Oded: June 12, 2023

An alternative presentation of the analysis
of Nisan’s pseudorandom generator of space-bounded machines

The following description of the analysis of Nisan’s construction [3] is inspired by [1], and differs
from the presentation in [2, Sec. 8.4.2.1]. Specifically, the construction is the same, but rather than
being analyzed by looking at contracted versions of the distinguisher (see [2, p. 321]), we consider
a sequence of distributions that this distinguisher may examine.

Our description is meant to replace the text in [2, pp. 320-321], which means that it relies on
the definitions and notations of [2, Sec. 8.4].

Sketch of the proof of [2, Thm. 8.21]. The main technical tool used in this proof is the “mixing
property” of pairwise independent hash functions (see [2, Apdx. D.2]). A family of functions H,,
which map {0,1}" to itself, is called mixing if for every pair of subsets A, B C {0,1}" for all but
very few (i.e., exp(—§2(n)) fraction) of the functions h € H,, it holds that
Al 1B

Pr[U, € ANK(U,) € B] = onon (1)
where the approximation is up to an additive term of exp(—£2(n)). (See the generalization of [2,
Lem.D.4], which implies that exp(—Q(n)) can be set to 277/3.)

We may assume, without loss of generality, that s(k) = Q(vk), and thus ¢ def (k) < 25
holds. For any s(k)-space distinguisher Dy, as in [2, Def. 8.20], we consider its computation when
fed with ¢-long sequences that are taken from various distributions. The first distribution is the
uniform distribution over {0, 1}"; that is, Uy = Uél)U}(lQ) e U,(f/), where ¢/ = £/n and the U,(lj)’s are
independent random variables each uniformly distributed over {0,1}". The last distribution will
be the one produced by the pseudorandom generator, and a generic (hybrid) distribution will have

the form

1, % GUMNGUD) - (U2 Dyq, (U2

n

where G; is an arbitrary mapping of n-bit strings to 2° - n-bit strings (and i € {0,1...,log, ¢'}).!
That is, the i'" hybrid is obtained by applying G; : {0,1}" — {0,1}*"™ to a sequence of ¢'/2!
independently and uniformly distributed n-bit long strings. Note that Ho = Uy (with Gy being the
identity function), whereas Hiog, # = Glog,#(Un) is a distribution that is obtained by stretching
random n-bit long strings into /-bit long strings.

The key observation is that, for every i, the automata Dy, cannot distinguish between H; and
a distribution obtained by selecting a typical h € H, and outputting

Gi(UM)G (hU)) - - GUE P NGy (h(U2D).

Note that the foregoing distribution is similar to H;, except that the 25" block is set to G;(h(,Sj)))

rather than to Gi(Uy(sz)) as in H;.2 On the other hand, the foregoing distribution has the form
of Hit1 (ie., let Giyi1(s) = Gi(s)Gi(h(s))). To prove that this replacement has little effect on
the movement of Dy, we consider an arbitrary pair of vertices, u and v in layers (2§ — 2) -2 - n

'Indeed, while at this point G; is to be thought of as arbitrary, later we shall use specific choices of G;.
2Setting the (25 — 1)* block to Gi(U,(f)) rather than to GZ-(U,SQJ_I)) as in H; is immaterial.

and (2§ — 1) - 2° - n, respectively, and denote by Ly, C {0,1}" the set of the n-bit long strings
s such that the automaton moves from vertex u to vertex v upon reading G;(s) (from locations
(2j —2)-28-n+1,..,(2j —1)-2° - n in its input). Similarly, for a vertex w at layer 2j - 2 - n, we
let L), ,, denote the set of the strings s such that Dy moves from v to w upon reading Gi(s). By
Eq. (1), for all but very few of the functions h € H,, it holds that

Pr[U, € Ly AWU,) € Ly,) = Pr[Uy € Ly,] - Pr[Uy, € Ly,], (2)

where “very few” and ~ are as in Eq. (1). Thus, for all but exp(—(n)) fraction of the choices of
h € H,, replacing the coins in the second transition (i.e., the transition from layer (25 —1)-2°-n to
layer 2j - 2 - n) with the value of h applied to the outcomes of the coins used in the first transition
(i.e., the transition from layer (25 — 2) - 2° - n to (2j — 1) - 2' - n), approzimately maintains the
probability that Dy moves from u to w via v. Using a union bound (on all triples (u,v,w) as in
the foregoing), we note that, for all but 235(F) . ¢ . exp(—Q(n)) fraction of the choices of h € H,,
the foregoing replacement approximately maintains the probability that D moves through any
specific triple of vertices that are 2° - n apart. (We stress that the same h can be used in all these
approximations.)

Thus, at the cost of extra |h| random bits, we can reduce the number of true random coins
used in transitions on Dy by a factor of two, without significantly affecting the final decision of
Dy, (where again we use the fact that ¢ - exp(—Q(n)) < exp(—(n)), which implies that the
approximation errors do not accumulate to too much). That is, fixing a good h (i.e., one that
provides a good approximation to the transition probability over all 93s(k) . ¢/ triples), we can
replace the amount of randomness in the hybrid (from #/2°-n in H; to £'/2°+! - n in H;, 1, which
is defined based on this h), while approximately preserving the acceptance probability of Dy (i.e.,
Pr[Dy(H;)=1] = Pr[Dx(H;1)=1]).

Applying the forgoing process can for i = 0, ..., log, ¢’ — 1, we repeatedly reduce the randomness
of the hybrid by a factor of two, by randomly selecting (and fixing) a new hash function. Thus,
repeating the process for a logarithmic (in ¢') number of times, we obtain a distribution that

depends on n random bits, at which point we stop. In total, we have used ¢ def logy ¢/ < logy ¢(k)
random hash functions, denoted h(Y), ..., h(Y). This means that we can generate a (pseudorandom)
sequence that fools the original Dy, by using a seed of length n+t-log, | Hy,| (see [2, Fig. 8.3] and [2,
Exer. 8.28]). Using n = ©(s(k)) and an adequate family H, (e.g., [2, Const. D.3]), we obtain the
desired (s,27%)-pseudorandom generator, which indeed uses a seed of length O(s(k)-log, £(k)) = k.
(]

References

[1] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudoran-
dom Generators from Polarizing Random Walks FCCC, TR18-015, 2018

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008.

[3] Noam Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,
Vol. 12 (4), pages 449-461, 1992. Preliminary version in 22nd STOC, 1990.

