y = (g Æ f)i(x);(b) j = 2, x 2 F def= f0; 1g� n F , and y = (g Æ f)i(g(x)).(In both 
ases h0(z) = z, hi(z) = h(hi�1(z)), and (g Æ f)(z) = g(f(z)). Hint:
onsider the maximal sequen
e of inverse operations g�1; f�1; g�1; ::: that
an be applied to y, and note that ea
h inverse shrinks the 
urrent string.)2. Let U1 def= f(g Æf)i(x) : x2G^ i�0g and U2 def= f(g Æf)i(g(x)) : x2F ^ i�0g.Prove that (U1; U2) is a partition of f0; 1g�. Using the fa
t that f and g arelength in
reasing and polynomial-time invertible, present a polynomial-timepro
edure for de
iding membership in the set U1.Prove the same for the sets V1 = f(f Æ g)i(x) : x 2 F ^ i � 0g and V2 =f(f Æ g)i(f(x)) : x2G ^ i�0g.3. Note that U2 � G, and de�ne �(x) def= f(x) if x 2 U1 and �(x) def= g�1(x)otherwise.
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tion of S to T .(b) Note that � maps U1 to f(U1) = ff(x) : x 2 U1g = V2 and U2 tog�1(U2) = fg�1(x) : x2U2g = V1. Prove that � is one-to-one and onto.Observe that ��1(x) = f�1(x) if x 2 f(U1) and ��1(x) = g(x) otherwise.Prove that ��1 is a Karp-redu
tion of T to S. Infer that �(S) = T .Using Exer
ise 4.20, infer that all natural NP-
omplete sets are isomorphi
.Exer
ise 4.22 Referring to the proof of Theorem 4.12, prove that the fun
tion fis unbounded (i.e., for every i there exists an n su
h that n3 steps of the pro
essde�ned in the proof allow for failing the i+ 1st ma
hine).Guideline: Note that f is monotoni
ally non-de
reasing (be
ause more steps allow to failat least as many ma
hines). Assume, towards the 
ontradi
tion that f is bounded. Leti = supn2Nff(n)g and n0 be the smallest integer su
h that f(n0) = i. If i is odd then theset F determined by f is 
o-�nite (be
ause F = fx : f(jxj)�1 (mod 2)g � fx : jxj�n0g).In this 
ase, the i+1st ma
hine tries to de
ide S\F (whi
h di�ers from S on �nitely manystrings), and must fail on some x. Derive a 
ontradi
tion by showing that the number ofsteps taken till rea
hing and 
onsidering this x is at most exp(poly(jxj)), whi
h is smallerthan n3 for some suÆ
iently large n. A similar argument applies to the 
ase that i iseven, where we use the fa
t that F � fx : jxj<n0g is �nite and so the relevant redu
tionof S to S \ F must fail on some input x.
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Chapter 5Three relatively advan
edtopi
sIn this 
hapter we dis
uss three relatively advan
ed topi
s. The �rst topi
, whi
hwas eluded to in previous 
hapters, is the notion of promise problems (Se
tion 5.1).Next, we present an optimal algorithm for solving (\
andid") NP sear
h problems(Se
tion 5.2). Finally, in Se
tion 5.3, we brie
y dis
uss the 
lass (denoted 
oNP)of sets that are 
omplements of sets in NP.Tea
hing NotesTypi
ally, the foregoing topi
s are not mentioned in a basi
 
ourse on 
omplexity.Still, we believe that these topi
s deserve at least a mention in su
h a 
ourse. Thisholds espe
ially with respe
t to the notion of promise problems. Furthermore,pending on time 
onstraints, we re
ommend presenting all three topi
s in 
lass (atleast at a high level).We 
omment that the notion of promise problems was originally introdu
ed inthe 
ontext of de
ision problems, and is typi
ally used only in that 
ontext. How-ever, given the importan
e that we atta
h to an expli
it study of sear
h problems,we extend the formulation of promise problems also to sear
h problems. In that
ontext, it is also natural to introdu
e the notion of a \
andid sear
h problem" (seeDe�nition 5.2).5.1 Promise ProblemsPromise problems are natural generalizations of sear
h and de
ision problems.These generalizations are obtained by expli
itly 
onsidering a set of legitimateinstan
es (rather than 
onsidering any string as a legitimate instan
e). As notedpreviously, this generalization provides a more adequate formulation of natural113
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omputational problems (and indeed this formulation is used in all informal dis-
ussions). For example, in Se
tion 4.3.2 we presented su
h problems using phraseslike \given a graph and an integer..." (or \given a 
olle
tion of sets..."). In otherwords, we assumed that the input instan
e has a 
ertain format (or rather we\promised the solver" that this is the 
ase). Indeed, we 
laimed that in these 
asesthe assumption 
an be removed without a�e
ting the 
omplexity of the problem,but we avoided providing a formal treatment of this issue, whi
h we do next.The notion of promise problems was originally introdu
ed in the 
ontext ofde
ision problems, and is typi
ally used only in that 
ontext. However, we believethat promise problems are as natural in the 
ontext of sear
h problems.5.1.1 De�nitionsPromise problems are de�ned by spe
ifying a set of admissible instan
es. Candidatesolvers of these problems are only required to handle these admissible instan
es.Intuitively, the designer of an algorithm solving su
h a problem is promised thatthe algorithm will never en
ounter an inadmissible instan
e (and so the designerneed not 
are about how the algorithm performs on inadmissible inputs).5.1.1.1 Sear
h problems with a promiseIn the 
ontext of sear
h problems, a promise problem is a relaxation in whi
h oneis only required to �nd solutions to instan
es in a predetermined set, 
alled thepromise. The requirement regarding eÆ
ient 
he
kability of solutions is adapted inan analogous manner.De�nition 5.1 (sear
h problems with a promise): A sear
h problem with a promise
onsists of a binary relation R � f0; 1g� � f0; 1g� and a promise set P . Su
h aproblem is also referred to as the sear
h problem R with promise P .� The sear
h problem R with promise P is solved by algorithm A if for everyx 2 P it holds that (x;A(x)) 2 R if x 2 SR and A(x) = ? otherwise, whereSR = fx : R(x) 6= ;g and R(x) = fy : (x; y) 2 Rg.The time 
omplexity of A on inputs in P is de�ned as TAjP (n) def= maxx2P\f0;1gnftA(x)g,where tA(x) is the running time of A(x) and TAjP (n) = 0 if P \ f0; 1gn = ;.� The sear
h problem R with promise P is in the promise problem extension ofPF if there exists a polynomial-time algorithm that solves this problem.1� The sear
h problem R with promise P is in the promise problem extension ofPC if there exists a polynomial T and an algorithm A su
h that, for every1In this 
ase it does not matter whether the time 
omplexity of A is de�ned on inputs in Por on all possible strings. Suppose that A has (polynomial) time 
omplexity T on inputs in P ,then we 
an modify A to halt on any input x after at most T (jxj) steps. This modi�
ation mayonly e�e
ts the output of A on inputs not in P (whi
h is OK by us). The modi�
ation 
an beimplemented in polynomial-time by 
omputing t = T (jxj) and emulating the exe
ution of A(x)for t steps. A similar 
omment applies to the de�nition of PC, P and NP.



5.1. PROMISE PROBLEMS 115x 2 P and y 2 f0; 1g�, algorithm A makes at most T (jxj) steps and it holdsthat A(x; y) = 1 if and only if (x; y) 2 R.We stress that nothing is required of the solver in the 
ase that the input violatesthe promise (i.e., x 62 P ); in parti
ular, in su
h a 
ase the algorithm may halt witha wrong output. (Indeed, the standard formulations of PF and PC are obtainedby 
onsidering the trivial promise P = f0; 1g�.)2In addition to the foregoing motivation for promise problems, we mention onenatural 
lass of sear
h problems with a promise. These are sear
h problem in whi
hthe promise is that the instan
e has a solution; that is, in terms of De�nition 5.1,we 
onsider a sear
h problem R with the promise P = SR. We refer to su
h sear
hproblems by the name 
andid sear
h problems.De�nition 5.2 (
andid sear
h problems): An algorithm A solves the 
andid sear
hproblem of the binary relation R if for every x 2 SR (i.e., for every (x; y) 2 R) itholds that (x;A(x)) 2 R. The time 
omplexity of su
h an algorithm is de�ned asTAjSR(n) def= maxx2P\f0;1gnftA(x)g, where tA(x) is the running time of A(x) andTAjSR(n) = 0 if SR \ f0; 1gn = ;.Note that nothing is required when x 62 SR: In parti
ular, algorithm A may ei-ther output a wrong solution (although no solutions exist) or run for more thanTAjSR(jxj) steps. The �rst 
ase 
an be essentially eliminated whenever R 2 PC.Furthermore, for R 2 PC, if we \know" the time 
omplexity of algorithm A (e.g.,if we 
an 
ompute TAjSR(n) in poly(n)-time), then we may modify A into an algo-rithm A0 that solves the (general) sear
h problem of R (i.e., halts with a 
orre
toutput on ea
h input) in time TA0(n) = TAjSR(n) + poly(n). However, we do notne
essarily know the running-time of an algorithm that we 
onsider. Furthermore,as we shall see in Se
tion 5.2, the naive assumption by whi
h we always know therunning-time of an algorithm that we design is not valid either.5.1.1.2 De
ision problems with a promiseIn the 
ontext of de
ision problems, a promise problem is a relaxation in whi
h oneis only required to determine the status of instan
es that belong to a predeterminedset, 
alled the promise. The requirement of eÆ
ient veri�
ation is adapted in ananalogous manner. In view of the standard usage of the term, we refer to de
i-sion problems with a promise by the name promise problems. Formally, promiseproblems refer to a three-way partition of the set of all strings into yes-instan
es,no-instan
es, and instan
es that violate the promise. Standard de
ision problemsare obtained as a spe
ial 
ase by insisting that all inputs are allowed (i.e., thepromise is trivial).De�nition 5.3 (promise problems): A promise problem 
onsists of a pair of non-interse
ting sets of strings, denoted (Syes; Sno), and Syes[Sno is 
alled the promise.2Here we refer to the alternative formulation of PC outlined in Se
tion 2.5.



116 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICS� The promise problem (Syes; Sno) is solved by algorithm A if for every x 2 Syesit holds that A(x) = 1 and for every x 2 Sno it holds that A(x) = 0. Thepromise problem is in the promise problem extension of P if there exists apolynomial-time algorithm that solves it.� The promise problem (Syes; Sno) is in the promise problem extension of NP ifthere exists a polynomial p and a polynomial-time algorithm V su
h that thefollowing two 
onditions hold:1. Completeness: For every x 2 Syes, there exists y of length at most p(jxj)su
h that V (x; y) = 1.2. Soundness: For every x 2 Sno and every y, it holds that V (x; y) = 0.We stress that for algorithms of polynomial-time 
omplexity, it does not matterwhether the time 
omplexity is de�ned only on inputs that satisfy the promise oron all strings (see Footnote 1). Thus, the extended 
lasses P and NP (like PFand PC) are invariant under this 
hoi
e.5.1.1.3 Redu
ibility among promise problemsThe notion of a Cook-redu
tion extend naturally to promise problems, when pos-tulating that a query that violates the promise (of the problem at the target of theredu
tion) may be answered arbitrarily.3 That is, the ora
le ma
hine should solvethe original problem no matter how queries that violate the promise are answered.The latter requirement is 
onsistent with the 
on
eptual meaning of redu
tionsand promise problems. Re
all that redu
tions 
aptures pro
edures that make sub-routine 
alls to an arbitrary pro
edure that solves the redu
ed problem. But, in the
ase of promise problems, su
h a solver may behave arbitrarily on instan
es thatviolate the promise. We stress that the main property of a redu
tion is preserved(see Exer
ise 5.2): if the promise problem � is Cook-redu
ible to a promise problemthat is solvable in polynomial-time, then � is solvable in polynomial-time.Caveat: The extension of a 
omplexity 
lass to promise problems does not ne
-essarily inherit the \stru
tural" properties of the standard 
lass. For example, in
ontrast to Theorem 5.7, there exist promise problems in NP \ 
oNP su
h thatevery set in NP 
an be Cook-redu
ed to them: see Exer
ise 5.3. Needless to say,NP = 
oNP does not seem to follow from Exer
ise 5.3. See further dis
ussion inx5.1.2.4.5.1.2 Appli
ations and LimitationsThe following dis
ussion refers both to the de
ision and sear
h versions of promiseproblems. We start with two generi
 appli
ations, and later 
onsider some spe
i�
3It follows that Karp-redu
tions among promise problems are not allowed to make queriesthat violate the promise. Spe
i�
ally, we say that the promise problem � = (�yes ;�no) is Karp-redu
ible to the promise problem �0 = (�0yes;�0no) if there exists a polynomial-time mapping fsu
h that for every x 2 �yes (resp., x 2 �no) it holds that f(x) 2 �0yes (resp., f(x) 2 �0no).



5.1. PROMISE PROBLEMS 117appli
ations. (Other appli
ations are surveyed in [12℄.) We also elaborate on theforegoing 
aveat.5.1.2.1 Formulating natural 
omputational problemsRe
all that promise problems o�er the most dire
t way of formulating natural 
om-putational problems. Indeed, this is a major appli
ation of the notion of promiseproblems (although this appli
ation usually goes unnoti
ed). Spe
i�
ally, the pre-sentation of natural 
omputational problems refers (usually impli
itly) to somenatural format, and this 
an be expli
itly formulated by de�ning a (promise prob-lem with a) promise that equals all strings in that format. Thus, the notion of apromise problem allows dis
arding inputs that do not adhere to this format (andfo
using on inputs that do adhere to this format). For example, when referring to
omputational problems regarding graphs, the promise mandates that the input isa graph (or rather the standard representation of some graph).We mention that, typi
ally, the format (or rather the promise) is easily re
-ognizable and so the 
omplexity of the promise problem 
an be 
aptured by a
orresponding problem (with a trivial promise); see Se
tion 5.1.3 for further dis-
ussion.5.1.2.2 Restri
ting a 
omputational problemIn addition to the foregoing appli
ation of promise problems, we mention their usein formulating the natural notion of a restri
tion of a 
omputational problem to asubset of the instan
es. Spe
i�
ally, su
h a restri
tion means that the promise setof the restri
ted problem is a subset of the promise set of the unrestri
ted problem.De�nition 5.4 (restri
tion of 
omputational problems):� For any P 0 � P and binary relation R, we say that the sear
h problem Rwith promise P 0 is a restri
tion of the sear
h problem R with promise P .� We say that the promise problem (S0yes; S0no) is a restri
tion of the promiseproblem (Syes; Sno) if both S0yes � Syes and S0no � Sno hold.For example, when we say that 3SAT is a restri
tion of SAT, we refer to the fa
tthat the set of allowed instan
es is now restri
ted to 3CNF formulae (rather than toarbitrary CNF formulae). In both 
ases, the 
omputational problem is to determinesatis�ability (or to �nd a satisfying assignment), but the set of instan
es (i.e., thepromise set) is further restri
ted in the 
ase of 3SAT. The fa
t that a restri
tedproblem is never harder than the original problem is 
aptured by the fa
t that therestri
ted problem is Karp-redu
ible to the original one (via the identity mapping).5.1.2.3 Non-generi
 appli
ationsIn addition to the two aforementioned generi
 uses of the notion of a promiseproblem, we mention that this notion provides adequate formulations for a varietyof spe
i�
 
omputational 
omplexity notions and results. One example is the notionof a 
andid sear
h problem (i.e., De�nition 5.2). Two other examples follow:



118 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICS1. Unique solutions: For a binary relationR, we refer to the set of instan
es thathave (at most) a single solution; that is, the promise is P = fx : jR(x)j � 1g,where R(x) = fy : (x; y)2Rg. Two natural problems that arise are the sear
hproblem of R with promise P and the promise problem (P \ SR; P n SR),where SR = fx : R(x) 6= ;g. One fundamental question regarding thesepromise problems is how does their 
omplexity relate to the 
omplexity ofthe original problem (e.g., the standard sear
h problem of R). For details,see [13, Se
. 6.2.3℄.2. Gap problems: The 
omplexity of various approximation tasks 
an be 
ap-tured by the 
omplexity of appropriate \gap problems"; for details, see [13,Se
. 10.1℄. For example, approximating the value of an optimal solutionis 
omputationally equivalent to the promise problem of distinguishing in-stan
es having solutions of high value from instan
es having only solutionsof low value, where the promise rules out instan
es that have an optimalsolution of intermediate value.In all these 
ases, promise problems allow to dis
uss natural 
omputational prob-lems and make statements about their inherent 
omplexity. Thus, the 
omplexityof promise problems (and 
lasses of su
h problems) addresses natural questions and
on
erns. In parti
ular, demonstrating the eÆ
ient solvability (resp., intra
tabil-ity) of su
h a promise problem (or of a 
lass of su
h problems) 
arries the same
on
eptual message as demonstrating the eÆ
ient solvability (resp., intra
tability)of a standard problem (or of a 
lass of 
orresponding standard problems). Forexample, saying that some promise problem 
annot be solved by a polynomial-time algorithm 
arries the same 
on
eptual message as saying that some standard(sear
h or de
ision) problem 
annot be solved by a polynomial-time algorithm.5.1.2.4 LimitationsAlthough the promise problem 
lasses that 
orrespond to P and PF preserve theintuitive meaning of the 
orresponding standard 
lasses of (sear
h or de
ision)problems, the situation is less 
lear with respe
t to NP and PC. For example,for a set S in NP , we may say that x 2 S if and only if x has an NP-witnessof membership in S, but for a promise problem (Syes; Sno) in the 
orresponding\extension of NP" it does not ne
essarily hold that x 2 Syes if and only if x hasan NP-witness of membership in Syes. Furthermore, if both S and S def= f0; 1g� nS are in NP , then every instan
e x has an NP-witness for membership in the
orresponding set (i.e., either S or S); however, if the both (S0; S00) and (S00; S0)are in the \promise problem extension of NP" then it does not ne
essarily holdthat every x has an NP-witness for membership in the 
orresponding set (i.e., eitherS0 or S00 or f0; 1g�n(S0 [ S00)). The e�e
t of this dis
repan
y is demonstrated inthe dis
repan
y between Theorem 5.7 and Exer
ise 5.3.In general, stru
tural properties of 
lasses of promise problems do not ne
es-sarily re
e
t the properties of the 
orresponding de
ision problems. This followsfrom the fa
t that the answer of an ora
le for a promise problem is not ne
essar-ily determined by the problem. Furthermore, the (standard) de�nitions of 
lasses



5.1. PROMISE PROBLEMS 119of promise problems do not refer to the 
omplexity of the promise, whi
h mayvary from being trivial to being eÆ
iently re
ognizable to being intra
table or evenunde
idable.5.1.3 The Standard Convention of Avoiding Promise Prob-lemsRe
all that, although promise problems provide a good framework for presentingnatural 
omputational problems, we managed to avoid this framework in previous
hapters. This was done by relying on the fa
t that, for all the (natural) problems
onsidered in the previous 
hapters, it is easy to de
ide whether or not a giveninstan
e satis�es the promise, whi
h in turn refers to a standard en
oding of obje
tsas strings. Details follow.Let us �rst re
all some natural 
omputational problems. For example, SAT(resp., 3SAT) refers to CNF (resp., 3CNF) formulae, whi
h means that we impli
-itly 
onsider the promise that the input is in CNF (resp., in 3CNF). Indeed, thispromise is eÆ
iently re
ognizable (i.e., given a formula it is easy to de
ide whetheror not it is in CNF (resp., in 3CNF)). But a
tually, the issue arises already whentalking about formulae, be
ause we are a
tually given a string that is supposed toen
ode a formula (under some predetermined en
oding s
heme). Thus, even for aproblem 
on
erning arbitrary formulae, we use a promise (i.e., that the input stringis a valid en
oding of some formula), whi
h is easy to de
ide for natural en
odings
hemes. The same applies to all 
ombinatorial problems we 
onsidered, be
ausethese problems (in their natural formulations) refer to obje
ts like sets and graphs,whi
h are en
oded as strings (using some en
oding s
heme).Thus, in all these 
ases, the natural 
omputational problem refers to obje
tsof some type, and this natural problem is formulated by 
onsidering a promiseproblem in whi
h the promise is the set of all strings that en
ode su
h obje
ts.Furthermore, in all these 
ases the promise (i.e., the set of legal en
odings) iseÆ
iently re
ognizable (i.e., membership in it 
an be de
ided in polynomial-time).In these 
ases we may avoid mentioning the promise by using one of the followingtwo \nasty" 
onventions:1. Fi
titiously extending the set of instan
es to the set of all possible strings(and allowing trivial solutions for the 
orresponding dummy instan
es). Forexample, in the 
ase of a sear
h problem, we may either de�ne all instan
ethat violate the promise to have no solution or de�ne them to have a trivialsolution (e.g., be a solution for themselves); that is, for a sear
h problem Rwith promise P , we may 
onsider the (standard) sear
h problem of R whereR is modi�ed su
h that R(x) = ; for every x 62 P (or, say, R(x) = fxg forevery x 62 P ). In the 
ase of a promise (de
ision) problem (Syes; Sno), wemay 
onsider the problem of de
iding membership in Syes, whi
h means thatinstan
es that violate the promise are 
onsidered as no-instan
es.2. Considering every string as a valid en
oding of some obje
t (i.e., eÆ
ientlyidentifying strings that violate the promise with strings that satisfy the



120 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSpromise).4 For example, �xing any string x0 that satis�es the promise, we
onsider every string that violates the promise as if it were x0. In the 
ase ofa sear
h problem R with promise P , this means 
onsidering the (standard)sear
h problem of R where R is modi�ed su
h that R(x) = R(x0) for everyx 62 P . Similarly, in the 
ase of a promise (de
ision) problem (Syes; Sno), we
onsider the problem of de
iding membership in Syes (provided x0 2 Sno andotherwise we 
onsider the problem of de
iding membership in f0; 1g� n Sno).We stress that in the 
ase that the promise is eÆ
iently re
ognizable the aforemen-tioned 
onventions (or modi�
ations) do not e�e
t the 
omplexity of the relevant(sear
h or de
ision) problem. That is, rather than 
onsidering the original promiseproblem, we 
onsider a (sear
h or de
ision) problem (without a promise) that is
omputational equivalent to the original one. Thus, in some sense we loss noth-ing by studying the latter problem rather than the original one (i.e., the originalpromise problem). However, to get to this situation we need the notion of a promiseproblem, whi
h allows a formulation of the original natural problem.Indeed, even in the 
ase that the original natural (promise) problem and theproblem (without a promise) that was derived from it are 
omputationally equiv-alent, it is useful to have a formulation that allows to distinguish between them(as we do distinguish between the di�erent NP-
omplete problems although theyare all 
omputationally equivalent). This 
on
eptual 
on
ern be
omes of 
ru
ialimportan
e in the 
ase (to be dis
ussed next) that the promise (referred to in thepromise problem) is not eÆ
iently re
ognizable.In the 
ase that the promise is not eÆ
iently re
ognizable, the foregoing trans-formations of promise problems into standard (de
ision and sear
h) problems donot ne
essarily preserve the 
omplexity of the problem. In this 
ase, the termi-nology of promise problems is unavoidable. Consider, for example, the problemof de
iding whether a Hamiltonian graph is 3-
olorable. On the fa
e of it, su
h aproblemmay have fundamentally di�erent 
omplexity than the problem of de
idingwhether a given graph is both Hamiltonian and 3-
olorable.In spite of the foregoing issues, we adopt the 
onvention of fo
using on standardde
ision and sear
h problems. That is, by default, all 
omputational problems and
omplexity 
lasses dis
ussed in other se
tions of this book refer to standard de
isionand sear
h problems, and the only ex
eption in whi
h we refer to promise problems(outside the 
urrent se
tion) is expli
itly stated as su
h (see Se
tion 5.2). This isjusti�ed by our fo
us on natural 
omputational problems, whi
h 
an be stated asstandard (de
ision and sear
h) problems by using the foregoing 
onventions.5.2 Optimal sear
h algorithms for NPThis se
tion refers to solving the 
andid sear
h problem of any relation in PC.Re
all that PC is the 
lass of sear
h problems that allow for eÆ
ient 
he
king ofthe 
orre
tness of 
andidate solutions (see De�nition 2.3), and that the 
andid4Unlike in the �rst 
onvention, this means that the dummy instan
es inherent the solutions tosome real instan
es.



5.2. OPTIMAL SEARCH ALGORITHMS FOR NP 121sear
h problem is a sear
h problem in whi
h the solver is promised that the giveninstan
e has a solution (see De�nition 5.2).We 
laim the existen
e of an optimal algorithm for solving the 
andid sear
hproblem of any relation in PC. Furthermore, we will expli
itly present su
h analgorithm, and prove that it is optimal in a very strong sense: for any algorithmsolving the 
andid sear
h problem of R 2 PC, our algorithm solves the sameproblem in time that is at most a 
onstant fa
tor slower (ignoring a �xed additivepolynomial term, whi
h may be disregarded in the 
ase that the problem is notsolvable in polynomial-time).Needless to say, we do not know the time-
omplexity of the aforementionedoptimal algorithm (indeed, if we knew it, then we would have resolved the P-vs-NPQuestion). In fa
t, the P-vs-NP Question boils down to determining the time-
omplexity of a single expli
itly presented algorithm (i.e., the optimal algorithm
laimed in Theorem 5.5).Theorem 5.5 For every binary relation R 2 PC there exists an algorithm A thatsatis�es the following:1. Algorithm A solves the 
andid sear
h problem of R.2. There exists a polynomial p su
h that for every algorithm A0 that solves the
andid sear
h problem of R, it holds that tA(x) = O(tA0(x) + p(jxj)) (for anyx 2 SR), where tA(x) (resp., tA0(x)) denotes the number of steps taken by A(resp., A0) on input x.Interestingly, we establish the optimality of A without knowing what its (optimal)running-time is. Furthermore, the optimality 
laim is \point-wise" (i.e., it refers toany input) rather than \global" (i.e., referring to the (worst-
ase) time-
omplexityas a fun
tion of the input length).We stress that the hidden 
onstant in the O-notation depends only on A0,but in the following proof this dependen
e is exponential in the length of thedes
ription of algorithm A0 (and it is not known whether a better dependen
e 
anbe a
hieved). Indeed, this dependen
e as well as the idea underlying it 
onstituteone negative aspe
t of this otherwise amazing result. Another negative aspe
t isthat the optimality of algorithm A refers only to inputs that have a solution (i.e.,inputs in SR). Finally, we note that the theorem as stated refers only to models of
omputation that have ma
hines that 
an emulate a given number of steps of otherma
hines with a 
onstant overhead. We mention that in most natural models theoverhead of su
h emulation is at most poly-logarithmi
 in the number of steps, inwhi
h 
ase it holds that tA(x) = eO(tA0(x) + p(jxj)).Proof Sket
h: Fixing R, we let M be a polynomial-time algorithm that de
idesmembership in R, and let p be a polynomial bounding the running-time of M(as a fun
tion of the length of the �rst element in the input pair). Using M , wepresent an algorithm A that solves the 
andid sear
h problem of R as follows. Oninput x, algorithm A emulates (\in parallel") the exe
utions of all possible sear
halgorithms (on input x), 
he
ks the result provided by ea
h of them (using M),



122 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSand halts whenever it re
ognizes a 
orre
t solution. Indeed, most of the emulatedalgorithms are totally irrelevant to the sear
h, but using M we 
an s
reen the badsolutions o�ered by them, and output a good solution on
e obtained.Sin
e there are in�nitely many possible algorithms, it may not be 
lear whatwe mean by the expression \emulating all possible algorithms in parallel." Whatwe mean is emulating them at di�erent \rates" su
h that the in�nite sum of theserates 
onverges to 1 (or to any other 
onstant). Spe
i�
ally, we will emulate the ithpossible algorithm at rate 1=(i+ 1)2, whi
h means emulating a single step of thisalgorithm per (i + 1)2 emulation steps (performed for all algorithms). Note thata straightforward implementation of this idea may 
reate a signi�
ant overhead,whi
h is involved in swit
hing frequently from the emulation of one ma
hine tothe emulation of another. Instead, we present an alternative implementation thatpro
eeds in iterations.In the jth iteration, for i = 1; :::; 2j=2�1, algorithm A emulates 2j=(i+1)2 stepsof the ith ma
hine (where the ma
hines are ordered a

ording to the lexi
ographi
order of their des
riptions). Ea
h of these emulations is 
ondu
ted in one 
hunk,and thus the overhead of swit
hing between the various emulations is insigni�
ant(in 
omparison to the total number of steps being emulated). In the 
ase thatsome of these emulations (on input x) halts with output y, algorithm A invokesM on input (x; y), and output y if and only if M(x; y) = 1. Furthermore, theveri�
ation of a solution provided by a 
andidate algorithm is also emulated at theexpense of its step-
ount. (Put in other words, we augment ea
h algorithm witha 
anoni
al pro
edure (i.e., M) that 
he
ks the validity of the solution o�ered bythe algorithm.)By its 
onstru
tion, whenever A(x) outputs a string y (i.e., y 6= ?) it must holdthat (x; y) 2 R. To show the optimality of A, we 
onsider an arbitrary algorithmA0 that solves the 
andid sear
h problem of R. Our aim is to show that A isnot mu
h slower than A0. Intuitively, this is the 
ase be
ause the overhead of Aresults from emulating other algorithms (in addition to A0), but the total numberof emulation steps wasted (due to these algorithms) is inversely proportional tothe rate of algorithm A0, whi
h in turn is exponentially related to the length ofthe des
ription of A0. The pun
h-line is that sin
e A0 is �xed, the length of itsdes
ription is a 
onstant. Details follow.For every x, let us denote by t0(x) the number of steps taken by A0 on in-put x, where t0(x) also a

ounts for the running time of M(x; �); that is, t0(x) =tA0(x) + p(jxj), where tA0(x) is the number of steps taken by A0(x) itself. Then,the emulation of t0(x) steps of A0 on input x is \
overed" by the jth iteration of A,provided that 2j=(2jA0j+1)2 � t0(x) where jA0j denotes the length of the des
riptionof A0. (Indeed, we use the fa
t that the algorithms are emulated in lexi
ographi
order, and note that there are at most 2jA0j+1 � 2 algorithms that pre
ede A0 inlexi
ographi
 order.) Thus, on input x, algorithm A halts after at most jA0(x)iterations, where jA0(x) = 2(jA0j+1)+log2(tA0(x)+p(jxj)), after emulating a total



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 123number of steps that is at mostt(x) def= jA0 (x)Xj=1 2j=2�1Xi=1 2j(i+ 1)2 < 2jA0 (x)+1 = 22jA0j+3 � (tA0(x) + p(jxj));where the inequality uses P2j=2�1i=1 1(i+1)2 < Pi�1 1(i+1)�i = Pi�1 �1i � 1i+1� = 1andPjA0 (x)j=1 2j < 2jA0 (x)+1. The question of how mu
h time is required for emulat-ing these many steps depends on the spe
i�
 model of 
omputation. In many mod-els of 
omputation (e.g., two-tape Turing ma
hine), emulation is possible withinpoly-logarithmi
 overhead (i.e., t steps of an arbitrary ma
hine 
an be emulatedby eO(t) steps of the emulating ma
hine), and in some models this emulation 
aneven be performed with 
onstant overhead. The theorem follows.Comment: By 
onstru
tion, the foregoing algorithm A does not halt on inputx 62 SR. This 
an be easily re
ti�ed by letting A emulate a straightforward ex-haustive sear
h for a solution, and halt with output ? if and only if this exhaustivesear
h indi
ates that there is no solution to the 
urrent input. This extra emulation
an be performed in parallel to all other emulations (e.g., at a rate of one step forthe extra emulation per ea
h step of everything else).5.3 The 
lass 
oNP and its interse
tion with NPBy prepending the name of a 
omplexity 
lass (of de
ision problems) with the pre�x\
o" we mean the 
lass of 
omplement sets; that is,
oC def= ff0; 1g� n S : S 2 Cg: (5.1)Spe
i�
ally, 
oNP = ff0; 1g� n S : S 2 NPg is the 
lass of sets that are 
omple-ments of sets in NP .Re
alling that sets in NP are 
hara
terized by their witness relations su
h thatx 2 S if and only if there exists an adequate NP-witness, it follows that their
omplement sets 
onsists of all instan
es for whi
h there are no NP-witness (i.e.,x 2 f0; 1g� nS if there is no NP-witness for x being in S). For example, SAT 2 NPimplies that the set of unsatis�able CNF formulae is in 
oNP . Likewise, the setof graphs that are not 3-
olorable is in 
oNP . (Jumping ahead, we mention thatit is widely believed that these sets are not in NP .)Another perspe
tive on 
oNP is obtained by 
onsidering the sear
h problemsin PC. Re
all that for su
h R 2 PC, the set of instan
es having a solution (i.e.,SR = fx : 9y s.t. (x; y)2Rg) is in NP . It follows that the set of instan
es havingno solution (i.e., f0; 1g� n SR = fx : 8y (x; y) 62Rg) is in 
oNP .It is widely believed that NP 6= 
oNP (whi
h means that NP is not 
losedunder 
omplementation). Indeed, this 
onje
ture implies P 6= NP (be
ause P is
losed under 
omplementation). The 
onje
ture NP 6= 
oNP means that somesets in 
oNP do not have NP-proof systems (be
ause NP is the 
lass of sets having



124 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSNP-proof systems). As we will show next, under this 
onje
ture, the 
omplementsof NP-
omplete sets do not have NP-proof systems; for example, there exists noNP-proof system for proving that a given CNF formula is not satis�able. We �rstestablish this fa
t for NP-
ompleteness in the standard sense (i.e., under Karp-redu
tions, as in De�nition 4.1).Proposition 5.6 Suppose that NP 6= 
oNP and let S 2 NP su
h that every setin NP is Karp-redu
ible to S. Then S def= f0; 1g� n S is not in NP.Proof Sket
h: We �rst observe that the fa
t that every set in NP is Karp-redu
ible to S implies that every set in 
oNP is Karp-redu
ible to S. We next
laim (and prove later) that if S0 is in NP then every set that is Karp-redu
ibleto S0 is also in NP . Applying the 
laim to S0 = S, we 
on
lude that S 2 NPimplies 
oNP � NP , whi
h in turn implies NP = 
oNP (see Exer
ise 5.4) in
ontradi
tion to the main hypothesis.We now turn to prove the foregoing 
laim; that is, we prove that if S0 has an NP-proof system and S00 is Karp-redu
ible to S0, then S00 has an NP-proof system. LetV 0 be the veri�
ation pro
edure asso
iated with S0, and let f be a Karp-redu
tionof S00 to S0. Then, we de�ne the veri�
ation pro
edure V 00 (for membership in S00)by V 00(x; y) = V 0(f(x); y). That is, any NP-witness that f(x) 2 S0 serves as anNP-witness for x 2 S00 (and these are the only NP-witnesses for x 2 S00). This maynot be a \natural" proof system (for S00), but it is de�nitely an NP-proof systemfor S00.Assuming that NP 6= 
oNP , Proposition 5.6 implies that sets in NP \ 
oNP
annot be NP-
omplete with respe
t to Karp-redu
tions. In light of other limita-tions of Karp-redu
tions (see, e.g., Exer
ise 3.4), one may wonder whether or notthe ex
lusion of NP-
omplete sets from the 
lass NP \ 
oNP is due to the useof a restri
ted notion of redu
tions (i.e., Karp-redu
tions). The following theoremasserts that this is not the 
ase: some sets in NP 
annot be redu
ed to sets in theinterse
tion NP \ 
oNP even under general redu
tions (i.e., Cook-redu
tions).Theorem 5.7 If every set in NP 
an be Cook-redu
ed to some set in NP\
oNPthen NP = 
oNP.In parti
ular, assuming NP 6= 
oNP , no set in NP \ 
oNP 
an be NP-
omplete,even when NP-
ompleteness is de�ned with respe
t to Cook-redu
tions. Sin
eNP \ 
oNP is 
onje
tured to be a proper superset of P , it follows (assumingNP 6= 
oNP) that there are de
ision problems in NP that are neither in P norNP-hard (i.e., spe
i�
ally, the de
ision problems in (NP \ 
oNP) n P). We stressthat Theorem 5.7 refers to standard de
ision problems and not to promise problems(see Se
tion 5.1 and Exer
ise 5.3).Proof: Analogously to the proof of Proposition 5.6 , the 
urrent proof boils downto proving that if S is Cook-redu
ible to a set in NP\
oNP then S 2 NP\
oNP .Using this 
laim, the theorem's hypothesis implies that NP � NP \ 
oNP , whi
hin turn implies NP � 
oNP and NP = 
oNP (see Exer
ise 5.4).



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 125Fixing any S and S0 2 NP \ 
oNP su
h that S is Cook-redu
ible to S0, weprove that S 2 NP (and the proof that S 2 
oNP is similar).5 Let us denoteby M the ora
le ma
hine redu
ing S to S0. That is, on input x, ma
hine Mmakes queries and de
ides whether or not to a

ept x, and its de
ision is 
orre
tprovided that all queries are answered a

ording to S0. To show that S 2 NP ,we will present an NP-proof system for S. This proof system, denoted V , a

eptsan alleged (instan
e-witness) pair of the form (x; h(z1; �1; w1); :::; (zt; �t; wt)i) if thefollowing two 
onditions hold:1. On input x, ma
hine M a

epts after making the queries z1; :::; zt, and ob-taining the 
orresponding answers �1; :::; �t.That is, V 
he
k that, on input x, after obtaining the answers �1; :::; �i�1 tothe �rst i � 1 queries, the ith query made by M equals zi. In addition, V
he
ks that, on input x and after re
eiving the answers �1; :::; �t, ma
hineMhalts with output 1 (indi
ating a

eptan
e).Note that V does not have ora
le a

ess to S0. The pro
edure V ratheremulates the 
omputation of M(x) by answering, for ea
h i, the ith query ofM(x) by using the bit �i (provided to V as part of its input). The 
orre
tnessof these answers will be veri�ed (by V ) separately (i.e., see the next item).2. For every i, it holds that if �i = 1 then wi is an NP-witness for zi 2 S0,whereas if �i = 0 then wi is an NP-witness for zi 2 f0; 1g� n S0.Thus, if this 
ondition holds then it is the 
ase that ea
h �i indi
ates the
orre
t status of zi with respe
t to S0 (i.e., �i = 1 if and only if zi 2 S0).We stress that we have used the fa
t that both S0 and S0 def= f0; 1g� n S haveNP-proof systems, and we have referred to the 
orresponding NP-witnesses.Note that V is indeed an NP-proof system for S. Firstly, the length of the
orresponding witnesses is bounded by the running-time of the redu
tion (and thelength of the NP-witnesses supplied for the various queries). Next note that Vruns in polynomial time (i.e., verifying the �rst 
ondition requires an emulation ofthe polynomial-time exe
ution of M on input x when using the �i's to emulate theora
le, whereas verifying the se
ond 
ondition is done by invoking the relevant NP-proof systems). Finally, observe that x 2 S if and only if there exists a sequen
ey def= ((z1; �1; w1); :::; (zt; �t; wt)) su
h that V (x; y) = 1. In parti
ular, V (x; y) = 1holds only if y 
ontains a valid sequen
e of queries and answers as made in a
omputation of M on input x and ora
le a

ess to S0, and M a

epts based onthat sequen
e.The world view { a digest. Re
all that on top of the P 6= NP 
onje
ture, wementioned two other 
onje
tures (whi
h 
learly imply P 6= NP):5Alternatively, we show that S 2 
oNP by applying the following argument to S def= f0; 1g� nSand noting that S is Cook-redu
ible to S0 (via S, or alternatively that S is Cook-redu
ible tof0; 1g� n S0 2 NP \ 
oNP).
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onje
ture that NP 6= 
oNP (equivalently, NP \ 
oNP 6= NP).This 
onje
ture is equivalent to the 
onje
ture that CNF formulae have noshort proofs of unsatis�ability (i.e., the set f0; 1g� n SAT has no NP-proofsystem).2. The 
onje
ture that NP \ 
oNP 6= P .Notable 
andidates for the 
lass NP \ 
oNP 6= P in
lude de
ision problemsthat are 
omputationally equivalent to the integer fa
torization problem (i.e.,the sear
h problem (in PC) in whi
h, given a 
omposite number, the task isto �nd its prime fa
tors).Combining these 
onje
tures, we get the world view depi
ted in Figure 5.1, whi
halso shows the 
lass of 
oNP-
omplete sets (de�ned next).
P

NPC

coNP

NP

coNPCFigure 5.1: The world view under P 6= 
oNP \NP 6= NP .De�nition 5.8 A set S is 
alled 
oNP-hard if every set in 
oNP is Karp-redu
ibleto S. A set is 
alled 
oNP-
omplete if it is both in 
oNP and 
oNP-hard.Indeed, insisting on Karp-redu
tions is essential for a distin
tion between NP-hardness and 
oNP-hardness. Furthermore, the 
lass of problems that are Karp-redu
ible to NP equals NP (see Exer
ise 5.5), whereas the 
lass of problems thatare Karp-redu
ible to 
oNP equals 
oNP (be
ause S is Karp-redu
ible to S0 if andonly if f0; 1g�nS is Karp-redu
ible to f0; 1g�nS0). In 
ontrast, re
all that the 
lassof problems that are Cook-redu
ible to NP (resp., to 
oNP) 
ontainsNP[
oNP .This 
lass, 
ommonly denoted PNP , is further dis
ussed in Exer
ise 5.8.Exer
isesExer
ise 5.1 (a quiz)1. What are promise problems?2. What is the justi�
ation for ignoring the promise (in a promise problem)whenever it is polynomial-time re
ognizable?



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 1273. What is a 
andid sear
h problem?4. Is it the 
ase that the P-vs-NP Question boils down to determining the time
omplexity of a single (known) algorithm?5. What is the 
lass 
oNP?6. How does NP relate to the 
lass of de
ision problems that are Cook-redu
ibleto NP?7. How does NP relate to the 
lass of de
ision problems that are Karp-redu
ibleto NP?Exer
ise 5.2 (Cook-redu
tions preserve eÆ
ient solvability of promise problems)Prove that if the promise problem � is Cook-redu
ible to a promise problem thatis solvable in polynomial-time, then � is solvable in polynomial-time. Note thatthe solver may not halt on inputs that violate the promise.Guideline: Use the fa
t that any polynomial-time algorithm that solves any promiseproblem 
an be modi�ed su
h that it halts on all inputs (in polynomial time).Exer
ise 5.3 (NP-
omplete promise problems in 
oNP (following [8℄)) Considerthe promise problem xSAT, having instan
es that are pairs of CNF formulae. Theyes-instan
es 
onsists of pairs (�1; �2) su
h that �1 is satis�able and �2 is unsatis-�able, whereas the no-instan
es 
onsists of pairs su
h that �1 is unsatis�able and�2 is satis�able.1. Show that xSAT is in the interse
tion of (the promise problem 
lasses thatare analogous to) NP and 
oNP .2. Prove that any promise problem in NP is Cook-redu
ible to xSAT. In de-signing the redu
tion, re
all that queries that violate the promise may beanswered arbitrarily.Guideline: Note that the promise problem version of NP is redu
ible to SAT,and show a redu
tion of SAT to xSAT. Spe
i�
ally, show that the sear
h problemasso
iated with SAT is Cook-redu
ible to xSAT, by adapting the ideas of the proofof Proposition 3.7. That is, suppose that we know (or assume) that � is a pre�x ofa satisfying assignment to �, and we wish to extend � by one bit. Then, for ea
h� 2 f0; 1g, we 
onstru
t a formula, denoted �0�, by setting the �rst j� j+1 variablesof � a

ording to the values ��. We query the ora
le about the pair (�01; �00), andextend � a

ordingly (i.e., we extend � by the value 1 if and only if the answer ispositive). Note that if both �01 and �00 are satis�able then it does not matter whi
hbit we use in the extension, whereas if exa
tly one formula is satis�able then theora
le answer is reliable.3. Pinpoint the sour
e of failure of the proof of Theorem 5.7 when applied tothe redu
tion provided in the previous item.Exer
ise 5.4 For any 
lass C, prove that C � 
oC if and only if C = 
oC.



128 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSExer
ise 5.5 Prove that a set S is Karp-redu
ible to some set in NP if and onlyif S is in NP .Guideline: For the non-trivial dire
tion, see the proof of Proposition 5.6.Exer
ise 5.6 Re
all that the empty set is not Karp-redu
ible to f0; 1g�, whereasany set is Cook-redu
ible to its 
omplement. Thus our fo
us here is on the Karp-redu
ibility of non-trivial sets to their 
omplements, where a set is non-trivial if itis neither empty nor 
ontains all strings. Furthermore, sin
e any non-trivial set inP is Karp-redu
ible to its 
omplement (see Exer
ise 3.4), we assume that P 6= NPand fo
us on sets in NP n P .1. Prove that NP = 
oNP implies that some sets in NPnP are Karp-redu
ibleto their 
omplements.2. Prove that NP 6= 
oNP implies that some sets in NP n P are not Karp-redu
ible to their 
omplements.Guideline: Use NP-
omplete sets in both parts, and Exer
ise 5.5 in the se
ond part.Exer
ise 5.7 (TAUT is 
oNP-
omplete) Prove that the following problem, de-noted TAUT, is 
oNP-
omplete (even when the formulae are restri
ted to 3DNF).An instan
e of the problem 
onsists of a DNF formula, and the problem is to de-termine whether this formula is a tautology (i.e., a formula that evaluates to trueunder every possible truth assignment).Guideline: Redu
e from SAT (i.e., the 
omplement of SAT), using the fa
t that � isunsatis�able if and only if :� is a tautology.Exer
ise 5.8 (the 
lass PNP) Re
all that PNP denotes the 
lass of problemsthat are Cook-redu
ible to NP . Prove the following (simple) fa
ts.1. For every 
lass C, the 
lass of problems that are Cook-redu
ible to C equalsthe 
lass of problems that are Cook-redu
ible to 
oC. In parti
ular, PNPequals the 
lass of problems that are Cook-redu
ible to 
oNP .2. The 
lass PNP is 
losed under 
omplementation (i.e., PNP = 
oPNP).Note that ea
h of the foregoing items implies that PNP 
ontains NP [ 
oNP .Exer
ise 5.9 Assuming that NP 6= 
oNP , prove that the problem of �nding themaximum 
lique (resp., independent set) in a given graph is not in PC. Prove thesame for the following problems:� Finding a minimum vertex 
over in a given graph.� Finding an assignment that satis�es the maximum number of equations in agiven system of linear equations over GF(2) (
f. Exer
ise 4.8.)Guideline: Note that the set of pairs (G;K) su
h that the graph G 
ontains no 
liqueof size K is 
oNP-
omplete.



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 129Exer
ise 5.10 (the 
lass P=poly, revisited) In 
ontinuation of Exer
ise 1.15,prove that P=poly equals the 
lass of sets that are Cook-redu
ible to a sparse set,where a set S is 
alled sparse if there exists a polynomial p su
h that for every n itholds that jS \ f0; 1gnj � p(n).Guideline: For any set in P=poly, en
ode the advi
e sequen
e (an)n2N as a sparse setf(1n; i; �n;i) : n2N ; i � janjg, where �n;i is the ith bit of an. For the opposite dire
tion,note that the emulation of a Cook-redu
tion to a set S, on input x, only requires knowledgeof S \Spoly(jxj)i=1 f0; 1gi.Exer
ise 5.11 In 
ontinuation of Exer
ise 5.10, we 
onsider the 
lass of sets thatare Karp-redu
ible to a sparse set. It 
an be proved that this 
lass 
ontains SAT ifand only if P = NP (see [10℄). Here, we only 
onsider the spe
ial 
ase in whi
h thesparse set is 
ontained in a polynomial-time de
idable set that is itself sparse (e.g.,the latter set may be f1g�, in whi
h 
ase the former set may be an arbitrary unaryset). A
tually, the aim of this exer
ise is establishing the following (seeminglystronger) 
laim:If SAT is Karp-redu
ible to a set S � G su
h that G 2 P and G n S issparse, then SAT 2 P .Using the hypothesis, we outline a polynomial-time pro
edure for solving the sear
hproblem of SAT, and leave the task of providing the details as an exer
ise. Thepro
edure (looking for a satisfying assignment) 
ondu
ts a DFS on the tree ofall possible partial truth assignment to the input formula,6 while trun
ating thesear
h at nodes that 
orrespond to partial truth assignments that were alreadydemonstrated to be useless (i.e., 
orrespond to a partial truth assignment that
annot be 
ompleted to a satisfying assignment).Guideline: The key observation is that ea
h internal node (whi
h yields a formula derivedfrom the initial formula by instantiating the 
orresponding partial truth assignment) ismapped by the Karp-redu
tion either to a string not in G (in whi
h 
ase we 
on
ludethat the sub-tree 
ontains no satisfying assignments and ba
ktra
k from this node) or toa string in G. In the latter 
ase, unless we already know that this string is not in S,we start a s
an of the sub-tree rooted at this node. However, on
e we ba
ktra
k from thisinternal node, we know that the 
orresponding member of G is not in S, and we will nevers
an again a sub-tree rooted at a node that is mapped to this string (whi
h was dete
tedto be in G n S). Also note that on
e we rea
h a leaf, we 
an 
he
k by ourselves whetheror not it 
orresponds to a satisfying assignment to the initial formula. When analyzingthe forgoing pro
edure, prove that on input an n-variable formula � the number of timeswe start to s
an a sub-tree is at most n � jSpoly(j�j)i=1 f0; 1gi \ (G n S)j.
6For an n-variable formula, the leaves of the tree 
orrespond to all possible n-bit long strings,and an internal node 
orresponding to � is the parent of the nodes 
orresponding to �0 and �1.
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Histori
al NotesThe following brief a

ount de
ouples the development of the theory of 
omputation(whi
h was the fo
us of Chapter 1) from the emergen
e of the P vs-NP Questionand the theory of NP-
ompleteness (studied in Chapters 2{5).On 
omputation and eÆ
ient 
omputationThe interested reader may �nd numerous histori
al a

ounts of the developmentsthat led to the emergen
e of the theory of 
omputation. The following brief a

ountis di�erent from most of these histori
al a

ounts in that its perspe
tive is the oneof the 
urrent resear
h in 
omputer s
ien
e.The theory of uniform 
omputational devi
es emerged in the work of Turing [30℄.This work put forward a natural model of 
omputation, based on 
on
rete ma
hines(indeed Turing ma
hines), whi
h has been instrumental for subsequent studies. Inparti
ular, this model provides a 
onvenient stage for the introdu
tion of natural
omplexity measures referring to 
omputational tasks.The notion of a Turing ma
hine was put forward by Turing with the expli
it in-tention of providing a general formulation of the notion of 
omputability [30℄. Theoriginal motivation was providing a formalization of Hilbert's 
hallenge (posed in1900 and known as Hilbert's Tenth Problem), whi
h 
alled for designing a methodfor determining the solvability of Diophanti
 equations. Indeed, this 
hallenge re-ferred to a spe
i�
 de
ision problem (later 
alled the Ents
heidungsproblem (Ger-man for the De
ision Problem)), but Hilbert did not provide a formulation of thenotion of \(a method for) solving a de
ision problem." (We mention that in 1970,the Ents
heidungsproblem was proved to be unde
idable (see [22℄).)In addition to introdu
ing the Turing ma
hine model and arguing that it 
or-responds to the intuitive notion of 
omputability, Turing's paper [30℄ introdu
esuniversal ma
hines, and 
ontains proofs of unde
idability (e.g., of the Halting Prob-lem). (Ri
e's Theorem (Theorem 1.6) is proven in [25℄, and the unde
idability ofthe Post Corresponden
e Problem (Theorem 1.7) is proven in [24℄.)The Chur
h-Turing Thesis is attributed to the works of Chur
h [3℄ and Tur-ing [30℄. In both works, this thesis is invoked for 
laiming that the fa
t that someproblem 
annot be solved in a spe
i�
 model of 
omputation implies that this prob-lem 
annot be solved in any \reasonable" model of 
omputation. The RAM modelis attributed to von Neumann's report [31℄.131



132 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSThe asso
iation of eÆ
ient 
omputation with polynomial-time algorithms isattributed to the papers of Cobham [4℄ and Edmonds [6℄. It is interesting to notethat Cobham's starting point was his desire to present a philosophi
ally sound
on
ept of eÆ
ient algorithms, whereas Edmonds's starting point was his desire toarti
ulate why 
ertain algorithms are \good" in pra
ti
e.The theory of non-uniform 
omputational devi
es emerged in the work of Shan-non [27℄, whi
h introdu
ed and initiated the study of Boolean 
ir
uits. The formu-lation of ma
hines that take advi
e (as well as the equivalen
e to the 
ir
uit model)originates in [17℄.On NP and NP-CompletenessMany sour
es provide histori
al a

ounts of the developments that led to the formu-lation of the P vs NP Problem and to the dis
overy of the theory of NP-
ompleteness(see, e.g., [11, Se
. 1.5℄ and [29℄). Still, we feel that we should not refrain from of-fering our own impressions, whi
h are based on the texts of the original papers.Nowadays, the theory of NP-
ompleteness is 
ommonly attributed to Cook [5℄,Karp [16℄, and Levin [20℄. It seems that Cook's starting point was his interest intheorem-proving pro
edures for propositional 
al
ulus [5, P. 151℄. Trying to provideeviden
e to the diÆ
ulty of de
iding whether or not a given formula is a tautology,he identi�ed NP as a 
lass 
ontaining \many apparently diÆ
ult problems" (
f,e.g., [5, P. 151℄), and showed that any problem in NP is redu
ible to de
idingmembership in the set of 3DNF tautologies. In parti
ular, Cook emphasized theimportan
e of the 
on
ept of polynomial-time redu
tions and the 
omplexity 
lassNP (both expli
itly de�ned for the �rst time in his paper). He also showed thatCLIQUE is 
omputationally equivalent to SAT, and envisioned a 
lass of problems ofthe same nature.Karp's paper [16℄ 
an be viewed as ful�lling Cook's prophe
y: Stimulated byCook's work, Karp demonstrated that a \large number of 
lassi
 diÆ
ult 
omputa-tional problems, arising in �elds su
h as mathemati
al programming, graph theory,
ombinatori
s, 
omputational logi
 and swit
hing theory, are [NP-℄
omplete (andthus equivalent)" [16, P. 86℄. Spe
i�
ally, his list of twenty-one NP-
omplete prob-lems in
ludes Integer Linear Programming, Hamilton Cir
uit, Chromati
 Number,Exa
t Set Cover, Steiner Tree, Knapsa
k, Job S
heduling, and Max Cut. Interest-ingly, Karp de�ned NP in terms of veri�
ation pro
edures (i.e., De�nition 2.5),pointed to its relation to \ba
ktra
k sear
h of polynomial bounded depth" [16,P. 86℄, and viewed NP as the residen
e of a \wide range of important 
omputa-tional problems" (whi
h are not in P).Independently of these developments, while being in the USSR, Levin proved theexisten
e of \universal sear
h problems" (where universalitymeant NP-
ompleteness).The starting point of Levin's work [20℄ was his interest in the \perebor" 
onje
tureasserting the inherent need for brute-for
e in some sear
h problems that have eÆ-
iently 
he
kable solutions (i.e., problems in PC). Levin emphasized the impli
ationof polynomial-time redu
tions on the relation between the time-
omplexity of therelated problems (for any growth rate of the time-
omplexity), asserted the NP-
ompleteness of six \
lassi
al sear
h problems", and 
laimed that the underlying



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 133method \provides a mean for readily obtaining" similar results for \many otherimportant sear
h problems."It is interesting to note that, although the works of Cook [5℄, Karp [16℄, andLevin [20℄ were re
eived with di�erent levels of enthusiasm, none of the 
ontempo-raries realized the depth of the dis
overy and the diÆ
ulty of the question posed (i.e.,the P-vs-NP Question). This fa
t is evident in every a

ount from the early 1970's,and may explain the frustration of the 
orresponding generation of resear
hers fromthe failure to resolve the P-vs-NP Question, whi
h they expe
ted to be resolvedin their life-time (if not in a matter of a few years). Needless to say, the author'sopinion is that there was absolutely no justi�
ation for these expe
tations, andthat one should have a
tually expe
ted quite the opposite.We mention that the three \founding papers" of the theory of NP-
ompleteness(i.e., Cook [5℄, Karp [16℄, and Levin [20℄) use the three di�erent types of redu
tionsused in this book. Spe
i�
ally, Cook uses the general notion of polynomial-timeredu
tion [5℄, often referred to as Cook-redu
tions (De�nition 3.1). The notionof Karp-redu
tions (De�nition 3.3) originates from Karp's paper [16℄, whereas itsaugmentation to sear
h problems (i.e., De�nition 3.4) originates from Levin's pa-per [20℄. It is worth stressing that Levin's work is stated in terms of sear
h prob-lems, unlike Cook and Karp's works, whi
h treat de
ision problems.The redu
tions presented in Se
tion 4.3.2 are not ne
essarily the original ones.Most notably, the redu
tion establishing the NP-hardness of the Independent Setproblem (i.e., Proposition 4.10) is adapted from [9℄. In 
ontrast, the redu
tionspresented in Se
tion 4.3.1 are merely a re-interpretation of the original redu
tionas presented in [5℄. The equivalen
e of the two de�nitions ofNP (i.e., Theorem 2.8)was proved in [16℄.The existen
e of NP-sets that are neither in P nor NP-
omplete (i.e., Theo-rem 4.12) was proven by Ladner [19℄, Theorem 5.7 was proven by Selman [26℄,and the existen
e of optimal sear
h algorithms for NP-relations (i.e., Theorem 5.5)was proven by Levin [20℄. (Interestingly, the latter result was proved in the samepaper in whi
h Levin presented the dis
overy of NP-
ompleteness, independentlyof Cook and Karp.) Promise problems were expli
itly introdu
ed by Even, Selmanand Ya
obi [8℄; see [12℄ for a survey of their numerous appli
ations.
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Epilogue: A Brief Overviewof Complexity TheoryOut of the tough 
ame forth sweetness1Judges, 14:14The following brief overview is intended to give a 
avor of the questions addressedby Complexity Theory. It in
ludes a brief review of the 
ontents of the 
urrent bookas well as a brief overview of several more advan
ed topi
. The latter overview isquite vague, and is merely meant as a teaser towards further study (
f., e.g., [13℄).Absolute Goals and Relative ResultsComplexity Theory is 
on
erned with the study of the intrinsi
 
omplexity of 
om-putational tasks. Its \�nal" goals in
lude the determination of the 
omplexity ofany well-de�ned task. Additional goals in
lude obtaining an understanding of therelations between various 
omputational phenomena (e.g., relating one fa
t regard-ing 
omputational 
omplexity to another). Indeed, we may say that the formertype of goals is 
on
erned with absolute answers regarding spe
i�
 
omputationalphenomena, whereas the latter type is 
on
erned with questions regarding the re-lation between 
omputational phenomena.Interestingly, so far Complexity Theory has been more su

essful in 
oping withgoals of the latter (\relative") type. In fa
t, the failure to resolve questions of the\absolute" type, led to the 
ourishing of methods for 
oping with questions of the\relative" type. Musing for a moment, let us say that, in general, the diÆ
ultyof obtaining absolute answers may naturally lead to seeking 
onditional answers,whi
h may in turn reveal interesting relations between phenomena. Furthermore,the la
k of absolute understanding of individual phenomena seems to fa
ilitate thedevelopment of methods for relating di�erent phenomena. Anyhow, this is whathappened in Complexity Theory.Putting aside for a moment the frustration 
aused by the failure of obtainingabsolute answers, we must admit that there is something fas
inating in the su

essto relate di�erent phenomena: in some sense, relations between phenomena are1The quote is 
ommonly interpreted as meaning that bene�t arose out of misfortune.135



136 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSmore revealing than absolute statements about individual phenomena. Indeed, the�rst example that 
omes to mind is the theory of NP-
ompleteness. Let us 
onsiderthis theory, for a moment, from the perspe
tive of these two types of goals.P, NP, and NP-
ompletenessComplexity theory has failed to determine the intrinsi
 
omplexity of tasks su
has �nding a satisfying assignment to a given (satis�able) propositional formulaor �nding a 3-
oloring of a given (3-
olorable) graph. But it has su

eeded inestablishing that these two seemingly di�erent 
omputational tasks are in somesense the same (or, more pre
isely, are 
omputationally equivalent). We �nd thissu

ess amazing and ex
iting, and hope that the reader shares these feelings. Thesame feeling of wonder and ex
itement is generated by many of the other dis
overiesof Complexity theory. Indeed, the reader is invited to join a fast tour of some ofthe other questions and answers that make up the �eld of Complexity theory.We will indeed start with the P versus NP Question (and, indeed, brie
y reviewthe 
ontents of Chapter 2). Our daily experien
e is that it is harder to solve aproblem than it is to 
he
k the 
orre
tness of a solution (e.g., think of either a puzzleor a resear
h problem). Is this experien
e merely a 
oin
iden
e or does it representa fundamental fa
t of life (i.e., a property of the world)? Could you imagine aworld in whi
h solving any problem is not signi�
antly harder than 
he
king asolution to it? Would the term \solving a problem" not lose its meaning in su
h ahypotheti
al (and impossible in our opinion) world? The denial of the plausibilityof su
h a hypotheti
al world (in whi
h \solving" is not harder than \
he
king")is what \P di�erent from NP" a
tually means, where P represents tasks that areeÆ
iently solvable and NP represents tasks for whi
h solutions 
an be eÆ
iently
he
ked.The mathemati
ally (or theoreti
ally) in
lined reader may also 
onsider thetask of proving theorems versus the task of verifying the validity of proofs. Indeed,�nding proofs is a spe
ial type of the aforementioned task of \solving a problem"(and verifying the validity of proofs is a 
orresponding 
ase of 
he
king 
orre
tness).Again, \P di�erent from NP" means that there are theorems that are harder toprove than to be 
onvin
ed of their 
orre
tness when presented with a proof. Thismeans that the notion of a \proof" is meaningful; that is, proofs do help whenseeking to be 
onvin
ed of the 
orre
tness of assertions. Here NP represents setsof assertions that 
an be eÆ
iently veri�ed with the help of adequate proofs, andP represents sets of assertions that 
an be eÆ
iently veri�ed from s
rat
h (i.e.,without proofs).In light of the foregoing dis
ussion it is 
lear that the P-versus-NP Question isa fundamental s
ienti�
 question of far-rea
hing 
onsequen
es. The fa
t that thisquestion seems beyond our 
urrent rea
h led to the development of the theory ofNP-
ompleteness. Loosely speaking, this theory (presented in Chapter 4) identi�esa set of 
omputational problems that are as hard as NP. That is, the fate of theP-versus-NP Question lies with ea
h of these problems: if any of these problems iseasy to solve then so are all problems in NP. Thus, showing that a problem is NP-
omplete provides eviden
e to its intra
tability (assuming, of 
ourse, \P di�erent



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 137than NP"). Indeed, demonstrating the NP-
ompleteness of 
omputational tasks isa 
entral tool in indi
ating hardness of natural 
omputational problems, and ithas been used extensively both in 
omputer s
ien
e and in other dis
iplines. Wenote that NP-
ompleteness indi
ates not only the 
onje
tured intra
tability of aproblem but rather also its \ri
hness" in the sense that the problem is ri
h enoughto \en
ode" any other problem in NP. The use of the term \en
oding" is justi-�ed by the exa
t meaning of NP-
ompleteness, whi
h in turn establishes relationsbetween di�erent 
omputational problems (without referring to their \absolute"
omplexity).Some Advan
ed Topi
sThe foregoing dis
ussion of NP-
ompleteness hints to the importan
e of represen-tation, sin
e it referred to di�erent problems that en
ode one another. Indeed, theimportan
e of representation is a 
entral aspe
t of 
omplexity theory. In general,
omplexity theory is 
on
erned with problems for whi
h the solutions are impli
itin the problem's statement (or rather in the instan
e). That is, the problem (orrather its instan
e) 
ontains all ne
essary information, and one merely needs to pro-
ess this information in order to supply the answer.2 Thus, 
omplexity theory is
on
erned with manipulation of information, and its transformation from one rep-resentation (in whi
h the information is given) to another representation (whi
his the one desired). Indeed, a solution to a 
omputational problem is merely adi�erent representation of the information given; that is, a representation in whi
hthe answer is expli
it rather than impli
it. For example, the answer to the questionof whether or not a given Boolean formula is satis�able is impli
it in the formulaitself (but the task is to make the answer expli
it). Thus, 
omplexity theory 
lari-�es a 
entral issue regarding representation; that is, the distin
tion between whatis expli
it and what is impli
it in a representation. Furthermore, it even suggestsa quanti�
ation of the level of non-expli
itness.In general, 
omplexity theory provides new viewpoints on various phenomenathat were 
onsidered also by past thinkers. Examples in
lude the aforementioned
on
epts of solutions, proofs, and representation as well as 
on
epts like random-ness, knowledge, intera
tion, se
re
y and learning. We next dis
uss the latter
on
epts and the perspe
tive o�ered by 
omplexity theory.The 
on
ept of randomness has puzzled thinkers for ages. Their perspe
tive
an be des
ribed as ontologi
al: they asked \what is randomness" and wonderedwhether it exist at all (or is the world deterministi
). The perspe
tive of 
omplexitytheory is behavioristi
: it is based on de�ning obje
ts as equivalent if they 
annotbe told apart by any eÆ
ient pro
edure. That is, a 
oin toss is (de�ned to be)\random" (even if one believes that the universe is deterministi
) if it is infeasibleto predi
t the 
oin's out
ome. Likewise, a string (or a distribution of strings) is\random" if it is infeasible to distinguish it from the uniform distribution (regard-less of whether or not one 
an generate the latter). Interestingly, randomness (or2In 
ontrast, in other dis
iplines, solving a problem may require gathering information that isnot available in the problem's statement. This information may either be available from auxiliary(past) re
ords or be obtained by 
ondu
ting new experiments.



138 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSrather pseudorandomness) de�ned this way is eÆ
iently expandable; that is, undera reasonable 
omplexity assumption (to be dis
ussed next), short pseudorandomstrings 
an be deterministi
ally expanded into long pseudorandom strings. Indeed,it turns out that randomness is intimately related to intra
tability. Firstly, notethat the very de�nition of pseudorandomness refers to intra
tability (i.e., the infea-sibility of distinguishing a pseudorandomness obje
t from a uniformly distributedobje
t). Se
ondly, as stated, a 
omplexity assumption, whi
h refers to the exis-ten
e of fun
tions that are easy to evaluate but hard to invert (
alled one-wayfun
tions), implies the existen
e of deterministi
 programs (
alled pseudorandomgenerators) that stret
h short random seeds into long pseudorandom sequen
es. Infa
t, it turns out that the existen
e of pseudorandom generators is equivalent tothe existen
e of one-way fun
tions.Complexity theory o�ers its own perspe
tive on the 
on
ept of knowledge (anddistinguishes it from information). Spe
i�
ally, 
omplexity theory views knowledgeas the result of a hard 
omputation. Thus, whatever 
an be eÆ
iently done by any-one is not 
onsidered knowledge. In parti
ular, the result of an easy 
omputationapplied to publi
ly available information is not 
onsidered knowledge. In 
ontrast,the value of a hard-to-
ompute fun
tion applied to publi
ly available informationis knowledge, and if somebody provides you with su
h a value then it has providedyou with knowledge. This dis
ussion is related to the notion of zero-knowledgeintera
tions, whi
h are intera
tions in whi
h no knowledge is gained. Su
h intera
-tions may still be useful, be
ause they may 
onvin
e a party of the 
orre
tness ofspe
i�
 data that was provided beforehand. For example, a zero-knowledge inter-a
tive proof may 
onvin
e a party that a given graph is 3-
olorable without yieldingany 3-
oloring.The foregoing paragraph has expli
itly referred to intera
tion, viewing it as avehi
le for gaining knowledge and/or gaining 
on�den
e. Let us highlight the latterappli
ation by noting that it may be easier to verify an assertion when allowed tointera
t with a prover rather than when reading a proof. Put di�erently, intera
tionwith a good tea
her may be more bene�
ial than reading any book. We 
ommentthat the added power of su
h intera
tive proofs is rooted in their being randomized(i.e., the veri�
ation pro
edure is randomized), be
ause if the veri�er's questions
an be determined beforehand then the prover may just provide the trans
ript ofthe intera
tion as a traditional written proof.Another 
on
ept related to knowledge is that of se
re
y: knowledge is somethingthat one party may have while another party does not have (and 
annot feasiblyobtain by itself) { thus, in some sense knowledge is a se
ret. In general, 
omplexitytheory is related to Cryptography, where the latter is broadly de�ned as the studyof systems that are easy to use but hard to abuse. Typi
ally, su
h systems involvese
rets, randomness and intera
tion as well as a 
omplexity gap between the easeof proper usage and the infeasibility of 
ausing the system to deviate from its pre-s
ribed behavior. Thus, mu
h of Cryptography is based on 
omplexity theoreti
assumptions and its results are typi
ally transformations of relatively simple 
om-putational primitives (e.g., one-way fun
tions) into more 
omplex 
ryptographi
appli
ations (e.g., se
ure en
ryption s
hemes).



5.3. THE CLASS CONP AND ITS INTERSECTION WITH NP 139We have already mentioned the 
on
ept of learning when referring to learningfrom a tea
her versus learning from a book. Re
all that 
omplexity theory provideseviden
e to the advantage of the former. This is in the 
ontext of gaining knowledgeabout publi
ly available information. In 
ontrast, 
omputational learning theoryis 
on
erned with learning obje
ts that are only partially available to the learner(i.e., re
onstru
ting a fun
tion based on its value at a few random lo
ations oreven at lo
ations 
hosen by the learner). Still, Complexity theory sheds light onthe intrinsi
 limitations of learning (in this sense).Complexity theory deals with a variety of 
omputational tasks. We have alreadymentioned two fundamental types of tasks: sear
hing for solutions (or rather \�nd-ing solutions") and making de
isions (e.g., regarding the validity of assertions). Wehave also hinted that in some 
ases these two types of tasks 
an be related. Nowwe 
onsider two additional types of tasks: 
ounting the number of solutions andgenerating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the 
orresponding problem, but it turns out that forsome natural problems they are not signi�
antly harder. Spe
i�
ally, under somenatural 
onditions on the problem, approximately 
ounting the number of solutionsand generating an approximately random solution is not signi�
antly harder than�nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of the
omplexity of �nding \approximate solutions" is also of natural importan
e. Onetype of approximation problems refers to an obje
tive fun
tion de�ned on the setof potential solutions: Rather than �nding a solution that attains the optimalvalue, the approximation task 
onsists of �nding a solution that attains an \al-most optimal" value, where the notion of \almost optimal" may be understoodin di�erent ways giving rise to di�erent levels of approximation. Interestingly, inmany 
ases, even a very relaxed level of approximation is as diÆ
ult to obtain assolving the original (exa
t) sear
h problem (i.e., �nding an approximate solution isas hard as �nding an optimal solution). Surprisingly, these hardness of approxima-tion results are related to the study of probabilisti
ally 
he
kable proofs, whi
h areproofs that allow for ultra-fast probabilisti
 veri�
ation. Amazingly, every proof
an be eÆ
iently transformed into one that allows for probabilisti
 veri�
ationbased on probing a 
onstant number of bits (in the alleged proof). Turning ba
kto approximation problems, we mention that in other 
ases a reasonable level ofapproximation is easier to a
hieve than solving the original (exa
t) sear
h problem.Approximation is a natural relaxation of various 
omputational problems. An-other natural relaxation is the study of average-
ase 
omplexity, where the \aver-age" is taken over some \simple" distributions (representing a model of the prob-lem's instan
es that may o

ur in pra
ti
e). We stress that, although it was notstated expli
itly, the entire dis
ussion so far has referred to \worst-
ase" analysisof algorithms. We mention that worst-
ase 
omplexity is a more robust notionthan average-
ase 
omplexity. For starters, one avoids the 
ontroversial questionof what are the instan
es that are \important in pra
ti
e" and 
orrespondinglythe sele
tion of the 
lass of distributions for whi
h average-
ase analysis is to be
ondu
ted. Nevertheless, a relatively robust theory of average-
ase 
omplexity has



140 CHAPTER 5. THREE RELATIVELY ADVANCED TOPICSbeen suggested, albeit it is less developed than the theory of worst-
ase 
omplexity.In view of the 
entral role of randomness in 
omplexity theory (as evident, say,in the study of pseudorandomness, probabilisti
 proof systems, and 
ryptography),one may wonder as to whether the randomness needed for the various appli
ations
an be obtained in real-life. One spe
i�
 question, whi
h re
eived a lot of atten-tion, is the possibility of \purifying" randomness (or \extra
ting good randomnessfrom bad sour
es"). That is, 
an we use \defe
ted" sour
es of randomness in or-der to implement almost perfe
t sour
es of randomness. The answer depends, of
ourse, on the model of su
h defe
ted sour
es. This study turned out to be relatedto 
omplexity theory, where the most tight 
onne
tion is between some type ofrandomness extra
tors and some type of pseudorandom generators.So far we have fo
used on the time 
omplexity of 
omputational tasks, whilerelying on the natural asso
iation of eÆ
ien
y with time. However, time is notthe only resour
e one should 
are about. Another important resour
e is spa
e:the amount of (temporary) memory 
onsumed by the 
omputation. The studyof spa
e-
omplexity has un
overed several fas
inating phenomena, whi
h seem toindi
ate a fundamental di�eren
e between spa
e-
omplexity and time-
omplexity.For example, in the 
ontext of spa
e-
omplexity, verifying proofs of validity ofassertions (of any spe
i�
 type) has the same 
omplexity as verifying proofs ofinvalidity for the same type of assertions.In 
ase the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour ofsome mountain tops, and dizziness is to be expe
ted. For a totally di�erent touringexperien
e, we refer the interested reader to our book [13℄, whi
h o�ers 
limbingthe aforementioned mountains by foot, while stopping often for appre
iation of theview and re
e
tion.Absolute Results (a.k.a. Lower-Bounds). As stated in the beginning of thisepilogue, absolute results are not known for many of the \big questions" of 
om-plexity theory (most notably the P-versus-NP Question). However, several highlynon-trivial absolute results have been proved. For example, it was shown thatusing negation 
an speed-up the 
omputation of monotone fun
tions (whi
h donot require negation for their mere 
omputation). In addition, many promisingte
hniques were introdu
ed and employed with the aim of providing a low-levelanalysis of the progress of 
omputation. However, as stated up-front, the fo
us ofthis epilogue was elsewhere.



Appendix ASome ComputationalProblemsAlthough we view spe
i�
 (natural) 
omputational problems as se
ondary to (nat-ural) 
omplexity 
lasses, we do use the former for 
lari�
ation and illustration ofthe latter. This appendix provides de�nitions of su
h 
omputational problems,grouped a

ording to the type of obje
ts to whi
h they refer (i.e., graphs andBoolean formula).We start by addressing the 
entral issue of the representation of the variousobje
ts that are referred to in the aforementioned 
omputational problems. Thegeneral prin
iple is that elements of all sets are \
ompa
tly" represented as binarystrings (without mu
h redundan
y). For example, the elements of a �nite set S(e.g., the set of verti
es in a graph or the set of variables appearing in a Booleanformula) will be represented as binary strings of length log2 jSj.A.1 GraphsGraph theory has long be
ome re
ognized as one of the moreuseful mathemati
al subje
ts for the 
omputer s
ien
e student tomaster. The approa
h whi
h is natural in 
omputer s
ien
e is thealgorithmi
 one; our interest is not so mu
h in existen
e proofs orenumeration te
hniques, as it is in �nding eÆ
ient algorithms forsolving relevant problems, or alternatively showing eviden
e thatno su
h algorithms exist. Although algorithmi
 graph theory wasstarted by Euler, if not earlier, its development in the last tenyears has been dramati
 and revolutionary.Shimon Even, Graph Algorithms [7℄A simple graph G= (V;E) 
onsists of a �nite set of verti
es V and a �nite set ofedges E, where ea
h edge is an unordered pair of verti
es; that is, E � ffu; vg :141



142 APPENDIX A. SOME COMPUTATIONAL PROBLEMSu; v2V ^u 6=vg. This formalism does not allow self-loops and parallel edges, whi
hare allowed in general (i.e., non-simple) graphs, where E is a multi-set that may
ontain (in addition to two-element subsets of V also) singletons (i.e., self-loops).The vertex u is 
alled an end-point of the edge fu; vg, and the edge fu; vg is saidto be in
ident at v. In su
h a 
ase we say that u and v are adja
ent in the graph,and that u is a neighbor of v. The degree of a vertex in G is de�ned as the numberof edges that are in
ident at this vertex.We will 
onsider various sub-stru
tures of graphs, the simplest one being paths.A path in a graph G=(V;E) is a sequen
e of verti
es (v0; :::; v`) su
h that for everyi 2 [`℄ def= f1; :::; `g it holds that vi�1 and vi are adja
ent in G. Su
h a path is saidto have length `. A simple path is a path in whi
h ea
h vertex appears at moston
e, whi
h implies that the longest possible simple path in G has length jV j � 1.The graph is 
alled 
onne
ted if there exists a path between ea
h pair of verti
esin it.A 
y
le is a path in whi
h the last vertex equals the �rst one (i.e., v` = v0).The 
y
le (v0; :::; v`) is 
alled simple if ` > 2 and jfv0; :::; v`gj = ` (i.e., if vi = vjthen i � j (mod `), and the 
y
le (u; v; u) is not 
onsidered simple). A graph is
alled a
y
li
 (or a forest) if it has no simple 
y
les, and if it is also 
onne
ted thenit is 
alled a tree. Note that G=(V;E) is a tree if and only if it is 
onne
ted andjEj = jV j � 1, and that there is a unique simple path between ea
h pair of verti
esin a tree.A subgraph of the graph G=(V;E) is any graph G0=(V 0; E0) satisfying V 0 � Vand E0 � E. Note that a simple 
y
le in G is a 
onne
ted subgraph of G in whi
hea
h vertex has degree exa
tly two. An indu
ed subgraph of the graph G=(V;E)is any subgraph G0=(V 0; E0) that 
ontain all edges of E that are 
ontained in V 0.In su
h a 
ase, we say that G0 is the subgraph indu
ed by V 0.Dire
ted graphs. We will also 
onsider (simple) dire
ted graphs (a.k.a digraphs),where edges are ordered pairs of verti
es. In this 
ase the set of edges is a subsetof V � V n f(v; v) : v 2 V g, and the edges (u; v) and (v; u) are 
alled anti-parallel.General (i.e., non-simple) dire
ted graphs are de�ned analogously. The edge (u; v)is viewed as going from u to v, and thus is 
alled an outgoing edge of u (resp.,in
oming edge of v). The out-degree (resp., in-degree) of a vertex is the number ofits outgoing edges (resp., in
oming edges). Dire
ted paths and the related obje
tsare de�ned analogously; for example, v0; :::; v` is a dire
ted path if for every i 2 [`℄it holds that (vi�1; vi) is a dire
ted edge (whi
h is dire
ted from vi�1 to vi). It is
ommon to 
onsider also a pair of anti-parallel edges as a simple dire
ted 
y
le.A dire
ted a
y
li
 graph (DAG) is a digraph that has no dire
ted 
y
les. EveryDAG has at least one vertex having out-degree (resp., in-degree) zero, 
alled a sink(resp., a sour
e). A simple dire
ted a
y
li
 graph G = (V;E) is 
alled an inward(resp., outward) dire
ted tree if jEj = jV j � 1 and there exists a unique vertex,
alled the root, having out-degree (resp., in-degree) zero. Note that ea
h vertexin an inward (resp., outward) dire
ted tree 
an rea
h the root (resp., is rea
hablefrom the root) by a unique dire
ted path.11Note that in any DAG, there is a dire
ted path from ea
h vertex v to some sink (resp., from



A.1. GRAPHS 143Representation. Graphs are 
ommonly represented by their adja
en
y matrixand/or their in
iden
e lists. The adja
en
y matrix of a simple graph G=(V;E) is ajV j-by-jV j Boolean matrix in whi
h the (i; j)-th entry equals 1 if and only if i andj are adja
ent in G. The in
iden
e list representation of G 
onsists of jV j sequen
essu
h that the ith sequen
e is an ordered list of the set of edges in
ident at vertex i.(Needless to say, it is easy to transform one of these representations to the other.)Computational problems. Simple 
omputational problems regarding graphsin
lude determining whether a given graph is 
onne
ted (and/or a
y
li
) and �nd-ing shortest paths in a given graph. Another simple problem is determining whethera given graph is bipartite, where a graph G=(V;E) is bipartite (or 2-
olorable) ifthere exists a 2-
oloring of its verti
es that does not assign neighboring verti
es thesame 
olor. All these problems are easily solvable by BFS.Moving to more 
ompli
ated tasks that are still solvable in polynomial-time, wemention the problem of �nding a perfe
t mat
hing (or a maximum mat
hing) in agiven graph, where a mat
hing is a subgraph in whi
h all verti
es have degree 1, aperfe
t mat
hing is a mat
hing that 
ontains all the graph's verti
es, and a maximummat
hing is a mat
hing of maximum 
ardinality (among all mat
hing of the saidgraph).Turning to seemingly hard problems, we mention that the problem of deter-mining whether a given graph is 3-
olorable2 (i.e., G3C) is NP-
omplete. A fewadditional NP-
omplete problems follow.� A Hamiltonian path (resp., Hamiltonian 
y
le) in the graph G = (V;E) is asimple path (resp., 
y
le) that passes through all the verti
es of G. Su
h apath (resp., 
y
le) has length jV j�1 (resp., jV j). The problem is to determinewhether a given graph 
ontains a Hamiltonian path (resp., 
y
le).� An independent set (resp., 
lique) of the graph G=(V;E) is a set of verti
esV 0 � V su
h that the subgraph indu
ed by V 0 
ontains no edges (resp.,
ontains all possible edges). The problem is to determine whether a givengraph has an independent set (resp., a 
lique) of a given size.A vertex 
over of the graph G=(V;E) is a set of verti
es V 0 � V su
h thatea
h edge in E has at least one end-point in V 0. Note that V 0 is a vertex
over of G if and only if V n V 0 is an independent set of V .A natural 
omputational problem whi
h is believed to be neither in P nor NP-
omplete is the graph isomorphism problem. The input 
onsists of two graphs,G1=(V1; E1) and G2=(V2; E2), and the question is whether there exist a 1-1 andonto mapping � : V1 ! V2 su
h that fu; vg is in E1 if and only if f�(u); �(v)g is inE2. (Su
h a mapping is 
alled an isomorphism.)some sour
e to ea
h vertex v). In an inward (resp., outward) dire
ted tree this sink (resp., sour
e)must be unique. The 
ondition jEj = jV j � 1 enfor
es the uniqueness of these paths, be
ause(
ombined with the rea
hability 
ondition) it implies that the underlying graph (obtained bydisregarding the orientation of the edges) is a tree.2We say that a a graph G=(V;E) is 3-
olorable if its verti
es 
an be 
olored using three 
olorssu
h that neighboring verti
es are not assigned the same 
olor.



144 APPENDIX A. SOME COMPUTATIONAL PROBLEMSA.2 Boolean FormulaeIn x1.4.3.1, Boolean formulae are de�ned as a spe
ial 
ase of Boolean 
ir
uits (
f.x1.4.1.1). Here we take the more traditional approa
h, and de�ne Boolean formulaeas stru
tured sequen
es over an alphabet 
onsisting of variable names and various
onne
tives. It is most 
onvenient to de�ne Boolean formulae re
ursively as follows:� A variable is a Boolean formula.� If �1; :::; �t are Boolean formulae and  is a t-ary Boolean operation then (�1; :::; �t) is a Boolean formula.Typi
ally, we 
onsider three Boolean operations: the unary operation of negation(denoted neg or :), and the (bounded or unbounded) 
onjun
tion and disjun
tion(denoted ^ and _, respe
tively). Furthermore, the 
onvention is to shorthand :(�)by :�, and to write (^ti=1�i) or (�1^� � �^�t) instead of ^(�1; :::; �t), and similarlyfor _.Two important spe
ial 
ases of Boolean formulae are CNF and DNF formulae.A CNF formula is a 
onjun
tion of disjun
tions of variables and/or their negation;that is, ^ti=1�i is a CNF if ea
h �i has the form (_tij=1�i;j), where ea
h �i;j is eithera variable or a negation of a variable (and is 
alled a literal). If for every i it holdsthat ti � k (e.g., k = 2; 3), then we say that the formula is a kCNF. Similarly,DNF formulae are de�ned as disjun
tions of 
onjun
tions of literals.The value of a Boolean formula under a truth assignment to its variables isde�ned re
ursively along its stru
ture. For example, ^ti=1�i has the value trueunder an assignment � if and only if every �i has the value true under � . We saythat a formula � is satis�able if there exists a truth assignment � to its variablessu
h that the value of � under � is true.The set of satis�able CNF (resp., 3CNF) formulae is denoted SAT (resp., 3SAT),and the problem of de
iding membership in it is NP-
omplete. The set of tau-tologies (i.e., formula that have the value true under any assignment) is 
oNP-
omplete, even when restri
ted to 3DNF formulae.
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