
Oded: June 12, 2023

An alternative presentation of the analysis
of Nisan’s pseudorandom generator of space-bounded machines

The following description of the analysis of Nisan’s construction [3] is inspired by [1], and differs
from the presentation in [2, Sec. 8.4.2.1]. Specifically, the construction is the same, but rather than
being analyzed by looking at contracted versions of the distinguisher (see [2, p. 321]), we consider
a sequence of distributions that this distinguisher may examine.

Our description is meant to replace the text in [2, pp. 320-321], which means that it relies on
the definitions and notations of [2, Sec. 8.4].

Sketch of the proof of [2, Thm. 8.21]. The main technical tool used in this proof is the “mixing
property” of pairwise independent hash functions (see [2, Apdx. D.2]). A family of functions Hn,
which map {0, 1}n to itself, is called mixing if for every pair of subsets A,B ⊆ {0, 1}n for all but
very few (i.e., exp(−Ω(n)) fraction) of the functions h ∈ Hn, it holds that

Pr[Un ∈ A ∧ h(Un) ∈ B] ≈ |A|
2n

· |B|
2n

(1)

where the approximation is up to an additive term of exp(−Ω(n)). (See the generalization of [2,
Lem.D.4], which implies that exp(−Ω(n)) can be set to 2−n/3.)

We may assume, without loss of generality, that s(k) = Ω(
√
k), and thus ℓ

def
= ℓ(k) ≤ 2s(k)

holds. For any s(k)-space distinguisher Dk as in [2, Def. 8.20], we consider its computation when
fed with ℓ-long sequences that are taken from various distributions. The first distribution is the

uniform distribution over {0, 1}n; that is, Uℓ ≡ U
(1)
n U

(2)
n · · ·U (ℓ′)

n , where ℓ′ = ℓ/n and the U
(j)
n ’s are

independent random variables each uniformly distributed over {0, 1}n. The last distribution will
be the one produced by the pseudorandom generator, and a generic (hybrid) distribution will have
the form

Hi
def
= Gi(U

(1)
n)Gi(U

(2)
n) · · ·Gi(U

((ℓ′/2i)−1)
n)Gi(U

(ℓ′/2i)
n)

where Gi is an arbitrary mapping of n-bit strings to 2i · n-bit strings (and i ∈ {0, 1..., log2 ℓ′}).1
That is, the ith hybrid is obtained by applying Gi : {0, 1}n → {0, 1}2i·n to a sequence of ℓ′/2i

independently and uniformly distributed n-bit long strings. Note that H0 ≡ Uℓ (with G0 being the
identity function), whereas Hlog2 ℓ

′ = Glog2 ℓ
′(Un) is a distribution that is obtained by stretching

random n-bit long strings into ℓ-bit long strings.
The key observation is that, for every i, the automata Dk cannot distinguish between Hi and

a distribution obtained by selecting a typical h ∈ Hn and outputting

Gi(U
(1)
n)Gi(h(U

(1)
n)) · · ·Gi(U

(ℓ′/2i+1)
n)Gi(h(U

(ℓ′/2i+1))
n).

Note that the foregoing distribution is similar to Hi, except that the 2j
th block is set to Gi(h(U

(j)
n))

rather than to Gi(U
(2j)
n) as in Hi.

2 On the other hand, the foregoing distribution has the form
of Hi+1 (i.e., let Gi+1(s) = Gi(s)Gi(h(s))). To prove that this replacement has little effect on
the movement of Dk, we consider an arbitrary pair of vertices, u and v in layers (2j − 2) · 2i · n

1Indeed, while at this point Gi is to be thought of as arbitrary, later we shall use specific choices of Gi.
2Setting the (2j − 1)st block to Gi(U

(j)
n) rather than to Gi(U

(2j−1)
n) as in Hi is immaterial.

1

and (2j − 1) · 2i · n, respectively, and denote by Lu,v ⊆ {0, 1}n the set of the n-bit long strings
s such that the automaton moves from vertex u to vertex v upon reading Gi(s) (from locations
(2j − 2) · 2i · n+ 1, ..., (2j − 1) · 2i · n in its input). Similarly, for a vertex w at layer 2j · 2i · n, we
let L′

v,w denote the set of the strings s such that Dk moves from v to w upon reading Gi(s). By
Eq. (1), for all but very few of the functions h ∈ Hn, it holds that

Pr[Un ∈ Lu,v ∧ h(Un) ∈ L′
v,w] ≈ Pr[Un ∈ Lu,v] · Pr[Un ∈ L′

v,w] , (2)

where “very few” and ≈ are as in Eq. (1). Thus, for all but exp(−Ω(n)) fraction of the choices of
h ∈ Hn, replacing the coins in the second transition (i.e., the transition from layer (2j− 1) · 2i ·n to
layer 2j · 2i · n) with the value of h applied to the outcomes of the coins used in the first transition
(i.e., the transition from layer (2j − 2) · 2i · n to (2j − 1) · 2i · n), approximately maintains the
probability that Dk moves from u to w via v. Using a union bound (on all triples (u, v, w) as in
the foregoing), we note that, for all but 23s(k) · ℓ′ · exp(−Ω(n)) fraction of the choices of h ∈ Hn,
the foregoing replacement approximately maintains the probability that Dk moves through any
specific triple of vertices that are 2i · n apart. (We stress that the same h can be used in all these
approximations.)

Thus, at the cost of extra |h| random bits, we can reduce the number of true random coins
used in transitions on Dk by a factor of two, without significantly affecting the final decision of
Dk (where again we use the fact that ℓ′ · exp(−Ω(n)) < exp(−Ω(n)), which implies that the
approximation errors do not accumulate to too much). That is, fixing a good h (i.e., one that
provides a good approximation to the transition probability over all 23s(k) · ℓ′ triples), we can
replace the amount of randomness in the hybrid (from ℓ′/2i · n in Hi to ℓ′/2i+1 · n in Hi+1, which
is defined based on this h), while approximately preserving the acceptance probability of Dk (i.e.,
Pr[Dk(Hi)=1] ≈ Pr[Dk(Hi+1)=1]).

Applying the forgoing process can for i = 0, ..., log2 ℓ
′−1, we repeatedly reduce the randomness

of the hybrid by a factor of two, by randomly selecting (and fixing) a new hash function. Thus,
repeating the process for a logarithmic (in ℓ′) number of times, we obtain a distribution that

depends on n random bits, at which point we stop. In total, we have used t
def
= log2 ℓ

′ < log2 ℓ(k)
random hash functions, denoted h(1), ..., h(t). This means that we can generate a (pseudorandom)
sequence that fools the original Dk by using a seed of length n+ t · log2 |Hn| (see [2, Fig. 8.3] and [2,
Exer. 8.28]). Using n = Θ(s(k)) and an adequate family Hn (e.g., [2, Const. D.3]), we obtain the
desired (s, 2−s)-pseudorandom generator, which indeed uses a seed of length O(s(k) · log2 ℓ(k)) = k.
□

References

[1] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudoran-
dom Generators from Polarizing Random Walks ECCC, TR18-015, 2018

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008.

[3] Noam Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,
Vol. 12 (4), pages 449–461, 1992. Preliminary version in 22nd STOC, 1990.

2

