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1Preface. This manuscript contains preliminary versions of three related chaptersand one appendix of the forthcoming book Computational Complexity: A Concep-tual Perspective.Chapter 7: The Bright Side of Hardness. We consider two conjectures thatare related to P 6= NP . The �rst conjecture is that there are problems in Ethat are not solvable by (non-uniform) families of small (say polynomial-size)circuits, whereas the second conjecture is equivalent to the notion of one-wayfunctions. Most of this chapter is devoted to converting these conjecturesinto tools that can be used for non-trivial dearndomizations of BPP and fora host of cryptographic applications.Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-tion of computational indistinguishablity and corresponding notions of pseu-dorandomness. The de�nition of general-purpose pseudorandom generators(running in polynomial-time and withstanding any polynomial-time distin-guisher) is presented as a special case of a general paradigm. The chapter alsocontains a presentation of other instatiations of the latter paradigm, includinggenerators aimed at derandomizating complexity classes such as BPP, gener-ators withstanding space-bounded distinguishers, and some special-purposegenerators.Chapter 9: Probabilistic Proof Systems. This chapter provides an introduc-tion to three types of probabilistic proof systems: interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs. These proof systemsshare a common (untraditional) feature { they carry a probability of error;yet, this probability is explicitly bounded and can be reduced by successiveapplication of the proof system. The gain in allowing this untraditional re-laxation is substantial, as they enable the construction of proof systems withproperties that seem impossible to achieve via traditional proof systems.Appendix C: On the Foundations of Modern Cryptography. The �rst partof this appendix augments the partial treatment of one-way functions, pseudo-random generators and zero-knowledge proofs, which is included in Chapters7{9. Using these basic tools, the second part provides a treatment of ba-sic cryptographic applications such as Encryption, Signatures, and GeneralCryptographic Protocols.This material corresponds to the main material covered in the author's book [86],and superseeds it in almost all respects.cCopyright 2006 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for pro�t or com-mercial advantage and that new copies bear this notice and the full citation on the �rstpage. Abstracting with credit is permitted.
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Chapter 7The Bright Side of HardnessSo saying she donned her beautiful, glittering golden{Ambrosialsandals, which carry her ying like the wind over the vast landand sea; she grasped the redoubtable bronze-shod spear, so stoutand sturdy and strong, wherewith she quells the ranks of heroeswho have displeased her, the [bright-eyed] daughter of her mightyfather. Homer, Odyssey, 1:96{101The existence of natural computational problems that are (or seem to be) in-feasible to solve is usually perceived as bad news, because it means that we cannotdo things we wish to do. But these bad news have a positive side, because hardproblem can be \put to work" to our bene�t, most notably in cryptography.One key issue that arises whenever one tries to utilize hard problem is bridgingthe gap between \occasional" hardness (e.g., worst-case hardness or mild average-case hardness) and \typical" hardness (i.e., inapproximability). Much of the cur-rent chapter is devoted to this issue, which is known by the term hardness ampli-�cation.Summary: We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable inexponential-time (i.e., in E) but are not solvable by (non-uniform) fami-lies of small (say polynomial-size) circuits. We show that this worst-caseconjecture can be transformed into an average-case hardness result ofthe type that can be used towards derandomized BPP in a non-trivialway (see Section 8.4).The second conjecture is that there are problems in NP (i.e., searchproblems in PC) for which it is easy to generate (solved) instances thatare typically hard to solve (for a party that did not generate these in-stances). This conjecture is captured in the formulation of one-wayfunctions, which are functions that are easy to evaluate but hard to227



228 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSinvert (in an average-case sense). We show that functions that are hardto invert in a relatively mild average-case sense yield functions that arehard to invert almost everywhere, and that the latter yield predicatesthat are very hard to approximate (called hard-core predicates). Thelatter are useful for the construction of general-purpose pseudorandomgenerators (see Section 8.3) as well as for a host of cryptographic ap-plications (see Appendix C).The order of presentation of the two aforementioned conjectures and their conse-quences is actually reversed: We start (in Section 7.1) with the study of one-wayfunction, and only later (in Section 7.2) turn to the study of problems in E thatare hard for small circuits.Teaching note: We list several reasons for preferring the aforementioned order ofpresentation. First, we mention the conceptual appeal of one-way functions and thefact that they have very practical applications. Second, hardness ampli�cation in thecontext of one-way functions is technically simpler in comparison to the ampli�cationof hardness in the context of E . (In fact, Section 7.2 is the most technical text inthis book.) Third, some of the techniques that are shared by both treatments seemeasier to understand �rst in the context of one-way functions. Last, the current orderfacilitates the possibility of teaching hardness ampli�cation only in one incarnation,where the context of one-way functions is recommended as the incarnation of choice(for the aforementioned reasons).If you wish to teach hardness ampli�cation and pseudorandomness in the two afore-mentioned incarnations, then we suggest following the order of the current text. Thatis, �rst teach hardness ampli�cation in its two incarnations, and only next teach pseu-dorandomness in the corresponding incarnations.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)and various \laws of large numbers" (presented in Appendix D.1.2) will be exten-sively used.7.1 One-Way FunctionsLoosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Thus, in assuming that one-way functions exist,we are postulating the existence of e�cient processes (i.e., the computation of thefunction in the forward direction) that are hard to reverse. Analogous phenomenain daily life are known to us in abundance (e.g., the lighting of a match). Thus,the assumption that one-way functions exists is a complexity theoretic analogue ofdaily experience.One-way functions can also be thought of as e�cient ways for generating \puz-zles" that are infeasible to solve; that is, the puzzle is a random image of the



7.1. ONE-WAY FUNCTIONS 229function and a solution is a corresponding preimage. Furthermore, the person gen-erating the puzzle knows a solution to it and can e�ciently verify the validity of(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, everymechanism for generating such puzzles can be converted to a one-way function.The reader may note that when presented in terms of generating hard puzzles,one-way functions have a clear cryptographic avor. Indeed, one-way functionsare central to cryptography, but we shall not explore this aspect here (and ratherrefer the reader to Appendix C). Similarly, one-way functions are closely related to(general-purpose) pseudorandom generators, but this connection will be exploredin Section 8.3. Instead, in the current section, we will focus on one-way functionsper se.Teaching note: While we recommend including a basic treatment of pseudorandom-ness within a course on complexity theory, we do not recommend doing so with respectto cryptography. The reason is that cryptography is far more complex than pseudo-randomness (e.g., compare the de�nition of secure encryption to the the de�nition ofpseudorandom generators). The extra complexity is due to conceptual richness, whichis something good, except that some of these conceptual issues are central to cryptog-raphy but not to complexity theory. Thus, teaching cryptography in the context of acourse on complexity theory is likely to either overload the course with material thatis not central to complexity theory or cause a super�cial and misleading treatment ofcryptography. We are not sure as to which of these two possibilities is worse. Still, forthe bene�t of the interested reader, we have included an overview of the foundations ofcryptography as an appendix to the main (see Appendix C).7.1.1 The concept of one-way functionsLet us assume that P 6= NP or even that NP is not contained in BPP. Canwe use this assumption to our bene�t? Not really, because the assumption refersto the worst-case complexity of problems, and it may be that hard instances arehard to �nd. But then, it seems that if we cannot generate hard instances then wecannot bene�t from their existence.In Section 7.2 we shall see that worst-case hardness (of NP or even E) can betransformed into average-case hardness of E . Such a transformation is not knownfor NP itself, and in some applications (e.g., in cryptography) we wish the hardon the average problem to be in NP . In this case, we need to assume that, forsome problem in NP , hard instances not only exist but are easy to generate. Thatis, NP is \hard on the average" with respect to a distribution that is e�cientlysampleable. This assumption will be further discussed in Section 10.2.However, for the aforementioned applications (e.g., in cryptography) this as-sumption does not seem to su�ce either: we know how to utilize such \hard on theaverage" problems only when we can e�ciently generate hard instances coupledwith adequate solutions.1 That is, we assume that, for some search problem in1We wish to stress the di�erence between the two gaps discussed here. Our feeling is thatworst-case hardness (per se) is far more di�cult to utilize than average-case hardness that doesnot correspond to an e�cient generation of \solved" instances.



230 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSPC (resp., decision problem in NP), we can e�ciently generate instance-solutionpairs (resp., yes-instances coupled with corresponding NP-witnesses) such that theinstance is hard to solve (of course, for a person that does not get the solution(resp., witness)).Let us formulate the latter notion. Referring to De�nition 2.3, we considera relation R in PC (i.e., R is polynomially bounded and membership in R canbe determined in polynomial-time), and assume that there exists a probabilisticpolynomial-time algorithm G that satis�es the following two conditions:1. On input 1n, algorithm G always generates a pair in R such that the �rstelement has length n. That is, Pr[G(1n) 2 R \ (f0; 1gn � f0; 1g�)] = 1.2. It is infeasible to �nd solutions to instances that are generated by G; thatis, when only given the �rst element of G(1n), it is infeasible to �nd an ad-equate solution. Formally, denoting the �rst element of G(1n) by G1(1n),for every probabilistic polynomial-time (solver) algorithm S, it holds thatPr[(G1(1n); S(G1(1n)) 2 R] = �(n), where � vanishes faster than any poly-nomial fraction (i.e., for every positive polynomial p and all su�ciently largen it is the case that �(n) < 1=p(n)).We call G a generator of solved intractable instances for R. We will show that sucha generator exists if and only if one-way functions exists, where one-way functionsare functions that are easy to evaluate but hard (on the average) to invert. Thatis, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cient algorithmthat on input x outputs f(x), whereas any feasible algorithm that tries to �nd apreimage of f(x) under f may succeed only with negligible probability (where theprobability is taken uniformly over the choices of x and the algorithm's coin tosses).Associating feasible computations with probabilistic polynomial-time algorithmsand negligible functions with functions that vanish faster than any polynomialfraction, we obtain the following de�nition.De�nition 7.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (7.1)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0.22An alternative formulation of Eq. (7.1) relies on the conventions in Appendix D.1.1. Speci�-cally, letting Un denote a random variable uniformly distributed in f0; 1gn, we may write Eq. (7.1)as Pr[A0(f(Un); 1n) 2 f�1(f(Un))] < 1=p(n), recalling that both occurrences of Un refer to thesame sample.



7.1. ONE-WAY FUNCTIONS 231Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time poly-nomial in the length of x, which is important in case f drastically shrinks its input(e.g., jf(x)j = O(log jxj)). Typically (and, in fact, without loss of generality, seeExercise 7.1), f is length preserving, in which case the auxiliary input 1n is re-dundant. Note that A0 is not required to output a speci�c preimage of f(x); anypreimage (i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1,the string x is the only preimage of f(x) under f ; but in general there may beother preimages.) It is required that algorithm A0 fails (to �nd a preimage) withoverwhelming probability, when the probability is also taken over the input distri-bution. That is, f is \typically" hard to invert, not merely hard to invert in some(\rare") cases.Proposition 7.2 The following two conditions are equivalent:1. There exists a generator of solved intractable instances for some R 2 NP.2. There exist one-way functions.Proof Sketch: Suppose that G is such a generator of solved intractable instancesfor some R 2 NP, and suppose that on input 1n it tosses `(n) coins. For simplicity,we assume that `(n) = n, and consider the function g(r) = G1(1jrj; r), whereG(1n; r) denotes the output of G on input 1n when using coins r (and G1 is asin the foregoing discussion). Then g must be one-way, because an algorithm thatinverts g on input x = g(r) obtains r0 such that G1(1n; r0) = x and G(1n; r0) mustbe in R (which means that the second element of G(1n; r0) is a solution to x). Incase `(n) 6= n (and assuming without loss of generality that `(n) � n), we de�neg(r) = G1(1n; s) where n is the largest integer such that `(n) � jrj and s is the`(n)-bit long pre�x of r.Suppose, on the other hand, that f is a one-way function. Then R def= f(f(x); x) :x 2 f0; 1g�g is in PC, and G(1n) = (f(r); r) for a uniformly selected r 2 f0; 1gn is agenerator of solved intractable instances for R, because any solver of R is e�ectivelyinverting f on f(Un).Comments. Several candidates one-way functions and variation on the basicde�nition appear in Appendix C.2.1. Here, for the sake of future discussions, wede�ne a stronger version of one-way functions, which refers to the infeasibility ofinverting the function by non-uniform circuits of polynomial-size. Here we use theform discussed in Footnote 2.De�nition 7.3 (one-way functions, non-uniformly hard): A one-way function f :f0; 1g� ! f0; 1g� is said to be non-uniformly hard to invert if for every family ofpolynomial-size circuits fCng, every polynomial p, and all su�ciently large n,Pr[Cn(f(Un); 1n) 2 f�1(f(Un))] < 1p(n)We note that if a function is infeasible to invert by polynomial-size circuits then it ishard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity(more than) compensates for lack of randomness. See Exercise 7.2.



232 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS7.1.2 Ampli�cation of Weak One-Way FunctionsIn the forgoing discussion we have interpreted \hardness on the average" in a verystrong sense. Speci�cally, we required that any feasible algorithm fails to solvethe problem (e.g., invert the one-way function) almost always (i.e., except withnegligible probability). This interpretation is indeed the one that is suitable forvarious applications. Still, a weaker interpretation of hardness on the average,which is also appealing, only requires that any feasible algorithm fails to solve theproblem often enough (i.e., with noticeable probability). The main thrust of thecurrent section is showing that the mild form of hardness on the average can betransformed into the strong form discussed in Section 7.1.1. Let us �rst de�ne themild form of hardness on the average, using the framework of one-way functions.Speci�cally, we de�ne weak one-way functions.De�nition 7.4 (weak one-way functions): A function f :f0; 1g�!f0; 1g� is calledweakly one-way if the following two conditions hold:1. Easy to evaluate: As in De�nition 7.1.2. Weakly hard to invert: There exists a positive polynomial p such that forevery probabilistic polynomial-time algorithm A0 and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 62 f�1(f(x))] > 1p(n) (7.2)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0. In such a case, we say that f is 1=p-one-way.Here we require that algorithm A0 fails (to �nd an f -preimage for a random f -image) with noticeable probability, rather than with overwhelmingly high prob-ability (as in De�nition 7.1). For clarity, we will occasionally refer to one-wayfunctions as in De�nition 7.1 by the term strong one-way functions.We note that, assuming that one-way functions exist at all, there exists weakone-way functions that are not strongly one-way (see Exercise 7.3). Still, any weakone-way function can be transformed into a strong one-way function. This is indeedthe main result of the current section.Theorem 7.5 (ampli�cation of one-way functions): The existence of weak one-way functions implies the existence of strong one-way functions.Proof Sketch: The construction itself is straightforward. We just parse the argu-ment to the new function into su�ciently many blocks, and apply the weak one-wayfunction on the individual blocks. That is, suppose that f is 1=p-one-way, for somepolynomial p, and consider the following functionF (x1; :::; xt) = (f(x1); :::; f(xt)) (7.3)where t def= n � p(n) and x1; :::; xt 2 f0; 1gn.



7.1. ONE-WAY FUNCTIONS 233(Indeed F should be extended to strings of length outside fn2 � p(n) : n 2 Ng andthis extension must be hard to invert on all preimage lengths.)3We warn that the hardness of inverting the resulting function F is not es-tablished by mere \combinatorics" (i.e., considering the relative volume of St in(f0; 1gn)t, for S � f0; 1gn, where S represents the set of \easy to invert" f -images).Speci�cally, one may not assume that the potential inverting algorithm works inde-pendently on each block. Indeed this assumption seems reasonable, but we shouldnot make assumptions regarding the class of all e�cient algorithms unless we canactually prove that nothing is lost by such assumptions.The hardness of inverting the resulting function F is proved via a so called\reducibility argument" (which is used to prove all conditional results in the area).By a reducibility argument we actually mean a reduction, but one that is analyzedwith respect to average case complexity. Speci�cally, we show that any algorithmthat inverts the resulting function F with non-negligible success probability canbe used to construct an algorithm that inverts the original function f with successprobability that violates the hypothesis (regarding f). In other words, we reducethe task of \strongly inverting" f (i.e., violating its weak one-wayness) to the taskof \weakly inverting" F (i.e., violating its strong one-wayness). In particular, oninput y = f(x), the reduction invokes the F -inverter (polynomially) many times,each time feeding it with a sequence of random f -images that contains y at arandom location. (Indeed such a sequence corresponds to a random image of F .)Details follow.Suppose towards the contradiction that F is not strongly one-way; that is, thereexists a probabilistic polynomial-time algorithm B0 and a polynomial q(�) so thatfor in�nitely many m'sPr[B0(F (Um))2F�1(F (Um))] > 1q(m) (7.4)Focusing on such a generic m and assuming (see Footnote 3) that m = n2p(n), wepresent the following probabilistic polynomial-time algorithm, A0, for inverting f .On input y and 1n (where supposedly y = f(x) for some x 2 f0; 1gn), algorithm A0proceeds by applying the following probabilistic procedure, denoted I , on input yfor t0(n) times, where t0(�) is a polynomial that depends on the polynomials p andq (speci�cally, we set t0(n) def= 2n2 � p(n) � q(n2p(n))).Procedure I (on input y and 1n):For i = 1 to t(n) def= n � p(n) do begin(1) Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.(2) Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)(3) If f(zi) = y then halt and output zi.(This is considered a success).3One simple extension is to de�ne F (x) to equal F (x1; :::; xn�p(n)), where n is the largest integersatisfying n2p(n) � jxj and xi is the ith consecutive n-bit long string in x (i.e., x = x1 �xn�p(n)x0,where x1; :::; xn�p(n) 2 f0; 1gn).



234 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSendUsing Eq. (7.4), we now present a lower bound on the success probability of al-gorithm A0, deriving a contradiction to the theorem's hypothesis. To this end wede�ne a set, denoted Sn, that contains all n-bit strings on which the procedure Isucceeds with probability greater than n=t0(n). (The probability is taken only overthe coin tosses of procedure I). Namely,Sn def= �x2f0; 1gn : Pr[I(f(x))2f�1(f(x))] > nt0(n)�In the next two claims we shall show that Sn contains all but at most a 1=2p(n)fraction of the strings of length n, and that for each string x 2 Sn algorithm A0inverts f on f(x) with probability exponentially close to 1. It will follow that A0inverts f on f(Un) with probability greater than 1� (1=p(n)), in contradiction tothe theorem's hypothesis.Claim 7.5.1: For every x 2SnPr �A0(f(x))2f�1(f(x))� > 1� 2�nThis claim follows directly from the de�nitions of Sn and A0.Claim 7.5.2: jSnj > �1� 12p(n)� � 2nThe rest of the proof is devoted to establishing this claim, and indeed combiningClaims 7.5.1 and 7.5.2, the theorem follows.The key observation is that, for every i 2 [t(n)] and every xi 2 f0; 1gn n Sn, itholds that Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ���U (i)n = xi i� Pr �I(f(xi)) 2 f�1(f(xi))� � nt0(n)where U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n).It follows that� def= Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ �9i s.t. U (i)n 2f0; 1gn n Sn�i� t(n)Xi=1 Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ U (i)n 2f0; 1gn n Sni� t(n) � nt0(n) :On the other hand, using Eq. (7.4), we have� � Pr �B0(F (Un2p(n)))2F�1(F (Un2p(n)))� � Pr h(8i)U (i)n 2Sni� 1q(n2p(n)) � Pr [Un2Sn]t(n) :



7.1. ONE-WAY FUNCTIONS 235Using t0(n) = 2n2 � p(n) � q(n2p(n)) and t(n) = n � p(n), we get Pr[Un 2 Sn] >(1=2q(n2p(n)))1=(n�p(n)), which implies Pr[Un 2 Sn] > 1� (1=2p(n)) for su�cientlylarge n. Claim 7.5.2 follows, and so does the theorem.Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weakone-way function f , we �rst constructed a polynomial-time computable functionF with the intention of later proving that F is strongly one-way. To prove thatF is strongly one-way, we used a reducibility argument. The argument transformse�cient algorithms that supposedly contradict the strong one-wayness of F intoe�cient algorithms that contradict the hypothesis that f is weakly one-way. HenceF must be strongly one-way. We stress that our algorithmic transformation, whichis in fact a randomized Cook reduction, makes no implicit or explicit assumptionsabout the structure of the prospective algorithms for inverting F . Such assumptions(e.g., the \natural" assumption that the inverter of F works independently on eachblock) cannot be justi�ed (at least not at our current state of understanding of thenature of e�cient computations).We use the term a reducibility argument, rather than just saying a reductionso as to emphasize that we do not refer here to standard (worst-case complexity)reductions. Let us clarify the distinction: In both cases we refer to reducing thetask of solving one problem to the task of solving another problem; that is, we usea procedure solving the second task in order to construct a procedure that solvesthe �rst task. However, in standard reductions one assumes that the second taskhas a perfect procedure solving it on all instances (i.e., on the worst-case), andconstructs such a procedure for the �rst task. Thus, the reduction may invoke thegiven procedure (for the second task) on very \non-typical" instances. This cannotbe allowed in our reducibility arguments. Here, we are given a procedure thatsolves the second task with certain probability with respect to a certain distribution.Thus, in employing a reducibility argument, we cannot invoke this procedure onany instance. Instead, we must consider the probability distribution, on instancesof the second task, induced by our reduction. In our case (as in many cases)the latter distribution equals the distribution to which the hypothesis (regardingsolvability of the second task) refers, but other cases may be handled too (e.g., thesedistributions may be \su�ciently close" for the speci�c purpose). In any case, acareful analysis of the distribution induced by the reducibility argument is due.(Indeed, the same issue arises in the context of reductions among \distributionalproblems" considered in Section 10.2.)An information theoretic analogue. Theorem 7.5 has a natural informationtheoretic (or \probabilistic") analogue that asserts that repeating an experimentthat has a noticeable failure probability, su�ciently many times yields some failurewith very high probability. The reader is probably convinced at this stage thatthe proof of Theorem 7.5 is much more complex than the proof of the informationtheoretic analogue. In the information theoretic context the repeated events areindependent by de�nition, whereas in the computational context no such indepen-dence (which corresponds to the naive argument discussed at the beginning of the



236 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSproof of Theorem 7.5) can be guaranteed. Another indication to the di�erence be-tween the two settings follows. In the information theoretic setting the probabilitythat none of the failure events occurs decreases exponentially in the number of rep-etitions. In contrast, in the computational setting we can only reach an unspeci�ednegligible bound on the inverting probabilities of polynomial-time algorithms. Fur-thermore, it may be the case that F constructed in the proof of Theorem 7.5 can bee�ciently inverted on F (Un2p(n)) with success probability that is sub-exponentiallydecreasing (e.g., with probability 2�(log2 n)3), whereas the analogous informationtheoretic bound is exponentially decreasing (i.e., e�n).7.1.3 Hard-Core PredicatesOne-way functions per se su�ce for one central application: the construction ofsecure signature schemes (see Appendix C.6). For other applications, one relies notmerely on the infeasibility of fully recovering the preimage of a one-way function,but rather on the infeasibility of meaningfully guessing bits in the preimage. Thelatter notion is captured by the de�nition of a hard-core predicate.Recall that saying that a function f is one-way means that given a typical y(in the range of f) it is infeasible to �nd a preimage of y under f . This does notmean that it is infeasible to �nd partial information about the preimage(s) of yunder f . Speci�cally, it may be easy to retrieve half of the bits of the preimage(e.g., given a one-way function f consider the function f 0 de�ned by f 0(x; r) def=(f(x); r), for every jxj= jrj). We note that hiding partial information (about thefunction's preimage) plays an important role in more advanced constructs (e.g.,pseudorandom generators and secure encryption). With this motivation in mind,we will show that essentially any one-way function hides speci�c partial informationabout its preimage, where this partial information is easy to compute from thepreimage itself. This partial information can be considered as a \hard core" of thedi�culty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x),can guess b(x) with success probability that is non-negligibly better than one half.De�nition 7.6 (hard-core predicates): A polynomial-time computable predicateb : f0; 1g� ! f0; 1g is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm A0, every positive polynomial p(�), and all su�cientlylarge n's Pr [A0(f(x))=b(x)] < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gnand all the possible outcomes of the internal coin tosses of algorithm A0.Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obviousalgorithms that guess b(x) from f(x) with success probability at least one half (e.g.,the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, ifb is a hard-core predicate (of any function) then it follows that b is almost unbiased(i.e., for a uniformly chosen x, the di�erence jPr[b(x) = 0] � Pr[b(x) = 1]j must be
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f(x)

x

b(x)The solid arrows depict easily computable transformationwhile the dashed arrows depict infeasible transformations.Figure 7.1: The hard-core of a one-way function { an illustration.a negligible function in n). Finally, if b is a hard-core of a 1-1 function f that ispolynomial-time computable then f must be a one-way function. In general, theinteresting case is when being a hard-core is a computational phenomenon ratheran information theoretic one (which is due to \information loss" of f).Theorem 7.7 (a generic hard-core predicate): For any one-way function f , theinner-product mod 2 of x and r, denoted b(x; r), is a hard-core of f 0(x; r) =(f(x); r).In other words, given f(x) and a random subset S � [jxj], it is infeasible to guess�i2Sxi signi�cantly better than with probability 1=2, where x = x1 � � �xn is uni-formly distributed in f0; 1gn.Proof Sketch: The proof is by a so-called \reducibility argument" (see Sec-tion 7.1.2). Speci�cally, we reduce the task of inverting f to the task of predictingthe hard-core of f 0, while making sure that the reduction (when applied to inputdistributed as in the inverting task) generates a distribution as in the de�nitionof the predicting task. Thus, a contradiction to the claim that b is a hard-coreof f 0 yields a contradiction to the hypothesis that f is hard to invert. We stressthat this argument is far more complex than analyzing the corresponding \prob-abilistic" situation (i.e., the distribution of the inner-product mod 2 of X and r,conditioned on a uniformly selected r 2 f0; 1gn, where X is a random variablewith super-logarithmic min-entropy, which represents the \e�ective" knowledge ofx, when given f(x)).44The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropy mthen maxvfPr[X = v]g = 2�m. The Leftover Hashing Lemma (see Appendix D.2) implies that,



238 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSOur starting point is a probabilistic polynomial-time algorithm B that satis�es,for some polynomial p and in�nitely many n's, Pr[B(f(Xn); Un) = b(Xn; Un)] >(1=2) + (1=p(n)), where Xn and Un are uniformly and independently distributedover f0; 1gn. Using a simple averaging argument, we focus on a " def= 1=2p(n)fraction of the x's for which Pr[B(f(x); Un) = b(x; Un)] > (1=2) + " holds. We willshow how to use B in order to invert f , on input f(x), provided that x is in thegood set (which has density ").As a warm-up, suppose for a moment that, for the aforementioned x's, algorithmB succeeds with probability p > 34+1=poly(jxj) rather than at least 12+1=poly(jxj).In this case, retrieving x from f(x) is quite easy: To retrieve the ith bit of x, denotedxi, we randomly select r 2 f0; 1gjxj, and obtain B(f(x); r) and B(f(x); r�ei), whereei = 0i�110jxj�i and v�u denotes the addition mod 2 of the binary vectors v and u.A key observation underlying the foregoing scheme as well as the rest of the proof isthat b(x; r�s) = b(x; r)� b(x; s), which can be readily veri�ed by writing b(x; y) =Pni=1 xiyi mod 2 and noting that addition modulo 2 of bits corresponds to theirXOR. Indeed, note that if both B(f(x); r) = b(x; r) and B(f(x); r�ei) = b(x; r�ei)hold, then B(f(x); r) � B(f(x); r�ei) equals b(x; r) � b(x; r�ei) = b(x; ei) = xi.The probability that both B(f(x); r)=b(x; r) and B(f(x); r�ei)=b(x; r�ei) hold,for a random r, is at least 1� 2 � (1� p)> 12 + 1poly(jxj) . Hence, repeating the aboveprocedure su�ciently many times (using independent random choices of such r's)and ruling by majority, we retrieve xi with very high probability. Similarly, we canretrieve all the bits of x, and hence invert f on f(x). However, the entire analysiswas conducted under (the unjusti�able) assumption that p > 34+ 1poly(jxj) , whereaswe only know that p > 12+" for " = 1=poly(jxj).The problem with the foregoing procedure is that it doubles the original errorprobability of algorithm B on inputs of the form (f(x); �). Under the unrealistic(foregoing) assumption that B's average error on such inputs is non-negligiblysmaller than 14 , the \error-doubling" phenomenon raises no problems. However,in general (and even in the special case where B's error is exactly 14 ) the aboveprocedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreasedby repeating B several times (e.g., for every x, it may be that B always answercorrectly on three quarters of the pairs (f(x); r), and always err on the remainingquarter). What is required is an alternative way of using the algorithm B, a waythat does not double the original error probability of B.The key idea is generating the r's in a way that allows applying algorithmB only once per each r (and i), instead of twice. Speci�cally, we will invoke Bon (f(x); r� ei) in order to obtain a \guess" for b(x; r� ei), and obtain b(x; r)in a di�erent way (which does not involve using B). The good news is that theerror probability is no longer doubled, since we only use B to get a \guess" ofb(x; r� ei). The bad news is that we still need to know b(x; r), and it is notclear how we can know b(x; r) without applying B. The answer is that we canin this case, Pr[b(X;Un) = 1jUn] = 12 � 2�
(m), where Un denotes the uniform distribution overf0; 1gn, and b(u; v) denotes the inner-product mod 2 of u and v.



7.1. ONE-WAY FUNCTIONS 239guess b(x; r) by ourselves. This is �ne if we only need to guess b(x; r) for oner (or logarithmically in jxj many r's), but the problem is that we need to know(and hence guess) the value of b(x; r) for polynomially many r's. The obviousway of guessing these b(x; r)'s yields an exponentially small success probability.Instead, we generate these polynomially many r's such that, on one hand they are\su�ciently random" whereas, on the other hand, we can guess all the b(x; r)'s withnoticeable success probability.5 Speci�cally, generating the r's in a speci�c pairwiseindependent manner will satisfy both (conicting) requirements. We stress that incase we are successful (in our guesses for all the b(x; r)'s), we can retrieve x withhigh probability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated(and the corresponding b(x; r)'s are guessed) is indeed in place. To generate m =poly(jxj) many r's, we uniformly (and independently) select ` def= log2(m+1) stringsin f0; 1gjxj. Let us denote these strings by s1; :::; s`. We then guess b(x; s1) throughb(x; s`). Let us denote these guesses, which are uniformly (and independently)chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guessesfor the b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond tothe di�erent non-empty subsets of f1; 2; :::; `g. Speci�cally, for every such subsetJ , we let rJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwiseindependent and each is uniformly distributed in f0; 1gjxj; see Exercise 7.5. Thekey observation is that b(x; rJ ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guessfor b(x; rJ ) is �j2J�j , and with noticeable probability all our guesses are correct.Wrapping-up everything, we obtain the following procedure, where " = 1=poly(n)represents a lower-bound on the advantage of B in guessing b(x; �) for an " fractionof the x's.Inverting procedure (on input y = f(x) and parameters n and "):Set ` = log2(n="2) +O(1).(1) Select uniformly and independently s1; :::; s` 2 f0; 1gn.Select uniformly and independently �1; :::; �` 2 f0; 1g.(2) For every non-empty J � [`], compute rJ = �j2Jsj and �J = �j2J�j .(3) For i = 1; :::; n determine the bit zi according to the majority voteof the (2` � 1)-long sequence of bits (�J�B(f(x); rJ�ei));6=J�[`].(4) Output z1 � � � zn.Note that the \voting scheme" employed in Step 3 uses pairwise independent sam-ples (i.e., the rJ 's), but works essentially as well as it would have worked withindependent samples (i.e., the independent r's).6 That is, for every i and J , itholds that Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > (1=2)+", where rJ = �j2Jsj ,5Alternatively, we can try all polynomially many possible guesses. In such a case, we shalloutput a list of candidates that, with high probability, contains x.6Our focus here is on the accuracy of the approximation obtained by the sample, and not somuch on the error probability. We wish to approximate Pr[b(x; r) � B(f(x); r�ei) = 1] up toan additive term of ", because such an approximation allows to correctly determine b(x; ei). Apairwise independent sample of O(t="2) points allows for an approximation of a value in [0; 1] upto an additive term of " with error probability 1=t, whereas a totally random sample of the samesize yields error probability exp(�t). Since we can a�ord setting t = poly(n) and having error



240 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSand (for every �xed i) the events corresponding to di�erent J 's are pairwise inde-pendent. It follows that if for every j 2 [`] it holds that �j = b(x; sj), then forevery i and J we havePrs1;:::;s` [�J �B(f(x); rJ�ei) = b(x; ei)] (7.5)= Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > 12 + "where the equality is due to �J = �j2J�j = b(x; rJ ) = b(x; rJ �ei) � b(x; ei).Note that Eq. (7.5) refers to the correctness of a single vote for b(x; ei). Usingm = O(n="2) and noting that these (Boolean) votes are pairwise independent, weinfer that the probability that the majority of these votes is wrong is upper-boundedby 1=2n. Using a union bound on all i's, we infer that with probability at least1=2, all majority votes are correct and thus x is retrieved correctly. Recall that theforegoing is conditioned on �j = b(x; sj) for every j 2 [`], which in turn holds withprobability 2�` = (m+1)�1 = 
("2=n) = 1=poly(n), Thus, x is retrieved correctlywith probability 1=poly(n), and the theorem follows.Digest. Looking at the proof of Theorem 7.7, we note that it actually refers to ablack-box Bx(�) that approximates b(x; �); speci�cally, in the case of Theorem 7.7we used Bx(r) def= B(f(x); r). In particular, the proof does not use the fact thatwe can verify the correctness of the preimage recovered by the described process.Furthermore, using the alternative procedure outlined in Footnote 5, the proofextends to establish the existence of a poly(n=")-time oracle machine that, forevery x 2 f0; 1gn, given oracle access to any Bx : f0; 1gn ! f0; 1g satisfyingPrr2f0;1gn [Bx(r) = b(x; r)] � 12 + " (7.6)outputs, with probability at least 1=2, a list of n-bit strings that includes x. Notingthat x is merely a string for which Eq. (7.6) holds, and that the procedure may getn and " as inputs, we deriveTheorem 7.8 (Theorem 7.7, revisited): There exists a probabilistic oracle ma-chine that, given parameters n; " and oracle access to any function B : f0; 1gn !f0; 1g, halts after poly(n=") steps and with probability at least 1=2 outputs a list ofall strings x 2 f0; 1gn that satisfyPrr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.This machine can be modi�ed such that, with high probability, its output list doesnot include any string x such that Prr2f0;1gn [B(r) = b(x; r)] < 12 + "2 . Theorem 7.8probability 1=2n, the di�erence in the error probability between the two approximation schemesis not important here. For a wider perspective see Appendix D.1.2 and D.3.



7.2. HARD PREDICATES IN E 241can be viewed as a list decoding7 procedure for the Hadamard Code, where theHadamard encoding of a string x 2 f0; 1gn is the 2n-bit long string containing b(x; r)for every r 2 f0; 1gn.Applications. Hard-core predicates play a central role in the construction ofgeneral-purpose pseudorandom generators (see Section 8.3), commitment schemesand zero-knowledge proofs (see Sections 9.2.2 and C.4.3), and encryption schemes(see Appendix C.5).7.2 Hard Predicates in EWe start again with the assumption P 6= NP . In fact, we consider the seeminglystronger assumption by which NP cannot be solved by (non-uniform) families ofpolynomial-size circuits; that is, NP is not contained in P=poly (even not in�nitelyoften). Our goal is to transform this worst-case assumption into an average-casecondition, which is useful for our applications. Since the transformation will notyield a problem in NP but rather one in E , we might as well take the weaker as-sumption (see Exercise 7.8). That is, our starting point is actually that there existsan exponential-time solvable decision problem such that any family of polynomial-size circuit fails to solve it correctly on all but �nitely many input lengths.8Recall that our goal is to obtain a predicate (i.e., a decision problem) thatis computable in exponential-time but is inapproximable by small circuits, wheresmall may mean polynomial-size. For sake of later developments, we formulate ageneral notion of inapproximability.De�nition 7.9 (inapproximability, a general formulation): We say that f : f0; 1g� !f0; 1g is (S; �)-inapproximable if for every family of S-size circuits fCngn2N and allsu�ciently large n it holds thatPr[Cn(Un) 6= f(Un)] � �(n)2 (7.7)We say that f is T -inapproximable if it is (T; 1� (1=T ))-inapproximable.We chose the speci�c form of Eq. (7.7) such that the \level of inapproximability"represented by the parameter � will range in (0; 1) and increase with the valueof �. Speci�cally, (almost-everywhere) worst case hardness for circuits of size S7In contrast to standard decoding in which one recovers the unique information that is encodedin the codeword that is closest to the given string, in list decoding one recovers all strings havingencoding that is at a speci�ed distance from the given string. We mention that list decoding isapplicable and valuable in the case that the speci�ed distance does not allow for unique decodingand/or that the speci�ed distance is greater than half the distance of the code. See furtherdiscussion in Appendix E.1.8Note that our starting point is actually stronger than assuming the existence of a function fin E n P=poly. Such an assumption would mean that any family of polynomial-size circuit failsto compute f correctly on in�nitely many input lengths, whereas our starting point postulatesfailures on all but �nitely many lengths.



242 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSis represented by (S; �)-inapproximability with �(n) = 2�n+1 (i.e., in this casePr[C(Un) 6= f(Un)] � 2�n for every circuit Cn of size S(n)), whereas no predicatecan be (S; �)-inapproximability for �(n) = 1 � O(2�n) even with S(n) = O(n)(i.e., Pr[C(Un) = f(Un)] � 0:5 + O(2�n) holds for some linear-size circuit; seeExercise 7.9). Indeed, Eq. (7.7) can be interpreted as an upper-bound on thecorrelation of each adequate circuit with f (i.e., E[�(C(Un); f(Un))] � 1 � �(n),where �(�; �) = 1 if � = � and �(�; �) = �1 otherwise). Thus, T -inapproximabilitymeans that no family of size T circuits can correlate f better than 1=T .Comments. Recall that E denote the class of exponential-time solvable decisionproblems (equivalently, exponential-time computable Boolean predicates); that is,E = ["Dtime(t"), where t"(n) def= 2"n. We highlight the aforementioned termalmost everywhere: Our starting point is not merely that E is not contained inP=poly (or in other circuit size classes to be discussed), but rather that this isthe case almost everywhere. Note that by saying that f has circuit complexityexceeding S, we merely mean that there are in�nitely many n's such that no circuitof size S(n) can computes f correctly on all inputs of length n. In contrast, bysaying that f has circuit complexity exceeding S almost everywhere, we mean thatfor all but �nite many n's no circuit of size S(n) can computes f correctly on allinputs of length n.We start (in Section 7.2.1) with a treatment of assumptions and hardness am-pli�cation regarding polynomial-size circuits, which su�ce for non-trivial deran-domization of BPP. We then turn (in Section 7.2.2) to assumptions and hardnessampli�cation regarding exponential-size circuits, which yield a \full" derandom-ization of BPP (i.e., BPP = P). In fact, both sections contain material that isapplicable to various other circuit-size bounds, but the motivational focus is asstated.Teaching note: Section 7.2.2 is advanced material, which is best left for independentreading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outlineis provided and the interested reader is referred to the original paper [121].7.2.1 Ampli�cation wrt polynomial-size circuitsOur goal here is to prove the following result.Theorem 7.10 Suppose that for every polynomial p there exists a problem in Ehaving circuit complexity that is almost-everywhere greater than p. Then there existpolynomial-inapproximable Boolean functions in E; that is, for every polynomial pthere exists a p-inapproximable Boolean function in E.Theorem 7.10 is used towards deriving a meaningful derandomization of BPPunder the aforementioned assumption (see Part 2 of Theorem 8.19). We presenttwo proofs of Theorem 7.10. The �rst proof proceeds in two steps:1. Starting from the worst-case hypothesis, we �rst establish some mild level ofaverage-case hardness (i.e., a mild level of inapproximability). Speci�cally,



7.2. HARD PREDICATES IN E 243we show that for every polynomial p there exists a problem in E that is(p; ")-inapproximable for "(n) = 1=n3.2. For any polynomial p, we prove that if for every polynomial q the functionf is (q; 1=p)-inapproximable, then the function F (x1; :::; xt(n)) = �t(n)i=1 f(xi),where x1; :::; xt(n) 2 f0; 1gn and t(n) = n � p(n), is T -inapproximable for anypolynomial T . This claim is known as Yao's XOR Lemma, and its proof is farmore complex than the proof of its information theoretic analogue.The second proof of Theorem 7.10 consists of showing that the construction em-ployed in the �rst step, when composed with Theorem 7.8, actually yields thedesired end result. This proof will uncover a connection between hardness ampli�-cation and coding theory. Our presentation will thus proceed in three correspondingsteps (presented in x7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).
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Figure 7.2: Proofs of hardness ampli�cation: organization7.2.1.1 From worst-case hardness to mild average-case hardnessThe transformation of worst-case hardness into average-case hardness (even in amild sense) is indeed remarkable. Note that worst-case hardness may be due to arelatively small (super-polynomial9) number of instances, whereas even mild formsof average-case hardness refer to an exponential number of possible instances. Inother words, we should transform hardness that may occur on a negligible frac-tion of the instances into hardness that occurs on a noticeable fraction of theinstances. Intuitively, we should \spread" the hardness of few instances (of theoriginal problem) over all (or most) instances (of the transformed problem). Thecounter-positive view is that computing the value of typical instances of the trans-formed problem should enable solving the original problem on every instance.The aforementioned transformation is based on the self-correction paradigm (seealso x9.3.2.1), to be reviewed �rst. The paradigm refers to functions g that canbe evaluated at any desired point by using the value of g at a few random points,9Indeed, worst-case hardness for polynomial-size circuits cannot be due to a small (i.e., poly-nomial) number of instances, because a polynomial number of instances can be hard-wired intosuch circuits.



244 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSwhere each of these points is uniformly distributed in the function's domain (butindeed the points are not independently distributed). The key observation is thatif g(x) can be reconstructed based on the value of g at t such random points,then such a reconstruction can tolerate a 1=3t fraction of errors (regarding thevalues of g). Thus, if we can correctly obtain the value of g on all but at most a1=3t fraction of its domain, then we can probabilistically recover the correct valueof g at any point with very high probability. It follows that if no probabilisticpolynomial-time algorithm can correctly compute g in the worst-case sense, thenevery probabilistic polynomial-time algorithm must fail to correctly compute g onat least a 1=3t fraction of its domain.The archetypical example of a self-correctable function is any m-variate poly-nomial of individual degree d over a �nite �eld F such that jF j > dm + 1. Thevalue of such a polynomial at any desired point x can be recovered based on thevalues of dm + 1 points (other than x) that reside on a random line that passesthrough x. Note that each of these points is uniformly distributed in Fm, which isthe function's domain.Recall that we are given an arbitrary function f 2 E that is hard to computein the worst-case. Needless to say, this function is not necessarily self-correctable(based on relatively few points), but it can be extended into such a function.Speci�cally, we extend f : [N ]! f0; 1g (viewed as f : [N1=m]m ! f0; 1g) to an m-variate polynomial of individual degree d over a �nite �eld F such that jF j > dm+1and (d + 1)m = N . Intuitively, the extended function is at least as hard on theworst-case as f , and by self-correction the extended function must be mildly hardin the average-case. Details follow.Construction 7.11 (multi-variate extension)10: For any function fn : f0; 1gn !f0; 1g, �nite �eld F , H � F and integer m such that jH jm = 2n and jF j � mjH j,we consider the function f̂n : Fm ! F de�ned as the m-variate polynomial ofindividual degree jH j � 1 that extends fn : Hm ! f0; 1g. That is, we identifyf0; 1gn with Hm, and de�ne f̂n as the unique m-variate polynomial of individualdegree jH j � 1 that satis�es f̂n(x) = fn(x) for every x 2 Hm, where we view f0; 1gas a subset of F .Note that f̂n can be evaluated at any desired point, by evaluating fn on its entiredomain, and determining the unique m-variate polynomial of individual degreejH j�1 that agrees with fn onHm (see Exercise 7.10). Thus, for f : f0; 1g� ! f0; 1gin E , the corresponding f̂ (de�ned by separately extending the restriction of fto each input length) is also in E . For the sake of preserving various complexitymeasures, we wish to have jFmj = poly(2n), which leads to settingm = O(n= logn)(yielding jF j = poly(n), as in x9.3.2.2). In particular, in this case f̂n is de�ned overstrings of length O(n). The mild average-case hardness of f̂ follows by the forgoingdiscussion. In fact, we state and prove a more general result.10The algebraic fact underlying this construction is that for any function f : Hm ! F thereexists a unique m-variate polynomial f̂ : Fm ! F of individual degree jHj�1 such that for everyx 2 Hm it holds that f̂(x) = f(x). This polynomial is called a multi-variate polynomial extensionof f , and it can be found in poly(jHjm log jF j)-time. For details, see Exercise 7.10.



7.2. HARD PREDICATES IN E 245Theorem 7.12 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S. Then, there exists anexponential-time computable function f̂ : f0; 1g� ! f0; 1g� such that jf̂(x)j � jxjand for every family of circuit fC 0n0gn02N of size S0(n0) = S(n0=O(1))=poly(n0) itholds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2. Furthermore, f̂ does not depend on S.Theorem 7.12 completes the �rst step of the proof of Theorem 7.10, except that wedesire a Boolean function rather than one that does not stretch its input. The extrastep (of obtaining a Boolean function that is (poly(n); n�3)-inapproximable) maybe taken by considering the bits in the output of the function (see Exercise 7.11).11That is, if f̂ is hard to compute on an (1=n0)2 fraction of the n0-bit long inputsthen the Boolean predicate that returns an indicated bit of f̂(x) must be mildlyinapproximable.Proof: Given f as in the hypothesis and for every n 2 N , we consider therestriction of f to f0; 1gn, denoted fn, and apply Construction 7.11 to it, whileusing m = n= logn, jH j = n and n2 < jF j = poly(n). Recall that the resultingfunction f̂n maps strings of length n0 = log2 jFmj = O(n) to strings of lengthlog2 jF j = O(log n). Following the foregoing discussion, we note that by makingmjH j = o(n2) oracle calls to any circuit C 0n0 that satis�es Pr[C 0n0(Un0) = f̂n(Un0)] >1� (1=n0)2 > 1� (1=3mjH j), we can probabilistically recover the value of (f̂n andthus) fn on each input, with probability at least 2=3. Using error-reduction andderandomization as in the proof of Theorem 6.3, we obtain a circuit of size n3 � jC 0n0 jthat computes fn. By the hypothesis n3 � jC 0n0 j > S(n), and the theorem follows.Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-duction. That is, the proof consists of a self-correction procedure that allows forthe evaluation of f at any desired n-bit long point, using oracle calls to any circuitthat computes f̂ correctly on a 1� (1=n0)2 fraction of the n0-bit long inputs. Wenote that if f 2 E then f̂ 2 E , but we do not know how to preserve the complexityof f in case it is in NP . (Various indications to the di�culty of a worst-case toaverage-case reduction for NP are known; see, e.g., [40].)7.2.1.2 Yao's XOR LemmaHaving obtained a mildly inapproximable predicate, we wish to obtain a stronglyinapproximable one. The information theoretic context provides an appealing sug-gestion: Suppose that X is a Boolean random variable (representing the mildinapproximability of the aforementioned predicate) that equals 1 with probability". Then XORing the outcome of n=" independent samples of X yields a bit thatequals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the sameshould happen in the computational setting. That is, if f is hard to approximate11A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12actually establishes an error lower-bound of 
((log n0)=(n0)2) and that jf̂(x)j = O(log jxj).



246 CHAPTER 7. THE BRIGHT SIDE OF HARDNESScorrectly with probability exceeding 1 � " then XORing the output of f on n="non-overlapping parts of the input should yield a predicate that is hard to approx-imate correctly with probability that is non-negligibly higher than 1=2. The latterassertion turns out to be correct, but (even more than in Section 7.1.2) the proofof the computational phenomenon is considerably more complex than the analysisof the information theoretic analogue.Theorem 7.13 (Yao's XOR Lemma): Let p be a polynomial and suppose thatthe Boolean function f is (T; 1=p)-inapproximable, for every polynomial T . Thenthe function F (x1; :::; xt(n)) = �t(n)i=1 f(xi), where x1; :::; xt(n) 2 f0; 1gn and t(n) =n � p(n), is T 0-inapproximable for every polynomial T 0.Combining Theorem 7.12 (and Exercise 7.11), and Theorem 7.13, we obtain a proofof Theorem 7.10. (Recall that an alternative proof is presented in x7.2.1.3.)We note that proving Theorem 7.13 seems more di�cult than proving Theo-rem 7.5 (i.e., the ampli�cation of one-way functions), due to two issues. Firstly,unlike in Theorem 7.5, the computational problems are not in PC and thus wecannot e�ciently recognize correct solutions to them. Secondly, unlike in Theo-rem 7.5, solutions to instances of the transformed problem do not correspond ofthe concatenation of solutions for the original instances, but are rather a functionof the latter that losses almost all the information about the latter. The proof ofTheorem 7.13 presented next deals with each of these two di�culties separately.Several di�erent proofs of Theorem 7.13 are known. We choose using a proofthat bene�ts most from the material already presented in Section 7.1. This proofproceeds in two steps:1. First we prove that the corresponding \direct product" function P (x1; :::; xt(n)) =(f(x1); :::; f(xt(n))) is di�cult to compute in a strong average-case sense.2. Next we establish the desired result by an application of Theorem 7.8.Thus, given Theorem 7.8, our main focus is on the �rst step, which is of independentinterest (and is thus generalized from Boolean functions to arbitrary ones).Theorem 7.14 (The Direct Product Lemma): Let p be a polynomial and f :f0; 1g� ! f0; 1g�. Suppose that for every family of polynomial-size circuits, fCngn2N,and all su�ciently large n 2 N , it holds that Pr[Cn(Un) 6= f(Un)] > 1=p(n).Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), where x1; :::; xt(n) 2 f0; 1gn and t(n) =n �p(n). Then, for every family of polynomial-size circuits, fC 0mgm2N, it holds that�(m) def= Pr[C 0m(Um) = P (Um)] is a negligible function in m.Theorem 7.13 follows from Theorem 7.14 by considering the function P 0(x1; :::; xt(n); r) =b(f(x1) � � � f(xt(n)); r), where f is a Boolean function, r 2 f0; 1gt(n), and b(y; r) isthe inner-product modulo 2 of the t(n)-bit long strings y and r. Applying Theo-rem 7.8, we infer that P 0 is T 0-inapproximable for every polynomial T 0. Lastly, wereduce the approximation of P 0 to the approximation of F (see Exercise 7.12), andTheorem 7.13 follows.



7.2. HARD PREDICATES IN E 247Proof of Theorem 7.14. As in the proof of Theorem 7.5, we show how toconverts circuits that violate the theorem's conclusion into circuits that violatethe theorem's hypothesis. We note, however, that things were much simpler inthe context of Theorem 7.5: There we could (e�ciently) check whether or not avalue contained in the output of the circuit that solves the direct-product problemconstitutes a correct answer for the corresponding instance of the basic problem.Lacking such an ability in the current context, we shall have to use such valuesmore carefully. Loosely speaking, we will take a weighted majority vote amongvarious answers, where the weights reect our con�dence in the correctness of thevarious answers.We establish Theorem 7.14 by applying the following lemma that provides quan-titative bounds on the feasibility of computing the direct product of two functions.In this lemma, fYmgm2N and fZmgm2N are independent probability ensembles suchthat Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) for some function ` : N ! N .The lemma refers to the success probability of computing the direct product func-tion F : f0; 1g�! f0; 1g� de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj),when given bounds on the success probability of computing F1 and F2 (separately).Needless to say, these probability bounds refer to circuits of certain sizes. We stressthat the statement of the lemma is not symmetric with respect to the two func-tions, guaranteeing a stronger (and in fact lossless) preservation of circuit sizes forone of the functions (which is arbitrarily chosen to be F1).Lemma 7.15 (Direct Product, a quantitative two argument version): For fYmg,fZmg, F1, F2, `, fXng and F as in the foregoing, let �1(�) be an upper-bound onthe success probability of s1(�)-size circuits in computing F1 over fYmg. That is,for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m):Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-sizecircuits compute F2 over fZmg. Then, for every function " :N!R , the function� de�ned as �(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly com-pute F over fXng, wheres(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�:Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, whichcapitalizes on the asymmetry of Lemma 7.15. Speci�cally:� Wewrite P (x1; x2; :::; xt(n)) as P (t(n))(x1; x2; :::; xt(n)), where P (i)(x1; :::; xi) =(f(x1); :::; f(xi)) and P (i)(x1; :::; xi) � (P (i�1)(x1; :::; xi�1); f(xi)).For every polynomial s and any non-negligible function ", we shall proveby induction on i that circuits of size s(n) cannot compute P (i)(Ui�n) with



248 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSsuccess probability greater than (1� (1=p(n))i+(i� 1) � "(n). Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with success probability greater than(1� (1=p(n))t(n) + (t(n) � 1) � "(n) = exp(�n) + (t(n) � 1) � "(n). Recallingthat this is established for any polynomial s and any non-negligible function", Theorem 7.14 follows.� Turning to the induction itself, we �rst note that its basis (i.e., i = 1) isguaranteed by the theorem's hypothesis. The induction step (i.e., from i toi + 1) is proved using Lemma 7.15 with F1 = P (i) and F2 = f (along with�1(i �n) = (1� (1=p(n))i+(i� 1) � "(n), s1(i �n) = s(n), �2(n) = 1� (1=p(n))and s2(n) = poly(n="(n)) � s(n)). In particular, we use again the theorem'shypothesis regarding f , and note that �1(i �n) ��2(n)+"(n) is upper-boundedby (1� (1=p(n))i+1 + i � "(n).Proof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we considera family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is,Pr[Cn(Xn) = F (Xn)] > �(n). We will show how to use such circuits in order toobtain either circuits that violate the lemma's hypothesis regarding F1 or circuitsthat violate the lemma's hypothesis regarding F2. Towards this end, it is instructiveto write the success probability of Cn in a conditional form, while denoting the ithoutput of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we imme-diately derive a circuit (i.e., C 0n(y) = Cn(y; Zn�`(n))1) contradicting the lemma'shypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we can obtain a circuit contradicting the lemma's hypothesisregarding F2. The treatment of the latter case is indeed not obvious. The ideais that a su�ciently large sample of (Y`(n); F1(Y`(n))), which may be hard-wiredinto the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. That is, on input z, we select uniformly astring y satisfying Cn(y; z)1 = F1(y) (from the aforementioned sample), and out-put Cn(y; z)2. For a �xed z, sampling of the conditional space (i.e., y's satisfyingCn(y; z)1 = F1(y)) is possible provided that Pr[Cn(Y`(n); z)1=F1(Y`(n))] holds withnoticeable probability. The last caveat motivates a separate treatment of z's havinga noticeable value of Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest of z's (which areessentially ignored). Details follow.Let us �rst simplify the notations by �xing a generic n and using the abbre-viations C = Cn, " = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z goodif Pr[C(Y; z)1 = F1(Y )] � "=2 and let G be the set of good z's. Next, ratherthan considering the event C(Y; Z) = F (Y; Z), we consider the event C(Y; Z) =F (Y; Z) ^ Z2G, which occurs with almost the same probability (up to an additive



7.2. HARD PREDICATES IN E 249error term of "=2). This is the case because, for any z 62 G, it holds thatPr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y )] < "=2and thus z's that are not good do not contribute much to Pr[C(Y; Z) =F (Y; Z)];that is, Pr[C(Y; Z)=F (Y; Z) ^ Z2G] is lower-bounded by Pr[C(Y; Z)=F (Y; Z)] �"=2. Using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y; Z)=F (Y; Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (7.8)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y; Z)1 =F1(Y )] > �1(`) then we derive circuits violating the hypothesis concerning F2.Actually, we prove something stronger (which we will actually need for the othercase).Claim 7.15.1: For every z, it holds that Pr[C(Y; z)1=F1(Y )] � �1(`).Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1 = F1(Y )] >�1(`), we obtain a circuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesisconcerning F1. 2Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma'shypothesis concerning F2, and doing so we complete the proof of the lemma.Claim 7.15.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (7.8), and thus we focus on establish-ing the �rst inequality. We construct the circuit C 00 as suggested in the foregoingoutline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distri-bution (Y; F1(Y )) and let C 00(z) def= C(y; z)2, where (y; v) is a uniformly selectedamong the elements of S for which C(y; z)1 = v holds. Details follow.Let S be a sequence of m def= poly(n=") pairs, generated by taking m indepen-dent samples from the distribution (Y; F1(Y )). We stress that we do not assumehere that such a sample can be produced by an e�cient (uniform) algorithm (but,jumping ahead, we remark that such a sequence can be �xed non-uniformly). Foreach z 2 G � f0; 1gn�`, we denote by Sz the set of pairs (y; v) 2 S for whichC(y; z)1 = v. Note that Sz is a random sample of the residual probability spacede�ned by (Y; F1(Y )) conditioned on C(Y; z)1 = F1(Y ). Also, with overwhelminglyhigh probability, jSzj = 
(n="2), because z 2 G implies Pr[C(Y; z)1=F1(Y )] � "=2and m = 
(n2="3). Thus, for each z 2 G, with overwhelming probability takenover the choices of S, the sample Sz provides a good approximation to the condi-tional probability space. In particular, with probability greater than 1 � 2�n, itholds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSz j � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )]� "2 :(7.9)



250 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSThus, with positive probability, Eq. (7.9) holds for all z 2 G � f0; 1gn�`. Thecircuit C 00 computing F2 is now de�ned as follows. A set S = f(yi; vi) : i =1; :::;mg satisfying Eq. (7.9) for all good z's is \hard-wired" into the circuit C 00.(In particular, Sz is not empty for any good z.) On input z, the circuit C 00 �rstdetermines the set Sz, by running C for m times and checking, for each i = 1; :::;m,whether or not C(yi; z) = vi. In case Sz is empty, the circuit returns an arbitraryvalue. Otherwise, the circuit selects uniformly a pair (y; v) 2 Sz and outputsC(y; z)2. (The latter random choice can be eliminated by a standard averagingargument.) Using the de�nition of C 00 and Eq. (7.9), we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y )]Pr[C(Y; z)1=F1(Y )] � "2�Next, using Claim 7.15.1, we have:Pr[C 00(Z)=F2(Z)] �  Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2= Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2Finally, using Eq. (7.8), the claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductiveargument needs to be carried out in the computational setting, especially when anon-constant number of inductive steps is concerned. Indeed, our inductive proofof Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) thatallows to keep track of the relevant quantities (e.g., success probability and circuitsize) throughout the induction process. Secondly, we mention that Lemma 7.15(as well as Theorem 7.14) has a uniform complexity version that assumes that onecan e�ciently sample the distribution (Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). Fordetails see [98]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mention thatTheorem 7.5 (the ampli�cation of one-way functions) and Theorem 7.13 (Yao'sXOR Lemma) also have (tight) quantitative versions (see, e.g., [87, Sec. 2.3.2] and[98, Sec. 3], respectively).



7.2. HARD PREDICATES IN E 2517.2.1.3 List decoding and hardness ampli�cationRecall that Theorem 7.10 was proved in x7.2.1.1-7.2.1.2, by �rst constructing amildly inapproximable predicate via Construction 7.11, and then amplifying itshardness via Yao's XOR Lemma. In this subsection we show that the construc-tion used in the �rst step (i.e., Construction 7.11) actually yields a strongly in-approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.Speci�cally, we show that a strongly inapproximable predicate (as asserted in The-orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choiceof parameters) and the inner-product construction (of Theorem 7.8). The mainingredient of this argument is captured by the following result.Proposition 7.16 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1] sat-isfying "(n) > 2�n. Let fn be the restriction of f to f0; 1gn, and let f̂n be the func-tion obtained from fn when applying Construction 7.1112 with jH j = n="(n) andjF j = jH j3. Then, the function f̂ : f0; 1g� ! f0; 1g�, de�ned by f̂(x) = f̂jxj=3(x),is computable in exponential-time and for every family of circuit fC 0n0gn02N of sizeS0(n0) = poly("(n0=3)=n0) � S(n0=3) it holds that Pr[C 0n0(Un0) = f̂(Un0)] < "0(n0) def="(n0=3).Before turning to the proof of Proposition 7.16, let us describe how it yields analternative proof of Theorem 7.10. Firstly, for some  > 0, Proposition 7.16 yieldsan exponential-time computable function f̂ such that jf̂(x)j � jxj and for ev-ery family of circuit fC 0n0gn02N of size S0(n0) = S(n0=3)=poly(n0) it holds thatPr[C 0n0(Un0) = f̂(Un0)] < 1=S0(n0). Combining this with Theorem 7.8, we in-fer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, is S00-inapproximable forS00(n00) = S(n00=2)
(1)=poly(n00). In particular, for every polynomial p, we ob-tain a p-inapproximable predicate in E by applying the foregoing with S(n) =poly(n; p(n)). Thus, Theorem 7.10 follows.Proposition 7.16 is proven by observing that the transformation of fn to f̂nconstitutes a \good" code (see xE.1.1.4) and that any such code provides a worst-case to (strongly) average-case reduction. We start by de�ning the class of codesthat su�ces for the latter reduction, while noting that the code underlying themapping fn 7! f̂n is actually stronger than needed.De�nition 7.17 (e�cient codes supporting implicit decoding): For �xed functionsq; ` : N ! N and � : N ! [0; 1], the mapping � : f0; 1g� ! f0; 1g� is e�cient andsupports implicit decoding with parameters q; `; � if it satis�es the following twoconditions:1. Encoding: The mapping � is polynomial-time computable.It is instructive to view � as mapping N-bit long strings to sequences of length`(N) over [q(N)], and to view �(x) 2 [q(jxj)]`(jxj) as a mapping from [`(jxj)]to [q(jxj)].12Recall that in Construction 7.11 we have jHjm = 2n. Here we relax this condition allowingfor 2n � jHjm < 22m.



252 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS2. Decoding: There exists a polynomial p such that the following holds. Forevery w : [`(N)]! [q(N)] and x2f0; 1gN such that �(x) is (1 � �(N))-closeto w, there exists an oracle-aided13 circuit C of size p((logN)=�(N)) suchthat, for every i 2 [N ], it holds that Cw(i) equals the ith bit of x.The encoding condition implies that ` is polynomially bounded. The decodingcondition refers to any �-codeword that agrees with the oracle w : [`(N)]! [q(N)]on an �(N) fraction of the `(N) coordinates, where �(N) may be very small.We highlight the non-triviality of the decoding condition: There are N bits ofinformation in x, while the size of the circuit C is only p((logN)=�(N)) and yet Cshould be able to recover any desired entry of x by making queries to w, which maybe a highly corrupted version of �(x). Needless to say, the number of queries madeby C is upper-bounded by its size (i.e.,p((logN)=�(N))). On the other hand, thedecoding condition does not refer to the complexity of obtaining the aforementionedoracle-aided circuits.We mention that the transformation of fn to f̂n underlying Proposition 7.16(where N = 2n) is e�cient and supports implicit decoding with parameters q; `; �such that `(2n) = `(jhfnij) = jhfnij3 = 23n, �(2n) = "(n), and q(2n) = (n=�(2n))3.Furthermore, there are at most O(1=�(2n)2) codewords (i.e., f̂n's) that are (1 ��(2n))-close to any �xed w : [`(2n)]! [q(2n)], and the corresponding oracle-aidedcircuits can be constructed in probabilistic p(n=�(2n))-time.14 These results aretermed \list decoding" (with implicit representations). We stress that the fact thatfn 7! f̂n satis�es there properties (e.g., constitutes an e�cient code that supportsimplicit decoding) is highly non-trivial, but establishing this fact is beyond thescope of the current text (and the interested reader is referred to [205]). Our focusis on showing that e�cient codes that supports implicit decoding su�ce for worst-case to (strongly) average-case reductions. We state and prove a general result,noting that in the special case of Proposition 7.16 gn = f̂n.Theorem 7.18 Suppose that there exists a Boolean function f in E having circuitcomplexity that is almost-everywhere greater than S, and let " : N ! [0; 1]. Con-sider ` : N ! N such that n 7! log2 `(2n) is a 1-1 map of the integers, and letm(n) = log2 `(2n). Suppose that the mapping � : f0; 1g� ! f0; 1g� is e�cient andsupports implicit decoding with parameters q; `; � such that �(N) = "(blog2Nc).De�ne gn : [`(2n)] ! [q(2n)] such that gn(i) = �(hfni)(i), where hfni denotes the2n-bit long description of the truth-table of fn. Then, the function g : f0; 1g� !f0; 1g�, de�ned by g(z) = gm�1(jzj)(z), is computable in exponential-time and for13Oracle-aided circuits are de�ned analogously to oracle Turing machines. Alternatively, wemay consider here oracle machines that take advice such that both the advice length and themachine's running time are upper-bounded by p((logN)=�(N)). The relevant oracles may beviewed either as blocks of binary strings that encode sequences over [q(N)] or as sequences over[q(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [q(N)].14The construction may yield also oracle-aided circuits that compute the decoding of codewordsthat are almost (1 � �(2n))-close to w. That is, there exists a probabilistic p(n=�(2n))-timealgorithm that outputs a list of circuits that, with high probability, contains an oracle-aidedcircuit for the decoding of each codeword that is (1� �(2n))-close to w. Furthermore, with highprobability, the list contains only circuits that decode codewords that are (1 � �(2n)=2)-close tow.



7.2. HARD PREDICATES IN E 253every family of circuit fC 0n0gn02N of size S0(n0) = poly("(m�1(n0))=n0) �S(m�1(n0))it holds that Pr[C 0n0(Un0) = g(Un0)] < "0(n0) def= "(m�1(n0)).Proof Sketch: First note that we can generate the truth-table of fn in exponential-time, and by the encoding condition of � it follows that gn can be evaluated inexponential-time. Regarding g's average-case hardness, consider a circuit C 0 = C 0n0violating the conclusion of the theorem, let n = m�1(n0), and recall that "0(n0) ="(n) = �(2n). Then, C 0 is (1 � �(2n))-close to gn = �(hfni), and the decodingcondition of � asserts that we can recover each bit of hfni (i.e., evaluate fn) by acircuit of size p(n=�(2n)) � S0(n0) < S(n), in contradiction to the hypothesis.Comment. For simplicity, we formulated De�nition 7.17 in a crude manner thatsu�ces for the foregoing application. A more careful formulation of the decodingcondition refers to codewords that are (1� ((1=q(N)) + �(N)))-close to the oraclew : [`(N)]! [q(N)] rather than being (1� �(N))-close to it.15 Needless to say, thedi�erence is insigni�cant in the case that �(N)� 1=q(N) (as in Proposition 7.16,where we used q(N) = ((log2N)=�(N))3), but it is signi�cant in case we care aboutbinary codes (i.e., q(N) = 2, or codes over other small alphabets). We mentionthat Theorem 7.18 can be adapted to this context (of q(N) = 2), and directlyyields strongly inapproximable predicates. For details, see Exercise 7.13.7.2.2 Ampli�cation wrt exponential-size circuitsFor the purpose of stronger derandomization of BPP, we start with a stronger as-sumption regarding the worst-case circuit complexity of E and turn it to a strongerinapproximability result.Theorem 7.19 Suppose that there exists a decision problem L 2 E having almost-everywhere exponential circuit complexity; that is, there exists a constant b > 0 suchthat, for all but �nitely many n's, any circuit that correctly decides L on f0; 1gnhas size at least 2bk. Then, for some constant c > 0 and T (n) def= 2c�n, there existsa T -inapproximable Boolean function in E.Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =P) under the aforementioned assumption (see Part 1 of Theorem 8.19).Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-orem 7.8; see Exercise 7.14). An alternative proof, which uses di�erent ideas thatare of independent interest, will be briey reviewed next. The starting point of thelatter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.However, here we cannot a�ord to apply Yao's XOR Lemma (i.e., Theorem 7.13),15Note that this is the \right" formulation, because in the case that �(N) < 1=q(n) it seemsimpossible to satisfy the decoding condition (as stated in De�nition 7.17). Speci�cally, a random`(N)-sequence over [q(N)] is expected to be (1 � (1=q(N)))-close to any �xed codeword, andwith overwhelmingly high probability it will be (1 � ((1 � o(1))=q(N)))-close to almost all thecodewords, provided `(N)� q(n)2. But in case N � log q(N), we cannot hope to recover almostall N-bit long strings based on poly(q(N) logN) bits of advice (per each of them).



254 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSbecause the latter relates the size of circuits that strongly fail to approximate apredicate de�ned over poly(n)-bit long strings to the size of circuits that fail tomildly approximate a predicate de�ned over n-bit long strings. That is, Yao'sXOR Lemma asserts that if f : f0; 1gn ! f0; 1g is mildly inapproximable bySf -size circuits then F : f0; 1gpoly(n) ! f0; 1g is strongly inapproximable by SF -size circuits, where SF (poly(n)) is polynomially related to Sf (n). In particular,SF (poly(n)) < Sf (n) seems inherent in this reasoning. For the case of polynomiallower-bounds, this is good enough (i.e., if Sf can be an arbitrarily large polynomialthen so can SF ), but for SF (n) = exp(
(n)) we cannot obtain SF (m) = exp(
(m))(but rather only obtain SF (m) = exp(m
(1))).The source of trouble is that ampli�cation of inapproximability was achievedby taking a polynomial number of independent instances. Indeed, we cannot hopeto amplify hardness without applying f on many instances, but these instancesneed not be independent. Thus, the idea is to de�ne F (r) = �poly(n)i=1 f(xi), wherex1; :::; xpoly(n) 2 f0; 1gn are generated from r and still jrj = O(n). That is, weseek a \derandomized" version of Yao's XOR Lemma. In other words, we seek a\pseudorandom generator" of a type appropriate for expanding r to dependent xi'ssuch that the XOR of the f(xi)'s is as inapproximable as it would have been forindependent xi's.16Teaching note: In continuation to Footnote 16, we note that there is a strong con-nection between the rest of this section and Chapter 8. On top of the aforementionedconceptual aspects, we will refer to pairwise independence generators (see Section 8.6.1),random walks on expanders (see Section 8.6.3), and even to the Nisan-Wigderson Con-struction (Construction 8.17).The pivot of the proof is the notion of a hard region. Loosely speaking, Sis a hard region of a Boolean function f if f is strongly inapproximable on arandom input in S; that is, for every (relatively) small circuit Cn, it holds thatPr[Cn(Un) = f(Un)jUn 2 S] � 1=2. By de�nition, f0; 1g� is a hard region of anystrongly inapproximable predicate. One important (and non-trivial) observationis that any mildly inapproximable predicate has a hard region of density relatedto its inapproximability parameter. Loosely speaking, hardness ampli�cation willproceed via methods for generating related instances that hit the hard region withsu�ciently high probability. But, �rst let us study the notion of a hard region.7.2.2.1 Hard regionsWe actually generalize the notion of hard regions to arbitrary distributions. Theimportant special case of uniform distributions is obtained by taking Xn to beUn (i.e., the uniform distribution over f0; 1gn). In general, we only assume thatXn 2 f0; 1gn.16Indeed, this falls within the general paradigm discussed in Section 8.2. Furthermore, this sug-gestion provides another perspective on the connection between randomness and computationaldi�culty, which is the focus of much discussion in Chapter 8 (see, e.g., x8.3.7.2).



7.2. HARD PREDICATES IN E 255De�nition 7.20 (hard region relative to arbitrary distribution): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXng be a probability ensemble, s : N ! N and" :N! [0; 1].� We say that a set S is a hard region of f relative to fXng with respect tos(�)-size circuits and advantage "(�) if for every n and every circuit Cn ofsize at most s(n), it holds thatPr[Cn(Xn)=f(Xn)jXn2S] � 12 + "(n):� We say that f has a hard region of density �(�) relative to fXng (with respectto s(�)-size circuits and advantage "(�)) if there exists a set S that is a hardregion of f relative to fXng (with respect to the foregoing parameters) suchthat Pr[Xn2Sn] � �(n).Note that a Boolean function f is (s; 1�2")-inapproximable if and only if f0; 1g� isa hard region of f relative to fUng with respect to s(�)-size circuits and advantage"(�). Thus, strongly inapproximable predicates (e.g., S-inapproximable predicatesfor super-polynomial S) have a hard region of density 1 (with respect to a neg-ligible advantage).17 But this trivial observation does not provide hard regions(with respect to a small (i.e., close to zero) advantage) for mildly inapproximablepredicates. Providing such hard regions is the contents of the following theorem.Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXng be a probability ensemble, s : N ! N , and� : N ! [0; 1] such that �(n) > 1=poly(n). Suppose that, for every circuit Cn ofsize at most s(n), it holds that Pr[Cn(Xn) = f(Xn)] � 1 � �(n). Then, for every" :N! [0; 1], the function f has a hard region of density �0(�) relative to fXng withrespect to s0(�)-size circuits and advantage "(�), where �0(n) def= (1� o(1)) � �(n) ands0(n) def= s(n)=poly(n="(n)).In particular, if f is (s; 2�)-inapproximable then f has a hard region of density�0(�) � �(�) relative to the uniform distribution (with respect to s0(�)-size circuitsand advantage "(�)).Proof Sketch:18 The proof proceeds by �rst establishing that fXng is \related" to(or rather \dominates") an ensemble fYng such that f is strongly inapproximableon fYng, and next showing that this implies the claimed hard region.For � :N! [0; 1], we say that fXng �-dominates fYng if for every x it holds thatPr[Xn= x] � �(n) � Pr[Yn = x]. In this case we also say that fYng is �-dominatedby fXng. We say that fYng is critically �-dominated by fXng if for every x eitherPr[Yn=x] = (1=�(n)) � Pr[Xn=x] or Pr[Yn=x] = 0.The notions of domination and critical domination play a central role in theproof, which consists of two parts. In the �rst part (Claim 7.21.1), we prove the17Likewise, mildly inapproximable predicates have a hard region of density 1 with respect toan advantage that is close to 1=2.18See details in [98, Apdx. A].



256 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSexistence of a ensemble fYng that is �-dominated by fXng such that f is stronglyinapproximable on fYng. In the second part (Claim 7.21.2), we prove that theexistence of such a dominated ensemble implies the existence of an ensemble fZngthat is critically �0-dominated by fXng such that f is strongly inapproximable onfZng. Finally, we note that such a critically dominated ensemble yields a hardregion of f relative to fXng, and the theorem follows.Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists aprobability ensemble fYng that is �-dominated by fXng such that, for every s0(n)-size circuit Cn, it holds thatPr[Cn(Yn)=f(Yn)] � 12 + "(n)2 : (7.10)Proof: We employ von Neumann's Min-Max Principle (cf. [219]) to a \game" thatcorresponds to the set of critically dominated (by Xn) probability distributions onone side and the set of s0(n)-size circuits on the other side.19 We start by assuming,towards the contradiction, that for every distribution Yn that is �-dominated byXn there exists a s0(n)-size circuits Cn such that Pr[Cn(Yn) = f(Yn)] > 0:5+"0(n),where "0(n) = "(n)=2. One key observation there is a correspondence between theset of distributions that are each �-dominated by Xn and the set of all convexcombinations of critically �-dominated (by Xn) distributions (cf., a special casein xD.4.1.1). Thus, considering an enumeration Y (1)n ; :::; Y (t)n of the critically �-dominated (by Xn) distributions, we conclude that for every distribution � on [t]there exists a s0(n)-size circuits Cn such thattXi=1 �(i) � Pr[Cn(Y (i)n ) = f(Y (i)n )] > 0:5 + "0(n): (7.11)Now, consider a �nite game between two players, where the �rst player selects a crit-ically �-dominated (by Xn) distribution, and the second player selects a s0(n)-sizecircuit and obtains a payo� as determined by the corresponding success probability;that is, if the �rst player selects the ith critically dominated distribution and thesecond player selects the circuit C then the payo� equals Pr[C(Y (i)n ) = f(Y (i)n )].Eq. (7.11) may be interpreted as saying that for any randomized strategy for the�rst player there exists a deterministic strategy for the second player yielding av-erage payo� greater than 0:5 + "0(n). The min-max principle asserts that in sucha case there exists a randomized strategy for the second player that yields aver-age payo� greater than 0:5 + "0(n) no matter what strategy is employed by the�rst player. This means that there exists a distribution, denoted Dn, on s0(n)-sizecircuits such that for every i it holds thatPr[Dn(Y (i)n ) = f(Y (i)n )] > 0:5 + "0(n); (7.12)where the probability refers both to the choice of the circuit Dn and to the randomvariable Yn. Let Bn = fx : Pr[Dn(x) = f(x)] � 0:5 + "0(n)g. Then, Pr[Xn 219We warn that this application of the min-max principle is somewhat non-straightforward.



7.2. HARD PREDICATES IN E 257Bn] < �(n), because otherwise we reach a contradiction to Eq. (7.12) by de�ningYn such that Pr[Yn= x] = Pr[Xn=x]=Pr[Xn 2 Bn] if x 2 Bn and Pr[Yn =x] = 0otherwise.20 By employing standard ampli�cation to Dn, we obtain a distributionD0n over poly(n="0(n)) � s0(n)-size circuits such that for every x 2 f0; 1gn n Bn itholds that Pr[D0n(x) = f(x)] > 1 � 2�n. It follows that there exists a s(n)-sizedcircuit Cn such that Cn(x) = f(x) for every x 2 f0; 1gn n Bn, and it follows thatPr[Cn(Xn) = f(Xn)] � Pr[Xn 2 f0; 1gn n Bn] > 1 � �(n), in contradiction to thetheorem's hypothesis. The claim follows. 2We next show that the conclusion of Claim 7.21.1 (which was stated for for en-sembles that are �-dominated by fXng) essentially holds also for some critically�-dominated (by fXng) ensembles. The following precise statement involves someloss in the domination parameter � (as well as in the advantage ").Claim 7.21.2: If there exists a probability ensemble fYng that is �-dominatedby fXng such that for every s0(n)-size circuit Cn it holds that Pr[Cn(Yn) =f(Yn)] � 0:5 + ("(n)=2), then there exists a probability ensemble fZng that iscritically �0-dominated by fXng such that for every s0(n)-size circuit Cn it holdsthat Pr[Cn(Zn) = f(Zn)] � 0:5 + "(n).In other words, Claim 7.21.2 asserts that the function f has a hard region ofdensity �0(�) relative to fXng with respect to s0(�)-size circuits and advantage "(�),thus establishing the theorem. The proof of Claim 7.21.2 uses the ProbabilisticMethod (cf. [10]). Speci�cally, we select a set Sn at random by including eachn-bit long string x with probabilityp(x) def= �(n) � Pr[Yn=x]Pr[Xn=x] � 1 (7.13)independently of the choice of all other strings. It can be shown that, with highprobability over the choice of Sn, it holds that Pr[Xn 2 Sn] � �(n) and thatPr[Cn(Xn) = f(Xn)jXn 2Sn] < 0:5 + "(n) for every circuit Cn of size s0(n). Thelatter assertion is proved by a union bound on all relevant circuits, showing thatfor each such circuit Cn, with probability 1 � exp(�s0(n)2) over the choice of Sn,it holds that jPr[Cn(Xn) = f(Xn)jXn 2 Sn] � Pr[Cn(Yn) = f(Yn)]j < "(n)=2. Fordetails see [98, Apdx. A].7.2.2.2 Hardness ampli�cation via hard regionsBefore showing how to use the notion of a hard region in order to prove a deran-domized version of Yao's XOR Lemma, we show how to use it in order to provethe original version of Yao's XOR Lemma (i.e., Theorem 7.13).20Note that Yn is �-dominated by Xn, whereas by the hypothesis Pr[Dn(Yn) = f(Yn)] �0:5+"0(n). Using the fact that any �-dominated distribution is a convex combination of critically�-dominated distributions, it follows that Pr[Dn(Y (i)n ) = f(Y (i)n )] � 0:5 + "0(n) holds for somecritically �-dominated Y (i)n .



258 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSAn alternative proof of Yao's XOR Lemma. Let f , p, and T be as in Theo-rem 7.13. Then, by Theorem 7.21, for �0(n) = 1=3p(n) and s0(n) = T (n)
(1)=poly(n),the function f has a hard region S of density �0 (relative to fUng) with respectto s0(�)-size circuits and advantage 1=s0(�). Thus, for t(n) = n � p(n) and F asin Theorem 7.13, with probability at least 1 � (1 � �0(n))t(n) = 1 � exp(�
(n)),one of the t(n) random n-bit blocks of F resides in S (i.e., the hard region of f).Intuitively, this su�ces for establishing the strong inapproximability of F . Indeed,suppose towards the contradiction that a small circuit Cn can approximate F withadvantage "(n) + exp(�
(n)), where "(n) > 1=s0(n). Then, the "(n) term mustbe due to t(n) � n-bit long inputs that contain a block in S. Using an averagingargument, we can �rst �x the index of this block and then the contents of the otherblocks, and infer the following: for some i 2 [t(n)] and x1; :::; xt(n) 2 f0; 1gn itholds that Pr[Cn(x0; Un; x00) = F (x0; Un; x00) jUn 2 S] � 12 + "(n)where x0 = (x1; :::; xi�1) 2 f0; 1g(i�1)�n and x00 = (xi+1; :::; xt(n)) 2 f0; 1g(t(n)�i)�n.Hard-wiring i 2 [t(n)], x0 = (x1; :::; xi�1) and x00 = (xi+1; :::; xt(n)) as well as� def= �j 6=if(xj) in Cn, we obtain a contradiction to the (established) fact thatS is a hard region of f (by using the circuit C 0n(z) = Cn(x0; z; x00) � �), and thetheorem follows. Actually, we derive a generalization of Theorem 7.13 assertingthat for any function T such that f is (T; 1=p)-inapproximable it holds that F isT 0-inapproximable for T 0(t(n) � n) = s0(n) = T (n)
(1)=poly(n).21Derandomized versions of Yao's XOR Lemma. We �rst show how to usethe notion of a hard region in order to amplify very mild inapproximability to aconstant level of inapproximability. This ampli�cation utilizes a pairwise indepen-dence generator (see Section 8.6.1), denoted G, that stretches 2n-bit long seeds tosequences of n strings, each of length n.Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for �(n) > 1=poly(n),and assume for simplicity that �(n) � 1=n. Let b denote the inner-product mod 2predicate, and G be the aforementioned pairwise independence generator. ThenF1(s; r) = b(f(x1) � � � f(xn); r), where jrj = n = jsj=2 and (x1; :::; xn) = G(s), is(T 0; �0)-inapproximable for T 0(n0) = T (n0=3)=poly(n0) and �0(n0) = 
(n0 � �(n0=3)).Needless to say, if f 2 E then F1 2 E . By applying Lemma 7.22 for a constantnumber of times, we may transform an (T; 1=poly)-inapproximable predicate intoan (T 00;
(1))-inapproximable one, where T 00(n00) = T (n00=O(1))=poly(n00).Proof Sketch: As in the foregoing proof (of the original version of Yao's XORLemma), we �rst apply Theorem 7.21 (this time) inferring that, for �(n) = �(n)=3and s0(n) = T (n)=poly(n), the function f has a hard region S of density � (relative21This generalization can also be established using the proof techniques presented in x7.2.1.2.



7.2. HARD PREDICATES IN E 259to fUng) with respect to s0(�)-size circuits and advantage 0:01. Next, as in x7.2.1.2,we shall consider the corresponding (derandomized) direct product problem; thatis, the function P1(s) = (f(x1); :::; f(xn)), where jsj = 2n and (x1; :::; xn) = G(s).We will �rst show that P1 is hard to compute on an 
(n � �(n)) fraction of thedomain, and the quanti�ed inapproximality of F1 will follow.One key observation is that, by Exercise 7.15, with probability at least �(n) def=n � �(n)=2, at least one of the n strings output by G(U2n) resides in S. Intuitively,we expect every s0(n)-sized circuit to fail in computing P1(U2n) with probabilityat least 0:49�(n), because with probability �(n) the sequence G(U2n) contains anelement in the hard region of f . Things are somewhat more involved (than in thenon-derandomized case) because it is not clear what is the conditional distributionof the element(s) residing in the hard region.For technical reasons22, we assume (without loss of generality) that �(n) < 1=2nand note that in this case Exercise 7.15 implies that, with probability at least�(n) def= 0:75 � n � �(n), at least one of the n strings output by G(U2n) resides in S.We claim that every (s0(n) � poly(n))-sized circuit fails to compute P1 correctlywith probability at least (n) = 0:3�(n). As usual, the claim is proved by areducibility argument. Let G(s)i denote the ith string in the sequence G(s) (i.e.,G(s) = (G(s)1; :::; G(s)n)), and note that given i and x we can e�ciently sampleG�1i (x) def= fs2 f0; 1g2n : G(s)i = xg. Given a circuit Cn that computes P1(U2n)correctly with probability 1 � (n), we consider the circuit C 0n that, on input x,uniformly selects i 2 [n] and s 2 G�1i (x), and outputs the ith bit in Cn(s). Then,by the construction (of C 0n) and the hypothesis regarding Cn, it holds thatPr[C 0n(Un)=f(Un)jUn2S] � nXi=1 1n � Pr[Cn(U2n)=P1(U2n)jG(U2n)i2S]� 1n � Pr[Cn(U2n)=P1(U2n) ^ 9iGi(U2n)i2S]maxifPr[G(U2n)i2S]g� 1n � (1� (n))� (1� �(n))�(n)= 0:7�(n)n � �(n) > 0:52 :This contradicts the fact that S is a hard region of f with respect to s0(�)-sizecircuits and advantage 0:01. Thus, we have established that every (s0(n)�poly(n))-sized circuit fails to compute P1 correctly with probability at least (n) = 0:3�(n).Employing the simple (warm-up) case discussed at the beginning of the proof ofTheorem 7.7 (where the predictor errs with probability less than 1=4), it followsthat, for s00(n0) = s(n0=3)=poly(n0), every s00(jsj+jrj)-sized circuits fails to compute(s; r) 7! b(P1(s); r) with probability at least �(jsj+ jrj) def= 0:24 � (jrj). Thus, F1 is(s00; 2�)-inapproximable, and the lemma follows.22The following argument will rely on the fact that �(n) � (n) > 0:51�(n), where (n) =
(�(n)).



260 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSThe next lemma o�ers an ampli�cation of constant inapproximability to stronginapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,yields Theorem 7.19 (as a special case).Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-bility): Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for some con-stant �, and let b denote the inner-product mod 2 predicate. Then there exists aexponential-time computable function G such that F2(s; r) = b(f(x1) � � � f(xn); r),where (x1; :::; xn) = G(s) and n = 
(jsj) = jrj = jx1j = � � � = jxnj, is T 0-inapproximable for T 0(n0) = T (n0=O(1))
(1)=poly(n0).Again, if f 2 E then F2 2 E .Proof Outline:23 As in the proof of Lemma 7.22, we start by establishinga hard region of density �=3 for f (this time with respect to circuits of sizeT (n)
(1)=poly(n) and advantage T (n)�
(1)), and focus on the analysis of the(derandomized) direct product problem corresponding to computing the functionP2(s) = (f(x1); :::; f(xn)), where jsj = O(n) and (x1; :::; xn) = G(s). The \gen-erator" G is de�ned such that G(s0s00) = G1(s0) � G2(s00), where js0j = js00j,jG1(s0)j = jG2(s00)j, and the following conditions hold:1. G1 is the Expander Random Walk Generator discussed in Section 8.6.3. Itcan be shown that G1(UO(n)) outputs a sequence of n strings such that forany set S of density �, with probability 1 � exp(�
(�n)), at least 
(�n)of the strings hit S. Note that this property is inherited by G, providedjG1(s0)j = jG2(s00)j for any js0j = js00j. It follows that, with probability1 � exp(�
(�n)), a constant fraction of the xi's in the de�nition of P2 hitthe hard region of f .It is tempting to say that small circuits cannot compute P2 better than withprobability exp(�
(�n)), but this is clear only in case the the xi's that hitthe hard region are distributed independently (and uniformly) in it, which ishardly the case here. Indeed, G2 is used to handle this problem.2. G2 is the \set projection" system underlying Construction 8.17; speci�cally,G2(s) = (sS1 ; :::; sSn), where each Si is an n-subset of [jsj] and the Si's havepairwise intersections of size at most n=O(1).24 An analysis as in the proofof Theorem 8.18 can be employed for showing that the dependency amongthe xi's does not help for computing a particular f(xi) when given xi as wellas all the other f(xj)'s. (Note that the relevant property of G2 is inheritedby G.)The actual analysis of the construction (via a guessing game presented in [121,Sec. 3]), links the success probability of computing P2 to the advantage of guessingf on its hard region. The interested reader is referred to [121].23For details, see [121].24Recall that sS denotes the projection of s on coordinates S � [jsj]; that is, for s = �1 � � ��kand S = fij : j = 1; :::; ng, we have sS = �i1 � � ��in .



7.2. HARD PREDICATES IN E 261Digest. Both Lemmas 7.22 and 7.23 are proved by �rst establishing correspond-ing \direct product" versions (i.e., derandomized versions of Theorem 7.14). Wecall the reader's attention to the seemingly crucial role of this step (especially inthe proof of Lemma 7.23): We cannot treat the values f(x1); :::f(xn) as indepen-dent (at least not for the generator G as postulated in these lemmas), and so weseek to avoid analyzing the probability of correctly computing the XOR of all thesevalues. In contrast, we have established that it is very hard to correctly computeall n values, and thus XORing a random subset of these values yields a stronglyinapproximable predicate. Note that the argument used in Exercise 7.12 fails here,because the xi's are not independent.Chapter NotesThe notion of a one-way function was suggested by Di�e and Hellman [62]. Thenotion of weak one-way functions as well as the ampli�cation of one-way functions(Theorem 7.5) were suggested by Yao [223]. A proof of Theorem 7.5 has �rstappeared in [83].The concept of hard-core predicates was suggested by Blum and Micali [37].They also proved that a particular predicate constitutes a hard-core for the \DLPfunction" (i.e., exponentiation in a �nite �eld), provided that the latter function isone-way. The generic hard-core predicate (Theorem 7.7) was suggested by Levin,and proven as such by Goldreich and Levin [95]. The proof presented here wassuggested by Racko�. We comment that the original proof has its own merits (cf.,e.g., [101]).The construction of canonical derandomizers and, speci�cally, the Nisan-Wigdersonframework (Construction 8.17) has been the driving force behind the study of in-approximable predicates in E . Theorem 7.10 is due to [19], whereas Theorem 7.19is due to [121]. Both results rely heavily of variants of Yao's XOR Lemma, to bereviewed next.Like several other fundamental insights attributed to Yao's paper [223], Yao'sXOR Lemma (Theorem 7.13) is not even stated in [223] but is rather due to Yao'soral presentations of his paper. The �rst published proof of Yao's XOR Lemmawas given by Levin (see [98, Sec. 3]). Levin's proof is the only one known giving atight quantitative analysis (on the decrease in the level of approximability), and theinterested reader is referred to it (via the non-laconic presentation of [98, Sec. 3]).The proof presented in x7.2.1.2 is due to Goldreich, Nisan and Wigderson [98,Sec. 5].The notion of a hard region and its applications to proving the original versionof Yao's XOR Lemma as well as the �rst derandomization of it (Lemma 7.22) aredue to Impagliazzo [119]. The second derandomization (Lemma 7.23) as well asTheorem 7.19 are due to Impagliazzo and Wigderson [121].The connection between list decoding and hardness ampli�cation (x7.2.1.3),yielding an alternative proof of Theorem 7.19, is due to Sudan, Trevisan, andVadhan [205].Hardness ampli�cation for NP has been the subject of recent attention: An



262 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSampli�cation of mild inapproximability to strong inapproximability is providedin [115], an indication to the impossibility of a worst-case to average-case reductions(at least non-adaptive ones) is provided in [40].ExercisesExercise 7.1 Prove that if one way-functions exist then there exists one-way func-tions that are length preserving (i.e., jf(x)j = jxj for every x 2 f0; 1gn).Guideline: Clearly, for some polynomial p, it holds that jf(x)j � p(jxj) for all x. Assume,without loss of generality that n 7! p(n) is 1-1, and let p�1(m) = n if p(n) � m < p(n+1).De�ne f 0(z) = f(x)0jzj�jf(x)j, where x is the p�1(jzj)-bit long pre�x of z.Exercise 7.2 Prove that if a function f is hard to invert in the sense of De�ni-tion 7.3 then it is hard to invert in the sense of De�nition 7.1.(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (7.1).)Exercise 7.3 Assuming the existence of one-way functions, prove that there existsa weak one-way function that is not strongly one-way.Exercise 7.4 (a universal one-way function) Using the notion of a universalmachine, present a polynomial-time computable function that is hard to invert (inthe sense of De�nition 7.1) if and only if there exist one-way functions.Guideline: Consider the function F that parses its input into a pair (M;x) and emulatesjxj3 steps of M on input x. Note that if there exists a one-way function that can beevaluated in cubic time then F is a weak one-way function. Using padding, prove thatthere exists a one-way function that can be evaluated in cubic time if and only if thereexist one-way functions.Exercise 7.5 For ` > 1, prove that the following 2` � 1 samples are pairwiseindependent and uniformly distributed in f0; 1gn. The samples are generated byuniformly and independently selecting ` strings in f0; 1gn. Denoting these stringsby s1; :::; s`, we generate 2` � 1 samples corresponding to the di�erent non-emptysubsets of f1; 2; :::; `g such that for subset J we let rJ def= �j2Jsj .Guideline: For J 6= J 0, it holds that rJ�rJ0 = �j2Ksj , where K denotes the symmetricdi�erence of J and J 0. See related material in Section 8.6.1.Exercise 7.6 Prove Theorem 7.8. In particular, provide a detailed presentationof the alternative procedure outlined in Footnote 5.Exercise 7.7 A polynomial-time computable predicate b :f0; 1g�!f0; 1g is calleda universal hard-core predicate if for every one-way function f , the predicate b isa hard-core of f . Note that the predicate presented in Theorem 7.7 is \almostuniversal" (i.e., for every one-way function f , that predicate is a hard-core off 0(x; r) = (f(x); r), where jxj = jrj). Prove that there exist no universal hard-core predicate.



7.2. HARD PREDICATES IN E 263Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitraryone-way function. Then consider the function f 0(x) = (f(x); b(x)).Exercise 7.8 Prove that if NP is not contained in P=poly then neither is E .Furthermore, for every S : N ! N , if some problem in NP does not have circuitsof size S then for some constant " > 0 there exists a problem in E that does nothave circuits of size S0, where S0(n) = S(n").Guideline: Although NP is not known to be in E , it is the case that SAT is in E , whichimplies that NP is reducible to a problem in E .Exercise 7.9 For every function f : f0; 1gn ! f0; 1g, present a linear-size circuitCn such that Pr[C(Un) = f(Un)] � 0:5+O(2�n). Furthermore, for every t � 2n�1,present a circuit Cn of size O(t � n) such that Pr[C(Un) = f(Un)] � 0:5 + t � 2�n.Warning: you may not assume that Pr[f(Un) = 1] = 0:5.Exercise 7.10 (low degree extension) Prove that for any H � F and functionf : Hm ! F there exists an m-variate polynomial f̂ : Fm ! F of individual degreejH j � 1 such that for every x 2 Hm it holds that f̂(x) = f(x).Guideline: De�ne f̂(x) = Pa2Hm �a(x) � f(a), where �a is an m-variate of individualdegree jHj�1 such that �a(a) = 1 whereas �a(x) = 0 for every x 2 Hm nfag. Speci�cally,�a1;:::;am(x1; :::; xm) =Qmi=1Q b 2 H n faig((xi � b)=(ai � b)).Exercise 7.11 Let f̂ be as in the conclusion of Theorem 7.12. Prove that thereexists a Boolean function g in E that is (p; ")-inapproximable for every polynomialp and for "(n) = 1=n3.Guideline: Consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).Exercise 7.12 Let f be a Boolean function, and b(y; r) denote the inner-productmodulo 2 of the equal-length strings y and r. Suppose that F 0(x1; :::; xt(n); r) def=b(f(x1) � � � f(xt(n)); r), where x1; :::; xt(n) 2 f0; 1gn and r 2 f0; 1gt(n), is T -inapproximablefor every polynomial T . Assuming that n 7! t(n) � n is 1-1, prove that F (x) def=F 0(x; 1t0(jxj)), where t0(t(n) � n) = t(n), is T -inapproximable for every polynomialT .Guideline: Reduce the approximation of F 0 to the approximation of F . An importantobservation is that for any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) suchthat x0i = xi if ri = 1, it holds that F 0(x; r) = F (x0) � �i:ri=0f(x0i). This suggests anon-uniform reduction of F 0 to F , which uses \adequate" z1; :::; zt(n) 2 f0; 1gn as well asthe corresponding values f(zi)'s as advice. On input x1; :::; xt(n); r1 � � � rt(n), the reductionsets x0i = xi if ri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F , andreturns F (x0) �i:ri=0 f(zi). Analyze this reduction in the case that z1; :::; zt(n) 2 f0; 1gnare uniformly distributed, and infer that they can be set to some �xed values.Exercise 7.13 Consider a modi�cation of De�nition 7.17, in which the decodingcondition reads as follows (where p is a �xed polynomial): For every w : [`(N)]!



264 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS[q(N)] and x2f0; 1gN such that �(x) is (1� ((1=q(N)) +�(N)))-close to w, thereexists an oracle-aided circuit C of size p((logN)=�(N)) such that Cw(i) yields theith bit of x for every i 2 [N ].1. Formulate and prove a version of Theorem 7.18 that refers to the modi�edde�nition (rather than to the original one).(Hint: the modi�ed version should refer to computing g(Um(n)) with success probabilitygreater than (1=q(n)) + "(n).)2. Prove that, when applied to binary codes (i.e., q � 2), the version in Item 1yields S00-inapproximable predicates, for S00(n0) = S(m�1(n0))
(1)=poly(n0).3. Prove that the Hadamard Code allows implicit decoding under the modi�edde�nition (but not according to the original one).25(Hint: this is the actual contents of Theorem 7.8.)Note that if � : f0; 1gN ! [q(N)]`(N) is a (non-binary) code that allows implicitdecoding then encoding its symbols by the Hadamard code yields a binary code(f0; 1gN ! f0; 1g`(N)�2dlog2 q(N)e) that allows implicit decoding. Note that e�cientencoding is preserved only if q(N) = poly(N).Exercise 7.14 (using Proposition 7.16 to prove Theorem 7.19) Prove The-orem 7.19 by combining Proposition 7.16 and Theorem 7.8.Guideline: Note that, for some  > 0, Proposition 7.16 yields an exponential-time com-putable function f̂ such that jf̂(x)j � jxj and for every family of circuit fC0n0gn02N ofsize S0(n0) = S(n0=3)=poly(n0) it holds that Pr[C0n0(Un0) = f̂(Un0)] < 1=S0(n0). Com-bining this with Theorem 7.8, infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, isS00-inapproximable for S00(n00) = S(n00=2)
(1)=poly(n00). Note that if S(n) = 2
(n) thenS00(n00) = 2
(n00).Exercise 7.15 LetG be a pairwise independent generator (i.e., as in Lemma 7.22),S � f0; 1gn and � def= jSj=2n. Prove that, with probability at least min(n � �; 1)=2,at least one of the n strings output by G(U2n) resides in S.Guideline: Using the pairwise independence property and employing the Inclusion-Exclusion formula, we lower-bound the aforementioned probability by n � p � �n2� � p2.If p � 1=n then the claim follows, otherwise we employ the same reasoning to the �rst1=p elements in the output of G(U2n).Exercise 7.16 (one-way functions versus inapproximable predicates) Provethat the existence of a non-uniformly hard one-way function (as in De�nition 7.3)implies the existence of an exponential-time computable predicate that is T -inapproximable(as per De�nition 7.9), for every polynomial T .Guideline: Suppose �rst that the one-way function f is length-preserving and 1-1. Con-sider the corresponding function g and hard-core predicate b guaranteed by Theorem 7.7,25Needless to say, the Hadamard Code is not e�cient (for the trivial reason that its codewordshave exponential length).



7.2. HARD PREDICATES IN E 265and show that the Boolean function h such that h(z) = b(g�1(z)) is polynomially in-approximable. For the general case a di�erent approach seems needed. Speci�cally,given a (length preserving) one-way function f , consider the Boolean function h de-�ned as h(z; i; �) = 1 if and only if the ith bit of the lexicographically �rst elementin f�1(z) = fx : f(x) = zg equals �. (In particular, if f�1(z) = ; then h(z; i; �) = 0 forevery i and �.)26 Note that h is computable in exponential-time, but is not (worst-case)computable in polynomial-time. Applying Theorem 7.10, we are done.

26Thus, h may be easy to computed in the average-case sense (e.g., if f(x) = 0jxjf 0(x) for someone-way function f 0).
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Chapter 8Pseudorandom GeneratorsIndistinguishable things are identical.1G.W. Leibniz (1646{1714)A fresh view at the question of randomness has been taken in the theory of comput-ing: It has been postulated that a distribution is random (or rather pseudorandom)if it cannot be told apart from the uniform distribution by any e�cient procedure.Thus, (pseudo)randomness is not an inherent property of an object, but is rathersubjective to the observer.At the extreme, this approach says that the question of whether the worldis deterministic or allows for some free choice (which may be viewed as sources ofrandomness) is irrelevant. What matters is how the world looks to us and to variouscomputationally bounded devices. That is, if some phenomenon looks random thenwe may just treat it as if it were random. Likewise, if we can generate sequencesthat cannot be told apart from the uniform distribution by any e�cient procedure,then we can use these sequences in any e�cient randomized application instead ofthe ideal random bits that are postulated in the design of this application.The pivot of this approach is the notion of computational indistinguishability,which refers to pairs of distributions that cannot be told apart by e�cient proce-dures. The most fundamental variant of this notion associates e�cient procedureswith polynomial-time algorithms, but other variants that restrict attention to otherclasses of distinguishing procedures also lead to interesting insights. Likewise, thegeneration of pseudorandom objects is actually a general paradigm with numeroususeful incarnations.Summary: A generic formulation of pseudorandom generators consistsof specifying three fundamental aspects { the stretch measure of the1This is Leibniz's Principle of Identity of Indiscernibles. Leibniz admits that counterexamplesto this principle are conceivable but will not occur in real life because God is much too benevolent.We thus believe that he would have agreed to the theme of this chapter, which asserts thatindistinguishable things should be considered as identical.267



268 CHAPTER 8. PSEUDORANDOM GENERATORSgenerators; the class of distinguishers that the generators are supposedto fool (i.e., the algorithms with respect to which the computational in-distinguishability requirement should hold); and the resources that thegenerators are allowed to use (i.e., their own computational complexity).The archetypical case of pseudorandom generators refers to e�cientgenerators that fool any feasible procedure; that is, the potential dis-tinguisher is any probabilistic polynomial-time algorithm, which maybe more complex than the generator itself (which, in turn, has time-complexity bounded by a �xed polynomial). These generators are calledgeneral-purpose, because their output can be safely used in an e�cientapplication. Such (general-purpose) pseudorandom generators exist ifand only if one-way functions exist.For purposes of derandomization one may use pseudorandom genera-tors that are somewhat more complex than the potential distinguisher(which represents the algorithm to be derandomized). Following thisapproach, suitable pseudorandom generators, which can be constructedassuming the existence of problems in E that have no sub-exponentialsize circuits, yield a full derandomization of BPP (i.e., BPP = P).It is also bene�cial to consider pseudorandom generators that fool space-bounded distinguishers and generators that exhibit some limited ran-dom behavior (e.g., outputting a pair-wise independent or a small-biassequence).8.1 IntroductionThe second half of this century has witnessed the development of three theoriesof randomness, a notion which has been puzzling thinkers for ages. The �rst the-ory (cf., [60]), initiated by Shannon [190], is rooted in probability theory and isfocused at distributions that are not perfectly random. Shannon's InformationTheory characterizes perfect randomness as the extreme case in which the infor-mation contents is maximized (i.e., there is no redundancy at all). Thus, perfectrandomness is associated with a unique distribution { the uniform one. In par-ticular, by de�nition, one cannot (deterministically) generate such perfect randomstrings from shorter random seeds.The second theory (cf., [144, 147]), due to Solomonov [197], Kolmogorov [138]and Chaitin [48], is rooted in computability theory and speci�cally in the notion ofa universal language (equiv., universal machine or computing device; see x1.2.3.3).It measures the complexity of objects in terms of the shortest program (for a �xeduniversal machine) that generates the object. Like Shannon's theory, KolmogorovComplexity is quantitative and perfect random objects appear as an extreme case.However, in this approach one may say that a single object, rather than a distribu-tion over objects, is perfectly random. Still, Kolmogorov's approach is inherentlyintractable (i.e., Kolmogorov Complexity is uncomputable), and { by de�nition {



8.1. INTRODUCTION 269one cannot (deterministically) generate strings of high Kolmogorov Complexityfrom short random seeds.The third theory is rooted in complexity theory and is the focus of this chapter.This approach is explicitly aimed at providing a notion of randomness that nev-ertheless allows for an e�cient (and deterministic) generation of random stringsfrom shorter random seeds. The heart of this approach is the suggestion to viewobjects as equal if they cannot be told apart by any e�cient procedure. Conse-quently, a distribution that cannot be e�ciently distinguished from the uniformdistribution will be considered as being random (or rather called pseudorandom).Thus, randomness is not an \inherent" property of objects (or distributions) butis rather relative to an observer (and its computational abilities). To demonstratethis approach, let us consider the following mental experiment.Alice and Bob play \head or tail" in one of the following four ways. Ineach of them Alice ips an unbiased coin and Bob is asked to guess itsoutcome before the coin hits the oor. The alternative ways di�er bythe knowledge Bob has before making his guess.In the �rst alternative, Bob has to announce his guess before Alice ipsthe coin. Clearly, in this case Bob wins with probability 1=2.In the second alternative, Bob has to announce his guess while the coinis spinning in the air. Although the outcome is determined in principleby the motion of the coin, Bob does not have accurate information onthe motion and thus we believe that also in this case Bob wins withprobability 1=2.The third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurateinformation on the coin's motion as well as on the environment e�ectingthe outcome. However, Bob cannot process this information in time toimprove his guess.In the fourth alternative, Bob's recording equipment is directly con-nected to a powerful computer programmed to solve the motion equa-tions and output a prediction. It is conceivable that in such a case Bobcan improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information andcomputing resources at our disposal. At the extreme, deterministic events thatare fully determined by some rule may be perceived as random events by observerthat lack relevant information and/or ability to process it. Our focus will be onthe lack of processing power, which may be due either to the formidable amountof computation required for analyzing the event at question or to the fact that theobserver is very limited.A natural notion of pseudorandomness arises { a distribution is pseudorandomif no e�cient procedure can distinguish it from the uniform distribution, wheree�cient procedures are associated with (probabilistic) polynomial-time algorithms.This speci�c notion of pseudorandomness is indeed the most fundamental one, and



270 CHAPTER 8. PSEUDORANDOM GENERATORSmuch of this chapter is focused on it. Weaker notions of pseudorandomness arise aswell { they refer to indistinguishability by weaker procedures such as space-boundedalgorithms, constant-depth circuits, etc. Stretching this approach even further onemay consider algorithms that are designed on purpose so not to distinguish evenweaker forms of \pseudorandom" sequences from random ones (such algorithmsarise naturally when trying to convert some natural randomized algorithm intodeterministic ones; see Section 8.6).The foregoing discussion has focused at one aspect of the pseudorandomnessquestion { the resources or type of the observer (or potential distinguisher). An-other important aspect is whether such pseudorandom sequences can be generatedfrom much shorter ones, and at what cost (or complexity). A natural approachis that the generation process has to be at least as e�cient as the distinguisher(equiv., that the distinguisher is allowed at least as much resources as the gener-ator). Coupled with the aforementioned strong notion of pseudorandomness, thisyields the archetypical notion of pseudorandom generators { these operating inpolynomial-time and producing sequences that are indistinguishable from uniformones by any polynomial-time observer. Such (general-purpose) pseudorandom gen-erators allow to reduced the randomness complexity of any e�cient application,and are thus of great relevance to randomized algorithms and cryptography (seeSection 8.3).
Gen

seed output  sequence

a  truly random  sequence
?Figure 8.1: Pseudorandom generators { an illustration.We stress that there are important reasons for considering also an alternativethat seems less natural; that is, allowing the pseudorandom generator to use moreresources (e.g., time or space) than the observer it tries to fool. This alternative isnatural in the context of derandomization (i.e., converting randomized algorithmsto deterministic ones), where the crucial step is replacing the random input of analgorithm by a pseudorandom input, which in turn can be generated based ona much shorter random seed. In particular, when derandomizing a probabilisticpolynomial-time algorithm, the observer (to be fooled by the generator) is a �xedalgorithm. In this case employing a more complex generator merely means that thecomplexity of the derived deterministic algorithm is dominated by the complexity ofthe generator (rather than by the complexity of the original randomized algorithm).Needless to say, allowing the generator to use more resources than the observer thatit tries to fool makes the task of designing pseudorandom generators potentially



8.2. THE GENERAL PARADIGM 271easier, and enables derandomization results that are not known when using general-purpose pseudorandom generators. The usefulness of this approach is demonstratedin Sections 8.4 through 8.6.We note that the goal of all types of pseudorandom generators is to allow thegeneration of \su�ciently random" sequences based on much shorter random seeds.Thus, pseudorandom generators o�er signi�cant saving in the randomness complex-ity of various applications. This saving is valuable because many applications areseverely limited in their ability to generate or obtain truly random bits. Further-more, typically, generating truly random bits is signi�cantly more expensive thanstandard computation steps. Thus, randomness is a computational resource thatshould be considered on top of time complexity (analogously to the considerationof space complexity).Organization. In Section 8.2 we present the general paradigm underlying thevarious notions of pseudorandom generators. The archetypical case of general-purpose pseudorandom generators is presented in Section 8.3. We then turn to thealternative notions of pseudorandom generators: Generators that su�ce for thederandomization of complexity classes such as BPP are discussed in Section 8.4;Pseudorandom generators in the domain of space-bounded computations are dis-cussed in Section 8.5; and special-purpose generators are discussed in Section 8.6.(For an alternative presentation, which focuses on general-purpose pseudorandomgenerators and provides more details on it, the reader is referred to [87, Chap. 3].)Teaching note: If you can a�ord teaching only one of the alternative notions of pseu-dorandom generators, then we suggest teaching the notion of general-purpose pseudo-random generators (presented in Section 8.3). This notion is more relevant to computerscience at large and the technical material is relatively simpler. The chapter is organizedto facilitate this option.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)will be extensively used.8.2 The General ParadigmTeaching note: We advocate a uni�ed view of various notions of pseudorandom gen-erators. That is, we view these notions as incarnations of a general abstract paradigm,to be presented in this section. A teacher that wishes to focus on one of the specialcases may still use this section as a general motivation towards the speci�c de�nitionsused later.A generic formulation of pseudorandom generators consists of specifying three fun-damental aspects { the stretch measure of the generators; the class of distinguishersthat the generators are supposed to fool (i.e., the algorithms with respect to which



272 CHAPTER 8. PSEUDORANDOM GENERATORSthe computational indistinguishability requirement should hold); and the resourcesthat the generators are allowed to use (i.e., their own computational complexity).Stretch function: A necessary requirement from any notion of a pseudorandomgenerator is that it is a deterministic algorithm that stretches short strings, calledseeds, into longer output sequences. Speci�cally, it stretches k-bit long seeds into`(k)-bit long outputs, where `(k) > k. The function ` : N ! N is called thestretch measure (or stretch function). In some settings the speci�c stretch measureis immaterial (e.g., see Section 8.3.4).Computational Indistinguishability: A necessary requirement from any no-tion of a pseudorandom generator is that it \fools" some non-trivial algorithms.That is, any algorithm taken from a predetermined class of interest cannot dis-tinguish the output produced by the generator (when the generator is fed with auniformly chosen seed) from a uniformly chosen sequence. Typically, we considera class D of distinguishers and a class F of (threshold) functions, and require thatthe generator G satis�es the following: For any D 2 D, any f 2 F , and for allsu�ciently large k'sjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k) (8.1)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the coin tosses of algorithm D in case it isprobabilistic.2 The reader may think of such a distinguisher, D, as trying to tellwhether the \tested string" is a random output of the generator (i.e., distributedas G(Uk)) or is a truly random string (i.e., distributed as U`(k)). The condition inEq. (8.1) requires that D cannot make a meaningful decision; that is, ignoring anegligible di�erence (represented by f(k)), D's verdict is the same in both cases.The archetypical choice is that D is the set of all probabilistic polynomial-timealgorithms, and F is the set of all functions that are the reciprocal of some positivepolynomial.Complexity of Generation: The archetypical choice is that the generator hasto work in polynomial-time (in length of its input { the seed). Other choices willbe discussed as well. We note that placing no computational requirements onthe generator (or, alternatively, putting very mild requirements such as a double-exponential running-time upper bound), yields \generators" that can fool anysubexponential-size circuit family (see Exercise 8.1).2The class of threshold functions F should be viewed as determining the class of noticeableprobabilities (as a function of k). Thus, we require certain functions (i.e., the absolute di�erencebetween the above probabilities), to be smaller than any noticeable function on all but �nitelymany integers. We call the former functions negligible. Note that a function may be neithernoticeable nor negligible (e.g., it may be smaller than any noticeable function on in�nitely manyvalues and yet larger than some noticeable function on in�nitely many other values).



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 273Notational conventions. We will consistently use k to denote the length of theseed of a pseudorandom generator, and `(k) to denote the length of the correspond-ing output. In some cases, this makes our presentation a little more cumbersome(as a natural presentation may specify some other parameters and let the seed-length be a function of these). However, our choice has the advantage of focusingattention on the fundamental parameter of pseudorandom generation { the lengthof the random seed. We note that whenever a pseudorandom generator is used to\derandomize" an algorithm, n will denote the length of the input to this algorithm,and k will be selected as a function of n.Some instantiations of the general paradigm. Two important instantiationsof the notion of pseudorandom generators relate to probabilistic polynomial-timedistinguishers.1. General-purpose pseudorandom generators correspond to the case that thegenerator itself runs in polynomial time and needs to withstand any prob-abilistic polynomial-time distinguisher, including distinguishers that run formore time than the generator. Thus, the same generator may be used safelyin any e�cient application. (This notion is treated in Section 8.3.)2. In contrast, pseudorandom generators intended for derandomization may runmore time than the distinguisher, which is viewed as a �xed circuit havingsize that is upper-bounded by a �xed polynomial. (This notion is treated inSection 8.4.)In addition, the general paradigm may be instantiated by focusing on the spacecomplexity of the potential distinguishers (and the generator), rather than on theirtime complexity. Furthermore, one may also consider distinguishers that merelyreect probabilistic properties such as pair-wise independence, small-bias, and hit-ting frequency.8.3 General-Purpose Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is fre-quently used in the design of sequential, parallel and distributed algorithms, andit is of course central to cryptography. Whereas it is convenient to design such al-gorithms making free use of randomness, it is also desirable to minimize the usageof randomness in real implementations. Thus, general-purpose pseudorandom gen-erators (as de�ned next) are a key ingredient in an \algorithmic tool-box" { theyprovide an automatic compiler of programs written with free usage of randomnessinto programs that make an economical use of randomness.8.3.1 The basic de�nitionLoosely speaking, general-purpose pseudorandom generators are e�cient (i.e., polynomial-time) deterministic programs that expand short randomly selected seeds into longer



274 CHAPTER 8. PSEUDORANDOM GENERATORSpseudorandom bit sequences, where the latter are de�ned as computationally indis-tinguishable from truly random sequences by any e�cient (i.e., polynomial-time)algorithm. Thus, the distinguisher is more complex than the generator: The gen-erator is a �xed algorithm working within some �xed polynomial-time, whereas apotential distinguisher is any algorithm that runs in polynomial-time. Thus, forexample, the distinguisher may always run in time cubic in the running-time ofthe generator. Furthermore, to facilitate the development of this theory, we allowthe distinguisher to be probabilistic (whereas the generator remains determinis-tic as stated above). We require that such distinguishers cannot tell the outputof the generator from a truly random string of similar length, or rather that thedi�erence that such distinguishers may detect (or \sense") is negligible. Here anegligible function is one that vanishes faster than the reciprocal of any positivepolynomial.De�nition 8.1 (general-purpose pseudorandom generator): A deterministic polynomial-time algorithm G is called a pseudorandom generator if there exists a stretch func-tion, ` : N!N (satisfying `(k) > k for all k), such that for any probabilisticpolynomial-time algorithm D, for any positive polynomial p, and for all su�cientlylarge k's jPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < 1p(k) (8.2)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the internal coin tosses of D.Thus, De�nition 8.1 is derived from the generic framework (presented in Sec-tion 8.2) by taking the class of distinguishers to be the set of all probabilisticpolynomial-time algorithms, and taking the class of (noticeable) threshold functionsto be the set of all functions that are the reciprocals of some positive polynomial.3The latter choice is naturally coupled with the association of e�cient computationwith polynomial-time algorithms: An event that occurs with noticeable probabilityoccurs almost always when the experiment is repeated a \feasible" (i.e., polyno-mial) number of times.We note that De�nition 8.1 does not make any requirement regarding the stretchfunction ` : N!N , except for the generic requirement that `(k) > k for all k.Needless to say, the larger ` is the more useful is the pseudorandom generator.In Section 8.3.4 we show how to use any pseudorandom generator (even one withminimal stretch `(k) = k +1) in order to obtain a pseudorandom generator of anydesired polynomial stretch function. But before going so, we rigorously discussthe \reduction in randomness" o�ered by pseudorandom generators, and provide awider perspective on the notion of computational indistinguishability that underliesDe�nition 8.1.3De�nition 8.1 requires that the distinguishing gap of certain algorithms must be smaller thanthe reciprocal of any positive polynomial for all but �nitely many k's. Such functions are callednegligible; see Footnote 2. The notion of negligible probability is robust in the sense that anevent which occurs with negligible probability occurs with negligible probability also when theexperiment is repeated a \feasible" (i.e., polynomial) number of times.



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 2758.3.2 The archetypical applicationWe note that \pseudo-random number generators" appeared with the �rst comput-ers. However, typical implementations use generators that are not pseudorandomaccording to De�nition 8.1. Instead, at best, these generators are shown to passsome ad-hoc statistical test (cf., [137]). We warn that the fact that a \pseudo-random number generator" passes some statistical tests, does not mean that itwill pass a new test and that it will be good for a future (untested) application.Furthermore, the approach of subjecting the generator to some ad-hoc tests failsto provide general results of the form \for all practical purposes using the out-put of the generator is as good as using truly unbiased coin tosses." In contrast,the approach encompassed in De�nition 8.1 aims at such generality, and in fact istailored to obtain it: The notion of computational indistinguishability, which un-derlines De�nition 8.1, covers all possible e�cient applications guaranteeing thatfor all of them pseudorandom sequences are as good as truly random ones. Indeed,any e�cient randomized algorithm maintains its performance when its internal cointosses are substituted by a sequence generated by a pseudorandom generator. Thissubstitution is spell-out next.Construction 8.2 (typical application of pseudorandom generators): Let G be apseudorandom generator with stretch function ` :N!N . Let A be a probabilisticalgorithm, and �(n) denote a (polynomial) upper bound on its randomness com-plexity. Denote by A(x; r) the output of A on input x and coin tosses sequencer 2 f0; 1g�(jxj). Consider the following randomized algorithm, denoted AG:On input x, set k = k(jxj) to be the smallest integer such that `(k) ��(jxj), uniformly select s 2 f0; 1gk, and output A(x; r), where r is the�(jxj)-bit long pre�x of G(s).That is, AG(x; s) = A(x;G0(s)), for jsj = k(jxj) = argminif`(i) � �(jxj)g, whereG0(s) is the �(jxj)-bit long pre�x of G(s).Thus, using AG instead of A, the randomness complexity is reduced from � to`�1 ��, while (as we show next) it is infeasible to �nd inputs (i.e., x's) on which thenoticeable behavior of AG is di�erent from the one of A. For example, if `(k) = k2,then the randomness complexity is reduced from � to p�. We stress that thepseudorandom generator G is universal; that is, it can be applied to reduce therandomness complexity of any probabilistic polynomial-time algorithm A.Proposition 8.3 Let A, � and G be as in Construction 8.2, and suppose that� : N ! N is 1-1. Then, for every pair of probabilistic polynomial-time algorithms,a �nder F and a tester T , every positive polynomial p and all su�ciently long n'sXx2f0;1gn Pr[F (1n) = x] � j�A;T (x) j < 1p(n) (8.3)where �A;T (x) def= Pr[T (x;A(x; U�(jxj))) = 1] � Pr[T (x;AG(x; Uk(jxj))) = 1], andthe probabilities are taken over the Um's as well as over the coin tosses of F andT .



276 CHAPTER 8. PSEUDORANDOM GENERATORSAlgorithm F represents a potential attempt to �nd an input x on which the outputof AG is distinguishable from the output of A. This \attempt" may be benignas in the case that a user employs algorithm AG on inputs that are generatedby some probabilistic polynomial-time application. However, the attempt mayalso be adversarial as in the case that a user employs algorithm AG on inputsthat are provided by a potentially malicious party. The potential tester, denotedT , represents the potential use of the output of algorithm AG, and captures therequirement that this output be as good as a corresponding output produced by A.Thus, T is given x as well as the corresponding output produced either by AG(x) def=A(x; Uk(n)) or by A(x) = A(x; U�(n)), and it is required that T cannot tell thedi�erence. In the case that A is a probabilistic polynomial-time decision procedure,this means that it is infeasible to �nd an x on which AG decides incorrectly (i.e.,di�erently than A). In the case that A is a search procedure for some NP-relation,it is infeasible to �nd an x on which AG outputs a wrong solution. For details, seeExercise 8.2.Proof: The proposition is proven by showing that any triplet (A;F; T ) violatingthe claim can be converted into an algorithm D that distinguishes the output of Gfrom the uniform distribution, in contradiction to the hypothesis. The key observa-tion is that �A;T (x) equals Pr[T (x;A(x; U�(n))) = 1]� Pr[T (x;A(x;G0(Uk(n)))) =1], where G0(s) is the �(n)-bit long pre�x of G(s). Details follow.As a warm-up, consider the following algorithm D. On input r (taken fromeither U`(k(n)) or G(Uk(n))), algorithm D �rst obtains x F (1n), where n can beobtained easily from jrj (because � is 1-1 and 1n 7! �(n) is computable via A).Next, D obtains y = A(x; r0), where r0 is the �(jxj)-bit long pre�x of r. Finally Doutputs T (x; y). Note that D is implementable in probabilistic polynomial-time,and that D(U�(n)) = T (Xn; A(Xn; U�(n))) ; where Xn def= F (1n)D(G0(Uk(n))) = T (Xn; A(Xn; G0(Uk(n)))) ; where Xn def= F (1n)It follows that Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] equals E[�A;T (F (1n))],which implies a weaker version of the proposition (referring to E[�A;T (F (1n))]rather than to E[j�A;T (F (1n))j]).In order to prove that E[j�A;T (F (1n))j] (rather than to E[�A;T (F (1n))]) is neg-ligible, we need to modify D a little. We start by assuming, towards the contra-diction, that E[j�A;T (F (1n))j] > "(n) for some non-negligible function ". On inputr (taken from either U`(k(n)) or G(Uk(n))), the modi�ed algorithm D �rst obtainsx  F (1n), as before. Next, using a sample of size poly(n="(n)), it approximatespU (x) def= Pr[T (x;A(x; U�(n)) = 1] and pG(x) def= Pr[T (x;A(x;G0(Uk(n))) = 1] suchthat each probability is approximated to within a deviation of "(n)=8 with negli-gible error probability (say, exp(�n)). (Note that, so far, the actions of D onlydepend on the length of its input r, which determines n.) If these approximationsindicate that pU (x) � pG(x) (equiv., that �A;T � 0) then D outputs T (x;A(x; r0))else it outputs 1� T (x;A(x; r0)), where r0 is the �(jxj)-bit long pre�x of r and weassume without loss of generality that the output of T is in f0; 1g. The reader may



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 277verify that, for every x, it holds thatPr[D(U�(n)) = 1jF (1n) = x] � Pr[D(G0(Uk(n))) = 1jF (1n) = x]� jpU (x)� pG(x)j � "(n)2 � exp(�n);where the error terms are due to possible errors in the approximation of pU (x) �pG(x) (which may cause us to ip its sign and incur an error of 2jpU (x) � pG(x)jin the case that jpU (x) � pG(x)j is smaller than our typical approximation errorfor pU (x) � pG(x)).4 Thus, Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] is lower-bounded by E[j�A;T (F (1n))j]� ("(n)=2)� exp(�n) > "(n)=3, and the propositionfollows.Conclusion. Analogous arguments are applied whenever one wishes to provethat an e�cient randomized process (be it an algorithm as above or a multi-partycomputation) preserves its behavior when one replaces true randomness (assumedin the analysis) by pseudorandomness (used in the implementation). Thus, given apseudorandom generator with a large stretch function, one can considerably reducethe randomness complexity in any e�cient application.8.3.3 Computational IndistinguishabilityIn this section we spell-out (and study) the de�nition of computational indistin-guishability that underlies De�nition 8.1. The general de�nition of computationalindistinguishability refers to arbitrary probability ensembles, where a probabilityensemble is an in�nite sequence of random variables fZngn2N such that each Znranges over strings of length bounded by a polynomial in n. We say that fXngn2Nand fYngn2N are computationally indistinguishable if for every feasible algorithm Athe di�erence dA(n) def= jPr[A(Xn)= 1] � Pr[A(Yn) =1]j is a negligible function inn. That is:De�nition 8.4 (computational indistinguishability): The probability ensemblesfXngn2N and fYngn2N are computationally indistinguishable if for every probabilis-tic polynomial-time algorithm D, every positive polynomial p, and all su�cientlylarge n, jPr[D(Xn)=1]� Pr[D(Yn)=1]j < 1p(n) (8.4)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (8.4), whenviewed as a function of n, is often called the distinguishing gap ofD, where fXngn2Nand fYngn2N are understood from the context.4Speci�cally, the "(n)=2 term is due to the maximal typical deviation (i.e., "(n)=4) of ourapproximation of pU (x) � pG(x) and the exp(�n) term is due to the rare case that our approx-imation of pU (x) � pG(x) errs by more than "(n)=4. Note that if jpU(x) � pG(x)j � "(n)=4 andour approximation of pU (x)�pG(x) deviates from its true value by less than "(n)=4 then we gainthe full gap due to x (i.e., jpU(x) � pG(x)j).



278 CHAPTER 8. PSEUDORANDOM GENERATORSThat is, we can think of D as somebody who wishes to distinguish two distributions(based on a sample given to it), and think of the output \1" as D's verdict thatthe sample was drawn according to the �rst distribution. Saying that the twodistributions are computationally indistinguishable means that if D is a feasibleprocedure then its verdict is not really meaningful (because the verdict is almostas often 1 when the input is drawn from the �rst distribution as when the inputis drawn from the second distribution). We comment that the absolute value inEq. (8.4) can be omitted without a�ecting the de�nition (see Exercise 8.3), and wewill often do so without warning.In De�nition 8.1, we required that the probability ensembles fG(Uk)gk2N andfU`(k)gk2N be computationally indistinguishable. Indeed, an important specialcase of De�nition 8.4 is when one ensemble is uniform, and in such a case we callthe other ensemble pseudorandom.Non-triviality of Computational Indistinguishability. Clearly, any two prob-ability ensembles that are statistically close5 are computationally indistinguishable.Needless to say, this is a trivial case of computational indistinguishability, which isdue to information theoretic reasons. In contrast, as noted in Section 8.2, there ex-ist probability ensembles that are statistically far apart and yet are computationallyindistinguishable (see Exercise 8.1). However, at least one of the probability en-sembles in Exercise 8.1 is not polynomial-time constructible. One non-trivial caseof computational indistinguishability in which both ensembles are polynomial-timeconstructible is provided by the de�nition of pseudorandom generators (see Exer-cise 8.4). As we shall see (in Theorem 8.11), the existence of one-way functionsimplies the existence of pseudorandom generators, which in turn implies the exis-tence of polynomial-time constructible probability ensembles that are statisticallyfar apart and yet are computationally indistinguishable. We mention that thissu�cient condition is also necessary (see Exercise 8.5).Indistinguishability by Multiple SamplesThe de�nition of computational indistinguishability (i.e., De�nition 8.4) refers todistinguishers that obtain a single sample from one of the two probability ensembles(i.e., fXngn2N and fYngn2N). A more general de�nition refers to distinguishersthat obtain several independent samples from such an ensemble.De�nition 8.5 (indistinguishability by multiple samples): Let s :N!N be polynomially-bounded. Two probability ensembles, fXngn2N and fYngn2N, are computationallyindistinguishable by s(�) samples if for every probabilistic polynomial-time algorithm,D, every positive polynomial p(�), and all su�ciently large n's���Pr hD(X(1)n ; :::; X(s(n))n )=1i� Pr hD(Y (1)n ; :::; Y (s(n))n )=1i��� < 1p(n)5Two probability ensembles, fXngn2N and fYngn2N, are said to be statistically close if forevery positive polynomial p and su�cient large n the variation distance between Xn and Yn (i.e.,12Pz jPr[Xn = z]� Pr[Yn = z]j) is bounded above by 1=p(n).



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 279where X(1)n through X(s(n))n and Y (1)n through Y (s(n))n are independent random vari-ables, with each X(i)n identical to Xn and each Y (i)n identical to Yn.It turns out that in the most interesting cases, computational indistinguishabilityby a single sample implies computational indistinguishability by any polynomialnumber of samples. One such case is the case of polynomial-time constructibleensembles. We say that the ensemble fZngn2N is polynomial-time constructible ifthere exists a polynomial-time algorithm S so that S(1n) and Zn are identicallydistributed.Proposition 8.6 Suppose that X def= fXngn2N and Y def= fYngn2N are both polynomial-time constructible, and s be a polynomial. Then, X and Y are computationallyindistinguishable by a single sample if and only if they are computationally indis-tinguishable by s(�) samples.Clearly, for every polynomial s, computational indistinguishability by s(�) sam-ples implies computational indistinguishability by a single sample. We now provethat, for e�ciently constructible ensembles, indistinguishability by a single sampleimplies indistinguishability by multiple samples. 6 The proof provides a simpledemonstration of a central proof technique, known as the hybrid technique.Proof Sketch:7 To prove that a sequence of independently drawn samples of onedistribution is indistinguishable from a sequence of independently drawn samplesfrom the other distribution, we consider hybrid sequences such that the ith hybridconsists of i samples taken from the �rst distribution and the rest taken from thesecond distribution. The \homogeneous" sequences (which we wish to prove to becomputational indistinguishable) are the extreme hybrids (i.e., the �rst and lasthybrids considered above). The key observation is that distinguishing the extremehybrids (towards the contradiction hypothesis) means distinguishing neighboringhybrids, which in turn yields a procedure for distinguishing single samples of thetwo original distributions (contradicting the hypothesis that these two distributionsare indistinguishable by a single sample). Details follow.Suppose thatD distinguishes s(n) samples of one distribution from s(n) samplesof the other, with a distinguishing gap of �(n). Denoting the ith hybrid by H in(i.e., H in = (X(1)n ; :::; X(i)n ; Y (i+1)n ; :::; Y (s(n))n )), this means that D distinguishes theextreme hybrids (i.e., H0n andHs(n)n ) with gap �(n). ThenD distinguishes a randompair of neighboring hybrids (i.e., D distinguishes the ith hybrid from the i + 1sthybrid, for a randomly selected i) with gap at least �(n)=s(n). The reason beingthat Ei2f0;:::;s(n)�1g �Pr[D(H in) = 1]� Pr[D(H i+1n ) = 1]�= 1s(n) � s(n)�1Xi=0 �Pr[D(H in) = 1]� Pr[D(H i+1n ) = 1]� (8.5)6The requirement that both ensembles are polynomial-time constructible is essential; see,Exercise 8.8.7For more details see [87, Sec. 3.2.3].



280 CHAPTER 8. PSEUDORANDOM GENERATORS= 1s(n) � �Pr[D(H0n) = 1]� Pr[D(Hs(n)n ) = 1]� = �(n)s(n)Using D, we obtain a distinguisher D0 of single samples: Given a single sample,algorithm D0 selects i 2 f0; :::; s(n) � 1g at random, generates i samples fromthe �rst distribution and s(n) � i � 1 samples from the second distribution, andinvokes D with the s(n)-samples sequence obtained when placing the input samplein location i+ 1. Thus, the construction of D0 relies on the hypothesis that bothprobability ensembles are polynomial-time constructible. In analyzing D0, observethat when the single sample (i.e., the input to D0) is taken from the �rst (resp.,second) distribution, algorithmD0 invokesD on the i+1st hybrid (resp., ith hybrid).Thus, the distinguishing gap of D0 is captured by Eq. (8.5), and the claim follows.The hybrid technique { a digest: The hybrid technique constitutes a specialtype of a \reducibility argument" in which the computational indistinguishabilityof complex ensembles is proven using the computational indistinguishability of basicensembles. The actual reduction is in the other direction: e�ciently distinguishingthe basic ensembles is reduced to e�ciently distinguishing the complex ensembles,and hybrid distributions are used in the reduction in an essential way. The followingthree properties of the construction of the hybrids play an important role in theargument:1. The extreme hybrids collide with the complex ensembles: this property isessential because what we want to prove (i.e., the indistinguishability of thecomplex ensembles) relates to the complex ensembles.2. Neighboring hybrids are easily related to the basic ensembles: this propertyis essential because what we know (i.e., the indistinguishability of the basicensembles) relates to the basic ensembles. We need to be able to translate ourknowledge (i.e., computational indistinguishability) of the basic ensembles toknowledge (i.e., computational indistinguishability) of any pair of neighbor-ing hybrids. Typically, it is required to e�ciently transform strings in therange of a basic distribution into strings in the range of a hybrid, so thatthe transformation maps the �rst basic distribution to one hybrid and thesecond basic distribution to the neighboring hybrid. (In the proof of Proposi-tion 8.6, the hypothesis that both X and Y are polynomial-time constructibleis instrumental for such an e�cient transformation.)3. The number of hybrids is small (i.e., polynomial): this property is essentialin order to deduce the computational indistinguishability of extreme hybridsfrom the computational indistinguishability of each pair of neighboring hy-brids. Typically, the provable \distinguishability gap" is inversely propor-tional to the number of hybrids. Indeed, see Eq. (8.5).We remark that in the course of an hybrid argument, a distinguishing algorithmreferring to the complex ensembles is being analyzed and even invoked on arbi-trary hybrids. The reader may be annoyed of the fact that the algorithm \was



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 281not designed to work on such hybrids" (but rather only on the extreme hybrids).However, an algorithm is an algorithm: once it exists we can invoke it on inputs ofour choice, and analyze its performance on arbitrary input distributions.8.3.4 Amplifying the stretch functionRecall that the de�nition of pseudorandom generators (i.e., De�nition 8.1) makesa minimal requirement regarding their stretch; that is, it is only required thatthe length of the output of such generators is longer than their input. Needlessto say, we seek pseudorandom generators with a signi�cant stretch. It turns out(see Construction 8.7) that pseudorandom generators of any stretch function andin particular of stretch `1(k) def= k + 1, are easily converted into pseudorandomgenerators of any desired (polynomially bounded) stretch function, `. (On theother hand, since pseudorandom generators are required (in De�nition 8.1) to runin polynomial time, their stretch must be polynomially bounded.) Thus, whentalking about the existence of pseudorandom generators, as in De�nition 8.1, wemay ignore the stretch function.Construction 8.7 Let G1 be a pseudorandom generator with stretch function`1(k) = k+1, and ` be any polynomially bounded stretch function that is polynomial-time computable. Let G(s) def= �1�2 � � ��`(jsj) (8.6)where x0 = s and xi�i = G1(xi�1), for i = 1; :::; `(jsj). (That is, �i is the last bitof G1(xi�1) and xi is the jsj-bit long pre�x of G1(xi�1).)Needless to say, G is polynomial-time computable and has stretch `. An alternativeconstruction is considered in Exercise 8.9.
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Figure 8.2: Analysis of stretch ampli�cation { the ith hybrid.Proposition 8.8 Let G1 and G be as in Construction 8.7. Then G constitutes apseudorandom generator.



282 CHAPTER 8. PSEUDORANDOM GENERATORSProof Sketch:8 The proposition is proven using the hybrid technique, presentedand discussed in Section 8.3.3. Here (for i = 0; :::; `(k)) we consider the hybriddistributions H ik, de�ned byH ik def= U (1)i � g`(k)�i(U (2)k );where U (1)i and U (2)k are independent uniform distributions (over f0; 1gi and f0; 1gk,respectively), and gj(x) denotes the j-bit long pre�x of G(x). (See Figure 8.2.)The extreme hybrids (i.e., H0k and Hkk ) correspond to G(Uk) and U`(k), whereasdistinguishability of neighboring hybrids can be worked into distinguishability ofG1(Uk) and Uk+1. Details follow.Suppose that algorithm D distinguishes H ik from H i+1k (with some gap �(k)).Denoting the �rst jxj � 1 bits (resp., last bit) of x by F (x) (resp., L(x)), we maywrite gj(s) � (L(G1(s)); gj�1(F (G1(s)))) andH ik = U (1)i � g`(k)�i(U (2)k )� (U (1)i ; L(G1(U (2)k )); g(`(k)�i)�1(F (G1(U (2)k ))))H i+1k = U (10)i+1 � g`(k)�i�1(U (2)k )� (U (1)i ; L(U (20)k+1); g(`(k)�i)�1(F (U (20)k+1))):Then, incorporating the generation of U (1)i and the evaluation of g`(k)�i�1 intothe distinguisher D, we distinguish (F (G1(U (2)k )); L(G1(U (2)k ))) � G1(Uk) from(F (U (20)k+1); L(U (20)k+1)) � Uk+1, in contradiction to the pseudorandomness of G1.Speci�cally, on input x 2 f0; 1gk+1, we uniformly select r 2 f0; 1gi and outputD(r � L(x) � g`(k)�i�1(F (x))). Thus, the probability we output 1 on input G1(Uk)(resp., Uk+1) equals Pr[D(H ik) = 1] (resp., Pr[D(H i+1k ) = 1]). A �nal detail refersto the question which i to use. As usual (when the hybrid technique is used), arandom i (in f0; :::; k � 1g) will do.8.3.5 ConstructionsThe constructions surveyed in this section \transform" computational di�culty, inthe form of one-way functions, into generators of pseudorandomness. Recall thata polynomial-time computable function is called one-way if any e�cient algorithmcan invert it only with negligible success probability (see De�nition 7.1 and Sec-tion 7.1 for further discussion). We will actually use hard-core predicates of suchfunctions, and refer the reader to their treatment in Section 7.1.3. Loosely speak-ing, a polynomial-time computable predicate b is called a hard-core of a function fif any e�cient algorithm, given f(x), can guess b(x) only with success probabilitythat is negligible better than half. Recall that, for any one-way function f , theinner-product mod 2 of x and r is a hard-core of f 0(x; r) = (f(x); r). Finally, weget to the construction of pseudorandom generators.8For more details see [87, Sec. 3.3.3].



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 283Proposition 8.9 (A simple construction of pseudorandom generators): Let b bea hard-core predicate of a polynomial-time computable 1-1 and length-preservingfunction f . Then, G(s) def= f(s) � b(s) is a pseudorandom generator.Proof Sketch:9 The jsj-bit long pre�x of G(s) is uniformly distributed, because fis 1-1 and onto f0; 1gjsj. Hence, the proof boils down to showing that distinguishingf(s)b(s) from f(s)��, where � is a random bit, yields contradiction to the hypothesisthat b is a hard-core of f (i.e., that b(s) is unpredictable from f(s)). Intuitively,such a distinguisher also distinguishes f(s)b(s) from f(s) � b(s), where � = 1� �,and distinguishing f(s) � b(s) from f(s) � b(s) yields an algorithm for predicting b(s)based on f(s). Details follow.We start with any potential distinguisher D, and let�(k) def= Pr[D(G(Uk)) = 1]� Pr[D(Uk+1) = 1]:We may assume, without loss of generality, that �(k) is non-negative (for in�nitelymany k's). Using G(Uk) = f(Uk) � b(Uk) and Uk+1 � f(Uk) � Z, where Z = b(Uk)with probability 1=2 and Z = b(Uk) otherwise, we havePr[D(f(Uk)b(Uk)) = 1]� Pr[D(f(Uk)b(Uk)) = 1] = 2�(k):Consider an algorithm A that, on input y, uniformly selects � 2 f0; 1g, invokesD(y�), and outputs � if D(y�) = 1 and � otherwise. ThenPr[A(f(Uk)) = b(Uk)] = Pr[D(f(Uk) � �) = 1 ^ � = b(Uk)]+ Pr[D(f(Uk) � �) = 0 ^ � = b(Uk)]= 12 � (Pr[D(f(Uk) � b(Uk)) = 1]+ 1 � Pr[D(f(Uk) � b(Uk)) = 1]�which equals (1 + 2�(k))=2. The proposition follows.Combining Theorem 7.7, Proposition 8.9 and Construction 8.7, we obtain the fol-lowing corollary.Theorem 8.10 (A su�cient condition for the existence of pseudorandom gener-ators): If there exists 1-1 and length-preserving one-way function then, for everypolynomially bounded stretch function `, there exists a pseudorandom generator ofstretch `.Digest. The key point in the proof of Proposition 8.9 is showing that the (ratherobvious) unpredictability of the output of G implies its pseudorandomness. Thefact that (next bit) unpredictability and pseudorandomness are equivalent, in gen-eral, is proven explicitly in the alternative proof of Theorem 8.10 provided next.9For more details see [87, Sec. 3.3.4].



284 CHAPTER 8. PSEUDORANDOM GENERATORSAn alternative presentation. Let us take a closer look at the pseudorandomgenerators obtained by combining Construction 8.7 and Proposition 8.9. For astretch function ` :N!N , a 1-1 one-way function f with a hard-core b, we obtainG(s) def= �1�2 � � ��`(jsj) ; (8.7)where x0 = s and xi�i = f(xi�1)b(xi�1) for i = 1; :::; `(jsj). Denoting by f i(x)the value of f iterated i times on x (i.e., f i(x) = f i�1(f(x)) and f0(x) = x), werewrite Eq. (8.7) as followsG(s) def= b(s) � b(f(s)) � � � b(f `(jsj)�1(s)) : (8.8)The pseudorandomness of G is established in two steps, using the notion of (nextbit) unpredictability. An ensemble fZkgk2N is called unpredictable if any probabilis-tic polynomial-time machine obtaining a (random)10 pre�x of Zk fails to predictthe next bit of Zk with probability non-negligibly higher than 1=2. Speci�cally, weneed to establish the following two results.1. A general result asserting that an ensemble is pseudorandom if and only ifit is unpredictable. Recall that an ensemble is pseudorandom if it is compu-tationally indistinguishable from a uniform distribution (over bit strings ofadequate length).Clearly, pseudorandomness implies polynomial-time unpredictability, but herewe actually need the other direction, which is less obvious. Still, using ahybrid argument, one can show that (next-bit) unpredictability implies in-distinguishability from the uniform ensemble. For details see Exercise 8.10.2. A speci�c result asserting that the ensemble fG(Uk)gk2N is unpredictablefrom right to left. Equivalently, G0(Un) is polynomial-time unpredictable(from left to right (as usual)), where G0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s)is the reverse of G(s).Using the fact that f induces a permutation over f0; 1gn, observe that the (j+1)-bit long pre�x of G0(Uk) is distributed identically to b(f j(Uk)) � � � b(f(Uk))�b(Uk). Thus, an algorithm that predicts the j + 1st bit of G0(Un) based onthe j-bit long pre�x of G0(Un) yields an algorithm that guesses b(Un) basedon f(Un). For details see Exercise 8.12.Needless to say, G is a pseudorandom generator if and only if G0 is a pseudorandomgenerator (see Exercise 8.11). We mention that Eq. (8.8) is often referred to as theBlum-Micali Construction.1110For simplicity, we de�ne unpredictability as referring to pre�ces of a random length (dis-tributed uniformly in f0; :::; jZkj � 1g).11Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. Indeed, this construction originates in [37].



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 285A general condition for the existence of pseudorandom generators. Re-call that given any one-way 1-1 length-preserving function, we can easily constructa pseudorandom generator. Actually, the 1-1 (and length-preserving) requirementmay be dropped, but the currently known construction { for the general case { isquite complex.Theorem 8.11 (On the existence of pseudorandom generators): Pseudorandomgenerators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence ofone-way functions, consider a pseudorandom generator G with stretch function`(k) = 2k. For x; y 2 f0; 1gk, de�ne f(x; y) def= G(x), and so f is polynomial-timecomputable (and length-preserving). It must be that f is one-way, or else one candistinguish G(Uk) from U2k by trying to invert and checking the result: Inverting fon its range distribution refers to the distribution G(Uk), whereas the probabilitythat U2k has inverse under f is negligible.The interesting direction of the proof of Theorem 8.11 is the construction ofpseudorandom generators based on any one-way function. In general (when f maynot be 1-1) the ensemble f(Uk) may not be pseudorandom, and so Construction 8.9(i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. Oneidea underlying the known construction is to hash f(Uk) to an almost uniformstring of length related to its entropy, using Universal Hash Functions. (This isdone after guaranteeing, that the logarithm of the probability mass of a value off(Uk) is typically close to the entropy of f(Uk).)12 But \hashing f(Uk) down tolength comparable to the entropy" means shrinking the length of the output to,say, k0 < k. This foils the entire point of stretching the k-bit seed. Thus, a secondidea underlying the construction is to compensate for the k� k0 loss by extractingthese many bits from the seed Uk itself. This is done by hashing Uk, and the pointis that the (k�k0)-bit long hash value does not make the inverting task any easier.Implementing these ideas turns out to be more di�cult than it seems, and indeedan alternative construction would be most appreciated.8.3.6 Non-uniformly strong pseudorandom generatorsRecall that we said that truly random sequences can be replaced by pseudoran-dom ones without a�ecting any e�cient computation. The speci�c formulation ofthis assertion, presented in Proposition 8.3, refers to randomized algorithms thattake a \primary input" and use a secondary \random input" in their computation.Proposition 8.3 asserts that it is infeasible to �nd a primary input for which thereplacement of a truly random secondary input by a pseudorandom one a�ects the�nal output of the algorithm in a noticeable way. This, however, does not meanthat such primary inputs do not exist (but rather that they are hard to �nd).12Speci�cally, given an arbitrary one-way function f 0, one �rst constructs f by taking a \directproduct" of su�ciently many copies of f 0. For example, for x1; :::; xk2=3 2 f0; 1gk1=3 , we letf(x1; :::; xk2=3) def= f 0(x1); :::; f 0(xk2=3 ).



286 CHAPTER 8. PSEUDORANDOM GENERATORSConsequently, Proposition 8.3 falls short of yielding a (worst-case)13 \derandom-ization" of a complexity class such as BPP. To obtain such results, we need astronger notion of pseudorandom generators, presented next. Speci�cally, we needpseudorandom generators that can fool all polynomial-size circuits (cf. x1.2.4.1),and not merely all probabilistic polynomial-time algorithms.14De�nition 8.12 (strong pseudorandom generator { fooling circuits): A determin-istic polynomial-time algorithm G is called a non-uniformly strong pseudorandomgenerator if there exists a stretch function, ` : N!N , such that for any familyfCkgk2N of polynomial-size circuits, for any positive polynomial p, and for all suf-�ciently large k'sjPr[Ck(G(Uk)) = 1] � Pr[Ck(U`(k)) = 1] j < 1p(k)An alternative formulation is obtained by referring to polynomial-time machinesthat take advice (Section 3.1.2). Using such pseudorandom generators, we can\derandomize" BPP.Theorem 8.13 (Derandomization of BPP): If there exists non-uniformly strongpseudorandom generators then BPP is contained in \">0Dtime(t"), where t"(n) def=2n" .Proof Sketch: For any S 2 BPP and any " > 0, we let A denote the decisionprocedure for L and G denote a non-uniformly strong pseudorandom generatorstretching n"-bit long seeds into poly(n)-long sequences (to be used by A as sec-ondary input when processing a primary input of length n). We thus obtain analgorithm A0 = AG (as in Construction 8.2). We claim that A and A0 may sig-ni�cantly di�er in their (expected probabilistic) decision on at most �nitely manyinputs, because otherwise we can use these inputs (together with A) to derivea (non-uniform) family of polynomial-size circuits that distinguishes G(Un") andUpoly(n), contradicting the the hypothesis regarding G. Speci�cally, an input x onwhich A and A0 di�er signi�cantly yields a circuit Cx that distinguishes G(Ujxj")and Upoly(jxj), by letting Cx(r) = A(x; r).15 Incorporating the �nitely many \bad"13Indeed, Proposition 8.3 yields an average-case derandomization of BPP . In particular, forevery polynomial-time constructible ensemble fXngn2N, every Boolean function f 2 BPP , andevery " > 0, there exists a randomized algorithm A0 of randomness complexity r"(n) = n" suchthat the probability that A0(Xn) 6= f(Xn) is negligible. A corresponding deterministic (exp(r")-time) algorithm A00 can be obtained, as in the proof of Theorem 8.13, and again the probabilitythat A00(Xn) 6= f(Xn) is negligible, where here the probability is taken only over the distributionof the primary input (represented by Xn). In contrast, worst-case derandomization, as capturedby the assertion BPP � Dtime(2r" ), requires that the probability that A00(Xn) 6= f(Xn) is zero.14Needless to say, strong pseudorandom generators in the sense of De�nition 8.12 satisfy thebasic de�nition of a pseudorandom generator (i.e., De�nition 8.1); see Exercise 8.13. We com-ment that the underlying notion of computational indistinguishability (by circuits) is strictlystronger than De�nition 8.4, and that it is invariant under multiple samples (regardless of theconstructibility of the underlying ensembles); for details, see Exercise 8.14.15Indeed, in terms of the proof of Proposition 8.3, the �nder F consists of a non-uniform familyof polynomial-size circuits that print the \problematic" primary inputs that are hard-wired inthem, and the corresponding distinguisher D is thus also non-uniform.



8.3. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 287inputs into A0, we derive a probabilistic polynomial-time algorithm that decides Swhile using randomness complexity n".Finally, emulating A0 on each of the 2n" possible random choices (i.e., seedsto G) and ruling by majority, we obtain a deterministic algorithm A00 as required.That is, let A0(x; r) denote the output of algorithm A0 on input x when using coinsr 2 f0; 1gn". Then A00(x) invokes A0(x; r) on every r 2 f0; 1gn" , and outputs 1 ifand only if the majority of these 2n" invocations have returned 1.We comment that stronger results regarding derandomization of BPP are pre-sented in Section 8.4.On constructing non-uniformly strong pseudorandom generators. Non-uniformly strong pseudorandom generators (as in De�nition 8.12) can be con-structed using any one-way function that is hard to invert by any non-uniformfamily of polynomial-size circuits (as in De�nition 7.3), rather than by probabilis-tic polynomial-time machines. In fact, the construction in this case is simpler thanthe one employed in the uniform case (i.e., the construction underlying the proofof Theorem 8.11).8.3.7 Other variants and a conceptual discussionWe �rst mention two stronger variants on the de�nition of pseudorandom genera-tors, and conclude this section by highlighting various conceptual issues.8.3.7.1 Stronger notionsThe following two notions represent strengthening of the standard de�nition ofpseudorandom generators (as presented in De�nition 8.1). Non-uniform versionsof these variants (strengthening De�nition 8.12) are also of interest.Fooling stronger distinguishers. One strengthening of De�nition 8.1 amountsto explicitly quantifying the resources (and success gaps) of distinguishers. Wechose to bound these quantities as a function of the length of the seed (i.e., k), ratherthan as a function of the length of the string that is being examined (i.e., `(k)). Fora class of time bounds T (e.g., T = ft(k) def= 2cpkgc2N) and a class of noticeablefunctions (e.g., F = ff(k) def= 1=t(k) : t 2 T g), we say that a pseudorandomgenerator, G, is (T ;F)-strong if for any probabilistic algorithm D having running-time bounded by a function in T (applied to k)16, for any function f in F , and forall su�ciently large k's, it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k):An analogous strengthening may be applied to the de�nition of one-way functions.Doing so reveals the weakness of the known construction that underlies the proof16That is, when examining a sequence of length `(k) algorithm D makes at most t(k) steps,where t 2 T .



288 CHAPTER 8. PSEUDORANDOM GENERATORSof Theorem 8.11: It only implies that for some " > 0 (" = 1=8 will do), for anyT and F , the existence of \(T ;F)-strong one-way functions" implies the existenceof (T 0;F 0)-strong pseudorandom generators, where T 0 = ft0(k) def= t(k")=poly(k) :t 2 T g and F 0 = ff 0(k) def= poly(k) � f(k") : f 2 Fg. What we would like tohave is an analogous result with T 0 = ft0(k) def= t(
(k))=poly(k) : t 2 T g andF 0 = ff 0(k) def= poly(k) � f(
(k)) : f 2 Fg.Pseudorandom Functions. Pseudorandom generators allow to e�ciently gen-erate long pseudorandom sequences from short random seeds. Pseudorandom func-tions (de�ned in Appendix C.3.3) are even more powerful: They allow e�cientdirect access to a huge pseudorandom sequence, which is not even feasible to scanbit-by-bit. Put in other words, pseudorandom functions can replace truly randomfunctions in any e�cient application (e.g., most notably in cryptography). Wemention that pseudorandom functions can be constructed from any pseudorandomgenerator (see Appendix C.3.3), and that they found many applications in cryp-tography (see Appendix C.3.3, C.5.2, and C.6.2). Pseudorandom functions havebeen used to derive negative results in computational learning theory [216] and inthe study of circuit complexity (cf., Natural Proofs [177]).8.3.7.2 Conceptual DiscussionWhoever does not value preoccupation with thoughts, can skip this chapter.Robert Musil, The Man without Qualities, Chap. 28We highlight several conceptual aspects of the foregoing computational approachto randomness. Some of these aspects are common to other instantiation of thegeneral paradigm (esp., the one presented in Section 8.4).Behavioristic versus Ontological. The behavioristic nature of the computa-tional approach to randomness is best demonstrated by confronting this approachwith the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a stringis Kolmogorov-random if its length equals the length of the shortest program pro-ducing it. This shortest program may be considered the \true explanation" tothe phenomenon described by the string. A Kolmogorov-random string is thus astring that does not have a substantially simpler (i.e., shorter) explanation thanitself. Considering the simplest explanation of a phenomenon may be viewed as anontological approach. In contrast, considering the e�ect of phenomena on certaindevices (or observations), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions that arenot uniform (and are not even statistically close to a uniform distribution) and nev-ertheless are indistinguishable from a uniform distribution (by any e�cient device).Thus, distributions that are ontologically very di�erent, are considered equivalentby the behavioristic point of view taken in the de�nition of computational indis-tinguishability.



8.4. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 289A relativistic view of randomness. We have de�ned pseudorandomness interms of its observer. Speci�cally, we have considered the class of e�cient (i.e.,polynomial-time) observers and de�ned as pseudorandom objects that look ran-dom to any observer in that class. In subsequent sections, we shall consider re-stricted classes of such observers (e.g., space-bounded polynomial-time observersand even very restricted observers that merely apply speci�c tests such as lineartests or hitting tests). Each such class of observers gives rise to a di�erent notionof pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)explicitly aims at distributions that are not uniform and yet are considered as suchfrom the point of view of certain observers. Thus, our entire approach to pseu-dorandomness is relativistic and subjective (i.e., depending on the abilities of theobserver).Randomness and Computational Di�culty. Pseudorandomness and com-putational di�culty play dual roles: The general paradigm of pseudorandomnessrelies on the fact that putting computational restrictions on the observer givesrise to distributions that are not uniform and still cannot be distinguished fromuniform. Thus, the pivot of the entire approach is the computational di�culty ofdistinguishing pseudorandom distributions from truly random ones. Furthermore,many of the constructions of pseudorandom generators rely either on conjectures oron facts regarding computational di�culty (i.e., that certain computations that arehard for certain classes). For example, one-way functions were used to constructgeneral-purpose pseudorandom generators (i.e., those working in polynomial-timeand fooling all polynomial-time observers). Analogously, as we shall see in x8.4.3.1,the fact that parity function is hard for polynomial-size constant-depth circuits canbe used to generate (highly non-uniform) sequences that fool such circuits.Randomness and Predictability. The connection between pseudorandomnessand unpredictability (by e�cient procedures) plays an important role in the analysisof several constructions (cf. Sections 8.3.5 and 8.4.2). We wish to highlight theintuitive appeal of this connection.8.4 Derandomization of time-complexity classesLet us take a second look at the proof of Theorem 8.13: A pseudorandom gen-erator was used to shrink the randomness complexity of a BPP-algorithm, andderandomization was achieved by scanning all possible seeds to the generator. Akey observation regarding this process is that there is no point in insisting thatthe pseudorandom generator runs in time polynomial in its seed length. Instead,it su�ces to require that the generator runs in time exponential in its seed length,because we are incurring such an overhead anyhow due to the scanning of all pos-sible seeds. Furthermore, in this context, the running-time of the generator maybe larger than the running time of the algorithm, which means that the genera-tor need only fool distinguishers that take less steps than the generator. Theseconsiderations motivate the following de�nition.



290 CHAPTER 8. PSEUDORANDOM GENERATORS8.4.1 De�nitionRecall that in order to \derandomize" a probabilistic polynomial-time algorithm A,we �rst obtain a functionally equivalent algorithm AG (as in Construction 8.2) thathas (signi�cantly) smaller randomness complexity. Algorithm AG has to maintainA's input-output behavior on all (but �nitely many) inputs. Thus, the set of therelevant distinguishers (considered in the proof of Theorem 8.13) is the set of allpossible circuits obtained from A by hard-wiring each of the possible inputs. Such acircuit, denoted Cx, emulates the execution of algorithm A on input x, when usingthe circuit's input as the algorithm's internal coin tosses (i.e., A(x; r) = Cx(r)).Furthermore, the size of Cx is quadratic in the running-time of A on input x, andthe length of the input to Cx is linear in the running-time of A (on input x).17 Thus,the size of Cx is quadratic in the length of its own input, and the pseudorandomgenerator in use (i.e., G) needs to fool each such circuit. Recalling that we mayallow the generator to run in exponential time (in the length of its own input)18,we arrive at the following de�nition.De�nition 8.14 (pseudorandom generator for derandomizing BPtime(�))19: Let` ::N!N be a 1-1 function. A canonical derandomizer of stretch ` is a deterministicalgorithm G of time complexity upper-bounded by poly(2k �`(k)) such that for everycircuit Dk of size `(k)2 it holds thatjPr[Dk(G(Uk)) = 1] � Pr[Dk(U`(k)) = 1] j < 16 : (8.9)The circuits Dk are potential distinguishers, which are given inputs of length `(k).When seeking to derandomize an algorithm A of time-complexity t, the aforemen-tioned `(k)-bit long inputs represent possible random-inputs of A when invoked ona generic (primary) input of length n = t�1(`(k)). That is, letting Dk(r) = A(x; r)for some choice of x 2 f0; 1gn, where jrj = t(n) = `(k), Eq. (8.9) implies thatAG(x) maintains the majority vote of A(x). The straightforward deterministicemulation of AG takes time 2k � (poly(2k � `(k)) + t(n)), which is upper-boundedby poly(2k � `(k)) = poly(2`�1(t(n)) � t(n)). The following proposition is easy toestablish.17Indeed, we assume that algorithm A is represented as a Turing machine and refer to thestandard emulation of Turing machines by circuits (as underlying the proof of Theorem 2.20).Thus, the aforementioned circuit Cx has size that is at most quadratic (and in fact even almost-linear [168]) in the running-time of A on input x, which in turn means that Cx has size that isat most quadratic (or almost linear) in the length of its own input. We note that most sourcesuse the �ctitious convention by which the circuit size equals the length of its input, which can bejusti�ed by considering a suitably padded input.18Actually, in De�nition 8.14 we allow the generator to run in time poly(2k`(k)), rather thanpoly(2k). This is done in order not to rule out trivially generators of super-exponential stretch(i.e., `(k) = 2!(k)). However (see Exercise 8.15), the condition in Eq. (8.9) does not allowfor super-exponential stretch, and so in retrospect the two formulations are equivalent (becausepoly(2k`(k)) = poly(2k) for `(k) = 2O(k)).19Fixing a model of computation, we denote by BPtime(t) the class of decision problems that aresolvable by a randomized algorithm of time complexity t that has two-sided error 1=3. Using 1/6 asthe \threshold distinguishing gap" (in Eq. (8.9)) guarantees that if Pr[Dk(U`(k)) = 1] � 2=3 (resp.,Pr[Dk(U`(k)) = 1] � 1=3) then Pr[Dk(G(Uk)) = 1] > 1=2 (resp., Pr[Dk(G(Uk)) = 1] < 1=2). Notethat jG(s)j = `(jsj) is implied by Eq. (8.9).



8.4. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 291Proposition 8.15 If there exists a canonical derandomizer of stretch ` then, forevery time-constructible t :: N!N , it holds that BPtime(t) � Dtime(T ), whereT (n) = poly(2`�1(t(n)) � t(n)).Proof Sketch: Just follow the proof of Theorem 8.13, noting that the ade-quate value of k (i.e., k = `�1(t(n))) can be determined easily (e.g., by invok-ing G(1i) for i = 1; :::; k, using the fact that ` : N!N is 1-1). Note that thecomplexity of the deterministic procedure is dominated by the 2k invocations ofAG(x; s) = A(x;G(s)), where s 2 f0; 1g`�1(t(jxj)), and each of these invocationstakes time poly(2k � `(k)) + t(n) = poly(2`�1(t(n)) � t(n)). Using the hypothesisjPr[A(x; U`(k))=1]� (1=2)j � 1=6, it follows that the majority vote of AG equals 1(equiv., Pr[AG(x; Uk) = 1] > 1=2) if and only if Pr[A(x; U`(k)) = 1] > 1=2 (equiv.,Pr[A(x; U`(k))=1] > 1=2). Indeed, the implication is due to Eq. (8.9), when appliedto the circuit Cx(r) = A(x; r) (which has size at most jrj2).The goal. In light of Proposition 8.15, we seek canonical derandomizers withstretch that is as big as possible. The stretch cannot be super-exponential (i.e., itmost hold that `(k) = O(2k)), because there exists a circuit of size O(2k �`(k)) thatviolates Eq. (8.9) (see Exercise 8.15) whereas for `(k) = !(2k) it holds that O(2k �`(k)) < `(k)2. Thus, our goal is to construct canonical derandomizer with stretch`(k) = 2
(k). Such canonical derandomizers will allow for a \full derandomizationof BPP":Theorem 8.16 If there exists a canonical derandomizer of stretch `(k) = 2
(k),then BPP = P.Proof: Using Proposition 8.15, we get BPtime(t) � Dtime(T ), where T (n) =poly(2`�1(t(n)) � t(n)) = poly(t(n)).Reections. We stress that a canonical derandomizer G was de�ned in a waythat allows it to have time complexity tG that is larger than the size of the circuitsthat it fools (i.e., tG(k) > `(k)2 is allowed). Furthermore, tG(k) > 2k was alsoallowed. Thus, if indeed tG(k) = 2
(k) (as is the case in Section 8.4.2) then G(Uk)can be distinguished from U`(k) in time 2k � tG(k) = poly(tG(k)) by trying allpossible seeds.20 In contrast, for a general-purpose pseudorandom generator G (asdiscussed in Section 8.3) it holds that tG(k) = poly(k), while for every polynomialp it holds that G(Uk) is indistinguishable from U`(k) in time p(tG(k)).8.4.2 ConstructionThe fact that canonical derandomizers are allowed to be more complex than thecorresponding distinguisher makes some of the techniques of Section 8.3 inapplica-ble in the current context. For example, the stretch function cannot be ampli�ed20Note that this does not contradict the hypothesis that G is a canonical derandomizer becausein this case 2k � tG(k) > `(k)2.



292 CHAPTER 8. PSEUDORANDOM GENERATORSas in Section 8.3.4. On the other hand, the techniques developed below are in-applicable to Section 8.3. Amazingly enough, the pseudorandomness (or ratherthe next-bit unpredictability) of the following generators hold even when the \ob-server" is given the seed itself. (This fact capitalizes on the fact that the observer'stime-complexity does not allow for running the generator.)As in Section 8.3.5, the construction presented next transforms computationaldi�culty into pseudorandomness, except that here both computational di�cultyand pseudorandomness are of a somewhat di�erent form than in Section 8.3.5.Speci�cally, here we use Boolean predicates that are computable in exponential-time but are T -inapproximable for some exponential function T (see De�nition 7.9in Section 7.2). That is, for constants c; " > 0 and all but �nitely many m, the(residual) predicate f : f0; 1gm ! f0; 1g is computable in time 2cm but for anycircuit C of size 2"m it holds that Pr[C(Um) = f(Um)] < 12 + 2�"m. (Needless tosay, " < c.) Recall that such predicates exist under the assumption that E has(almost-everywhere) exponential circuit complexity (see Theorem 7.19 for an exactformulation). With these preliminaries, we turn to the construction of canonicalderandomizers with exponential stretch.Construction 8.17 (The Nisan-Wigderson Construction):21 Let f : f0; 1gm !f0; 1g and S1; :::; S` be a sequence of m-subsets of f1; :::; kg. Then, for s 2 f0; 1gk,we let G(s) def= f(sS1) � � � f(sS`) (8.10)where sS denotes the projection of s on the bit locations in S � f1; :::; jsjg; that is,for s = �1 � � ��k and S = fi1; :::; img, we have sS = �i1 � � ��im .Letting k vary and `;m :N!N be functions of k, we wish G to be a canonical de-randomizer and `(k) = 2
(k). One (obvious) necessary condition for this to happenis that the sets must be distinct, and hence m(k) = 
(k); consequently, f mustbe computable in exponential-time. Furthermore, the sequence of sets S1; :::; S`(k)must be constructible in poly(2k) time. Intuitively, it is desirable to use a setsystem with small pairwise intersections (because this restricts the overlap amongthe various inputs to which f is applied), and a function f that is strongly inap-proximable (i.e., T -inapproximable for some exponential function T ). Interestingly,these conditions are essentially su�cient.Theorem 8.18 (analysis of Construction 8.17): Let �; �; ; " > 0 be constantssatisfying " > (2�=�) + , and `;m; T ::N!N satisfy `(k) = 2�k, m(k) = �k, andT (n) = 2"n. Suppose that the following two conditions hold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g thatis T -inapproximable. (See De�nition 7.9.)2. There exists an exponential-time computable function S : N�N ! 2N suchthat21Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. This construction originates in [161, 164].



8.4. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 293(a) For every k and i = 1; :::; `(k), it holds that S(k; i) � [k] and jS(k; i)j =m(k).(b) For every k and i 6= j, it holds that jS(k; i) \ S(k; j)j �  �m(k).Then using G as de�ned in Construction 8.17, with Si = S(k; i), yields a canonicalderandomizer with stretch `.Before proving Theorem 8.18 we note that, for any  > 0, a function S as in Condi-tion 2 does exist with some m(k) = 
(k) and `(k) = 2
(k); see Exercise 8.16. Com-bining such S with Theorems 7.19 and 8.18, we obtain a canonical derandomizerwith exponential stretch based on the assumption that E has (almost-everywhere)exponential circuit complexity.22 Combining this with Theorem 8.16, we get the�rst item of the following theorem.Theorem 8.19 (Derandomization of BPP, revisited):1. Suppose that there exists a set S 2 E having almost-everywhere exponentialcircuit complexity (i.e., there exists a constant " > 0 such that, for all but�nitely many m's, any circuit that correctly decides S on f0; 1gm has size atleast 2"m). Then, BPP = P.2. Suppose that for every polynomial p there exists a set S 2 E having circuitcomplexity that is almost-everywhere greater than p. Then BPP is containedin \">0Dtime(t"), where t"(n) def= 2n" .Part 2 is proved (in Exercise 8.20) by using a generalization of Theorem 8.18, whichin turn is provided in Exercise 8.19. We note that Part 2 of Theorem 8.19 super-sedes Theorem 8.13 (see Exercise 7.16). The two parts of Theorem 8.19 exhibit twoextreme cases: Part 1 (often referred to as the \high end") assumes an extremelystrong circuit lower-bound and yields \full derandomization" (i.e., BPP = P),whereas Part 2 (often referred to as the \low end") assumes an extremely weakcircuit lower-bound and yields weak but meaningful derandomization. Interme-diate results (relying on intermediate lower-bound assumptions) can be obtainedanalogous to Exercise 8.20, but tight trade-o�s are obtained di�erently (cf., [212]).Proof of Theorem 8.18: Using the time complexity upper-bounds on f and S,it follows that G can be computed in exponential time. Our focus is on showing thatfG(Uk)g cannot be distinguished from fU`(k)g by circuits of size `(k)2; speci�cally,that G satis�es Eq. (8.9). In fact, we will prove that this holds for G0(s) = s �G(s);that is, G fools such circuits even if they are given the seed as auxiliary input.(Indeed, these circuits are smaller than the running time of G, and so they cannotjust evaluate G on the given seed.)22Speci�cally, starting with a function having circuit complexity at least exp("0m), we applyTheorem 7.19 and obtain a T -inapproximable predicate for T (m) = 2"m, where the constant" 2 (0; "0) depends on the constant "0. Next, we set  = "=2 and invoke Exercise 8.16, whichdetermines �; � > 0 such that `(k) = 2�k and m(k) = �k. Note that (by possibly decreasing �)we get (2�=�) +  < ".



294 CHAPTER 8. PSEUDORANDOM GENERATORSWe start by presenting the intuition underlying the proof. As a warm-up sup-pose that the sets (i.e., S(k; i)'s) used in the construction are disjoint. In such acase (which is indeed impossible because k < `(k) �m(k)), the pseudorandomness ofG(Uk) would follow easily from the inapproximability of f , because in this case Gconsists of applying f to non-overlapping parts of the seed (see Exercise 8.18). Inthe actual construction being analyzed here, the sets (i.e., S(k; i)'s) are not disjointbut have relatively small pairwise intersection, which means that G applies f onparts of the seed that have relatively small overlap. Intuitively, such small overlapsguarantee that the values of f on the corresponding inputs are \computationallyindependent" (i.e., having the value of f at some inputs x1; :::; xi does not help inapproximating the value of f at another input xi+1). This intuition will be backedby showing that, when �xing all bits that do not appear in the target input (i.e.,in xi+1), the former values (i.e., f(x1); :::; f(xi)) can be computed at a relativelysmall computational cost. With this intuition in mind, we now turn to the actualproof.The proof that G0 fools circuits of size `(k)2 utilizes the relation between pseu-dorandomness and unpredictability. Speci�cally, as detailed in Exercise 8.17, anycircuit that distinguishes G0(Uk) from U`(k)+k with gap 1=6, yields a next-bit pre-dictor of similar size that succeeds in predicting the next bit with probability atleast 12 + 16`0(k) > 12 + 17`(k) , where the factor of `0(k) = `(k) + k < (1 + o(1))`(k)is introduced by the hybrid technique (cf. Eq. (8.5)). Furthermore, given the non-uniform setting of the current proof, we may �x a bit location i+1 for prediction,rather than analyzing the prediction at a random bit location. Indeed, i � k musthold, because the �rst k bits of G0(Uk) are uniformly distributed. In the rest ofthe proof, we transform such a predictor into a circuit that approximates f betterthan allowed by the hypothesis (regarding the inapproximability of f).Assuming that a small circuit C 0 can predict the i+1st bit of G0(Uk), when giventhe previous i bits, we construct a small circuit C for approximating f(Um(k)) oninput Um(k). The point is that the i+1st bit of G0(s) equals f(sS(k;j+1)), where j =i� k � 0, and so C 0 approximates f(sS(k;j+1)) based on s; f(sS(k;1)); :::; f(sS(k;j)),where s 2 f0; 1gk is uniformly distributed. Note that this is the type of thing thatwe are after, except that the circuit we seek may only get sS(k;j+1) as input.The �rst observation is that C 0 maintains its advantage when we �x the bestchoice for the bits of s that are not at bit locations Sj+1 = S(k; j + 1) (i.e., thebits s[k]nSj+1). That is, by an averaging argument, it holds thatmaxs02f0;1gk�m(k)fPrs2f0;1gk [C 0(s; f(sS1); :::; f(sSj )) = f(sSj+1) j s[k]nSj+1 = s0]g� p0 def= Prs2f0;1gk [C 0(s; f(sS1); :::; f(sSj )) = f(sSj+1)]:Recall that by the hypothesis p0 > 12+ 17`(k) . Hard-wiring the �xed string s0 into C 0,and letting �(x) denote the (unique) string s satisfying sSj+1 = x and s[k]nSj+1 = s0,we obtain a circuit C 00 that satis�esPrx2f0;1gm [C 00(x; f(�(x)S1 ); :::; f(�(x)Sj )) = f(x)] � p0:



8.4. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 295The circuit C 00 is almost what we seek. The only problem is that C 00 gets as inputnot only x, but also f(�(x)S1); :::; f(�(x)Sj ), whereas we seek an approximator off(x) that only gets x.The key observation is that each of the \missing" values f(�(x)S1 ); :::; f(�(x)Sj )depend only on a relatively small number of the bits of x. This fact is due to thehypothesis that jSt\Sj+1j �  �m(k) for t = 1; :::; j, which means that �(x)St is anm(k)-bit long string in which mt def= jSt \ Sj+1j bits are projected from x and therest are projected from the �xed string s0. Thus, given x, the value f(�(x)St) canbe computed by a (trivial) circuit of size eO(2mt); that is, by a circuit implementinga look-up table on mt bits. Using all these circuits (together with C 00), we willobtain the desired approximator of f . Details follow.We obtain the desired circuit, denoted C, that T -approximates f as follows.The circuit C depends on the index j and the string s0 that are �xed as in theforegoing analysis. On input x 2 f0; 1gm, the circuit C computes the valuesf(�(x)S1 ); :::; f(�(x)Sj ), invokes C 00 on input x and these values, and outputs theanswer as a guess for f(x). That is,C(x) = C 00(x; f(�(x)S1 ); :::; f(�(x)Sj )) = C 0(�(x); f(�(x)S1 ); :::; f(�(x)Sj )):By the foregoing analysis, Prx[C(x) = f(x)] � p0 > 12 + 1T (m) , where the secondinequality is due to T (m(k)) = 2"m(k) = 2"�k � 22�k � 7`(k). The size of Cis upper-bounded by `(k)2 + `(k) � eO(2�m(k)) � eO(`(k)2 � 2�m(k)) � T (m(k)),where the second inequality is due to T (m(k)) = 2"m(k) � eO(22��k+�m(k)) and`(k) = 2�k. Thus, we derived a contradiction to the hypothesis that f is T -inapproximable.8.4.3 Variants and a conceptual discussionWe start this section by discussing a general framework that underlies Construc-tion 8.17 and end it with a conceptual discussion regarding derandomization.8.4.3.1 Construction 8.17 as a general frameworkThe Nisan{Wigderson Construction (i.e., Construction 8.17) is actually a generalframework, which can be instantiated in various ways. Some of these instantiationsare briey reviewed next, and are based on an abstraction of the construction aswell as of its analysis.We �rst note that the generator described in Construction 8.17 consists of ageneric algorithmic scheme that can be instantiated with any predicate f . Further-more, this algorithmic scheme, denoted G, is actually an oracle machine that makes(non-adaptive) queries to the function f , and thus the combination may be writ-ten as Gf . Likewise, the proof of pseudorandomness of Gf yields a (non-uniform)circuit C that given oracle access to any distinguisher yields an approximationprocedure for f . The circuit C does depends on f (but in a restricted way), anduses the distinguisher as a black-box. Speci�cally, C contains look-up tables for



296 CHAPTER 8. PSEUDORANDOM GENERATORScomputing functions obtained from f by �xing some of the input bits (i.e., look-uptables for the functions f(�(�)St )'s).Derandomization of constant-depth circuits. In this case we instantiateConstruction 8.17 using the parity function in the role of the inapproximablepredicate f , noting that parity is indeed inapproximable by \small" constant-depth circuits. With an adequate setting of parameters we obtain pseudorandomgenerators with stretch `(k) = exp(k1=O(1)) that fool \small" constant-depth cir-cuits (see [161]). The analysis of this construction proceeds very much like the proofof Theorem 8.18. One important observation is that incorporating the (straightfor-ward) circuits that compute f(�(x)St ) into the distinguishing circuit only increasesits depth by two levels. Speci�cally, the circuit C uses depth-two circuits that com-pute the values f(�(x)St)'s, and then obtains a prediction of f(x) by using thesevalues in its (single) invocation of the (given) distinguisher.The resulting pseudorandom generator, which use a seed of polylogarithmiclength (equiv., `(k) = exp(k1=O(1))), can be used for derandomizing RAC0 (i.e.,random AC0), analogously to Theorem 8.16. In other words, we can determin-istically approximate, in quasi-polynomial-time and up-to an additive error, thefraction of inputs that satisfy a given (constant-depth) circuit. Speci�cally, for anyconstant d, given a depth-d circuit C, we can deterministically approximate thefraction of the inputs that satisfy C (i.e., cause C to evaluate to 1) to within anyadditive constant error23 in time exp(poly(log jCj)), where the polynomial dependson d. Providing a deterministic polynomial-time approximation, even in the cased = 2 (i.e., CNF/DNF formulae) is an open problem.Derandomization of probabilistic proof systems. A di�erent (and moresurprising) instantiation of Construction 8.17 utilizes predicates that are inapprox-imable by small circuits having oracle access to NP . The result is a pseudorandomgenerator robust against two-move public-coin interactive proofs (which are as pow-erful as constant-round interactive proofs (see x9.1.3.1)). The key observation isthat the analysis of Construction 8.17 provides a black-box procedure for approx-imating the underlying predicate when given oracle access to a distinguisher (andthis procedure is valid also in case the distinguisher is a non-deterministic machine).Thus, under suitably strong (and yet plausible) assumptions, constant-round inter-active proofs collapse to NP . We note that a stronger result, which deviates fromthe foregoing framework, has been subsequently obtained (cf. [156]).Construction of randomness extractors. An even more radical instantiationof Construction 8.17 was used to obtain explicit constructions of randomness ex-tractors (see Appendix D.4). In this case, the predicate f is viewed as (an error23We mention that in the special case of approximating the number of satisfying assignmentof a DNF formula, relative error approximations can be obtained by employing a deterministicreduction to the case of additive constant error (see x6.2.2.1). Thus, using a pseudorandom gen-erator that fools DNF formulae, we can deterministically obtain a relative (rather than additive)error approximation to the number of satisfying assignment in a given DNF formula.



8.5. SPACE-BOUNDED DISTINGUISHERS 297correcting encoding of) a somewhat random function, and the construction makessense because it refers to f in a black-box manner. In the analysis we rely on thefact that f can be approximated by combining relatively little information (regard-ing f) with (black-box access to) a distinguisher for Gf . For further details seeAppendix D.4.8.4.3.2 A conceptual discussion regarding derandomizationPart 1 of Theorem 8.19 is often summarized by saying that (under some reasonableassumptions) randomness is useless. We believe that this interpretation is wrongeven within the restricted context of traditional complexity classes, and is bluntlywrong if taken outside of the latter context. Let us elaborate.Taking a closer look at the proof of Theorem 8.16 (which underlies Theo-rem 8.19), we note that a randomized algorithm A of time complexity t is emulatedby a deterministic algorithm A0 of time complexity t0 = poly(t). Further notingthat A0 = AG invokes A (as well as the canonical derandomizer G) for a number oftimes that must exceed t, we infer that t0 > t2 must hold. Thus, derandomizationvia (Part 1 of) Theorem 8.19 is not really for free.More importantly, we note that derandomization is not possible in various dis-tributed settings, when both parties may protect their conicting interests by em-ploying randomization. Notable examples include most cryptographic primitives(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).For further discussion see Chapter 9 and Appendix C. Additional settings whererandomness makes a di�erence (either between impossibility and possibility or be-tween formidable and a�ordable cost) include distributed computing (see [15]),communication complexity (see [139]), parallel architectures (see [142]), sampling(see Appendix D.3), and property testing (see Section 10.1.2).8.5 Space-Bounded DistinguishersIn the previous two sections we have considered generators that output sequencesthat look random to any e�cient procedures, where the latter were modeled bytime-bounded computations. Speci�cally, in Section 8.3 we considered indistin-guishability by polynomial-time procedures. A �ner classi�cation of time-boundedprocedures is obtained by considering their space-complexity (i.e., restricting thespace-complexity of time-bounded computations). This leads to the notion ofpseudorandom generators that fool space-bounded distinguishers. Interestingly,in contrast to the notions of pseudorandom generators that were considered inSections 8.3 and 8.4, the existence of pseudorandom generators that fool space-bounded distinguishers can be established without relying on computational as-sumptions.



298 CHAPTER 8. PSEUDORANDOM GENERATORS8.5.1 De�nitional issuesUnfortunately, natural notions of space-bounded computations are quite subtle,especially when non-determinism or randomization are concerned (see Sections 5.3and 6.1.4, respectively). Two major issues are time bounds and access to the randomtape.1. Time bound: The question is whether or not one restricts the space-boundedmachines to run in time-complexity that is at most exponential in the space-complexity.24 Recall that such an upper-bound follows automatically in thedeterministic case (Theorem 5.3), and can be assumed without loss of general-ity in the non-deterministic case (see Section 5.3.2), but it does not necessarilyhold in the randomized case (see x6.1.4.1).As in Section 6.1.4, we do postulate the aforementioned time-bound.2. Access to the random tape: The question is whether whether the space-bounded machine has one-way or two-way access to the randomness tape.(Allowing two-way access means that the randomness is recorded for free;that is, without being accounted for in the space-bound; see discussions inSections 5.3 and 6.1.4.) Recall that one-way access to the randomness tapecorresponds to the natural model of on-line randomized machine (which de-termines its moves based on its internal coin tosses).Again, as in Section 6.1.4, we consider one-way access.25In accordance with the resulting de�nition of randomized space-bounded compu-tation, we consider space-bounded distinguishers that have a one-way access to theinput sequence that they examine. Since all known constructions remain valid alsowhen these distinguishers are non-uniform (and since non-uniform distinguishersarise anyhow in derandomization), we use this stronger notion here.26In the context of non-uniform algorithms that have one-way access to theirinput, we may assume, without loss of generality, that the running-time of suchalgorithms equals the length of their input, denoted ` = `(k). Thus, we de�ne anon-uniform machine of space s :N!N as a family, fDkgk2N, of directed layeredgraphs such that Dk has at most 2s(k) vertices at each layer, and labeled directededges from each layer to the next layer.27 Each vertex has two (possibly parallel)24Alternatively, one can ask whether these machines must always halt or only halt with prob-ability approaching 1. It can be shown that the only way to ensure \absolute halting" is to havetime-complexity that is at most exponential in the space-complexity.25We note that the fact that we restrict our attention to one-way access is instrumental inobtaining space-robust generators without making intractability assumptions. Analogous gener-ators for two-way space-bounded computations would imply hardness results of a breakthroughnature in the area.26We note that these non-uniform space-bounded distinguishers correspond to branching pro-grams of width that is exponential in the space-bound. Furthermore, these branching programsread their input in a �xed predetermined order (which is determined by the designer of thegenerator).27Note that the space bound of the machine is stated in terms of a parameter k, rather than interms of the length of its input. In the sequel this parameter will be set to the length of a seed toa pseudorandom generator. We warn that our presentation here is indeed non-standard for thisarea. To compensate for this, we will also state the consequences in the standard format.



8.5. SPACE-BOUNDED DISTINGUISHERS 299outgoing directed edges, one labeled 0 and the other labeled 1, and there is a singlevertex in the �rst layer of Dk. The result of the computation of such a machine,on an input of adequate length (i.e., length ` where Dk has `+1 layers), is de�nedas the vertex (in last layer) reached when following the sequence of edges that arelabeled by the corresponding bits of the input. That is, on input x = x1 � � �x`, fori = 1; :::; `, we move from the vertex reached in the ith layer by using the outgoingedge labeled xi (thus reaching a vertex in the i+1st layer). Using a �xed partitionof the vertices of the last layer, this de�nes a natural notion of decision (by Dk);that is, we write Dk(x) = 1 if on input x machine Dk reached a vertex that belongsto the �rst part of the aforementioned partition.De�nition 8.20 (Indistinguishability by space-bounded machines):� For a non-uniform machine, fDkgk2N, and two probability ensembles, fXkgk2Nand fYkgk2N, the function d :N! [0; 1] de�ned asd(k) def= jPr[Dk(Xk) = 1]� Pr[Dk(Yk) = 1]jis called the distinguishability-gap of fDkg between the two ensembles.� Let s : N!N and " : N ! [0; 1]. A probability ensemble, fXkgk2N, iscalled (s; ")-pseudorandom if for any (non-uniform) machine of space s(�), thedistinguishability-gap of the machine between fXkgk2N and the correspondinguniform ensemble (i.e., fUjXkjgk2N) is at most "(�).� A deterministic algorithm G of stretch function ` is called a (s; ")-pseudorandomgenerator if the ensemble fG(Uk)gk2N is (s; ")-pseudorandom. That is, everynon-uniform machine of space s(�) has a distinguishing-gap of at most "(�)between fG(Uk)gk2N and fU`(k)gk2N.Thus, when using a random seed of length k, a (s; ")-pseudorandom generatoroutputs a sequence of length `(k) that looks random to observers having spaces(k). (Setting m = s(k), we have k = s�1(m) and `(k) = `(s�1(m)).)8.5.2 Two ConstructionsIn contrast to the case of pseudorandom generators that fool time-bounded distin-guishers, pseudorandom generators that fool space-bounded distinguishers can beestablished without relying on any computational assumption. The following twoconstructions exhibit two extreme cases of a general trade-o� between the spacebound of the potential distinguisher and the stretch function of the generator.28We start with an attempt to maximize the stretch.Theorem 8.21 (exponential stretch with quadratic length seed): For every spaceconstructible function s :N!N , there exists a (s; 2�s)-pseudorandom generator of28These two results have been \interpolated" in [11]: There exists a parameterized family of\space fooling" pseudorandom generators that includes both results as extreme special cases.



300 CHAPTER 8. PSEUDORANDOM GENERATORSstretch function `(k) = 2k=O(s(k)) � 2s(k). Furthermore, the generator works inspace that is linear in the length of the seed, and in time that is linear in the stretchfunction.In other words, for every t � m, we have a generator that takes a random seedof length k = O(t �m) and produce a sequence of length 2t that looks random toany (non-uniform) machine of space m (up to a distinguishing-gap of 2�m). Inparticular, using a random seed of length k = O(m2), one can produce a sequenceof length 2m that looks random to any (non-uniform) machine of space m. Thus,one may replace random sequences used by any space-bounded computation, bysequences that are e�ciently generated from random seeds of length quadratic inthe space bound. The common instantiation is for log-space machines. In x8.5.2.2,we apply Theorem 8.21 (and its underlying ideas) for the derandomization of spacecomplexity classes such as BPL (i.e., the log-space analogue of BPP).We now turn to the case where one wishes to maximize the space bound of po-tential distinguishers. We warn that Theorem 8.22 only guarantees a subexponen-tial distinguishing gap (rather than the exponential distinguishing gap guaranteedin Theorem 8.21). This warning is voiced because failing to recall this limitationhas led to errors in the past.Theorem 8.22 (polynomial stretch with linear length seed): For any polynomialp and for some s(k) = k=O(1), there exists a (s; 2�ps)-pseudorandom genera-tor of stretch function p. Furthermore, the generator works in linear-space andpolynomial-time (both stated in terms of the length of the seed).In other words, we have a generator that takes a random seed of length k =O(m) and produce a sequence of length poly(m) that looks random to any (non-uniform) machine of space m. Thus, one may convert any randomized computationutilizing polynomial-time and linear-space into a functionally equivalent randomizedcomputation of similar time and space complexities that uses only a linear numberof coin tosses.8.5.2.1 Overviews of the proofs of Theorems 8.21 and 8.22In both cases, we start the proof by considering a generic space-bounded distin-guisher and show that the input distribution that this distinguisher examines canbe modi�ed (from the uniform distribution into a pseudorandom one) without thedistinguisher noticing the di�erence. This modi�cation (or rather a sequence ofmodi�cations) yields a construction of a pseudorandom generator, which is onlyspelled-out at the end of argument.Overview of the proof of Theorem 8.21.29 The main technical tool used inthis proof is the \mixing property" of pairwise independent hash functions (see Ap-pendix D.2). A family of functions Hn, which map f0; 1gn to itself, is called mixing29A detailed proof appears in [162].



8.5. SPACE-BOUNDED DISTINGUISHERS 301if for every pair of subsets A;B � f0; 1gn for all but very few (i.e., exp(�
(n))fraction) of the functions h 2 Hn, it holds thatPr[Un 2 A ^ h(Un) 2 B] � jAj2n � jBj2n (8.11)where the approximation is up to an additive term of exp(�
(n)). (See the gener-alization of Lemma D.4, which implies that exp(�
(n)) can be set to 2�n=3.)For any s(k)-space distinguisher Dk as in De�nition 8.20, we consider an aux-iliary \distinguisher" D0k that is obtained by \contracting" every block of n def=�(s(k)) consecutive blocks layers in Dk, yielding a directed layered graph with`0 def= `(k)=n < 2s(k) layers (and 2s(k) vertices in each layer). Speci�cally, in D0k,each vertex has a directed edge going to each vertex of the next layer, and theseedges are labeled with (possibly empty) subsets of f0; 1gn that correspond to theset of corresponding n-paths in Dk (and in particular form a partition of f0; 1gn).The graph D0k simulates Dk in the obvious manner; that is, the computation of D0kon an input of length `(k) = `0 �n is de�ned by breaking the input into consecutiveblocks of length n and following the path of edges that are labeled by the subsetscontaining the corresponding block. Now, for each pair of neighboring vertices, uand v (in layers i and i+1, respectively), consider the label, Lu;v � f0; 1gn, of theedge going from u to v. Similarly, for a vertex w at layer i + 2, we consider thelabel L0v;w of the edge from v to w. By Eq. (8.11), for all but very few of h 2 Hn,it holds thatPr[Un 2 Lu;v ^ h(Un) 2 L0v;w] � Pr[Un 2 Lu;v] � Pr[Un 2 L0v;w]where \very few" and � are as in Eq. (8.11). Thus, for all but exp(�
(n)) fractionof the choices of h 2 Hn, replacing the coins in the second block (i.e., used intransitions from layer i + 1 to layer i + 2) with the value of h applied to theoutcomes of the coins used in the �rst block (i.e., in transitions from layer i toi + 1), approximately maintains the probability that D0k moves from u to w viav. Using a union bound (on all triplets (u; v; w) as in the foregoing), for all but23s(k) � `0 � exp(�
(n)) fraction of the choices of h 2 Hn, the foregoing replacementapproximately maintains the probability that D0k moves through any speci�c 2-edge path of D0k. Using `0 < 2s(k) and a suitable choice of n = �(s(k)), we have23s(k) � `0 � exp(�
(n)) < exp(�
(n)), and thus all but \few" functions h 2 Hnare good for approximating all these transition probabilities. (We stress that thesame h can be used in all these approximations.) Thus, at the cost of extra jhjrandom bits, we can reduce the number of true random coins used in transitions onD0k by a factor of 2, without signi�cantly a�ecting the �nal decision of D0k (whereagain we use the fact that `0 � exp(�
(n)) < exp(�
(n)), which implies that theapproximation errors do not accumulate to too much). In other words, at the costof extra jhj random bits, we can e�ectively contract the distinguisher to half itslength. That is, �xing a good h (i.e., one that provides a good approximation tothe transition probability over all 23s(k) �`0 2-edge paths), we can replace the 2-edgepaths in D0k by edges in a new distinguisher D00k such that r is in the set that labels



302 CHAPTER 8. PSEUDORANDOM GENERATORS
1

0 1

0 1 0 1

0 0 0 0 1111

α

α0 α1

α10α00 α
01

α11

000
α

001
α 010

α
011

α α100 α
101

α110 α111

application(possible)

h
(3)

(2)
hof

application
(possible)

(1)
hof

 

(possible)  application of   

The output of the generator (on seed �; h(1); :::; h(t)) consists of the concate-nation of the strings denoted �0t ; :::; �1t , appearing in the leaves of the tree.For every x 2 f0; 1g� it holds that �x0 = �x and �x1 = h(t�jxj)(�x). In par-ticular, for t = 3, we have �011 = h(1)(�01), which equals h(1)(h(2)(�0)) =h(1)(h(2)(�)), where � = ��.Figure 8.3: The �rst generator that \fools" space-bounded machines.the edge u{w in D00k if and only if, for some v, the string r is in the label of theedge u{v in D0k and h(r) is in the label of the edge v{w (also in D0k).Repeating the process for a logarithmic (in the depth of D0k) number of timeswe obtain a distinguisher that only examines n bits, at which point we stop. Intotal, we have used t def= log2(`0=n) < log2 `(k) random hash functions, denotedh(1); :::; h(t), which means that we can generate a sequence that fools the originalDk using a seed of length n+ t � log2 jHnj (see Figure 8.3 and Exercise 8.22). Usingn = �(s(k)) and an adequate family Hn (e.g., Construction D.3) yields the claimedseed length of O(s(k) � log2 `(k)) = k.Overview of the proof of Theorem 8.22.30 The main technical tool used in thisproof is a suitable randomness extractor (as de�ned in xD.4.1.1), which is indeed amuch more powerful tool than hashing functions. The basic idea is that when Dk isat some \distant" layer, say at layer t, it typically \knows" little about the randomchoices that led it there. That is, Dk has only s(k) bits of memory, which leavesout t � s(k) bits of \uncertainty" (or randomness) regarding the previous moves.Thus, much of the randomness that led Dk to its current state may be \re-used"(or \recycled"). To re-use these bits we need to extract almost uniform distributionon strings of su�cient length out of the aforementioned distribution over f0; 1gtthat has entropy31 at least t � s(k). Furthermore, such an extraction requires30A detailed proof appears in [165].31Actually, a stronger technical condition needs and can be imposed on the latter distribution.



8.5. SPACE-BOUNDED DISTINGUISHERS 303some additional truly random bits, yet relatively few such bits. In particular, usingk0 = 
(log t) bits towards this end, the extracted bits are exp(�
(k0)) away fromuniform.The gain from the aforementioned recycling is signi�cant if recycling is repeatedsu�ciently many times. Towards this end, we break the k-bit long seed into twoparts, denoted r0 2 f0; 1gk=2 and (r1; :::; r3pk), where jrij = pk=6, and set n = k=3.Intuitively, r0 will be used for determining the �rst n steps, and it will be re-used (or recycled) together with ri for determining the steps i � n + 1 through(i + 1) � n. Looking at layer i � n, we consider the information regarding r0 thatis known to Dk (at layer i � n). Typically, the conditional distribution of r0, giventhat we reached a speci�c vertex at layer i � n, has (min-)entropy greater than0:99�((k=2)�s(k)). Using ri (as a seed of an extractor applied to r0), we can extract0:9�((k=2)�s(k)�o(k)) > k=3 = n bits that are almost-random (i.e., 2�
(pk)-closeto Un) with respect to Dk, and use these bits for determining the next n steps.Hence, using k random bits we are produce a sequence of length (1 + 3pk) � n >k3=2 that fools machines of space bound, say, s(k) = k=10. Speci�cally, using anextractor of the form Ext : f0; 1gpk=6 � f0; 1gk=2 ! f0; 1gk=3, we map the seed(r0; r1; :::; r3pk) to the output sequence (r0;Ext(r1; r0); :::;Ext(r3pk; r0)). Thus, weobtained a (s; 2�
(ps))-pseudorandom generator of stretch function `(k) = k3=2.To obtain an arbitrary polynomial stretch rather than a speci�c polynomialstretch (i.e., `(k) = k3=2) we repeatedly apply an adequate composition, to beoutlined next. Suppose that G1 is a (s1; "1)-pseudorandom generator of stretchfunction `1 that works in linear space, and similarly for G2 with respect to (s1; "1)and `2. Then, we consider the following construction of a generator G:1. On input s 2 f0; 1gk, obtain G1(s), and parse it into consecutive blocks, eachof length k0 = s1(k)=O(1), denoted r1; :::; rt, where t = `1(k)=k0.2. Output the t � `2(k0)-bit long sequence G2(r1) � � �G2(rt).Note that jG(s)j = `1(k) � `2(k0)=k0, which for s1(k) = �(k) yields jG(s)j =`1(k) � `2(
(k))=O(k), which for polynomials `1 and `2 yields jG(s)j = `1(jsj) �`2(jsj)=O(jsj). We claim that G is a (s; ")-pseudorandom generator, for s(k) =min(s1(k)=2; s2(
(s1(k))) and "(k) = "1(k) + `1(k) � "2(
(s1(k)). The proof uses ahybrid argument, which refers to the distributionsG(Uk), Ik def= G2(U (1)k0 ) � � �G2(U (t)k0 ),and Ut�`2(k0) � U (1)`2(k0)) � � �U (t)`2(k0). The reader can verify that Ik is (s2(k0); t �"2(k0))-pseudorandom (see Exercise 8.21), and so we focus on proving that Ik is indistin-guishable from G(Uk) by machines of space s1(k)=2 (with respect to distinguishing-gap "1(k)). This is proved by converting a potential distinguisher into a distin-guisher of U`1(k) � Ut�k0 and G1(Uk), where the new distinguisher parses the `1(k)-bit long input into t blocks (each of length k0), invokes G2 on the correspondingk0-bit long blocks, and feeds the resulting sequence of `1(k0)-bit long blocks to theSpeci�cally, with overwhelmingly high probability, at layer t machine Dk is at a vertex that canbe reached in more than 20:99�(t�s(k)) di�erent ways. In this case, the distribution representinga random walk that reaches this vertex has min-entropy greater than 0:99 � (t� s(k)). The readeris referred to xD.4.1.1 for de�nitions of min-entropy and extractors.



304 CHAPTER 8. PSEUDORANDOM GENERATORSoriginal distinguisher. For this end, it is crucial that G2 can be evaluate on k0-bitlong strings using space at most s1(k)=2, which is guaranteed by our setting ofk0 = s1(k)=O(1) and the hypothesis that G2 works in linear space.8.5.2.2 Derandomization of space-complexity classesAs a direct application of Theorem 8.21, we obtain that BPL � Dspace(log2),where BPL denotes the log-space analogue of BPP (see De�nition 6.9). (Recallthat NL � Dspace(log2), but it is not known whether or not BPL � NL.)32 Astronger derandomization result can be obtained by a �ner analysis of the proof ofTheorem 8.21.Theorem 8.23 BPL � SC, where SC denotes the class of decision problemsthat can be solved by a deterministic machine that runs in polynomial-time andpolylogarithmic-space.Thus, BPL (and in particular RL � BPL) is placed in a class not known tocontain NL. Another such result was subsequently obtained in [184]: Randomizedlog-space can be simulated in deterministic space o(log2); speci�cally, in spacelog3=2. We mention that the archetypical problem of RL has been recently provedto be in L (see Section 5.2).Overview of the proof of Theorem 8.23.33 We are going to use the genera-tor construction provided in the proof of Theorem 8.21, but show that the mainpart of the seed (i.e., the sequence of hash functions) can be �xed (depending onthe distinguisher at hand). Furthermore, this �xing can be performed in polyloga-rithmic space and polynomial-time. Speci�cally, wishing to derandomize a speci�clog-space computation (which refers to a speci�c input), we �rst obtain the corre-sponding distinguisher, denotedD0k, that represents this computation (as a functionof the outcomes of the internal coin tosses of the log-space algorithm). The keyobservation is that the question of whether or not a speci�c hash function h 2 Hnis good for a speci�c D0k can be determined in space that is linear in n = jhj=2and logarithmic in the size of D0k. Indeed, the time complexity of this decisionprocedure is exponential in its space complexity. It follows that we can �nd agood h 2 Hn, for a given D0k, within these complexities (by scanning through allpossible h 2 Hn). Once a good h is found, we can also construct the correspondinggraph D00k (in which edges represent 2-edge paths in D0k), again within the samecomplexity. Actually, it will be more instructive to note that we can determine astep (i.e., an edge-traversal) in D00k by making two steps (edge-traversals) in D0k.This will allow to �x a hash function for D00k , and so on. Details follow.The main claim is that the entire process of �nding a sequence of t def= log2 `0(k)good hash functions can be performed in space t �O(n+log jDkj) = O(n+log jDkj)2and time poly(2n �jDkj); that is, the time complexity is sub-exponential in the space32Indeed, the log-space analogue of RP, denoted RL, is contained in NL � Dspace(log2), andthus the fact that Theorem 8.21 implies RL � Dspace(log2) is of no interest.33A detailed proof appears in [163].



8.6. SPECIAL PURPOSE GENERATORS 305complexity (i.e., the time complexity is signi�cantly smaller than than the genericbound of exp(O(n + log jDkj)2)). Starting with D(1)k = D0k, we �nd a good (forD(1)k ) hashing function h(1) 2 Hn, which de�nes D(2)k = D00k . Having found (andstored) h(1); :::; h(i) 2 Hn, which determine D(i+1)k , we �nd a good hashing functionh(i+1) 2 Hn for D(i+1)k by emulating pairs of edge-traversals on D(i+1)k . Indeed,a key point is that we do not construct the sequence of graphs D(2)k ; :::; D(i+1)k ,but rather emulate an edge-traversal in D(i+1)k by making 2i edge-traversals in D0k,using h(1); :::; h(i): The (edge-traversal) move � 2 f0; 1gn starting at vertex v ofD(i+1)k translates to a sequence of 2i moves starting at vertex v of D0k, where themoves are determined by the sequence of n-bit stringsh(0i)(�); h(0i�201)(�); h(0i�210)(�); h(0i�211)(�); :::; h(1i)(�);where h(�i����1) is the function obtained by the composition of some of the functionsh(1); :::; h(i). (Speci�cally, h(�i����1) equals h(i1) � h(i2) � � � � � h(it0 ), where fij : j =1; :::; t0g = fj : �j = 1g and i1 < i2 < � � � < it0 .) Thus, for n = �(log jD0kj), givenD0k and a pair (u; v) of source and sink in D0k (which reside in the �rst and lastlayer, respectively), we can (deterministically) approximate the probability thata random walk starting at u reaches v in O(log jD0kj)2-space and poly(jD0kj)-time.The approximation can be made accurate up to a factor of 1� (1=poly(jD0kj)).We conclude the proof by recalling the connection between such an approxima-tion and the derandomization of BPL (indeed, note the analogy to the proof ofTheorem 8.13). The computation of a log-space probabilistic machine M on inputx, can be represented by a directed layer graph GM;x of size poly(jxj). Speci�-cally, the probability that M accepts x equals the probability that a random walkstarting at the single vertex of the �rst layer of GM;x reaches some vertex in thelast layer that represents an accepting con�guration. Setting k = �(log jxj) andn = �(k), the graph GM;x coincides with the graph Dk referred to at the begin-ning of the proof of Theorem 8.21, and D0k is obtained from Dk by an \n-layercontraction" (see ibid.). Combining this with the foregoing analysis, we concludethat the probability that M accepts x can be deterministically approximated inO(log jxj)2-space and poly(jxj)-time. The theorem follows.8.6 Special Purpose GeneratorsIn this section we consider even weaker types of pseudorandom generators, pro-ducing sequences that can fool only very restricted types of distinguishers. Still,such generators have many applications in complexity theory and in the design ofalgorithms. (These applications will only be mentioned briey.)Our choice is to start with the simplest of these generators: the pairwise-independent generator, and its generalization to t-wise independence for any t�2.Such generators perfectly fool any distinguisher that only observe t locations in theoutput sequence. This leads naturally to almost pairwise (or t-wise) independencegenerators, which also fool (albeit non-perfectly) such distinguishers. The latter



306 CHAPTER 8. PSEUDORANDOM GENERATORSgenerators are implied by a stronger class of generators, which is of independentinterest: the small-bias generators. Small-bias generators fool any linear test (i.e.,any distinguisher that merely considers the xor of some �xed locations in the inputsequence). We then turn to the Expander Random Walk Generator: this generatorproduces a sequence of strings that hit any dense subset of strings with probabilitythat is close to the hitting probability of a truly random sequence. Related notionssuch as samplers, dispersers, and extractors are treated in Appendix D.Comment regarding our parameterization: To maintain consistency withprior sections, we continue to present the generators in terms of the seed length,denoted k. Since this is not the common presentation for most results presented inthe sequel, we provide (in footnotes) the common presentation in which the seedlength is determined as a function of other parameters.8.6.1 Pairwise-Independence GeneratorsPairwise (resp., t-wise) independence generators fool tests that inspect only two(resp., t) elements in the output sequence of the generator. Such local tests areindeed very restricted, yet they arise naturally in many settings. For example,such a test corresponds to a probabilistic analysis (of a procedure) that only relieson the pairwise independence of certain choices made by the procedure. We alsomention that, in some natural range of parameters, pairwise independent samplingis as good as sampling by totally independent sample points; see Sections D.1.2and D.3.A t-wise independence generator of block-size b :N!N (and stretch function `) isan e�cient deterministic algorithm (e.g., one that works in time polynomial in theoutput length) that expands a k-bit long random seed into a sequence of `(k)=b(k)blocks, each of length b(k), such that any t blocks are uniformly and independentlydistributed in f0; 1gt�b(k). That is, denoting the ith block of the generator's output(on seed s) by G(s)i, we requite that for every i1 < i2 < � � � < it (in [`(k)=b(k)]) itholds that G(Uk)i1 ; G(Uk)i2 ; :::; G(Uk)it � Ut�b(k):In case t = 2, we call the generator pairwise independent. We note that this condi-tion holds even if the inspected t blocks are selected adaptively (see Exercise 8.23)8.6.1.1 ConstructionsIn the �rst construction, we refer to GF(2b(k)), the �nite �eld of 2b(k) elements,and associate its elements with f0; 1gb(k).Proposition 8.24 (t-wise independence generator):34 Let t be a �xed integer andb; `; `0 :N!N such that b(k) = k=t, `0(k) = `(k)=b(k) > t and `0(k) � 2b(k). Let34In the common presentation of this t-wise independence generator, the length of the seed isdetermined as a function of the desired block-length and stretch. That is, given the parametersb and `0 � 2b, the seed length is set to t � b.



8.6. SPECIAL PURPOSE GENERATORS 307�1; :::; �`0(k) be �xed distinct elements of the �eld GF(2b(k)). For s0; s1; :::; st�1 2f0; 1gb(k), letG(s0; s1; :::; st�1) def= 0@t�1Xj=0 sj�j1 ; t�1Xj=0 sj�j2 ; :::; t�1Xj=0 sj�j̀0(k)1A (8.12)where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence gen-erator of block-size b and stretch `.That is, given a seed that consists of t elements of GF(2b(k)), the generator outputsa sequence of `0(k) such elements. To make the above generator totally explicit, weneed an explicit representation of GF(2b(k)), which requires an irreducible polyno-mial of degree b(k) over GF(2). For speci�c values of b(k), a good representationdoes exist: For example, for d def= b(k) = 2 � 3e (with e being an integer), the poly-nomial xd+xd=2+1 is irreducible over GF(2). The proof of Proposition 8.24 is leftas an exercise (see Exercise 8.24). We note that an analogous constructions workfor every �nite �eld (e.g., a �nite �eld of any prime cardinality).An alternative construction for the case of t = 2 is obtained by using (random)a�ne transformations (as possible seeds). In fact, better performance (i.e., shorterseed length) is obtained by using a�ne transformations de�ned by Toeplitz ma-trices. A Toeplitz matrix is a matrix with all diagonals being homogeneous (seeFigure 8.4); that is, T = (ti;j) is a Toeplitz matrix if ti;j = ti+1;j+1 for all i; j.Note that a Toeplitz matrix is determined by its �rst row and �rst column (i.e.,the values of t1;j 's and ti;1's).
+ =

m(k)

b(k)

Figure 8.4: An a�ne transformation de�ned by a Toeplitz matrix.Proposition 8.25 (Alternative pairwise independence generator, see Figure 8.4):35Let b; `; `0;m : N!N such that `0(k) = `(k)=b(k) and m(k) = dlog2 `0(k)e =k � 2b(k) + 1. Associate f0; 1gn with the n-dimensional vector space over GF(2),35In the common presentation of this pairwise independence generator, the length of the seedis determined as a function of the desired block-length and stretch. That is, given the parametersb and `0, the seed length is set to 2b+ dlog2 `0e � 1.



308 CHAPTER 8. PSEUDORANDOM GENERATORSand let v1; :::; v`0(k) be �xed distinct vectors in the m(k)-dimensional vector spaceover GF(2). For s 2 f0; 1gb(k)+m(k)�1 and r 2 f0; 1gb(k), letG(s; r) def= (Tsv1 + r ; Tsv2 + r ; :::; Tsv`0(k) + r) (8.13)where Ts is an b(k)-by-m(k) Toeplitz matrix speci�ed by the string s. Then G is apairwise independence generator of block-size b and stretch `.That is, given a seed that represents an a�ne transformation de�ned by an b(k)-by-m(k) Toeplitz matrix, the generator outputs a sequence of `0(k) � 2m(k) strings,each of length b(k). Note that k = 2b(k)+m(k)�1, and that the stretching propertyrequires `0(k) > k=b(k). The proof of Proposition 8.25 is left as an exercise (seeExercise 8.25).A stronger notion of e�cient generator. We note that the aforementionedconstructions satisfy a stronger notion of e�cient generation, which is useful inseveral applications. Speci�cally, there exists a polynomial-time algorithm thatgiven a seed, s 2 f0; 1gk, and a block location i 2 [`0(k)] (in binary), outputs theith block of the corresponding output (i.e., the ith block of G(s)).8.6.1.2 ApplicationsPairwise independence generators do su�ce for a variety of applications (cf., [222,150]). In particular, we mention the application to sampling discussed in Ap-pendix D.3, and the (celebrated) derandomization of the fast parallel algorithm forthe Maximal Independent Set problem. This derandomization relies on the factthat the analysis of the randomized algorithm only relies on the hypothesis thatsome objects are distributed in pairwise independent manner. Thus, this analysisholds also when these objects are selected using a pairwise independence generator.In general, pairwise independence generators do su�ce to fool distinguishers thatare derived from some natural and interesting randomized algorithms.Referring to Eq. (8.12), we remark that for any constant t � 2, the costof derandomization (i.e., going over all 2k possible seeds) is exponential in theblock-size (because b(k) = 
(k)), which in turn also bounds the number of blocks(because `0(k) � 2b(k)). Note that if a larger number of blocks is needed, wecan arti�cially increase the block-length in order to accommodate it (i.e., allow`0(k) = 2b(k) = exp(k=t)), and in this case the cost of derandomization will bepolynomial in the number of blocks. Thus, whenever the analysis of a randomizedalgorithm can be based on a constant amount of independence between (feasibly-many) random choices, each made within a feasible domain, a feasible derandom-ization is possible.36 On the other hand, the relationship `(k) = exp(k=t) is the bestpossible; speci�cally, one cannot produce from a seed of length k an exp(k=O(1))-long sequence of non-constantly independent random bits. In other words, t-wise36We stress that it is important to have the cost of derandomization be polynomial in the lengthof the produced pseudorandom sequence, because the latter is typically polynomially-related tothe length of the input to the algorithm that we wish to derandomize.



8.6. SPECIAL PURPOSE GENERATORS 309independent generators of (any block-length and) stretch ` require a seed of length
(t � log `). In the next subsection (cf. x8.6.2.2) we will see that meaningful ap-proximations may be obtained with much shorter seeds.8.6.2 Small-Bias GeneratorsTrying to go beyond constant-independence in derandomizations (while using seedsof length that is logarithmic in the length of the pseudorandom sequence) was theoriginal motivation (and remain an important application) of the notion of small-bias generators. Still, small-bias generators are interesting for their own sake, andin particular they fool \global tests" that look at the entire output sequence and notmerely at a �xed number of positions in it (as the limited independence generators).Speci�cally, small-bias generators generate a sequence of bits that fools any lineartest (i.e., a test that computes a �xed linear combination of the bits).For " : N ! [0; 1], an "-bias generator with stretch function ` is an e�cientdeterministic algorithm (e.g., working in poly(`(k)) time) that expands a k-bitlong random seed into a sequence of `(k) bits such that for any �xed non-empty setS � f1; :::; `(k)g the bias of the output sequence over S is at most "(k). The bias ofa sequence of n (possibly dependent) Boolean random variables �1; :::; �n 2 f0; 1gover a set S � f1; ::; ng is de�ned as2 � ����Pr[�i2S�i = 1]� 12 ���� = jPr[�i2S�i = 1]� Pr[�i2S�i = 0]j: (8.14)The factor of 2 was introduced so to make these biases correspond to the Fourier co-e�cients of the distribution (viewed as a function from f0; 1gn to the reals). To seethe correspondence replace f0; 1g by f�1g, and substitute xor by multiplication.The bias with respect to set S is thus written as�����Pr "Yi2S �i = +1#� Pr "Yi2S �i = �1#����� = �����E"Yi2S �i#�����; (8.15)which is merely the (absolute value of the) Fourier coe�cient corresponding to S.8.6.2.1 ConstructionsE�cient small-bias generators with exponential stretch and exponentially vanishingbias are know.Theorem 8.26 (small-bias generators):37 For some universal constant c > 0, let` :N!N and " :N! [0; 1] such that `(k) � "(k) � exp(k=c). Then, there exists an"-bias generator with stretch function ` operating in time polynomial in the lengthof its output.37In the common presentation of this generator, the length of the seed is determined as afunction of the desired bias and stretch. That is, given the parameters " and `, the seed lengthis set to c � log(`="). We comment that using [9] the constant c is merely 2 (i.e., k � 2 log2(`=")),whereas using [159] k � log2 `+ 4 log2(1=").



310 CHAPTER 8. PSEUDORANDOM GENERATORSThree simple constructions of small-bias generators that satisfy Theorem 8.26 areknown (see [9]). One of these constructions is based on Linear Feedback Shift Reg-isters. Loosely speaking, the �rst half of the seed, denoted f0f1 � � � f(k=2)�1, is inter-preted as a (non-degenerate) feedback rule38, the other half, denoted s0s1 � � � s(k=2)�1,is interpreted as \the start sequence", and the output sequence, denoted r0r1 � � � r`(k)�1,is obtained by setting ri = si for i < k=2 and ri = P(k=2)�1j=0 fj � ri�(k=2)+j fori � k=2. (See Figure 8.5 and Exercise 8.29.)
r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure 8.5: The LFSR small-bias generator (for t = k=2).As in Section 8.6.1.1, we note that the aforementioned constructions satisfya stronger notion of e�cient generation, which is useful in several applications.Speci�cally, there exists a polynomial-time algorithm that given a seed and a bitlocation i 2 [`(k)] (in binary), outputs the ith bit of the corresponding output.8.6.2.2 ApplicationsAn archetypical application of small-bias generators is for producing short andrandom \�ngerprints" (or \digests") such that equality/inequality among stringsis (probabilistically) reected in equality/inequality between their corresponding�ngerprints. The key observation is that checking whether or not x = y is prob-abilistically reducible to checking whether the inner product modulo 2 of x and requals the inner product modulo 2 of y and r, where r is generated by a small-biasgenerator G. Thus, the pair (s; v), where s is a random seed to G and v equalsthe inner product modulo 2 of z and G(s), serves as the randomized �ngerprint ofthe string z. One advantage of this reduction is that only few bits (i.e., the seedof the generator and the result of the inner product) needs to be \communicatedbetween x and y" in order to enable the checking (see Exercise 8.27). A relatedadvantage (i.e., low randomness complexity) underlies the application of small-biasgenerators in x9.3.2.2.Small-bias generators have been used in a variety of areas (e.g., inapproxima-tion, structural complexity, and applied cryptography; see references in [86, Sec38That is, f0 = 1 and f(z) def= zk=2+P(k=2)�1j=0 fj �zj is required to be an irreducible polynomialover GF(2). The enforcing of the latter condition is discussed in Exercise 8.29.



8.6. SPECIAL PURPOSE GENERATORS 3113.6.2]). In addition, they seem an important tool in the design of various types of\pseudorandom" objects; see next.Approximate independence generators. As hinted at the beginning of thissection, small-bias is related to approximate limited independence.39 Actually,even a restricted type of "-bias (in which only subsets of size t(k) are requiredto have bias upper-bounded by ") implies that any t(k) bits in the said sequenceare 2t(k)=2 � "(k)-close to Ut(k), where here we refer to the variation distance (i.e.,Norm-1 distance) between the two distributions. (The max-norm of the di�er-ence is bounded by "(k).)40 Combining Theorem 8.26 and the foregoing upper-bound, and relying on the linearity of the construction presented in Proposi-tion 8.24, we obtain generators with exp(k) stretch that are approximately t(k)-independent, for some non-constant t(k); see Exercise 8.32. Speci�cally, for k =O(t(k) + log(1="(k)) + log log `(k)) (equiv., for `(k) = 22k=O(1) , t(k) = k=O(1), and"(k) = 2�k=O(1)), one may obtain generators with stretch function `, producingbit sequences in which any t(k) positions are at most "(k)-away from uniform (invariation distance). In the corresponding result for the max-norm distance, it suf-�ces to have k = O(log(t(k)="(k) + log log `(k)). Thus, whenever the analysis of arandomized algorithm can be based on a logarithmic amount of (almost) indepen-dence between feasibly-many binary random choices, a feasible derandomization ispossible (by using an adequate generator of logarithmic seed length).Extensions to non-binary choices were considered in various works (see refer-ences in [86, Sec 3.6.2]). Some of these works also consider the related problem ofconstructing small \discrepancy sets" for geometric and combinatorial rectangles.t-universal set generators. Using the aforementioned upper-bound on the max-norm (of the deviation from uniform of any t locations), any "-bias generator yieldsa t-universal set generator, provided that " < 2�t. The latter generator outputssequences such that in every subsequence of length t all possible 2t patterns occur(i.e., each for at least one possible seed). Such generators have many applications.8.6.2.3 GeneralizationIn this subsection, we outline a generalization of the treatment of small-bias gen-erators to the generation of sequences over an arbitrary �nite �eld. Focusing onthe case of a �eld of prime characteristic, denoted GF(p), we �rst de�ne an ad-equate notion of bias. Generalizing Eq. (8.15), we de�ne the bias of a sequenceof n (possibly dependent) random variables �1; :::; �n 2 GF(p) with respect to thelinear combination (c1; :::; cn) 2 GF(p)n as E h!Pni=1 ci�ii, where ! denotes thepth (complex) root of unity (i.e., ! = �1 if p = 2). Using Exercise 8.34, we notethat upper-bounds on the biases of �1; :::; �n (with respect to any non-zero linear39We warn that, unlike in the case of perfect independence, here we refer only to the distributionon �xed bit locations. See Exercise 8.26 for further discussion.40Both bounds are derived from the Norm2 bound on the di�erence vector (i.e., the di�erencebetween the two probability vectors). For details, see Exercise 8.28.



312 CHAPTER 8. PSEUDORANDOM GENERATORScombinations) yield upper-bounds on the distance of Pni=1 ci�i from the uniformdistribution.We say that S � GF(p)n is an "-bias probability space if a uniformly selectedsequence in S has bias at most " with respect to any non-zero linear combinationover GF(p). (Whenever such a space is e�ciently constructible, it yields a corre-sponding "-biased generator.) We mention that the LFSR construction, outlinedin x8.6.2.1 and analyzed in Exercise 8.29, generalizes to GF(p) and yields an "-biasprobability space of size (at most) p2e, where e = dlogp(n=")e. Such constructionscan be used in applications that generalize those in x8.6.2.2.8.6.3 Random Walks on ExpandersIn this section we review generators that produce a sequence of values by taking arandom walk on a large graph that has a small degree but an adequate \mixing"property. Such a graph is called an expander, and by taking a random walk on itwe may generate a sequence of `0 values over its vertex set, while using a randomseed of length b+ (`0 � 1) � log2 d, where 2b denotes the number of vertices in thegraph and d denotes its degree. This seed length should be compared against the`0 � b random bits required for generating a sequence of `0 independent samplesfrom f0; 1gb (or taking a random walk on a clique of size 2b). Interestingly, as weshall see, the pseudorandom sequence (generated by the said random walk on anexpander) behaves similarly to a truly random sequence with respect to hitting any�xed subset of f0; 1gb. Let us start by de�ning this property (or rather by de�ningthe corresponding hitting problem).De�nition 8.27 (the hitting problem): A sequence of (possibly dependent) ran-dom variables, denoted (X1; :::; X`0 , over f0; 1gb is ("; �)-hitting if for any (target)set T � f0; 1gb of cardinality at least " � 2b, with probability at least 1� �, at leastone of these variables hits T ; that is, Pr[9i s.t. Xi2T ] � 1� �.Clearly, a truly random sequence of length `0 over f0; 1gb is ("; �)-hitting for � =(1� ")`0 . The aforementioned \expander random walk generator" (to be describednext) achieves similar behavior. Speci�cally, for arbitrary small c > 0 (whichdepends on the degree and the mixing property of the expander), the generator'soutput is ("; �)-hitting for � = (1 � (1 � c) � ")`0 . To describe this generator, weneed to discuss expanders.Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound� < d, we actually mean an in�nite family of d-regular graphs, fGNgN2S (S � N),such that GN is a d-regular graph over N vertices and the absolute value of alleigenvalues, save the biggest one, of the adjacency matrix of GN is upper-boundedby �. We will refer to such a family as to a (d; �)-expander (for S). This technicalde�nition is related to the aforementioned notion of \mixing" (which refers to therate at which a random walk starting at a �xed vertex reaches uniform distributionover the graph's vertices). For further detail, see Appendix E.2.



8.6. SPECIAL PURPOSE GENERATORS 313We are interested in explicit constructions of such graphs, by which we meanthat there exists a polynomial-time algorithm that on input N (in binary), a vertexv 2 GN and an index i 2 f1; :::; dg, returns the ith neighbor of v. (We also requirethat the set S for which GN 's exist is su�ciently \tractable" { say that given anyn 2 N one may e�ciently �nd an s 2 S such that n � s < 2n.) Several explicitconstructions of expanders are known (see Appendix E.2.2). Below, we rely on thefact that for every � > 0, there exist d and an explicit construction of a (d; � � d)-expander over f2b : b 2 Ng.41 The relevant (to us) fact about expanders is statednext.Theorem 8.28 (Expander Random Walk Theorem): Let G = (V;E) be an ex-pander graph of degree d and eigenvalue bound �. Let W be a subset of V and� def= jW j=jV j, and consider walks on G that start from a uniformly chosen vertexand take `0 � 1 additional random steps, where in each such step one uniformlyselects one out of the d edges incident at the current vertex and traverses it. Thenthe probability that such a random walk stays in W is at most� ���+ (1� �) � �d�`0�1 (8.16)Thus, a random walk on an expander is \pseudorandom" with respect to the hittingproperty (i.e., when we consider hitting the set V nW and use " = 1��); that is, aset of density " is hit with probability 1��, where � = (1�")�(1�"+(�=d)�")`0�1 <(1� (1� (�=d)) � ")`0 . A proof of an upper-bound that is weaker than Eq. (8.16) isoutlined in Exercise 8.35. Using Theorem 8.28 and an explicit (2t; � � 2t)-expander,we getProposition 8.29 (The Expander Random Walk Generator):42� For every constant � > 0, consider an explicit construction of (2t; � � 2t)-expanders for f2n : n2Ng, where t2N is a su�ciently large constant. Forv 2 [2n] � f0; 1gn and i 2 [2t] � f0; 1gt, denote by �i(v) the vertex of thecorresponding 2n-vertex graph that is reached from vertex v when followingits ith edge.� For b; `0 : N!N such that k = b(k) + (`0(k) � 1) � t < `0(k) � b(k), and forv0 2 f0; 1gb(k) and i1; :::; i`0(k)�1 2 [2t], letG(v0; i1; ::::; i`0(k)�1) def= (v0; v1; ::::; v`0(k)�1); (8.17)where vj = �ij (vj�1).41This can be obtained with d = poly(1=�). In fact d = O(1=�2), which is optimal, can beobtained too, albeit with graphs of sizes that are only approximately close to powers of two.42In the common presentation of this generator, the length of the seed is determined as afunction of the desired block-length and stretch. That is, given the parameters b and `0, the seedlength is set to b+O(`0 � 1).



314 CHAPTER 8. PSEUDORANDOM GENERATORSdistinguisher's generator's stretch commentstype resources resources (i.e., `(k))gen.-purpose p(k)-time, 8 poly. p poly(k)-time poly(k) Assumes OW43derand. BPP 2k=O(1)-time 2O(k)-time 2k=O(1) Assumes EvEC43space-bounded s(k)-space O(k)-space 2k=O(s(k)) runs in timerobustness k=O(1)-space O(k)-space poly(k) poly(k) � `(k)t-wise indepen. \t-wise" poly(k) � `(k)-time 2k=O(t) (e.g., pairwise)small bias \"-bias" poly(k) � `(k)-time 2k=O(1) � "(k)expander \hitting" poly(k) � `(k)-time `0(k) � b(k)rand. walk (0:5; 2�`0(k)=O(1))-hitting for f0; 1gb(k), with `0(k) = ((k � b(k))=O(1)) + 1.Figure 8.6: Pseudorandom generators at a glanceThen G has stretch `(k) = `0(k) � b(k), and G(Uk) is ("; �)-hitting for any " > 0and � = (1� (1� �) � ")`0(k).The stretch of G is optimized at b(k) � k=2 (and `0(k) = k=2t), but optimizingthe stretch is not necessarily the goal in all applications. Expander random-walkgenerators have been used in a variety of areas (e.g., PCP and inapproximability(see [27, Sec. 11.1]), cryptography (see [87, Sec. 2.6]), and the design of varioustypes of \pseudorandom" objects (see, in particular, Appendix D.3)).Chapter NotesFigure 8.6 depicts some of the notions of pseudorandom generators discussed inthis chapter. We highlight a key distinction between the case of general-purposepseudorandom generators (treated in Section 8.3) and the other cases (cf. Sec-tions 8.4 and 8.5): in the former case the distinguisher is more complex than thegenerator, whereas in the latter cases the generator is more complex than the dis-tinguisher. Speci�cally, in the general-purpose case the generator runs in (some�xed) polynomial-time and needs to withstand any probabilistic polynomial-timedistinguisher. In fact, some of the proofs presented in Section 8.3 utilize the factthat the distinguisher can invoke the generator on seeds of its choice. In contrast,the Nisan-Wigderson Generator, analyzed in Theorem 8.18 (of Section 8.4), runsmore time than the distinguishers that it tries to fool, and the proof relies on thisfact in an essential manner. Similarly, the space complexity of the space-resilientgenerators presented in Section 8.5 is higher than the space-bound on the distin-guishers that they fool.The general paradigm of pseudorandom generators. Our presentation,which views vastly di�erent notions of pseudorandom generators as incarnationsof a general paradigm, has emerged mostly in retrospect. We note that, while the43By the OW we denote the assumption that one-way functions exists. By EvEC we denote theassumption that the class E has (almost-everywhere) exponential circuit complexity.



8.6. SPECIAL PURPOSE GENERATORS 315historical study of the various notions was mostly unrelated at a technical level,the case of general-purpose pseudorandom generators served as a source of inspi-ration to most of the other cases. In particular, the concept of computationalindistinguishability, the connection between hardness and pseudorandomness, andthe equivalence between pseudorandomness and unpredictability, appeared �rst inthe context of general-purpose pseudorandom generators (and inspired the devel-opment of \generators for derandomization" and \generators for space boundedmachines"). Indeed, the study of the special-purpose generators (see Section 8.6)was unrelated to all of these.General-purpose pseudorandom generators. The concept of computationalindistinguishability, which underlies the entire computational approach to random-ness, was suggested by Goldwasser and Micali [104] in the context of de�ning secureencryption schemes. Indeed, computational indistinguishability plays a key role incryptography (see Appendix C). The general formulation of computational indis-tinguishability is due to Yao [223]. Using the hybrid technique of [104], Yao alsoobserved that de�ning pseudorandom generators as producing sequences that arecomputationally indistinguishable from the corresponding uniform distribution isequivalent to de�ning such generators as producing unpredictable sequences. Thelatter de�nition originates in the earlier work of Blum and Micali [37].Blum and Micali [37] pioneered the rigorous study of pseudorandom generatorsand, in particular, the construction of pseudorandom generators based on somesimple intractability assumption. In particular, they constructed pseudorandomgenerators assuming the intractability of Discrete Logarithm problem over prime�elds. Their work also introduces basic paradigms that were used in all subsequentimprovements (cf., e.g., [223, 113]). We refer to the transformation of compu-tational di�culty into pseudorandomness, the use of hard-core predicates (alsode�ned in [37]), and the iteration paradigm (cf. Eq. (8.8)).Theorem 8.11 (by which pseudorandom generators exist if and only if one-wayfunctions exist) is due to H�astad, Impagliazzo, Levin and Luby [113], building uponthe hard-core predicate of [95] (see Theorem 7.7). Unfortunately, the current proofof Theorem 8.11 is very complicated and un�t for presentation in a book of thecurrent nature. Presenting a simpler and tighter (cf. x8.3.7.1) proof is indeed animportant research project.Pseudorandom functions (further discussed in Appendix C.3.3) were de�nedand �rst constructed by Goldreich, Goldwasser and Micali [91]. We also mention(and advocate) the study of a general theory of pseudorandom objects initiatedin [92].Derandomization of time-complexity classes. As observed by Yao [223], anon-uniformly strong notion of pseudorandom generators yields improved deran-domization of time-complexity classes. A key observation of Nisan [161, 164] is thatwhenever a pseudorandom generator is used in this way, it su�ces to require thatthe generator runs in time exponential in its seed length, and so the generator mayhave running-time greater than the distinguisher (representing the algorithm to be



316 CHAPTER 8. PSEUDORANDOM GENERATORSderandomized). This observation underlines the construction of Nisan and Wigder-son [161, 164], and is the basis for further improvements culminating in [121]. Part 1of Theorem 8.19 (i.e., the so-called \high end" derandomization of BPP) is due toImpagliazzo and Wigderson [121], whereas Part 2 (the \low end") is from [164].The Nisan{Wigderson Generator [164] was subsequently used in several waystranscending its original presentation. We mention its application towards foolingnon-deterministic machines (and thus derandomizing constant-round interactiveproof systems) and to the construction of randomness extractors [209].In contrast to the aforementioned derandomization results, which place BPP insome worst-case deterministic complexity class, we now mention a result that placesBPP in an average-case deterministic complexity class (cf. Section 10.2). We referspeci�cally to the theorem, which is due to Impagliazzo and Wigderson [122] butis not presented in the main text, that asserts the following: if BPP is not con-tained in EXP (almost always) then BPP has deterministic sub-exponential timealgorithms that are correct on all typical cases (i.e., with respect to any polynomial-time sampleable distribution).Space Pseudorandom Generators. As stated in the �rst paper on the sub-ject of space-resilient pseudorandom generators [4]44, this research direction wasinspired by the derandomization result obtained via the use of general-purposepseudorandom generators. The latter result (necessarily) depends on intractabil-ity assumptions, and so the objective was �nding classes of algorithms for whichderandomization is possible without relying on intractability assumptions. (Thisobjective was achieved before for the case of constant-depth circuits.) Funda-mentally di�erent constructions of space pseudorandom generators were given inseveral works, but are superseded by the two incomparable results mentioned inSection 8.5.2: Theorem 8.21 (a.k.a Nisan's Generator [162]) and Theorem 8.22(a.k.a the Nisan{Zuckerman Generator [165]). These two results have been \inter-polated" in [11]. Theorem 8.23 (BPL � SC) was proved by Nisan [163].Special Purpose Generators. The various generators presented in Section 8.6were not inspired by any of the other types of pseudorandom generator (nor even bythe generic notion of pseudorandomness). Pairwise-independence generator wereexplicitly suggested in [51] (and are implicit in [47]). The generalization to t-wiseindependence (for t � 2) is due to [6]. Small-bias generators were �rst de�ned andconstructed by Naor and Naor [159], and three simple constructions were subse-quently given in [9]. The Expander Random Walk Generator was suggested byAjtai, Komlos, and Szemer�edi [4], who discovered that random walks on expandergraphs provide a good approximation to repeated independent attempts with re-spect to hitting any �xed subset of su�cient density (within the vertex set). Theanalysis of the hitting property of such walks was subsequently improved, culmi-nating in the bound cited in Theorem 8.28, which is taken from [126, Cor. 6.1].44This paper is more frequently cited for the Expander Random Walk technique which it hasintroduced.



8.6. SPECIAL PURPOSE GENERATORS 317(The foregoing historical notes do not mention several technical contributions thatplayed an important role in the development of the area. For further details,the reader is referred to [86, Chap. 3]. In fact, the current chapter is a revisionof [86, Chap. 3], providing more details for the main topics, and omitting relativelysecondary material (a revision of which appears in Appendix D).)ExercisesExercise 8.1 Show that placing no computational requirements on the genera-tor enables unconditional results regarding \generators" that fool any family ofsubexponential-size circuits. That is, making no computational assumptions, provethat there exist functions G : f0; 1g� ! f0; 1g� such that fG(Uk)gk2N is (strongly)pseudorandom, while jG(s)j = 2jsj for every s 2 f0; 1g�. Furthermore, show thatG can be computed in double-exponential time.Guideline: Use the Probabilistic Method (cf. [10]). First, for any �xed circuit C :f0; 1gn ! f0; 1g, upper-bound the probability that for a random set S � f0; 1gn of size2n=2 the absolute value of Pr[C(Un) = 1] � (jfx 2 S : C(x) = 1gj=jSj) is larger than2�n=50. Next, using a union bound, prove the existence of a set S � f0; 1gn of size2n=2 such that no circuit of size 2n=100 can distinguish a uniformly distributed elementof S from a uniformly distributed element of f0; 1gn, where distinguishing means with aprobability gap of at least 2�n=100.Exercise 8.2 LetA be a probabilistic polynomial-time algorithm solving the searchassociated with the NP-relation R, and let AG be as in Construction 8.2. Provethat it is infeasible to �nd an x on which AG outputs a wrong solution; that is,assuming for simplicity that A has error probability 1=3, prove that on input 1n itis infeasible to �nd an x 2 f0; 1gn \ SR such that Pr[(x;AG(x)) 62 R] > 0:4, whereSR def= fx : 9y (x; y)2Rg.(Hint: For x that violates the claim, it holds that jPr[(x;A(x)) 62 R]�Pr[(x;AG(x)) 62 R]j > 0:06.)Exercise 8.3 Prove that omitting the absolute value in Eq. (8.4) keeps De�ni-tion 8.4 intact.(Hint: consider D0(z) def= 1�D(z).)Exercise 8.4 Show that the existence of pseudorandom generators implies the ex-istence of polynomial-time constructible probability ensembles that are statisticallyfar apart and yet are computationally indistinguishable.Guideline: Lower-bound the statistical distance between G(Uk) and U`(k), where G is apseudorandom generator with stretch `.Exercise 8.5 Prove that the su�cient condition in Exercise 8.4 is in fact necessary.45Recall that fXngn2N and fYngn2N are said to be statistically far apart if, for somepositive polynomial p and all su�ciently large n, the variation distance between45This exercise follows [84], which in turn builds on [113].



318 CHAPTER 8. PSEUDORANDOM GENERATORSXn and Yn is greater than 1=p(n). Using the following three steps, prove that theexistence of polynomial-time constructible probability ensembles that are statisti-cally far apart and yet are computationally indistinguishable implies the existenceof pseudorandom generators.1. Show that, without loss of generality, we may assume that the variationdistance between Xn and Yn is greater than 1� exp(�n).Guideline: For Xn and Yn as in the forgoing, consider Xn = (X(1)n ; :::; X(t(n))n )and Y n = (Y (1)n ; :::; Y (t(n))n ), where the X(i)n 's (resp., Y (i)n 's) are independent copiesof Xn (resp., Yn), and t(n) = O(n �p(n)2). To lower-bound the statistical di�erencebetween Xn and Y n, consider the set Sn def= fz : Pr[Xn= z] > Pr[Yn= z]g and therandom variable representing the number of copies in Xn (resp., Y n) that reside inSn.2. Using fXngn2N and fYngn2N as in Step 1, prove the existence of a false en-tropy generator, where a false entropy generator is a deterministic polynomial-time algorithm G such that G(Uk) has entropy e(k) but fG(Uk)gk2N is com-putationally indistinguishable from a polynomial-time constructible ensemblethat has entropy greater than e(�) + (1=2).Guideline: Let S0 and S1 be sampling algorithms such that Xn � S0(Upoly(n))and Yn � S1(Upoly(n)). Consider the generator G(�; r) = (�; S�(r)), and the distri-bution Zn that equals (U1; Xn) with probability 1=2 and (U1; Yn) otherwise. Notethat in G(U1; Upoly(n)) the �rst bit is almost determined by the rest, whereas in Znthe �rst bit is statistically independent of the rest.3. Using a false entropy generator, obtain one in which the excess entropy ispk, and using the latter construct a pseudorandom generator.Guideline: Use the ideas presented at the end of Section 8.3.5 (i.e., the discussionof the interesting direction of the proof of Theorem 8.11).Exercise 8.6 Prove that if fXngn2N and fYngn2N are computationally indistin-guishable and A is a probabilistic polynomial-time algorithm then fA(Xn)gn2N andfA(Yn)gn2N are computationally indistinguishable.(Hint: If D distinguishes the latter ensembles then D0 such that D0(z) def= D(A(z)) distinguishesthe former.)Exercise 8.7 In continuation to Exercise 8.6, show that the conclusion may nothold in case A is not computationally bounded. That is, show that there ex-ists computationally indistinguishable ensembles, fXngn2N and fYngn2N, and anexponential-time algorithmA such that fA(Xn)gn2N and fA(Yn)gn2N are not com-putationally indistinguishable.Guideline: For any pair of ensembles fXngn2N and fYngn2N, consider the Booleanfunction f such that f(z) = 1 if and only if Pr[Xn = z] > Pr[Yn = z]. Show thatjPr[f(Xn) = 1] � Pr[f(Yn) = 1]j equals the statistical di�erence between Xn and Yn.Consider an adequate (approximate) implementation of f (e.g., approximate Pr[Xn = z]and Pr[Yn = z] up to �2�2jzj), and use Exercise 8.1.



8.6. SPECIAL PURPOSE GENERATORS 319Exercise 8.8 (multiple samples vs single sample, a separation) Prove thatthere exist two probability ensembles that are computational indistinguishable bya single sample, but are e�ciently distinguishable by two samples. Furthermore,one of these ensembles is the uniform ensembles and the other has a sparse support(i.e., only poly(n) many strings are assigned non-zero probability weight by thesecond distribution).Guideline: Prove that, for every function d : f0; 1gn ! [0; 1], there exists two strings, xnand yn (in f0; 1gn), and a number p 2 [0; 1] such that Pr[d(Un)=1] = p�Pr[d(xn)=1]+(1�p) � Pr[d(yn)=1]. Generalize this claim to m functions, using m+ 1 strings and a convexcombination of the corresponding probabilities.46 Conclude that there exists a distributionZn with a support of size at most m+ 1 such that for each of the �rst (in lexicographicorder) m (randomized) algorithms A it holds that Pr[A(Un) = 1] = Pr[A(Zn)= 1]. Notethat with probability at least 1=(m+1), two independent samples of Zn are assigned thesame value, yielding a simple two-sample distinguisher of Un from Zn.Exercise 8.9 (amplifying the stretch function, an alternative construction)For G1 and ` as in Construction 8.7, consider G(s) def= G`(jsj)1 (s), where Gi1(x) de-notes G1 iterated i times on x (i.e., Gi1(x) = Gi�11 (G1(x)) and G01(x) = x). Provethat G is a pseudorandom generator of stretch `. Reect on the advantages ofConstruction 8.7 over the current construction.Guideline: Use a hybrid argument, with the ith hybrid being Gi1(U`(k)�i), for i =0; :::; `(k) � k. Note that Gi+11 (U`(k)�(i+1)) = Gi1(G1(U`(k)�i�1)) and Gi1(U`(k)�i) =Gi1(UjG1(U`(k)�i�1)j), and use Exercise 8.6.Exercise 8.10 (pseudorandom versus unpredictability) Prove that a prob-ability ensemble fZkgk2N is pseudorandom if and only if it is unpredictable. Forsimplicity, we say that fZkgk2N is (next-bit) unpredictable if for every probabilis-tic polynomial-time algorithm A it holds that Pri[A(Fi(Zk)) =Bi+1(Zk)] � (1=2)is negligible, where i 2 f0; :::; jZkj � 1g is uniformly distributed, and Fi(z) (resp.,Bi+1(z)) denotes the i-bit pre�x (resp., i+ 1st bit) of z.Guideline: Show that pseudorandomness implies polynomial-time unpredictability; thatis, polynomial-time predictability violates pseudorandomness (because the uniform en-semble is unpredictable regardless of computing power). Use a hybrid argument to provethat unpredictability implies pseudorandomness. Speci�cally, the ith hybrid consists ofthe i-bit long pre�x of Zk followed by jZkj � i uniformly distributed bits. Thus, distin-guishing the extreme hybrids (which correspond to Zk and UjZk j) implies distinguishingsome neighboring hybrids, which in turn implies next-bit predictability. For the last step,use an argument as in the proof of Proposition 8.9.Exercise 8.11 Prove that a probability ensemble is unpredictable (from left toright) if and only if it is unpredictable from right to left (or in any other canonicalorder).46That is, prove that for every m functions d1; :::; dm : f0; 1gn ! [0; 1] there exist m+1 stringsz(1)n ; :::; z(m+1)n and m+1 non-negative numbers p1; :::; pm+1 that sum-up to 1 such that for everyi 2 [m] it holds that Pr[di(Un)=1] =Pj pj � Pr[di(z(j)n )=1].



320 CHAPTER 8. PSEUDORANDOM GENERATORS(Hint: use Exercise 8.10, and note that an ensemble is pseudorandom if and only if its reverse ispseudorandom.)Exercise 8.12 Let f be 1-1 and length preserving, and b be a hard-core predicateof f . For any polynomial `, prove that fG0(Uk)g is unpredictable (in the sense ofExercise 8.10), where G0(s) def= b(f `(jsj)�1(s)) � � � b(f(s)) � b(s).Guideline: Suppose towards the contradiction that, for a uniformly distributed j 2f0; :::; `(k) � 1g, given the j-bit long pre�x of G0(Uk) an algorithm A0 can predict thej + 1st bit of G0(Uk). That is, given b(f `(k)�1(s)) � � � b(f `(k)�j(s)), algorithm A0 predictsb(f `(k)�(j+1)(s)), where s is uniformly distributed in f0; 1gk. Consider an algorithm Athat given y = f(x) approximates b(x) by invoking A0 on input b(f j�1(y)) � � � b(y), wherej is uniformly selected in f0; :::; `(k)� 1g. Analyze the success probability of A using thefact that f induces a permutation over f0; 1gn, and thus b(f j(Uk)) � � � b(f(Uk)) � b(Uk) isdistributed identically to b(f `(k)�1(Uk)) � � � b(f `(k)�j(Uk)) � b(f `(k)�(j+1)(Uk)).Exercise 8.13 Prove that if G is a strong pseudorandom generator in the senseof De�nition 8.12 then it a pseudorandom generator in the sense of De�nition 8.1.(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (8.2).)Exercise 8.14 (strong computational indistinguishability) Provide a de�-nition of the notion of computational indistinguishability that underlies De�ni-tion 8.12 (i.e., indistinguishability with respect to (non-uniform) polynomial-sizecircuits). Prove the following two claims:1. Computational indistinguishability with respect to (non-uniform) polynomial-size circuits is strictly stronger than De�nition 8.4.2. Computational indistinguishability with respect to (non-uniform) polynomial-size circuits remains invariant under multiple samples (even if the underlyingensembles are not polynomial-time constructible).Guideline: For Part 1, see the solution to Exercise 8.8. For Part 2 note that samplesas generated in the proof of Proposition 8.6 can be hard-wired into the distinguishingcircuit.Exercise 8.15 Show that there exists a circuit of size O(2k � `(k)) that violatesEq. (8.9), provided that `(k) > k.(Hint: The circuit may incorporate all values in the range of G and decide by comparing its inputto these values.)Exercise 8.16 (constructing a set system for Theorem 8.18) For every  >0, show a construction of a set system S as in Condition 2 of Theorem 8.18, withm(k) = 
(k) and `(k) = 2
(k).Guideline: We assume, without loss of generality, that  < 1, and set m(k) = (=2) � kand `(k) = 2m(k)=6. We construct the set system S1; :::; S`(k) in iterations, selectingSi as the �rst m(k)-subset of [k] that has su�ciently small intersections with each ofthe previous sets S1; :::; Si�1. The existence of such a set Si can be proved using the



8.6. SPECIAL PURPOSE GENERATORS 321Probabilistic Method (cf. [10]). Speci�cally, for a �xed m(k)-subset S0, the probabilitythat a random m(k)-subset has intersection greater than m(k) with S0 is smaller than2�m(k)=6, because the expected intersection size is (=2) � m(k). Thus, with positiveprobability a randomm(k)-subset has intersection at most m(k) with each of the previousi�1 < `(k) = 2m(k)=6 subsets. Note that we construct Si in time � km(k)� � (i�1) �m(k) <2k � `(k) � k, and thus S is computable in time k2k � `(k)2 < 22k.Exercise 8.17 (pseudorandom versus unpredictability, by circuits) In con-tinuation to Exercise 8.10, show that if there exists a circuit of size s that distin-guishes Zn from U` with gap �, then there exists an i < ` = jZnj and a circuitof size s + O(1) that given an i-bit long pre�x of Zn guesses the i + 1st bit withsuccess probability at least 12 + �̀ .(Hint: de�ning hybrids as in Exercise 8.10, note that, for some i, the given circuit distinguishesthe ith hybrid from the i+ 1st hybrid with gap at least �=`.)Exercise 8.18 Suppose that the sets Si's in Construction 8.17 are disjoint andthat f : f0; 1gm ! f0; 1g is T -inapproximable. Prove that for every circuit C ofsize T �O(1) it holds that jPr[C(G(Uk)) = 1]� Pr[C(U`) = 1]j < `=T .Guideline: Prove the contrapositive using Exercise 8.17. Note that the values of thei + 1st bit of G(Uk) is statistically independent of the values of the �rst i bits of G(Uk),and thus predicting it yields an approximator for f . Indeed, such an approximator canbe obtained by �xing the the �rst i bits of G(Uk) via an averaging argument.Exercise 8.19 (Theorem 8.18, generalized) Let `;m;m0; T : N ! N satisfy`(k)2 + eO(`(k)2m0(k)) < T (m(k)). Suppose that the following two conditions hold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g thatis T -inapproximable.2. There exists an exponential-time computable function S :N�N!2N such thatfor every k and i = 1; :::; `(k) it holds that S(k; i) � [k] and jS(k; i)j = m(k),and jS(k; i) \ S(k; j)j � m0(k) for every k and i 6= j.Prove that using G as de�ned in Construction 8.17, with Si = S(k; i), yields acanonical derandomizer with stretch `.(Hint: following the proof of Theorem 8.18, just note that the circuit constructed for approximat-ing f(Um(k)) has size `(k)2 + `(k) � eO(2m0(k)) and success probability at least (1=2) + (1=7`(k)).)Exercise 8.20 (Part 2 of Theorem 8.19) Prove that if for every polynomial Tthere exists a T -inapproximable predicate in E then BPP � \">0Dtime(t"), wheret"(n) def= 2n" .Guideline: For any p-time algorithm, apply Exercise 8.19 using `(k) = p(k1="), m(k) =pk andm0(k) = O(log k). Revisit Exercise 8.16 in order to obtain a set system as requiredin Exercise 8.19 (for these parameters), and use Theorem 7.10.



322 CHAPTER 8. PSEUDORANDOM GENERATORSExercise 8.21 (multiple samples and space-bounded machines) Suppose thattwo probability ensembles, fXkgk2N and fYkgk2N, are (s; ")-indistinguishable bynon-uniform machines (i.e., the distinguishability-gap of any non-uniform machineof space s is bounded by the function "). For any function t : N!N , provethat the ensembles f(X(1)k ; :::; X(t(k))k )gk2N and f(Y (1)k ; :::; X(t(k))k )gk2N are (s; t")-indistinguishable, where X(1)k through X(t(k))k and Y (1)k through Y (t(k))k are inde-pendent random variables, with each X(i)k identical to Xk and each Y (i)k identicalto Yk .Guideline: Use the hybrid technique. When distinguishing the ith and (i+1)st hybrids,note that the �rst i blocks (i.e., copies of Xk) as well as the last t(k)� (i+1) blocks (i.e.,copies of Yk) can be �xed and hard-wired into the non-uniform distinguisher.Exercise 8.22 Provide an explicit description of the generator outlined in theproof of Theorem 8.21.Guideline: for r 2 f0; 1gn and h(1); :::; h(t) 2 Hn, the genera or outputs a 2t-longsequence of n-bit strings such that the ith block equals h0(r), where h0 is a compositionof some of the h(j)'s.Exercise 8.23 (adaptive t-wise independence tests) Recall that a generatorG : f0; 1gk ! f0; 1g`0(k)�b(k) is called t-wise independent if for any t �xed block posi-tions, the distribution G(Uk) restricted to these t blocks is uniform over f0; 1gt�b(k).Prove that the output of a t-wise independence generator is (perfectly) indistin-guishable from the uniform distribution by any test that examines t of the blocks,even if the examined blocks are selected adaptively (i.e., the location of the ith blockto be examined is determined based on the contents of the previously inspectedblocks).Guideline: First show that, without loss of generality, it su�ces to consider deterministic(adaptive) tester. Next, show that the probability that such a tester sees any �xedsequence of t values at the locations selected adaptively in the generator's output equals2�t�b(k), where b(k) is the block length.Exercise 8.24 (t-wise independence generator) Prove that G as de�ned inProposition 8.24 produces a t-wise independent sequence over GF(2b(k)).Guideline: For every t �xed indices i1; :::; it 2 [`0(k)], consider the distribution ofG(Uk)i1;:::;it (i.e., the projection of G(Uk) on locations i1; :::; it). Show that for everysequence of t possible values v1; :::; vt 2 GF(2b(k)), there exists a unique seed s 2 f0; 1gksuch that G(s)i1;:::;it = (v1; :::; vt).Exercise 8.25 (pairwise independence generators) As a warm-up, considera construction analogous to the one in Proposition 8.25, where the seed speci�esan a�ne b(k)-by-m(k) transformation. That is, for s 2 f0; 1gb(k)�m(k) and r 2f0; 1gb(k), where k = b(k) �m(k) + b(k), letG(s; r) def= (Asv1 + r ; Asv2 + r ; :::; Asv`0(k) + r) (8.18)



8.6. SPECIAL PURPOSE GENERATORS 323where As is an b(k)-by-m(k) matrix speci�ed by the string s. Show that G asin Eq. (8.18) is a pairwise independence generator of block-size b and stretch `.(Note that a related construction appears in the proof of Theorem 7.7; see alsoExercise 7.5.) Next, show that G as in Eq. (8.13) is a pairwise independencegenerator of block-size b and stretch `.Guideline: The following description applies to both constructions. First note thatfor every �xed i 2 [`0(k)], the ith element in the sequence G(Uk), denoted G(Uk)i, isuniformly distributed in f0; 1gb(k). Actually, show that for every �xed s 2 f0; 1gk�b(k),it holds that G(s; Ub(k))i is uniformly distributed in f0; 1gb(k). Next note that it su�cesto show that, for every j 6= i, conditioned on the value of G(Uk)i, the value of G(Uk)jis uniformly distributed in f0; 1gb(k). The key technical detail is showing that for anynon-zero vector v 2 f0; 1gm(k) it holds that AUk�b(k)v (resp., TUk�b(k)v) is uniformlydistributed in f0; 1gb(k). This is easy in case of a random b(k)-by-m(k) matrix, and canbe proven also for a random Toeplitz matrix.Exercise 8.26 (adaptive t-wise independence tests, revisited) In contrast toExercise 8.23, we note that almost uniform distribution on any �xed t bit locationsdoes not imply that an adaptive test that inspects t locations cannot detect \non-uniformity" (i.e., a \non random behavior" of the inspected sequence). Speci�cally,present a distribution over 2t�1-bit long strings in which each t � 1 �xed bit po-sitions are t � 2�(t�1)-close to uniform, but some test that adaptively inspects tpositions can distinguish this distribution from the uniform one with constant gap.(Hint: Modify the uniform distribution over ((t � 1) + 2t�1)-bit long strings such that the �rstt� 1 locations indicate a bit position (among the rest) that is set to zero.)Exercise 8.27 Suppose that G is an "-bias generator with stretch `. Show thatequality between the `(k)-bit strings x and y can be probabilistically checked bycomparing the inner product modulo 2 of x and G(s) to the inner product modulo 2of y and G(s), where s 2 f0; 1gk is selected uniformly.(Hint: reduce the problem to the special case in which y = 0`(k).)Exercise 8.28 (bias versus statistical di�erence from uniform) Let X bea random variable assuming values in f0; 1gt. Prove that if X has bias at most "over any non-empty set then the statistical di�erence between X and Ut is at most2t=2 � ", and that for every x 2 f0; 1gt it holds that Pr[X = x] = 2�t � ".Guideline: Consider the probability function p : f0; 1gt ! [0; 1] de�ned by p(x) def=Pr[X = x], and let �(x) def= p(x)� 2�t denote the deviation of p from the uniform proba-bility function. Viewing the set of real functions over f0; 1gt as a 2t-dimensional vectorspace, consider two orthonormal bases for this space. The �rst basis consists of the(Kroniker) functions fk�g�2f0;1gt such that k�(x) = 1 if x = � and k�(x) = 0 other-wise. The second basis consists of the (normalize Fourier) functions ffSgS�[t] de�nedby fS(x) def= 2�t=2Qi2S(�1)xi (where f; � 2�t=2).47 Note that the bias of X over any47Verify that both bases are indeed orthogonal (i.e.,Px k�(x)k�(x) = 0 for every � 6= � andPx fS(x)fT (x) = 0 for every S 6= T ) and normal (i.e.,Px k�(x)2 = 1 andPx fS(x)2 = 1).



324 CHAPTER 8. PSEUDORANDOM GENERATORSS 6= ; equals jPx p(x) � 2t=2fS(x)j, which in turn equals 2t=2jPx �(x)fS(x)j. Thus, forevery S (including the empty set), we have jPx �(x)fS(x)j � 2�t=2", which means thatthe representation of � in the normalize Fourier basis is by coe�cients that have each anabsolute value of at most 2�t=2". It follows that the Norm-2 of this vector of coe�cientsis upper-bounded by p2t � (2�t=2")2 = ", and the two claims follow by noting that theyrefer to norms of � according to the Kroniker basis. In particular, Norm-2 is preservedunder orthonormal bases, the max-norm is upper-bounded by Norm-2, and Norm-1 isupper-bounded by p2t times the value of the Norm-2.Exercise 8.29 (The LFSR small-bias generator (following [9])) Using thefollowing guidelines (and letting t = k=2), analyze the construction outlined fol-lowing Theorem 8.26 (and depicted in Figure 8.5):1. Prove that ri = Pt�1j=0 c(f;i)j � sj , where c(f;i)j is the coe�cient of zj in the(degree t � 1) polynomial obtained by reducing zi modulo the polynomialf(z) (i.e., zi �Pt�1j=0 c(f;i)j zj (mod f(z))).(Hint: Recall that zt �Pt�1j=0 fjzj (mod f(z)), and thus zi �Pt�1j=0 fjzi�t+j (mod f(z)).Note the correspondence to ri =Pt�1j=0 fj � ri�t+j .)2. For any non-empty S � f0; :::; `(k) � 1g, evaluate the bias of the sequencer0; :::; r`(k)�1 over S, where f is a random irreducible polynomial of degree tand s = (s0; :::; st�1) 2 f0; 1gt is uniformly distributed. Speci�cally:(a) For a �xed f and random s 2 f0; 1gt, prove that Pi2S ri has non-zerobias if and only if f(z) divides Pi2S zi.(Hint: Note thatPi2S ri =Pt�1j=0Pi2S c(f;i)j sj , and use Item 1.)(b) Prove that the probability that a random irreducible polynomial of de-gree t divides Pi2S zi is �(`(k)=2t).(Hint: A polynomial of degree n can be divided by at most n=d di�erent irreduciblepolynomials of degree d. On the other hand, the number of irreducible polynomialsof degree d over GF(2) is �(2d=d).)Conclude that for random f and s, the sequence r0; :::; r`(k)�1 has biasO(`(k)=2t).Note that an implementation of the LFSR generator requires a mapping of randomk=2-bit long string to almost random irreducible polynomials of degree k=2. Such amapping can be constructed in exp(k) time, which is poly(`(k)) if `(k) = exp(
(k)).A more e�cient mapping that uses a O(k)-bit long seek is described in [9, Sec. 8].Exercise 8.30 (limitations on small-bias generators) LetG be an "-bias gen-erator with stretch `, and view G as a mapping from GF(2)k to GF(2)`(k). As such,each bit in the output of G can be viewed as a polynomial48 in the k input variables(each ranging in GF(2)). Prove that if "(k) < 1 and each of these polynomials hastotal degree at most d then `(k) �Pdi=1 �ki�.48Recall that every Boolean function over GF(p) can be expressed as a polynomial of individualdegree at most p� 1.



8.6. SPECIAL PURPOSE GENERATORS 325Guideline: Note that, without loss of generality, all polynomials have a free term equal tozero (and has individual degree at most 1 in each variable). Next, consider the vector spacespanned by all d-monomials over k variables (i.e., monomial having at most d variables).Since "(k) < 1, the polynomials representing the output bits of G must correspond to asequence of independent vectors in this space.Derive the following corollaries:1. If "(k) < 1 then `(k) < 2k (regardless of d).2. If "(k) < 1 and `(k) > k then G cannot be a linear transformation.We note that, in contrast to Item 1, (e�cient) "-bias generators of stretch `(k) = poly("(k))�2k do exists (see [159]). Also, in contrast to Item 2, note that G(s) = (s; b(s)), whereb(s1; :::; sk) =Pk=2i=1 sis(k=2)+i mod 2, is an "-bias generator with "(k) = exp(�
(k)).(Hint: Focusing on bias over sets that include the last output bit, prove that without loss ofgenerality it su�ces to analyze the bias of b(Uk).)Exercise 8.31 (a sanity check for pseudorandomness) The following fact issuggested as a sanity check for candidate pseudorandom generators with respect tospace-bounded machines. The fact (to be proven as an exercise) is that, for every"(�) and s(�) such that s(k) � 1 for every k, if G is (s; ")-pseudorandom (as perDe�nition 8.20), then G is an "-bias generator.Exercise 8.32 (approximate t-wise independent generators (following [159]))Combining a small-bias generator as in Theorem 8.26 with the t-wise independentgenerator of Eq. (8.12), and relying on the linearity of the latter, construct a gen-erator producing `-bit long sequences in which any t positions are at most "-awayfrom uniform (in variation distance), while using a seed of length O(t+ log(1=") +log log `). (For max-norm a seed of length O(log(t=") + log log `) su�ces.)Guideline: First note that, for any t; `0 and b, the transformation of Eq. (8.12) canbe implemented by a �xed linear (over GF(2)) transformation of a t � b-bit seed intoan `-bit long sequence, where ` = `0 � b. It follows that there exists a �xed GF(2)-linear transformation T of a random seed of length t � b, where b = log2 `0, into a t-wiseindependent bit sequence of the length ` (i.e., T Ut�b is t-wise independent over f0; 1g`).Thus, every t rows of T are linearly independent. The key observation is that when wereplace the aforementioned random seed by an "0-bias sequence, every i � t positions inthe output sequence have bias at most "0 (because they de�ne a non-zero linear test onthe bits of the "0-bias sequence). Note that the length of the new seed (used to produce"0-bias sequence of length t � b) is O(log tb="0). Applying Exercise 8.28, we conclude thatany t positions are at most 2t=2 �"0-away from uniform (in variation distance). Recall thatthis was obtained using a seed of length O(log(t="0) + log log `), and the claim follows byusing "0 = 2�t=2 � ".Exercise 8.33 (small-bias generator and error-correcting codes) Show a cor-respondence between "-bias generators of stretch ` and binary linear error-correctingcodes (cf. Appendix E.1) mapping `(k)-bit long strings to 2k-bit long strings suchthat every two codewords are at distance (1� "(k)) � 2k apart.



326 CHAPTER 8. PSEUDORANDOM GENERATORSGuideline: Associate f0; 1gk with [2k]. Then, a generator G : [2k] ! f0; 1g`(k) corre-sponds to the code C : f0; 1g`(k) ! f0; 1g2k such that, for every i 2 [`(k)] and j 2 [2k],the ith bit of G(j) equals the jth bit of C(0i�110`(k)�i).Exercise 8.34 (on the bias of sequences over a �nite �eld) For a prime p,let � be a random variable assigned values in GF(p) and �(v) def= Pr[� = v]� (1=p).Prove that maxv2GF(p)fj�(v)jg is upper-bounded by b def= maxc2f1;:::;p�1gfkE[!c�]kg,where ! denotes the pth (complex) root of unity, and thatPv2GF(p) j�(v)j is upper-bounded by pp � b.Guideline: Analogously to Exercise 8.28, view probability distributions over GF(p) asp-ary vectors, and consider two bases for the set of complex functions over GF(p): theKroniker basis (i.e., ki(x) = 1 if x = i and ki(x) = 0) and the (normalize) Fourier basis(i.e., fi(x) = p�1=2 � !ix). Note that the biases of � corresponds to the inner products of� with the non-constant Fourier functions, whereas the distances of � from the uniformdistribution correspond to the inner products of � with the Kroniker functions.Exercise 8.35 (a version of the Expander Random Walk Theorem) Usingnotations as in Theorem 8.28, prove that the probability that a random walk oflength `0 stays in W is at most (� + (�=d)2)`0=2. In fact, prove a more generalclaim that refers to the probability that a random walk of length `0 intersectsW0 �W1 � � � � �W`0�1. The claimed upper-bound isp�0 � `0�1Yi=1 q�i + (�=d)2; (8.19)where �i def= jWij=jV j.Guideline: View the random walk as the evolution of a corresponding probability vectorunder suitable transformations. The transformations correspond to taking a random stepin the graph and to passing through a \sieve" that keeps only the entries that correspondto the current set Wi. The key observation is that the �rst transformation shrinks thecomponent that is orthogonal to the uniform distribution (which is the �rst eigenvalueof the adjacency matrix of the expander), whereas the second transformation shrinks thecomponent that is in the direction of the uniform distribution. For further details, seexE.2.1.3.Exercise 8.36 Using notations as in Theorem 8.28, prove that the probabilitythat a random walk of length `0 visits W more than �`0 times is smaller than� `0�`0� � (� + (�=d)2)�`0=2. For example, for � = 1=2 and �=d < p�, we get anupper-bound of (32�)`0=4. We comment that much better bounds can be obtained(cf. [82]).(Hint: Use a union bound on all possible sequences of m = �`0 visits, and upper-bound theprobability of visitingW in steps j1; :::; jm by applying Eq. (8.19) withWi =W if i 2 fj1; :::; jmgand W = V otherwise.)



Chapter 9Probabilistic Proof SystemsA proof is whatever convinces me.Shimon Even (1935{2004)Various types of probabilistic proof systems have played a central role in the de-velopment of computer science in the last couple of decades. In this chapter, weconcentrate on three such proof systems: interactive proofs, zero-knowledge proofs,and probabilistic checkable proofs. These proof systems share a common (untra-ditional) feature { they carry a probability of error (which is explicitly boundedand can be reduced by successive application of the proof system). The gain inallowing this untraditional relaxation is substantial, as demonstrated by the threeresults mentioned in the summary.Summary: The association of e�cient procedures with deterministicpolynomial-time procedures is the basis for viewing NP-proof systemsas the canonical formulation of proof systems (with e�cient veri�ca-tion procedures). Allowing probabilistic veri�cation procedures and,moreover, ruling by statistical evidence gives rise to various types ofprobabilistic proof systems. These probabilistic proof systems carry anexplicitly bounded probability of error, but they o�er various advan-tages over the traditional (deterministic and errorless) proof systems.Randomized and interactive veri�cation procedures, giving rise to inter-active proof systems, seem much more powerful than their deterministiccounterparts. In particular, such interactive proof systems exist for anyset in PSPACE � coNP (e.g., for the set of unsatis�ed propositionalformulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems (i.e., NP 6= coNP). We stress that a \proof"in this context is not a �xed and static object, but rather a randomized(and dynamic) process in which the veri�er interacts with the prover.Intuitively, one may think of this interaction as consisting of questionsasked by the veri�er, to which the prover has to reply convincingly.327



328 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSSuch randomized and interactive veri�cation procedures allow for themeaningful conceptualization of zero-knowledge proofs, which are ofgreat conceptual and practical interest (especially in cryptography).Loosely speaking, zero-knowledge proofs are interactive proofs thatyield nothing (to the veri�er) beyond the fact that the assertion isindeed valid. For example, a zero-knowledge proof that a certain propo-sitional formula is satis�able does not reveal a satisfying assignment tothe formula nor any partial information regarding such an assignment(e.g., whether the �rst variable can assume the value true). Thus, thesuccessful veri�cation of a zero-knowledge proof exhibit an extreme con-trast between being convinced of the validity of a statement and learninganything in addition (while receiving such a convincing proof). It turnsout that, under reasonable complexity assumptions (i.e., assuming theexistence of one-way functions), every set in NP has a zero-knowledgeproof system.NP-proofs can be e�ciently transformed into a (redundant) form thato�ers a trade-o� between the number of locations (randomly) exam-ined in the resulting proof and the con�dence in its validity. It par-ticular, it is known that any set in NP has an NP-proof system thatsupports probabilistic veri�cation such that the error probability de-creases exponentially with the number of bits read from the allegedproof. These redundant NP-proofs are called probabilistically checkableproofs (or PCPs). In addition to their conceptually fascinating nature,PCPs have played a key role in the study of the complexity of approx-imation problems.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1).Introduction and PreliminariesThe glory attached to the creativity involved in �nding proofs, makes us forget thatit is the less glori�ed process of veri�cation that gives proofs their value. Conceptu-ally speaking, proofs are secondary to the veri�cation process; whereas technicallyspeaking, proof systems are de�ned in terms of their veri�cation procedures.The notion of a veri�cation procedure presumes the notion of computation andfurthermore the notion of e�cient computation. This implicit stipulation is madeexplicit in the de�nition of NP (cf. De�nition 2.5), in which e�cient computationis associated with (deterministic) polynomial-time algorithms.1 Thus, NP providesthe ultimate formulation of proof systems (with e�cient veri�cation procedures)1Recall that the formulation of NP-proof systems explicitly restricts the length of proofs to bepolynomial in the length of the assertion. Thus, veri�cation is performed in a number of stepsthat is polynomial in the length of the assertion. We comment that deterministic proof systemsthat allow for longer proofs (but require that veri�cation is e�cient in terms of the length of thealleged proof) can be modeled as NP-proof systems by adequate padding (of the assertion).



9.1. INTERACTIVE PROOF SYSTEMS 329as long as one associates e�cient procedures with deterministic polynomial-timealgorithms. However, we can gain a lot if we are willing to take a somewhat non-traditional step and allow probabilistic veri�cation procedures. In particular:� Interactive proof systems, which employ randomized and interactive veri�ca-tion procedures, seem much more powerful than their deterministic counter-parts.� Such interactive proof systems allow for the construction of (meaningful)zero-knowledge proofs, which are of great theoretical and practical interest.� NP-proofs can be e�ciently transformed into a (redundant) form that sup-ports super-fast probabilistic veri�cation via very few random probes into thealleged proof.In all these cases, explicit bounds are imposed on the computational complexity ofthe veri�cation procedure, which in turn is personi�ed by the notion of a veri�er.Furthermore, in all these proof systems, the veri�er is allowed to toss coins andrule by statistical evidence. Thus, all these proof systems carry a probability oferror; yet, this probability is explicitly bounded and, furthermore, can be reducedby successive application of the proof system.One important convention. When presenting a proof system, we state allcomplexity bounds in terms of the length of the assertion to be proven (whichis viewed as an input to the veri�er). Namely, when we say \polynomial-time"we mean time that is polynomial in the length of this assertion. Actually, aswill become evident, this is the natural choice in all the cases that we consider.Note that this convention is consistent with the de�nition of NP-proof systems (cf.De�nition 2.5), because poly(j(x; y)j) = poly(jxj) for jyj = poly(jxj).Notational Conventions. Denote by poly the set of all integer functions boundedby a polynomial and by log the set of all integer functions bounded by a logarithmicfunction (i.e., f 2 log i� f(n) = O(log n)). All complexity measures mentioned inthe subsequent exposition are assumed to be constructible in polynomial-time.Organization. In Section 9.1 we present the basic de�nitions and results regard-ing interactive proof systems. The de�nition of an interactive proof systems is thestarting point for a discussion of zero-knowledge proofs, which is provided in Sec-tion 9.2. Section 9.3, which presents the basic de�nitions and results regardingprobabilistically checkable proofs (PCP), can be read independently of the othersections.9.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and distributed computations,it is only natural to associate the notion of e�cient computation with probabilistic



330 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSand interactive polynomial-time computations. This leads naturally to the notionof an interactive proof system in which the veri�cation procedure is interactive andrandomized, rather than being non-interactive and deterministic. Thus, a \proof"in this context is not a �xed and static object, but rather a randomized (dynamic)process in which the veri�er interacts with the prover. Intuitively, one may thinkof this interaction as consisting of questions asked by the veri�er, to which theprover has to reply convincingly. The foregoing discussion, as well as the de�nitionprovided in Section 9.1.1, makes explicit reference to a prover, whereas a prover isonly implicit in the traditional de�nitions of proof systems (e.g., NP-proof systems).Before turning to the actual de�nition, we highlight and further discuss some ofthe foregoing issues.A static object versus an interactive process. Traditionally in mathematics,a \proof" is a �xed sequence consisting of statements that are either self-evident orare derived from previous statements via self-evident rules. Actually, both concep-tually and technically, it is more accurate to substitute the phrase \self-evident"by the phrase \commonly agreed" (because, at the last account, self-evidence is amatter of common agreement). In fact, in the formal study of proofs (i.e., logic),the commonly agreed statements are called axioms, whereas the commonly agreedrules are referred to as derivation rules. We highlight a key property of mathemat-ics proofs: proofs are viewed as �xed (static) objects. In contrast, in other areas ofhuman activity, the notion of a \proof" has a much wider interpretation. In partic-ular, a proof is not a �xed object but rather a process by which the validity of anassertion is established. For example, in the context of Law, the cross-examinationof a witness in court (including its non-verbal components) may be considered aproof (or a refutation) of some claim. Likewise, debates that take place in daily lifehave an analogous potential of establishing claims and are then perceived as proofs.This perception is quite common in philosophical and political debates, and arisealso in scienti�c debates. Furthermore, some technical \proofs by contradiction"appeal to this daily experience by emulating an imaginary debate with a potential(generic) skeptic.We note that, in mathematics, proofs are often considered more fundamentalthan their consequence (i.e., the theorem). In contrast, in many daily situations,proofs are considered secondary (in importance) to their consequence. These con-icting attitudes are well-coupled with the di�erence between written proofs and\interactive" proofs: If one values the proof itself then one may insist on having itarchived, whereas if one only cares about the consequence then the way in whichit is reached is immaterial.Interestingly, the set of daily attitudes will be adequate in the current chapter,where proofs are viewed merely as a vehicle for the veri�cation of the validity ofclaims. (This attitude gets to an extreme in the case of zero-knowledge proofs,where we actually require that the proofs themselves be useless beyond being con-vincing of the validity of the claimed assertion.) In general, we will be interested inmodeling various forms of proofs, focusing on proofs that can be veri�ed by auto-mated procedures. These veri�cation procedures are designed to check the validity



9.1. INTERACTIVE PROOF SYSTEMS 331of potential proofs, and are oblivious of additional features that appeal to humanssuch as beauty, insightfulness, etc. In the current section we will consider the mostgeneral form of proof systems that still allow e�cient veri�cation.We note that the proof systems that we study refer to mundane theorems (e.g.,asserting that a speci�c propositional formula is not satis�able or that a party senta message as instructed by a predetermined protocol). We stress that the (meta)theorems that we shall state regarding these proof systems will be proven in thetraditional mathematical sense.Prover and Veri�er. The notion of a prover is implicit in all discussions ofproofs, be it in mathematics or in other situations: the prover is the (sometimeshidden or transcendental) entity providing the proof. In contrast, the notion of averi�er tends to be more explicit in such discussions, which typically emphasize theveri�cation process, or in other words the role of the veri�er. Both in mathematicsand in daily situations, proofs are de�ned in terms of the veri�cation procedure.The veri�cation procedure is considered to be relatively simple, and the burden isplaced on the party/person supplying the proof (i.e., the prover). The asymmetrybetween the complexity of the veri�cation task and the complexity of the theorem-proving task is captured by the de�nition of NP-proof systems (i.e., veri�cationis required to be e�cient, whereas P 6= NP implies that in some cases �ndingadequate proofs is infeasible).We highlight the \distrustful attitude" towards the prover, which underlies anyproof system. If the veri�er trusts the prover then no proof is needed. Hence,whenever discussing a proof system one considers a setting in which the veri�eris not trusting the prover, and furthermore is skeptic of anything that the proversays. In such a setting the prover's goal is to convince the veri�er, while the veri�ershould make sure it is not fooled by the prover.Completeness and Soundness. Two fundamental properties of a proof system(i.e., of a veri�cation procedure) are its soundness (or validity) and completeness.The soundness property asserts that the veri�cation procedure cannot be \tricked"into accepting false statements. In other words, soundness captures the veri�er'sability to protect itself from being convinced of false statements (no matter whatthe prover does in order to fool it). On the other hand, completeness captures theability of some prover to convince the veri�er of true statements (belonging to somepredetermined set of true statements). Note that both properties are essential tothe very notion of a proof system.We note that not every set of true statements has a \reasonable" proof systemin which each of these statements can be proven (while no false statement can be\proven"). This fundamental phenomenon is given a precise meaning in resultssuch as G�odel's Incompleteness Theorem and Turing's theorem regarding the un-decidability of the Halting Problem. In contrast, recall that NP was de�ned as theclass of sets having proof systems that support e�cient deterministic veri�cation(of \written proofs"). This section is devoted to the study of a more liberal notionof e�cient veri�cation procedures (allowing both randomization and interaction).



332 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.1.1 De�nitionLoosely speaking, an interactive proof is a game between a computationally boundedveri�er and a computationally unbounded prover whose goal is to convince the veri-�er of the validity of some assertion. Speci�cally, the veri�er employs a probabilisticpolynomial-time strategy. It is required that if the assertion holds then the veri�eralways accepts (i.e., when interacting with an appropriate prover strategy). On theother hand, if the assertion is false then the veri�er must reject with probabilityat least 12 , no matter what strategy is being employed by the prover. (The errorprobability can be reduced by running such a proof system several times.)Formally, a strategy for a party describes the party's next move (i.e., its nextmessage or its �nal decision) as a function of the common input (i.e., the afore-mentioned assertion), its internal coin tosses, and all messages it has received sofar. That is, we assume that each party records the outcomes of its past cointosses as well as all the messages it has received, and determines its moves basedon these. Thus, an interaction between two parties, employing strategies A and Brespectively, is determined by the common input, denoted x, and the randomnessof both parties, denoted rA and rB . Assuming that A takes the �rst move (andB takes the last one), the corresponding interaction transcript (on common inputx and randomness rA and rB) is �1; �1; :::; �t; �t, where �i = A(x; rA; �1; :::; �i�1)and �i = B(x; rB ; �1; :::; �i). The corresponding �nal decision of A is de�ned asA(x; rA; �1; :::; �t).We say that a party employs a probabilistic polynomial-time strategy if its nextmove can be computed in a number of steps that is polynomial in the length ofthe common input. In particular, this means that, on input common input x, thestrategy may only consider a polynomial in jxj many messages, which are each ofpoly(jxj) length.2 Intuitively, if the other party exceeds an a priori (polynomial injxj) bound on the total length of the messages that it is allowed to send, then theexecution is suspended. Thus, referring to the aforementioned strategies, we saythat A is a probabilistic polynomial-time strategy if, for every i and rA; �1; :::; �i,the value of A(x; rA; �1; :::; �i) can be computed in time polynomial in jxj. Again,in proper use, it must hold that jrAj; t and the j�ij's are all polynomial in jxj.De�nition 9.1 (Interactive Proof systems { IP):3 An interactive proof system fora set S is a two-party game, between a veri�er executing a probabilistic polynomial-time strategy, denoted V , and a prover that executes a (computationally unbounded)strategy, denoted P , satisfying the following two conditions:� Completeness: For every x 2 S, the veri�er V always accepts after interactingwith the prover P on common input x.2Needless to say, the number of internal coin tosses fed to a polynomial-time strategy mustalso be bounded by a polynomial in the length of x.3We follow the convention of specifying strategies for both the veri�er and the prover. Analternative presentation only speci�es the veri�er's strategy, while rephrasing the completenesscondition as follows: There exists a prover strategy P so that, for every x 2 S, the veri�er Valways accepts after interacting with P on common input x.



9.1. INTERACTIVE PROOF SYSTEMS 333� Soundness: For every x 62 S and every strategy P �, the veri�er V rejects withprobability at least 12 after interacting with P � on common input x.We denote by IP the class of sets having interactive proof systems.The error probability (in the soundness condition) can be reduced by successiveapplications of the proof system. (This is easy to see in the case of sequentialrepetitions, but holds also for parallel repetitions; see Exercise 9.1.) In particular,repeating the proving process for k times, reduces the probability that the veri�eris fooled (i.e., accepts a false assertion) to 2�k, and we can a�ord doing so for anyk = poly(jxj). (Variants on the basic de�nition are discussed in Section 9.1.3.)The role of randomness. Randomness is essential to the power of interactiveproofs; that is, restricting the veri�er to deterministic strategies yields a class ofinteractive proof systems that has no advantage over the class of NP-proof systems.The reason being that, in case the veri�er is deterministic, the prover can predictthe veri�er's part of the interaction. Thus, the prover can just supply its ownsequence of answers to the veri�er's sequence of (predictable) questions, and theveri�er can just check that these answers are convincing. Actually, we establishthat soundness error (and not merely randomized veri�cation) is essential to thepower of interactive proof systems (i.e., their ability to reach beyond NP-proofs).Proposition 9.2 Suppose that S has an interactive proof system (P; V ) with nosoundness error; that is, for every x 62 S and every potential strategy P �, the veri�erV rejects with probability one after interacting with P � on common input x. ThenS 2 NP.Proof: We may assume, without loss of generality, that V is deterministic (byjust �xing arbitrarily the contents of its random-tape (e.g., to the all-zero string)and noting that both (perfect) completeness and perfect (i.e., errorless) soundnessstill hold). Since V is deterministic, the prover can predict each message sent byV (because each such message is uniquely determined by the common input andthe previous prover messages). Thus, a sequence of optimal prover's messages (i.e.,a sequence of messages leading V to accept x) can be (pre)determined (withoutinteracting with V ) based solely on the common input x. (Note that we do notcare about the complexity of determining such a sequence, since no computationalbounds are placed on the prover.) Formally, x 2 S if and only if there exists asequence of (prover's) messages that make (the deterministic) V accept x, wherethe question of whether a speci�c sequence makes V accept x depends only on thesequence and on the common input x (because V tosses no coins that may a�ectthis decision). It follows that S 2 NP .Indeed, the punch-line of the foregoing proof is that the prover gains nothingfrom interacting with an easily predictable veri�er (i.e., a veri�er that determinesits messages in deterministic polynomial-time based on the common input and the



334 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSprover's prior messages).4 The prover can just produce the entire interaction byitself (and send it to the veri�er for veri�cation). The moral is is that there isno point to interact with a party whose moves are easily predictable. This moralrepresents the prover's point of view (regarding deterministic veri�ers). Certainly,from the veri�er's point of view it is bene�cial to interact with the prover, becausethe latter is computationally stronger (and thus its moves may not be easily pre-dictable by the veri�er even in case they are predictable in an information theoreticsense).9.1.2 The Power of Interactive ProofsWe have seen that randomness is essential to the power of interactive proof systemsin the sense that without randomness interactive proofs are not more powerful thanNP-proofs. Indeed, the power of interactive proof arises from the combination ofrandomization and interaction. We �rst demonstrate this point by a simple proofsystem for a speci�c coNP-set that is not known to have an NP-proof system, andnext prove the celebrated result IP = PSPACE , which suggests that interactiveproofs are much stronger than NP-proofs.9.1.2.1 A simple exampleOne day on the Olympus, bright-eyed Athena claimed that Nectarpoured out of the new silver-coated jars tastes less good than Nec-tar poured out of the older gold-decorated jars. Mighty Zeus, who wasforced to introduce the new jars by the practically oriented Hera, wasannoyed at the claim. He ordered that Athena be served one hundredglasses of Nectar, each poured at random either from an old jar or froma new one, and that she tell the source of the drink in each glass. Toeverybody's surprise, wise Athena correctly identi�ed the source of eachserving, to which the Father of the Gods responded \my child, you areeither right or extremely lucky." Since all gods knew that being luckywas not one of the attributes of Pallas-Athena, they all concluded thatthe impeccable goddess was right in her claim.The foregoing story illustrates the main idea underlying the interactive proof forGraph Non-Isomorphism, presented in Construction 9.3. Informally, this interac-tive proof system is designed for proving dissimilarity of two given objects (in theforegoing story these are the two brands of Nectar, whereas in Construction 9.3these are two non-isomorphic graphs). We note that, typically, proving similaritybetween objects is easy, because one can present a mapping (of one object to theother) that demonstrates this similarity. In contrast, proving dissimilarity seemsharder, because in general there seems to be no succinct proof of dissimilarity. Moregenerally, it is typically easy to prove the existence of an easily veri�able structure in4Note that knowledge of the veri�er's messages may be essential for answering these questionsconvincingly. In the case that V is deterministic its messages can be determined by the prover,but this may not be possible in the general case (i.e., when V is randomized).



9.1. INTERACTIVE PROOF SYSTEMS 335the given object by merely presenting this structure, but proving the non-existenceof such a structure seems hard. Formally, membership in an NP-set is proved bypresenting an NP-witness, but it is not clear how to prove the non-existence of suchwitness. Indeed, recall that the common belief is that coNP 6= NP .Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there existsa 1-1 and onto mapping, �, from the vertex set V1 to the vertex set V2 such thatfu; vg 2 E1 if and only if f�(v); �(u)g 2 E2. This (\edge preserving") mapping�, in case it exists, is called an isomorphism between the graphs. The followingprotocol speci�es a way of proving that two graphs are not isomorphic, while it isnot known whether such a statement can be proven via a non-interactive process(i.e., via an NP-proof system).Construction 9.3 (Interactive proof for Graph Non-Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).� Veri�er's �rst step (V1): The veri�er selects at random one of the two inputgraphs, and sends to the prover a random isomorphic copy of this graph.Namely, the veri�er selects uniformly � 2 f1; 2g, and a random permutation� from the set of permutations over the vertex set V�. The veri�er constructsa graph with vertex set V� and edge setE def= ff�(u); �(v)g : fu; vg2E�gand sends (V� ; E) to the prover.� Motivating Remark: If the input graphs are non-isomorphic, as the proverclaims, then the prover should be able to distinguish (not necessarily by ane�cient algorithm) isomorphic copies of one graph from isomorphic copies ofthe other graph. However, if the input graphs are isomorphic, then a randomisomorphic copy of one graph is distributed identically to a random isomorphiccopy of the other graph.� Prover's step: Upon receiving a graph, G0 = (V 0; E0), from the veri�er, theprover �nds a � 2 f1; 2g such that the graph G0 is isomorphic to the inputgraph G� . (If both �=1; 2 satisfy the condition then � is selected arbitrarily.In case no � 2 f1; 2g satis�es the condition, � is set to 0). The prover sends� to the veri�er.� Veri�er's second step (V2): If the message, � , received from the prover equals� (chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the commoninput). Otherwise the veri�er outputs 0 (i.e., rejects the common input).The veri�er's strategy in Construction 9.3 is easily implemented in probabilisticpolynomial-time. We do not known of a probabilistic polynomial-time implemen-tation of the prover's strategy, but this is not required. The motivating remarkjusti�es the claim that Construction 9.3 constitutes an interactive proof system for



336 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe set of pairs of non-isomorphic graphs.5 Recall that the latter is a coNP-set(which is not known to be in NP).9.1.2.2 The full power of interactive proofsThe interactive proof system of Construction 9.3 refers to a speci�c coNP-set thatis not known to be in NP . It turns out that interactive proof systems are powerfulenough to prove membership in any coNP-set (e.g., prove that a graph is not 3-colorable). Thus, assuming that NP 6= coNP, this establishes that interactiveproof systems are more powerful than NP-proof systems. Furthermore, the classof sets having interactive proof systems coincides with the class of sets that can bedecided using a polynomial amount of work-space.Theorem 9.4 (The IP Theorem): IP = PSPACE.Recall that it is widely believed that NP is a proper subset of PSPACE . Thus,under this conjecture, interactive proofs are more powerful than NP-proofs.Sketch of the Proof of Theorem 9.4Theorem 9.4, was established using algebraic methods (see details below). In partic-ular, the following approach { unprecedented in complexity theory { was employed:In order to demonstrate that a particular set is in a particular class, an arithmeticgeneralization of the Boolean problem is presented, and (elementary) algebraicmethods are applied for showing that the arithmetic problem is solvable withinthe class. Following is a sketch of the proof. We �rst show that coNP � IP , bypresenting an interactive proof system for the coNP-complete set of non-satis�ableCNF formulae. Next we extend this proof system to obtain one for the PSPACE-complete set of non-satis�able Quanti�ed Boolean Formulae. Finally, we observethat IP � PSPACE .Teaching note: Our presentation focuses on the main ideas, and neglects variousimplementation details (which can be found in [151, 192]). Furthermore, we devotemost of the presentation to establishing that coNP � IP, and recommend doing thesame in class.Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-mula, we replace the Boolean variables by integer variables, and replace the logicaloperations by corresponding arithmetic operations. In particular, or-clauses arereplaced by sums, and the top level conjunction is replaced by a product. Then,we consider the formal summation of the resulting arithmetic expression, where5In case G1 is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e.,both to G1 and to G2). In this case the graph G0 sent in Step (V1) uniquely determines the bit�. On the other hand, if G1 and G2 are isomorphic then, for every G0 sent in Step (V1), thenumber of isomorphisms between G1 and G0 equals the number of isomorphisms between G2 andG0. It follows that, in this case G0, yields no information about � (chosen by the veri�er), and sono prover may convince the veri�er with probability exceeding 1=2.



9.1. INTERACTIVE PROOF SYSTEMS 337summation is taken over all 0-1 assignments to its variables. For example, theBoolean formula (x3 _ :x5 _ x17) ^ (x5 _ x9) ^ (:x3 _ :x4)is replaces by the arithmetic expression(x3 + (1� x5) + x17) � (x5 + x9) � ((1� x3) + (1� x4))and the Boolean formula is non-satis�able if and only if the sum of the arithmeticexpression, taken over all choices of x1; x2; :::; x17 2 f0; 1g, equals 0. Thus, provingthat the original Boolean formula is non-satis�able reduces to proving that thecorresponding arithmetic summation evaluates to 0. We highlight two additionalobservations regarding the resulting arithmetic expression:1. The arithmetic expression is a low degree polynomial over the integers; specif-ically, its (total) degree equals the number of clauses in the original Booleanformula.2. For any Boolean formula, the value of the corresponding arithmetic expression(for any choice of x1; :::; xn 2 f0; 1g) resides within the interval [0; vm], wherev is the maximum number of variables in a clause, and m is the number ofclauses. Thus, summing over all 2n possible 0-1 assignments, where n � vmis the number of variables, the result resides in [0; 2nvm].Moving to a Finite Field: Whenever we need to check equality between twointegers in [0;M ], it su�ces to check their equality mod q, where q > M . Thebene�t is that the arithmetic is now in a �nite �eld (mod q), and so certain thingsare \nicer" (e.g., uniformly selecting a value). Thus, proving that a CNF formulais not satis�able reduces to proving an equality of the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 (mod q); (9.1)where � is a low degree multi-variate polynomial. In the rest of this exposition, allarithmetic operations refer to the �nite �eld of q elements, denoted GF(q).Overview of the actual protocol: stripping summations in iterations.Given a formal expression as in Eq. (9.1), we strip o� summations in iterations,stripping a single summation at each iteration, and instantiate the correspondingfree variable as follows. At the beginning of each iteration the prover is supposedto supply the univariate polynomial representing the residual expression as a func-tion of the (single) currently stripped variable. (By Observation 1, this is a lowdegree polynomial and so it has a short description.)6 The veri�er checks that the6We also use Observation 2, which implies that we may use a �nite �eld with elements havinga description length that is polynomial in the length of the original Boolean formula (i.e., log2 q =O(vm)).



338 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSpolynomial (say, p) is of low degree, and that it corresponds to the current value(say, v) being claimed (i.e., it veri�es that p(0) + p(1) � v). Next, the veri�er ran-domly instantiates the currently free variable (i.e., it selects uniformly r 2 GF(q)),yielding a new value to be claimed for the resulting expression (i.e., the veri�ercomputes v  p(r), and expects a proof that the residual expression equals v).The veri�er sends the uniformly chosen instantiation (i.e., r) to the prover, and theparties proceed to the next iteration (which refers to the residual expression andto the new value v). At the end of the last iteration, the veri�er has a closed formexpression (i.e., an expression without formal summations), which can be easilychecked against the claimed value.A single iteration (detailed): The ith iteration is aimed at proving a claim ofthe form Xxi=0;1 � � � Xxn=0;1�(r1; :::; ri�1; xi; xi+1; :::; xn) � vi�1 (mod q); (9.2)where v0 = 0, and r1; :::; ri�1 and vi�1 are as determined in previous iterations.The ith iteration consists of two steps (messages): a prover step followed by averi�er step. The prover is supposed to provide the veri�er with the univariatepolynomial pi that satis�espi(z) def= Xxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; z; xi+1; :::; xn) mod q : (9.3)Denote by p0i the actual polynomial sent by the prover (i.e., the honest prover setsp0i = pi). Then, the veri�er �rst checks if p0i(0) + p0i(1) � vi�1 (mod q), and nextuniformly selects ri 2 GF(q) and sends it to the prover. Needless to say, the veri�erwill reject if the �rst check is violated. The claim to be proven in the next iterationis Xxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; ri; xi+1; :::; xn) � vi (mod q); (9.4)where vi def= p0i(ri) mod q.Completeness of the protocol: When the initial claim (i.e., Eq. (9.1)) holds,the prover can supply the correct polynomials (as determined in Eq. (9.3)), andthis will lead the veri�er to always accept.Soundness of the protocol: It su�ces to upper-bound the probability that, fora particular iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim(i.e., Eq. (9.4)) is valid. Both claims refer to the current summation expressionbeing equal to the current value, where `current' means either at the beginningof the iteration or at its end. Let p(�) be the actual polynomial representing theexpression when stripping the current variable, and let p0(�) be any potential answerby the prover. We may assume that p0(0) + p0(1) � v (mod q) and that p0 is of



9.1. INTERACTIVE PROOF SYSTEMS 339low-degree (as otherwise the veri�er will reject). Using our hypothesis (that theentry claim of Eq. (9.2) is false), we know that p(0) + p(1) 6� v (mod q). Thus,p0 and p are di�erent low-degree polynomials, and so they may agree on very fewpoints (if at all). In case the veri�er instantiation (i.e., its choice of random r) doesnot happen to be one of these few points, the ending claim (i.e., Eq. (9.4)) is falsetoo (because p(r) 6� p0(r) (mod q), whereas the new value is set to p0(r) mod qand the residual expression evaluates to p(r)). Details are left as an exercise (seeExercise 9.2).This establishes that the set of non-satis�able CNF formulae has an interactiveproof system. Actually, a similar proof system (which uses a related arithmeti-zation { see Exercise 9.4) can be used to prove that a given formula has a givennumber of satisfying assignment; i.e., prove membership in the (\counting") setf(�; k) : jf� : �(�) = 1gj = kg : (9.5)Using adequate reductions, it follows that every problem in #P has an interactiveproof system (i.e., for every R 2 PC, the set f(x; k) : jfy : (x; y)2Rgj = kg is inIP). Proving that PSPACE � IP requires a little more work.Interactive Proofs for PSPACE (basic idea). We present an interactiveproof for the set of satis�ed Quanti�ed Boolean Formulae (QBF), which is completefor PSPACE (see Theorem 5.15).7 Recall that the number of quanti�ers in suchformulae is unbounded (e.g., it may be polynomially related to the length of theinput), that there are both existential and universal quanti�ers, and furthermorethese quanti�ers may alternate. In the arithmetization of these formulae, we replaceexistential quanti�ers by summations and universal quanti�ers by products. Twodi�culties arise when considering the application of the forgoing protocol to theresulting arithmetic expression. Firstly, the value of the expression (which mayinvolve a big number of nested formal products) is only upper-bounded by a doubleexponential function (in the length of the input). Secondly, when stripping asummation (or a product), the expression may be a polynomial of high degree(due to nested formal products that may appear in the remaining expression). Forexample, both phenomena occur in the following expressionXx=0;1 Yy1=0;1 � � � Yyn=0;1 (x+ yn) ;which equals Px=0;1 x2n�1 � (1 + x)2n�1 . The �rst di�culty is easy to resolve byusing the fact (to be established in Exercise 9.6) that if two integers in [0;M ] aredi�erent then they must be di�erent modulo most of the primes in the interval[3; poly(logM)]. Thus, we let the veri�er selects a random prime q of length thatis linear in the length of the original formula, and the two parties consider thearithmetic expression reduced modulo this q. The second di�culty is resolved7Actually, the following extension of the foregoing proof system yields a proof system for the setof unsatis�ed Quanti�ed Boolean Formulae (which is also complete for PSPACE). Alternatively,one may extend the related proof system presented in Exercise 9.4.



340 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSby noting that PSPACE is actually reducible to a special form of QBF in whichno variable appears both to the left and to the right of more than one universalquanti�er (see the proof of Theorem 5.15 or alternatively Exercise 9.5). It followsthat when arithmetizing and stripping summations (or products) from the resultingarithmetic expression, the corresponding univariate polynomial is of low degree(i.e., at most twice the length of the original formula, where the factor of two isdue to the single universal quanti�er that has this variable quanti�ed on its leftand appearing on its right).IP is contained in PSPACE: We shall show that, for every interactive proofsystem, there exists an optimal prover strategy that can be implemented in polynomial-space, where an optimal prover strategy is one that maximizes the probability thatthe prescribed veri�er accepts the common input. It follows that IP � PSPACE,because (for every S 2 IP) we can emulate the interaction of the prescribed veri�erwith an optimal prover strategy in polynomial space.Proposition 9.5 Let V be a probabilistic polynomial-time interactive machine.Then, there exists a polynomial-space computable prover strategy f that, for everyx maximizes the probability that V accepts x. That is, for every P � and every x itholds that the probability that V accepts x after interacting with P � is upper-boundedby the probability that V accepts x after interacting with f .Proof Sketch: For every common input x and any possible partial transcript of the interaction so far, the strategy8 f determines an optimal next message forthe prover by considering all possible coin tosses of the veri�er that are consistentwith (x; ). Speci�cally, f is determined recursively such that f(x; ) = m if mmaximizes the number of veri�er coins that are consistent with (x; ) and lead theveri�er to accept when subsequent prover moves are determined by f (which iswhere recursion is used). That is, coins r support the setting f(x; ) = m, where = (�1; �1; :::; �t; �t), if the following two conditions hold:1. r is consistent with (x; ), which means that for every i 2 f1; :::; tg it holdsthat �i = V (x; r; �1; :::; �i).2. r leads V to accept (when subsequent prover moves are determined by f),which means that V (x; r; �1; :::; �t;m; �t+2; :::; �T ) = 1, where for every i 2ft + 1; :::; T � 1g it holds that �i+1 = f(x; ;m; �t+1; :::; �i; �i) and �i =V (x; r; �1; :::; �t;m; �t+2; :::; �i).That is, f(x; ) = m if m maximizes the value of E[f(x; ;m; V (x;R ;m))], whereR is selected uniformly among the r's that are consistent with (x; ). Thus, thevalue f(x; ) can be computed in polynomial-space when given oracle access tof(x; ; �; �), and the proposition follows by standard composition of space-boundedcomputations.8For sake of convenience, when describing the strategy f , we refer to the entire partial tran-script of the interaction with V (rather than merely to the sequence of previous messages sent byV ).



9.1. INTERACTIVE PROOF SYSTEMS 3419.1.3 Variants and �ner structure: an overviewIn this subsection we consider several variants on the basic de�nition of interactiveproofs as well as �ner complexity measures. This is an advanced subsection, whichonly provides an overview of the various notions and results (as well as pointers toproofs of the latter).9.1.3.1 Arthur-Merlin games a.k.a public-coin proof systemsThe veri�er's messages in a general interactive proof system are determined arbi-trarily (but e�ciently) based on the veri�er's view of the interaction so far (whichincludes its internal coin tosses, which without loss of generality can take placeat the onset of the interaction). Thus, the veri�er's past coin tosses are not nec-essarily revealed by the messages that it sends. In contrast, in public-coin proofsystems (a.k.a Arthur-Merlin proof systems), the veri�er's messages contain theoutcome of any coin that it tosses at the current round. Thus, these messages re-veal the randomness used towards generating them (i.e., this randomness becomespublic). Actually, without loss of generality, the veri�er's messages can be identicalto the outcome of the coins tossed at the current round (because any other stringthat the veri�er may compute based on these coin tosses is actually determined bythem). Note that the proof systems presented in the proof of Theorem 9.4 are ofthe public-coin type, whereas this is not the case for the Graph Non-Isomorphismproof system (of Construction 9.3). Thus, although not all natural proof systemsare of the public-coin type, every set having an interactive proof system also has apublic-coin interactive proof system. This means that, in the context of interactiveproof systems, asking random questions is as powerful as asking clever questions.Indeed, public-coin proof systems are a syntactically restricted type of inter-active proof systems. This restriction may make the design of such systems morecomplex, but potentially facilitates their analysis (and especially the analysis of ageneric system). Another advantage of public-coin proof systems is that the veri-�er's actions (except for its �nal decision) are oblivious of the prover's messages.This property is used in the proof of Theorem 9.12.9.1.3.2 Interactive proof systems with two-sided errorIn De�nition 9.1 error probability is allowed in the soundness condition but notin the completeness condition. In such a case, we say that the proof system hasperfect completeness (or one-sided error probability). A more general de�nitionallows an error probability (upper-bounded by, say, 1=3) in both the completenessand soundness conditions. Note that sets having such generalized (two-sided error)interactive proofs are also in PSPACE , and thus allowing two-sided error doesnot increase the power of interactive proofs. See further discussion at the end ofx9.1.3.3.



342 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.1.3.3 A hierarchy of interactive proof systemsDe�nition 9.1 only refers to the total computation time of the veri�er, and thusallows an arbitrary (polynomial) number of messages to be exchanged. A �nerde�nition refers to the number of messages being exchanged (also called the numberof rounds).9De�nition 9.6 (The round-complexity of interactive proof):� For an integer function m, the complexity class IP(m) consists of sets havingan interactive proof system in which, on common input x, at most m(jxj)messages are exchanged between the parties.10� For a set of integer functions, M , we let IP(M) def= Sm2M IP(m). Thus,IP = IP(poly).For example, interactive proof systems in which the veri�er sends a single messagethat is answered by a single message of the prover corresponds to IP(2). Clearly,NP � IP(1), yet the inclusion may be strict because in IP(1) the veri�er may tosscoins after receiving the prover's single message. (Also note that IP(0) = coRP .)Concerning the �ner structure of the IP-hierarchy, the following is known:� A linear speed-up (see Appendix F.2 (or [20] and [107])): For every integerfunction, f , such that f(n) � 2 for all n, the class IP(O(f(�))) collapses tothe class IP(f(�)). In particular, IP(O(1)) collapses to IP(2).� The class IP(2) contains sets not known to be in NP; e.g., Graph Non-Isomorphism (see Construction 9.3). However, under plausible intractabilityassumptions, IP(2) = NP (see [156]).� If coNP � IP(2) then the Polynomial-Time Hierarchy collapses (see [42]).It is conjectured that coNP is not contained in IP(2), and consequently thatinteractive proofs with an unbounded number of message exchanges are more pow-erful than interactive proofs in which only a bounded (i.e., constant) number ofmessages are exchanged.11 The class IP(1) (also denoted MA) seems to be the\real" randomized (and yet non-interactive) version of NP : Here the prover sup-plies a candidate (polynomial-size) \proof", and the veri�er assesses its validityprobabilistically (rather than deterministically).The IP-hierarchy (i.e., IP(�)) equals an analogous hierarchy, denoted AM(�),that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, forevery integer function f , it holds that AM(f) = IP(f). For f � 2, it is also thecase that AM(f) = AM(O(f)); actually, the aforementioned linear speed-up forIP(�) is established by combining the following two results:9An even �ner structure emerges when considering also the total length of the messages sentby the prover (see [102]).10We count the total number of messages exchanged regardless of the direction ofcommunication.11Note that the linear speed-up cannot be applied for an unbounded number of times, becauseeach application may increase (e.g., square) the time-complexity of veri�cation.



9.1. INTERACTIVE PROOF SYSTEMS 3431. Emulating IP(�) by AM(�) (see xF.2.1 or [107]): IP(f) � AM(f + 3).2. Linear speed-up for AM(�) (see xF.2.2 or [20]): AM(2f) � AM(f).In particular, IP(O(1)) = AM(2), even ifAM(2) is restricted such that the veri�ertosses no coins after receiving the prover's message. (Note that IP(1) = AM(1)and IP(0) = AM(0) are trivial.) We comment that it is common to denoteAM(2)by AM, which is indeed inconsistent with the convention of using IP to denoteIP(poly).The fact that IP(O(f)) = IP(f) is proved by establishing an analogous resultfor AM(�) demonstrates the advantage of the public-coin setting for the studyof interactive proofs. A similar phenomenon occurs when establishing that theIP-hierarchy equals an analogous two-sided error hierarchy (see Exercise 9.7).9.1.3.4 Something completely di�erentWe stress that although we have relaxed the requirements from the veri�cationprocedure (by allowing it to interact with the prover, toss coins, and risk some(bounded) error probability), we did not restrict the validity of its assertions byassumptions concerning the potential prover. This should be contrasted with othernotions of proof systems, such as computationally-sound ones (see x9.1.4.2), inwhich the validity of the veri�er's assertions depends on assumptions concerningthe potential prover(s).9.1.4 On computationally bounded provers: an overviewRecall that our de�nition of interactive proofs (i.e., De�nition 9.1) makes no ref-erence to the computational abilities of the potential prover. This fact has twoconicting consequences:1. The completeness condition does not provide any upper bound on the com-plexity of the corresponding proving strategy (which convinces the veri�er toaccept valid assertions).2. The soundness condition guarantees that, regardless of the computationale�ort spend by a cheating prover, the veri�er cannot be fooled to acceptinvalid assertions (with probability exceeding the soundness error).Note that providing an upper-bound on the complexity of the (prescribed) proverstrategy P of a speci�c interactive proof system (P; V ) only strengthens the claimthat (P; V ) is a proof system for the corresponding set (of valid assertions). Westress that the prescribed prover strategy is referred to only in the completenesscondition (and is irrelevant to the soundness condition). On the other hand, relax-ing the de�nition of interactive proofs such that soundness holds only for a speci�cclass of cheating prover strategies (rather than for all cheating prover strategies)weakens the corresponding claim. In this advanced section we consider both pos-sibilities.



344 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSTeaching note: Indeed, this is an advanced subsection, which is best left for indepen-dent reading. It merely provides an overview of the various notions, and the reader isdirected to the chapter's notes for further detail (i.e., pointers to the relevant literature).9.1.4.1 How powerful should the prover be?Assume that a set S is in IP . This means that there is a veri�er V that canbe convinced to accept any input in S but cannot be fooled to accept any inputnot in S (except with small probability). One may ask how powerful should aprover be such that it can convince the veri�er V to accept any input in S. Notethat Proposition 9.5 asserts that an optimal prover strategy can be implemented inpolynomial-space (and that we cannot expect better for a generic set in PSPACE =IP), but we will seek better upper-bounds on the complexity of the prover thatconvinces a speci�c veri�er (which in turn corresponds to a speci�c set S). Moreinterestingly, considering all possible veri�ers that give rise to interactive proofsystems for S, we ask what is the minimum power required from a prover thatsatis�es the completeness requirement with respect to one of these veri�ers?We stress that, unlike the case of computationally-sound proof systems (seex9.1.4.2), we do not restrict the power of the prover in the soundness condition,but rather consider the minimum complexity of provers meeting the completenesscondition. Speci�cally, we are interested in relatively e�cient provers that meetthe completeness condition. The term \relatively e�cient prover" has been giventhree di�erent interpretations, which are briey surveyed next.1. A prover is considered relatively e�cient if, when given an auxiliary input (inaddition to the common input in S), it works in (probabilistic) polynomial-time. Speci�cally, in case S 2 NP , the auxiliary input maybe an NP-proofthat the common input is in the set. Still, even in this case the interac-tive proof need not consist of the prover sending the auxiliary input to theveri�er; for example, an alternative procedure may allow the prover to bezero-knowledge (see Construction 9.10).This interpretation is adequate and in fact crucial for applications in whichsuch an auxiliary input is available to the otherwise polynomial-time parties.Typically, such auxiliary input is available in cryptographic applications inwhich parties wish to prove in (zero-knowledge) that they have correctly con-ducted some computation. In these cases the NP-proof is just the transcriptof the computation by which the claimed result has been generated, and thusthe auxiliary input is available to the proving party.2. A prover is considered relatively e�cient if it can be implemented by a prob-abilistic polynomial-time oracle machine with oracle access to the set S itself.(Note that the prover in Construction 9.3 has this property.)This interpretation generalizes the notion of self-reducibility of NP-sets. (Re-call that by self-reducibility of an NP-set we mean that the search problem of�nding an NP-witness is polynomial-time reducible to deciding membershipin the set (cf. De�nition 2.13).)



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 3453. A prover is considered relatively e�cient if it can be implemented by a prob-abilistic machine that runs in time that is polynomial in the deterministiccomplexity of the set. This interpretation relates the di�culty of convincinga \lazy veri�er" to the complexity of �nding the truth alone.Hence, in contrast to the �rst interpretation, which is adequate in settingswhere assertions are generated along with their NP-proofs, the current in-terpretation is adequate in settings in which the prover is given only theassertion and has to �nd a proof to it by itself (before trying to convince alazy veri�er of its validity).9.1.4.2 Computational-soundnessRelaxing the soundness condition such that it only refers to relatively-e�cient waysof trying to fool the veri�er (rather than to all possible ways) yields a fundamen-tally di�erent notion of a proof system. Assertions proven in such a system are notnecessarily correct; they are correct only if the potential cheating prover does notexceed the presumed complexity limits. As in x9.1.4.1, the notion of \relative e�-ciency" can be given di�erent interpretations, the most popular one being that thecheating prover strategy can be described by a (non-uniform) family of polynomial-size circuits. The latter interpretation coincides with the �rst interpretation usedin x9.1.4.1 (i.e., a probabilistic polynomial-time strategy that is given an auxiliaryinput (of polynomial length)). Speci�cally, the soundness condition is replaced bythe following computational soundness condition that asserts that it is infeasible tofool the veri�er into accepting false statements. Formally:For every prover strategy that is implementable by a family of polynomial-size circuits fCng, and every su�ciently long x 2 f0; 1g� nS, the prob-ability that V accepts x when interacting with Cjxj is less than 1=2.As in case of standard soundness, the computational-soundness error can be re-duced by repetitions. We warn, however, that unlike in the case of standard sound-ness (where both sequential and parallel repetitions will do), the computational-soundness error cannot always be reduced by parallel repetitions.It is common and natural to consider proof systems in which the prover strate-gies considered both in the completeness and soundness conditions satisfy the samenotion of relative e�ciency. Protocols that satisfy these conditions with respectto the foregoing interpretation are called arguments. We mention that argumentsystems may be more e�cient (e.g., in terms of their communication complexity)than interactive proof systems.9.2 Zero-Knowledge Proof SystemsZero-Knowledge proofs are fascinating and extremely useful constructs. Their fas-cinating nature is due to their seemingly contradictory de�nition: zero-knowledge



346 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSproofs are both convincing and yet yield nothing beyond the validity of the asser-tion being proven. Their applicability in the domain of cryptography is vast; theyare typically used to force malicious parties to behave according to a predeterminedprotocol. In addition to their direct applicability in Cryptography, zero-knowledgeproofs serve as a good bench-mark for the study of various problems regardingcryptographic protocols. In this section we focus on the conceptual contents ofzero-knowledge, and relegate their cryptographic applications to Appendix C.
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Figure 9.1: Zero-knowledge proofs { an illustration.Turning back to the conceptual angle, we highlight the fact that standard proofsare believed to yield knowledge and not merely establish the validity of the assertionbeing proven. Indeed, it is commonly believed that (good) proofs provide a deeperunderstanding of the theorem being proved. At the technical level, an NP-proof ofmembership in some set S 2 NP n P yields something (i.e., the NP-proof itself)that is typically hard to compute (even when assuming that the input is in S).For example, a 3-coloring of a graph is an NP-proof that the graph is 3-colorable,but it yields information (i.e., the coloring) that is infeasible to compute (whengiven an arbitrary 3-colorable graph). In contrast to such NP-proofs, which seemto yield a lot of knowledge, zero-knowledge proofs yield no knowledge at all; thatis, the latter exhibit an extreme contrast between being convincing (of the validityof a statement) and teaching anything on top of the validity of the statement.Teaching note: We believe that the treatment of zero-knowledge proofs provided inthis section su�ces for the purpose of a course in complexity theory. For an extensivetreatment of zero-knowledge proofs, the interested reader is referred to [87, Chap. 4].9.2.1 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond thevalidity of the assertion; that is, a veri�er obtaining such a proof only gains convic-tion in the validity of the assertion. This is formulated by saying that anything thatcan be feasibly obtained from a zero-knowledge proof is also feasibly computable



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 347from the (valid) assertion itself. The latter formulation follows the simulationparadigm, which is discussed next.9.2.1.1 A wider perspective: the simulation paradigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversarythat tries to gain knowledge from the (prescribed) prover.12 We wish to state thatno (feasible) adversary strategy for the veri�er can gain anything from the prover(beyond conviction in the validity of the assertion). Let us consider the desiredformulation from a wide perspective.A key question regarding the modeling of security concerns is how to express theintuitive requirement that an adversary \gains nothing substantial" by deviatingfrom the prescribed behavior of an honest user. Our approach is that the adversarygains nothing if whatever it can obtain by unrestricted adversarial behavior canbe obtained within essentially the same computational e�ort by a benign behavior.The de�nition of the \benign behavior" captures what we want to achieve in termsof security, and is speci�c to the security concern to be addressed. For example,in the context of zero-knowledge, a benign behavior is any computation that isbased (only) on the assertion itself (while assuming that the latter is valid). Thus,a zero-knowledge proof is an interactive proof in which no feasible adversarial ver-i�er strategy can obtain from the interaction more than a \benign veri�er" (whichbelieves the assertion) can obtain from the assertion itself. We comment that thesimulation paradigm is pivotal to many de�nitions in cryptography (e.g., it under-lies the de�nition of security of encryption schemes and cryptographic protocols);for further details see Appendix C.9.2.1.2 The basic de�nitionsZero-knowledge is a property of some prover strategies. More generally, zero-knowledge is a property of some interactive machines. Fixing an interactive ma-chine (e.g., a prescribed prover), we consider what can be gained (i.e., computed)by an arbitrary feasible adversary (e.g., a veri�er) that interacts with the afore-mentioned �xed machine on a common input taken from a predetermined set (inour case the set of valid assertions). This gain is compared against what can becomputed by an arbitrary feasible algorithm (called a simulator) that is only giventhe input itself. The �xed machine is zero-knowledge if the \computational power"of these two (fundamentally di�erent settings) is essentially equivalent. Detailsfollow.The formulation of the zero-knowledge condition refers to two types of probabil-ity ensembles, where each ensemble associates a single probability distribution toeach relevant input (e.g., a valid assertion). Speci�cally, in the case of interactiveproofs, the �rst ensemble represents the output distribution of the veri�er afterinteracting with the speci�ed prover strategy P (on some common input), where12Recall that when de�ning a proof system (e.g., an interactive proof system), we view theprover as a potential adversary that tries to fool the (prescribed) veri�er (into accepting invalidassertions).



348 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe veri�er is employing an arbitrary e�cient strategy (not necessarily the speci�edone). The second ensemble represents the output distribution of some probabilisticpolynomial-time algorithm (which is only given the corresponding input but doesnot interact with anyone). The basic paradigm of zero-knowledge asserts that forevery ensemble of the �rst type there exist a \similar" ensemble of the second type.The speci�c variants di�er by the interpretation given to the notion of similarity.The most strict interpretation, leading to perfect zero-knowledge, is that similaritymeans equality.De�nition 9.7 (perfect zero-knowledge, over-simpli�ed):13 A prover strategy, P ,is said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �, there exists a probabilistic polynomial-time algorithm,M�, such that (P; V �)(x) �M�(x) ; for every x 2 Swhere (P; V �)(x) is a random variable representing the output of veri�er V � afterinteracting with the prover P on common input x, and M�(x) is a random variablerepresenting the output of machine M� on input x.We comment that any set in coRP has a perfect zero-knowledge proof system inwhich the prover keeps silence and the veri�er decides by itself. The same holdsfor BPP provided that we relax the de�nition of interactive proof system to allowtwo-sided error. Needless to say, our focus is on non-trivial proof systems; that is,proof systems for sets outside of BPP.A somewhat more relaxed interpretation (of the notion of similarity), leadingto almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-ity means statistical closeness (i.e., negligible di�erence between the ensembles).The most liberal interpretation, leading to the standard usage of the term zero-knowledge (and sometimes referred to as computational zero-knowledge), is thatsimilarity means computational indistinguishability (i.e., failure of any e�cient pro-cedure to tell the two ensembles apart). Combining the foregoing discussion withthe relevant de�nition of computational indistinguishability (i.e., De�nition C.5),we obtain the following de�nition.De�nition 9.8 (zero-knowledge, somewhat simpli�ed): A prover strategy, P , issaid to be zero-knowledge over a set S if for every probabilistic polynomial-timeveri�er strategy, V �, there exists a probabilistic polynomial-time simulator, M�,such that for every probabilistic polynomial-time distinguisher, D, it holds thatd(n) def= maxx2S\f0;1gnfjPr[D(x; (P; V �)(x))=1] � Pr[D(x;M�(x))=1]jg13In the actual de�nition one relaxes the requirement in one of the following two ways. The�rst alternative is allowing M� to run for expected (rather than strict) polynomial-time. Thesecond alternative consists of allowing M� to have no output with probability at most 1=2 andconsidering the value of its output conditioned on it having output at all. The latter alternativeimplies the former, but the converse is not known to hold.



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 349is a negligible function.14 We denote by ZK the class of sets having zero-knowledgeinteractive proof systems.De�nition 9.8 is a simpli�ed version of the actual de�nition, which is presented inAppendix C.4.2. Speci�cally, in order to guarantee that zero-knowledge is preservedunder sequential composition it is necessary to slightly augment the de�nition (byproviding V � and M� with the same value of an arbitrary (poly(jxj)-bit long)auxiliary input). Other de�nitional issues and related notions are briey discussedin Appendix C.4.4.On the role of randomness and interaction. It can be shown that onlysets in BPP have zero-knowledge proofs in which the veri�er is deterministic (seeExercise 9.9). The same holds for deterministic provers, provided that we consider\auxiliary-input" zero-knowledge (as in De�nition C.9). It can also be shown thatonly sets in BPP have zero-knowledge proofs in which a single message is sent (seeExercise 9.10). Thus, both randomness and interaction are essential to the non-triviality of zero-knowledge proof systems. (For further details, see [87, Sec. 4.5.1].)Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowestlevel of a knowledge-complexity hierarchy which quanti�es the \knowledge revealedin an interaction." Speci�cally, the knowledge complexity of an interactive proofsystem may be de�ned as the minimum number of oracle-queries required in orderto e�ciently simulate an interaction with the prover. (See [86, Sec. 2.3.1] forreferences.)9.2.2 The Power of Zero-KnowledgeWhen faced with a de�nition as complex (and seemingly self-contradictory) as thede�nition of zero-knowledge, one should indeed wonder whether the de�nition canbe met (in a non-trivial manner).15 It turns out that the existence of non-trivialzero-knowledge proofs is related to the existence of intractable problems in NP .In particular, we will show that if one-way functions exist then every NP-set has azero-knowledge proof system. (For the converse, see [87, Sec. 4.5.2] or [214].) We�rst demonstrate the scope of zero-knowledge by a presenting a simple (perfect)zero-knowledge proof system for a speci�c NP-set that is not known to be in BPP.In this case we make no intractability assumptions, but the result is signi�cant onlyif NP is not contained in BPP.9.2.2.1 A simple exampleA story not found in the Odyssey refers to the not so famous Labyrinthof the Island of Aeaea. The Sorceress Circe, daughter of Helius, chal-14That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positivepolynomial p and for su�ciently large n, it holds that d(n) < 1=p(n)). Needless to say, d(n) def= 0if S \ f0; 1gn = ;.15Note that any set in BPP has a trivial zero-knowledge (two-sided error) proof system inwhich the veri�er just determines membership by itself.



350 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSlenged godlike Odysseus to traverse the Labyrinth from its North Gateto its South Gate. Canny Odysseus doubted whether such a path ex-isted at all and asked beautiful Circe for a proof, to which she repliedthat if she showed him a path this would trivialize for him the chal-lenge of traversing the Labyrinth. \Not necessarily," clever Odysseusreplied, \you can use your magic to transport me to a random place inthe labyrinth, and then guide me by a random walk to a gate of mychoice. If we repeat this enough times then I'll be convinced that thereis a labyrinth-path between the two gates, while you will not reveal tome such a path." \Indeed," wise Circe thought to herself, \showingthis mortal a random path from a random location in the labyrinth tothe gate he chooses will not teach him more than his taking a randomwalk from that gate."The foregoing story illustrates the main idea underlying the zero-knowledge prooffor Graph Isomorphism presented next. Recall that the set of pairs of isomorphicgraphs is not known to be in BPP, and thus the straightforward NP-proof system(in which the prover just supplies the isomorphism) may not be zero-knowledge.Furthermore, assuming that Graph Isomorphism is not in BPP, this set has nozero-knowledge NP-proof system, but as we shall shortly see it does have a zero-knowledge interactive proof system.Construction 9.9 (zero-knowledge proof for Graph Isomorphism):� Common Input: A pair of graphs, G1 = (V1; E1) and G2 = (V2; E2). Let �be an isomorphism between the input graphs; namely, � is a 1-1 and ontomapping of the vertex set V1 to the vertex set V2 such that fu; vg 2 E1 if andonly if f�(v); �(u)g 2 E2.� Prover's �rst Step (P1): The prover selects a random isomorphic copy ofG2, and sends it to the veri�er. Namely, the prover selects at random, withuniform probability distribution, a permutation � from the set of permutationsover the vertex set V2, and constructs a graph with vertex set V2 and edge setE def= ff�(u); �(v)g : fu; vg2E2g :The prover sends (V2; E) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims,then the graph sent in Step P1 is isomorphic to both input graphs. However,if the input graphs are not isomorphic then no graph can be isomorphic toboth of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E0), from theprover, the veri�er asks the prover to show an isomorphism between G0 andone of the input graphs, chosen at random by the veri�er. Namely, the veri�eruniformly selects � 2 f1; 2g, and sends it to the prover (who is supposed toanswer with an isomorphism between G� and G0).



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 351� Prover's second Step (P2): If the message, �, received from the veri�er equals2 then the prover sends � to the veri�er. Otherwise (i.e., � 6= 2), the proversends � � � (i.e., the composition of � on �, de�ned as � � �(v) def= �(�(v)))to the veri�er.(Indeed, the prover treats any � 6= 2 as � = 1. In the analysis we shallassume, without loss of generality, that � 2 f1; 2g always holds.)� Veri�er's second Step (V2): If the message, denoted  , received from theprover is an isomorphism between G� and G0 then the veri�er outputs 1,otherwise it outputs 0.The veri�er strategy in Construction 9.9 is easily implemented in probabilisticpolynomial-time. In case the prover is given an isomorphism between the inputgraphs as auxiliary input, also the prover's program can be implemented in proba-bilistic polynomial-time. The motivating remark justi�es the claim that Construc-tion 9.9 constitutes an interactive proof system for the set of pairs of isomorphicgraphs. As for the zero-knowledge property, consider �rst the special case in whichthe veri�er actually follows the prescribed strategy (and selects � at random, andin particular obliviously of the graph G0 it receives). The view of this veri�er canbe easily simulated by selecting � and  at random, constructing G0 as a ran-dom isomorphic copy of G� (via the isomorphism  ), and outputting the triplet(G0; �;  ). Indeed (even in this case), the simulator behaves di�erently from theprescribed prover (which selects G0 as a random isomorphic copy of G2, via theisomorphism �), but its output distribution is identical to the veri�er's view inthe real interaction. However, the forgoing description assumes that the veri�erfollows the prescribed strategy, while in general the veri�er may (adversarially)select � depending on the graph G0. Thus, a slightly more complicated simulation(described next) is required.A general clari�cation may be in place. Recall that we wish to simulate theinteraction of an arbitrary veri�er strategy with the prescribed prover. Thus, thissimulator must depend on the corresponding veri�er strategy, and indeed we shalldescribe the simulator while referring to such a generic veri�er strategy. Formally,this means that the simulator's program incorporates the program of the corre-sponding veri�er strategy. (Actually, the following simulator uses the generic veri-�er strategy as a subroutine.)Turning back to the speci�c protocol of Construction 9.9, the basic idea is thatsimulator tries to guess � and can complete a simulation if its guess turns out tobe correct. Speci�cally, the simulator selects � 2 f1; 2g uniformly (hoping that theveri�er will later select � = �), and constructs G0 by randomly permuting G� (andthus being able to present an isomorphism between G� and G0). Recall that thesimulator is analyzed only on yes-instances (i.e., the input graphs G1 and G2 areisomorphic). The point is that if G1 and G2 are isomorphic, then the graph G0does not yield any information regarding the simulator's guess (i.e., �).16 Thus,16Indeed, this observation is identical to the one made in the analysis of the soundness ofConstruction 9.3.



352 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe value � selected by the adversarial veri�er may depend on G0 but not on �,which implies that Pr[�= � ] = 1=2. In other words, the simulator's guess (i.e., �)is correct (i.e., equals �) with probability 1=2. Now, if the guess is correct then thesimulator can produce an output that has the correct distribution, and otherwisethe entire process is repeated.Useful conventions. We wish to highlight three conventions that were eitherused (implicitly) in the foregoing analysis or can be used to simplify the descriptionof (this and/or) other zero-knowledge simulators.1. Without loss of generality, we may assume that the cheating veri�er strategyis implemented by a deterministic polynomial-size circuit (or, equivalently,by a deterministic polynomial-time algorithm with an auxiliary input).17This is justi�ed by �xing any outcome of the veri�er's coins, and observingthat our (uniform) simulation of the various (residual) deterministic strategiesyields a simulation of the original probabilistic strategy.2. Without loss of generality, it su�ces to consider cheating veri�ers that (only)output their view of the interaction (i.e., the common input, their internalcoin tosses, and the messages that they have received). In other words, itsu�ces to simulate the view that cheating veri�ers have of the real interaction.This is justi�ed by noting that the �nal output of any veri�er can be obtainedfrom its view of the interaction, where the complexity of the transformationis upper-bounded by the complexity of the veri�er's strategy.3. Without loss of generality, it su�ces to construct a \weak simulator" thatproduces output with some noticeable18 probability such that whenever anoutput is produced it is distributed \correctly" (i.e., similarly to the distri-bution occuring in real interactions with the prescribed prover).This is justi�ed by repeatedly invoking such a weak simulator (polynomially)many times and using the �rst output produced by any of these invocations.Note that by using an adequate number of invocations, we fail to producean output with negligible probability. Furthermore, note that a simulatorthat fails to produce output with negligible probability can be convertedto a simulator that always produces an output, while incurring a negligiblestatistic deviation in the output distribution.9.2.2.2 The full power of zero-knowledge proofsThe zero-knowledge proof system presented in Construction 9.9 refers to one spe-ci�c NP-set that is not known to be in BPP. It turns out that, under reasonable17This observation is not crucial, but it does simplify the analysis (by eliminating the need tospecify a sequence of coin tosses in each invocation of the veri�er's strategy).18Recall that a probability is called noticeable if it is greater than the reciprocal of some positivepolynomial (in the relevant parameter).



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 353assumptions, zero-knowledge can be used to prove membership in any NP-set. In-tuitively, it su�ces to establish this fact for a single NP-complete set, and thus wefocus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.It is easy to prove that a given graph G is 3-colorable by just presenting a3-coloring of G (and the same holds for membership in any set in NP), but thisNP-proof is not a zero-knowledge proof (unless NP � BPP). In fact, assumingNP 6� BPP, graph 3-colorability has no zero-knowledge NP-proof system, butas we shall shortly see it does have a zero-knowledge interactive proof system.This interactive proof system will be described while referring to \boxes" in whichinformation can be hidden and later revealed. Such boxes can be implementedusing one-way functions (see, e.g., Theorem 9.11).Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):The description refers to abstract non-transparent boxes that can be perfectly lockedand unlocked such that these boxes perfectly hide their contents while being locked.� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let  be a 3-coloring of G. The prover selects a randompermutation, �, over f1; 2; 3g, and sets �(v) def= �( (v)), for each v 2 V .Hence, the prover forms a random relabeling of the 3-coloring  . The proversends to the veri�er a sequence of jV j locked and non-transparent boxes suchthat the vth box contains the value �(v).� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E, andsends it to the prover.� Motivating Remark: The boxes are supposed to contain a 3-coloring of thegraph, and the veri�er asks to inspect the colors of vertices u and v. Indeed,for the zero-knowledge condition, it is crucial that the prover only respondsto pairs that correspond to edges of the graph.� Prover's second step: Upon receiving an edge fu; vg 2 E, the prover sends tothe veri�er the keys to boxes u and v.For simplicity of the analysis, if the veri�er sends fu; vg 62 E then the proverbehaves as if it has received a �xed (or random) edge in E, rather than sus-pending the interaction, which would have been the natural thing to do.� Veri�er's second step: The veri�er unlocks and opens boxes u and v, andaccepts if and only if they contain two di�erent elements in f1; 2; 3g.The veri�er strategy in Construction 9.10 is easily implemented in probabilisticpolynomial-time. The same holds with respect to the prover's strategy, providedthat it is given a 3-coloring of G as auxiliary input. Clearly, if the input graphis 3-colorable then the veri�er accepts with probability 1 when interacting withthe prescribed prover. On the other hand, if the input graph is not 3-colorable,then any contents put in the boxes must be invalid with respect to at least oneedge, and consequently the veri�er will reject with probability at least 1jEj . Hence,



354 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe foregoing protocol exhibits a non-negligible gap in the accepting probabilitiesbetween the case of 3-colorable graphs and the case of non-3-colorable graphs. Toincrease the gap, the protocol may be repeated su�ciently many times (of course,using independent coin tosses in each repetition).In the abstract setting of Construction 9.10, the zero-knowledge property followseasily, because one can simulate the real interaction by placing a random pair ofdi�erent colors in the boxes indicated by the veri�er. This indeed demonstratesthat the veri�er learns nothing from the interaction, because it expects to see arandom pair of di�erent colors (and indeed this is what it sees). Note that theaforementioned expectation relies on the fact that the boxes correspond to verticesthat are connected by an edge.This simple demonstration of the zero-knowledge property is not possible inthe digital implementation (discussed next), because in that case the boxes arenot totally una�ected by their contents (but are rather e�ected, yet in an indistin-guishable manner). Instead, we simulate the interaction as follows. We �rst guess(at random) which pair of boxes (corresponding to an edge) the veri�er would askto open, and place a random pair of distinct colors in these boxes (and garbagein the rest).19 Then, we hand all boxes to the veri�er, which asks us to open apair of boxes (corresponding to an edge). If the veri�er asks for the pair that wechose (i.e., our guess is successful), then we can complete the simulation by openingthese boxes. Otherwise, we try again (with a new random guess and random col-ors). Thus, it su�ces to use boxes that hide their contents almost perfectly (ratherthan being perfectly opaque). Such boxes can be implemented digitally.Teaching note: Indeed, we recommend presenting and analyzing in class only theforegoing abstract protocol. It su�ces to briey comment about the digital implemen-tation, rather than presenting a formal proof of Theorem 9.11 (which can be foundin [96] (or [87, Sec. 4.4])).Digital implementation. We implement the abstract boxes (referred to in Con-struction 9.10) by using adequately de�ned commitment schemes. Loosely speak-ing, such a scheme is a two-phase game between a sender and a receiver such thatafter the �rst phase the sender is \committed" to a value and yet, at this stage, itis infeasible for the receiver to �nd out the committed value (i.e., the commitmentis \hiding"). The committed value will be revealed to the receiver in the secondphase and it is guaranteed that the sender cannot reveal a value other than the onecommitted (i.e., the commitment is \binding"). Such commitment schemes can beimplemented assuming the existence of one-way functions (as in De�nition 7.3).Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorabilityis NP-complete, one can derive (from Construction 9.10) zero-knowledge proof sys-19An alternative (and more e�cient) simulation consists of putting random independent colorsin the various boxes, hoping that the veri�er asks for an edge that is properly colored. The latterevent occurs with probability (approximately) 2=3, provided that the boxes hide their contents(almost) perfectly.



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 355tems for any NP-set.20 Furthermore, NP-witnesses can be e�ciently transformedinto polynomial-size circuits that implement the corresponding (prescribed zero-knowledge) prover strategies.Theorem 9.11 (The ZK Theorem): Assuming the existence of (non-uniformlyhard) one-way functions, any NP-proof can be e�ciently transformed into a (com-putational) zero-knowledge interactive proof. In particular, NP � ZK.The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-avoidable, because the existence of zero-knowledge proofs for \hard on the average"problems implies the existence of one-way functions (and, likewise, the existenceof zero-knowledge proofs for sets outside BPP implies the existence of \auxiliary-input one-way functions").Theorem 9.11 has a dramatic e�ect on the design of cryptographic protocols(see Appendix C). In a di�erent vein we mention that, under the same assump-tion, any interactive proof can be transformed into a zero-knowledge one. (Thistransformation, however, is not e�cient.)Theorem 9.12 (The ultimate ZK Theorem): Assuming the existence of (non-uniformly hard) one-way functions, IP = ZK.Loosely speaking, Theorem 9.12 can be proved by recalling that IP = AM(poly)and modifying any public-coin protocol as follows: the modi�ed prover sends com-mitments to its messages rather than the messages themselves, and once the orig-inal interaction is completed it proves (in zero-knowledge) that the correspondingtranscript would have been accepted by the original veri�er. Indeed, the latter as-sertion is of the \NP type", and thus the zero-knowledge proof system guaranteedin Theorem 9.11 can be invoked for proving it.Reection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-complete in order to obtain a zero-knowledge proofs for any set inNP by using sucha protocol for 3-colorability (i.e., Construction 9.10). Thus, an NP-completenessresult is used here in a \positive" way; that is, in order to construct somethingrather than in order to derive a hardness result. This was probably the �rst pos-itive application of NP-completeness. Subsequent positive uses of completenessresults have appeared in the context of interactive proofs (see the proof of Theo-rem 9.4), probabilistically checkable proofs (see the proof of Theorem 9.16), andthe \hardness versus randomness paradigm" (see, e.g., [122]).Perfect and Statistical Zero-Knowledge. The foregoing results may be con-trasted with the results regarding the complexity of statistical zero-knowledgeproof systems: Statistical zero-knowledge proof systems exist only for sets inIP(2) \ coIP(2), and thus are unlikely to exist for all NP-sets. On the other20Actually, we should either rely on the fact that the standard Karp-reductions are invertiblein polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge withrespect to auxiliary inputs (as in De�nition C.9).



356 CHAPTER 9. PROBABILISTIC PROOF SYSTEMShand, the class Statistical Zero-Knowledge is known to contain some hard prob-lems, and turns out to have interesting complexity theoretic properties (e.g., beingclosed under complementation, and having very natural complete problems). Theinterested reader is referred to [213].9.2.3 Proofs of Knowledge { a parenthetical subsectionTeaching note: Technically speaking, this topic belongs to Section 9.1, but its moreinteresting demonstrations refer to zero-knowledge proofs of knowledge { hence its cur-rent positioning.Loosely speaking, \proofs of knowledge" are interactive proofs in which the proverasserts \knowledge" of some object (e.g., a 3-coloring of a graph), and not merelyits existence (e.g., the existence of a 3-coloring of the graph, which in turn isequivalent to the assertion that the graph is 3-colorable).What do we mean by saying that a machine knows something? Any standarddictionary suggests several meanings for the verb to know, but these are typicallyphrased with reference to the notion of awareness, a notion which is certainlyinapplicable in the context of machines. Instead, we should look for a behavioristicinterpretation of the verb to know. Indeed, it is reasonable to link knowledge withthe ability to do something (e.g., the ability to write down whatever one knows).Hence, we will say that a machine knows a string � if it can output the string�. But this seems as total non-sense too: a machine has a well de�ned output {either the output equals � or it does not. So what can be meant by saying thata machine can do something? Loosely speaking, it may mean that the machinecan be easily modi�ed so that it does whatever is claimed. More precisely, it maymean that there exists an e�cient machine that, using the original machine as ablack-box (or given its code as an input), outputs whatever is claimed.Technically speaking, using a machine as a black-box seems more appealingwhen the said machine is interactive (i.e., implements an interactive strategy).Indeed, this will be our focus here. Furthermore, conceptually speaking, whatevera machine knows (or does not know) is its own business, whereas what can beof interest and reference to the outside is whatever can be deduced about theknowledge of a machine by interacting with it. Hence, we are interested in proofsof knowledge (rather than in mere knowledge).For sake of simplicity let us consider a concrete question: how can a machineprove that it knows a 3-coloring of a graph? An obvious way is just sending the3-coloring to the veri�er. Yet, we claim that applying the protocol in Construc-tion 9.10 (i.e., the zero-knowledge proof system for 3-Colorability) is an alternativeway of proving knowledge of a 3-coloring of the graph.The de�nition of a veri�er of knowledge of 3-coloring refers to any possibleprover strategy and links the ability to \extract" a 3-coloring (of a given graph)from such a prover to the probability that this prover convinces the veri�er. That is,the de�nition postulates the existence of an e�cient universal way of \extracting" a3-coloring of a given graph by using any prover strategy that convinces this veri�erto accept this graph with probability 1 (or, more generally, with some noticeable



9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 357probability). On the other hand, we should no expect this extractor to obtainmuch from prover strategies that fail to convince the veri�er (or, more generally,convince it with negligible probability). A robust de�nition should allow a smoothtransition between these two extremes (and in particular between provers thatconvince the veri�er with noticeable probability and those that convince it withnegligible probability). Such a de�nition should also support the intuition by whichthe following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring ofa given graph provided that Bob has successfully convinced her that he knows thiscoloring.21 We stress that the zero-knowledge property of Alice's strategy shouldhold regardless of the proof-of-knowledge system used for proving Bob's knowledgeof a 3-coloring.Loosely speaking, we say that an interactive machine, V , constitutes a veri�er forknowledge of 3-coloring if, for any prover strategy P , the complexity of extracting a3-coloring of G when using machine P as a \black box"22 is inversely proportionalto the probability that V is convinced by P (to accept the graph G). Namely, theextraction of the 3-coloring is done by an oracle machine, called an extractor, thatis given access to a function specifying the behavior P (i.e., the messages it sendsin response to particular messages it may receive). We require that the (expected)running time of the extractor, on input G and access to an oracle specifying P 'sbehavior, be inversely related (by a factor polynomial in jGj) to the probability thatP convinces V to accept G. In particular, if P always convinces V to accept G,then the extractor runs in expected polynomial-time. The same holds in case Pconvinces V to accept with noticeable probability. On the other hand, if P neverconvinces V to accept, then nothing is required of the extractor. We stress thatthe latter special cases do not su�ce for a satisfactory de�nition; see discussionin [87, Sec. 4.7.1].Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,have many applications to the design of cryptographic schemes and cryptographicprotocols. These are enabled by the following general result.Theorem 9.13 (Theorem 9.11, revisited): Assuming the existence of (non-uniformlyhard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategycan be implemented in probabilistic polynomial-time, provided it is given such anNP-witness.
21For simplicity, the reader may consider graphs that have a unique 3-coloring (upto a relabel-ing). In general, we refer here to instances that have unique solution (cf. Section 6.2.3), whicharise naturally in some (cryptographic) applications.22Indeed, one may consider also non-black-box extractors.



358 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.3 Probabilistically Checkable Proof SystemsTeaching note: Probabilistically checkable proof (PCP) systems may be viewed asa restricted type of interactive proof systems in which the prover is memoryless andresponds to each veri�er message as if it were the �rst such message. This perspectivecreates a tighter link with previous sections, but is somewhat contrived. However, sucha memoryless prover may be viewed as a static object that the veri�er may query atlocations of its choice. But then it is more appealing to present the model using the(more traditional) terminology of oracle machines rather than using (and degenerating)the terminology of interactive machines.Probabilistically checkable proof systems can be viewed as standard (determinis-tic) proof systems that are augmented with a probabilistic procedure capable ofevaluating the validity of the assertion by examining few locations in the allegedproof. In fact, we focus on the latter probabilistic procedure, which is given directaccess to the individual bits of the alleged proof (and need not scan it bit-by-bit).Thus, the alleged proof is a string, as in the case of a traditional proof system,but we are interested in probabilistic veri�cation procedures that access only fewlocations in the proof, and yet are able to make a meaningful probabilistic verdictregarding the validity of the alleged proof. Speci�cally, the veri�cation procedureshould accept any valid proof (with probability 1), but rejects with probability atleast 1=2 any alleged proof for a false assertion.The main complexity measure associated with probabilistically checkable proofsystems is indeed their query complexity. Another complexity measure of naturalconcern is the length of the proofs being employed, which in turn is related tothe randomness complexity of the system. The randomness complexity of PCPsplays a key role in numerous applications (e.g., in composing PCP systems as wellas when applying PCP systems to derive inapproximability results), and thus wespecify this parameter rather than the proof length.Teaching note: Indeed, PCP systems are most famous for their role in deriving nu-merous inapproximability results (see Section 9.3.3), but our view is that the latteris merely one extremely important application of the fundamental notion of a PCPsystem. Our presentation is organized accordingly.9.3.1 De�nitionLoosely speaking, a probabilistically checkable proof system consists of a probabilis-tic polynomial-time veri�er having access to an oracle that represents an allegedproof (in redundant form). Typically, the veri�er accesses only few of the oraclebits, and these bit positions are determined by the outcome of the veri�er's cointosses. As in the case of interactive proof systems, it is required that if the asser-tion holds then the veri�er always accepts (i.e., when given access to an adequateoracle); whereas, if the assertion is false then the veri�er must reject with proba-bility at least 12 , no matter which oracle is used. The basic de�nition of the PCPsetting is given in Part (1) of the following de�nition. Yet, the complexity measuresintroduced in Part (2) are of key importance for the subsequent discussions.



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 359De�nition 9.14 (Probabilistically Checkable Proofs { PCP):1. A probabilistically checkable proof system (PCP) for a set S is a probabilisticpolynomial-time oracle machine, called veri�er and denoted V , that satis�esthe following two conditions:� Completeness: For every x 2 S there exists an oracle �x such that, oninput x and access to oracle �x, machine V always accepts x.� Soundness: For every x 62 S and every oracle �, on input x and accessto oracle �, machine V rejects x with probability at least 12 .2. We say that a probabilistically checkable proof system has query complexityq :N!N if, on any input of length n, the veri�er makes at most q(n) oraclequeries.23 Similarly, the randomness complexity r :N ! N upper-bounds thenumber of coin tosses performed by the veri�er on a generic n-bit long input.For integer functions r and q, we denote by PCP(r; q) the class of sets havingprobabilistically checkable proof systems of randomness complexity r and querycomplexity q. For sets of integer functions, R and Q,PCP(R;Q) def= [r2R ; q2QPCP(r; q) :We note that the oracle �x referred to in the completeness condition a PCP systemconstitutes a proof in the standard mathematical sense (with respect to a veri�-cation procedure that examines all possible outcomes of V 's internal coin tosses).Furthermore, the oracles in PCP systems of logarithmic randomness complexityconstitute NP-proofs. However, these oracles have the extra remarkable propertyof enabling a lazy veri�er to toss coins, take its chances and \assess" the validity ofthe proof without reading all of it (but rather by reading a tiny portion of it). Po-tentially, this allows the veri�er to utilize very long proofs (i.e., of super-polynomiallength) or alternatively examine very few bits of an NP-proof.We note that the error probability (in the soundness condition) of PCP systemscan be reduced by successive applications of the proof system. In particular, re-peating the process for k times, reduces the probability that the veri�er is fooled bya false assertion to 2�k, whereas all complexities increase by at most a factor of k.Thus, PCP systems provide a trade-o� between the number of locations examinedin the proof and the con�dence in the validity of the assertion.Adaptive versus non-adaptive veri�ers. De�nition 9.14 allows the veri�er tobe adaptive; that is, the veri�er may determine its queries based on the answersit has received to previous queries (in addition to their dependence on the inputand the veri�er's internal coin tosses). In contrast, non-adaptive veri�ers determineall their queries based solely on their input and internal coin tosses. We commentthat most constructions of PCP systems use non-adaptive veri�ers, and in fact inmany sources PCP systems are de�ned as non-adaptive.23As usual in complexity theory, the oracle answers are always binary (i.e., either 0 or 1).



360 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSRandomness versus proof length. Note that the \e�ective" length of proofsfor any PCP system is related to its query and randomness complexities, where thee�ective length means the number of locations in a generic proof-oracle that maybe examined on a �xed input and any possible sequence of internal coin tosses.Speci�cally, if the PCP system has query complexity q and randomness complexityr then its e�ective proof length is upper-bounded by 2q+r, whereas a bound of2r � q holds for non-adaptive systems (see Exercise 9.11). On the other hand, insome sense, the randomness complexity of a PCP can be upper-bounded by thelogarithm of the length of the proofs employed (provided we allow non-uniformveri�ers; see Exercise 9.13).On the role of randomness. The PCP Theorem (i.e., NP = PCP(log; O(1)))exhibits a trade-o� between the number of bits examined in the alleged proofand the con�dence in the validity of the assertion. We note that such a trade-o�is impossible if one requires the veri�er to be deterministic. This is due to thefact that every set in PCP(r; q) has an NP-proof system that employs proofs oflength 2rq (see Exercise 9.12). Thus, PCP(r; q) � Dtime(22rq � poly), and, inparticular, PCP(0; log) = P . Furthermore, since it is unlikely that all NP-setshave NP-proof systems that employs proofs of (say) linear length, it follows thatfor 2r(n)q(n) � n (or for any other �xed polynomial that bounds 2rq) the classPCP(r; q) is unlikely to contain NP . Actually, P 6= NP implies that NP is notcontained in PCP(o(log); o(log)) (see Exercise 9.15).9.3.2 The Power of Probabilistically Checkable ProofsThe celebrated PCP Theorem asserts that NP = PCP(log; O(1)), and this resultis indeed the focus of the current section. But before getting to it we make severalsimple observations regarding the PCP Hierarchy.We �rst note that PCP(poly; 0) equals coRP , whereas PCP(0; poly) equalsNP . It is easy to prove an upper bound on the non-deterministic time complexityof sets in the PCP hierarchy (see Exercise 9.12):Proposition 9.15 (upper-bounds on the power of PCPs): For every polynomiallybounded integer function r, it holds that PCP(r; poly) � Ntime(2r � poly). Inparticular, PCP(log; poly) � NP.The focus on PCP systems of logarithmic randomness complexity reects an inter-est in PCP systems that utilize proof oracles of polynomial length (see discussion inSection 9.3.1). We stress that such PCP systems (i.e., PCP(log; q)) are NP-proofsystems with a (potentially amazing) extra property: the validity of the assertioncan be \probabilistically evaluated" by examining a (small) portion (i.e., q(n) bits)of the proof. Thus, for any �xed polynomially bounded function q, a result of theform NP � PCP(log; q) (9.6)



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 361is interesting (because it applies also to NP-sets having witnesses of length exceed-ing q), and the smaller q { the better. The PCP Theorem asserts the amazing factby which q can be made a constant.Theorem 9.16 (The PCP Theorem): NP � PCP(log; O(1)).Thus, probabilistically checkable proofs in which the veri�er tosses only logarith-mically many coins and makes only a constant number of queries exist for every setin NP . Furthermore, the proof of Theorem 9.16 is constructive in the sense that itallows to e�ciently transform any NP-witness (for an instance of a set in NP) intoan oracle that makes the PCP veri�er accept (with probability 1). Thus, NP-proofscan be transformed into NP-proofs that o�er a trade-o� between the portion of theproof being read and the con�dence it o�ers. Speci�cally, for every " > 0, if one iswilling to tolerate an error probability of " then it su�ces to examine O(log(1="))bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1), thesebit locations need to be selected at random.A new characterization of NP: Combining Theorem 9.16 with Proposition 9.15we obtain the following characterization of NP.Corollary 9.17 (The PCP characterization of NP): NP = PCP(log; O(1)).The proof of the PCP Theorem: Theorem 9.16 is a culmination of a sequenceof remarkable works, each establishing meaningful and increasingly stronger ver-sions of Eq. (9.6). A presentation of the full proof of Theorem 9.16 is beyond thescope of the current work (and is, in our opinion, unsuitable for a basic coursein complexity theory). Instead, we present an overview of the original proof (seex9.3.2.2) as well as of an alternative proof (see x9.3.2.3) that was found morethan a decade later. We will start, however, by presenting a weaker result thatis used in both proofs of Theorem 9.16 and is also of independent interest. Thisweaker result (see x9.3.2.1) asserts that every NP-set has a PCP system with con-stant query complexity (albeit with polynomial randomness complexity); that is,NP � PCP(poly; O(1)).Teaching note: In our opinion, presenting in class any part of the proof of the PCPTheorem should be given low priority. In particular, presenting the connections betweenPCP and the complexity of approximation should be given a higher priority. As forrelative priorities among the following three subsections, we recommend giving x9.3.2.1the highest priority, because it o�ers a direct demonstration of the power of PCPs. Asfor the two alternative proofs of the PCP Theorem itself, our recommendation dependson the intended goal. On one hand, for the purpose of merely giving a taste of the ideasinvolved in the proof, we prefer an overview of the original proof (provided in x9.3.2.2).On the other hand, for the purpose of actually providing a full proof, we de�nitelyprefer the new proof (which is only outlined in x9.3.2.3).



362 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.3.2.1 Proving that NP � PCP(poly; O(1))The fact that every NP-set has a PCP system with constant query complexity(regardless of its randomness complexity) already testi�es to the power of PCPsystems. It asserts that probabilistic veri�cation of proofs is possible by inspectingvery few locations in a (potentially huge) proof. Indeed, the PCP systems presentednext utilize exponentially long proofs, but they do so while inspecting these proofsat a constant number of (randomly selected) locations.We start with a brief overview of the construction. We �rst note that it su�cesto construct a PCP for proving the satis�ability of a given system of quadraticequations over GF(2), because this problem is NP-complete.24 For inputs consistingof quadratic equations with n variables, the oracle (of this PCP) is supposed toprovide the values of all quadratic expressions in these n variables evaluated atsome �xed assignment to these variables. This assignment is supposed to satisfy thesystem of quadratic equations that is given as input. We distinguish two tables inthe oracle: The �rst table corresponding to the 2n linear expressions and the secondtable to the 2n2 quadratic expressions. Each table is tested for self-consistency (viaa \linearity test"), and the two tables are tested to be consistent with each other(via a \matrix-equality" test, which utilizes \self-correction"). Each of these testsutilizes a constant number of Boolean queries, and randomness that is logarithmicin the size of the corresponding table (and is thus O(n2)). Finally, we test (againvia self-correction) the value assigned by these tables to a quadratic expressionobtained by a random linear combination of the quadratic expressions that appearin the quadratic system that is given as input. Details follow.The starting point. We construct a PCP system for the set of satis�ablequadratic equations over GF(2). The input is a sequence of such equations over thevariables x1; :::; xn, and the proof oracle consist of two parts (or tables), which aresupposed to provide information regarding some satisfying assignment � = �1 � � � �n(also viewed as an n-ary vector over GF(2)). The �rst part, denoted T1, is sup-posed to provide a Hadamard encoding of the said satisfying assignment; that is,for every � 2 GF(2)n this table is supposed to provide the inner product mod 2 ofthe n-ary vectors � and � (i.e., T1(�) is supposed to equalPni=1 �i�i). The secondpart, denoted T2, is supposed to provide all linear combinations of the values ofthe �i�j 's; that is, for every � 2 GF(2)n2 (viewed as an n-by-n matrix over GF(2)),the value of T2(�) is supposed to equal Pi;j �i;j�i�j . (Indeed T1 is contained inT2, because �2 = � for any � 2 GF(2).) The PCP veri�er will use the two tablesfor checking that the input (i.e., a sequence of quadratic equations) is satis�ed bythe assignment that is encoded in the two tables. Needless to say, these tables maynot be a valid encoding of any n-ary vector (let alone one that satis�es the input),and so the veri�er also needs to check that the encoding is (close to being) valid.We will focus on this task �rst.24Here and elsewhere, we denote by GF(2) the 2-element �eld.



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 363Testing the Hadamard Code. Note that T1 is supposed to encode a linearfunction; that is, there must be some � = �1 � � � �n 2 GF(2)n such that T1(�) =Pni=1 �i�i holds for every � = �1 � � ��n 2 GF(2)n. This can be tested by selectinguniformly �0; �00 2 GF(2)n and checking whether T1(�0) + T1(�00) = T1(�0 + �00),where �0+�00 denotes addition of vectors over GF(2). The analysis of this naturaltester turns out to be quite complex. Nevertheless, it is indeed the case that anytable that is 0:01-far from being linear is rejected with probability at least 0:02 (seeExercise 9.16), where T is "-far from being linear if T disagrees with any linearfunction f on more than an " fraction of the domain (i.e., Prr[T (r) = f(r)] > ").By repeating the linearity test for a constant number of times, we may rejecteach table that is 0:01-far from being a codeword of the Hadamard Code withprobability at least 0:99. Thus, using a constant number of queries, the veri�errejects any T1 that is 0:01-far from being a Hadamard encoding of any � 2 GF(2)n,and likewise rejects any T2 that is 0:01-far from being a Hadamard encoding ofany � 0 2 GF(2)n2 . We may thus assume that T1 (resp., T2) is 0:01-close to theHadamard encoding of some � (resp., � 0). (This does not mean, however, that � 0equals the outer produce of � with itself.)In the rest of the analysis, we �x � 2 GF(2)n and � 0 2 GF(2)n2 , and denote theHadamard encoding of � (resp., � 0) by f� :GF(2)n!GF(2) (resp., f� 0 :GF(2)n2!GF(2)). Recall that T1 (resp., T2) is 0:01-close to f� (resp., f� 0).Self-correction of the Hadamard Code. Suppose that T is "-close to a linearfunction f : GF(2)n!GF(2) (i.e., Prr[T (r) = f(r)] � "). Then, we can recoverthe value of f at any desired point x, by making two (random) queries to T .Speci�cally, for a uniformly selected r 2 GF(2)n, we use the value T (x+ r)�T (r).Note that the probability that we recover the correct value is at least 1�2", becausePrr[T (x + r) � T (r) = f(x + r) � f(r)] � 1 � 2" and f(x + r) � f(r) = f(x) bylinearity of f . (Needless to say, for " < 1=4, the function T cannot be "-close totwo di�erent linear functions.)25 Thus, assuming that T1 is 0:01-close to f� (resp.,T2 is 0:01-close to f� 0) we may correctly recover (i.e., with error probability 0:02)the value of f� (resp., f� 0) at any desired point by making 2 queries to T1 (resp.,T2).
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.Figure 9.2: Detail for testing consistency of linear and quadratic forms.25Indeed, this fact follows from the self-correction argument, but a simpler proof merely refersto the fact that the Hadamard code has relative distance 1=2.



364 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSChecking consistency of f� and f� 0. Suppose that we are given access tof� : GF(2)n ! GF(2) and f� 0 : GF(2)n2 ! GF(2), where f� (�) = Pi �i�iand f� 0(�0) = Pi;j � 0i;j�0i;j , and that we wish to verify that � 0i;j = �i�j for ev-ery i; j 2 f1; :::; ng. In other words, we are given a (somewhat weird) encoding oftwo matrices, A = (�i�j)i;j and A0 = (� 0i;j)i;j , and we wish to check whether or notthese matrices are identical. It can be shown (see Exercise 9.18) that if A 6= A0 thenPrr;s[r>As 6= r>A0s] � 1=4, where r and s are uniformly distributed n-ary vectors.Note that, in our case (where A = (�i�j)i;j and A0 = (� 0i;j)i;j), it holds that r>As =Pj(Pi ri�i�j)sj = f� (r)f� (s) (see Figure 9.2) and r>A0s = Pj(Pi ri� 0i;j)sj =f� 0(rs>), where rs> is the outer-product of s and r. Thus, (for (�i�j)i;j 6= (� 0i;j)i;j)we have Prr;s[f� (r)f� (s) 6= f� 0(rs>)] � 1=4. Using self-correction (to obtain thedesired value of f� 0 at rs>, since rs> is not uniformly distributed in GF(2)n2), wetest the consistency of f� and f� 0 ; that is, we select uniformly r; s 2 GF(2)n andR 2 GF(2)n2 and check that T1(r)T1(s) = T2(rs> +R)� T2(R).By repeating the consistency test for a constant number of times, we may rejectan inconsistent pair of tables with probability at least 0:99. Thus, in the rest ofthe analysis, we may assume that (�i�j)i;j = (� 0i;j)i;j .Checking that � satis�es the quadratic system. Suppose that we are givenaccess to f� and f� 0 as in the foregoing (where, in particular, � 0 = ��>). A keyobservation is that if � does not satisfy a system of quadratic equations then,with probability 1=2, it does not satisfy a random linear combination of theseequations. Thus, in order to check whether � satis�es the quadratic system, wecreate a single quadratic equation (by taking such a random linear combination)and compare the value of the resulting quadratic expression to the correspondingvalue, by recovering the value of f� 0 at a single point (which corresponds to thequadratic equation). That is, to test whether � satis�es the quadratic equationQ(x) = �, we test whether f� 0(Q) = �. The actual checking is implemented by theveri�er using self-correction (of the table T2).To summarize, the veri�er performs a constant number of queries and usesrandomness that is quadratic in the number of variables. If the quadratic systemis satis�able (by some �), then the veri�er accepts the corresponding tables T1and T2 (i.e., T1 = f� and T2 = f��>) with probability 1. On the other hand,if the quadratic system is unsatis�able, then any pair of tables (T1; T2) will berejected with constant probability (by one of the foregoing tests). It follows thatNP � PCP(r; O(1)), where r(n) = O(n2).9.3.2.2 Overview of the �rst proof of the PCP TheoremThe original proof of the PCP Theorem (Theorem 9.16) consists of three mainconceptual steps, which we briey sketch �rst and further discuss later.1. Constructing a (non-adaptive) PCP system for NP having logarithmic ran-domness and polylogarithmic query complexity. Furthermore, this proof sys-tem has additional properties that enable proof composition as in the follow-ing Step (3).



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 3652. Constructing a PCP system for NP having polynomial randomness and con-stant query complexity (indeed, as in x9.3.2.1). This proof system too hasadditional properties enabling proof composition as in Step (3).3. The proof composition paradigm:26 In general, this paradigm allows to com-pose two proof systems such that the \inner" one is used for probabilisticallyverifying the acceptance criteria of the \outer" veri�er. The aim is to conductthis (\composed") veri�cation using much fewer queries than the query com-plexity of the \outer" proof system. In particular, the inner veri�er cannota�ord to read its input, which makes composition more subtle than the termsuggests.Loosely speaking, the outer veri�er should be robust in the sense that itssoundness condition guarantee that with high probability the oracle answersare \far" from satisfying the residual decision predicate (rather than merelynot satisfy it). (Furthermore, the latter predicate, which is well-de�ned bythe non-adaptive nature of the outer veri�er, must have a circuit of sizebounded by a polynomial in the number of queries.) The inner veri�er isgiven oracle access to its input and is charged for each query made to it, butis only required to reject with high probability inputs that are far from beingvalid (and, as usual, accept inputs that are valid). That is, the inner veri�eris actually a veri�er of proximity.Composing two such PCPs yields a new PCP forNP , where the new proof or-acle consists of the proof oracle of the \outer" system and a sequence of prooforacles for the \inner" system (one \inner" proof per each possible random-tape of the \outer" veri�er). Thus, composing an outer veri�er of randomnesscomplexity r0 and query complexity q0 with an inner veri�er of randomnesscomplexity r00 and query complexity q00 yields a PCP of randomness complex-ity r(n) = r0(n) + r00(q0(n)) and query complexity q(n) = q00(q0(n)), becauseq0(n) represents the length of the input (oracle) that is accessed by the innerveri�er. Recall that the outer veri�er is non-adaptive, and thus if the innerveri�er is non-adaptive (resp., robust) then so is the veri�er resulting fromthe composition, which is important in case we wish to compose the latterveri�er with another inner veri�er.In particular, the proof system of Step (1) is composed with itself [using r0(n) =r00(n) = O(log n) and q0(n) = q00(n) = poly(logn)] yielding a PCP system (forNP)of randomness complexity r(n) = r0(n)+r00(q0(n)) = O(log n) and query complexityq(n) = q00(q0(n)) = poly(log logn). Composing the latter system (used as an\outer" system) with the the PCP system of Step (2), yields a PCP system (forNP) of randomness complexity r(n)+poly(q(n)) = O(logn) and query complexityO(1), thus establishing the PCP Theorem.A more detailed overview { the plan. The foregoing description uses two(non-trivial) PCP systems and refers to additional properties such as robustness26Our presentation of the composition paradigm follows [33], rather than the original presen-tation of [14, 13].



366 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSand veri�cation of proximity. A PCP system of polynomial randomness complexityand constant query complexity (as postulated in Step 2) is outlined in x9.3.2.1. Wethus start by discussing the notions of verifying proximity and being robust, whiledemonstrating their applicability to the said PCP. Finally, we outline the otherPCP system that is used (i.e., the one postulated in Step 1).PCPs of Proximity. Recall that a standard PCP veri�er gets an explicit inputand is given oracle access to an alleged proof (for membership of the input in apredetermined set). In contrast, a PCP of proximity veri�er is given oracle accessto two oracles, one representing an input and the other being an alleged proof.Typically, the query complexity of this veri�er is lower than the length of the inputoracle, and hence this veri�er cannot a�ord reading the entire input and cannotbe expected to make absolute statements about it. Indeed, instead of decidingwhether or not the input is in a predetermined set, the veri�er is only required todistinguish the case that the input is in the set from the case that the input is farfrom the set (where far means being at relative Hamming distance at least 0.01 (orany other constant)).For example, consider a variant of the system of x9.3.2.1 in which the quadraticsystem is �xed27 and the veri�er needs to determine whether the assignment ap-pearing in the input oracle satis�es the said system or is far from any assignmentthat satis�es it. The proof oracle is as in x9.3.2.1, and a PCP of proximity mayproceed as in x9.3.2.1 and in addition perform a proximity test to verify that theinput oracle is close to the assignment encoded in the proof oracle. Speci�cally, theveri�er may read a uniformly selected bit of the input oracle and compare this valueto the self-corrected value obtained from the proof oracle (i.e., for a uniformly se-lected i 2 f1; :::; ng, we compare the ith bit of the input oracle to the self-correctionof the value T1(0i�110n�i), obtained from the proof oracle).Robust PCPs. Composing an \outer" PCP veri�er with an \inner" PCP veri-�er of proximity makes sense provided that the outer veri�er rejects in a \robust"manner. That is, the soundness condition of a robust veri�er requires that (withprobability at least 1/2) the oracle answers are far from any sequence that is ac-ceptable by the residual predicate (rather than merely that the answers are rejectedby this predicate). Indeed, if the outer veri�er is (non-adaptive and) robust, thenit su�ces that the inner veri�er distinguish (with the help of an adequate proof)answers that are valid from answers that are far from being valid.For example, if robustness is de�ned as referring to relative constant distance(which is indeed the case), then the PCP of x9.3.2.1 (as well as any PCP of con-stant query complexity) is trivially robust. However, we will not care about therobustness of this PCP, because we only use this PCP as an inner veri�er in proofcomposition. In contrast, we will care about the robustness of PCPs that are usedas outer veri�ers (e.g., the PCP presented next).27Indeed, in our applications the quadratic system will be \known" to the (\inner") veri�er,because it is determined by the (\outer") veri�er.



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 367Teaching note: Unfortunately, the construction of a PCP of logarithmic randomnessand polylogarithmic query complexity for NP involves many technical details. Further-more, obtaining a robust version of this PCP is beyond the scope of the current text.Thus, the following description should be viewed as merely providing a avor of theunderlying ideas.PCP of logarithmic randomness and polylogarithmic query complexityfor NP . We start by showing that NP � PCP(f; f), for f(n) = poly(logn). Theproof system is based on an arithmetization of CNF formulae, which is di�erentfrom the one used in x9.1.2.2 (for constructing an interactive proof system forcoNP). In the current arithmetization, the names of the variables (resp., clauses)of the input formula � are represented by binary strings of logarithmic (in j�j)length, and a generic variable (resp., clause) of � is represented by a logarithmicnumber of new variables (which are assigned values in a �nite �eld F � f0; 1g).The (structure of the) input 3CNF formula �(x1; :::; xn) is represented by a Booleanfunction C� : f0; 1gO(logn) ! f0; 1g such that C�(�; �1; �2; �3) = 1 if and only if,for i = 1; 2; 3, the ith literal in the �th clause has index �i = (i; �i) that is viewedas a variable name augmented by its sign. Thus, for every � 2 f0; 1glog j�j there isa unique (�1; �2; �3) 2 f0; 1g3 log 2n such that C�(�; �1; �2; �3) = 1 holds. Next, weconsider a multi-linear extension of C� over F, denoted �; that is, � is the (unique)multi-linear polynomial that agrees with C� on f0; 1gO(logn) � FO(log n). Thus, oninput �, the veri�er �rst constructs C� and �. Part of the proof oracle of thisveri�er is viewed as function A : Flog n ! F, which is supposed to be a multi-linearextension of a truth assignment that satis�es � (i.e., for every  2 f0; 1glogn � [n],the value A() is supposed to be the value of the th variable in such an assignment).Thus, we wish to check whether, for every � 2 f0; 1glog j�j, it holds thatX�1�2�32f0;1g3 log 2n�(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.7)where A0(�) is the value of the �th literal under the (variable) assignment A; thatis, for � = (; �), where  2 f0; 1glogn is a variable name and � 2 f0; 1g is theliteral's type, it holds that A0(�) = � �A() + (1� �) � (1�A()). Thus, Eq. (9.7)holds if and only if the �th clause is satis�ed by the assignment induced by A(because A0(�) = 1 must hold for at least one of the three literals � that appear inthis clause).28 Note that, as in x9.3.2.1, we cannot a�ord to verify all n instances ofEq. (9.7). Furthermore, unlike in x9.3.2.1, we cannot a�ord to take a random linearcombination of these n instances either (because this requires too much random-ness). Fortunately, taking a \pseudorandom" linear combination of these equationsis good enough. Speci�cally, using an adequate (e�ciently constructible) small-biasprobability space (cf. x8.6.2.3) will do. Denoting such a space (of size poly(j�j � jF j)and bias at most 1=6) by S � Fj�j, we may select uniformly (s1; :::; sj�j) 2 S and28Note that, for this � there exists a unique triple (�1; �2; �3) 2 f0; 1g3 log 2n such that�(�; �1; �2; �3) 6= 0. This triple (�1; �2; �3) encodes the literals appearing in the �th clause,and this clause is satis�ed by A if and only if 9i 2 [3] s.t. A0(�i) = 1.



368 CHAPTER 9. PROBABILISTIC PROOF SYSTEMScheck whether X��1�2�32f0;1g` s� ��(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.8)where ` def= log j�j+ 3 log 2n. The small-bias property guarantees that if A fails tosatisfy any of the equations of type Eq. (9.7) then, with probability at least 1=3(taken over the choice of (s1; :::; sj�j) 2 S), it is the case that A fails to satisfyEq. (9.8). Since jSj = poly(j�j � jF j) rather that jSj = 2j�j, we can select a samplein S using O(log j�j) coin tosses. Thus, we have reduced the original problem tochecking whether, for a random (s1; :::; sj�j) 2 S, Eq. (9.8) holds.Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-tically verify Eq. (9.8) by applying a summation test (as in the interactive proof forcoNP). Indeed, the veri�er obtains the relevant univariate polynomials by makingadequate queries (which specify the entire sequence of choices made so far in thesummation test). Note that after stripping the ` summations, the veri�er end-upsup with an expression that contains three unknown values of A0, which it may ob-tain by making corresponding queries to A. The summation test involves tossing` � log jFj coins and making (` + 3) � O(log jFj) Boolean queries (which correspondto ` queries that are each answered by a univariate polynomial of constant degree(over F), and three queries to A (each answered by an element of F)). Soundnessof the summation test follows by setting jF j � O(`). Needless to say, we must alsocheck that A is indeed a multi-variate polynomial of low degree (or rather that itis close to such a polynomial). A low-degree test of complexities similar to thoseof the summation text does exist. Using a �nite �eld F of poly(log(n)) elements,this yields NP � PCP(f; f) for f(n) def= O(log(n) � log log(n)).To obtain the desired PCP system of logarithmic randomness complexity, werepresent the names of the original variables and clauses by O(log n)log logn -long sequencesover f1; :::; logng, rather than by logarithmically-long binary sequences. This re-quires using low degree polynomial extensions (i.e., polynomial of degree (logn)�1),rather than multi-linear extensions. We can still use a �nite �eld of poly(log(n))elements, and so we need only O(log n)log logn �O(log logn) random bits for the summationand low-degree tests. However, the number of queries (needed for obtaining theanswers in these tests) grows, because now the polynomials involved have individ-ual degree (log n) � 1 rather than constant individual degree. This merely meansthat the query complexity increases by a factor of O(log n= log logn). Thus, weobtain NP � PCP(log; q) for q(n) def= O(log2 n).Recall that, in order to use the latter PCP system in composition, we need toguarantee that it (or a version of it) is robust as well as to present a version thatis a PCP of proximity. The latter version is relatively easy to obtain (using ideasas applied to the PCP of x9.3.2.1), whereas obtaining robustness is too complex tobe described here. We comment that one way of obtaining a robust PCP systemis by a generic application of a (randomness-e�cient) \parallelization" of PCPsystems (cf. [13]), which in turn depends heavily on highly e�cient low-degree



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 369tests. A alternative approach (cf. [33]) capitalizes of the speci�c structure of thesummation test (as well as on the evident robustness of a simple low-degree test).Digest. Assuming that P 6= NP , the PCP Theorem asserts a PCP system thatobtains simultaneously the minimal possible randomness and query complexity (upto a multiplicative factor). The forgoing construction obtains this remarkable resultby combining two di�erent PCPs: the �rst PCP obtains logarithmic randomnessbut uses polylogarithmically many queries, whereas the second PCP uses a constantnumber of queries but has polynomial randomness complexity. We stress that eachof the two PCP systems is highly non-trivial and very interesting by itself. Wehighlight the fact that these PCPs can be composed using a very simple compositionmethod that refers to auxiliary properties such as robustness and proximity testing.(Composition of PCP systems that lack these extra properties is possible, but isfar more cumbersome and complex.)9.3.2.3 Overview of the second proof of the PCP TheoremThe original proof of the PCP Theorem focuses on the construction of two PCPsystems that are highly non-trivial and interesting by themselves, and combinesthem in a natural manner. Loosely speaking, this combination (via proof composi-tion) preserves the good features of each of the two systems; that is, it yields a PCPsystem that inherits the (logarithmic) randomness complexity of one system andthe (constant) query complexity of the other. In contrast, the following alterna-tive proof is focused at the \ampli�cation" of PCP systems, via a gradual processof logarithmically many steps. We start with a trivial \PCP" system that hasthe desired complexities but rejects false assertions with probability inversely pro-portional to their length, and double the rejection probability in each step whileessentially maintaining the initial complexities. That is, in each step, the con-stant query complexity of the veri�er is preserved and its randomness complexityis increased only by a constant term. Thus, the process gradually transforms anextremely weak PCP system into a remarkably strong PCP system as postulatedin the PCP Theorem.In order to describe the aforementioned process we need to rede�ne PCP sys-tems so to allow arbitrary soundness error. In fact, for technical reasons, it is moreconvenient to describe the process as an iterated reduction of a \constraint satisfac-tion" problem to itself. Speci�cally, we refer to systems of 2-variable constraints,which are readily represented by (labeled) graphs such that the vertices correspondto (non-Boolean) variables and the edges are associated with constraints.De�nition 9.18 (CSP with 2-variable constraints): For a �xed �nite set �, aninstance of CSP consists of a graph G = (V;E) (which may have parallel edgesand self-loops) and a sequence of 2-variable constraints � = (�e)e2E associatedwith the edges, where each constraint has the form �e : �2 ! f0; 1g. The valueof an assignment � : V ! � is the number of constraints satis�ed by �; that is,the value of � is jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 1gj. We denote by vlt(G;�)(standing for violation) the fraction of unsatis�ed constraints under the best possible



370 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSassignment; that is,vlt(G;�) = min�:V!�fjf(u; v) 2 E : �(u;v)(�(u); �(v)) = 0gj=jEjg: (9.9)For various functions � : N ! (0; 1], we will consider the promise problem gapCSP�� ,having instances as in the foregoing, such that the yes-instances are fully satis-�able instances (i.e., vlt = 0) and the no-instances are pairs (G;�) for whichvlt(G;�) � �(jGj) holds, where jGj denotes the number of edges in G.Note that 3SAT is reducible to gapCSPf1;:::;7g� for �(m) = 1=m; see Exercise 9.19.Our goal is to reduce 3SAT (or rather gapCSPf1;:::;7g� ) to gapCSP�c , for some �xed �-nite � and constant c > 0. The PCP Theorem will follow by showing a simple PCPsystem for gapCSP�c ; see Exercise 9.21. (The relationship between constraint satis-faction problems and the PCP Theorem is further discussed in Section 9.3.3.) Thedesired reduction of gapCSP�1=m to gapCSP�
(1) is obtained by iteratively applyingthe following reduction logarithmically many times.Lemma 9.19 (amplifying reduction of gapCSP to itself): For some �nite � andconstant c > 0, there exists a polynomial-time reduction of gapCSP� to itself suchthat the following conditions hold with respect to the mapping of any instance (G;�)to the instance (G0;�0).1. If vlt(G;�) = 0 then vlt(G0;�0) = 0.2. vlt(G0;�0) � min(2 � vlt(G;�); c).3. jG0j = O(jGj).Proof Outline:29 The reduction consists of three steps. We �rst apply a pre-processing step that makes the underlying graph suitable for further analysis. Thevalue of vlt may decrease during this step by a constant factor. The heart of thereduction is the second step in which we may increase vlt by any desired constantfactor. The latter step also increases the alphabet �, and thus a post-processingstep is employed to regain the original alphabet (by using any inner PCP systems;e.g., the one presented in x9.3.2.1). Details follow.We �rst stress that the aforementioned � and c, as well as the auxiliary pa-rameters d and t (to be introduced in the following two paragraphs), are �xedconstants that will be determined such that various conditions (which arise in thecourse of our argument) are satis�ed. Speci�cally, t will be the last parameter tobe determined (and it will be made greater than a constant that is determined byall the other parameters).We start with the pre-processing step. Our aim in this step is to reduce theinput (G;�) of gapCSP� to an instance (G1;�1) such that G1 is a d-regular ex-pander graph.30 Furthermore, each vertex in G1 will have at least d=2 self-loops,29For details, see [63].30A d-regular graph is a graph in which each vertex is incident to exactly d edges. Looselyspeaking, an expander graph has the property that each moderately balanced cut (i.e., partitionof its vertex set) has relatively many edges crossing it. An equivalent de�nition, also used in theactual analysis, is that the second eigenvalue of the corresponding adjacency matrix has absolutevalue that is bounded away from d. For further details, see xE.2.1.1.



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 371the number of edges is preserved up to a constant factor (i.e., jG1j = O(jGj)), andvlt(G1;�1) = �(vlt(G;�)). This step is quite simple: see Exercise 9.22. Intu-itively, with respect to intersecting a �xed set of edges, a random (t-edge long)walk on the resulting graph G1 behave like a random sample of (t) edges, whilejG1j = O(jGj) and vlt(G1;�1) = 
(vlt(G;�)).
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The alphabet �0 as a labeling of the distance t = 3 neighborhoods,when repetitions are omitted. In this case d = 6 but the self-loops arenot shown. The two-sided arrow indicates one of the edges in G1 thatwill contribute to the edge constraint between u and w in (G2;�2).Figure 9.3: The amplifying reduction in the second proof of the PCP Theorem.The main step is aimed at increasing the fraction of violated constraints by asu�ciently large constant factor. This is done by reducing the instance (G1;�1) ofgapCSP� to an instance (G2;�2) of gapCSP�0 such that �0 = �dt . Speci�cally, thevertex set of G2 is identical to the vertex set of G1, and each t-edge long path in G1is replaced by a corresponding edge in G2, which is thus a dt-regular graph. Theconstraints in �2 are the natural ones, viewing each element of �0 as a �-labelingof the (\distance � t") neighborhood of a vertex (see Figure 9.3), and checkingthat two such labelings are consistent as well as satisfy �1. That is, suppose thatthere is a path of length at most t in G1 going from vertex u to vertex w andpassing through vertex v. Then, there is an edge in G2 between vertices u and w,and the constraint associated with it with mandates that the entries corresponding



372 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSto vertex v in the �0-labeling of vertices u and w are identical. In addition, if theG1-edge (v; v0) is on a path of length at most t starting at u then the correspondingedge in G2 is associated a constraint that enforces the constraint that is associatedto (v; v0) in �1.Clearly, if vlt(G1;�1) = 0 then vlt(G2;�2) = 0. The interesting fact isthat the fraction of violated constraints increases by a factor of 
(pt); that is,vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c). Here we merely provide a rough intu-ition and refer the interested reader to [63]. The intuition is that any �0-labelingto the vertices of G2 must either be consistent with a �-labeling of G1 or violatethe \equality constraints" of many edges in G2. Focusing on the �rst case andrelying on the hypothesis that G1 is an expander, it follows that the set of violatededge-constraints (of �1) with respect to the aforementioned �-labeling causes manymore edge-constraints of �2 to be violated (by virtue of the latter enforcing manyedge-constraints of �1). The point is that any set F of edges of G1 is likely toappear on a min(
(t) � jF j=jG1j;
(1)) fraction of the edges of G2 (i.e., t-paths ofG1). (Note that the claim would have been obvious if G1 were a complete graph,but it also holds for an expander.)31The factor of 
(pt) gained in the second step makes up for the constant factorlost in the �rst step (as well as the constant factor to be lost in the last step).Furthermore, for a suitable choice of the constant t, the aforementioned gain yieldsan overall constant factor ampli�cation (of vlt). However, so far we obtainedan instance of gapCSP�0 rather than an instance of gapCSP�, where �0 = �dt .The purpose of the last step is to reduce the latter instance to an instance ofgapCSP�. This is done by viewing the instance of gapCSP�0 as a (weak) PCPsystem (analogously to Exercise 9.21), and composing it with an inner-veri�erusing the proof composition paradigm outlined in x9.3.2.2. We stress that theinner-veri�er used here needs only handle instances of constant size (i.e., havingdescription length O(dt log j�j)), and so the veri�er presented in x9.3.2.1 will do.The resulting PCP-system uses randomness r def= log2 jG2j + O(dt log j�j)2 and aconstant number of binary queries, and has rejection probability 
(vlt(G2;�2)),which is independent of the choice of the constant t. As in Exercise 9.19, for � =f0; 1gO(1), we can easily obtain an instance of gapCSP� that has a 
(vlt(G2;�2))fraction of violated constraints. Furthermore, the size of the resulting instance isO(2r) = O(jG2j), because d and t are constants. This completes the last step aswell as the (outline of the) proof of the entire lemma.9.3.3 PCP and ApproximationThe characterization of NP in terms of probabilistically checkable proofs plays acentral role in the study of the complexity of approximation problems (cf., Sec-tion 10.1.1). To demonstrate this relationship, we �rst note that a PCP systemV gives rise to a natural approximation problem; that is, on input x, the taskis approximating the probability that V accepts x when given oracle access to31We also note that due to a technical di�culty it is easier to establish the claimed bound of
(pt � vlt(G1;�1)) rather than 
(t � vlt(G1;�1)).



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 373the best possible � (i.e., we wish to approximate max�fPr[V �(x) = 1]g). Thus,if S 2 PCP(r; q) then deciding membership in S is reducible to approximatingthe maximum among exp(2r+q) quantities (corresponding to all e�ective oracles),where each quantity can be evaluated in time 2r �poly. Note that an approximationup to a constant factor (of 2) will do.Note that the foregoing approximation problem is parameterized by a PCPveri�er V , and its instances are given their value with respect to this veri�er (i.e.,the instance x has value max�fPr[V �(x) = 1]g). This per se does not yield a\natural" approximation problem. In order to link PCP systems with naturalapproximation problems, we take a closer look at the approximation problem as-sociated with PCP(r; q). For simplicity, we focus on the case of non-adaptive PCPsystems (i.e., all the queries are determined beforehand based on the input andthe internal coin tosses of the veri�er). Fixing an input x for such a system, weconsider the 2r(jxj) formulae that represent the decision of the veri�er on each ofthe possible outcomes of its coin tosses after inspecting the corresponding bits inthe proof oracle. That is, each of these 2r(jxj) formulae depends on q(jxj) Booleanvariables that represent the values of the corresponding bits in the proof oracle.Thus, if x is a yes-instance then there exists a truth assignment (to these variables)that satis�es all 2r(jxj) formulae, whereas if x is a no-instance then there exists notruth assignment that satis�es more than 2r(jxj)�1 formulae. Furthermore, in thecase that r(n) = O(log n), given x, we can construct the corresponding sequence offormulae in polynomial-time. Hence, the PCP Theorem (i.e., Theorem 9.16) yieldsNP-hardness results regarding the approximation of the number of simultaneouslysatis�able Boolean formulae. When focusing on the case that q is constant, thismotivates the following de�nition.De�nition 9.20 (gap problems for SAT and generalized-SAT): For constants q 2N and " > 0, the promise problem gapGSATq" consists of instances that are eacha sequence of q-variable Boolean formulae. The yes-instances are sequences thatare simultaneously satis�able, whereas the no-instances are sequences for which noBoolean assignment satis�es more than a 1 � " fraction of the formulae in thesequence. The promise problem gapSATq" is de�ned analogously, except that in thiscase each instance is a sequence of formulae that are each a single disjunctiveclause.Indeed, each instance of gapSATq" is naturally viewed as q-CNF formulae, and weconsider an assignment that satis�es as many clauses (of the input CNF) as possible.As hinted, NP � PCP(log; O(1)) implies that gapGSATO(1)1=2 is NP-complete, whichin turn implies that for some constant " > 0 the problem gapSAT3" is NP-complete.The converses hold too. All these claims are stated and proved next.Theorem 9.21 (equivalent formulations of the PCP Theorem). The followingthree conditions are equivalent:1. The PCP Theorem: there exists a constant q such that NP � PCP(log; q).2. There exists a constant q such that gapGSATq1=2 is NP-hard.



374 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS3. There exists a constant " > 0 such that gapSAT3" is NP-hard.Note that Items 2 and 3 make no reference to PCP. Their equivalence to Item 1manifests that the hardness of approximating natural optimization problems lies atthe heart of the PCP Theorem. In general, probabilistically checkable proof systemsfor NP yield strong inapproximability results for various classical optimizationproblems (cf., Exercise 9.14 and Section 10.1.1).Proof: We �rst show that the PCP Theorem implies the NP-hardness of gapGSAT.We may assume, without loss of generality, that, for some constant q and everyS 2 NP , it holds that S 2 PCP(O(log); q) via a non-adaptive veri�er (becauseq adaptive queries can be emulated by 2q non-adaptive queries). We reduce S togapGSAT as follows. On input x, we scan all 2O(log jxj) possible sequence of outcomesof the veri�er's coin tosses, and for each such sequence of outcomes we determinethe queries made by the veri�er as well as the residual decision predicate (where thispredicate determines which sequences of answers lead this veri�er to accept). Thatis, for each random-outcome ! 2 f0; 1gO(log jxj), we consider the residual predicate,determined by x and !, that speci�es which q-bit long sequence of oracle answersmakes the veri�er accept x on coins !. Indeed, this predicate depends only on qvariables (which represent the values of the q corresponding oracle answers). Thus,we map x to a sequence of poly(jxj) formulae, each depending on q variables,obtaining an instance of gapGSATq. This mapping can be computed in polynomial-time, and indeed x 2 S (resp., x 62 S) is mapped to a yes-instance (resp., no-instance) of gapGSATq1=2.Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Speci�cally,gapGSATq1=2 reduces to gapSATq2�(q+1) , which in turn reduces to gapSAT3" for " =2�(q+1)=(q � 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT3",consider all possible conjunctions of 1=" disjunctive clauses in the given instance).We complete the proof by showing that Item 3 implies Item 1. (The sameproof shows that Item 2 implies Item 1.) In fact, we show that gapGSATq" is inPCP(O("�1 log); O(q=")), and do so by presenting a very natural PCP system. Inthis PCP system the proof oracle is supposed to be an satisfying assignment, andthe veri�er selects at random one of the (q-variable) formulae in the input sequence,and checks whether it is satis�ed by the (assignment given by the) oracle. Thisamounts to tossing logarithmically many coins and making q queries. This veri�eralways accepts yes-instances (when given access to an adequate oracle), whereaseach no-instances is rejected with probability at least " (no matter which oracle isused). To amplify the rejection probability (to the desired threshold of 1/2), weinvoke the foregoing veri�er O("�1) times.Gap amplifying reductions { a reection. Items 2 and 3 of Theorem 9.21assert the existence of \gap amplifying" reductions of problems like 3SAT to them-selves. These reductions map yes-instances to yes-instances (as usual), while map-ping no-instances to no-instances of a special type such that a \gap" is createdbetween the yes-instances and no-instances at the image of the reduction. For ex-ample, in the case of 3SAT, unsatis�able formulae are mapped to formulae that are



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 375not merely unsatis�able but rather have no assignment that satis�es more than a1� " fraction of the clauses. Thus, PCP constructions are essentially \gap ampli-fying" reductions.9.3.4 More on PCP itself: an overviewWe start by discussing variants of the PCP characterization of NP, and next turnto PCPs having expressing power beyond NP. Needless to say, the latter systemshave super-logarithmic randomness complexity.9.3.4.1 More on the PCP characterization of NPInterestingly, the two complexity measures in the PCP-characterization of NPcan be traded o� such that at the extremes we get NP = PCP(log; O(1)) andNP = PCP(0; poly), respectively.Proposition 9.22 For every S 2 NP, there exists a logarithmic function ` suchthat, for every integer function k that satis�es 0� k(n)� `(n), it holds that S 2PCP(`� k;O(2k)) � NP.Proof Sketch: By Theorem 9.16, we have S 2 PCP(`; O(1)). Consider an emula-tion of the corresponding veri�er in which we try all possibilities for the k(n)-bitlong pre�x of its random-tape. Lastly, recall that PCP(log; poly) � NP .Following the establishment of Theorem 9.16, numerous variants of the PCPCharacterization of NP were explored. These variants refer to a �ner evaluation ofvarious parameters of probabilistically checkable proof systems (for sets in NP).Following is a brief summary of some of these studies.32The length of PCPs. Recall that the e�ective length of the oracle in anyPCP(log; log) system is polynomial (in the length of the input). Furthermore,in the PCP systems underlying the proof of Theorem 9.16 the queries refer only toa polynomially long pre�x of the oracle, and so the actual length of these PCPs forNP is polynomial. Remarkably, the length of PCPs for NP can be made nearly-linear (in the combined length of the input and the standard NP-witness), whilemaintaining constant query complexity, where by nearly-linear we mean linear upto a poly-logarithmic factor. (For details see [34, 63].) This means that a rel-atively modest amount of redundancy in the proof oracle su�ces for supportingprobabilistic veri�cation via a constant number of probes.The number of queries in PCPs. Theorem 9.16 asserts that a constant num-ber of queries su�ce for PCPs with logarithmic randomness and soundness errorof 1=2 (for NP). It is currently known that this constant is at most �ve, whereaswith three queries one may get arbitrary close to a soundness error of 1=2. The32With the exception of works that appeared after [86], we provide no references for the resultsquoted here. We refer the interested reader to [86, Sec. 2.4.4].



376 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSobvious trade-o� between the number of queries and the soundness error gives riseto the robust notion of amortized query complexity, de�ned as the ratio between thenumber of queries and (minus) the logarithm (to based 2) of the soundness error.For every " > 0, any set in NP has a PCP system with logarithmic randomnessand amortized query complexity 1+ " (cf. [114]), whereas only sets in P have PCPsof logarithmic randomness and amortized query complexity 1 (or less).The free-bit complexity. The motivation to the notion of free bits came fromthe PCP{to{MaxClique connection (see Exercise 9.14 and [27, Sec. 8]), but webelieve that this notion is of independent interest. Intuitively, this notion distin-guishes between queries for which the acceptable answer is determined by previ-ously obtained answers (i.e., the veri�er compares the answer to a value deter-mined by the previous answers) and queries for which the veri�er only recordsthe answer for future usage. The latter queries are called free (because any an-swer to them is \acceptable"). For example, in the linearity test (see x9.3.2.1) the�rst two queries are free and the third is not (i.e., the test accepts if and only iff(x) + f(y) = f(x + y)). The amortized free-bit complexity is de�ne analogouslyto the amortized query complexity. Interestingly, NP has PCPs with logarithmicrandomness and amortized free-bit complexity less than any positive constant.Adaptive versus non-adaptive veri�ers. Recall that a PCP veri�er is callednon-adaptive if its queries are determined solely based on its input and the outcomeof its coin tosses. (A general veri�er, called adaptive, may determine its queries alsobased on previously received oracle answers.) Recall that the PCP Characterizationof NP (i.e., Theorem 9.16) is established using a non-adaptive veri�er; however, itturns out that adaptive veri�ers are more powerful than non-adaptive ones in termsof quantitative results: Speci�cally, for PCP veri�ers making three queries andhaving logarithmic randomness complexity, adaptive queries provide for soundnesserror at most 0:51 (actually 0:5 + " for any " > 0) for any set in NP , whereasnon-adaptive queries provide soundness error 5=8 (or less) only for sets in P .Non-binary queries. Our de�nition of PCP allows only binary queries. Cer-tainly, non-binary queries can always be coded as binary ones, but the converse isnot necessarily valid, in particular in adversarial settings. Note that the soundnesscondition constitutes an implicit adversarial setting, where a bad proof may bethought of as being selected by an adversary. Thus, when several binary queriesare packed into one non-binary query, the adversary need not respect the packing(i.e., it may answer inconsistently on the same binary query depending on the otherqueries packed with it). For this reason, \parallel repetition" is highly non-trivialin the PCP setting. Still, a Parallel Repetition Theorem that refers to indepen-dent invocations of the same PCP is known, but it is not applicable for obtainingsoundness error smaller than a constant (while preserving logarithmic randomness).Nevertheless, using adequate \consistency tests" one may construct PCP systemsfor NP using logarithmic randomness, a constant number of (non-binary) queries



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 377and soundness error exponential in the length of the answers. (Currently, this isknown only for sub-logarithmic answer lengths.)9.3.4.2 PCP with super-logarithmic randomnessOur focus in x9.3.4.1 was on the important case where the veri�er tosses logarith-mically many coins, and hence the \e�ective proof length" is polynomial. Here wemention that the PCP Theorem scales up.33Theorem 9.23 (Theorem 9.16 { Generalized): Let t(�) be an integer function suchthat n<t(n)<2poly(n). Then, Ntime(t) � PCP(O(log t); O(1)).Recall that PCP(r; q) � Ntime(t), for t(n) = poly(n) � 2r(n). Thus, the NtimeHierarchy implies a hierarchy of PCP(�; O(1)) classes, for randomness complexityranging between logarithmic and polynomial functions.Chapter Notes(The following historical notes are quite long and still they fail to properly discussseveral important technical contributions that played an important role in the de-velopment of the area. For further details, the reader is referred to [86, Sec. 2.6.2].)Motivated by the desire to formulate the most general type of \proofs" thatmay be used within cryptographic protocols, Goldwasser, Micali and Racko� [105]introduced the notion of an interactive proof system. Although the main thrust oftheir work was the introduction of a special type of interactive proofs (i.e., onesthat are zero-knowledge), the possibility that interactive proof systems may be morepowerful from NP-proof systems was pointed out in [105]. Independently of [105],Babai [16] suggested a di�erent formulation of interactive proofs, which he calledArthur-Merlin Games. Syntactically, Arthur-Merlin Games are a restricted formof interactive proof systems, yet it was subsequently shown that these restrictedsystems are as powerful as the general ones (cf., [107]). The speed-up result (i.e.,AM(2f) � AM(f)) is due to [20] (improving over [16]).The �rst evidence of the power of interactive proofs was given by Goldreich, Mi-cali, and Wigderson [96], who presented an interactive proof system for Graph Non-Isomorphism (Construction 9.3). More importantly, they demonstrated the gen-erality and wide applicability of zero-knowledge proofs: Assuming the existence ofone-way function, they showed how to construct zero-knowledge interactive proofsfor any set in NP (Theorem 9.11). This result has had a dramatic impact onthe design of cryptographic protocols (cf., [97]). For further discussion of zero-knowledge and its applications to cryptography, see Appendix C. Theorem 9.12(i.e., ZK = IP) is due to [30, 123].33This scaling up is not straightforward, since we wish to maintain polynomial-time veri�cation.The key point is that the CNF formulae that represent the computation of Ntime are highlyuniform, and thus the corresponding Boolean functions (and their low degree extensions) can beevaluated in polynomial-time.



378 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSProbabilistically checkable proof (PCP) systems are related to multi-prover in-teractive proof systems, a generalization of interactive proofs that was suggestedby Ben-Or, Goldwasser, Kilian and Wigderson [31]. Again, the main motivationcame from the zero-knowledge perspective; speci�cally, introducing multi-proverzero-knowledge proofs for NP without relying on intractability assumptions. Yet,the complexity theoretic prospects of the new class, denotedMIP, have not beenignored.The amazing power of interactive proof systems has been demonstrated by usingalgebraic methods. The basic technique has been introduced by Lund, Fortnow,Karlo� and Nisan [151], who applied it to show that the polynomial-time hierarchy(and actually P#P) is in IP . Subsequently, Shamir [192] used the technique toshow that IP = PSPACE , and Babai, Fortnow and Lund [17] used it to show thatMIP = NEXP . (Our entire proof of Theorem 9.4 follows [192].)The aforementioned multi-prover proof system of Babai, Fortnow and Lund [17](hereafter referred to as the BFL proof system) has been the starting point for fun-damental developments regarding NP . The �rst development was the discoverythat the BFL proof system can be \scaled-down" from NEXP to NP . This im-portant discovery was made independently by two sets of authors: Babai, Fortnow,Levin, and Szegedy [18] and Feige, Goldwasser, Lov�asz, and Safra [69]. However,the manner in which the BFL proof is scaled-down is di�erent in the two papers,and so are the consequences of the scaling-down.Babai et. al. [18] start by considering (only) inputs encoded using a special error-correcting code. The encoding of strings, relative to this error-correcting code, canbe computed in polynomial time. They presented an almost-linear time algorithmthat transforms NP-witnesses (to inputs in a set S 2 NP) into transparent proofsthat can be veri�ed (as vouching for the correctness of the encoded assertion)in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babaiet. al. [18] stress the practical aspects of transparent proofs; speci�cally, for rapidlychecking transcripts of long computations.In contrast, in the proof system of Feige et. al. [69, 70] the veri�er stayspolynomial-time and only two more re�ned complexity measures (i.e., the ran-domness and query complexities) are reduced to poly-logarithmic. This eliminatesthe need to assume that the input is in a special error-correcting form, and yieldsa re�ned (quantitative) version of the notion of probabilistically checkable proofsystems (introduced in [76]), where the re�nement is obtained by specifying therandomness and query complexities (see De�nition 9.14). Hence, whereas the BFLproof system [17] can be reinterpreted as establishing NEXP = PCP(poly; poly),the work of Feige et. al. [70] establishes NP � PCP(f; f), where f(n) = O(log n �log logn). (In retrospect, we note that the work of Babai et. al. [18] implies thatNP � PCP(log; polylog), but the latter terminology was not available at thetime.)Interest in the new complexity class became immense since Feige et. al. [69, 70]demonstrated its relevance to proving the intractability of approximating somecombinatorial problems (speci�cally, for MaxClique). When using the PCP{to{MaxClique connection established by Feige et. al., the randomness and query com-



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 379plexities of the veri�er (in a PCP system for an NP-complete set) relate to thestrength of the negative results obtained for approximation problems. This factprovided a very strong motivation for trying to reduce these complexities and ob-tain a tight characterization of NP in terms of PCP(�; �). The obvious challengewas showing that NP equals PCP(log; log). This challenge was met by Arora andSafra [14]. Actually, they showed that NP = PCP(log; q), where q(n) = o(log n).Hence, a new challenge arose; namely, further reducing the query complexity {in particular, to a constant { while maintaining the logarithmic randomness com-plexity. Again, additional motivation for this challenge came from the relevance ofsuch a result to the study of approximation problems. The new challenge was metby Arora, Lund, Motwani, Sudan and Szegedy [13], and is captured by the PCPCharacterization Theorem, which asserts that NP = PCP(log; O(1)).Indeed the PCP Characterization Theorem is a culmination of a sequence ofimpressive works [151, 17, 18, 70, 14, 13]. These works are rich in innovative ideas(e.g., various arithmetizations of SAT as well as various forms of proof composi-tion) and employ numerous techniques (e.g., low-degree tests, self-correction, andpseudorandomness).Our overview of the original proof of the PCP Theorem (in x9.3.2.1{9.3.2.2) isbased on [13, 14].34 The alternative proof outlined in x9.3.2.3 is due to Dinur [63].We also mention some of the ideas and techniques involved in deriving even strongervariants of the PCP Theorem (which are surveyed in x9.3.4.1). These includethe Parallel Repetition Theorem [173], the use of the Long-Code [27], and theapplication of Fourier analysis in this setting [111, 112].Computationally-Sound Proof Systems. Argument systems were de�ned byBrassard, Chaum and Cr�epeau [46], with the motivation of providing perfect zero-knowledge arguments (rather than zero-knowledge proofs) for NP . A few yearslater, Kilian [136] demonstrated their signi�cance beyond the domain of zero-knowledge by showing that, under some reasonable intractability assumptions, ev-ery set in NP has a computationally-sound proof in which the randomness andcommunication complexities are poly-logarithmic.35 Interestingly, these argumentsystems rely on the fact that NP � PCP(f; f), for f(n) = poly(logn). We men-tion that Micali [154] suggested a di�erent type of computationally-sound proofsystems (which he called CS-proofs).Final comment: The current chapter is a revision of [86, Chap. 2]. In particular,more details are provided here for the main topics, whereas numerous secondarytopics discussed in [86, Chap. 2] are not mentioned here (or are only briey men-tioned here). In addition, a couple of the research directions that were mentionedin [86, Sec. 2.4.4] received considerable attention in the period that elapsed, andimproved results are currently known. In particular, the interested reader is re-ferred to [33, 34, 63] (for a study of the length of PCPs) and to [114] (for a study34Our presentation also bene�ts from the notions of PCPs of proximity and robustness, putforward in [33, 64].35We comment that interactive proofs are unlikely to have such low complexities; see [102].



380 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSof their amortized query complexity).ExercisesExercise 9.1 (parallel error-reduction for interactive proof systems) Provethat the error probability (in the soundness condition) can be reduced by parallelrepetitions of the proof system.Guideline: As a warm-up consider �rst the case of public-coin interactive proof systems.Next, note that the analysis generalizes to arbitrary interactive proof systems. (Extrahint: As a mental experiment, consider a \powerful veri�er" that emulates the original veri�erwhile behaving as in the public-coin model.) A proof appears in [86, Apdx. C.1].Exercise 9.2 Complete the details of the proof that coNP � IP (i.e., the �rstpart of the proof of Theorem 9.4). In particular, regarding the proof of non-satis�ability of a CNF with n variables and m clauses, what is the length of themessages sent by the two parties? What is the soundness error?Exercise 9.3 Present a n=O(logn)-round interactive proof for the non-satis�abilityof a CNF having n variables.Guideline: Modify the (�rst part of the) proof of Theorem 9.4, by stripping O(log n)summations in each round.Exercise 9.4 (an interactive proof system for #P) Using the main part ofthe proof of Theorem 9.4, present a proof system for the counting set of Eq. (9.5).Guideline: Use a slightly di�erent arithmetization of CNF formulae. Speci�cally, insteadof replacing the clause x _ :y _ z by the term (x+ (1 � y) + z), replace it by the term(1� ((1� x) � y � (1� z))).Exercise 9.5 Show that QBF can be reduced to a special form of QBF in which novariable appears both to the left and the right of more than one universal quanti�er.Guideline: Consider a process (which proceeds from left to right) of \refreshing" vari-ables after each universal quanti�er. Let �(x1; :::; xs; y; xs+1; :::; xs+t) be a quanti�er-freeboolean formula and let Qs+1; :::; Qs+t be an arbitrary sequence of quanti�ers. Then, wereplace the quanti�ed (sub-)formula8yQs+1xs+1 � � � Qs+txs+t �(x1; :::; xs; y; xs+1; :::; xs+t)by the (sub-)formula8y9x01 � � � 9x0s[(^si=1(x0i = xi)) ^ Qs+1xs+1 � � � Qs+txs+t �(x01; :::; x0s; y; xs+1; :::; xs+t) ] :Note that the variables x1; :::; xs do not appear to the right of the quanti�er Qs+1 inthe replaced formula, and that the length of the replaced formula grows by an additiveterm of O(s). This process of refreshing variables is applied from left to right on theentire sequence of universal quanti�ers (except the inner one, for which this refreshing isuseless).3636For example, 9z18z29z38z49z58z6 �(z1; z2; z3; z4; z5; z6)



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 381Exercise 9.6 Prove that if two integers in [0;M ] are di�erent then they must bedi�erent modulo most of the primes in the interval [3; L], where L = poly(logM)].Prove the same for the interval [L; 2L].Guideline: Let a 6= b 2 [0;M ] and let P1; :::; Pt be an enumeration of the primes in theinterval [3; poly(logM)] such that for every i = 1; :::; t it holds that a � b (mod Pi).Using the Chinese Reminder Theorem, prove that Q def= Qti=1 Pi �M (because otherwisea = b follows by combining a � b (mod Q) with the hypothesis a; b 2 [0;M ]). It followsthat t < log2M . Using a lower-bound on the density of prime numbers, the claim follows.Exercise 9.7 (on interactive proofs with two-sided error (following [78]))Let IP 0(f) denote the class of sets having a two-sided error interactive proof systemin which a total of f(jxj) messages are exchanged on common input x. Similarly,let AM0 denote the public-coin version of IP 0.1. Establish IP 0(f) � AM0(f + 3) by noting that the proof of Theorem F.2,which establishes IP(f) � AM(f+3), extends to the two-sided error setting.2. Prove that AM0(f) � AM0(f + 1) by extending the ideas underlying theproof of Theorem 6.7, which actually establishes that BPP � AM(1) (whereBPP = AM0(0)).Using the Round Speed-up Theorem (i.e., Theorem F.3), conclude that, for everyfunction f : N ! N n f1g, it holds that IP 0(f) = AM(f) = IP(f).Guideline: We focus on establishing AM0(f) � AM(f +1) for arbitrary f (rather thanfor f � 0). Consider an optimal prover strategy and the set of veri�er coins that make theveri�er accept any �xed yes-instance. Applying the ideas underlying the transformationof BPP toMA = AM(1), we obtain the desired result. For further details, see [78].Exercise 9.8 In continuation to Exercise 9.7, show that IP 0(f) = IP(f) for everyfunction f : N ! N (including f � 1).Guideline: Focus on establishing IP 0(1) = IP(1), which is identical to Part 2 of Exer-cise 6.12. Note that the relevant classes de�ned in Exercise 6.12 coincide with IP(1) andIP 0(1); that is,MA = IP(1) andMA(2) = IP 0(1).Exercise 9.9 (on the role of soundness error in zero-knowledge proofs) Provethat if S has a zero-knowledge interactive proof system with perfect soundness (i.e.,soundness error equals zero) then S 2 BPP.is �rst replaced by9z18z29z01 [(z01 = z1) ^ 9z38z49z58z6 �(z01; z2; z3; z4; z5; z6)]and next (written as 9z18z029z01 [(z01 = z1) ^ 9z038z049z058z06 �(z01; z02; z03; z04; z05; z06)]) is replaced by9z18z029z01 [(z01 = z1) ^ 9z038z049z001 9z002 9z003[(^3i=1(z00i = z0i)) ^ 9z058z06�(z001 ; z002 ; z003 ; z04; z05; z06)]]:Thus, in the resulting formula, no variable appears both to the left and to the right of more thana single universal quanti�er.



382 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGuideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er. Consider the algorithm that on input x, accepts x if and only if M(x) representsa valid view of the veri�er in an accepting interaction (i.e., an interaction that leads theveri�er to accept the common input x). Use the simulation condition to analyze the casex 2 S, and the perfect soundness hypothesis to analyze the case x 62 S.Exercise 9.10 (on the role of interaction in zero-knowledge proofs) Provethat if S has a zero-knowledge interactive proof system with a uni-directional com-munication then S 2 BPP.Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er, and let M 0(x) denote the part of this view that consists of the prover message.Consider the algorithm that on input x, obtains m M 0(x), and emulates the veri�er'sdecision on input x and messagem. Note that this algorithm ignores the part ofM(x) thatrepresents the veri�er's internal coin tosses, and uses fresh veri�er's coins when decidingon (x;m).Exercise 9.11 (on the e�ective length of PCP oracles) Suppose that V isa PCP veri�er of query complexity q and randomness complexity r. Show thatfor every �xed x, the number of possible locations in the proof oracle that areexamined by V on input x (when considering all possible internal coin tosses of Vand all possible answers it may receive) is upper-bounded by 2q(jxj)+r(jxj). Showthat if V is non-adaptive then the upper-bound can be improved to 2r(jxj) � q(jxj).(Hint: In the adaptive case, the ith query is determined by V 's internal coin tosses and theprevious i�1 answers. In the non-adaptive case, all q queries are determined by V 's internal cointosses.)Exercise 9.12 (upper-bounds on the complexity of PCPs) Suppose that aset S has a PCP of query complexity q and randomness complexity r. Show thatS can be decided by a non-deterministic machine that, on input of length n, makesat most 2r(n) � q(n) non-deterministic37 steps and halts within a total number of2r(n) � poly(n) steps. Thus, S 2 Ntime(2r � poly) \Dtime(22rq � poly).Guideline: For each input x 2 S and each possible value ! 2 f0; 1gr(jxj) of the random-tape, we consider a sequence of q(jxj) bit values that represent a sequence of oracle answersthat make the veri�er accept. Indeed, for �xed x and ! 2 f0; 1gr(jxj), each setting of theq(jxj) oracle answers determine the computation of the corresponding veri�er (includingthe queries it makes).Exercise 9.13 (on the e�ective randomness of PCPs) Suppose that a set Shas a PCP of query complexity q that utilizes proof oracles of length `. Showthat, for every constant " > 0, the set S has a \non-uniform" PCP of querycomplexity q, soundness error 0:5 + " and randomness complexity r such thatr(n) = O(1) + log2(`(n) +n). By a \non-uniform PCP" we mean one in which theveri�er is a probabilistic polynomial-time oracle machine that is given direct accessto a non-uniform poly(`)-bit long advice.37See x4.2.1.3 for de�nition of non-deterministic machines.



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 383Guideline: Consider a PCP veri�er V as in the hypothesis, and denote its randomnesscomplexity by rV . We construct a non-uniform veri�er V 0 that, on input of length n,obtains as advice a set Rn � f0; 1grV (n) of cardinality O((`(n) + n)="2), and emulates Von a uniformly selected element of Rn. Show that for a random Rn of the said size, theveri�er V 0 satis�es the claims of the exercise.(Extra hint: Fixing any input x 62 S and any oracle � 2 f0; 1g`(jxj), upper-bound the probabilitythat a random set Rn causes V 0 to accept x with probability 0:5 + " when using the oracle �.)Exercise 9.14 (The FGLSS-reduction [70]) For any S 2 PCP(r; q), considerthe following mapping of instances for S to instances of the Independent Setproblem. The instance x is mapped to a graph Gx = (Vx; Ex), where Vx �f0; 1gr(jxj)+q(jxj) consists of pairs (!; �) such that the PCP veri�er accepts the in-put x, when using coins ! 2 f0; 1gr(jxj) and receiving the answers � = �1 � � ��q(jxj)(to the oracle queries determined by x, r and the previous answers). Note thatVx contains only accepting \views" of the veri�er. The set Ex consists of edgesthat connect vertices that represents inconsistent view of the said veri�er; that is,the vertex v = (!; �1 � � ��q(jxj)) is connected to the vertex v0 = (!0; �01 � � ��0q(jxj))if there exists i and i0 such that �i 6= �0i and qxi (v) = qxi0(v0), where qxi (v) (resp.,qxi0(v0)) denotes the i-th (resp., i0-th) query of the veri�er on input x, when us-ing coins ! (resp., !0) and receiving the answers �1 � � ��i�1 (resp., �01 � � ��0i0�1).In particular, for every ! 2 f0; 1gr(jxj) and � 6= �0, if (!; �); (!; �0) 2 Vx, then((!; �); (!; �0)) 2 Ex.1. Prove that the mapping x 7! Gx can be computed in time that is polynomialin 2r(jxj)+q(jxj) � jxj.(Note that the number of vertices in Gx equals 2r(jxj)+f(jxj), where f � q isthe free-bit complexity of the PCP veri�er.)2. Prove that, for every x, the size of the maximum independent set in Gx is atmost 2r(jxj).3. Prove that if x 2 S then Gx has an independent set of size 2r(jxj).4. Prove that if x 62 S then the size of the maximum independent set in Gx isat most 2r(jxj)�1.In general, denoting the PCP veri�er by V , prove that the size of the maximumindependent set in Gx is exactly 2r(jxj) �max�fPr[V �(x) = 1]g. (Note the similarityto the proof of Proposition 2.25.)Show that the PCP Theorem implies that the size of the maximum independent set(resp., clique) in a graph is NP-hard to approximate to within any constant factor.Guideline: Note that an independent set in Gx corresponds to a set of coins R and apartial oracle �0 such that V accepts x when using coins in R and accessing any oraclethat is consistent with �0. The FGLSS reduction creates a gap of a factor of 2 betweenyes and no-instances of S (having a standard PCP). Larger factors can be obtained byconsidering a PCP that results from repeating the original PCP for a constant number oftimes. The result for Clique follows by considering the complement graph.



384 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSExercise 9.15 Using the ideas of Exercise 9.14, prove that, for any t(n) = o(logn),it holds that NP � PCP(t; t) implies that P = NP.Guideline: We only use the fact that the said reduction reduces PCP to instances ofthe Clique problem (and ignore the fact that we actually get a stronger reduction to a\gapClique" problem). Furthermore, when applies to problems in NP � PCP(t; t), thisreduction runs in polynomial-time. The key observation is that this reduction maps in-stances of the Clique problem (which is inNP � PCP(o(log); o(log))) to shorter instancesof the same problem (because 2o(log n) � n). Thus, iteratively applying the reduction, wecan reduce instances of Clique to instances of constant size. This yields a reduction ofClique to a �nite set, and NP = P follows (by the NP-completeness of Clique).Exercise 9.16 (a simple but partial analysis of the BLR Linearity Test)For Abelian groups G and H , consider functions from G to H . For such a (generic)function f , consider the linearity (or rather homomorphism) test that selects uni-formly r; s 2 G and checks that f(r)+f(s) = f(r+s). Let �(f) denote the distanceof f from the set of homomorphisms (of G to H); that is, �(f) is the minimumtaken over all homomorphisms h : G ! H of Prx2G[f(x) 6= h(x)]. Using the fol-lowing guidelines, prove that the probability that the test rejects f , denoted "(f),is at least 3�(f)� 6�(f)2.1. Suppose that h is the homomorphism closest to f (i.e., �(f) = Pr[f(x) 6=h(x)]). Prove that "(f) = Prx;y2G[f(x) + f(y) 6= f(x+ y)] is lower-boundedby 3 � Prx;y[f(x) 6=h(x) ^ f(y)=h(y) ^ f(x+ y)=h(x+ y)].(Hint: consider three out of four disjoint cases that are possible when f(x)+f(y) 6=f(x+y),where the three cases refer to the disagreement of h and f on exactly one out of the threerelevant points.)2. Prove that Prx;y[f(x) 6=h(x)^f(y)=h(y)^f(x+y)=h(x+y)] � �(f)�2�(f)2.(Hint: lower-bound the said probability by Prx;y[f(x) 6= h(x)]�(Prx;y[f(x) 6= h(x)^f(y) 6=h(y)] + Prx;y [f(x) 6= h(x) ^ f(x+ y) 6= h(x+ y)]).)Note that the lower-bound "(f) � 3�(f) � 6�(f)2 increases with �(f) only in thecase that �(f) � 1=4. Furthermore, the lower-bound is useless in the case that�(f) � 1=2. Thus an alternative lower-bound is needed in case �(f) approaches1=2 (or is larger than it); see Exercise 9.17.Exercise 9.17 (a better analysis of the BLR Linearity Test (cf. [38])) In con-tinuation to Exercise 9.16, use the following guidelines in order to prove that"(f) � min(1=7; �(f)=2). Speci�cally, focusing on the case that "(f) < 1=7, showthat f is 2"(f)-close to some homomorphism (and thus "(f) � �(f)=2).1. De�ne the vote of y regarding the value of f at x as �y(x) def= f(x+y)�f(y), andde�ne �(x) as the corresponding plurality vote (i.e., �(x) def= argmaxv2Hfjfy2G : �y(x)=vgjg).Prove that, for every x 2 G, it holds that Pry[�y(x) = �(x)] � 1� 2"(f).



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 385Extra guideline: Fixing x, call a pair (y1; y2) good if f(y1) + f(y2 � y1) = f(y2)and f(x+y1)+f(y2�y1) = f(x+y2). Prove that, for any x, a random pair (y1; y2)is good with probability at least 1� 2"(f). On the other hand, for a good (y1; y2),it holds that �y1(x) = �y2(x). Show that the graph in which edges correspond togood pairs must have a connected component of size at least (1� 2"(f)) � jGj. Notethat �y(x) is identical for all vertices y in this connected component, which in turncontains a majority of all y's in G.2. Prove that � is a homomorphism; that is, prove that, for every x; y 2 G, itholds that �(x) + �(y) = �(x + y).Extra guideline: Prove that �(x) + �(y) = �(x + y) holds by considering thesomewhat �ctitious expression Prr2G[�(x) + �(y) 6= �(x+ y)], and showing that itis strictly smaller than 1 (and hence �(x)+�(y) 6= �(x+ y) is false). Upper-boundthe probabilistic expression byPrr[�(x) 6=f(x+ r)� f(r)_ �(y) 6=f(r)� f(r� y)_ �(x+ y) 6=f(x+ r)� f(r� y)]:Use the union bound (and Item 1), and note that Prr[�(x) 6= f(x + r) � f(r)] <2"(f) < 1=3, whereas Prr[�(y) 6= f(r) � f(r � y)] = Prr0 [�(y) 6= f(y + r0) � f(r0)]and Prr[�(x+ y) 6= f(x+ r)� f(r� y)] = Prr0 [�(x+ y) 6= f(x+ y+ r0)� f(r0)] (bysubstituting r0 = r � y).3. Prove that f is 2"(f)-close to �.Extra guideline: Denoting B = fx2G : Pry2G[f(x) 6= �y(x)] � 1=2g, prove that"(f) � (1=2) � (jBj=jGj). Note that if x 2 G nB then f(x) = �(x).We comment that better bounds on the behavior of "(f) as a function of �(f) areknown.Exercise 9.18 (checking matrix identity) Let M be a non-zero m-by-n ma-trix over GF(p). Prove that Prr;s[r>Ms 6= 0] � (1� p�1)2, where r (resp., s) is arandom m-ary (resp., n-ary) vector.Guideline: Prove that if v 6= 0m then Prs[v>s = 0] = p�1, and that if M has rank �then Prr[r>M = 0n] = p��.Exercise 9.19 (3SAT and CSP with two variables) Show that 3SAT is reducibleto gapCSPf1;:::;7g� for �(m) = 1=m, where gapCSP is as in De�nition 9.18. Further-more, show that the size of the resulting gapCSP instance is linear in the length ofthe input formula.Guideline: Given an instance  of 3SAT, consider the graph in which vertices correspondto clauses of  , edges correspond to pairs of clauses that share a variable, and the con-straints represent the natural consistency condition regarding partial assignments thatsatisfy the clauses. See a similar construction in Exercise 9.14.Exercise 9.20 (CSP with two Boolean variables) In contrast to Exercise 9.19,prove that for every positive function � : N ! (0; 1] the problem gapCSPf0;1g� issolvable in polynomial-time.Guideline: Reduce gapCSPf0;1g� to 2SAT.



386 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSExercise 9.21 Show that, for any �xed �nite � and constant c > 0, the problemgapCSP�c is in PCP(log; O(1)).Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance(G;�), provides a trivial encoding of the assignment; that is, for a satisfying assignment � :V ! �, the oracle responds to the query (v; i) with the ith bit in the binary representationof �(v). Consider a veri�er that uniformly selects an edge (u; v) of G and checks theconstraint �(u;v) when applied to the values �(u) and �(v) obtained from the oracle. Thisveri�er makes log2 j�j queries and reject each no-instance with probability at least c.Exercise 9.22 For any constant � and d � 14, show that gapCSP� can be reducedto itself such that the instance at the target of the reduction is a d-regular expander,and the fraction of violated constraints is preserved up to a constant factor. Thatis, the instance (G;�) is reduced to (G1;�1) such that G1 is a d-regular expandergraph and vlt(G1;�1) = �(vlt(G;�)). Furthermore, make sure that jG1j =O(jGj) and that each vertex in G1 has at least d=2 self-loops.Guideline: First, replace each vertex of degree d0 > 3 by a 3-regular expander of sized0, and connect each of the original d0 edges to a di�erent vertex of this expander, thusobtaining a graph of maximum degree 4. Maintain the constraints associated with theoriginal edges, and associate the equality constraint (i.e., �(i; j) = 1 if and only if i = j)to each new edge (residing in any of the added expanders). Next, denoting the number ofvertices in the resulting graph by N1, add to this graph a 3-regular expander of size N1(while associating with these edges the trivially satis�ed constraint; i.e., �(i; j) = 1 for alli; j 2 �). Finally, add at least d=2 self-loops to each vertex (using again trivially satis�edconstraints), so to obtain a d-regular graph. Prove that this sequence of modi�cationsmay only decrease the fraction of violated constraints, and that the decrease is only bya constant factor. The latter assertion relies on the equality constraints associated withthe small expanders used in the �rst step.Exercise 9.23 (free bit complexity zero) Note that only sets in BPP havePCPs of query complexity zero. Furthermore, Exercise 9.12 implies that only setsin P have PCP systems of logarithmic randomness and query complexity zero.1. Show that only sets in P have PCP systems of logarithmic randomness andfree-bit complexity zero.(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bitcomplexity zero.)2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bitcomplexity zero (and linear randomness complexity).Exercise 9.24 (free bit complexity one) In continuation to Exercise 9.23, provethat only sets in P have PCP systems of logarithmic randomness and free-bit com-plexity one.Guideline: Consider an application of the FGLSS-reduction to a set having a PCP offree-bit complexity one and randomness complexity r. Note that the question of whetherthe resulting graph has an independent set of size 2r can be expressed as a 2CNF formulaof size poly(2r), and see Exercise 2.21.
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Appendix COn the Foundations ofModern CryptographyIt is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)Summary: Cryptography is concerned with the construction of com-puting systems that withstand any abuse: Such a system is constructedso to maintain a desired functionality, even under malicious attemptsaimed at making it deviate from this functionality.This appendix is aimed at presenting the foundations of cryptography,which are the paradigms, approaches and techniques used to concep-tualize, de�ne and provide solutions to natural security concerns. Itpresents some of these conceptual tools as well as some of the funda-mental results obtained using them. The emphasis is on the clari�cationof fundamental concepts, and on demonstrating the feasibility of solvingseveral central cryptographic problems. The presentation assumes ba-sic knowledge of algorithms, probability theory and complexity theory,but nothing beyond this.The appendix augments the treatment of one-way functions, pseudo-random generators and zero-knowledge proofs, which is given in Sec-tions 7.1, 8.3 and 9.2, respectively. (These augmentations are importantfor cryptography, but are less central to the main context of this bookand thus were omitted from the main text.) Using these basic tools,the appendix provides a treatment of basic cryptographic applicationssuch as Encryption, Signatures, and General Cryptographic Protocols.451



452APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.1 Introduction and PreliminariesThe vast expansion and rigorous treatment of cryptography is one of the majorachievements of theoretical computer science. In particular, concepts such as com-putational indistinguishability, pseudorandomness and zero-knowledge interactiveproofs were introduced, classical notions such as secure encryption and unforge-able signatures were placed on sound grounds, and new (unexpected) directionsand connections were uncovered. Indeed, modern cryptography is strongly linkedto complexity theory (in contrast to \classical" cryptography which is stronglyrelated to information theory).C.1.1 Modern cryptographyModern cryptography is concerned with the construction of information systemsthat are robust against malicious attempts to make these systems deviate fromtheir prescribed functionality. The prescribed functionality may be the private andauthenticated communication of information through the Internet, the holding ofincoercible and secret electronic voting, or conducting any \fault-resilient" multi-party computation. Indeed, the scope of modern cryptography is very broad, andit stands in contrast to \classical" cryptography (which has focused on the singleproblem of enabling secret communication over insecure communication media).The design of cryptographic systems is a very di�cult task. One cannot relyon intuitions regarding the \typical" state of the environment in which the systemoperates. For sure, the adversary attacking the system will try to manipulate theenvironment into \untypical" states. Nor can one be content with counter-measuresdesigned to withstand speci�c attacks, since the adversary (which acts after thedesign of the system is completed) will try to attack the schemes in ways thatare di�erent from the ones the designer had envisioned. Although the validity ofthe foregoing assertions seems self-evident, still some people hope that in practiceignoring these tautologies will not result in actual damage. Experience shows thatthese hopes rarely come true; cryptographic schemes based on make-believe arebroken, typically sooner than later.In view of the foregoing, we believe that it makes little sense to make assump-tions regarding the speci�c strategy that the adversary may use. The only assump-tions that can be justi�ed refer to the computational abilities of the adversary.Furthermore, the design of cryptographic systems has to be based on �rm foun-dations; whereas ad-hoc approaches and heuristics are a very dangerous way togo. A heuristic may make sense when the designer has a very good idea regard-ing the environment in which a scheme is to operate, yet a cryptographic schemehas to operate in a maliciously selected environment that typically transcends thedesigner's view.This appendix is aimed at presenting the foundations for cryptography. Thefoundations of cryptography are the paradigms, approaches and techniques used toconceptualize, de�ne and provide solutions to natural \security concerns". Solvinga cryptographic problem (or addressing a security concern) is a two-stage processconsisting of a de�nitional stage and a constructive stage. First, in the de�nitional



C.1. INTRODUCTION AND PRELIMINARIES 453stage, the functionality underlying the natural concern is to be identi�ed, and anadequate cryptographic problem has to be de�ned. Trying to list all undesired sit-uations is infeasible and prone to error. Instead, one should de�ne the functionalityin terms of operation in an imaginary ideal model, and require a candidate solutionto emulate this operation in the real, clearly de�ned, model (which speci�es theadversary's abilities). Once the de�nitional stage is completed, one proceeds toconstruct a system that satis�es the de�nition. Such a construction may use somesimpler tools, and its security is proved relying on the features of these tools. Inpractice, of course, such a scheme may need to satisfy also some speci�c e�ciencyrequirements.This appendix focuses on several archetypical cryptographic problems (e.g., en-cryption and signature schemes) and on several central tools (e.g., computationaldi�culty, pseudorandomness, and zero-knowledge proofs). For each of these prob-lems (resp., tools), we start by presenting the natural concern underlying it (resp.,its intuitive objective), then de�ne the problem (resp., tool), and �nally demon-strate that the problem may be solved (resp., the tool can be constructed). In thelatter step, our focus is on demonstrating the feasibility of solving the problem, noton providing a practical solution.Computational Di�cultyThe aforementioned tools and applications (e.g., secure encryption) exist only ifsome sort of computational hardness exists. Speci�cally, all these problems andtools require (either explicitly or implicitly) the ability to generate instances ofhard problems. Such ability is captured in the de�nition of one-way functions.Thus, one-way functions are the very minimum needed for doing most naturaltasks of cryptography. (It turns out, as we shall see, that this necessary conditionis \essentially" su�cient; that is, the existence of one-way functions (or augmenta-tions and extensions of this assumption) su�ces for doing most of cryptography.)Our current state of understanding of e�cient computation does not allow usto prove that one-way functions exist. In particular, if P = NP then no one-wayfunctions exist. Furthermore, the existence of one-way functions implies that NPis not contained in BPP � P (not even \on the average"). Thus, proving that one-way functions exist is not easier than proving that P 6= NP ; in fact, the formertask seems signi�cantly harder than the latter. Hence, we have no choice (at thisstage of history) but to assume that one-way functions exist. As justi�cation tothis assumption we can only o�er the combined beliefs of hundreds (or thousands)of researchers. Furthermore, these beliefs concern a simply stated assumption, andtheir validity follows from several widely believed conjectures which are central tovarious �elds (e.g., the conjectured intractability of integer factorization is centralto computational number theory).Since we need assumptions anyhow, why not just assume what we want (i.e.,the existence of a solution to some natural cryptographic problem)? Well, �rst weneed to know what we want: as stated above, we must �rst clarify what exactlywe want; that is, go through the typically complex de�nitional stage. But oncethis stage is completed, can we just assume that the de�nition derived can be met?



454APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYNot really: once a de�nition is derived, how can we know that it can at all be met?The way to demonstrate that a de�nition is viable (and that the correspondingintuitive security concern can be satis�ed at all) is to construct a solution basedon a better understood assumption (i.e., one that is more common and widelybelieved). For example, looking at the de�nition of zero-knowledge proofs, it isnot a-priori clear that such proofs exist at all (in a non-trivial sense). The non-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proofsystem for statements, regarding Quadratic Residuosity, which are believed to behard to verify (without extra information). Furthermore, contrary to prior beliefs,it was later shown that the existence of one-way functions implies that any NP-statement can be proved in zero-knowledge. Thus, facts that were not knownat all to hold (and even believed to be false), were shown to hold by reduction towidely believed assumptions (without which most of modern cryptography collapsesanyhow). To summarize, not all assumptions are equal, and so reducing a complex,new and doubtful assumption to a widely-believed and simple (or even merelysimpler) assumption is of great value. Furthermore, reducing the solution of a newtask to the assumed security of a well-known primitive typically means providinga construction that, using the known primitive, solves the new task. This meansthat we do not only know (or assume) that the new task is solvable but we alsohave a solution based on a primitive that, being well-known, typically has severalcandidate implementations.C.1.2 PreliminariesModern Cryptography, as surveyed here, is concerned with the construction ofe�cient schemes for which it is infeasible to violate the security feature. Thus,we need a notion of e�cient computations as well as a notion of infeasible ones.The computations of the legitimate users of the scheme ought be e�cient, whereasviolating the security features (by an adversary) ought to be infeasible. We stressthat we do not identify feasible computations with e�cient ones, but rather viewthe former notion as potentially more liberal. Let us elaborate.C.1.2.1 E�cient Computations and Infeasible onesE�cient computations are commonly modeled by computations that are polynomial-time in the security parameter. The polynomial bounding the running-time of thelegitimate user's strategy is �xed and typically explicit (and small). Indeed, ouraim is to have a notion of e�ciency that is as strict as possible (or, equivalently,develop strategies that are as e�cient as possible). Here (i.e., when referring tothe complexity of the legitimate users) we are in the same situation as in any algo-rithmic setting. Things are di�erent when referring to our assumptions regardingthe computational resources of the adversary, where we refer to the notion of fea-sible, which we wish to be as wide as possible. A common approach is to postulatethat feasible computations are polynomial-time too, but here the polynomial is nota-priori speci�ed (and is to be thought of as arbitrarily large). In other words, the



C.1. INTRODUCTION AND PRELIMINARIES 455adversary is restricted to the class of polynomial-time computations and anythingbeyond this is considered to be infeasible.Although many de�nitions explicitly refer to the convention of associating fea-sible computations with polynomial-time ones, this convention is inessential toany of the results known in the area. In all cases, a more general statement canbe made by referring to a general notion of feasibility, which should be preservedunder standard algorithmic composition, yielding theories that refer to adversariesof running-time bounded by any speci�c super-polynomial function (or class offunctions). Still, for sake of concreteness and clarity, we shall use the former con-vention in our formal de�nitions (but our motivational discussions will refer to anunspeci�ed notion of feasibility that covers at least e�cient computations).C.1.2.2 Randomized (or probabilistic) ComputationsRandomized computations play a central role in cryptography. One fundamentalreason for this fact is that randomness is essential for the existence (or rather thegeneration) of secrets. Thus, we must allow the legitimate users to employ random-ized computations, and certainly (since we consider randomization as feasible) wemust consider also adversaries that employ randomized computations. This bringsup the issue of success probability: typically, we require that legitimate users suc-ceed (in ful�lling their legitimate goals) with probability 1 (or negligibly close tothis), whereas adversaries succeed (in violating the security features) with negli-gible probability. Thus, the notion of a negligible probability plays an importantrole in our exposition.One requirement of the de�nition of negligible probability is to provide a robustnotion of rareness: A rare event should occur rarely even if we repeat the experimentfor a feasible number of times. That is, in case we consider any polynomial-timecomputation to be feasible, a function � : N ! N is called negligible if 1 � (1 ��(n))p(n) < 0:01 for every polynomial p and su�ciently big n (i.e., � is negligibleif for every positive polynomial p0 the function �(�) is upper-bounded by 1=p0(�)).We will also refer to the notion of noticeable probability. Here the requirementis that events that occur with noticeable probability, will occur almost surely (i.e.,except with negligible probability) if we repeat the experiment for a polynomialnumber of times. Thus, a function � :N!N is called noticeable if for some positivepolynomial p0 the function �(�) is lower-bounded by 1=p0(�).C.1.3 Prerequisites, Organization, and BeyondOur aim is to present the basic concepts, techniques and results in cryptography,and our emphasis is on the clari�cation of fundamental concepts and the relation-ship among them. This is done in a way independent of the particularities of somepopular number theoretic examples. These particular examples played a centralrole in the development of the �eld and still o�er the most practical implementa-tions of all cryptographic primitives, but this does not mean that the presentationhas to be linked to them. On the contrary, we believe that concepts are best clari-�ed when presented at an abstract level, decoupled from speci�c implementations.



456APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYThe appendix is organized in two main parts, corresponding to the Basic Toolsof Cryptography and the Basic Applications of Cryptography.The basic tools: The most basic tool is computational di�culty, which in turnis captured by the notion of one-way functions. Another notion of key im-portance is that of computational indistinguishability, underlying the theoryof pseudorandomness as well as much of the rest of cryptography. Pseu-dorandom generators and functions are important tools that are frequentlyused. So are zero-knowledge proofs, playing a key role in the design of securecryptographic protocols and in their study.The basic applications: Encryption and signature schemes are the most basicapplications of Cryptography. Their main utility is in providing secret andreliable communication over insecure communication media. Loosely speak-ing, encryption schemes are used for ensuring the secrecy (or privacy) of theactual information being communicated, whereas signature schemes are usedto ensure its reliability (or authenticity). Another basic topic is the construc-tion of secure cryptographic protocols for the implementation of arbitraryfunctionalities.The presentation of the basic tools in Sections C.2{C.4 augments (and sometimesrepeats parts of) Sections 7.1, 8.3, and 9.2 (which provide a basic treatment of one-way functions, pseudorandom generators, and zero-knowledge proofs, respectively).Sections C.5{C.7, provide a overview of the basic applications; that is, EncryptionSchemes, Signature Schemes, and General Cryptographic Protocols.Suggestions for further reading. This appendix is a brief summary of theauthor's two-volume work on the subject [87, 88]. Furthermore, the �rst part (i.e.,Basic Tools) corresponds to [87], whereas the second part (i.e., Basic Applications)corresponds to [88]. Needless to say, the interested reader is referred to thesetextbooks for further detail (and, in particular, for missing references).Practice. The aim of this appendix is to introduce the reader to the theoreticalfoundations of cryptography. As argued, such foundations are necessary for soundpractice of cryptography. Indeed, practice requires more than theoretical founda-tions, whereas the current text makes no attempt to provide anything beyond thelatter. However, given a sound foundation, one can learn and evaluate variouspractical suggestions that appear elsewhere. On the other hand, lack of soundfoundations results in inability to critically evaluate practical suggestions, which inturn leads to unsound decisions. Nothing could be more harmful to the design ofschemes that need to withstand adversarial attacks than misconceptions about suchattacks.C.2 Computational Di�cultyModern Cryptography is concerned with the construction of systems that are easyto operate (properly) but hard to foil. Thus, a complexity gap (between the ease of



C.2. COMPUTATIONAL DIFFICULTY 457proper usage and the di�culty of deviating from the prescribed functionality) liesat the heart of Modern Cryptography. However, gaps as required for Modern Cryp-tography are not known to exist; they are only widely believed to exist. Indeed,almost all of Modern Cryptography rises or falls with the question of whether one-way functions exist. We mention that the existence of one-way functions impliesthat NP contains search problems that are hard to solve on the average, whichin turn implies that NP is not contained in BPP (i.e., a worst-case complexityconjecture).Loosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Such functions can be thought of as an e�cientway of generating \puzzles" that are infeasible to solve (i.e., the puzzle is a randomimage of the function and a solution is a corresponding preimage). Furthermore,the person generating the puzzle knows a solution to it and can e�ciently verifythe validity of (possibly other) solutions to the puzzle. Thus, one-way functionshave, by de�nition, a clear cryptographic avor (i.e., they manifest a gap betweenthe ease of one task and the di�culty of a related one).C.2.1 One-Way FunctionsWe start by reproducing the basic de�nition of one-way functions as appearing inSection 7.1.1, where this de�nition is further discussed.De�nition C.1 (one-way functions, De�nition 7.1 restated): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Pr[A0(f(x); 1n) 2 f�1(f(x))] < 1p(n)where the probability is taken uniformly over x2f0; 1gn and all the internalcoin tosses of algorithm A0.Some of the most popular candidates for one-way functions are based on the con-jectured intractability of computational problems in number theory. One suchconjecture is that it is infeasible to factor large integers. Consequently, the func-tion that takes as input two (equal length) primes and outputs their product iswidely believed to be a one-way function. Furthermore, factoring such a com-posite is infeasible if and only if squaring modulo such a composite is a one-wayfunction (see [171]). For certain composites (i.e., products of two primes that areboth congruent to 3 mod 4), the latter function induces a permutation over theset of quadratic residues modulo this composite. A related permutation, which iswidely believed to be one-way, is the RSA function [181]: x 7! xe mod N , whereN = P � Q is a composite as above, e is relatively prime to (P � 1) � (Q� 1), and



458APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYx 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) arebetter captured by the following formulation of a collection of one-way functions(which is indeed related to De�nition C.1):De�nition C.2 (collections of one-way functions): A collection of functions, ffi :Di ! f0; 1g�gi2I , is called one-way if there exists three probabilistic polynomial-time algorithms, I, D and F , such that the following two conditions hold:1. easy to sample and compute: On input 1n, the output of (the index selection)algorithm I is distributed over the set I \ f0; 1gn (i.e., is an n-bit long indexof some function). On input (an index of a function) i 2 I, the output of(the domain sampling) algorithm D is distributed over the set Di (i.e., overthe domain of the function). On input i 2 I and x 2 Di, (the evaluation)algorithm F always outputs fi(x).2. hard to invert:1 For every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(i; fi(x))2f�1i (fi(x))� < 1p(n)where i I(1n) and x D(i).The collection is said to be a collection of permutations if each of the fi's is apermutation over the corresponding Di, and D(i) is almost uniformly distributedin Di.For example, in case of the RSA, one considers fN;e : DN;e ! DN;e that satis�esfN;e(x) = xe mod N , where DN;e = f0; :::; N � 1g. De�nition C.2 is also a goodstarting point for the de�nition of a trapdoor permutation.2 Loosely speaking,the latter is a collection of one-way permutations augmented with an e�cient al-gorithm that allows for inverting the permutation when given adequate auxiliaryinformation (called a trapdoor).De�nition C.3 (trapdoor permutations): A collection of permutations as in Def-inition C.2 is called a trapdoor permutation if there are two auxiliary probabilisticpolynomial-time algorithms I 0 and F�1 such that (1) the distribution I 0(1n) rangesover pairs of strings so that the �rst string is distributed as in I(1n), and (2) forevery (i; t) in the range of I 0(1n) and every x 2 Di it holds that F�1(t; fi(x)) = x.(That is, t is a trapdoor that allows to invert fi.)For example, in case of the RSA, fN;e can be inverted by raising to the power d(moduloN = P �Q), where d is the multiplicative inverse of emodulo (P�1)�(Q�1).Indeed, in this case, the trapdoor information is (N; d).1Note that this condition refers to the distributions I(1n) and D(i), which are merely requiredto range over I \ f0; 1gn and Di, respectively. (Typically, the distributions I(1n) and D(i) are(almost) uniform over I \ f0; 1gn and Di, respectively.)2Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter(and less precise) term is the commonly used one.



C.3. PSEUDORANDOMNESS 459Strong versus weak one-way functions (summary of Section 7.1.2). Re-call that the foregoing de�nitions require that any feasible algorithm succeeds ininverting the function with negligible probability. A weaker notion only requiresthat any feasible algorithm fails to invert the function with noticeable probability.It turns out that the existence of such weak one-way functions implies the exis-tence of strong one-way functions (as in De�nition C.1). The construction itselfis straightforward, but analyzing it transcends the analogous information theoreticsetting. Instead, the security (i.e., hardness of inverting) the resulting construc-tion is proved via a so called \reducibility argument" that transforms the violationof the conclusion (i.e., the security of the resulting construction) into a violationof the hypothesis (i.e., the security of the given primitive). This strategy (i.e., a\reducibility argument") is used to prove all conditional results in the area.C.2.2 Hard-Core PredicatesRecall that saying that a function f is one-way implies that given y (in the rangeof f) it is infeasible to �nd a preimage of y under f . This does not mean that itis infeasible to �nd out partial information about the preimage(s) of y under f .Speci�cally it may be easy to retrieve half of the bits of the preimage (e.g., givena one-way function f consider the function g de�ned by g(x; r) def= (f(x); r), forevery jxj= jrj). As will become clear in subsequent sections, hiding partial infor-mation (about the function's preimage) plays an important role in more advancedconstructs (e.g., secure encryption). This partial information can be consideredas a \hard core" of the di�culty of inverting f . Loosely speaking, a polynomial-time computable (Boolean) predicate b, is called a hard-core of a function f if nofeasible algorithm, given f(x), can guess b(x) with success probability that is non-negligibly better than one half. The actual de�nition is presented in Section 7.1.3(i.e., De�nition 7.6).Note that if b is a hard-core of a 1-1 function f that is polynomial-time com-putable then f is a one-way function. On the other hand, recall that Theorem 7.7asserts that for any one-way function f , the inner-product mod 2 of x and r is ahard-core of f 0(x; r) = (f(x); r).C.3 PseudorandomnessIn practice \pseudorandom" sequences are often used instead of truly random se-quences. The underlying belief is that if an (e�cient) application performs wellwhen using a truly random sequence then it will perform essentially as well whenusing a \pseudorandom" sequence. However, this belief is not supported by ad-hoc notions of \pseudorandomness" such as passing the statistical tests in [137] orhaving large \linear-complexity" (as de�ned in [108]). Needless to say, using such\pseudorandom" sequences (instead of truly random sequences) in a cryptographicapplication is very dangerous.In contrast, truly random sequences can be safely replaced by pseudorandomsequences provided that pseudorandom distributions are de�ned as being compu-



460APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYtationally indistinguishable from the uniform distribution. Such a de�nition makesthe soundness of this replacement an easy corollary. Loosely speaking, pseudoran-dom generators are then de�ned as e�cient procedures for creating long pseudo-random sequences based on few truly random bits (i.e., a short random seed). Therelevance of such constructs to cryptography is in providing legitimate users thatshare short random seeds a method for creating long sequences that look randomto any feasible adversary (which does not know the said seed).C.3.1 Computational IndistinguishabilityA central notion in Modern Cryptography is that of \e�ective similarity" (a.k.acomputational indistinguishability; cf. [104, 223]). The underlying thesis is thatwe do not care whether or not objects are equal, all we care about is whether ornot a di�erence between the objects can be observed by a feasible computation. Incase the answer is negative, the two objects are equivalent as far as any practicalapplication is concerned. Indeed, in the sequel we will often interchange such(computationally indistinguishable) objects. In this section we recall the de�nitionof computational indistinguishability (presented in Section 8.3.3), and consider twovariants.De�nition C.4 (computational indistinguishability, De�nition 8.4 revised3): Wesay that X = fXngn2N and Y = fYngn2N are computationally indistinguishableif for every probabilistic polynomial-time algorithm D every polynomial p, and allsu�ciently large n,jPr[D(1n; Xn)=1]� Pr[D(1n; Yn)=1]j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D.See further discussion in Section 8.3.3. In particular, recall that for \e�ciently con-structible" distributions, indistinguishability by a single sample (as de�ned above)implies indistinguishability by multiple samples (as in De�nition 8.5).Extension to ensembles indexed by strings. Here we refer to a natural ex-tension of De�nition C.4: Rather than referring to ensembles indexed by N , we referto ensembles indexed by an arbitrary set S � f0; 1g�. Typically, for an ensemblefZ�g�2S , it holds that Z� ranges over strings of length that is polynomially-relatedto the length of �.3For sake of streamlining De�nition C.4 with De�nition C.5 (and unlike in De�nition 8.4), herethe distinguisher is explicitly given the index n of the distribution that it inspects. (In typicalapplications, the di�erence between De�nitions 8.4 and C.4 is immaterial because the index n iseasily determined from any sample of the corresponding distributions.)



C.3. PSEUDORANDOMNESS 461De�nition C.5 We say that fX�g�2S and fY�g�2S are computationally indistin-guishable if for every probabilistic polynomial-time algorithm D every polynomialp, and all su�ciently long � 2 S,jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� orY�) and over the internal coin tosses of algorithm D.Note that De�nition C.4 is obtained as a special case by setting S = f1n : n 2 Ng.A non-uniform version. A non-uniform de�nition of computational indistin-guishability can be derived from De�nition C.5 by arti�cially augmenting the in-dices of the distributions. That is, fX�g�2S and fY�g�2S are computationallyindistinguishable in a non-uniform sense if for every polynomial p the ensemblesfX 0�0g�02S0 and fY 0�0g�02S0 are computationally indistinguishable (as in De�ni-tion C.5), where S0 = f�� : � 2 S ^ � 2 f0; 1gp(j�j)g and X 0�� = X� (resp.,Y 0�� = Y�) for every � 2 f0; 1gp(j�j). An equivalent (alternative) de�nition can beobtained by following the formulation that underlies De�nition 8.12.C.3.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient (deterministic) algorithmthat on input a short random seed outputs a (typically much) longer sequence thatis computationally indistinguishable from a uniformly chosen sequence.De�nition C.6 (pseudorandom generator, De�nition 8.1 restated): Let ` :N!Nsatisfy `(n) > n, for all n 2 N . A pseudorandom generator, with stretch function `,is a (deterministic) polynomial-time algorithm G satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are computationally indistinguishable, whereUm denotes the uniform distribution over f0; 1gm.Indeed, the probability ensemble fG(Un)gn2N is called pseudorandom.We stress that pseudorandom sequences can replace truly random sequences notonly in \standard" algorithmic applications but also in cryptographic ones. Thatis, any cryptographic application that is secure when the legitimate parties usetruly random sequences, is also secure when the legitimate parties use pseudo-random sequences. The bene�t in such a substitution (of random sequences bypseudorandom ones) is that the latter sequences can be e�ciently generated usingmuch less true randomness. Furthermore, in an interactive setting, it is possible toeliminate all random steps from the on-line execution of a program, by replacingthem with the generation of pseudorandom bits based on a random seed selectedand �xed o�-line (or at set-up time). This allows interactive parties to generate



462APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYa long sequence of common secret bits based on a shared random seed which mayhave been selected at a much earlier time.Various cryptographic applications of pseudorandom generators will be pre-sented in the sequel, but let us �rst recall that pseudorandom generators exist ifand only if one-way functions exist (see Theorem 8.11). For further treatment ofpseudorandom generators, the reader is referred to Section 8.3.C.3.3 Pseudorandom FunctionsPseudorandom generators provide a way to e�ciently generate long pseudorandomsequences from short random seeds. Pseudorandom functions, introduced and con-structed by Goldreich, Goldwasser, and Micali [91], are even more powerful: theyprovide e�cient direct access to the bits of a huge pseudorandom sequence (whichis not feasible to scan bit-by-bit). More precisely, a pseudorandom function is an ef-�cient (deterministic) algorithm that given an n-bit seed, s, and an n-bit argument,x, returns an n-bit string, denoted fs(x), such that it is infeasible to distinguishthe values of fs, for a uniformly chosen s 2 f0; 1gn, from the values of a trulyrandom function F : f0; 1gn ! f0; 1gn. That is, the (feasible) testing procedureis given oracle access to the function (but not its explicit description), and cannotdistinguish the case it is given oracle access to a pseudorandom function from thecase it is given oracle access to a truly random function.De�nition C.7 (pseudorandom functions): A pseudorandom function (ensemble),is a collection of functions ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� that satis�es the follow-ing two conditions:1. (e�cient evaluation) There exists an e�cient (deterministic) algorithm thatgiven a seed, s, and an argument, x 2 f0; 1gjsj, returns fs(x).2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,M , every positive polynomial p and all su�ciently large n's��Pr[MfUn (1n) = 1]� Pr[MFn(1n) = 1] �� < 1p(n)where Fn denotes a uniformly selected function mapping f0; 1gn to f0; 1gn.One key feature of the foregoing de�nition is that pseudorandom functions canbe generated and shared by merely generating and sharing their seed; that is,a \random looking" function fs : f0; 1gn ! f0; 1gn, is determined by its n-bitseed s. Parties wishing to share a \random looking" function fs (determining 2n-many values), merely need to generate and share among themselves the n-bit seeds. (For example, one party may randomly select the seed s, and communicateit, via a secure channel, to all other parties.) Sharing a pseudorandom functionallows parties to determine (by themselves and without any further communication)random-looking values depending on their current views of the environment (whichneed not be known a priori). To appreciate the potential of this tool, one shouldrealize that sharing a pseudorandom function is essentially as good as being able



C.3. PSEUDORANDOMNESS 463to agree, on the y, on the association of random values to (on-line) given values,where the latter are taken from a huge set of possible values. We stress thatthis agreement is achieved without communication and synchronization: Wheneversome party needs to associate a random value to a given value, v 2 f0; 1gn, it willassociate to v the (same) random value rv 2 f0; 1gn (by setting rv = fs(v), wherefs is a pseudorandom function agreed upon beforehand). Concrete applications of(this power of) pseudorandom functions appear in Sections C.5.2 and C.6.2.Theorem C.8 (How to construct pseudorandom functions): Pseudorandom func-tions can be constructed using any pseudorandom generator.Proof Sketch:4 Let G be a pseudorandom generator that stretches its seed by afactor of two (i.e., `(n) = 2n), and let G0(s) (resp., G1(s)) denote the �rst (resp.,last) jsj bits in G(s). De�neG�jsj����2�1(s) def= G�jsj(� � �G�2 (G�1(s)) � � �):We consider the function ensemble ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� , where fs(x) def=Gx(s). Pictorially, the function fs is de�ned by n-step walks down a full binarytree of depth n having labels at the vertices. The root of the tree, hereafter referredto as the level 0 vertex of the tree, is labeled by the string s. If an internal vertex islabeled r then its left child is labeled G0(r) whereas its right child is labeled G1(r).The value of fs(x) is the string residing in the leaf reachable from the root by apath corresponding to the string x.We claim that this function ensemble ffsgs2f0;1g� is pseudorandom. The proofuses the hybrid technique (cf. Section 8.3.3): The ith hybrid, H in, is a functionensemble consisting of 22i�n functions f0; 1gn ! f0; 1gn, each determined by 2irandom n-bit strings, denoted s = hs�i�2f0;1gi . The value of such function hs atx = ��, where j�j = i, is de�ned to equal G�(s�). (Pictorially, the function hsis de�ned by placing the strings in s in the corresponding vertices of level i, andlabeling vertices of lower levels using the very rule used in the de�nition of fs.)The extreme hybrids correspond to our indistinguishability claim (i.e., H0n � fUnand Hnn is a truly random function), and neighboring hybrids can be related to ourindistinguishability hypothesis (speci�cally, to the indistinguishability of G(Un)and U2n under multiple samples).Variants. Useful variants (and generalizations) of the notion of pseudorandomfunctions include Boolean pseudorandom functions that are de�ned over all strings(i.e., fs : f0; 1g� ! f0; 1g) and pseudorandom functions that are de�ned for otherdomains and ranges (i.e., fs : f0; 1gd(jsj) ! f0; 1gr(jsj), for arbitrary polynomiallybounded functions d; r : N ! N). Various transformations between these variantsare known (cf. [87, Sec. 3.6.4] and [88, Apdx. C.2]).4See details in [87, Sec. 3.6.2].



464APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYApplications and a generic methodology. Pseudorandom functions are avery useful cryptographic tool: One may �rst design a cryptographic scheme assum-ing that the legitimate users have black-box access to a random function, and nextimplement the random function using a pseudorandom function. The usefulness ofthis tool stems from the fact that having (black-box) access to a random functiongives the legitimate parties a potential advantage over the adversary (which doesnot have free access to this function).5 The security of the resulting implementation(which uses a pseudorandom function) is established in two steps: First one provesthe security of an idealized scheme that uses a truly random function, and nextone argues that the actual implementation (which uses a pseudorandom function)is secure (as otherwise one obtains an e�cient oracle machine that distinguishes apseudorandom function from a truly random one).C.4 Zero-KnowledgeZero-knowledge proofs provide a powerful tool for the design of cryptographic pro-tocols as well as a good bench-mark for the study of various issues regarding suchprotocols. Loosely speaking, zero-knowledge proofs are proofs that yield nothingbeyond the validity of the assertion. That is, a veri�er obtaining such a proofonly gains conviction in the validity of the assertion (as if it was told by a trustedparty that the assertion holds). This is formulated by saying that anything that isfeasibly computable from a zero-knowledge proof is also feasibly computable fromthe (valid) assertion itself. The latter formulation follows the simulation paradigm,which is discussed next, while reproducing part of the discussion in x9.2.1.1 andmaking additional comments regarding the use of this paradigm in cryptography.C.4.1 The Simulation ParadigmA key question regarding the modeling of security concerns is how to express theintuitive requirement that an adversary \gains nothing substantial" by deviatingfrom the prescribed behavior of an honest user. Our approach is that the adversarygains nothing if whatever it can obtain by unrestricted adversarial behavior can alsobe obtained within essentially the same computational e�ort by a benign behavior.The de�nition of the \benign behavior" captures what we want to achieve in termsof security, and is speci�c to the security concern to be addressed. For example,in the context of zero-knowledge the unrestricted adversarial behavior is capturedby an arbitrary probabilistic polynomial-time veri�er strategy, whereas the benignbehavior is any computation that is based (only) on the assertion itself (whileassuming that the latter is valid). Other examples are discussed in Sections C.5.1and C.7.1.A notable property of the simulation paradigm, as well as of the entire de�ni-tional approach surveyed here, is that this approach is overly liberal with respect to5The aforementioned methodology is sound provided that the adversary does not get thedescription of the pseudorandom function (i.e., the seed) in use, but has only (possibly limited)oracle access to it. This is di�erent from the so-called Random Oracle Methodology.



C.4. ZERO-KNOWLEDGE 465its view of the abilities of the adversary as well as to what might constitute a gainfor the adversary. Thus, the approach may be considered overly cautious, becauseit prohibits also \non-harmful" gains of some \far fetched" adversaries. We warnagainst this impression. Firstly, there is nothing more dangerous in cryptographythan to consider \reasonable" adversaries (a notion which is almost a contradictionin terms): typically, the adversaries will try exactly what the system designer hasdiscarded as \far fetched". Secondly, it seems impossible to come up with de�-nitions of security that distinguish \breaking the scheme in a harmful way" from\breaking it in a non-harmful way": what is harmful is application-dependent,whereas a good de�nition of security ought to be application-independent (as oth-erwise using the scheme in any new application will require a full re-evaluation ofits security). Furthermore, even with respect to a speci�c application, it is typicallyvery hard to classify the set of \harmful breakings".C.4.2 The Actual De�nitionIn x9.2.1.2 zero-knowledge was de�ned as a property of some prover strategies(within the context of interactive proof systems, as de�ned in Section 9.1.1). Moregenerally, the term may apply to any interactive machine, regardless of its goal. Astrategy A is zero-knowledge on (inputs from) the set S if, for every feasible strategyB�, there exists a feasible computation C� such that the following two probabilityensembles are computationally indistinguishable (according to De�nition C.5):1. f(A;B�)(x)gx2S def= the output of B� after interacting with A on commoninput x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.Recall that the �rst ensemble represents an actual execution of an interactive pro-tocol, whereas the second ensemble represents the computation of a stand-aloneprocedure (called the \simulator"), which does not interact with anybody.The foregoing de�nition does not account for auxiliary information that anadversary B� may have prior to entering the interaction. Accounting for suchauxiliary information is essential for using zero-knowledge proofs as subprotocolsinside larger protocols. This is taken care of by a stricter notion called auxiliary-input zero-knowledge, which was not presented in Section 9.2.De�nition C.9 (zero-knowledge, revisited): A strategy A is auxiliary-input zero-knowledge on inputs from S if, for every probabilistic polynomial-time strategy B�and every polynomial p, there exists a probabilistic polynomial-time algorithm C�such that the following two probability ensembles are computationally indistinguish-able:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and interacting with A on common input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2f0; 1gp(jxj).



466APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYAlmost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.As hinted, auxiliary-input zero-knowledge is preserved under sequential composi-tion. A simulator for the multiple-session protocol can be constructed by itera-tively invoking the single-session simulator that refers to the residual strategy ofthe adversarial veri�er in the given session (while feeding this simulator with thetranscript of previous sessions). Indeed, the residual single-session veri�er gets thetranscript of the previous sessions as part of its auxiliary input (i.e., z in De�ni-tion C.9). For details, see [87, Sec. 4.3.4].C.4.3 A construction and a generic applicationA question avoided so far is whether zero-knowledge proofs exist at all. Clearly,every set in P (or rather in BPP) has a \trivial" zero-knowledge proof (in which theveri�er determines membership by itself); however, what we seek is zero-knowledgeproofs for statements that the veri�er cannot decide by itself.Assuming the existence of \commitment schemes" (cf. xC.4.3.1), which inturn exist if one-way functions exist [158, 113], there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set. These zero-knowledge proofs, ab-stractly depicted in Construction 9.10, have the following important property: theprescribed prover strategy is e�cient, provided it is given as auxiliary-input anNP-witness to the assertion (to be proved).6 Indeed, by using the standard Karp-reductions to 3-Colorability, the protocol of Construction 9.10 can be used forobtaining zero-knowledge proofs for any set in NP . Implementing the abstractboxes (referred to in Construction 9.10) by commitment schemes, we get:Theorem C.10 (On the applicability of zero-knowledge proofs): If (non-uniformlyhard) one-way functions exist then every set S 2 NP has an auxiliary-input zero-knowledge interactive proof. Furthermore, the prescribed prover strategy can be im-plemented in probabilistic polynomial-time, provided it is given as auxiliary-inputan NP-witness for membership of the common input in S.Theorem C.10 makes zero-knowledge a very powerful tool in the design of crypto-graphic schemes and protocols (see xC.4.3.3). We comment that the intractabilityassumption used in Theorem C.10 seems essential.C.4.3.1 Commitment schemesLoosely speaking, commitment schemes are two-stage (two-party) protocols allow-ing for one party to commit itself (at the �rst stage) to a value while keeping thevalue secret. In a (second) latter stage, the commitment is \opened" and it isguaranteed that the \opening" can yield only a single value, which is determined6The auxiliary-input given to the prescribed prover (in order to allow for an e�cient imple-mentation of its strategy) is not to be confused with the auxiliary-input that is given to maliciousveri�ers (in the de�nition of auxiliary-input zero-knowledge). The former is typically an NP-witness for the common input, which is available to the user that invokes the prover strategy (cf.the generic application discussed in xC.4.3.3). In contrast, the auxiliary-input that is given tomalicious veri�ers models arbitrary partial information that may be available to the adversary.



C.4. ZERO-KNOWLEDGE 467during the committing phase. Thus, the (�rst stage of the) commitment scheme isboth binding and hiding.A simple (uni-directional communication) commitment scheme can be con-structed based on any one-way 1-1 function f (with a corresponding hard-coreb). To commit to a bit �, the sender uniformly selects s 2 f0; 1gn, and sends thepair (f(s); b(s) � �). Note that this is both binding and hiding. An alternativeconstruction, which can be based on any one-way function, uses a pseudorandomgenerator G that stretches its seed by a factor of three (cf. Theorem 8.11). Acommitment is established, via two-way communication, as follows (cf. [158]): Thereceiver selects uniformly r 2 f0; 1g3n and sends it to the sender, which selectsuniformly s 2 f0; 1gn and sends r � G(s) if it wishes to commit to the value oneand G(s) if it wishes to commit to zero. To see that this is binding, observe thatthere are at most 22n \bad" values r that satisfy G(s0) = r �G(s1) for some pair(s0; s1), and with overwhelmingly high probability the receiver will not pick one ofthese bad values. The hiding property follows by the pseudorandomness of G.C.4.3.2 E�ciency considerationsThe number of rounds in a protocol is commonly considered the most importante�ciency criterion (or complexity measure), and typically one desires to have it bea constant. However, in order to obtain negligible soundness error, the protocolof Construction 9.10 has to be invoked for a non-constant number of times (andthe analysis of the resulting protocol relies on the preservation of zero-knowledgeunder sequential composition). At �rst glance, it seems that one can derive aconstant-round zero-knowledge proof system (of negligible soundness error) by per-forming these invocations in parallel (rather than sequentially). Unfortunately, itis not clear that the resulting interactive proof is zero-knowledge. Still, understandard intractability assumptions (e.g., the intractability of factoring), constant-round zero-knowledge proofs (of negligible soundness error) do exist for every setin NP .C.4.3.3 A generic applicationAs mentioned, Theorem C.10 makes zero-knowledge a very powerful tool in thedesign of cryptographic schemes and protocols. This wide applicability is due totwo important aspects regarding Theorem C.10: Firstly, Theorem C.10 provides azero-knowledge proof for every NP-set, and secondly the prescribed prover can beimplemented in probabilistic polynomial-time when given an adequate NP-witness.We now turn to a typical application of zero-knowledge proofs.In a typical cryptographic setting, a user U has a secret and is supposed totake some action based on its secret. The question is how can other users verifythat U indeed took the correct action (as determined by U 's secret and publiclyknown information). Indeed, if U discloses its secret then anybody can verify thatU took the correct action. However, U does not want to reveal its secret. Usingzero-knowledge proofs we can satisfy both conicting requirements (i.e., havingother users verify that U took the correct action without violating U 's interest



468APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYin not revealing its secret). That is, U can prove in zero-knowledge that it tookthe correct action. Note that U 's claim to having taken the correct action is anNP-assertion (since U 's legal action is determined as a polynomial-time functionof its secret and the public information), and that U has an NP-witness to itsvalidity (i.e., the secret is an NP-witness to the claim that the action �ts the publicinformation). Thus, by Theorem C.10, it is possible for U to e�ciently prove thecorrectness of its action without yielding anything about its secret. Consequently,it is fair to ask U to prove (in zero-knowledge) that it behaves properly, and soto force U to behave properly. Indeed, \forcing proper behavior" is the canonicalapplication of zero-knowledge proofs (see xC.7.3.2).This paradigm (i.e., \forcing proper behavior" via zero-knowledge proofs), whichin turn is based on Theorem C.10, has been utilized in numerous di�erent settings.Indeed, this paradigm is the basis for the wide applicability of zero-knowledgeprotocols in Cryptography.C.4.4 Variants and IssuesIn this section we consider numerous variants on the notion of zero-knowledge andthe underlying model of interactive proofs. These include black-box simulation andother variants of zero-knowledge (cf. Section C.4.4.1), as well as notions such asproofs of knowledge, non-interactive zero-knowledge, and witness indistinguishableproofs (cf. Section C.4.4.2).Before starting, we call the reader's attention to the notion of computationalsoundness and to the related notion of argument systems, discussed in x9.1.4.2.We mention that argument systems may be more e�cient than interactive proofsas well as provide stronger zero-knowledge guarantees. Speci�cally, perfect zero-knowledge arguments for NP can be constructed based on some reasonable as-sumptions [46], where perfect zero-knowledge means that the simulator's outputis distributed identically to the veri�er's view in the real interaction (see De�ni-tion 9.7 or a discussion in xC.4.4.1). Note that stronger security guarantee for theprover (as provided by perfect zero-knowledge) comes at the cost of weaker securityguarantee for the veri�er (as provided by computational soundness). The answer tothe question of whether or not this trade-o� is worthwhile seems to be applicationdependent, and one should also take into account the availability and complexityof the corresponding protocols.C.4.4.1 De�nitional variationsWe consider several de�nitional issues regarding the notion of zero-knowledge (asde�ned in De�nition C.9).Universal and black-box simulation. A strengthening of De�nition C.9 isobtained by requiring the existence of a universal simulator, denoted C, that cansimulate (the interactive gain of) any veri�er strategy B� when given the veri�er'sprogram an auxiliary-input; that is, in terms of De�nition C.9, one should replaceC�(x; z) by C(x; z; hB�i), where hB�i denotes the description of the program of B�



C.4. ZERO-KNOWLEDGE 469(which may depend on x and on z). That is, we e�ectively restrict the simulationby requiring that it be a uniform (feasible) function of the veri�er's program (ratherthan arbitrarily depend on it). This restriction is very natural, because it seemshard to envision an alternative way of establishing the zero-knowledge property ofa given protocol. Taking another step, one may argue that since it seems infea-sible to reverse-engineer programs, the simulator may as well just use the veri�erstrategy as an oracle (or as a \black-box"). This reasoning gave rise to the notionof black-box simulation, which was introduced and advocated in [94] and furtherstudied in numerous works. The belief was that inherent limitations regardingblack-box simulation represent inherent limitations of zero-knowledge itself. Forexample, it was believed that the fact that the parallel version of the interactiveproof of Construction 9.10 cannot be simulated in a black-box manner (unless NPis contained in BPP) implies that this version is not zero-knowledge (as per De�ni-tion C.9 itself). However, the (underlying) belief that any zero-knowledge protocolcan be simulated in a black-box manner was refuted recently by Barak [22].Honest veri�er versus general cheating veri�er. De�nition C.9 refers toall feasible veri�er strategies, which is most natural in the cryptographic settingbecause zero-knowledge is supposed to capture the robustness of the prover un-der any feasible (i.e., adversarial) attempt to gain something by interacting withit. A weaker and still interesting notion of zero-knowledge refers to what can begained by an \honest veri�er" (or rather a semi-honest veri�er)7 that interactswith the prover as directed, with the exception that it may maintain (and out-put) a record of the entire interaction (i.e., even if directed to erase all records ofthe interaction). Although such a weaker notion is not satisfactory for standardcryptographic applications, it yields a fascinating notion from a conceptual as wellas a complexity-theoretic point of view. Furthermore, every proof system that iszero-knowledge with respect to the honest-veri�er can be transformed into a stan-dard zero-knowledge proof (without using intractability assumptions and in caseof \public-coin" proofs this is done without signi�cantly increasing the prover'scomputational e�ort; see [214]).Statistical versus Computational Zero-Knowledge. Recall that De�nition C.9postulates that for every probability ensemble of one type (i.e., representing theveri�er's output after interaction with the prover) there exists a \similar" ensembleof a second type (i.e., representing the simulator's output). One key parameter isthe interpretation of \similarity". Three interpretations, yielding di�erent notionsof zero-knowledge, have been commonly considered in the literature:7The term \honest veri�er" is more appealing when considering an alternative (equivalent)formulation of De�nition C.9. In the alternative de�nition (see [87, Sec. 4.3.1.3]), the simulatoris \only" required to generate the veri�er's view of the real interaction, where the veri�er's viewincludes its (common and auxiliary) inputs, the outcome of its coin tosses, and all messages ithas received.



470APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY1. Perfect Zero-Knowledge requires that the two probability ensembles be iden-tically distributed.82. Statistical Zero-Knowledge requires that these probability ensembles be sta-tistically close (i.e., the variation distance between them is negligible).3. Computational (or rather general) Zero-Knowledge requires that these proba-bility ensembles be computationally indistinguishable.Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notionconsidered in De�nition C.9. We note that the class of problems having statisticalzero-knowledge proofs contains several problems that are considered intractable.The interested reader is referred to [213].Strict versus expected probabilistic polynomial-time. The notion of prob-abilistic polynomial-time (which is mentioned both with respect to the veri�er andthe simulator), has been given two interpretations:1. Strict probabilistic polynomial-time. That is, there exist a (polynomial in thelength of the input) bound on the number of steps in each possible run of themachine, regardless of the outcome of its coin tosses.2. Expected probabilistic polynomial-time. The standard approach is to look atthe running-time as a random variable and bound its expectation (by a poly-nomial in the length of the input). However, as observed by Levin (seex10.2.1.1), this de�nitional approach is quite problematic and an alternativetreatment of the aforementioned random variable is preferable.Consequently, the notion of expected polynomial-time raises a variety of conceptualand technical problems. For that reason, whenever possible, one should preferthe more robust (and restricted) notion of strict (probabilistic) polynomial-time.Thus, with the exception of constant-round zero-knowledge protocols, whenever wetalked of a probabilistic polynomial-time veri�er (resp., simulator) we mean onein the strict sense. In contrast, with a couple of exceptions (e.g., [22]), all resultsregarding constant-round zero-knowledge protocols refer to a strict polynomial-time veri�er and an expected polynomial-time simulator, which is indeed a smallcheat.C.4.4.2 Related notions: POK, NIZK, and WIWe briey discuss the notions of proofs of knowledge (POK), non-interactive zero-knowledge (NIZK), and witness indistinguishable proofs (WI).8The actual de�nition of Perfect Zero-Knowledge allows the simulator to fail (while outputtinga special symbol) with negligible probability, and the output distribution of the simulator isconditioned on its not failing.



C.4. ZERO-KNOWLEDGE 471Proofs of Knowledge. Loosely speaking, proofs of knowledge (cf. [105]) areinteractive proofs in which the prover asserts \knowledge" of some object (e.g.,a 3-coloring of a graph), and not merely its existence (e.g., the existence of a 3-coloring of the graph, which in turn is equivalent to the assertion that the graphis 3-colorable). See further discussion in Section 9.2.3. We mention that \proofs ofknowledge", and in particular zero-knowledge \proofs of knowledge", have manyapplications to the design of cryptographic schemes and cryptographic protocols.One famous application of zero-knowledge proofs of knowledge is to the construc-tion of identi�cation schemes (e.g., the Fiat-Shamir scheme).Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledgeproof systems consists of three entities: a prover, a veri�er and a uniformly selectedreference string (which can be thought of as being selected by a trusted third party).Both the veri�er and prover can read the reference string (as well as the common in-put), and each can toss additional coins. The interaction consists of a single messagesent from the prover to the veri�er, who is then left with the �nal decision (whetheror not to accept the common input). The (basic) zero-knowledge requirement refersto a simulator that outputs pairs that should be computationally indistinguishablefrom the distribution (of pairs consisting of a uniformly selected reference string anda random prover message) seen in the real model.9 Non-interactive zero-knowledgeproof systems have numerous applications (e.g., to the construction of public-keyencryption and signature schemes, where the reference string may be incorporatedin the public-key). Several di�erent de�nitions of non-interactive zero-knowledgeproofs were considered in the literature (see [87, Sec. 4.10] and [88, Sec. 5.4.4.4]).Constructing non-interactive zero-knowledge proofs seems more di�cult than con-structing interactive zero-knowledge proofs. Still, based on standard intractabilityassumptions (e.g., intractability of factoring), it is known how to construct a non-interactive zero-knowledge proof for any NP-set.Witness Indistinguishability. The notion of witness indistinguishability wassuggested in [72] as a meaningful relaxation of zero-knowledge. Loosely speaking,for any NP-relation R, a proof (or argument) system for the corresponding NP-setis called witness indistinguishable if no feasible veri�er may distinguish the case inwhich the prover uses one NP-witness to x (i.e., w1 such that (x;w1) 2 R) fromthe case in which the prover is using a di�erent NP-witness to the same input x(i.e., w2 such that (x;w2) 2 R). Clearly, any zero-knowledge protocol is witnessindistinguishable, but the converse does not necessarily hold. Furthermore, it seemsthat witness indistinguishable protocols are easier to construct than zero-knowledgeones. Another advantage of witness indistinguishable protocols is that they areclosed under arbitrary concurrent composition, whereas (in general) zero-knowledgeprotocols are not closed even under parallel composition. Witness indistinguishableprotocols turned out to be an important tool in the construction of more complex9Note that the veri�er does not e�ect the distribution seen in the real model, and so the basicde�nition of zero-knowledge does not refer to it. The veri�er (or rather a process of adaptivelyselecting assertions to be proved) is referred to in the adaptive variants of the de�nition.



472APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYprotocols. We refer, in particular, to the technique of [71] for constructing zero-knowledge proofs (and arguments) based on witness indistinguishable proofs (resp.,arguments).C.5 Encryption SchemesThe problem of providing secret communication over insecure media is the tra-ditional and most basic problem of cryptography. The setting of this problemconsists of two parties communicating through a channel that is possibly tappedby an adversary. The parties wish to exchange information with each other, butkeep the \wire-tapper" as ignorant as possible regarding the contents of this infor-mation. The canonical solution to this problem is obtained by the use of encryptionschemes. Loosely speaking, an encryption scheme is a protocol allowing these par-ties to communicate secretly with each other. Typically, the encryption schemeconsists of a pair of algorithms. One algorithm, called encryption, is applied by thesender (i.e., the party sending a message), while the other algorithm, called decryp-tion, is applied by the receiver. Hence, in order to send a message, the sender �rstapplies the encryption algorithm to the message, and sends the result, called theciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., thereceiver) applies the decryption algorithm to it, and retrieves the original message(called the plaintext).In order for the foregoing scheme to provide secret communication, the receivermust know something that is not known to the wire-tapper. (Otherwise, the wire-tapper can decrypt the ciphertext exactly as done by the receiver.) This extraknowledge may take the form of the decryption algorithm itself, or some parame-ters and/or auxiliary inputs used by the decryption algorithm. We call this extraknowledge the decryption-key. Note that, without loss of generality, we may assumethat the decryption algorithm is known to the wire-tapper, and that the decryp-tion algorithm operates on two inputs: a ciphertext and a decryption-key. (Thisdescription implicitly presupposes the existence of an e�cient algorithm for gener-ating (random) keys.) We stress that the existence of a decryption-key, not knownto the wire-tapper, is merely a necessary condition for secret communication.Evaluating the \security" of an encryption scheme is a very tricky business.A preliminary task is to understand what is \security" (i.e., to properly de�newhat is meant by this intuitive term). Two approaches to de�ning security areknown. The �rst (\classical") approach, introduced by Shannon [191], is informa-tion theoretic. It is concerned with the \information" about the plaintext that is\present" in the ciphertext. Loosely speaking, if the ciphertext contains informa-tion about the plaintext then the encryption scheme is considered insecure. It hasbeen shown that such high (i.e., \perfect") level of security can be achieved onlyif the key in use is at least as long as the total amount of information sent via theencryption scheme [191]. This fact (i.e., that the key has to be longer than theinformation exchanged using it) is indeed a drastic limitation on the applicabilityof such (perfectly-secure) encryption schemes.The second (\modern") approach, followed in the current text, is based on



C.5. ENCRYPTION SCHEMES 473computational complexity. This approach is based on the thesis that it does notmatter whether the ciphertext contains information about the plaintext, but ratherwhether this information can be e�ciently extracted. In other words, instead ofasking whether it is possible for the wire-tapper to extract speci�c information, weask whether it is feasible for the wire-tapper to extract this information. It turnsout that the new (i.e., \computational complexity") approach can o�er securityeven when the key is much shorter than the total length of the messages sent viathe encryption scheme.The computational complexity approach enables the introduction of conceptsand primitives that cannot exist under the information theoretic approach. A typ-ical example is the concept of public-key encryption schemes, introduced by Di�eand Hellman [62] (with the most popular candidate suggested by Rivest, Shamir,and Adleman [181]). Recall that in the foregoing discussion we concentrated onthe decryption algorithm and its key. It can be shown that the encryption algo-rithm must also get, in addition to the message, an auxiliary input that depends onthe decryption-key. This auxiliary input is called the encryption-key. Traditionalencryption schemes, and in particular all the encryption schemes used in the millen-nia until the 1980's, operate with an encryption-key that equals the decryption-key.Hence, the wire-tapper in these schemes must be ignorant of the encryption-key,and consequently the key distribution problem arises; that is, how can two par-ties wishing to communicate over an insecure channel agree on a secret encryp-tion/decryption key. (The traditional solution is to exchange the key through analternative channel that is secure, though much more expensive to use.) The com-putational complexity approach allows the introduction of encryption schemes inwhich the encryption-key may be given to the wire-tapper without compromisingthe security of the scheme. Clearly, the decryption-key in such schemes is di�erentfrom the encryption-key, and furthermore it is infeasible to obtain the decryption-key from the encryption-key. Such encryption schemes, called public-key schemes,have the advantage of trivially resolving the key distribution problem (because theencryption-key can be publicized). That is, once some Party X generates a pair ofkeys and publicizes the encryption-key, any party can send encrypted messages toParty X such that Party X can retrieve the actual information (i.e., the plaintext),whereas nobody else can learn anything about the plaintext.In contrast to public-key schemes, traditional encryption schemes in which theencryption-key equals the description-key are called private-key schemes, becausein these schemes the encryption-key must be kept secret (rather than be publicas in public-key encryption schemes). We note that a full speci�cation of eitherschemes requires the speci�cation of the way in which keys are generated; that is, a(randomized) key-generation algorithm that, given a security parameter, producesa (random) pair of corresponding encryption/decryption keys (which are identicalin case of private-key schemes).Thus, both private-key and public-key encryption schemes consist of three ef-�cient algorithms: a key generation algorithm denoted G, an encryption algorithmdenoted E, and a decryption algorithm denoted D. For every pair of encryptionand decryption keys (e; d) generated by G, and for every plaintext x, it holds that



474APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYDd(Ee(x)) = x, where Ee(x) def= E(e; x) and Dd(y) def= D(d; y). The di�erence be-tween the two types of encryption schemes is reected in the de�nition of security:the security of a public-key encryption scheme should hold also when the adversaryis given the encryption-key, whereas this is not required for a private-key encryp-tion scheme. In the following de�nitional treatment we focus on the public-key case(and the private-key case can be obtained by omitting the encryption-key from thesequence of inputs given to the adversary).C.5.1 De�nitions A good disguise should not reveal the person's height.Sha� Goldwasser and Silvio Micali, 1982For simplicity, we �rst consider the encryption of a single message (which, for fur-ther simplicity, is assumed to be of length that equals the security parameter, n).10As implied by the foregoing discussion, a public-key encryption scheme is said tobe secure if it is infeasible to gain any information about the plaintext by lookingat the ciphertext (and the encryption-key). That is, whatever information aboutthe plaintext one may compute from the ciphertext and some a-priori informa-tion, can be essentially computed as e�ciently from the a-priori information alone.This fundamental de�nition of security, called semantic security, was introducedby Goldwasser and Micali [104].De�nition C.11 (semantic security): A public-key encryption scheme (G;E;D)is semantically secure if for every probabilistic polynomial-time algorithm, A, thereexists a probabilistic polynomial-time algorithm B such that for every two functionsf; h : f0; 1g�!f0; 1g� and all probability ensembles fXngn2N that satisfy jh(x)j =poly(jxj) and Xn 2 f0; 1gn, it holds thatPr[A(e; Ee(x); h(x))=f(x)] < Pr[B(1n; h(x))=f(x)] + �(n)where the plaintext x is distributed according to Xn, the encryption-key e is dis-tributed according to G(1n), and � is a negligible function.That is, it is feasible to predict f(x) from h(x) as successfully as it is to predictf(x) from h(x) and (e; Ee(x)), which means that nothing is gained by obtaining(e; Ee(x)). Note that no computational restrictions are made regarding the func-tions h and f . We stress that the foregoing de�nition (as well as the next one)refers to public-key encryption schemes, and in the case of private-key schemesalgorithm A is not given the encryption-key e.The following technical interpretation of security states that it is infeasible todistinguish the encryptions of any two plaintexts (of the same length). As we shallsee, this de�nition (also originating in [104]) is equivalent to De�nition C.11 (andmeeting it requires a probabilistic encryption algorithm).10In the case of public-key schemes no generality is lost by these simplifying assumptions, but inthe case of private-key schemes one should consider the encryption of polynomially-many messages(as we do at the end of this section).



C.5. ENCRYPTION SCHEMES 475De�nition C.12 (indistinguishability of encryptions): A public-key encryptionscheme (G;E;D) has indistinguishable encryptions if for every probabilistic polynomial-time algorithm, A, and all sequences of triples, (xn; yn; zn)n2N, where jxnj = jynj =n and jznj = poly(n),jPr[A(e; Ee(xn); zn)=1]� Pr[A(e; Ee(yn); zn)=1]j = �(n)Again, e is distributed according to G(1n), and � is a negligible function.In particular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the en-cryptions of any two �xed messages (such as the all-zero message and the all-onesmessage). Thus, the following motto is adequate too.A good disguise should not allow a mother to distinguish her own children.Sha� Goldwasser and Silvio Micali, 1982De�nition C.11 is more appealing in most settings where encryption is consideredthe end goal. De�nition C.12 is used to establish the security of candidate en-cryption schemes as well as to analyze their application as modules inside largercryptographic protocols. Thus, the equivalence of these de�nitions is of majorimportance.Equivalence of De�nitions C.11 and C.12 { proof ideas. Intuitively, in-distinguishability of encryptions (i.e., of the encryptions of xn and yn) is a specialcase of semantic security; speci�cally, it corresponds to the case that Xn is uni-form over fxn; yng, the function f indicates one of the plaintexts and h does notdistinguish them (i.e., f(w) = 1 i� w = xn and h(xn) = h(yn) = zn, where zn isas in De�nition C.12). The other direction is proved by considering the algorithmB that, on input (1n; v) where v = h(x), generates (e; d)  G(1n) and outputsA(e; Ee(1n); v), where A is as in De�nition C.11. Indistinguishability of encryptionsis used to prove that B performs as well as A (i.e., for every h; f and fXngn2N,it holds that Pr[B(1n; h(Xn))=f(Xn)] = Pr[A(e; Ee(1n); h(Xn))=f(Xn)] approx-imately equals Pr[A(e; Ee(Xn); h(Xn))=f(Xn)]).Probabilistic Encryption: A secure public-key encryption scheme must em-ploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given theencryption-key as (additional) input, it is easy to distinguish the encryption ofthe all-zero message from the encryption of the all-ones message.11 This explainsthe association of the robust security de�nitions and the method of probabilisticencryption, an association that goes back to the title of the pioneering work ofGoldwasser and Micali [104].11The same holds for (stateless) private-key encryption schemes, when considering the securityof encrypting several messages (rather than a single message as done above). For example, if oneuses a deterministic encryption algorithm then the adversary can distinguish two encryptions ofthe same message from the encryptions of a pair of di�erent messages.



476APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYFurther discussion: We stress that (the equivalent) De�nitions C.11 and C.12go way beyond saying that it is infeasible to recover the plaintext from the ci-phertext. The latter statement is indeed a minimal requirement from a secureencryption scheme, but is far from being a su�cient requirement. Typically, en-cryption schemes are used in applications where even obtaining partial informationon the plaintext may endanger the security of the application. When designing anapplication-independent encryption scheme, we do not know which partial informa-tion endangers the application and which does not. Furthermore, even if one wantsto design an encryption scheme tailored to a speci�c application, it is rare (to saythe least) that one has a precise characterization of all possible partial informationthat endanger this application. Thus, we need to require that it is infeasible toobtain any information about the plaintext from the ciphertext. Furthermore, inmost applications the plaintext may not be uniformly distributed and some a-prioriinformation regarding it may be available to the adversary. We require that thesecrecy of all partial information is preserved also in such a case. That is, evenin presence of a-priori information on the plaintext, it is infeasible to obtain any(new) information about the plaintext from the ciphertext (beyond what is feasibleto obtain from the a-priori information on the plaintext). The de�nition of seman-tic security postulates all of this. The equivalent de�nition of indistinguishabilityof encryptions is useful in demonstrating the security of candidate constructions aswell as for arguing about their e�ect as part of larger protocols.Security of multiple messages: De�nitions C.11 and C.12 refer to the se-curity of an encryption scheme that is used to encrypt a single plaintext (per agenerated key). Since the plaintext may be longer than the key12, these de�ni-tions are already non-trivial, and an encryption scheme satisfying them (even inthe private-key model) implies the existence of one-way functions. Still, in manycases, it is desirable to encrypt many plaintexts using the same encryption-key.Loosely speaking, an encryption scheme is secure in the multiple-messages settingif conditions as in De�nition C.11 (resp., De�nition C.12) hold when polynomially-many plaintexts are encrypted using the same encryption-key (cf. [88, Sec. 5.2.4]).In the public-key model, security in the single-message setting implies security inthe multiple-messages setting. We stress that this is not necessarily true for theprivate-key model.C.5.2 ConstructionsIt is common practice to use \pseudorandom generators" as a basis for private-key encryption schemes. We stress that this is a very dangerous practice whenthe \pseudorandom generator" is easy to predict (such as the \linear congruentialgenerator"). However, this common practice becomes sound provided one uses12Recall that for sake of simplicity we have considered only messages of length n, but thegeneral de�nitions refer to messages of arbitrary (polynomial in n) length. We comment that, inthe general form of De�nition C.11, one should provide the length of the message as an auxiliaryinput to both algorithms (A and B).



C.5. ENCRYPTION SCHEMES 477pseudorandom generators (as de�ned in Section C.3.2). An alternative and moreexible construction follows.Private-Key Encryption Scheme based on Pseudorandom Functions:We present a simple construction that uses pseudorandom functions as de�ned inSection C.3.3. The key generation algorithm consists of selecting a seed, denoteds, for a (pseudorandom) function, denoted fs. To encrypt a message x 2 f0; 1gn(using key s), the encryption algorithm uniformly selects a string r 2 f0; 1gn andproduces the ciphertext (r; x � fs(r)), where � denotes the exclusive-or of bitstrings. To decrypt the ciphertext (r; y) (using key s), the decryption algorithmjust computes y � fs(r). The proof of security of this encryption scheme consistsof two steps (suggested as a general methodology in Section C.3.3):1. Proving that an idealized version of the scheme, in which one uses a uniformlyselected function F :f0; 1gn!f0; 1gn, rather than the pseudorandom functionfs, is secure.2. Concluding that the real scheme is secure (because, otherwise one could dis-tinguish a pseudorandom function from a truly random one).Note that we could have gotten rid of the randomization (in the encryption process)if we had allowed the encryption algorithm to be history dependent (e.g., use acounter in the role of r). This can be done if all parties that use the same key(for encryption) coordinate their encryption actions (by maintaining a joint state(e.g., counter)). Indeed, when using a private-key encryption scheme, a commonsituation is that the same key is only used for communication between two speci�cparties, which update a joint counter during their communication. Furthermore,if the encryption scheme is used for fifo communication between the parties andboth parties can reliably maintain the counter value, then there is no need (forthe sender) to send the counter value. (The resulting scheme is related to \streamciphers" which are commonly used in practice.)We comment that the use of a counter (or any other state) in the encryptionprocess is not reasonable in the case of public-key encryption schemes, because itis incompatible with the canonical usage of such schemes (i.e., allowing all partiesto send encrypted messages to the \owner of the encryption-key" without engagingin any type of further coordination or communication). Furthermore (unlike in thecase of private-key schemes), probabilistic encryption is essential for a secure public-key encryption scheme even in the case of encrypting a single message. FollowingGoldwasser and Micali [104], we now demonstrate the use of probabilistic encryptionin the construction of public-key encryption schemes.Public-Key Encryption Scheme based on Trapdoor Permutations: Wepresent two constructions that employ a collection of trapdoor permutations, asde�ned in De�nition C.3. Let ffi : Di ! Digi be such a collection, and let bbe a corresponding hard-core predicate. The key generation algorithm consists ofselecting a permutation fi along with a corresponding trapdoor t, and outputting



478APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY(i; t) as the key-pair. To encrypt a (single) bit � (using the encryption-key i),the encryption algorithm uniformly selects r 2 Di, and produces the ciphertext(fi(r); � � b(r)). To decrypt the ciphertext (y; �) (using the decryption-key t), thedecryption algorithm computes � � b(f�1i (y)) (using the trapdoor t of fi). Clearly,(� � b(r)) � b(f�1i (fi(r))) = �. Indistinguishability of encryptions is implied bythe hypothesis that b is a hard-core of fi. We comment that this scheme is quitewasteful in bandwidth; nevertheless, the paradigm underlying its construction (i.e.,applying the trapdoor permutation to a randomized version of the plaintext ratherthan to the actual plaintext) is valuable in practice.A more e�cient construction of a public-key encryption scheme, which usesthe same key-generation algorithm, follows. To encrypt an `-bit long string x(using the encryption-key i), the encryption algorithm uniformly selects r 2 Di,computes y  b(r) � b(fi(r)) � � � b(f `�1i (r)) and produces the ciphertext (fì (r); x �y). To decrypt the ciphertext (u; v) (using the decryption-key t), the decryptionalgorithm �rst recovers r = f�`i (u) (using the trapdoor t of fi), and then obtainsv�b(r)�b(fi(r)) � � � b(f `�1i (r)). Note the similarity to the Blum-Micali Construction(depicted in Eq. (8.8)), and the fact that the proof of the pseudorandomness ofEq. (8.8) can be extended to establish the computational indistinguishability of(b(r) � � � b(f `�1i (r)); fì (r)) and (r0; fì (r)), for random and independent r 2 Di andr0 2 f0; 1g`. Indistinguishability of encryptions follows, and thus the second schemeis secure. We mention that, assuming the intractability of factoring integers, thisscheme has a concrete implementation with e�ciency comparable to that of RSA.C.5.3 Beyond Eavesdropping SecurityOur treatment so far has referred only to a \passive" attack in which the adversarymerely eavesdrops the line over which ciphertexts are sent. Stronger types of at-tacks (i.e., \active" ones), culminating in the so-called Chosen Ciphertext Attack,may be possible in various applications. Speci�cally, in some settings it is feasiblefor the adversary to make the sender encrypt a message of the adversary's choice,and in some settings the adversary may even make the receiver decrypt a ciphertextof the adversary's choice. This gives rise to chosen plaintext attacks and to chosenciphertext attacks, respectively, which are not covered by the security de�nitionsconsidered in Sections C.5.1 and C.5.2. Here we briey discuss such \active" at-tacks, focusing on chosen ciphertext attacks (of the strongest type known as \aposteriori" or \CCA2").Loosely speaking, in a chosen ciphertext attack, the adversary may obtain thedecryptions of ciphertexts of its choice, and is deemed successful if it learns some-thing regarding the plaintext that corresponds to some di�erent ciphertext (see [88,Sec. 5.4.4]). That is, the adversary is given oracle access to the decryption functioncorresponding to the decryption-key in use (and, in the case of private-key schemes,it is also given oracle access to the corresponding encryption function). The adver-sary is allowed to query the decryption oracle on any ciphertext except for the \testciphertext" (i.e., the very ciphertext for which it tries to learn something aboutthe corresponding plaintext). It may also make queries that do not correspond tolegitimate ciphertexts, and the answer will be accordingly (i.e., a special `failure'



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 479symbol). Furthermore, the adversary may e�ect the selection of the test cipher-text (by specifying a distribution from which the corresponding plaintext is to bedrawn).Private-key and public-key encryption schemes secure against chosen ciphertextattacks can be constructed under (almost) the same assumptions that su�ce forthe construction of the corresponding passive schemes. Speci�cally:Theorem C.13 Assuming the existence of one-way functions, there exist private-key encryption schemes that are secure against chosen ciphertext attack.Theorem C.14 Assuming the existence of enhanced13 trapdoor permutations,there exist public-key encryption schemes that are secure against chosen cipher-text attack.Both theorems are proved by constructing encryption schemes in which the adver-sary's gain from a chosen ciphertext attack is eliminated by making it infeasible(for the adversary) to obtain any useful knowledge via such an attack. In the caseof private-key schemes (i.e., Theorem C.13), this is achieved by making it infeasible(for the adversary) to produce legitimate ciphertexts (other than those explicitlygiven to it, in response to its request to encrypt plaintexts of its choice). This,in turn, is achieved by augmenting the ciphertext with an \authentication tag"that is hard to generate without knowledge of the encryption-key; that is, we use amessage-authentication scheme (as de�ned in Section C.6). In the case of public-key schemes (i.e., Theorem C.14), the adversary can certainly generate ciphertextsby itself, and the aim is to make it infeasible (for the adversary) to produce legit-imate ciphertexts without \knowing" the corresponding plaintext. This, in turn,will be achieved by augmenting the plaintext with a non-interactive zero-knowledge\proof of knowledge" of the corresponding plaintext.Security against chosen ciphertext attack is related to the notion of non-malleabilityof the encryption scheme. Loosely speaking, in a non-malleable encryption schemeit is infeasible for an adversary, given a ciphertext, to produce a valid ciphertextfor a related plaintext (e.g., given a ciphertext of a plaintext 1x, for an unknown x,it is infeasible to produce a ciphertext to the plaintext 0x). For further discussionsee [88, Sec. 5.4.5].C.6 Signatures and Message AuthenticationBoth signature schemes and message authentication schemes are methods for \vali-dating" data; that is, verifying that the data was approved by a certain party (or setof parties). The di�erence between signature schemes and message authenticationschemes is that signatures should be \universally veri�able", whereas authentica-tion tags are only required to be veri�able by parties that are also able to generatethem.13Loosely speaking, the enhancement refers to the hardness condition of De�nition C.2, andrequires that it be hard to recover f�1i (y) also when given the coins used to sample y (ratherthan merely y itself). See [88, Apdx. C.1].



480APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYSignature Schemes: The need to discuss \digital signatures" (cf. [62, 170]) hasarisen with the introduction of computer communication to the business environ-ment (in which parties need to commit themselves to proposals and/or declarationsthat they make). Discussions of \unforgeable signatures" did take place also priorto the computer age, but the objects of discussion were handwritten signatures(and not digital ones), and the discussion was not perceived as related to \cryp-tography". Loosely speaking, a scheme for unforgeable signatures should satisfy thefollowing:� each user can e�ciently produce its own signature on documents of its choice;� every user can e�ciently verify whether a given string is a signature of another(speci�c) user on a speci�c document; but� it is infeasible to produce signatures of other users to documents they did notsign.We note that the formulation of unforgeable digital signatures provides also a clearstatement of the essential ingredients of handwritten signatures. The ingredientsare each person's ability to sign for itself, a universally agreed veri�cation proce-dure, and the belief (or assertion) that it is infeasible (or at least hard) to forgesignatures (i.e., produce some other person's signatures to documents that werenot signed by it such that these \unauthentic" signatures are accepted by theveri�cation procedure).Message authentication schemes: Message authentication is a task relatedto the setting considered for encryption schemes; that is, communication over aninsecure channel. This time, we consider an active adversary that is monitoringthe channel and may alter the messages sent over it. The parties communicatingthrough this insecure channel wish to authenticate the messages they send suchthat their counterpart can tell an original message (sent by the sender) from amodi�ed one (i.e., modi�ed by the adversary). Loosely speaking, a scheme formessage authentication should satisfy the following:� each of the communicating parties can e�ciently produce an authenticationtag to any message of its choice;� each of the communicating parties can e�ciently verify whether a given stringis an authentication tag of a given message; but� it is infeasible for an external adversary (i.e., a party other than the commu-nicating parties) to produce authentication tags to messages not sent by thecommunicating parties.Note that, in contrast to the speci�cation of signature schemes, we do not requireuniversal veri�cation: only the designated receiver is required to be able to verifythe authentication tags. Furthermore, we do not require that the receiver can notproduce authentication tags by itself (i.e., we only require that external parties can



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 481not do so). Thus, message authentication schemes cannot convince a third partythat the sender has indeed sent the information (rather than the receiver havinggenerated it by itself). In contrast, signatures can be used to convince third parties:in fact, a signature to a document is typically sent to a second party so that inthe future this party may (by merely presenting the signed document) convincethird parties that the document was indeed generated (or sent or approved) by thesigner.C.6.1 De�nitionsFormally speaking, both signature schemes and message authentication schemesconsist of three e�cient algorithms: key generation, signing and veri�cation. As inthe case of encryption schemes, the key-generation algorithm, denoted G, is usedto generate a pair of corresponding keys, one is used for signing (via algorithm S)and the other is used for veri�cation (via algorithm V ). That is, Ss(�) denotes asignature produced by algorithm S on input a signing-key s and a document �,whereas Vv(�; �) denotes the verdict of the veri�cation algorithm V regarding thedocument � and the alleged signature � relative to the veri�cation-key v. Needlessto say, for any pair of keys (s; v) generated by G and for every �, it holds thatVv(�; Ss(�)) = 1.The di�erence between the two types of schemes is reected in the de�nition ofsecurity. In the case of signature schemes, the adversary is given the veri�cation-key, whereas in the case of message authentication schemes the veri�cation-key(which may equal the signing-key) is not given to the adversary. Thus, schemesfor message authentication can be viewed as a private-key version of signatureschemes. This di�erence yields di�erent functionalities (even more than in the caseof encryption): In typical use of a signature scheme, each user generates a pair ofsigning and veri�cation keys, publicizes the veri�cation-key and keeps the signing-key secret. Subsequently, each user may sign documents using its own signing-key,and these signatures are universally veri�able with respect to its public veri�cation-key. In contrast, message authentication schemes are typically used to authenticateinformation sent among a set of mutually trusting parties that agree on a secretkey, which is being used both to produce and verify authentication-tags. (Indeed,it is assumed that the mutually trusting parties have generated the key together orhave exchanged the key in a secure way, prior to the communication of informationthat needs to be authenticated.)We focus on the de�nition of secure signature schemes, and consider very pow-erful attacks on the signature scheme as well as a very liberal notion of breakingit. Speci�cally, the attacker is allowed to obtain signatures to any message of itschoice. One may argue that in many applications such a general attack is not pos-sible (because messages to be signed must have a speci�c format). Yet, our viewis that it is impossible to de�ne a general (i.e., application-independent) notionof admissible messages, and thus a general/robust de�nition of an attack seemsto have to be formulated as suggested here. (Note that at worst, our approach isoverly cautious.) Likewise, the adversary is said to be successful if it can producea valid signature to any message for which it has not asked for a signature during



482APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYits attack. Again, this means that the ability to form signatures to \nonsensical"messages is also viewed as a breaking of the scheme. Yet, again, we see no wayto have a general (i.e., application-independent) notion of \meaningful" messages(such that only forging signatures to them will be considered a breaking of thescheme).De�nition C.15 (secure signature schemes { a sketch): A chosen message attackis a process that, on input a veri�cation-key, can obtain signatures (relative tothe corresponding signing-key) to messages of its choice. Such an attack is said tosucceed (in existential forgery) if it outputs a valid signature to a message for whichit has not requested a signature during the attack. A signature scheme is secure (orunforgeable) if every feasible chosen message attack succeeds with at most negligibleprobability, where the probability is taken over the initial choice of the key-pair aswell as over the adversary's actions.We stress that plain RSA (alike plain versions of Rabin's scheme [171] and theDSS) is not secure under the above de�nition. However, it may be secure if themessage is \randomized" before RSA (or the other schemes) is applied.C.6.2 ConstructionsSecure message authentication schemes can be constructed using pseudorandomfunctions. Speci�cally, the key-generation algorithm consists of selecting a seeds 2 f0; 1gn for such a function, denoted fs :f0; 1g�!f0; 1gn, and the (only valid)tag of message x with respect to the key s is fs(x). As in the case of our private-key encryption scheme, the proof of security of the current message authenticationscheme consists of two steps:1. Proving that an idealized version of the scheme, in which one uses a uniformlyselected function F :f0; 1g�!f0; 1gn, rather than the pseudorandom functionfs, is secure (i.e., unforgeable).2. Concluding that the real scheme is secure (because, otherwise one could dis-tinguish a pseudorandom function from a truly random one).Note that this message authentication scheme makes an \extensive use of pseu-dorandom functions" (i.e., the pseudorandom function is applied directly to themessage, which requires a generalized notion of pseudorandom functions (cf. endof Section C.3.3)). More e�cient schemes can be constructed either based on amore restricted use of a pseudorandom function or based on other cryptographicprimitives.Constructing secure signature schemes seems more di�cult than constructingmessage authentication schemes. Nevertheless, secure signature schemes can beconstructed based on the same assumptions.Theorem C.16 The following three conditions are equivalent:1. One-way functions exist.2. Secure signature schemes exist.



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 4833. Secure message authentication schemes exist.We stress that, unlike in the case of public-key encryption schemes, the constructionof signature schemes (which may be viewed as a public-key analogue of messageauthentication) does not require a trapdoor property.How to construct secure signature schemesThree central paradigms used in the construction of secure signature schemes arethe \refreshing" of the \e�ective" signing-key, the usage of an \authentication tree",and the \hashing paradigm" (to be all discussed in the sequel). In addition tobeing used in the proof of Theorem C.16, these three paradigms are of independentinterest.The refreshing paradigm. Introduced in [106], the refreshing paradigm is aimedat limiting the potential dangers of chosen message attacks. This is achieved bysigning the actual document using a newly (and randomly) generated instance ofthe signature scheme, and authenticating (the veri�cation-key of) this random in-stance with respect to the �xed public-key. That is, consider a basic signaturescheme (G;S; V ) used as follows. Suppose that the user U has generated a key-pair, (s; v)  G(1n), and has placed the veri�cation-key v on a public-�le. Whena party asks U to sign some document �, the user U generates a new (\fresh")key-pair, (s0; v0)  G(1n), signs v0 using the original signing-key s, signs � usingthe new signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as a signature to �. Analleged signature, (�1; v0; �2), is veri�ed by checking whether both Vv(v0; �1) = 1and Vv0(�; �2) = 1 hold. Intuitively, the gain in terms of security is that a full-edged chosen message attack cannot be launched on a �xed instance of (G;S; V )(i.e., on the �xed veri�cation-key that resides in the public-�le and is known tothe attacker). All that an attacker may obtain (via a chosen message attack onthe new scheme) is signatures, relative to the original signing-key s of (G;S; V ),to random strings (distributed according to G(1n)) as well as additional signaturesthat are each relative to a random and independently distributed signing-key.Authentication trees. The security bene�ts of the refreshing paradigm are in-creased when combining it with the use of authentication trees. The idea is to usethe public veri�cation-key for authenticating several (e.g., two) fresh instances ofthe signature scheme, use each of these instances for authenticating several addi-tional fresh instances, and so on. Thus, we obtain a tree of fresh instances of thebasic signature scheme, where each internal node authenticates its children. Wecan now use the leaves of this tree for signing actual documents, where each leaf isused at most once. Thus, a signature to an actual document consists of1. a signature to this document authenticated with respect to the veri�cation-key associated with some leaf, and2. a sequence of veri�cation-keys associated with the nodes along the path fromthe root to this leaf, where each such veri�cation-key is authenticated withrespect to the veri�cation-key of its parent.



484APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYWe stress that the same signature, relative to the key of the parent node, is usedfor authenticating the veri�cation-keys of all its children. Thus14, each instance ofthe signature scheme is used for signing at most one string (i.e., a single sequence ofveri�cation-keys if the instance resides in an internal node, and an actual documentif the instance resides in a leaf). Hence, it su�ces to use a signature scheme that issecure as long as it is used for legitimately signing a single string. Such signatureschemes, called one-time signature schemes, are easier to construct than standardsignature schemes, especially if one only wishes to sign strings that are signi�cantlyshorter than the signing-key (resp., than the veri�cation-key). For example, usinga one-way function f , we may let the signing-key consist of a sequence of n pairs ofstrings, let the corresponding veri�cation-key consist of the corresponding sequenceof images of f , and sign an n-bit long message by revealing the adequate pre-images.(That is, the signing-key consist of a sequence ((s01; s11); :::; (s0n; s1n)) 2 f0; 1g2n2 , thecorresponding veri�cation-key is (f(s01); f(s11)); :::; (f(s0n); f(s1n))), and the signa-ture of the message �1 � � ��n is (s�11 ; :::; s�nn ).)The hashing paradigm. Note, however, that in the foregoing authentication-tree, the instances of the signature scheme (associated with internal nodes) are usedfor signing a pair of veri�cation-keys. Thus, we need a one-time signature schemethat can be used for signing messages that are longer than the veri�cation-key.Here is where the hashing paradigm comes into play. This paradigm refers to thecommon practice of signing documents via a two stage process: First the actualdocument is hashed to a (relatively) short string, and next the basic signaturescheme is applied to the resulting string. This practice (as well as other usages ofthe hashing paradigm) is sound provided that the hashing function belongs to afamily of collision-free hashing (a.k.a collision-resistant hashing) functions. Looselyspeaking, given a hash function that is randomly selected in such a family, it isinfeasible to �nd two di�erent strings that are hashed by this function to the samevalue. We also refer the interested reader to a variant of the hashing paradigm thatuses the seemingly weaker notion of a family of Universal One-Way Hash Functions(see [160] or [88, Sec. 6.4.3]).C.7 General Cryptographic ProtocolsThe design of secure protocols that implement arbitrary desired functionalities isa major part of modern cryptography. Taking the opposite perspective, the designof any cryptographic scheme may be viewed as the design of a secure protocol forimplementing a corresponding functionality. Still, we believe that it makes sense to14A naive implementation of the foregoing (full-edged) signature scheme calls for storing in(secure) memory all the instances of the basic (one-time) signature scheme that are generatedthroughout the entire signing process (which refers to numerous documents). However, we notethat it su�ces to be able to reconstruct the random-coins used for generating each of theseinstances, and the former can be determined by a pseudorandom function (applied to the nameof the corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will bepart of the signing-key of the resulting (full-edged) signature scheme.



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 485di�erentiate between basic cryptographic primitives (which involve little interac-tion) like encryption and signature schemes on one hand, and general cryptographicprotocols on the other hand.In this section, we survey general results concerning secure multi-party com-putations, where the two-party case is an important special case. In a nutshell,these results assert that one can construct protocols for securely computing anydesirable multi-party functionality. Indeed, what is striking about these results istheir generality, and we believe that the wonder is not diminished by the (variousalternative) conditions under which these results hold.A general framework for casting (m-party) cryptographic (protocol) problemsconsists of specifying a random process15 that maps m inputs to m outputs. Theinputs to the process are to be thought of as the local inputs of m parties, and them outputs are their corresponding local outputs. The random process describesthe desired functionality. That is, if the m parties were to trust each other (or trustsome external party), then they could each send their local input to the trustedparty, who would compute the outcome of the process and send to each party thecorresponding output. A pivotal question in the area of cryptographic protocols isto what extent can this (imaginary) trusted party be \emulated" by the mutuallydistrustful parties themselves.The results surveyed in this section describe a variety of models in which suchan \emulation" is possible. The models vary by the underlying assumptions re-garding the communication channels, numerous parameters governing the extentof adversarial behavior, and the desired level of emulation of the trusted party (i.e.,level of \security"). Our treatment refers to the security of stand-alone executions.The preservation of security in an environment in which many executions of manyprotocols are attacked is beyond the scope of this section, and the interested readeris referred to [88, Sec. 7.7.2].C.7.1 The De�nitional Approach and Some ModelsBefore describing the aforementioned results, we further discuss the notion of\emulating a trusted party", which underlies the de�nitional approach to securemulti-party computation. This approach follows the simulation paradigm (cf. Sec-tion C.4.1) which deems a scheme to be secure if whatever a feasible adversary canobtain after attacking it, is also feasibly attainable by a benign behavior. In thegeneral setting of multi-party computation we compare the e�ect of adversariesthat participate in the execution of the actual protocol to the e�ect of adversariesthat participate in an imaginary execution of a trivial (ideal) protocol for com-puting the desired functionality with the help of a trusted party. If whatever theadversaries can feasibly obtain in the real setting can also be feasibly obtained in15That is, we consider the secure evaluation of randomized functionalities, rather than \only"the secure evaluation of functions. Speci�cally, we consider an arbitrary (randomized) processF that on input (x1; :::; xm), �rst selects at random (depending only on ` def= Pmi=1 jxij) an m-ary function f , and then outputs the m-tuple f(x1; :::; xm) = (f1(x1; :::; xm); :::; fm(x1; :::; xm)).In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly selected in f0; 1g`0 (with`0 = poly(`)), and F 0 is a function mapping (m+ 1)-long sequences to m-long sequences.



486APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYthe ideal setting then the actual protocol \emulates the ideal setting" (i.e., \em-ulates a trusted party"), and thus is deemed secure. This basic approach can beapplied in a variety of models, and is used to de�ne the goals of security in thesemodels.16 We �rst discuss some of the parameters used in de�ning various models,and next demonstrate the application of this approach in two important cases. Forfurther details, see [88, Sec. 7.2 and 7.5.1].C.7.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) computation.In some cases, the corresponding de�nition of security is obtained by imposingsome restrictions or provisions on the ideal model. For example, in the case of two-party computation (see xC.7.1.3), secure computation is possible only if prematuretermination is not considered a breach of security. In that case, the suitable securityde�nition is obtained (via the simulation paradigm) by allowing (an analogue of)premature termination in the ideal model. In all cases, the desired notion of securityis de�ned by requiring that for any adequate adversary in the real model, there exista corresponding adversary in the corresponding ideal model that obtains essentiallythe same impact (as the real-model adversary).The communication channels: The standard assumption in cryptography isthat the adversary may tap all communication channels (between honest parties),but cannot modify (or omit or insert) messages sent over them. In contrast, onemay postulate that the adversary cannot obtain messages sent between a pair ofhonest parties, yielding the so-called private-channel model. Most works in the areaassume that communication is synchronous and that point-to-point channels existbetween every pair of processors (i.e., a complete network).Set-up assumptions: Unless stated di�erently, no set-up assumptions are made(except for the obvious assumption that all parties have identical copies of theprotocol's program).Computational limitations: Typically, the focus is on computationally-boundedadversaries (e.g., probabilistic polynomial-time adversaries). However, the private-channel model allows for the (meaningful) consideration of computationally-unboundedadversaries.1716A few technical comments are in place. Firstly, we assume that the inputs of all partiesare of the same length. We comment that as long as the lengths of the inputs are polynomiallyrelated, the foregoing convention can be enforced by padding. On the other hand, some lengthrestriction is essential for the security results, because in general it is impossible to hide allinformation regarding the length of the inputs to a protocol. Secondly, we assume that thedesired functionality is computable in probabilistic polynomial-time, because we wish the secureprotocol to run in probabilistic polynomial-time (and a protocol cannot be more e�cient thanthe corresponding centralized algorithm). Clearly, the results can be extended to functionalitiesthat are computable within any given (time-constructible) time bound, using adequate padding.17We stress that, also in the case of computationally-unbounded adversaries, security shouldbe de�ned by requiring that for every real adversary, whatever the adversary can compute after



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 487Restricted adversarial behavior: The parameters of the model include ques-tions like whether the adversary is \active" or \passive" (i.e., whether a dishonestparty takes active steps to disrupt the execution of the protocol or merely gathersinformation) and whether or not the adversary is \adaptive" (i.e., whether the setof dishonest parties is �xed before the execution starts or is adaptively chosen byan adversary during the execution).Restricted notions of security: One important example is the willingness totolerate \unfair" protocols in which the execution can be suspended (at any time)by a dishonest party, provided that it is detected doing so. We stress that in case theexecution is suspended, the dishonest party does not obtain more information thanit could have obtained when not suspending the execution. (What may happen isthat the honest parties will not obtain their desired outputs, but will detect thatthe execution was suspended.) We stress that the motivation to this restrictedmodel is the impossibility of obtaining general secure two-party computation inthe unrestricted model.Upper bounds on the number of dishonest parties: These are assumedin some models, when required. For example, in some models, secure multi-partycomputation is possible only if a majority of the parties is honest.C.7.1.2 Example: Multi-party protocols with honest majorityHere we consider an active, non-adaptive, computationally-bounded adversary, anddo not assume the existence of private channels. Our aim is to de�ne multi-partyprotocols that remain secure provided that the honest parties are in majority.(The reason for requiring an honest majority will be discussed at the end of thissubsection.)We �rst observe that in any multi-party protocol, each party may change itslocal input before even entering the execution of the protocol. However, this isunavoidable also when the parties utilize a trusted party. Consequently, such ane�ect of the adversary on the real execution (i.e., modi�cation of its own inputprior to entering the actual execution) is not considered a breach of security. Ingeneral, whatever cannot be avoided when the parties utilize a trusted party, isnot considered a breach of security. We wish secure protocols (in the real model)to su�er only from whatever is unavoidable also when the parties utilize a trustedparty. Thus, the basic paradigm underlying the de�nitions of secure multi-partycomputations amounts to requiring that the only situations that may occur in thereal execution of a secure protocol are those that can also occur in a correspondingideal model (where the parties may employ a trusted party). In other words, theparticipating in the execution of the actual protocol is computable within comparable time byan imaginary adversary participating in an imaginary execution of the trivial ideal protocol (forcomputing the desired functionality with the help of a trusted party). That is, although nocomputational restrictions are made on the real-model adversary, it is required that the ideal-model adversary that obtains the same impact does so within comparable time (i.e., within timethat is polynomially related to the running time of the real-model adversary being simulated).



488APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY\e�ective malfunctioning" of parties in secure protocols is restricted to what ispostulated in the corresponding ideal model.When de�ning secure multi-party protocols (with honest majority), we need topin-point what cannot be avoided in the ideal model (i.e., when the parties utilizea trusted party). Since we are interested in executions in which the majority ofparties are honest, we consider an ideal model in which any minority group (of theparties) may collude as follows:1. Firstly this dishonest minority shares its original inputs and decides togetheron replaced inputs to be sent to the trusted party. (The other parties sendtheir respective original inputs to the trusted party.)2. Upon receiving inputs from all parties, the trusted party determines the cor-responding outputs and sends them to the corresponding parties. (We stressthat the information sent between the honest parties and the trusted partyis not seen by the dishonest colluding minority.)3. Upon receiving the output-message from the trusted party, each honest partyoutputs it locally, whereas the dishonest colluding minority may determinetheir outputs based on all they know (i.e., their initial inputs and their re-ceived outputs).A secure multi-party computation with honest majority is required to emulate thisideal model. That is, the e�ect of any feasible adversary that controls a minority ofthe parties in a real execution of such a (real) protocol, can be essentially simulatedby a (di�erent) feasible adversary that controls the corresponding parties in theideal model.De�nition C.17 (secure protocols { a sketch): Let f be an m-ary functionalityand � be an m-party protocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (andtapping all communication channels), and an m-sequence x, we denote byreal�;A(x) the sequence of m outputs resulting from the execution of � oninput x under the attack of the adversary A.� For an ideal-model adversary A0, controlling some minority of the parties,and an m-sequence x, we denote by idealf;A0(x) the sequence of m outputsresulting from the foregoing three-step ideal process, when applied to input xunder the attack of the adversary A0.We say that � securely implements f with honest majority if for every feasible real-model adversary A, controlling some minority of the parties, there exists a feasibleideal-model adversary A0, controlling the same parties, such that the probability en-sembles freal�;A(x)gx and fidealf;A0(x)gx are computationally indistinguishable(as in De�nition C.5).Thus, security means that the e�ect of each minority group in a real executionof a secure protocol is \essentially restricted" to replacing its own local inputs



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 489(independently of the local inputs of the majority parties) before the protocolstarts, and replacing its own local outputs (depending only on its local inputs andoutputs) after the protocol terminates. (We stress that in the real execution theminority parties do obtain additional pieces of information; yet in a secure protocolthey gain nothing from these additional pieces of information, because they canactually reproduce those by themselves.)The fact that De�nition C.17 refers to a model without private channels isreected in the fact that our (sketchy) de�nition of the real-model adversary al-lowed it to tap the channels, which in turn e�ects the set of possible ensemblesfreal�;A(x)gx. When de�ning security in the private-channel model, the real-model adversary is not allowed to tap channels between honest parties, and thisagain e�ects the possible ensembles freal�;A(x)gx. On the other hand, when wewish to de�ne security with respect to passive adversaries, both the scope of thereal-model adversaries and the scope of the ideal-model adversaries changes. In thereal-model execution, all parties follow the protocol but the adversary may alterthe output of the dishonest parties arbitrarily depending on their intermediate in-ternal states (during the entire execution). In the corresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), butis allowed to modify their outputs (in Step 3).We comment that a de�nition analogous to De�nition C.17 can be presented alsoin the case that the dishonest parties are not in minority. In fact, such a de�nitionseems more natural, but the problem is that such a de�nition cannot be satis�ed.That is, most (natural) functionalities do not have a protocol for computing themsecurely in the case that at least half of the parties are dishonest and employ anadequate adversarial strategy. This follows from an impossibility result regardingtwo-party computation, which essentially asserts that there is no way to prevent aparty from prematurely suspending the execution. On the other hand, secure multi-party computation with dishonest majority is possible if premature suspension ofthe execution is not considered a breach of security (see xC.7.1.3).C.7.1.3 Another example: Two-party protocols allowing abortIn light of the last paragraph, we now consider multi-party computations in whichpremature suspension of the execution is not considered a breach of security. Forsimplicity, we focus on the special case of two-party computations (As in xC.7.1.2,we consider a non-adaptive, active, computationally-bounded adversary.)Intuitively, in any two-party protocol, each party may suspend the executionat any point in time, and furthermore it may do so as soon as it learns the desiredoutput. Thus, in case the output of each parties depends on both inputs, it is alwayspossible for one of the parties to obtain the desired output while preventing theother party from fully determining its own output.18 The same phenomenon occurseven in case the two parties just wish to generate a common random value. Thus,when considering active adversaries in the two-party setting, we do not consider18In contrast, in the case of an honest majority (cf., xC.7.1.2), the honest party that fails toobtain its output is not alone. It may seek help from the other honest parties, which togetherand being in majority can do things that dishonest minorities cannot do: See xC.7.3.2.



490APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYsuch premature suspension of the execution a breach of security. Consequently, weconsider an ideal model where each of the two parties may \shut-down" the trusted(third) party at any point in time. In particular, this may happen after the trustedparty has supplied the outcome of the computation to one party but before it hassupplied the outcome to the other. Thus, an execution in the corresponding idealmodel proceeds as follows:1. Each party sends its input to the trusted party, where the dishonest partymay replace its input or send no input at all (which can be treated as sendinga default value).2. Upon receiving inputs from both parties, the trusted party determines thecorresponding pair of outputs, and sends the �rst output to the �rst party.3. In case the �rst party is dishonest, it may instruct the trusted party to halt,otherwise it always instructs the trusted party to proceed. If instructed toproceed, the trusted party sends the second output to the second party.4. Upon receiving the output-message from the trusted party, an honest partyoutputs it locally, whereas a dishonest party may determine its output basedon all it knows (i.e., its initial input and its received output).A secure two-party computation allowing abort is required to emulate this idealmodel. That is, as in De�nition C.17, security is de�ned by requiring that forevery feasible real-model adversary A, there exists a feasible ideal-model adversaryA0, controlling the same party, such that the probability ensembles representingthe corresponding (real and ideal) executions are computationally indistinguish-able. This means that each party's \e�ective malfunctioning" in a secure protocolis restricted to supplying an initial input of its choice and aborting the computationat any point in time. (Needless to say, the choice of the initial input of each partymay not depend on the input of the other party.)We mention that an alternative way of dealing with the problem of prematuresuspension of execution (i.e., abort) is to restrict our attention to single-outputfunctionalities; that is, functionalities in which only one party is supposed to obtainan output. The de�nition of secure computation of such functionalities can be madeidentical to De�nition C.17, with the exception that no restriction is made on theset of dishonest parties (and in particular one may consider a single dishonest partyin the case of two-party protocols). For further details, see [88, Sec. 7.2.3].C.7.2 Some Known ResultsWe next list some of the models for which general secure multi-party computationis known to be attainable (i.e., models in which one can construct secure multi-party protocols for computing any desired functionality). We mention that the �rstresults of this type were obtained by Goldreich, Micali, Wigderson and Yao [96,225, 97].



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 491In the standard channel model. Assuming the existence of enhanced19 trap-door permutations, secure multi-party computation is possible in the following threemodels (cf. [96, 225, 97] and details in [88, Chap. 7]):1. Passive adversary, for any number of dishonest parties (see [88, Sec. 7.3]).2. Active adversary that may control only a minority of the parties (see [88,Sec. 7.5.4]).3. Active adversary, for any number of dishonest parties, provided that suspen-sion of execution (as discussed in xC.7.1.3) is not considered a violation ofsecurity (see [88, Sec. 7.4 and 7.5.5]).In all these cases, the adversary is computationally-bounded and non-adaptive. Onthe other hand, the adversary may tap the communication lines between honestparties (i.e., we do not assume \private channels" here). The results for active ad-versaries assume a broadcast channel. Indeed, the latter can be implemented (whiletolerating any number of dishonest parties) using a signature scheme and assumingthat each party knows (or can reliably obtain) the veri�cation-key correspondingto each of the other parties.In the private channels model. Making no computational assumptions andallowing computationally-unbounded adversaries, but assuming private channels,secure multi-party computation is possible in the following two models (cf. [32, 50]):1. Passive adversary that may control only a minority of the parties.2. Active adversary that may control only less than one third of the parties.In both cases the adversary may be adaptive.C.7.3 Construction Paradigms and Two Simple ProtocolsWe briey sketch a couple of paradigms used in the construction of secure multi-party protocols. We focus on the construction of secure protocols for the model ofcomputationally-bounded and non-adaptive adversaries [96, 225, 97]. These con-structions proceed in two steps (see details in [88, Chap. 7]): First a secure protocolis presented for the model of passive adversaries (for any number of dishonest par-ties), and next such a protocol is \compiled" into a protocol that is secure in oneof the two models of active adversaries (i.e., either in a model allowing the adver-sary to control only a minority of the parties or in a model in which prematuresuspension of the execution is not considered a violation of security). These twosteps are presented in the following two corresponding subsections, in which wealso present two relatively simple protocols for two speci�c tasks, which in turn areused extensively in the general protocols.Recall that in the model of passive adversaries, all parties follow the prescribedprotocol, but at termination the adversary may alter the outputs of the dishonest19See Footnote 13.



492APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYparties depending on their intermediate internal states (during the entire execu-tion). Below, we refer to protocols that are secure in the model of passive (resp.,active) adversaries by the term passively-secure (resp., actively-secure).C.7.3.1 Passively-secure computation with sharesFor any m � 2, suppose that m parties, each having a private input, wish to ob-tain the value of a predetermined m-argument function evaluated at their sequenceof inputs. Below, we outline a passively-secure protocol for achieving this goal.We mention that the design of passively-secure multi-party protocol for any func-tionality (allowing di�erent outputs to di�erent parties as well as handling alsorandomized computations) reduces easily to the aforementioned task.We assume that the parties hold a circuit for computing the value of the functionon inputs of the adequate length, and that the circuit contains only and and notgates. The key idea is having each party \secretly share" its input with everybodyelse, and having the parties \secretly transform" shares of the input wires of thecircuit into shares of the output wires of the circuit, thus obtaining shares of theoutputs (which allows for the reconstruction of the actual outputs). The valueof each wire in the circuit is shared such that all shares yield the value, whereaslacking even one of the shares keeps the value totally undetermined. That is, weuse a simple secret sharing scheme such that a bit b is shared by a random sequenceof m bits that sum-up to b mod 2. First, each party shares each of its input bitswith all parties (by secretly sending each party a random value and setting its ownshare accordingly). Next, all parties jointly scan the circuit from its input wires toits output wires, processing each gate as follows:� When encountering a gate, the parties already hold shares of the values ofthe wires entering the gate, and their aim is to obtain shares of the value ofthe wires exiting the gate.� For a not-gate this is easy: the �rst party just ips the value of its share,and all other parties maintain their shares.� Since an and-gate corresponds to multiplication modulo 2, the parties needto securely compute the following randomized functionality (in which the xi'sdenote shares of one entry-wire, the yi's denote shares of the second entry-wire, the zi's denote shares of the exit-wire, and the shares indexed by i areheld by Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; zm) , where (C.1)mXi=1 zi =  mXi=1 xi! � mXi=1 yi!: (C.2)That is, the zi's are random subject to Eq. (C.2).Finally, the parties send their shares of each circuit-output wire to the designatedparty, which reconstructs the value of the corresponding bit. Thus, the parties have



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 493propagated shares of the circuit-input wires into shares of the circuit-output wires,by repeatedly conducting passively-secure computation of the m-ary functionalityof Eq. (C.1)& (C.2). That is, securely evaluating the entire (arbitrary) circuit\reduces" to securely conducting a speci�c (very simple) multi-party computation.But things get even simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) : (C.3)Thus, the m-ary functionality of Eq. (C.1)& (C.2) can be computed as follows(where all arithmetic operations are mod 2):1. Each Party i locally computes zi;i def= xiyi.2. Next, each pair of parties (i.e., Parties i and j) securely compute randomshares of xiyj + yixj . That is, Parties i and j (holding (xi; yi) and (xj ; yj),respectively), need to securely compute the randomized two-party function-ality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are random subject tozi;j + zj;i = xiyj + yixj . Equivalently, Party j uniformly selects zj;i 2 f0; 1g,and Parties i and j securely compute the following deterministic functionality((xi; yi); (xj ; yj ; zj;i)) 7! (zj;i + xiyj + yixj ; �); (C.4)where � denotes the empty string.3. Finally, for every i = 1; :::;m, the sum Pmj=1 zi;j yields the desired share ofParty i.The foregoing construction is analogous to a construction that was outlined in [97].A detailed description and full proofs appear in [88, Sec. 7.3.4 and 7.5.2].The foregoing construction reduces the passively-secure computation of anym-ary functionality to the implementation of the simple 2-ary functionality ofEq. (C.4). The latter can be implemented in a passively-secure manner by usinga 1-out-of-4 Oblivious Transfer. Loosely speaking, a 1-out-of-k Oblivious Transferis a protocol enabling one party to obtain one of k secrets held by another party,without the second party learning which secret was obtained by the �rst party.That is, it allows a passively-secure computation of the two-party functionality(i; (s1; :::; sk)) 7! (si; �): (C.5)Note that any function f : [k] � f0; 1g� ! f0; 1g� � f�g can be computed in apassively-secure manner by invoking a 1-out-of-k Oblivious Transfer on inputs iand (f(1; y); :::; f(k; y)), where i (resp., y) is the initial input of the �rst (resp.,second) party.A passively-secure 1-out-of-k Oblivious Transfer. Using a collection of en-hanced trapdoor permutations, ff� : D� ! D�g�2I and a corresponding hard-corepredicate b, we outline a passively-secure implementation of the functionality ofEq. (C.5), when restricted to single-bit secrets.



494APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYInputs: The �rst party, hereafter called the receiver, has input i 2 f1; 2; :::; kg. Thesecond party, called the sender, has input (�1; �2; :::; �k) 2 f0; 1gk.Step S1: The sender selects at random a permutation f� along with a correspond-ing trapdoor, denoted t, and sends the permutation f� (i.e., its index �) tothe receiver.Step R1: The receiver uniformly and independently selects x1; :::; xk 2 D�, setsyi = f�(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk) to thesender.Thus, the receiver knows f�1� (yi) = xi, but cannot predict b(f�1� (yj)) for anyj 6= i. Needless to say, the last assertion presumes that the receiver followsthe protocol (i.e., we only consider passive-security).Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algo-rithm and the trapdoor t, the sender computes zj = f�1� (yj), for everyj 2 f1; :::; kg. It sends the k-tuple (�1 � b(z1); �2 � b(z2); :::; �k � b(zk))to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(xi).We �rst observe that this protocol correctly computes 1-out-of-k Oblivious Trans-fer; that is, the receiver's local output (i.e., ci�b(xi)) indeed equals (�i�b(f�1� (f�(xi))))�b(xi) = �i. Next, we o�er some intuition as to why this protocol constitutes aprivately-secure implementation of 1-out-of-k Oblivious Transfer. Intuitively, thesender gets no information from the execution because, for any possible value of i,the senders sees the same distribution; speci�cally, a sequence of k uniformly andindependently distributed elements of D�. (Indeed, the key observation is that ap-plying f� to a uniformly distributed element of D� yields a uniformly distributedelement of D�.) As for the receiver, intuitively, it gains no computational knowl-edge from the execution because, for j 6= i, the only information that the receiverhas regarding �j is the triplet (�; xj ; �j � b(f�1� (xj))), where xj is uniformly dis-tributed in D�, and from this information it is infeasible to predict �j better thanby a random guess.20 (See [88, Sec. 7.3.2] for a detailed proof of security.)C.7.3.2 From passively-secure protocols to actively-secure onesWe show how to transform any passively-secure protocol into a correspondingactively-secure protocol. The communication model in both protocols consists ofa single broadcast channel. Note that the messages of the original protocol maybe assumed to be sent over a broadcast channel, because the adversary may seethem anyhow (by tapping the point-to-point channels), and because a broadcast20The latter intuition presumes that sampling D� is trivial (i.e., that there is an easily com-putable correspondence between the coins used for sampling and the resulting sample), whereasin general the coins used for sampling may be hard to compute from the corresponding outcome.This is the reason that an enhanced hardness assumption is used in the general analysis of theforegoing protocol.



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 495channel is trivially implementable in the case of passive adversaries. As for the re-sulting actively-secure protocol, the broadcast channel it uses can be implementedvia an (authenticated) Byzantine Agreement protocol, thus providing an emulationof this model on the standard point-to-point model (in which a broadcast channeldoes not exist). We mention that authenticated Byzantine Agreement is typicallyimplemented using a signature scheme (and assuming that each party knows theveri�cation-key corresponding to each of the other parties).Turning to the transformation itself, the main idea is using zero-knowledgeproofs (as described in xC.4.3.3) in order to force parties to behave in a way that isconsistent with the (passively-secure) protocol. Actually, we need to con�ne eachparty to a unique consistent behavior (i.e., according to some �xed local input and asequence of coin tosses), and to guarantee that a party cannot �x its input (and/orits coin tosses) in a way that depends on the inputs (and/or coin tosses) of honestparties. Thus, some preliminary steps have to be taken before the step-by-stepemulation of the original protocol may start. Speci�cally, the compiled protocol(which, like the original protocol, is executed over a broadcast channel) proceedsas follows:1. Committing to the local input: Prior to the emulation of the original protocol,each party commits to its input (using a commitment scheme as de�nedin xC.4.3.1). In addition, using a zero-knowledge proof-of-knowledge (seeSection 9.2.3), each party also proves that it knows its own input; that is,it proves that it can decommit to the commitment it sent. (These zero-knowledge proof-of-knowledge prevent dishonest parties from setting theirinputs in a way that depends on inputs of honest parties.)2. Generation of local random tapes: Next, all parties jointly generate a se-quence of random bits for each party such that only this party knows theoutcome of the random sequence generated for it, and everybody else gets acommitment to this outcome. These sequences will be used as the random-inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in therandom-sequence generated for Party X is determined as the exclusive-or ofthe outcomes of instances of an (augmented) coin-tossing protocol (cf. [88,Sec. 7.4.3.5]) that Party X plays with each of the other parties. The lat-ter protocol provides the other parties with a commitment to the outcomeobtained by Party X.3. E�ective prevention of premature termination: In addition, when compiling(the passively-secure protocol to an actively-secure protocol) for the modelthat allows the adversary to control only a minority of the parties, each partyshares its input and random-input with all other parties using a \Veri�ableSecret Sharing" (VSS) protocol (cf. [88, Sec. 7.5.5.1]). Loosely speaking, aVSS protocol allows sharing a secret in a way that enables each participantto verify that the share it got �ts the publicly posted information, whichincludes commitments to all shares, where a su�cient number of the latterallow for the e�cient recovery of the secret. The use of VSS guarantees thatif Party X prematurely suspends the execution, then the honest parties can



496APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYtogether reconstruct all Party X's secrets and carry on the execution whileplaying its role. This step e�ectively prevents premature termination, and isnot needed in a model that does not consider premature termination a breachof security.4. Step-by-step emulation of the original protocol: Once all the foregoing stepsare completed, the new protocol emulates the steps of the original protocol.In each step, each party augments the message determined by the originalprotocol with a zero-knowledge proof that asserts that the message was in-deed computed correctly. Recall that the next message (as determined bythe original protocol) is a function of the sender's own input, its random-input, and the messages it has received so far (where the latter are known toeverybody because they were sent over a broadcast channel). Furthermore,the sender's input is determined by its commitment (as sent in Step 1), andits random-input is similarly determined (in Step 2). Thus, the next mes-sage (as determined by the original protocol) is a function of publicly knownstrings (i.e., the said commitments as well as the other messages sent overthe broadcast channel). Moreover, the assertion that the next message wasindeed computed correctly is an NP-assertion, and the sender knows a cor-responding NP-witness (i.e., its own input and random-input as well as thecorresponding decommitment information). Thus, the sender can prove inzero-knowledge (to each of the other parties) that the message it is sendingwas indeed computed according to the original protocol.The above compilation was �rst outlined in [96, 97]. A detailed description andfull proofs appear in [88, Sec. 7.4 and 7.5].A secure coin-tossing protocol. Using a commitment scheme, we outline asecure (ordinary as opposed to augmented) coin-tossing protocol.Step C1: Party 1 uniformly selects � 2 f0; 1g and sends Party 2 a commitment,denoted c, to �.Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1.Step C3: Party 1 outputs the value � � �0, and sends � along with the decommit-ment information, denoted d, to Party 2.Step C4: Party 2 checks whether or not (�; d) �t the commitment c it has obtainedin Step 1. It outputs � � �0 if the check is satis�ed and halts with output ?otherwise, where ? indicates that Party 1 has e�ectively aborted the protocolprematurely.Outputs: Party 1 always outputs b def= � � �0, whereas Party 2 either outputs bor ?.Intuitively, Steps C1{C2 may be viewed as \tossing a coin into the well". Atthis point (i.e., after Step C2), the value of the coin is determined (essentially



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 497as a random value), but only one party (i.e., Party 1) \can see" (i.e., knows) thisvalue. Clearly, if both parties are honest then they both output the same uniformlychosen bit, recovered in Steps C3 and C4, respectively. Intuitively, each partycan guarantee that the outcome is uniformly distributed, and Party 1 can causepremature termination by improper execution of Step 3. Formally, we have to showhow the e�ect of any real-model adversary can be simulated by an adequate ideal-model adversary (which is allowed premature termination). This is done in [88,Sec. 7.4.3.1].C.7.4 Concluding RemarksIn Sections C.7.1-C.7.2 we have mentioned numerous de�nitions and results regard-ing secure multi-party protocols, where some of these de�nitions are incomparableto others (i.e., they neither imply the others nor are implies by them). For example,in xC.7.1.2 and xC.7.1.3, we have presented two alternative de�nitions of \securemulti-party protocols", one requiring an honest majority and the other allowingabort. These de�nitions are incomparable and there is no generic reason to preferone over the other. Actually, as mentioned in xC.7.1.2, one could formulate a nat-ural de�nition that implies both de�nitions (i.e., waiving the bound on the numberof dishonest parties in De�nition C.17). Indeed, the resulting de�nition is free ofthe annoying restrictions that were introduced in each of the two aforementionedde�nitions; the \only" problem with the resulting de�nition is that it cannot besatis�ed (in general). Thus, for the �rst time in this appendix, we have reached asituation in which a natural (and general) de�nition cannot be satis�ed, and we areforced to choose between two weaker alternatives, where each of these alternativescarries fundamental disadvantages.In general, Section C.7 carries a stronger avor of compromise (i.e., recognizinginherent limitations and settling for a restricted meaningful goal) than previoussections. In contrast to the impression given in other parts of this appendix, it isnow obvious that we cannot get all that we may want (and this is without men-tioning the problems involved in preserving security under concurrent composition;cf. [88, Sec. 7.7.2]). Instead, we should study the alternatives, and go for the onethat best suits our real needs.Indeed, as stated in Section C.1, the fact that we can de�ne a cryptographicgoal does not mean that we can satisfy it as de�ned. In case we cannot satisfythe initial de�nition, we should search for relaxations that can be satis�ed. Theserelaxations should be de�ned in a clear manner such that it would be obvious whatthey achieve (and what they fail to achieve). Doing so will allow a sound choice ofthe relaxation to be used in a speci�c application. This seems to be a good pointto end the current appendix. A good compromise is one in which the most impor-tant interests of all parties are satis�ed.Adv. Klara Goldreich-Ingwer (1912{2004)
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