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Preface. This manuscript contains preliminary versions of three related chapters
and one appendix of the forthcoming book Computational Complexity: A Concep-
tual Perspective.

Chapter 7: The Bright Side of Hardness. We consider two conjectures that
are related to P # N'P. The first conjecture is that there are problems in &€
that are not solvable by (non-uniform) families of small (say polynomial-size)
circuits, whereas the second conjecture is equivalent to the notion of one-way
functions. Most of this chapter is devoted to converting these conjectures
into tools that can be used for non-trivial dearndomizations of BPP and for
a host of cryptographic applications.

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-
tion of computational indistinguishablity and corresponding notions of pseu-
dorandomness. The definition of general-purpose pseudorandom generators
(running in polynomial-time and withstanding any polynomial-time distin-
guisher) is presented as a special case of a general paradigm. The chapter also
contains a presentation of other instatiations of the latter paradigm, including
generators aimed at derandomizating complexity classes such as BPP, gener-
ators withstanding space-bounded distinguishers, and some special-purpose
generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides an introduc-
tion to three types of probabilistic proof systems: interactive proofs, zero-
knowledge proofs, and probabilistic checkable proofs. These proof systems
share a common (untraditional) feature — they carry a probability of error;
yet, this probability is explicitly bounded and can be reduced by successive
application of the proof system. The gain in allowing this untraditional re-
laxation is substantial, as they enable the construction of proof systems with
properties that seem impossible to achieve via traditional proof systems.

Appendix C: On the Foundations of Modern Cryptography. The first part
of this appendix augments the partial treatment of one-way functions, pseudo-
random generators and zero-knowledge proofs, which is included in Chapters
7-9. Using these basic tools, the second part provides a treatment of ba-
sic cryptographic applications such as Encryption, Signatures, and General
Cryptographic Protocols.

This material corresponds to the main material covered in the author’s book [86],
and superseeds it in almost all respects.
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Chapter 7

The Bright Side of Hardness

So saying she donned her beautiful, glittering golden—Ambrosial
sandals, which carry her flying like the wind over the vast land
and sea; she grasped the redoubtable bronze-shod spear, so stout
and sturdy and strong, wherewith she quells the ranks of heroes
who have displeased her, the [bright-eyed] daughter of her mighty
father.

Homer, Odyssey, 1:96-101

The existence of natural computational problems that are (or seem to be) in-
feasible to solve is usually perceived as bad news, because it means that we cannot
do things we wish to do. But these bad news have a positive side, because hard
problem can be “put to work” to our benefit, most notably in cryptography.

One key issue that arises whenever one tries to utilize hard problem is bridging
the gap between “occasional” hardness (e.g., worst-case hardness or mild average-
case hardness) and “typical” hardness (i.e., inapproximability). Much of the cur-
rent chapter is devoted to this issue, which is known by the term hardness ampli-
fication.

Summary: We consider two conjectures that are related to P # NP.
The first conjecture is that there are problems that are solvable in
exponential-time (i.e., in £) but are not solvable by (non-uniform) fami-
lies of small (say polynomial-size) circuits. We show that this worst-case
conjecture can be transformed into an average-case hardness result of
the type that can be used towards derandomized BPP in a non-trivial
way (see Section 8.4).

The second conjecture is that there are problems in NP (i.e., search
problems in PC) for which it is easy to generate (solved) instances that
are typically hard to solve (for a party that did not generate these in-
stances). This conjecture is captured in the formulation of one-way
functions, which are functions that are easy to evaluate but hard to
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228 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

invert (in an average-case sense). We show that functions that are hard
to invert in a relatively mild average-case sense yield functions that are
hard to invert almost everywhere, and that the latter yield predicates
that are very hard to approximate (called hard-core predicates). The
latter are useful for the construction of general-purpose pseudorandom
generators (see Section 8.3) as well as for a host of cryptographic ap-
plications (see Appendix C).

The order of presentation of the two aforementioned conjectures and their conse-
quences is actually reversed: We start (in Section 7.1) with the study of one-way
function, and only later (in Section 7.2) turn to the study of problems in £ that
are hard for small circuits.

Teaching note: We list several reasons for preferring the aforementioned order of
presentation. First, we mention the conceptual appeal of one-way functions and the
fact that they have very practical applications. Second, hardness amplification in the
context of one-way functions is technically simpler in comparison to the amplification
of hardness in the context of £. (In fact, Section 7.2 is the most technical text in
this book.) Third, some of the techniques that are shared by both treatments seem
easier to understand first in the context of one-way functions. Last, the current order
facilitates the possibility of teaching hardness amplification only in one incarnation,
where the context of one-way functions is recommended as the incarnation of choice
(for the aforementioned reasons).

If you wish to teach hardness amplification and pseudorandomness in the two afore-
mentioned incarnations, then we suggest following the order of the current text. That
is, first teach hardness amplification in its two incarnations, and only next teach pseu-

dorandomness in the corresponding incarnations.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,
standard conventions regarding random variables (presented in Appendix D.1.1)
and various “laws of large numbers” (presented in Appendix D.1.2) will be exten-
sively used.

7.1 One-Way Functions

Loosely speaking, one-way functions are functions that are easy to evaluate but
hard (on the average) to invert. Thus, in assuming that one-way functions exist,
we are postulating the existence of efficient processes (i.e., the computation of the
function in the forward direction) that are hard to reverse. Analogous phenomena
in daily life are known to us in abundance (e.g., the lighting of a match). Thus,
the assumption that one-way functions exists is a complexity theoretic analogue of
daily experience.

One-way functions can also be thought of as efficient ways for generating “puz-
zles” that are infeasible to solve; that is, the puzzle is a random image of the
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function and a solution is a corresponding preimage. Furthermore, the person gen-
erating the puzzle knows a solution to it and can efficiently verify the validity of
(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, every
mechanism for generating such puzzles can be converted to a one-way function.

The reader may note that when presented in terms of generating hard puzzles,
one-way functions have a clear cryptographic flavor. Indeed, one-way functions
are central to cryptography, but we shall not explore this aspect here (and rather
refer the reader to Appendix C). Similarly, one-way functions are closely related to
(general-purpose) pseudorandom generators, but this connection will be explored
in Section 8.3. Instead, in the current section, we will focus on one-way functions
per se.

Teaching note: While we recommend including a basic treatment of pseudorandom-
ness within a course on complexity theory, we do not recommend doing so with respect
to cryptography. The reason is that cryptography is far more complex than pseudo-
randomness (e.g., compare the definition of secure encryption to the the definition of
pseudorandom generators). The extra complexity is due to conceptual richness, which
is something good, except that some of these conceptual issues are central to cryptog-
raphy but not to complexity theory. Thus, teaching cryptography in the context of a
course on complexity theory is likely to either overload the course with material that
is not central to complexity theory or cause a superficial and misleading treatment of
cryptography. We are not sure as to which of these two possibilities is worse. Still, for
the benefit of the interested reader, we have included an overview of the foundations of
cryptography as an appendix to the main (see Appendix C).

7.1.1 The concept of one-way functions

Let us assume that P # NP or even that NP is not contained in BPP. Can
we use this assumption to our benefit? Not really, because the assumption refers
to the worst-case complexity of problems, and it may be that hard instances are
hard to find. But then, it seems that if we cannot generate hard instances then we
cannot benefit from their existence.

In Section 7.2 we shall see that worst-case hardness (of NP or even £) can be
transformed into average-case hardness of £. Such a transformation is not known
for NP itself, and in some applications (e.g., in cryptography) we wish the hard
on the average problem to be in A"P. In this case, we need to assume that, for
some problem in A/P, hard instances not only exist but are easy to generate. That
is, N'P is “hard on the average” with respect to a distribution that is efficiently
sampleable. This assumption will be further discussed in Section 10.2.

However, for the aforementioned applications (e.g., in cryptography) this as-
sumption does not seem to suffice either: we know how to utilize such “hard on the
average” problems only when we can efficiently generate hard instances coupled
with adequate solutions.! That is, we assume that, for some search problem in

LWe wish to stress the difference between the two gaps discussed here. Our feeling is that
worst-case hardness (per se) is far more difficult to utilize than average-case hardness that does
not correspond to an efficient generation of “solved” instances.
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PC (resp., decision problem in N'P), we can efficiently generate instance-solution
pairs (resp., yes-instances coupled with corresponding NP-witnesses) such that the
instance is hard to solve (of course, for a person that does not get the solution
(resp., witness)).

Let us formulate the latter notion. Referring to Definition 2.3, we consider
a relation R in PC (i.e., R is polynomially bounded and membership in R can
be determined in polynomial-time), and assume that there exists a probabilistic
polynomial-time algorithm G that satisfies the following two conditions:

1. On input 17, algorithm G always generates a pair in R such that the first
element has length n. That is, Pr[G(1™) € RN ({0,1}" x {0,1}*)] = 1.

2. Tt is infeasible to find solutions to instances that are generated by G; that
is, when only given the first element of G(1™), it is infeasible to find an ad-
equate solution. Formally, denoting the first element of G(1™) by G1(1™),
for every probabilistic polynomial-time (solver) algorithm S, it holds that
Pr[(G1(1™),S(G1(1™)) € R] = u(n), where p vanishes faster than any poly-
nomial fraction (i.e., for every positive polynomial p and all sufficiently large
n it is the case that u(n) < 1/p(n)).

We call G a generator of solved intractable instances for R. We will show that such
a generator exists if and only if one-way functions exists, where one-way functions
are functions that are easy to evaluate but hard (on the average) to invert. That
is, a function f:{0,1}*—{0,1}* is called one-way if there is an efficient algorithm
that on input = outputs f(x), whereas any feasible algorithm that tries to find a
preimage of f(z) under f may succeed only with negligible probability (where the
probability is taken uniformly over the choices of  and the algorithm’s coin tosses).
Associating feasible computations with probabilistic polynomial-time algorithms
and negligible functions with functions that vanish faster than any polynomial
fraction, we obtain the following definition.

Definition 7.1 (one-way functions): A function f:{0,1}* —{0,1}* is called one-
way if the following two conditions hold:

1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =
f(z) for every x € {0,1}*.

2. Hard to invert: For every probabilistic polynomial-time algorithm A', every
polynomial p, and all sufficiently large n,

Procqony [A'(F(),17) € fH(f(0)] < ﬁ (7.1)

where the probability is taken uniformly over all the possible choices of x €
{0,1}™ and all the possible outcomes of the internal coin tosses of algorithm

A’ 2
2 An alternative formulation of Eq. (7.1) relies on the conventions in Appendix D.1.1. Specifi-
cally, letting U, denote a random variable uniformly distributed in {0, 1}", we may write Eq. (7.1)
as Pr[A'(f(Un),1%) € f~Y(f(Ur))] < 1/p(n), recalling that both occurrences of U, refer to the

same sample.
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Algorithm A’ is given the auxiliary input 1™ so as to allow it to run in time poly-
nomial in the length of z, which is important in case f drastically shrinks its input
(e.g., |f(z)| = O(log |z|)). Typically (and, in fact, without loss of generality, see
Exercise 7.1), f is length preserving, in which case the auxiliary input 1™ is re-
dundant. Note that A’ is not required to output a specific preimage of f(x); any
preimage (i.e., element in the set f~1(f(z))) will do. (Indeed, in case f is 1-1,
the string z is the only preimage of f(z) under f; but in general there may be
other preimages.) It is required that algorithm A’ fails (to find a preimage) with
overwhelming probability, when the probability is also taken over the input distri-
bution. That is, f is “typically” hard to invert, not merely hard to invert in some
(“rare”) cases.

Proposition 7.2 The following two conditions are equivalent:

1. There exists a generator of solved intractable instances for some R € N'P.
2. There exist one-way functions.

Proof Sketch: Suppose that G is such a generator of solved intractable instances
for some R € NP, and suppose that on input 1" it tosses £(n) coins. For simplicity,
we assume that £(n) = n, and consider the function g(r) = G1(1I"l,r), where
G(1™,r) denotes the output of G on input 1™ when using coins 7 (and G is as
in the foregoing discussion). Then g must be one-way, because an algorithm that
inverts g on input = = g(r) obtains 7’ such that G;(1",7') = z and G(1",7") must
be in R (which means that the second element of G(1™,7') is a solution to z). In
case £(n) # n (and assuming without loss of generality that £(n) > n), we define
g(r) = G1(1™,s) where n is the largest integer such that ¢(n) < |r| and s is the
£(n)-bit long prefix of .

Suppose, on the other hand, that f is a one-way function. Then R def {(f(z),x) :
x € {0,1}*}isin PC, and G(1™) = (f(r),r) for a uniformly selected r € {0,1}" is a
generator of solved intractable instances for R, because any solver of R is effectively
inverting f on f(U,). O

Comments. Several candidates one-way functions and variation on the basic
definition appear in Appendix C.2.1. Here, for the sake of future discussions, we
define a stronger version of one-way functions, which refers to the infeasibility of
inverting the function by non-uniform circuits of polynomial-size. Here we use the
form discussed in Footnote 2.

Definition 7.3 (one-way functions, non-uniformly hard): A one-way function f:
{0,1}* — {0,1}* is said to be non-uniformly hard to invert if for every family of
polynomial-size circuits {Cy}, every polynomial p, and all sufficiently large n,

1
PriC.(f(Un),1™) € FTHf(UW)] < —
[ ] p(n)
We note that if a function is infeasible to invert by polynomial-size circuits then it is
hard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity
(more than) compensates for lack of randomness. See Exercise 7.2.
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7.1.2 Amplification of Weak One-Way Functions

In the forgoing discussion we have interpreted “hardness on the average” in a very
strong sense. Specifically, we required that any feasible algorithm fails to solve
the problem (e.g., invert the one-way function) almost always (i.e., except with
negligible probability). This interpretation is indeed the one that is suitable for
various applications. Still, a weaker interpretation of hardness on the average,
which is also appealing, only requires that any feasible algorithm fails to solve the
problem often enough (i.e., with noticeable probability). The main thrust of the
current section is showing that the mild form of hardness on the average can be
transformed into the strong form discussed in Section 7.1.1. Let us first define the
mild form of hardness on the average, using the framework of one-way functions.
Specifically, we define weak one-way functions.

Definition 7.4 (weak one-way functions): A function f:{0,1}*—{0,1}* is called
weakly one-way if the following two conditions hold:

1. Easy to evaluate: As in Definition 7.1.

2. Weakly hard to invert: There exists a positive polynomial p such that for
every probabilistic polynomial-time algorithm A’ and aoll sufficiently large n,

_ 1
Proegoay [4'(f(2),1") & fH(f(2))] > — (7.2)
p(n)
where the probability is taken uniformly over all the possible choices of x €
{0,1}" and all the possible outcomes of the internal coin tosses of algorithm
A'. In such a case, we say that f is 1/p-one-way.

Here we require that algorithm A’ fails (to find an f-preimage for a random f-
image) with noticeable probability, rather than with overwhelmingly high prob-
ability (as in Definition 7.1). For clarity, we will occasionally refer to one-way
functions as in Definition 7.1 by the term strong one-way functions.

We note that, assuming that one-way functions exist at all, there exists weak
one-way functions that are not strongly one-way (see Exercise 7.3). Still, any weak
one-way function can be transformed into a strong one-way function. This is indeed
the main result of the current section.

Theorem 7.5 (amplification of one-way functions): The existence of weak one-
way functions implies the existence of strong one-way functions.

Proof Sketch: The construction itself is straightforward. We just parse the argu-
ment to the new function into sufficiently many blocks, and apply the weak one-way
function on the individual blocks. That is, suppose that f is 1/p-one-way, for some
polynomial p, and consider the following function

F(zy,..ywe) = (f(x1),..., f(xs)) (7.3)

where t < 1, -p(n) and 1, ...,z € {0,1}".
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(Indeed F should be extended to strings of length outside {n? - p(n) : n € N} and
this extension must be hard to invert on all preimage lengths.)3

We warn that the hardness of inverting the resulting function F' is not es-
tablished by mere “combinatorics” (i.e., considering the relative volume of St in
({0,1}™)t, for S C {0,1}", where S represents the set of “easy to invert” f-images).
Specifically, one may not assume that the potential inverting algorithm works inde-
pendently on each block. Indeed this assumption seems reasonable, but we should
not make assumptions regarding the class of all efficient algorithms unless we can
actually prove that nothing is lost by such assumptions.

The hardness of inverting the resulting function F' is proved via a so called
“reducibility argument” (which is used to prove all conditional results in the area).
By a reducibility argument we actually mean a reduction, but one that is analyzed
with respect to average case complexity. Specifically, we show that any algorithm
that inverts the resulting function F' with non-negligible success probability can
be used to construct an algorithm that inverts the original function f with success
probability that violates the hypothesis (regarding f). In other words, we reduce
the task of “strongly inverting” f (i.e., violating its weak one-wayness) to the task
of “weakly inverting” F' (i.e., violating its strong one-wayness). In particular, on
input y = f(x), the reduction invokes the F-inverter (polynomially) many times,
each time feeding it with a sequence of random f-images that contains y at a
random location. (Indeed such a sequence corresponds to a random image of F'.)
Details follow.

Suppose towards the contradiction that F'is not strongly one-way; that is, there
exists a probabilistic polynomial-time algorithm B’ and a polynomial ¢(-) so that
for infinitely many m’s

1

PrB'(E(Un)) € F (F(Unm))] > om)

(7.4)
Focusing on such a generic m and assuming (see Footnote 3) that m = n?p(n), we
present the following probabilistic polynomial-time algorithm, A’, for inverting f.
On input y and 1™ (where supposedly y = f(z) for some = € {0,1}"), algorithm A’
proceeds by applying the following probabilistic procedure, denoted I, on input y
for t'(n) times, where ¢'() is a polynomial that depends on the polynomials p and
q (specifically, we set ¢'(n) < 2n2 - p(n) - q(n2p(n))).
Procedure I (on input y and 1™):
For i =1 to t(n) EC -p(n) do begin
(1) Select uniformly and independently a sequence of strings 1, ..., 7,y € {0,1}".
(2) Compute (Zla () zt(n)) — B,(f(wl)a ey f(wi71)7y7 f(wi+1)7 ey f(wt(n)))
(Note that y is placed in the i*! position instead of f(x;).)
(3) If f(z;) =y then halt and output z;.
(This is considered a success).

30ne simple extension is to define F(z) to equal F(z1, ..., Tp.p(n)), Where n is the largest integer
satisfying n?p(n) < |z| and x; is the i*? consecutive n-bit long string in  (i.e., z = x1 ()T
where 21, ..., .5 (n) € {0, 1}7).
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end

Using Eq. (7.4), we now present a lower bound on the success probability of al-
gorithm A’, deriving a contradiction to the theorem’s hypothesis. To this end we
define a set, denoted S,,, that contains all n-bit strings on which the procedure I
succeeds with probability greater than n/t'(n). (The probability is taken only over
the coin tosses of procedure I). Namely,

g, &f {xe {0,1}" : PrlI(f() € f7 (f(2))] > %}

In the next two claims we shall show that S, contains all but at most a 1/2p(n)
fraction of the strings of length n, and that for each string « € S,, algorithm A’
inverts f on f(z) with probability exponentially close to 1. It will follow that A’
inverts f on f(U,) with probability greater than 1 — (1/p(n)), in contradiction to
the theorem’s hypothesis.

Claim 7.5.1: For every x €S,
PrA'(f(z)ef ' (f(z)] >1-27"

This claim follows directly from the definitions of S,, and A’.

Claim 7.5.2: 1
Sol > <1 - —> .on
15l 2p(n)

The rest of the proof is devoted to establishing this claim, and indeed combining
Claims 7.5.1 and 7.5.2, the theorem follows.

The key observation is that, for every ¢ € [t(n)] and every z; € {0,1}™\ Sy, it
holds that

n

Pr [ B/ (F(Unzymy)) € F ™ (F(Unipi))

< Pr[I(f(z:)) € f 1 (f(z:))] <

n
t'(n)

where UT(Ll), o Ur(bn'p(n)) denote the n-bit long blocks in the random variable U2 ().
It follows that

& Pr (B (FUnip)) €F ™ (FUnisgia) A (30 54 U €40,13\ S, )|
t(n)
< P B (FUhap)) €F ™ (FUnyin)) A US) €40,137\ S0
< t(n)- t’?n) :

On the other hand, using Eq. (7.4), we have

€ 2 PrB(EWyn) €F 7 F W) = Pr|(v) UL €S,

1 t(n)
> ——— — —Pr[U,ES, )
2 Ly~ UnESH
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Using t'(n) = 2n? - p(n) - ¢(n?p(n)) and t(n) = n - p(n), we get PrlU, € S,] >
(1/2q(n*p(n)))Y/(P(") "swhich implies Pr[U, € S,| > 1 — (1/2p(n)) for sufficiently
large n. Claim 7.5.2 follows, and so does the theorem. [

Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weak
one-way function f, we first constructed a polynomial-time computable function
F with the intention of later proving that F' is strongly one-way. To prove that
F is strongly one-way, we used a reducibility argument. The argument transforms
efficient algorithms that supposedly contradict the strong one-wayness of F' into
efficient algorithms that contradict the hypothesis that f is weakly one-way. Hence
F must be strongly one-way. We stress that our algorithmic transformation, which
is in fact a randomized Cook reduction, makes no implicit or explicit assumptions
about the structure of the prospective algorithms for inverting F'. Such assumptions
(e.g., the “natural” assumption that the inverter of F' works independently on each
block) cannot be justified (at least not at our current state of understanding of the
nature of efficient computations).

We use the term a reducibility argument, rather than just saying a reduction
so as to emphasize that we do not refer here to standard (worst-case complexity)
reductions. Let us clarify the distinction: In both cases we refer to reducing the
task of solving one problem to the task of solving another problem; that is, we use
a procedure solving the second task in order to construct a procedure that solves
the first task. However, in standard reductions one assumes that the second task
has a perfect procedure solving it on all instances (i.e., on the worst-case), and
constructs such a procedure for the first task. Thus, the reduction may invoke the
given procedure (for the second task) on very “non-typical” instances. This cannot
be allowed in our reducibility arguments. Here, we are given a procedure that
solves the second task with certain probability with respect to a certain distribution.
Thus, in employing a reducibility argument, we cannot invoke this procedure on
any instance. Instead, we must consider the probability distribution, on instances
of the second task, induced by our reduction. In our case (as in many cases)
the latter distribution equals the distribution to which the hypothesis (regarding
solvability of the second task) refers, but other cases may be handled too (e.g., these
distributions may be “sufficiently close” for the specific purpose). In any case, a
careful analysis of the distribution induced by the reducibility argument is due.
(Indeed, the same issue arises in the context of reductions among “distributional
problems” considered in Section 10.2.)

An information theoretic analogue. Theorem 7.5 has a natural information
theoretic (or “probabilistic”) analogue that asserts that repeating an experiment
that has a noticeable failure probability, sufficiently many times yields some failure
with very high probability. The reader is probably convinced at this stage that
the proof of Theorem 7.5 is much more complex than the proof of the information
theoretic analogue. In the information theoretic context the repeated events are
independent by definition, whereas in the computational context no such indepen-
dence (which corresponds to the naive argument discussed at the beginning of the
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proof of Theorem 7.5) can be guaranteed. Another indication to the difference be-
tween the two settings follows. In the information theoretic setting the probability
that none of the failure events occurs decreases exponentially in the number of rep-
etitions. In contrast, in the computational setting we can only reach an unspecified
negligible bound on the inverting probabilities of polynomial-time algorithms. Fur-
thermore, it may be the case that F' constructed in the proof of Theorem 7.5 can be
efficiently inverted on F(Upz2p(n)) with success probability that is sub-exponentially

decreasing (e.g., with probability 2~ (logs ")3), whereas the analogous information
theoretic bound is exponentially decreasing (i.e., e™™).

7.1.3 Hard-Core Predicates

One-way functions per se suffice for one central application: the construction of
secure signature schemes (see Appendix C.6). For other applications, one relies not
merely on the infeasibility of fully recovering the preimage of a one-way function,
but rather on the infeasibility of meaningfully guessing bits in the preimage. The
latter notion is captured by the definition of a hard-core predicate.

Recall that saying that a function f is one-way means that given a typical y
(in the range of f) it is infeasible to find a preimage of y under f. This does not
mean that it is infeasible to find partial information about the preimage(s) of y

under f. Specifically, it may be easy to retrieve half of the bits of the preimage

(e.g., given a one-way function f consider the function f’ defined by f'(z,r) def

(f(x),r), for every |z| =|r|). We note that hiding partial information (about the
function’s preimage) plays an important role in more advanced constructs (e.g.,
pseudorandom generators and secure encryption). With this motivation in mind,
we will show that essentially any one-way function hides specific partial information
about its preimage, where this partial information is easy to compute from the
preimage itself. This partial information can be considered as a “hard core” of the
difficulty of inverting f. Loosely speaking, a polynomial-time computable (Boolean)
predicate b, is called a hard-core of a function f if no feasible algorithm, given f(z),
can guess b(x) with success probability that is non-negligibly better than one half.

Definition 7.6 (hard-core predicates): A polynomial-time computable predicate
b:{0,1}* — {0,1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A', every positive polynomial p(-), and all sufficiently
large n’s
1 1
Pr{A'(f(z))=b(z)] < = + —
[A'(f(2))=b(z)] < 5 o)

where the probability is taken uniformly over all the possible choices of x € {0,1}"
and all the possible outcomes of the internal coin tosses of algorithm A'.

Note that for every b: {0,1}* — {0,1} and f : {0,1}* — {0, 1}*, there exist obvious
algorithms that guess b(z) from f(z) with success probability at least one half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if
b is a hard-core predicate (of any function) then it follows that b is almost unbiased
(i.e., for a uniformly chosen z, the difference |Pr[b(z)=0] — Pr[b(x) =1]| must be
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The solid arrows depict easily computable transformation
while the dashed arrows depict infeasible transformations.

Figure 7.1: The hard-core of a one-way function — an illustration.

a negligible function in n). Finally, if b is a hard-core of a 1-1 function f that is
polynomial-time computable then f must be a one-way function. In general, the
interesting case is when being a hard-core is a computational phenomenon rather
an information theoretic one (which is due to “information loss” of f).

Theorem 7.7 (a generic hard-core predicate): For any one-way function f, the
inner-product mod 2 of x and r, denoted b(z,r), is a hard-core of f'(z,r) =

(f(z), 7).

In other words, given f(z) and a random subset S C [|z]], it is infeasible to guess
Dies; significantly better than with probability 1/2, where z = x; - - z;, is uni-
formly distributed in {0,1}".

Proof Sketch: The proof is by a so-called “reducibility argument” (see Sec-
tion 7.1.2). Specifically, we reduce the task of inverting f to the task of predicting
the hard-core of f’, while making sure that the reduction (when applied to input
distributed as in the inverting task) generates a distribution as in the definition
of the predicting task. Thus, a contradiction to the claim that b is a hard-core
of f’ yields a contradiction to the hypothesis that f is hard to invert. We stress
that this argument is far more complex than analyzing the corresponding “prob-
abilistic” situation (i.e., the distribution of the inner-product mod 2 of X and r,
conditioned on a uniformly selected r € {0,1}", where X is a random variable
with super-logarithmic min-entropy, which represents the “effective” knowledge of
x, when given f(z)).*

4The min-entropy of X is defined as min, {log,(1/Pr[X = v])}; that is, if X has min-entropy m
then max,{Pr[X = v]} = 27"™. The Leftover Hashing Lemma (see Appendix D.2) implies that,
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Our starting point is a probabilistic polynomial-time algorithm B that satisfies,
for some polynomial p and infinitely many n’s, Pr[B(f(X,),U,) = b(X,,U,)] >
(1/2) + (1/p(n)), where X,, and U,, are uniformly and independently distributed
over {0,1}". Using a simple averaging argument, we focus on a ¢ = 1/2p(n)
fraction of the a’s for which Pr[B(f(z),U,) = b(z,U,)] > (1/2) + & holds. We will
show how to use B in order to invert f, on input f(z), provided that z is in the
good set (which has density ¢).

As a warm-up, suppose for a moment that, for the aforementioned x’s, algorithm
B succeeds with probability p > 241 /poly(|z|) rather than at least £+1/poly(|z]).
In this case, retrieving z from f(z) is quite easy: To retrieve the i*! bit of x, denoted
;, we randomly select 7 € {0,1}/* and obtain B(f(z),r) and B(f(z), r®e’), where
e’ = 0""110/*I=* and v®u denotes the addition mod 2 of the binary vectors v and u.
A key observation underlying the foregoing scheme as well as the rest of the proof is
that b(z,r®s) = b(x,r) @ b(z, s), which can be readily verified by writing b(z,y) =
>, @y; mod 2 and noting that addition modulo 2 of bits corresponds to their
XOR. Indeed, note that if both B(f(z),r) = b(x,7) and B(f(z),r®e’) = b(z, rde?)
hold, then B(f(z),r) ® B(f(z),r®e€") equals b(z,r) ® b(z,r®e’) = b(z,e') = x;.
The probability that both B(f(x),r)=b(x,r) and B(f(z),r®e’)=b(x,rde’) hold,
for a random 7, is at least 1 —2-(1—p) > 1 + m Hence, repeating the above
procedure sufficiently many times (using independent random choices of such 7’s)
and ruling by majority, we retrieve x; with very high probability. Similarly, we can
retrieve all the bits of z, and hence invert f on f(z). However, the entire analysis

was conducted under (the unjustifiable) assumption that p > %+m, whereas

we only know that p > 1 +¢ for e = 1/poly(|z|).

The problem with the foregoing procedure is that it doubles the original error
probability of algorithm B on inputs of the form (f(z),-). Under the unrealistic
(foregoing) assumption that B’s average error on such inputs is non-negligibly
smaller than %, the “error-doubling” phenomenon raises no problems. However,
in general (and even in the special case where B’s error is exactly 1) the above
procedure is unlikely to invert f. Note that the average error probability of B (for
a fixed f(z), when the average is taken over a random r) can not be decreased
by repeating B several times (e.g., for every z, it may be that B always answer
correctly on three quarters of the pairs (f(z),r), and always err on the remaining
quarter). What is required is an alternative way of using the algorithm B, a way
that does not double the original error probability of B.

The key idea is generating the r’s in a way that allows applying algorithm
B only once per each r (and 7), instead of twice. Specifically, we will invoke B
on (f(x),r®de') in order to obtain a “guess” for b(x,r ®e’), and obtain b(x,r)
in a different way (which does not involve using B). The good news is that the
error probability is no longer doubled, since we only use B to get a “guess” of
b(z,r®e'). The bad news is that we still need to know b(z,r), and it is not
clear how we can know b(z,r) without applying B. The answer is that we can

in this case, Pr[b(X,Un) = 1|Un] = % + Z*Q(m), where U,, denotes the uniform distribution over
{0,1}™, and b(u,v) denotes the inner-product mod 2 of u and v.
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guess b(z,r) by ourselves. This is fine if we only need to guess b(z,r) for one
r (or logarithmically in |z| many 7’s), but the problem is that we need to know
(and hence guess) the value of b(z,r) for polynomially many r’s. The obvious
way of guessing these b(x,r)’s yields an exponentially small success probability.
Instead, we generate these polynomially many 7’s such that, on one hand they are
“sufficiently random” whereas, on the other hand, we can guess all the b(x,r)’s with
noticeable success probability.? Specifically, generating the r’s in a specific pairwise
independent manner will satisfy both (conflicting) requirements. We stress that in
case we are successful (in our guesses for all the b(x,r)’s), we can retrieve x with
high probability. Hence, we retrieve x with noticeable probability.

A word about the way in which the pairwise independent r’s are generated
(and the corresponding b(z,r)’s are guessed) is indeed in place. To generate m =

poly(|z|) many r’s, we uniformly (and independently) select ¢ Lef log, (m+1) strings
in {0,1}/*. Let us denote these strings by s', ..., s*. We then guess b(z, s') through
b(z,s*). Let us denote these guesses, which are uniformly (and independently)
chosen in {0,1}, by o! through o‘. Hence, the probability that all our guesses
for the b(w,s')’s are correct is 27¢ = m. The different 7’s correspond to
the different non-empty subsets of {1,2,...,¢}. Specifically, for every such subset
J, we let r/ def ®jess’. The reader can easily verify that the r/’s are pairwise
independent and each is uniformly distributed in {0,1}/®l; see Exercise 7.5. The
key observation is that b(z,r”) = b(z,®jes8’) = ®jcsb(x,s’). Hence, our guess
for b(z,r”) is ®je 07, and with noticeable probability all our guesses are correct.
Wrapping-up everything, we obtain the following procedure, where € = 1/poly(n)
represents a lower-bound on the advantage of B in guessing b(z, ) for an ¢ fraction
of the z’s.

Inverting procedure (on input y = f(z) and parameters n and ¢):
Set £ = log,(n/e?) + O(1).
(1) Select uniformly and independently s, ..., s* € {0,1}™.
Select uniformly and independently o', ...,0* € {0,1}.
(2) For every non-empty J C [{], compute 7/ = ®jc s’ and p?! = ®je 07.
(3) For ¢ = 1,...,n determine the bit z; according to the majority vote
of the (2 — 1)-long sequence of bits (p’ @ B(f(x),r’ ®e'))grci-
(4) Output z; - - zy,.

Note that the “voting scheme” employed in Step 3 uses pairwise independent sam-
ples (i.e., the r/’s), but works essentially as well as it would have worked with
independent samples (i.e., the independent 7’s). That is, for every 4 and J, it
holds that Pro .« [B(f(z),r'®e’) = b(x,r’ ®e')] > (1/2) +¢, where 1/ = @jc 87,

5 Alternatively, we can try all polynomially many possible guesses. In such a case, we shall
output a list of candidates that, with high probability, contains .

60ur focus here is on the accuracy of the approximation obtained by the sample, and not so
much on the error probability. We wish to approximate Pr[b(z,r) ® B(f(z), r®e') = 1] up to
an additive term of €, because such an approximation allows to correctly determine b(x, ei). A
pairwise independent sample of O(t/e?) points allows for an approximation of a value in [0, 1] up
to an additive term of € with error probability 1/¢, whereas a totally random sample of the same
size yields error probability exp(—t). Since we can afford setting ¢ = poly(n) and having error
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and (for every fixed ) the events corresponding to different J’s are pairwise inde-
pendent. It follows that if for every j € [f] it holds that o7 = b(x,s?), then for
every ¢+ and J we have

Pra, _«lp’ ® B(f(z),r’ @e') = b(z,e)] (7.5)

. ) 1
= Prs17m7sz[B(f(x),rjeael) = b(x,r‘]@e’)] > 3 +e

where the equality is due to p/ = ®jcj0? = b(x,r?) = bz, 7/ Be’) & b(x,e’).
Note that Eq. (7.5) refers to the correctness of a single vote for b(x,e'). Using
m = O(n/e?) and noting that these (Boolean) votes are pairwise independent, we
infer that the probability that the majority of these votes is wrong is upper-bounded
by 1/2n. Using a union bound on all i’s, we infer that with probability at least
1/2, all majority votes are correct and thus z is retrieved correctly. Recall that the
foregoing is conditioned on o7 = b(z, s’) for every j € [(], which in turn holds with
probability 27 = (m +1)~! = Q(¢2/n) = 1/poly(n), Thus, x is retrieved correctly
with probability 1/poly(n), and the theorem follows. [

Digest. Looking at the proof of Theorem 7.7, we note that it actually refers to a
black-box B,(-) that approximates b(z,-); specifically, in the case of Theorem 7.7
we used B, (r) ef B(f(x),r). In particular, the proof does not use the fact that
we can verify the correctness of the preimage recovered by the described process.
Furthermore, using the alternative procedure outlined in Footnote 5, the proof
extends to establish the existence of a poly(n/e)-time oracle machine that, for

every x € {0,1}", given oracle access to any B, : {0,1}™ — {0,1} satisfying
1
P01y [Be(r) = b 1] 2 1+ (76)

outputs, with probability at least 1/2, a list of n-bit strings that includes x. Noting
that z is merely a string for which Eq. (7.6) holds, and that the procedure may get
n and ¢ as inputs, we derive

Theorem 7.8 (Theorem 7.7, revisited): There ezxists a probabilistic oracle ma-
chine that, given parameters n,e and oracle access to any function B : {0,1}" —
{0,1}, halts after poly(n/e) steps and with probability at least 1/2 outputs a list of
all strings © € {0,1}™ that satisfy

1
Prrcfo,1)» [B(r) = b(w,7)] > B + ¢,

where b(z,r) denotes the inner-product mod 2 of  and r.

This machine can be modified such that, with high probability, its output list does
not include any string  such that Pr,cgo 13+ [B(r) = b(z,7)] < £ +5. Theorem 7.8

probability 1/2n, the difference in the error probability between the two approximation schemes
is not important here. For a wider perspective see Appendix D.1.2 and D.3.
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can be viewed as a list decoding” procedure for the Hadamard Code, where the
Hadamard encoding of a string € {0, 1}" is the 2"-bit long string containing b(z, )
for every r € {0,1}".

Applications. Hard-core predicates play a central role in the construction of
general-purpose pseudorandom generators (see Section 8.3), commitment schemes
and zero-knowledge proofs (see Sections 9.2.2 and C.4.3), and encryption schemes
(see Appendix C.5).

7.2 Hard Predicates in E

We start again with the assumption P # N'P. In fact, we consider the seemingly
stronger assumption by which A"P cannot be solved by (non-uniform) families of
polynomial-size circuits; that is, AP is not contained in P /poly (even not infinitely
often). Our goal is to transform this worst-case assumption into an average-case
condition, which is useful for our applications. Since the transformation will not
yield a problem in NP but rather one in £, we might as well take the weaker as-
sumption (see Exercise 7.8). That is, our starting point is actually that there exists
an exponential-time solvable decision problem such that any family of polynomial-
size circuit fails to solve it correctly on all but finitely many input lengths.8

Recall that our goal is to obtain a predicate (i.e., a decision problem) that
is computable in exponential-time but is inapproximable by small circuits, where
small may mean polynomial-size. For sake of later developments, we formulate a
general notion of inapproximability.

Definition 7.9 (inapproximability, a general formulation): We say that f : {0,1}* —
{0,1} is (S, p)-inapproximable if for every family of S-size circuits {Cp},en and all
sufficiently large n it holds that

PrIC(U) # F(U)] 2 227 .7

We say that f is T-inapproximable if it is (T,1 — (1/T))-inapprozimable.

We chose the specific form of Eq. (7.7) such that the “level of inapproximability”
represented by the parameter p will range in (0,1) and increase with the value
of p. Specifically, (almost-everywhere) worst case hardness for circuits of size S

"In contrast to standard decoding in which one recovers the unique information that is encoded
in the codeword that is closest to the given string, in list decoding one recovers all strings having
encoding that is at a specified distance from the given string. We mention that list decoding is
applicable and valuable in the case that the specified distance does not allow for unique decoding
and/or that the specified distance is greater than half the distance of the code. See further
discussion in Appendix E.1.

8Note that our starting point is actually stronger than assuming the existence of a function f
in £\ P/poly. Such an assumption would mean that any family of polynomial-size circuit fails
to compute f correctly on infinitely many input lengths, whereas our starting point postulates
failures on all but finitely many lengths.
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is represented by (S, p)-inapproximability with p(n) = 27"*! (i.e., in this case
Pr[C(U,) # f(U,)] > 2~ ™ for every circuit C,, of size S(n)), whereas no predicate
can be (5, p)-inapproximability for p(n) = 1 — O(27™) even with S(n) = O(n)
(i.e., Pr[C(U,) = f(U,)] > 0.5+ O(27") holds for some linear-size circuit; see
Exercise 7.9). Indeed, Eq. (7.7) can be interpreted as an upper-bound on the
correlation of each adequate circuit with f (i.e., E[x(C(Uy,), f(Uyn))] < 1 — p(n),
where x(0,7) = 1if 0 = 7 and x(0,7) = —1 otherwise). Thus, T-inapproximability
means that no family of size T circuits can correlate f better than 1/7.

Comments. Recall that £ denote the class of exponential-time solvable decision
problems (equivalently, exponential-time computable Boolean predicates); that is,

€ = U.DTIME(¢t.), where t.(n) Ll 9en . We highlight the aforementioned term
almost everywhere: Our starting point is not merely that £ is not contained in
P/poly (or in other circuit size classes to be discussed), but rather that this is
the case almost everywhere. Note that by saying that f has circuit complexity
exceeding S, we merely mean that there are infinitely many n’s such that no circuit
of size S(n) can computes f correctly on all inputs of length n. In contrast, by
saying that f has circuit complexity exceeding S almost everywhere, we mean that
for all but finite many n’s no circuit of size S(n) can computes f correctly on all
inputs of length n.

We start (in Section 7.2.1) with a treatment of assumptions and hardness am-
plification regarding polynomial-size circuits, which suffice for non-trivial deran-
domization of BPP. We then turn (in Section 7.2.2) to assumptions and hardness
amplification regarding exponential-size circuits, which yield a “full” derandom-
ization of BPP (i.e., BPP = P). In fact, both sections contain material that is
applicable to various other circuit-size bounds, but the motivational focus is as
stated.

Teaching note: Section 7.2.2 is advanced material, which is best left for independent
reading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outline

is provided and the interested reader is referred to the original paper [121].

7.2.1 Amplification wrt polynomial-size circuits

Our goal here is to prove the following result.

Theorem 7.10 Suppose that for every polynomial p there exists a problem in £
having circuit complezity that is almost-everywhere greater than p. Then there exist
polynomial-inapproximable Boolean functions in E; that is, for every polynomial p
there exists a p-inapprozimable Boolean function in &.

Theorem 7.10 is used towards deriving a meaningful derandomization of BPP
under the aforementioned assumption (see Part 2 of Theorem 8.19). We present
two proofs of Theorem 7.10. The first proof proceeds in two steps:

1. Starting from the worst-case hypothesis, we first establish some mild level of
average-case hardness (i.e., a mild level of inapproximability). Specifically,
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we show that for every polynomial p there exists a problem in & that is
(p, €)-inapproximable for e(n) = 1/n>.

2. For any polynomial p, we prove that if for every polynomial q the function
[ is (g, 1/p)-inapprozimable, then the function F(x1, ..., 2yn)) = @f(:nl)f(xi),
where T1, ..., Ty(n) € {0,1}" and t(n) = n - p(n), is T-inapprorimable for any
polynomial T'. This claim is known as Yao's XOR Lemma, and its proof is far
more complex than the proof of its information theoretic analogue.

The second proof of Theorem 7.10 consists of showing that the construction em-
ployed in the first step, when composed with Theorem 7.8, actually yields the
desired end result. This proof will uncover a connection between hardness amplifi-
cation and coding theory. Our presentation will thus proceed in three corresponding
steps (presented in §7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).

vialist decoding (7.2.1.3)

mild
- Yao's XOR .
worst-case average-case inapprox.

HARDNESS HARDNESS 7212

derandomized
Yao's XOR (7.2.2)

Figure 7.2: Proofs of hardness amplification: organization

7.2.1.1 From worst-case hardness to mild average-case hardness

The transformation of worst-case hardness into average-case hardness (even in a
mild sense) is indeed remarkable. Note that worst-case hardness may be due to a
relatively small (super-polynomial?) number of instances, whereas even mild forms
of average-case hardness refer to an exponential number of possible instances. In
other words, we should transform hardness that may occur on a negligible frac-
tion of the instances into hardness that occurs on a noticeable fraction of the
instances. Intuitively, we should “spread” the hardness of few instances (of the
original problem) over all (or most) instances (of the transformed problem). The
counter-positive view is that computing the value of typical instances of the trans-
formed problem should enable solving the original problem on every instance.
The aforementioned transformation is based on the self-correction paradigm (see
also §9.3.2.1), to be reviewed first. The paradigm refers to functions g that can
be evaluated at any desired point by using the value of ¢ at a few random points,

9Indeed, worst-case hardness for polynomial-size circuits cannot be due to a small (i.e., poly-
nomial) number of instances, because a polynomial number of instances can be hard-wired into
such circuits.
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where each of these points is uniformly distributed in the function’s domain (but
indeed the points are not independently distributed). The key observation is that
if g(z) can be reconstructed based on the value of g at ¢ such random points,
then such a reconstruction can tolerate a 1/3t fraction of errors (regarding the
values of g). Thus, if we can correctly obtain the value of g on all but at most a
1/3t fraction of its domain, then we can probabilistically recover the correct value
of g at any point with very high probability. It follows that if no probabilistic
polynomial-time algorithm can correctly compute g in the worst-case sense, then
every probabilistic polynomial-time algorithm must fail to correctly compute g on
at least a 1/3t fraction of its domain.

The archetypical example of a self-correctable function is any m-variate poly-
nomial of individual degree d over a finite field F' such that |F| > dm + 1. The
value of such a polynomial at any desired point x can be recovered based on the
values of dm + 1 points (other than z) that reside on a random line that passes
through x. Note that each of these points is uniformly distributed in F™, which is
the function’s domain.

Recall that we are given an arbitrary function f € £ that is hard to compute
in the worst-case. Needless to say, this function is not necessarily self-correctable
(based on relatively few points), but it can be extended into such a function.
Specifically, we extend f : [N] — {0,1} (viewed as f : [N'/™]™ — {0,1}) to an m-
variate polynomial of individual degree d over a finite field F such that |F'| > dm+1
and (d + 1)™ = N. Intuitively, the extended function is at least as hard on the
worst-case as f, and by self-correction the extended function must be mildly hard
in the average-case. Details follow.

Construction 7.11 (multi-variate extension)'®: For any function f, : {0,1}" —
{0,1}, finite field F, H C F and integer m such that |H|™ = 2™ and |F| > m|H|,
we consider the function fn : F' — F defined as the m-variate polynomial of
individual degree |H| — 1 that extends f, : H™ — {0,1}. That is, we identify
{0,1}™ with H™, and define fn as the unique m-variate polynomial of individual
degree |H| — 1 that satisfies fn(z) = fn(z) for every x € H™, where we view {0,1}
as a subset of F.

Note that fn can be evaluated at any desired point, by evaluating f,, on its entire
domain, and determining the unique m-variate polynomial of individual degree
|H|—1 that agrees with f,, on H™ (see Exercise 7.10). Thus, for f : {0,1}* — {0,1}
in £, the corresponding f (defined by separately extending the restriction of f
to each input length) is also in €. For the sake of preserving various complexity
measures, we wish to have || = poly(2™), which leads to setting m = O(n/logn)
(vielding |F'| = poly(n), as in §9.3.2.2). In particular, in this case f,, is defined over
strings of length O(n). The mild average-case hardness of f follows by the forgoing
discussion. In fact, we state and prove a more general result.

10T he algebraic fact underlying this construction is that for any function f : H™ — F there
exists a unique m-variate polynomial f : F™ — F of individual degree |H|—1 such that for every
x € H™ it holds that f(:c) = f(«). This polynomial is called a multi-variate polynomial extension
of f, and it can be found in poly(|H|™ log |F’|)-time. For details, see Exercise 7.10.
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Theorem 7.12 Suppose that there exists a Boolean function f in £ having cir-
cuit complezity that is almost-everywhere greater than S. Then, there exists an
exponential-time computable function f : {0,1}* — {0,1}* such that |f(z)| < ||
and for every family of circuit {C),}en of size S'(n') = S(n'/O(1))/poly(n’) it
holds that Pr[C",(Un) # f(Un)] > (1/n')2. Furthermore, f does not depend on S.

Theorem 7.12 completes the first step of the proof of Theorem 7.10, except that we
desire a Boolean function rather than one that does not stretch its input. The extra
step (of obtaining a Boolean function that is (poly(n),n~3)-inapproximable) may
be taken by considering the bits in the output of the function (see Exercise 7.11).1!
That is, if f is hard to compute on an (1/n")? fraction of the n'-bit long inputs
then the Boolean predicate that returns an indicated bit of f(CC) must be mildly
inapproximable.

Proof: Given f as in the hypothesis and for every n € N, we consider the
restriction of f to {0,1}", denoted f,, and apply Construction 7.11 to it, while
using m = n/logn, |H| = n and n? < |F| = poly(n). Recall that the resulting
function f, maps strings of length n' = log, |F™| = O(n) to strings of length
log, |F'| = O(logn). Following the foregoing discussion, we note that by making
m|H| = o(n?) oracle calls to any circuit C!, that satisfies Pr[C", (Un) = fu(Un)] >
1—(1/n)2 > 1 —(1/3m|H|), we can probabilistically recover the value of (f, and
thus) f,, on each input, with probability at least 2/3. Using error-reduction and
derandomization as in the proof of Theorem 6.3, we obtain a circuit of size n3-|C!,|
that computes f,. By the hypothesis n® - |C!,| > S(n), and the theorem follows.

Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-
duction. That is, the proof consists of a self-correction procedure that allows for
the evaluation of f at any desired n-bit long point, using oracle calls to any circuit
that computes f correctly on a 1 — (1/n')? fraction of the n'-bit long inputs. We
note that if f € £ then f € £, but we do not know how to preserve the complexity
of f in case it is in AN"P. (Various indications to the difficulty of a worst-case to
average-case reduction for NP are known; see, e.g., [40].)

7.2.1.2 Yao’s XOR Lemma

Having obtained a mildly inapproximable predicate, we wish to obtain a strongly
inapproximable one. The information theoretic context provides an appealing sug-
gestion: Suppose that X is a Boolean random variable (representing the mild
inapproximability of the aforementioned predicate) that equals 1 with probability
e. Then XORing the outcome of n/e independent samples of X yields a bit that
equals 1 with probability 0.5 + exp(—Q(n)). It is tempting to think that the same
should happen in the computational setting. That is, if f is hard to approximate

1A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12
actually establishes an error lower-bound of Q((logn')/(n')?) and that |f(z)| = O(log |z|).
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correctly with probability exceeding 1 — ¢ then XORing the output of f on n/e
non-overlapping parts of the input should yield a predicate that is hard to approx-
imate correctly with probability that is non-negligibly higher than 1/2. The latter
assertion turns out to be correct, but (even more than in Section 7.1.2) the proof
of the computational phenomenon is considerably more complex than the analysis
of the information theoretic analogue.

Theorem 7.13 (Yao’s XOR Lemma): Let p be a polynomial and suppose that
the Boolean function f is (T,1/p)-inapprozimable, for every polynomial T. Then
the function F'(x1, ..., Tyn)) = 692(:711)]‘(33,-), where T, ..., Ty € {0,1}" and t(n) =
n-p(n), is T'-inapprozimable for every polynomial T".

Combining Theorem 7.12 (and Exercise 7.11), and Theorem 7.13, we obtain a proof
of Theorem 7.10. (Recall that an alternative proof is presented in §7.2.1.3.)

We note that proving Theorem 7.13 seems more difficult than proving Theo-
rem 7.5 (i.e., the amplification of one-way functions), due to two issues. Firstly,
unlike in Theorem 7.5, the computational problems are not in PC and thus we
cannot efficiently recognize correct solutions to them. Secondly, unlike in Theo-
rem 7.5, solutions to instances of the transformed problem do not correspond of
the concatenation of solutions for the original instances, but are rather a function
of the latter that losses almost all the information about the latter. The proof of
Theorem 7.13 presented next deals with each of these two difficulties separately.

Several different proofs of Theorem 7.13 are known. We choose using a proof
that benefits most from the material already presented in Section 7.1. This proof
proceeds in two steps:

1. First we prove that the corresponding “direct product” function P(x1, ..., Zyn)) =
(f(w1), ..., f(wy(ny)) is difficult to compute in a strong average-case sense.

2. Next we establish the desired result by an application of Theorem 7.8.

Thus, given Theorem 7.8, our main focus is on the first step, which is of independent
interest (and is thus generalized from Boolean functions to arbitrary ones).

Theorem 7.14 (The Direct Product Lemma): Let p be a polynomial and f :
{0,1}* — {0,1}*. Suppose that for every family of polynomial-size circuits, {Cp}nen,
and all sufficiently large n € N, it holds that Pr[C,(U,) # f(U,)] > 1/p(n).
Let P(w1,..., Ty(n)) = (f(71), 0, f(Te(n))), where T1,...; 745y € {0,1}" and t(n) =
n-p(n). Then, for every family of polynomial-size circuits, {C},},.eN, it holds that

w(m) def PriC!.(Un) = P(Uy,)] is a negligible function in m.

Theorem 7.13 follows from Theorem 7.14 by considering the function P'(x1, ..., Ty(n), ) =
b(f(z1) - f(®y(n)),7), where f is a Boolean function, r € {0, 1} and b(y,r) is

the inner-product modulo 2 of the ¢(n)-bit long strings y and r. Applying Theo-

rem 7.8, we infer that P’ is T'-inapproximable for every polynomial T"’. Lastly, we
reduce the approximation of P’ to the approximation of F' (see Exercise 7.12), and
Theorem 7.13 follows.



7.2. HARD PREDICATES IN E 247

Proof of Theorem 7.14. As in the proof of Theorem 7.5, we show how to
converts circuits that violate the theorem’s conclusion into circuits that violate
the theorem’s hypothesis. We note, however, that things were much simpler in
the context of Theorem 7.5: There we could (efficiently) check whether or not a
value contained in the output of the circuit that solves the direct-product problem
constitutes a correct answer for the corresponding instance of the basic problem.
Lacking such an ability in the current context, we shall have to use such values
more carefully. Loosely speaking, we will take a weighted majority vote among
various answers, where the weights reflect our confidence in the correctness of the
various answers.

We establish Theorem 7.14 by applying the following lemma that provides quan-
titative bounds on the feasibility of computing the direct product of two functions.
In this lemma, {Y },,en and {Z,, },,,cn are independent probability ensembles such
that Yo, Z, € {0,1}™, and X,, = (Yy(n)> Zn—_¢(n)) for some function ¢: N — N
The lemma refers to the success probability of computing the direct product func-
tion F':{0,1}* — {0,1}* defined by F(yz) = (Fi(y), F>(z)), where |y| = £(|yz|),
when given bounds on the success probability of computing F; and F» (separately).
Needless to say, these probability bounds refer to circuits of certain sizes. We stress
that the statement of the lemma is not symmetric with respect to the two func-
tions, guaranteeing a stronger (and in fact lossless) preservation of circuit sizes for
one of the functions (which is arbitrarily chosen to be F}).

Lemma 7.15 (Direct Product, a quantitative two argument version): For {Y,,},
{Zn}, Fi, F5, ¢, {X,,} and F as in the foregoing, let pi(-) be an upper-bound on
the success probability of si(-)-size circuits in computing Fy over {Y,,}. That is,
for every such circuit family {Cy,}

PrCom(Yim)=F1(Ym)] < pr(m).

Likewise, suppose that p2(-) is an upper-bound on the probability that so(-)-size
circuits compute Fy over {Z,,}. Then, for every function ¢ : N— R, the function
p defined as

p(n) = p1(E(n)) - pa(n — €(n)) + e(n)

is an upper-bound on the probability that families of s(-)-size circuits correctly com-
pute F' over {X,,}, where

s(n) = min {sl(z(n)) , M}

poly(n/e(n))

Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, which
capitalizes on the asymmetry of Lemma 7.15. Specifically:

o We write P(x1, %2, ..., Ty(n)) a8 P (g1 @y, <oy Ty(n) ), Where PO(zy, ..., x) =
(f(@1), -y f(z:)) and PO (21, ., z5) = (PO (@1, i), f(z4)).

For every polynomial s and any non-negligible function e, we shall prove
by induction on i that circuits of size s(n) cannot compute P (U,.,) with



248 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

success probability greater than (1 —(1/p(n))+ (i —1)-e(n). Thus, no s(n)-
size circuit can compute P(t(”))(Ut(n).n) with success probability greater than
(1= (1/p(n))"™ + (t(n) — 1) - e(n) = exp(—n) + (t(n) — 1) - £(n). Recalling
that this is established for any polynomial s and any non-negligible function
e, Theorem 7.14 follows.

e Turning to the induction itself, we first note that its basis (i.e., ¢ = 1) is
guaranteed by the theorem’s hypothesis. The induction step (i.e., from i to
i+ 1) is proved using Lemma 7.15 with F; = P(*) and F, = f (along with
pr(i-n) = (1= (1/p(n))" +(i—1)-e(n), s1(i-n) = s(n), p2(n) =1 - (1/p(n))
and s2(n) = poly(n/e(n)) - s(n)). In particular, we use again the theorem’s
hypothesis regarding f, and note that p;(i-n)-p2(n)+e(n) is upper-bounded
by (1— (1/p(n))"+ + i -2(n).

Proof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we consider
a family of s(-)-size circuits {Cp},cn that violates the lemma’s conclusion; that is,
Pr[Cn(X,) = F(X,)] > p(n). We will show how to use such circuits in order to
obtain either circuits that violate the lemma’s hypothesis regarding F} or circuits
that violate the lemma’s hypothesis regarding F>. Towards this end, it is instructive
to write the success probability of C,, in a conditional form, while denoting the 7*&
output of Cn(x) by Cn(x)z (i'e-; Cn(w) = (Cn(x)hcn(w)z))

Pr[cn(}fl(n)a anl(n)) :F()/l(n)a anl(n))]
= Pr{C.(Yen), Zn—t(n))1=F1(Ye(n))]
Pr(Cn(Ye(ny, Zn—t(n))2 = F2(Zn—t(n)) | Cr(Ye(n), Zn—t(n))1 = F1(Ye(n))]-

The basic idea is that if the first factor is greater than p;(4(n)) then we imme-
diately derive a circuit (i.e., C},(y) = Cn(y, Zn—¢(n))1) contradicting the lemma’s
hypothesis regarding F}, whereas if the second factor is significantly greater than
p2(n — £(n)) then we can obtain a circuit contradicting the lemma’s hypothesis
regarding Fy. The treatment of the latter case is indeed not obvious. The idea
is that a sufficiently large sample of (Yy(n), F1(Yy(n))), which may be hard-wired
into the circuit, allows using the conditional probability space (in such a circuit)
towards an attempt to approximate F5. That is, on input z, we select uniformly a
string y satisfying C,,(y, 2)1 = Fi(y) (from the aforementioned sample), and out-
put Cp(y, z)2. For a fixed z, sampling of the conditional space (i.e., y’s satisfying
Cn(y,2)1 = F1(y)) is possible provided that Pr[Cy,(Yy(n), 2)1 = F1(Yi(n))] holds with
noticeable probability. The last caveat motivates a separate treatment of z’s having
a noticeable value of Pr[C,,(Yy(n), 2)1 = F1(Yy(n))] and of the rest of z’s (which are
essentially ignored). Details follow.

Let us first simplify the notations by fixing a generic n and using the abbre-
viations C = Cp, ¢ = e(n), L = £€(n), Y =Y, and Z =Y,,_,. We call z good
if PriC(Y,2)1 = F1(Y)] > €/2 and let G be the set of good z’s. Next, rather
than counsidering the event C(Y, Z) = F(Y, Z), we cousider the event C(Y,Z) =
F(Y,Z) A Z €@, which occurs with almost the same probability (up to an additive
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error term of £/2). This is the case because, for any z ¢ G, it holds that
PriC(Y,z)=F(Y,2)] < PriC(Y,z)1=F1(Y)] < ¢/2

and thus 2’s that are not good do not contribute much to Pr[C(Y,Z)=F(Y, Z)];
that is, Pr[C(Y, Z)=F(Y,Z) A Z €G] is lower-bounded by Pr[C(Y, Z)=F (Y, Z)] —
e/2. Using Pr[C(Y,2)=F(Y, z)] > p(n) = p1(€) - p2(n — €) + €, we have
c

2.
We proceed according to the forgoing outline, first showing that if Pr[C(Y, Z); =
Fi(Y)] > p1(f) then we derive circuits violating the hypothesis concerning Fs.

Actually, we prove something stronger (which we will actually need for the other
case).

Claim 7.15.1: For every z, it holds that Pr[C(Y,2); =F1(Y)] < p1(£).

Proof: Otherwise, using any z € {0,1}"~* that satisfies Pr[C(Y,2); = F1(Y)] >
p1(£), we obtain a circuit C'(y) def C(y, z)1 that contradicts the lemma’s hypothesis
concerning Fj. O

PriC(Y,Z2)=F(Y,Z) N Z€G] > p1(£) - p2(n — £) + (7.8)

Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma’s
hypothesis concerning F3, and doing so we complete the proof of the lemma.

Claim 7.15.2: There exists a circuit C" of size sa(n — £) such that
PrC(Y,2)=F(Y,Z) A Z€G]

PrC"(2)=Fy(2) O 5

> pa(n—10)

Proof: The second inequality is due to Eq. (7.8), and thus we focus on establish-
ing the first inequality. We construct the circuit C" as suggested in the foregoing

outline. Specifically, we take a poly(n/e)-large sample, denoted S, from the distri-

bution (Y, F1(Y)) and let C"'(z) Lef C(y, 2)2, where (y,v) is a uniformly selected

among the elements of S for which C(y, z); = v holds. Details follow.

Let S be a sequence of m def poly(n/e) pairs, generated by taking m indepen-
dent samples from the distribution (Y, F1(Y)). We stress that we do not assume
here that such a sample can be produced by an efficient (uniform) algorithm (but,
jumping ahead, we remark that such a sequence can be fixed non-uniformly). For
each z € G C {0,1}"~*, we denote by S. the set of pairs (y,v) € S for which
C(y,z)1 = v. Note that S. is a random sample of the residual probability space
defined by (Y, F1(Y")) conditioned on C(Y, z); = F1(Y'). Also, with overwhelmingly
high probability, |S.| = Q(n/e?), because z € G implies Pr[C(Y, z);=F,(Y)] > ¢/2
and m = Q(n?/e3). Thus, for each z € G, with overwhelming probability taken
over the choices of S, the sample S, provides a good approximation to the condi-
tional probability space. In particular, with probability greater than 1 — 27" it
holds that

H(y,v) € S.: C(y,2)2=F>(2)}]

5 > PrC(Y,2)o=Fo(2) | C(Y, 21 = L (V)] — =

(7.9)
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Thus, with positive probability, Eq. (7.9) holds for all z € G C {0,1}"*. The
circuit C"” computing F, is now defined as follows. A set S = {(y;,v;) : @ =
1,...,m} satisfying Eq. (7.9) for all good z’s is “hard-wired” into the circuit C".
(In particular, S, is not empty for any good z.) On input z, the circuit C" first
determines the set S, by running C for m times and checking, foreach i =1,...,m,
whether or not C(y;,2z) = v;. In case S, is empty, the circuit returns an arbitrary
value. Otherwise, the circuit selects uniformly a pair (y,v) € S, and outputs
C(y,z)2. (The latter random choice can be eliminated by a standard averaging
argument.) Using the definition of C" and Eq. (7.9), we have:

PriC"(Z)=Fy(2)] > Y PriZ=2z]-Pr[C"(z)=Fy(2)]

ze@
 Smprip . M €5 Ol =R
= 2 Pz 5|

> Y Priz=z] (PO, 22 =Fo(2) | C(Y,2) =R (V)] - 5)

zeCG

_ g (PO 2)=Fa(z) A OV, 2)1 = Fi(Y)]
= Yprz=s) (MR AR O

ze@

Next, using Claim 7.15.1, we have:

"oy _ . Pr[O(Y,2)=F(Y, 2)] €
PriCc"(Z2)=F»(2)] > (;Pr[Z_z]- 0 ) - <
_ PIC(YV,Z)=F(Y,Z) A ZeG] ¢
B p1(£) 2

Finally, using Eq. (7.8), the claim follows. O
This completes the proof of the lemma. W

Comments. Firstly, we wish to call attention to the care with which an inductive
argument needs to be carried out in the computational setting, especially when a
non-constant number of inductive steps is concerned. Indeed, our inductive proof
of Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) that
allows to keep track of the relevant quantities (e.g., success probability and circuit
size) throughout the induction process. Secondly, we mention that Lemma 7.15
(as well as Theorem 7.14) has a uniform complexity version that assumes that one
can efficiently sample the distribution (Yy(n), F1(Yyn))) (resp., (Un, f(Un))). For
details see [98]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-
uniform circuits can “effectively sample” any distribution. Lastly, we mention that
Theorem 7.5 (the amplification of one-way functions) and Theorem 7.13 (Yao’s
XOR Lemma) also have (tight) quantitative versions (see, e.g., [87, Sec. 2.3.2] and
[98, Sec. 3], respectively).

g

2

2
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7.2.1.3 List decoding and hardness amplification

Recall that Theorem 7.10 was proved in §7.2.1.1-7.2.1.2, by first constructing a
mildly inapproximable predicate via Construction 7.11, and then amplifying its
hardness via Yao’s XOR Lemma. In this subsection we show that the construc-
tion used in the first step (i.e., Construction 7.11) actually yields a strongly in-
approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.
Specifically, we show that a strongly inapproximable predicate (as asserted in The-
orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choice
of parameters) and the inner-product construction (of Theorem 7.8). The main
ingredient of this argument is captured by the following result.

Proposition 7.16 Suppose that there exists a Boolean function f in € having cir-
cuit complexity that is almost-everywhere greater than S, and let ¢ : N — [0, 1] sat-
isfying e(n) > 2™, Let f,, be the restriction of f to {0,1}", and let f,, be the func-
tion obtained from f, when applying Construction 7.11*? with |H| = n/e(n) and
|F| = |H|?. Then, the function f : {0,1}* — {0,1}*, defined by f(z) = fm/g(:ﬂ),
is computable in exponential-time and for every family of circuit {C], }, N of size
S'(n') = poly(e(n'/3)/n') - S(n'/3) it holds that Pr[C",(Un) = f(Un)] < £'(n') <
e(n'/3).

Before turning to the proof of Proposition 7.16, let us describe how it yields an
alternative proof of Theorem 7.10. Firstly, for some v > 0, Proposition 7.16 yields
an exponential-time computable function f such that |f(z)| < |z| and for ev-
ery family of circuit {C],}, en of size S'(n') = S(n'/3)7/poly(n') it holds that
Pr[C!,(Up) = f(Un)] < 1/8'(n). Combining this with Theorem 7.8, we in-
fer that P(z,r) = b(f(z),r), where |r| = |f(z)| < |z|, is S"-inapproximable for
S"(n'")y = S(n"/2)%W) /poly(n”). In particular, for every polynomial p, we ob-
tain a p-inapproximable predicate in £ by applying the foregoing with S(n) =
poly(n,p(n)). Thus, Theorem 7.10 follows.

Proposition 7.16 is proven by observing that the transformation of f, to fn
counstitutes a “good” code (see §E.1.1.4) and that any such code provides a worst-
case to (strongly) average-case reduction. We start by defining the class of codes
that suffices for the latter reduction, while noting that the code underlying the
mapping f, — fn is actually stronger than needed.

Definition 7.17 (efficient codes supporting implicit decoding): For fized functions
¢,{:N— N and a: N — [0,1], the mapping T : {0,1}* — {0,1}* is efficient and
supports implicit decoding with parameters g, ¢, « if it satisfies the following two
conditions:

1. Encoding: The mapping U is polynomial-time computable.

It is instructive to view I' as mapping N -bit long strings to sequences of length
((N) over [¢(N)], and to view T'(z) € [g(|z])]*/=) as a mapping from [¢(|z])]
to [q(|z])].

12Recall that in Construction 7.11 we have |H|™ = 2™. Here we relax this condition allowing
for 27 < |H|™ < 22™.
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2. Decoding: There exists a polynomial p such that the following holds. For
every w: [((N)] = [¢(N)] and £ €{0,1}" such that T'(z) is (1 — a(N))-close
to w, there exists an oracle-aided™® circuit C' of size p((log N)/a(N)) such
that, for every i € [N], it holds that C* (i) equals the i*" bit of x.

The encoding condition implies that ¢ is polynomially bounded. The decoding
condition refers to any I'-codeword that agrees with the oracle w : [¢{(N)] — [g(V)]
on an «(N) fraction of the £(N) coordinates, where a(N) may be very small.
We highlight the non-triviality of the decoding condition: There are N bits of
information in z, while the size of the circuit C is only p((log N)/a(N)) and yet C
should be able to recover any desired entry of z by making queries to w, which may
be a highly corrupted version of I'(x). Needless to say, the number of queries made
by C is upper-bounded by its size (i.e.,p((log N)/a(N))). On the other hand, the
decoding condition does not refer to the complexity of obtaining the aforementioned
oracle-aided circuits.

We mention that the transformation of f, to fn underlying Proposition 7.16
(where N = 2™) is efficient and supports implicit decoding with parameters g, £, «
such that £(2") = £(|(fu)]) = [(fa)]> = 2°", a(2") = (n), and ¢(2") = (n/a(2"))*.
Furthermore, there are at most O(1/a(2")?) codewords (i.e., f,’s) that are (1 —
a(2™))-close to any fixed w : [£(2™)] — [¢(2™)], and the corresponding oracle-aided
circuits can be constructed in probabilistic p(n/a(2"))-time.!* These results are
termed “list decoding” (with implicit representations). We stress that the fact that
fn— fn satisfies there properties (e.g., constitutes an efficient code that supports
implicit decoding) is highly non-trivial, but establishing this fact is beyond the
scope of the current text (and the interested reader is referred to [205]). Our focus
is on showing that efficient codes that supports implicit decoding suffice for worst-
case to (strongly) average-case reductions. We state and prove a general result,

noting that in the special case of Proposition 7.16 g, = fn

Theorem 7.18 Suppose that there exists a Boolean function f in € having circuit
complexity that is almost-everywhere greater than S, and let ¢ : N — [0,1]. Con-
sider £ : N — N such that n — log, £(2") is a 1-1 map of the integers, and let
m(n) = log, £(2™). Suppose that the mapping I : {0,1}* — {0,1}* is efficient and
supports implicit decoding with parameters q,¢,« such that a(N) = e(|log, N]).
Define g, : [£(2™)] — [q(2™)] such that g, (i) = T((fn))(i), where {f,) denotes the
2"-bit long description of the truth-table of f,. Then, the function g : {0,1}* —
{0,1}*, defined by g(z) = gm-1(j-))(2), is computable in erponential-time and for

130racle-aided circuits are defined analogously to oracle Turing machines. Alternatively, we
may consider here oracle machines that take advice such that both the advice length and the
machine’s running time are upper-bounded by p((log N)/a(N)). The relevant oracles may be
viewed either as blocks of binary strings that encode sequences over [¢(IN)] or as sequences over
[g(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [g(N)].

14 The construction may yield also oracle-aided circuits that compute the decoding of codewords
that are almost (1 — «(2™))-close to w. That is, there exists a probabilistic p(n/a(2™))-time
algorithm that outputs a list of circuits that, with high probability, contains an oracle-aided
circuit for the decoding of each codeword that is (1 — @(2"))-close to w. Furthermore, with high
probability, the list contains only circuits that decode codewords that are (1 — «(2™)/2)-close to
w.
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it holds that Pr[C!,(Uy) = g(Uy)] < €'(n') = e(m~t(n'))

every family of circuit {C!,}, ey of size S'(n') = poly(e(m~t(n'))/n')-S(m~1(n'))
!
Proof Sketch: First note that we can generate the truth-table of f,, in exponential-
time, and by the encoding condition of T" it follows that g, can be evaluated in
exponential-time. Regarding ¢’s average-case hardness, consider a circuit C' = C,
violating the conclusion of the theorem, let n = m~(n'), and recall that ¢'(n’) =
e(n) = «(2™). Then, C'is (1 — a(2™))-close to g, = I'({f»)), and the decoding
condition of I" asserts that we can recover each bit of (f,,) (i.e., evaluate f,) by a
circuit of size p(n/a(2™)) - S'(n') < S(n), in contradiction to the hypothesis. [

Comment. For simplicity, we formulated Definition 7.17 in a crude manner that
suffices for the foregoing application. A more careful formulation of the decoding
condition refers to codewords that are (1 — ((1/g(N)) + «(N)))-close to the oracle
w:[¢(N)]—[q(N)] rather than being (1 — a(NN))-close to it.!> Needless to say, the
difference is insignificant in the case that a(N) > 1/q(N) (as in Proposition 7.16,
where we used ¢(N) = ((logy N)/a(N))3), but it is significant in case we care about
binary codes (i.e., ¢(IN) = 2, or codes over other small alphabets). We mention
that Theorem 7.18 can be adapted to this context (of ¢(IN) = 2), and directly
yields strongly inapproximable predicates. For details, see Exercise 7.13.

7.2.2 Amplification wrt exponential-size circuits

For the purpose of stronger derandomization of BPP, we start with a stronger as-
sumption regarding the worst-case circuit complexity of £ and turn it to a stronger
inapproximability result.

Theorem 7.19 Suppose that there exists a decision problem L € € having almost-
everywhere exponential circuit complexity; that is, there exists a constant b > 0 such

that, for all but finitely many n’s, any circuit that correctly decides L on {0,1}"

has size at least 2°%. Then, for some constant ¢ > 0 and T'(n) Lef 2¢m there exists

a T-inapproximable Boolean function in £.

Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =
P) under the aforementioned assumption (see Part 1 of Theorem 8.19).

Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-
orem 7.8; see Exercise 7.14). An alternative proof, which uses different ideas that
are of independent interest, will be briefly reviewed next. The starting point of the
latter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.
However, here we cannot afford to apply Yao’s XOR Lemma (i.e., Theorem 7.13),

5 Note that this is the “right” formulation, because in the case that a(N) < 1/g(n) it seems
impossible to satisfy the decoding condition (as stated in Definition 7.17). Specifically, a random
£(N)-sequence over [g(N)] is expected to be (1 — (1/¢q(N)))-close to any fixed codeword, and
with overwhelmingly high probability it will be (1 — ((1 — o(1))/q(IN)))-close to almost all the
codewords, provided £(N) > g(n)?. But in case N > log ¢(N), we cannot hope to recover almost
all N-bit long strings based on poly(g(N)log N) bits of advice (per each of them).
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because the latter relates the size of circuits that strongly fail to approximate a
predicate defined over poly(n)-bit long strings to the size of circuits that fail to
mildly approximate a predicate defined over n-bit long strings. That is, Yao’s
XOR Lemma asserts that if f : {0,1}" — {0,1} is mildly inapproximable by
S¢-size circuits then F : {0,1}P°(™) — {0,1} is strongly inapproximable by Sp-
size circuits, where Sg(poly(n)) is polynomially related to S¢(n). In particular,
Sr(poly(n)) < Sf(n) seems inherent in this reasoning. For the case of polynomial
lower-bounds, this is good enough (i.e., if Sy can be an arbitrarily large polynomial
then so can Sg), but for Sp(n) = exp(2(n)) we cannot obtain Sp(m) = exp(Q(m))
(but rather only obtain Sx(m) = exp(m®?1))).

The source of trouble is that amplification of inapproximability was achieved
by taking a polynomial number of independent instances. Indeed, we cannot hope
to amplify hardness without applying f on many instances, but these instances
need not be independent. Thus, the idea is to define F(r) = @ﬁ’illy(n)f(a:i), where
T1y e Tpoly(n) € 10,1} are generated from r and still |[r| = O(n). That is, we
seek a “derandomized” version of Yao’s XOR Lemma. In other words, we seek a
“pseudorandom generator” of a type appropriate for expanding r to dependent x;’s
such that the XOR of the f(z;)’s is as inapproximable as it would have been for
independent z;’s.18

Teaching note: In continuation to Footnote 16, we note that there is a strong con-
nection between the rest of this section and Chapter 8. On top of the aforementioned
conceptual aspects, we will refer to pairwise independence generators (see Section 8.6.1),
random walks on expanders (see Section 8.6.3), and even to the Nisan-Wigderson Con-

struction (Construction 8.17).

The pivot of the proof is the notion of a hard region. Loosely speaking, S
is a hard region of a Boolean function f if f is strongly inapprozimabdle on o
random input in S; that is, for every (relatively) small circuit C,, it holds that
Pr[Cn(Un) = f(U,)|U,, € S] = 1/2. By definition, {0,1}* is a hard region of any
strongly inapproximable predicate. One important (and non-trivial) observation
is that any mildly inapproximable predicate has a hard region of density related
to its inapproximability parameter. Loosely speaking, hardness amplification will
proceed via methods for generating related instances that hit the hard region with
sufficiently high probability. But, first let us study the notion of a hard region.

7.2.2.1 Hard regions

We actually generalize the notion of hard regions to arbitrary distributions. The
important special case of uniform distributions is obtained by taking X, to be
U, (i.e., the uniform distribution over {0,1}"). In general, we only assume that
X, €{0,1}™

161ndeed, this falls within the general paradigm discussed in Section 8.2. Furthermore, this sug-
gestion provides another perspective on the connection between randomness and computational
difficulty, which is the focus of much discussion in Chapter 8 (see, e.g., §8.3.7.2).
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Definition 7.20 (hard region relative to arbitrary distribution): Let f:{0,1}* —
{0,1} be a Boolean predicate, {X,} be a probability ensemble, s : N — N and
e:N—10,1].

e We say that a set S is a hard region of f relative to {X,} with respect to
s(+)-size circuits and advantage €(-) if for every n and every circuit C,, of
size at most s(n), it holds that

PrICH (Xa) = £ (Xo)| X0 €5] < 5 +e(n).

e We say that f has a hard region of density p(-) relative to {X,,} (with respect
to s(+)-size circuits and advantage €(-)) if there exists a set S that is a hard
region of f relative to {X,} (with respect to the foregoing parameters) such
that Pr[X,, €Sy,] > p(n).

Note that a Boolean function f is (s, 1 —2¢)-inapproximable if and only if {0,1}* is
a hard region of f relative to {U,} with respect to s(-)-size circuits and advantage
e(-). Thus, strongly inapproximable predicates (e.g., S-inapproximable predicates
for super-polynomial S) have a hard region of density 1 (with respect to a neg-
ligible advantage).!” But this trivial observation does not provide hard regions
(with respect to a small (i.e., close to zero) advantage) for mildly inapproximable
predicates. Providing such hard regions is the contents of the following theorem.

Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f:{0,1}* —
{0,1} be a Boolean predicate, {X,} be a probability ensemble, s : N — N, and
p: N —10,1] such that p(n) > 1/poly(n). Suppose that, for every circuit C,, of
size at most s(n), it holds that Pr[C,(X,) = f(X,)] < 1 — p(n). Then, for every

e:N—10,1], the function f has a hard region of density p'(-) relative to {X,,} with

respect to s'(-)-size circuits and advantage £(-), where p'(n) Lef (1—0(1))p(n) and

s'(n) = s(n)/poly(n/e(n)).

In particular, if f is (s,2p)-inapproximable then f has a hard region of density
P’ () = p(-) relative to the uniform distribution (with respect to s'(-)-size circuits
and advantage £()).

Proof Sketch:'® The proof proceeds by first establishing that {X,,} is “related” to
(or rather “dominates”) an ensemble {Y,,} such that f is strongly inapproximable
on {Y,,}, and next showing that this implies the claimed hard region.

For p:N— |0, 1], we say that {X,,} p-dominates {Y,,} if for every x it holds that
Pr[X, =2x] > p(n) - Pr[Y,, =z]. In this case we also say that {Y,,} is p-dominated
by {X,}. We say that {Y,,} is critically p-dominated by {X,} if for every = either
Pr[Y,,=z] = (1/p(n)) - Pr[X,,=x] or Pr[Y,=z] = 0.

The notions of domination and critical domination play a central role in the
proof, which consists of two parts. In the first part (Claim 7.21.1), we prove the

17 Likewise, mildly inapproximable predicates have a hard region of density 1 with respect to
an advantage that is close to 1/2.
18See details in [98, Apdx. A].
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existence of a ensemble {Y,,} that is p-dominated by {X,} such that f is strongly
inapproximable on {Y,}. In the second part (Claim 7.21.2), we prove that the
existence of such a dominated ensemble implies the existence of an ensemble {Z,,}
that is critically p'-dominated by {X,,} such that f is strongly inapproximable on
{Z,}. Finally, we note that such a critically dominated ensemble yields a hard
region of f relative to {X,}, and the theorem follows.

Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists a
probability ensemble {Y;,} that is p-dominated by {X,,} such that, for every s'(n)-
size circuit C,,, it holds that

e(n)

T

PriCn(Y,)=f(Ya)] < (7.10)

N =

Proof: We employ von Neumann’s Min-Max Principle (cf. [219]) to a “game” that
corresponds to the set of critically dominated (by X,,) probability distributions on
one side and the set of s’(n)-size circuits on the other side.!? We start by assuming,
towards the contradiction, that for every distribution Y,, that is p-dominated by
X, there exists a s'(n)-size circuits C,, such that Pr[C,,(Y;,) = f(¥,,)] > 0.54+¢&'(n),
where €'(n) = e(n)/2. One key observation there is a correspondence between the
set of distributions that are each p-dominated by X, and the set of all convex
combinations of critically p-dominated (by X,,) distributions (cf., a special case
in §D.4.1.1). Thus, considering an enumeration Y,El),. . Tft) of the critically p-
dominated (by X,,) distributions, we conclude that for every distribution m on [¢]
there exists a s'(n)-size circuits C,, such that

> ow(@) - PriC. (V) = F(VI)] > 0.5 +¢'(n). (7.11)

=1

Now, consider a finite game between two players, where the first player selects a crit-
ically p-dominated (by X,,) distribution, and the second player selects a s'(n)-size
circuit and obtains a payoff as determined by the corresponding success probability;
that is, if the first player selects the i*" critically dominated distribution and the
second player selects the circuit C then the payoff equals Pr[C’(YTEl)) = f(YTE’))].
Eq. (7.11) may be interpreted as saying that for any randomized strategy for the
first player there exists a deterministic strategy for the second player yielding av-
erage payoff greater than 0.5 4+ ¢'(n). The min-max principle asserts that in such
a case there exists a randomized strategy for the second player that yields aver-
age payoff greater than 0.5 + €’(n) no matter what strategy is employed by the
first player. This means that there exists a distribution, denoted D,,, on s'(n)-size
circuits such that for every ¢ it holds that

PrD, (YY) = f(Y )] > 0.5+ '(n), (7.12)

where the probability refers both to the choice of the circuit D,, and to the random
variable Y,,. Let B, = {z : Pr[D,(z) = f(z)] < 0.5 + ¢'(n)}. Then, Pr[X,, €

19We warn that this application of the min-max principle is somewhat non-straightforward.
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B,] < p(n), because otherwise we reach a contradiction to Eq. (7.12) by defining
Y, such that Pr[Y,, =z] = Pr[X,,=z]/Pr[X,, € B,] if x € B,, and Pr[Y,,=2] =0
otherwise.?° By employing standard amplification to D,,, we obtain a distribution
D!, over poly(n/e'(n)) - s'(n)-size circuits such that for every z € {0,1}"\ B, it
holds that Pr[D] (z) = f(z)] > 1 — 2™ It follows that there exists a s(n)-sized
circuit Cp, such that Cp(z) = f(z) for every z € {0,1}"\ B,, and it follows that
Pr[Cn(X,) = f(X,)] > Pr[X,, € {0,1}™\ B,] > 1 — p(n), in contradiction to the
theorem’s hypothesis. The claim follows. O

We next show that the conclusion of Claim 7.21.1 (which was stated for for en-
sembles that are p-dominated by {X,}) essentially holds also for some critically
p-dominated (by {X,,}) ensembles. The following precise statement involves some
loss in the domination parameter p (as well as in the advantage ¢).

Claim 7.21.2: If there exists a probability ensemble {Y,} that is p-dominated
by {X,} such that for every s'(n)-size circuit C, it holds that Pr[C,(Y,) =
f(Yn)] > 0.5+ (¢(n)/2), then there exists a probability ensemble {Z,} that is
critically p’-dominated by {X,} such that for every s'(n)-size circuit C,, it holds
that Pr[C,.(Z,) = f(Z,)] > 0.5 + £(n).

In other words, Claim 7.21.2 asserts that the function f has a hard region of
density p'(+) relative to {X,,} with respect to s'(-)-size circuits and advantage €(-),
thus establishing the theorem. The proof of Claim 7.21.2 uses the Probabilistic
Method (cf. [10]). Specifically, we select a set S, at random by including each
n-bit long string = with probability

der p(n) - Pr[Y, =a]

P = T, o o1 (7.13)
independently of the choice of all other strings. It can be shown that, with high
probability over the choice of S,, it holds that Pr[X,, € S,] = p(n) and that
PriCn(X,) = f(Xn)| X, € Sn] < 0.5+ e(n) for every circuit C,, of size s'(n). The
latter assertion is proved by a union bound on all relevant circuits, showing that
for each such circuit C,,, with probability 1 — exp(—s’(n)?) over the choice of S,,,
it holds that |Pr[Cn(X,) = f(Xy)|Xn € Sp] — PriCh(Yn) = f(Yn)]| < e(n)/2. For
details see [98, Apdx. A]. O

7.2.2.2 Hardness amplification via hard regions

Before showing how to use the notion of a hard region in order to prove a deran-
domized version of Yao’s XOR Lemma, we show how to use it in order to prove
the original version of Yao’s XOR Lemma, (i.e., Theorem 7.13).

20Note that Y, is p-dominated by X, whereas by the hypothesis Pr[D,(Yn) = f(Yn)] <
0.5+4¢'(n). Using the fact that any p-dominated distribution is a convex combination of critically
p-dominated distributions, it follows that Pr[Dn(YTgl)) = f(YTEl))} < 0.5 + ¢'(n) holds for some

critically p-dominated Y,Ei) .
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An alternative proof of Yao’s XOR Lemma. Let f, p, and T be as in Theo-
rem 7.13. Then, by Theorem 7.21, for p’(n) = 1/3p(n) and s'(n) = T(n)?") /poly(n),
the function f has a hard region S of density p' (relative to {U,}) with respect
to s'(+)-size circuits and advantage 1/s'(:). Thus, for ¢(n) = n - p(n) and F as
in Theorem 7.13, with probability at least 1 — (1 — p'(n))"™ =1 — exp(—Q(n)),
one of the ¢(n) random n-bit blocks of F resides in S (i.e., the hard region of f).
Intuitively, this suffices for establishing the strong inapproximability of F. Indeed,
suppose towards the contradiction that a small circuit C,, can approximate F' with
advantage (n) + exp(—Q(n)), where e(n) > 1/s'(n). Then, the e(n) term must
be due to t(n) - n-bit long inputs that contain a block in S. Using an averaging
argument, we can first fix the index of this block and then the contents of the other
blocks, and infer the following: for some i € [t(n)] and @1, ...,zyn) € {0,1}" it
holds that

1
PriC,(z',Up,z") = F(z',Up,2")| U, € S] > B +2(n)

where 2’ = (21, ..., 7i-1) € {0, 1}V and 2" = (@41, ..., By(ny) € {0, 1},
Hard-wiring @ € [t(n)], ' = (z1,...,7i-1) and 3" = (Tiy1,..., Ty(n)) as well as

o ®;2:f(z;) in Cp, we obtain a contradiction to the (established) fact that

S is a hard region of f (by using the circuit C/ (z) = C,(2', z,2") @ o), and the
theorem follows. Actually, we derive a generalization of Theorem 7.13 asserting
that for any function T such that f is (T,1/p)-inapprozimable it holds that F is
T'-inapprozimable for T'(t(n) - n) = s'(n) = T(n)?*™) /poly(n).?*

Derandomized versions of Yao’s XOR Lemma. We first show how to use
the notion of a hard region in order to amplify very mild inapproximability to a
constant level of inapproximability. This amplification utilizes a pairwise indepen-
dence generator (see Section 8.6.1), denoted G, that stretches 2n-bit long seeds to
sequences of n strings, each of length n.

Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):
Suppose that f : {0,1}* — {0,1} is (T, p)-inapprozimable, for p(n) > 1/poly(n),
and assume for simplicity that p(n) < 1/n. Let b denote the inner-product mod 2
predicate, and G be the aforementioned pairwise independence generator. Then
Fi(s,r) = b(f(z1)--- f(zn),r), where |r| = n = |s|/2 and (z1,...,z,) = G(s), is
(T", p")-inapprozimable for T'(n') = T'(n'/3)/poly(n’) and p'(n') = Q(n'- p(n'/3)).

Needless to say, if f € € then F} € £. By applying Lemma 7.22 for a constant
number of times, we may transform an (7', 1/poly)-inapproximable predicate into
an (T",Q(1))-inapproximable one, where 7" (n") = T'(n" /O(1))/poly(n).

Proof Sketch: As in the foregoing proof (of the original version of Yao’s XOR
Lemma), we first apply Theorem 7.21 (this time) inferring that, for a(n) = p(n)/3
and s'(n) = T'(n)/poly(n), the function f has a hard region S of density « (relative

21 This generalization can also be established using the proof techniques presented in §7.2.1.2.
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to {U,}) with respect to s'(+)-size circuits and advantage 0.01. Next, as in §7.2.1.2,
we shall consider the corresponding (derandomized) direct product problem; that
is, the function Pi(s) = (f(z1),..., f(zn)), where |s| = 2n and (zy1, ..., x,) = G(s).
We will first show that P; is hard to compute on an Q(n - a(n)) fraction of the

domain, and the quantified inapproximality of F} will follow.

Oune key observation is that, by Exercise 7.15, with probability at least 5(n) def

n-a(n)/2, at least one of the n strings output by G(Us,,) resides in S. Intuitively,
we expect every s'(n)-sized circuit to fail in computing P, (Us,) with probability
at least 0.495(n), because with probability 3(n) the sequence G(Us,) contains an
element in the hard region of f. Things are somewhat more involved (than in the
non-derandomized case) because it is not clear what is the conditional distribution
of the element(s) residing in the hard region.

For technical reasons?2, we assume (without loss of generality) that a(n) < 1/2n

and note that in this case Exercise 7.15 implies that, with probability at least

B(n) L0.75 n - a(n), at least one of the n strings output by G(Us,,) resides in S.

We claim that every (s'(n) — poly(n))-sized circuit fails to compute P; correctly
with probability at least v(n) = 0.38(n). As usual, the claim is proved by a
reducibility argument. Let G(s); denote the i*" string in the sequence G(s) (i.e.,
G(s) = (G(s)1,-..,G(S)n)), and note that given 7 and = we can efficiently sample

Gl (z) ¥ {s€{0,1}>" : G(s); =x}. Given a circuit C,, that computes P;(Usy,)
correctly with probability 1 — v(n), we consider the circuit C!, that, on input z,
uniformly selects i € [n] and s € G;'(x), and outputs the i*" bit in C,,(s). Then,

by the construction (of C!) and the hypothesis regarding C,, it holds that

n

PHCA(U) = fUIUNES] 2 3 = PrCo(Usn) = A (Uan) |G (U ): €5]

1 PHC(Ua) = Pi(Usn) A 3 GiUan)i5]
= n max;{Pr|G(Us,); €S|}

L1 (=1m) - (- fw)

T on a(n)

_0.78(n)

= o) > 0.52.

This contradicts the fact that S is a hard region of f with respect to s'(-)-size
circuits and advantage 0.01. Thus, we have established that every (s'(n)—poly(n))-
sized circuit fails to compute Py correctly with probability at least y(n) = 0.33(n).
Employing the simple (warm-up) case discussed at the beginning of the proof of
Theorem 7.7 (where the predictor errs with probability less than 1/4), it follows
that, for s”(n') = s(n'/3)/poly(n’), every s"(|s|+|r|)-sized circuits fails to compute
(s,r) — b(P1(8),r) with probability at least 6(|s| + |r|) = 0.24-7(|r|). Thus, Fi is
(s",26)-inapproximable, and the lemma follows. O

22The following argument will rely on the fact that B(n) — v(n) > 0.51a(n), where y(n) =
Q(B(n))-
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The next lemma offers an amplification of constant inapproximability to strong
inapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,
yields Theorem 7.19 (as a special case).

Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-
bility): Suppose that f : {0,1}* — {0,1} is (T, p)-inapprozimable, for some con-
stant p, and let b denote the inner-product mod 2 predicate. Then there exists a
exponential-time computable function G such that Fy(s,r) = b(f(x1)--- f(zn),7),
where (1, ...,T,) = G(s) and n = Q(|s]) = |r] = |z1| = -+ = |xnu|, s T'-
inapprozimable for T'(n') = T(n'/O(1))*M) /poly(n').

Again, if f € £ then F; € €.

Proof Outline:>®>  As in the proof of Lemma 7.22, we start by establishing
a hard region of density p/3 for f (this time with respect to circuits of size
T(n)?M) /poly(n) and advantage T(n)~%(1)), and focus on the analysis of the
(derandomized) direct product problem corresponding to computing the function
Py(s) = (f(z1), ..., f(zn)), where |s| = O(n) and (z1,...,x,) = G(s). The “gen-
erator” G is defined such that G(s's") = Gi(s") @ Ga(s"), where |s'| = [s"],
|G1(s")| = |G2(s")]|, and the following conditions hold:

1. G, is the Expander Random Walk Generator discussed in Section 8.6.3. It
can be shown that G1(Up(n)) outputs a sequence of n strings such that for
any set S of density p, with probability 1 — exp(—§(pn)), at least Q(pn)
of the strings hit S. Note that this property is inherited by G, provided
|G1(s")| = |Ga(s")| for any |s'| = |s"|. It follows that, with probability
1 —exp(—Q(pn)), a constant fraction of the z;’s in the definition of P, hit
the hard region of f.

It is tempting to say that small circuits cannot compute P» better than with
probability exp(—Q(pn)), but this is clear only in case the the x;’s that hit
the hard region are distributed independently (and uniformly) in it, which is
hardly the case here. Indeed, G5 is used to handle this problem.

2. G5 is the “set projection” system underlying Construction 8.17; specifically,
Ga(s) = (ssy,-.-, S5, ), where each S; is an n-subset of [|s|] and the S;’s have
pairwise intersections of size at most n/O(1).?* An analysis as in the proof
of Theorem 8.18 can be employed for showing that the dependency among
the x;’s does not help for computing a particular f(z;) when given z; as well
as all the other f(z;)’s. (Note that the relevant property of G is inherited
by G.)

The actual analysis of the construction (via a guessing game presented in [121,
Sec. 3]), links the success probability of computing P> to the advantage of guessing
f on its hard region. The interested reader is referred to [121]. O

23For details, see [121].
24Recall that sg denotes the projection of s on coordinates S C [|s|]; that is, for s = a1 --- 0o},

and S = {4; : j =1,...,n}, we have sg =04, -+ -0y, .



7.2. HARD PREDICATES IN E 261

Digest. Both Lemmas 7.22 and 7.23 are proved by first establishing correspond-
ing “direct product” versions (i.e., derandomized versions of Theorem 7.14). We
call the reader’s attention to the seemingly crucial role of this step (especially in
the proof of Lemma 7.23): We cannot treat the values f(z1),...f(z,) as indepen-
dent (at least not for the generator G as postulated in these lemmas), and so we
seek to avoid analyzing the probability of correctly computing the XOR of all these
values. In contrast, we have established that it is very hard to correctly compute
all n values, and thus XORing a random subset of these values yields a strongly
inapproximable predicate. Note that the argument used in Exercise 7.12 fails here,
because the x;’s are not independent.

Chapter Notes

The notion of a one-way function was suggested by Diffie and Hellman [62]. The
notion of weak one-way functions as well as the amplification of one-way functions
(Theorem 7.5) were suggested by Yao [223]. A proof of Theorem 7.5 has first
appeared in [83].

The concept of hard-core predicates was suggested by Blum and Micali [37].
They also proved that a particular predicate constitutes a hard-core for the “DLP
function” (i.e., exponentiation in a finite field), provided that the latter function is
one-way. The generic hard-core predicate (Theorem 7.7) was suggested by Levin,
and proven as such by Goldreich and Levin [95]. The proof presented here was
suggested by Rackoff. We comment that the original proof has its own merits (cf.,
e.g., [101]).

The construction of canonical derandomizers and, specifically, the Nisan-Wigderson
framework (Construction 8.17) has been the driving force behind the study of in-
approximable predicates in £. Theorem 7.10 is due to [19], whereas Theorem 7.19
is due to [121]. Both results rely heavily of variants of Yao’s XOR Lemma, to be
reviewed next.

Like several other fundamental insights attributed to Yao’s paper [223], Yao’s
XOR Lemma (Theorem 7.13) is not even stated in [223] but is rather due to Yao’s
oral presentations of his paper. The first published proof of Yao’s XOR Lemma
was given by Levin (see [98, Sec. 3]). Levin’s proof is the only one known giving a
tight quantitative analysis (on the decrease in the level of approximability), and the
interested reader is referred to it (via the non-laconic presentation of [98, Sec. 3]).
The proof presented in §7.2.1.2 is due to Goldreich, Nisan and Wigderson [98,
Sec. 5].

The notion of a hard region and its applications to proving the original version
of Yao’s XOR Lemma as well as the first derandomization of it (Lemma 7.22) are
due to Impagliazzo [119]. The second derandomization (Lemma 7.23) as well as
Theorem 7.19 are due to Impagliazzo and Wigderson [121].

The connection between list decoding and hardness amplification (§7.2.1.3),
yielding an alternative proof of Theorem 7.19, is due to Sudan, Trevisan, and
Vadhan [205].

Hardness amplification for AP has been the subject of recent attention: An
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amplification of mild inapproximability to strong inapproximability is provided
in [115], an indication to the impossibility of a worst-case to average-case reductions
(at least non-adaptive ones) is provided in [40].

Exercises

Exercise 7.1 Prove that if one way-functions exist then there exists one-way func-
tions that are length preserving (i.e., |f(z)| = |z| for every z € {0,1}™).

Guideline: Clearly, for some polynomial p, it holds that | f(z)| < p(|z|) for all z. Assume,
without loss of generality that n — p(n) is 1-1, and let p~*(m) = n if p(n) < m < p(n+1).
Define f'(z) = f(2)0/*1=F @) where = is the p~(|z|)-bit long prefix of z.

Exercise 7.2 Prove that if a function f is hard to invert in the sense of Defini-
tion 7.3 then it is hard to invert in the sense of Definition 7.1.

(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (7.1).)

Exercise 7.3 Assuming the existence of one-way functions, prove that there exists
a weak one-way function that is not strongly one-way.

Exercise 7.4 (a universal one-way function) Using the notion of a universal
machine, present a polynomial-time computable function that is hard to invert (in
the sense of Definition 7.1) if and only if there exist one-way functions.

Guideline: Consider the function F' that parses its input into a pair (M, z) and emulates
|z|® steps of M on input x. Note that if there exists a one-way function that can be
evaluated in cubic time then F' is a weak one-way function. Using padding, prove that
there exists a one-way function that can be evaluated in cubic time if and only if there

exist one-way functions.

Exercise 7.5 For ¢ > 1, prove that the following 2° — 1 samples are pairwise
independent and uniformly distributed in {0,1}™. The samples are generated by
uniformly and independently selecting £ strings in {0,1}". Denoting these strings
by s!,...,s¢, we generate 2° — 1 samples corresponding to the different non-empty

subsets of {1,2,...,} such that for subset J we let 7/ def Djess’.

Guideline: For J # J', it holds that r’ or! = ®jexs’, where K denotes the symmetric
difference of J and J'. See related material in Section 8.6.1.

Exercise 7.6 Prove Theorem 7.8. In particular, provide a detailed presentation
of the alternative procedure outlined in Footnote 5.

Exercise 7.7 A polynomial-time computable predicate b : {0,1}*— {0, 1} is called
a universal hard-core predicate if for every one-way function f, the predicate b is
a hard-core of f. Note that the predicate presented in Theorem 7.7 is “almost
universal” (i.e., for every one-way function f, that predicate is a hard-core of
f'(z,r) = (f(z),r), where |z| = |r|). Prove that there exist no universal hard-
core predicate.
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Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitrary
one-way function. Then consider the function f'(z) = (f(z),b(z)).

Exercise 7.8 Prove that if AP is not contained in P/poly then neither is £.
Furthermore, for every S : N — N, if some problem in NP does not have circuits
of size S then for some constant £ > 0 there exists a problem in £ that does not
have circuits of size S’, where S'(n) = S(nf).

Guideline: Although AP is not known to be in £, it is the case that SAT is in £, which
implies that AP is reducible to a problem in £.

Exercise 7.9 For every function f :{0,1}" — {0,1}, present a linear-size circuit
C,, such that Pr[C(U,) = f(U,)] > 0.54+0(2"™). Furthermore, for every ¢t < 271,
present a circuit C,, of size O(t - n) such that Pr[C(U,) = f(U,)] > 0.5+1¢-27".
Warning: you may not assume that Pr[f(U,,) = 1] = 0.5.

Exercise 7.10 (low degree extension) Prove that for any H C F and function

J+ H™ — F there exists an m-variate polynomial f : F™ — F' of individual degree
|H| — 1 such that for every € H™ it holds that f(z) = f(z).

Guideline: Define f(z) = > 8a(z) - f(a), where 6, is an m-variate of individual

aeH'”L a
degree |H| — 1 such that 6,(a) = 1 whereas 8, (z) = 0 for every z € H™\ {a}. Specifically,

8ar,eam (T1y ey Tm) = :';1 H be H\ {ai}((z; — b)/(a; — b)).

Exercise 7.11 Let f be as in the conclusion of Theorem 7.12. Prove that there
exists a Boolean function g in £ that is (p, £)-inapproximable for every polynomial
p and for e(n) = 1/n3.

Guideline: Consider the function g defined such that g(z,4) equals the i*" bit of f(z).

Exercise 7.12 Let f be a Boolean function, and b(y,r) denote the inner-product

modulo 2 of the equal-length strings y and r. Suppose that F'(zy, ..., ¥y(n),T) def

b(f(x1) -+ f(@y(n)),7), Where x1, ..., zy(ny € {0,1}" and r € {0, 1}4™) is T-inapproximable

for every polynomial T'. Assuming that n — ¢(n) - n is 1-1, prove that F(z) ef

F'(z, 1Y U2D) where t'(t(n) - n) = t(n), is T-inapproximable for every polynomial
T.

Guideline: Reduce the approximation of F’ to the approximation of F. An important
observation is that for any = (21, ..., Ty(n)), = = (@1, ..., m;(n)), and 7 =71 -+ 7y, such
that z; = x; if 7 = 1, it holds that F'(z,r) = F(z') ® ®sr,=0f(x;). This suggests a
non-uniform reduction of F' to F', which uses “adequate” z1, ..., Zyn) € {0,1}" as well as
the corresponding values f(z;)’s as advice. On input 1, ..., Ty(n), 71 - * * T¢(n), the reduction
sets ; = x; if r; = 1 and z; = z; otherwise, makes the query z' = (z1, ..., w;(n)) to F', and
returns F'(z") @i.r;=0 f(2:). Analyze this reduction in the case that z1, ..., Zyny € {0,1}7
are uniformly distributed, and infer that they can be set to some fixed values.

Exercise 7.13 Consider a modification of Definition 7.17, in which the decoding
condition reads as follows (where p is a fixed polynomial): For every w:[¢(N)] —



264 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

[q(N)] and x€{0,1}Y such that T(x) is (1 — ((1/q(N)) + a(N)))-close to w, there
exists an oracle-aided circuit C of size p((log N)/a(N)) such that C*¥(i) yields the
it" bit of x for every i € [N].

1. Formulate and prove a version of Theorem 7.18 that refers to the modified
definition (rather than to the original one).

(Hint: the modified version should refer to computing g(Um(n)) with success probability
greater than (1/¢g(n)) + e(n).)

2. Prove that, when applied to binary codes (i.e., ¢ = 2), the version in Item 1
yields S”-inapproximable predicates, for S”(n') = S(m " (n'))*® /poly(n').

3. Prove that the Hadamard Code allows implicit decoding under the modified
definition (but not according to the original one).?%

(Hint: this is the actual contents of Theorem 7.8.)

Note that if T' : {0,1} — [g(N)]*) is a (non-binary) code that allows implicit
decoding then encoding its symbols by the Hadamard code yields a binary code
({0, 1} — {0, 134252y hat allows implicit decoding. Note that efficient
encoding is preserved only if g(N) = poly(N).

Exercise 7.14 (using Proposition 7.16 to prove Theorem 7.19) Prove The-
orem 7.19 by combining Proposition 7.16 and Theorem 7.8.

Guideline: Note that, for some v > 0, Proposition 7.16 yields an exponential-time com-
putable function f such that |f(z)| < |#| and for every family of circuit {C) } e of
size §'(n') = S(n'/3)7 /poly(n') it holds that Pr[C’,(U.) = f(U)] < 1/S'(n'). Com-
bining this with Theorem 7.8, infer that P(z,r) = b(f(z),), where |r| = |f(x)| < ||, is
S"-inapproximable for S”(n') = S(n" /2)?™® /poly(n"). Note that if S(n) = 2"™) then
S”(n”) — 29(71,”).

Exercise 7.15 Let G be a pairwise independent generator (i.e., as in Lemma 7.22),

S C{0,1}" and « et |S|/2™. Prove that, with probability at least min(n - «, 1)/2,

at least one of the n strings output by G(Us,,) resides in S.

Guideline: Using the pairwise independence property and employing the Inclusion-
Exclusion formula, we lower-bound the aforementioned probability by n - p — (3) Pt
If p < 1/n then the claim follows, otherwise we employ the same reasoning to the first

1/p elements in the output of G(Uszy,).

Exercise 7.16 (one-way functions versus inapproximable predicates) Prove
that the existence of a non-uniformly hard one-way function (as in Definition 7.3)
implies the existence of an exponential-time computable predicate that is T-inapproximable
(as per Definition 7.9), for every polynomial 7'.

Guideline: Suppose first that the one-way function f is length-preserving and 1-1. Con-
sider the corresponding function g and hard-core predicate b guaranteed by Theorem 7.7,

25Needless to say, the Hadamard Code is not efficient (for the trivial reason that its codewords
have exponential length).
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and show that the Boolean function h such that h(z) = b(g~'(z)) is polynomially in-
approximable. For the general case a different approach seems needed. Specifically,
given a (length preserving) one-way function f, consider the Boolean function h de-
fined as h(z,i,0) = 1 if and only if the i*® bit of the lexicographically first element
in f71(2) = {z : f(z) = 2} equals 0. (In particular, if f~'(2) = 0 then h(z,i,0) = 0 for
every ¢ and a.)26 Note that h is computable in exponential-time, but is not (worst-case)

computable in polynomial-time. Applying Theorem 7.10, we are done.

26Thus, h may be easy to computed in the average-case sense (e.g., if f(z) = 01*! f'(z) for some
one-way function f').
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Chapter 8

Pseudorandom Generators

Indistinguishable things are identical.!

G.W. Leibniz (1646-1714)

A fresh view at the question of randomness has been taken in the theory of comput-
ing: It has been postulated that a distribution is random (or rather pseudorandom)
if it cannot be told apart from the uniform distribution by any efficient procedure.
Thus, (pseudo)randomness is not an inherent property of an object, but is rather
subjective to the observer.

At the extreme, this approach says that the question of whether the world
is deterministic or allows for some free choice (which may be viewed as sources of
randomness) is irrelevant. What matters is how the world looks to us and to various
computationally bounded devices. That is, if some phenomenon looks random then
we may just treat it as if it were random. Likewise, if we can generate sequences
that cannot be told apart from the uniform distribution by any efficient procedure,
then we can use these sequences in any efficient randomized application instead of
the ideal random bits that are postulated in the design of this application.

The pivot of this approach is the notion of computational indistinguishability,
which refers to pairs of distributions that cannot be told apart by efficient proce-
dures. The most fundamental variant of this notion associates efficient procedures
with polynomial-time algorithms, but other variants that restrict attention to other
classes of distinguishing procedures also lead to interesting insights. Likewise, the
generation of pseudorandom objects is actually a general paradigm with numerous
useful incarnations.

Summary: A generic formulation of pseudorandom generators consists
of specifying three fundamental aspects — the stretch measure of the

I This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples
to this principle are conceivable but will not occur in real life because God is much too benevolent.
We thus believe that he would have agreed to the theme of this chapter, which asserts that
indistinguishable things should be considered as identical.

267



268 CHAPTER 8. PSEUDORANDOM GENERATORS

generators; the class of distinguishers that the generators are supposed
to fool (i.e., the algorithms with respect to which the computational in-
distinguishability requirement should hold); and the resources that the
generators are allowed to use (i.e., their own computational complexity).

The archetypical case of pseudorandom generators refers to efficient
generators that fool any feasible procedure; that is, the potential dis-
tinguisher is any probabilistic polynomial-time algorithm, which may
be more complex than the generator itself (which, in turn, has time-
complexity bounded by a fixed polynomial). These generators are called
general-purpose, because their output can be safely used in an efficient
application. Such (general-purpose) pseudorandom generators exist if
and only if one-way functions exist.

For purposes of derandomization one may use pseudorandom genera-
tors that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this
approach, suitable pseudorandom generators, which can be constructed
assuming the existence of problems in £ that have no sub-exponential
size circuits, yield a full derandomization of BPP (i.e., BPP = P).

It is also beneficial to consider pseudorandom generators that fool space-
bounded distinguishers and generators that exhibit some limited ran-
dom behavior (e.g., outputting a pair-wise independent or a small-bias
sequence).

8.1 Introduction

The second half of this century has witnessed the development of three theories
of randomness, a notion which has been puzzling thinkers for ages. The first the-
ory (cf., [60]), initiated by Shannon [190], is rooted in probability theory and is
focused at distributions that are not perfectly random. Shannon’s Information
Theory characterizes perfect randomness as the extreme case in which the infor-
mation contents is maximized (i.e., there is no redundancy at all). Thus, perfect
randomness is associated with a unique distribution — the uniform one. In par-
ticular, by definition, one cannot (deterministically) generate such perfect random
strings from shorter random seeds.

The second theory (cf., [144, 147]), due to Solomonov [197], Kolmogorov [13§]
and Chaitin [48], is rooted in computability theory and specifically in the notion of
a universal language (equiv., universal machine or computing device; see §1.2.3.3).
It measures the complexity of objects in terms of the shortest program (for a fixed
universal machine) that generates the object. Like Shannon’s theory, Kolmogorov
Complexity is quantitative and perfect random objects appear as an extreme case.
However, in this approach one may say that a single object, rather than a distribu-
tion over objects, is perfectly random. Still, Kolmogorov’s approach is inherently
intractable (i.e., Kolmogorov Complexity is uncomputable), and — by definition —
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one cannot (deterministically) generate strings of high Kolmogorov Complexity
from short random seeds.

The third theory is rooted in complexity theory and is the focus of this chapter.
This approach is explicitly aimed at providing a notion of randomness that nev-
ertheless allows for an efficient (and deterministic) generation of random strings
from shorter random seeds. The heart of this approach is the suggestion to view
objects as equal if they cannot be told apart by any efficient procedure. Conse-
quently, a distribution that cannot be efficiently distinguished from the uniform
distribution will be considered as being random (or rather called pseudorandom).
Thus, randomness is not an “inherent” property of objects (or distributions) but
is rather relative to an observer (and its computational abilities). To demonstrate
this approach, let us consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In
each of them Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by
the knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle
by the motion of the coin, Bob does not have accurate information on
the motion and thus we believe that also in this case Bob wins with
probability 1/2.

The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate
information on the coin’s motion as well as on the environment effecting
the outcome. However, Bob cannot process this information in time to
improve his guess.

In the fourth alternative, Bob’s recording equipment is directly con-
nected to a powerful computer programmed to solve the motion equa-
tions and output a prediction. It is conceivable that in such a case Bob
can improve substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. At the extreme, deterministic events that
are fully determined by some rule may be perceived as random events by observer
that lack relevant information and/or ability to process it. Our focus will be on
the lack of processing power, which may be due either to the formidable amount
of computation required for analyzing the event at question or to the fact that the
observer is very limited.

A natural notion of pseudorandomness arises — a distribution is pseudorandom
if no efficient procedure can distinguish it from the uniform distribution, where
efficient procedures are associated with (probabilistic) polynomial-time algorithms.
This specific notion of pseudorandomness is indeed the most fundamental one, and
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much of this chapter is focused on it. Weaker notions of pseudorandomness arise as
well — they refer to indistinguishability by weaker procedures such as space-bounded
algorithms, constant-depth circuits, etc. Stretching this approach even further one
may consider algorithms that are designed on purpose so not to distinguish even
weaker forms of “pseudorandom” sequences from random ones (such algorithms
arise naturally when trying to convert some natural randomized algorithm into
deterministic ones; see Section 8.6).

The foregoing discussion has focused at one aspect of the pseudorandomness
question — the resources or type of the observer (or potential distinguisher). An-
other important aspect is whether such pseudorandom sequences can be generated
from much shorter ones, and at what cost (or complexity). A natural approach
is that the generation process has to be at least as efficient as the distinguisher
(equiv., that the distinguisher is allowed at least as much resources as the gener-
ator). Coupled with the aforementioned strong notion of pseudorandomness, this
yields the archetypical notion of pseudorandom generators — these operating in
polynomial-time and producing sequences that are indistinguishable from uniform
ones by any polynomial-time observer. Such (general-purpose) pseudorandom gen-
erators allow to reduced the randomness complexity of any efficient application,
and are thus of great relevance to randomized algorithms and cryptography (see
Section 8.3).

seed output sequence

L Gen —

a truly random sequence

Figure 8.1: Pseudorandom generators — an illustration.

We stress that there are important reasons for considering also an alternative
that seems less natural; that is, allowing the pseudorandom generator to use more
resources (e.g., time or space) than the observer it tries to fool. This alternative is
natural in the context of derandomization (i.e., converting randomized algorithms
to deterministic ones), where the crucial step is replacing the random input of an
algorithm by a pseudorandom input, which in turn can be generated based on
a much shorter random seed. In particular, when derandomizing a probabilistic
polynomial-time algorithm, the observer (to be fooled by the generator) is a fixed
algorithm. In this case employing a more complex generator merely means that the
complexity of the derived deterministic algorithm is dominated by the complexity of
the generator (rather than by the complexity of the original randomized algorithm).
Needless to say, allowing the generator to use more resources than the observer that
it tries to fool makes the task of designing pseudorandom generators potentially



8.2. THE GENERAL PARADIGM 271

easier, and enables derandomization results that are not known when using general-
purpose pseudorandom generators. The usefulness of this approach is demonstrated
in Sections 8.4 through 8.6.

We note that the goal of all types of pseudorandom generators is to allow the
generation of “sufficiently random” sequences based on much shorter random seeds.
Thus, pseudorandom generators offer significant saving in the randomness complex-
ity of various applications. This saving is valuable because many applications are
severely limited in their ability to generate or obtain truly random bits. Further-
more, typically, generating truly random bits is significantly more expensive than
standard computation steps. Thus, randomness is a computational resource that
should be considered on top of time complexity (analogously to the consideration
of space complexity).

Organization. In Section 8.2 we present the general paradigm underlying the
various notions of pseudorandom generators. The archetypical case of general-
purpose pseudorandom generators is presented in Section 8.3. We then turn to the
alternative notions of pseudorandom generators: Generators that suffice for the
derandomization of complexity classes such as BPP are discussed in Section 8.4;
Pseudorandom generators in the domain of space-bounded computations are dis-
cussed in Section 8.5; and special-purpose generators are discussed in Section 8.6.
(For an alternative presentation, which focuses on general-purpose pseudorandom
generators and provides more details on it, the reader is referred to [87, Chap. 3].)

Teaching note: If you can afford teaching only one of the alternative notions of pseu-
dorandom generators, then we suggest teaching the notion of general-purpose pseudo-
random generators (presented in Section 8.3). This notion is more relevant to computer
science at large and the technical material is relatively simpler. The chapter is organized

to facilitate this option.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,
standard conventions regarding random variables (presented in Appendix D.1.1)
will be extensively used.

8.2 The General Paradigm

Teaching note: We advocate a unified view of various notions of pseudorandom gen-
erators. That is, we view these notions as incarnations of a general abstract paradigm,
to be presented in this section. A teacher that wishes to focus on one of the special
cases may still use this section as a general motivation towards the specific definitions
used later.

A generic formulation of pseudorandom generators consists of specifying three fun-
damental aspects — the stretch measure of the generators; the class of distinguishers
that the generators are supposed to fool (i.e., the algorithms with respect to which
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the computational indistinguishability requirement should hold); and the resources
that the generators are allowed to use (i.e., their own computational complezity).

Stretch function: A necessary requirement from any notion of a pseudorandom
generator is that it is a deterministic algorithm that stretches short strings, called
seeds, into longer output sequences. Specifically, it stretches k-bit long seeds into
((k)-bit long outputs, where £(k) > k. The function £ : N — N is called the
stretch measure (or stretch function). In some settings the specific stretch measure
is immaterial (e.g., see Section 8.3.4).

Computational Indistinguishability: A necessary requirement from any no-
tion of a pseudorandom generator is that it “fools” some non-trivial algorithms.
That is, any algorithm taken from a predetermined class of interest cannot dis-
tinguish the output produced by the generator (when the generator is fed with a
uniformly chosen seed) from a uniformly chosen sequence. Typically, we consider
a class D of distinguishers and a class F of (threshold) functions, and require that
the generator G satisfies the following: For any D € D, any f € F, and for all
sufficiently large k’s

|PrID(G(Uk)) = 1] = PrD(Uywy)) = 1]| < f(k) (8.1)

where U, denotes the uniform distribution over {0, 1}" and the probability is taken
over Uy (resp., Uyr)) as well as over the coin tosses of algorithm D in case it is
probabilistic.? The reader may think of such a distinguisher, D, as trying to tell
whether the “tested string” is a random output of the generator (i.e., distributed
as G(Uy)) or is a truly random string (i.e., distributed as Uy)). The condition in
Eq. (8.1) requires that D cannot make a meaningful decision; that is, ignoring a
negligible difference (represented by f(k)), D’s verdict is the same in both cases.
The archetypical choice is that D is the set of all probabilistic polynomial-time
algorithms, and F is the set of all functions that are the reciprocal of some positive
polynomial.

Complexity of Generation: The archetypical choice is that the generator has
to work in polynomial-time (in length of its input — the seed). Other choices will
be discussed as well. We note that placing no computational requirements on
the generator (or, alternatively, putting very mild requirements such as a double-
exponential running-time upper bound), yields “generators” that can fool any
subexponential-size circuit family (see Exercise 8.1).

2The class of threshold functions F should be viewed as determining the class of noticeable
probabilities (as a function of k). Thus, we require certain functions (i.e., the absolute difference
between the above probabilities), to be smaller than any noticeable function on all but finitely
many integers. We call the former functions negligible. Note that a function may be neither
noticeable nor negligible (e.g., it may be smaller than any noticeable function on infinitely many
values and yet larger than some noticeable function on infinitely many other values).
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Notational conventions. We will consistently use k to denote the length of the
seed of a pseudorandom generator, and £(k) to denote the length of the correspond-
ing output. In some cases, this makes our presentation a little more cumbersome
(as a natural presentation may specify some other parameters and let the seed-
length be a function of these). However, our choice has the advantage of focusing
attention on the fundamental parameter of pseudorandom generation — the length
of the random seed. We note that whenever a pseudorandom generator is used to
“derandomize” an algorithm, n will denote the length of the input to this algorithm,
and k will be selected as a function of n.

Some instantiations of the general paradigm. Two important instantiations
of the notion of pseudorandom generators relate to probabilistic polynomial-time
distinguishers.

1. General-purpose pseudorandom generators correspond to the case that the
generator itself runs in polynomial time and needs to withstand any prob-
abilistic polynomial-time distinguisher, including distinguishers that run for
more time than the generator. Thus, the same generator may be used safely
in any efficient application. (This notion is treated in Section 8.3.)

2. In contrast, pseudorandom generators intended for derandomization may run
more time than the distinguisher, which is viewed as a fixed circuit having
size that is upper-bounded by a fixed polynomial. (This notion is treated in
Section 8.4.)

In addition, the general paradigm may be instantiated by focusing on the space
complexity of the potential distinguishers (and the generator), rather than on their
time complexity. Furthermore, one may also consider distinguishers that merely
reflect probabilistic properties such as pair-wise independence, small-bias, and hit-
ting frequency.

8.3 General-Purpose Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is fre-
quently used in the design of sequential, parallel and distributed algorithms, and
it is of course central to cryptography. Whereas it is convenient to design such al-
gorithms making free use of randomness, it is also desirable to minimize the usage
of randomness in real implementations. Thus, general-purpose pseudorandom gen-
erators (as defined next) are a key ingredient in an “algorithmic tool-box” — they
provide an automatic compiler of programs written with free usage of randomness
into programs that make an economical use of randomness.

8.3.1 The basic definition

Loosely speaking, general-purpose pseudorandom generators are efficient (i.e., polynomial-
time) deterministic programs that expand short randomly selected seeds into longer
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pseudorandom bit sequences, where the latter are defined as computationally indis-
tinguishable from truly random sequences by any efficient (i.e., polynomial-time)
algorithm. Thus, the distinguisher is more complex than the generator: The gen-
erator is a fixed algorithm working within some fized polynomial-time, whereas a
potential distinguisher is any algorithm that runs in polynomial-time. Thus, for
example, the distinguisher may always run in time cubic in the running-time of
the generator. Furthermore, to facilitate the development of this theory, we allow
the distinguisher to be probabilistic (whereas the generator remains determinis-
tic as stated above). We require that such distinguishers cannot tell the output
of the generator from a truly random string of similar length, or rather that the
difference that such distinguishers may detect (or “sense”) is negligible. Here a
negligible function is one that vanishes faster than the reciprocal of any positive
polynomial.

Definition 8.1 (general-purpose pseudorandom generator): A deterministic polynomial-
time algorithm G is called o pseudorandom generator if there exists a stretch func-
tion, ¢ : N—N (satisfying ¢(k) > k for all k), such that for any probabilistic
polynomial-time algorithm D, for any positive polynomial p, and for all sufficiently
large k’s

1
p(k)
where U, denotes the uniform distribution over {0,1}™ and the probability is taken
over Uy (resp., Uyy)) as well as over the internal coin tosses of D.

|PrID(G(Uk)) = 1] = PrD(Uyw)) = 1]| < (8.2)

Thus, Definition 8.1 is derived from the generic framework (presented in Sec-
tion 8.2) by taking the class of distinguishers to be the set of all probabilistic
polynomial-time algorithms, and taking the class of (noticeable) threshold functions
to be the set of all functions that are the reciprocals of some positive polynomial.?
The latter choice is naturally coupled with the association of efficient computation
with polynomial-time algorithms: An event that occurs with noticeable probability
occurs almost always when the experiment is repeated a “feasible” (i.e., polyno-
mial) number of times.

We note that Definition 8.1 does not make any requirement regarding the stretch
function £ : N— N, except for the generic requirement that ¢(k) > k for all k.
Needless to say, the larger ¢ is the more useful is the pseudorandom generator.
In Section 8.3.4 we show how to use any pseudorandom generator (even one with
minimal stretch £(k) = k + 1) in order to obtain a pseudorandom generator of any
desired polynomial stretch function. But before going so, we rigorously discuss
the “reduction in randomness” offered by pseudorandom generators, and provide a
wider perspective on the notion of computational indistinguishability that underlies
Definition 8.1.

3Definition 8.1 requires that the distinguishing gap of certain algorithms must be smaller than
the reciprocal of any positive polynomial for all but finitely many k’s. Such functions are called
negligible; see Footnote 2. The notion of negligible probability is robust in the sense that an
event which occurs with negligible probability occurs with negligible probability also when the
experiment is repeated a “feasible” (i.e., polynomial) number of times.
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8.3.2 The archetypical application

We note that “pseudo-random number generators” appeared with the first comput-
ers. However, typical implementations use generators that are not pseudorandom
according to Definition 8.1. Instead, at best, these generators are shown to pass
some ad-hoc statistical test (cf., [137]). We warn that the fact that a “pseudo-
random number generator” passes some statistical tests, does not mean that it
will pass a new test and that it will be good for a future (untested) application.
Furthermore, the approach of subjecting the generator to some ad-hoc tests fails
to provide general results of the form “for all practical purposes using the out-
put of the generator is as good as using truly unbiased coin tosses.” In contrast,
the approach encompassed in Definition 8.1 aims at such generality, and in fact is
tailored to obtain it: The notion of computational indistinguishability, which un-
derlines Definition 8.1, covers all possible efficient applications guaranteeing that
for all of them pseudorandom sequences are as good as truly random ones. Indeed,
any efficient randomized algorithm maintains its performance when its internal coin
tosses are substituted by a sequence generated by a pseudorandom generator. This
substitution is spell-out next.

Construction 8.2 (typical application of pseudorandom generators): Let G be a
pseudorandom generator with stretch function ¢: N—N. Let A be a probabilistic
algorithm, and p(n) denote a (polynomial) upper bound on its randomness com-
plezity. Denote by A(x,r) the output of A on input x and coin tosses sequence
r € {0, 1}”(|””|). Consider the following randomized algorithm, denoted Ag:

On input x, set k = k(|z|) to be the smallest integer such that £(k) >
p(|z]), uniformly select s € {0,1}*, and output A(x,r), where r is the
p(|x])-bit long prefiz of G(s).

That is, Ag(z,s) = A(z,G'(s)), for |s| = k(|z|) = argmin,{€(i) > p(|z|)}, where
G'(s) is the p(|z|)-bit long prefiz of G(s).

Thus, using Ag instead of A, the randomness complexity is reduced from p to
(=1 op, while (as we show next) it is infeasible to find inputs (i.e., 2’s) on which the
noticeable behavior of Ag is different from the one of A. For example, if £(k) = k2,
then the randomness complexity is reduced from p to \/p. We stress that the
pseudorandom generator G is universal; that is, it can be applied to reduce the
randomness complexity of any probabilistic polynomial-time algorithm A.

Proposition 8.3 Let A, p and G be as in Construction 8.2, and suppose that
p: N — Nis 1-1. Then, for every pair of probabilistic polynomial-time algorithms,
a finder F' and a tester T', every positive polynomial p and all sufficiently long n’s

1

o) (8.3)

Z PrF(1") = 2] - | Aaz(z)| <
ze{0,1}"

where A r(z) € PrT (2, Az, Uye)) = 1] = PrT(z, Ac(z, Ug(jepy)) = 1], and
the probabilities are taken over the Uy, ’s as well as over the coin tosses of F' and
T.
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Algorithm F' represents a potential attempt to find an input x on which the output
of Ag is distinguishable from the output of A. This “attempt” may be benign
as in the case that a user employs algorithm Ag on inputs that are generated
by some probabilistic polynomial-time application. However, the attempt may
also be adversarial as in the case that a user employs algorithm Ag on inputs
that are provided by a potentially malicious party. The potential tester, denoted
T, represents the potential use of the output of algorithm Ag, and captures the
requirement that this output be as good as a corresponding output produced by A.
Thus, T is given z as well as the corresponding output produced either by Ag(z) def
Az, Ug(ny) or by A(x) = A(x,Up,p)), and it is required that 7" cannot tell the
difference. In the case that A is a probabilistic polynomial-time decision procedure,
this means that it is infeasible to find an z on which Ag decides incorrectly (i.e.,
differently than A). In the case that A is a search procedure for some NP-relation,
it is infeasible to find an z on which Ag outputs a wrong solution. For details, see
Exercise 8.2.

Proof: The proposition is proven by showing that any triplet (A, F,T) violating
the claim can be converted into an algorithm D that distinguishes the output of G
from the uniform distribution, in contradiction to the hypothesis. The key observa-
tion is that Aa r(x) equals Pr[T'(z, A(z,Uyny)) = 1] = Pr[I'(z, A(z, G'(Uk(n))) =
1], where G'(s) is the p(n)-bit long prefix of G(s). Details follow.

As a warm-up, consider the following algorithm D. On input r (taken from
either Uy((n)) OF G(Ug(n))), algorithm D first obtains x « F(1"), where n can be
obtained easily from |r| (because p is 1-1 and 1™ — p(n) is computable via A).
Next, D obtains y = A(xz,r"), where 7' is the p(|z|)-bit long prefix of . Finally D
outputs T'(z,y). Note that D is implementable in probabilistic polynomial-time,
and that

D(Up(n))
D(G'(Ug(n)))

T(Xn, A(X,,U,

(m)), where X, & F(1")

T(Xp, A(Xn, G'(Ug(n))) , where X,, & F(17)

It follows that Pr[D(Ul(k(n))) = ].] - Pr[D(G(Uk(n))) = ].] equals E[AA7T(F(]."))],
which implies a weaker version of the proposition (referring to E[Aa r(F(1™))]
rather than to E[|A4 r(F(1™)]])-

In order to prove that E[|A4 r(F(1™))]] (rather than to E[A4 r(F(1™))]) is neg-
ligible, we need to modify D a little. We start by assuming, towards the contra-
diction, that E[|A4 7(F(1™))|] > e(n) for some non-negligible function . On input
r (taken from either Uyg(n)) or G(Ug(n))), the modified algorithm D first obtains
x < F(1™), as before. Next, using a sample of size poly(n/e(n)), it approximates
pu(a) € PrT(z, A(z,U,m) = 1] and pe(z) € Pr(T (2, A(z, G'(Ugm))) = 1] such
that each probability is approximated to within a deviation of (n)/8 with negli-
gible error probability (say, exp(—n)). (Note that, so far, the actions of D only
depend on the length of its input 7, which determines n.) If these approximations
indicate that py(z) > pa(z) (equiv., that Ay > 0) then D outputs T'(z, A(z,r"))
else it outputs 1 — T'(x, A(z, ")), where 7' is the p(|x|)-bit long prefix of r and we
assume without loss of generality that the output of T" is in {0,1}. The reader may
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verify that, for every x, it holds that

Pr[D(U,n)) = 1|F(1") = x] — Pr[D(G"(Ug(n))) = 1|F(1") = ]
> o) ~pe(@) — 2~ exp(-n),

where the error terms are due to possible errors in the approximation of py(z) —
pc(z) (which may cause us to flip its sign and incur an error of 2|py(z) — pa(z)|
in the case that |py(z) — pg(x)| is smaller than our typical approximation error
for pU(.Z‘) —pg(l‘)).4 Thus, PF[D(Ug(k(n))) = ].] - Pr[D(G(Uk(n))) = ].] is lower-
bounded by E[|[Aa,7(F(1™))|] — (e(n)/2) — exp(—n) > e(n)/3, and the proposition
follows.

Conclusion. Analogous arguments are applied whenever one wishes to prove
that an efficient randomized process (be it an algorithm as above or a multi-party
computation) preserves its behavior when one replaces true randomness (assumed
in the analysis) by pseudorandomness (used in the implementation). Thus, given a
pseudorandom generator with a large stretch function, one can considerably reduce
the randomness complexity in any efficient application.

8.3.3 Computational Indistinguishability

In this section we spell-out (and study) the definition of computational indistin-
guishability that underlies Definition 8.1. The general definition of computational
indistinguishability refers to arbitrary probability ensembles, where a probability
ensemble is an infinite sequence of random variables {Z,}, cy such that each Z,
ranges over strings of length bounded by a polynomial in n. We say that {X,},en
and {Y,}, cn are computationally indistinguishable if for every feasible algorithm A
the difference d4(n) Lef |Pr[A(X,,)=1] — Pr[A(Y;,) =1]| is a negligible function in
n. That is:

Definition 8.4 (computational indistinguishability): The probability ensembles
{Xn}tnen and {Ya},en are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm D, every positive polynomial p, and all sufficiently

large n,
1

p(n)
where the probabilities are taken over the relevant distribution (i.e., either X, or
Y,,) and over the internal coin tosses of algorithm D. The Lh.s. of Eq. (8.4), when

viewed as a function of n, is often called the distinguishing gap of D, where { X, },,cn
and {Yn},cn are understood from the context.

PriD(X5)=1] = Pr[D(Yn)=1]| < (8.4)

4Specifically, the £(n)/2 term is due to the maximal typical deviation (i.e., £(n)/4) of our
approximation of py(z) — pg(x) and the exp(—n) term is due to the rare case that our approx-
imation of py () — pa(x) errs by more than ¢(n)/4. Note that if |py(z) — pg(z)| > €(n)/4 and
our approximation of pyr(z) — pa(x) deviates from its true value by less than e(n)/4 then we gain
the full gap due to = (i.e., |py(z) — pa(x)|).
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That is, we can think of D as somebody who wishes to distinguish two distributions
(based on a sample given to it), and think of the output “1” as D’s verdict that
the sample was drawn according to the first distribution. Saying that the two
distributions are computationally indistinguishable means that if D is a feasible
procedure then its verdict is not really meaningful (because the verdict is almost
as often 1 when the input is drawn from the first distribution as when the input
is drawn from the second distribution). We comment that the absolute value in
Eq. (8.4) can be omitted without affecting the definition (see Exercise 8.3), and we
will often do so without warning.

In Definition 8.1, we required that the probability ensembles {G(Uy)}1en and
{Uur) }reny be computationally indistinguishable. Indeed, an important special
case of Definition 8.4 is when one ensemble is uniform, and in such a case we call
the other ensemble pseudorandom.

Non-triviality of Computational Indistinguishability. Clearly, any two prob-
ability ensembles that are statistically close® are computationally indistinguishable.
Needless to say, this is a trivial case of computational indistinguishability, which is
due to information theoretic reasons. In contrast, as noted in Section 8.2, there ex-
ist probability ensembles that are statistically far apart and yet are computationally
indistinguishable (see Exercise 8.1). However, at least one of the probability en-
sembles in Exercise 8.1 is not polynomial-time constructible. One non-trivial case
of computational indistinguishability in which both ensembles are polynomial-time
constructible is provided by the definition of pseudorandom generators (see Exer-
cise 8.4). As we shall see (in Theorem 8.11), the existence of one-way functions
implies the existence of pseudorandom generators, which in turn implies the exis-
tence of polynomial-time constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable. We mention that this
sufficient condition is also necessary (see Exercise 8.5).

Indistinguishability by Multiple Samples

The definition of computational indistinguishability (i.e., Definition 8.4) refers to
distinguishers that obtain a single sample from one of the two probability ensembles
(ie., {Xn}nen and {Yo},cn). A more general definition refers to distinguishers
that obtain several independent samples from such an ensemble.

Definition 8.5 (indistinguishability by multiple samples): Let s:N— N be polynomially-
bounded. Two probability ensembles, {X,},en and {Yn},cn, are computationally
indistinguishable by s(-) samples if for every probabilistic polynomial-time algorithm,

D, every positive polynomial p(-), and all sufficiently large n’s

1
‘Pr [D(X,(}),...,X,(f(”)))zl] —Pr [D(erl),...,Y,Es(”)))zl]‘ < o

5Two probability ensembles, {X”}neN and {Y”}neN7 are said to be statistically close if for

every positive polynomial p and sufficient large n the variation distance between X, and Y, (i.e.,
% ZZ |Pr[X, = z] — Pr[Y, = z]|) is bounded above by 1/p(n).
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where X5 through _Xr(f(n)) and Y.V through YTES(T_L)) are independent random vari-
ables, with each Xr(f) identical to X,, and each YTEZ) identical to Y,,.

It turns out that in the most interesting cases, computational indistinguishability
by a single sample implies computational indistinguishability by any polynomial
number of samples. One such case is the case of polynomial-time constructible
ensembles. We say that the ensemble {Z,},cn is polynomial-time constructible if
there exists a polynomial-time algorithm S so that S(1™) and Z,, are identically
distributed.

Proposition 8.6 Suppose that X Lef {Xn}lneny andY def {Yo}.en are both polynomial-

time constructible, and s be a polynomial. Then, X and Y are computationally
indistinguishable by a single sample if and only if they are computationally indis-
tinguishable by s(-) samples.

Clearly, for every polynomial s, computational indistinguishability by s(-) sam-
ples implies computational indistinguishability by a single sample. We now prove
that, for efficiently constructible ensembles, indistinguishability by a single sample
implies indistinguishability by multiple samples. ¢ The proof provides a simple
demonstration of a central proof technique, known as the hybrid technique.

Proof Sketch:” To prove that a sequence of independently drawn samples of one
distribution is indistinguishable from a sequence of independently drawn samples
from the other distribution, we consider hybrid sequences such that the i*" hybrid
consists of ¢ samples taken from the first distribution and the rest taken from the
second distribution. The “homogeneous” sequences (which we wish to prove to be
computational indistinguishable) are the extreme hybrids (i.e., the first and last
hybrids considered above). The key observation is that distinguishing the extreme
hybrids (towards the contradiction hypothesis) means distinguishing neighboring
hybrids, which in turn yields a procedure for distinguishing single samples of the
two original distributions (contradicting the hypothesis that these two distributions
are indistinguishable by a single sample). Details follow.

Suppose that D distinguishes s(n) samples of one distribution from s(n) samples
of the other, with a distinguishing gap of §(n). Denoting the i*" hybrid by H?
(i.e., HS = (Xle), Xy YTES(")))), this means that D distinguishes the
extreme hybrids (i.e., H® and H3™) with gap §(n). Then D distinguishes a random
pair of neighboring hybrids (i.e., D distinguishes the i*" hybrid from the i + 15
hybrid, for a randomly selected i) with gap at least §(n)/s(n). The reason being
that

EiG{O,...,s(n)—l} [Pr[D(H,i) =1] - Pr[D(Hffl) = 1]]

s(n)—1
= ﬁ > (PrID(H},) = 1] - PD(HH) = 1)) (8.5)
i=0

6The requirement that both ensembles are polynomial-time constructible is essential; see,
Exercise 8.8.
“For more details see [87, Sec. 3.2.3].
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1

= o (P =1 = D) =1]) = T8
Using D, we obtain a distinguisher D' of single samples: Given a single sample,
algorithm D’ selects ¢ € {0,...,s(n) — 1} at random, generates ¢ samples from
the first distribution and s(n) — i — 1 samples from the second distribution, and
invokes D with the s(n)-samples sequence obtained when placing the input sample
in location ¢ + 1. Thus, the construction of D’ relies on the hypothesis that both
probability ensembles are polynomial-time constructible. In analyzing D’, observe
that when the single sample (i.e., the input to D') is taken from the first (resp.,
second) distribution, algorithm D' invokes D on the i+1%* hybrid (resp., i*" hybrid).
Thus, the distinguishing gap of D' is captured by Eq. (8.5), and the claim follows.
|

The hybrid technique — a digest: The hybrid technique constitutes a special
type of a “reducibility argument” in which the computational indistinguishability
of complex ensembles is proven using the computational indistinguishability of basic
ensembles. The actual reduction is in the other direction: efficiently distinguishing
the basic ensembles is reduced to efficiently distinguishing the complex ensembles,
and hybrid distributions are used in the reduction in an essential way. The following
three properties of the construction of the hybrids play an important role in the
argument:

1. The extreme hybrids collide with the compler ensembles: this property is
essential because what we want to prove (i.e., the indistinguishability of the
complex ensembles) relates to the complex ensembles.

2. Neighboring hybrids are easily related to the basic ensembles: this property
is essential because what we know (i.e., the indistinguishability of the basic
ensembles) relates to the basic ensembles. We need to be able to translate our
knowledge (i.e., computational indistinguishability) of the basic ensembles to
knowledge (i.e., computational indistinguishability) of any pair of neighbor-
ing hybrids. Typically, it is required to efficiently transform strings in the
range of a basic distribution into strings in the range of a hybrid, so that
the transformation maps the first basic distribution to one hybrid and the
second basic distribution to the neighboring hybrid. (In the proof of Proposi-
tion 8.6, the hypothesis that both X and Y are polynomial-time constructible
is instrumental for such an efficient transformation.)

3. The number of hybrids is small (i.e., polynomial): this property is essential
in order to deduce the computational indistinguishability of extreme hybrids
from the computational indistinguishability of each pair of neighboring hy-
brids. Typically, the provable “distinguishability gap” is inversely propor-
tional to the number of hybrids. Indeed, see Eq. (8.5).

We remark that in the course of an hybrid argument, a distinguishing algorithm
referring to the complex ensembles is being analyzed and even invoked on arbi-
trary hybrids. The reader may be annoyed of the fact that the algorithm “was
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not designed to work on such hybrids” (but rather only on the extreme hybrids).
However, an algorithm is an algorithm: once it exists we can invoke it on inputs of
our choice, and analyze its performance on arbitrary input distributions.

8.3.4 Amplifying the stretch function

Recall that the definition of pseudorandom generators (i.e., Definition 8.1) makes
a minimal requirement regarding their stretch; that is, it is only required that
the length of the output of such generators is longer than their input. Needless
to say, we seek pseudorandom generators with a significant stretch. It turns out

(see Counstruction 8.7) that pseudorandom generators of any stretch function and

in particular of stretch ¢;(k) def k + 1, are easily converted into pseudorandom

generators of any desired (polynomially bounded) stretch function, £. (On the
other hand, since pseudorandom generators are required (in Definition 8.1) to run
in polynomial time, their stretch must be polynomially bounded.) Thus, when
talking about the existence of pseudorandom generators, as in Definition 8.1, we
may ignore the stretch function.

Construction 8.7 Let G, be a pseudorandom generator with stretch function
(k) = k+1, and € be any polynomially bounded stretch function that is polynomial-
time computable. Let

G(s) © 0102 " 0y(|s]) (8.6)

where xo = s and z;0; = G1(z;_1), for i =1,...,€(]s|). (That is, o; is the last bit
of G1(z;—1) and z; is the |s|-bit long prefix of G1(z;—1).)

Needless to say, G is polynomial-time computable and has stretch £. An alternative
construction is considered in Exercise 8.9.

Hi

Q
Q
-Q

O-i+l [} L] (] g,

Figure 8.2: Analysis of stretch amplification — the i*® hybrid.

Proposition 8.8 Let G and G be as in Construction 8.7. Then G constitutes a
pseudorandom generator.
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Proof Sketch:® The proposition is proven using the hybrid technique, presented
and discussed in Section 8.3.3. Here (for i = 0,...,£(k)) we consider the hybrid
distributions H}, defined by

; def p
Hy = Ui(l) -ge(k)fi(Uéz)),

where Ui(l) and U,£2) are independent uniform distributions (over {0, 1}’ and {0, 1}*,
respectively), and g¢;(x) denotes the j-bit long prefix of G(z). (See Figure 8.2.)
The extreme hybrids (i.e., H{ and Hf) correspond to G(Uy) and Uy, whereas
distinguishability of neighboring hybrids can be worked into distinguishability of
G1(Ug) and Ugyq. Details follow.

Suppose that algorithm D distinguishes H} from H;™ (with some gap 6(k)).
Denoting the first |x| — 1 bits (resp., last bit) of by F(z) (resp., L(z)), we may
wite g;(3) = (L(G1(5)), g1 (F(G1(5)))) and

Hy = U gu-UY)
= (UM, LGUP)), geir)—iy -1 (F(GL(UP))))
HY = UL ge-ia(U)

= (Uz'(l):L(Ulgii)ag(l(k)fi)fl(F(Ulgi;)))-

Then, incorporating the generation of UZ-(l) and the evaluation of gy)—;—1 into
the distinguisher D, we distinguish (F(Gl(U,£2))),L(Gl(U,£2)))) = G1(Uy) from
(F(U,gj_i),L(Ug_i)) = Ugy1, in contradiction to the pseudorandomness of G;.
Specifically, on input z € {0,1}¥! we uniformly select 7 € {0,1}* and output
D(r - L(x) - ge(k)—i—1(F'(x))). Thus, the probability we output 1 on input G1(Us)
(resp., Ug+1) equals Pr[D(H;) = 1] (resp., Pr[D(H;™") = 1]). A final detail refers
to the question which ¢ to use. As usual (when the hybrid technique is used), a
random ¢ (in {0,...,k — 1}) will do. O

8.3.5 Counstructions

The constructions surveyed in this section “transform” computational difficulty, in
the form of one-way functions, into generators of pseudorandomness. Recall that
a polynomial-time computable function is called one-way if any efficient algorithm
can invert it only with negligible success probability (see Definition 7.1 and Sec-
tion 7.1 for further discussion). We will actually use hard-core predicates of such
functions, and refer the reader to their treatment in Section 7.1.3. Loosely speak-
ing, a polynomial-time computable predicate b is called a hard-core of a function f
if any efficient algorithm, given f(z), can guess b(z) only with success probability
that is negligible better than half. Recall that, for any one-way function f, the
inner-product mod 2 of z and r is a hard-core of f'(z,r) = (f(z),r). Finally, we
get to the construction of pseudorandom generators.

8For more details see [87, Sec. 3.3.3].
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Proposition 8.9 (A simple construction of pseudorandom generators): Let b be
a hard-core predicate of a polynomial-time computable 1-1 and length-preserving

function f. Then, G(s) Lef f(s)-b(s) is a pseudorandom generator.

Proof Sketch:® The |s|-bit long prefix of G(s) is uniformly distributed, because f
is 1-1 and onto {0, 1}/*l. Hence, the proof boils down to showing that distinguishing
f(s)b(s) from f(s)-o, where o is a random bit, yields contradiction to the hypothesis
that b is a hard-core of f (i.e., that b(s) is unpredictable from f(s)). Intuitively,
such a distinguisher also distinguishes f(s)b(s) from f(s) - b(s), where @ = 1 — o,
and distinguishing f(s)-b(s) from f(s)-b(s) yields an algorithm for predicting b(s)
based on f(s). Details follow.

We start with any potential distinguisher D, and let

§(k) < Pr[D(G(Uy)) = 1] — Pr[D(Ugy1) = 1].

We may assume, without loss of generality, that §(k) is non-negative (for infinitely
many k’S). Using G(Uk) = f(Uk) : b(Uk) and Uk+1 = f(Uk) - Z, where Z = b(Uk)
with probability 1/2 and Z = b(U},) otherwise, we have

Pr(D(f(Uk)b(Ux)) = 1] = PrID(f(Ux)b(U)) = 1] = 26(k).

Consider an algorithm A that, on input y, uniformly selects o € {0, 1}, invokes
D(yo), and outputs o if D(yo) =1 and 7 otherwise. Then

PrlA(f(Ur)) = b(Uk)] = PrD(f(Uy)-0) =1A0 =b(Uy)]
+ Pr[D(f(Us) - 0) =0 A0 = b(Uy)]
_ % - (PrID(f(Uy) - b(Uy)) = 1]

+1 = PAD(f(Uk) -b(U) = 1)
which equals (1 + 26(k))/2. The proposition follows. O

Combining Theorem 7.7, Proposition 8.9 and Construction 8.7, we obtain the fol-
lowing corollary.

Theorem 8.10 (A sufficient condition for the existence of pseudorandom gener-
ators): If there exists 1-1 and length-preserving one-way function then, for every
polynomially bounded stretch function £, there exists a pseudorandom gemerator of
stretch .

Digest. The key point in the proof of Proposition 8.9 is showing that the (rather
obvious) unpredictability of the output of G implies its pseudorandomness. The
fact that (next bit) unpredictability and pseudorandomness are equivalent, in gen-
eral, is proven explicitly in the alternative proof of Theorem 8.10 provided next.

9For more details see [87, Sec. 3.3.4].
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An alternative presentation. Let us take a closer look at the pseudorandom
generators obtained by combining Construction 8.7 and Proposition 8.9. For a
stretch function £:NN— N, a 1-1 one-way function f with a hard-core b, we obtain

G(s) ooy Te(|s]) s (8.7)

where zp = s and z;0;, = f(x;—1)b(x;—1) for ¢ ,0(|s|). Denoting by f*(z)
the value of f iterated i times on z (i.e., f'(z) = f’ 1( f(x)) and f°(z) = z), we
rewrite Eq. (8.7) as follows

G(5) € b(s) - b(f(s)) - b(fUD2(s)). (8.8)

The pseudorandomness of G is established in two steps, using the notion of (next
bit) unpredictability. An ensemble {Z},¢cn is called unpredictable if any probabilis-
tic polynomial-time machine obtaining a (random)!? prefix of Zj fails to predict
the next bit of Zj, with probability non-negligibly higher than 1/2. Specifically, we
need to establish the following two results.

1. A general result asserting that an ensemble is pseudorandom if and only if
it is unpredictable. Recall that an ensemble is pseudorandom if it is compu-
tationally indistinguishable from a uniform distribution (over bit strings of
adequate length).

Clearly, pseudorandomness implies polynomial-time unpredictability, but here
we actually need the other direction, which is less obvious. Still, using a
hybrid argument, one can show that (next-bit) unpredictability implies in-
distinguishability from the uniform ensemble. For details see Exercise 8.10.

2. A specific result asserting that the ensemble {G(Uy)}rcn is unpredictable
from right to left. Equivalently, G'(U,) is polynomial-time unpredictable
(from left to right (as usual)), where G'(s) = b(fUsD=2(s))---b(f(s)) - b(s)
is the reverse of G(s).

Using the fact that f induces a permutation over {0, 1}", observe that the (j+
1)-bit long prefix of G’ (Uy,) is distributed identically to b(f7(Uy)) - - - b(f(Ux))-
b(Uy). Thus, an algorithm that predicts the j + 15 bit of G'(U,,) based on
the j-bit long prefix of G'(U,,) yields an algorithm that guesses b(U,,) based
on f(Uy,). For details see Exercise 8.12.

Needless to say, G is a pseudorandom generator if and only if G' is a pseudorandom
generator (see Exercise 8.11). We mention that Eq. (8.8) is often referred to as the
Blum-Micali Construction.!!

10For simplicity, we define unpredictability as referring to prefices of a random length (dis-
tributed uniformly in {0, ..., |Z| — 1}).

1 Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. Indeed, this construction originates in [37].
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A general condition for the existence of pseudorandom generators. Re-
call that given any one-way 1-1 length-preserving function, we can easily construct
a pseudorandom generator. Actually, the 1-1 (and length-preserving) requirement
may be dropped, but the currently known construction — for the general case — is
quite complex.

Theorem 8.11 (On the existence of pseudorandom generators): Pseudorandom
generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of
one-way functions, consider a pseudorandom generator G with stretch function
{(k) = 2k. For z,y € {0,1}* define f(z,y) def G(z), and so f is polynomial-time
computable (and length-preserving). It must be that f is one-way, or else one can
distinguish G(Uy) from Uz, by trying to invert and checking the result: Inverting f
on its range distribution refers to the distribution G(Uy), whereas the probability
that Usy has inverse under f is negligible.

The interesting direction of the proof of Theorem 8.11 is the construction of
pseudorandom generators based on any one-way function. In general (when f may
not be 1-1) the ensemble f(Uj) may not be pseudorandom, and so Construction 8.9
(i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. One
idea underlying the known construction is to hash f(Uy) to an almost uniform
string of length related to its entropy, using Universal Hash Functions. (This is
done after guaranteeing, that the logarithm of the probability mass of a value of
f(Uyg) is typically close to the entropy of f(Uy).)'? But “hashing f(Uy) down to
length comparable to the entropy” means shrinking the length of the output to,
say, k' < k. This foils the entire point of stretching the k-bit seed. Thus, a second
idea underlying the construction is to compensate for the k — k' loss by extracting
these many bits from the seed Uy, itself. This is done by hashing Uy, and the point
is that the (k — k')-bit long hash value does not make the inverting task any easier.
Implementing these ideas turns out to be more difficult than it seems, and indeed
an alternative construction would be most appreciated.

8.3.6 Non-uniformly strong pseudorandom generators

Recall that we said that truly random sequences can be replaced by pseudoran-
dom ones without affecting any efficient computation. The specific formulation of
this assertion, presented in Proposition 8.3, refers to randomized algorithms that
take a “primary input” and use a secondary “random input” in their computation.
Proposition 8.3 asserts that it is infeasible to find a primary input for which the
replacement of a truly random secondary input by a pseudorandom one affects the
final output of the algorithm in a noticeable way. This, however, does not mean
that such primary inputs do not exist (but rather that they are hard to find).

12Specifically, given an arbitrary one-way function f’, one first constructs f by taking a “direct

product” of sufficiently many copies of f'. For example, for Z1,..., &2/ € {0, 1}’“1/3, we let

f(@1, - zp2ys) ERUCI . fi(zy2/3)-
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Consequently, Proposition 8.3 falls short of yielding a (worst-case)!® “derandom-
ization” of a complexity class such as BPP. To obtain such results, we need a
stronger notion of pseudorandom generators, presented next. Specifically, we need
pseudorandom generators that can fool all polynomial-size circuits (cf. §1.2.4.1),
and not merely all probabilistic polynomial-time algorithms.'4

Definition 8.12 (strong pseudorandom generator — fooling circuits): A determin-
istic polynomial-time algorithm G is called a non-uniformly strong pseudorandom
generator if there exists a stretch function, ¢ : N—N, such that for any family
{Cr}ren of polynomial-size circuits, for any positive polynomial p, and for all suf-
ficiently large k’s

1
|PrICk(G(UR)) = 1] = PriCk(Uyry) =1]| < —=
p(k)
An alternative formulation is obtained by referring to polynomial-time machines
that take advice (Section 3.1.2). Using such pseudorandom generators, we can
“derandomize” BPP.

Theorem 8.13 (Derandomization of BPP): If there exists non-uniformly strong

pseudorandom generators then BPP is contained in N.>oDTIME(t. ), where t.(n) e

on°

Proof Sketch: For any S € BPP and any ¢ > 0, we let A denote the decision
procedure for L and G denote a non-uniformly strong pseudorandom generator
stretching n-bit long seeds into poly(n)-long sequences (to be used by A as sec-
ondary input when processing a primary input of length n). We thus obtain an
algorithm A’ = Ag (as in Construction 8.2). We claim that A and A’ may sig-
nificantly differ in their (expected probabilistic) decision on at most finitely many
inputs, because otherwise we can use these inputs (together with A) to derive
a (non-uniform) family of polynomial-size circuits that distinguishes G(U,:) and
Upoly(n), contradicting the the hypothesis regarding G. Specifically, an input z on
which A and A’ differ significantly yields a circuit C, that distinguishes G(U||-)

and Upoly(|2|), by letting Co(r) = A(z,r).'> Incorporating the finitely many “bad”

13Indeed, Proposition 8.3 yields an average-case derandomization of BPP. In particular, for
every polynomial-time constructible ensemble {X”}neN7 every Boolean function f € BPP, and
every ¢ > 0, there exists a randomized algorithm A’ of randomness complexity r-(n) = n® such
that the probability that A’'(X,) # f(X») is negligible. A corresponding deterministic (exp(7e)-
time) algorithm A can be obtained, as in the proof of Theorem 8.13, and again the probability
that A"(Xy) # f(X») is negligible, where here the probability is taken only over the distribution
of the primary input (represented by X, ). In contrast, worst-case derandomization, as captured
by the assertion BPP C DTIME(2"¢), requires that the probability that A" (X, ) # f(X,) is zero.

4 Needless to say, strong pseudorandom generators in the sense of Definition 8.12 satisfy the
basic definition of a pseudorandom generator (i.e., Definition 8.1); see Exercise 8.13. We com-
ment that the underlying notion of computational indistinguishability (by circuits) is strictly
stronger than Definition 8.4, and that it is invariant under multiple samples (regardless of the
constructibility of the underlying ensembles); for details, see Exercise 8.14.

13Indeed, in terms of the proof of Proposition 8.3, the finder F' consists of a non-uniform family
of polynomial-size circuits that print the “problematic” primary inputs that are hard-wired in
them, and the corresponding distinguisher D is thus also non-uniform.
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inputs into A’, we derive a probabilistic polynomial-time algorithm that decides S
while using randomness complexity n®.

Finally, emulating A’ on each of the 2" possible random choices (i.e., seeds
to G) and ruling by majority, we obtain a deterministic algorithm A" as required.
That is, let A'(x,r) denote the output of algorithm A’ on input = when using coins
r € {0,1}™. Then A"(x) invokes A'(z,7) on every r € {0,1}", and outputs 1 if
and only if the majority of these 2" invocations have returned 1. O

We comment that stronger results regarding derandomization of BPP are pre-
sented in Section 8.4.

On constructing non-uniformly strong pseudorandom generators. Non-
uniformly strong pseudorandom generators (as in Definition 8.12) can be con-
structed using any one-way function that is hard to invert by any non-uniform
family of polynomial-size circuits (as in Definition 7.3), rather than by probabilis-
tic polynomial-time machines. In fact, the construction in this case is simpler than
the one employed in the uniform case (i.e., the construction underlying the proof
of Theorem 8.11).

8.3.7 Other variants and a conceptual discussion

We first mention two stronger variants on the definition of pseudorandom genera-
tors, and conclude this section by highlighting various conceptual issues.

8.3.7.1 Stronger notions

The following two notions represent strengthening of the standard definition of
pseudorandom generators (as presented in Definition 8.1). Non-uniform versions
of these variants (strengthening Definition 8.12) are also of interest.

Fooling stronger distinguishers. One strengthening of Definition 8.1 amounts
to explicitly quantifying the resources (and success gaps) of distinguishers. We
chose to bound these quantities as a function of the length of the seed (i.e., k), rather
than as a function of the length of the string that is being examined (i.e., £(k)). For

a class of time bounds 7 (e.g., 7 = {t(k) Lef 2‘:\/E}C€N) and a class of noticeable

functions (e.g., F = {f(k) = 1/t(k) : t € T}), we say that a pseudorandom

generator, G, is (7, F)-strong if for any probabilistic algorithm D having running-
time bounded by a function in 7 (applied to k)%, for any function f in F, and for
all sufficiently large k’s, it holds that

|PriD(G(Uk)) = 1] = PrD(Uywy) = 1| < f(k).

An analogous strengthening may be applied to the definition of one-way functions.
Doing so reveals the weakness of the known construction that underlies the proof

16That is, when examining a sequence of length ¢(k) algorithm D makes at most t(k) steps,
where t € 7.
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of Theorem 8.11: It only implies that for some ¢ > 0 (¢ = 1/8 will do), for any
7T and F, the existence of “(7, F)-strong one-way functions” implies the existence

of (7', F')-strong pseudorandom generators, where 7' = {t'(k) def t(k®)/poly(k) :

teTYyand F' = {f'(k) < poly(k) - f(k%) : f € F}. What we would like to
have is an analogous result with 7' = {t'(k) Lef t(Q2(k))/poly(k) : t € T} and
def

7' =A{f"(k) = poly(k) - f(UK)) : f € F}.

Pseudorandom Functions. Pseudorandom generators allow to efficiently gen-
erate long pseudorandom sequences from short random seeds. Pseudorandom func-
tions (defined in Appendix C.3.3) are even more powerful: They allow efficient
direct access to a huge pseudorandom sequence, which is not even feasible to scan
bit-by-bit. Put in other words, pseudorandom functions can replace truly random
functions in any efficient application (e.g., most notably in cryptography). We
mention that pseudorandom functions can be constructed from any pseudorandom
generator (see Appendix C.3.3), and that they found many applications in cryp-
tography (see Appendix C.3.3, C.5.2, and C.6.2). Pseudorandom functions have
been used to derive negative results in computational learning theory [216] and in
the study of circuit complexity (cf., Natural Proofs [177]).

8.3.7.2 Conceptual Discussion

Whoever does not value preoccupation with thoughts, can skip this chapter.

Robert Musil, The Man without Qualities, Chap. 28

We highlight several conceptual aspects of the foregoing computational approach
to randomness. Some of these aspects are common to other instantiation of the
general paradigm (esp., the one presented in Section 8.4).

Behavioristic versus Omntological. The behavioristic nature of the computa-
tional approach to randomness is best demonstrated by confronting this approach
with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string
is Kolmogorov-random if its length equals the length of the shortest program pro-
ducing it. This shortest program may be considered the “true explanation” to
the phenomenon described by the string. A Kolmogorov-random string is thus a
string that does not have a substantially simpler (i.e., shorter) explanation than
itself. Considering the simplest explanation of a phenomenon may be viewed as an
ontological approach. In contrast, considering the effect of phenomena on certain
devices (or observations), as underlying the definition of pseudorandomness, is a
behavioristic approach. Furthermore, there exist probability distributions that are
not uniform (and are not even statistically close to a uniform distribution) and nev-
ertheless are indistinguishable from a uniform distribution (by any efficient device).
Thus, distributions that are ontologically very different, are considered equivalent
by the behavioristic point of view taken in the definition of computational indis-
tinguishability.
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A relativistic view of randomness. We have defined pseudorandomness in
terms of its observer. Specifically, we have considered the class of efficient (i.e.,
polynomial-time) observers and defined as pseudorandom objects that look ran-
dom to any observer in that class. In subsequent sections, we shall consider re-
stricted classes of such observers (e.g., space-bounded polynomial-time observers
and even very restricted observers that merely apply specific tests such as linear
tests or hitting tests). Each such class of observers gives rise to a different notion
of pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)
explicitly aims at distributions that are not uniform and yet are considered as such
from the point of view of certain observers. Thus, our entire approach to pseu-
dorandomness is relativistic and subjective (i.e., depending on the abilities of the
observer).

Randomness and Computational Difficulty. Pseudorandomness and com-
putational difficulty play dual roles: The general paradigm of pseudorandomness
relies on the fact that putting computational restrictions on the observer gives
rise to distributions that are not uniform and still cannot be distinguished from
uniform. Thus, the pivot of the entire approach is the computational difficulty of
distinguishing pseudorandom distributions from truly random ones. Furthermore,
many of the constructions of pseudorandom generators rely either on conjectures or
on facts regarding computational difficulty (i.e., that certain computations that are
hard for certain classes). For example, one-way functions were used to construct
general-purpose pseudorandom generators (i.e., those working in polynomial-time
and fooling all polynomial-time observers). Analogously, as we shall see in §8.4.3.1,
the fact that parity function is hard for polynomial-size constant-depth circuits can
be used to generate (highly non-uniform) sequences that fool such circuits.

Randomness and Predictability. The connection between pseudorandomness
and unpredictability (by efficient procedures) plays an important role in the analysis
of several constructions (cf. Sections 8.3.5 and 8.4.2). We wish to highlight the
intuitive appeal of this connection.

8.4 Derandomization of time-complexity classes

Let us take a second look at the proof of Theorem 8.13: A pseudorandom gen-
erator was used to shrink the randomness complexity of a BPP-algorithm, and
derandomization was achieved by scanning all possible seeds to the generator. A
key observation regarding this process is that there is no point in insisting that
the pseudorandom generator runs in time polynomial in its seed length. Instead,
it suffices to require that the generator runs in time exponential in its seed length,
because we are incurring such an overhead anyhow due to the scanning of all pos-
sible seeds. Furthermore, in this context, the running-time of the generator may
be larger than the running time of the algorithm, which means that the genera-
tor need only fool distinguishers that take less steps than the generator. These
considerations motivate the following definition.
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8.4.1 Definition

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A,
we first obtain a functionally equivalent algorithm A¢ (as in Construction 8.2) that
has (significantly) smaller randomness complexity. Algorithm A has to maintain
A’s input-output behavior on all (but finitely many) inputs. Thus, the set of the
relevant distinguishers (considered in the proof of Theorem 8.13) is the set of all
possible circuits obtained from A by hard-wiring each of the possible inputs. Such a
circuit, denoted C,, emulates the execution of algorithm A on input x, when using
the circuit’s input as the algorithm’s internal coin tosses (i.e., A(z,r) = Cy(r)).
Furthermore, the size of C, is quadratic in the running-time of A on input z, and
the length of the input to C, is linear in the running-time of A (on input x).!” Thus,
the size of C, is quadratic in the length of its own input, and the pseudorandom
generator in use (i.e., G) needs to fool each such circuit. Recalling that we may
allow the generator to run in exponential time (in the length of its own input)!8,
we arrive at the following definition.

Definition 8.14 (pseudorandom generator for derandomizing BPTIME(+))!?: Let
¢ :N—N be a 1-1 function. A canonical derandomizer of stretch £ is a deterministic
algorithm G of time complexity upper-bounded by poly(2* - £(k)) such that for every
circuit Dy, of size €(k)? it holds that

|PADU(G() = 1] = PADWUi) = 11| < . (59)
The circuits Dy, are potential distinguishers, which are given inputs of length (k).
When seeking to derandomize an algorithm A of time-complexity ¢, the aforemen-
tioned £(k)-bit long inputs represent possible random-inputs of A when invoked on
a generic (primary) input of length n = t=1(£(k)). That is, letting Dy, (r) = A(z,r)
for some choice of z € {0,1}", where |r| = t(n) = £(k), Eq. (8.9) implies that
Ag(x) maintains the majority vote of A(x). The straightforward deterministic
emulation of Ag takes time 2% - (poly(2* - £(k)) + t(n)), which is upper-bounded
by poly(2F - £(k)) = poly(2l_1(t(”)) -t(n)). The following proposition is easy to
establish.

7Indeed, we assume that algorithm A is represented as a Turing machine and refer to the
standard emulation of Turing machines by circuits (as underlying the proof of Theorem 2.20).
Thus, the aforementioned circuit C, has size that is at most quadratic (and in fact even almost-
linear [168]) in the running-time of A on input z, which in turn means that C, has size that is
at most quadratic (or almost linear) in the length of its own input. We note that most sources
use the fictitious convention by which the circuit size equals the length of its input, which can be
justified by considering a suitably padded input.

18 Actually, in Definition 8.14 we allow the generator to run in time poly(2F£(k)), rather than
poly(2k). This is done in order not to rule out trivially generators of super-exponential stretch
(ie., £(k) = 2¢(k)) However (see Exercise 8.15), the condition in Eq. (8.9) does not allow
for super-exponential stretch, and so in retrospect the two formulations are equivalent (because
poly(2k£(k)) = poly(2¥) for £(k) = 20(*).

9Fixing a model of computation, we denote by BPTIME(t) the class of decision problems that are
solvable by a randomized algorithm of time complexity ¢ that has two-sided error 1/3. Using 1/6 as
the “threshold distinguishing gap” (in Eq. (8.9)) guarantees that if Pr[Dy (Uy)) = 1] > 2/3 (resp.,
PriDg(Ugry) = 1] < 1/3) then Pr{Dy(G(Uy)) = 1] > 1/2 (resp., Pr[Dy(G(Uy)) = 1] < 1/2). Note
that |G(s)| = £(]s|) is implied by Eq. (8.9).
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Proposition 8.15 If there exists a canonical derandomizer of stretch € then, for
every time-constructible t : N—N, it holds that BPTIME(t) C DTIME(T), where

T(n) = poly(2° (") - ¢(n)).

Proof Sketch: Just follow the proof of Theorem 8.13, noting that the ade-
quate value of k (i.e., k = £71(t(n))) can be determined easily (e.g., by invok-
ing G(1°) for i = 1,...,k, using the fact that £: N—N is 1-1). Note that the
complexity of the deterministic procedure is dominated by the 2* invocations of
Ag(z,s) = Az, G(s)), where s € {0,1}¢ (=) and cach of these invocations
takes time poly(2* - £(k)) + t(n) = poly(2¢ (") . ¢(n)). Using the hypothesis
|PrlA(z, Uyry) =1] — (1/2)| > 1/6, it follows that the majority vote of Ag equals 1
(equiv., Pr[Ag(z,Uy) =1] > 1/2) if and only if Pr{A(z,Uys)) = 1] > 1/2 (equiv.,
PrlA(z, Uyr))=1] > 1/2). Indeed, the implication is due to Eq. (8.9), when applied
to the circuit C,(r) = A(z,r) (which has size at most [r|?). O

The goal. In light of Proposition 8.15, we seek canonical derandomizers with
stretch that is as big as possible. The stretch cannot be super-exponential (i.e., it
most hold that £(k) = O(2*)), because there exists a circuit of size O(2* - £(k)) that
violates Eq. (8.9) (see Exercise 8.15) whereas for £(k) = w(2*) it holds that O(2* -
{(k)) < £(k)?. Thus, our goal is to construct canonical derandomizer with stretch
{(k) = 22%), Such canonical derandomizers will allow for a “full derandomization
of BPP”:

Theorem 8.16 If there exists a canonical derandomizer of stretch ((k) = 2,

then BPP =P.

Proof: Using Proposition 8.15, we get BPTIME(t) C DTIME(T), where T'(n) =
poly(2 (") - t(n)) = poly(t(n)). M

Reflections. We stress that a canonical derandomizer G was defined in a way
that allows it to have time complexity ¢t that is larger than the size of the circuits
that it fools (i.e., tg(k) > £(k)? is allowed). Furthermore, tg(k) > 2% was also
allowed. Thus, if indeed tg (k) = 2%*) (as is the case in Section 8.4.2) then G(U})
can be distinguished from Uyyy in time 28 - tg(k) = poly(ta(k)) by trying all
possible seeds.?? In contrast, for a general-purpose pseudorandom generator G (as
discussed in Section 8.3) it holds that t¢ (k) = poly(k), while for every polynomial
p it holds that G(Uy) is indistinguishable from Uy in time p(tg(k)).

8.4.2 Construction

The fact that canonical derandomizers are allowed to be more complex than the
corresponding distinguisher makes some of the techniques of Section 8.3 inapplica-
ble in the current context. For example, the stretch function cannot be amplified

20Note that this does not contradict the hypothesis that G is a canonical derandomizer because
in this case 2% - tg(k) > £(k)2.
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as in Section 8.3.4. On the other hand, the techniques developed below are in-
applicable to Section 8.3. Amazingly enough, the pseudorandomness (or rather
the next-bit unpredictability) of the following generators hold even when the “ob-
server” is given the seed itself. (This fact capitalizes on the fact that the observer’s
time-complexity does not allow for running the generator.)

As in Section 8.3.5, the construction presented next transforms computational
difficulty into pseudorandomness, except that here both computational difficulty
and pseudorandomness are of a somewhat different form than in Section 8.3.5.
Specifically, here we use Boolean predicates that are computable in exponential-
time but are T-inapproximable for some exponential function T' (see Definition 7.9
in Section 7.2). That is, for constants c¢,e > 0 and all but finitely many m, the
(residual) predicate f : {0,1}™ — {0,1} is computable in time 2™ but for any
circuit C of size 2°™ it holds that Pr[C(U,.) = f(Unm)] < 3 +27°™. (Needless to
say, € < c¢.) Recall that such predicates exist under the assumption that & has
(almost-everywhere) exponential circuit complexity (see Theorem 7.19 for an exact
formulation). With these preliminaries, we turn to the construction of canonical
derandomizers with exponential stretch.

Construction 8.17 (The Nisan-Wigderson Construction):?! Let f : {0,1}™ —
{0,1} and S, ..., S¢ be a sequence of m-subsets of {1,...,k}. Then, for s € {0,1}F,

we let
def

G(s) = f(ss,) " f(ss,) (8.10)
where sg denotes the projection of s on the bit locations in S C {1,...,|s|}; that is,
fors=o01- -0 and S = {i1,...,0m}, we have ss =0y, -+ -0, .

Letting k vary and £,m:N— N be functions of k, we wish G to be a canonical de-
randomizer and £(k) = 2%*), One (obvious) necessary condition for this to happen
is that the sets must be distinct, and hence m(k) = Q(k); consequently, f must
be computable in exponential-time. Furthermore, the sequence of sets S1, ..., Sy,
must be constructible in poly(2*) time. Intuitively, it is desirable to use a set
system with small pairwise intersections (because this restricts the overlap among
the various inputs to which f is applied), and a function f that is strongly inap-
proximable (i.e., T-inapproximable for some exponential function T"). Interestingly,
these conditions are essentially sufficient.

Theorem 8.18 (analysis of Construction 8.17): Let «, 8,7, > 0 be constants
satisfying € > (2a/8) +7, and £,m, T :N—N satisfy £(k) = 2°*, m(k) = Bk, and
T(n) = 2°™. Suppose that the following two conditions hold:

1. There ezists an exponential-time computable function f:{0,1}* —{0,1} that
is T-inapprozimable. (See Definition 7.9.)

2. There exists an exponential-time computable function S: NxN — 2N guch
that

21 Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. This construction originates in [161, 164].
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(a) For every k and i =1,...,0(k), it holds that S(k,i) C [k] and |S(k,i)| =
m(k).

(b) For every k and i # j, it holds that |S(k,i) N S(k,j)| <~ - m(k).

Then using G as defined in Construction 8.17, with S; = S(k, i), yields a canonical
derandomizer with stretch €.

Before proving Theorem 8.18 we note that, for any v > 0, a function S as in Condi-
tion 2 does exist with some m(k) = Q(k) and £(k) = 2%(*); see Exercise 8.16. Com-
bining such S with Theorems 7.19 and 8.18, we obtain a canonical derandomizer
with exponential stretch based on the assumption that & has (almost-everywhere)
exponential circuit complexity.?? Combining this with Theorem 8.16, we get the
first item of the following theorem.

Theorem 8.19 (Derandomization of BPP, revisited):

1. Suppose that there ezists a set S € £ having almost-everywhere exponential
circuit complezity (i.e., there exists a constant e > 0 such that, for all but
finitely many m’s, any circuit that correctly decides S on {0,1}™ has size at
least 2°™). Then, BPP =P.

2. Suppose that for every polynomial p there exists a set S € £ having circuit
complexity that is almost-everywhere greater than p. Then BPP is contained

in Ne>oDTIME(E: ), where t.(n) def on®

Part 2 is proved (in Exercise 8.20) by using a generalization of Theorem 8.18, which
in turn is provided in Exercise 8.19. We note that Part 2 of Theorem 8.19 super-
sedes Theorem 8.13 (see Exercise 7.16). The two parts of Theorem 8.19 exhibit two
extreme cases: Part 1 (often referred to as the “high end”) assumes an extremely
strong circuit lower-bound and yields “full derandomization” (i.e., BPP = P),
whereas Part 2 (often referred to as the “low end”) assumes an extremely weak
circuit lower-bound and yields weak but meaningful derandomization. Interme-
diate results (relying on intermediate lower-bound assumptions) can be obtained
analogous to Exercise 8.20, but tight trade-offs are obtained differently (cf., [212]).

Proof of Theorem 8.18: Using the time complexity upper-bounds on f and S,
it follows that G can be computed in exponential time. Our focus is on showing that
{G(Uk)} cannot be distinguished from {Uy)} by circuits of size £(k)?; specifically,
that G satisfies Eq. (8.9). In fact, we will prove that this holds for G'(s) = s- G(s);
that is, G fools such circuits even if they are given the seed as auxiliary input.
(Indeed, these circuits are smaller than the running time of G, and so they cannot
just evaluate G on the given seed.)

228pecifically, starting with a function having circuit complexity at least exp(eom), we apply
Theorem 7.19 and obtain a T-inapproximable predicate for T'(m) = 2™, where the constant
¢ € (0,e0) depends on the constant £9. Next, we set v = ¢/2 and invoke Exercise 8.16, which
determines a, 8 > 0 such that £(k) = 2** and m(k) = Bk. Note that (by possibly decreasing )
we get (2a/B8) +v < e.
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We start by presenting the intuition underlying the proof. As a warm-up sup-
pose that the sets (i.e., S(k,i)’s) used in the construction are disjoint. In such a
case (which is indeed impossible because k < £(k)-m(k)), the pseudorandomness of
G(Uy) would follow easily from the inapproximability of f, because in this case G
cousists of applying f to non-overlapping parts of the seed (see Exercise 8.18). In
the actual construction being analyzed here, the sets (i.e., S(k,)’s) are not disjoint
but have relatively small pairwise intersection, which means that G applies f on
parts of the seed that have relatively small overlap. Intuitively, such small overlaps
guarantee that the values of f on the corresponding inputs are “computationally
independent” (i.e., having the value of f at some inputs a1, ..., z; does not help in
approximating the value of f at another input x;4;). This intuition will be backed
by showing that, when fixing all bits that do not appear in the target input (i.e.,
in z;4+1), the former values (i.e., f(z1),..., f(x;)) can be computed at a relatively
small computational cost. With this intuition in mind, we now turn to the actual
proof.

The proof that G’ fools circuits of size £(k)? utilizes the relation between pseu-
dorandomness and unpredictability. Specifically, as detailed in Exercise 8.17, any
circuit that distinguishes G'(Uyg) from Up(y)4r with gap 1/6, yields a next-bit pre-
dictor of similar size that succeeds in predicting the next bit with probability at
least £ + 6{,1(@ >14 ﬁ, where the factor of ¢/(k) = (k) + k < (1 + o(1))l(k)
is introduced by the hybrid technique (cf. Eq. (8.5)). Furthermore, given the non-
uniform setting of the current proof, we may fix a bit location ¢ 4+ 1 for prediction,
rather than analyzing the prediction at a random bit location. Indeed, ¢ > k must
hold, because the first k& bits of G'(Uy) are uniformly distributed. In the rest of
the proof, we transform such a predictor into a circuit that approximates f better
than allowed by the hypothesis (regarding the inapproximability of f).

Assuming that a small circuit C' can predict the i41% bit of G'(Uy), when given
the previous 4 bits, we construct a small circuit C' for approximating f(Up(x)) on
input Uy, (k). The point is that the i+ 1° bit of G'(s) equals f(sg(k,j41)), where j =
i—k >0, and so C" approximates f(sg(k,j+1)) based on s, f(55(k,1))s -+ f(85(k,5))5
where s € {0, 1}* is uniformly distributed. Note that this is the type of thing that
we are after, except that the circuit we seek may only get sg(x ;j41) as input.

The first observation is that C’ maintains its advantage when we fix the best
choice for the bits of s that are not at bit locations S;j11 = S(k,j + 1) (i.e., the
bits s(xj\s,,,)- That is, by an averaging argument, it holds that

sz6{0?11}2}3(_1,1.(1»-){Pr5€{0:1}’“[Cl(s7 JACER I f(Ssj)) = f(SS,-+1) | SkN\Sj41 = s']}

> p' L Proconyr[C(, F(55,), 0 F(55,)) = f(55;,,)].

Recall that by the hypothesis p’ > £+ ﬁ Hard-wiring the fixed string s’ into C’,
and letting 7(x) denote the (unique) string s satisfying sg

we obtain a circuit C"' that satisfies

— — o
s = T and sps;,, =8,

Preeop[C" (2, f(x(2)s,), -, f(m(2)s,)) = f(2)] = p'.
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The circuit C" is almost what we seek. The only problem is that C"' gets as input
not only z, but also f(7(z)s,), ..., f(7(z)s, ), whereas we seek an approximator of
f(x) that only gets .

The key observation is that each of the “missing” values f(7(z)s,), ..., f(7(2)s;)
depend only on a relatively small number of the bits of . This fact is due to the
hypothesis that |S¢NS;41| < v-m(k) for t = 1,...,j, which means that 7(z)sg, is an

m(k)-bit long string in which m, Lef |S¢ N Sj41] bits are projected from z and the
rest are projected from the fized string s’. Thus, given z, the value f(w(x)s,) can
be computed by a (trivial) circuit of size 6(2’”‘ ); that is, by a circuit implementing
a look-up table on m; bits. Using all these circuits (together with C"), we will
obtain the desired approximator of f. Details follow.

We obtain the desired circuit, denoted C, that T-approximates f as follows.
The circuit C depends on the index j and the string s’ that are fixed as in the
foregoing analysis. On input z € {0,1}™, the circuit C' computes the values
f(n(x)s,),..., f(m(z)s;), invokes C"" on input z and these values, and outputs the
answer as a guess for f(z). That is,

Clz) = C"(x, f(x(2)s,), -, f(w(@)s,)) = C'(w(x), f(w(2)s,), oy f((2)s)))-

By the foregoing analysis, Pr[C(z) = f(z)] > p’ > % + %m), where the second
inequality is due to T'(m(k)) = 2°™(k) = 258k » 22ak 5 7¢(k). The size of C
is upper-bounded by €(k)? + £(k) - O(27™®)) < O(U(k)? - 27™R)) < T(m(k)),
where the second inequality is due to T(m(k)) = 2:m(*) > O(22k+vm(k)) and
¢(k) = 2%*. Thus, we derived a contradiction to the hypothesis that f is T-
inapproximable. [l

8.4.3 Variants and a conceptual discussion

We start this section by discussing a general framework that underlies Construc-
tion 8.17 and end it with a conceptual discussion regarding derandomization.

8.4.3.1 Construction 8.17 as a general framework

The Nisan-Wigderson Construction (i.e., Construction 8.17) is actually a general
framework, which can be instantiated in various ways. Some of these instantiations
are briefly reviewed next, and are based on an abstraction of the construction as
well as of its analysis.

We first note that the generator described in Construction 8.17 consists of a
generic algorithmic scheme that can be instantiated with any predicate f. Further-
more, this algorithmic scheme, denoted G, is actually an oracle machine that makes
(non-adaptive) queries to the function f, and thus the combination may be writ-
ten as G/. Likewise, the proof of pseudorandomness of G/ yields a (non-uniform)
circuit C that given oracle access to any distinguisher yields an approximation
procedure for f. The circuit C does depends on f (but in a restricted way), and
uses the distinguisher as a black-box. Specifically, C' contains look-up tables for
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computing functions obtained from f by fixing some of the input bits (i.e., look-up
tables for the functions f(7(-)s,)’s).

Derandomization of constant-depth circuits. In this case we instantiate
Construction 8.17 using the parity function in the role of the inapproximable
predicate f, noting that parity is indeed inapproximable by “small” constant-
depth circuits. With an adequate setting of parameters we obtain pseudorandom
generators with stretch £(k) = exp(k'/9() that fool “small” constant-depth cir-
cuits (see [161]). The analysis of this construction proceeds very much like the proof
of Theorem 8.18. One important observation is that incorporating the (straightfor-
ward) circuits that compute f(7(z)s,) into the distinguishing circuit only increases
its depth by two levels. Specifically, the circuit C uses depth-two circuits that com-
pute the values f(m(x)s,)’s, and then obtains a prediction of f(z) by using these
values in its (single) invocation of the (given) distinguisher.

The resulting pseudorandom generator, which use a seed of polylogarithmic
length (equiv., £(k) = exp(k'/°M)), can be used for derandomizing RAC° (i.e.,
random AC°), analogously to Theorem 8.16. In other words, we can determin-
istically approximate, in quasi-polynomial-time and up-to an additive error, the
fraction of inputs that satisfy a given (constant-depth) circuit. Specifically, for any
constant d, given a depth-d circuit C, we can deterministically approximate the
fraction of the inputs that satisfy C (i.e., cause C to evaluate to 1) to within any
additive constant error®® in time exp(poly(log|C|)), where the polynomial depends
on d. Providing a deterministic polynomial-time approximation, even in the case
d =2 (i.e., CNF/DNF formulae) is an open problem.

Derandomization of probabilistic proof systems. A different (and more
surprising) instantiation of Construction 8.17 utilizes predicates that are inapprox-
imable by small circuits having oracle access to N'P. The result is a pseudorandom
generator robust against two-move public-coin interactive proofs (which are as pow-
erful as constant-round interactive proofs (see §9.1.3.1)). The key observation is
that the analysis of Construction 8.17 provides a black-box procedure for approx-
imating the underlying predicate when given oracle access to a distinguisher (and
this procedure is valid also in case the distinguisher is a non-deterministic machine).
Thus, under suitably strong (and yet plausible) assumptions, constant-round inter-
active proofs collapse to NP. We note that a stronger result, which deviates from
the foregoing framework, has been subsequently obtained (cf. [156]).

Construction of randomness extractors. An even more radical instantiation
of Construction 8.17 was used to obtain explicit constructions of randomness ex-
tractors (see Appendix D.4). In this case, the predicate f is viewed as (an error

23We mention that in the special case of approximating the number of satisfying assignment
of a DNF formula, relative error approximations can be obtained by employing a deterministic
reduction to the case of additive constant error (see §6.2.2.1). Thus, using a pseudorandom gen-
erator that fools DNF formulae, we can deterministically obtain a relative (rather than additive)
error approximation to the number of satisfying assignment in a given DNF formula.
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correcting encoding of) a somewhat random function, and the construction makes
sense because it refers to f in a black-box manner. In the analysis we rely on the
fact that f can be approximated by combining relatively little information (regard-
ing f) with (black-box access to) a distinguisher for G/. For further details see
Appendix D 4.

8.4.3.2 A conceptual discussion regarding derandomization

Part 1 of Theorem 8.19 is often summarized by saying that (under some reasonable
assumptions) randomness is useless. We believe that this interpretation is wrong
even within the restricted context of traditional complexity classes, and is bluntly
wrong if taken outside of the latter context. Let us elaborate.

Taking a closer look at the proof of Theorem 8.16 (which underlies Theo-
rem 8.19), we note that a randomized algorithm A of time complexity ¢ is emulated
by a deterministic algorithm A’ of time complexity ¢ = poly(t). Further noting
that A" = Ag invokes A (as well as the canonical derandomizer G) for a number of
times that must exceed ¢, we infer that ¢’ > t?> must hold. Thus, derandomization
via (Part 1 of) Theorem 8.19 is not really for free.

More importantly, we note that derandomization is not possible in various dis-
tributed settings, when both parties may protect their conflicting interests by em-
ploying randomization. Notable examples include most cryptographic primitives
(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).
For further discussion see Chapter 9 and Appendix C. Additional settings where
randomness makes a difference (either between impossibility and possibility or be-
tween formidable and affordable cost) include distributed computing (see [15]),
communication complexity (see [139]), parallel architectures (see [142]), sampling
(see Appendix D.3), and property testing (see Section 10.1.2).

8.5 Space-Bounded Distinguishers

In the previous two sections we have considered generators that output sequences
that look random to any efficient procedures, where the latter were modeled by
time-bounded computations. Specifically, in Section 8.3 we considered indistin-
guishability by polynomial-time procedures. A finer classification of time-bounded
procedures is obtained by considering their space-complexity (i.e., restricting the
space-complexity of time-bounded computations). This leads to the notion of
pseudorandom generators that fool space-bounded distinguishers. Interestingly,
in contrast to the notions of pseudorandom generators that were considered in
Sections 8.3 and 8.4, the existence of pseudorandom generators that fool space-
bounded distinguishers can be established without relying on computational as-
sumptions.
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8.5.1 Definitional issues

Unfortunately, natural notions of space-bounded computations are quite subtle,
especially when non-determinism or randomization are concerned (see Sections 5.3
and 6.1.4, respectively). Two major issues are time bounds and access to the random
tape.

1. Time bound: The question is whether or not one restricts the space-bounded
machines to run in time-complexity that is at most exponential in the space-
complexity.?* Recall that such an upper-bound follows automatically in the
deterministic case (Theorem 5.3), and can be assumed without loss of general-
ity in the non-deterministic case (see Section 5.3.2), but it does not necessarily
hold in the randomized case (see §6.1.4.1).

As in Section 6.1.4, we do postulate the aforementioned time-bound.

2. Access to the random tape: The question is whether whether the space-
bounded machine has one-way or two-way access to the randomness tape.
(Allowing two-way access means that the randomness is recorded for free;
that is, without being accounted for in the space-bound; see discussions in
Sections 5.3 and 6.1.4.) Recall that one-way access to the randomness tape
corresponds to the natural model of on-line randomized machine (which de-
termines its moves based on its internal coin tosses).

Again, as in Section 6.1.4, we consider one-way access.?®

In accordance with the resulting definition of randomized space-bounded compu-
tation, we consider space-bounded distinguishers that have a one-way access to the
input sequence that they examine. Since all known constructions remain valid also
when these distinguishers are non-uniform (and since non-uniform distinguishers
arise anyhow in derandomization), we use this stronger notion here.

In the context of non-uniform algorithms that have one-way access to their
input, we may assume, without loss of generality, that the running-time of such
algorithms equals the length of their input, denoted ¢ = #(k). Thus, we define a
non-uniform machine of space s: N—N as a family, {Dy},cn, of directed layered
graphs such that Dy, has at most 2°(*) vertices at each layer, and labeled directed
edges from each layer to the next layer.?” Each vertex has two (possibly parallel)

24 Alternatively, one can ask whether these machines must always halt or only halt with prob-
ability approaching 1. It can be shown that the only way to ensure “absolute halting” is to have
time-complexity that is at most exponential in the space-complexity.

25We note that the fact that we restrict our attention to one-way access is instrumental in
obtaining space-robust generators without making intractability assumptions. Analogous gener-
ators for two-way space-bounded computations would imply hardness results of a breakthrough
nature in the area.

26We note that these non-uniform space-bounded distinguishers correspond to branching pro-
grams of width that is exponential in the space-bound. Furthermore, these branching programs
read their input in a fixed predetermined order (which is determined by the designer of the
generator).

27Note that the space bound of the machine is stated in terms of a parameter k, rather than in
terms of the length of its input. In the sequel this parameter will be set to the length of a seed to
a pseudorandom generator. We warn that our presentation here is indeed non-standard for this
area. To compensate for this, we will also state the consequences in the standard format.
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outgoing directed edges, one labeled 0 and the other labeled 1, and there is a single
vertex in the first layer of Dy. The result of the computation of such a machine,
on an input of adequate length (i.e., length ¢ where Dy, has £+ 1 layers), is defined
as the vertex (in last layer) reached when following the sequence of edges that are
labeled by the corresponding bits of the input. That is, on input © =z - - - x¢, for
i =1,...,¢, we move from the vertex reached in the ‘" layer by using the outgoing
edge labeled x; (thus reaching a vertex in the ¢ + 1% layer). Using a fixed partition
of the vertices of the last layer, this defines a natural notion of decision (by Dy);
that is, we write Dy (z) = 1 if on input « machine Dy, reached a vertex that belongs
to the first part of the aforementioned partition.

Definition 8.20 (Indistinguishability by space-bounded machines):

e For a non-uniform machine, { Dy} rcn, and two probability ensembles, { Xt }ren
and {Yy}ren, the function d:N—[0,1] defined as

d(k) = |Pr[D(Xy) = 1] — Pr[Dy () = 1]]

is called the distinguishability-gap of {Dy} between the two ensembles.

o Let s : NoN and e : N — [0,1]. A probability ensemble, {Xy}pen, i8
called (s, €)-pseudorandom if for any (non-uniform) machine of space s(-), the
distinguishability-gap of the machine between { Xy} en and the corresponding
uniform ensemble (i.e., {U|x,|}reN) @8 at most £(-).

o A deterministic algorithm G of stretch function £ is called a (s, €)-pseudorandom
generator if the ensemble {G(U)}ren is (s,€)-pseudorandom. That is, every
non-uniform machine of space s(-) has a distinguishing-gap of at most &(-)
between {G(Ur)}ren and {Ug(k)}kEN.

Thus, when using a random seed of length k, a (s,¢)-pseudorandom generator
outputs a sequence of length ¢(k) that looks random to observers having space
s(k). (Setting m = s(k), we have k = s~!(m) and £(k) = £(s~1(m)).)

8.5.2 Two Constructions

In contrast to the case of pseudorandom generators that fool time-bounded distin-
guishers, pseudorandom generators that fool space-bounded distinguishers can be
established without relying on any computational assumption. The following two
constructions exhibit two extreme cases of a general trade-off between the space
bound of the potential distinguisher and the stretch function of the generator.?
We start with an attempt to maximize the stretch.

Theorem 8.21 (exponential stretch with quadratic length seed): For every space
constructible function s:IN— N, there ezists a (s,27%)-pseudorandom generator of

28These two results have been “interpolated” in [11]: There exists a parameterized family of
“space fooling” pseudorandom generators that includes both results as extreme special cases.
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stretch function (k) = 2k/0(s(k) < 25(K)  Burthermore, the generator works in
space that is linear in the length of the seed, and in time that is linear in the stretch
function.

In other words, for every ¢ < m, we have a generator that takes a random seed
of length & = O(t - m) and produce a sequence of length 2¢ that looks random to
any (non-uniform) machine of space m (up to a distinguishing-gap of 27™). In
particular, using a random seed of length k = O(m?), one can produce a sequence
of length 2™ that looks random to any (non-uniform) machine of space m. Thus,
one may replace random sequences used by any space-bounded computation, by
sequences that are efficiently generated from random seeds of length quadratic in
the space bound. The common instantiation is for log-space machines. In §8.5.2.2,
we apply Theorem 8.21 (and its underlying ideas) for the derandomization of space
complexity classes such as BPL (i.e., the log-space analogue of BPP).

We now turn to the case where one wishes to maximize the space bound of po-
tential distinguishers. We warn that Theorem 8.22 only guarantees a subexponen-
tial distinguishing gap (rather than the exponential distinguishing gap guaranteed
in Theorem 8.21). This warning is voiced because failing to recall this limitation
has led to errors in the past.

Theorem 8.22 (polynomial stretch with linear length seed): For any polynomial
p and for some s(k) = k/O(1), there ezists a (s,2~V*)-pseudorandom genera-
tor of stretch function p. Furthermore, the generator works in linear-space and
polynomial-time (both stated in terms of the length of the seed).

In other words, we have a generator that takes a random seed of length k& =
O(m) and produce a sequence of length poly(m) that looks random to any (non-
uniform) machine of space m. Thus, one may convert any randomized computation
utilizing polynomial-time and linear-space into a functionally equivalent randomized
computation of similar time and space complezities that uses only a linear number
of coin tosses.

8.5.2.1 Overviews of the proofs of Theorems 8.21 and 8.22

In both cases, we start the proof by considering a generic space-bounded distin-
guisher and show that the input distribution that this distinguisher examines can
be modified (from the uniform distribution into a pseudorandom one) without the
distinguisher noticing the difference. This modification (or rather a sequence of
modifications) yields a construction of a pseudorandom generator, which is only
spelled-out at the end of argument.

Overview of the proof of Theorem 8.21.2° The main technical tool used in
this proof is the “mixing property” of pairwise independent hash functions (see Ap-
pendix D.2). A family of functions H,,, which map {0, 1}™ to itself, is called mixing

29A detailed proof appears in [162].
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if for every pair of subsets A,B C {0,1}" for all but very few (i.e., exp(—(n))
fraction) of the functions h € H,, it holds that

Al |B
PriU, € AANKU,) € Bl ~ |2—n| . % (8.11)
where the approximation is up to an additive term of exp(—£2(n)). (See the gener-
alization of Lemma D.4, which implies that exp(—Q(n)) can be set to 27"/3.)

For any s(k)-space distinguisher Dy, as in Definition 8.20, we consider an aux-

iliary “distinguisher” Dj that is obtained by “contracting” every block of n def

©(s(k)) consecutive blocks layers in Dy, yielding a directed layered graph with
A £(k)/n < 250 layers (and 2°(*) vertices in each layer). Specifically, in D},
each vertex has a directed edge going to each vertex of the next layer, and these
edges are labeled with (possibly empty) subsets of {0,1}™ that correspond to the
set of corresponding n-paths in Dy, (and in particular form a partition of {0,1}™).
The graph Dj, simulates Dy, in the obvious manner; that is, the computation of Dj,
on an input of length ¢(k) = ¢' - n is defined by breaking the input into consecutive
blocks of length n and following the path of edges that are labeled by the subsets
containing the corresponding block. Now, for each pair of neighboring vertices, u
and v (in layers i and ¢ + 1, respectively), consider the label, L, , C {0,1}", of the
edge going from u to v. Similarly, for a vertex w at layer ¢ 4+ 2, we consider the
label L; ,, of the edge from v to w. By Eq. (8.11), for all but very few of h € Hp,
it holds that

Pr{Un € Luw AB(U,) € L, ] = Pr[U, € Ly, - Pr[U, € L, ]

where “very few” and = are as in Eq. (8.11). Thus, for all but exp(—(n)) fraction
of the choices of h € H,, replacing the coins in the second block (i.e., used in
transitions from layer i + 1 to layer ¢ + 2) with the value of h applied to the
outcomes of the coins used in the first block (i.e., in transitions from layer i to
i + 1), approximately maintains the probability that D} moves from u to w via
v. Using a union bound (on all triplets (u,v,w) as in the foregoing), for all but
235(k) . ¢" . exp(—Q(n)) fraction of the choices of h € H,, the foregoing replacement
approximately maintains the probability that Dj moves through any specific 2-
edge path of D}. Using ¢' < 2°(*) and a suitable choice of n = ©(s(k)), we have
235(k) . ¢ exp(—Q(n)) < exp(—Q(n)), and thus all but “few” functions h € H,,
are good for approximating all these transition probabilities. (We stress that the
same h can be used in all these approximations.) Thus, at the cost of extra |h]
random bits, we can reduce the number of true random coins used in transitions on
D;, by a factor of 2, without significantly affecting the final decision of D} (where
again we use the fact that ¢' - exp(—Q(n)) < exp(—Q(n)), which implies that the
approximation errors do not accumulate to too much). In other words, at the cost
of extra |h| random bits, we can effectively contract the distinguisher to half its
length. That is, fixing a good h (i.e., one that provides a good approximation to
the transition probability over all 23*(¥) . ¢’ 2-edge paths), we can replace the 2-edge
paths in D}, by edges in a new distinguisher D} such that r is in the set that labels
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0 1 (possible) application of hY

(possible) apphcatlon
of h®

K (possible)

application
7 7/ ! of h”
@

The output of the generator (on seed a, AV h(t)) consists of the concate-
nation of the strings denoted ayt, ...,a1t, appearing in the leaves of the tree.
For every x € {0,1}* it holds that a0 = o and ag = h(t*m)(az). In par-
ticular, for t = 3, we have ap11 = h" (1), which equals h()(h*)(ay)) =
R (W) (), where o = ay.

Figure 8.3: The first generator that “fools” space-bounded machines.

the edge u—w in D} if and ounly if, for some v, the string 7 is in the label of the
edge u—v in Dj and h(r) is in the label of the edge v—w (also in Dy).

Repeating the process for a logarithmic (in the depth of D} ) number of times
we obtain a distinguisher that only examines n bits, at which point we stop. In

total, we have used ¢ < log,(¢'/n) < log, ¢(k) random hash functions, denoted
R, ... bV which means that we can generate a sequence that fools the original
Dy, using a seed of length n +¢-log, |H,| (see Figure 8.3 and Exercise 8.22). Using
n = O(s(k)) and an adequate family H,, (e.g., Construction D.3) yields the claimed
seed length of O(s(k) -log, ¢(k))=%k. O

Overview of the proof of Theorem 8.22.3° The main technical tool used in this
proof is a suitable randomness extractor (as defined in §D.4.1.1), which is indeed a
much more powerful tool than hashing functions. The basic idea is that when Dy, is
at some “distant” layer, say at layer ¢, it typically “knows” little about the random
choices that led it there. That is, Dy, has only s(k) bits of memory, which leaves
out t — s(k) bits of “uncertainty” (or randomness) regarding the previous moves.
Thus, much of the randomness that led Dy to its current state may be “re-used”
(or “recycled”). To re-use these bits we need to extract almost uniform distribution
on strings of sufficient length out of the aforementioned distribution over {0,1}*
that has entropy3! at least t — s(k). Furthermore, such an extraction requires

30A detailed proof appears in [165].
31 Actually, a stronger technical condition needs and can be imposed on the latter distribution.
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some additional truly random bits, yet relatively few such bits. In particular, using
k' = Q(logt) bits towards this end, the extracted bits are exp(—Q(k')) away from
uniform.

The gain from the aforementioned recycling is significant if recycling is repeated
sufficiently many times. Towards this end, we break the k-bit long seed into two
parts, denoted r' € {0,1}*/? and (ry, oy T3/ ) Where [r;| = Vk/6, and set n = k/3.
Intuitively, ' will be used for determining the first n steps, and it will be re-
used (or recycled) together with r; for determining the steps i - n + 1 through
(¢ + 1) - n. Looking at layer i - n, we consider the information regarding r' that
is known to Dy (at layer i - n). Typically, the conditional distribution of 7, given
that we reached a specific vertex at layer ¢ - n, has (min-)entropy greater than
0.99-((k/2)—s(k)). Using r; (as a seed of an extractor applied to r'), we can extract
0.9-((k/2)—s(k)—o(k)) > k/3 = n bits that are almost-random (i.e., 2-20VE)_close
to U,) with respect to Dy, and use these bits for determining the next n steps.
Hence, using k random bits we are produce a sequence of length (1 + 3\/%) -n >
k3/? that fools machines of space bound, say, s(k) = k/10. Specifically, using an
extractor of the form Ext : {0,1}V*/6 x {0,1}¥/2 — {0,1}*/3, we map the seed
(r',71,...,75 /%) to the output sequence (r', Ext(ry,r), ..., Ext(ry z,7")). Thus, we
obtained a (s,2~%V?®))-pseudorandom generator of stretch function £(k) = k*/2.

To obtain an arbitrary polynomial stretch rather than a specific polynomial
stretch (i.e., £(k) = k*/?) we repeatedly apply an adequate composition, to be
outlined next. Suppose that Gy is a (s1,e1)-pseudorandom generator of stretch
function ¢; that works in linear space, and similarly for Go with respect to (s1,¢1)
and />. Then, we consider the following construction of a generator G:

1. Oninput s € {0, 1}*, obtain G;(s), and parse it into consecutive blocks, each
of length k&' = s1(k)/O(1), denoted ry,...,r¢, where t = €1(k)/k'.

2. Output the t - £2(k')-bit long sequence Go(r1) - - - Ga(ry).

Note that |G(s)] = li(k) - £2(K")/k', which for s;(k) = ©(k) yields |G(s)| =
l1(k) - £2(Q2k))/O(k), which for polynomials ¢; and ¢ yields |G(s)| = €1(]s]) -
25(|s])/O(|s]). We claim that G is a (s,e)-pseudorandom generator, for s(k) =
min(s1(k)/2, s2(2(s1(k))) and e(k) = e1(k) + €1(k) - e2(Q2(s1(k)). The proof uses a
hybrid argument, which refers to the distributions G(Uy), I, & Go(UP) -+ Go(ULY
and Uy, (x) = Uéj()k,)) e ngk,). The reader can verify that Iy is (sa(k'), t-2(k"))-
pseudorandom (see Exercise 8.21), and so we focus on proving that I is indistin-
guishable from G(U},) by machines of space s1(k)/2 (with respect to distinguishing-
gap e1(k)). This is proved by converting a potential distinguisher into a distin-
guisher of Uy, () = Ur.r and G1(Uy), where the new distinguisher parses the ¢, (k)-
bit long input into ¢ blocks (each of length k'), invokes G2 on the corresponding
k'-bit long blocks, and feeds the resulting sequence of ¢ (k')-bit long blocks to the

Specifically, with overwhelmingly high probability, at layer ¢ machine Dy, is at a vertex that can
be reached in more than 20-99°(t=s(k)) different ways. In this case, the distribution representing
a random walk that reaches this vertex has min-entropy greater than 0.99- (¢t — s(k)). The reader
is referred to §D.4.1.1 for definitions of min-entropy and extractors.

~—
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original distinguisher. For this end, it is crucial that G can be evaluate on k'-bit
long strings using space at most s;(k)/2, which is guaranteed by our setting of
k' = s1(k)/O(1) and the hypothesis that G2 works in linear space. O

8.5.2.2 Derandomization of space-complexity classes

As a direct application of Theorem 8.21, we obtain that BPL C Dspraci(log?),
where BPL denotes the log-space analogue of BPP (see Definition 6.9). (Recall
that V'L C DspacE(log?), but it is not known whether or not BPL C N'£.)?? A
stronger derandomization result can be obtained by a finer analysis of the proof of
Theorem 8.21.

Theorem 8.23 BPL C SC, where SC denotes the class of decision problems
that can be solved by a deterministic machine that runs in polynomial-time and
polylogarithmic-space.

Thus, BPL (and in particular RL C BPL) is placed in a class not known to
contain VL. Another such result was subsequently obtained in [184]: Randomized
log-space can be simulated in deterministic space 0(10g2); specifically, in space
10g3/ 2. We mention that the archetypical problem of RL has been recently proved
to be in L (see Section 5.2).

Overview of the proof of Theorem 8.23.33 We are going to use the genera-
tor construction provided in the proof of Theorem 8.21, but show that the main
part of the seed (i.e., the sequence of hash functions) can be fixed (depending on
the distinguisher at hand). Furthermore, this fixing can be performed in polyloga-
rithmic space and polynomial-time. Specifically, wishing to derandomize a specific
log-space computation (which refers to a specific input), we first obtain the corre-
sponding distinguisher, denoted D}, that represents this computation (as a function
of the outcomes of the internal coin tosses of the log-space algorithm). The key
observation is that the question of whether or not a specific hash function h € H,
is good for a specific D}, can be determined in space that is linear in n = |h|/2
and logarithmic in the size of Dj. Indeed, the time complexity of this decision
procedure is exponential in its space complexity. It follows that we can find a
good h € H,, for a given D}, within these complexities (by scanning through all
possible h € H,,). Once a good h is found, we can also construct the corresponding
graph D} (in which edges represent 2-edge paths in D} ), again within the same
complexity. Actually, it will be more instructive to note that we can determine a
step (i.e., an edge-traversal) in D}/ by making two steps (edge-traversals) in Dj.
This will allow to fix a hash function for D}/, and so on. Details follow.

The main claim is that the entire process of finding a sequence of ¢ ef log, ¢'(k)

good hash functions can be performed in space t-O(n+log|Dx|) = O(n-+log|Dy|)?
and time poly(2™-|Dy|); that is, the time complexity is sub-exponential in the space

32Indeed, the log-space analogue of RP, denoted RL, is contained in N'L C DSPACE(logQ), and
thus the fact that Theorem 8.21 implies RL C Dspack(log?) is of no interest.
33A detailed proof appears in [163].
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complexity (i.e., the time complexity is significantly smaller than than the generic
bound of exp(O(n + log|Dy|)?)). Starting with D,(cl) = Dy, we find a good (for
D,(cl)) hashing function h') € H,,, which defines D,(f) = Dj. Having found (and
stored) rY ... h() € H,, which determine D,(:H), we find a good hashing function

rU+Y € H, for D,(:H) by emulating pairs of edge-traversals on D,(:H). Indeed,

a key point is that we do not construct the sequence of graphs D,(f),...,D,(:H),

but rather emulate an edge-traversal in D,(;H) by making 2° edge-traversals in DY,
using AV, ..., h(): The (edge-traversal) move o € {0,1}" starting at vertex v of
DSH) translates to a sequence of 2° moves starting at vertex v of D}, where the
moves are determined by the sequence of n-bit strings

RO (@), B0 (@), hOT10 (@), O (@), B (@),

where h(7i"1) is the function obtained by the composition of some of the functions
R A (Specifically, h(?71) equals h(i) o h(%2) o ... o hli) | where {i; : j =
L,.,t'} ={j:0; =1} and 44 < iy < --- < ip.) Thus, for n = O(log|D}|), given
D}, and a pair (u,v) of source and sink in Dj (which reside in the first and last
layer, respectively), we can (deterministically) approximate the probability that
a random walk starting at u reaches v in O(log|D},|)*-space and poly(|D}|)-time.
The approximation can be made accurate up to a factor of 1 £ (1/poly(|Dyj])).

We conclude the proof by recalling the connection between such an approxima-
tion and the derandomization of BPL (indeed, note the analogy to the proof of
Theorem 8.13). The computation of a log-space probabilistic machine M on input
x, can be represented by a directed layer graph Gy, of size poly(|z|). Specifi-
cally, the probability that M accepts x equals the probability that a random walk
starting at the single vertex of the first layer of Gy, reaches some vertex in the
last layer that represents an accepting configuration. Setting k¥ = O(log |z|) and
n = O(k), the graph G, coincides with the graph Dy referred to at the begin-
ning of the proof of Theorem 8.21, and Dj, is obtained from Dj by an “n-layer
contraction” (see ibid.). Combining this with the foregoing analysis, we conclude
that the probability that M accepts & can be deterministically approximated in
O(log |x|)?-space and poly(|z|)-time. The theorem follows. O

8.6 Special Purpose Generators

In this section we consider even weaker types of pseudorandom generators, pro-
ducing sequences that can fool only very restricted types of distinguishers. Still,
such generators have many applications in complexity theory and in the design of
algorithms. (These applications will only be mentioned briefly.)

Our choice is to start with the simplest of these generators: the pairwise-
independent generator, and its generalization to t-wise independence for any ¢ >2.
Such generators perfectly fool any distinguisher that only observe t locations in the
output sequence. This leads naturally to almost pairwise (or t-wise) independence
generators, which also fool (albeit non-perfectly) such distinguishers. The latter
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generators are implied by a stronger class of generators, which is of independent
interest: the small-bias generators. Small-bias generators fool any linear test (i.e.,
any distinguisher that merely considers the XOR of some fixed locations in the input
sequence). We then turn to the Expander Random Walk Generator: this generator
produces a sequence of strings that hit any dense subset of strings with probability
that is close to the hitting probability of a truly random sequence. Related notions
such as samplers, dispersers, and extractors are treated in Appendix D.

Comment regarding our parameterization: To maintain consistency with
prior sections, we continue to present the generators in terms of the seed length,
denoted k. Since this is not the common presentation for most results presented in
the sequel, we provide (in footnotes) the common presentation in which the seed
length is determined as a function of other parameters.

8.6.1 Pairwise-Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two
(resp., t) elements in the output sequence of the generator. Such local tests are
indeed very restricted, yet they arise naturally in many settings. For example,
such a test corresponds to a probabilistic analysis (of a procedure) that only relies
on the pairwise independence of certain choices made by the procedure. We also
mention that, in some natural range of parameters, pairwise independent sampling
is as good as sampling by totally independent sample points; see Sections D.1.2
and D.3.

A t-wise independence generator of block-size b: N— N (and stretch function ¢) is
an efficient deterministic algorithm (e.g., one that works in time polynomial in the
output length) that expands a k-bit long random seed into a sequence of £(k)/b(k)
blocks, each of length b(k), such that any ¢ blocks are uniformly and independently
distributed in {0, 1}”’(’“). That is, denoting the i*® block of the generator’s output
(on seed s) by G(s);, we requite that for every i; < iy < --- <4 (in [£(k)/b(k)]) it
holds that

G(Uk)il y G(Uk)i27 ceny G(Uk)i,, = Ut-b(k)-

In case t = 2, we call the generator pairwise independent. We note that this condi-
tion holds even if the inspected ¢ blocks are selected adaptively (see Exercise 8.23)

8.6.1.1 Constructions
In the first construction, we refer to GF(2°(*)), the finite field of 2°(*) elements,

and associate its elements with {0, 1}%(%).

Proposition 8.24 (t-wise independence generator):3* Let t be a fized integer and
b, 0,0 :N—=N such that b(k) = k/t, £'(k) = £(k)/b(k) > t and €'(k) < 2°(%). Let

34In the common presentation of this t-wise independence generator, the length of the seed is
determined as a function of the desired block-length and stretch. That is, given the parameters
b and £’ < 2% the seed length is set to ¢ - b.
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Q1, ..., (k) be fived distinct elements of the field GF(2"™), For sg,s1,...,8; 1 €
{0,1}°(F) | [et

t—1 t—1 t—1
G(50, 51,y St—1) = E sjaq E S5 ..., E 850 (k) (8.12)
j=0 j=0 §=0

where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence gen-
erator of block-size b and stretch £.

That is, given a seed that consists of ¢ elements of GF(2°(%)), the generator outputs
a sequence of £'(k) such elements. To make the above generator totally explicit, we
need an explicit representation of GF(Zb(k)), which requires an irreducible polyno-
mial of degree b(k) over GF(2). For specific values of b(k), a good representation
does exist: For example, for d def b(k) = 2 - 3° (with e being an integer), the poly-
nomial z¢ + %2 41 is irreducible over GF(2). The proof of Proposition 8.24 is left
as an exercise (see Exercise 8.24). We note that an analogous constructions work
for every finite field (e.g., a finite field of any prime cardinality).

An alternative construction for the case of ¢ = 2 is obtained by using (random)
affine transformations (as possible seeds). In fact, better performance (i.e., shorter
seed length) is obtained by using affine transformations defined by Toeplitz ma-
trices. A Toeplitz matrix is a matrix with all diagonals being homogeneous (see
Figure 8.4); that is, T' = (¢;;) is a Toeplitz matrix if ¢; ; = t;41 ;41 for all ¢, 7.
Note that a Toeplitz matrix is determined by its first row and first column (i.e.,
the values of ¢1 ;’s and ¢;1s).

- mKk) -

Figure 8.4: An affine transformation defined by a Toeplitz matrix.

Proposition 8.25 (Alternative pairwise independence generator, see Figure 8.4):3°
Let b,0,0',m : N> N such that ¢'(k) = ((k)/b(k) and m(k) = [log, (k)] =
k —2b(k) + 1. Associate {0,1}™ with the n-dimensional vector space over GF(2),

35In the common presentation of this pairwise independence generator, the length of the seed
is determined as a function of the desired block-length and stretch. That is, given the parameters
b and ¢, the seed length is set to 2b + [log, £'] — 1.
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and let vy,...,ve () be fized distinct vectors in the m(k)-dimensional vector space
over GF(2). For s € {0,1}*(®)+m(k)=1 gnd r € {0, 1} et

G(s,r) = (Tsvy + 7, Tsvg + 1, e, Tsvpr(gy +7) (8.13)

where Ts is an b(k)-by-m(k) Toeplitz matric specified by the string s. Then G is a
pairwise independence gemerator of block-size b and stretch .

That is, given a seed that represents an affine transformation defined by an b(k)-
by-m(k) Toeplitz matrix, the generator outputs a sequence of £/ (k) < 2™(¥) strings,
each of length b(k). Note that k = 2b(k)+m(k)—1, and that the stretching property
requires ¢'(k) > k/b(k). The proof of Proposition 8.25 is left as an exercise (see
Exercise 8.25).

A stronger notion of efficient generator. We note that the aforementioned
constructions satisfy a stronger notion of efficient generation, which is useful in
several applications. Specifically, there exists a polynomial-time algorithm that
given a seed, s € {0,1}*, and a block location i € [¢'(k)] (in binary), outputs the
i*" block of the corresponding output (i.e., the i*! block of G(s)).

8.6.1.2 Applications

Pairwise independence generators do suffice for a variety of applications (cf., 222,
150]). In particular, we mention the application to sampling discussed in Ap-
pendix D.3, and the (celebrated) derandomization of the fast parallel algorithm for
the Maximal Independent Set problem. This derandomization relies on the fact
that the analysis of the randomized algorithm only relies on the hypothesis that
some objects are distributed in pairwise independent manner. Thus, this analysis
holds also when these objects are selected using a pairwise independence generator.
In general, pairwise independence generators do suffice to fool distinguishers that
are derived from some natural and interesting randomized algorithms.

Referring to Eq. (8.12), we remark that for any constant ¢ > 2, the cost
of derandomization (i.e., going over all 2% possible seeds) is exponential in the
block-size (because b(k) = 2(k)), which in turn also bounds the number of blocks
(because ¢'(k) < 2Y%)). Note that if a larger number of blocks is needed, we
can artificially increase the block-length in order to accommodate it (i.e., allow
¢'(k) = 2°®) = exp(k/t)), and in this case the cost of derandomization will be
polynomial in the number of blocks. Thus, whenever the analysis of a randomized
algorithm can be based on a constant amount of independence between (feasibly-
many) random choices, each made within a feasible domain, a feasible derandom-
ization is possible.3® On the other hand, the relationship ¢(k) = exp(k/t) is the best
possible; specifically, one cannot produce from a seed of length k an exp(k/O(1))-
long sequence of non-constantly independent random bits. In other words, ¢t-wise

36We stress that it is important to have the cost of derandomization be polynomial in the length
of the produced pseudorandom sequence, because the latter is typically polynomially-related to
the length of the input to the algorithm that we wish to derandomize.
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independent generators of (any block-length and) stretch £ require a seed of length
Q(t - logf). In the next subsection (cf. §8.6.2.2) we will see that meaningful ap-
proximations may be obtained with much shorter seeds.

8.6.2 Small-Bias Generators

Trying to go beyond constant-independence in derandomizations (while using seeds
of length that is logarithmic in the length of the pseudorandom sequence) was the
original motivation (and remain an important application) of the notion of small-
bias generators. Still, small-bias generators are interesting for their own sake, and
in particular they fool “global tests” that look at the entire output sequence and not
merely at a fixed number of positions in it (as the limited independence generators).
Specifically, small-bias generators generate a sequence of bits that fools any linear
test (i.e., a test that computes a fixed linear combination of the bits).

For ¢ : N — [0,1], an ¢-bias generator with stretch function ¢ is an efficient
deterministic algorithm (e.g., working in poly(¢(k)) time) that expands a k-bit
long random seed into a sequence of £(k) bits such that for any fixed non-empty set
S C{1,...,0(k)} the bias of the output sequence over S is at most £(k). The bias of
a sequence of n (possibly dependent) Boolean random variables (1, ...,(, € {0,1}
over aset S C {1,..,n} is defined as

2.

Pr(®icsC = 1] — %‘ = |Pr[®iesC = 1] = Pr[Dies¢ = 0]] (8.14)

The factor of 2 was introduced so to make these biases correspond to the Fourier co-
efficients of the distribution (viewed as a function from {0,1}" to the reals). To see
the correspondence replace {0,1} by {£1}, and substitute XOR by multiplication.
The bias with respect to set S is thus written as

Pr [HQ=+1 —Pr [HQ:_Il

€S i€S

(8.15)

18]

1€S5

which is merely the (absolute value of the) Fourier coefficient corresponding to S.

8.6.2.1 Constructions

Efficient small-bias generators with exponential stretch and exponentially vanishing
bias are know.

Theorem 8.26 (small-bias generators):3” For some universal constant ¢ > 0, let
¢:N—N and ¢ :N—10,1] such that £(k) < e(k) - exp(k/c). Then, there exists an
e-bias generator with stretch function ¢ operating in time polynomial in the length
of its output.

37In the common presentation of this generator, the length of the seed is determined as a
function of the desired bias and stretch. That is, given the parameters € and ¢, the seed length
is set to ¢ -log(¢/e). We comment that using [9] the constant ¢ is merely 2 (i.e., k ~ 2logy(¢/¢)),
whereas using [159] k ~ log, £ + 41og,(1/¢).



310 CHAPTER 8. PSEUDORANDOM GENERATORS

Three simple constructions of small-bias generators that satisfy Theorem 8.26 are
known (see [9]). One of these constructions is based on Linear Feedback Shift Reg-
isters. Loosely speaking, the first half of the seed, denoted fo f1 - f(x/2)—1, is inter-
preted as a (non-degenerate) feedback rule®®, the other half, denoted sos1 - - - 5(/2)—1,
is interpreted as “the start sequence”, and the output sequence, denoted ro71 -+ - 7¢()—1
is obtained by setting r; = s; for i < k/2 and r; = Z(k/z) ! Ji - Tic(rk/2)45 for
i > k/2. (See Figure 8.5 and Exercise 8.29.)

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8.5: The LFSR small-bias generator (for ¢t = k/2).

As in Section 8.6.1.1, we note that the aforementioned constructions satisfy
a stronger notion of efficient generation, which is useful in several applications.
Specifically, there exists a polynomial-time algorithm that given a seed and a bit
location ¢ € [¢(k)] (in binary), outputs the i*! bit of the corresponding output.

8.6.2.2 Applications

An archetypical application of small-bias generators is for producing short and
random “fingerprints” (or “digests”) such that equality/inequality among strings
is (probabilistically) reflected in equality /inequality between their corresponding
fingerprints. The key observation is that checking whether or not © = y is prob-
abilistically reducible to checking whether the inner product modulo 2 of « and r
equals the inner product modulo 2 of y and r, where r is generated by a small-bias
generator G. Thus, the pair (s,v), where s is a random seed to G and v equals
the inner product modulo 2 of z and G(s), serves as the randomized fingerprint of
the string z. One advantage of this reduction is that only few bits (i.e., the seed
of the generator and the result of the inner product) needs to be “communicated
between z and y” in order to enable the checking (see Exercise 8.27). A related
advantage (i.e., low randomness complexity) underlies the application of small-bias
generators in §9.3.2.2.

Small-bias generators have been used in a variety of areas (e.g., inapproxima-
tion, structural complexity, and applied cryptography; see references in [86, Sec

38That is, fo = 1 and f(z dEf zk/2 Z(k/z) 1 27 is required to be an irreducible polynomial

over GF(2). The enforcing of the latter condltlon is discussed in Exercise 8.29.
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3.6.2]). In addition, they seem an important tool in the design of various types of
“pseudorandom” objects; see next.

Approximate independence generators. As hinted at the beginning of this
section, small-bias is related to approximate limited independence.?® Actually,
even a restricted type of e-bias (in which only subsets of size t(k) are required
to have bias upper-bounded by ¢) implies that any ¢(k) bits in the said sequence
are 24(F)/2 . ¢(k)-close to Uy(k), where here we refer to the variation distance (i.e.,
Norm-1 distance) between the two distributions. (The max-norm of the differ-
ence is bounded by e(k).)* Combining Theorem 8.26 and the foregoing upper-
bound, and relying on the linearity of the construction presented in Proposi-
tion 8.24, we obtain generators with exp(k) stretch that are approximately ¢(k)-
independent, for some non-constant ¢(k); see Exercise 8.32. Specifically, for k =
O(t(k) + log(1/e(k)) + loglog £(k)) (equiv., for £(k) = 22*/°" t(k) = k/O(1), and
e(k) = 27F/9M) one may obtain generators with stretch function ¢, producing
bit sequences in which any ¢(k) positions are at most e(k)-away from uniform (in
variation distance). In the corresponding result for the max-norm distance, it suf-
fices to have k = O(log(t(k)/e(k) + loglog £(k)). Thus, whenever the analysis of a
randomized algorithm can be based on a logarithmic amount of (almost) indepen-
dence between feasibly-many binary random choices, a feasible derandomization is
possible (by using an adequate generator of logarithmic seed length).

Extensions to non-binary choices were considered in various works (see refer-
ences in [86, Sec 3.6.2]). Some of these works also consider the related problem of
constructing small “discrepancy sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper-bound on the max-
norm (of the deviation from uniform of any ¢ locations), any e-bias generator yields
a t-universal set generator, provided that e < 27!, The latter generator outputs
sequences such that in every subsequence of length ¢ all possible 2¢ patterns occur
(i-e., each for at least one possible seed). Such generators have many applications.

8.6.2.3 Generalization

In this subsection, we outline a generalization of the treatment of small-bias gen-
erators to the generation of sequences over an arbitrary finite field. Focusing on
the case of a field of prime characteristic, denoted GF(p), we first define an ad-
equate notion of bias. Generalizing Eq. (8.15), we define the bias of a sequence
of n (possibly dependent) random variables (1, ...,(, € GF(p) with respect to the
linear combination (c1,...,c,) € GF(p)™ as HE [wzz:l C‘Ci]

p'" (complex) root of unity (i.e., w = —1 if p = 2). Using Exercise 8.34, we note

that upper-bounds on the biases of (1, ...,(, (with respect to any non-zero linear

|, where w denotes the

39We warn that, unlike in the case of perfect independence, here we refer only to the distribution
on fixed bit locations. See Exercise 8.26 for further discussion.

40Both bounds are derived from the Norm2 bound on the difference vector (i.e., the difference
between the two probability vectors). For details, see Exercise 8.28.
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combinations) yield upper-bounds on the distance of > .-, ¢;¢; from the uniform
distribution.

We say that S C GF(p)™ is an e-bias probability space if a uniformly selected
sequence in S has bias at most ¢ with respect to any non-zero linear combination
over GF(p). (Whenever such a space is efficiently constructible, it yields a corre-
sponding e-biased generator.) We mention that the LESR construction, outlined
in §8.6.2.1 and analyzed in Exercise 8.29, generalizes to GF(p) and yields an e-bias
probability space of size (at most) p**, where e = [log,(n/e)]. Such constructions
can be used in applications that generalize those in §8.6.2.2.

8.6.3 Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a
random walk on a large graph that has a small degree but an adequate “mixing”
property. Such a graph is called an expander, and by taking a random walk on it
we may generate a sequence of £' values over its vertex set, while using a random
seed of length b+ (¢’ — 1) - log, d, where 2° denotes the number of vertices in the
graph and d denotes its degree. This seed length should be compared against the
¢' - b random bits required for generating a sequence of ¢’ independent samples
from {0,1}" (or taking a random walk on a clique of size 2°). Interestingly, as we
shall see, the pseudorandom sequence (generated by the said random walk on an
expander) behaves similarly to a truly random sequence with respect to hitting any
fized subset of {0,1}°. Let us start by defining this property (or rather by defining
the corresponding hitting problem).

Definition 8.27 (the hitting problem): A sequence of (possibly dependent) ran-
dom wvariables, denoted (X1, ..., Xo, over {0,1}° is (g,6)-hitting if for any (target)
set T C {0,1}° of cardinality at least € - 2°, with probability at least 1 — 6§, at least
one of these variables hits T'; that is, Pr[3i s.t. X;€T] > 1 6.

Clearly, a truly random sequence of length ¢ over {0,1}® is (g, §)-hitting for § =
(1- s)[. The aforementioned “expander random walk generator” (to be described
next) achieves similar behavior. Specifically, for arbitrary small ¢ > 0 (which
depends on the degree and the mixing property of the expander), the generator’s
output is (e, 8)-hitting for § = (1 — (1 —¢) - €)®. To describe this generator, we
need to discuss expanders.

Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound
A < d, we actually mean an infinite family of d-regular graphs, {Gn}nes (S C N),
such that G is a d-regular graph over N vertices and the absolute value of all
eigenvalues, save the biggest one, of the adjacency matrix of G is upper-bounded
by A. We will refer to such a family as to a (d, A)-expander (for S). This technical
definition is related to the aforementioned notion of “mixing” (which refers to the
rate at which a random walk starting at a fixed vertex reaches uniform distribution
over the graph’s vertices). For further detail, see Appendix E.2.
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We are interested in explicit constructions of such graphs, by which we mean
that there exists a polynomial-time algorithm that on input N (in binary), a vertex
v € Gy and an index i € {1,...,d}, returns the i*" neighbor of v. (We also require
that the set S for which G’s exist is sufficiently “tractable” — say that given any
n € N one may efficiently find an s € S such that n < s < 2n.) Several explicit
constructions of expanders are known (see Appendix E.2.2). Below, we rely on the
fact that for every A > 0, there exist d and an explicit construction of a (d, X - d)-
expander over {2° : b € N}.4! The relevant (to us) fact about expanders is stated
next.

Theorem 8.28 (Expander Random Walk Theorem): Let G = (V, E) be an ex-

pander graph of degree d and eigenvalue bound \. Let W be a subset of V and

p X [W|/IV|, and consider walks on G that start from a uniformly chosen vertex

and take ' — 1 additional random steps, where in each such step one uniformly
selects one out of the d edges incident at the current verter and traverses it. Then
the probability that such a random walk stays in W is at most

P (p+(1—p)%>[_1 (8.16)

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting
property (i.e., when we consider hitting the set V'\ W and use £ = 1 — p); that is, a
set of density ¢ is hit with probability 1—6, where 6§ = (1—¢)-(1—e+(\/d)-)* ' <
(1—(1—(\/d))-€)". A proof of an upper-bound that is weaker than Eq. (8.16) is
outlined in Exercise 8.35. Using Theorem 8.28 and an explicit (2¢, X - 2)-expander,
we get

Proposition 8.29 (The Expander Random Walk Generator):%?

e For every constant X > 0, consider an explicit construction of (2!, X - 2¢)-
expanders for {2 : n € N}, where t e N is a sufficiently large constant. For
v € [2"] = {0,1}" and i € [2'] = {0,1}', denote by [';(v) the vertex of the
corresponding 2"™-vertex graph that is reached from vertex v when following
its i*? edge.

o For b,0' : N—N such that k = b(k) + (¢'(k) — 1) -t < ¢'(k) - b(k), and for
vy € {0, 1}b(k) and il,...,igr(k)_l S [Qt], let

G (00,81, +eny bpr(k)—1) = (V0,015 ey Ver(k)—1), (8.17)

where v; =1 (vj_1).

41 This can be obtained with d = poly(1/X). In fact d = 0(1/7), which is optimal, can be
obtained too, albeit with graphs of sizes that are only approximately close to powers of two.

42In the common presentation of this generator, the length of the seed is determined as a
function of the desired block-length and stretch. That is, given the parameters b and £, the seed
length is set to b+ O(¢" — 1).
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distinguisher’s generator’s stretch comments
TYPE resources resources (ie., £(k))
| gen.-purpose | p(k)-time, V poly. p | poly (k)-time poly (k) Assumes OW?® |
| derand. BPP | 2870 _time | 2°%)_time 270 Assumes EvEC* |
space-bounded | s(k)-space O(k)-space k70 (k) runs in time
robustness k/O(1)-space O(k)-space poly (k) poly(k) - £(k)
t-wise indepen. | “t-wise” poly (k) - £(k)-time | 28/ (e.g., pairwise)
small bias “c-bias” poly (k) - £(k)-time | 2"/OW) . ¢(k)
expander “hitting” poly (k) - £(k)-time | £'(k) - b(k)
rand. walk (0.5,2=F/OMW) hitting for {0,1}*® | with ¢'(k) = ((k — b(k))/O(1)) + 1.

Figure 8.6: Pseudorandom generators at a glance

Then G has stretch €(k) = €'(k) - b(k), and G(Ux) is (e,0)-hitting for any ¢ > 0
and 6 = (1 — (1= X)) (®).

The stretch of G is optimized at b(k) ~ k/2 (and ¢'(k) = k/2t), but optimizing
the stretch is not necessarily the goal in all applications. Expander random-walk
generators have been used in a variety of areas (e.g., PCP and inapproximability
(see [27, Sec. 11.1]), cryptography (see [87, Sec. 2.6]), and the design of various
types of “pseudorandom” objects (see, in particular, Appendix D.3)).

Chapter Notes

Figure 8.6 depicts some of the notions of pseudorandom generators discussed in
this chapter. We highlight a key distinction between the case of general-purpose
pseudorandom generators (treated in Section 8.3) and the other cases (cf. Sec-
tions 8.4 and 8.5): in the former case the distinguisher is more complex than the
generator, whereas in the latter cases the generator is more complex than the dis-
tinguisher. Specifically, in the general-purpose case the generator runs in (some
fized) polynomial-time and needs to withstand any probabilistic polynomial-time
distinguisher. In fact, some of the proofs presented in Section 8.3 utilize the fact
that the distinguisher can invoke the generator on seeds of its choice. In contrast,
the Nisan-Wigderson Generator, analyzed in Theorem 8.18 (of Section 8.4), runs
more time than the distinguishers that it tries to fool, and the proof relies on this
fact in an essential manner. Similarly, the space complexity of the space-resilient
generators presented in Section 8.5 is higher than the space-bound on the distin-
guishers that they fool.

The general paradigm of pseudorandom generators. Our presentation,
which views vastly different notions of pseudorandom generators as incarnations
of a general paradigm, has emerged mostly in retrospect. We note that, while the

43By the OW we denote the assumption that one-way functions exists. By EVEC we denote the
assumption that the class £ has (almost-everywhere) exponential circuit complexity.
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historical study of the various notions was mostly unrelated at a technical level,
the case of general-purpose pseudorandom generators served as a source of inspi-
ration to most of the other cases. In particular, the concept of computational
indistinguishability, the connection between hardness and pseudorandomness, and
the equivalence between pseudorandomness and unpredictability, appeared first in
the context of general-purpose pseudorandom generators (and inspired the devel-
opment of “generators for derandomization” and “generators for space bounded
machines”). Indeed, the study of the special-purpose generators (see Section 8.6)
was unrelated to all of these.

General-purpose pseudorandom generators. The concept of computational
indistinguishability, which underlies the entire computational approach to random-
ness, was suggested by Goldwasser and Micali [104] in the context of defining secure
encryption schemes. Indeed, computational indistinguishability plays a key role in
cryptography (see Appendix C). The general formulation of computational indis-
tinguishability is due to Yao [223]. Using the hybrid technique of [104], Yao also
observed that defining pseudorandom generators as producing sequences that are
computationally indistinguishable from the corresponding uniform distribution is
equivalent to defining such generators as producing unpredictable sequences. The
latter definition originates in the earlier work of Blum and Micali [37].

Blum and Micali [37] pioneered the rigorous study of pseudorandom generators
and, in particular, the construction of pseudorandom generators based on some
simple intractability assumption. In particular, they constructed pseudorandom
generators assuming the intractability of Discrete Logarithm problem over prime
fields. Their work also introduces basic paradigms that were used in all subsequent
improvements (cf., e.g., [223, 113]). We refer to the transformation of compu-
tational difficulty into pseudorandomness, the use of hard-core predicates (also
defined in [37]), and the iteration paradigm (cf. Eq. (8.8)).

Theorem 8.11 (by which pseudorandom generators exist if and only if one-way
functions exist) is due to Hastad, Impagliazzo, Levin and Luby [113], building upon
the hard-core predicate of [95] (see Theorem 7.7). Unfortunately, the current proof
of Theorem 8.11 is very complicated and unfit for presentation in a book of the
current nature. Presenting a simpler and tighter (cf. §8.3.7.1) proof is indeed an
important research project.

Pseudorandom functions (further discussed in Appendix C.3.3) were defined
and first constructed by Goldreich, Goldwasser and Micali [91]. We also mention
(and advocate) the study of a general theory of pseudorandom objects initiated
in [92].

Derandomization of time-complexity classes. As observed by Yao [223], a
non-uniformly strong notion of pseudorandom generators yields improved deran-
domization of time-complexity classes. A key observation of Nisan [161, 164] is that
whenever a pseudorandom generator is used in this way, it suffices to require that
the generator runs in time exponential in its seed length, and so the generator may
have running-time greater than the distinguisher (representing the algorithm to be
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derandomized). This observation underlines the construction of Nisan and Wigder-
son [161, 164], and is the basis for further improvements culminating in [121]. Part 1
of Theorem 8.19 (i.e., the so-called “high end” derandomization of BPP) is due to
Impagliazzo and Wigderson [121], whereas Part 2 (the “low end”) is from [164].

The Nisan—Wigderson Generator [164] was subsequently used in several ways
transcending its original presentation. We mention its application towards fooling
non-deterministic machines (and thus derandomizing constant-round interactive
proof systems) and to the construction of randomness extractors [209].

In contrast to the aforementioned derandomization results, which place BPP in
some worst-case deterministic complexity class, we now mention a result that places
BPP in an average-case deterministic complexity class (cf. Section 10.2). We refer
specifically to the theorem, which is due to Impagliazzo and Wigderson [122] but
is not presented in the main text, that asserts the following: if BPP is not con-
tained in EXP (almost always) then BPP has deterministic sub-exponential time
algorithms that are correct on all typical cases (i.e., with respect to any polynomial-
time sampleable distribution).

Space Pseudorandom Generators. As stated in the first paper on the sub-
ject of space-resilient pseudorandom generators [4]**, this research direction was
inspired by the derandomization result obtained via the use of general-purpose
pseudorandom generators. The latter result (necessarily) depends on intractabil-
ity assumptions, and so the objective was finding classes of algorithms for which
derandomization is possible without relying on intractability assumptions. (This
objective was achieved before for the case of constant-depth circuits.) Funda-
mentally different constructions of space pseudorandom generators were given in
several works, but are superseded by the two incomparable results mentioned in
Section 8.5.2: Theorem 8.21 (a.k.a Nisan’s Generator [162]) and Theorem 8.22
(a.k.a the Nisan—Zuckerman Generator [165]). These two results have been “inter-
polated” in [11]. Theorem 8.23 (BPL C SC) was proved by Nisan [163].

Special Purpose Generators. The various generators presented in Section 8.6
were not inspired by any of the other types of pseudorandom generator (nor even by
the generic notion of pseudorandomness). Pairwise-independence generator were
explicitly suggested in [51] (and are implicit in [47]). The generalization to t-wise
independence (for ¢t > 2) is due to [6]. Small-bias generators were first defined and
constructed by Naor and Naor [159], and three simple constructions were subse-
quently given in [9]. The Expander Random Walk Generator was suggested by
Ajtai, Komlos, and Szemerédi [4], who discovered that random walks on expander
graphs provide a good approximation to repeated independent attempts with re-
spect to hitting any fixed subset of sufficient density (within the vertex set). The
analysis of the hitting property of such walks was subsequently improved, culmi-
nating in the bound cited in Theorem 8.28, which is taken from [126, Cor. 6.1].

44This paper is more frequently cited for the Expander Random Walk technique which it has
introduced.
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(The foregoing historical notes do not mention several technical contributions that
played an important role in the development of the area. For further details,
the reader is referred to [86, Chap. 3]. In fact, the current chapter is a revision
of [86, Chap. 3], providing more details for the main topics, and omitting relatively
secondary material (a revision of which appears in Appendix D).)

Exercises

Exercise 8.1 Show that placing no computational requirements on the genera-
tor enables unconditional results regarding “generators” that fool any family of
subexponential-size circuits. That is, making no computational assumptions, prove
that there exist functions G : {0,1}* — {0, 1}* such that {G(Uy)}ren is (strongly)
pseudorandom, while |G(s)| = 2|s| for every s € {0,1}*. Furthermore, show that
G can be computed in double-exponential time.

Guideline: Use the Probabilistic Method (cf. [10]). First, for any fixed circuit C :
{0,1}™ — {0, 1}, upper-bound the probability that for a random set S C {0,1}" of size
2"/2 the absolute value of Pr[C(U,) = 1] — ({z € S : C(z) = 1}|/|S]) is larger than
277/50 " Next, using a union bound, prove the existence of a set S C {0,1}" of size

on/100

2"/2 such that no circuit of size can distinguish a uniformly distributed element

of S from a uniformly distributed element of {0,1}", where distinguishing means with a
probability gap of at least 27"/100,

Exercise 8.2 Let A be a probabilistic polynomial-time algorithm solving the search
associated with the NP-relation R, and let Ag be as in Construction 8.2. Prove
that it is infeasible to find an z on which Ag outputs a wrong solution; that is,
assuming for simplicity that A has error probability 1/3, prove that on input 1™ it
is infeasible to find an z € {0,1}™ N Sk such that Pr[(z, Ag(z)) € R] > 0.4, where

def
Sg = {z:3y(x,y)€R}.
(Hint: For x that violates the claim, it holds that |Pr[(z, A(z)) & R]—Pr[(z, Ag(z)) € R]| > 0.06.)

Exercise 8.3 Prove that omitting the absolute value in Eq. (8.4) keeps Defini-
tion 8.4 intact.
(Hint: consider D'(z) EE D(z).)

Exercise 8.4 Show that the existence of pseudorandom generators implies the ex-
istence of polynomial-time constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable.

Guideline: Lower-bound the statistical distance between G'(Ux) and Uy 1y, where G is a
pseudorandom generator with stretch £.

Exercise 8.5 Prove that the sufficient condition in Exercise 8.4 is in fact necessary.*®
Recall that {X,},cn and {Y,},cn are said to be statistically far apart if, for some
positive polynomial p and all sufficiently large n, the variation distance between

45This exercise follows [84], which in turn builds on [113].
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X, and Y, is greater than 1/p(n). Using the following three steps, prove that the
existence of polynomial-time constructible probability ensembles that are statisti-
cally far apart and yet are computationally indistinguishable implies the existence
of pseudorandom generators.

1. Show that, without loss of generality, we may assume that the variation
distance between X,, and Y,, is greater than 1 — exp(—n).

Guideline: For X, and Y, as in the forgoing, consider X, = (X,(Ll)7 ...,X,(,t(")))
andY, = (Yn(l), vy Yn(t("))), where the X")’s (resp., Yn(i)’s) are independent copies
of X,, (resp., ¥3,), and t(n) = O(n-p(n)?). To lower-bound the statistical difference
between X,, and Y, consider the set S, def {z : Pr[X, =z] > Pr[Y, =2z]} and the
random variable representing the number of copies in X,, (resp., Y,,) that reside in

Sh.

2. Using {X,},.en and {Y,},,en as in Step 1, prove the existence of a false en-
tropy generator, where a false entropy generator is a deterministic polynomial-
time algorithm G such that G(Uy) has entropy e(k) but {G(U)}ren i com-
putationally indistinguishable from a polynomial-time constructible ensemble
that has entropy greater than e(-) 4+ (1/2).

Guideline: Let Sy and S1 be sampling algorithms such that X, = So(Upoly(n))
and Y, = S1(Upoly(n))- Consider the generator G(o,7) = (0, S-(r)), and the distri-
bution Z, that equals (U1, X, ) with probability 1/2 and (Ui, Y, ) otherwise. Note
that in G (U1, Upoly(n)) the first bit is almost determined by the rest, whereas in Z,,
the first bit is statistically independent of the rest.

3. Using a false entropy generator, obtain one in which the excess entropy is
Vk, and using the latter construct a pseudorandom generator.

Guideline: Use the ideas presented at the end of Section 8.3.5 (i.e., the discussion
of the interesting direction of the proof of Theorem 8.11).

Exercise 8.6 Prove that if {X,},cn and {Y.,}en are computationally indistin-
guishable and A is a probabilistic polynomial-time algorithm then {A(X,)}en and
{A(Y,)}hen are computationally indistinguishable.

(Hint: If D distinguishes the latter ensembles then D’ such that D'(z) def D(A(z)) distinguishes

the former.)

Exercise 8.7 In continuation to Exercise 8.6, show that the conclusion may not
hold in case A is not computationally bounded. That is, show that there ex-
ists computationally indistinguishable ensembles, {X,},cn and {Y,},.cn, and an
exponential-time algorithm A such that {A(X,)},en and {A(Yr)}, e are not com-
putationally indistinguishable.

Guideline: For any pair of ensembles {X,}, .y and {Yn}, o, consider the Boolean
function f such that f(z) = 1 if and only if Pr[X, = z] > Pr[Y, = z|. Show that
|Pr[f(Xn) = 1] — Pr[f(Yn) = 1]| equals the statistical difference between X, and Y.
Consider an adequate (approximate) implementation of f (e.g., approximate Pr[X, = z]
and Pr[Y,, = 2] up to £27%%), and use Exercise 8.1.
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Exercise 8.8 (multiple samples vs single sample, a separation) Prove that
there exist two probability ensembles that are computational indistinguishable by
a single sample, but are efficiently distinguishable by two samples. Furthermore,
one of these ensembles is the uniform ensembles and the other has a sparse support
(i-e., only poly(n) many strings are assigned non-zero probability weight by the
second distribution).

Guideline: Prove that, for every function d : {0,1}" — [0, 1], there exists two strings, z,
and y,, (in {0,1}"), and a number p € [0, 1] such that Pr[d(U,)=1] = p-Pr[d(z,)=1]+(1—
p) - Pr[d(yn)=1]. Generalize this claim to m functions, using m + 1 strings and a convex
combination of the corresponding probabilities.*® Conclude that there exists a distribution
Z,, with a support of size at most m + 1 such that for each of the first (in lexicographic
order) m (randomized) algorithms A it holds that Pr[A(U,) =1] = Pr[A(Z,) =1]. Note
that with probability at least 1/(m + 1), two independent samples of Z, are assigned the
same value, yielding a simple two-sample distinguisher of U, from Z,.

Exercise 8.9 (amplifying the stretch function, an alternative construction)
For Gy and ¢ as in Construction 8.7, consider G(s) def Gf(ls‘)(s), where G () de-
notes G iterated i times on z (i.e., Gi(z) = G (G1(z)) and G)(z) = x). Prove
that G is a pseudorandom generator of stretch £. Reflect on the advantages of
Construction 8.7 over the current construction.

Guideline: Use a hybrid argument, with the i*" hybrid being G’i(UZ(k),i), for i =
0,...,L(k) — k. Note that Gy"' (Usry-(i+1)) = G1(G1(Uery-i-1)) and Gi(Uey-s) =
G1(UiGy Uy 1y—i—1)1); and use Exercise 8.6.

Exercise 8.10 (pseudorandom versus unpredictability) Prove that a prob-
ability ensemble {Z;},cn is pseudorandom if and only if it is unpredictable. For
simplicity, we say that {Zx}cn is (next-bit) unpredictable if for every probabilis-
tic polynomial-time algorithm A it holds that Pr;[A(F;(Zk)) = Biy1(Zk)] — (1/2)
is negligible, where i € {0, ...,|Z;| — 1} is uniformly distributed, and F;(z) (resp.,
Bi11(z)) denotes the i-bit prefix (resp., ¢ + 15 bit) of z.

Guideline: Show that pseudorandomness implies polynomial-time unpredictability; that
is, polynomial-time predictability violates pseudorandomness (because the uniform en-
semble is unpredictable regardless of computing power). Use a hybrid argument to prove
that unpredictability implies pseudorandomness. Specifically, the i*" hybrid consists of
the ¢-bit long prefix of Zi followed by |Zi| — ¢ uniformly distributed bits. Thus, distin-
guishing the extreme hybrids (which correspond to Zi. and Uz, ) implies distinguishing
some neighboring hybrids, which in turn implies next-bit predictability. For the last step,
use an argument as in the proof of Proposition 8.9.

Exercise 8.11 Prove that a probability ensemble is unpredictable (from left to
right) if and only if it is unpredictable from right to left (or in any other canonical
order).

46That is, prove that for every m functions dy, ..., dm : {0, 1}™ — [0, 1] there exist m + 1 strings

z,g), ey z,(lm+1) and m+ 1 non-negative numbers p1, ..., pm+1 that sum-up to 1 such that for every

i € [m] it holds that Pr[d;(Un)=1] =Y p; - Prld;i(z9))=1].
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(Hint: use Exercise 8.10, and note that an ensemble is pseudorandom if and only if its reverse is

pseudorandom.)

Exercise 8.12 Let f be 1-1 and length preserving, and b be a hard-core predicate
of f. For any polynomial ¢, prove that {G'(U})} is unpredictable (in the sense of

Exercise 8.10), where G/(s) % b(£40sD=1(5)) .- b(f(s)) - b(s).

Guideline: Suppose towards the contradiction that, for a uniformly distributed j €
{0,...,£(k) — 1}, given the j-bit long prefix of G'(Uy) an algorithm A’ can predict the
§ 4 15 bit of G'(Ux). That is, given b(f*®=1(s))---b(f**¥)=9(s)), algorithm A’ predicts
b(f*M =0+ (), where s is uniformly distributed in {0,1}*. Consider an algorithm A
that given y = f(x) approximates b(x) by invoking A’ on input b(f*~*(y))---b(y), where
J is uniformly selected in {0, ..., (k) — 1}. Analyze the success probability of A using the
fact that f induces a permutation over {0,1}", and thus b(f7(Uy))---b(f(Uy)) - b(Uy) is
distributed identically to b(f*®) =1 (Uy))---b(f* ™I (Uy)) - b(f® =0TV ()).

Exercise 8.13 Prove that if G is a strong pseudorandom generator in the sense
of Definition 8.12 then it a pseudorandom generator in the sense of Definition 8.1.

(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (8.2).)

Exercise 8.14 (strong computational indistinguishability) Provide a defi-
nition of the notion of computational indistinguishability that underlies Defini-
tion 8.12 (i.e., indistinguishability with respect to (non-uniform) polynomial-size
circuits). Prove the following two claims:

1. Computational indistinguishability with respect to (non-uniform) polynomial-
size circuits is strictly stronger than Definition 8.4.

2. Computational indistinguishability with respect to (non-uniform) polynomial-
size circuits remains invariant under multiple samples (even if the underlying
ensembles are not polynomial-time constructible).

Guideline: For Part 1, see the solution to Exercise 8.8. For Part 2 note that samples
as generated in the proof of Proposition 8.6 can be hard-wired into the distinguishing
circuit.

Exercise 8.15 Show that there exists a circuit of size O(2* - £(k)) that violates
Eq. (8.9), provided that £(k) > k.
(Hint: The circuit may incorporate all values in the range of G and decide by comparing its input

to these values.)

Exercise 8.16 (constructing a set system for Theorem 8.18) Forevery v >

0, show a construction of a set system S as in Condition 2 of Theorem 8.18, with
m(k) = Q(k) and £(k) = 2%F).

Guideline: We assume, without loss of generality, that v < 1, and set m(k) = (v/2) - k
and £(k) = 27m(k)/6  We construct the set system S1, ..., Syx) in iterations, selecting
S; as the first m(k)-subset of [k] that has sufficiently small intersections with each of
the previous sets Si,...,Si—1. The existence of such a set S; can be proved using the
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Probabilistic Method (cf. [10]). Specifically, for a fixed m(k)-subset S’ the probability
that a random m(k)-subset has intersection greater than ym(k) with S’ is smaller than
277m(*)/6  hecause the expected intersection size is (v/2) - m(k). Thus, with positive
probability a random m(k)-subset has intersection at most ym (k) with each of the previous
i—1 < l(k) = 27"/ subsets. Note that we construct S; in time (m’(“k)) ~(i—=1)-m(k) <
2% . 0(k) - k, and thus S is computable in time k2* - £(k)* < 22*.

Exercise 8.17 (pseudorandom versus unpredictability, by circuits) In con-
tinuation to Exercise 8.10, show that if there exists a circuit of size s that distin-
guishes Z,, from U, with gap 4, then there exists an i < ¢ = |Z,| and a circuit
of size s + O(1) that given an i-bit long prefix of Z,, guesses the 7 + 15 bit with
success probability at least % + %

(Hint: defining hybrids as in Exercise 8.10, note that, for some ¢, the given circuit distinguishes
the 4*2 hybrid from the 7 + 15¢ hybrid with gap at least 6/@.)

Exercise 8.18 Suppose that the sets S;’s in Construction 8.17 are disjoint and
that f : {0,1} — {0,1} is T-inapproximable. Prove that for every circuit C of
size T — O(1) it holds that |Pr[C(G(Uy)) = 1] — Pr[C(U,) = 1]| < ¢/T.

Guideline: Prove the contrapositive using Exercise 8.17. Note that the values of the
i+ 1°* bit of G(Uy) is statistically independent of the values of the first i bits of G(Uy),
and thus predicting it yields an approximator for f. Indeed, such an approximator can
be obtained by fixing the the first ¢ bits of G(Uk) via an averaging argument.

Exercise 8.19 (Theorem 8.18, generalized) Let ¢,m,m', T : N — N satisfy
U(k)% + O(€(k)2™ ™) < T(m(k)). Suppose that the following two conditions hold:

1. There exists an exponential-time computable function f:{0,1}* —{0,1} that
is T-inapproximable.

2. There exists an exponential-time computable function S : NxN — 2N such that
for every k and @ =1, ..., (k) it holds that S(k,7) C [k] and |S(k,)| = m(k),
and |S(k,i) N S(k, )| < m'(k) for every k and i # j.

Prove that using G as defined in Construction 8.17, with S; = S(k,i), yields a
canonical derandomizer with stretch £.

(Hint: following the proof of Theorem 8.18, just note that the circuit constructed for approximat-
ing f(Up (k) has size L(k)% + (k) - 5(2’”’("’)) and success probability at least (1/2) + (1/7£(k)).)

Exercise 8.20 (Part 2 of Theorem 8.19) Prove that if for every polynomial T

there exists a T-inapproximable predicate in £ then BPP C N.~oDTIME(¢. ), where
def ¢

t-(n) = 2™ .

Guideline: For any p-time algorithm, apply Exercise 8.19 using £(k) = p(k*/¢), m(k) =

Vk and m' (k) = O(log k). Revisit Exercise 8.16 in order to obtain a set system as required

in Exercise 8.19 (for these parameters), and use Theorem 7.10.
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Exercise 8.21 (multiple samples and space-bounded machines) Suppose that
two probability ensembles, { X }en and {Yi}ren, are (s, e)-indistinguishable by
non-uniform machines (i.e., the distinguishability-gap of any non-uniform machine

of space s is bounded by the function ). For any function ¢ : N— N, prove
that the ensembles {(X,El), ...,X,E,t(k)))}keN and {(Yk(l), ...,X,gt(k)))}keN are (s, te)-
indistinguishable, where X,gl) through X,gt(k)) and Yk(l) through Yk(t(k)) are inde-
pendent random variables, with each X ,gi) identical to X} and each Yk(i) identical

to Yk.

Guideline: Use the hybrid technique. When distinguishing the i** and (i 4 1)** hybrids,
note that the first ¢ blocks (i.e., copies of X}) as well as the last ¢(k) — (¢ + 1) blocks (i.e.,
copies of Y;) can be fixed and hard-wired into the non-uniform distinguisher.

Exercise 8.22 Provide an explicit description of the generator outlined in the
proof of Theorem 8.21.

Guideline: for » € {0,1}" and R, hY € H,, the genera or outputs a 2'-long
sequence of n-bit strings such that the i*" block equals h'(r), where A’ is a composition
of some of the hU)’s.

Exercise 8.23 (adaptive ¢-wise independence tests) Recall that a generator
G :{0,1}* — {0, l}lr(k)'b(k) is called t-wise independent if for any t fixed block posi-
tions, the distribution G(U}) restricted to these ¢ blocks is uniform over {0, 1}¢0(%),
Prove that the output of a ¢-wise independence generator is (perfectly) indistin-
guishable from the uniform distribution by any test that examines t of the blocks,
even if the examined blocks are selected adaptively (i.e., the location of the i*® block
to be examined is determined based on the contents of the previously inspected
blocks).

Guideline: First show that, without loss of generality, it suffices to consider deterministic
(adaptive) tester. Next, show that the probability that such a tester sees any fixed
sequence of ¢ values at the locations selected adaptively in the generator’s output equals

274%®) where b(k) is the block length.

Exercise 8.24 (t-wise independence generator) Prove that G as defined in
Proposition 8.24 produces a t-wise independent sequence over GF(20(*)).

Guideline: For every ¢ fixed indices i1,...,7¢ € [¢'(k)], consider the distribution of
G(Uk)iy,....iy (ie., the projection of G(Uk) on locations i1, ...,it). Show that for every
sequence of ¢t possible values v1,...,v: € GF(?b(k)), there exists a unique seed s € {0,1}"
such that G(s)i,,....i; = (V1, .., Vt).

Exercise 8.25 (pairwise independence generators) As a warm-up, consider
a construction analogous to the one in Proposition 8.25, where the seed specifies
an affine b(k)-by-m(k) transformation. That is, for s € {0, 1}°(*)™(*) and r €
{0,1}*™®) where k = b(k) - m(k) + b(k), let

G(s,T) Lef (Agvr +71, Agva + 71, ..., Agvp(gy +7) (8.18)
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where A, is an b(k)-by-m(k) matrix specified by the string s. Show that G as
in Eq. (8.18) is a pairwise independence generator of block-size b and stretch £.
(Note that a related construction appears in the proof of Theorem 7.7; see also
Exercise 7.5.) Next, show that G as in Eq. (8.13) is a pairwise independence
generator of block-size b and stretch £.

Guideline: The following description applies to both constructions. First note that
for every fixed i € [¢'(k)], the i*® element in the sequence G(Uy), denoted G(Uy);, is
uniformly distributed in {0, 1}b(k). Actually, show that for every fixed s € {0, 1}’”‘4’('“)7
it holds that G(s,Up()): is uniformly distributed in {0, 1}2) . Next note that it suffices
to show that, for every j # 4, conditioned on the value of G(Uy);i, the value of G(Uy);
is uniformly distributed in {0, l}b(k). The key technical detail is showing that for any
non-zero vector v € {0,1}™®) it holds that Avy v (resp., Tu, ,,,v) is uniformly
distributed in {0,1}*®*), This is easy in case of a random b(k)-by-rn(k) matrix, and can
be proven also for a random Toeplitz matrix.

Exercise 8.26 (adaptive {-wise independence tests, revisited) In contrast to
Exercise 8.23, we note that almost uniform distribution on any fized t bit locations
does not imply that an adaptive test that inspects ¢ locations cannot detect “non-
uniformity” (i.e., a “non random behavior” of the inspected sequence). Specifically,
present a distribution over 2¢~!-bit long strings in which each ¢t — 1 fixed bit po-
sitions are ¢ - 2~ (!"D-close to uniform, but some test that adaptively inspects ¢
positions can distinguish this distribution from the uniform one with constant gap.
(Hint: Modify the uniform distribution over ((t — 1) + 2¢~1)-bit long strings such that the first

t — 1 locations indicate a bit position (among the rest) that is set to zero.)

Exercise 8.27 Suppose that G is an e-bias generator with stretch . Show that
equality between the £(k)-bit strings  and y can be probabilistically checked by
comparing the inner product modulo 2 of x and G(s) to the inner product modulo 2
of y and G(s), where s € {0, 1}* is selected uniformly.

(Hint: reduce the problem to the special case in which y = Oé(k).)

Exercise 8.28 (bias versus statistical difference from uniform) Let X be
a random variable assuming values in {0,1}. Prove that if X has bias at most ¢
over any non-empty set then the statistical difference between X and Uy is at most
2t/2 . ¢ and that for every z € {0,1}! it holds that Pr[X =z] =2 ! £e.

Guideline: Consider the probability function p : {0,1}! — [0, 1] defined by p(z) Lof

Pr[X = ], and let 6(x) f p(z) — 27! denote the deviation of p from the uniform proba-
bility function. Viewing the set of real functions over {0,1}! as a 2‘-dimensional vector
space, consider two orthonormal bases for this space. The first basis consists of the
(Kroniker) functions {ka}acqo,13+ such that ko(z) = 1 if £ = o and ko(z) = 0 other-

wise. The second basis consists of the (normalize Fourier) functions {fs}scp defined

by fs(z) el g-t/2 [Lics(=1)*" (where fp = 27%/2) 47 Note that the bias of X over any

47Verify that both bases are indeed orthogonal (i.e., Zm ko (x)kg(x) = 0 for every o # ( and
Zm fs(z)fr(z) =0 for every S # T') and normal (i.e., Zz ko(z)? =1 and ZI fs(z)? =1).
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S # 0 equals | )" p(z) - 2¢/2 fs(x)|, which in turn equals 2¢/?| >, 0(x)fs(z)|. Thus, for
every S (including the empty set), we have | ) 6(z)fs(z)| < 27%2¢, which means that
the representation of ¢ in the normalize Fourier basis is by coefficients that have each an
absolute value of at most 27¢/%¢. It follows that the Norm-2 of this vector of coefficients
is upper-bounded by /2t - (2-%/2¢)2 = ¢, and the two claims follow by noting that they
refer to norms of ¢ according to the Kroniker basis. In particular, Norm-2 is preserved
under orthonormal bases, the max-norm is upper-bounded by Norm-2, and Norm-1 is
upper-bounded by /2t times the value of the Norm-2.

Exercise 8.29 (The LFSR small-bias generator (following [9])) Using the
following guidelines (and letting ¢ = k/2), analyze the construction outlined fol-
lowing Theorem 8.26 (and depicted in Figure 8.5):
L. Prove that r; = Z;;B Cgm) - 87, where cgm) is the coefficient of 27 in the
(degree t — 1) polynomial obtained by reducing z* modulo the polynomial

f(2) (ie., 2 = Z;;é cg-f’i)zj (mod f(2))).
(Hint: Recall that 2t = Zj;(l) fiz?  (mod f(z)), and thus z? = Z;;é [zt (mod f(z)).

Note the correspondence to r; = Z;;é fi -ri,t+]-.)

2. For any non-empty S C {0,...,£(k) — 1}, evaluate the bias of the sequence
T0, -+, Te(k)—1 Over S, where f is a random irreducible polynomial of degree ¢
and s = (8o, ..., 5t—1) € {0,1}" is uniformly distributed. Specifically:

(a) For a fixed f and random s € {0,1}?, prove that ). o 7; has non-zero
bias if and only if f(z) divides ), g 2".

(Hint: Note that Zies r = Z;;é Zies cg.f’i)s]'7 and use Ttem 1.)

€S

(b) Prove that the probability that a random irreducible polynomial of de-
gree t divides ), ¢ 2" is O(¢(k)/2").
(Hint: A polynomial of degree n can be divided by at most n/d different irreducible

polynomials of degree d. On the other hand, the number of irreducible polynomials
of degree d over GF(2) is ©(2¢/d).)

Conclude that for random f and s, the sequence 7o, ..., 7¢(x)—1 has bias O(£(k)/2").

Note that an implementation of the LESR generator requires a mapping of random
k/2-bit long string to almost random irreducible polynomials of degree k/2. Such a
mapping can be constructed in exp(k) time, which is poly(£(k)) if £(k) = exp(Q2(k)).
A more efficient mapping that uses a O(k)-bit long seek is described in [9, Sec. 8].

Exercise 8.30 (limitations on small-bias generators) Let G be an e-bias gen-
erator with stretch ¢, and view G as a mapping from GF(2)* to GF(2)*®). As such,
each bit in the output of G can be viewed as a polynomial?® in the k input variables
(each ranging in GF(2)). Prove that if e(k) < 1 and each of these polynomials has

total degree at most d then £(k) < Z?:l (*).

48Recall that every Boolean function over GF(p) can be expressed as a polynomial of individual
degree at most p — 1.
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Guideline: Note that, without loss of generality, all polynomials have a free term equal to
zero (and has individual degree at most 1 in each variable). Next, consider the vector space
spanned by all d-monomials over k variables (i.e., monomial having at most d variables).
Since (k) < 1, the polynomials representing the output bits of G must correspond to a
sequence of independent vectors in this space.

Derive the following corollaries:

1. If e(k) < 1 then £(k) < 2% (regardless of d).
2. If e(k) < 1 and £(k) > k then G cannot be a linear transformation.

We note that, in contrast to Item 1, (efficient) e-bias generators of stretch £(k) = poly(e(k))-
2% do exists (see [159]). Also, in contrast to Item 2, note that G(s) = (s,b(s)), where
b(s1,..., k) = ZZ? 5iS(k/2)+: mod 2, is an e-bias generator with (k) = exp(—Q(k)).
(Hint: Focusing on bias over sets that include the last output bit, prove that without loss of
generality it suffices to analyze the bias of b(Uy).)

Exercise 8.31 (a sanity check for pseudorandomness) The following fact is
suggested as a sanity check for candidate pseudorandom generators with respect to
space-bounded machines. The fact (to be proven as an exercise) is that, for every
e(-) and s(-) such that s(k) > 1 for every k, if G is (s,¢)-pseudorandom (as per
Definition 8.20), then G is an e-bias generator.

Exercise 8.32 (approximate t-wise independent generators (following [159]))
Combining a small-bias generator as in Theorem 8.26 with the ¢-wise independent
generator of Eq. (8.12), and relying on the linearity of the latter, construct a gen-
erator producing ¢-bit long sequences in which any ¢ positions are at most e-away
from uniform (in variation distance), while using a seed of length O(t + log(1/¢) +
loglog ). (For max-norm a seed of length O(log(t/e) + loglog¢) suffices.)

Guideline: First note that, for any ¢,¢ and b, the transformation of Eq. (8.12) can
be implemented by a fixed linear (over GF(2)) transformation of a ¢ - b-bit seed into
an ¢-bit long sequence, where ¢ = ¢ - b. It follows that there exists a fixed GF(2)-
linear transformation 7" of a random seed of length ¢ - b, where b = log, ¢, into a t-wise
independent bit sequence of the length £ (i.e., 1" Uz is t-wise independent over {0, 1}%).
Thus, every t rows of 1" are linearly independent. The key observation is that when we
replace the aforementioned random seed by an £'-bias sequence, every i < t positions in
the output sequence have bias at most &' (because they define a non-zero linear test on
the bits of the ¢’-bias sequence). Note that the length of the new seed (used to produce
¢'-bias sequence of length ¢ - b) is O(log tb/c'). Applying Exercise 8.28, we conclude that
any t positions are at most 2*/2 . ¢'-away from uniform (in variation distance). Recall that
this was obtained using a seed of length O(log(t/e') + loglog £), and the claim follows by
using &' =272 . ¢,
Exercise 8.33 (small-bias generator and error-correcting codes) Show a cor-
respondence between e-bias generators of stretch £ and binary linear error-correcting
codes (cf. Appendix E.1) mapping £(k)-bit long strings to 2*-bit long strings such
that every two codewords are at distance (1 £ e(k)) - 2F apart.
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Guideline: Associate {0,1}* with [2*]. Then, a generator G : [2¥] — {0,1}*®) corre-
sponds to the code C : {0,1}¢®) — o, 1}2k such that, for every i € [£(k)] and j € [2"],
the " bit of G(j) equals the j** bit of C(0°"110/*)~%),

Exercise 8.34 (on the bias of sequences over a finite field) For a prime p,
let ¢ be a random variable assigned values in GF(p) and 6(v) et Pr[¢ =v] - (1/p).

Prove that maxvegp(p){|6(v)|} is upper-bounded by b def maxc€{17...7p—1}{|| E[wcc] I},
where w denotes the p" (complex) root of unity, and that > veGR(p) |0(v)| is upper-
bounded by /p - b.

Guideline: Analogously to Exercise 8.28, view probability distributions over GF(p) as
p-ary vectors, and consider two bases for the set of complex functions over GF(p): the
Kroniker basis (i.e., ki(z) = 1 if z = ¢ and k;(z) = 0) and the (normalize) Fourier basis
(ie., fi(z) = p~1/? . w'"™). Note that the biases of ¢ corresponds to the inner products of
6 with the non-constant Fourier functions, whereas the distances of ( from the uniform

distribution correspond to the inner products of § with the Kroniker functions.

Exercise 8.35 (a version of the Expander Random Walk Theorem) Using
notations as in Theorem 8.28, prove that the probability that a random walk of
length ¢ stays in W is at most (p + (\/d)?)*/2. In fact, prove a more general
claim that refers to the probability that a random walk of length ¢ intersects
Wo x Wy x -+ X Wy 1. The claimed upper-bound is

-1

Voo I Ve + ay, (8.19)

where p; = (Wil /IV].

Guideline: View the random walk as the evolution of a corresponding probability vector
under suitable transformations. The transformations correspond to taking a random step
in the graph and to passing through a “sieve” that keeps only the entries that correspond
to the current set W;. The key observation is that the first transformation shrinks the
component that is orthogonal to the uniform distribution (which is the first eigenvalue
of the adjacency matrix of the expander), whereas the second transformation shrinks the
component that is in the direction of the uniform distribution. For further details, see
§1.2.1.3.

Exercise 8.36 Using notations as in Theorem 8.28, prove that the probability
that a random walk of length ¢' visits W more than af' times is smaller than
(Ofl;,) (p + (Md)?)*¢'/2. For example, for @ = 1/2 and \/d < /p, we get an
upper-bound of (32p)£l/4. We comment that much better bounds can be obtained
(ct. [82]).

(Hint: Use a union bound on all possible sequences of m = «f' visits, and upper-bound the
probability of visiting W in steps j1, ..., jm by applying Eq. (8.19) with W; = W ifi € {j1, ...,Jm}
and W = V otherwise.)



Chapter 9

Probabilistic Proof Systems

A proof is whatever convinces me.

Shimon Even (1935-2004)

Various types of probabilistic proof systems have played a central role in the de-
velopment of computer science in the last couple of decades. In this chapter, we
concentrate on three such proof systems: interactive proofs, zero-knowledge proofs,
and probabilistic checkable proofs. These proof systems share a common (untra-
ditional) feature — they carry a probability of error (which is explicitly bounded
and can be reduced by successive application of the proof system). The gain in
allowing this untraditional relaxation is substantial, as demonstrated by the three
results mentioned in the summary.

Summary: The association of efficient procedures with deterministic
polynomial-time procedures is the basis for viewing NP-proof systems
as the canonical formulation of proof systems (with efficient verifica-
tion procedures). Allowing probabilistic verification procedures and,
moreover, ruling by statistical evidence gives rise to various types of
probabilistic proof systems. These probabilistic proof systems carry an
explicitly bounded probability of error, but they offer various advan-
tages over the traditional (deterministic and errorless) proof systems.

Randomized and interactive verification procedures, giving rise to inter-
active proof systems, seem much more powerful than their deterministic
counterparts. In particular, such interactive proof systems exist for any
set in PSPACE D coNP (e.g., for the set of unsatisfied propositional
formulae), whereas it is widely believed that some sets in coNP do not
have NP-proof systems (i.e., NP # coN'P). We stress that a “proof”
in this context is not a fixed and static object, but rather a randomized
(and dynamic) process in which the verifier interacts with the prover.
Intuitively, one may think of this interaction as consisting of questions
asked by the verifier, to which the prover has to reply convincingly.

327
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Such randomized and interactive verification procedures allow for the
meaningful conceptualization of zero-knowledge proofs, which are of
great conceptual and practical interest (especially in cryptography).
Loosely speaking, zero-knowledge proofs are interactive proofs that
yield nothing (to the verifier) beyond the fact that the assertion is
indeed valid. For example, a zero-knowledge proof that a certain propo-
sitional formula is satisfiable does not reveal a satisfying assignment to
the formula nor any partial information regarding such an assignment
(e.g., whether the first variable can assume the value true). Thus, the
successful verification of a zero-knowledge proof exhibit an extreme con-
trast between being convinced of the validity of a statement and learning
anything in addition (while receiving such a convincing proof). It turns
out that, under reasonable complexity assumptions (i.e., assuming the
existence of one-way functions), every set in NP has a zero-knowledge
proof system.

NP-proofs can be efficiently transformed into a (redundant) form that
offers a trade-off between the number of locations (randomly) exam-
ined in the resulting proof and the confidence in its validity. It par-
ticular, it is known that any set in NP has an NP-proof system that
supports probabilistic verification such that the error probability de-
creases exponentially with the number of bits read from the alleged
proof. These redundant NP-proofs are called probabilistically checkable
proofs (or PCPs). In addition to their conceptually fascinating nature,
PCPs have played a key role in the study of the complexity of approx-
imation problems.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1).

Introduction and Preliminaries

The glory attached to the creativity involved in finding proofs, makes us forget that
it is the less glorified process of verification that gives proofs their value. Conceptu-
ally speaking, proofs are secondary to the verification process; whereas technically
speaking, proof systems are defined in terms of their verification procedures.

The notion of a verification procedure presumes the notion of computation and
furthermore the notion of efficient computation. This implicit stipulation is made
explicit in the definition of NP (cf. Definition 2.5), in which efficient computation
is associated with (deterministic) polynomial-time algorithms.® Thus, NP provides
the ultimate formulation of proof systems (with efficient verification procedures)

IRecall that the formulation of NP-proof systems explicitly restricts the length of proofs to be
polynomial in the length of the assertion. Thus, verification is performed in a number of steps
that is polynomial in the length of the assertion. We comment that deterministic proof systems
that allow for longer proofs (but require that verification is efficient in terms of the length of the
alleged proof) can be modeled as NP-proof systems by adequate padding (of the assertion).
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as long as one associates efficient procedures with deterministic polynomial-time
algorithms. However, we can gain a lot if we are willing to take a somewhat non-
traditional step and allow probabilistic verification procedures. In particular:

e Interactive proof systems, which employ randomized and interactive verifica-
tion procedures, seem much more powerful than their deterministic counter-
parts.

e Such interactive proof systems allow for the construction of (meaningful)
zero-knowledge proofs, which are of great theoretical and practical interest.

e NP-proofs can be efficiently transformed into a (redundant) form that sup-
ports super-fast probabilistic verification via very few random probes into the
alleged proof.

In all these cases, explicit bounds are imposed on the computational complexity of
the verification procedure, which in turn is personified by the notion of a verifier.
Furthermore, in all these proof systems, the verifier is allowed to toss coins and
rule by statistical evidence. Thus, all these proof systems carry a probability of
error; yet, this probability is explicitly bounded and, furthermore, can be reduced
by successive application of the proof system.

One important convention. When presenting a proof system, we state all
complexity bounds in terms of the length of the assertion to be proven (which
is viewed as an input to the verifier). Namely, when we say “polynomial-time”
we mean time that is polynomial in the length of this assertion. Actually, as
will become evident, this is the natural choice in all the cases that we consider.
Note that this convention is consistent with the definition of NP-proof systems (cf.
Definition 2.5), because poly(|(z,y)|) = poly(|z|) for |y| = poly(|z|).

Notational Conventions. Denote by poly the set of all integer functions bounded
by a polynomial and by log the set of all integer functions bounded by a logarithmic
function (i.e., f € logiff f(n) = O(logn)). All complexity measures mentioned in
the subsequent exposition are assumed to be constructible in polynomial-time.

Organization. In Section 9.1 we present the basic definitions and results regard-
ing interactive proof systems. The definition of an interactive proof systems is the
starting point for a discussion of zero-knowledge proofs, which is provided in Sec-
tion 9.2. Section 9.3, which presents the basic definitions and results regarding
probabilistically checkable proofs (PCP), can be read independently of the other
sections.

9.1 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations,
it is only natural to associate the notion of efficient computation with probabilistic
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and interactive polynomial-time computations. This leads naturally to the notion
of an interactive proof system in which the verification procedure is interactive and
randomized, rather than being non-interactive and deterministic. Thus, a “proof”
in this context is not a fixed and static object, but rather a randomized (dynamic)
process in which the verifier interacts with the prover. Intuitively, one may think
of this interaction as consisting of questions asked by the verifier, to which the
prover has to reply convincingly. The foregoing discussion, as well as the definition
provided in Section 9.1.1, makes explicit reference to a prover, whereas a prover is
only implicit in the traditional definitions of proof systems (e.g., NP-proof systems).
Before turning to the actual definition, we highlight and further discuss some of
the foregoing issues.

A static object versus an interactive process. Traditionally in mathematics,
a “proof” is a fized sequence consisting of statements that are either self-evident or
are derived from previous statements via self-evident rules. Actually, both concep-
tually and technically, it is more accurate to substitute the phrase “self-evident”
by the phrase “commonly agreed” (because, at the last account, self-evidence is a
matter of common agreement). In fact, in the formal study of proofs (i.e., logic),
the commonly agreed statements are called azxioms, whereas the commonly agreed
rules are referred to as derivation rules. We highlight a key property of mathemat-
ics proofs: proofs are viewed as fized (static) objects. In contrast, in other areas of
human activity, the notion of a “proof” has a much wider interpretation. In partic-
ular, a proof is not a fixed object but rather a process by which the validity of an
assertion is established. For example, in the context of Law, the cross-examination
of a witness in court (including its non-verbal components) may be considered a
proof (or a refutation) of some claim. Likewise, debates that take place in daily life
have an analogous potential of establishing claims and are then perceived as proofs.
This perception is quite common in philosophical and political debates, and arise
also in scientific debates. Furthermore, some technical “proofs by contradiction”
appeal to this daily experience by emulating an imaginary debate with a potential
(generic) skeptic.

We note that, in mathematics, proofs are often considered more fundamental
than their consequence (i.e., the theorem). In contrast, in many daily situations,
proofs are considered secondary (in importance) to their consequence. These con-
flicting attitudes are well-coupled with the difference between written proofs and
“interactive” proofs: If one values the proof itself then one may insist on having it
archived, whereas if one only cares about the consequence then the way in which
it is reached is immaterial.

Interestingly, the set of daily attitudes will be adequate in the current chapter,
where proofs are viewed merely as a vehicle for the verification of the validity of
claims. (This attitude gets to an extreme in the case of zero-knowledge proofs,
where we actually require that the proofs themselves be useless beyond being con-
vincing of the validity of the claimed assertion.) In general, we will be interested in
modeling various forms of proofs, focusing on proofs that can be verified by auto-
mated procedures. These verification procedures are designed to check the validity
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of potential proofs, and are oblivious of additional features that appeal to humans
such as beauty, insightfulness, etc. In the current section we will consider the most
general form of proof systems that still allow efficient verification.

We note that the proof systems that we study refer to mundane theorems (e.g.,
asserting that a specific propositional formula is not satisfiable or that a party sent
a message as instructed by a predetermined protocol). We stress that the (meta)
theorems that we shall state regarding these proof systems will be proven in the
traditional mathematical sense.

Prover and Verifier. The notion of a prover is implicit in all discussions of
proofs, be it in mathematics or in other situations: the prover is the (sometimes
hidden or transcendental) entity providing the proof. In contrast, the notion of a
verifier tends to be more explicit in such discussions, which typically emphasize the
verification process, or in other words the role of the verifier. Both in mathematics
and in daily situations, proofs are defined in terms of the verification procedure.
The verification procedure is considered to be relatively simple, and the burden is
placed on the party/person supplying the proof (i.e., the prover). The asymmetry
between the complexity of the verification task and the complexity of the theorem-
proving task is captured by the definition of NP-proof systems (i.e., verification
is required to be efficient, whereas P # AP implies that in some cases finding
adequate proofs is infeasible).

We highlight the “distrustful attitude” towards the prover, which underlies any
proof system. If the verifier trusts the prover then no proof is needed. Hence,
whenever discussing a proof system one considers a setting in which the verifier
is not trusting the prover, and furthermore is skeptic of anything that the prover
says. In such a setting the prover’s goal is to convince the verifier, while the verifier
should make sure it is not fooled by the prover.

Completeness and Soundness. Two fundamental properties of a proof system
(i.e., of a verification procedure) are its soundness (or wvalidity) and completeness.
The soundness property asserts that the verification procedure cannot be “tricked”
into accepting false statements. In other words, soundness captures the verifier’s
ability to protect itself from being convinced of false statements (no matter what
the prover does in order to fool it). On the other hand, completeness captures the
ability of some prover to convince the verifier of true statements (belonging to some
predetermined set of true statements). Note that both properties are essential to
the very notion of a proof system.

We note that not every set of true statements has a “reasonable” proof system
in which each of these statements can be proven (while no false statement can be
“proven”). This fundamental phenomenon is given a precise meaning in results
such as Gédel’s Incompleteness Theorem and Turing’s theorem regarding the un-
decidability of the Halting Problem. In contrast, recall that NP was defined as the
class of sets having proof systems that support efficient deterministic verification
(of “written proofs”). This section is devoted to the study of a more liberal notion
of efficient verification procedures (allowing both randomization and interaction).



332 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS

9.1.1 Definition

Loosely speaking, an interactive proof is a game between a computationally bounded
verifier and a computationally unbounded prover whose goal is to convince the veri-
fier of the validity of some assertion. Specifically, the verifier employs a probabilistic
polynomial-time strategy. It is required that if the assertion holds then the verifier
always accepts (i.e., when interacting with an appropriate prover strategy). On the
other hand, if the assertion is false then the verifier must reject with probability
at least %, no matter what strategy is being employed by the prover. (The error
probability can be reduced by running such a proof system several times.)

Formally, a strategy for a party describes the party’s next move (i.e., its next
message or its final decision) as a function of the common input (i.e., the afore-
mentioned assertion), its internal coin tosses, and all messages it has received so
far. That is, we assume that each party records the outcomes of its past coin
tosses as well as all the messages it has received, and determines its moves based
on these. Thus, an interaction between two parties, employing strategies A and B
respectively, is determined by the common input, denoted x, and the randomness
of both parties, denoted r4 and rp. Assuming that A takes the first move (and
B takes the last one), the corresponding interaction transcript (on common input
x and randomness 74 and rg) is a1, 31, ..., a4, Bt, where a; = A(x, 74,51, .., Biz1)
and 8, = B(x,rp,a1,...,;). The corresponding final decision of A is defined as
A(l‘, TA, ﬂl; ceey ﬂt)

We say that a party employs a probabilistic polynomial-time strategy if its next
move can be computed in a number of steps that is polynomial in the length of
the common input. In particular, this means that, on input common input z, the
strategy may only consider a polynomial in |z| many messages, which are each of
poly(|z]) length.? Intuitively, if the other party exceeds an a priori (polynomial in
|z]) bound on the total length of the messages that it is allowed to send, then the
execution is suspended. Thus, referring to the aforementioned strategies, we say
that A is a probabilistic polynomial-time strategy if, for every ¢ and r4, 51, -.., B,
the value of A(x,r4,01,...,3;) can be computed in time polynomial in |z|. Again,
in proper use, it must hold that |r4|,t and the |3;|’s are all polynomial in |z|.

Definition 9.1 (Interactive Proof systems — IP):3 An interactive proof system for
aset S is a two-party game, between a verifier executing o probabilistic polynomial-
time strategy, denoted V', and a prover that executes a (computationally unbounded)
strategy, denoted P, satisfying the following two conditions:

e Completeness: For every x € S, the verifier V' always accepts after interacting
with the prover P on common input x.

2Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must
also be bounded by a polynomial in the length of =.

3We follow the convention of specifying strategies for both the verifier and the prover. An
alternative presentation only specifies the verifier’s strategy, while rephrasing the completeness
condition as follows: There exists a prover strategy P so that, for every x € S, the verifier V
always accepts after interacting with P on common input .
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e Soundness: For every x € S and every strategy P*, the verifier V' rejects with
probability at least % after interacting with P* on common input x.

We denote by TP the class of sets having interactive proof systems.

The error probability (in the soundness condition) can be reduced by successive
applications of the proof system. (This is easy to see in the case of sequential
repetitions, but holds also for parallel repetitions; see Exercise 9.1.) In particular,
repeating the proving process for k times, reduces the probability that the verifier
is fooled (i.e., accepts a false assertion) to 27*, and we can afford doing so for any
k = poly(|z|). (Variants on the basic definition are discussed in Section 9.1.3.)

The role of randomness. Randomness is essential to the power of interactive
proofs; that is, restricting the verifier to deterministic strategies yields a class of
interactive proof systems that has no advantage over the class of NP-proof systems.
The reason being that, in case the verifier is deterministic, the prover can predict
the verifier’s part of the interaction. Thus, the prover can just supply its own
sequence of answers to the verifier’s sequence of (predictable) questions, and the
verifier can just check that these answers are convincing. Actually, we establish
that soundness error (and not merely randomized verification) is essential to the
power of interactive proof systems (i.e., their ability to reach beyond NP-proofs).

Proposition 9.2 Suppose that S has an interactive proof system (P,V) with no
soundness error; that is, for every x & S and every potential strateqy P*, the verifier
V' rejects with probability one after interacting with P* on common input x. Then

S eNP.

Proof: We may assume, without loss of generality, that V' is deterministic (by
just fixing arbitrarily the contents of its random-tape (e.g., to the all-zero string)
and noting that both (perfect) completeness and perfect (i.e., errorless) soundness
still hold). Since V is deterministic, the prover can predict each message sent by
V' (because each such message is uniquely determined by the common input and
the previous prover messages). Thus, a sequence of optimal prover’s messages (i.e.,
a sequence of messages leading V' to accept x) can be (pre)determined (without
interacting with V') based solely on the common input . (Note that we do not
care about the complexity of determining such a sequence, since no computational
bounds are placed on the prover.) Formally, z € S if and only if there exists a
sequence of (prover’s) messages that make (the deterministic) V' accept z, where
the question of whether a specific sequence makes V accept x depends only on the
sequence and on the common input x (because V' tosses no coins that may affect
this decision). It follows that S e NP. I}

Indeed, the punch-line of the foregoing proof is that the prover gains nothing
from interacting with an easily predictable verifier (i.e., a verifier that determines
its messages in deterministic polynomial-time based on the common input and the
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prover’s prior messages).? The prover can just produce the entire interaction by

itself (and send it to the verifier for verification). The moral is is that there is
no point to interact with a party whose moves are easily predictable. This moral
represents the prover’s point of view (regarding deterministic verifiers). Certainly,
from the verifier’s point of view it is beneficial to interact with the prover, because
the latter is computationally stronger (and thus its moves may not be easily pre-
dictable by the verifier even in case they are predictable in an information theoretic
sense).

9.1.2 The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive proof systems
in the sense that without randomness interactive proofs are not more powerful than
NP-proofs. Indeed, the power of interactive proof arises from the combination of
randomization and interaction. We first demonstrate this point by a simple proof
system for a specific coNP-set that is not known to have an NP-proof system, and
next prove the celebrated result ZP = PSPACE, which suggests that interactive
proofs are much stronger than NP-proofs.

9.1.2.1 A simple example

One day on the Olympus, bright-eyed Athena claimed that Nectar
poured out of the new silver-coated jars tastes less good than Nec-
tar poured out of the older gold-decorated jars. Mighty Zeus, who was
forced to introduce the new jars by the practically oriented Hera, was
annoyed at the claim. He ordered that Athena be served one hundred
glasses of Nectar, each poured at random either from an old jar or from
a new one, and that she tell the source of the drink in each glass. To
everybody’s surprise, wise Athena correctly identified the source of each
serving, to which the Father of the Gods responded “my child, you are
either right or extremely lucky.” Since all gods knew that being lucky
was not one of the attributes of Pallas-Athena, they all concluded that
the impeccable goddess was right in her claim.

The foregoing story illustrates the main idea underlying the interactive proof for
Graph Non-Isomorphism, presented in Construction 9.3. Informally, this interac-
tive proof system is designed for proving dissimilarity of two given objects (in the
foregoing story these are the two brands of Nectar, whereas in Construction 9.3
these are two non-isomorphic graphs). We note that, typically, proving similarity
between objects is easy, because one can present a mapping (of one object to the
other) that demonstrates this similarity. In contrast, proving dissimilarity seems
harder, because in general there seems to be no succinct proof of dissimilarity. More
generally, it is typically easy to prove the existence of an easily verifiable structure in

4Note that knowledge of the verifier’s messages may be essential for answering these questions
convincingly. In the case that V is deterministic its messages can be determined by the prover,
but this may not be possible in the general case (i.e., when V' is randomized).
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the given object by merely presenting this structure, but proving the non-existence
of such a structure seems hard. Formally, membership in an NP-set is proved by
presenting an NP-witness, but it is not clear how to prove the non-existence of such
witness. Indeed, recall that the common belief is that coNP # NP.

Two graphs, G1 =(V1, E1) and G2 =(Va, E»), are called isomorphic if there exists
a 1-1 and onto mapping, ¢, from the vertex set Vi to the vertex set V5 such that
{u,v} € E; if and only if {¢(v),p(u)} € E,. This (“edge preserving”) mapping
¢, in case it exists, is called an isomorphism between the graphs. The following
protocol specifies a way of proving that two graphs are not isomorphic, while it is
not known whether such a statement can be proven via a non-interactive process
(i.e., via an NP-proof system).

Construction 9.3 (Interactive proof for Graph Non-Isomorphism):
e Common Input: A pair of graphs, Gy =(V1, E1) and Gy =(Va, Es).

e Verifier’s first step (V1): The verifier selects at random one of the two input
graphs, and sends to the prover a random isomorphic copy of this graph.
Namely, the verifier selects uniformly o € {1,2}, and a random permutation
w from the set of permutations over the vertex set V. The verifier constructs
a graph with vertex set V, and edge set

def
E= {rw),7(v)}: {u,v} €E,}
and sends (V,, E) to the prover.

e Motivating Remark: If the input graphs are mon-isomorphic, as the prover
claims, then the prover should be able to distinguish (not necessarily by an
efficient algorithm) isomorphic copies of one graph from isomorphic copies of
the other graph. However, if the input graphs are isomorphic, then a random
isomorphic copy of one graph is distributed identically to a random isomorphic
copy of the other graph.

e Prover’s step: Upon receiving a graph, G' = (V', E'), from the verifier, the
prover finds a 7 € {1,2} such that the graph G' is isomorphic to the input
graph G.. (If both T=1,2 satisfy the condition then T is selected arbitrarily.
In case no T € {1,2} satisfies the condition, T is set to 0). The prover sends
T to the verifier.

e Verifier’s second step (V2): If the message, T, received from the prover equals
o (chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common
input). Otherwise the verifier outputs 0 (i.e., rejects the cormmon input).

The verifier’s strategy in Construction 9.3 is easily implemented in probabilistic
polynomial-time. We do not known of a probabilistic polynomial-time implemen-
tation of the prover’s strategy, but this is not required. The motivating remark
justifies the claim that Construction 9.3 constitutes an interactive proof system for
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the set of pairs of non-isomorphic graphs.® Recall that the latter is a coNP-set
(which is not known to be in N'P).

9.1.2.2 The full power of interactive proofs

The interactive proof system of Construction 9.3 refers to a specific coNP-set that
is not known to be in A'P. It turns out that interactive proof systems are powerful
enough to prove membership in any coNP-set (e.g., prove that a graph is not 3-
colorable). Thus, assuming that AP # coAN'P, this establishes that interactive
proof systems are more powerful than NP-proof systems. Furthermore, the class
of sets having interactive proof systems coincides with the class of sets that can be
decided using a polynomial amount of work-space.

Theorem 9.4 (The IP Theorem): ZP = PSP.ACE.

Recall that it is widely believed that NP is a proper subset of PSPACE. Thus,
under this conjecture, interactive proofs are more powerful than NP-proofs.

Sketch of the Proof of Theorem 9.4

Theorem 9.4, was established using algebraic methods (see details below). In partic-
ular, the following approach — unprecedented in complexity theory — was employed:
In order to demonstrate that a particular set is in a particular class, an arithmetic
generalization of the Boolean problem is presented, and (elementary) algebraic
methods are applied for showing that the arithmetic problem is solvable within
the class. Following is a sketch of the proof. We first show that coNP C IP, by
presenting an interactive proof system for the coA"P-complete set of non-satisfiable
CNF formulae. Next we extend this proof system to obtain one for the PSP ACE-
complete set of non-satisfiable Quantified Boolean Formulae. Finally, we observe
that TP C PSPACE.

Teaching note: Our presentation focuses on the main ideas, and neglects various
implementation details (which can be found in [151, 192]). Furthermore, we devote
most of the presentation to establishing that coNP C ZP, and recommend doing the
same in class.

Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-
mula, we replace the Boolean variables by integer variables, and replace the logical
operations by corresponding arithmetic operations. In particular, OR-clauses are
replaced by sums, and the top level conjunction is replaced by a product. Then,
we consider the formal summation of the resulting arithmetic expression, where

5In case G is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e.,
both to G1 and to G2). In this case the graph G’ sent in Step (V1) uniquely determines the bit
o. On the other hand, if G1 and G2 are isomorphic then, for every G’ sent in Step (V1), the
number of isomorphisms between G1 and G’ equals the number of isomorphisms between G2 and
G'. Tt follows that, in this case G', yields no information about o (chosen by the verifier), and so
no prover may convince the verifier with probability exceeding 1/2.



9.1. INTERACTIVE PROOF SYSTEMS 337

summation is taken over all 0-1 assignments to its variables. For example, the
Boolean formula

(563 V x5 V £L"17) A (1'5 \ l’g) A (_|£L"3 \ _|£L'4)
is replaces by the arithmetic expression
(@3 + (1 —x5) + @17) - (@5 + 29) - (1 —23) + (1 — 74))

and the Boolean formula is non-satisfiable if and only if the sum of the arithmetic
expression, taken over all choices of x1,xa,...,x17 € {0,1}, equals 0. Thus, proving
that the original Boolean formula is non-satisfiable reduces to proving that the
corresponding arithmetic summation evaluates to 0. We highlight two additional
observations regarding the resulting arithmetic expression:

1. The arithmetic expression is a low degree polynomial over the integers; specif-
ically, its (total) degree equals the number of clauses in the original Boolean
formula.

2. For any Boolean formula, the value of the corresponding arithmetic expression
(for any choice of 1, ..., z, € {0,1}) resides within the interval [0, v™], where
v is the maximum number of variables in a clause, and m is the number of
clauses. Thus, summing over all 2" possible 0-1 assignments, where n < vm
is the number of variables, the result resides in [0, 2"v™].

Moving to a Finite Field: Whenever we need to check equality between two
integers in [0, M], it suffices to check their equality mod ¢, where ¢ > M. The
benefit is that the arithmetic is now in a finite field (mod ¢), and so certain things
are “nicer” (e.g., uniformly selecting a value). Thus, proving that a CNF formula
is not satisfiable reduces to proving an equality of the following form

Z Z é(x1,..,zy) =0 (mod q), (9.1)

x1=0,1 z,=0,1

where ¢ is a low degree multi-variate polynomial. In the rest of this exposition, all
arithmetic operations refer to the finite field of ¢ elements, denoted GF(q).

Overview of the actual protocol: stripping summations in iterations.
Given a formal expression as in Eq. (9.1), we strip off summations in iterations,
stripping a single summation at each iteration, and instantiate the corresponding
free variable as follows. At the beginning of each iteration the prover is supposed
to supply the univariate polynomial representing the residual expression as a func-
tion of the (single) currently stripped variable. (By Observation 1, this is a low
degree polynomial and so it has a short description.)® The verifier checks that the

6We also use Observation 2, which implies that we may use a finite field with elements having
a description length that is polynomial in the length of the original Boolean formula (i.e., log, ¢ =

O(vm)).
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polynomial (say, p) is of low degree, and that it corresponds to the current value
(say, v) being claimed (i.e., it verifies that p(0) + p(1) = v). Next, the verifier ran-
domly instantiates the currently free variable (i.e., it selects uniformly r € GF(q)),
yielding a new value to be claimed for the resulting expression (i.e., the verifier
computes v «— p(r), and expects a proof that the residual expression equals v).
The verifier sends the uniformly chosen instantiation (i.e., 7) to the prover, and the
parties proceed to the next iteration (which refers to the residual expression and
to the new value v). At the end of the last iteration, the verifier has a closed form
expression (i.e., an expression without formal summations), which can be easily
checked against the claimed value.

A single iteration (detailed): The *! iteration is aimed at proving a claim of
the form

Z Z O(T1y ooy Tic 1, Tiy Tig1y ey Tpn) =01 (mod q), (9.2)

z;=0,1 z,=0,1

where vo = 0, and 7q,...,7;_1 and v;_; are as determined in previous iterations.
The i*} iteration consists of two steps (messages): a prover step followed by a
verifier step. The prover is supposed to provide the verifier with the univariate
polynomial p; that satisfies

pi(z) & Z Z A(r1y .y Tic1, 2, Tig1, ory Tn) mod . (9.3)

I,j+1:071 Ir,,,:071

Denote by p. the actual polynomial sent by the prover (i.e., the honest prover sets
P = pi). Then, the verifier first checks if p;(0) + pi(1) = v;_1 (mod ¢), and next
uniformly selects ; € GF(¢) and sends it to the prover. Needless to say, the verifier
will reject if the first check is violated. The claim to be proven in the next iteration
is

Z Z D(T1y ey Tic1, iy Tig 1, -y Tn) = v;  (mod @), (9.4)

zi+1=0,1 zn,=0,1

where v; < pi(ri) mod gq.

Completeness of the protocol: When the initial claim (i.e., Eq. (9.1)) holds,
the prover can supply the correct polynomials (as determined in Eq. (9.3)), and
this will lead the verifier to always accept.

Soundness of the protocol: It suffices to upper-bound the probability that, for
a particular iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim
(i.e., Eq. (9.4)) is valid. Both claims refer to the current summation expression
being equal to the current value, where ‘current’ means either at the beginning
of the iteration or at its end. Let p(-) be the actual polynomial representing the
expression when stripping the current variable, and let p'(-) be any potential answer
by the prover. We may assume that p’(0) + p'(1) = v (mod ¢) and that p' is of
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low-degree (as otherwise the verifier will reject). Using our hypothesis (that the
entry claim of Eq. (9.2) is false), we know that p(0) + p(1) Z v (mod g). Thus,
p' and p are different low-degree polynomials, and so they may agree on very few
points (if at all). In case the verifier instantiation (i.e., its choice of random r) does
not happen to be one of these few points, the ending claim (i.e., Eq. (9.4)) is false
too (because p(r) # p'(r) (mod g), whereas the new value is set to p'(r) mod ¢
and the residual expression evaluates to p(r)). Details are left as an exercise (see
Exercise 9.2).

This establishes that the set of non-satisfiable CNF formulae has an interactive
proof system. Actually, a similar proof system (which uses a related arithmeti-
zation — see Exercise 9.4) can be used to prove that a given formula has a given
number of satisfying assignment; i.e., prove membership in the (“counting”) set

{(9, k) : {7 : ¢(7) = 1} = k}. (9-5)

Using adequate reductions, it follows that every problem in #P has an interactive
proof system (i.e., for every R € PC, the set {(z,k) : {y : (z,y) € R} =k} isin
IP). Proving that PSPACE C IP requires a little more work.

Interactive Proofs for PSPACE (basic idea). We present an interactive
proof for the set of satisfied Quantified Boolean Formulae (QBF), which is complete
for PSPACE (see Theorem 5.15).7 Recall that the number of quantifiers in such
formulae is unbounded (e.g., it may be polynomially related to the length of the
input), that there are both existential and universal quantifiers, and furthermore
these quantifiers may alternate. In the arithmetization of these formulae, we replace
existential quantifiers by summations and universal quantifiers by products. Two
difficulties arise when considering the application of the forgoing protocol to the
resulting arithmetic expression. Firstly, the value of the expression (which may
involve a big number of nested formal products) is only upper-bounded by a double
exponential function (in the length of the input). Secondly, when stripping a
summation (or a product), the expression may be a polynomial of high degree
(due to nested formal products that may appear in the remaining expression). For
example, both phenomena occur in the following expression

> I I @+wa,

z=0,1y1=0,1 Yn=0,1

which equals )7 _ 22" - (1+2)?" . The first difficulty is easy to resolve by
using the fact (to be established in Exercise 9.6) that if two integers in [0, M] are
different then they must be different modulo most of the primes in the interval
[3, poly(log M)]. Thus, we let the verifier selects a random prime ¢ of length that
is linear in the length of the original formula, and the two parties consider the
arithmetic expression reduced modulo this q. The second difficulty is resolved

7 Actually, the following extension of the foregoing proof system yields a proof system for the set
of unsatisfied Quantified Boolean Formulae (which is also complete for PSP.ACE). Alternatively,
one may extend the related proof system presented in Exercise 9.4.
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by noting that PSPACE is actually reducible to a special form of QBF in which
no variable appears both to the left and to the right of more than one universal
quantifier (see the proof of Theorem 5.15 or alternatively Exercise 9.5). It follows
that when arithmetizing and stripping summations (or products) from the resulting
arithmetic expression, the corresponding univariate polynomial is of low degree
(i.e., at most twice the length of the original formula, where the factor of two is
due to the single universal quantifier that has this variable quantified on its left
and appearing on its right).

IP is contained in PSPACE: We shall show that, for every interactive proof
system, there exists an optimal prover strategy that can be implemented in polynomial-
space, where an optimal prover strategy is one that maximizes the probability that
the prescribed verifier accepts the common input. It follows that ZP C PSPACE,
because (for every S € ZP) we can emulate the interaction of the prescribed verifier
with an optimal prover strategy in polynomial space.

Proposition 9.5 Let V' be a probabilistic polynomial-time interactive machine.
Then, there exists a polynomial-space computable prover strategy f that, for every
x maximizes the probability that V' accepts x. That is, for every P* and every x it
holds that the probability that V accepts x after interacting with P* is upper-bounded
by the probability that V accepts x after interacting with f.

Proof Sketch: For every common input x and any possible partial transcript v
of the interaction so far, the strategy® f determines an optimal next message for
the prover by considering all possible coin tosses of the verifier that are consistent
with (z,7). Specifically, f is determined recursively such that f(z,v) = m if m
maximizes the number of verifier coins that are consistent with (z,~) and lead the
verifier to accept when subsequent prover moves are determined by f (which is
where recursion is used). That is, coins r support the setting f(z,v) = m, where
v = (a1, B1,-.-,au, Bt), if the following two conditions hold:

1. r is consistent with (z,7), which means that for every ¢ € {1,...,¢} it holds
that 8, = V(z,r,aq, ..., ;).

2. 7 leads V' to accept (when subsequent prover moves are determined by f),
which means that V(z,r, a1, ..., ¢, m, 412, ...,ar) = 1, where for every i €
{t+1,..,7 — 1} it holds that a;+1 = f(z,v,m,Be+1,..., 0, 5) and B; =
V(@7 0y ey Qs Ty Qg2 ey Q).

That is, f(z,v) = m if m maximizes the value of E[f(z,v, m,V (z, Ry, m))], where
R, is selected uniformly among the r’s that are consistent with (z,v). Thus, the
value f(xz,7) can be computed in polynomial-space when given oracle access to
f(x,~,-,-), and the proposition follows by standard composition of space-bounded
computations. O

8For sake of convenience, when describing the strategy f, we refer to the entire partial tran-
script of the interaction with V' (rather than merely to the sequence of previous messages sent by
V).
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9.1.3 Variants and finer structure: an overview

In this subsection we consider several variants on the basic definition of interactive
proofs as well as finer complexity measures. This is an advanced subsection, which
only provides an overview of the various notions and results (as well as pointers to
proofs of the latter).

9.1.3.1 Arthur-Merlin games a.k.a public-coin proof systems

The verifier’s messages in a general interactive proof system are determined arbi-
trarily (but efficiently) based on the verifier’s view of the interaction so far (which
includes its internal coin tosses, which without loss of generality can take place
at the onset of the interaction). Thus, the verifier’s past coin tosses are not nec-
essarily revealed by the messages that it sends. In contrast, in public-coin proof
systems (a.k.a Arthur-Merlin proof systems), the verifier’s messages contain the
outcome of any coin that it tosses at the current round. Thus, these messages re-
veal the randomness used towards generating them (i.e., this randomness becomes
public). Actually, without loss of generality, the verifier’s messages can be identical
to the outcome of the coins tossed at the current round (because any other string
that the verifier may compute based on these coin tosses is actually determined by
them). Note that the proof systems presented in the proof of Theorem 9.4 are of
the public-coin type, whereas this is not the case for the Graph Non-Isomorphism
proof system (of Construction 9.3). Thus, although not all natural proof systems
are of the public-coin type, every set having an interactive proof system also has a
public-coin interactive proof system. This means that, in the context of interactive
proof systems, asking random questions is as powerful as asking clever questions.

Indeed, public-coin proof systems are a syntactically restricted type of inter-
active proof systems. This restriction may make the design of such systems more
complex, but potentially facilitates their analysis (and especially the analysis of a
generic system). Another advantage of public-coin proof systems is that the veri-
fier’s actions (except for its final decision) are oblivious of the prover’s messages.
This property is used in the proof of Theorem 9.12.

9.1.3.2 Interactive proof systems with two-sided error

In Definition 9.1 error probability is allowed in the soundness condition but not
in the completeness condition. In such a case, we say that the proof system has
perfect completeness (or one-sided error probability). A more general definition
allows an error probability (upper-bounded by, say, 1/3) in both the completeness
and soundness conditions. Note that sets having such generalized (two-sided error)
interactive proofs are also in PSPACE, and thus allowing two-sided error does
not increase the power of interactive proofs. See further discussion at the end of
§9.1.3.3.
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9.1.3.3 A hierarchy of interactive proof systems

Definition 9.1 only refers to the total computation time of the verifier, and thus
allows an arbitrary (polynomial) number of messages to be exchanged. A finer
definition refers to the number of messages being exchanged (also called the number
of rounds).’

Definition 9.6 (The round-complexity of interactive proof):

e For an integer function m, the complezity class TP (m) consists of sets having
an interactive proof system in which, on common input x, at most m(|z|)
messages are exchanged between the parties.'°

e For a set of integer functions, M, we let TP (M) def Umerr IP(m). Thus,

IP =IP(poly).

For example, interactive proof systems in which the verifier sends a single message
that is answered by a single message of the prover corresponds to ZP(2). Clearly,
NP C IP(1), yet the inclusion may be strict because in ZP(1) the verifier may toss
coins after receiving the prover’s single message. (Also note that ZP(0) = coRP.)
Concerning the finer structure of the IP-hierarchy, the following is known:

e A linear speed-up (see Appendix F.2 (or [20] and [107])): For every integer
function, f, such that f(n) > 2 for all n, the class ZP(O(f(-))) collapses to
the class ZP(f(+)). In particular, ZP(O(1)) collapses to ZP(2).

e The class ZP(2) contains sets not known to be in N'P; e.g., Graph Non-
Isomorphism (see Construction 9.3). However, under plausible intractability
assumptions, ZP(2) = NP (see [156]).

e If coN'P C IP(2) then the Polynomial-Time Hierarchy collapses (see [42]).

It is conjectured that coNP is not contained in ZP(2), and consequently that
interactive proofs with an unbounded number of message exchanges are more pow-
erful than interactive proofs in which only a bounded (i.e., constant) number of
messages are exchanged.!! The class ZP(1) (also denoted M.A) seems to be the
“real” randomized (and yet non-interactive) version of NP: Here the prover sup-
plies a candidate (polynomial-size) “proof”, and the verifier assesses its validity
probabilistically (rather than deterministically).

The IP-hierarchy (i.e., ZP(-)) equals an analogous hierarchy, denoted AM(-),
that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs.  That is, for
every integer function f, it holds that AM(f) = ZP(f). For f > 2, it is also the
case that AM(f) = AM(O(f)); actually, the aforementioned linear speed-up for
IP(-) is established by combining the following two results:

9An even finer structure emerges when considering also the total length of the messages sent
by the prover (see [102]).

10We count the total number of messages exchanged regardless of the direction of
communication.

' Note that the linear speed-up cannot be applied for an unbounded number of times, because
each application may increase (e.g., square) the time-complexity of verification.
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1. Emulating ZP(-) by AM(-) (see §F.2.1 or [107]): ZP(f) C AM(f +3).
2. Linear speed-up for AM(-) (see §F.2.2 or [20]): AM(2f) C AM(f).

In particular, ZP(O(1)) = AM(2), even if AM(2) is restricted such that the verifier
tosses no coins after receiving the prover’s message. (Note that ZP(1) = AM(1)
and ZP(0) = AM(0) are trivial.) We comment that it is common to denote AM(2)
by AM, which is indeed inconsistent with the convention of using ZP to denote
IP(poly).

The fact that ZP(O(f)) = ZP(f) is proved by establishing an analogous result
for AM(-) demonstrates the advantage of the public-coin setting for the study
of interactive proofs. A similar phenomenon occurs when establishing that the
IP-hierarchy equals an analogous two-sided error hierarchy (see Exercise 9.7).

9.1.3.4 Something completely different

We stress that although we have relaxed the requirements from the verification
procedure (by allowing it to interact with the prover, toss coins, and risk some
(bounded) error probability), we did not restrict the validity of its assertions by
assumptions concerning the potential prover. This should be contrasted with other
notions of proof systems, such as computationally-sound ones (see §9.1.4.2), in
which the validity of the verifier’s assertions depends on assumptions concerning
the potential prover(s).

9.1.4 On computationally bounded provers: an overview

Recall that our definition of interactive proofs (i.e., Definition 9.1) makes no ref-
erence to the computational abilities of the potential prover. This fact has two
conflicting consequences:

1. The completeness condition does not provide any upper bound on the com-
plexity of the corresponding proving strategy (which convinces the verifier to
accept valid assertions).

2. The soundness condition guarantees that, regardless of the computational
effort spend by a cheating prover, the verifier cannot be fooled to accept
invalid assertions (with probability exceeding the soundness error).

Note that providing an upper-bound on the complexity of the (prescribed) prover
strategy P of a specific interactive proof system (P, V) only strengthens the claim
that (P,V) is a proof system for the corresponding set (of valid assertions). We
stress that the prescribed prover strategy is referred to only in the completeness
condition (and is irrelevant to the soundness condition). On the other hand, relax-
ing the definition of interactive proofs such that soundness holds only for a specific
class of cheating prover strategies (rather than for all cheating prover strategies)
weakens the corresponding claim. In this advanced section we consider both pos-
sibilities.
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Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-
dent reading. It merely provides an overview of the various notions, and the reader is
directed to the chapter’s notes for further detail (i.e., pointers to the relevant literature).

9.1.4.1 How powerful should the prover be?

Assume that a set S is in ZP. This means that there is a verifier V' that can
be convinced to accept any input in S but cannot be fooled to accept any input
not in S (except with small probability). One may ask how powerful should a
prover be such that it can convince the verifier V to accept any input in S. Note
that Proposition 9.5 asserts that an optimal prover strategy can be implemented in
polynomial-space (and that we cannot expect better for a generic set in PSPACE =
IP), but we will seek better upper-bounds on the complexity of the prover that
convinces a specific verifier (which in turn corresponds to a specific set S). More
interestingly, considering all possible verifiers that give rise to interactive proof
systems for S, we ask what is the minimum power required from a prover that
satisfies the completeness requirement with respect to one of these verifiers?

We stress that, unlike the case of computationally-sound proof systems (see
§9.1.4.2), we do not restrict the power of the prover in the soundness condition,
but rather consider the minimum complexity of provers meeting the completeness
condition. Specifically, we are interested in relatively efficient provers that meet
the completeness condition. The term “relatively efficient prover” has been given
three different interpretations, which are briefly surveyed next.

1. A prover is considered relatively efficient if, when given an auxiliary input (in
addition to the common input in S), it works in (probabilistic) polynomial-
time. Specifically, in case S € NP, the auxiliary input maybe an NP-proof
that the common input is in the set. Still, even in this case the interac-
tive proof need not consist of the prover sending the auxiliary input to the
verifier; for example, an alternative procedure may allow the prover to be
zero-knowledge (see Construction 9.10).

This interpretation is adequate and in fact crucial for applications in which
such an auxiliary input is available to the otherwise polynomial-time parties.
Typically, such auxiliary input is available in cryptographic applications in
which parties wish to prove in (zero-knowledge) that they have correctly con-
ducted some computation. In these cases the NP-proof is just the transcript
of the computation by which the claimed result has been generated, and thus
the auxiliary input is available to the proving party.

2. A prover is considered relatively efficient if it can be implemented by a prob-
abilistic polynomial-time oracle machine with oracle access to the set S itself.
(Note that the prover in Construction 9.3 has this property.)

This interpretation generalizes the notion of self-reducibility of NP-sets. (Re-
call that by self-reducibility of an NP-set we mean that the search problem of
finding an NP-witness is polynomial-time reducible to deciding membership
in the set (cf. Definition 2.13).)
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3. A prover is considered relatively efficient if it can be implemented by a prob-
abilistic machine that runs in time that is polynomial in the deterministic
complexity of the set. This interpretation relates the difficulty of convincing
a “lazy verifier” to the complexity of finding the truth alone.

Hence, in contrast to the first interpretation, which is adequate in settings
where assertions are generated along with their NP-proofs, the current in-
terpretation is adequate in settings in which the prover is given only the
assertion and has to find a proof to it by itself (before trying to convince a
lazy verifier of its validity).

9.1.4.2 Computational-soundness

Relaxing the soundness condition such that it only refers to relatively-efficient ways
of trying to fool the verifier (rather than to all possible ways) yields a fundamen-
tally different notion of a proof system. Assertions proven in such a system are not
necessarily correct; they are correct only if the potential cheating prover does not
exceed the presumed complexity limits. As in §9.1.4.1, the notion of “relative effi-
ciency” can be given different interpretations, the most popular one being that the
cheating prover strategy can be described by a (non-uniform) family of polynomial-
size circuits. The latter interpretation coincides with the first interpretation used
in §9.1.4.1 (i.e., a probabilistic polynomial-time strategy that is given an auxiliary
input (of polynomial length)). Specifically, the soundness condition is replaced by
the following computational soundness condition that asserts that it is infeasible to
fool the verifier into accepting false statements. Formally:

For every prover strategy that is implementable by a family of polynomial-
size circuits {C,}, and every sufficiently long = € {0,1}*\ S, the prob-
ability that V accepts x when interacting with C|| is less than 1/2.

As in case of standard soundness, the computational-soundness error can be re-
duced by repetitions. We warn, however, that unlike in the case of standard sound-
ness (where both sequential and parallel repetitions will do), the computational-
soundness error cannot always be reduced by parallel repetitions.

It is common and natural to consider proof systems in which the prover strate-
gies considered both in the completeness and soundness conditions satisfy the same
notion of relative efficiency. Protocols that satisfy these conditions with respect
to the foregoing interpretation are called arguments. We mention that argument
systems may be more efficient (e.g., in terms of their communication complexity)
than interactive proof systems.

9.2 Zero-Knowledge Proof Systems

Zero-Knowledge proofs are fascinating and extremely useful constructs. Their fas-
cinating nature is due to their seemingly contradictory definition: zero-knowledge
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proofs are both convincing and yet yield nothing beyond the validity of the asser-
tion being proven. Their applicability in the domain of cryptography is vast; they
are typically used to force malicious parties to behave according to a predetermined
protocol. In addition to their direct applicability in Cryptography, zero-knowledge
proofs serve as a good bench-mark for the study of various problems regarding
cryptographic protocols. In this section we focus on the conceptual contents of
zero-knowledge, and relegate their cryptographic applications to Appendix C.

LEEON

N
\

Figure 9.1: Zero-knowledge proofs — an illustration.

Turning back to the conceptual angle, we highlight the fact that standard proofs
are believed to yield knowledge and not merely establish the validity of the assertion
being proven. Indeed, it is commonly believed that (good) proofs provide a deeper
understanding of the theorem being proved. At the technical level, an NP-proof of
membership in some set S € AP \ P yields something (i.e., the NP-proof itself)
that is typically hard to compute (even when assuming that the input is in 5).
For example, a 3-coloring of a graph is an NP-proof that the graph is 3-colorable,
but it yields information (i.e., the coloring) that is infeasible to compute (when
given an arbitrary 3-colorable graph). In contrast to such NP-proofs, which seem
to yield a lot of knowledge, zero-knowledge proofs yield no knowledge at all; that
is, the latter exhibit an extreme contrast between being convincing (of the validity
of a statement) and teaching anything on top of the validity of the statement.

Teaching note: We believe that the treatment of zero-knowledge proofs provided in
this section suffices for the purpose of a course in complexity theory. For an extensive
treatment of zero-knowledge proofs, the interested reader is referred to [87, Chap. 4].

9.2.1 Definitional Issues

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the
validity of the assertion; that is, a verifier obtaining such a proof only gains convic-
tion in the validity of the assertion. This is formulated by saying that anything that
can be feasibly obtained from a zero-knowledge proof is also feasibly computable
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from the (valid) assertion itself. The latter formulation follows the simulation
paradigm, which is discussed next.

9.2.1.1 A wider perspective: the simulation paradigm

In defining zero-knowledge proofs, we view the verifier as a potential adversary
that tries to gain knowledge from the (prescribed) prover.!? We wish to state that
no (feasible) adversary strategy for the verifier can gain anything from the prover
(beyond conviction in the validity of the assertion). Let us consider the desired
formulation from a wide perspective.

A key question regarding the modeling of security concerns is how to express the
intuitive requirement that an adversary “gains nothing substantial” by deviating
from the prescribed behavior of an honest user. Our approach is that the adversary
gains nothing if whatever it can obtain by unrestricted adversarial behavior can
be obtained within essentially the same computational effort by a benign behavior.
The definition of the “benign behavior” captures what we want to achieve in terms
of security, and is specific to the security concern to be addressed. For example,
in the context of zero-knowledge, a benign behavior is any computation that is
based (only) on the assertion itself (while assuming that the latter is valid). Thus,
a zero-knowledge proof is an interactive proof in which no feasible adversarial ver-
ifier strategy can obtain from the interaction more than a “benign verifier” (which
believes the assertion) can obtain from the assertion itself. We comment that the
simulation paradigm is pivotal to many definitions in cryptography (e.g., it under-
lies the definition of security of encryption schemes and cryptographic protocols);
for further details see Appendix C.

9.2.1.2 The basic definitions

Zero-knowledge is a property of some prover strategies. More generally, zero-
knowledge is a property of some interactive machines. Fixing an interactive ma-
chine (e.g., a prescribed prover), we consider what can be gained (i.e., computed)
by an arbitrary feasible adversary (e.g., a verifier) that interacts with the afore-
mentioned fized machine on a common input taken from a predetermined set (in
our case the set of valid assertions). This gain is compared against what can be
computed by an arbitrary feasible algorithm (called a simulator) that is only given
the input itself. The fixed machine is zero-knowledge if the “computational power”
of these two (fundamentally different settings) is essentially equivalent. Details
follow.

The formulation of the zero-knowledge condition refers to two types of probabil-
ity ensembles, where each ensemble associates a single probability distribution to
each relevant input (e.g., a valid assertion). Specifically, in the case of interactive
proofs, the first ensemble represents the output distribution of the verifier after
interacting with the specified prover strategy P (on some common input), where

I2Recall that when defining a proof system (e.g., an interactive proof system), we view the
prover as a potential adversary that tries to fool the (prescribed) verifier (into accepting invalid
assertions).
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the verifier is employing an arbitrary efficient strategy (not necessarily the specified
one). The second ensemble represents the output distribution of some probabilistic
polynomial-time algorithm (which is only given the corresponding input but does
not interact with anyone). The basic paradigm of zero-knowledge asserts that for
every ensemble of the first type there exist a “similar” ensemble of the second type.
The specific variants differ by the interpretation given to the notion of similarity.
The most strict interpretation, leading to perfect zero-knowledge, is that similarity
means equality.

Definition 9.7 (perfect zero-knowledge, over-simplified):*3 A prover strategy, P,
is said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-
time verifier strategy, V*, there exists a probabilistic polynomial-time algorithm,
M?*, such that

(P,V*)(z) = M*(x), for everyz € S

where (P,V*)(x) is a random variable representing the output of verifier V* after
interacting with the prover P on common input x, and M*(x) is a random variable
representing the output of machine M™* on input x.

We comment that any set in coR’P has a perfect zero-knowledge proof system in
which the prover keeps silence and the verifier decides by itself. The same holds
for BPP provided that we relax the definition of interactive proof system to allow
two-sided error. Needless to say, our focus is on non-trivial proof systems; that is,
proof systems for sets outside of BPP.

A somewhat more relaxed interpretation (of the notion of similarity), leading
to almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-
ity means statistical closeness (i.e., negligible difference between the ensembles).
The most liberal interpretation, leading to the standard usage of the term zero-
knowledge (and sometimes referred to as computational zero-knowledge), is that
similarity means computational indistinguishability (i.e., failure of any efficient pro-
cedure to tell the two ensembles apart). Combining the foregoing discussion with
the relevant definition of computational indistinguishability (i.e., Definition C.5),
we obtain the following definition.

Definition 9.8 (zero-knowledge, somewhat simplified): A prover strategy, P, is
satd to be zero-knowledge over a set S if for every probabilistic polynomial-time
verifier strategy, V*, there exists a probabilistic polynomial-time simulator, M™,
such that for every probabilistic polynomial-time distinguisher, D, it holds that

def * _ * _
d(n) = xesrg?gfl}n{lpr[lj(wa (P, V7)(x))=1] = Pr[D(z, M (x)) =1]|}

13In the actual definition one relaxes the requirement in one of the following two ways. The
first alternative is allowing M™* to run for ezpected (rather than strict) polynomial-time. The
second alternative consists of allowing M™* to have no output with probability at most 1/2 and
considering the value of its output conditioned on it having output at all. The latter alternative
implies the former, but the converse is not known to hold.
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is a negligible function.'* We denote by ZK the class of sets having zero-knowledge
interactive proof systems.

Definition 9.8 is a simplified version of the actual definition, which is presented in
Appendix C.4.2. Specifically, in order to guarantee that zero-knowledge is preserved
under sequential composition it is necessary to slightly augment the definition (by
providing V* and M* with the same value of an arbitrary (poly(|z|)-bit long)
auxiliary input). Other definitional issues and related notions are briefly discussed
in Appendix C.4.4.

On the role of randomness and interaction. It can be shown that only
sets in BPP have zero-knowledge proofs in which the verifier is deterministic (see
Exercise 9.9). The same holds for deterministic provers, provided that we consider
“auxiliary-input” zero-knowledge (as in Definition C.9). It can also be shown that
ounly sets in BPP have zero-knowledge proofs in which a single message is sent (see
Exercise 9.10). Thus, both randomness and interaction are essential to the non-
triviality of zero-knowledge proof systems. (For further details, see [87, Sec. 4.5.1].)

Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowest
level of a knowledge-complexity hierarchy which quantifies the “knowledge revealed
in an interaction.” Specifically, the knowledge complexity of an interactive proof
system may be defined as the minimum number of oracle-queries required in order
to efficiently simulate an interaction with the prover. (See [86, Sec. 2.3.1] for
references.)

9.2.2 The Power of Zero-Knowledge

When faced with a definition as complex (and seemingly self-contradictory) as the
definition of zero-knowledge, one should indeed wonder whether the definition can
be met (in a non-trivial manner).!®> It turns out that the existence of non-trivial
zero-knowledge proofs is related to the existence of intractable problems in AP.
In particular, we will show that if one-way functions exist then every NP-set has a
zero-knowledge proof system. (For the converse, see [87, Sec. 4.5.2] or [214].) We
first demonstrate the scope of zero-knowledge by a presenting a simple (perfect)
zero-knowledge proof system for a specific NP-set that is not known to be in BPP.
In this case we make no intractability assumptions, but the result is significant only
if AP is not contained in BPP.

9.2.2.1 A simple example

A story not found in the Odyssey refers to the not so famous Labyrinth
of the Island of Aeaea. The Sorceress Circe, daughter of Helius, chal-

M That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positive

polynomial p and for sufficiently large n, it holds that d(n) < 1/p(n)). Needless to say, d(n) 4y
if Sn{0,1}™ = 0.

15Note that any set in BPP has a trivial zero-knowledge (two-sided error) proof system in
which the verifier just determines membership by itself.
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lenged godlike Odysseus to traverse the Labyrinth from its North Gate
to its South Gate. Canny Odysseus doubted whether such a path ex-
isted at all and asked beautiful Circe for a proof, to which she replied
that if she showed him a path this would trivialize for him the chal-
lenge of traversing the Labyrinth. “Not necessarily,” clever Odysseus
replied, “you can use your magic to transport me to a random place in
the labyrinth, and then guide me by a random walk to a gate of my
choice. If we repeat this enough times then I'll be convinced that there
is a labyrinth-path between the two gates, while you will not reveal to
me such a path.” “Indeed,” wise Circe thought to herself, “showing
this mortal a random path from a random location in the labyrinth to
the gate he chooses will not teach him more than his taking a random
walk from that gate.”

The foregoing story illustrates the main idea underlying the zero-knowledge proof
for Graph Isomorphism presented next. Recall that the set of pairs of isomorphic
graphs is not known to be in BPP, and thus the straightforward NP-proof system
(in which the prover just supplies the isomorphism) may not be zero-knowledge.
Furthermore, assuming that Graph Isomorphism is not in BPP, this set has no
zero-knowledge NP-proof system, but as we shall shortly see it does have a zero-
knowledge interactive proof system.

Construction 9.9 (zero-knowledge proof for Graph Isomorphism):

e Common Input: A pair of graphs, Gy = (V1,Ey) and Gy = (Va, Es). Let ¢

be an isomorphism between the input graphs; namely, ¢ is a 1-1 and onto
mapping of the vertex set Vi to the vertex set Vo such that {u,v} € Ey if and

only if {¢(v), p(u)} € Es.

Prover’s first Step (P1): The prover selects a random isomorphic copy of
G-, and sends it to the verifier. Namely, the prover selects at random, with
uniform probability distribution, a permutation m from the set of permutations
over the vertex set V,, and constructs a graph with vertex set Vo and edge set

EE {{n(w),(0)} : {u,0} €E:}.
The prover sends (Va, E) to the verifier.

Motivating Remark: If the input graphs are isomorphic, as the prover claims,
then the graph sent in Step P1 is isomorphic to both input graphs. However,
if the input graphs are not isomorphic then no graph can be isomorphic to
both of them.

Verifier’s first Step (V1): Upon receiving a graph, G' = (V' E"), from the
prover, the verifier asks the prover to show an isomorphism between G' and
one of the input graphs, chosen at random by the verifier. Namely, the verifier
uniformly selects o € {1,2}, and sends it to the prover (who is supposed to
answer with an isomorphism between G, and G').
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e Prover’s second Step (P2): If the message, o, received from the verifier equals
2 then the prover sends w to the verifier. Otherwise (i.e., o # 2), the prover
sends w o ¢ (i.e., the composition of m on ¢, defined as 7o ¢(v) def w(p(v)))
to the verifier.

(Indeed, the prover treats any o # 2 as 0 = 1. In the analysis we shall
assume, without loss of generality, that o € {1,2} always holds.)

e Verifier’s second Step (V2): If the message, denoted ¥, received from the
prover is an isomorphism between G, and G' then the verifier outputs 1,
otherwise it outputs 0.

The verifier strategy in Construction 9.9 is easily implemented in probabilistic
polynomial-time. In case the prover is given an isomorphism between the input
graphs as auxiliary input, also the prover’s program can be implemented in proba-
bilistic polynomial-time. The motivating remark justifies the claim that Construc-
tion 9.9 constitutes an interactive proof system for the set of pairs of isomorphic
graphs. As for the zero-knowledge property, consider first the special case in which
the verifier actually follows the prescribed strategy (and selects o at random, and
in particular obliviously of the graph G’ it receives). The view of this verifier can
be easily simulated by selecting o and v at random, constructing G' as a ran-
dom isomorphic copy of G, (via the isomorphism ), and outputting the triplet
(G',0,%). Indeed (even in this case), the simulator behaves differently from the
prescribed prover (which selects G' as a random isomorphic copy of G,, via the
isomorphism 7), but its output distribution is identical to the verifier’s view in
the real interaction. However, the forgoing description assumes that the verifier
follows the prescribed strategy, while in general the verifier may (adversarially)
select o depending on the graph G'. Thus, a slightly more complicated simulation
(described next) is required.

A general clarification may be in place. Recall that we wish to simulate the
interaction of an arbitrary verifier strategy with the prescribed prover. Thus, this
simulator must depend on the corresponding verifier strategy, and indeed we shall
describe the simulator while referring to such a generic verifier strategy. Formally,
this means that the simulator’s program incorporates the program of the corre-
sponding verifier strategy. (Actually, the following simulator uses the generic veri-
fier strategy as a subroutine.)

Turning back to the specific protocol of Construction 9.9, the basic idea is that
simulator tries to guess o and can complete a simulation if its guess turns out to
be correct. Specifically, the simulator selects 7 € {1, 2} uniformly (hoping that the
verifier will later select o = 7), and constructs G’ by randomly permuting G, (and
thus being able to present an isomorphism between G, and G'). Recall that the
simulator is analyzed only on yes-instances (i.e., the input graphs G; and G are
isomorphic). The point is that if G; and G are isomorphic, then the graph G’
does not yield any information regarding the simulator’s guess (i.e., 7).1¢ Thus,

16Indeed, this observation is identical to the one made in the analysis of the soundness of
Construction 9.3.
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the value o selected by the adversarial verifier may depend on G’ but not on o,
which implies that Prjoc =7] = 1/2. In other words, the simulator’s guess (i.e., 7)
is correct (i.e., equals o) with probability 1/2. Now, if the guess is correct then the
simulator can produce an output that has the correct distribution, and otherwise
the entire process is repeated.

Useful conventions. We wish to highlight three conventions that were either
used (implicitly) in the foregoing analysis or can be used to simplify the description
of (this and/or) other zero-knowledge simulators.

1. Without loss of generality, we may assume that the cheating verifier strategy
is implemented by a deterministic polynomial-size circuit (or, equivalently,
by a deterministic polynomial-time algorithm with an auxiliary input).'”

This is justified by fixing any outcome of the verifier’s coins, and observing
that our (uniform) simulation of the various (residual) deterministic strategies
yields a simulation of the original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only)
output their view of the interaction (i.e., the common input, their internal
coin tosses, and the messages that they have received). In other words, it
suffices to simulate the view that cheating verifiers have of the real interaction.

This is justified by noting that the final output of any verifier can be obtained
from its view of the interaction, where the complexity of the transformation
is upper-bounded by the complexity of the verifier’s strategy.

3. Without loss of generality, it suffices to construct a “weak simulator” that

produces output with some noticeable!® probability such that whenever an
output is produced it is distributed “correctly” (i.e., similarly to the distri-
bution occuring in real interactions with the prescribed prover).

This is justified by repeatedly invoking such a weak simulator (polynomially)
many times and using the first output produced by any of these invocations.
Note that by using an adequate number of invocations, we fail to produce
an output with negligible probability. Furthermore, note that a simulator
that fails to produce output with negligible probability can be converted
to a simulator that always produces an output, while incurring a negligible
statistic deviation in the output distribution.

9.2.2.2 The full power of zero-knowledge proofs

The zero-knowledge proof system presented in Construction 9.9 refers to one spe-
cific NP-set that is not known to be in BPP. It turns out that, under reasonable

17This observation is not crucial, but it does simplify the analysis (by eliminating the need to
specify a sequence of coin tosses in each invocation of the verifier’s strategy).

18Recall that a probability is called noticeable if it is greater than the reciprocal of some positive
polynomial (in the relevant parameter).
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assumptions, zero-knowledge can be used to prove membership in any NP-set. In-
tuitively, it suffices to establish this fact for a single NP-complete set, and thus we
focus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.

It is easy to prove that a given graph G is 3-colorable by just presenting a
3-coloring of G (and the same holds for membership in any set in A"P), but this
NP-proof is not a zero-knowledge proof (unless NP C BPP). In fact, assuming
NP g BPP, graph 3-colorability has no zero-knowledge NP-proof system, but
as we shall shortly see it does have a zero-knowledge interactive proof system.
This interactive proof system will be described while referring to “boxes” in which
information can be hidden and later revealed. Such boxes can be implemented
using one-way functions (see, e.g., Theorem 9.11).

Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):
The description refers to abstract non-transparent boxes that can be perfectly locked
and unlocked such that these boxes perfectly hide their contents while being locked.

e Common Input: A simple graph G=(V, E).

e Prover’s first step: Let ¥ be a 3-coloring of G. The prover selects a random
permutation, w, over {1,2,3}, and sets ¢(v) def w(¢Y(v)), for each v € V.
Hence, the prover forms a random relabeling of the 3-coloring ¥. The prover
sends to the verifier a sequence of |V| locked and non-transparent bozes such

that the v*" boz contains the value ¢(v).

e Verifier’s first step: The verifier uniformly selects an edge {u,v} € E, and
sends it to the prover.

e Motivating Remark: The boxzes are supposed to contain a 3-coloring of the
graph, and the verifier asks to inspect the colors of vertices u and v. Indeed,
for the zero-knowledge condition, it is crucial that the prover only responds
to pairs that correspond to edges of the graph.

e Prover’s second step: Upon receiving an edge {u,v} € E, the prover sends to
the verifier the keys to bores u and v.

For simplicity of the analysis, if the verifier sends {u,v} ¢ E then the prover
behaves as if it has received a fized (or random) edge in E, rather than sus-
pending the interaction, which would have been the natural thing to do.

e Verifier’s second step: The verifier unlocks and opens bores u and v, and
accepts if and only if they contain two different elements in {1,2,3}.

The verifier strategy in Construction 9.10 is easily implemented in probabilistic
polynomial-time. The same holds with respect to the prover’s strategy, provided
that it is given a 3-coloring of G as auxiliary input. Clearly, if the input graph
is 3-colorable then the verifier accepts with probability 1 when interacting with
the prescribed prover. On the other hand, if the input graph is not 3-colorable,
then any contents put in the boxes must be invalid with respect to at least one

edge, and consequently the verifier will reject with probability at least ‘—,13‘ Hence,
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the foregoing protocol exhibits a non-negligible gap in the accepting probabilities
between the case of 3-colorable graphs and the case of non-3-colorable graphs. To
increase the gap, the protocol may be repeated sufficiently many times (of course,
using independent coin tosses in each repetition).

In the abstract setting of Construction 9.10, the zero-knowledge property follows
easily, because one can simulate the real interaction by placing a random pair of
different colors in the boxes indicated by the verifier. This indeed demonstrates
that the verifier learns nothing from the interaction, because it expects to see a
random pair of different colors (and indeed this is what it sees). Note that the
aforementioned expectation relies on the fact that the boxes correspond to vertices
that are connected by an edge.

This simple demonstration of the zero-knowledge property is not possible in
the digital implementation (discussed next), because in that case the boxes are
not totally unaffected by their contents (but are rather effected, yet in an indistin-
guishable manner). Instead, we simulate the interaction as follows. We first guess
(at random) which pair of boxes (corresponding to an edge) the verifier would ask
to open, and place a random pair of distinct colors in these boxes (and garbage
in the rest).!® Then, we hand all boxes to the verifier, which asks us to open a
pair of boxes (corresponding to an edge). If the verifier asks for the pair that we
chose (i.e., our guess is successful), then we can complete the simulation by opening
these boxes. Otherwise, we try again (with a new random guess and random col-
ors). Thus, it suffices to use boxes that hide their contents almost perfectly (rather
than being perfectly opaque). Such boxes can be implemented digitally.

Teaching note: Indeed, we recommend presenting and analyzing in class only the
foregoing abstract protocol. It suffices to briefly comment about the digital implemen-
tation, rather than presenting a formal proof of Theorem 9.11 (which can be found

in [96] (or [87, Sec. 4.4])).

Digital implementation. We implement the abstract boxes (referred to in Con-
struction 9.10) by using adequately defined commitment schemes. Loosely speak-
ing, such a scheme is a two-phase game between a sender and a receiver such that
after the first phase the sender is “committed” to a value and yet, at this stage, it
is infeasible for the receiver to find out the committed value (i.e., the commitment
is “hiding”). The committed value will be revealed to the receiver in the second
phase and it is guaranteed that the sender cannot reveal a value other than the one
committed (i.e., the commitment is “binding”). Such commitment schemes can be
implemented assuming the existence of one-way functions (as in Definition 7.3).

Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorability
is NP-complete, one can derive (from Construction 9.10) zero-knowledge proof sys-

19An alternative (and more efficient) simulation consists of putting random independent colors
in the various boxes, hoping that the verifier asks for an edge that is properly colored. The latter
event occurs with probability (approximately) 2/3, provided that the boxes hide their contents
(almost) perfectly.
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tems for any NP-set.2® Furthermore, NP-witnesses can be efficiently transformed
into polynomial-size circuits that implement the corresponding (prescribed zero-
knowledge) prover strategies.

Theorem 9.11 (The ZK Theorem): Assuming the existence of (non-uniformly
hard) one-way functions, any NP-proof can be efficiently transformed into a (com-
putational) zero-knowledge interactive proof. In particular, NP C ZK.

The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-
avoidable, because the existence of zero-knowledge proofs for “hard on the average”
problems implies the existence of one-way functions (and, likewise, the existence
of zero-knowledge proofs for sets outside BPP implies the existence of “auxiliary-
input one-way functions”).

Theorem 9.11 has a dramatic effect on the design of cryptographic protocols
(see Appendix C). In a different vein we mention that, under the same assump-
tion, any interactive proof can be transformed into a zero-knowledge one. (This
transformation, however, is not efficient.)

Theorem 9.12 (The ultimate ZK Theorem): Assuming the existence of (non-
uniformly hard) one-way functions, TP = ZK.

Loosely speaking, Theorem 9.12 can be proved by recalling that ZP = AM(poly)
and modifying any public-coin protocol as follows: the modified prover sends com-
mitments to its messages rather than the messages themselves, and once the orig-
inal interaction is completed it proves (in zero-knowledge) that the corresponding
transcript would have been accepted by the original verifier. Indeed, the latter as-
sertion is of the “NP type”, and thus the zero-knowledge proof system guaranteed
in Theorem 9.11 can be invoked for proving it.

Reflection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-
complete in order to obtain a zero-knowledge proofs for any set in AP by using such
a protocol for 3-colorability (i.e., Construction 9.10). Thus, an NP-completeness
result is used here in a “positive” way; that is, in order to construct something
rather than in order to derive a hardness result. This was probably the first pos-
itive application of NP-completeness. Subsequent positive uses of completeness
results have appeared in the context of interactive proofs (see the proof of Theo-
rem 9.4), probabilistically checkable proofs (see the proof of Theorem 9.16), and
the “hardness versus randomness paradigm” (see, e.g., [122]).

Perfect and Statistical Zero-Knowledge. The foregoing results may be con-
trasted with the results regarding the complexity of statistical zero-knowledge
proof systems: Statistical zero-knowledge proof systems exist only for sets in
IP(2) N coIP(2), and thus are unlikely to exist for all NP-sets. On the other

20 Actually, we should either rely on the fact that the standard Karp-reductions are invertible
in polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge with
respect to auxiliary inputs (as in Definition C.9).
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hand, the class Statistical Zero-Knowledge is known to contain some hard prob-
lems, and turns out to have interesting complexity theoretic properties (e.g., being
closed under complementation, and having very natural complete problems). The
interested reader is referred to [213].

9.2.3 Proofs of Knowledge — a parenthetical subsection

Teaching note: Technically speaking, this topic belongs to Section 9.1, but its more
interesting demonstrations refer to zero-knowledge proofs of knowledge — hence its cur-

rent positioning.

Loosely speaking, “proofs of knowledge” are interactive proofs in which the prover
asserts “knowledge” of some object (e.g., a 3-coloring of a graph), and not merely
its existence (e.g., the existence of a 3-coloring of the graph, which in turn is
equivalent to the assertion that the graph is 3-colorable).

What do we mean by saying that a machine knows something? Any standard
dictionary suggests several meanings for the verb to know, but these are typically
phrased with reference to the notion of awareness, a notion which is certainly
inapplicable in the context of machines. Instead, we should look for a behavioristic
interpretation of the verb to know. Indeed, it is reasonable to link knowledge with
the ability to do something (e.g., the ability to write down whatever one knows).
Hence, we will say that a machine knows a string « if it can output the string
«. But this seems as total non-sense too: a machine has a well defined output —
either the output equals « or it does not. So what can be meant by saying that
a machine can do something? Loosely speaking, it may mean that the machine
can be easily modified so that it does whatever is claimed. More precisely, it may
mean that there exists an efficient machine that, using the original machine as a
black-box (or given its code as an input), outputs whatever is claimed.

Technically speaking, using a machine as a black-box seems more appealing
when the said machine is interactive (i.e., implements an interactive strategy).
Indeed, this will be our focus here. Furthermore, conceptually speaking, whatever
a machine knows (or does not know) is its own business, whereas what can be
of interest and reference to the outside is whatever can be deduced about the
knowledge of a machine by interacting with it. Hence, we are interested in proofs
of knowledge (rather than in mere knowledge).

For sake of simplicity let us consider a concrete question: how can a machine
prove that it knows a 3-coloring of a graph? An obvious way is just sending the
3-coloring to the verifier. Yet, we claim that applying the protocol in Construc-
tion 9.10 (i.e., the zero-knowledge proof system for 3-Colorability) is an alternative
way of proving knowledge of a 3-coloring of the graph.

The definition of a wverifier of knowledge of 3-coloring refers to any possible
prover strategy and links the ability to “extract” a 3-coloring (of a given graph)
from such a prover to the probability that this prover convinces the verifier. That is,
the definition postulates the existence of an efficient universal way of “extracting” a
3-coloring of a given graph by using any prover strategy that convinces this verifier
to accept this graph with probability 1 (or, more generally, with some noticeable
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probability). On the other hand, we should no expect this extractor to obtain
much from prover strategies that fail to convince the verifier (or, more generally,
convince it with negligible probability). A robust definition should allow a smooth
transition between these two extremes (and in particular between provers that
convince the verifier with noticeable probability and those that convince it with
negligible probability). Such a definition should also support the intuition by which
the following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring of
a given graph provided that Bob has successfully convinced her that he knows this
coloring.?! We stress that the zero-knowledge property of Alice’s strategy should
hold regardless of the proof-of-knowledge system used for proving Bob’s knowledge
of a 3-coloring.

Loosely speaking, we say that an interactive machine, V', constitutes a verifier for
knowledge of 3-coloring if, for any prover strategy P, the complexity of extracting a
3-coloring of G' when using machine P as a “black box”?? is inversely proportional
to the probability that V' is convinced by P (to accept the graph G). Namely, the
extraction of the 3-coloring is done by an oracle machine, called an extractor, that
is given access to a function specifying the behavior P (i.e., the messages it sends
in response to particular messages it may receive). We require that the (ezpected)
running time of the extractor, on input G and access to an oracle specifying P’s
behavior, be inversely related (by a factor polynomial in |G|) to the probability that
P convinces V' to accept G. In particular, if P always convinces V' to accept G,
then the extractor runs in expected polynomial-time. The same holds in case P
convinces V' to accept with noticeable probability. On the other hand, if P never
convinces V to accept, then nothing is required of the extractor. We stress that
the latter special cases do not suffice for a satisfactory definition; see discussion
in [87, Sec. 4.7.1].

Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,
have many applications to the design of cryptographic schemes and cryptographic
protocols. These are enabled by the following general result.

Theorem 9.13 (Theorem 9.11, revisited): Assuming the ezistence of (non-uniformly
hard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge
(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategy
can be implemented in probabilistic polynomial-time, provided it is given such an
NP-witness.

21 For simplicity, the reader may consider graphs that have a unique 3-coloring (upto a relabel-
ing). In general, we refer here to instances that have unique solution (cf. Section 6.2.3), which
arise naturally in some (cryptographic) applications.

22Indeed, one may consider also non-black-box extractors.
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9.3 Probabilistically Checkable Proof Systems

Teaching note: Probabilistically checkable proof (PCP) systems may be viewed as
a restricted type of interactive proof systems in which the prover is memoryless and
responds to each verifier message as if it were the first such message. This perspective
creates a tighter link with previous sections, but is somewhat contrived. However, such
a memoryless prover may be viewed as a static object that the verifier may query at
locations of its choice. But then it is more appealing to present the model using the
(more traditional) terminology of oracle machines rather than using (and degenerating)

the terminology of interactive machines.

Probabilistically checkable proof systems can be viewed as standard (determinis-
tic) proof systems that are augmented with a probabilistic procedure capable of
evaluating the validity of the assertion by examining few locations in the alleged
proof. In fact, we focus on the latter probabilistic procedure, which is given direct
access to the individual bits of the alleged proof (and need not scan it bit-by-bit).
Thus, the alleged proof is a string, as in the case of a traditional proof system,
but we are interested in probabilistic verification procedures that access only few
locations in the proof, and yet are able to make a meaningful probabilistic verdict
regarding the validity of the alleged proof. Specifically, the verification procedure
should accept any valid proof (with probability 1), but rejects with probability at
least 1/2 any alleged proof for a false assertion.

The main complexity measure associated with probabilistically checkable proof
systems is indeed their query complexity. Another complexity measure of natural
concern is the length of the proofs being employed, which in turn is related to
the randomness complexity of the system. The randomness complexity of PCPs
plays a key role in numerous applications (e.g., in composing PCP systems as well
as when applying PCP systems to derive inapproximability results), and thus we
specify this parameter rather than the proof length.

Teaching note: Indeed, PCP systems are most famous for their role in deriving nu-
merous inapproximability results (see Section 9.3.3), but our view is that the latter
is merely one extremely important application of the fundamental notion of a PCP

system. Our presentation is organized accordingly.

9.3.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilis-
tic polynomial-time verifier having access to an oracle that represents an alleged
proof (in redundant form). Typically, the verifier accesses only few of the oracle
bits, and these bit positions are determined by the outcome of the verifier’s coin
tosses. As in the case of interactive proof systems, it is required that if the asser-
tion holds then the verifier always accepts (i.e., when given access to an adequate
oracle); whereas, if the assertion is false then the verifier must reject with proba-
bility at least %, no matter which oracle is used. The basic definition of the PCP
setting is given in Part (1) of the following definition. Yet, the complexity measures
introduced in Part (2) are of key importance for the subsequent discussions.
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Definition 9.14 (Probabilistically Checkable Proofs — PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a probabilistic
polynomial-time oracle machine, called verifier and denoted V', that satisfies
the following two conditions:

e Completeness: For every x € S there exists an oracle m, such that, on
input x and access to oracle 7, machine V always accepts x.

e Soundness: For every x € S and every oracle 7, on input x and access
to oracle w, machine V rejects x with probability at least %

2. We say that a probabilistically checkable proof system has query complexity
q¢:N—N if, on any input of length n, the verifier makes at most q(n) oracle
queries.?® Similarly, the randomness complexity 7: N— N upper-bounds the
number of coin tosses performed by the verifier on a generic n-bit long input.

For integer functions r and q, we denote by PCP(r,q) the class of sets having
probabilistically checkable proof systems of randomness complexity r and query
complezity q. For sets of integer functions, R and Q,

def

PCP(R,Q)= ) PCP(r,q).

reR,qeQ

We note that the oracle 7, referred to in the completeness condition a PCP system
constitutes a proof in the standard mathematical sense (with respect to a verifi-
cation procedure that examines all possible outcomes of V’s internal coin tosses).
Furthermore, the oracles in PCP systems of logarithmic randomness complexity
constitute NP-proofs. However, these oracles have the extra remarkable property
of enabling a lazy verifier to toss coins, take its chances and “assess” the validity of
the proof without reading all of it (but rather by reading a tiny portion of it). Po-
tentially, this allows the verifier to utilize very long proofs (i.e., of super-polynomial
length) or alternatively examine very few bits of an NP-proof.

We note that the error probability (in the soundness condition) of PCP systems
can be reduced by successive applications of the proof system. In particular, re-
peating the process for k times, reduces the probability that the verifier is fooled by
a false assertion to 27%, whereas all complexities increase by at most a factor of k.
Thus, PCP systems provide a trade-off between the number of locations examined
in the proof and the confidence in the validity of the assertion.

Adaptive versus non-adaptive verifiers. Definition 9.14 allows the verifier to
be adaptive; that is, the verifier may determine its queries based on the answers
it has received to previous queries (in addition to their dependence on the input
and the verifier’s internal coin tosses). In contrast, non-adaptive verifiers determine
all their queries based solely on their input and internal coin tosses. We comment
that most constructions of PCP systems use non-adaptive verifiers, and in fact in
many sources PCP systems are defined as non-adaptive.

23As usual in complexity theory, the oracle answers are always binary (i.e., either 0 or 1).
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Randomness versus proof length. Note that the “effective” length of proofs
for any PCP system is related to its query and randomness complexities, where the
effective length means the number of locations in a generic proof-oracle that may
be examined on a fixed input and any possible sequence of internal coin tosses.
Specifically, if the PCP system has query complexity ¢ and randomness complexity
r then its effective proof length is upper-bounded by 29%", whereas a bound of
2" - ¢ holds for non-adaptive systems (see Exercise 9.11). On the other hand, in
some sense, the randomness complexity of a PCP can be upper-bounded by the
logarithm of the length of the proofs employed (provided we allow non-uniform
verifiers; see Exercise 9.13).

On the role of randomness. The PCP Theorem (i.e., NP = PCP(log, O(1)))
exhibits a trade-off between the number of bits examined in the alleged proof
and the confidence in the validity of the assertion. We note that such a trade-off
is impossible if one requires the verifier to be deterministic. This is due to the
fact that every set in PCP(r,q) has an NP-proof system that employs proofs of
length 27¢ (see Exercise 9.12). Thus, PCP(r,q) C DTIME(2? 7 - poly), and, in
particular, PCP(0,1log) = P. Furthermore, since it is unlikely that all NP-sets
have NP-proof systems that employs proofs of (say) linear length, it follows that
for 2"(™g(n) < n (or for any other fixed polynomial that bounds 2"¢q) the class
PCP(r,q) is unlikely to contain N'P. Actually, P # NP implies that NP is not
contained in PCP(o(log), o(log)) (see Exercise 9.15).

9.3.2 The Power of Probabilistically Checkable Proofs

The celebrated PCP Theorem asserts that NP = PCP(log, O(1)), and this result
is indeed the focus of the current section. But before getting to it we make several
simple observations regarding the PCP Hierarchy.

We first note that PCP(poly,0) equals coRP, whereas PCP(0,poly) equals
NP. It is easy to prove an upper bound on the non-deterministic time complexity
of sets in the PCP hierarchy (see Exercise 9.12):

Proposition 9.15 (upper-bounds on the power of PCPs): For every polynomially
bounded integer function r, it holds that PCP(r,poly) C NTIME(2" - poly). In
particular, PCP(log,poly) C N'P.

The focus on PCP systems of logarithmic randomness complexity reflects an inter-
est in PCP systems that utilize proof oracles of polynomial length (see discussion in
Section 9.3.1). We stress that such PCP systems (i.e., PCP(log,q)) are NP-proof
systems with a (potentially amazing) extra property: the validity of the assertion
can be “probabilistically evaluated” by examining a (small) portion (i.e., g(n) bits)
of the proof. Thus, for any fixed polynomially bounded function ¢, a result of the
form

NP C PCP(log,q) (9.6)
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is interesting (because it applies also to NP-sets having witnesses of length exceed-
ing ¢), and the smaller ¢ — the better. The PCP Theorem asserts the amazing fact
by which ¢ can be made a constant.

Theorem 9.16 (The PCP Theorem): NP C PCP(log, O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarith-
mically many coins and makes only a constant number of queries exist for every set
in N'P. Furthermore, the proof of Theorem 9.16 is constructive in the sense that it
allows to efficiently transform any NP-witness (for an instance of a set in N'P) into
an oracle that makes the PCP verifier accept (with probability 1). Thus, NP-proofs
can be transformed into NP-proofs that offer a trade-off between the portion of the
proof being read and the confidence it offers. Specifically, for every € > 0, if one is
willing to tolerate an error probability of £ then it suffices to examine O(log(1/¢))
bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1), these
bit locations need to be selected at random.

A new characterization of NP: Combining Theorem 9.16 with Proposition 9.15
we obtain the following characterization of N'P.

Corollary 9.17 (The PCP characterization of NP): NP = PCP(log, O(1)).

The proof of the PCP Theorem: Theorem 9.16is a culmination of a sequence
of remarkable works, each establishing meaningful and increasingly stronger ver-
sions of Eq. (9.6). A presentation of the full proof of Theorem 9.16 is beyond the
scope of the current work (and is, in our opinion, unsuitable for a basic course
in complexity theory). Instead, we present an overview of the original proof (see
§9.3.2.2) as well as of an alternative proof (see §9.3.2.3) that was found more
than a decade later. We will start, however, by presenting a weaker result that
is used in both proofs of Theorem 9.16 and is also of independent interest. This
weaker result (see §9.3.2.1) asserts that every NP-set has a PCP system with con-
stant query complexity (albeit with polynomial randomness complexity); that is,
NP C PCP(poly,O(1)).

Teaching note: In our opinion, presenting in class any part of the proof of the PCP
Theorem should be given low priority. In particular, presenting the connections between
PCP and the complexity of approximation should be given a higher priority. As for
relative priorities among the following three subsections, we recommend giving §9.3.2.1
the highest priority, because it offers a direct demonstration of the power of PCPs. As
for the two alternative proofs of the PCP Theorem itself, our recommendation depends
on the intended goal. On one hand, for the purpose of merely giving a taste of the ideas
involved in the proof, we prefer an overview of the original proof (provided in §9.3.2.2).
On the other hand, for the purpose of actually providing a full proof, we definitely
prefer the new proof (which is only outlined in §9.3.2.3).




362 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS

9.3.2.1 Proving that NP C PCP(poly, O(1))

The fact that every NP-set has a PCP system with constant query complexity
(regardless of its randomness complexity) already testifies to the power of PCP
systems. It asserts that probabilistic verification of proofs is possible by inspecting
very few locations in a (potentially huge) proof. Indeed, the PCP systems presented
next utilize exponentially long proofs, but they do so while inspecting these proofs
at a constant number of (randomly selected) locations.

We start with a brief overview of the construction. We first note that it suffices
to construct a PCP for proving the satisfiability of a given system of quadratic
equations over GF(2), because this problem is NP-complete.?* For inputs consisting
of quadratic equations with n variables, the oracle (of this PCP) is supposed to
provide the values of all quadratic expressions in these n variables evaluated at
some fixed assignment to these variables. This assignment is supposed to satisfy the
system of quadratic equations that is given as input. We distinguish two tables in
the oracle: Th% first table corresponding to the 2™ linear expressions and the second
table to the 2" quadratic expressions. Each table is tested for self-consistency (via
a “linearity test”), and the two tables are tested to be consistent with each other
(via a “matrix-equality” test, which utilizes “self-correction”). Each of these tests
utilizes a constant number of Boolean queries, and randomness that is logarithmic
in the size of the corresponding table (and is thus O(n?)). Finally, we test (again
via self-correction) the value assigned by these tables to a quadratic expression
obtained by a random linear combination of the quadratic expressions that appear
in the quadratic system that is given as input. Details follow.

The starting point. We construct a PCP system for the set of satisfiable
quadratic equations over GF(2). The input is a sequence of such equations over the
variables x1, ..., x,, and the proof oracle consist of two parts (or tables), which are
supposed to provide information regarding some satisfying assignment 7 =74 -+ - 7,
(also viewed as an n-ary vector over GF(2)). The first part, denoted 717, is sup-
posed to provide a Hadamard encoding of the said satisfying assignment; that is,
for every aw € GF(2)" this table is supposed to provide the inner product mod 2 of
the n-ary vectors a and 7 (i.e., T () is supposed to equal Y ; «;7;). The second
part, denoted 715, is supposed to provide all linear combinations of the values of
the 7,;7;’s; that is, for every 8 € GF(2)”2 (viewed as an n-by-n matrix over GF(2)),
the value of T»(3) is supposed to equal Z” Bi;TiTi- (Indeed T} is contained in
T, because 0? = o for any o € GF(2).) The PCP verifier will use the two tables
for checking that the input (i.e., a sequence of quadratic equations) is satisfied by
the assignment that is encoded in the two tables. Needless to say, these tables may
not be a valid encoding of any n-ary vector (let alone one that satisfies the input),
and so the verifier also needs to check that the encoding is (close to being) valid.
We will focus on this task first.

24Here and elsewhere, we denote by GF(2) the 2-element field.
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Testing the Hadamard Code. Note that T} is supposed to encode a linear
function; that is, there must be some 7 = 7 --- 7, € GF(2)" such that T} (o) =
Z?:l Tia; holds for every oo = oy -+ - v, € GF(2)™. This can be tested by selecting
uniformly o', a” € GF(2)™ and checking whether T (o) + T1 (") = T1 (o + &),
where o’ + " denotes addition of vectors over GF(2). The analysis of this natural
tester turns out to be quite complex. Nevertheless, it is indeed the case that any
table that is 0.01-far from being linear is rejected with probability at least 0.02 (see
Exercise 9.16), where T is e-far from being linear if 7' disagrees with any linear
function f on more than an e fraction of the domain (i.e., Pr.[T(r) = f(r)] > ¢).

By repeating the linearity test for a constant number of times, we may reject
each table that is 0.01-far from being a codeword of the Hadamard Code with
probability at least 0.99. Thus, using a constant number of queries, the verifier
rejects any 77 that is 0.01-far from being a Hadamard encoding of any 7 € GF(2)",
and likewise rejects any 75 that is 0.01-far from being a Hadamard encoding of
any 7' € GF(2)”2. We may thus assume that 77 (resp., T%) is 0.01-close to the
Hadamard encoding of some 7 (resp., 7'). (This does not mean, however, that 7'
equals the outer produce of 7 with itself.)

In the rest of the analysis, we fix 7 € GF(2)™ and 7' € GF(2)”2, and denote the
Hadamard encoding of 7 (resp., 7') by fr:GF(2)" — GF(2) (resp., f-:GF(2)" —
GF(2)). Recall that T} (resp., T») is 0.01-close to fr (resp., fr).

Self-correction of the Hadamard Code. Suppose that 7" is e-close to a linear
function f: GF(2)" — GF(2) (i.e., Pr.[T(r) = f(r)] < €). Then, we can recover
the value of f at any desired point x, by making two (random) queries to 7.
Specifically, for a uniformly selected r € GF(2)", we use the value T'(x + 1) —T'(r).
Note that the probability that we recover the correct value is at least 1—2¢, because
Pro(T(z+7) — T(r) = f(z +7) — f(r)] > 1—2¢ and f(z +7) — £() = f(x) by
linearity of f. (Needless to say, for € < 1/4, the function 7' cannot be e-close to
two different linear functions.)?> Thus, assuming that 7 is 0.01-close to f, (resp.,
T is 0.01-close to f,/) we may correctly recover (i.e., with error probability 0.02)
the value of f, (resp., f;/) at any desired point by making 2 queries to T} (resp.,
Ts).

r S r a a S
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Figure 9.2: Detail for testing consistency of linear and quadratic forms.

25Indeed, this fact follows from the self-correction argument, but a simpler proof merely refers
to the fact that the Hadamard code has relative distance 1/2.
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Checking consistency of f. and f;. Suppose that we are given access to
f- : GF(2)" — GF(2) and f : GF(2)" — GF(2), where f;(a) = > . mioy
and fr(a') = 32, .7 ;a; ;, and that we wish to verify that 7, ; = 7i7; for ev-
ery 1,5 € {1,...,n}. In other words, we are given a (somewhat weird) encoding of
two matrices, A = (7;7;); ; and A" = (7] ;)i j, and we wish to check whether or not
these matrices are identical. It can be shown (see Exercise 9.18) that if A # A’ then
Pr.s[r" As # 71" A's] > 1/4, where r and s are uniformly distributed n-ary vectors.
Note that, in our case (where A = (7;7;);; and A’ = (7/ ;)i ;), it holds that 7" As =
Zj(zirinrj)sj = f(r)f-(s) (see Figure 9.2) and r" A’s = Zj(zi ’I‘Z'TZ-IJ)SJ' =
fr(rs"), where rs' is the outer-product of s and r. Thus, (for (7;7)i; # (7 ;)i5)

we have Pr,s[f;(7)f-(s) # fr(rs")] > 1/4. Using self-correction (to obtain the

desired value of f, at rs', since rs' is not uniformly distributed in GF(2)”2), we

test the consistency of f, and f..; that is, we select uniformly r, s € GF(2)™ and
Re GF(Q)”2 and check that T (r)Ty(s) = Tu(rs" + R) — Ty(R).

By repeating the consistency test for a constant number of times, we may reject
an inconsistent pair of tables with probability at least 0.99. Thus, in the rest of
the analysis, we may assume that (7;7;);; = (7] ;)i ;-

Checking that 7 satisfies the quadratic system. Suppose that we are given
access to f, and f, as in the foregoing (where, in particular, 7/ = 77 7). A key
observation is that if 7 does not satisfy a system of quadratic equations then,
with probability 1/2, it does not satisfy a random linear combination of these
equations. Thus, in order to check whether 7 satisfies the quadratic system, we
create a single quadratic equation (by taking such a random linear combination)
and compare the value of the resulting quadratic expression to the corresponding
value, by recovering the value of f,/ at a single point (which corresponds to the
quadratic equation). That is, to test whether 7 satisfies the quadratic equation
Q(z) = o, we test whether f./(Q) = 0. The actual checking is implemented by the
verifier using self-correction (of the table T5).

To summarize, the verifier performs a constant number of queries and uses
randomness that is quadratic in the number of variables. If the quadratic system
is satisfiable (by some 7), then the verifier accepts the corresponding tables T}
and Ty (i.e., Ty = fr and Tp = f..v) with probability 1. On the other hand,
if the quadratic system is unsatisfiable, then any pair of tables (77,7%) will be
rejected with constant probability (by one of the foregoing tests). It follows that
NP C PCP(r,0(1)), where r(n) = O(n?).

9.3.2.2 Overview of the first proof of the PCP Theorem

The original proof of the PCP Theorem (Theorem 9.16) consists of three main
conceptual steps, which we briefly sketch first and further discuss later.

1. Constructing a (non-adaptive) PCP system for AP having logarithmic ran-
domness and polylogarithmic query complexity. Furthermore, this proof sys-
tem has additional properties that enable proof composition as in the follow-

ing Step (3).
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2. Constructing a PCP system for A'P having polynomial randomness and con-
stant query complezity (indeed, as in §9.3.2.1). This proof system too has
additional properties enabling proof composition as in Step (3).

3. The proof composition paradigm:2® In general, this paradigm allows to com-
pose two proof systems such that the “inner” one is used for probabilistically
verifying the acceptance criteria of the “outer” verifier. The aim is to conduct
this (“composed”) verification using much fewer queries than the query com-
plexity of the “outer” proof system. In particular, the inner verifier cannot
afford to read its input, which makes composition more subtle than the term
suggests.

Loosely speaking, the outer verifier should be robust in the sense that its
soundness condition guarantee that with high probability the oracle answers
are “far” from satisfying the residual decision predicate (rather than merely
not satisty it). (Furthermore, the latter predicate, which is well-defined by
the non-adaptive nature of the outer verifier, must have a circuit of size
bounded by a polynomial in the number of queries.) The inner verifier is
given oracle access to its input and is charged for each query made to it, but
is only required to reject with high probability inputs that are far from being
valid (and, as usual, accept inputs that are valid). That is, the inner verifier
is actually a verifier of proximity.

Composing two such PCPs yields a new PCP for A"P, where the new proof or-
acle consists of the proof oracle of the “outer” system and a sequence of proof
oracles for the “inner” system (one “inner” proof per each possible random-
tape of the “outer” verifier). Thus, composing an outer verifier of randomness
complexity ' and query complexity ¢’ with an inner verifier of randomness
complexity " and query complexity ¢" yields a PCP of randomness complex-
ity 7(n) = r'(n) + r"(¢'(n)) and query complexity g(n) = ¢"(¢’'(n)), because
q'(n) represents the length of the input (oracle) that is accessed by the inner
verifier. Recall that the outer verifier is non-adaptive, and thus if the inner
verifier is non-adaptive (resp., robust) then so is the verifier resulting from
the composition, which is important in case we wish to compose the latter
verifier with another inner verifier.

In particular, the proof system of Step (1) is composed with itself [using 7'(n) =
r''(n) = O(logn) and ¢'(n) = ¢"(n) = poly(log n)] yielding a PCP system (for N'P)
of randomness complexity 7(n) = r'(n)+r"(¢'(n)) = O(log n) and query complexity
g(n) = ¢"(¢'(n)) = poly(loglogn). Composing the latter system (used as an
“outer” system) with the the PCP system of Step (2), yields a PCP system (for
NP) of randomness complexity r(n)+ poly(g(n)) = O(logn) and query complexity
O(1), thus establishing the PCP Theorem.

A more detailed overview — the plan. The foregoing description uses two
(non-trivial) PCP systems and refers to additional properties such as robustness

260ur presentation of the composition paradigm follows [33], rather than the original presen-
tation of [14, 13].
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and verification of proximity. A PCP system of polynomial randomness complexity
and constant query complexity (as postulated in Step 2) is outlined in §9.3.2.1. We
thus start by discussing the notions of verifying proximity and being robust, while
demonstrating their applicability to the said PCP. Finally, we outline the other
PCP system that is used (i.e., the one postulated in Step 1).

PCPs of Proximity. Recall that a standard PCP verifier gets an explicit input
and is given oracle access to an alleged proof (for membership of the input in a
predetermined set). In contrast, a PCP of proximity verifier is given oracle access
to two oracles, one representing an input and the other being an alleged proof.
Typically, the query complexity of this verifier is lower than the length of the input
oracle, and hence this verifier cannot afford reading the entire input and cannot
be expected to make absolute statements about it. Indeed, instead of deciding
whether or not the input is in a predetermined set, the verifier is only required to
distinguish the case that the input is in the set from the case that the input is far
from the set (where far means being at relative Hamming distance at least 0.01 (or
any other constant)).

For example, consider a variant of the system of §9.3.2.1 in which the quadratic
system is fixed?” and the verifier needs to determine whether the assignment ap-
pearing in the input oracle satisfies the said system or is far from any assignment
that satisfies it. The proof oracle is as in §9.3.2.1, and a PCP of proximity may
proceed as in §9.3.2.1 and in addition perform a proximity test to verify that the
input oracle is close to the assignment encoded in the proof oracle. Specifically, the
verifier may read a uniformly selected bit of the input oracle and compare this value
to the self-corrected value obtained from the proof oracle (i.e., for a uniformly se-
lected i € {1, ...,n}, we compare the i*! bit of the input oracle to the self-correction
of the value Ty (0'~110"%), obtained from the proof oracle).

Robust PCPs. Composing an “outer” PCP verifier with an “inner” PCP veri-
fier of proximity makes sense provided that the outer verifier rejects in a “robust”
manner. That is, the soundness condition of a robust verifier requires that (with
probability at least 1/2) the oracle answers are far from any sequence that is ac-
ceptable by the residual predicate (rather than merely that the answers are rejected
by this predicate). Indeed, if the outer verifier is (non-adaptive and) robust, then
it suffices that the inner verifier distinguish (with the help of an adequate proof)
answers that are valid from answers that are far from being valid.

For example, if robustness is defined as referring to relative constant distance
(which is indeed the case), then the PCP of §9.3.2.1 (as well as any PCP of con-
stant query complexity) is trivially robust. However, we will not care about the
robustness of this PCP, because we only use this PCP as an inner verifier in proof
composition. In contrast, we will care about the robustness of PCPs that are used
as outer verifiers (e.g., the PCP presented next).

27Indeed, in our applications the quadratic system will be “known” to the “inner”) verifier,
because it is determined by the (“outer”) verifier.
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Teaching note: Unfortunately, the construction of a PCP of logarithmic randomness
and polylogarithmic query complexity for NP involves many technical details. Further-
more, obtaining a robust version of this PCP is beyond the scope of the current text.
Thus, the following description should be viewed as merely providing a flavor of the

underlying ideas.

PCP of logarithmic randomness and polylogarithmic query complexity
for NP. We start by showing that NP C PCP(f, f), for f(n) = poly(logn). The
proof system is based on an arithmetization of CNF formulae, which is different
from the one used in §9.1.2.2 (for constructing an interactive proof system for
coNP). In the current arithmetization, the names of the variables (resp., clauses)
of the input formula ¢ are represented by binary strings of logarithmic (in |¢|)
length, and a generic variable (resp., clause) of ¢ is represented by a logarithmic
number of new wariables (which are assigned values in a finite field F D {0,1}).
The (structure of the) input 3CNF formula ¢(z1, -.., z,,) is represented by a Boolean
function Cy : {0,1}°0°8") — {0,1} such that Cy(«, 31,32, 03) = 1 if and ounly if,
for i = 1,2,3, the i*? literal in the o' clause has index 3; = (v;,0;) that is viewed
as a variable name augmented by its sign. Thus, for every a € {0, 1}!°8 9| there is
a unique (31, B2, 83) € {0,1}21°82" such that Cy(a, 81, B2, 33) = 1 holds. Next, we
consider a multi-linear extension of Cy4 over F, denoted ®; that is, ® is the (unique)
multi-linear polynomial that agrees with C on {0,1}00°en) c FOUogn)  Thys, on
input ¢, the verifier first constructs Cy and ®. Part of the proof oracle of this
verifier is viewed as function A : F°6™ — F, which is supposed to be a multi-linear
extension of a truth assignment that satisfies ¢ (i.e., for every v € {0, 1}\°¢" = [n],
the value A(7) is supposed to be the value of the v*® variable in such an assignment).
Thus, we wish to check whether, for every o € {0,1}°819/ it holds that

> (o, B, B2, B5) - [[ (1= A'(8:) =0 (9.7)

B1B283€{0,1}3log2n il

where A'(3) is the value of the 3" literal under the (variable) assignment A; that
is, for 3 = (7,0), where v € {0,1}!°8™ is a variable name and o € {0,1} is the
literal’s type, it holds that A'(8) = o - A(y) + (1 — o) - (1 — A(y)). Thus, Eq. (9.7)
holds if and only if the o' clause is satisfied by the assignment induced by A
(because A'(3) = 1 must hold for at least one of the three literals 3 that appear in
this clause).?® Note that, as in §9.3.2.1, we cannot afford to verify all n instances of
Eq. (9.7). Furthermore, unlike in §9.3.2.1, we cannot afford to take a random linear
combination of these n instances either (because this requires too much random-
ness). Fortunately, taking a “pseudorandom” linear combination of these equations
is good enough. Specifically, using an adequate (efficiently constructible) small-bias
probability space (cf. §8.6.2.3) will do. Denoting such a space (of size poly(|¢|-|F|)
and bias at most 1/6) by S C Fl¢l, we may select uniformly (81,0, 8|g]) € S and

28Note that, for this a there exists a unique triple (81,82,83) € {0,1}31982% such that
®(a, B1,B2,83) # 0. This triple (31,82, 83) encodes the literals appearing in the at® clause,
and this clause is satisfied by A if and only if 3¢ € [3] s.t. A'(3;) = 1.
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check whether

3
Z Sa * q)(aaﬂlaﬂ2a/83 H ]- - AI /81 — (98)
=1

af1B8283€{0,1}¢

where ¢ %' log|¢| + 3log2n. The small-bias property guarantees that if A fails to
satisfy any of the equations of type Eq. (9.7) then, with probability at least 1/3
(taken over the choice of (si1,...,s4) € §), it is the case that A fails to satisfy
Eq. (9.8). Since |S| = poly(|@| - |F|) rather that |S| = 2/?!, we can select a sample
in S using O(log|¢|) coin tosses. Thus, we have reduced the original problem to
checking whether, for a random (s1, ..., 54) € S, Eq. (9.8) holds.

Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-
tically verify Eq. (9.8) by applying a summation test (as in the interactive proof for
coNP). Indeed, the verifier obtains the relevant univariate polynomials by making
adequate queries (which specify the entire sequence of choices made so far in the
summation test). Note that after stripping the ¢ summations, the verifier end-ups
up with an expression that contains three unknown values of A', which it may ob-
tain by making corresponding queries to A. The summation test involves tossing
¢ -log |F| coins and making (¢ + 3) - O(log |F|) Boolean queries (which correspond
to £ queries that are each answered by a univariate polynomial of constant degree
(over F), and three queries to A (each answered by an element of F)). Soundness
of the summation test follows by setting |F'| > O({). Needless to say, we must also
check that A is indeed a multi-variate polynomial of low degree (or rather that it
is close to such a polynomial). A low-degree test of complexities similar to those
of the summation text does exist. Using a finite field F of poly(log(n)) elements,
this yields NP C PCP(f, f) for f(n) = O(log(n) - loglog(n)).

To obtain the desired PCP system of logarithmic randomness complexity, we
log}‘ffgnrz long sequences
over {1,...,logn}, rather than by logarithmically-long binary sequences. This re-
quires using low degree polynomial extensions (i.e., polynomial of degree (logn)—1),

rather than multi-linear extensions. We can still use a finite field of poly(log(n))
O(log n)
log logn
and low-degree tests. However, the number of queries (needed for obtaining the
answers in these tests) grows, because now the polynomials involved have individ-
ual degree (logn) — 1 rather than constant individual degree. This merely means

that the query complexity increases by a factor of O(logn/loglogn). Thus, we
obtain NP C PCP(log, q) for q(n) Lef O(log* n).

Recall that, in order to use the latter PCP system in composition, we need to
guarantee that it (or a version of it) is robust as well as to present a version that
is a PCP of proximity. The latter version is relatively easy to obtain (using ideas
as applied to the PCP of §9.3.2.1), whereas obtaining robustness is too complex to
be described here. We comment that one way of obtaining a robust PCP system
is by a generic application of a (randomness-efficient) “parallelization” of PCP
systems (cf. [13]), which in turn depends heavily on highly efficient low-degree

represent the names of the original variables and clauses by

elements, and so we need only -O(loglogn) random bits for the summation
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tests. A alternative approach (cf. [33]) capitalizes of the specific structure of the
summation test (as well as on the evident robustness of a simple low-degree test).

Digest. Assuming that P # NP, the PCP Theorem asserts a PCP system that
obtains simultaneously the minimal possible randomness and query complexity (up
to a multiplicative factor). The forgoing construction obtains this remarkable result
by combining two different PCPs: the first PCP obtains logarithmic randomness
but uses polylogarithmically many queries, whereas the second PCP uses a constant
number of queries but has polynomial randomness complexity. We stress that each
of the two PCP systems is highly non-trivial and very interesting by itself. We
highlight the fact that these PCPs can be composed using a very simple composition
method that refers to auxiliary properties such as robustness and proximity testing.
(Composition of PCP systems that lack these extra properties is possible, but is
far more cumbersome and complex.)

9.3.2.3 Overview of the second proof of the PCP Theorem

The original proof of the PCP Theorem focuses on the construction of two PCP
systems that are highly non-trivial and interesting by themselves, and combines
them in a natural manner. Loosely speaking, this combination (via proof composi-
tion) preserves the good features of each of the two systems; that is, it yields a PCP
system that inherits the (logarithmic) randomness complexity of one system and
the (constant) query complexity of the other. In contrast, the following alterna-
tive proof is focused at the “amplification” of PCP systems, via a gradual process
of logarithmically many steps. We start with a trivial “PCP” system that has
the desired complexities but rejects false assertions with probability inversely pro-
portional to their length, and double the rejection probability in each step while
essentially maintaining the initial complexities. That is, in each step, the con-
stant query complexity of the verifier is preserved and its randomness complexity
is increased only by a constant term. Thus, the process gradually transforms an
extremely weak PCP system into a remarkably strong PCP system as postulated
in the PCP Theorem.

In order to describe the aforementioned process we need to redefine PCP sys-
tems so to allow arbitrary soundness error. In fact, for technical reasons, it is more
convenient to describe the process as an iterated reduction of a “constraint satisfac-
tion” problem to itself. Specifically, we refer to systems of 2-variable constraints,
which are readily represented by (labeled) graphs such that the vertices correspond
to (non-Boolean) variables and the edges are associated with constraints.

Definition 9.18 (CSP with 2-variable counstraints): For a fized finite set X, an
instance of CSP consists of a graph G = (V,E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints ® = (¢¢)ecr associated
with the edges, where each constraint has the form ¢, : 2 — {0,1}. The value
of an assignment « : V. — X is the number of constraints satisfied by a; that is,
the value of a is [{(u,v) € E : ¢y ) (afu),a(v)) = 1}|. We denote by vit(G,®)
(standing for violation) the fraction of unsatisfied constraints under the best possible
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assignment; that is,
vit(G, @) = min {[{(u,v) € E: d(u,v)(a(u), a(v)) = 0}|/|El}. (9.9)

For various functions 7 : N — (0, 1], we will consider the promise problem gapCSP*,
having instances as in the foregoing, such that the yes-instances are fully satis-
fiable instances (i.e., v1t = 0) and the no-instances are pairs (G,®) for which
v1t(G, ®) > 7(|G|) holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSPil""J} for 7(m) = 1/m; see Exercise 9.19.
Our goal is to reduce 3SAT (or rather gapCSPil""J}) to gapCSPY, for some fixed fi-
nite ¥ and constant ¢ > 0. The PCP Theorem will follow by showing a simple PCP
system for gapCSP¥; see Exercise 9.21. (The relationship between constraint satis-
faction problems and the PCP Theorem is further discussed in Section 9.3.3.) The
desired reduction of gapCSPlx/m to gapCSPg(l) is obtained by iteratively applying
the following reduction logarithmically many times.

Lemma 9.19 (amplifying reduction of gapCSP to itself): For some finite ¥ and
constant ¢ > 0, there exists a polynomial-time reduction of gapCSP* to itself such
that the following conditions hold with respect to the mapping of any instance (G, ®)
to the instance (G', ®").

1. If v1t(G,®) = 0 then v1t(G',®') = 0.
2. v1t(G', ®') > min(2 - v1t(G, @), c).
3. 16" = o(|al).-

Proof Outline:?® The reduction consists of three steps. We first apply a pre-
processing step that makes the underlying graph suitable for further analysis. The
value of vlt may decrease during this step by a constant factor. The heart of the
reduction is the second step in which we may increase v1lt by any desired constant
factor. The latter step also increases the alphabet X, and thus a post-processing
step is employed to regain the original alphabet (by using any inner PCP systems;
e.g., the one presented in §9.3.2.1). Details follow.

We first stress that the aforementioned ¥ and ¢, as well as the auxiliary pa-
rameters d and ¢ (to be introduced in the following two paragraphs), are fixed
constants that will be determined such that various conditions (which arise in the
course of our argument) are satisfied. Specifically, ¢ will be the last parameter to
be determined (and it will be made greater than a constant that is determined by
all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the
input (G, ®) of gapCSP* to an instance (G, ®;) such that G; is a d-regular ex-
pander graph.® Furthermore, each vertex in G; will have at least d/2 self-loops,

29For details, see [63].

30 A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely
speaking, an expander graph has the property that each moderately balanced cut (i.e., partition
of its vertex set) has relatively many edges crossing it. An equivalent definition, also used in the
actual analysis, is that the second eigenvalue of the corresponding adjacency matrix has absolute
value that is bounded away from d. For further details, see §E.2.1.1.
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the number of edges is preserved up to a constant factor (i.e., |G1| = O(|G])), and
v1t(Gy,®1) = O(v1t(G, ®)). This step is quite simple: see Exercise 9.22. Intu-
itively, with respect to intersecting a fixed set of edges, a random (¢-edge long)
walk on the resulting graph G; behave like a random sample of (¢) edges, while
|G1| = O(|G]) and v1t(Gy, ®1) = Q(v1t(G, ®)).

The alphabet ¥' as a labeling of the distance t = 3 neighborhoods,
when repetitions are omitted. In this case d = 6 but the self-loops are
not shown. The two-sided arrow indicates one of the edges in G that
will contribute to the edge constraint between u and w in (G2, ®5).

Figure 9.3: The amplifying reduction in the second proof of the PCP Theorem.

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. This is done by reducing the instance (G1, ®1) of
gapCSP to an instance (Gy, ®,) of gapCSP> such that ¥/ = x4 Specifically, the
vertex set of G5 is identical to the vertex set of G, and each t-edge long path in G,
is replaced by a corresponding edge in Gs, which is thus a d!-regular graph. The
constraints in ®5 are the natural ones, viewing each element of X' as a X-labeling
of the (“distance < ¢”) neighborhood of a vertex (see Figure 9.3), and checking
that two such labelings are consistent as well as satisfy ®;. That is, suppose that
there is a path of length at most ¢ in G; going from vertex u to vertex w and
passing through vertex v. Then, there is an edge in G2 between vertices u and w,
and the constraint associated with it with mandates that the entries corresponding
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to vertex v in the X'-labeling of vertices u and w are identical. In addition, if the
G1-edge (v,v") is on a path of length at most ¢ starting at u then the corresponding
edge in G, is associated a constraint that enforces the constraint that is associated
to (v,v') in P;.

Clearly, if v1t(G1,®,) = 0 then v1t(G2,®3) = 0. The interesting fact is
that the fraction of violated constraints increases by a factor of Q(v/%); that is,
v1t(Gy, ®5) > min(Q(Vt - v1t(Gy, ®1)),¢). Here we merely provide a rough intu-
ition and refer the interested reader to [63]. The intuition is that any 3'-labeling
to the vertices of G5 must either be consistent with a X-labeling of G; or violate
the “equality constraints” of many edges in G2. Focusing on the first case and
relying on the hypothesis that G is an expander, it follows that the set of violated
edge-constraints (of ®;) with respect to the aforementioned ¥-labeling causes many
more edge-constraints of @5 to be violated (by virtue of the latter enforcing many
edge-constraints of ®;). The point is that any set F' of edges of G is likely to
appear on o min(Q(t) - |F|/|G1], (1)) fraction of the edges of G2 (i.e., t-paths of
G1). (Note that the claim would have been obvious if G; were a complete graph,
but it also holds for an expander.)3!

The factor of Q(v/t) gained in the second step makes up for the constant factor
lost in the first step (as well as the constant factor to be lost in the last step).
Furthermore, for a suitable choice of the constant ¢, the aforementioned gain yields
an overall constant factor amplification (of v1t). However, so far we obtained
an instance of gapCSPZ’ rather than an instance of gapCSP*, where X/ = xd',
The purpose of the last step is to reduce the latter instance to an instance of
gapCSP”. This is done by viewing the instance of gapCSP* as a (weak) PCP
system (analogously to Exercise 9.21), and composing it with an inner-verifier
using the proof composition paradigm outlined in §9.3.2.2. We stress that the
inner-verifier used here needs only handle instances of constant size (i.e., having
description length O(d'log|X])), and so the verifier presented in §9.3.2.1 will do.

The resulting PCP-system uses randomness r Lef log, |G2| + O(d! log |X])? and a
constant number of binary queries, and has rejection probability Q(v1t(Ga, ®2)),
which is independent of the choice of the constant ¢t. As in Exercise 9.19, for ¥ =
{0,1}°M) we can easily obtain an instance of gapCSP* that has a Q(v1t(Gsy, ®))
fraction of violated constraints. Furthermore, the size of the resulting instance is
O(2") = O(|Gz]), because d and t are constants. This completes the last step as
well as the (outline of the) proof of the entire lemma. O

9.3.3 PCP and Approximation

The characterization of NP in terms of probabilistically checkable proofs plays a
central role in the study of the complexity of approximation problems (cf., Sec-
tion 10.1.1). To demonstrate this relationship, we first note that a PCP system
V' gives rise to a natural approximation problem; that is, on input x, the task
is approximating the probability that V accepts = when given oracle access to

31We also note that due to a technical difficulty it is easier to establish the claimed bound of
Q(v/t - v1t(Gy, ®1)) rather than Q(t - v1t(G1, ®1)).
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the best possible 7 (i.e., we wish to approximate max,{Pr[V™(z) = 1]}). Thus,
if S € PCP(r,q) then deciding membership in S is reducible to approzimating
the mazimum among exp(2"T1) quantities (corresponding to all effective oracles),
where each quantity can be evaluated in time 2" -poly. Note that an approzimation
up to a constant factor (of 2) will do.

Note that the foregoing approximation problem is parameterized by a PCP
verifier V, and its instances are given their value with respect to this verifier (i.e.,
the instance = has value max,{Pr[V™(z) = 1]}). This per se does not yield a
“natural” approximation problem. In order to link PCP systems with natural
approximation problems, we take a closer look at the approximation problem as-
sociated with PCP(r,q). For simplicity, we focus on the case of non-adaptive PCP
systems (i.e., all the queries are determined beforehand based on the input and
the internal coin tosses of the verifier). Fixing an input x for such a system, we
consider the 27(#D formulae that represent the decision of the verifier on each of
the possible outcomes of its coin tosses after inspecting the corresponding bits in
the proof oracle. That is, each of these 27(/*)) formulae depends on ¢(|z|) Boolean
variables that represent the values of the corresponding bits in the proof oracle.
Thus, if = is a yes-instance then there exists a truth assignment (to these variables)
that satisfies all 21D formulae, whereas if z is a no-instance then there exists no
truth assignment that satisfies more than 2"(*D=1 formulae. Furthermore, in the
case that r(n) = O(logn), given x, we can construct the corresponding sequence of
formulae in polynomial-time. Hence, the PCP Theorem (i.e., Theorem 9.16) yields
NP-hardness results regarding the approximation of the number of simultaneously
satisfiable Boolean formulae. When focusing on the case that ¢ is constant, this
motivates the following definition.

Definition 9.20 (gap problems for SAT and generalized-SAT): For constants q €
N and € > 0, the promise problem gapGSAT? consists of instances that are each
a sequence of q-variable Boolean formulae. The yes-instances are sequences that
are simultaneously satisfiable, whereas the no-instances are sequences for which no
Boolean assignment satisfies more than a 1 — € fraction of the formulae in the
sequence. The promise problem gapSAT? is defined analogously, except that in this
case each instance is a sequence of formulae that are each a single disjunctive
clause.

Indeed, each instance of gapSAT? is naturally viewed as ¢-CNF formulae, and we
counsider an assignment that satisfies as many clauses (of the input CNF) as possible.

As hinted, NP C PCP(1og, O(1)) implies that gapGSAT,,” is NP-complete, which
in turn implies that for some constant € > 0 the problem gapSAT? is NP-complete.

The converses hold too. All these claims are stated and proved next.

Theorem 9.21 (equivalent formulations of the PCP Theorem). The following
three conditions are equivalent:

1. The PCP Theorem: there exzists a constant q such that NP C PCP(log,q).

2. There exists a constant q such that gapGSAT‘{/2 is N'P-hard.
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3. There exists a constant € > 0 such that gapSAT? is N'P-hard.

Note that Items 2 and 3 make no reference to PCP. Their equivalence to Item 1
manifests that the hardness of approximating natural optimization problems lies at
the heart of the PCP Theorem. In general, probabilistically checkable proof systems
for NP yield strong inapproximability results for various classical optimization
problems (cf., Exercise 9.14 and Section 10.1.1).

Proof: We first show that the PCP Theorem implies the NP-hardness of gapGSAT.
We may assume, without loss of generality, that, for some constant ¢ and every
S € NP, it holds that S € PCP(O(log),q) via a non-adaptive verifier (because
q adaptive queries can be emulated by 2? non-adaptive queries). We reduce S to
gapGSAT as follows. On input x, we scan all 20(og |z[) hossible sequence of outcomes
of the verifier’s coin tosses, and for each such sequence of outcomes we determine
the queries made by the verifier as well as the residual decision predicate (where this
predicate determines which sequences of answers lead this verifier to accept). That
is, for each random-outcome w € {0,1}°0°8 17D we consider the residual predicate,
determined by x and w, that specifies which ¢-bit long sequence of oracle answers
makes the verifier accept x on coins w. Indeed, this predicate depends only on g
variables (which represent the values of the ¢ corresponding oracle answers). Thus,
we map z to a sequence of poly(|z|) formulae, each depending on ¢ variables,
obtaining an instance of gapGSAT?. This mapping can be computed in polynomial-
time, and indeed x € S (resp., x ¢ S) is mapped to a yes-instance (resp., no-
instance) of gapGSATZ/T

Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Specifically,

gapGSAT] , reduces to gapSAT;_(,,,, which in turn reduces to gapSAT? for ¢ =

2-(a+1) /(g — 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT®,
consider all possible conjunctions of 1/¢ disjunctive clauses in the given instance).

We complete the proof by showing that Item 3 implies Item 1. (The same
proof shows that Item 2 implies Item 1.) In fact, we show that gapGSAT? is in
PCP(O(s*1og),0(g/e)), and do so by presenting a very natural PCP system. In
this PCP system the proof oracle is supposed to be an satisfying assignment, and
the verifier selects at random one of the (g-variable) formulae in the input sequence,
and checks whether it is satisfied by the (assignment given by the) oracle. This
amounts to tossing logarithmically many coins and making g queries. This verifier
always accepts yes-instances (when given access to an adequate oracle), whereas
each no-instances is rejected with probability at least € (no matter which oracle is
used). To amplify the rejection probability (to the desired threshold of 1/2), we
invoke the foregoing verifier O(e~!) times. [l

Gap amplifying reductions — a reflection. Items 2 and 3 of Theorem 9.21
assert the existence of “gap amplifying” reductions of problems like 3SAT to them-
selves. These reductions map yes-instances to yes-instances (as usual), while map-
ping no-instances to no-instances of a special type such that a “gap” is created
between the yes-instances and no-instances at the image of the reduction. For ex-
ample, in the case of 3SAT, unsatisfiable formulae are mapped to formulae that are
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not merely unsatisfiable but rather have no assignment that satisfies more than a
1 — € fraction of the clauses. Thus, PCP constructions are essentially “gap ampli-
fying” reductions.

9.3.4 More on PCP itself: an overview

We start by discussing variants of the PCP characterization of NP, and next turn
to PCPs having expressing power beyond NP. Needless to say, the latter systems
have super-logarithmic randomness complexity.

9.3.4.1 More on the PCP characterization of NP

Interestingly, the two complexity measures in the PCP-characterization of NP
can be traded off such that at the extremes we get NP = PCP(log,O(1)) and
NP = PCP(0,poly), respectively.

Proposition 9.22 For every S € NP, there exists a logarithmic function £ such
that, for every integer function k that satisfies 0 < k(n) <€(n), it holds that S €
PCP(L - k,0(2%)) C N'P.

Proof Sketch: By Theorem 9.16, we have S € PCP(¢,0(1)). Consider an emula-
tion of the corresponding verifier in which we try all possibilities for the k(n)-bit
long prefix of its random-tape. Lastly, recall that PCP(log,poly) CNP. O

Following the establishment of Theorem 9.16, numerous variants of the PCP
Characterization of NP were explored. These variants refer to a finer evaluation of
various parameters of probabilistically checkable proof systems (for sets in N'P).
Following is a brief summary of some of these studies.??

The length of PCPs. Recall that the effective length of the oracle in any
PCP(log,log) system is polynomial (in the length of the input). Furthermore,
in the PCP systems underlying the proof of Theorem 9.16 the queries refer only to
a polynomially long prefix of the oracle, and so the actual length of these PCPs for
NP is polynomial. Remarkably, the length of PCPs for N'P can be made nearly-
linear (in the combined length of the input and the standard NP-witness), while
maintaining constant query complexity, where by nearly-linear we mean linear up
to a poly-logarithmic factor. (For details see [34, 63].) This means that a rel-
atively modest amount of redundancy in the proof oracle suffices for supporting
probabilistic verification via a constant number of probes.

The number of queries in PCPs. Theorem 9.16 asserts that a constant num-
ber of queries suffice for PCPs with logarithmic randomness and soundness error
of 1/2 (for NP). It is currently known that this constant is at most five, whereas
with three queries one may get arbitrary close to a soundness error of 1/2. The

32With the exception of works that appeared after [86], we provide no references for the results
quoted here. We refer the interested reader to [86, Sec. 2.4.4].
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obvious trade-off between the number of queries and the soundness error gives rise
to the robust notion of amortized query complexity, defined as the ratio between the
number of queries and (minus) the logarithm (to based 2) of the soundness error.
For every € > 0, any set in NP has a PCP system with logarithmic randomness
and amortized query complexity 1+ ¢ (cf. [114]), whereas only sets in P have PCPs
of logarithmic randomness and amortized query complexity 1 (or less).

The free-bit complexity. The motivation to the notion of free bits came from
the PCP-to—-MaxClique connection (see Exercise 9.14 and [27, Sec. 8]), but we
believe that this notion is of independent interest. Intuitively, this notion distin-
guishes between queries for which the acceptable answer is determined by previ-
ously obtained answers (i.e., the verifier compares the answer to a value deter-
mined by the previous answers) and queries for which the verifier only records
the answer for future usage. The latter queries are called free (because any an-
swer to them is “acceptable”). For example, in the linearity test (see §9.3.2.1) the
first two queries are free and the third is not (i.e., the test accepts if and only if
f(@)+ f(y) = f(z +y)). The amortized free-bit complexity is define analogously
to the amortized query complexity. Interestingly, NP has PCPs with logarithmic
randomness and amortized free-bit complexity less than any positive constant.

Adaptive versus non-adaptive verifiers. Recall that a PCP verifier is called
non-adaptive if its queries are determined solely based on its input and the outcome
of its coin tosses. (A general verifier, called adaptive, may determine its queries also
based on previously received oracle answers.) Recall that the PCP Characterization
of NP (i.e., Theorem 9.16) is established using a non-adaptive verifier; however, it
turns out that adaptive verifiers are more powerful than non-adaptive ones in terms
of quantitative results: Specifically, for PCP verifiers making three queries and
having logarithmic randomness complexity, adaptive queries provide for soundness
error at most 0.51 (actually 0.5 + € for any € > 0) for any set in NP, whereas
non-adaptive queries provide soundness error 5/8 (or less) only for sets in P.

Non-binary queries. Our definition of PCP allows only binary queries. Cer-
tainly, non-binary queries can always be coded as binary ones, but the converse is
not necessarily valid, in particular in adversarial settings. Note that the soundness
condition constitutes an implicit adversarial setting, where a bad proof may be
thought of as being selected by an adversary. Thus, when several binary queries
are packed into one non-binary query, the adversary need not respect the packing
(i-e., it may answer incounsistently on the same binary query depending on the other
queries packed with it). For this reason, “parallel repetition” is highly non-trivial
in the PCP setting. Still, a Parallel Repetition Theorem that refers to indepen-
dent invocations of the same PCP is known, but it is not applicable for obtaining
soundness error smaller than a constant (while preserving logarithmic randomness).
Nevertheless, using adequate “consistency tests” one may construct PCP systems
for NP using logarithmic randomness, a constant number of (non-binary) queries



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 377

and soundness error exponential in the length of the answers. (Currently, this is
known only for sub-logarithmic answer lengths.)

9.3.4.2 PCP with super-logarithmic randomness

Our focus in §9.3.4.1 was on the important case where the verifier tosses logarith-
mically many coins, and hence the “effective proof length” is polynomial. Here we
mention that the PCP Theorem scales up.3?

Theorem 9.23 (Theorem 9.16 — Generalized): Let ¢(-) be an integer function such
that n <t(n)<2P°Y(M) . Then, NTiME(t) € PCP(O(logt), O(1)).

Recall that PCP(r,q) € NTiME(t), for t(n) = poly(n) - 2"("). Thus, the NTIME
Hierarchy implies a hierarchy of PCP(-,0(1)) classes, for randomness complexity
ranging between logarithmic and polynomial functions.

Chapter Notes

(The following historical notes are quite long and still they fail to properly discuss
several important technical contributions that played an important role in the de-
velopment of the area. For further details, the reader is referred to [86, Sec. 2.6.2].)

Motivated by the desire to formulate the most general type of “proofs” that
may be used within cryptographic protocols, Goldwasser, Micali and Rackoff [105]
introduced the notion of an interactive proof system. Although the main thrust of
their work was the introduction of a special type of interactive proofs (i.e., ones
that are zero-knowledge), the possibility that interactive proof systems may be more
powerful from NP-proof systems was pointed out in [105]. Independently of [105],
Babai [16] suggested a different formulation of interactive proofs, which he called
Arthur-Merlin Games. Syntactically, Arthur-Merlin Games are a restricted form
of interactive proof systems, yet it was subsequently shown that these restricted
systems are as powerful as the general ones (cf., [107]). The speed-up result (i.e.,
AM(2f) C AM(f)) is due to [20] (improving over [16]).

The first evidence of the power of interactive proofs was given by Goldreich, Mi-
cali, and Wigderson [96], who presented an interactive proof system for Graph Non-
Isomorphism (Construction 9.3). More importantly, they demonstrated the gen-
erality and wide applicability of zero-knowledge proofs: Assuming the existence of
one-way function, they showed how to construct zero-knowledge interactive proofs
for any set in AP (Theorem 9.11). This result has had a dramatic impact on
the design of cryptographic protocols (cf., [97]). For further discussion of zero-
knowledge and its applications to cryptography, see Appendix C. Theorem 9.12
(i.e., ZK =IP) is due to [30, 123].

33This scaling up is not straightforward, since we wish to maintain polynomial-time verification.
The key point is that the CNF formulae that represent the computation of NTIME are highly
uniform, and thus the corresponding Boolean functions (and their low degree extensions) can be
evaluated in polynomial-time.
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Probabilistically checkable proof (PCP) systems are related to multi-prover in-
teractive proof systems, a generalization of interactive proofs that was suggested
by Ben-Or, Goldwasser, Kilian and Wigderson [31]. Again, the main motivation
came from the zero-knowledge perspective; specifically, introducing multi-prover
zero-knowledge proofs for NP without relying on intractability assumptions. Yet,
the complexity theoretic prospects of the new class, denoted MZP, have not been
ignored.

The amazing power of interactive proof systems has been demonstrated by using
algebraic methods. The basic technique has been introduced by Lund, Fortnow,
Karloff and Nisan [151], who applied it to show that the polynomial-time hierarchy
(and actually P#7) is in ZP. Subsequently, Shamir [192] used the technique to
show that ZP = PSP.ACE, and Babai, Fortnow and Lund [17] used it to show that
MIP = NEXP. (Our entire proof of Theorem 9.4 follows [192].)

The aforementioned multi-prover proof system of Babai, Fortnow and Lund [17]
(hereafter referred to as the BFL proof system) has been the starting point for fun-
damental developments regarding NP. The first development was the discovery
that the BFL proof system can be “scaled-down” from NEXP to N'P. This im-
portant discovery was made independently by two sets of authors: Babai, Fortnow,
Levin, and Szegedy [18] and Feige, Goldwasser, Lovész, and Safra [69]. However,
the manner in which the BFL proof is scaled-down is different in the two papers,
and so are the consequences of the scaling-down.

Babai et. al. [18] start by considering (only) inputs encoded using a special error-
correcting code. The encoding of strings, relative to this error-correcting code, can
be computed in polynomial time. They presented an almost-linear time algorithm
that transforms NP-witnesses (to inputs in a set S € A'P) into transparent proofs
that can be verified (as vouching for the correctness of the encoded assertion)
in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babai
et. al. [18] stress the practical aspects of transparent proofs; specifically, for rapidly
checking transcripts of long computations.

In contrast, in the proof system of Feige et. al. [69, 70] the verifier stays
polynomial-time and only two more refined complexity measures (i.e., the ran-
domness and query complexities) are reduced to poly-logarithmic. This eliminates
the need to assume that the input is in a special error-correcting form, and yields
a refined (quantitative) version of the notion of probabilistically checkable proof
systems (introduced in [76]), where the refinement is obtained by specifying the
randomness and query complexities (see Definition 9.14). Hence, whereas the BFL
proof system [17] can be reinterpreted as establishing NEXP = PCP(poly,poly),
the work of Feige et. al. [70] establishes NP C PCP(f, f), where f(n) = O(logn -
loglogn). (In retrospect, we note that the work of Babai et. al. [18] implies that
NP C PCP(log,polylog), but the latter terminology was not available at the
time.)

Interest in the new complexity class became immense since Feige et. al. [69, 70]
demonstrated its relevance to proving the intractability of approximating some
combinatorial problems (specifically, for MaxClique). When using the PCP-to—
MaxClique connection established by Feige et. al., the randomness and query com-



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 379

plexities of the verifier (in a PCP system for an NP-complete set) relate to the
strength of the negative results obtained for approximation problems. This fact
provided a very strong motivation for trying to reduce these complexities and ob-
tain a tight characterization of NP in terms of PCP(:,-). The obvious challenge
was showing that NP equals PCP(log, log). This challenge was met by Arora and
Safra [14]. Actually, they showed that NP = PCP(log, q), where g(n) = o(logn).

Hence, a new challenge arose; namely, further reducing the query complexity —
in particular, to a constant — while maintaining the logarithmic randomness com-
plexity. Again, additional motivation for this challenge came from the relevance of
such a result to the study of approximation problems. The new challenge was met
by Arora, Lund, Motwani, Sudan and Szegedy [13], and is captured by the PCP
Characterization Theorem, which asserts that NP = PCP(log, O(1)).

Indeed the PCP Characterization Theorem is a culmination of a sequence of
impressive works [151, 17, 18, 70, 14, 13]. These works are rich in innovative ideas
(e.g., various arithmetizations of SAT as well as various forms of proof composi-
tion) and employ numerous techniques (e.g., low-degree tests, self-correction, and
pseudorandomness).

Our overview of the original proof of the PCP Theorem (in §9.3.2.1-9.3.2.2) is
based on [13, 14].3* The alternative proof outlined in §9.3.2.3 is due to Dinur [63].
We also mention some of the ideas and techniques involved in deriving even stronger
variants of the PCP Theorem (which are surveyed in §9.3.4.1). These include
the Parallel Repetition Theorem [173], the use of the Long-Code [27], and the
application of Fourier analysis in this setting [111, 112].

Computationally-Sound Proof Systems. Argument systems were defined by
Brassard, Chaum and Crépeau [46], with the motivation of providing perfect zero-
knowledge arguments (rather than zero-knowledge proofs) for NP. A few years
later, Kilian [136] demonstrated their significance beyond the domain of zero-
knowledge by showing that, under some reasonable intractability assumptions, ev-
ery set in NP has a computationally-sound proof in which the randomness and
communication complexities are poly-logarithmic.3® Interestingly, these argument
systems rely on the fact that NP C PCP(f, f), for f(n) = poly(logn). We men-
tion that Micali [154] suggested a different type of computationally-sound proof
systems (which he called CS-proofs).

Final comment: The current chapter is a revision of [86, Chap. 2]. In particular,
more details are provided here for the main topics, whereas numerous secondary
topics discussed in [86, Chap. 2] are not mentioned here (or are only briefly men-
tioned here). In addition, a couple of the research directions that were mentioned
in [86, Sec. 2.4.4] received considerable attention in the period that elapsed, and
improved results are currently known. In particular, the interested reader is re-
ferred to [33, 34, 63] (for a study of the length of PCPs) and to [114] (for a study

34Qur presentation also benefits from the notions of PCPs of proximity and robustness, put
forward in [33, 64].
35We comment that interactive proofs are unlikely to have such low complexities; see [102].
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of their amortized query complexity).

Exercises

Exercise 9.1 (parallel error-reduction for interactive proof systems) Prove
that the error probability (in the soundness condition) can be reduced by parallel
repetitions of the proof system.

Guideline: As a warm-up consider first the case of public-coin interactive proof systems.
Next, note that the analysis generalizes to arbitrary interactive proof systems. (Extra
hint: As a mental experiment, consider a “powerful verifier” that emulates the original verifier

while behaving as in the public-coin model.) A proof appears in [86, Apdx. C.1].

Exercise 9.2 Complete the details of the proof that coN’P C ZP (i.e., the first
part of the proof of Theorem 9.4). In particular, regarding the proof of non-
satisfiability of a CNF with n variables and m clauses, what is the length of the
messages sent by the two parties? What is the soundness error?

Exercise 9.3 Present an/O(logn)-round interactive proof for the non-satisfiability
of a CNF having n variables.

Guideline: Modify the (first part of the) proof of Theorem 9.4, by stripping O(logn)
summations in each round.

Exercise 9.4 (an interactive proof system for #P) Using the main part of
the proof of Theorem 9.4, present a proof system for the counting set of Eq. (9.5).

Guideline: Use a slightly different arithmetization of CNF formulae. Specifically, instead
of replacing the clause = V =y V z by the term (z 4+ (1 — y) + z), replace it by the term

1=(Q-2)-y-(1-2))).

Exercise 9.5 Show that QBF can be reduced to a special form of QBF in which no
variable appears both to the left and the right of more than one universal quantifier.

Guideline: Consider a process (which proceeds from left to right) of “refreshing” vari-
ables after each universal quantifier. Let ¢(x1, ..., Ts, Y, Ts41, ..., Ts+¢) be a quantifier-free
boolean formula and let Qs41, ..., @s+¢ be an arbitrary sequence of quantifiers. Then, we
replace the quantified (sub-)formula

VyQs41@st1 - QsttTspt P(T1, ey Ts, Yy Tot 1y ove, Tstt)

by the (sub-)formula
Vy3z) - Fo [(Amy (@] = 20)) A Qer@ogr -+ Que@arte Py ooy Toy Yy Tty ooy Toge) |-

Note that the variables z1,...,z, do not appear to the right of the quantifier Q41 in
the replaced formula, and that the length of the replaced formula grows by an additive
term of O(s). This process of refreshing variables is applied from left to right on the
entire sequence of universal quantifiers (except the inner one, for which this refreshing is

useless).>¢

36For example,
21 V2232324325V 26 ¢(21, 22, 23, 24, 25, 26)
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Exercise 9.6 Prove that if two integers in [0, M] are different then they must be
different modulo most of the primes in the interval [3, L], where L = poly(log M)].
Prove the same for the interval [L,2L].

Guideline: Let a # b € [0, M] and let Pi, ..., P, be an enumeration of the primes in the

interval [3, poly(log M)] such that for every ¢ = 1,...,t it holds that « = b (mod F;).

Using the Chinese Reminder Theorem, prove that @ et H:Zl P; < M (because otherwise

a = b follows by combining a =b (mod Q) with the hypothesis a,b € [0, M]). It follows
that ¢ < log, M. Using a lower-bound on the density of prime numbers, the claim follows.

Exercise 9.7 (on interactive proofs with two-sided error (following [78]))
Let ZP'(f) denote the class of sets having a two-sided error interactive proof system
in which a total of f(|z|) messages are exchanged on common input z. Similarly,
let AM' denote the public-coin version of ZP'.

1. Establish ZP'(f) € AM'(f + 3) by noting that the proof of Theorem F.2,
which establishes ZP(f) C AM(f+3), extends to the two-sided error setting.

2. Prove that AM'(f) € AM'(f + 1) by extending the ideas underlying the
proof of Theorem 6.7, which actually establishes that BPP C AM(1) (where
BPP = AM'(0)).

Using the Round Speed-up Theorem (i.e., Theorem F.3), conclude that, for every
function f: N — N\ {1}, it holds that ZP'(f) = AM(f) = ZP(f).

Guideline: We focus on establishing AM'(f) C AM(f +1) for arbitrary f (rather than
for f =0). Consider an optimal prover strategy and the set of verifier coins that make the
verifier accept any fixed yes-instance. Applying the ideas underlying the transformation

of BPP to MA = AM(1), we obtain the desired result. For further details, see [78].

Exercise 9.8 In continuation to Exercise 9.7, show that ZP'(f) = ZP(f) for every
function f: N — N (including f = 1).

Guideline: Focus on establishing ZP'(1) = ZP(1), which is identical to Part 2 of Exer-
cise 6.12. Note that the relevant classes defined in Exercise 6.12 coincide with ZP(1) and
TIP'(1); that is, MA = ZP(1) and MA® = TP'(1).

Exercise 9.9 (on the role of soundness error in zero-knowledge proofs) Prove
that if S has a zero-knowledge interactive proof system with perfect soundness (i.e.,
soundness error equals zero) then S € BPP.

is first replaced by
J21Vz232] [(2] = z1) A F23VzaTzsVee (21, 22, 23, 24, 25, 26
and next (written as 3z1Vzy3z] [(2] = 21) A F24Vz)32LV2 ¢(2], 2}, 25, 2}, 25, 2)]) is replaced by
321 Vzh 32 [(2] = z1) A Fe4Vz) 3= 325 3]
(NP1 (20 = 2))) A FegVegd(y, 25, 25, 24, 25, 26)])-

Thus, in the resulting formula, no variable appears both to the left and to the right of more than
a single universal quantifier.
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Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)
verifier. Consider the algorithm that on input x, accepts x if and only if M (x) represents
a valid view of the verifier in an accepting interaction (i.e., an interaction that leads the
verifier to accept the common input z). Use the simulation condition to analyze the case
x € S, and the perfect soundness hypothesis to analyze the case z ¢ S.

Exercise 9.10 (on the role of interaction in zero-knowledge proofs) Prove
that if S has a zero-knowledge interactive proof system with a uni-directional com-
munication then S € BPP.

Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)
verifier, and let M'(z) denote the part of this view that consists of the prover message.
Consider the algorithm that on input z, obtains m «— M'(x), and emulates the verifier’s
decision on input = and message m. Note that this algorithm ignores the part of M (x) that
represents the verifier’s internal coin tosses, and uses fresh verifier’s coins when deciding
on (z,m).

Exercise 9.11 (on the effective length of PCP oracles) Suppose that V is
a PCP verifier of query complexity g and randomness complexity r. Show that
for every fixed z, the number of possible locations in the proof oracle that are
examined by V on input x (when considering all possible internal coin tosses of V'
and all possible answers it may receive) is upper-bounded by 2¢(IzD+r(l=) - Show
that if V' is non-adaptive then the upper-bound can be improved to 272D - ¢(|z]).

(Hint: In the adaptive case, the i*h

query is determined by V'’s internal coin tosses and the
previous ¢ — 1 answers. In the non-adaptive case, all ¢ queries are determined by V’s internal coin

tosses.)

Exercise 9.12 (upper-bounds on the complexity of PCPs) Suppose that a
set S has a PCP of query complexity ¢ and randomness complexity r. Show that
S can be decided by a non-deterministic machine that, on input of length n, makes
at most 2"(") - g(n) non-deterministic®” steps and halts within a total number of
27(™) . poly(n) steps. Thus, S € NTIME(2" - poly) N DTIME(22 7 - poly).

Guideline: For each input € S and each possible value w € {0, 1}’““”‘) of the random-
tape, we consider a sequence of g(|z|) bit values that represent a sequence of oracle answers
that make the verifier accept. Indeed, for fixed z and w € {0, 1}T(W)7 each setting of the
q(|z|) oracle answers determine the computation of the corresponding verifier (including
the queries it makes).

Exercise 9.13 (on the effective randomness of PCPs) Suppose that a set S
has a PCP of query complexity ¢ that utilizes proof oracles of length ¢. Show
that, for every constant ¢ > 0, the set S has a “non-uniform” PCP of query
complexity ¢, soundness error 0.5 + ¢ and randomness complexity r such that
r(n) = O(1) +log,(¢(n) +n). By a “non-uniform PCP” we mean one in which the
verifier is a probabilistic polynomial-time oracle machine that is given direct access
to a non-uniform poly(¢)-bit long advice.

37See §4.2.1.3 for definition of non-deterministic machines.
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Guideline: Consider a PCP verifier V' as in the hypothesis, and denote its randomness
complexity by ry. We construct a non-uniform verifier V' that, on input of length n,
obtains as advice a set R, C {0,1}"V (™) of cardinality O((¢(n) 4+ n)/e?), and emulates V'
on a uniformly selected element of R,,. Show that for a random R, of the said size, the
verifier V' satisfies the claims of the exercise.

(Extra hint: Fixing any input « ¢ S and any oracle = € {0, 1}¢(#]) upper-bound the probability

that a random set R, causes V' to accept = with probability 0.5 + ¢ when using the oracle m.)

Exercise 9.14 (The FGLSS-reduction [70]) For any S € PCP(r,q), consider
the following mapping of instances for S to instances of the Independent Set
problem. The instance x is mapped to a graph G, = (V,, E.), where V, C
{0, 1}7U=D+al=]) consists of pairs (w,a) such that the PCP verifier accepts the in-
put z, when using coins w € {0,1}"(*1) and receiving the answers a = a; - - - Qq(|a))
(to the oracle queries determined by z, r and the previous answers). Note that
V., contains only accepting “views” of the verifier. The set E, consists of edges
that connect vertices that represents inconsistent view of the said verifier; that is,
the vertex v = (w, a1 -+ () is connected to the vertex v = (w',a] - 'a;(lwl))
if there exists ¢ and 4’ such that o; # o} and qf(v) = q (v'), where q7(v) (resp.,
q%(v')) denotes the i-th (resp., i'-th) query of the verifier on input z, when us-
ing coins w (resp., w') and receiving the answers aq ---a;_1 (resp., of ---ak_;).
In particular, for every w € {0,1}702D) and o # o, if (w,a), (w,o') € V,, then
(w, ), (w,a')) € Ey.

1. Prove that the mapping x — G, can be computed in time that is polynomial
in 2r(eD+all=l) g,

(Note that the number of vertices in G, equals 2"(=D+7=]) where f < ¢ is
the free-bit complexity of the PCP verifier.)

2. Prove that, for every x, the size of the maximum independent set in G is at
most 27 (1%

3. Prove that if € S then G, has an independent set of size 27121,

4. Prove that if x ¢ S then the size of the maximum independent set in G, is
at most 27([&h-1,

In general, denoting the PCP verifier by V', prove that the size of the maximum
independent set in G, is exactly 277D . max, {Pr[V™(z) = 1]}. (Note the similarity
to the proof of Proposition 2.25.)

Show that the PCP Theorem implies that the size of the mazimum independent set
(resp., clique) in a graph is NP-hard to approzimate to within any constant factor.

Guideline: Note that an independent set in G, corresponds to a set of coins R and a
partial oracle 7' such that V accepts & when using coins in R and accessing any oracle
that is consistent with n'. The FGLSS reduction creates a gap of a factor of 2 between
yes and no-instances of S (having a standard PCP). Larger factors can be obtained by
considering a PCP that results from repeating the original PCP for a constant number of
times. The result for Clique follows by considering the complement graph.
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Exercise 9.15 Using the ideas of Exercise 9.14, prove that, for any t(n) = o(logn),
it holds that NP C PCP(t,t) implies that P = N'P.

Guideline: We only use the fact that the said reduction reduces PCP to instances of
the Clique problem (and ignore the fact that we actually get a stronger reduction to a
“gapClique” problem). Furthermore, when applies to problems in NP C PCP(t,t), this
reduction runs in polynomial-time. The key observation is that this reduction maps in-
stances of the Clique problem (which isin NP C PCP(o(log), o(log))) to shorter instances
of the same problem (because gollosn) & n). Thus, iteratively applying the reduction, we
can reduce instances of Clique to instances of constant size. This yields a reduction of
Clique to a finite set, and NP = P follows (by the NP-completeness of Clique).

Exercise 9.16 (a simple but partial analysis of the BLR Linearity Test)
For Abelian groups G and H, consider functions from G to H. For such a (generic)
function f, consider the linearity (or rather homomorphism) test that selects uni-
formly r, s € G and checks that f(r)+ f(s) = f(r+s). Let 6(f) denote the distance
of f from the set of homomorphisms (of G to H); that is, 6(f) is the minimum
taken over all homomorphisms h : G — H of Pryeq[f(z) # h(x)]. Using the fol-
lowing guidelines, prove that the probability that the test rejects f, denoted e(f),
is at least 36(f) — 68(f)>.

1. Suppose that h is the homomorphism closest to f (i.e., 6(f) = Pr[f(z) #
h(z)]). Prove that e(f) = Pr, yeq[f(x) + f(y) # f(x + y)] is lower-bounded
by 3 Proy[f(x)#h(z) A fy)=h(y) A flz+y)=h(z +y)].

(Hint: consider three out of four disjoint cases that are possible when f(z)+f(y) # f(z+y),
where the three cases refer to the disagreement of h and f on exactly one out of the three

relevant points.)

2. Prove that Pry o [f(z) #h(z)A f(y) =h(y)Af(z+y) =h(z+y)] > 6(f)—26(f)*.
(Hint: lower-bound the said probability by Pr, o [f(z) # h(x)]—(Pre,y [f(z) # h(z)Af(y) #
h(y)] + Pra y[f(2) # h(z) A f(z +y) # h(z +y)]).)

Note that the lower-bound e(f) > 38(f) — 68(f)? increases with §(f) only in the
case that 6(f) < 1/4. Furthermore, the lower-bound is useless in the case that
6(f) > 1/2. Thus an alternative lower-bound is needed in case §(f) approaches
1/2 (or is larger than it); see Exercise 9.17.

Exercise 9.17 (a better analysis of the BLR Linearity Test (cf. [38])) In con-
tinuation to Exercise 9.16, use the following guidelines in order to prove that
e(f) > min(1/7,6(f)/2). Specifically, focusing on the case that (f) < 1/7, show
that f is 2e(f)-close to some homomorphism (and thus (f) > 6(f)/2).

1. Define the vote of y regarding the value of f at « as ¢, (z) ef flz+y)—f(y), and

define ¢(x) as the corresponding plurality vote (i.e., ¢(z) ef argmax,c gy {|{y €
G : py(z)=v}}).
Prove that, for every x € G, it holds that Pry[¢,(z) = ¢(x)] > 1 — 2¢(f).
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Extra guideline: Fixing z, call a pair (y1,y2) good if f(y1) + f(y2 —v1) = f(y2)
and f(z+y1)+ f(y2—vy1) = f(z+y2). Prove that, for any «, a random pair (y1, y2)
is good with probability at least 1 — 2e(f). On the other hand, for a good (y1,y2),
it holds that ¢, (z) = ¢y, (z). Show that the graph in which edges correspond to
good pairs must have a connected component of size at least (1 —2¢(f))-|G|. Note
that ¢, (x) is identical for all vertices y in this connected component, which in turn
contains a majority of all y’s in G.

2. Prove that ¢ is a homomorphism; that is, prove that, for every z,y € G, it

holds that ¢(z) + ¢(y) = ¢(z + ).

Extra guideline: Prove that ¢(z) + ¢(y) = ¢(x + y) holds by considering the
somewhat fictitious expression Prrca[é(z) + ¢(y) # ¢(z + y)], and showing that it
is strictly smaller than 1 (and hence ¢(z) + ¢(y) # ¢(x + y) is false). Upper-bound
the probabilistic expression by

Profp(@) £ f(@+r) = f(r) Vo) #[(r) = f(r—y) V(e +y)# f(x+r) = f(r—y)].

Use the union bound (and Item 1), and note that Pr.[¢p(z) # f(z +7) — f(r)] <
2¢(f) < 1/3, whereas Pr.[¢(y) # f(r) — f(r —y)] = Pro[p(y) # f(y +7') = f(r')]
and Pr.[¢(e +y) # [(z+7) = f(r—y)] = Prolé(@+y) # [z +y+r) = f(')] (by
substituting v’ = r — y).

3. Prove that f is 2e(f)-close to ¢.
Extra guideline: Denoting B = {z €G : Pryca[f(x) # ¢y(x)] > 1/2}, prove that
e(f) > (1/2) - (|B|/|G])- Note that if z € G \ B then f(z) = ¢(x).

We comment that better bounds on the behavior of e(f) as a function of 6(f) are
known.

Exercise 9.18 (checking matrix identity) Let M be a non-zero m-by-n ma-
trix over GF(p). Prove that Pr,  [rT Ms # 0] > (1 — p~1)2, where r (resp., s) is a
random m-ary (resp., n-ary) vector.

Guideline: Prove that if v # 0™ then Prs[st = 0] = p~!, and that if M has rank p
then Pr, [TTM =0"]=p~".
Exercise 9.19 (3SAT and CSP with two variables) Show that 3SAT is reducible

to gapCSPil""J} for 7(m) = 1/m, where gapCSP is as in Definition 9.18. Further-
more, show that the size of the resulting gapCSP instance is linear in the length of
the input formula.

Guideline: Given an instance 1) of 3SAT, consider the graph in which vertices correspond
to clauses of 1), edges correspond to pairs of clauses that share a variable, and the con-
straints represent the natural consistency condition regarding partial assignments that
satisfy the clauses. See a similar construction in Exercise 9.14.

Exercise 9.20 (CSP with two Boolean variables) In contrast to Exercise 9.19,
prove that for every positive function 7 : N — (0, 1] the problem gapCSPiO’l} is
solvable in polynomial-time.

Guideline: Reduce gapCSPiO’l} to 2SAT.
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Exercise 9.21 Show that, for any fixed finite ¥ and constant ¢ > 0, the problem
gapCSPZ is in PCP(log, O(1)).

Guideline: Cousider an oracle that, for some satisfying assignment for the CSP-instance
(G, ®), provides a trivial encoding of the assignment; that is, for a satisfying assignment « :

1 bit in the binary representation

V — %, the oracle responds to the query (v, ) with the ¢
of a(v). Consider a verifier that uniformly selects an edge (u,v) of G and checks the
constraint ¢, ,) when applied to the values a(u) and a(v) obtained from the oracle. This

verifier makes log,, | Y| queries and reject each no-instance with probability at least c.

Exercise 9.22 For any constant ¥ and d > 14, show that gapCSP* can be reduced
to itself such that the instance at the target of the reduction is a d-regular expander,
and the fraction of violated constraints is preserved up to a constant factor. That
is, the instance (G, ®) is reduced to (G1, ®1) such that G is a d-regular expander
graph and v1t(Gy,®;) = O(vlt(G,®)). Furthermore, make sure that |Gi| =
O(|G]) and that each vertex in G has at least d/2 self-loops.

Guideline: First, replace each vertex of degree d' > 3 by a 3-regular expander of size
d', and connect each of the original d’ edges to a different vertex of this expander, thus
obtaining a graph of maximum degree 4. Maintain the constraints associated with the
original edges, and associate the equality constraint (i.e., ¢(4,7) = 1 if and only if i = j)
to each new edge (residing in any of the added expanders). Next, denoting the number of
vertices in the resulting graph by Ni, add to this graph a 3-regular expander of size N;
(while associating with these edges the trivially satisfied constraint; i.e., ¢(i,7) = 1 for all
1,7 € X). Finally, add at least d/2 self-loops to each vertex (using again trivially satisfied
constraints), so to obtain a d-regular graph. Prove that this sequence of modifications
may only decrease the fraction of violated constraints, and that the decrease is only by
a constant factor. The latter assertion relies on the equality constraints associated with
the small expanders used in the first step.

Exercise 9.23 (free bit complexity zero) Note that only sets in BPP have
PCPs of query complexity zero. Furthermore, Exercise 9.12 implies that only sets
in P have PCP systems of logarithmic randomness and query complexity zero.

1. Show that only sets in P have PCP systems of logarithmic randomness and
free-bit complexity zero.

(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit

complexity zero. )

2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bit
complexity zero (and linear randomness complexity).

Exercise 9.24 (free bit complexity one) In continuation to Exercise 9.23, prove
that only sets in P have PCP systems of logarithmic randomness and free-bit com-
plexity one.

Guideline: Consider an application of the FGLSS-reduction to a set having a PCP of
free-bit complexity one and randomness complexity r. Note that the question of whether
the resulting graph has an independent set of size 2" can be expressed as a 2CNF formula
of size poly(2"), and see Exercise 2.21.
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Appendix C

On the Foundations of
Modern Cryptography

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906-1995)

Summary: Cryptography is concerned with the construction of com-
puting systems that withstand any abuse: Such a system is constructed
so to maintain a desired functionality, even under malicious attempts
aimed at making it deviate from this functionality.

This appendix is aimed at presenting the foundations of cryptography,
which are the paradigms, approaches and techniques used to concep-
tualize, define and provide solutions to natural security concerns. It
presents some of these conceptual tools as well as some of the funda-
mental results obtained using them. The emphasis is on the clarification
of fundamental concepts, and on demonstrating the feasibility of solving
several central cryptographic problems. The presentation assumes ba-
sic knowledge of algorithms, probability theory and complexity theory,
but nothing beyond this.

The appendix augments the treatment of one-way functions, pseudo-
random generators and zero-knowledge proofs, which is given in Sec-
tions 7.1, 8.3 and 9.2, respectively. (These augmentations are important
for cryptography, but are less central to the main context of this book
and thus were omitted from the main text.) Using these basic tools,
the appendix provides a treatment of basic cryptographic applications
such as Encryption, Signatures, and General Cryptographic Protocols.

451
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C.1 Introduction and Preliminaries

The vast expansion and rigorous treatment of cryptography is one of the major
achievements of theoretical computer science. In particular, concepts such as com-
putational indistinguishability, pseudorandomness and zero-knowledge interactive
proofs were introduced, classical notions such as secure encryption and unforge-
able signatures were placed on sound grounds, and new (unexpected) directions
and connections were uncovered. Indeed, modern cryptography is strongly linked
to complexity theory (in contrast to “classical” cryptography which is strongly
related to information theory).

C.1.1 Modern cryptography

Modern cryptography is concerned with the construction of information systems
that are robust against malicious attempts to make these systems deviate from
their prescribed functionality. The prescribed functionality may be the private and
authenticated communication of information through the Internet, the holding of
incoercible and secret electronic voting, or conducting any “fault-resilient” multi-
party computation. Indeed, the scope of modern cryptography is very broad, and
it stands in contrast to “classical” cryptography (which has focused on the single
problem of enabling secret communication over insecure communication media).

The design of cryptographic systems is a very difficult task. One cannot rely
on intuitions regarding the “typical” state of the environment in which the system
operates. For sure, the adversary attacking the system will try to manipulate the
environment into “untypical” states. Nor can one be content with counter-measures
designed to withstand specific attacks, since the adversary (which acts after the
design of the system is completed) will try to attack the schemes in ways that
are different from the ones the designer had envisioned. Although the validity of
the foregoing assertions seems self-evident, still some people hope that in practice
ignoring these tautologies will not result in actual damage. Experience shows that
these hopes rarely come true; cryptographic schemes based on make-believe are
broken, typically sooner than later.

In view of the foregoing, we believe that it makes little sense to make assump-
tions regarding the specific strategy that the adversary may use. The only assump-
tions that can be justified refer to the computational abilities of the adversary.
Furthermore, the design of cryptographic systems has to be based on firm foun-
dations; whereas ad-hoc approaches and heuristics are a very dangerous way to
go. A heuristic may make sense when the designer has a very good idea regard-
ing the environment in which a scheme is to operate, yet a cryptographic scheme
has to operate in a maliciously selected environment that typically transcends the
designer’s view.

This appendix is aimed at presenting the foundations for cryptography. The
foundations of cryptography are the paradigms, approaches and techniques used to
conceptualize, define and provide solutions to natural “security concerns”. Solving
a cryptographic problem (or addressing a security concern) is a two-stage process
consisting of a definitional stage and a constructive stage. First, in the definitional
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stage, the functionality underlying the natural concern is to be identified, and an
adequate cryptographic problem has to be defined. Trying to list all undesired sit-
uations is infeasible and prone to error. Instead, one should define the functionality
in terms of operation in an imaginary ideal model, and require a candidate solution
to emulate this operation in the real, clearly defined, model (which specifies the
adversary’s abilities). Once the definitional stage is completed, one proceeds to
construct a system that satisfies the definition. Such a construction may use some
simpler tools, and its security is proved relying on the features of these tools. In
practice, of course, such a scheme may need to satisfy also some specific efficiency
requirements.

This appendix focuses on several archetypical cryptographic problems (e.g., en-
cryption and signature schemes) and on several central tools (e.g., computational
difficulty, pseudorandomness, and zero-knowledge proofs). For each of these prob-
lems (resp., tools), we start by presenting the natural concern underlying it (resp.,
its intuitive objective), then define the problem (resp., tool), and finally demon-
strate that the problem may be solved (resp., the tool can be constructed). In the
latter step, our focus is on demonstrating the feasibility of solving the problem, not
on providing a practical solution.

Computational Difficulty

The aforementioned tools and applications (e.g., secure encryption) exist only if
some sort of computational hardness exists. Specifically, all these problems and
tools require (either explicitly or implicitly) the ability to generate instances of
hard problems. Such ability is captured in the definition of one-way functions.
Thus, one-way functions are the very minimum needed for doing most natural
tasks of cryptography. (It turns out, as we shall see, that this necessary condition
is “essentially” sufficient; that is, the existence of one-way functions (or augmenta-
tions and extensions of this assumption) suffices for doing most of cryptography.)

Our current state of understanding of efficient computation does not allow us
to prove that one-way functions exist. In particular, if 7 = AP then no one-way
functions exist. Furthermore, the existence of one-way functions implies that NP
is not contained in BPP 2 P (not even “on the average”). Thus, proving that one-
way functions exist is not easier than proving that P # NP; in fact, the former
task seems significantly harder than the latter. Hence, we have no choice (at this
stage of history) but to assume that one-way functions exist. As justification to
this assumption we can only offer the combined beliefs of hundreds (or thousands)
of researchers. Furthermore, these beliefs concern a simply stated assumption, and
their validity follows from several widely believed conjectures which are central to
various fields (e.g., the conjectured intractability of integer factorization is central
to computational number theory).

Since we need assumptions anyhow, why not just assume what we want (i.e.,
the existence of a solution to some natural cryptographic problem)? Well, first we
need to know what we want: as stated above, we must first clarify what exactly
we want; that is, go through the typically complex definitional stage. But once
this stage is completed, can we just assume that the definition derived can be met?
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Not really: once a definition is derived, how can we know that it can at all be met?
The way to demonstrate that a definition is viable (and that the corresponding
intuitive security concern can be satisfied at all) is to construct a solution based
on a better understood assumption (i.e., one that is more common and widely
believed). For example, looking at the definition of zero-knowledge proofs, it is
not a-priori clear that such proofs exist at all (in a non-trivial sense). The non-
triviality of the notion was first demonstrated by presenting a zero-knowledge proof
system for statements, regarding Quadratic Residuosity, which are believed to be
hard to verify (without extra information). Furthermore, contrary to prior beliefs,
it was later shown that the existence of one-way functions implies that any NP-
statement can be proved in zero-knowledge. Thus, facts that were not known
at all to hold (and even believed to be false), were shown to hold by reduction to
widely believed assumptions (without which most of modern cryptography collapses
anyhow). To summarize, not all assumptions are equal, and so reducing a complex,
new and doubtful assumption to a widely-believed and simple (or even merely
simpler) assumption is of great value. Furthermore, reducing the solution of a new
task to the assumed security of a well-known primitive typically means providing
a construction that, using the known primitive, solves the new task. This means
that we do not only know (or assume) that the new task is solvable but we also
have a solution based on a primitive that, being well-known, typically has several
candidate implementations.

C.1.2 Preliminaries

Modern Cryptography, as surveyed here, is concerned with the construction of
efficient schemes for which it is infeasible to violate the security feature. Thus,
we need a notion of efficient computations as well as a notion of infeasible ones.
The computations of the legitimate users of the scheme ought be efficient, whereas
violating the security features (by an adversary) ought to be infeasible. We stress
that we do not identify feasible computations with efficient ones, but rather view
the former notion as potentially more liberal. Let us elaborate.

C.1.2.1 Efficient Computations and Infeasible ones

Efficient computations are commonly modeled by computations that are polynomial-
time in the security parameter. The polynomial bounding the running-time of the
legitimate user’s strategy is fized and typically ezplicit (and small). Indeed, our
aim is to have a notion of efficiency that is as strict as possible (or, equivalently,
develop strategies that are as efficient as possible). Here (i.e., when referring to
the complexity of the legitimate users) we are in the same situation as in any algo-
rithmic setting. Things are different when referring to our assumptions regarding
the computational resources of the adversary, where we refer to the notion of fea-
sible, which we wish to be as wide as possible. A common approach is to postulate
that feasible computations are polynomial-time too, but here the polynomial is not
a-priori specified (and is to be thought of as arbitrarily large). In other words, the
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adversary is restricted to the class of polynomial-time computations and anything
beyond this is considered to be infeasible.

Although many definitions explicitly refer to the convention of associating fea-
sible computations with polynomial-time ones, this convention is inessential to
any of the results known in the area. In all cases, a more general statement can
be made by referring to a general notion of feasibility, which should be preserved
under standard algorithmic composition, yielding theories that refer to adversaries
of running-time bounded by any specific super-polynomial function (or class of
functions). Still, for sake of concreteness and clarity, we shall use the former con-
vention in our formal definitions (but our motivational discussions will refer to an
unspecified notion of feasibility that covers at least efficient computations).

C.1.2.2 Randomized (or probabilistic) Computations

Randomized computations play a central role in cryptography. One fundamental
reason for this fact is that randomness is essential for the existence (or rather the
generation) of secrets. Thus, we must allow the legitimate users to employ random-
ized computations, and certainly (since we consider randomization as feasible) we
must consider also adversaries that employ randomized computations. This brings
up the issue of success probability: typically, we require that legitimate users suc-
ceed (in fulfilling their legitimate goals) with probability 1 (or negligibly close to
this), whereas adversaries succeed (in violating the security features) with negli-
gible probability. Thus, the notion of a negligible probability plays an important
role in our exposition.

One requirement of the definition of negligible probability is to provide a robust
notion of rareness: A rare event should occur rarely even if we repeat the experiment
for a feasible number of times. That is, in case we consider any polynomial-time
computation to be feasible, a function p: N — N is called negligible if 1 — (1 —
w(n))P(") < 0.01 for every polynomial p and sufficiently big n (i.e., u is negligible
if for every positive polynomial p’ the function p(-) is upper-bounded by 1/p'(+)).

We will also refer to the notion of noticeable probability. Here the requirement
is that events that occur with noticeable probability, will occur almost surely (i.e.,
except with negligible probability) if we repeat the experiment for a polynomial
number of times. Thus, a function v:N— N is called noticeable if for some positive
polynomial p’ the function v(+) is lower-bounded by 1/p/(+).

C.1.3 Prerequisites, Organization, and Beyond

Our aim is to present the basic concepts, techniques and results in cryptography,
and our emphasis is on the clarification of fundamental concepts and the relation-
ship among them. This is done in a way independent of the particularities of some
popular number theoretic examples. These particular examples played a central
role in the development of the field and still offer the most practical implementa-
tions of all cryptographic primitives, but this does not mean that the presentation
has to be linked to them. On the contrary, we believe that concepts are best clari-
fied when presented at an abstract level, decoupled from specific implementations.
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The appendix is organized in two main parts, corresponding to the Basic Tools
of Cryptography and the Basic Applications of Cryptography.

The basic tools: The most basic tool is computational difficulty, which in turn
is captured by the notion of one-way functions. Another notion of key im-
portance is that of computational indistinguishability, underlying the theory
of pseudorandomness as well as much of the rest of cryptography. Pseu-
dorandom generators and functions are important tools that are frequently
used. So are zero-knowledge proofs, playing a key role in the design of secure
cryptographic protocols and in their study.

The basic applications: Encryption and signature schemes are the most basic
applications of Cryptography. Their main utility is in providing secret and
reliable communication over insecure communication media. Loosely speak-
ing, encryption schemes are used for ensuring the secrecy (or privacy) of the
actual information being communicated, whereas signature schemes are used
to ensure its reliability (or authenticity). Another basic topic is the construc-
tion of secure cryptographic protocols for the implementation of arbitrary
functionalities.

The presentation of the basic tools in Sections C.2-C.4 augments (and sometimes
repeats parts of) Sections 7.1, 8.3, and 9.2 (which provide a basic treatment of one-
way functions, pseudorandom generators, and zero-knowledge proofs, respectively).
Sections C.5—C.7, provide a overview of the basic applications; that is, Encryption
Schemes, Signature Schemes, and General Cryptographic Protocols.

Suggestions for further reading. This appendix is a brief summary of the
author’s two-volume work on the subject [87, 88]. Furthermore, the first part (i.e.,
Basic Tools) corresponds to [87], whereas the second part (i.e., Basic Applications)
corresponds to [88]. Needless to say, the interested reader is referred to these
textbooks for further detail (and, in particular, for missing references).

Practice. The aim of this appendix is to introduce the reader to the theoretical
foundations of cryptography. As argued, such foundations are necessary for sound
practice of cryptography. Indeed, practice requires more than theoretical founda-
tions, whereas the current text makes no attempt to provide anything beyond the
latter. However, given a sound foundation, one can learn and evaluate various
practical suggestions that appear elsewhere. On the other hand, lack of sound
foundations results in inability to critically evaluate practical suggestions, which in
turn leads to unsound decisions. Nothing could be more harmful to the design of
schemes that need to withstand adversarial attacks than misconceptions about such
attacks.

C.2 Computational Difficulty

Modern Cryptography is concerned with the construction of systems that are easy
to operate (properly) but hard to foil. Thus, a complexity gap (between the ease of
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proper usage and the difficulty of deviating from the prescribed functionality) lies
at the heart of Modern Cryptography. However, gaps as required for Modern Cryp-
tography are not known to exist; they are only widely believed to exist. Indeed,
almost all of Modern Cryptography rises or falls with the question of whether one-
way functions exist. We mention that the existence of one-way functions implies
that NP contains search problems that are hard to solve on the average, which
in turn implies that AP is not contained in BPP (i.e., a worst-case complexity
conjecture).

Loosely speaking, one-way functions are functions that are easy to evaluate but
hard (on the average) to invert. Such functions can be thought of as an efficient
way of generating “puzzles” that are infeasible to solve (i.e., the puzzle is a random
image of the function and a solution is a corresponding preimage). Furthermore,
the person generating the puzzle knows a solution to it and can efficiently verify
the validity of (possibly other) solutions to the puzzle. Thus, one-way functions
have, by definition, a clear cryptographic flavor (i.e., they manifest a gap between
the ease of one task and the difficulty of a related one).

C.2.1 One-Way Functions

We start by reproducing the basic definition of one-way functions as appearing in
Section 7.1.1, where this definition is further discussed.

Definition C.1 (one-way functions, Definition 7.1 restated): A function f:{0,1}* —
{0,1}* is called one-way if the following two conditions hold:

1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =
f(z) for every x € {0,1}*.

2. hard to invert: For every probabilistic polynomial-time algorithm A’, every
polynomial p, and all sufficiently large n,

1
PriA'(f(z),1") € f~Y(f(2))] < —

[A'(f(z),1") € f7(f(@))] o)
where the probability is taken uniformly over x € {0,1}™ and all the internal
coin tosses of algorithm A'.

Some of the most popular candidates for one-way functions are based on the con-
jectured intractability of computational problems in number theory. One such
conjecture is that it is infeasible to factor large integers. Consequently, the func-
tion that takes as input two (equal length) primes and outputs their product is
widely believed to be a one-way function. Furthermore, factoring such a com-
posite is infeasible if and only if squaring modulo such a composite is a one-way
function (see [171]). For certain composites (i.e., products of two primes that are
both congruent to 3 mod 4), the latter function induces a permutation over the
set of quadratic residues modulo this composite. A related permutation, which is
widely believed to be one-way, is the RSA function [181]: z — 2z mod N, where
N = P -Q is a composite as above, e is relatively prime to (P —1)-(Q — 1), and
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z € {0,..., N — 1}. The latter examples (as well as other popular suggestions) are
better captured by the following formulation of a collection of one-way functions
(which is indeed related to Definition C.1):

Definition C.2 (collections of one-way functions): A collection of functions, {f;:
D; — {0,1}*}, .7, is called one-way if there exists three probabilistic polynomial-
time algorithms, I, D and F, such that the following two conditions hold:

1. easy to sample and compute: On input 1™, the output of (the index selection)
algorithm I is distributed over the set I N {0,1}™ (i.e., is an n-bit long index
of some function). On input (an index of a function) i € I, the output of
(the domain sampling) algorithm D is distributed over the set D; (i.e., over
the domain of the function). On input i € I and x € D;, (the evaluation)
algorithm F always outputs f;(x).

2. hard to invert:! For every probabilistic polynomial-time algorithm, A', every
positive polynomial p(+), and all sufficiently large n’s

Pr [A'(i, fi(2) € f M (fi()] < ——

p(n)
where 1 — I(1™) and x «— D(i).

The collection is said to be a collection of permutations if each of the f;’s is a
permutation over the corresponding D;, and D(i) is almost uniformly distributed
m Di.

For example, in case of the RSA, one considers fy . : Dy, — Dy, that satisfies
fn,e(z) = ° mod N, where Dy . = {0,...,N — 1}. Definition C.2 is also a good
starting point for the definition of a trapdoor permutation.? Loosely speaking,
the latter is a collection of one-way permutations augmented with an efficient al-
gorithm that allows for inverting the permutation when given adequate auxiliary
information (called a trapdoor).

Definition C.3 (trapdoor permutations): A collection of permutations as in Def-
inition C.2 is called o trapdoor permutation if there are two auziliary probabilistic
polynomial-time algorithms I' and F~ such that (1) the distribution I'(1™) ranges
over pairs of strings so that the first string is distributed as in I(1™), and (2) for
every (i,t) in the range of I'(1™) and every x € D; it holds that F~1(t, f;(z)) = x.
(That is, ¢ is a trapdoor that allows to invert f;.)

For example, in case of the RSA, fy . can be inverted by raising to the power d
(modulo N = P-@), where d is the multiplicative inverse of e modulo (P—1)-(Q—1).
Indeed, in this case, the trapdoor information is (N, d).

INote that this condition refers to the distributions I(1*) and D(i), which are merely required
to range over I N {0,1}" and D;, respectively. (Typically, the distributions I(1") and D(i) are
(almost) uniform over I N {0,1}" and D;, respectively.)

2Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter
(and less precise) term is the commonly used one.
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Strong versus weak one-way functions (summary of Section 7.1.2). Re-
call that the foregoing definitions require that any feasible algorithm succeeds in
inverting the function with negligible probability. A weaker notion only requires
that any feasible algorithm fails to invert the function with noticeable probability.
It turns out that the existence of such weak one-way functions implies the exis-
tence of strong one-way functions (as in Definition C.1). The construction itself
is straightforward, but analyzing it transcends the analogous information theoretic
setting. Instead, the security (i.e., hardness of inverting) the resulting construc-
tion is proved via a so called “reducibility argument” that transforms the violation
of the conclusion (i.e., the security of the resulting construction) into a violation
of the hypothesis (i.e., the security of the given primitive). This strategy (i.e., a
“reducibility argument”) is used to prove all conditional results in the area.

C.2.2 Hard-Core Predicates

Recall that saying that a function f is one-way implies that given y (in the range
of f) it is infeasible to find a preimage of y under f. This does not mean that it
is infeasible to find out partial information about the preimage(s) of y under f.
Specifically it may be easy to retrieve half of the bits of the preimage (e.g., given

a one-way function f consider the function g defined by g(z,r) e (f(z),r), for
every |z| =|r|). As will become clear in subsequent sections, hiding partial infor-
mation (about the function’s preimage) plays an important role in more advanced
constructs (e.g., secure encryption). This partial information can be considered
as a “hard core” of the difficulty of inverting f. Loosely speaking, a polynomial-
time computable (Boolean) predicate b, is called a hard-core of a function f if no
feasible algorithm, given f(x), can guess b(x) with success probability that is non-
negligibly better than one half. The actual definition is presented in Section 7.1.3
(i.e., Definition 7.6).

Note that if b is a hard-core of a 1-1 function f that is polynomial-time com-
putable then f is a one-way function. On the other hand, recall that Theorem 7.7

asserts that for any one-way function f, the inner-product mod 2 of x and r is a
hard-core of f'(z,r) = (f(z),r).

C.3 Pseudorandomness

In practice “pseudorandom” sequences are often used instead of truly random se-
quences. The underlying belief is that if an (efficient) application performs well
when using a truly random sequence then it will perform essentially as well when
using a “pseudorandom” sequence. However, this belief is not supported by ad-
hoc notions of “pseudorandomness” such as passing the statistical tests in [137] or
having large “linear-complexity” (as defined in [108]). Needless to say, using such
“pseudorandom” sequences (instead of truly random sequences) in a cryptographic
application is very dangerous.

In contrast, truly random sequences can be safely replaced by pseudorandom
sequences provided that pseudorandom distributions are defined as being compu-
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tationally indistinguishable from the uniform distribution. Such a definition makes
the soundness of this replacement an easy corollary. Loosely speaking, pseudoran-
dom generators are then defined as efficient procedures for creating long pseudo-
random sequences based on few truly random bits (i.e., a short random seed). The
relevance of such constructs to cryptography is in providing legitimate users that
share short random seeds a method for creating long sequences that look random
to any feasible adversary (which does not know the said seed).

C.3.1 Computational Indistinguishability

A central notion in Modern Cryptography is that of “effective similarity” (a.k.a
computational indistinguishability; cf. [104, 223]). The underlying thesis is that
we do not care whether or not objects are equal, all we care about is whether or
not a difference between the objects can be observed by a feasible computation. In
case the answer is negative, the two objects are equivalent as far as any practical
application is concerned. Indeed, in the sequel we will often interchange such
(computationally indistinguishable) objects. In this section we recall the definition
of computational indistinguishability (presented in Section 8.3.3), and consider two
variants.

Definition C.4 (computational indistinguishability, Definition 8.4 revised3): We
say that X = {Xyn},en and Y = {Y,},en are computationally indistinguishable
if for every probabilistic polynomial-time algorithm D every polynomial p, and all
sufficiently large n,

R
|Pr[D(1", X,,)=1] — Pr[D(1",Y,,)=1]| < o)

where the probabilities are taken over the relevant distribution (i.e., either X, or
Y,.) and over the internal coin tosses of algorithm D.

See further discussion in Section 8.3.3. In particular, recall that for “efficiently con-
structible” distributions, indistinguishability by a single sample (as defined above)
implies indistinguishability by multiple samples (as in Definition 8.5).

Extension to ensembles indexed by strings. Here we refer to a natural ex-
tension of Definition C.4: Rather than referring to ensembles indexed by N, we refer
to ensembles indexed by an arbitrary set S C {0,1}*. Typically, for an ensemble
{Zus}aes, it holds that Z, ranges over strings of length that is polynomially-related
to the length of a.

3For sake of streamlining Definition C.4 with Definition C.5 (and unlike in Definition 8.4), here
the distinguisher is explicitly given the index n of the distribution that it inspects. (In typical
applications, the difference between Definitions 8.4 and C.4 is immaterial because the index n is
easily determined from any sample of the corresponding distributions.)
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Definition C.5 We say that {Xa}acs and {Y,}aecs are computationally indistin-
guishable if for every probabilistic polynomial-time algorithm D every polynomial
p, and all sufficiently long o € S,
1
|Pr[D(a, Xo)=1] — Pr[D(a,Yo)=1]| < ——
p(le)

where the probabilities are taken over the relevant distribution (i.e., either X, or
Y., ) and over the internal coin tosses of algorithm D.

Note that Definition C.4 is obtained as a special case by setting S = {1" : n € N}.

A non-uniform version. A non-uniform definition of computational indistin-
guishability can be derived from Definition C.5 by artificially augmenting the in-
dices of the distributions. That is, {X4}aecs and {Y,}aes are computationally
indistinguishable in a non-uniform sense if for every polynomial p the ensembles
{X! }ares and {Y! }oes are computationally indistinguishable (as in Defini-
tion C.5), where S' = {afB : a € S A B € {0,1}2U*D} and Xs = Xq (resp.,
Y, 5 = Ya) for every 3 € {0, 1}#(eD. An equivalent (alternative) definition can be
obtained by following the formulation that underlies Definition 8.12.

C.3.2 Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient (deterministic) algorithm
that on input a short random seed outputs a (typically much) longer sequence that
is computationally indistinguishable from a uniformly chosen sequence.

Definition C.6 (pseudorandom generator, Definition 8.1 restated): Let £:N—N
satisfy £(n) > n, for alln € N. A pseudorandom generator, with stretch function £,
is a (deterministic) polynomial-time algorithm G satisfying the following:

1. For every s € {0,1}*, it holds that |G(s)| = £(]s]).

2. {G(Un)}nen and {Uyn)}nen are computationally indistinguishable, where
U, denotes the uniform distribution over {0,1}™.

Indeed, the probability ensemble {G(Un)},cN s called pseudorandom.

We stress that pseudorandom sequences can replace truly random sequences not
only in “standard” algorithmic applications but also in cryptographic ones. That
is, any cryptographic application that is secure when the legitimate parties use
truly random sequences, is also secure when the legitimate parties use pseudo-
random sequences. The benefit in such a substitution (of random sequences by
pseudorandom ones) is that the latter sequences can be efficiently generated using
much less true randomness. Furthermore, in an interactive setting, it is possible to
eliminate all random steps from the on-line execution of a program, by replacing
them with the generation of pseudorandom bits based on a random seed selected
and fixed off-line (or at set-up time). This allows interactive parties to generate
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a long sequence of common secret bits based on a shared random seed which may
have been selected at a much earlier time.

Various cryptographic applications of pseudorandom generators will be pre-
sented in the sequel, but let us first recall that pseudorandom generators exist if
and only if one-way functions exist (see Theorem 8.11). For further treatment of
pseudorandom generators, the reader is referred to Section 8.3.

C.3.3 Pseudorandom Functions

Pseudorandom generators provide a way to efficiently generate long pseudorandom
sequences from short random seeds. Pseudorandom functions, introduced and con-
structed by Goldreich, Goldwasser, and Micali [91], are even more powerful: they
provide efficient direct access to the bits of a huge pseudorandom sequence (which
is not feasible to scan bit-by-bit). More precisely, a pseudorandom function is an ef-
ficient (deterministic) algorithm that given an n-bit seed, s, and an n-bit argument,
x, returns an n-bit string, denoted fs(x), such that it is infeasible to distinguish
the values of fs, for a uniformly chosen s € {0,1}", from the values of a truly
random function F : {0,1}" — {0,1}". That is, the (feasible) testing procedure
is given oracle access to the function (but not its explicit description), and cannot
distinguish the case it is given oracle access to a pseudorandom function from the
case it is given oracle access to a truly random function.

Definition C.7 (pseudorandom functions): A pseudorandom function (ensemble),
is a collection of functions {f,:{0,1}*1—{0,1}*1} ;c(0.1}~ that satisfies the follow-
ing two conditions:

1. (efficient evaluation) There exists an efficient (deterministic) algorithm that
given a seed, s, and an argument, x € {0, 1}*, returns f.(z).

2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,
M, every positive polynomial p and all sufficiently large n’s
1

Pr(M/vn (1) = 1) = Pr[ M (1") =1]| < —

[Pr| |- Pr| < oo

where F,, denotes a uniformly selected function mapping {0,1}™ to {0,1}™.

One key feature of the foregoing definition is that pseudorandom functions can
be generated and shared by merely generating and sharing their seed; that is,
a “random looking” function f; : {0,1}" — {0,1}", is determined by its n-bit
seed s. Parties wishing to share a “random looking” function f; (determining 2"-
many values), merely need to generate and share among themselves the n-bit seed
s. (For example, one party may randomly select the seed s, and communicate
it, via a secure channel, to all other parties.) Sharing a pseudorandom function
allows parties to determine (by themselves and without any further communication)
random-looking values depending on their current views of the environment (which
need not be known a priori). To appreciate the potential of this tool, one should
realize that sharing a pseudorandom function is essentially as good as being able
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to agree, on the fly, on the association of random values to (on-line) given values,
where the latter are taken from a huge set of possible values. We stress that
this agreement is achieved without communication and synchronization: Whenever
some party needs to associate a random value to a given value, v € {0,1}", it will
associate to v the (same) random value r, € {0,1}" (by setting r, = fs(v), where
fs is a pseudorandom function agreed upon beforehand). Concrete applications of
(this power of) pseudorandom functions appear in Sections C.5.2 and C.6.2.

Theorem C.8 (How to construct pseudorandom functions): Pseudorandom func-
tions can be constructed using any pseudorandom generator.

Proof Sketch:* Let G be a pseudorandom generator that stretches its seed by a
factor of two (i.e., £(n) = 2n), and let Go(s) (resp., G1(s)) denote the first (resp.,
last) |s| bits in G(s). Define

Goypyosos (8) = Goy (- Gy (Goy () ).

We consider the function ensemble {f,:{0,1}l*/—{0,1}*I} (0 .1}-, where f,(z) et

G.(s). Pictorially, the function f, is defined by n-step walks down a full binary
tree of depth n having labels at the vertices. The root of the tree, hereafter referred
to as the level 0 vertex of the tree, is labeled by the string s. If an internal vertex is
labeled r then its left child is labeled G (r) whereas its right child is labeled G ().
The value of f,(x) is the string residing in the leaf reachable from the root by a
path corresponding to the string .

We claim that this function ensemble {f;}cf0,13+ is pseudorandom. The proof
uses the hybrid technique (cf. Section 8.3.3): The i** hybrid, H}

L, is a function

ensemble consisting of 22" functions {0,1}" — {0,1}", each determined by 2°
random n-bit strings, denoted 5 = (sg)ze(o,1}:- The value of such function hs at
x = aff, where || = 4, is defined to equal G (sg). (Pictorially, the function hs
is defined by placing the strings in § in the corresponding vertices of level 7, and
labeling vertices of lower levels using the very rule used in the definition of f;.)
The extreme hybrids correspond to our indistinguishability claim (i.e., H) = fu,
and H is a truly random function), and neighboring hybrids can be related to our
indistinguishability hypothesis (specifically, to the indistinguishability of G(U,,)
and Us,, under multiple samples). O

Variants. Useful variants (and generalizations) of the notion of pseudorandom
functions include Boolean pseudorandom functions that are defined over all strings
(i-e., fs : {0,1}* — {0,1}) and pseudorandom functions that are defined for other
domains and ranges (i.e., f, : {0,1}4IsD — {0,1}7UsD_ for arbitrary polynomially
bounded functions d,7 : N — N). Various transformations between these variants
are known (cf. [87, Sec. 3.6.4] and [88, Apdx. C.2)]).

4See details in [87, Sec. 3.6.2].
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Applications and a generic methodology. Pseudorandom functions are a
very useful cryptographic tool: One may first design a cryptographic scheme assum-
ing that the legitimate users have black-box access to a random function, and next
implement the random function using a pseudorandom function. The usefulness of
this tool stems from the fact that having (black-box) access to a random function
gives the legitimate parties a potential advantage over the adversary (which does
not have free access to this function).> The security of the resulting implementation
(which uses a pseudorandom function) is established in two steps: First one proves
the security of an idealized scheme that uses a truly random function, and next
one argues that the actual implementation (which uses a pseudorandom function)
is secure (as otherwise one obtains an efficient oracle machine that distinguishes a
pseudorandom function from a truly random one).

C.4 Zero-Knowledge

Zero-knowledge proofs provide a powerful tool for the design of cryptographic pro-
tocols as well as a good bench-mark for the study of various issues regarding such
protocols. Loosely speaking, zero-knowledge proofs are proofs that yield nothing
beyond the validity of the assertion. That is, a verifier obtaining such a proof
ounly gains conviction in the validity of the assertion (as if it was told by a trusted
party that the assertion holds). This is formulated by saying that anything that is
feasibly computable from a zero-knowledge proof is also feasibly computable from
the (valid) assertion itself. The latter formulation follows the simulation paradigm,
which is discussed next, while reproducing part of the discussion in §9.2.1.1 and
making additional comments regarding the use of this paradigm in cryptography.

C.4.1 The Simulation Paradigm

A key question regarding the modeling of security concerns is how to express the
intuitive requirement that an adversary “gains nothing substantial” by deviating
from the prescribed behavior of an honest user. Our approach is that the adversary
gains nothing if whatever it can obtain by unrestricted adversarial behavior can also
be obtained within essentially the same computational effort by a benign behavior.
The definition of the “benign behavior” captures what we want to achieve in terms
of security, and is specific to the security concern to be addressed. For example,
in the context of zero-knowledge the unrestricted adversarial behavior is captured
by an arbitrary probabilistic polynomial-time verifier strategy, whereas the benign
behavior is any computation that is based (only) on the assertion itself (while
assuming that the latter is valid). Other examples are discussed in Sections C.5.1
and C.7.1.

A notable property of the simulation paradigm, as well as of the entire defini-
tional approach surveyed here, is that this approach is overly liberal with respect to

5The aforementioned methodology is sound provided that the adversary does not get the
description of the pseudorandom function (i.e., the seed) in use, but has only (possibly limited)
oracle access to it. This is different from the so-called Random Oracle Methodology.
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its view of the abilities of the adversary as well as to what might constitute a gain
for the adversary. Thus, the approach may be considered overly cautious, because
it prohibits also “non-harmful” gains of some “far fetched” adversaries. We warn
against this impression. Firstly, there is nothing more dangerous in cryptography
than to consider “reasonable” adversaries (a notion which is almost a contradiction
in terms): typically, the adversaries will try exactly what the system designer has
discarded as “far fetched”. Secondly, it seems impossible to come up with defi-
nitions of security that distinguish “breaking the scheme in a harmful way” from
“breaking it in a non-harmful way”: what is harmful is application-dependent,
whereas a good definition of security ought to be application-independent (as oth-
erwise using the scheme in any new application will require a full re-evaluation of
its security). Furthermore, even with respect to a specific application, it is typically
very hard to classify the set of “harmful breakings”.

C.4.2 The Actual Definition

In §9.2.1.2 zero-knowledge was defined as a property of some prover strategies
(within the context of interactive proof systems, as defined in Section 9.1.1). More
generally, the term may apply to any interactive machine, regardless of its goal. A
strategy A is zero-knowledge on (inputs from) the set S if, for every feasible strategy
B*, there exists a feasible computation C* such that the following two probability
ensembles are computationally indistinguishable (according to Definition C.5):

1. {(4,B*)(z)}zes L the output of B* after interacting with A on common
input z € S; and

2. {C*(z)}res L the output of C* on input z € S.

Recall that the first ensemble represents an actual execution of an interactive pro-
tocol, whereas the second ensemble represents the computation of a stand-alone
procedure (called the “simulator”), which does not interact with anybody.

The foregoing definition does not account for auxiliary information that an
adversary B* may have prior to entering the interaction. Accounting for such
auxiliary information is essential for using zero-knowledge proofs as subprotocols
inside larger protocols. This is taken care of by a stricter notion called auxiliary-
input zero-knowledge, which was not presented in Section 9.2.

Definition C.9 (zero-knowledge, revisited): A strategy A is auxiliary-input zero-
knowledge on inputs from S if, for every probabilistic polynomial-time strategy B*
and every polynomial p, there exists a probabilistic polynomial-time algorithm C*

such that the following two probability ensembles are computationally indistinguish-
able:

1. {(A,B"(2))(%)}ees, ze{o,1320=D L the output of B* when having auziliary-
input z and interacting with A on common input x € S; and

2. {C*(%,2)}aes, 20,10 < the output of C* on inputs x € S and z €
{0,1}17(\76\),
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Almost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.
As hinted, auziliary-input zero-knowledge is preserved under sequential composi-
tion. A simulator for the multiple-session protocol can be constructed by itera-
tively invoking the single-session simulator that refers to the residual strategy of
the adversarial verifier in the given session (while feeding this simulator with the
transcript of previous sessions). Indeed, the residual single-session verifier gets the
transcript of the previous sessions as part of its auxiliary input (i.e., z in Defini-
tion C.9). For details, see [87, Sec. 4.3.4].

C.4.3 A construction and a generic application

A question avoided so far is whether zero-knowledge proofs exist at all. Clearly,
every set in P (or rather in BPP) has a “trivial” zero-knowledge proof (in which the
verifier determines membership by itself); however, what we seek is zero-knowledge
proofs for statements that the verifier cannot decide by itself.

Assuming the existence of “commitment schemes” (cf. §C.4.3.1), which in
turn exist if one-way functions exist [158, 113], there exist (auxiliary-input) zero-
knowledge proofs of membership in any NP-set. These zero-knowledge proofs, ab-
stractly depicted in Construction 9.10, have the following important property: the
prescribed prover strategy is efficient, provided it is given as auxiliary-input an
NP-witness to the assertion (to be proved).® Indeed, by using the standard Karp-
reductions to 3-Colorability, the protocol of Construction 9.10 can be used for
obtaining zero-knowledge proofs for any set in AP. Implementing the abstract
boxes (referred to in Construction 9.10) by commitment schemes, we get:

Theorem C.10 (On the applicability of zero-knowledge proofs): If (non-uniformly
hard) one-way functions exist then every set S € NP has an auziliary-input zero-
knowledge interactive proof. Furthermore, the prescribed prover strategy can be im-
plemented in probabilistic polynomial-time, provided it is given as auxiliary-input
an NP-witness for membership of the common input in S.

Theorem C.10 makes zero-knowledge a very powerful tool in the design of crypto-
graphic schemes and protocols (see §C.4.3.3). We comment that the intractability
assumption used in Theorem C.10 seems essential.

C.4.3.1 Commitment schemes

Loosely speaking, commitment schemes are two-stage (two-party) protocols allow-
ing for one party to commit itself (at the first stage) to a value while keeping the
value secret. In a (second) latter stage, the commitment is “opened” and it is
guaranteed that the “opening” can yield only a single value, which is determined

6The auxiliary-input given to the prescribed prover (in order to allow for an efficient imple-
mentation of its strategy) is not to be confused with the auxiliary-input that is given to malicious
verifiers (in the definition of auxiliary-input zero-knowledge). The former is typically an NP-
witness for the common input, which is available to the user that invokes the prover strategy (cf.
the generic application discussed in §C.4.3.3). In contrast, the auxiliary-input that is given to
malicious verifiers models arbitrary partial information that may be available to the adversary.
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during the committing phase. Thus, the (first stage of the) commitment scheme is
both binding and hiding.

A simple (uni-directional communication) commitment scheme can be con-
structed based on any one-way 1-1 function f (with a corresponding hard-core
b). To commit to a bit o, the sender uniformly selects s € {0,1}", and sends the
pair (f(s),b(s) ® o). Note that this is both binding and hiding. An alternative
construction, which can be based on any one-way function, uses a pseudorandom
generator G that stretches its seed by a factor of three (cf. Theorem 8.11). A
commitment is established, via two-way communication, as follows (cf. [158]): The
receiver selects uniformly r € {0,1}3" and sends it to the sender, which selects
uniformly s € {0,1}" and sends r @ G(s) if it wishes to commit to the value one
and G(s) if it wishes to commit to zero. To see that this is binding, observe that
there are at most 22" “bad” values r that satisfy G(so) = ® G(s1) for some pair
(so,s1), and with overwhelmingly high probability the receiver will not pick one of
these bad values. The hiding property follows by the pseudorandomness of G.

C.4.3.2 Efficiency considerations

The number of rounds in a protocol is commonly considered the most important
efficiency criterion (or complexity measure), and typically one desires to have it be
a constant. However, in order to obtain negligible soundness error, the protocol
of Construction 9.10 has to be invoked for a non-constant number of times (and
the analysis of the resulting protocol relies on the preservation of zero-knowledge
under sequential composition). At first glance, it seems that one can derive a
constant-round zero-knowledge proof system (of negligible soundness error) by per-
forming these invocations in parallel (rather than sequentially). Unfortunately, it
is not clear that the resulting interactive proof is zero-knowledge. Still, under
standard intractability assumptions (e.g., the intractability of factoring), constant-
round zero-knowledge proofs (of negligible soundness error) do exist for every set

in NP.

C.4.3.3 A generic application

As mentioned, Theorem C.10 makes zero-knowledge a very powerful tool in the
design of cryptographic schemes and protocols. This wide applicability is due to
two important aspects regarding Theorem C.10: Firstly, Theorem C.10 provides a
zero-knowledge proof for every NP-set, and secondly the prescribed prover can be
implemented in probabilistic polynomial-time when given an adequate NP-witness.
We now turn to a typical application of zero-knowledge proofs.

In a typical cryptographic setting, a user U has a secret and is supposed to
take some action based on its secret. The question is how can other users verify
that U indeed took the correct action (as determined by U’s secret and publicly
known information). Indeed, if U discloses its secret then anybody can verify that
U took the correct action. However, U does not want to reveal its secret. Using
zero-knowledge proofs we can satisfy both conflicting requirements (i.e., having
other users verify that U took the correct action without violating U’s interest
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in not revealing its secret). That is, U can prove in zero-knowledge that it took
the correct action. Note that U’s claim to having taken the correct action is an
NP-assertion (since U’s legal action is determined as a polynomial-time function
of its secret and the public information), and that U has an NP-witness to its
validity (i.e., the secret is an NP-witness to the claim that the action fits the public
information). Thus, by Theorem C.10, it is possible for U to efficiently prove the
correctness of its action without yielding anything about its secret. Consequently,
it is fair to ask U to prove (in zero-knowledge) that it behaves properly, and so
to force U to behave properly. Indeed, “forcing proper behavior” is the canonical
application of zero-knowledge proofs (see §C.7.3.2).

This paradigm (i.e., “forcing proper behavior” via zero-knowledge proofs), which
in turn is based on Theorem C.10, has been utilized in numerous different settings.
Indeed, this paradigm is the basis for the wide applicability of zero-knowledge
protocols in Cryptography.

C.4.4 Variants and Issues

In this section we consider numerous variants on the notion of zero-knowledge and
the underlying model of interactive proofs. These include black-box simulation and
other variants of zero-knowledge (cf. Section C.4.4.1), as well as notions such as
proofs of knowledge, non-interactive zero-knowledge, and witness indistinguishable
proofs (cf. Section C.4.4.2).

Before starting, we call the reader’s attention to the notion of computational
soundness and to the related notion of argument systems, discussed in §9.1.4.2.
We mention that argument systems may be more efficient than interactive proofs
as well as provide stronger zero-knowledge guarantees. Specifically, perfect zero-
knowledge arguments for NP can be constructed based on some reasonable as-
sumptions [46], where perfect zero-knowledge means that the simulator’s output
is distributed identically to the verifier’s view in the real interaction (see Defini-
tion 9.7 or a discussion in §C.4.4.1). Note that stronger security guarantee for the
prover (as provided by perfect zero-knowledge) comes at the cost of weaker security
guarantee for the verifier (as provided by computational soundness). The answer to
the question of whether or not this trade-off is worthwhile seems to be application
dependent, and one should also take into account the availability and complexity
of the corresponding protocols.

C.4.4.1 Definitional variations

We consider several definitional issues regarding the notion of zero-knowledge (as
defined in Definition C.9).

Universal and black-box simulation. A strengthening of Definition C.9 is
obtained by requiring the existence of a universal simulator, denoted C, that can
simulate (the interactive gain of) any verifier strategy B* when given the verifier’s
program an auxiliary-input; that is, in terms of Definition C.9, one should replace
C*(x,z) by C(z, z,(B*)), where (B*) denotes the description of the program of B*
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(which may depend on x and on z). That is, we effectively restrict the simulation
by requiring that it be a uniform (feasible) function of the verifier’s program (rather
than arbitrarily depend on it). This restriction is very natural, because it seems
hard to envision an alternative way of establishing the zero-knowledge property of
a given protocol. Taking another step, one may argue that since it seems infea-
sible to reverse-engineer programs, the simulator may as well just use the verifier
strategy as an oracle (or as a “black-box”). This reasoning gave rise to the notion
of black-box simulation, which was introduced and advocated in [94] and further
studied in numerous works. The belief was that inherent limitations regarding
black-box simulation represent inherent limitations of zero-knowledge itself. For
example, it was believed that the fact that the parallel version of the interactive
proof of Construction 9.10 cannot be simulated in a black-box manner (unless NP
is contained in BPP) implies that this version is not zero-knowledge (as per Defini-
tion C.9 itself). However, the (underlying) belief that any zero-knowledge protocol
can be simulated in a black-box manner was refuted recently by Barak [22].

Honest verifier versus general cheating verifier. Definition C.9 refers to
all feasible verifier strategies, which is most natural in the cryptographic setting
because zero-knowledge is supposed to capture the robustness of the prover un-
der any feasible (i.e., adversarial) attempt to gain something by interacting with
it. A weaker and still interesting notion of zero-knowledge refers to what can be
gained by an “honest verifier” (or rather a semi-honest verifier)” that interacts
with the prover as directed, with the exception that it may maintain (and out-
put) a record of the entire interaction (i.e., even if directed to erase all records of
the interaction). Although such a weaker notion is not satisfactory for standard
cryptographic applications, it yields a fascinating notion from a conceptual as well
as a complexity-theoretic point of view. Furthermore, every proof system that is
zero-knowledge with respect to the honest-verifier can be transformed into a stan-
dard zero-knowledge proof (without using intractability assumptions and in case
of “public-coin” proofs this is done without significantly increasing the prover’s
computational effort; see [214]).

Statistical versus Computational Zero-Knowledge. Recall that Definition C.9
postulates that for every probability ensemble of one type (i.e., representing the
verifier’s output after interaction with the prover) there exists a “similar” ensemble
of a second type (i.e., representing the simulator’s output). One key parameter is
the interpretation of “similarity”. Three interpretations, yielding different notions
of zero-knowledge, have been commonly considered in the literature:

“The term “honest verifier” is more appealing when considering an alternative (equivalent)
formulation of Definition C.9. In the alternative definition (see [87, Sec. 4.3.1.3]), the simulator
is “only” required to generate the verifier’s view of the real interaction, where the verifier’s view
includes its (common and auxiliary) inputs, the outcome of its coin tosses, and all messages it
has received.
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1. Perfect Zero-Knowledge requires that the two probability ensembles be iden-
tically distributed.®

2. Statistical Zero-Knowledge requires that these probability ensembles be sta-
tistically close (i.e., the variation distance between them is negligible).

3. Computational (or rather general) Zero-Knowledge requires that these proba-
bility ensembles be computationally indistinguishable.

Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notion
considered in Definition C.9. We note that the class of problems having statistical
zero-knowledge proofs contains several problems that are considered intractable.
The interested reader is referred to [213].

Strict versus expected probabilistic polynomial-time. The notion of prob-
abilistic polynomial-time (which is mentioned both with respect to the verifier and
the simulator), has been given two interpretations:

1. Strict probabilistic polynomial-time. That is, there exist a (polynomial in the
length of the input) bound on the number of steps in each possible run of the
machine, regardless of the outcome of its coin tosses.

2. Expected probabilistic polynomial-time. The standard approach is to look at
the running-time as a random variable and bound its expectation (by a poly-
nomial in the length of the input). However, as observed by Levin (see
§10.2.1.1), this definitional approach is quite problematic and an alternative
treatment of the aforementioned random variable is preferable.

Consequently, the notion of expected polynomial-time raises a variety of conceptual
and technical problems. For that reason, whenever possible, one should prefer
the more robust (and restricted) notion of strict (probabilistic) polynomial-time.
Thus, with the exception of constant-round zero-knowledge protocols, whenever we
talked of a probabilistic polynomial-time verifier (resp., simulator) we mean one
in the strict sense. In contrast, with a couple of exceptions (e.g., [22]), all results
regarding constant-round zero-knowledge protocols refer to a strict polynomial-
time verifier and an expected polynomial-time simulator, which is indeed a small
cheat.

C.4.4.2 Related notions: POK, NIZK, and WI

We briefly discuss the notions of proofs of knowledge (POK), non-interactive zero-
knowledge (NIZK), and witness indistinguishable proofs (WI).

8The actual definition of Perfect Zero-Knowledge allows the simulator to fail (while outputting
a special symbol) with negligible probability, and the output distribution of the simulator is
conditioned on its not failing.
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Proofs of Knowledge. Loosely speaking, proofs of knowledge (cf. [105]) are
interactive proofs in which the prover asserts “knowledge” of some object (e.g.,
a 3-coloring of a graph), and not merely its existence (e.g., the existence of a 3-
coloring of the graph, which in turn is equivalent to the assertion that the graph
is 3-colorable). See further discussion in Section 9.2.3. We mention that “proofs of
knowledge”, and in particular zero-knowledge “proofs of knowledge”, have many
applications to the design of cryptographic schemes and cryptographic protocols.
One famous application of zero-knowledge proofs of knowledge is to the construc-
tion of identification schemes (e.g., the Fiat-Shamir scheme).

Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge
proof systems consists of three entities: a prover, a verifier and a uniformly selected
reference string (which can be thought of as being selected by a trusted third party).
Both the verifier and prover can read the reference string (as well as the common in-
put), and each can toss additional coins. The interaction consists of a single message
sent from the prover to the verifier, who is then left with the final decision (whether
or not to accept the common input). The (basic) zero-knowledge requirement refers
to a simulator that outputs pairs that should be computationally indistinguishable
from the distribution (of pairs consisting of a uniformly selected reference string and
a random prover message) seen in the real model.” Non-interactive zero-knowledge
proof systems have numerous applications (e.g., to the construction of public-key
encryption and signature schemes, where the reference string may be incorporated
in the public-key). Several different definitions of non-interactive zero-knowledge
proofs were considered in the literature (see [87, Sec. 4.10] and [88, Sec. 5.4.4.4]).
Constructing non-interactive zero-knowledge proofs seems more difficult than con-
structing interactive zero-knowledge proofs. Still, based on standard intractability
assumptions (e.g., intractability of factoring), it is known how to construct a non-
interactive zero-knowledge proof for any NP-set.

Witness Indistinguishability. The notion of witness indistinguishability was
suggested in [72] as a meaningful relaxation of zero-knowledge. Loosely speaking,
for any NP-relation R, a proof (or argument) system for the corresponding NP-set
is called witness indistinguishable if no feasible verifier may distinguish the case in
which the prover uses one NP-witness to = (i.e., wy such that (z,w;) € R) from
the case in which the prover is using a different NP-witness to the same input z
(i.e., wo such that (z,w2) € R). Clearly, any zero-knowledge protocol is witness
indistinguishable, but the converse does not necessarily hold. Furthermore, it seems
that witness indistinguishable protocols are easier to construct than zero-knowledge
ones. Another advantage of witness indistinguishable protocols is that they are
closed under arbitrary concurrent composition, whereas (in general) zero-knowledge
protocols are not closed even under parallel composition. Witness indistinguishable
protocols turned out to be an important tool in the construction of more complex

9Note that the verifier does not effect the distribution seen in the real model, and so the basic
definition of zero-knowledge does not refer to it. The verifier (or rather a process of adaptively
selecting assertions to be proved) is referred to in the adaptive variants of the definition.
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protocols. We refer, in particular, to the technique of [71] for constructing zero-
knowledge proofs (and arguments) based on witness indistinguishable proofs (resp.,
arguments).

C.5 Encryption Schemes

The problem of providing secret communication over insecure media is the tra-
ditional and most basic problem of cryptography. The setting of this problem
consists of two parties communicating through a channel that is possibly tapped
by an adversary. The parties wish to exchange information with each other, but
keep the “wire-tapper” as ignorant as possible regarding the contents of this infor-
mation. The canonical solution to this problem is obtained by the use of encryption
schemes. Loosely speaking, an encryption scheme is a protocol allowing these par-
ties to communicate secretly with each other. Typically, the encryption scheme
consists of a pair of algorithms. One algorithm, called encryption, is applied by the
sender (i.e., the party sending a message), while the other algorithm, called decryp-
tion, is applied by the receiver. Hence, in order to send a message, the sender first
applies the encryption algorithm to the message, and sends the result, called the
ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., the
receiver) applies the decryption algorithm to it, and retrieves the original message
(called the plaintext).

In order for the foregoing scheme to provide secret communication, the receiver
must know something that is not known to the wire-tapper. (Otherwise, the wire-
tapper can decrypt the ciphertext exactly as done by the receiver.) This extra
knowledge may take the form of the decryption algorithm itself, or some parame-
ters and/or auxiliary inputs used by the decryption algorithm. We call this extra
knowledge the decryption-key. Note that, without loss of generality, we may assume
that the decryption algorithm is known to the wire-tapper, and that the decryp-
tion algorithm operates on two inputs: a ciphertext and a decryption-key. (This
description implicitly presupposes the existence of an efficient algorithm for gener-
ating (random) keys.) We stress that the existence of a decryption-key, not known
to the wire-tapper, is merely a necessary condition for secret communication.

Evaluating the “security” of an encryption scheme is a very tricky business.
A preliminary task is to understand what is “security” (i.e., to properly define
what is meant by this intuitive term). Two approaches to defining security are
known. The first (“classical”) approach, introduced by Shannon [191], is informa-
tion theoretic. It is concerned with the “information” about the plaintext that is
“present” in the ciphertext. Loosely speaking, if the ciphertext contains informa-
tion about the plaintext then the encryption scheme is considered insecure. It has
been shown that such high (i.e., “perfect”) level of security can be achieved only
if the key in use is at least as long as the total amount of information sent via the
encryption scheme [191]. This fact (i.e., that the key has to be longer than the
information exchanged using it) is indeed a drastic limitation on the applicability
of such (perfectly-secure) encryption schemes.

The second (“modern”) approach, followed in the current text, is based on



C.5. ENCRYPTION SCHEMES 473

computational complexity. This approach is based on the thesis that it does not
matter whether the ciphertext contains information about the plaintext, but rather
whether this information can be efficiently extracted. In other words, instead of
asking whether it is possible for the wire-tapper to extract specific information, we
ask whether it is feasible for the wire-tapper to extract this information. It turns
out that the new (i.e., “computational complexity”) approach can offer security
even when the key is much shorter than the total length of the messages sent via
the encryption scheme.

The computational complexity approach enables the introduction of concepts
and primitives that cannot exist under the information theoretic approach. A typ-
ical example is the concept of public-key encryption schemes, introduced by Diffie
and Hellman [62] (with the most popular candidate suggested by Rivest, Shamir,
and Adleman [181]). Recall that in the foregoing discussion we concentrated on
the decryption algorithm and its key. It can be shown that the encryption algo-
rithm must also get, in addition to the message, an auxiliary input that depends on
the decryption-key. This auxiliary input is called the encryption-key. Traditional
encryption schemes, and in particular all the encryption schemes used in the millen-
nia until the 1980’s, operate with an encryption-key that equals the decryption-key.
Hence, the wire-tapper in these schemes must be ignorant of the encryption-key,
and consequently the key distribution problem arises; that is, how can two par-
ties wishing to communicate over an insecure channel agree on a secret encryp-
tion/decryption key. (The traditional solution is to exchange the key through an
alternative channel that is secure, though much more expensive to use.) The com-
putational complexity approach allows the introduction of encryption schemes in
which the encryption-key may be given to the wire-tapper without compromising
the security of the scheme. Clearly, the decryption-key in such schemes is different
from the encryption-key, and furthermore it is infeasible to obtain the decryption-
key from the encryption-key. Such encryption schemes, called public-key schemes,
have the advantage of trivially resolving the key distribution problem (because the
encryption-key can be publicized). That is, once some Party X generates a pair of
keys and publicizes the encryption-key, any party can send encrypted messages to
Party X such that Party X can retrieve the actual information (i.e., the plaintext),
whereas nobody else can learn anything about the plaintext.

In contrast to public-key schemes, traditional encryption schemes in which the
encryption-key equals the description-key are called private-key schemes, because
in these schemes the encryption-key must be kept secret (rather than be public
as in public-key encryption schemes). We note that a full specification of either
schemes requires the specification of the way in which keys are generated; that is, a
(randomized) key-generation algorithm that, given a security parameter, produces
a (random) pair of corresponding encryption/decryption keys (which are identical
in case of private-key schemes).

Thus, both private-key and public-key encryption schemes consist of three ef-
ficient algorithms: a key generation algorithm denoted G, an encryption algorithm
denoted E, and a decryption algorithm denoted D. For every pair of encryption
and decryption keys (e, d) generated by G, and for every plaintext x, it holds that
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Dy(E.(x)) = z, where E.(z) et E(e,z) and Dg4(y) et D(d,y). The difference be-
tween the two types of encryption schemes is reflected in the definition of security:
the security of a public-key encryption scheme should hold also when the adversary
is given the encryption-key, whereas this is not required for a private-key encryp-
tion scheme. In the following definitional treatment we focus on the public-key case
(and the private-key case can be obtained by omitting the encryption-key from the
sequence of inputs given to the adversary).

C.5.1 Definitions
A good disguise should not reveal the person’s height.
Shafi Goldwasser and Silvio Micali, 1982

For simplicity, we first consider the encryption of a single message (which, for fur-
ther simplicity, is assumed to be of length that equals the security parameter, n).19
As implied by the foregoing discussion, a public-key encryption scheme is said to
be secure if it is infeasible to gain any information about the plaintext by looking
at the ciphertext (and the encryption-key). That is, whatever information about
the plaintext one may compute from the ciphertext and some a-priori informa-
tion, can be essentially computed as efficiently from the a-priori information alone.
This fundamental definition of security, called semantic security, was introduced
by Goldwasser and Micali [104].

Definition C.11 (semantic security): A public-key encryption scheme (G, E, D)
is semantically secure if for every probabilistic polynomial-time algorithm, A, there
exists a probabilistic polynomial-time algorithm B such that for every two functions
f.h:{0,1}* —{0,1}* and all probability ensembles {X,,},cn that satisfy |h(x)| =
poly(|z]) and X,, € {0,1}", it holds that

PrlA(e, Ee(2), h(z)) = f(2)] < Pr[B(1", h(z))=f(2)] + n(n)

where the plaintext © is distributed according to X,,, the encryption-key e is dis-
tributed according to G(1™), and p is a negligible function.

That is, it is feasible to predict f(z) from h(z) as successfully as it is to predict
f(x) from h(x) and (e, E.(z)), which means that nothing is gained by obtaining
(e, Ec(z)). Note that no computational restrictions are made regarding the func-
tions h and f. We stress that the foregoing definition (as well as the next one)
refers to public-key encryption schemes, and in the case of private-key schemes
algorithm A is not given the encryption-key e.

The following technical interpretation of security states that it is infeasible to
distinguish the encryptions of any two plaintexts (of the same length). As we shall
see, this definition (also originating in [104]) is equivalent to Definition C.11 (and
meeting it requires a probabilistic encryption algorithm).

101n the case of public-key schemes no generality is lost by these simplifying assumptions, but in
the case of private-key schemes one should consider the encryption of polynomially-many messages
(as we do at the end of this section).
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Definition C.12 (indistinguishability of encryptions): A public-key encryption
scheme (G, E, D) has indistinguishable encryptions if for every probabilistic polynomial-
time algorithm, A, and all sequences of triples, (n,Yn, Zn)neN, Where |T,| = |yn| =
n and |z,| = poly(n),

|Pr[A(e, Ee(zn), 2n) =1] — Pr[A(e, Ee(yn), 2n) =1]| = p(n)
Again, e is distributed according to G(1™), and u is a negligible function.

In particular, z,, may equal (z,,y,). Thus, it is infeasible to distinguish the en-
cryptions of any two fixed messages (such as the all-zero message and the all-ones
message). Thus, the following motto is adequate too.

A good disguise should not allow a mother to distinguish her own children.

Shafi Goldwasser and Silvio Micali, 1982

Definition C.11 is more appealing in most settings where encryption is considered
the end goal. Definition C.12 is used to establish the security of candidate en-
cryption schemes as well as to analyze their application as modules inside larger
cryptographic protocols. Thus, the equivalence of these definitions is of major
importance.

Equivalence of Definitions C.11 and C.12 — proof ideas. Intuitively, in-
distinguishability of encryptions (i.e., of the encryptions of z,, and y,,) is a special
case of semantic security; specifically, it corresponds to the case that X,, is uni-
form over {z,,yn}, the function f indicates one of the plaintexts and h does not
distinguish them (i.e., f(w) =1 iff w = x,, and h(z,) = h(y,) = 2., where z, is
as in Definition C.12). The other direction is proved by considering the algorithm
B that, on input (1™,v) where v = h(z), generates (e,d) «— G(1™) and outputs
A(e, E.(1™),v), where A is as in Definition C.11. Indistinguishability of encryptions
is used to prove that B performs as well as A (i.e., for every h, f and {X,},cn,
it holds that Pr[B(1™, h(X,))=f(X,)] = Pr[A(e, E.(1™), h(X,))= f(X.)] approx-
imately equals Pr[A(e, E.(X,), h(X,)) = f(X,)]).

Probabilistic Encryption: A secure public-key encryption scheme must em-
ploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given the
encryption-key as (additional) input, it is easy to distinguish the encryption of
the all-zero message from the encryption of the all-ones message.!’ This explains
the association of the robust security definitions and the method of probabilistic
encryption, an association that goes back to the title of the pioneering work of
Goldwasser and Micali [104].

1 The same holds for (stateless) private-key encryption schemes, when considering the security
of encrypting several messages (rather than a single message as done above). For example, if one
uses a deterministic encryption algorithm then the adversary can distinguish two encryptions of
the same message from the encryptions of a pair of different messages.
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Further discussion: We stress that (the equivalent) Definitions C.11 and C.12
go way beyond saying that it is infeasible to recover the plaintext from the ci-
phertext. The latter statement is indeed a minimal requirement from a secure
encryption scheme, but is far from being a sufficient requirement. Typically, en-
cryption schemes are used in applications where even obtaining partial information
on the plaintext may endanger the security of the application. When designing an
application-independent encryption scheme, we do not know which partial informa-
tion endangers the application and which does not. Furthermore, even if one wants
to design an encryption scheme tailored to a specific application, it is rare (to say
the least) that one has a precise characterization of all possible partial information
that endanger this application. Thus, we need to require that it is infeasible to
obtain any information about the plaintext from the ciphertext. Furthermore, in
most applications the plaintext may not be uniformly distributed and some a-priori
information regarding it may be available to the adversary. We require that the
secrecy of all partial information is preserved also in such a case. That is, even
in presence of a-priori information on the plaintext, it is infeasible to obtain any
(new) information about the plaintext from the ciphertext (beyond what is feasible
to obtain from the a-priori information on the plaintext). The definition of seman-
tic security postulates all of this. The equivalent definition of indistinguishability
of encryptions is useful in demonstrating the security of candidate constructions as
well as for arguing about their effect as part of larger protocols.

Security of multiple messages: Definitions C.11 and C.12 refer to the se-
curity of an encryption scheme that is used to encrypt a single plaintext (per a
generated key). Since the plaintext may be longer than the key'? these defini-
tions are already non-trivial, and an encryption scheme satisfying them (even in
the private-key model) implies the existence of one-way functions. Still, in many
cases, it is desirable to encrypt many plaintexts using the same encryption-key.
Loosely speaking, an encryption scheme is secure in the multiple-messages setting
if conditions as in Definition C.11 (resp., Definition C.12) hold when polynomially-
many plaintexts are encrypted using the same encryption-key (cf. [88, Sec. 5.2.4]).
In the public-key model, security in the single-message setting implies security in
the multiple-messages setting. We stress that this is not necessarily true for the
private-key model.

C.5.2 Constructions

It is common practice to use “pseudorandom generators” as a basis for private-
key encryption schemes. We stress that this is a very dangerous practice when
the “pseudorandom generator” is easy to predict (such as the “linear congruential
generator”). However, this common practice becomes sound provided one uses

12Recall that for sake of simplicity we have considered only messages of length n, but the
general definitions refer to messages of arbitrary (polynomial in n) length. We comment that, in
the general form of Definition C.11, one should provide the length of the message as an auxiliary
input to both algorithms (A and B).
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pseudorandom generators (as defined in Section C.3.2). An alternative and more
flexible construction follows.

Private-Key Encryption Scheme based on Pseudorandom Functions:
We present a simple construction that uses pseudorandom functions as defined in
Section C.3.3. The key generation algorithm consists of selecting a seed, denoted
s, for a (pseudorandom) function, denoted fs. To encrypt a message z € {0,1}"
(using key s), the encryption algorithm uniformly selects a string r € {0,1}"™ and
produces the ciphertext (r,z @ fs(r)), where & denotes the exclusive-or of bit
strings. To decrypt the ciphertext (r,y) (using key s), the decryption algorithm
just computes y & fs(r). The proof of security of this encryption scheme consists
of two steps (suggested as a general methodology in Section C.3.3):

1. Proving that an idealized version of the scheme, in which one uses a uniformly
selected function F':{0,1}" —{0,1}", rather than the pseudorandom function
fs, is secure.

2. Concluding that the real scheme is secure (because, otherwise one could dis-
tinguish a pseudorandom function from a truly random one).

Note that we could have gotten rid of the randomization (in the encryption process)
if we had allowed the encryption algorithm to be history dependent (e.g., use a
counter in the role of 7). This can be done if all parties that use the same key
(for encryption) coordinate their encryption actions (by maintaining a joint state
(e.g., counter)). Indeed, when using a private-key encryption scheme, a common
situation is that the same key is only used for communication between two specific
parties, which update a joint counter during their communication. Furthermore,
if the encryption scheme is used for FIFO communication between the parties and
both parties can reliably maintain the counter value, then there is no need (for
the sender) to send the counter value. (The resulting scheme is related to “stream
ciphers” which are commonly used in practice.)

We comment that the use of a counter (or any other state) in the encryption
process is not reasonable in the case of public-key encryption schemes, because it
is incompatible with the canonical usage of such schemes (i.e., allowing all parties
to send encrypted messages to the “owner of the encryption-key” without engaging
in any type of further coordination or communication). Furthermore (unlike in the
case of private-key schemes), probabilistic encryption is essential for a secure public-
key encryption scheme even in the case of encrypting a single message. Following
Goldwasser and Micali [104], we now demonstrate the use of probabilistic encryption
in the construction of public-key encryption schemes.

Public-Key Encryption Scheme based on Trapdoor Permutations: We
present two constructions that employ a collection of trapdoor permutations, as
defined in Definition C.3. Let {f; : D; — D,}; be such a collection, and let b
be a corresponding hard-core predicate. The key generation algorithm consists of
selecting a permutation f; along with a corresponding trapdoor ¢, and outputting
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(i,t) as the key-pair. To encrypt a (single) bit o (using the encryption-key i),
the encryption algorithm uniformly selects r € D;, and produces the ciphertext
(fi(r),o ®b(r)). To decrypt the ciphertext (y,7) (using the decryption-key t), the
decryption algorithm computes 7 b(f; " (y)) (using the trapdoor ¢ of f;). Clearly,
(0 @ b(r)) @ b(f7*(fi(r))) = o. Indistinguishability of encryptions is implied by
the hypothesis that b is a hard-core of f;. We comment that this scheme is quite
wasteful in bandwidth; nevertheless, the paradigm underlying its construction (i.e.,
applying the trapdoor permutation to a randomized version of the plaintext rather
than to the actual plaintext) is valuable in practice.

A more efficient construction of a public-key encryption scheme, which uses
the same key-generation algorithm, follows. To encrypt an ¢-bit long string x
(using the encryption-key %), the encryption algorithm uniformly selects r € D,
computes y «— b(r) - b(fi(r)) ---b(f/~'(r)) and produces the ciphertext (f{(r),z @
y). To decrypt the ciphertext (u,v) (using the decryption-key t), the decryption
algorithm first recovers r = f, “(u) (using the trapdoor ¢ of f;), and then obtains
v@b(r)-b(fi(r))---b(ff~(r)). Note the similarity to the Blum-Micali Construction
(depicted in Eq. (8.8)), and the fact that the proof of the pseudorandomness of
Eq. (8.8) can be extended to establish the computational indistinguishability of
(b(r) - (I (r)), ££(r)) and (r', f£(r)), for random and independent r € D; and
r" € {0, 1}*. Indistinguishability of encryptions follows, and thus the second scheme
is secure. We mention that, assuming the intractability of factoring integers, this
scheme has a concrete implementation with efficiency comparable to that of RSA.

C.5.3 Beyond Eavesdropping Security

Our treatment so far has referred only to a “passive” attack in which the adversary
merely eavesdrops the line over which ciphertexts are sent. Stronger types of at-
tacks (i.e., “active” ones), culminating in the so-called Chosen Ciphertext Attack,
may be possible in various applications. Specifically, in some settings it is feasible
for the adversary to make the sender encrypt a message of the adversary’s choice,
and in some settings the adversary may even make the receiver decrypt a ciphertext
of the adversary’s choice. This gives rise to chosen plaintext attacks and to chosen
ciphertext attacks, respectively, which are not covered by the security definitions
considered in Sections C.5.1 and C.5.2. Here we briefly discuss such “active” at-
tacks, focusing on chosen ciphertext attacks (of the strongest type known as “a
posteriori” or “CCA2”).

Loosely speaking, in a chosen ciphertext attack, the adversary may obtain the
decryptions of ciphertexts of its choice, and is deemed successful if it learns some-
thing regarding the plaintext that corresponds to some different ciphertext (see [88,
Sec. 5.4.4]). That is, the adversary is given oracle access to the decryption function
corresponding to the decryption-key in use (and, in the case of private-key schemes,
it is also given oracle access to the corresponding encryption function). The adver-
sary is allowed to query the decryption oracle on any ciphertext except for the “test
ciphertext” (i.e., the very ciphertext for which it tries to learn something about
the corresponding plaintext). It may also make queries that do not correspond to
legitimate ciphertexts, and the answer will be accordingly (i.e., a special ‘failure’



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 479

symbol). Furthermore, the adversary may effect the selection of the test cipher-
text (by specifying a distribution from which the corresponding plaintext is to be
drawn).

Private-key and public-key encryption schemes secure against chosen ciphertext
attacks can be constructed under (almost) the same assumptions that suffice for
the construction of the corresponding passive schemes. Specifically:

Theorem C.13 Assuming the existence of one-way functions, there exist private-
key encryption schemes that are secure against chosen ciphertext attack.

Theorem C.14 Assuming the emistence of enhanced'® trapdoor permutations,
there exist public-key encryption schemes that are secure against chosen cipher-
text attack.

Both theorems are proved by constructing encryption schemes in which the adver-
sary’s gain from a chosen ciphertext attack is eliminated by making it infeasible
(for the adversary) to obtain any useful knowledge via such an attack. In the case
of private-key schemes (i.e., Theorem C.13), this is achieved by making it infeasible
(for the adversary) to produce legitimate ciphertexts (other than those explicitly
given to it, in response to its request to encrypt plaintexts of its choice). This,
in turn, is achieved by augmenting the ciphertext with an “authentication tag”
that is hard to generate without knowledge of the encryption-key; that is, we use a
message-authentication scheme (as defined in Section C.6). In the case of public-
key schemes (i.e., Theorem C.14), the adversary can certainly generate ciphertexts
by itself, and the aim is to make it infeasible (for the adversary) to produce legit-
imate ciphertexts without “knowing” the corresponding plaintext. This, in turn,
will be achieved by augmenting the plaintext with a non-interactive zero-knowledge
“proof of knowledge” of the corresponding plaintext.

Security against chosen ciphertext attack is related to the notion of non-malleability
of the encryption scheme. Loosely speaking, in a non-malleable encryption scheme
it is infeasible for an adversary, given a ciphertext, to produce a valid ciphertext
for a related plaintext (e.g., given a ciphertext of a plaintext 1z, for an unknown z,
it is infeasible to produce a ciphertext to the plaintext Ox). For further discussion
see [88, Sec. 5.4.5].

C.6 Signatures and Message Authentication

Both signature schemes and message authentication schemes are methods for “vali-
dating” data; that is, verifying that the data was approved by a certain party (or set
of parties). The difference between signature schemes and message authentication
schemes is that signatures should be “universally verifiable”, whereas authentica-
tion tags are only required to be verifiable by parties that are also able to generate
them.

13Loosely speaking, the enhancement refers to the hardness condition of Definition C.2, and
requires that it be hard to recover f;l(y) also when given the coins used to sample y (rather
than merely y itself). See [88, Apdx. C.1].
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Signature Schemes: The need to discuss “digital signatures” (cf. [62, 170]) has
arisen with the introduction of computer communication to the business environ-
ment (in which parties need to commit themselves to proposals and /or declarations
that they make). Discussions of “unforgeable signatures” did take place also prior
to the computer age, but the objects of discussion were handwritten signatures
(and not digital ones), and the discussion was not perceived as related to “cryp-
tography”. Loosely speaking, a scheme for unforgeable signatures should satisfy the
following:

e cach user can efficiently produce its own signature on documents of its choice;

e every user can efficiently verify whether a given string is a signature of another
(specific) user on a specific document; but

e it is infeasible to produce signatures of other users to documents they did not
sign.

We note that the formulation of unforgeable digital signatures provides also a clear
statement of the essential ingredients of handwritten signatures. The ingredients
are each person’s ability to sign for itself, a universally agreed verification proce-
dure, and the belief (or assertion) that it is infeasible (or at least hard) to forge
signatures (i.e., produce some other person’s signatures to documents that were
not signed by it such that these “unauthentic” signatures are accepted by the
verification procedure).

Message authentication schemes: Message authentication is a task related
to the setting considered for encryption schemes; that is, communication over an
insecure channel. This time, we consider an active adversary that is monitoring
the channel and may alter the messages sent over it. The parties communicating
through this insecure channel wish to authenticate the messages they send such
that their counterpart can tell an original message (sent by the sender) from a
modified one (i.e., modified by the adversary). Loosely speaking, a scheme for
message authentication should satisfy the following;:

e cach of the communicating parties can efficiently produce an authentication
tag to any message of its choice;

e cach of the communicating parties can efficiently verify whether a given string
is an authentication tag of a given message; but

e it is infeasible for an external adversary (i.e., a party other than the commu-
nicating parties) to produce authentication tags to messages not sent by the
communicating parties.

Note that, in contrast to the specification of signature schemes, we do not require
universal verification: only the designated receiver is required to be able to verify
the authentication tags. Furthermore, we do not require that the receiver can not
produce authentication tags by itself (i.e., we only require that external parties can
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not do so). Thus, message authentication schemes cannot convince a third party
that the sender has indeed sent the information (rather than the receiver having
generated it by itself). In contrast, signatures can be used to convince third parties:
in fact, a signature to a document is typically sent to a second party so that in
the future this party may (by merely presenting the signed document) convince
third parties that the document was indeed generated (or sent or approved) by the
signer.

C.6.1 Definitions

Formally speaking, both signature schemes and message authentication schemes
consist of three efficient algorithms: key generation, signing and verification. As in
the case of encryption schemes, the key-generation algorithm, denoted G, is used
to generate a pair of corresponding keys, one is used for signing (via algorithm S)
and the other is used for verification (via algorithm V'). That is, Ss(«) denotes a
signature produced by algorithm S on input a signing-key s and a document «,
whereas V,(«, ) denotes the verdict of the verification algorithm V regarding the
document «a and the alleged signature 3 relative to the verification-key v. Needless
to say, for any pair of keys (s,v) generated by G and for every «, it holds that
Vv(aa Ss(a)) =1

The difference between the two types of schemes is reflected in the definition of
security. In the case of signature schemes, the adversary is given the verification-
key, whereas in the case of message authentication schemes the verification-key
(which may equal the signing-key) is not given to the adversary. Thus, schemes
for message authentication can be viewed as a private-key version of signature
schemes. This difference yields different functionalities (even more than in the case
of encryption): In typical use of a signature scheme, each user generates a pair of
signing and verification keys, publicizes the verification-key and keeps the signing-
key secret. Subsequently, each user may sign documents using its own signing-key,
and these signatures are universally verifiable with respect to its public verification-
key. In contrast, message authentication schemes are typically used to authenticate
information sent among a set of mutually trusting parties that agree on a secret
key, which is being used both to produce and verify authentication-tags. (Indeed,
it is assumed that the mutually trusting parties have generated the key together or
have exchanged the key in a secure way, prior to the communication of information
that needs to be authenticated.)

We focus on the definition of secure signature schemes, and consider very pow-
erful attacks on the signature scheme as well as a very liberal notion of breaking
it. Specifically, the attacker is allowed to obtain signatures to any message of its
choice. One may argue that in many applications such a general attack is not pos-
sible (because messages to be signed must have a specific format). Yet, our view
is that it is impossible to define a general (i.e., application-independent) notion
of admissible messages, and thus a general/robust definition of an attack seems
to have to be formulated as suggested here. (Note that at worst, our approach is
overly cautious.) Likewise, the adversary is said to be successful if it can produce
a valid signature to any message for which it has not asked for a signature during
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its attack. Again, this means that the ability to form signatures to “nonsensical”
messages is also viewed as a breaking of the scheme. Yet, again, we see no way
to have a general (i.e., application-independent) notion of “meaningful” messages
(such that only forging signatures to them will be considered a breaking of the
scheme).

Definition C.15 (secure signature schemes — a sketch): A chosen message attack
is a process that, on input a verification-key, can obtain signatures (relative to
the corresponding signing-key) to messages of its choice. Such an attack is said to
succeed (in existential forgery) if it outputs a valid signature to a message for which
it has not requested a signature during the attack. A signature scheme is secure (or
unforgeable) if every feasible chosen message attack succeeds with at most negligible
probability, where the probability is taken over the initial choice of the key-pair as
well as over the adversary’s actions.

We stress that plain RSA (alike plain versions of Rabin’s scheme [171] and the
DSS) is not secure under the above definition. However, it may be secure if the
message is “randomized” before RSA (or the other schemes) is applied.

C.6.2 Constructions

Secure message authentication schemes can be constructed using pseudorandom
functions. Specifically, the key-generation algorithm consists of selecting a seed
s € {0,1}™ for such a function, denoted f,:{0,1}* —{0,1}", and the (only valid)
tag of message = with respect to the key s is fs(z). As in the case of our private-
key encryption scheme, the proof of security of the current message authentication
scheme consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uniformly
selected function F': {0,1}* —{0,1}", rather than the pseudorandom function
fs, is secure (i.e., unforgeable).

2. Concluding that the real scheme is secure (because, otherwise one could dis-
tinguish a pseudorandom function from a truly random one).

Note that this message authentication scheme makes an “extensive use of pseu-
dorandom functions” (i.e., the pseudorandom function is applied directly to the
message, which requires a generalized notion of pseudorandom functions (cf. end
of Section C.3.3)). More efficient schemes can be constructed either based on a
more restricted use of a pseudorandom function or based on other cryptographic
primitives.

Constructing secure signature schemes seems more difficult than constructing
message authentication schemes. Nevertheless, secure signature schemes can be
constructed based on the same assumptions.

Theorem C.16 The following three conditions are equivalent:

1. One-way functions exist.
2. Secure signature schemes exist.
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3. Secure message authentication schemes exist.

We stress that, unlike in the case of public-key encryption schemes, the construction
of signature schemes (which may be viewed as a public-key analogue of message
authentication) does not require a trapdoor property.

How to construct secure signature schemes

Three central paradigms used in the construction of secure signature schemes are
the “refreshing” of the “effective” signing-key, the usage of an “authentication tree”,
and the “hashing paradigm” (to be all discussed in the sequel). In addition to
being used in the proof of Theorem C.16, these three paradigms are of independent
interest.

The refreshing paradigm. Introduced in [106], the refreshing paradigm is aimed
at limiting the potential dangers of chosen message attacks. This is achieved by
signing the actual document using a newly (and randomly) generated instance of
the signature scheme, and authenticating (the verification-key of) this random in-
stance with respect to the fixed public-key. That is, consider a basic signature
scheme (G, S, V) used as follows. Suppose that the user U has generated a key-
pair, (s,v) < G(1™), and has placed the verification-key v on a public-file. When
a party asks U to sign some document «, the user U generates a new (“fresh”)
key-pair, (s',v") « G(1™), signs v’ using the original signing-key s, signs « using
the new signing-key s', and presents (Ss(v'),v’, Ss(a)) as a signature to a. An
alleged signature, (f81,v', 52), is verified by checking whether both V,(v',5) =1
and V,(a,fB2) = 1 hold. Intuitively, the gain in terms of security is that a full-
fledged chosen message attack cannot be launched on a fixed instance of (G,S,V)
(i.e., on the fixed verification-key that resides in the public-file and is known to
the attacker). All that an attacker may obtain (via a chosen message attack on
the new scheme) is signatures, relative to the original signing-key s of (G, S, V),
to random strings (distributed according to G(1™)) as well as additional signatures
that are each relative to a random and independently distributed signing-key.

Authentication trees. The security benefits of the refreshing paradigm are in-
creased when combining it with the use of authentication trees. The idea is to use
the public verification-key for authenticating several (e.g., two) fresh instances of
the signature scheme, use each of these instances for authenticating several addi-
tional fresh instances, and so on. Thus, we obtain a tree of fresh instances of the
basic signature scheme, where each internal node authenticates its children. We
can now use the leaves of this tree for signing actual documents, where each leaf is
used at most once. Thus, a signature to an actual document consists of

1. a signature to this document authenticated with respect to the verification-
key associated with some leaf, and

2. asequence of verification-keys associated with the nodes along the path from
the root to this leaf, where each such verification-key is authenticated with
respect to the verification-key of its parent.
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We stress that the same signature, relative to the key of the parent node, is used
for authenticating the verification-keys of all its children. Thus!?, each instance of
the signature scheme is used for signing at most one string (i.e., a single sequence of
verification-keys if the instance resides in an internal node, and an actual document
if the instance resides in a leaf). Hence, it suffices to use a signature scheme that is
secure as long as it is used for legitimately signing a single string. Such signature
schemes, called one-time signature schemes, are easier to construct than standard
signature schemes, especially if one only wishes to sign strings that are significantly
shorter than the signing-key (resp., than the verification-key). For example, using
a one-way function f, we may let the signing-key consist of a sequence of n pairs of
strings, let the corresponding verification-key consist of the corresponding sequence
of images of f, and sign an n-bit long message by revealing the adequate pre-images.

(That is, the signing-key consist of a sequence ((s?, s1),...,(s2,sL)) € {0, 1}2"2, the
corresponding verification-key is (f(s?), f(s1)), ..., (f(s%), f(sL))), and the signa-
ture of the message o1 -0, is (s7', ..., $9™).)

The hashing paradigm. Note, however, that in the foregoing authentication-
tree, the instances of the signature scheme (associated with internal nodes) are used
for signing a pair of verification-keys. Thus, we need a one-time signature scheme
that can be used for signing messages that are longer than the verification-key.
Here is where the hashing paradigm comes into play. This paradigm refers to the
common practice of signing documents via a two stage process: First the actual
document is hashed to a (relatively) short string, and next the basic signature
scheme is applied to the resulting string. This practice (as well as other usages of
the hashing paradigm) is sound provided that the hashing function belongs to a
family of collision-free hashing (a.k.a collision-resistant hashing) functions. Loosely
speaking, given a hash function that is randomly selected in such a family, it is
infeasible to find two different strings that are hashed by this function to the same
value. We also refer the interested reader to a variant of the hashing paradigm that
uses the seemingly weaker notion of a family of Universal One- Way Hash Functions
(see [160] or [88, Sec. 6.4.3]).

C.7 General Cryptographic Protocols

The design of secure protocols that implement arbitrary desired functionalities is
a major part of modern cryptography. Taking the opposite perspective, the design
of any cryptographic scheme may be viewed as the design of a secure protocol for
implementing a corresponding functionality. Still, we believe that it makes sense to

14 A naive implementation of the foregoing (full-fledged) signature scheme calls for storing in
(secure) memory all the instances of the basic (one-time) signature scheme that are generated
throughout the entire signing process (which refers to numerous documents). However, we note
that it suffices to be able to reconstruct the random-coins used for generating each of these
instances, and the former can be determined by a pseudorandom function (applied to the name
of the corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will be
part of the signing-key of the resulting (full-fledged) signature scheme.
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differentiate between basic cryptographic primitives (which involve little interac-
tion) like encryption and signature schemes on one hand, and general cryptographic
protocols on the other hand.

In this section, we survey general results concerning secure multi-party com-
putations, where the two-party case is an important special case. In a nutshell,
these results assert that one can construct protocols for securely computing any
desirable multi-party functionality. Indeed, what is striking about these results is
their generality, and we believe that the wonder is not diminished by the (various
alternative) conditions under which these results hold.

A general framework for casting (m-party) cryptographic (protocol) problems
consists of specifying a random process'® that maps m inputs to m outputs. The
inputs to the process are to be thought of as the local inputs of m parties, and the
m outputs are their corresponding local outputs. The random process describes
the desired functionality. That is, if the m parties were to trust each other (or trust
some external party), then they could each send their local input to the trusted
party, who would compute the outcome of the process and send to each party the
corresponding output. A pivotal question in the area of cryptographic protocols is
to what extent can this (imaginary) trusted party be “emulated” by the mutually
distrustful parties themselves.

The results surveyed in this section describe a variety of models in which such
an “emulation” is possible. The models vary by the underlying assumptions re-
garding the communication channels, numerous parameters governing the extent
of adversarial behavior, and the desired level of emulation of the trusted party (i.e.,
level of “security”). Our treatment refers to the security of stand-alone executions.
The preservation of security in an environment in which many executions of many
protocols are attacked is beyond the scope of this section, and the interested reader
is referred to [88, Sec. 7.7.2].

C.7.1 The Definitional Approach and Some Models

Before describing the aforementioned results, we further discuss the notion of
“emulating a trusted party”, which underlies the definitional approach to secure
multi-party computation. This approach follows the simulation paradigm (cf. Sec-
tion C.4.1) which deems a scheme to be secure if whatever a feasible adversary can
obtain after attacking it, is also feasibly attainable by a benign behavior. In the
general setting of multi-party computation we compare the effect of adversaries
that participate in the execution of the actual protocol to the effect of adversaries
that participate in an imaginary execution of a trivial (ideal) protocol for com-
puting the desired functionality with the help of a trusted party. If whatever the
adversaries can feasibly obtain in the real setting can also be feasibly obtained in

15That is, we consider the secure evaluation of randomized functionalities, rather than “only”
the secure evaluation of functions. Specifically, we consider an arbitrary (randomized) process
F that on input (x1,...,&m), first selects at random (depending only on ¢ ef :’;1 |z;]) an m-
ary function f, and then outputs the m-tuple f(z1,...,2m) = (fi(@1, -0y Tm), ..., fm(T1, ..., Tm))-
In other words, F(z1,...,@m) = F'(r,x1,...,Tm), where r is uniformly selected in {0, 1}” (with
£' = poly(£)), and F' is a function mapping (m + 1)-long sequences to m-long sequences.
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“

the ideal setting then the actual protocol “emulates the ideal setting” (i.e., “em-
ulates a trusted party”), and thus is deemed secure. This basic approach can be
applied in a variety of models, and is used to define the goals of security in these
models.'® We first discuss some of the parameters used in defining various models,
and next demonstrate the application of this approach in two important cases. For
further details, see [88, Sec. 7.2 and 7.5.1].

C.7.1.1 Some parameters used in defining security models

The following parameters are described in terms of the actual (or real) computation.
In some cases, the corresponding definition of security is obtained by imposing
some restrictions or provisions on the ideal model. For example, in the case of two-
party computation (see §C.7.1.3), secure computation is possible only if premature
termination is not considered a breach of security. In that case, the suitable security
definition is obtained (via the simulation paradigm) by allowing (an analogue of)
premature termination in the ideal model. In all cases, the desired notion of security
is defined by requiring that for any adequate adversary in the real model, there exist
a corresponding adversary in the corresponding ideal model that obtains essentially
the same impact (as the real-model adversary).

The communication channels: The standard assumption in cryptography is
that the adversary may tap all communication channels (between honest parties),
but cannot modify (or omit or insert) messages sent over them. In contrast, one
may postulate that the adversary cannot obtain messages sent between a pair of
honest parties, yielding the so-called private-channel model. Most works in the area
assume that communication is synchronous and that point-to-point channels exist
between every pair of processors (i.e., a complete network).

Set-up assumptions: Unless stated differently, no set-up assumptions are made
(except for the obvious assumption that all parties have identical copies of the
protocol’s program).

Computational limitations: Typically, the focus is on computationally-bounded
adversaries (e.g., probabilistic polynomial-time adversaries). However, the private-
channel model allows for the (meaningful) consideration of computationally-unbounded
adversaries.!”

16 A few technical comments are in place. Firstly, we assume that the inputs of all parties
are of the same length. We comment that as long as the lengths of the inputs are polynomially
related, the foregoing convention can be enforced by padding. On the other hand, some length
restriction is essential for the security results, because in general it is impossible to hide all
information regarding the length of the inputs to a protocol. Secondly, we assume that the
desired functionality is computable in probabilistic polynomial-time, because we wish the secure
protocol to run in probabilistic polynomial-time (and a protocol cannot be more efficient than
the corresponding centralized algorithm). Clearly, the results can be extended to functionalities
that are computable within any given (time-constructible) time bound, using adequate padding.

17We stress that, also in the case of computationally-unbounded adversaries, security should
be defined by requiring that for every real adversary, whatever the adversary can compute after
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Restricted adversarial behavior: The parameters of the model include ques-
tions like whether the adversary is “active” or “passive” (i.e., whether a dishonest
party takes active steps to disrupt the execution of the protocol or merely gathers
information) and whether or not the adversary is “adaptive” (i.e., whether the set
of dishonest parties is fixed before the execution starts or is adaptively chosen by
an adversary during the execution).

Restricted notions of security: One important example is the willingness to
tolerate “unfair” protocols in which the execution can be suspended (at any time)
by a dishonest party, provided that it is detected doing so. We stress that in case the
execution is suspended, the dishonest party does not obtain more information than
it could have obtained when not suspending the execution. (What may happen is
that the honest parties will not obtain their desired outputs, but will detect that
the execution was suspended.) We stress that the motivation to this restricted
model is the impossibility of obtaining general secure two-party computation in
the unrestricted model.

Upper bounds on the number of dishonest parties: These are assumed
in some models, when required. For example, in some models, secure multi-party
computation is possible only if a majority of the parties is honest.

C.7.1.2 Example: Multi-party protocols with honest majority

Here we consider an active, non-adaptive, computationally-bounded adversary, and
do not assume the existence of private channels. Our aim is to define multi-party
protocols that remain secure provided that the honest parties are in majority.
(The reason for requiring an honest majority will be discussed at the end of this
subsection.)

We first observe that in any multi-party protocol, each party may change its
local input before even entering the execution of the protocol. However, this is
unavoidable also when the parties utilize a trusted party. Consequently, such an
effect of the adversary on the real execution (i.e., modification of its own input
prior to entering the actual execution) is not considered a breach of security. In
general, whatever cannot be avoided when the parties utilize a trusted party, is
not considered a breach of security. We wish secure protocols (in the real model)
to suffer only from whatever is unavoidable also when the parties utilize a trusted
party. Thus, the basic paradigm underlying the definitions of secure multi-party
computations amounts to requiring that the only situations that may occur in the
real execution of a secure protocol are those that can also occur in a corresponding
ideal model (where the parties may employ a trusted party). In other words, the

participating in the execution of the actual protocol is computable within comparable time by
an imaginary adversary participating in an imaginary execution of the trivial ideal protocol (for
computing the desired functionality with the help of a trusted party). That is, although no
computational restrictions are made on the real-model adversary, it is required that the ideal-
model adversary that obtains the same impact does so within comparable time (i.e., within time
that is polynomially related to the running time of the real-model adversary being simulated).
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“effective malfunctioning” of parties in secure protocols is restricted to what is
postulated in the corresponding ideal model.

When defining secure multi-party protocols (with honest majority), we need to
pin-point what cannot be avoided in the ideal model (i.e., when the parties utilize
a trusted party). Since we are interested in executions in which the majority of
parties are honest, we consider an ideal model in which any minority group (of the
parties) may collude as follows:

1. Firstly this dishonest minority shares its original inputs and decides together
on replaced inputs to be sent to the trusted party. (The other parties send
their respective original inputs to the trusted party.)

2. Upon receiving inputs from all parties, the trusted party determines the cor-
responding outputs and sends them to the corresponding parties. (We stress
that the information sent between the honest parties and the trusted party
is not seen by the dishonest colluding minority.)

3. Upon receiving the output-message from the trusted party, each honest party
outputs it locally, whereas the dishonest colluding minority may determine
their outputs based on all they know (i.e., their initial inputs and their re-
ceived outputs).

A secure multi-party computation with honest majority is required to emulate this
ideal model. That is, the effect of any feasible adversary that controls a minority of
the parties in a real execution of such a (real) protocol, can be essentially simulated
by a (different) feasible adversary that controls the corresponding parties in the
ideal model.

Definition C.17 (secure protocols — a sketch): Let f be an m-ary functionality
and II be an m-party protocol operating in the real model.

e For a real-model adversary A, controlling some minority of the parties (and
tapping all communication channels), and an m-sequence T, we denote by
REAL[ A(T) the sequence of m outputs resulting from the execution of I on
input T under the attack of the adversary A.

e For an ideal-model adversary A’, controlling some minority of the parties,
and an m-sequence T, we denote by IDEALy 4/(T) the sequence of m outputs
resulting from the foregoing three-step ideal process, when applied to input T
under the attack of the adversary A’.

We say that I1 securely implements f with honest majority if for every feasible real-
model adversary A, controlling some minority of the parties, there exists a feasible
ideal-model adversary A', controlling the same parties, such that the probability en-
sembles {REALm 4(T)}z and {IDEALf 4/ (T)}z are computationally indistinguishable
(as in Definition C.5).

Thus, security means that the effect of each minority group in a real execution
of a secure protocol is “essentially restricted” to replacing its own local inputs
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(independently of the local inputs of the majority parties) before the protocol
starts, and replacing its own local outputs (depending only on its local inputs and
outputs) after the protocol terminates. (We stress that in the real execution the
minority parties do obtain additional pieces of information; yet in a secure protocol
they gain nothing from these additional pieces of information, because they can
actually reproduce those by themselves.)

The fact that Definition C.17 refers to a model without private channels is
reflected in the fact that our (sketchy) definition of the real-model adversary al-
lowed it to tap the channels, which in turn effects the set of possible ensembles
{REAL[, 4(T)}z. When defining security in the private-channel model, the real-
model adversary is not allowed to tap channels between honest parties, and this
again effects the possible ensembles {REAL 4(T)}z. On the other hand, when we
wish to define security with respect to passive adversaries, both the scope of the
real-model adversaries and the scope of the ideal-model adversaries changes. In the
real-model execution, all parties follow the protocol but the adversary may alter
the output of the dishonest parties arbitrarily depending on their intermediate in-
ternal states (during the entire execution). In the corresponding ideal-model, the
adversary is not allowed to modify the inputs of dishonest parties (in Step 1), but
is allowed to modify their outputs (in Step 3).

We comment that a definition analogous to Definition C.17 can be presented also
in the case that the dishonest parties are not in minority. In fact, such a definition
seems more natural, but the problem is that such a definition cannot be satisfied.
That is, most (natural) functionalities do not have a protocol for computing them
securely in the case that at least half of the parties are dishonest and employ an
adequate adversarial strategy. This follows from an impossibility result regarding
two-party computation, which essentially asserts that there is no way to prevent a
party from prematurely suspending the execution. On the other hand, secure multi-
party computation with dishonest majority is possible if premature suspension of
the execution is not considered a breach of security (see §C.7.1.3).

C.7.1.3 Another example: Two-party protocols allowing abort

In light of the last paragraph, we now consider multi-party computations in which
premature suspension of the execution is not considered a breach of security. For
simplicity, we focus on the special case of two-party computations (As in §C.7.1.2,
we consider a non-adaptive, active, computationally-bounded adversary.)
Intuitively, in any two-party protocol, each party may suspend the execution
at any point in time, and furthermore it may do so as soon as it learns the desired
output. Thus, in case the output of each parties depends on both inputs, it is always
possible for one of the parties to obtain the desired output while preventing the
other party from fully determining its own output.'® The same phenomenon occurs
even in case the two parties just wish to generate a common random value. Thus,
when considering active adversaries in the two-party setting, we do not consider

18In contrast, in the case of an honest majority (cf., §C.7.1.2), the honest party that fails to
obtain its output is not alone. It may seek help from the other honest parties, which together
and being in majority can do things that dishonest minorities cannot do: See §C.7.3.2.
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such premature suspension of the execution a breach of security. Consequently, we
consider an ideal model where each of the two parties may “shut-down” the trusted
(third) party at any point in time. In particular, this may happen after the trusted
party has supplied the outcome of the computation to one party but before it has
supplied the outcome to the other. Thus, an execution in the corresponding ideal
model proceeds as follows:

1. Each party sends its input to the trusted party, where the dishonest party
may replace its input or send no input at all (which can be treated as sending
a default value).

2. Upon receiving inputs from both parties, the trusted party determines the
corresponding pair of outputs, and sends the first output to the first party.

3. In case the first party is dishonest, it may instruct the trusted party to halt,
otherwise it always instructs the trusted party to proceed. If instructed to
proceed, the trusted party sends the second output to the second party.

4. Upon receiving the output-message from the trusted party, an honest party
outputs it locally, whereas a dishonest party may determine its output based
on all it knows (i.e., its initial input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal
model. That is, as in Definition C.17, security is defined by requiring that for
every feasible real-model adversary A, there exists a feasible ideal-model adversary
A’ controlling the same party, such that the probability ensembles representing
the corresponding (real and ideal) executions are computationally indistinguish-
able. This means that each party’s “effective malfunctioning” in a secure protocol
is restricted to supplying an initial input of its choice and aborting the computation
at any point in time. (Needless to say, the choice of the initial input of each party
may not depend on the input of the other party.)

We mention that an alternative way of dealing with the problem of premature
suspension of execution (i.e., abort) is to restrict our attention to single-output
functionalities; that is, functionalities in which only one party is supposed to obtain
an output. The definition of secure computation of such functionalities can be made
identical to Definition C.17, with the exception that no restriction is made on the
set of dishonest parties (and in particular one may consider a single dishonest party
in the case of two-party protocols). For further details, see [88, Sec. 7.2.3].

C.7.2 Some Known Results

We next list some of the models for which general secure multi-party computation
is known to be attainable (i.e., models in which one can construct secure multi-
party protocols for computing any desired functionality). We mention that the first
results of this type were obtained by Goldreich, Micali, Wigderson and Yao [96,
225, 97].
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In the standard channel model. Assuming the ezistence of enhanced*® trap-
door permutations, secure multi-party computation is possible in the following three
models (cf. [96, 225, 97] and details in [88, Chap. 7]):

1. Passive adversary, for any number of dishonest parties (see [88, Sec. 7.3]).

2. Active adversary that may control only a minority of the parties (see [88,
Sec. 7.5.4]).

3. Active adversary, for any number of dishonest parties, provided that suspen-
sion of execution (as discussed in §C.7.1.3) is not considered a violation of
security (see [88, Sec. 7.4 and 7.5.5]).

In all these cases, the adversary is computationally-bounded and non-adaptive. On
the other hand, the adversary may tap the communication lines between honest
parties (i.e., we do not assume “private channels” here). The results for active ad-
versaries assume a broadcast channel. Indeed, the latter can be implemented (while
tolerating any number of dishonest parties) using a signature scheme and assuming
that each party knows (or can reliably obtain) the verification-key corresponding
to each of the other parties.

In the private channels model. Making no computational assumptions and
allowing computationally-unbounded adversaries, but assuming private channels,
secure multi-party computation is possible in the following two models (cf. [32, 50]):

1. Passive adversary that may control only a minority of the parties.
2. Active adversary that may control only less than one third of the parties.

In both cases the adversary may be adaptive.

C.7.3 Construction Paradigms and Two Simple Protocols

We briefly sketch a couple of paradigms used in the construction of secure multi-
party protocols. We focus on the construction of secure protocols for the model of
computationally-bounded and non-adaptive adversaries [96, 225, 97]. These con-
structions proceed in two steps (see details in [88, Chap. 7]): First a secure protocol
is presented for the model of passive adversaries (for any number of dishonest par-
ties), and next such a protocol is “compiled” into a protocol that is secure in one
of the two models of active adversaries (i.e., either in a model allowing the adver-
sary to control only a minority of the parties or in a model in which premature
suspension of the execution is not considered a violation of security). These two
steps are presented in the following two corresponding subsections, in which we
also present two relatively simple protocols for two specific tasks, which in turn are
used extensively in the general protocols.

Recall that in the model of passive adversaries, all parties follow the prescribed
protocol, but at termination the adversary may alter the outputs of the dishonest

198¢e Footnote 13.
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parties depending on their intermediate internal states (during the entire execu-
tion). Below, we refer to protocols that are secure in the model of passive (resp.,
active) adversaries by the term passively-secure (resp., actively-secure).

C.7.3.1 Passively-secure computation with shares

For any m > 2, suppose that m parties, each having a private input, wish to ob-
tain the value of a predetermined m-argument function evaluated at their sequence
of inputs. Below, we outline a passively-secure protocol for achieving this goal.
We mention that the design of passively-secure multi-party protocol for any func-
tionality (allowing different outputs to different parties as well as handling also
randomized computations) reduces easily to the aforementioned task.

We assume that the parties hold a circuit for computing the value of the function
on inputs of the adequate length, and that the circuit contains only and and not
gates. The key idea is having each party “secretly share” its input with everybody
else, and having the parties “secretly transform” shares of the input wires of the
circuit into shares of the output wires of the circuit, thus obtaining shares of the
outputs (which allows for the reconstruction of the actual outputs). The value
of each wire in the circuit is shared such that all shares yield the value, whereas
lacking even one of the shares keeps the value totally undetermined. That is, we
use a simple secret sharing scheme such that a bit b is shared by a random sequence
of m bits that sum-up to b mod 2. First, each party shares each of its input bits
with all parties (by secretly sending each party a random value and setting its own
share accordingly). Next, all parties jointly scan the circuit from its input wires to
its output wires, processing each gate as follows:

e When encountering a gate, the parties already hold shares of the values of
the wires entering the gate, and their aim is to obtain shares of the value of
the wires exiting the gate.

e For a not-gate this is easy: the first party just flips the value of its share,
and all other parties maintain their shares.

e Since an and-gate corresponds to multiplication modulo 2, the parties need
to securely compute the following randomized functionality (in which the z;’s
denote shares of one entry-wire, the y;’s denote shares of the second entry-
wire, the z;’s denote shares of the exit-wire, and the shares indexed by i are
held by Party 7):

((xlyyl);---;(wm;ym)) = (Zl,...,Zm), where (Cl)

That is, the z;’s are random subject to Eq. (C.2).

Finally, the parties send their shares of each circuit-output wire to the designated
party, which reconstructs the value of the corresponding bit. Thus, the parties have
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propagated shares of the circuit-input wires into shares of the circuit-output wires,
by repeatedly conducting passively-secure computation of the m-ary functionality
of Eq. (C.1)&(C.2). That is, securely evaluating the entire (arbitrary) circuit
“reduces” to securely conducting a specific (very simple) multi-party computation.
But things get even simpler: the key observation is that

(ZL) - (Z?h) = sz‘yi+ Y (wiys +aiy)- (C.3)

1<i<j<m

Thus, the m-ary functionality of Eq. (C.1) & (C.2) can be computed as follows
(where all arithmetic operations are mod 2):

1. Each Party ¢ locally computes z; ; def Tili-

2. Next, each pair of parties (i.e., Parties ¢ and j) securely compute random
shares of z;y; + y,x;. That is, Parties 7 and j (holding (z;,y;) and (x;,y;),
respectively), need to securely compute the randomized two-party function-
ality ((zi,vi),(z5,¥;)) — (zij,%5:), where the 2’s are random subject to
zij + 25 = ©y; + yiz;. Equivalently, Party j uniformly selects z;; € {0,1},
and Parties ¢ and j securely compute the following deterministic functionality

(i, 4i), (25, Y5, 23,4)) = (z30 + iy + vz, A), (C4)
where A denotes the empty string.

3. Finally, for every ¢ = 1, ..., m, the sum ZT:1 z;,; yields the desired share of
Party 1.

The foregoing construction is analogous to a construction that was outlined in [97].
A detailed description and full proofs appear in [88, Sec. 7.3.4 and 7.5.2].

The foregoing construction reduces the passively-secure computation of any
m-ary functionality to the implementation of the simple 2-ary functionality of
Eq. (C.4). The latter can be implemented in a passively-secure manner by using
a l-out-of-4 Oblivious Transfer. Loosely speaking, a 1-out-of-k Oblivious Transfer
is a protocol enabling one party to obtain one of k secrets held by another party,
without the second party learning which secret was obtained by the first party.
That is, it allows a passively-secure computation of the two-party functionality

(1, (81, -, &) — (80, A). (C.5)

Note that any function f : [k] x {0,1}* — {0,1}* x {A} can be computed in a
passively-secure manner by invoking a 1l-out-of-k Oblivious Transfer on inputs ¢
and (f(1,v),..., f(k,y)), where ¢ (resp., y) is the initial input of the first (resp.,
second) party.

A passively-secure 1-out-of-k Oblivious Transfer. Using a collection of en-
hanced trapdoor permutations, {fo : Dy — Da}ad and a corresponding hard-core
predicate b, we outline a passively-secure implementation of the functionality of
Eq. (C.5), when restricted to single-bit secrets.



494APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Inputs: The first party, hereafter called the receiver, has input i € {1,2,...,k}. The
second party, called the sender, has input (0,02, ...,0%) € {0, 1}*.

Step S1: The sender selects at random a permutation f, along with a correspond-
ing trapdoor, denoted ¢, and sends the permutation f, (i.e., its index «) to
the receiver.

Step R1: The receiver uniformly and independently selects x1,...,xx € Dy, sets
¥i = fo(z;) and y; = x; for every j # i, and sends (y1,y2,...,yx) to the
sender.

Thus, the receiver knows f,!(y;) = z;, but cannot predict b(f, *(y;)) for any
j # i. Needless to say, the last assertion presumes that the receiver follows
the protocol (i.e., we only consider passive-security).

Step S2: Upon receiving (y1,y2,-..,Yx), using the inverting-with-trapdoor algo-
rithm and the trapdoor ¢, the sender computes z; = f,(y;), for every
Jj € {1,...,k}. It sends the k-tuple (o1 @ b(z1),02 ® b(22),...,06 D b(2k))
to the receiver.

Step R2: Upon receiving (ci, co, -.., ¢k ), the receiver locally outputs ¢; ® b(x;).

We first observe that this protocol correctly computes 1-out-of-k Oblivious Trans-
fer; that is, the receiver’s local output (i.e., ¢;®b(z;)) indeed equals (o; ®b( £, 1 (fa(z:))))®
b(z;) = o0;. Next, we offer some intuition as to why this protocol constitutes a
privately-secure implementation of 1-out-of-k Oblivious Transfer. Intuitively, the
sender gets no information from the execution because, for any possible value of i,
the senders sees the same distribution; specifically, a sequence of k uniformly and
independently distributed elements of D,. (Indeed, the key observation is that ap-
plying f, to a uniformly distributed element of D, yields a uniformly distributed
element of D,.) As for the receiver, intuitively, it gains no computational knowl-
edge from the execution because, for j # ¢, the only information that the receiver
has regarding o; is the triplet (a,z;,0; ® b(f;'(z;))), where z; is uniformly dis-
tributed in D, and from this information it is infeasible to predict o; better than
by a random guess.?® (See [88, Sec. 7.3.2] for a detailed proof of security.)

C.7.3.2 From passively-secure protocols to actively-secure ones

We show how to transform any passively-secure protocol into a corresponding
actively-secure protocol. The communication model in both protocols consists of
a single broadcast channel. Note that the messages of the original protocol may
be assumed to be sent over a broadcast channel, because the adversary may see
them anyhow (by tapping the point-to-point channels), and because a broadcast

20The latter intuition presumes that sampling D, is trivial (i.e., that there is an easily com-
putable correspondence between the coins used for sampling and the resulting sample), whereas
in general the coins used for sampling may be hard to compute from the corresponding outcome.
This is the reason that an enhanced hardness assumption is used in the general analysis of the
foregoing protocol.
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channel is trivially implementable in the case of passive adversaries. As for the re-
sulting actively-secure protocol, the broadcast channel it uses can be implemented
via an (authenticated) Byzantine Agreement protocol, thus providing an emulation
of this model on the standard point-to-point model (in which a broadcast channel
does not exist). We mention that authenticated Byzantine Agreement is typically
implemented using a signature scheme (and assuming that each party knows the
verification-key corresponding to each of the other parties).

Turning to the transformation itself, the main idea is using zero-knowledge
proofs (as described in §C.4.3.3) in order to force parties to behave in a way that is
counsistent with the (passively-secure) protocol. Actually, we need to confine each
party to a unique consistent behavior (i.e., according to some fixed local input and a
sequence of coin tosses), and to guarantee that a party cannot fix its input (and/or
its coin tosses) in a way that depends on the inputs (and/or coin tosses) of honest
parties. Thus, some preliminary steps have to be taken before the step-by-step
emulation of the original protocol may start. Specifically, the compiled protocol
(which, like the original protocol, is executed over a broadcast channel) proceeds
as follows:

1. Committing to the local input: Prior to the emulation of the original protocol,
each party commits to its input (using a commitment scheme as defined
in §C.4.3.1). In addition, using a zero-knowledge proof-of-knowledge (see
Section 9.2.3), each party also proves that it knows its own input; that is,
it proves that it can decommit to the commitment it sent. (These zero-
knowledge proof-of-knowledge prevent dishonest parties from setting their
inputs in a way that depends on inputs of honest parties.)

2. Generation of local random tapes: Next, all parties jointly generate a se-
quence of random bits for each party such that only this party knows the
outcome of the random sequence generated for it, and everybody else gets a
commitment to this outcome. These sequences will be used as the random-
inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in the
random-sequence generated for Party X is determined as the exclusive-or of
the outcomes of instances of an (augmented) coin-tossing protocol (cf. [88,
Sec. 7.4.3.5]) that Party X plays with each of the other parties. The lat-
ter protocol provides the other parties with a commitment to the outcome
obtained by Party X.

3. Effective prevention of premature termination: In addition, when compiling
(the passively-secure protocol to an actively-secure protocol) for the model
that allows the adversary to control only a minority of the parties, each party
shares its input and random-input with all other parties using a “Verifiable
Secret Sharing” (VSS) protocol (cf. [88, Sec. 7.5.5.1]). Loosely speaking, a
VSS protocol allows sharing a secret in a way that enables each participant
to verify that the share it got fits the publicly posted information, which
includes commitments to all shares, where a sufficient number of the latter
allow for the efficient recovery of the secret. The use of VSS guarantees that
if Party X prematurely suspends the execution, then the honest parties can
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together reconstruct all Party X’s secrets and carry on the execution while
playing its role. This step effectively prevents premature termination, and is
not needed in a model that does not consider premature termination a breach
of security.

4. Step-by-step emulation of the original protocol: Once all the foregoing steps
are completed, the new protocol emulates the steps of the original protocol.
In each step, each party augments the message determined by the original
protocol with a zero-knowledge proof that asserts that the message was in-
deed computed correctly. Recall that the next message (as determined by
the original protocol) is a function of the sender’s own input, its random-
input, and the messages it has received so far (where the latter are known to
everybody because they were sent over a broadcast channel). Furthermore,
the sender’s input is determined by its commitment (as sent in Step 1), and
its random-input is similarly determined (in Step 2). Thus, the next mes-
sage (as determined by the original protocol) is a function of publicly known
strings (i.e., the said commitments as well as the other messages sent over
the broadcast channel). Moreover, the assertion that the next message was
indeed computed correctly is an NP-assertion, and the sender knows a cor-
responding NP-witness (i.e., its own input and random-input as well as the
corresponding decommitment information). Thus, the sender can prove in
zero-knowledge (to each of the other parties) that the message it is sending
was indeed computed according to the original protocol.

The above compilation was first outlined in [96, 97]. A detailed description and
full proofs appear in [88, Sec. 7.4 and 7.5].

A secure coin-tossing protocol. Using a commitment scheme, we outline a
secure (ordinary as opposed to augmented) coin-tossing protocol.

Step C1: Party 1 uniformly selects o € {0,1} and sends Party 2 a commitment,
denoted ¢, to o.

Step C2: Party 2 uniformly selects ¢’ € {0,1}, and sends o' to Party 1.

Step C3: Party 1 outputs the value o @ o', and sends ¢ along with the decommit-
ment information, denoted d, to Party 2.

Step C4: Party 2 checks whether or not (o, d) fit the commitment ¢ it has obtained
in Step 1. It outputs o @ o' if the check is satisfied and halts with output L
otherwise, where L indicates that Party 1 has effectively aborted the protocol
prematurely.

Outputs: Party 1 always outputs b o o', whereas Party 2 either outputs b
or L.

Intuitively, Steps C1-C2 may be viewed as “tossing a coin into the well”. At
this point (i.e., after Step C2), the value of the coin is determined (essentially
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as a random value), but only one party (i.e., Party 1) “can see” (i.e., knows) this
value. Clearly, if both parties are honest then they both output the same uniformly
chosen bit, recovered in Steps C3 and C4, respectively. Intuitively, each party
can guarantee that the outcome is uniformly distributed, and Party 1 can cause
premature termination by improper execution of Step 3. Formally, we have to show
how the effect of any real-model adversary can be simulated by an adequate ideal-
model adversary (which is allowed premature termination). This is done in [88,
Sec. 7.4.3.1].

C.7.4 Concluding Remarks

In Sections C.7.1-C.7.2 we have mentioned numerous definitions and results regard-
ing secure multi-party protocols, where some of these definitions are incomparable
to others (i.e., they neither imply the others nor are implies by them). For example,
in §C.7.1.2 and §C.7.1.3, we have presented two alternative definitions of “secure
multi-party protocols”, one requiring an honest majority and the other allowing
abort. These definitions are incomparable and there is no generic reason to prefer
one over the other. Actually, as mentioned in §C.7.1.2, one could formulate a nat-
ural definition that implies both definitions (i.e., waiving the bound on the number
of dishonest parties in Definition C.17). Indeed, the resulting definition is free of
the annoying restrictions that were introduced in each of the two aforementioned
definitions; the “only” problem with the resulting definition is that it cannot be
satisfied (in general). Thus, for the first time in this appendix, we have reached a
situation in which a natural (and general) definition cannot be satisfied, and we are
forced to choose between two weaker alternatives, where each of these alternatives
carries fundamental disadvantages.

In general, Section C.7 carries a stronger flavor of compromise (i.e., recognizing
inherent limitations and settling for a restricted meaningful goal) than previous
sections. In contrast to the impression given in other parts of this appendix, it is
now obvious that we cannot get all that we may want (and this is without men-
tioning the problems involved in preserving security under concurrent composition;
cf. [88, Sec. 7.7.2]). Instead, we should study the alternatives, and go for the one
that best suits our real needs.

Indeed, as stated in Section C.1, the fact that we can define a cryptographic
goal does not mean that we can satisfy it as defined. In case we cannot satisfy
the initial definition, we should search for relaxations that can be satisfied. These
relaxations should be defined in a clear manner such that it would be obvious what
they achieve (and what they fail to achieve). Doing so will allow a sound choice of
the relaxation to be used in a specific application. This seems to be a good point
to end the current appendix.

A good compromise is one in which the most impor-
tant interests of all parties are satisfied.

Adv. Klara Goldreich-Ingwer (1912-2004)
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