
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.September 16, 2006

Chapter 1Introduction andPreliminariesYou can start by putting the do not disturb sign.Cay, in Desert Hearts (1985).The current chapter consists of two parts. The �rst part provides a high-levelintroduction to complexity theory. This introduction is much more detailed thanthe laconic statements made in the preface, but is quite sparse when compared tothe richness of the �eld. In addition, the introduction contains several importantcomments regarding the contents, approach and style of the current book.
P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the restof the book. It includes a discussion of computational tasks and computationalmodels, as well as natural complexity measures associated with the latter. Morespeci�cally, this part recalls the basic notions and results of computability theory(including the de�nition of Turing machines, some undecidability results, the notionof universal machines, and the de�nition of oracle machines). In addition, this partpresents the basic notions underlying non-uniform models of computation (likeBoolean circuits). 1

2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.1 IntroductionThis section consists of two parts: the �rst part refers to the area itself, whereasthe second part refers to the current book. The �rst part provides a brief overviewof Complexity Theory (Section 1.1.1) as well as some re
ections about its char-acteristics (Section 1.1.2). The second part describes the contents of this book(Section 1.1.3), the considerations underlying the choice of topics as well as theway they are presented (Section 1.1.4), and various notations and conventions (Sec-tion 1.1.5).1.1.1 A brief overview of Complexity TheoryOut of the tough came forth sweetness1Judges, 14:14Complexity Theory is concerned with the study of the intrinsic complexity of com-putational tasks. Its \�nal" goals include the determination of the complexity ofany well-de�ned task. Additional \�nal" goals include obtaining an understand-ing of the relations between various computational phenomena (e.g., relating onefact regarding computational complexity to another). Indeed, we may say that theformer type of goals is concerned with absolute answers regarding speci�c compu-tational phenomena, whereas the latter type is concerned with questions regardingthe relation between computational phenomena.Interestingly, the current success of Complexity Theory in coping with the lattertype of goals has been more signi�cant. In fact, the failure to resolve questions ofthe \absolute" type, led to the
ourishing of methods for coping with questionsof the \relative" type. Putting aside for a moment the frustration caused by thefailure, we must admit that there is something fascinating in the success: in somesense, establishing relations between phenomena is more revealing than makingstatements about each phenomenon. Indeed, the �rst example that comes to mindis the theory of NP-completeness. Let us consider this theory, for a moment, fromthe perspective of these two types of goals.Complexity theory has failed to determine the intrinsic complexity of tasks suchas �nding a satisfying assignment to a given (satis�able) propositional formula or�nding a 3-coloring of a given (3-colorable) graph. But it has established thatthese two seemingly di�erent computational tasks are in some sense the same (or,more precisely, are computationally equivalent). The author �nds this successamazing and exciting, and hopes that the reader shares his feeling. The samefeeling of wonder and excitement is generated by many of the other discoveries ofComplexity theory. Indeed, the reader is invited to join a fast tour of some of theother questions and answers that make up the �eld of Complexity theory.We will indeed start with the \P versus NP Question". Our daily experience isthat it is harder to solve a problem than it is to check the correctness of a solution1The quote is commonly used to mean that bene�t arose out of misfortune.

1.1. INTRODUCTION 3(e.g., think of either a puzzle or a research problem). Is this experience merelya coincidence or does it represent a fundamental fact of life (or a property of theworld)? Could you imagine a world in which solving any problem is not signi�cantlyharder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world?The denial of the plausibility of such a hypothetical world (in which \solving" isnot harder than \checking") is what \P di�erent from NP" actually means, whereP represents tasks that are e�ciently solvable and NP represents tasks for whichsolutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider thetask of proving theorems versus the task of verifying the validity of proofs. Indeed,�nding proofs is a special type of the aforementioned task of \solving a problem"(and verifying the validity of proofs is a corresponding case of checking correctness).Again, \P di�erent from NP" means that there are theorems that are harder toprove than to be convinced of their correctness when presented with a proof. Thismeans that the notion of a proof is meaningful (i.e., that proofs do help whentrying to be convinced of the correctness of assertions). Here NP represents setsof assertions that can be e�ciently veri�ed with the help of adequate proofs, andP represents sets of assertions that can be e�ciently veri�ed from scratch (i.e.,without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question isa fundamental scienti�c question of far-reaching consequences. The fact that thisquestion seems beyond our current reach led to the development of the theory ofNP-completeness. Loosely speaking, this theory identi�es a set of computationalproblems that are as hard as NP. That is, the fate of the P-versus-NP Questionlies with each of these problems: if any of these problems is easy to solve thenso are all problems in NP. Thus, showing that a problem is NP-complete providesevidence to its intractability (assuming, of course, \P di�erent than NP"). Indeed,demonstrating NP-completeness of computational tasks is a central tool in indicat-ing hardness of natural computational problems, and it has been used extensivelyboth in computer science and in other disciplines. NP-completeness indicates notonly the conjectured intractability of a problem but rather also its \richness" in thesense that the problem is rich enough to \encode" any other problem in NP. Theuse of the term \encoding" is justi�ed by the exact meaning of NP-completeness,which in turn is based on establishing relations between di�erent computationalproblems (without referring to their \absolute" complexity).The foregoing discussion of the P-versus-NP Question also hints to the impor-tance of representation, a phenomenon that is central to complexity theory. Ingeneral, complexity theory is concerned with problems the solutions of which areimplicit in the problem's statement (or rather in the instance). That is, the problem(or rather its instance) contains all necessary information, and one merely needs toprocess this information in order to supply the answer.2 Thus, complexity theory is2In contrast, in other disciplines, solving a problem may require gathering information that isnot available in the problem's statement. This information may either be available from auxiliary(past) records or be obtained by conducting new experiments.

4 CHAPTER 1. INTRODUCTION AND PRELIMINARIESconcerned with manipulation of information, and its transformation from one rep-resentation (in which the information is given) to another representation (whichis the one desired). Indeed, a solution to a computational problem is merely adi�erent representation of the information given; that is, a representation in whichthe answer is explicit rather than implicit. For example, the answer to the questionof whether or not a given Boolean formula is satis�able is implicit in the formulaitself (but the task is to make the answer explicit). Thus, complexity theory clari-�es a central issue regarding representation; that is, the distinction between whatis explicit and what is implicit in a representation. Furthermore, it even suggestsa quanti�cation of the level of non-explicitness.In general, complexity theory provides new viewpoints on various phenomenathat were considered also by past thinkers. Examples include the aforementionedconcepts of proofs and representation as well as concepts like randomness, knowl-edge, interaction, secrecy and learning. We next discuss some of these conceptsand the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspectivecan be described as ontological: they asked \what is randomness" and wonderedwhether it exist at all (or is the world deterministic). The perspective of complexitytheory is behavioristic: it is based on de�ning objects as equivalent if they cannotbe told apart by any e�cient procedure. That is, a coin toss is (de�ned to be) \ran-dom" (even if one believes that the universe is deterministic) if it is infeasible topredict the coin's outcome. Likewise, a string (or a distribution of strings) is \ran-dom" if it is infeasible to distinguish it from the uniform distribution (regardless ofwhether or not one can generate the latter). Interestingly, randomness (or ratherpseudorandomness) de�ned this way is e�ciently expandable; that is, under a rea-sonable complexity assumption (to be discussed next), short pseudorandom stringscan be deterministically expanded into long pseudorandom strings. Indeed, it turnsout that randomness is intimately related to intractability. Firstly, note that thevery de�nition of pseudorandomness refers to intractability (i.e., the infeasibilityof distinguishing a pseudorandomness object from a uniformly distributed object).Secondly, as hinted above, a complexity assumption that refers to the existence offunctions that are easy to evaluate but hard to invert (called one-way functions) im-ply the existence of deterministic programs (called pseudorandom generators) thatstretch short random seeds into long pseudorandom sequences. In fact, it turnsout that the existence of pseudorandom generators is equivalent to the existenceof one-way functions.Complexity theory o�ers its own perspective on the concept of knowledge (anddistinguishes it from information). It views knowledge as the result of a hardcomputation. Thus, whatever can be e�ciently done by anyone is not consideredknowledge. In particular, the result of an easy computation applied to publiclyavailable information is not considered knowledge. In contrast, the value of ahard to compute function applied to publicly available information is knowledge,and if somebody provides you with such a value then it has provided you withknowledge. This discussion is related to the notion of zero-knowledge interactions,which are interactions in which no knowledge is gained. Such interactions may

1.1. INTRODUCTION 5still be useful, because they may assert the correctness of speci�c data that wasprovided beforehand.The foregoing paragraph has explicitly referred to interaction. It has pointedone possible motivation for interaction: gaining knowledge. It turns out that in-teraction may help in a variety of other contexts. For example, it may be easier toverify an assertion when allowed to interact with a prover rather than when readinga proof. Put di�erently, interaction with some teacher may be more bene�cial thanreading any book. We comment that the added power of such interactive proofs isrooted in their being randomized (i.e., the veri�cation procedure is randomized),because if the veri�er's questions can be determined beforehand then the provermay just provide the transcript of the interaction as a traditional written proof.Another concept related to knowledge is that of secrecy: knowledge is some-thing that one party has while another party does not have (and cannot feasiblyobtain by itself) { thus, in some sense knowledge is a secret. In general, complexitytheory is related to Cryptography, where the latter is broadly de�ned as the studyof systems that are easy to use but hard to abuse. Typically, such systems involvesecrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its pre-scribed behavior. Thus, much of Cryptography is based on complexity theoreticassumptions and its results are typically transformations of relatively simple com-putational primitives (e.g., one-way functions) into more complex cryptographicapplications (e.g., a secure encryption scheme).We have already mentioned the context of learning when referring to learningfrom a teacher versus learning from a book. Recall that complexity theory providesevidence to the advantage of the former. This is in the context of gaining knowledgeabout publicly available information. In contrast, computational learning theoryis concerned with learning objects that are only partially available to the learner(i.e., learning a function based on its value at a few random locations or even atlocations chosen by the learner). Complexity theory sheds light on the intrinsiclimitations of learning (in this sense).Complexity theory deals with a variety of computational tasks. We have alreadymentioned two fundamental types of tasks: searching for solutions (or \�ndingsolutions") and making decisions (e.g., regarding the validity of assertion). Wehave also hinted that in some cases these two types of tasks can be related. Nowwe consider two additional types of tasks: counting the number of solutions andgenerating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that forsome natural problems they are not signi�cantly harder. Speci�cally, under somenatural conditions on the problem, approximately counting the number of solutionsand generating an approximately random solution is not signi�cantly harder than�nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of thecomplexity of �nding approximate solutions has also received a lot of attention.One type of approximation problems refers to an objective function de�ned on theset of potential solutions. Rather than �nding a solution that attains the optimal

6 CHAPTER 1. INTRODUCTION AND PRELIMINARIESvalue, the approximation task consists of �nding a solution that attains an \almostoptimal" value, where the notion of \almost optimal" may be understood in dif-ferent ways giving rise to di�erent levels of approximation. Interestingly, in manycases even a very relaxed level of approximation is as di�cult to achieve as theoriginal (exact) search problem (i.e., �nding an approximate solution is as hardas �nding an optimal solution). Surprisingly, these hardness of approximation re-sults are related to the study of probabilistically checkable proofs, which are proofsthat allow for ultra-fast probabilistic veri�cation. Amazingly, every proof can bee�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approx-imation problems, we note that in other cases a reasonable level of approximationis easier to achieve than solving the original (exact) search problem.Approximation is a natural relaxation of various computational problems. An-other natural relaxation is the study of average-case complexity, where the \aver-age" is taken over some \simple" distributions (representing a model of the prob-lem's instances that may occur in practice). We stress that, although it was notstated explicitly, the entire discussion so far has referred to \worst-case" analysis ofalgorithms. We mention that worst-case complexity is a more robust notion thanaverage-case complexity. For starters, one avoids the controversial question of whatare the instances that are \important in practice" and correspondingly the selectionof the class of distributions for which average-case analysis is to be conducted. Nev-ertheless, a relatively robust theory of average-case complexity has been suggested,albeit it is far less developed than the theory of worst-case complexity.In view of the central role of randomness in complexity theory (as evident, say,in the study of pseudorandomness, probabilistic proof systems, and cryptography),one may wonder as to whether the randomness needed for the various applicationscan be obtained in real-life. One speci�c question, which received a lot of atten-tion, is the possibility of \purifying" randomness (or \extracting good randomnessfrom bad sources"). That is, can we use \defected" sources of randomness in or-der to implement almost perfect sources of randomness. The answer depends, ofcourse, on the model of such defected sources. This study turned out to be relatedto complexity theory, where the most tight connection is between some type ofrandomness extractors and some type of pseudorandom generators.So far we have focused on the time complexity of computational tasks, whilerelying on the natural association of e�ciency with time. However, time is notthe only resource one should care about. Another important resource is space:the amount of (temporary) memory consumed by the computation. The studyof space complexity has uncovered several fascinating phenomena, which seem toindicate a fundamental di�erence between space complexity and time complexity.For example, in the context of space complexity, verifying proofs of validity ofassertions (of any speci�c type) has the same complexity as verifying proofs ofinvalidity for the same type of assertions.In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour ofsome mountain tops, and dizziness is to be expected. Needless to say, the rest ofthe book is in a totally di�erent style. We will climb some of these mountains by

1.1. INTRODUCTION 7foot, step by step, and will stop to look around and re
ect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-sults are not known for many of the \big questions" of complexity theory (mostnotably the P-versus-NP Question). However, several highly non-trivial absoluteresults have been proved. For example, it was shown that using negation canspeed-up the computation of monotone functions (which do not require negationfor their mere computation). In addition, many promising techniques were intro-duced and employed with the aim of providing a low-level analysis of the progress ofcomputation. However, as stated in the preface, the focus of this book is elsewhere.1.1.2 Characteristics of Complexity TheoryWe are successful because we use the right level of abstractionAvi Wigderson (1996)Using the \right level of abstraction" seems to be a main characteristic of the The-ory of Computation at large. The right level of abstraction means abstracting awaysecond-order details, which tend to be context-dependent, while using de�nitionsthat re
ect the main issues (rather than abstracting them away too). Indeed, usingthe right level of abstraction calls for an extensive exercising of good judgment, andone indication for having chosen the right questions is the result of their study.One major choice of the theory of computation, which is currently taken forgranted, is the choice of a model of computation and corresponding complexitymeasures and classes. Two extreme choices that were avoided are a too realisticmodel and a too abstract model. On the one hand, the main model of computationused in complexity theory does not try to re
ect (or mirror) the speci�c operation ofreal-life computers used at a speci�c point in time. Such a choice would have madeit very hard to develop complexity theory as we know it and to uncover the funda-mental relations discussed in this book: The mass of details would have obscuredthe view. On the other hand, avoiding any reference to a concrete model (like in thecase of recursive function theory) does not encourage the introduction and study ofnatural measures of complexity. Indeed, as we shall see in Section 1.2.3, the choicewas (and is) to use a simple model of computation (which does not mirror real-lifecomputers), while avoiding any e�ects that are speci�c to that model (by keepinga eye on a host of variants and alternative models). The freedom from the speci�csof the basic model is obtained by considering complexity classes that are invariantunder a change of model (as long as the alternative model is \reasonable").Another major choice is to use asymptotic analysis. Speci�cally, we considerthe complexity of an algorithm as a function of its input length, and study theasymptotic behavior of this function. It turns out that structure that is hiddenby concrete quantities appears at the limit. Furthermore, depending on the case,we classify functions according to di�erent criteria. For example, in case of timecomplexity we consider classes of functions that are closed under multiplication,whereas in case of space complexity we consider closure under addition. In each

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIEScase, the choice is governed by the nature of the complexity measure being consid-ered. Indeed, one could have developed a theory without using these conventions,but this would have resulted in a far more cumbersome theory. For example, ratherthan saying that �nding a satisfying assignment for a given formula is polynomial-time reducible to deciding satis�ability other of formulae, one could have said statedthe exact functional dependence of the complexity of the search problem on thecomplexity of the decision problem.Both aforementioned choices are common to other branches of the theory ofcomputation. What makes complexity theory unique is its commitment to themost basic question of the theory of computation: what can be e�ciently computed?This commitment is re
ected by the area's primary focus on the class of e�cientprocedures, regardless of their goal. This focus is responsible for the area's failuresand successes: It has failed to obtain a de�nite answer regarding the power andlimitations of e�cient procedures, but it has obtained many connections betweencomputational phenomena that re
ect what e�cient procedures can or cannot do.1.1.3 Contents of this bookThis book consists of ten chapters and seven appendices. The chapters constitutethe core of this book and are written in a style adequate for a textbook, whereas theappendices provide additional perspective and are written in the style of a surveyarticle.Section 1.2 and Chapter 2 are a prerequisite to the rest of the book. Technically,notions and results that appear in these parts are extensively used in the rest ofthe book. More importantly, the former parts are the conceptual framework thatshapes the �eld and provides a good perspective on the questions and answersprovided. Section 1.2 and Chapter 2 provide the very basic material that must beunderstood by anybody having an interest in complexity theory. The rest of thebook covers more advanced material. Although some advanced chapters refer tomaterial in other advanced chapters, the relation between these chapters is not afundamental one. Thus, one may choose to read and/or teach an arbitrary subsetof the advanced chapters and do it in an arbitrary order, provided one is willingto follow the relevant references to parts of other chapters. Needless to say, werecommend following the order presented in this book.The rest of this section provides a brief summary of the contents of the variousparts. This summary is intended for the teacher and/or the expert, and the studentis referred to the more reader-friendly summaries that appear in the book's pre�x.Section 1.2: Preliminaries. This section provides the relevant background oncomputability theory, which is the basis for the rest of this book (as well as forcomplexity theory at large). Most importantly, it contains a discussion of centralnotions such as search and decision problems, algorithms that solve such problems,and their complexity. In addition, this section presents non-uniform models ofcomputation (e.g., Boolean circuits).

1.1. INTRODUCTION 9Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NPQuestion both in terms of search problems and in terms of decision problems. Thesecond main topic of this chapter is the theory of NP-completeness. The chapteralso provides a treatment of the general notion of a (polynomial-time) reduction,with special emphasis on self-reducibility. Additional topics include the existence ofproblems in NP that are neither NP-complete nor in P, optimal search algorithms,the class coNP, and promise problems.Chapter 3: Variations on P and NP. This chapter provides a treatmentof non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy(PH). Each of the two classes is de�ned in two equivalent ways (e.g., P/poly isde�ned both in terms of circuits and in terms of \machines that take advice"). Inaddition, it is shown that if NP is contained in P/poly then PH collapses to itssecond level.Chapter 4: More Resources, More Power? This chapter provides separationresults asserting, for example, that there are functions computable in cubic-timebut not in quadratic-time. These results depend on using bounding functions thatcan be computed without exceeding the amount of resources that they specify. Incontrast, if this condition is not satis�ed then increasing the resources may haveno e�ect.Chapter 5: Space Complexity. Among the results presented in this chapterare a log-space algorithm for testing connectivity of (undirected) graphs, a proofthat NL = coNL, and complete problems for NL and PSPACE (under log-spaceand poly-time reductions, respectively).Chapter 6: Randomness and Counting. This chapter focuses on variousrandomized complexity classes (i.e., BPP, RP , and ZPP) and the counting class#P . The results presented in this chapter include BPP � P=poly \ �2, the #P-completeness of the permanent, the connection between approximate counting anduniform generation of solutions, and the randomized reductions of approximatecounting to NP and of NP to solving problems with unique solutions.Chapter 7: The Bright Side of Hardness. We consider two conjectures thatare related to P 6= NP . The �rst conjecture is that there are problems in E thatare not solvable by (non-uniform) families of small (say polynomial-size) circuits,whereas the second conjecture is equivalent to the notion of one-way functions.Most of this chapter is devoted to converting these conjectures into tools that canbe used for non-trivial derandomizations of BPP and for a host of cryptographicapplications.Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-tion of computational indistinguishability and corresponding notions of pseudoran-domness. The de�nition of general-purpose pseudorandom generators (running in

10 CHAPTER 1. INTRODUCTION AND PRELIMINARIESpolynomial-time and withstanding any polynomial-time distinguisher) is presentedas a special case of a general paradigm. The chapter also contains a presentationof other instantiations of the latter paradigm, including generators aimed at deran-domizing complexity classes such as BPP, generators withstanding space-boundeddistinguishers, and some special-purpose generators.Chapter 9: Probabilistic Proof Systems. This chapter provides an introduc-tion to three types of probabilistic proof systems: interactive proofs, zero-knowledgeproofs, and probabilistic checkable proofs. These proof systems share a common(untraditional) feature { they carry a probability of error; yet, this probabilityis explicitly bounded and can be reduced by successive application of the proofsystem. The gain in allowing this untraditional relaxation is substantial, as theyenable the construction of proof systems with properties that seem impossible toachieve via traditional proof systems.Chapter 10: Relaxing the Requirement. This chapter provides a treatmentof two types of approximation problems and a theory of average-case (or rathertypical-case) complexity. The traditional type of approximation problems refersto search problems and consists of a relaxation of standard optimization prob-lems. The second type is known as \property testing" and consists of a relaxationof standard decision problems. The theory of average-case complexity involvesseveral non-trivial de�nitional choices (e.g., an adequate choice of the class of dis-tributions).Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book.Appendix B: On the Quest for Lower Bounds. The �rst part, devotedto Circuit Complexity, reviews lower bounds for the size of (restricted) circuitsthat solve natural computational problems. The second part, devoted to ProofComplexity, reviews lower bounds on the length of (restricted) propositional proofsof natural tautologies.Appendix C: On the Foundations of Modern Cryptography. The �rstpart of this appendix augments the partial treatment of one-way functions, pseu-dorandom generators and zero-knowledge proofs, which is included in Chapters7{9. Using these basic tools, the second part provides a treatment of basic cryp-tographic applications such as Encryption, Signatures, and General CryptographicProtocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables and overviews of three useful inequalities (i.e., Markov Inequal-ity, Chebyshev's Inequality, and Cherno� Bound). The advanced topics includeconstructions families of hashing functions and variants of the Leftover Hashing

1.1. INTRODUCTION 11Lemma, and overviews of samplers and extractors (i.e., the problem of randomnessextraction).Appendix E: Explicit Constructions. This appendix focuses on various com-putational aspects of error correcting codes and expander graphs. On the topicof codes, the appendix contains a review of the Hadamard code, Reed-Solomoncodes, Reed-Muller codes, and a construction of a binary code of constant rate andconstant relative distance. Also included are a brief review of the notions of locallytestable and locally decodable codes, and a list-decoding bound. On the topicof expander graphs, the appendix contains a review of standard de�nitions andproperties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zagconstructions.Appendix F: Some Omitted Proofs. This appendix contains some proofsthat are bene�cial as alternatives to the original and/or standard presentations.Included are proofs that PH is reducible to #P via randomized Karp-reductions,and that IP(f) � AM(O(f)) � AM(f), for any function f such that f(n) 2f2; :::; poly(n)g.Appendix G: Some Computational Problems. This appendix contains abrief introduction to graph algorithms, Boolean formulae, and �nite �elds.Bibliography. As stated in Section 1.1.4, we tried to keep the bibliographic listas short as possible (and still reached a couple of hundreds of entries). As a resultmany relevant references were omitted. We tried, however, not to omit referencesto key papers in an area. In general, our choice of references was biased in favourof textbooks and survey articles.Absent from this book. As stated in the preface, the current book does notprovide a uniform cover of the various areas of complexity theory. Notable omis-sions include the areas of circuit complexity (cf. [43, 222]) and proof complexity(cf. [24]), which are brie
y reviewed in Appendix B. Additional topics that arecommonly covered in complexity theory courses but omitted here include the studyof branching programs and decision trees (cf. [223]), parallel computation [133], andcommunication complexity [141]. Finally, we mention a two areas that we considerrelated to complexity theory, although this view is not very common. These areasare distributed computing [15] and computational learning theory [135].1.1.4 Approach and style of this bookExplanations and motivations are merely methods for introduc-ing super�cial redundancy. Since the role of redundancy is toensure error-correction, one better leave the implementation ofthese mechanisms to experts, trusting them to use the best error-correcting codes known at the time.

12 CHAPTER 1. INTRODUCTION AND PRELIMINARIESLeonid A Levin (1984)Although people say that Levin is an extremist, the foregoing quote perfectly rep-resent a common opinion regarding the presentation of scienti�c work. Accordingto this opinion, the most important aspect of a scienti�c work is the technical re-sult that it achieves and the rest is redundancy introduced for the sake of \errorcorrection" and/or comfort. It is further believed that, like in a work of art, theinterpretation of the work should be left with the reader (or viewer or listener).The author disagrees with the aforementioned opinions, and argues that thereis a fundamental di�erence between art and science, and that this di�erence refersexactly to the meaning of a piece of work. Science is concerned with meaning(and not with form), and in its quest for truth and/or understanding it followsphilosophy (and not art). The author holds the opinion that the most importantaspects of a scienti�c work are the intuitive question that it addresses, the reasonthat it addresses this question, the way it phrases the question, the approach thatunderlies its answer, and the ideas that are embedded in the answer. Following thisview, it is important to communicate these aspects of the work, and the currentbook is written accordingly.These issues are even more acute when it comes to complexity theory, becausethis �eld is extremely rich in conceptual content. Unfortunately, this content israrely communicated (explicitly) in books and/or extensive surveys of the area.3The annoying (and quite amazing) consequences are students that have only avague understanding of the meaning and general relevance of the fundamentalnotions and results that they were taught. The author's view is that these conse-quences are easy to avoid by taking the time to explicitly discuss the meaning ofde�nitions and results. A related issue is using the \right" de�nitions (i.e., thosethat re
ect better the fundamental nature of the notion being de�ned) and teachingthings in the (conceptually) \right" order.1.1.4.1 Focus on conceptual issuesIn accordance with the foregoing, this book starts from the intuitive questionsaddressed by complexity theory, explains the fundamental importance of thesequestions, the speci�c ways that they are phrased, the approaches that underly theanswers, and the ideas that are embedded in these answers. Thus, a signi�cantportion of the text is devoted to motivating discussions that refer to the conceptsand ideas that underly the de�nitions and results.The material is organized around conceptual themes, which re
ect fundamen-tal notions and/or general questions. Speci�c computational problems are rarelyreferred to, with exceptions that are used either for sake of clarity or because thespeci�c problem happens to capture a general conceptual phenomenon. For exam-3It is tempting to speculate on the reasons for this phenomenon. One speculation is thatcommunicating the conceptual content of complexity theory involves making bold philosophicalassertions that are technically straightforward, whereas this combination does not �t the characterof most researchers in complexity theory.

1.1. INTRODUCTION 13ple, in this book, complete problems are always secondary to the class for whichthey are complete.4We tried to avoid the presentation of material that, in our opinion, is neitherthe \last word" on the subject nor represents the \right" way of approaching thesubject. Thus, we do not always present the \best" known result.1.1.4.2 On a few speci�c choicesOur technical presentation often di�ers from the standard one. In many casesthis is due to conceptual considerations. At times, this leads to some technicalsimpli�cations. In this section we only discuss general themes and/or choices thathave a global impact on much of the presentation.Avoiding non-deterministic machines. We try to avoid non-deterministicmachines as much as possible. As argued in several places (e.g., Section 2.1.4),we believe that these �ctitious \machines" have a negative e�ect both from aconceptual and technical point of view. The conceptual damage caused by usingnon-deterministic machines is that it is unclear why one should care about whatsuch machines can do. Needless to say, the reason to care is clear when noting thatthese �ctitious \machines" o�er a (convenient or rather slothful) way of phrasingfundamental issues. The technical damage caused by using non-deterministic ma-chines is that they tend to confuse the students. Furthermore, they do not o�erthe best way to handle more advanced issues (e.g., counting classes).In contrast, we use search problems as the basis for much of the presentation.Speci�cally, the class PC (see De�nition 2.3), which consists of search problemshaving e�ciently checkable solutions, plays a central role in our presentation. In-deed, de�ning this class is slightly more complicated than the standard de�nitionof NP (based on non-deterministic machines), but the technical bene�ts start ac-cumulating as we proceed. Needless to say, the class PC is a fundamental class ofcomputational problems and this fact serves as the main motivation to its presenta-tion. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Questionconsists of asking whether every search problem in PC can be solved e�ciently.)Avoiding model-dependent e�ects. Our focus is on the notion of e�cientcomputation. A rigorous de�nition of this notion seems to require reference tosome concrete model of computation; however, all questions and answers consideredin this book are invariant under the choice of such a concrete model, providedof course that the model is \reasonable" (which, needless to say, is a matter ofintuition). Indeed, the foregoing text re
ects the tension between the need tomake rigorous de�nitions and the desire to be independent of technical choices,4We admit that a very natural computational problem can give rise to a class of problems thatare computationally equivalent to it, and that in such a case the class may be less interesting thanthe original problem. Furthermore, in some cases, the historical evolution actually went from aspeci�c computational problem to a class of problems that are computationally equivalent to it.However, in all cases presented in this book, a retrospective evaluation suggests that the class isactually more important than the original problem (see, e.g., NP and #P).

14 CHAPTER 1. INTRODUCTION AND PRELIMINARIESwhich are unavoidable when making such de�nitions. Furthermore, in contrast tocommon beliefs, the foregoing comments refer not only to time complexity but alsoto space complexity. However, in both cases, the claim of invariance may not holdfor marginally small resources (e.g., linear-time or sub-logarithmic space).In contrast to the foregoing paragraph, in some cases we choose to be speci�c.The most notorious case is the association of e�ciency with polynomial-time (seex1.2.3.4). Indeed, all the questions and answers regarding e�cient computation canbe phrased without referring to polynomial-time (i.e., by stating explicit functionalrelations between the complexities of the problems involved), but such a generalizedtreatment will be painful to follow.1.1.4.3 On the presentation of technical materialIn general, the more complex the issues are, the more levels of expositions weemploy, starting from the most high-level exposition, and when necessary providingmore than one level of details. In particular, whenever a proof is not very simple,we try to present the key ideas �rst and implementation details later. We also tryto clearly indicate the passage from a high-level presentation to implementationdetails (e.g., by using phrases such as \details follow"). In some cases, especially inthe case of advanced results, only proof sketches are provided and the implicationis that the reader should be able to �ll-up the missing details.Few results are stated without proof. In some of these cases the proof idea or aproof overview is provided, but the reader is not supposed to be able to �ll-up thehighly non-trivial details. (We clearly indicate that this is the case in the text.)One notable example is the proof of the PCP Theorem (Theorem 9.16).1.1.4.4 Organizational principlesEach of the main chapters starts with a high-level summary and ends with chapternotes and exercises. The latter are not aimed at testing or inspiring creativity, butare rather designed to help and verify the basic understanding of the main text.As stated in the preface, this book focuses on the high-level approach to com-plexity theory and the low-level approach (i.e., lower bounds) is brie
y reviewed inAppendix B. Other appendices contain material that is closely related to complex-ity theory but is not an integral part of it (e.g., the Foundations of Cryptography).5In an attempt to keep the bibliographic list from becoming longer than anaverage chapter, we omitted many relevant references. One trick used towards thisend is referring to lists of references in other texts, especially when these texts arecited anyhow. Indeed, our choices of references were biased in favour of textbooksand survey articles, because we believe that they provide the best way to furtherlearn about a research direction and/or approach. We tried, however, not to omitreferences to key papers in an area. In some cases, when we needed a reference for5As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-tography within a course on complexity theory. Indeed, cryptography may be claimed to bethe most appealing application of complexity theory, but a super�cial treatment of cryptography(from this perspective) is likely to be misleading and cause more harm than good.

1.1. INTRODUCTION 15a result of interest and could not resort to the aforementioned trick, we cited alsoless central work.As a matter of policy, we tried to avoid credits in the main text. The fewexceptions are either pointers to texts that provide details that we chose to omitor usage of terms (bearing researchers' names) that are too popular to avoid.Teaching note: The text also includes some teaching notes, which are typeset as thisone. Some of these notes express quite opinionated recommendations and/or justifyvarious expositional choices made in the text.1.1.4.5 Additional notesThe author's guess is that the text will be criticized for lengthy discussions of tech-nically trivial issues. Indeed, most researchers dismiss various conceptual clari�ca-tions as being trivial and devote all their attention to the technically challengingparts of the material. The consequence is students that master the technical ma-terial but are confused about its meaning. In contrast, the author recommendsnot being embarrassed of devoting time to conceptual clari�cations, even if somestudents may view them as obvious.The motivational discussions presented in the text do not necessarily representthe original motivation of the researchers that pioneered a speci�c study and/orcontributed greatly to it. Instead, these discussions provide what the author con-siders to be a good motivation and/or perspective on the corresponding concepts.1.1.5 Standard notations and other conventionsFollowing are some notations and conventions that are freely used in this book.Standard asymptotic notation: When referring to integral functions, we usethe standard asymptotic notation; that is, for f; g : N ! N , we write f = O(g)(resp., f =
(g)) if there exists a constant c > 0 such that f(n) � c � g(n) (resp.,f(n) � c � g(n)) holds for all n 2 N . We usually denote by poly an unspeci�edpolynomial, and write f(n) = poly(n) instead of \there exists a polynomial p suchthat f(n) � p(n) for all n 2 N ." We also use the notation f = eO(g) that meanf(n) = poly(logn) � g(n), and f = o(g) (resp., f = !(g)) that mean f(n) < c � g(n)(resp., f(n) > c � g(n)) for every constant c > 0 and all su�ciently large n.Integrality issues: Typically, we ignore integrality issues. This means that wemay assume that log2 n is an integer rather than using a more cumbersome form asblog2 nc. Likewise, we may assume that various equalities are satis�ed by integers(e.g., 2n = mm), even when this cannot possibly be the case (e.g., 2n = 3m). Inall these cases, one should consider integers that approximately satisfy the relevantequations (and deal with the problems that emerge by such approximations, whichwill be ignored in the current text).

16 CHAPTER 1. INTRODUCTION AND PRELIMINARIESStandard combinatorial and graph theory terms and notation: For anyset S, we denote by 2S the set of all subsets of S (i.e., 2S = fS0 : S0 � Sg). Fora natural number n 2 N , we denote [n] def= f1; :::; ng. Many of the computationalproblems refer to �nite (undirected) graphs. Such a graph, denoted G = (V;E),consists of a set of vertices, denoted V , and a set of edges, denoted E, which areunordered pairs of vertices. By default, graphs are undirected, whereas directedgraphs consists of vertices and directed edges, where a directed edge is an orderpair of vertices. We also refer to other graph theoretic terms such as connectivity,being acyclic (i.e., having no simple cycles), being a tree (i.e., being connected andacyclic), k-colorability, etc. For further background on graphs and computationalproblems regarding graphs, the reader is referred to Appendix G.1.Typographic conventions: We denote formally de�ned complexity classes bycaligraphic letters (e.g., NP), but we do so only after de�ning these classes. Fur-thermore, when we wish to maintain some ambiguity regarding the speci�c formu-lation of a class of problems we use Roman font (e.g., NP may denote either a classof search problems or a class of decision problems). Likewise, we denote formallyde�ned computational problems by typewriter font (e.g., SAT). In contrast, genericproblems and algorithms will be denoted by italic font.1.2 Computational Tasks and ModelsWe start by introducing the general framework for our discussion of computationaltasks (or problems) This framework refers to the representation of instances andto two types of tasks (i.e., searching for solutions and making decisions). Once thestage is set, we consider two types of models of computation: uniform models thatcorrespond to the intuitive notion of an algorithm, and non-uniform models (e.g.,Boolean circuits) that facilitates a closer look at the way computation progresses.Contents of Section 1.2. The contents of Sections 1.2.1{1.2.3 corresponds to atraditional Computability course, except that it includes a keen interest in universalmachines (see x1.2.3.3), a discussion of the association of e�cient computation withpolynomial-time algorithm (x1.2.3.4), and a de�nition of oracle machines (x1.2.3.5).This material (with the exception of Kolmogorov Complexity) is taken for grantedin the rest of the current book. (We also call the reader's attention to the dis-cussion of generic complexity classes in Section 1.2.5.) In contrast, Section 1.2.4presents basic preliminaries regarding non-uniform models of computation (i.e.,various types of Boolean circuits), and these are only used lightly in the rest of thebook. Thus, whereas Sections 1.2.1{1.2.3 (and 1.2.5) are absolute prerequisites forthe rest of this book, Section 1.2.4 is not.

1.2. COMPUTATIONAL TASKS AND MODELS 17Teaching note: The author believes that there is no real need for a semester-longcourse in Computability (i.e., a course that focuses on what can be computed ratherthan on what can be computed e�ciently). Instead, undergraduates should take acourse in Computational Complexity, which should contain the computability aspectsthat serve as a basis for the rest of the course. Speci�cally, the former aspects shouldoccupy at most 25% of the course, and the focus should be on basic complexity issues(captured by P, NP, and NP-completeness) augmented by a selection of some moreadvanced material. Indeed, such a course can be based on Chapters 1 and 2 of thecurrent book (augmented by a selection of some topics from other chapters).1.2.1 RepresentationIn Mathematics and related sciences, it is customary to discuss objects withoutspecifying their representation. This is not possible in the theory of computation,where the representation of objects plays a central role. In a sense, a computationmerely transforms one representation of an object to another representation of thesame object. In particular, a computation designed to solve some problem merelytransforms the problem instance to its solution, where the latter can be though ofas a (possibly partial) representation of the instance. Indeed, the answer to anyfully speci�ed question is implicit in the question itself.Computation refers to objects that are represented in some canonical way, wheresuch canonical representation provides an \explicit" and \full" (but not \overlyredundant") description of the corresponding object. We will consider only �niteobjects like sets, graphs, numbers, and functions (and keep distinguishing thesetypes of objects although, actually, they are all equivalent). (For example, seeAppendix G.1 for a discussion of the representation of graphs.)Strings. We consider �nite objects, each represented by a �nite binary sequence,called a string. For a natural number n, we denote by f0; 1gn the set of all stringsof length n, hereafter referred to as n-bit strings. The set of all strings is denotedf0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. For x2f0; 1g�, we denote by jxj the lengthof x (i.e., x2f0; 1gjxj), and often denote by xi the ith bit of x (i.e., x = x1x2 � � �xjxj).For x; y 2 f0; 1g�, we denote by xy the string resulting from concatenation of thestrings x and y.At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merelyconsider an adequate encoding (e.g., the pair (x1 � � �xm; y1 � � � yn)2f0; 1g��f0; 1g�may be encoded by the string x1x1 � � �xmxm01y1 � � � yn 2 f0; 1g�). Likewise, wemay represent sequences of strings (of �xed or varying length) as single strings.When we wish to emphasize that such a sequence (or some other object) is to beconsidered as a single object we use the notation h�i (e.g., \the pair (x; y) is encodedas the string hx; yi").Numbers. Unless stated di�erently, natural numbers will be encoded by theirbinary expansion; that is, the string bn�1 � � � b1b0 2 f0; 1gn encodes the numberPn�1i=0 bi � 2i, where typically we assume that this representation has no leading

18 CHAPTER 1. INTRODUCTION AND PRELIMINARIESzeros (i.e., bn�1 = 1). Rational numbers will be represented as pairs of naturalnumbers. In the rare cases in which one considers real numbers as part of theinput to a computational problem, one actually mean rational approximations ofthese real numbers.Special symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0),and the empty set by ;. It will be convenient to use some special symbols thatare not in f0; 1g�. One such symbol is ?, which typically denotes an indication bysome algorithm that something is wrong.1.2.2 Computational TasksTwo fundamental types of computational tasks are so-called search problems anddecision problems. In both cases, the key notions are the problem's instances andthe problem's speci�cation.1.2.2.1 Search problemsA search problem consists of a speci�cation of a set of valid solutions (possibly anempty one) for each possible instance. That is, given an instance, one is requiredto �nd a corresponding solution (or to determine that no such solution exists).For example, consider the problem in which one is given a system of equationsand is asked to �nd a valid solution. Needless to say, much of computer scienceis concerned with solving various search problems (e.g., �nding shortest paths ina graph, sorting a list of numbers, �nding an occurrence of a given pattern in agiven string, etc). Furthermore, search problems correspond to the daily notionof \solving a problem" (e.g., �nding one's way between two locations), and thus adiscussion of the possibility and complexity of solving search problems correspondsto the natural concerns of most people.In the following de�nition of solving search problems, the potential solver is afunction (which may be thought of as a solving strategy), and the sets of possiblesolutions associated with each of the various instances are \packed" into a singlebinary relation.De�nition 1.1 (solving a search problem): Let R � f0; 1g��f0; 1g� and R(x) def=fy : (x; y) 2 Rg denote the set of solutions for the instance x. A function f :f0; 1g� ! f0; 1g� [f?g solves the search problem of R if for every x the followingholds: if R(x) 6= ; then f(x) 2 R(x) and otherwise f(x) = ?.Indeed, R = f(x; y) : y2R(x)g, and the solver f is required to �nd a solution (i.e.,given x output y 2 R(x)) whenever one exists (i.e., the set R(x) is not empty). Itis also required that the solver f never outputs a wrong solution (i.e., if R(x) 6= ;then f(x) 2 R(x) and if R(x) = ; then f(x) = ?), which in turn means that findicates whether x has any solution.A special case of interest is the case of search problems having a unique solution(for each possible instance); that is, the case that jR(x)j = 1 for every x. In this

1.2. COMPUTATIONAL TASKS AND MODELS 19case, R is essentially a (total) function, and solving the search problem of R meanscomputing (or evaluating) the function R (or rather the function R0 de�ned byR0(x) def= y where R(x) = fyg). Popular examples include sorting a sequenceof numbers, multiplying integers, �nding the prime factorization of a compositenumber, etc.1.2.2.2 Decision problemsA decision problem consists of a speci�cation of a subset of the possible instances.Given an instance, one is required to determine whether the instance is in thespeci�ed set (e.g., the set of prime numbers, the set of connected graphs, or theset of sorted sequences). For example, consider the problem where one is given anatural number, and is asked to determine whether or not the number is a prime.One important case, which corresponds to the aforementioned search problems, isthe case of the set of instances having a solution; that is, for any binary relationR � f0; 1g� � f0; 1g� we consider the set fx : R(x) 6= ;g. Indeed, being ableto determine whether or not a solution exists is a prerequisite to being able tosolve the corresponding search problem (as per De�nition 1.1). In general, decisionproblems refer to the natural task of making binary decision, a task that is notuncommon in daily life (e.g., determining whether a tra�c light is red). In anycase, in the following de�nition of solving decision problems, the potential solveris again a function (i.e., in this case it is a Boolean function that is supposed toindicate membership in the said set).De�nition 1.2 (solving a decision problem): Let S � f0; 1g�. A function f :f0; 1g� ! f0; 1g solves the decision problem of S (or decides membership in S) if forevery x it holds that f(x) = 1 if and only if x 2 S.We often identify the decision problem of S with S itself, and identify S with itscharacteristic function (i.e., with �S : f0; 1g� ! f0; 1g de�ned such that �S(x) = 1if and only if x 2 S). Note that if f solves the search problem of R then theBoolean function f 0 : f0; 1g� ! f0; 1g de�ned by f 0(x) def= 1 if and only if f(x) 6= ?solves the decision problem of fx : R(x) 6= ;g.Most people would consider search problems to be more natural than decisionproblems: typically, people seeks solutions more than they stop to wonder whetheror not solutions exist. De�nitely, search problems are not less important thandecision problems, it is merely that their study tends to require more cumbersomeformulations. This is the main reason that most expositions choose to focus ondecision problems. The current book attempts to devote at least a signi�cantamount of attention also to search problems.1.2.2.3 Promise problems (an advanced comment)Many natural search and decision problems are captured more naturally by theterminology of promise problems, where the domain of possible instances is a subsetof f0; 1g� rather than f0; 1g� itself. In particular, note that the natural formulation

20 CHAPTER 1. INTRODUCTION AND PRELIMINARIESof many search and decision problems refers to instances of a certain types (e.g., asystem of equations, a pair of numbers, a graph), whereas the natural representationof these objects uses only a strict subset of f0; 1g�. For the time being, we ignorethis issue, but we shall re-visit it in Section 2.4.1. Here we just note that, in typicalcases, the issue can be ignored by postulating that every string represents somelegitimate object (i.e., each string that is not used in the natural representation ofthese objects is postulated as a representation of some �xed object).1.2.3 Uniform Models (Algorithms)We are all familiar with computers and with the ability of computer programsto manipulate data. This familiarity seems to be rooted in the positive side ofcomputing; that is, we have some experience regarding some things that computerscan do. In contrast, complexity theory is focused at what computers cannot do, orrather with drawing the line between what can be done and what cannot be done.Drawing such a line requires a precise formulation of all possible computationalprocesses; that is, we should have a clear model of all possible computationalprocesses (rather than some familiarity with some computational processes).Before being formal, let we o�er a general and abstract description, whichis aimed at capturing any arti�cial as well as natural process. Indeed, arti�cialprocesses will be associated with computers, whereas by natural processes we mean(attempts to model) the \mechanical" aspects the natural reality (be it physical,biological, or even social).A computation is a process that modi�es an environment via repeated applica-tions of a predetermined rule. The key restriction is that this rule is simple: in eachapplication it depends and a�ects only a (small) portion of the environment, calledthe active zone. We contrast the a-priori bounded size of the active zone (and ofthe modi�cation rule) with the a-priori unbounded size of the entire environment.We note that, although each application of the rule has a very limited e�ect, thee�ect of many applications of the rule may be very complex. Put in other words, acomputation may modify the relevant environment in a very complex way, althoughit is merely a process of repeatedly applying a simple rule.As hinted, the notion of computation can be used to model the \mechanical"aspects of the natural reality; that is, the rules that determine the evolution ofthe reality (rather than the speci�cs of reality itself). In this case, the evolutionprocess that takes place in the natural reality is the starting point of the study, andthe goal of the study is �nding the (computation) rule that underlies this naturalprocess. In a sense, the goal of Science at large can be phrased as �nding (simple)rules that govern various aspects of reality (or rather one's abstraction of theseaspects of reality).Our focus, however, is on arti�cial computation rules designed by humans inorder to achieve speci�c desired e�ects on a corresponding arti�cial environment.Thus, our starting point is a desired functionality, and our aim is to design compu-tation rules that e�ect it. Such a computation rule is referred to as an algorithm.Loosely speaking, an algorithm corresponds to a computer program written in ahigh-level (abstract) programming language. Let us elaborate.

1.2. COMPUTATIONAL TASKS AND MODELS 21We are interested in the transformation of the environment a�ected by thecomputational process (or the algorithm). Throughout (most of) this book, wewill assume that, when invoked on any �nite initial environment, the computationhalts after a �nite number of steps. Typically, the initial environment to whichthe computation is applied encodes an input string, and the end environment (i.e.,at termination of the computation) encodes an output string. We consider themapping from inputs to outputs induced by the computation; that is, for eachpossible input x, we consider the output y obtained at the end of a computationinitiated with input x, and say that the computation maps input x to output y.Thus, a computation rule (or an algorithm) determines a function (computed byit): this function is exactly the aforementioned mapping of inputs to outputs.In the rest of this book (i.e., outside the current chapter), we will also considerthe number of steps (i.e., applications of the rule) taken by the computation oneach possible input. The latter function is called the time complexity of the com-putational process (or algorithm). While time complexity is de�ned per input, wewill often considers it per input length, taking the maximum over all inputs of thesame length.In order to de�ne computation (and computation time) rigorously, one needsto specify some model of computation; that is, provide a concrete de�nition ofenvironments and a class of rules that may be applied to them. Such a modelcorresponds to an abstraction of a real computer (be it a PC, mainframe or net-work of computers). One simple abstract model that is commonly used is that ofTuring machines (see, x1.2.3.1). Thus, speci�c algorithms are typically formalizedby corresponding Turing machines (and their time complexity is represented by thetime complexity of the corresponding Turing machines). We stress, however, thatmost results in the Theory of Computation hold regardless of the speci�c compu-tational model used, as long as it is \reasonable" (i.e., satis�es the aforementionedsimplicity condition and can perform some obviously simple computations).What is being computed? The forgoing discussion has implicitly referred toalgorithms (i.e., computational processes) as means of computing functions. Specif-ically, an algorithm A computes the function fA : f0; 1g� ! f0; 1g� de�ned byfA(x)=y if, when invoked on input x, algorithm A halts with output y. However,algorithms can also serve as means of \solving search problems" or \making de-cisions" (as in De�nitions 1.1 and 1.2). Speci�cally, we will say that algorithm Asolves the search problem of R (resp., decides membership in S) if fA solves thesearch problem of R (resp., decides membership in S). In the rest of this expositionwe associate the algorithm A with the function fA computed by it; that is, we writeA(x) instead of fA(x). For sake of future reference, we summarize the foregoingdiscussion.De�nition 1.3 (algorithms as problem-solvers): We denote by A(x) the outputof algorithm A on input x. Algorithm A solves the search problem R (resp., thedecision problem S) if A, viewed as a function, solves R (resp., S).

22 CHAPTER 1. INTRODUCTION AND PRELIMINARIESOrganization of the rest of Section 1.2.3. In x1.2.3.1 we provide a sketchydescription of the model of Turing machines. This is done merely for sake of pro-viding a concrete model that supports the study of computation and its complexity,whereas most of the material in this book will not depend on the speci�cs of thismodel. In x1.2.3.2 and x1.2.3.2 we discuss two fundamental properties of any rea-sonable model of computation: the existence of uncomputable functions and theexistence of universal computations. The time (and space) complexity of compu-tation is de�ned in x1.2.3.4. We also discuss oracle machines and restricted modelsof computation (in x1.2.3.5 and x1.2.3.6, respectively).1.2.3.1 Turing machinesThe model of Turing machines o�er a relatively simple formulation of the notionof an algorithm. The fact that the model is very simple complicates the design ofmachines that solve problems of interest, but makes the analysis of such machinessimpler. Since the focus of complexity theory is on the analysis of machines and noton their design, the trade-o� o�ers by this model is suitable for our purposes. Westress again that the model is merely used as a concrete formulation of the intuitivenotion of an algorithm, whereas we actually care about the intuitive notion andnot about its formulation. In particular, all results mentioned in this book hold forany other \reasonable" formulation of the notion of an algorithm.The model of Turing machines is not meant to provide an accurate (or \tight")model of real-life computers, but rather to capture their inherent limitations andabilities (i.e., a computational task can be solved by a real-life computer if and onlyif it can be solved by a Turing machine). In comparison to real-life computers, themodel of Turing machines is extremely over-simpli�ed and abstract away manyissues that are of great concern to computer practice. However, these issues areirrelevant to the higher-level questions addressed by complexity theory. Indeed, asusual, good practice requires more re�ned understanding than the one provided bya good theory, but one should �rst provide the latter.Historically, the model of Turing machines was invented before modern com-puters were even built, and was meant to provide a concrete model of computationand a de�nition of computable functions.6 Indeed, this concrete model clari�edfundamental properties of computable functions and plays a key role in de�ningthe complexity of computable functions.The model of Turing machines was envisioned as an abstraction of the processof an algebraic computation carried out by a human using a sheet of paper. Insuch a process, at each time, the human looks at some location on the paper, anddepending on what he/she sees and what he/she has in mind (which is little...),he/she modi�es the contents of this location and shifts his/her look to an adjacentlocation.The actual model. Following is a high-level description of the model of Turingmachines; the interested reader is referred to standard textbooks (e.g., [197]) for6In contrast, the abstract de�nition of \recursive functions" yields a class of \computable"functions de�ned recursively in terms of the composition of such functions.

1.2. COMPUTATIONAL TASKS AND MODELS 23further details. Recall that we need to specify the set of possible environments, theset of machines (or computation rules), and the e�ect of applying such a rule onan environment.� The main component in the environment of a Turing machine is an in�nitesequence of cells, each capable of holding a single symbol (i.e., member ofa �nite set � � f0; 1g). In addition, the environment contains the currentlocation of the machine on this sequence, and the internal state of the machine(which is a member of a �nite set Q). The aforementioned sequence of cellsis called the tape, and its contents combined with the machine's location andits internal state is called the instantaneous con�guration of the machine.� The Turing machine itself consists of a �nite rule (i.e., a �nite function), calledthe transition function, which is de�ned over the set of all possible symbol-state pairs. Speci�cally, the transition function is a mapping from ��Q to��Q�f�1; 0;+1g, where f�1;+1; 0g correspond to a movement instruction(which is either \left" or \right" or \stay", respectively). In addition, themachine's description speci�es an initial state and a halting state, and thecomputation of the machine halts when the machine enters its halting state.7We stress that, in contrast to the �nite description of the machine, the tapehas an a priori unbounded length (and is considered, for simplicity, as beingin�nite).� A single computation step of such a Turing machine depends on its currentlocation on the tape, on the contents of the corresponding cell and on the in-ternal state of the machine. Based on the latter two elements, the transitionfunction determines a new symbol-state pair as well as a movement instruc-tion (i.e., \left" or \right" or \stay"). The machine modi�es the contents ofthe said cell and its internal state accordingly, and moves as directed. Thatis, suppose that the machine is in state q and resides in a cell containing thesymbol �, and suppose that the transition function maps (�; q) to (�0; q0; D).Then, the machine modi�es the contents of the said cell to �0, modi�es itsinternal state to q0, and moves one cell in direction D. Figure 1.1 shows asingle step of a Turing machine that, when in state `b' and seeing a binarysymbol �, replaces � with the symbol �+2, maintains its internal state, andmoves one position to the right.8Formally, we de�ne the successive con�guration function that maps each in-stantaneous con�guration to the one resulting by letting the machine take asingle step. This function modi�es its argument in a very minor manner, asdescribed in the foregoing; that is, the contents of at most one cell (i.e., at7Envisioning the tape as extending from left to right, we also use the convention by which ifthe machine tries to move left of the end of the tape then it is considered to have halted.8Figure 1.1 corresponds to a machine that, when in the initial state (i.e., `a'), replaces thesymbol � by �+4, modi�es its internal state to `b', and moves one position to the right. Indeed,\marking" the leftmost cell (in order to allow for recognizing it in the future), is a commonpractice in the design of Turing machines.

24 CHAPTER 1. INTRODUCTION AND PRELIMINARIESwhich the machine currently resides) is changed, and in addition the internalstate of the machine and its location may change too.
3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -Figure 1.1: A single step by a Turing machine.The initial environment (or con�guration) of a Turing machine consists of themachine residing in the �rst (i.e., left-most) cell and being in its initial state.Typically, one also mandates that, in the initial con�guration, a pre�x of the tape'scells hold bit values, which concatenated together are considered the input, and therest of the tape's cells hold a special symbol (which in Figure 1.1 is denoted by`-'). Once the machine halts, the output is de�ned as the contents of the cells thatare to the left of its location (at termination time).9 Thus, each machine de�nes afunction mapping inputs to outputs, called the function computed by the machine.Multi-tape Turing machines. We comment that in most expositions, onerefers to the location of the \head of the machine" on the tape (rather than tothe \location of the machine on the tape"). The standard terminology is moreintuitive when extending the basic model, which refers to a single tape, to a modelthat supports a constant number of tapes. In the model of multi-tape machines,each step of the machine depends and e�ects the cells that are at the head locationof the machine on each tape. As we shall see in Chapter 5 (and in x1.2.3.4), theextension of the model to multi-tape Turing machines is crucial to the de�nition ofspace complexity. A less fundamental advantage of the model of multi-tape Turingmachines is that it facilitates the design of machines that compute functions ofinterest.Teaching note: We strongly recommend avoiding the standard practice of teachingthe student to program with Turing machines. These exercises seem very painful andpointless. Instead, one should prove that a function can be computed by a Turingmachine if and only if it is computable by a model that is closer to a real-life computer(see the following \sanity check"). For starters, one should prove that a function can becomputed by a single-tape Turing machine if and only if it is computable by a multi-tape(e.g., two-tape) Turing machine.9By an alternative convention, the machine halts while residing in the left-most cell, and theoutput is de�ned as the maximal pre�x of the tape contents that contains only bit values.

1.2. COMPUTATIONAL TASKS AND MODELS 25The Church-Turing Thesis: The entire point of the model of Turing machinesis its simplicity. That is, in comparison to more \realistic" models of computation,it is simpler to formulate the model of Turing machines and to analyze machines inthis model. The Church-Turing Thesis asserts that nothing is lost by consideringthe Turing machine model: A function can be computed by some Turing machineif and only if it can be computed by some machine of any other \reasonable andgeneral" model of computation.This is a thesis, rather than a theorem, because it refers to an intuitive notionthat is left unde�ned on purpose (i.e., the notion of a reasonable and general modelof computation). The model should be reasonable in the sense that it should referto computation rules that are \simple" in some intuitive sense. On the other hand,the model should allow to compute functions that intuitively seem computable. Atthe very least the model should allow to emulate Turing machines (i.e., computethe function that given a description of a Turing machine and an instantaneouscon�guration returns the successive con�guration).A philosophical comment. The fact that a thesis is used to link an intuitiveconcept to a formal de�nition is common practice in any science (or, more broadly,in any attempt to reason rigorously about intuitive concepts). The moment anintuition is rigorously de�ned, it stops being an intuition and becomes a de�nition,and the question of the correspondence between the original intuition and thederived de�nition arises. This question can never be rigorously treated, becauseit relates to two objects, where one of them is unde�ned. Thus, the questionof correspondence between the intuition and the de�nition always transcends arigorous treatment (i.e., it always belongs to the domain of the intuition).A sanity check: Turing machines can emulate an abstract RAM. To gaincon�dence in the Church-Turing Thesis, one may attempt to de�ne an abstractRandom-Access Machine (RAM), and verify that it can be emulated by a Turingmachine. An abstract RAM consists of an in�nite number of memory cells, eachcapable of holding an integer, a �nite number of similar registers, one designatedas program counter, and a program consisting of instructions selected from a �niteset. The set of possible instructions includes the following instructions:� reset(r), where r is an index of a register, results in setting the value ofregister r to zero.� inc(r), where r is an index of a register, results in incrementing the contentof register r. Similarly dec(r) causes a decrement.� load(r1; r2), where r1 and r2 are indices of registers, results in loading toregister r1 the contents of the memory location m, where m is the currentcontents of register r2.� store(r1; r2), stores the contents of register r1 in the memory, analogouslyto load.� cond-goto(r; `), where r is an index of a register and ` does not exceed theprogram length, results in setting the program counter to `� 1 if the contentof register r is non-negative.

26 CHAPTER 1. INTRODUCTION AND PRELIMINARIESThe program counter is incremented after the execution of each instruction, andthe next instruction to be executed by the machine is the one to which the programcounter points (and the machine halts if the program counter exceeds the program'slength). The input to the machine may be de�ned as the contents of the �rst nmemory cells, where n is placed in a special input register. We note that the RAMmodel satis�es the Church-Turing Thesis, but in order to make it closer to real-life computers we may augment the model with additional instructions that areavailable on such computers (e.g., the instruction add(r1; r2) (resp., mult(r1; r2))that results in adding (resp., multiplying) the contents of registers r1 and r2 andplacing the result in register r1). We suggest proving that this abstract RAM canbe emulated by a Turing machine.10 (Hint: note that during the emulation, weonly need to hold the input, the contents of all registers, and the contents of thememory cells that were accessed during the computation.)11Observe that the abstract RAM model is signi�cantly more cumbersome thanthe Turing machine model. Furthermore, seeking a sound choice of the instruc-tion set (i.e., the instructions to be allowed in the model) creates a vicious cycle(because the sound guideline would have been to allow only instructions that corre-spond to \simple" operations, whereas the latter correspond to easily computablefunctions...). This vicious cycle was avoided by trusting the reader to consider onlyinstructions that are available in some real-life computer. (We comment that thisempirical consideration is justi�able in the current context, because our currentgoal is merely linking the Turing machine model with the reader's experience ofreal-life computers.)1.2.3.2 Uncomputable functionsStrictly speaking, the current subsection is not necessary for the rest of this book,but we feel that it provides a useful perspective.In contrast to what every layman would think, we know that not all functionsare computable. Indeed, an important message to be communicated to the worldis that not every well-de�ned task can be solved by applying a \reasonable" pro-cedure (i.e., a procedure that has a simple description that can be applied to anyinstance of the problem at hand). Furthermore, not only is it the case that thereexist uncomputable functions, but it is rather the case that most functions areuncomputable. In fact, only relatively few functions are computable.Theorem 1.4 (on the scarcity of computable functions): The set of computablefunctions is countable, whereas the set of all functions (from strings to string) has10We emphasize this direction of the equivalence of the two models, because the RAM model isintroduced in order to convince the reader that Turing machines are not too weak (as a model ofgeneral computation). The fact that they are not too strong seems self-evident. Thus, it seemspointless to prove that the RAM model can emulate Turing machines. Still, note that this isindeed the case, by using the RAM's memory cells to store the contents of the cells of the Turingmachine's tape.11Thus, at each time, the Turning machine's tape contains a list of the RAM's memory cellsthat were accessed so far as well as their current contents. When we emulate a RAM instruction,we �rst check whether the relevant RAM cell appears on this list, and augment the list by acorresponding entry or modify this entry as needed.

1.2. COMPUTATIONAL TASKS AND MODELS 27cardinality @.We stress that the theorem holds for any reasonable model of computation. Infact, it only relies on the postulate that each machine in the model has a �nitedescription (i.e., can be described by a string).Proof: Since each computable function is computable by a machine that hasa �nite description, there is a 1-1 correspondence between the set of computablefunctions and the set of strings (which in turn is in 1-1 correspondence to thenatural numbers). On the other hand, there is a 1-1 correspondence between theset of Boolean functions (i.e., functions from strings to a bit) and the set of realnumber in [0; 1). This correspondence associates each real r 2 [0; 1) to the functionf : N ! f0; 1g such that f(i) is the ith bit in the binary expansion of r.The Halting Problem: In contrast to the preliminary discussion, at this pointwe consider also machines that may not halt on some inputs. (The functionscomputed by such machines are partial functions that are de�ned only on inputson which the machine halts.) Again, we rely on the postulate that each machinein the model has a �nite description, and denote the description of machine M byhMi 2 f0; 1g�. The halting function, h : f0; 1g� � f0; 1g� ! f0; 1g, is de�ned suchthat h(hMi; x) def= 1 if and only if M halts on input x. The following result goesbeyond Theorem 1.4 by pointing to an explicit function (of natural interest) thatis not computable.Theorem 1.5 (undecidability of the halting problem): The halting function is notcomputable.The term undecidability means that the corresponding decision problem cannot besolved by an algorithm. That is, Theorem 1.5 asserts that the decision problemassociated with the set h�1(1) = f(hMi; x) : h(hMi; x) = 1g is not solvable byan algorithm (i.e., there exists no algorithm that, given a pair (hMi; x), decideswhether or notM halts on input x). Actually, the following proof shows that thereexists no algorithm that, given hMi, decides whether or notM halts on input hMi.Proof: We will show that even the restriction of h to its \diagonal" (i.e., thefunction d(hMi) def= h(hMi; hMi)) is not computable. Note that the value of d(hMi)refers to the question of what happens when we feed M with its own description,which is indeed a \nasty" (but legitimate) thing to do. We will actually do worse:towards the contradiction, we will consider the value of d when evaluated at a(machine that is related to a) machine that supposedly computes d.We start by considering a related function, d0, and showing that this functionis uncomputable. This function is de�ned on purpose so to foil any attempt tocompute it; that is, for every machine M , the value d0(hMi) is de�ned to di�erfrom M(hMi). Speci�cally, the function d0 : f0; 1g� ! f0; 1g is de�ned suchthat d0(hMi) def= 1 if and only if M halts on input hMi with output 0. (That is,d0(hMi) = 0 if either M does not halt on input hMi or its output does not equal

28 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthe value 0.) Now, suppose, towards the contradiction, that d0 is computable bysome machine, denoted Md0 . Note that machine Md0 is supposed to halt on everyinput, and so Md0 halts on input hMd0i. But, by de�nition of d0, it holds thatd0(hMd0i) = 1 if and only if Md0 halts on input hMd0i with output 0 (i.e., if andonly if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in contradiction to thehypothesis that Md0 computes d0.We next prove that d is uncomputable, and thus h is uncomputable (becaused(z) = h(z; z) for every z). To prove that d is uncomputable, we show that if d iscomputable then so is d0 (which we already know not to be the case). Indeed, letA be an algorithm for computing d (i.e., A(hMi) = d(hMi) for every machine M).Then we construct an algorithm for computing d0, which given hM 0i, invokes A onhM 00i, where M 00 is de�ned to operate as follows:1. On input x, machine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters anin�nite loop (and thus does not halt).4. Otherwise (i.e., M 0 does not halt on input x), then machine M 00 does nothalt (because it just stays stuck in Step 1 forever).Note that the mapping from hM 0i to hM 00i is easily computable (by augmentingM 0 with instructions to test its output and enter an in�nite loop if necessary), andthat d(hM 00i) = d0(hM 0i), because M 00 halts on x if and only if M 00 halts on x withoutput 0. We thus derived an algorithm for computing d0 (i.e., transform the inputhM 0i into hM 00i and output A(hM 00i)), which contradicts the already establishedfact by which d0 is uncomputable.Turing-reductions. The core of the second part of the proof of Theorem 1.5 isan algorithm that solves one problem (i.e., computes d0) by using as a subroutinean algorithm that solves another problem (i.e., computes d (or h)). In fact, the�rst algorithm is actually an algorithmic scheme that refers to a \functionally spec-i�ed" subroutine rather than to an actual (implementation of such a) subroutine,which may not exist. Such an algorithmic scheme is called a Turing-reduction (seeformulation in x1.2.3.5). Hence, we have Turing-reduced the computation of d0 tothe computation of d, which in turn Turing-reduces to h. The \natural" (\posi-tive") meaning of a Turing-reduction of f 0 to f is that when given an algorithm forcomputing f we obtain an algorithm for computing f 0. In contrast, the proof ofTheorem 1.5 uses the \unnatural" (\negative") counter-positive: if (as we know)there exists no algorithm for computing f 0 = d0 then there exists no algorithm forcomputing f = d (which is what we wanted to prove). Jumping ahead, we mentionthat resource-bounded Turing-reductions (e.g., polynomial-time reductions) play acentral role in complexity theory itself, and again they are used mostly in a \nega-tive" way. We will de�ne such reductions and extensively use them in subsequentchapters.

1.2. COMPUTATIONAL TASKS AND MODELS 29Rice's Theorem. The undecidability of the halting problem (or rather the factthat the function d is uncomputable) is a special case of a more general phe-nomenon: Every non-trivial decision problem regarding the function computed bya given Turing machine has no algorithmic solution. We state this fact next, clar-ifying what is the aforementioned class of problems. (Again, we refer to Turingmachines that may not halt on all inputs.)Theorem 1.6 (Rice's Theorem): Let F be a non-trivial subset12 of the set of allcomputable partial functions, and let SF be the set of strings that describe machinesthat compute functions in F . Then deciding membership in SF cannot be solved byan algorithm.Theorem 1.6 can be proved by a Turing-reduction from d. We do not providea proof because this is too remote from the main subject matter of the book.We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation(referring both to the potential solvers and to the machines the description of whichis given as input to these solvers). Thus, Theorem 1.6 means that no algorithm candetermine any non-trivial property of the function computed by a given computerprogram (written in any programming language). For example, no algorithm candetermine whether or not a given computer program halts on each possible input.The relevance of this assertion to the project of program veri�cation is obvious.The Post Correspondence Problem. We mention that undecidability arisesalso outside of the domain of questions regarding computing devices (given asinput). Speci�cally, we consider the Post Correspondence Problem in which theinput consists of two sequences of strings, (�1; :::; �k) and (�1; :::; �k), and thequestion is whether or not there exists a sequence of indices i1; :::; i` 2 f1; :::; kgsuch that �i1 � � ��i` = �i1 � � ��i` . (We stress that the length of this sequence is notbounded.)13Theorem 1.7 The Post Correspondence Problem is undecidable.Again, the omitted proof is by a Turing-reduction from d (or h).141.2.3.3 Universal algorithmsSo far we have used the postulate that, in any reasonable model of computation,each machine (or computation rule) has a �nite description. Furthermore, wealso used the fact that such model should allow for the easy modi�cation of suchdescriptions such that the resulting machine computes an easily related function12The set S is called a non-trivial subset of U if both S and U n S are non-empty. Clearly, if Fis a trivial set of computable functions then the corresponding decision problem can be solved bya \trivial" algorithm that outputs the corresponding constant bit.13In contrast, the existence of an adequate sequence of a speci�ed length can be determined intime that is exponential in this length.14We mention that the reduction maps an instance (hMi; x) of h to a pair of sequences suchthat only the �rst string in each sequence depends on x, whereas the other strings as well as theirnumber depend only on M .

30 CHAPTER 1. INTRODUCTION AND PRELIMINARIES(see the proof of Theorem 1.5). Here we go one step further and postulate that thedescription of machines (in this model) is \e�ective" in the following natural sense:there exists an algorithm that, given a description of a machine (resp., computationrule) and a corresponding environment, determines the environment that resultsfrom performing a single step of this machine on this environment (resp. the e�ectof a single application of the computation rule). This algorithm can, in turn, beimplemented in the said model of computation (assuming this model is general; seethe Church-Turing Thesis). Successive applications of this algorithm leads to thenotion of a universal machine, which (for concreteness) is formulated next in termsof Turing machines.De�nition 1.8 (universal machines): A universal Turing machine is a Turing ma-chine that on input a description of a machine M and an input x returns the valueof M(x) if M halts on x and otherwise does not halt.That is, a universal Turing machine computes the partial function u that is de�nedover pairs (hMi; x) such that M halts on input x, in which case it holds thatu(hMi; x) = M(x). We note that if M halts on all possible inputs then u(hMi; x)is de�ned for every x. We stress that the mere fact that we have de�ned somethingdoes not mean that it exists. Yet, as hinted in the foregoing discussion and obviousto anyone who has written a computer program (and thought about what he/shewas doing), universal Turing machines do exist.Theorem 1.9 There exists a universal Turing machine.Theorem 1.9 asserts that the partial function u is computable. In contrast, it canbe shown that any extension of u to a total function is uncomputable. That is, forany total function û that agrees with the partial function u on all the inputs onwhich the latter is de�ned, it holds that û is uncomputable.15Proof: Given a pair (hMi; x), we just emulate the computation of machine Mon input x. This emulation is straightforward, because (by the e�ectiveness of thedescription ofM) we can iteratively determine the next instantaneous con�gurationof the computation of M on input x. If the said computation halts then we willobtain its output and can output it (and so, on input (hMi; x), our algorithmreturns M(x)). Otherwise, we turn out emulating an in�nite computation, whichmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoingemulation procedure constitutes a universal machine (i.e., yields an algorithm forcomputing u).As hinted already, the existence of universal machines is the fundamental factunderlying the paradigm of general-purpose computers. Indeed, a speci�c Turing15The claim is easy to prove for the total function û that extends u and assigns the specialsymbol ? to inputs on which u is unde�ned (i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x)and û(hMi; x) def= u(hMi; x) otherwise). In this case h(hMi; x) = 1 if and only if û(hMi; x) 6= ?,and so the halting function h is Turing-reducible to û. In the general case, we may adapt theproof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holdsthat û(hMi; x) = u(hMi; x) for every x (and in particular for x = hMi).

1.2. COMPUTATIONAL TASKS AND MODELS 31machine (or algorithm) is a device that solves a speci�c problem. A priori, solvingeach problem would have required building a new physical device that allows for thisproblem to be solved in the physical world (rather than as a thought experiment).The existence of a universal machine asserts that it is enough to build one physicaldevice; that is, a general purpose computer. Any speci�c problem can then besolved by writing a corresponding program to be executed (or emulated) by thegeneral purpose computer. Thus, universal machines correspond to general purposecomputers, and provide the basis for separating hardware from software. In otherwords, the existence of universal machines says that software can be viewed as(part of the) input.In addition to their practical importance, the existence of universal machines(and their variants) has important consequences in the theories of computabilityand computational complexity. Here we merely note that Theorem 1.9 implies thatmany questions about the behavior of a universal machine on certain input types areundecidable. For example, it follows that, for some �xed machines (i.e., universalones), there is no algorithm that determines whether or not the (�xed) machinehalts on a given input. Revisiting the proof of Theorem 1.7 (see Footnote 14),it follows that the Post Correspondence Problem remains undecidable even if theinput sequences are restricted to have a speci�c length (i.e., k is �xed). A moreimportant application of universal machines to the theory of computability follows.A detour: Kolmogorov Complexity. The existence of universal machines,which may be viewed as universal languages for writing e�ective and succinctdescriptions of objects, plays a central role in Kolmogorov Complexity. Looselyspeaking, the latter theory is concerned with the length of (e�ective) descriptionsof objects, and views the minimum such length as the inherent \complexity" of theobject; that is, \simple" objects (or phenomena) are those having short description(resp., short explanation), whereas \complex" objects have no short description.Needless to say, these (e�ective) descriptions have to refer to some �xed \language"(i.e., to a �xed machine that, given a succinct description of an object, producesits explicit description). Fixing any machine M , a string x is called a descriptionof s with respect to M if M(x) = s. The complexity of s with respect to M , de-noted KM (s), is the length of the shortest description of s with respect to M .Certainly, we want to �x M such that every string has a description with respectto M , and furthermore such that this description is not \signi�cantly" longer thanthe description with respect to a di�erent machine M 0. The following theoremmake it natural to use a universal machine as the \point of reference" (i.e., as theaforementioned M).Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-chine. Then, for every machine M 0, there exists a constant c such that KU (s) �KM 0(s) + c for every string s.The theorem follows by (setting c = O(jhM 0ij) and) observing that if x is a de-scription of s with respect to M 0 then (hM 0i; x) is a description of s with respect

32 CHAPTER 1. INTRODUCTION AND PRELIMINARIESto U . Here it is important to use an adequate encoding of pairs of strings (e.g.,the pair (�1 � � ��k ; �1 � � � �`) is encoded by the string �1�1 � � ��k�k01�1 � � � �`). Fix-ing any universal machine U , we de�ne the Kolmogorov Complexity of a string s asK(s) def= KU (s). The reader may easily verify the following facts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 1.10 to a machine that computes the identity map-ping.)2. There exist in�nitely many strings s such that K(s)� jsj.(Hint: consider s = 1n. Alternatively, consider any machine M such thatjM(x)j � jxj for every x.)3. Some strings of length n have complexity at least n. Furthermore, for everyn and i, jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent descriptions with respect to U .)It can be shown that the function K is uncomputable. The proof is related to theparadox captured by the following \description" of a natural number: the largestnatural number that can be described by an English sentence of up-to athousand letters. (The paradox amounts to observing that if the above num-ber is well-de�ned then so is the integer-successor of the largest naturalnumber that can be described by an English sentence of up-to a thousandletters.) Needless to say, the foregoing sentences presuppose that any English sen-tence is a legitimate description in some adequate sense (e.g., in the sense capturedby Kolmogorov Complexity). Speci�cally, the foregoing sentences presuppose thatwe can determine the Kolmogorov Complexity of each natural number, and fur-thermore that we can e�ectively produce the largest number that has KolmogorovComplexity not exceeding some threshold. Indeed, the paradox provides a proofto the fact that the latter task cannot be performed; that is, there exists no algo-rithm that given t produces the lexicographically last string s such that K(s) � t,because if such an algorithm A would have existed then K(s) � O(jhAij) + log tand K(s0) < K(s) +O(1) < t in contradiction to the de�nition of s.1.2.3.4 Time and space complexityFixing a model of computation (e.g., Turing machines) and focusing on algorithmsthat halt on each input, we consider the number of steps (i.e., applications ofthe computation rule) taken by the algorithm on each possible input. The latterfunction is called the time complexity of the algorithm (or machine); that is, tA :f0; 1g� ! N is called the time complexity of algorithm A if, for every x, on inputx algorithm A halts after exactly tA(x) steps.We will be mostly interested in the dependence of the time complexity on theinput length, when taking the maximum over all inputs of the relevant length.That is, for tA as above, we will consider TA : N ! N de�ned by TA(n) def=

1.2. COMPUTATIONAL TASKS AND MODELS 33maxx2f0;1gnftA(x)g. Abusing terminology, we sometimes refer to TA as the timecomplexity of A.The time complexity of a problem. As stated in the preface and in the intro-duction, typically is complexity theory not concerned with the (time) complexityof a speci�c algorithm. It is rather concerned with the (time) complexity of a prob-lem, assuming that this problem is solvable at all (by some algorithm). Intuitively,the time complexity of such a problem is de�ned as the time complexity of thefastest algorithm that solves this problem (assuming that the latter term is well-de�ned).16 More generally, we will be interested in upper and lower bounds on the(time) complexity of algorithms that solve the problem. However, the complexityof a problem may depend on the speci�c model of computation in which algorithmsthat solve it are implemented. The following Cobham-Edmonds Thesis asserts thatthe variation (in the time complexity) is not too big, and in particular is irrelevantto much of the current focus of complexity theory (e.g., for the P-vs-NP Question).The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-lem may depend on the model of computation. For example, deciding membershipin the set fxx : x 2 f0; 1g�g can be done in linear-time on a two-tape Turing ma-chine, but requires quadratic-time on a single-tape Turing machine.17 On the otherhand, any problem that has time complexity t in the model of multi-tape Turingmachines, has complexity O(t2) in the model of single-tape Turing machines. TheCobham-Edmonds Thesis asserts that the time complexities in any two \reasonableand general" models of computation are polynomially related. That is, a problemhas time complexity t in some \reasonable and general" model of computation ifand only if it has time complexity poly(t) in the model of (single-tape) Turingmachines.Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.It asserts not only that the class of solvable problems is invariant as far as \rea-sonable and general" models of computation are concerned, but also that the timecomplexity (of the solvable problems) in such models is polynomially related.E�cient algorithms. As hinted in the foregoing discussions, much of complexitytheory is concerned with e�cient algorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have a time complexity that is bounded bya polynomial in the length of the input). By the Cobham-Edmonds Thesis, the16Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-tion that a \fastest algorithm" for solving a problem exists is not always justi�ed. On the otherhand, the assumption is justi�ed in some important cases (see, e.g., Theorem 2.31).17Proving the latter fact is quite non-trivial. One proof is by a \reduction" from a communica-tion complexity problem [141, Sec. 12.2]. Intuitively, a single-tape Turing machine that decidesmembership in the aforementioned set can be viewed as a channel of communication between thetwo parts of the input. Focusing our attention on inputs of the form y0nz0n, for y; z 2 f0; 1gn,each time the machine passes from the �rst part to the second part it carries O(1) bits of infor-mation (in its internal state) while making at least n steps. The proof is completed by invokingthe linear lower bound on the communication complexity of the (two-argument) identity function(i.e, id(y; z) = 1 if y = z and id(y; z) = 0 otherwise, cf. [141, Chap. 1]).

34 CHAPTER 1. INTRODUCTION AND PRELIMINARIESchoice of a \reasonable and general" model of computation is irrelevant to thede�nition of this class. The association of e�cient algorithms with polynomial-time computation is grounded in the following two considerations:� Philosophical consideration: Intuitively, e�cient algorithms are those thatcan be implemented within a number of steps that is a moderately growingfunction of the input length. To allow for reading the entire input, at leastlinear time complexity should be allowed, whereas exponential time (as in\exhaustive search") must be avoided. Furthermore, a good de�nition ofthe class of e�cient algorithms should be closed under natural compositionof algorithms (as well as be robust with respect to reasonable models ofcomputation and with respect to simple changes in the encoding of problems'instances).Selecting polynomials as the set of time-bounds for e�cient algorithms sat-isfy all the foregoing requirements: polynomials constitute a \closed" set ofmoderately growing functions, where \closure" means closure under addition,multiplication and functional composition. These closure properties guaran-tee the closure of the class of e�cient algorithm under natural compositionof algorithms (as well as its robustness with respect to any reasonable andgeneral model of computation). Furthermore, polynomial-time algorithmscan conduct computations that are intuitively simple (although not necessar-ily trivial), and on the other hand they do not include algorithms that areintuitively ine�cient (like exhaustive search).� Empirical consideration: It is clear that algorithms that are considered e�-cient in practice have running-time that is bounded by a small polynomial(at least on the inputs that occur in practice). The question is whether anypolynomial-time algorithm can be considered e�cient in an intuitive sense.The belief, which is supported by past experience, is that every natural prob-lem that can be solved in polynomial-time also has \reasonably e�cient"algorithms.We stress that the association of e�cient algorithms with polynomial-time compu-tation is not essential to most of the notions, results and questions of complexitytheory. Any other class of algorithms that supports the aforementioned closureproperties and allows to conduct some simple computations but not overly com-plex ones gives rise to a similar theory, albeit the formulation of such a theory maybe much more complicated. Speci�cally, all results and questions treated in thisbook are concerned with the relation among the complexities of di�erent computa-tional tasks (rather than with providing absolute assertions about the complexityof some computational tasks). These relations can be stated explicitly, by statinghow any upper-bound on the time complexity of one task gets translated to anupper-bound on the time complexity of another task.18 Such cumbersome state-ments will maintain the contents of the standard statements; they will merely be18For example, the NP-completeness of SAT (cf. Theorem 2.21) implies that any algorithmsolving SAT in time T yields an algorithm that factors composite numbers in time T 0 such thatT 0(n) = poly(n) � (1 + T (poly(n))). (More generally, if the correctness of solutions for n-bit

1.2. COMPUTATIONAL TASKS AND MODELS 35much more complicated. Thus, we follow the tradition of focusing on polynomial-time computations, while stressing that this focus is both natural and provides thesimplest way of addressing the fundamental issues underlying the nature of e�cientcomputation.Universal machines, revisited. The notion of time complexity gives rise to atime-bounded version of the universal function u (presented in x1.2.3.3). Speci�-cally, we de�ne u0(hMi; x; t) def= y if on input x machine M halts within t steps andoutputs the string y, and u0(hMi; x; t) def= ? if on input x machine M makes morethan t steps. Unlike u, the function u0 is a total function. Furthermore, unlikeany extension of u to a total function the function u0 is computable. Moreover, u0is computable by a machine U 0 that on input X = (hMi; x; t) halts after poly(t)steps. Indeed, machine U 0 is a variant of a universal machine (i.e., on input X , ma-chine U 0 merely emulates M for t steps rather than emulating M till it halts (andpotentially inde�nitely)). Note that the number of steps taken by U 0 depends onthe speci�c model of computation (and that some overhead is unavoidable becauseemulating each step of M requires reading the relevant portion of the descriptionof M).Space complexity. Another natural measure of the \complexity" of an algo-rithm (or a task) is the amount of memory consumed by the computation. Werefer to the memory used for storing some intermediate results of the computation.Since much of our focus will be on using memory that is sub-linear in the inputlength, it is important to use a model in which one can di�erentiate memory usedfor computation from memory used for storing the initial input or the �nal output.In the context of Turing machines, this is done by considering multi-tape Turingmachines such that the input is presented on a special read-only tape (called theinput tape), the output is written on a special write-only tape (called the outputtape), and intermediate results are stored on a work-tape. Thus, the input andoutput tapes cannot be used for storing intermediate results. The space complexityof such a machine M is de�ned as a function sM such that sM (x) is the number ofcells of the work-tape that are scanned by M on input x. As in the case of timecomplexity, we will usually refer to SA(n) def= maxx2f0;1gnfsA(x)g.1.2.3.5 Oracle machinesThe notion of Turing-reductions, which was discussed in x1.2.3.2, is captured bythe following de�nition of so-called oracle machines. Loosely speaking, an oraclemachine is a machine that is augmented such that it may pose questions to theoutside. (A rigorous formulation of this notion is provided below.) We considerthe case in which these questions, called queries, are answered consistently by somefunction f : f0; 1g� ! f0; 1g�, called the oracle. That is, if the machine makes aquery q then the answer it obtains is f(q). In such a case, we say that the oracleinstances of some search problem can be veri�ed in time t(n) then such solutions can be found intime T 0 such that T 0(n) = t(n) � (1 + T (O(t(n))2)).)

36 CHAPTER 1. INTRODUCTION AND PRELIMINARIESmachine is given access to the oracle f . For an oracle machine M , a string x and afunction f , we denote by Mf (x) the output of M on input x when given access tothe oracle f . (Re-examining the second part of the proof of Theorem 1.5, observethat we have actually described an oracle machine that computes d0 when givenaccess to the oracle d.)The notion of an oracle machine extends the notion of a standard computingdevice (machine), and thus a rigorous formulation of the former extends a formalmodel of the latter. Speci�cally, extending the model of Turing machines, we derivethe following model of oracle Turing machines.De�nition 1.11 (using an oracle): An oracle machine is a Turing machine with anadditional tape, called the oracle tape, and two special states, called oracle invocationand oracle spoke. The computation of the oracle machine M on input x and accessto the oracle f : f0; 1g� ! f0; 1g� is de�ned based on the successive con�gurationfunction. For con�gurations with state di�erent from oracle invocation the nextcon�guration is de�ned as usual. Let
 be a con�guration in which the machine'sstate is oracle invocation and suppose that the actual contents of the oracle tape isq (i.e., q is the contents of the maximal pre�x of the tape that holds bit values).19Then, the con�guration following
 is identical to
, except that the state is oraclespoke, and the actual contents of the oracle tape is f(q). The string q is called M 'squery and f(q) is called the oracle's reply.We stress that the running time of an oracle machine is the number of steps madeduring its computation, and that the oracle's reply on each query is obtained in asingle step.1.2.3.6 Restricted modelsWe mention that restricted models of computation are often mentioned in thecontext of a course on computability, but they will play no role in the currentbook. One such model is the model of �nite automata, which in some variantcoincides with Turing machines that have space complexity zero.In our opinion, the most important motivation for the study of these restrictedmodels of computation is that they provide simple models for some natural (orarti�cial) phenomena. This motivation, however, seems only remotely related tothe study of the complexity of various computational tasks. Thus, in our opinion,the study of these restricted models (e.g., any of the lower levels of Chomsky'sHierarchy [118, Chap. 9]) should be decoupled from the study of computabilitytheory (let alone the study of complexity theory).19This �ts the de�nition of the actual contents of a tape of a Turing machine (cf. x1.2.3.1).A common convention is that the oracle can be invoked only when the machine's head resides atthe left-most cell of the oracle tape. We comment that, in the context of space complexity, oneuses two oracle tapes: a write-only tape for the query and a read-only tape for the answer.

1.2. COMPUTATIONAL TASKS AND MODELS 371.2.4 Non-uniform Models (Circuits and Advice)By a non-uniform model of computation we mean a model in which for each possibleinput length one considers a di�erent computing device. That is, there is no \uni-formity" requirement relating devices that correspond to di�erent input lengths.Furthermore, this collection of devices is in�nite by nature, and (in absence ofa uniformity requirement) this collection may not even have a �nite description.Nevertheless, each device in the collection has a �nite description. In fact, therelationship between the size of the device (resp., the length of its description) andthe length of the input that it handles will be of major concern. The hope is thatthe �niteness of all parameters (which refer to a single device in such a collection)will allow for the application of combinatorial techniques to analyze the limitationsof certain settings of parameters.In complexity theory, non-uniform models of computation are studied eithertowards the development of lower-bound techniques or as simpli�ed upper-boundson the ability of e�cient algorithms. In both cases, the uniformity condition iseliminated in the interest of simplicity and with the hope (and belief) that nothingsubstantial is lost as far as the issues at hand are concerned.We will focus on two related models of non-uniform computing devices: Booleancircuits (x1.2.4.1) and \machines that take advice" (x1.2.4.2). The former model ismore adequate for the study of the evolution of computation (i.e., development oflower-bound techniques), whereas the latter is more adequate for modeling purposes(e.g., upper-bounding the ability of e�cient algorithms). (These models will befurther studied in Sections 3.1 and 4.1.)1.2.4.1 Boolean CircuitsThe most popular model of non-uniform computation is the one of Boolean circuits.Historically, this model was introduced for the purpose of describing the \logicoperation" of real-life electronic circuits. Ironically, nowadays this model providesthe stage for some of the most practically removed studies in complexity theory(which aim at developing methods that may eventually lead to an understandingof the inherent limitations of e�cient algorithms).A Boolean circuit is a directed acyclic graph with labels on the vertices, to bediscussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., verticeswith no in-going or out-going edges), and thus the graph's vertices are of threetypes: sources, sinks, and internal vertices.1. Internal vertices are vertices having in-coming and out-going edges (i.e., theyhave in-degree and out-degree at least 1). In the context of Boolean cir-cuits, internal vertices are called gates. Each gate is labeled by a Booleanoperation, where the operations that are typically considered are ^, _ and: (corresponding to and, or and neg). In addition, we require that gateslabeled : have in-degree 1. (The in-coming degree of ^-gates and _-gatesmay be any number greater than zero, and the same holds for the out-degreeof any gate.)

38 CHAPTER 1. INTRODUCTION AND PRELIMINARIES2. The graph sources (i.e., vertices with no in-going edges) are called input ter-minals. Each input terminal is labeled by a natural number (which is to bethought of the index of an input variable). (For sake of de�ning formulae(see x1.2.4.3), we allow di�erent input terminals to be labeled by the samenumber.)203. The graph sinks (i.e., vertices with no out-going edges) are called output ter-minals, and we require that they have in-degree 1. Each output terminal islabeled by a natural number such that if the circuit has m output terminalsthen they are labeled 1; 2; :::;m. That is, we disallow di�erent output ter-minals to be labeled by the same number, and insist that the labels of theoutput terminals are consecutive numbers. (Indeed, the labels of the outputterminals will correspond to the indices of locations in the circuit's output.)For sake of simplicity, we also mandate that the labels of the input terminals areconsecutive numbers.21
1 2

1 2

0

4 3

and and

and

and

or
or

negneg neg

Figure 1.2: A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).A Boolean circuit with n di�erent input labels and m output terminals induces(and indeed computes) a function from f0; 1gn to f0; 1gm de�ned as follows. Forany �xed string x 2 f0; 1gn, we iteratively de�ne the value of vertices in the circuit20This is not needed in case of general circuits, because we can just feed out-going edges of thesame input terminal to many gates. Note, however, that this is not allowed in case of formulae,where all non-sinks are required to have out-degree exactly 1.21This convention slightly complicates the construction of circuits that ignore some of the inputvalues. Speci�cally, we use arti�cial gadgets that have in-coming edges from the correspondinginput terminals, and compute an adequate constant. To avoid having this constant as an outputterminal, we feed it into an auxiliary gate such that the value of the latter is determined by theother in-going edge (e.g., a constant 0 fed into an _-gate). See example of dealing with x3 inFigure 1.2.

1.2. COMPUTATIONAL TASKS AND MODELS 39such that the input terminals are assigned the corresponding bits in x = x1 � � �xnand the values of other vertices are determined in the natural manner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e.,the value xi).� If the children of a gate (of in-degree d) that is labeled ^ have values v1; v2; :::; vd,then the gate is assigned the value ^di=1vi. The value of a gate labeled _ (or:) is determined analogously.Indeed, the hypothesis that the circuit is acyclic implies that the processof determining values for the circuit's vertices is well-de�ned: As long as thevalue of some vertex is undetermined, there exists a vertex such that its valueis undetermined but the values of all its children are determined. Thus, theprocess can make progress, and terminates when the values of all vertices(including the output terminals) are determined.The value of the circuit on input x (i.e., the output computed by the circuit oninput x) is y = y1 � � � ym, where yi is the value assigned by the foregoing processto the output terminal labeled i. We note that there exists a polynomial-timealgorithm that, given a circuit C and a corresponding input x, outputs the value ofC on input x. This algorithm determines the values of the circuit's vertices, goingfrom the circuit's input terminals to its output terminals.We say that a family of circuits (Cn)n2N computes a function f : f0; 1g� ! f0; 1g�if for every n the circuit Cn computes the restriction of f to strings of length n. Inother words, for every x 2 f0; 1g�, it must hold that Cjxj(x) = f(x).Bounded and unbounded fan-in. We will be most interested in circuits inwhich each gate has at most two in-coming edges. In this case, the types of (two-argument) Boolean operations that we allow is immaterial (as long as we considera \full basis" of such operations; i.e., a set of operations that can implement anyother two-argument Boolean operation). Such circuits are called circuits of boundedfan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,where each gate may have an arbitrary number of in-going edges. Needless to say,in the case of circuits of unbounded fan-in, the choice of allowed Boolean operationsis important and one focuses on operations that are \uniform" (across the numberof operants; e.g., ^ and _).Circuit size as a complexity measure. The size of a circuit is the number ofits edges. When considering a family of circuits (Cn)n2N that computes a functionf : f0; 1g� ! f0; 1g�, we are interested in the size of Cn as a function of n.Speci�cally, we say that this family has size complexity s : N ! N if for every n thesize of Cn is s(n). The circuit complexity of a function f , denoted sf , is the in�mumof the size complexity of all families of circuits that compute f . Alternatively, foreach n we may consider the size of the smallest circuit that computes the restrictionof f to n-bit strings (denoted fn), and set sf (n) accordingly. We stress that non-uniformity is implicit in this de�nition, because no conditions are made regarding

40 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthe relation between the various circuits used to compute the function on di�erentinput lengths.The circuit complexity of functions. We highlight some simple facts aboutthe circuit complexity of functions. (These facts are in clear correspondence tofacts regarding Kolmogorov Complexity mentioned in x1.2.3.3.)1. Most importantly, any Boolean function can be computed by some familyof circuits, and thus the circuit complexity of any function is well-de�ned.Furthermore, each function has at most exponential circuit complexity.(Hint: fn : f0; 1gn ! f0; 1g can be computed by a circuit of size O(n2n) thatimplements a look-up table.)2. Some functions have polynomial circuit complexity. In particular, any func-tion that has time complexity t (i.e., is computed by an algorithm of timecomplexity t) has circuit complexity poly(t). Furthermore, the correspond-ing circuit family is uniform (in a natural sense to be discussed in the nextparagraph).(Hint: consider a Turing machine that computes the function, and considerits computation on a generic n-bit long input. The corresponding compu-tation can be emulated by a circuit that consists of t(n) layers such thateach layer represents an instantaneous con�guration of the machine, and therelation between consecutive con�gurations is captured by (\uniform") localgadgets in the circuit. For further details see the proof of Theorem 2.20,which presents a similar emulation.)3. Almost all Boolean functions have exponential circuit complexity. Speci�-cally, the number of functions mapping f0; 1gn to f0; 1g that can be computedby some circuit of size s is at most s2s.(Hint: the number of circuits having v vertices and s edges is at most �v2�s.)Note that the �rst fact implies that families of circuits can compute functions thatare uncomputable by algorithms. Furthermore, this phenomenon occurs also whenrestricting attention to families of polynomial-size circuits. See further discussionin x1.2.4.2.Uniform families. A family of polynomial-size circuits (Cn)n2N is called uniformif given n one can construct the circuit Cn in poly(n)-time. Note that if a functionis computable by a uniform family of polynomial-size circuits then it is computableby a polynomial-time algorithm. This algorithm �rst constructs the adequate cir-cuit (which can be done in polynomial-time by the uniformity hypothesis), andthen evaluate this circuit on the given input (which can be done in time that ispolynomial in the size of the circuit).Note that limitations on the computing power of arbitrary families of polynomial-size circuits certainly hold for uniform families (of polynomial-size), which in turnyield limitations on the computing power of polynomial-time algorithms. Thus,

1.2. COMPUTATIONAL TASKS AND MODELS 41lower bounds on the circuit complexity of functions yield analogous lower boundson their time complexity. Furthermore, as is often the case in mathematics andScience, disposing of an auxiliary condition that is not well-understood (i.e., uni-formity) may turn out fruitful. Indeed, this has occured in the study of classes ofrestricted circuits, which is reviewed in x1.2.4.3 (and Appendix B).1.2.4.2 Machines that take adviceGeneral (non-uniform) circuit families and uniform circuit families are two extremeswith respect to the \amounts of non-uniformity" in the computing device. Intu-itively, in the former, non-uniformity is only bounded by the size of the device,whereas in the latter the amounts of non-uniformity is zero. Here we consider amodel that allows to decouple the size of the computing device from the amountof non-uniformity, which may range from zero to the device's size. Speci�cally, weconsider algorithms that \take a non-uniform advice" that depends only on theinput length. The amount of non-uniformity will be de�ned to equal the length ofthe corresponding advice (as a function of the input length).De�nition 1.12 (taking advice): We say that algorithm A computes the functionf using advice of length ` : N ! N if there exists an in�nite sequence (an)n2N suchthat1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).The sequence (an)n2N is called the advice sequence.Note that any function having circuit complexity s can be computed using adviceof length O(s log s), where the log factor is due to the fact that a graph with vvertices and e edges can be described by a string of length 2e log2 v. Note that themodel of machines that use advice allows for some sharper bounds than the onesstated in x1.2.4.1: every function can be computed using advice of length ` suchthat `(n) = 2n, and some uncomputable functions can be computed using adviceof length 1.Theorem 1.13 (the power of advice): There exist functions that can be computedusing one-bit advice but cannot be computed without advice.Proof: Starting with any uncomputable Boolean function f : N ! f0; 1g, considerthe function f 0 de�ned as f 0(x) = f(jxj). Note that f is Turing-reducible to f 0 (e.g.,on input nmake any n-bit query to f 0, and return the answer).22 Thus, f 0 cannot becomputed without advice. On the other hand, f 0 can be easily computed by usingthe advice sequence (an)n2N such that an = f(n); that is, the algorithm merelyoutputs the advice bit (and indeed ajxj = f(jxj) = f 0(x), for every x 2 f0; 1g�).22Indeed, this Turing-reduction is not e�cient (i.e., it runs in exponential time in jnj = log2 n),but this is immaterial in the current context.

42 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.2.4.3 Restricted modelsAs noted in x1.2.4.1, the model of Boolean circuits allows for the introduction ofmany natural subclasses of computing devices. Following is a laconic review of afew of these subclasses. For more detail, see Appendix B.2. Since we shall refer tovarious types of Boolean formulae in the rest of this book, we suggest not to skipthe following two paragraphs.Boolean formulae. In general Boolean circuits the non-sink vertices are allowedarbitrary out-degree. This means that the same intermediate value can be re-used(without being re-computed (and while increasing the size complexity by only oneunit)). Such \free" re-usage of intermediate values is disallowed in Boolean formu-lae, which corresponds to a Boolean expression over Boolean variables. Formally,a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,which means that the underlying graph is a tree (see xG.2) and the formula asan expression can be read by traversing the tree (and registering the vertices' la-bels in the order traversed). Indeed, we have allowed di�erent input terminals tobe assigned the same label in order to allow formulae in which the same variableoccurs multiple times. As in case of general circuits, one is interested in the sizeof these restricted circuits (i.e., the size of families of formulae computing variousfunctions). We mention that quadratic lower bounds are known for the formulasize of simple functions (e.g., parity), whereas these functions have linear circuitcomplexity. This discrepancy is depicted in Figure 1.3.
1 n

of x x
1 n

of x x
1 n

of x x
2n

of x ...x
n+1 2n

of x ...x
n+12n

of x ...x
n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure 1.3: Recursive construction of parity circuits and formulae.Formulae in CNF and DNF. A restricted type of Boolean formulae consistsof formulae that are in conjunctive normal form (CNF). Such a formula consists ofa conjunction of clauses, where each clause is a disjunction of literals each beingeither a variable or its negation. That is, such formulae are represented by layeredcircuits of unbounded fan-in in which the �rst layer consists of neg-gates thatcompute the negation of input variables, the second layer consist of or-gates thatcompute the logical-or of subsets of inputs and negated inputs, and the third layer

1.2. COMPUTATIONAL TASKS AND MODELS 43consists of a single and-gate that computes the logical-and of the values computedin the second layer. Note that each Boolean function can be computed by a familyof CNF formulae of exponential size, and that the size of CNF formulae may beexponentially larger than the size of ordinary formulae computing the same function(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF hasdisjunctions of size at most k. An analogous restricted type of Boolean formulaerefers to formulae that are in disjunctive normal form (DNF). Such a formula consistsof a disjunction of a conjunctions of literals, and when each conjunction has at mostk literals we say that the formula is in k-DNF.Constant-depth circuits. Circuits have a \natural structure" (i.e., their struc-ture as graphs). One natural parameter regarding this structure is the depth of acircuit, which is de�ned as the longest directed path from any source to any sink. Ofspecial interest are constant-depth circuits of unbounded fan-in. We mention thatsub-exponential lower bounds are known for the size of such circuits that computea simple function (e.g., parity).Monotone circuits. The circuit model also allows for the consideration of mono-tone computing devices: a monotone circuit is one having only monotone gates(e.g., gates computing ^ and _, but no negation gates (i.e., :-gates)). Needlessto say, monotone circuits can only compute monotone functions, where a functionf : f0; 1gn ! f0; 1g is called monotone if for any x � y it holds that f(x) � f(y)(where x1 � � �xn � y1 � � � yn if and only if for every bit position i it holds thatxi � yi). One natural question is whether, as far as monotone functions are con-cerned, there is a substantial loss in using only monotone circuits. The answer isyes: there exist monotone functions that have polynomial circuit complexity butrequire sub-exponential size monotone circuits.1.2.5 Complexity ClassesComplexity classes are sets of computational problems. Typically, such classes arede�ned by �xing three parameters:1. A type of computational problems (see Section 1.2.2). Indeed, most classesrefer to decision problems, but classes of search problems, promise problems,and other types of problems will also be considered.2. A model of computation, which may be either uniform (see Section 1.2.3) ornon-uniform (see Section 1.2.4).3. A complexity measure and a function (or a set of functions), which put to-gether limit the class of computations of the previous item; that is, we referto the class of computations that have complexity not exceeding the speci-�ed function (or set of functions). For example, in x1.2.3.4, we mentionedtime complexity and space complexity, which apply to any uniform model ofcomputation. We also mentioned polynomial-time computations, which are

44 CHAPTER 1. INTRODUCTION AND PRELIMINARIEScomputations in which the time complexity (as a function) does not exceedsome polynomial (i.e., a member of the set of polynomial functions).The most common complexity classes refer to decision problems, and are sometimesde�ned as classes of sets rather than classes of the corresponding decision problems.That is, one often says that a set S � f0; 1g� is in the class C rather than sayingthat the problem of deciding membership in S is in the class C. Likewise, one talksof classes of relations rather than classes of the corresponding search problems (i.e.,saying that R � f0; 1g��f0; 1g� is in the class C means that the search problem ofR is in the class C).Chapter NotesIt is quite remarkable that the theories of uniform and non-uniform computationaldevices have emerged in two single papers. We refer to Turing's paper [213], whichintroduced the model of Turing machines, and to Shannon's paper [191], whichintroduced Boolean circuits.In addition to introducing the Turing machine model and arguing that it cor-responds to the intuitive notion of computability, Turing's paper [213] introducesuniversal machines and contains proofs of undecidability (e.g., of the Halting Prob-lem).The Church-Turing Thesis is attributed to the works of Church [53] and Tur-ing [213]. In both works, this thesis is invoked for claiming that the fact thatTuring machines cannot solve some problem implies that this problem cannot besolved in any \reasonable" model of computation. The RAM model is attributedto von Neumann's report [220].The association of e�cient computation with polynomial-time algorithms isattributed to the papers of Cobham [54] and Edmonds [66]. It is interesting tonote that Cobham's starting point was his desire to present a philosophically soundconcept of e�cient algorithms, whereas Edmonds's starting point was his desire toarticulate why certain algorithms are \good" in practice.Rice's Theorem is proven in [182], and the undecidability of the Post Correspon-dence Problem is proven in [171]. The formulation of machines that take advice(as well as the equivalence to the circuit model) originates in [131].

Chapter 2P, NP andNP-CompletenessForasmuch as many have taken in hand to set forth in order adeclaration of those things which are most surely believed amongus; Even as they delivered them unto us, who from the beginningwere eyewitnesses, and ministers of the word; It seems good tome also, having had perfect understanding of all things from thevery �rst, to write unto thee in order, most excellent Theophilus;That thou mightest know the certainty of those things, whereinthou hast been instructed. Luke, 1:1{4The main focus of this chapter is the P-vs-NP Question and the theory of NP-completeness. Additional topics covered in this chapter include the general notionof a polynomial-time reduction (with a special emphasis on self-reducibility), theexistence of problems in NP that are neither NP-complete nor in P, the class coNP,optimal search algorithms, and promise problems.Summary: Loosely speaking, the P-vs-NP Question refers to searchproblems for which the correctness of solutions can be e�ciently checked(i.e., there is an e�cient algorithm that given a solution to a giveninstance determines whether or not the solution is correct). Such searchproblems correspond to the class NP, and the question is whether ornot all these search problems can be solved e�ciently (i.e., is therean e�cient algorithm that given an instance �nds a correct solution).Thus, the P-vs-NP Question can be phrased as asking whether or not�nding solutions is harder than checking the correctness of solutions.An alternative formulation, in terms of decision problems, refers to as-sertions that have e�ciently veri�able proofs (of relatively short length).Such sets of assertions correspond to the class NP, and the question is45

46 CHAPTER 2. P, NP AND NP-COMPLETENESSwhether or not proofs for such assertions can be found e�ciently (i.e.,is there an e�cient algorithm that given an assertion determines its va-lidity and/or �nds a proof for its validity). Thus, the P-vs-NP Questioncan be phrased as asking whether or not discovering proofs is harderthan verifying their correctness; that is, is proving harder than verifying(or are proofs valuable at all).Indeed, it is widely believed that the answer to the two equivalentformulations is that �nding (resp., discovering) is harder than checking(resp., verifying); that is, that P is di�erent than NP. The fact thatthis natural conjecture is unsettled seems to be one of the big sourcesof frustration of complexity theory. The author's opinion, however, isthat this feeling of frustration is out of place. In any case, at present,when faced with a hard problem in NP, we cannot expect to prove thatthe problem is not in P (unconditionally). The best we can expectis a conditional proof that the said problem is not in P, based on theassumption that NP is di�erent from P. The contrapositive is provingthat if the said problem is in P, then so is any problem in NP (i.e., NPequals P). This is where the theory of NP-completeness comes into thepicture.The theory of NP-completeness is based on the notion of a reduction,which is a relation between computational problems. Loosely speaking,one computational problem is reducible to another problem if it is pos-sible to e�ciently solve the former when provided with an (e�cient)algorithm for solving the latter. Thus, the �rst problem is not harderto solve than the second one. A problem (in NP) is NP-complete if anyproblem in NP is reducible to it. Thus, the fate of the entire class NP(with respect to inclusion in P) rests with each individual NP-completeproblem. In particular, showing that a problem is NP-complete impliesthat this problem is not in P unless NP equals P. Amazingly enough,NP-complete problems exist, and furthermore hundreds of natural com-putational problems arising in many di�erent areas of mathematics andscience are NP-complete.We stress that NP-complete problems are not the only hard problemsin NP (i.e., if P is di�erent than NP then NP contains problems thatare neither NP-complete nor in P). We also note that the P-vs-NPQuestion is not about inventing sophisticated algorithms or ruling outtheir existence, but rather boils down to the analysis of a single knownalgorithm; that is, we will present an optimal search algorithm for anyproblem in NP, while having not clue about its time complexity.Teaching note: Indeed, we suggest presenting the P-vs-NP Question both in termsof search problems and in terms of decision problems. Furthermore, in the latter case,we suggest introducing NP by explicitly referring to the terminology of proof systems.As for the theory of NP-completeness, we suggest emphasizing the mere existence ofNP-complete problems.

2.1. THE P VERSUS NP QUESTION 47Prerequisites: We assume familiarity with the notions of search and decisionproblems (see Section 1.2.2), algorithms (see Section 1.2.3) and their time com-plexity (see x1.2.3.4). We will also refer to the notion of an oracle machine (seex1.2.3.5).Organization: In Section 2.1 we present the two formulations of the P-vs-NPQuestion. The general notion of a reduction is presented in Section 2.2, where wehighlight its applicability outside the domain of NP-completeness. Section 2.3is devoted to the theory of NP-completeness, whereas Section 2.4 treats threerelatively advanced topics (i.e., the framework of promise problems, the existenceof optimal search algorithms for NP, and the class coNP).Teaching note: This chapter has more teaching notes than any other chapter in thebook. This re
ects the author's concern regarding the way in which this fundamentalmaterial is often taught. Speci�cally, it is the author's impression that the materialcovered in this chapter is often taught in wrong ways, which fail to communicate itsfundamental nature.2.1 The P versus NP QuestionOur daily experience is that it is harder to solve a problem than it is to check thecorrectness of a solution. Is this experience merely a coincidence or does it representa fundamental fact of life (or a property of the world)? This is the essence of the Pversus NP Question, where P represents search problems that are e�ciently solvableand NP represents search problems for which solutions can be e�ciently checked.Another natural question captured by the P versus NP Question is whetherproving theorems is harder that verifying the validity of these proofs. In otherwords, the question is whether deciding membership in a set is harder than beingconvinced of this membership by an adequate proof. In this case, P representsdecision problems that are e�ciently solvable, whereas NP represents sets that havee�ciently checkable proofs of membership.These two meanings of the P versus NP Question are rigorously presented anddiscussed in Sections 2.1.1 and 2.1.2, respectively. The equivalence of the twoformulations is shown in Section 2.1.3, and the common belief that P is di�erentfrom NP is further discussed in Section 2.1.5. Let us start by recalling the notionof e�cient computation.Teaching note: Most students have heard of P and NP before, but we suspect thatmany have not obtained a good explanation of what the P vs NP Question actuallyrepresents. This unfortunate situation is due to using the standard technical de�nitionof NP (which refers to the �ctitious and confusing device called a non-deterministicpolynomial-time machine). Instead, we advocate the use of the more cumbersome de�-nitions sketched in the forgoing paragraphs (and elaborated in Sections 2.1.1 and 2.1.2),which clearly capture the fundamental nature of NP.

48 CHAPTER 2. P, NP AND NP-COMPLETENESSThe notion of e�cient computation. Recall that we associate e�cient com-putation with polynomial-time algorithms.1 This association is justi�ed by the factthat polynomials are a class of moderately growing functions that is closed underoperations that correspond to natural composition of algorithms. Furthermore, theclass of polynomial-time algorithms is independent of the speci�c model of com-putation, as long as the latter is \reasonable" (cf. the Cobham-Edmonds Thesis).Both issues are discussed in x1.2.3.4.A note on the representation of problem instances. As noted in Sec-tion 1.2.2, many natural (search and decision) problems are captured more nat-urally by the terminology of promise problems (cf. Section 2.4.1), where the do-main of possible instances is a subset of f0; 1g� rather than f0; 1g� itself. For ex-ample, computational problems in graph theory presume some simple encoding ofgraphs as strings, but this encoding is typically not onto (i.e., not all strings encodegraphs), and thus not all strings are legitimate instances. However, in these cases,the set of legitimate instances (e.g., encodings of graphs) is e�ciently recognizable(i.e., membership in it can be decided in polynomial-time). Thus, arti�cially ex-tending the set of instances to the set of all possible strings (and allowing trivialsolutions for the corresponding dummy instances) does not change the complexityof the original problem. We further discuss this issue in Section 2.4.1.2.1.1 The search version: �nding versus checkingTeaching note: Complexity theorists are so accustomed to focus on decision problemthat they seem to forget that search problems are at least as natural as decision prob-lems. Furthermore, to many non-experts, search problems may seem even more naturalthan decision problems: Typically, people seeks solutions more than they pause to won-der whether or not solutions exist. Thus, we recommend starting with a formulationof the P-vs-NP Question in terms of search problems. Admittingly, the cost is morecumbersome formulations, but it is more than worthwhile.Much of computer science is concerned with solving various search problems (as inDe�nition 1.1). Examples of such problems include �nding a solution to a system oflinear (or polynomial) equations, �nding a prime factor of a given integer, �nding aspanning tree in a graph, �nding a short traveling salesman tour in a metric space,and �nding a scheduling of jobs to machines such that various constraints aresatis�ed. Furthermore, search problems correspond to the daily notion of \solvingproblems" and thus are of natural general interest. In the current section, we willconsider the question of which search problems can be solved e�ciently.One type of search problems that cannot be solved e�ciently consists of searchproblems for which the solutions are too long in terms of the problem's instances.1Advanced comment: In this chapter, we consider deterministic (polynomial-time) algo-rithms as the basic model of e�cient computation. A more liberal view, which includes alsoprobabilistic (polynomial-time) algorithms is presented in Chapter 6. We stress that the mostimportant facts and questions that are addressed in the current chapter hold also with respect toprobabilistic polynomial-time algorithms.

2.1. THE P VERSUS NP QUESTION 49In such a case, merely typing the solution amounts to an activity that is deemedine�cient. Thus, we focus our attention on search problems that are not in thisclass. That is, we consider only search problems in which the length of the solutionis bounded by a polynomial in the length of the instance. Recalling that searchproblems are associated with binary relations (see De�nition 1.1), we focus ourattention on polynomially bounded relations.De�nition 2.1 (polynomially bounded relations): We say that R � f0; 1g� �f0; 1g� is polynomially-bounded if there exists a polynomial p such that for every(x; y) 2 R it holds that jyj � p(jxj).Recall that (x; y) 2 R means that y is a solution to the problem instance x, whereR represents the problem itself. For example, in the case of �nding a prime factorof a given integer, we refer to a relation R such that (N;P) 2 R if P is a primefactor of N .For a polynomially bounded relation R it makes sense to ask whether or not,given a problem instance x, one can e�ciently �nd an adequate solution y (i.e.,�nd y such that (x; y) 2 R). The polynomial bound on the length of the solution(i.e., y) guarantees that a negative answer is not merely due to the length of therequired solution.2.1.1.1 The class P as a natural class of search problemsRecall that we are interested in the class of search problems that can be solvede�ciently; that is, problems for which solutions (whenever they exist) can be founde�ciently. Restricting our attention to polynomially bounded relations, we identifythe corresponding fundamental class of search problem (or binary relation), denotedPF (standing for \Polynomial-time Find"). (The relationship between PF andthe standard de�nition of P will be discussed in Sections 2.1.3 and 2.2.3.) Thefollowing de�nition refers to the formulation of solving search problems providedin De�nition 1.1.De�nition 2.2 (e�ciently solvable search problems):� The search problem of a polynomially bounded relation R � f0; 1g� � f0; 1g�is e�ciently solvable if there exists a polynomial time algorithm A such that,for every x, it holds that A(x) 2 R(x) def= fy : (x; y) 2 Rg if and only if R(x)is not empty. Furthermore, if R(x) = ; then A(x) = ?, indicating that x hasno solution.� We denote by PF the class of search problems that are e�ciently solvable(and correspond to polynomially bounded relations). That is, R 2 PF ifR is polynomially bounded and there exists a polynomial time algorithm thatgiven x �nds y such that (x; y) 2 R (or asserts that no such y exists).Note that R(x) denotes the set of valid solutions for the problem instance x. Thus,the solver A is required to �nd a valid solution (i.e., satisfy A(x) 2 R(x)) whenever

50 CHAPTER 2. P, NP AND NP-COMPLETENESSsuch a solution exists (i.e., R(x) is not empty). On the other hand, if the instancex has no solution (i.e., R(x) = ;) then clearly A(x) 62 R(x). The extra condition(also made in De�nition 1.1) requires that in this case A(x) = ?. Thus, algorithmA always outputs a correct answer, which is a valid solution in the case that sucha solution exists and otherwise provides an indication that no solution exists.We have de�ned a fundamental class of problems, and we do know of manynatural problems in this class (e.g., solving linear equations over the rationals,�nding a perfect matching in a graph, etc). However, we must admit that we donot have a good understanding regarding the actual contents of this class (i.e., weare unable to characterize many natural problems with respect to membership inthis class). This situation is quite common in complexity theory, and seems tobe a consequence of the fact that complexity classes are de�ned in terms of the\external behavior" (of potential algorithms) rather than in terms of the \internalstructure" (of the problem). Turning back to PF , we note that, while it containsmany natural search problems, there are also many natural search problems thatare not known to be in PF . A natural class containing a host of such problems ispresented next.2.1.1.2 The class NP as another natural class of search problemsNatural search problems have the property that valid solutions can be e�cientlyrecognized. That is, given an instance x of the problem R and a candidate solutiony, one can e�ciently determine whether or not y is a valid solution for x (withrespect to the problem R; i.e., whether or not y 2 R(x)). The class of all suchsearch problems is a natural class per se, because it is not clear why one should careabout a solution unless one can recognize a valid solution once given. Furthermore,this class is a natural domain of candidates for PF , because the ability to e�cientlyrecognize a valid solution seems to be a natural (albeit not absolute) prerequisitefor a discussion regarding the complexity of �nding such solutions.We restrict our attention again to polynomially bounded relations, and considerthe class of relations for which membership of pairs in the relation can be decidede�ciently. We stress that we consider deciding membership of given pairs of theform (x; y) in a �xed relation R, and not deciding membership of x in the setSR def= fx : R(x) 6= ;g. (The relationship between the following de�nition and thestandard de�nition of NP will be discussed in Sections 2.1.3{2.1.4 and 2.2.3.)De�nition 2.3 (search problems with e�ciently checkable solutions):� The search problem of a polynomially bounded relation R � f0; 1g� � f0; 1g�has e�ciently checkable solutions if there exists a polynomial time algorithm Asuch that, for every x and y, it holds that A(x; y) = 1 if and only if (x; y) 2 R.� We denote by PC (standing for \Polynomial-time Check") the class of searchproblems that correspond to polynomially-bounded binary relations that havee�ciently checkable solutions. That is, R 2 PC if the following two conditionshold:

2.1. THE P VERSUS NP QUESTION 511. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determineswhether or not (x; y) 2 R.The class PC contains thousands of natural problems (e.g., �nding a travelingsalesman tour of length that does not exceed a given threshold, �nding the primefactorization of a given composite, etc). In each of these natural problems, thecorrectness of solutions can be checked e�ciently (e.g., given a traveling salesmantour it is easy to compute its length and check whether or not it exceeds the giventhreshold).2The class PC is the natural domain for the study of which problems are in PF ,because the ability to e�ciently recognize a valid solution is a natural prerequisitefor a discussion regarding the complexity of �nding such solutions. We warn, how-ever, that PF contains (unnatural) problems that are not in PC (see Exercise 2.1).2.1.1.3 The P versus NP question in terms of search problemsIs it the case that every search problem in PC is in PF? That is, if one cane�ciently check the correctness of solutions with respect to some (polynomially-bounded) relation R, then is it necessarily the case that the search problem of Rcan be solved e�ciently? In other words, if it is easy to check whether or not agiven solution for a given instance is correct, then is it also easy to �nd a solutionto a given instance?If PC � PF then this would mean that whenever solutions to given instancescan be e�ciently checked (for correctness) it is also the case that such solutionscan be e�ciently found (when given only the instance). This would mean that allreasonable search problems (i.e., all problems in PC) are easy to solve. Needless tosay, such a situation would contradict the intuitive feeling (and the daily experience)that some reasonable search problems are hard to solve. Furthermore, in such acase, the notion of \solving a problem" will lose its meaning (because �nding asolution will not be signi�cantly more di�cult than checking its validity).On the other hand, if PC nPF 6= ; then there exist reasonable search problems(i.e., some problems in PC) that are hard to solve. This conforms with our basicintuition by which some reasonable problems are easy to solve whereas others arehard to solve. Furthermore, it recon�rms the intuitive gap between the notions ofsolving and checking (asserting that in some cases \solving" is signi�cantly harderthan \checking").2.1.2 The decision version: proving versus verifyingAs we shall see in the sequel, the study of search problems (e.g., the PC-vs-PFQuestion) can be \reduced" to the study of decision problems. Since the latter2In the traveling salesman problem (TSP), the instance is a matrix of distances between citiesand a threshold, and the task is to �nd a tour that passes all cities and covers a total distancethat does not exceed the threshold.

52 CHAPTER 2. P, NP AND NP-COMPLETENESSproblems have a less cumbersome terminology, complexity theory tends to focuson them (and maintains its relevance to the study of search problems via the afore-mentioned reduction). Thus, the study of decision problems provides a convenientway for studying search problems. For example, the study of the complexity of de-ciding the satis�ability of Boolean formulae provides a convenient way for studyingthe complexity of �nding satisfying assignments for such formulae.We wish to stress, however, that decision problems are interesting and naturalper se (i.e., beyond their role in the study of search problems). After all, somepeople do care about the truth, and so determining whether certain claims are trueis a natural computational problem. Speci�cally, determining whether a given ob-ject (e.g., a Boolean formula) has some predetermined property (e.g., is satis�able)constitutes an appealing computational problem. The P-vs-NP Question refers tothe complexity of solving such problems for a wide and natural class of propertiesassociated with the class NP. The latter class refers to properties that have \e�-cient proof systems" allowing for the veri�cation of the claim that a given objecthas a predetermined property (i.e., is a member of a predetermined set). Jumpingahead, we mention that the P-vs-NP Question refers to the question of whetherproperties that have e�cient proof systems can also be decided e�ciently (withoutproofs). Let us clarify all these notions.Properties of objects are modeled as subsets of the set of all possible objects (i.e.,a property is associated with the set of objects having this property). For example,the property of being a prime is associated with the set of prime numbers andthe property of being connected (resp., having a Hamiltonian path) is associatedwith the set of connected (resp., Hamiltonian) graphs. Thus, we focus on decidingmembership in sets (as in De�nition 1.2). The standard formulation of the P-vs-NPQuestion refers to the equality of two natural classes of decision problems, denotedP and NP (and de�ned in x2.1.2.1 and x2.1.2.2, respectively).2.1.2.1 The class P as a natural class of decision problemsNeedless to say, we are interested in the class of decision problems that are e�cientlysolvable. This class is traditionally denoted P (standing for Polynomial-time). Thefollowing de�nition refers to the formulation of solving decision problems (providedin De�nition 1.2).De�nition 2.4 (e�ciently solvable decision problems):� A decision problem S � f0; 1g� is e�ciently solvable if there exists a polyno-mial time algorithm A such that, for every x, it holds that A(x) = 1 if andonly if x 2 S.� We denote by P the class of decision problems that are e�ciently solvable.As in De�nition 2.2, we have de�ned a fundamental class of problems, which con-tains many natural problems (e.g., determining whether or not a given graph isconnected), but we do not have a good understanding regarding its actual contents(i.e., we are unable to characterize many natural problems with respect to mem-bership in this class). In fact, there are many natural decision problems that are

2.1. THE P VERSUS NP QUESTION 53not known to reside in P , and a natural class containing a host of such problemsis presented next. This class of decision problems is denoted NP (for reasons thatwill become evident in Section 2.1.4).2.1.2.2 The class NP and NP-proof systemsWe view NP as the class of decision problems that have e�ciently veri�able proofsystems. Loosely speaking, we say that a set S has a proof system if instancesin S have valid proofs of membership (i.e., proofs accepted as valid by the sys-tem), whereas instances not in S have no valid proofs. Indeed, proofs are de�nedas strings that (when accompanying the instance) are accepted by the (e�cient)veri�cation procedure. We say that V is a veri�cation procedure for membershipin S if it satis�es the following two conditions:1. Completeness: True assertions have valid proofs; that is, proofs accepted asvalid by V . Bearing in mind that assertions refer to membership in S, thismeans that for every x 2 S there exists a string y such that V (x; y) = 1 (i.e.,V accepts y as a valid proof for the membership of x in S).2. Soundness: False assertions have no valid proofs. That is, for every x 62 Sand every string y it holds that V (x; y) = 0, which means that V rejects y asa proof for the membership of x in S.We note that the soundness condition captures the \security" of the veri�cationprocedure; that is, its ability not to be fooled by anything into proclaiming a wrongassertion. The completeness condition captures the \viability" of the veri�cationprocedure; that is, its ability to be convinced of any valid assertion, when presentedwith an adequate proof. (We stress that, in general, proof systems are de�ned interms of their veri�cation procedures, which must satisfy adequate completenessand soundness conditions.) Our focus here is on e�cient veri�cation proceduresthat utilize relatively short proofs (i.e., proofs that are of length that is polynomiallybounded by the length of the corresponding assertion).3Let us consider a couple of examples before turning to the actual de�nition. Forexample, the set of Hamiltonian graphs has a veri�cation procedure that, givena pair (G;P), accepts if and only if P is a Hamiltonian path in the graph G.In this case P serves as a proof that G is Hamiltonian. Note that such proofsare relatively short (i.e., the path is actually shorter than the description of thegraph) and are easy to verify. Needless to say, this proof system satis�es the3Advanced comment: In continuation to Footnote 1, we note that in this chapter we considerdeterministic (polynomial-time) veri�cation procedures, and consequently the completeness andsoundness conditions that we state here are error-less. In contrast, in Chapter 9, we will considervarious types of probabilistic (polynomial-time) veri�cation procedures as well as probabilisticcompleteness and soundness conditions. A common theme that underlies both treatments isthat e�cient veri�cation is interpreted as meaning veri�cation by a process that runs in timethat is polynomial in the length of the assertion. In the current chapter, we use the equivalentformulation that considers the running time as a function of the total length of the assertion andthe proof, but require that the latter has length that is polynomially bounded by the length ofthe assertion.

54 CHAPTER 2. P, NP AND NP-COMPLETENESSaforementioned completeness and soundness conditions. In the case of satis�ableBoolean formulae, given a formula � and a truth assignment � , the veri�cationprocedure instantiates � (according to �), and accepts if and only if simplifying theresulting Boolean expression yields the value true. In this case � serves as a proofthat � is satis�able, and the alleged proofs are indeed relatively short and easy toverify.De�nition 2.5 (e�ciently veri�able proof systems):� A decision problem S � f0; 1g� has an e�ciently veri�able proof system ifthere exists a polynomial p and a polynomial-time (veri�cation) algorithm Vsuch that the following two conditions hold:1. Completeness: For every x 2 S, there exists y of length at most p(jxj)such that V (x; y) = 1.(Such a string y is called an NP-witness for x 2 S.)2. Soundness: For every x 62 S and every y, it holds that V (x; y) = 0.Thus, x 2 S if and only if there exists y of length at most p(jxj) such thatV (x; y) = 1.In such a case, we say that S has an NP-proof system, and refer to V as itsveri�cation procedure (or as the proof system itself).� We denote by NP the class of decision problems that have e�ciently veri�ableproof systems.We note that the term NP-witness is commonly used, although in most cases V isnot called a proof system (nor a veri�cation procedure of such a system). In somecases, V (or the set of pairs accepted by V) is called a witness relation of S. We stressthat the same set S may have many di�erent NP-proof systems (see Exercise 2.2),and that in some cases the di�erence is not arti�cial (see Exercise 2.3).Teaching note: Using De�nition 2.5, it is typically easy to show that natural decisionproblems are in NP. All that is needed is designing adequate NP-proofs of membership,which is typically quite straightforward and natural, because natural decision problemsare typically phrased as asking about the existence of a structure (or object) that canbe easily veri�ed as valid. For example, SAT is de�ned as the set of satis�able Booleanformulae, which means asking about the existence of satisfying assignments. Indeed, wecan e�ciently check whether a given assignment satis�es a given formula, which meansthat we have (a veri�cation procedure for) an NP-proof system for SAT.Note that for any search problem R in PC, the set of instances that have a so-lution with respect to R (i.e., the set SR def= fx : R(x) 6= ;g) is in NP . Speci�cally,for any R 2 PC, consider the veri�cation procedure V such that V (x; y) def= 1 if andonly if (x; y) 2R, and note that the latter condition can be decided in poly(jxj)-time. Thus, any search problem in PC can be viewed as a problem of searching

2.1. THE P VERSUS NP QUESTION 55for (e�ciently veri�able) proofs (i.e., NP-witnesses for membership in the set ofinstances having solutions). Furthermore, any NP-proof system gives rise to a nat-ural search problem in PC; that is, the problem of searching for a valid proof (i.e.,an NP-witness) for the given instance (i.e, the veri�cation procedure V yields thesearch problem that corresponds to R = f(x; y) : V (x; y)=1g).Teaching note: The last paragraph suggests another easy way of showing that naturaldecision problems are inNP: just thinking of the corresponding natural search problem.The point is that natural decision problems (in NP) are phrased as referring to whethera solution exists (for the corresponding natural search problem). For example, in thecase of SAT, the question is whether there exists a satisfying assignment to given Booleanformula, and the corresponding search problem is �nding such an assignment. But inall these cases, it is easy to check the correctness of solutions; that is, the correspondingsearch problem is in PC, which implies that the decision problem is in NP.Observe that P � NP holds: A veri�cation procedure for claims of member-ship in a set S 2 P may just ignore the alleged NP-witness and run the decisionprocedure that is guaranteed by the hypothesis S 2 P ; that is, V (x; y) = A(x),where A is the aforementioned decision procedure. Indeed, the latter veri�cationprocedure is quite an abuse of the term (because it makes no use of the proof);however, it is a legitimate one. As we shall shortly see, the P-vs-NP Question refersto the question of whether such proof-oblivious veri�cation procedures can be usedfor every set that has some e�ciently veri�able proof system. (Indeed, given thatP � NP , the P-vs-NP Question is whether NP � P .)2.1.2.3 The P versus NP question in terms of decision problemsIs it the case that NP-proofs are useless? That is, is it the case that for every ef-�ciently veri�able proof system one can easily determine the validity of assertionswithout looking at the proof? If that were the case, then proofs would be meaning-less, because they would have no fundamental advantage over directly determiningthe validity of the assertion. The conjecture P 6= NP asserts that proofs are useful:there exists sets in NP that cannot be decided by a polynomial-time algorithm,and so for these sets obtaining a proof of membership (for some instances) is useful(because we cannot e�ciently determine membership by ourselves).In the foregoing paragraph we viewed P 6= NP as asserting the advantage ofobtaining proofs over deciding the truth by ourselves. That is, P 6= NP asserts that(in some cases) verifying is easier than deciding. A slightly di�erent perspectiveis that P 6= NP asserts that �nding proofs is harder than verifying their validity.This is the case because, for any set S that has an NP-proof system, the ability toe�ciently �nd proofs of membership with respect to this system (i.e., �nding anNP-witness of membership in S for any given x 2 S), yields the ability to decidemembership in S. Thus, for S 2 NP n P , it must be harder to �nd proofs ofmembership in S than to verify the validity of such proofs (which can be done inpolynomial-time).

56 CHAPTER 2. P, NP AND NP-COMPLETENESS2.1.3 Equivalence of the two formulationsAs hinted several times, the two formulations of the P-vs-NP Questions are equiva-lent. That is, every search problem having e�ciently checkable solutions is solvablein polynomial time (i.e., PC � PF) if and only if membership in any set that hasan NP-proof system can be decided in polynomial time (i.e., NP � P). Recallingthat P � NP (whereas PF is not contained in PC (Exercise 2.1)), we prove thefollowing.Theorem 2.6 PC � PF if and only if P = NP.Proof: Suppose, on the one hand, that the inclusion holds for the search version(i.e., PC � PF). We will show that this implies the existence of an e�cient algo-rithm for �nding NP-witnesses for any set in NP , which in turn implies that thisset is in P . Speci�cally, let S be an arbitrary set in NP , and V be the correspond-ing veri�cation procedure (i.e., satisfying the conditions in De�nition 2.5). ThenR def= f(x; y) : V (x; y) = 1g is a polynomially bounded relation in PC, and by thehypothesis its search problem is solvable in polynomial time (i.e., R 2 PC � PF).Denoting by A the polynomial-time algorithm solving the search problem of R, wedecide membership in S in the obvious way. That is, on input x, we output 1 ifand only if A(x) 6= ?, where the latter event holds if and only if A(x) 2 R(x),which in turn occurs if and only if R(x) 6= ; (equiv., x 2 S). Thus, NP � P (andNP = P) follows.Suppose, on the other hand, that NP = P . We will show that this impliesan e�cient algorithm for determining whether a given string y0 is a pre�x of somesolution to a given instance x of a search problem in PC, which in turn yields ane�cient algorithm for �nding solutions. Speci�cally, let R be an arbitrary searchproblem in PC. Then the set S0R def= fhx; y0i : 9y00 s.t. (x; y0y00) 2 Rg is in NP(because R 2 PC), and hence S0R is in P (by the hypothesis NP = P). This yieldsa polynomial-time algorithm for solving the search problem of R, by extendinga pre�x of a potential solution bit-by-bit (while using the decision procedure todetermine whether or not the current pre�x is valid). That is, on input x, we�rst check whether or not (x; �) 2 S0R and output ? (indicating R(x) = ;) incase (x; �) 62 S0R. Next, we proceed in iterations, maintaining the invariant that(x; y0) 2 S0R. In each iteration, we set y0 y00 if (x; y00) 2 S0R and y0 y01if (x; y01) 2 S0R. If none of these conditions hold (which happens after at mostpolynomially many iterations) then the current y0 satis�es (x; y0) 2 R. Thus, foran abritrary R 2 PC we obtain that R 2 PF , and PC � PF follows.Re
ection: The �rst part of the proof of Theorem 2.6 associates with each setS in NP a natural relation R (in PC). Speci�cally, R consists of all pairs (x; y)such that y is an NP-witness for membership of x in S. Thus, the search problemof R consists of �nding such an NP-witness, when given x as input. Indeed, Ris called the witness relation of S, and solving the search problem of R allows todecide membership in S. Thus, R 2 PC � PF implies S 2 P . In the second partof the proof, we associate with each R 2 PC a set S0R (in NP), but S0R is more

2.1. THE P VERSUS NP QUESTION 57\expressive" than the set SR def= fx : 9y s.t. (x; y)2Rg (which gives rise to R as itswitness relation). Speci�cally, S0R consists of strings that encode pairs (x; y0) suchthat y0 is a pre�x of some string in R(x) = fy : (x; y) 2 Rg. The key observationis that deciding membership in S0R allows to solve the search problem of R; thatis, S0R 2 P implies R 2 PF .Conclusion: Theorem 2.6 justi�es the traditional focus on the decision versionof the P-vs-NP Question. Indeed, given that both formulations of the question areequivalent, we may just study the less cumbersome one.2.1.4 The traditional de�nition of NPUnfortunately, De�nition 2.5 is not the commonly used de�nition of NP . Instead,traditionally, NP is de�ned as the class of sets that can be decided by a �cti-tious device called a non-deterministic polynomial-time machine (which explainsthe source of the notation NP). The reason that this class of �ctitious devices is in-teresting is due to the fact that it captures (indirectly) the de�nition of NP-proofs.Since the reader may come across the traditional de�nition of NP when studyingdi�erent works, the author feels obliged to provide the traditional de�nition as wellas a proof of its equivalence to De�nition 2.5.De�nition 2.7 (non-deterministic polynomial-time Turing machines):� A non-deterministic Turing machine is de�ne as in x1.2.3.1, except that thetransition function maps symbol-state pairs to subsets of triples (rather thanto a single triple) in � � Q � f�1; 0;+1g. Accordingly, the con�gurationfollowing a speci�c instantaneous con�guration may be one of several possi-bilities, each determine by a di�erent possible triple. Thus, the computationsof a non-deterministic machine on a (�xed) given input may result in di�erentoutputs.In the context of decision problems one typically considers the question ofwhether or not there exists a computation that starting with a �xed inputhalts with output 1. We say that the non-deterministic machine M accept x ifthere exists a computation of M , on input x, that halts with output 1. The setaccepted by a non-deterministic machine is the set of inputs that are acceptedby the machine.� A non-deterministic polynomial-time Turing machine is de�ned as one thatmakes a number of steps that is polynomial in the length of the input. Tra-ditionally, NP is de�ned as the class of sets that are accepted by some non-deterministic polynomial-time Turing machine.We stress that De�nition 2.7 refers to a �ctitious model of computation. Specif-ically, De�nition 2.7 makes no reference to the number (or fraction) of possible

58 CHAPTER 2. P, NP AND NP-COMPLETENESScomputations of the machine (on a speci�c input) that yield a speci�c output.4De�nition 2.7 only refers to whether or not computations leading to a certain out-put exist (for a speci�c input). The question of what does the mere existence ofsuch possible computations mean in terms of real-life is not addressed, because themodel of a non-deterministic machine is not meant to provide a reasonable model ofa real-life computer. The model is meant to capture something completely di�erent(i.e., it is meant to provide an elegant de�nition of the class NP , while relying onthe fact that De�nition 2.7 is equivalent to De�nition 2.5).Teaching note: Whether or not De�nition 2.7 is elegant is a matter of taste. For sure,many students �nd De�nition 2.7 quite confusing, possibly because they assume thatit represents some natural model of computation and allow themselves to be fooled bytheir intuition regarding such models. (Needless to say, the students' intuition regardingcomputation is irrelevant when applied to a �ctitious model.)Note that, unlike other de�nitions in this chapter, De�nition 2.7 makes explicitreference to a speci�c model of computation. Still, a similar extension can beapplied to other models of computation by considering adequate non-deterministiccomputation rules. Also note that, without loss of generality, we may assume thatthe transition function maps each possible symbol-state pair to exactly two triples(cf. Exercise 2.4).Theorem 2.8 De�nition 2.5 is equivalent to De�nition 2.7. That is, a set S hasan NP-proof system if and only if there exists a non-deterministic polynomial-timemachine that accepts S.Proof Sketch: Suppose, on one hand, that the set S has an NP-proof system,and let us denote the corresponding veri�cation procedure by V . Consider thefollowing non-deterministic polynomial-time machine, denoted M . On input x,machine M makes an adequate m = poly(jxj) number of non-deterministic steps,producing (non-deterministically) a string y 2 f0; 1gm, and then emulates V (x; y).We stress that these non-deterministic steps may result in producing any m-bitstring y. Recall that x 2 S if and only if there exists y of length at most poly(jxj)such that V (x; y) = 1. This implies that the set accepted by M equals S.Suppose, on the other hand, that there exists a non-deterministic polynomial-time machine M that accepts the set S. Consider a deterministic machineM 0 thaton input (x; y), where y has adequate length, emulates a computation of M oninput x while using y to determine the non-deterministic steps of M . That is, theith step of M on input x is determined by the ith bit of y (which indicates whichof the two possible moves to make at the current step). Note that x 2 S if andonly if there exists y of length at most poly(jxj) such that M 0(x; y) = 1. Thus, M 0gives rise to an NP-proof system for S.4Advanced comment: In contrast, the de�nition of a probabilistic machine refers to thisnumber (or, equivalently, to the probability that the machine produces a speci�c output, when theprobability is essentially taken uniformly over all possible computations). Thus, a probabilisticmachine refers to a natural model of computation that can be realized provided we can equip themachine with a source of randomness. For details, see Section 6.1.

2.1. THE P VERSUS NP QUESTION 592.1.5 In support of P di�erent from NPIntuition and concepts constitute... the elements of all our knowl-edge, so that neither concepts without an intuition in some waycorresponding to them, nor intuition without concepts, can yieldknowledge. Immanuel Kant (1724{1804)Kant talks on the importance of both philosophical considerations (referred to as\concepts") and empirical considerations (referred to as \intuition") to science(referred to as (sound) \knowledge").It is widely believed that P is di�erent than NP; that is, that PC containssearch problems that are not e�ciently solvable, and that there are NP-proof sys-tems for sets that cannot be decided e�ciently. This belief is supported by bothphilosophical and empirical considerations.� Philosophical considerations: Both formulations of the P-vs-NP Question re-fer to natural questions about which we have strong intuition. The notion ofsolving a (search) problem seems to presume that, at least in some cases (if notin general), �nding a solution is signi�cantly harder than checking whethera presented solution is correct. This translates to PC n PF 6= ;. Likewise,the notion of a proof seems to presume that, at least in some cases (if not ingeneral), the proof is useful in determining the validity of the assertion; thatis, that deciding the validity of an assertion may be made signi�cantly easierwhen provided with a proof. This translates to P 6= NP , which also impliesthat it is signi�cantly harder to �nd proofs than to verify their correctness,which again coincides with the daily experience of researchers and students.� Empirical considerations: The class NP (or rather PC) contains thousands ofdi�erent problems for which no e�cient solving procedure is known. Manyof these problems have arisen in vastly di�erent disciplines, and were thesubject of extensive research of numerous di�erent communities of scientistsand engineers. These essentially independent studies have all failed to providee�cient algorithms for solving these problems, a failure that is extremely hardto attribute to sheer coincidence or a stroke of bad luck.Throughout the rest of this book, we will adopt the common belief that P isdi�erent from NP. At some places, we will explicitly use this conjecture (or evenstronger assumptions), whereas in other places we will present results that areinteresting (if and) only if P 6= NP (e.g., the entire theory of NP-completenessbecomes uninteresting if P = NP).The P 6= NP conjecture is indeed very appealing and intuitive. The fact thatthis natural conjecture is unsettled seems to be one of the sources of frustration ofcomplexity theory. The author's opinion, however, is that this feeling of frustrationis not in place. In contrast, the fact that complexity theory evolves around naturalquestions that are so di�cult to resolve makes its study very exciting.

60 CHAPTER 2. P, NP AND NP-COMPLETENESS2.1.6 Two technical comments regarding NPRecall that when de�ning PC (resp., NP) we have explicitly con�ned our atten-tion to search problems of polynomially bounded relations (resp., NP-witnesses ofpolynomial length). An alternative formulation may allow a binary relation R tobe in PC (resp., S 2 NP) if membership of (x; y) in R can be decided in timethat is polynomial in the length of x (resp., the veri�cation of a candidate NP-witness y for membership of x in S is required to be performed in poly(jxj)-time).Indeed, this mean that the validity of y can be determined without reading all of it(which means that some substring of y can be used as the e�ective y in the originalde�nitions).We comment that problems in PC (resp., NP) can be solved in exponential-time (i.e., time exp(poly(jxj)) for input x). This can be done by an exhaustivesearch among all possible candidate solutions (resp., all possible candidate NP-witnesses). Thus, NP � EXP , where EXP denote the class of decision problemsthat can be solved in exponential-time (i.e., time exp(poly(jxj)) for input x).2.2 Polynomial-time ReductionsWe present a general notion of (polynomial-time) reductions among computationalproblems, and view the notion of a \Karp-reduction" as an important special casethat su�ces (and is more convenient) in many cases. Reductions play a key rolein the theory of NP-completeness, which is the topic of Section 2.3, but we stressthe fundamental nature of the notion of a reduction and highlight two speci�capplications (i.e., reducing search and optimization problems to decision problems).Furthermore, in the latter applications, it will be important to use the generalnotion of a reduction (i.e., \Cook-reduction" rather than \Karp-reduction").Teaching note: We assume that many students have heard of reductions, but we fearthat most have obtained a conceptually poor view of their fundamental nature. In par-ticular, we fear that reductions are identi�ed with the theory of NP-completeness, whilereductions have important applications that have little to do with NP-completeness (orcompleteness with respect to some other class). Furthermore, we believe that it isimportant to show that natural search and optimization problems can be reduced todecision problems.2.2.1 The general notion of a reductionReductions are procedures that use \functionally speci�ed" subroutines. That is,the functionality of the subroutine is speci�ed, but its operation remains unspeci�edand its running-time is counted at unit cost. Analogously to algorithms, whichare modeled by Turing machines, reductions can be modeled as oracle (Turing)machines. A reduction solves one computational problem (which may be eithera search or a decision problem) by using oracle (or subroutine) calls to anothercomputational problem (which again may be either a search or a decision problem).

2.2. POLYNOMIAL-TIME REDUCTIONS 61The notion of a general algorithmic reduction was discussed in x1.2.3.2 andx1.2.3.5. These reductions, called Turing-reductions (cf. x1.2.3.2) and modeled byoracle machines (cf. x1.2.3.5), made no reference to the time complexity of the mainalgorithm (i.e., the oracle machine). Here, we focus on e�cient (i.e., polynomial-time) reductions, which are often called Cook reductions. That is, we consideroracle machines (as in De�nition 1.11) that run in time polynomial in the lengthof their input. We stress that the running time of an oracle machine is the numberof steps made during its computation, and that the oracle's reply on each query isobtained in a single step.The key property of e�cient reductions is that they allow for the transformationof e�cient implementations of the subroutine into e�cient implementations of thetask reduced to it. That is, as we shall see, if one problem is Cook-reducible toanother problem and the latter is polynomial-time solvable then so is the former.The most popular case is that of reducing decision problems to decision prob-lems, but we will also consider reducing search problems to search problems andreducing search problems to decision problems. Note that when reducing to a de-cision problem, the oracle is determined as the single valid solver of the decisionproblem (i.e., the function f : f0; 1g� ! f0; 1g solves the decision problem of mem-bership in S if, for every x, it holds that f(x) = 1 if x 2 S and f(x) = 0 otherwise).In contrast, when reducing to a search problem, there may be many di�erent validsolvers (i.e., each function f that satis�es (x; f(x)) 2 R for every (x; y) 2 R is avalid solver of the search problem of R). We capture both cases in the followingde�nition.De�nition 2.9 (Cook reduction): A problem � is Cook-reducible to a problem �0if there exists a polynomial-time oracle machine M such that for every function fthat solves �0 it holds that Mf solves �, where Mf (x) denotes the output of M oninput x when given oracle access to f .Note that � (resp., �0) may be either a search problem or a decision problem (oreven a yet unde�ned type of a problem). At this point the reader should verifythat if � is Cook-reducible to �0 and �0 is solvable in polynomial-time then sois �. (See Exercise 2.5 for other properties of Cook-reductions.) Also observethat the second part of the proof of Theorem 2.6 is actually a Cook-reduction ofthe search problem of any R in PC to a decision problem regarding a related setS0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg, which in NP . Thus, that proof establishesthat any search problem in PC is Cook-reducible to some decision problem in NP .We shall see a tighter relation between search and decision problems in Section 2.2.3(i.e., in some cases, R will be reduced to SR = fx : 9y s.t. (x; y)2Rg rather thanto S0R).A Karp-reduction is a special case of a reduction (from a decision problem toa decision problem). Speci�cally, for decision problems S and S0, we say that S isKarp-reducible to S0 if there is a reduction of S to S0 that operates as follows: Oninput x (an instance for S), the reduction computes x0, makes query x0 to the oracleS0 (i.e., invokes the subroutine for S0 on input x0), and answers whatever the latterreturns. This reduction is often represented by the polynomial-time computable

62 CHAPTER 2. P, NP AND NP-COMPLETENESSmapping of x to x0; that is, the standard de�nition of a Karp-reduction is actuallyas follows.De�nition 2.10 (Karp reduction): A polynomial-time computable function f iscalled a Karp-reduction of S to S0 if, for every x, it holds that x 2 S if and only iff(x) 2 S0.Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but ittrivially gives rise to one (i.e., on input x, the oracle machine makes query f(x),and returns the oracle answer). Being slightly inaccurate but essentially correct,we shall say that Karp-reductions are special cases of Cook-reductions. Needlessto say, Karp-reductions constitute a very restricted case of Cook-reductions. Still,this restricted case su�ces for many applications (e.g., most importantly for thetheory of NP-completeness (when developed for decision problems)), but not forreducing a search problem to a decision problem. Furthermore, whereas each deci-sion problem is Cook-reducible to its complement, some decision problems are notKarp-reducible to their complement (see Exercises 2.7 and 2.33).We comment that Karp-reductions may (and should) be augmented in orderto handle reductions of search problems to search problems. Such an augmentedKarp-reduction of the search problem of R to the search problem of R0 operatesas follows: On input x (an instance for R), the reduction computes x0, makesquery x0 to the oracle R0 (i.e., invokes the subroutine for searching R0 on inputx0) obtaining y0 such that (x0; y0) 2 R0, and uses y0 to compute a solution y to x(i.e., y 2 R(x)). Thus, such a reduction can be represented by two polynomial-time computable mappings, f and g, such that (x; g(x; y0)) 2 R for any y0 thatsolves f(x) (i.e., for y0 that satis�es (f(x); y0) 2 R0). (Indeed, in general, unlikein the case of decision problems, the reduction cannot just return y0 as an answerto x.) This augmentation is called a Levin-reduction and, analogously to the caseof a Karp-reduction, is often represented by the two polynomial-time computablemappings (i.e., of x to x0, and of (x; y0) to y).De�nition 2.11 (Levin reduction): A pair of polynomial-time computable func-tions, f and g, is called a Levin-reduction of R to R0 if f is a Karp reduction ofSR = fx : 9y s.t. (x; y) 2 Rg to SR0 = fx0 : 9y0 s.t. (x0; y0) 2 R0g and for everyx 2 SR and y0 2 R0(f(x)) it holds that (x; g(x; y0)) 2 R, where R0(x0) = fy0 :(x0; y0)2R0g.Indeed, the function f preserves the existence of solutions; that is, for any x, itholds that R(x) 6= ; if and only if R0(f(x)) 6= ;. As for the second function (i.e.,g), it maps any solution y0 for the reduced instance f(x) to a solution for theoriginal instance x (where this mapping may also depend on x). It is natural toconsider also a third function, which maps solutions for R to solutions for R0 (seeExercise 2.28).Terminology: In the sequel, whenever we neglect to mention the type of a reduc-tion, we refer to a Cook-reduction. Two additional terms, which will be particularlyuseful in the advanced chapters, are presented next.

2.2. POLYNOMIAL-TIME REDUCTIONS 63� We say that two problems are computationally equivalent if they are reducibleto one another. This means that the two problems are essentially as hard(or as easy). Note that, for various complexity classes (e.g., NP and PC),computationally equivalent problems need not reside in the same class, sincethe reductions allowed here are Cook-reductions. For example, as we shallsee in Section 2.2.3, there exist many natural R 2 PC such that the searchproblem of R and the decision problem of SR = fx : 9y s.t. (x; y)2Rg arecomputationally equivalent.� We say that a class of problems, C, is reducible to a problem �0 if everyproblem in C, is reducible to �0. We say that the class C is reducible to theclass C0 if for every � 2 C there exists �0 2 C0 such that � is reducible to �0.For example, recall that PC is reducible to NP .The fact that we allow Cook-reductions is essential to various important connec-tions between decision problems and other computational problems. Speci�cally,as shown in Section 2.2.2, a natural class of optimization problems is reducible toNP . Recall that PC is reducible to NP (as shown implicitly in the proof of Theo-rem 2.6). Furthermore, as shown in Section 2.2.3, many natural search problems inPC are reducible to a corresponding natural decision problem in NP (rather thanmerely to some problem in NP).2.2.2 Reducing optimization problems to search problemsMany search problems refer to a set of potential solutions, per each problem in-stance, such that di�erent solutions are assigned di�erent \values" (resp., \costs").In such a case, one may be interested in �nding a solution that has value exceedingsome threshold (resp., cost below some threshold), or (even better) �nding a solu-tion of maximum value (resp., minimum cost). For simplicity, let us focus on thecase of a value that we wish to maximize. Still, there are two di�erent objectives(i.e., exceeding a threshold and optimizing), giving rise to two di�erent (auxiliary)search problems related to the same relation R. Speci�cally, for a binary relationR and a value function f : f0; 1g��f0; 1g� ! R, we consider two search problems.1. Exceeding a threshold: Given a pair (x; v) the task is to �nd y 2 R(x) suchthat f(x; y) � v, where R(x) = fy : (x; y) 2 Rg. That is, we are actuallyreferring to the search problem of the relationRf def= f(hx; vi; y) : (x; y)2R ^ f(x; y) � vg; (2.1)where hx; vi denotes a string that encodes the pair (x; v).2. Maximization: Given x the task is to �nd y 2 R(x) such that f(x; y) = vx,where vx is the maximum value of f(x; y0) over all y0 2 R(x). That is, we areactually referring to the search problem of the relationR0f def= f(x; y)2R : f(x; y) = maxy02R(x)ff(x; y0)gg: (2.2)

64 CHAPTER 2. P, NP AND NP-COMPLETENESSExamples of value functions include the size of a clique in a graph, the amount of
ow in a network (with link capacities), etc. The task may be to �nd a clique ofsize exceeding a given threshold in a given graph or to �nd a maximum-size cliquein a given graph. Note that, in these examples, the \base" search problem (i.e.,the relation R) is quite easy to solve, and the di�culty arises from the auxiliarycondition on the value of a solution (presented in Rf and R0f). Indeed, one maytrivialize R (i.e., let R(x) = f0; 1gpoly(jxj) for every x), and impose all necessarystructure by the function f (see Exercise 2.8).We con�ne ourselves to the case that f is polynomial-time computable, whichin particular means that f(x; y) can be represented by a rational number of lengthpolynomial in jxj+jyj. We will show next that, in this case, the two aforementionedsearch problems (i.e., of Rf and R0f) are computationally equivalent.Theorem 2.12 For any polynomial-time computable f : f0; 1g��f0; 1g�!R anda polynomially bounded binary relation R, let Rf and R0f be as in Eq. (2.1) andEq. (2.2), respectively. Then the search problems of Rf and R0f are computationallyequivalent.It follows that, for R 2 PC and polynomial-time computable f , both the Rf and R0fare reducible to NP . We note, however, that, while Rf 2 PC always holds, it isnot necessarily the case that R0f 2 PC. See further discussion following the proof.Proof: The search problem of Rf is reduced to the search problem of R0f by�nding an optimal solution (for the given instance) and comparing its value to thegiven threshold value. That is, we construct an oracle machine that solves Rf bymaking a single query to R0f . Speci�cally, on input (x; v), the machine issues thequery x (to a solver for R0f), obtaining the optimal solution y (or an indication ?that R(x) = ;), computes f(x; y), and returns y if f(x; y) � v. Otherwise (i.e.,either y = ? or f(x; y) < v), the machine returns an indication that Rf (x; v) = ;.Turning to the opposite direction, we reduce the search problem of Rf to thesearch problem of R0f by �rst �nding the optimal value vx = maxy2R(x)ff(x; y)g(by binary search on its possible values), and next �nding a solution of value vx.In both steps, we use oracle calls to Rf . For simplicity, we assume that f assignspositive integer values, and let ` = poly(jxj) be such that f(x; y) � 2`� 1 for everyy 2 R(x). Then, on input x, we �rst �nd vx = maxff(x; y) : y2R(x)g, by makingoracle calls of the form hx; vi. The point is that vx < v if any only if Rf (hx; vi) = ;,which in turn is indicated by the oracle answer ? (to the query hx; vi). Making `queries, we determine vx (see Exercise 2.9). Note that in case R(x) = ;, all answerswill indicate that Rf (hx; vi) = ;, which we treat as if vx = 0. Finally, we make thequery (x; vx), and halt returning the oracle's answer (which is y 2 R(x) such thatf(x; y) = vx if vx > 0 and an indication that R(x) = ; otherwise).Proof's digest. Note that the �rst direction uses the hypothesis that f is polynomial-time computable, whereas the opposite direction only used the fact that the optimalvalue lies in a �nite space of exponential size that can be \e�ciently searched".Whereas the �rst direction can be proved using a Levin-reduction, this seems im-possible for the opposite direction (in general).

2.2. POLYNOMIAL-TIME REDUCTIONS 65On the complexity of Rf and R0f . We focus on the natural case in whichR 2 PC and f is polynomial-time computable. In this case, Theorem 2.12 impliesthat Rf and R0f are computationally equivalent. A closer look reveals, however,that Rf 2 PC always holds, whereas R0f 2 PC does not necessarily hold. Thatis, the problem of �nding a solution (for a given instance) that exceeds a giventhreshold is in the class PC, whereas the problem of �nding an optimal solutionis not necessarily in the class PC. For example, the problem of �nding a cliqueof a given size K in a given graph G is in PC, whereas the problem of �nding amaximum size clique in a given graph G is not known (and is quite unlikely) to bein PC (although it is Cook-reducible to PC). Indeed, the class of problems thatare reducible to PC is a natural and interesting class (see the ending paragraph ofSection 3.2.1); indeed, for every R 2 PC and polynomial-time computable f , theformer class contains R0f .2.2.3 Self-reducibility of search problemsThe results presented in this section further justify the focus on decision problems.Loosely speaking, these results show that for many natural relationsR, the questionof whether or not the search problem of R is e�ciently solvable (i.e., is in PF) isdetermined by the question of whether or not the \decision problem implicit in R"(i.e., SR = fx : 9y s.t. (x; y)2Rg) is e�ciently solvable (i.e., is in P). Note thatthe latter decision problem is easily reducible to the search problem of R, and soour focus is on the other direction. That is, we are interested in relations R forwhich the search problem of R is reducible to the decision problem of SR.Teaching note: Our usage of the term self-reducibility di�ers from the traditionalone. Traditionally, a decision problem is called (downwards) self-reducible if it is Cook-reducible to itself via a reduction that on input x only makes queries that are smallerthan x (according to some appropriate measure on the size of strings). Under somenatural restrictions (i.e., the reduction takes the disjunction of the oracle answers) suchreductions yield reductions of search to decision (as discussed in the main text). Forfurther details, see Exercise 2.13.De�nition 2.13 (the decision implicit in a search and self-reducibility): The de-cision problem implicit the search problem of R is deciding membership in the setSR = fx : R(x) 6= ;g, where R(x) = fy : (x; y) 2 Rg. The search problem of R iscalled self-reducible if it can be reduced to the decision problem of SR.Note that the search problem of R and the problem of deciding membership inSR refer to the same instances: The search problem requires �nding an adequatesolution (i.e., given x �nd y 2 R(x)), whereas the decision problem refers to thequestion of whether such solutions exist (i.e., given x determine whether or notR(x) is non-empty). Thus, SR is really the \decision problem implicit in R,"because it is a decision problem that one implicitly solves when solving the searchproblem of R. Indeed, for any R, the decision problem of SR is easily reducible to

66 CHAPTER 2. P, NP AND NP-COMPLETENESSthe search problem for R (and if R is in PC then SR is in NP).5 It follows thatif a search problem R is self-reducible then it is computationally equivalent to thedecision problem SR.Note that the general notion of a reduction (i.e., Cook-reduction) seems inher-ent to the notion of self-reducibility. This is the case not only due to syntacticconsiderations, but rather due to the following inherent reason. An oracle to anydecision problem returns a single bit per invocation, while the intractability of asearch problem in PC must be due to lacking more than a single bit (see Exer-cise 2.10).We shall see that self-reducibility is a property of many natural search problems(including all NP-complete search problems). This justi�es the relevance of decisionproblems to search problems in a stronger sense than established in Section 2.1.3:Recall that in Section 2.1.3 we showed that the fate of the search problem class PC(w.r.t PF) is determined by the fate of the decision problem class NP (w.r.t P).Here we show that, for many natural search problems in PC (i.e., self-reducibleones), the fate of such a problem R (w.r.t PF) is determined by the fate of thedecision problem SR (w.r.t P), where SR is the decision problem implicit in R.We now present a few search problems that are self-reducible. We start with SAT(see Section G.2), the set of satis�able Boolean formulae (in CNF), and considerthe search problem in which given a formula one should provide a truth assignmentthat satis�es it. The corresponding relation is denoted RSAT; that is, (�; �) 2 RSATif � is a satisfying assignment to the formulae �. The decision problem implicitin RSAT is indeed SAT. Note that RSAT is in PC (i.e., it is polynomially-boundedand membership of (�; �) in RSAT is easy to decide (by evaluating a Booleanexpression)).Proposition 2.14 (RSAT is self-reducible): The search problem of RSAT is re-ducible to SAT.Thus, the search problem of RSAT is computationally equivalent to deciding mem-bership in SAT. Hence, in studying the complexity of SAT, we also address thecomplexity of the search problem of RSAT.Proof: We present an oracle machine that solves the search problem of RSAT bymaking oracle calls to SAT. Given a formula �, we �nd a satisfying assignment to �(in case such an assignment exists) as follows. First, we query SAT on � itself, andreturn an indication that there is no solution if the oracle answer is 0 (indicating� 62 SAT). Otherwise, we let � , initiated to the empty string, denote a pre�x of asatisfying assignment of �. We proceed in iterations, where in each iteration weextend � by one bit. This is done as follows: First we derive a formula, denoted �0,by setting the �rst j� j+1 variables of � according to the values �0. We then querySAT on �0 (which means that we ask whether or not �0 is a pre�x of a satisfyingassignment of �). If the answer is positive then we set � �0 else we set � �1.This procedure relies on the fact that if � is a pre�x of a satisfying assignment of5For example, the reduction invokes the search oracle and answer 1 if and only if the oraclereturns some string (rather than the \no solution" symbol).

2.2. POLYNOMIAL-TIME REDUCTIONS 67� and �0 is not a pre�x of a satisfying assignment of � then �1 must be a pre�x ofa satisfying assignment of �.We wish to highlight a key point that has been blurred in the foregoing de-scription. Recall that the formula �0 is obtained by replacing some variables byconstants, which means that �0 per se contains Boolean variables as well as Booleanconstants. However, the standard de�nition of SAT disallows Boolean constants inits instances.6 Nevertheless, �0 can be simpli�ed such that the resulting formulacontains no Boolean constants. This simpli�cation is performed according to thestraightforward Boolean rules: That is, the constant false can be omitted fromany clause, but if a clause contains only occurrences of the constant false thenthe entire formula simpli�es to false. Likewise, if the constant true appears ina clause then the entire clause can be omitted, but if all clauses are omitted thenthe entire formula simpli�es to true. Needless to say, if the simpli�cation processyields a Boolean constant then we may skip the query, and otherwise we just usethe simpli�ed form of �0 as our query.Reductions analogous to the one used in the proof of Proposition 2.14 can bepresented also for other search problems (and not only for NP-complete ones). Twosuch examples are searching for a 3-coloring of a given graph and searching for anisomorphism between a given pair of graphs (where the �rst problem is knownto be NP-complete and the second problem is believed not to be NP-complete).In both cases, the reduction of the search problem to a decision problem involvesextending a pre�x of a valid solution by making suitable queries in order to decidewhich extension to use. Note, however, that in these cases the process of gettingrid of constants (representing partial solutions) is more involved. For example, inthe case of Graph 3-Colorability (resp., Graph Isomorphism) we need to enforce apartial coloring of a given graph (resp., a partial isomorphism between a given pairof graphs); see Exercises 2.11 and 2.12, respectively.Re
ection: The proof of Proposition 2.14 (as well as the proofs of similar results)consists of two observations.1. For every relation R in PC, it holds that the search problem of R is reducibleto the decision problem of S0R = f(x; y0) : 9y00 s.t. (x; y0y00) 2 Rg. Such areduction is explicit in the proof of Theorem 2.6 and is implicit in the proofof Proposition 2.14.2. For speci�c R 2 PC (e.g., SSAT), deciding membership in S0R is reducible todeciding membership in SR = fx : 9y s.t. (x; y) 2 Rg. This is where thespeci�c structure of SAT was used, allowing for a direct and natural transfor-mation of instances of S0R to instances of SR.(We comment that if SR is NP-complete then S0R, which is always in NP , isreducible to SR by the mere fact that SR is NP-complete; this comment isrelated to the following advanced comment.)6While the problem seems rather technical at the current setting (as it merely amounts towhether or not the de�nition of SAT allows Boolean constants in its instances), it is far from beingso technical in other cases (see Exercises 2.11 and 2.12).

68 CHAPTER 2. P, NP AND NP-COMPLETENESSFor an arbitrary R 2 PC, deciding membership in S0R is not necessarily reducible todeciding membership in SR. Furthermore, deciding membership in S0R is not nec-essarily reducible to the search problem of R. (See Exercises 2.14, 2.15, and 2.16.)Teaching note: In the rest of this section, we assume that the students have heard ofNP-completeness. Actually, we only need the students to know the de�nition of NP-completeness (i.e., a set S is NP-complete if S 2 NP and every set in NP is reducibleto S). Yet, the teacher may prefer postponing the presentation of the following materialto Section 2.3.1 (or even to a later stage).Advanced comment: In general, self-reducibility is a property of the searchproblem and not of the decision problem implicit in it. Under plausible assumptions(e.g., the intractability of factoring), there exists relations R1; R2 2 PC having thesame implicit-decision problem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) such thatR1 is self-reducible but R2 is not (see Exercise 2.17). However, this phenomenondoes not arise when NP-complete problems are involved; that is, all search problemsthat refer to �nding NP-witnesses for any NP-complete decision problem are self-reducible.Theorem 2.15 For every R in PC such that SR is NP-complete, the search prob-lem of R is reducible to deciding membership in SR.In many cases, as in the proof of Proposition 2.14, the reduction of the searchproblem to the corresponding decision problem is quite natural. The followingproof presents a generic reduction (which may be \unnatural" in some cases).Proof: In order to reduce the search problem of R to deciding SR, we composethe following two reductions:1. A reduction of the search problem of R to deciding membership in S0R =f(x; y0) : 9y00 s.t. (x; y0y00)2Rg.As stated in the foregoing paragraph (titled \re
ection"), such a reductionis implicit in the proof of Proposition 2.14 (as well as being explicit in theproof of Theorem 2.6).2. A reduction of S0R to SR.This reduction exists by the hypothesis that SR is NP-complete and thefact that S0R 2 NP . (Note that we do not assume that this reduction is aKarp-reduction, and furthermore it may be a \unnatural" reduction).The theorem follows.2.3 NP-CompletenessIn light of the di�culty of settling the P-vs-NP Question, when faced with a hardproblem H in NP, we cannot expect to prove that H is not in P (unconditionally).

2.3. NP-COMPLETENESS 69The best we can expect is a conditional proof that H is not in P, based on theassumption that NP is di�erent from P. The contrapositive is proving that if H isin P, then so is any problem in NP (i.e., NP equals P). One possible way of provingsuch an assertion is showing that any problem in NP is polynomial-time reducibleto H. This is the essence of the theory of NP-completeness.Teaching note: Some students heard of NP-completeness before, but we suspect thatmany have missed important conceptual points. Speci�cally, we fear that they missedthe point that the mere existence of NP-complete problems is amazing (let alone thatthese problems include natural ones such as SAT). We believe that this situation is aconsequence of presenting the detailed proof of Cook's Theorem as the very �rst thingright after de�ning NP-completeness.2.3.1 De�nitionsThe standard de�nition of NP-completeness refers to decision problems. Belowwe will also present a de�nition of NP-complete (or rather PC-complete) searchproblems. In both cases, NP-completeness of a problem � combines two conditions:1. � is in the class (i.e., � being in NP or PC, depending on whether � is adecision or a search problem).2. Each problem in the class is reducible to �. This condition is called NP-hardness.Although a perfectly good de�nition could have allowed arbitrary Cook-reductions(for establishing NP-hardness), it turns out that Karp-reductions (resp., Levin-reductions) su�ce for establishing the NP-hardness of all natural NP-complete de-cision (resp., search) problems. Consequently, NP-completeness is usually de�nedusing this restricted notion of a polynomial-time reduction.De�nition 2.16 (NP-completeness of decision problems, restricted notion): A setS is NP-complete if it is in NP and every set in NP is Karp-reducible to S.A set is NP-hard if every set in NP is Karp-reducible to it. Indeed, there is noreason to insist on Karp-reductions (rather than using arbitrary Cook-reductions),except that the restricted notion su�ces for all known demonstrations of NP-completeness and is easier to work with. An analogous de�nition applies to searchproblems.De�nition 2.17 (NP-completeness of search problems, restricted notion): A bi-nary relation R is PC-complete if it is in PC and every relation in PC is Levin-reducible to R.In the sequel, we will sometimes abuse the terminology and refer to search problemsas NP-complete (rather than PC-complete). Likewise, we will say that a searchproblem is NP-hard (rather than PC-hard) if every relation in PC is Levin-reducibleto it.

70 CHAPTER 2. P, NP AND NP-COMPLETENESSWe stress that the mere fact that we have de�ned a property (i.e., NP-completeness)does not mean that there exist objects that satisfy this property. It is indeed re-markable that NP-complete problems do exist. Such problems are \universal" inthe sense that solving them allows to solve any other (reasonable) problem (i.e.,problems in NP).2.3.2 The existence of NP-complete problemsWe suggest not to confuse the mere existence of NP-complete problems, whichis remarkable by itself, with the even more remarkable existence of \natural" NP-complete problems. The following proof delivers the �rst message as well as focuseson the essence of NP-completeness, rather than on more complicated technicaldetails. The essence of NP-completeness is that a single computational problemmay \e�ectively encode" a wide class of seemingly unrelated problems.Theorem 2.18 There exist NP-complete relations and sets.Proof: The proof (as well as any other NP-completeness proof) is based on theobservation that some decision problems in NP (resp., search problems in PC) are\rich enough" to encode all decision problems in NP (resp., all search problemsin PC). This fact is most obvious for the \generic" decision and search problems,denoted Su and Ru (and de�ned next), which are used to derive the simplest proofof the current theorem.We consider the following relation Ru and the decision problem Su implicit inRu (i.e., Su = fx : 9y s.t. (x; y)2Rug). Both problems refer to the same type ofinstances, which in turn have the form x = hM;x; 1ti, where M is a descriptionof a (deterministic) Turing machine, x is a string, and t is a natural number.The number t is given in unary (rather than in binary) in order to allow variouscomplexity measures, which depend on the instance length, to be polynomial in t(rather than poly-logarithmic in t).De�nition: The relation Ru consists of pairs (hM;x; 1ti; y) such that M accepts theinput pair (x; y) within t steps, where jyj � t.7 The corresponding set Su def= fx :9y s.t. (x; y) 2 Rug consists of triples hM;x; 1ti such that machine M acceptssome input of the form (x; �) within t steps.It is easy to see that Ru is in PC and that Su is in NP . Indeed, Ru isrecognizable by a universal Turing machine, which on input (hM;x; 1ti; y) emulates(t steps of) the computation of M on (x; y). (The fact that Su 2 NP followssimilarly.) We comment that u indeed stands for universal (i.e., universal machine),and the proof extends to any reasonable model of computation (which has adequateuniversal machines).We now turn to show that Ru and Su are NP-hard in the adequate sense (i.e.,Ru is PC-hard and Su is NP-hard). We �rst show that any set in NP is Karp-reducible to Su. Let S be a set in NP and let us denote its witness relation by7Instead of requiring that jyj � t, one may require that M is \canonical" in the sense that itreads its entire input before halting.

2.3. NP-COMPLETENESS 71R; that is, R is in PC and x 2 S if and only if there exists y such that (x; y) 2 R.Let pR be a polynomial bounding the length of solutions in R (i.e., jyj � pR(jxj)for every (x; y) 2 R), let MR be a polynomial-time machine deciding membership(of alleged (x; y) pairs) in R, and let tR be a polynomial bounding its running-time. Then, the desired Karp-reduction maps an instance x (for S) to the instancehMR; x; 1tR(jxj+pR(jxj))i (for Su); that is,x 7! f(x) def= hMR; x; 1tR(jxj+pR(jxj))i: (2.3)Note that this mapping can be computed in polynomial-time, and that x 2 S ifand only if f(x) = hMR; x; 1tR(jxj+pR(jxj))i 2 Su. Details follow.First, note that the mapping f does depend (of course) on S, and so it maydepend on the �xed objectsMR, pR and TR (which depend on S). Thus, computingf on input x calls for printing the �xed stringMR, copying x, and printing a numberof 1's that is a �xed polynomial in the length of x. Hence, f is polynomial-timecomputable. Second, recall that x 2 S if and only if there exists y such thatjyj � pR(jxj) and (x; y) 2 R. Since MR accepts (x; y) 2 R within tR(jxj + jyj)steps, it follows that x 2 S if and only if there exists y such that jyj � pR(jxj) andMR accepts (x; y) within tR(jxj + jyj) steps. It follows that x 2 S if and only iff(x) 2 Su.We now turn to the search version. For reducing the search problem of anyR 2 PC to the search problem of Ru, we use essentially the same reduction. Oninput an instance x (for R), we make the query hMR; x; 1tR(jxj+pR(jxj))i to thesearch problem of Ru and return whatever the latter returns. Note that if x 62 Sthen the answer will be \no solution", whereas for every x and y it holds that(x; y) 2 R if and only if (hMR; x; 1tR(jxj+pR(jxj))i; y) 2 Ru. Thus, a Levin-reductionof R to Ru consists of the pair of functions (f; g), where f is the foregoing Karp-reduction and g(x; y) = y. Note that indeed, for every (f(x); y) 2 Ru, it holds that(x; g(x; y)) = (x; y) 2 R.Advanced comment. Note that the role of 1t in the de�nition of Ru is to allowplacing Ru in PC. In contrast, consider the relation R0u that consists of pairs(hM;x; ti; y) such that M accepts xy within t steps. Indeed, the di�erence is thatin Ru the time-bound t appears in unary notation, whereas in R0u it appears inbinary. Then, as will become obvious in x4.2.1.2, membership in R0u cannot bedecided in polynomial time (even in the special case where x and y are �xed).Going even further, we note that omitting t altogether from the problem instanceyields a search problem that is not solvable at all. That is, consider the relationRH def= f(hM;xi; y) :M(xy) = 1g (which is related to the halting problem). Indeed,the search problem of any relation (an in particular of any relation in PC) is Karp-reducible to the search problem of RH , but the latter is not solvable at all (i.e.,there exists no algorithm that halts on every input and on input x = hM;xi outputsy such that (x; y) 2 RH if and only such a y exists).

72 CHAPTER 2. P, NP AND NP-COMPLETENESSBounded Halting and Non-HaltingWe note that the problem shown to be NP-complete in the proof of Theorem 2.18is related to the following two problems, called Bounded Halting and BoundedNon-Halting. Fixing any programming language, the instance to each of theseproblems consists of a program � and a time bound t (presented in unary). Thedecision version of Bounded Halting (resp., Bounded Non-Halting) consists ofdetermining whether or not there exists an input (of length at most t) on whichthe program � halts in t steps (resp., does not halt in t steps), whereas the searchproblem consists of �nding such an input.The decision version of Bounded Non-Halting refers to a fundamental compu-tational problem in the area of program veri�cation; speci�cally, the question ofwhether a given program halts within a given time-bound on all inputs of a givenlength.8 We mention the Bounded Halting problem because it is often referredto in the literature, but we believe that Bounded Non-Halting is more relevant tothe project of program veri�cation (because one seeks programs that halt on allinputs rather than programs that halt on some input).It is easy to prove that both problems are NP-complete (see Exercise 2.19).Note that the two (decision) problems are not complementary (i.e., (M; 1t) may bea yes-instance of both decision problems).9The fact that Bounded Non-Halting is probably intractable (i.e., is intractableprovided that P 6= NP) is even more relevant to the project of program veri�cationthan the fact that the Halting Problem is undecidable. The reason being that thelatter problem (as well as other related undecidable problems) refers to arbitrarilylong computations, whereas the former problem refers to computations of explicitlybounded number of steps. Speci�cally, Bounded Non-Halting is concerned withthe existence of an input that causes the program to violate a certain condition(i.e., halting) within a given time-bound.In light of the above, the common practice of bashing Bounded (Non-)Haltingas an \unnatural" problem seems very odd at an age in which computer programsplays such a central role. (Nevertheless, we will use the term \natural" in thistraditionally and odd sense in the next title, which refers to natural computationalproblems that seem unrelated to computation.)8The length parameter need not equal the time-bound. Indeed, a more general version of theproblem refers to two bounds, ` and t, and to whether the given program halts within t steps oneach possible `-bit input. It is easy to prove that the problem remains NP-complete also in thecase that the instances are restricted to have parameters ` and t such that t = p(`), for any �xedpolynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).9Indeed, (M; 1t) can not be a no-instance of both decision problems, but this does not makethe problems complementary. In fact, the two decision problems yield a three-way partition ofthe instances (M; 1t): (1) pairs (M; 1t) such that for every input x (of length at most t) thecomputation ofM(x) halts within t steps, (2) pairs (M; 1t) for which such halting occurs on someinputs but not on all inputs, and (3) pairs (M; 1t) such that there exists no input (of length atmost t) on which M halts in t steps. Note that instances of type (1) are no-instances of BoundedNon-Halting, whereas instances of type (3) are no-instances of Bounded Halting. It follows thatrecognizing each of these three sets of instances is NP-hard under Cook-reductions.

2.3. NP-COMPLETENESS 732.3.3 Some natural NP-complete problemsHaving established the mere existence of NP-complete problems, we now turn toprove the existence of NP-complete problems that do not (explicitly) refer to com-putation in the problem's de�nition. We stress that thousands of such problemsare known (and a list of several hundreds can be found in [81]).We will prove that deciding the satis�ability of propositional formulae is NP-complete (i.e., Cook's Theorem), and also present some combinatorial problemsthat are NP-complete. This presentation is aimed at providing a (small) sampleof natural NP-completeness results as well as some tools towards proving NP-completeness of new problems of interest. We start by making a comment regardingthe latter issue.The reduction presented in the proof of Theorem 2.18 is called \generic" becauseit (explicitly) refers to any (generic) NP-problem. That is, we actually presenteda scheme for the design of reductions from any desired NP-problem to the singleproblem proved to be NP-complete. Indeed, in doing so, we have followed the def-inition of NP-completeness. However, once we know some NP-complete problems,a di�erent route is open to us. We may establish the NP-completeness of a newproblem by reducing a known NP-complete problem to the new problem. Thisalternative route is indeed a common practice, and it is based on the followingsimple proposition.Proposition 2.19 If an NP-complete problem � is reducible to some problem �0 inNP then �0 is NP-complete. Furthermore, reducibility via Karp-reductions (resp.,Levin-reductions) is preserved.Proof: The proof boils down to asserting the transitivity of reductions. Specif-ically, the NP-hardness of � means that every problem in NP is reducible to �,which in turn is reducible to �0. Thus, by transitivity of reduction (see Exer-cise 2.6), every problem in NP is reducible to �0, which means that �0 is NP-hardand the proposition follows.2.3.3.1 Circuit and formula satis�ability: CSAT and SATWe consider two related computational problems, CSAT and SAT, which refer (inthe decision version) to the satis�ability of Boolean circuits and formulae, respec-tively. (We refer the reader to the de�nition of Boolean circuits, formulae and CNFformulae that appear in x1.2.4.1.)Teaching note: We suggest to establish the NP-completeness of SAT by a reductionfrom the circuit satisfaction problem (CSAT), after establishing the NP-completenessof the latter. Doing so allows to decouple two important parts of the proof of the NP-completeness of SAT: the emulation of Turing machines by circuits, and the encodingof circuits by formulae with auxiliary variables.

74 CHAPTER 2. P, NP AND NP-COMPLETENESSCSAT. Recall that Boolean circuits are directed acyclic graphs with internalvertices, called gates, labeled by Boolean operations (of arity either 2 or 1), andexternal vertices called terminals that are associated with either inputs or outputs.When setting the inputs of such a circuit, all internal nodes are assigned values inthe natural way, and this yields a value to the output(s), called an evaluation of thecircuit on the given input. The evaluation of circuit C on input z is denoted C(z).We focus on circuits with a single output, and let CSAT denote the set of satis�ableBoolean circuits (i.e., a circuit C is in CSAT if there exists an input z such thatC(z) = 1). We also consider the related relation RCSAT = f(C; z) : C(z) = 1g.Theorem 2.20 (NP-completeness of CSAT): The set (resp., relation) CSAT (resp.,RCSAT) is NP-complete (resp., PC-complete).Proof: As usual it is easy to see that CSAT 2 NP (resp., RCSAT 2 PC). Thus, weturn to showing that these problems are NP-hard. We will focus on the decisionversion (but also discuss the search version).We will present (again, but for the last time in this book) a generic reduction,this time of any NP-problem to CSAT. The reduction is based on the observation,mentioned in x1.2.4.1, that the computation of polynomial-time algorithms can beemulated by polynomial-size circuits. In the current context, we wish to emulatethe computation of a �xed machine M on input (x; y), where x is �xed and yvaries (but jyj = poly(jxj) and the total number of steps of M(x; y) is polynomialin jxj+ jyj). Thus, x will be \hard-wired" into the circuit, whereas y will serve asthe input to the circuit. The circuit itself, denoted Cx, will consists of \layers" suchthat each layer represents an instantaneous con�guration of the machine M , andthe relation between consecutive con�gurations in a computation of this machineis captured by (\uniform") local gadgets in the circuit. The number of layerswill depend on the polynomial that upper-bounds the running-time of M , and anadditional gadget will be used to detect whether the last con�guration is accepting.Thus, only the �rst layer of the circuit Cx will depend on x. The punch-line is thatdetermining whether, for a given x, there exists a y (jyj = poly(jxj)) such thatM(x; y) = 1 (in a given number of steps) reduces to the question of whether thereexists a y such that Cx(y) = 1. Performing this reduction for any machine MRthat corresponds to any R 2 PC (as in the proof of Theorem 2.18), we establishthe fact that CSAT is NP-complete. Details follow.Recall that we wish to reduce an arbitrary set S 2 NP to CSAT. Let R, pR,MR and tR be as in the proof of Theorem 2.18 (i.e., R is the witness relation ofS, whereas pR bounds the length of the NP-witnesses, MR is the machine decidingmembership in R, and tR is its polynomial time-bound). Without loss of generality(and for simplicity), suppose that MR is a one-tape Turing machine. We willconstruct a Karp-reduction that maps an instance x (for S) to a circuit, denotedf(x) def= Cx, such that Cx(y) = 1 if and only if MR accepts the input (x; y) withintR(jxj + pR(jxj)) steps. Thus, it will follow that x 2 S if and only if there existsy 2 f0; 1gpR(jxj) such that Cx(y) = 1 (i.e., if and only if Cx 2 CSAT). The circuitCx will depend on x as well as on MR; pR and tR. (We stress that MR; pR and tRare �xed, whereas x is varies and thus explicit in our notation.)

2.3. NP-COMPLETENESS 75Before describing the circuit Cx, let us consider a possible computation of MRon input (x; y), where x is �xed and y represents a generic string of length atmost pR(jxj). Such a computation proceeds for t = tR(jxj + pR(jxj)) steps, andcorresponds to a sequence of t + 1 instantaneous con�gurations, each of lengtht. Each such con�guration can be encoded by t pairs of symbols, where the �rstsymbol in each pair indicates the contents of a cell and the second symbol indicateseither a state of the machine or the fact that the machine is not located in thiscell. Thus, each pair is a member of � � (Q [f?g), where � is the �nite \workalphabet" of MR, Q is its �nite set of internal states, and ? is an indicationthat the machine is not present at a cell. The initial con�guration includes xy asinput, and the decision of MR(x; y) can be read from (the leftmost cell of) the lastcon�guration.10 With the exception of the �rst row, the values of the entries in eachrow are determined by the entries of the row just above it, where this determinationre
ects the transition function of MR. Furthermore, the value of each entry in thesaid array is determined by the values of (up to) three entries that reside in the rowabove it (see Exercise 2.20). Thus, the aforementioned computation is representedby a (t + 1) � t array, where each entry encodes one out of a constant number ofpossibilities, which in turn can be encoded by a constant-length bit string. SeeFigure 2.1.The circuit Cx has a structure that corresponds to the aforementioned array.Each entry in the array is represented by a constant number of gates such that whenCx is evaluated at y these gates will be assigned values that encode the contents ofthe said entry. In particular, the entries of the �rst row of the array are \encoded"by hard-wiring the reduction's input (i.e., x), and feeding the circuit's input (i.e.,y) to the adequate input terminals. That is, the circuit has pR(jxj) (\real") in-put terminals, and the hard-wiring of constants to the other O(t � pR(jxj)) gatesthat represent the �rst row is done by simple gadgets (as in Figure 1.2). Indeed,additional hard-wiring in the �rst row corresponds to the other �xed elements ofthe initial con�guration (i.e., the blank symbols, and the encoding of the initialstate and of the initial location; cf. Figure 2.1). The entries of subsequent rowswill be \encoded" (or rather computed at evaluation time) by using constant-sizecircuits that determine the value of an entry based on the three relevant entriesin the row above it. Recall that each entry is encoded by a constant number ofgates, and thus these constant-size circuits merely compute the constant-size func-tion described in Exercise 2.20. In addition, the circuit will have a few extra gatesthat check the values of the entries of the last row in order to determine whetheror not it encodes an accepting con�guration.11 Note that the circuit Cx can beconstructed in polynomial time from the string x, because we just need to encodex in an appropriate manner as well as generate a \highly uniform" grid-like circuit10We refer to the output convention presented in x1.2.3.1, by which the output is written inthe leftmost cells and the machine halts at the cell to its right.11In continuation to Footnote 10, we note that it su�ces to check the values of the two leftmostentries of the last row. We assumed here that the circuit propagates a halting con�guration tothe last row. Alternatively, we may check for the existence of an accepting/halting con�gurationin the entire array, since this condition is quite simple.

76 CHAPTER 2. P, NP AND NP-COMPLETENESS

last configuration

initial configuration (1,a) (1,-) (0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(-,-) (-,-) (-,-)(-,-) (-,-)

(1,b)

(0,b)(1,-)

(3,-)

(3,-)

(0,-)(1,c)(3,-)

(0,-)

(0,-)

(1,-)(3,c)

(y ,-)1

(y ,-)1

(y ,-)1 (y ,-)2

(y ,-)2

(y ,-)2

(with input 110 2 y 1) y

(1,-) (1,f)

Blank characters as well as the indication that the machine is not present in thecell are marked by a hyphen (-). The three arrows represent the determinationof an entry by the three entries that reside above it. The machine underlyingthis example accepts the input if and only if the input contains a zero.Figure 2.1: An array representing ten computation steps on input 110y1y2.of size O(tR(jxj + pR(jxj))2).12Although the foregoing construction of Cx capitalizes on various speci�c detailsof the (one-tape) Turing machine model, it can be adapted to any other \rea-sonable" model of e�cient computation.13 Alternatively, we recall the Cobham-Edmonds Thesis asserting that any problem that is solvable in polynomial-time(on some \reasonable" model) can be solved in polynomial-time by a (one-tape)Turing machine.Turning back to the circuit Cx, we observe that indeed Cx(y) = 1 if and onlyif MR accepts the input (x; y) while making at most t = tR(jxj + pR(jxj)) steps.Recalling that S = fx : 9y s.t. jyj � pR(jxj) ^ (x; y) 2 Rg and that MR decidesmembership in R in time tR, we infer that x 2 S if and only if f(x) = Cx 2 CSAT.12Advanced comment: A more e�cient construction, which generate almost-linear sizedcircuits (i.e., circuits of size eO(tR(jxj+ pR(jxj)))) is known; see [170].13Advanced comment: Note that it is actually inessential that each entry in each con-�guration is determined by a constant number of entries in the previous con�guration. Anypolynomial-time computable transformation of con�gurations will do, since we can emulate sucha transformation by a polynomial-size circuit. Indeed, this emulation will be based on presentingthe said transformation in some concrete model of computation, which brings us to the nextcomment (invoking the Cobham-Edmonds Thesis).

2.3. NP-COMPLETENESS 77Furthermore, (x; y) 2 R if and only if (f(x); y) 2 RCSAT. It follows that f is aKarp-reduction of S to CSAT, and, for g(x; y) def= y it holds that (f; g) is a Levin-reduction of R to RCSAT. The theorem follows.SAT. Recall that Boolean formulae are special types of Boolean circuits (i.e.,circuits having a tree structure).14 We further restrict our attention to formulaegiven in conjunctive normal form (CNF). We denote by SAT the set of satis�ableCNF formulae (i.e., a CNF formula � is in SAT if there exists an truth assignment �such that �(�) = 1). We also consider the related relation RSAT = f(�; �) : �(�) =1g.Theorem 2.21 (NP-completeness of SAT): The set (resp., relation) SAT (resp.,RSAT) is NP-complete (resp., PC-complete).Proof: Since the set of possible instances of SAT is a subset of the set of instancesof CSAT, it is clear that SAT 2 NP (resp., RSAT 2 PC). To prove that SATis NP-hard, we reduce CSAT to SAT (and use Proposition 2.19). The reductionboils down to introducing auxiliary variables in order to \cut" the computation ofan arbitrary (\deep") circuit into a conjunction of related computations of \shal-low" circuits (i.e., depth-2 circuits) of unbounded fan-in, which in turn may bepresented as a CNF formula. The aforementioned auxiliary variables hold the pos-sible values of the internal gates of the original circuit, and the clauses of the CNFformula enforce the consistency of these values with the corresponding gate oper-ation. For example, if gatei and gatej feed into gatek, which is a ^-gate, thenthe corresponding auxiliary variables gi; gj ; gk should satisfy the Boolean conditiongk � (gi ^ gj), which can be written as a 3CNF with four clauses. Details follow.We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C, with ninput terminals and m gates, we �rst construct m constant-size formulae on n+mvariables, where the �rst n variables correspond to the input terminals of the circuit,and the other m variables correspond to its gates. The ith formula will depend onthe variable that correspond to the ith gate and the 1-2 variables that correspond tothe vertices that feed into this gate (i.e., 2 vertices in case of ^-gate or _-gate and asingle vertex in case of a :-gate, where these vertices may be either input terminalsor other gates). This (constant-size) formula will be satis�ed by a truth assignmentif and only if this assignment matches the gate's functionality (i.e., feeding this gatewith the corresponding values result in the corresponding output value). Note thatthese constant-size formulae can be written as constant-size CNF formulae (in fact,as 3CNF formulae).15 Taking the conjunction of these m formulae as well as thevariable associated with the gate that feeds into the output terminal, we obtain aformula � in CNF (see Figure 2.2, where n = 3 and m = 4).14For an alternative de�nition, see Section G.2.15Recall that any Boolean function can be written as a CNF formula having size that is expo-nential in the length of its input, which in this case is a constant (i.e., either 2 or 3). Futhermore,note that the Boolean functions that we refer to here depends on 2-3 Boolean variables (sincethey indicate whether or not the corresponding values respect the gate's functionality).

78 CHAPTER 2. P, NP AND NP-COMPLETENESS
1 2 3

or

and

and

1 2

g1

3

g2g1 g2

and

g3

eq

or

eq
eq

g4

eq

gate1

gate2

gate3
and

3

gate4 neg

neg

g3 g4
and

Using auxiliary variables (i.e., the gi's) to \cut" a depth-5 circuit (into a CNF).The dashed regions will be replaced by equivalent CNF formulae. The dashed cy-cle representing an unbounded fan-in and-gate is the conjunction of all constant-size circuits (which enforce the functionalities of the original gates) and the vari-able that represents the gate that feed the output terminal in the original circuit.Figure 2.2: The idea underlying the reduction of CSAT to SAT.Note that � can be constructed in polynomial-time from the circuit C; that is,the mapping of C to � = f(C) is polynomial-time computable. We claim that Cis in CSAT if and only if � is in SAT.1. Suppose that for some string s it holds that C(s) = 1. Then, assigning theith auxiliary variable the value that is assigned to the ith gate of C whenevaluated on s, we obtain (together with s) a truth assignment that satis�es�. This is the case because such an assignment satis�es all m constant-sizeCNFs as well as the variable associated with the output of C.2. On the other hand, if � satis�es � then the �rst n bits in � correspond to aninput on which C evaluates to 1. This is the case because the m constant-sizeCNFs guarantee that the variables of � are assigned values that correspondto the evaluation of C on the �rst n bits of � , while the fact that the variableassociated with the output of C has value true guarantees that this evaluationof C yields the value 1.Note that the latter mapping (of � to its n-bit pre�x) is the second mappingrequired by the de�nition of a Levin-reduction.Thus, we have established that f is a Karp-reduction of CSAT to SAT, and thataugmenting f with the aforementioned second mapping yields a Levin-reductionof RCSAT to RSAT.Comment. The fact that the second mapping required by the de�nition of aLevin-reduction is explicit in the proof of the validity of the corresponding Karp-

2.3. NP-COMPLETENESS 79reduction is a fairly common phenomenon. Actually (see Exercise 2.28), typical pre-sentations of Karp-reductions provide two auxiliary polynomial-time computablemappings (in addition to the main mapping of instances from one problem (e.g.,CSAT) to instances of another problem (e.g., SAT)): The �rst auxiliary mappingis of solutions for the preimage instance (e.g., of CSAT) to solutions for the imageinstance of the reduction (e.g., of SAT), whereas the second mapping goes the otherway around. (Note that only the main mapping and the second auxiliary mappingare required in the de�nition of a Levin-reduction.) For example, the proof of thevalidity of the Karp-reduction of CSAT to SAT, denoted f , speci�ed two additionalmappings h and g such that (C; s) 2 RCSAT implies (f(C); h(C; s)) 2 RSAT and(f(C); �) 2 RSAT implies (C; g(C; �)) 2 RCSAT. Speci�cally, in the proof of Theo-rem 2.21, we used h(C; s) = (s; a1; :::; am) where ai is the value assigned to the ithgate in the evaluation of C(s), and g(C; �) being the n-bit pre�x of � .3SAT. Note that the formulae resulting from the Karp-reduction presented inthe proof of Theorem 2.21 are in conjunctive normal form (CNF) with each clausereferring to at most three variables. Thus, the above reduction actually establishesthe NP-completeness of 3SAT (i.e., SAT restricted to CNF formula with up to threevariables per clause). Alternatively, one may Karp-reduce SAT (i.e., satis�abilityof CNF formula) to 3SAT (i.e., satis�ability of 3CNF formula), by replacing longclauses with conjunctions of three-variable clauses using auxiliary variables (seeExercise 2.21). Either way, we get the following result, where the furthermore partis proved by an additional reduction.Proposition 2.22 3SAT is NP-complete. Furthermore, the problem remains NP-complete also if we restrict the instances such that each variable appears in at mostthree clauses.Proof Sketch: The furthermore part is proved by reduction from 3SAT. We justreplace each occurrence of each Boolean variable by a new copy of this variable, andadd clauses to enforce that all these copies are assigned the same value. Speci�cally,replacing the variable z by copies z(1); :::; z(m), we add the clauses z(i+1)_:z(i) fori = 1:::;m (where m+ 1 is understood as 1).Related problems. Note that instances of SAT can be viewed as systems ofBoolean conditions over Boolean variables. Such systems can be emulated by vari-ous types of systems of arithmetic conditions, implying the NP-hardness of solvingthe latter types of systems. Examples include systems of integer linear inequalities(see Exercise 2.23), and systems of quadratic equalities (see Exercise 2.25).2.3.3.2 Combinatorics and graph theoryTeaching note: The purpose of this subsection is to expose the students to a sample ofNP-completeness results and proof techniques (i.e., the design of reductions among com-putational problems). The author believes that this traditional material is insightful,but one may skip it in the context of a complexity class.

80 CHAPTER 2. P, NP AND NP-COMPLETENESSWe present just a few of the many appealing combinatorial problems that are knownto be NP-complete. Throughout this section, we focus on the decision versions ofthe various problems, and adopt a more informal style. Speci�cally, we will presenta typical decision problem as a problem of deciding whether a given instance, whichbelongs to a set of relevant instances, is a \yes-instance" or a \no-instance" (ratherthan referring to deciding membership of arbitrary strings in a set of yes-instances).For further discussion of this style and its rigorous formulation, see Section 2.4.1.We will also neglect to show that these decision problems are in NP.We start with the set cover problem, in which an instance consists of a collectionof �nite sets S1; :::; Sm and an integer K and the question (for decision) is whetheror not there exist (at most)16 K sets that cover Smi=1 Si (i.e., indices i1; :::; iK suchthat SKj=1 Sij = Smi=1 Si).Proposition 2.23 Set Cover is NP-complete.Proof Sketch: We sketch a reduction of SAT to Set Cover. For a CNF formula� with m clauses and n variables, we consider the sets S1;t; S1;f; ::; Sn;t; Sn;f �f1; :::;mg such that Si;t (resp., Si;f) is the set of the indices of the clauses (of �)that are satis�ed by setting the ith variable to true (resp., false). That is, ifthe ith variable appears unnegated (resp., negated) in the jth clause then j 2 Si;t(resp., j 2 Si;f). Note that the union of these 2n sets equals f1; :::;mg. Now,on input �, the reduction outputs the Set Cover instance f(�) def= ((S1; ::; S2n); n),where S2i�1 = Si;t [fm+ ig and S2i = Si;f [fm+ ig for i = 1; :::; n.Note that f is computable in polynomial-time, and that if � is satis�ed by�1 � � � �n then the collection fS2i��i : i = 1; :::; ng covers f1; :::;m + ng. Thus,� 2 SAT implies that f(�) is a yes-instance of Set Cover. On the other hand,each cover of fm+ 1; :::;m+ ng � f1; :::;m+ ng must include either S2i�1 or S2ifor each i. Thus, a cover of f1; :::;m + ng using n of the Sj 's must contain, forevery i, either S2i�1 or S2i but not both. Setting �i accordingly (i.e., �i = 1 if andonly if S2i�1 is in the cover) implies that fS2i��i : i = 1; :::; ng covers f1; :::;mg,which in turn implies that �1 � � � �n satis�es �. Thus, if f(�) is a yes-instance ofSet Cover then � 2 SAT.Exact Cover and 3XC. The exact cover problem is similar to the set cover prob-lem, except that here the sets that are used in the cover are not allowed to intersect.That is, each element in the universe should be covered by exactly one set in thecover. Restricting the set of instances to sequences of subsets each having exactlythree elements, we get the restricted problem 3-Exact Cover (3XC), where it is un-necessary to specify the number of sets to be used in the cover. The problem 3XCis rather technical, but it is quite useful for demonstrating the NP-completeness ofother problems (by reducing 3XC to them).Proposition 2.24 3-Exact Cover is NP-complete.16Clearly, in case of Set Cover, the two formulations (i.e., asking for exactly K sets or at mostK sets) are computationally equivalent.

2.3. NP-COMPLETENESS 81Indeed, it follows that the Exact Cover (in which sets of arbitrary size are allowed)is NP-complete. This follows both for the case that the number of sets in the desiredcover is unspeci�ed and for the various cases in which this number is bounded (i.e.,upper-bounded or lower-bounded or both).Proof Sketch: The reduction is obtained by composing three reductions. We �rstreduce a restricted case of 3SAT to a restricted version of Set Cover, denoted 3SC,in which each set has at most three elements (and an instance consists, as in thegeneral case, of a sequence of �nite sets as well as an integer K). Speci�cally,we refer to 3SAT instances that are restricted such that each variable appears inat most three clauses, and recall that this restricted problem is NP-complete (seeProposition 2.22). Actually, we further reduce this special case of 3SAT to onein which each literal appears in at most two clauses.17 Now, we reduce the newversion of 3SAT to 3SC by using the (very same) reduction presented in the proof ofProposition 2.23, and observing that the size of each set in the reduced instance isat most three (i.e., one more than the number of occurrences of the correspondingliteral).Next, we reduce 3SC to the following restricted case of Exact Cover, denoted3XC', in which each set has at most three elements, an instance consists of a sequenceof �nite sets as well as an integer K, and the question is whether there exists anexact cover with at most K sets. The reduction maps an instance ((S1; :::; Sm);K)of 3SC to the instance (C 0;K) such that C 0 is a collection of all subsets of each of thesets S1; :::; Sm. Since each Si has size at most 3, we introduce at most 7 non-emptysubsets per each such set, and the reduction can be computed in polynomial-time.The reader may easily verify the validity of this reduction.Finally, we reduce 3XC' to 3XC. Consider an instance ((S1; :::; Sm);K) of 3XC',and suppose that Smi=1 Si = [n]. If n > 3K then this is de�nitely a no-instance,which can be mapped to a dummy no-instance of 3XC, and so we assume thatx def= 3K � n � 0. Note that x represents the \excess" covering ability of anexact cover having K sets, each having three elements. Thus, we augment the setsystem with x new elements, denoted n+ 1; :::; 3K, and replace each Si such thatjSij < 3 by a sub-collection of 3-sets that cover Si as well as arbitrary elementsfrom fn + 1; :::; 3Kg. That is, in case jSij = 2, the set Si is replaced by the sub-collection (Si[fn+1g; :::; Si[f3Kg), whereas a singleton Si is replaced by the setsSi [fj1; j2g for every j1 < j2 in fn + 1; :::; 3Kg. In addition, we add all possible3-subsets of fn+1; :::; 3Kg. This completes the description of the third reduction,the validity of which is left as an exercise.17This can be done by observing that if all three occurrences of a variable are of the sametype (i.e., they are all negated or all non-negated) then this variable can be assigned a value thatsatis�es all clauses in which it appears, and so the variable and the clauses in which it appear canbe omitted from the instance. This yields a reduction of 3SAT instances in which each variableappears in at most three clauses to 3SAT instances in which each literal appears in at most twoclauses. Actually, a closer look at the proof of Proposition 2.22 reveals the fact that the reducedinstances satisfy the latter property anyhow.

82 CHAPTER 2. P, NP AND NP-COMPLETENESSVertex Cover, Independent Set, and Clique. Turning to graph theoreticproblems (see Section G.1), we start with the Vertex Cover problem, which isa special case of the Set Cover problem. The instances consists of pairs (G;K),where G = (V;E) is a simple graph andK is an integer, and the problem is whetheror not there exists a set of (at most) K vertices that is incident to all graph edges(i.e., each edge in G has at least one endpoint in this set). Indeed, this instanceof Vertex Cover can be viewed as an instance of Set Cover by considering thecollection of sets (Sv)v2V , where Sv denotes the set of edges incident at vertex v(i.e., Sv = fe 2 E : v 2 eg). Thus, the NP-hardness of Set Cover follows from theNP-hardness of Vertex Cover (but this implication is unhelpful for us here: wealready know that Set Cover is NP-hard and we wish to prove that Vertex Coveris NP-hard). We also note that the Vertex Cover problem is computationallyequivalent to the Independent Set and Clique problems (see Exercise 2.26), andthus it su�ces to establish the NP-hardness of one of these problems.Proposition 2.25 The problems Vertex Cover, Independent Set and Cliqueare NP-complete.Teaching note: The following reduction is not the \standard" one (see Exercise 2.27).It is rather adapted from the FGLSS-reduction (see Exercise 9.14), and is used herein anticipation of the latter. Furthermore, although the following reduction tends tocreate a larger graph, the author �nds it more clear than the \standard" reduction.Proof Sketch: We show a reduction from 3SAT to Independent Set. On inputa 3CNF formula � with m clauses and n variables, we construct a graph with 7mvertices, denoted G�. The vertices are grouped in m cliques, each correspondingto one of the clauses and containing 7 vertices that correspond to the 7 truthassignments (to the 3 variables in the clause) that satisfy the clause. In addition tothe internal edges of these m cliques, we add an edge between each pair of verticesthat correspond to partial assignments that are mutually inconsistent. That is, if aspeci�c (satisfying) assignment to the variables of the ith clause is inconsistent withsome (satisfying) assignment to the variables of the jth clause then we connect thecorresponding vertices by an edge. (Note that the internal edges of the m cliquesmay be viewed as a special case of the edges connecting mutually inconsistentpartial assignments.) Thus, on input �, the reduction outputs the pair (G�;m).Note that if � is satis�able by a truth assignment � then there are no edgesbetween the m vertices that correspond to the partial satisfying assignment derivedfrom � . (We stress that any truth assignment to � yields an independent set, butonly a satisfying assignment guarantees that this independent set contains a vertexfrom each of the m cliques.) Thus, � 2 SAT implies that G� has an independentset of size m. On the other hand, an independent set of size m in G� must containexactly one vertex in each of the m cliques, and thus induces a truth assignmentthat satis�es �. (We stress that each independent set induces a consistent truthassignment to �, because the partial assignments selected in the various cliquesmust be consistent, and that an independent set containing a vertex from a speci�cclique induces an assignment that satis�es the corresponding clause.) Thus, if G�has an independent set of size m then � 2 SAT.

2.3. NP-COMPLETENESS 83Graph 3-Colorability (G3C). In this problem the instances are graphs and thequestion is whether or not the graph can be colored using three colors (such thatneighboring vertices are not assigned the same color).Proposition 2.26 Graph 3-Colorability is NP-complete.Proof Sketch: We reduce 3SAT to G3C by mapping a 3CNF formula � to thegraph G�, which consists of two special (\designated") vertices, a gadget per eachvariable of �, a gadget per each clause of �, and edges connecting some of thesecomponents.� The two designated vertices are called ground and false, and are connectedby an edge that ensures that they must be given di�erent colors in any 3-coloring of G�. We will refer to the color assigned to the vertex ground (resp.,false) by the name ground (resp., false). The third color will be calledtrue.� The gadget associated with variable x is a pair of vertices, associated withthe two literals of x (i.e., x and :x). These vertices are connected by anedge, and each of them is also connected to the vertex ground. Thus, in a3-coloring of G� one of the vertices associated with the variable is coloredtrue and the other is colored false.
1

2

3

x

y
M

T1

T2

T3In a generic 3-coloring of the sub-gadget it must hold that if x = ythen x = y = 1. Thus, if the three terminals of the gadget areassigned the same color, �, then M is also assigned the color �.Figure 2.3: The reduction to G3C { the clause gadget and its sub-gadget.� The gadget associated with a clause C is depicted in Figure 2.3. It containsa master vertex, denoted M, and three terminal vertices, denoted T1, T2and T3. The master vertex is connected by edges to the vertices groundand false, and thus in a 3-coloring of G� the master vertex must be coloredtrue. The gadget has the property that it is possible to color the terminalswith any combination of the colors true and false, except for coloring allterminals with false. The terminals of the gadget associated with clause Cwill be identi�ed with the vertices that are associated with the correspondingliterals appearing in C. This means that the various clause-gadgets are not

84 CHAPTER 2. P, NP AND NP-COMPLETENESSvertex-disjoint but may rather share some terminals (with the vertex-gadgetsas well as among themselves).18 See Figure 2.4.
variable gadgets

clause gadgets

GROUND FALSE
the two designated verices

A single clause gadget and the relevant variables gadgets.Figure 2.4: The reduction to G3C { connecting the gadgets.Verifying the validity of the reduction is left as an exercise.2.3.4 NP sets that are neither in P nor NP-completeAs stated in Section 2.3.3, thousands of problems have been shown to be NP-complete (cf., [81, Apdx.], which contains a list of more than three hundreds mainentries). Things reached a situation in which people seem to expect any NP-set tobe either NP-complete or in P . This naive view is wrong: Assuming NP 6= P, thereexist sets in NP that are neither NP-complete nor in P, where here NP-hardnessallows also Cook-reductions.Theorem 2.27 Assuming NP 6= P, there exist a set T in NP nP such that somesets in NP are not Cook-reducible to T .Theorem 2.27 asserts that if NP 6= P then NP is partitioned into three non-emptyclasses: the class P , the class of problems to which NP is Cook-reducible, and therest, denote NPI. We already know that the �rst two classes are not empty,18Alternatively, we may use disjoint gadgets and \connect" each terminal with the correspond-ing literal (in the corresponding vertex gadget). Such a connection (i.e., an auxiliary gadget)should force the two end-points to have the same color in any 3-coloring of the graph.

2.3. NP-COMPLETENESS 85and Theorem 2.27 establishes the non-emptiness of NPI under the condition thatNP 6= P , which is actually a necessary condition (because if NP = P then everyset in NP is Cook-reducible to any other set in NP).The following proof of Theorem 2.27 presents an unnatural decision problemin NPI. We mention that some natural problems (e.g., factoring) are conjecturedto be neither solvable in polynomial-time nor NP-hard. In particular, assumingthat factoring is intractable, there exist rather natural decision problems in NPI.Furthermore, if NP 6= coNP , where coNP = ff0; 1g� n S : S 2 NPg, then� def= NP \ coNP � P [NPI holds (as a corolloary to Theorem 2.33). Inother words, if NP 6= coNP then � n P is a (natural) subset of NPI, and thenon-emptiness of NPI follows provided that � 6= P . Recall that Theorem 2.27establishes the non-emptiness of NPI under the seemingly weaker assumption thatNP 6= P .Teaching note: We recommend either stating Theorem 2.27 without a proof or merelyproviding the proof idea.Proof Sketch: The basic idea is modifying an arbitrary set in NP n P so as tofail all possible reductions (from NP to the modi�ed set) as well as all possiblepolynomial-time decision procedures (for the modi�ed set). Speci�cally, startingwith S 2 NP nP , we derive S0 � S such that on one hand there is no polynomial-time reduction of S to S0 while on the other hand S0 2 NP n P . The process ofmodifying S into S0 proceeds in iterations, alternatively failing a potential reduction(by dropping su�ciently many strings from the rest of S) and failing a potentialdecision procedure (by including su�ciently many strings from the rest of S).Speci�cally, each potential reduction of S to S0 can be failed by dropping �nitelymany elements from the current S0, whereas each potential decision procedure canbe failed by keeping �nitely many elements of the current S0. These two assertionsare based on the following two corresponding facts:1. Any polynomial-time reduction (of any set not in P) to any �nite set (e.g.,a �nite subset of S) must fail, because only sets in P are Cook-reducibleto a �nite set. Thus, for any �nite set F and any potential reduction (i.e.,a polynomial-time oracle machine), there exists an input x on which thisreduction to F fails.We stress that the aforementioined reduction fails while the only queries thatare answered positively are those residing in F . Furthermore, the aforemen-tioined failure is due to a �nite set of queries (i.e., the set of all queries madeby the reduction when invoked on an input that is smaller or equal to x).Thus, for every �nite set F � S0 � S, any reduction of S to S0 can befailed by dropping a �nite number of elements from S0 and without droppingelements of F .2. For every �nite set F , any polynomial-time decision procedure for S nF mustfail, because S is (trivially) Cook-reducible to S nF . Thus, for any potentialdecision procedure (i.e., a polynomial-time algorithm), there exists an inputx on which this procedure fails.

86 CHAPTER 2. P, NP AND NP-COMPLETENESSWe stress that this failure is due to a �nite \pre�x" of S n F (i.e., the setfz 2 S n F : z � xg). Thus, for every �nite set F , any polynomial-timedecision procedure for S nF can be failed by keeping a �nite subset of S nF .As stated, the process of modifying S into S0 proceeds in iterations, alternativelyfailing a potential reduction (by dropping �nitely many strings from the rest of S)and failing a potential decision procedure (by including �nitely many strings fromthe rest of S). This can be done e�ciently because it is inessential to determine the�rst possible points of alternation (in which su�ciently many strings were dropped(resp., included) to fail the next potential reduction (resp., decision procedure)). Itsu�ces to guarantee that adequate points of alternation (albeit highly non-optimalones) can be e�ciently determined. Thus, S0 is the intersection of S and some setin P , which implies that S0 2 NP . Following are some comments regarding theimplementation of the foregoing idea.The �rst issue is that the foregoing plan calls for an (\e�ective") enumeration ofall polynomial-time oracle machines (resp., polynomial-time algorithms). However,none of these sets can be enumerated (by an algorithm). Instead, we enumerateall corresponding machines along with all possible polynomials, and for each pair(M;p) we consider executions of machine M with time bound speci�ed by thepolynomial p. That is, we use the machine Mp obtained from the pair (M;p) bysuspending the execution of M on input x after p(jxj) steps. We stress that we donot know whether machine M runs in polynomial-time, but the computations ofany polynomial-time machine is \covered" by some pair (M;p).Next, let us clarify the process in which reductions and decision procedures areruled out. We present a construction of a \�lter" set F in P such that the �nal setS0 will equal S \ F . Recall that we need to select F such that each polynomial-time reduction of S to S\F fails, and each polynomial-time procedure for decidingS \ F fails. The key observation is that for every �nite F each polynomial-timereduction of S to S \ F fails, whereas for every co-�nite F (i.e., �nite f0; 1g� n F)each polynomial-time procedure for deciding S \ F fails. Furthermore, each ofthese failures occur on some input, and this input is determined by �nite portionsof S and F . Thus, we alternate between failing possible reductions and decisionprocedures, while not trying to determine the \optimal" points of alternation butrather determining points of alternation in a way that allows for e�ciently decidingmembership in F . Speci�cally, we let F = fx : f(jxj) � 0 mod 2g, where f : N !f0g [N is de�ned next such that f(n) can be computed in time poly(n).The value of f(n) is de�ned by the the following experiment that consists ofexactly n3 computation steps (where cubic time is selected to allow for some non-trivial manipulations of data as conducted next). For i = 0; 1; :::, we scan all inputsin lexicographic order trying to �nd an input on which the i+1st (modi�ed) machinefails (where this machine is an oracle machine if i is even and a standard machineotherwise). In order to determine whether or not a failure occurs on a particularinput x, we may need to know whether or not x is in the set S0 = S \ F as wellas whether some other strings (which may appear as queries) are in S0. Decidingmembership in S 2 NP can be done in exponential-time (by using the exhaustivesearch algorithm that tries all possible NP-witnesses). Indeed, this means that

2.4. THREE RELATIVELY ADVANCED TOPICS 87when computing f(n) we may only complete the treatment of inputs that are oflogarithmic (in n) length, but anyhow in n3 steps we can not hope to reach (inour lexicographic scanning) strings of length 3 log2 n. As for deciding membershipin F , this requires ability to compute f on adequate integers. That is, we mayneed to compute the value of f(n0) for various integers n0, but as noted n0 will bemuch smaller than n. Thus, the value of f(n0) is just computed recursively (whilecounting the recursive steps in our total number of steps).19 The point is that, whenconsidering an input x, we may need the values of f only on f1; :::; pi+1(jxj)g, wherepi+1 is the polynomial bounding the running-time of the i+1st (modi�ed) machine,and obtaining such a value takes at most pi+1(jxj)3 steps. Finally, if we detect afailure of the i+1st machine, then we increase i and proceed to the next iteration.When we reach the allowed number of steps (i.e., n3 steps), we halt outputting thecurrent value of i (i.e., the current i is output as the value of f(n)).As hinted in the foregoing, it is most likely that we will complete n3 steps muchbefore examining inputs of length 3 log2 n, but this does not matter. What mattersis that f is monotonically non-decreasing (because more steps allow to fail at leastas many machines) and that f is unbounded (see Exercise 2.34). Furthermore, byconstruction, f(n) is computed in poly(n) time.Comment: The proof of Theorem 2.27 actually establishes that for every S 62 Pthere exists S0 62 P such that S0 is Karp-reducible to S but S is not Cook-reducibleto S0.20 Thus, if P 6= NP then there exists an in�nite sequence of sets S1; S2; :::in NP n P such that Si+1 is Karp-reducible to Si but Si is not Cook-reducibleto Si+1. That is, there exists an in�nite hierarchy of problems (albeit unnaturalones), all in NP , such that each problem is \easier" than the previous ones (in thesense that it can be reduced to the previous problems while these problems cannotbe reduced to it).2.4 Three relatively advanced topicsIn this section we discuss three relatively advanced topics. The �rst topic, whichwas eluded to in previous sections, is the notion of promise problems (Section 2.4.1).Next we present an optimal search algorithm for NP (Section 2.4.2), and discussthe class (coNP) of sets that are complements of sets in NP.Teaching note: These topics are typically not mentioned in a basic course on com-plexity. Still, pending on time constraints, we suggest discussing them at least at a highlevel.19We do not bother to present a more e�cient implementation of this process. That is, we maya�ord to recompute f(n0) every time we need it (rather than store it for later use).20The said Karp-reduction (of S0 to S) maps x to itself if x 2 F and otherwise maps x to a�xed no-instance of S.

88 CHAPTER 2. P, NP AND NP-COMPLETENESS2.4.1 Promise ProblemsPromise problems are a natural generalization of search and decision problems,where one explicitly considers a set of legitimate instances (rather than consideringany string as a legitimate instance). As noted before, this provides a more adequateformulation of natural computational problems (and indeed this formulation is usedin all informal discussions). For example, in x2.3.3.2 we presented such problemsusing phrases like \given a graph and an integer..." (or \given a collection ofsets..."). In other words, we assumed that the input instance has a certain format(or rather we \promised the solver" that this is the case). Indeed, we claimed thatin these cases the assumption can be removed without a�ecting the complexity ofthe problem, but we avoided providing a formal treatment of this issue, which isdone next.Teaching note: The notion of promise problems was originally introduced in thecontext of decision problems, and is typically used only in that context. However, webelieve that promise problems are as natural in the context of search problems, andpresent things accordingly.2.4.1.1 De�nitionsIn the context of search problems, a promise problem is a relaxation in which oneis only required to �nd solutions to instances in a predetermined set, called thepromise. The requirement regarding e�cient checkability of solutions is adapted inan analogous manner.De�nition 2.28 (search problems with a promise): A search problem with a promiseconsists of a binary relation R � f0; 1g� � f0; 1g� and a promise set P . Such aproblem is also referred to as the search problem R with promise P .� The search problem R with promise P is solved by algorithm A if for everyx 2 P it holds that (x;A(x)) 2 R if x 2 SR = fx : R(x) 6= ;g and A(x) = ?otherwise, where R(x) = fy : (x; y) 2 Rg.The time complexity of A on inputs in P is de�ned as TAjP (n) def= maxx2P\f0;1gnftA(x)g,where tA(x) is the running time of A(x) and TAjP (n) = 0 if P \ f0; 1gn = ;.� The search problem R with promise P is in the promise problem extension ofPF if there exists a polynomial-time algorithm that solves this problem.21� The search problem R with promise P is in the promise problem extension ofPC if there exists a polynomial T and an algorithm A such that, for everyx 2 P and y 2 f0; 1g�, algorithm A makes at most T (jxj) steps and it holdsthat A(x; y) = 1 if and only if (x; y) 2 R.21In this case it does not matter whether the time complexity of A is de�ned on inputs in Por on all possible strings. Suppose that A has (polynomial) time complexity T on inputs in P ,then we can modify A to halt on any input x after at most T (jxj) steps. This modi�cation mayonly e�ects the output of A on inputs not in P (which is OK by us). The modi�cation can beimplemented in polynomial-time by computing t = T (jxj) and emulating the execution of A(x)for t steps. A similar comment applies to the de�nition of PC, P and NP.

2.4. THREE RELATIVELY ADVANCED TOPICS 89We stress that nothing is required of the solver in the case that the input violatesthe promise (i.e., x 62 P); in particular, in such a case the algorithm may halt witha wrong output. (Indeed, the standard formulation of search problems is obtainedby considering the trivial promise P = f0; 1g�.)22 In addition to the foregoingmotivation for promise problems, we mention one natural class of search problemswith a promise. These are search problem in which the promise is that the instancehas a solution (i.e., in terms of the foregoing notation P = SR). We refer to suchsearch problems by the name candid search problems.De�nition 2.29 (candid search problems): An algorithm A solves the candidsearch problem of the binary relation R if for every x 2 SR def= fx : 9y s.t. (x; y) 2 Rgit holds that (x;A(x)) 2 R. The time complexity of such an algorithm is de�ned asTAjSR(n) def= maxx2P\f0;1gnftA(x)g, where tA(x) is the running time of A(x) andTAjSR(n) = 0 if P \ f0; 1gn = ;.Note that nothing is required when x 62 SR: In particular, algorithm A may ei-ther output a wrong solution (although no solutions exist) or run for more thanTAjSR(jxj) steps. The �rst case can be essentially eliminated whenever R 2 PC.Furthermore, for R 2 PC, if we \know" the time complexity of algorithm A (e.g.,if we can compute TAjSR(n) in poly(n)-time), then we may modify A into an algo-rithm A0 that solves the (general) search problem of R (i.e., halts with a correctoutput on each input) in time TA0(n) = TAjSR(n) + poly(n). However, as we shallsee in Section 2.4.2, the naive assumption by which we always know the running-time of an algorithm that we design is not necessarily valid.Decision problems with a promise. In the context of decision problems, apromise problem is a relaxation in which one is only required to determine thestatus of instances that belong to a predetermined set, called the promise. Therequirement of e�cient veri�cation is adapted in an analogous manner. In viewof the standard usage of the term, we refer to decision problems with a promiseby the name promise problems. Formally, promise problems refer to a three-waypartition of the set of all strings into yes-instances, no-instances and instances thatviolate the promise. Standard decision problems are obtained as a special case byinsisting that all inputs are allowed (i.e., the promise is trivial).De�nition 2.30 (promise problems): A promise problem consists of a pair of non-intersecting sets of strings, denoted (Syes; Sno), and Syes[Sno is called the promise.� The promise problem (Syes; Sno) is solved by algorithm A if for every x 2 Syesit holds that A(x) = 1 and for every x 2 Sno it holds that A(x) = 0. Thepromise problem is in the promise problem extension of P if there exists apolynomial-time algorithm that solves it.� The promise problem (Syes; Sno) is in the promise problem extension of NP ifthere exists a polynomial p and a polynomial-time algorithm V such that thefollowing two conditions hold:22Here we refer to the formulation presented in Section 2.1.6.

90 CHAPTER 2. P, NP AND NP-COMPLETENESS1. Completeness: For every x 2 Syes, there exists y of length at most p(jxj)such that V (x; y) = 1.2. Soundness: For every x 2 Sno and every y, it holds that V (x; y) = 0.We stress that for algorithms of polynomial-time complexity, it does not matterwhether the time complexity is de�ned only on inputs that satisfy the promise oron all strings (see Footnote 21). Thus, the extended classes P and NP (like PFand PC) are invariant under this choice.Reducibility among promise problems. The notion of a Cook-reduction ex-tend naturally to promise problems, when postulating that a query that violatesthe promise (of the problem at the target of the reduction) may be answeredarbitrarily.23 That is, the oracle machine should solve the original problem nomatter how queries that violate the promise are answered. The latter requirementis consistent with the conceptual meaning of reductions and promise problems. Re-call that reductions captures procedures that make subroutine calls to an arbitraryprocedure that solves the reduced problem. But, in the case of promise problems,such a solver may behave arbitrarily on instances that violate the promise. Westress that the main property of a reduction is preserved (see Exercise 2.35): ifthe promise problem � is Cook-reducible to a promise problem that is solvable inpolynomial-time, then � is solvable in polynomial-time.We warn that the extension of a complexity class to promise problems does notnecessarily inherit the \structural" properties of the standard class. For example,in contrast to Theorem 2.33, there exists promise problems in NP \ coNP suchthat every set in NP can be Cook-reduced to them: see Exercise 2.36. Needlessto say, NP = coNP does not seem to follow from Exercise 2.36.2.4.1.2 DiscussionThe following discussion refers both to the decision and search versions of promiseproblems. Recall that promise problems o�er the most direct way of capturingnatural computational problems (e.g., when referring to computational problemsregarding graphs the promise mandates that the input is a graph).Restricting a computational problem. In addition to the foregoing motiva-tion to promise problems, we mention their use in formulating the natural notion ofa restriction of a computational problem to a subset of the instances. Speci�cally,such a restriction means that the promise set of the restricted problem is a subset ofthe promise set of the unrestricted problem. For example, when we say that 3SATis a restriction of SAT, we refer to the fact that the set of allowed instances is nowrestricted to 3CNF formulae (rather than to arbitrary CNF formulae). In both23It follows that Karp-reductions among promise problems are not allowed to make queriesthat violate the promise. Speci�cally, we say that the promise problem � = (�yes ;�no) is Karp-reducible to the promise problem �0 = (�0yes;�0no) if there exists a polynomial-time mapping fsuch that for every x 2 �yes (resp., x 2 �no) it holds that f(x) 2 �0yes (resp., f(x) 2 �0no).

2.4. THREE RELATIVELY ADVANCED TOPICS 91cases, the natural computational problem is to determine satis�ability (or to �nda satisfying assignment), but the set of instances (i.e., the promise set) is furtherrestricted in the case of 3SAT. The fact that a restricted problem is never harderthan the original problem is captured by the fact that the restricted problem isreducible to the original one (via the identity mapping).The standard convention of avoiding promise problems. Recall that, al-though promise problems provide a good framework for presenting natural compu-tational problems, we managed to avoid this formulation in previous sections. Thiswas done by relying on the fact that for all the (natural) problems considered inthe previous sections, it is easy to decide whether or not a given instance satis�esthe promise. For example, given a formula it is easy to decide whether or not it isin CNF (or 3CNF). Actually, the issue arises already when talking about formulae:What we are actually given is a string that is supposed to encode a formula (undersome predetermined encoding scheme), and so the promise (which is easy to decidefor natural encoding schemes) is that the input string is a valid encoding of someformula. In any case, if the promise is e�ciently recognizable (i.e., membership init can be decided in polynomial-time) then we may avoid mentioning the promiseby using one of the following two \nasty" conventions:1. Extending the set of instances to the set of all possible strings (and allowingtrivial solutions for the corresponding dummy instances). For example, inthe case of a search problem, we may either de�ne all instance that violatethe promise to have no solution or de�ne them to have a trivial solution (e.g.,be a solution for themselves); that is, for a search problem R with promiseP , we may consider the (standard) search problem of R where R is modi�edsuch that R(x) = ; for every x 62 P (or, say, R(x) = fxg for every x 62 P).In the case of a promise (decision) problem (Syes; Sno), we may consider theproblem of deciding membership in Syes, which means that instances thatviolate the promise are considered as no-instances.2. Considering every string as a valid encoding of an object that satis�es thepromise. That is, �xing any string x0 that satis�es the promise, we considerevery string that violates the promise as if it were x0. In the case of a searchproblem R with promise P , this means considering the (standard) searchproblem of R where R is modi�ed such that R(x) = R(x0) for every x 62 P .Similarly, in the case of a promise (decision) problem (Syes; Sno), we considerthe problem of deciding membership in Syes (provided x0 2 Sno and otherwisewe consider the problem of deciding membership in f0; 1g� n Sno).We stress that in the case that the promise is e�ciently recognizable the aforemen-tioned conventions (or modi�cations) do not e�ect the complexity of the relevant(search or decision) problem. That is, rather that considering the original promiseproblem, we consider a (search or decision) problem (without a promise) that iscomputational equivalent to the original one. Thus, in some sense we loss nothingby studying the latter problem rather than the original one. On the other hand,even in the case that these two problems are computationally equivalent, it is useful

92 CHAPTER 2. P, NP AND NP-COMPLETENESSto have a formulation that allows to distinguish between them (as we do distinguishbetween the di�erent NP-complete problems although they are all computationallyequivalent). This conceptual concern becomes of crucial importance in the case (tobe discussed next) that the promise is not e�ciently recognizable.The foregoing transformations of promise problems into computationally equiv-alent standard (decision and search) problems does not necessarily preserve thecomplexity of the problem in the case that the promise is not e�ciently recogniz-able. In this case, the terminology of promise problems is unavoidable. Consider,for example, the problem of deciding whether a Hamiltonian graph is 3-colorable.On the face of it, such a problem may have fundamentally di�erent complexity thanthe problem of deciding whether a given graph is both Hamiltonian and 3-colorable.The notion of a promise problem provides an adequate formulation for a varietyof computational complexity notions and results. Examples include the notion of\unique solutions" (see Section 6.2.3) and the formulation of \gap problems" ascapturing various approximation tasks (see Section 10.1).2.4.1.3 The common conventionIn spite of the foregoing opinions, we adopt the common convention of focusing onstandard decision and search problems. That is, by default, all complexity classesrefer to standard decision and search problems, and the exceptions in which werefer to promise problems are stated explicitly as such. Such exceptions appear inSections 2.4.2, 6.1.2, 6.2.3, and 10.1.2.4.2 Optimal search algorithms for NPWe refer to the candid search problem of any relation in PC. Recall that PC isthe class of search problems that allow for e�cient checking of the correctness ofcandidate solutions (see De�nition 2.3), and that the candid search problem isa search problem in which the solver is promised that the given instance has asolution (see De�nition 2.29).We claim the existence of an optimal algorithm for solving the candid searchproblem of any relation in PC. Furthermore, we will explicitly present such analgorithm, and prove that it is optimal in a very strong sense: for any algorithmsolving the candid search problem of R 2 PC, our algorithm solves the sameproblem in time that is at most a constant factor slower (ignoring a �xed additivepolynomial term, which may be disregarded in the case that the problem is notsolvable in polynomial-time). Needless to say, we do not know the time complexityof the aforementioned optimal algorithm (indeed if we knew it then we would haveresolved the P-vs-NP Question). In fact, the P-vs-NP Question boils down todetermining the time complexity of a single explicitly presented algorithm (i.e., theoptimal algorithm claimed in Theorem 2.31).Theorem 2.31 For every binary relation R 2 PC there exists an algorithm A thatsatis�es the following:1. A solves the candid search problem of R.

2.4. THREE RELATIVELY ADVANCED TOPICS 932. There exists a polynomial p such that for every algorithm A0 that solves thecandid search problem of R and for every x 2 SR def= fx : R(x) 6= ;g it holdsthat tA(x) = O(tA0(x) + p(jxj)), where tA (resp., tA0) denotes the number ofsteps taken by A (resp., A0) on input x.Interestingly, we establish the optimality of A without knowing what its (optimal)running-time is. Furthermore, the optimality claim is \point-wise" (i.e., it refers toany input) rather than \global" (i.e., referring to the (worst case) time complexityas a function of the input length).We stress that the hidden constant in the O-notation depends only on A0, butin the following proof the dependence is exponential in the length of the descriptionof algorithm A0 (and it is not known whether a better dependence can be achieved).Indeed, this dependence as well as the idea underlying it constitute one negativeaspect of this otherwise amazing result. Another negative aspect is that the opti-mality of algorithm A refers only to inputs that have a solution (i.e., inputs in SR).Finally, we note that the theorem as stated refers only to models of computationthat have machines that can emulate a given number of steps of other machineswith a constant overhead. We mention that in most natural models the overheadof such emulation is at most poly-logarithmic in the number of steps, in which caseit holds that tA(x) = eO(tA0(x) + p(jxj)).Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decidesmembership in R, and let p be a polynomial bounding the running-time of M (asa function of the length of the �rst element in the input pair). We present thefollowing algorithm A that merely emulates all possible search algorithms \in par-allel" and checks the result provided by each of them (using M), halting wheneverit obtains a correct solution.Since there are in�nitely many possible algorithms, it may not be clear whatwe mean by the expression \emulating all possible algorithms in parallel." Whatwe mean is emulating them at di�erent \rates" such that the in�nite sum of theserates converges to 1 (or to any other constant). Speci�cally, we will emulate the ithpossible algorithm at rate 1=(i+ 1)2, which means emulating a single step of thisalgorithm per (i + 1)2 emulation steps (performed for all algorithms). Note thata straightforward implementation of this idea may create a signi�cant overhead,involved in switching frequently from the emulation of one machine to the emulationof another. Instead, we present an alternative implementation that proceeds initerations.In the jth iteration, for i = 1; :::; 2j=2�1, algorithm A emulates 2j=(i+1)2 stepsof the ith machine (where the machines are ordered according to the lexicographicorder of their descriptions). Each of these emulations is conducted in one chunk,and thus the overhead of switching between the various emulations is insigni�cant(in comparison to the total number of steps being emulated). In the case that someof these emulations halts with output y, algorithm A invokes M on input (x; y)and output y if and only if M(x; y) = 1. Furthermore, the veri�cation of a solutionprovided by a candidate algorithm is also emulated at the expense of its step-count.(Put in other words, we augment each algorithm with a canonical procedure (i.e.,

94 CHAPTER 2. P, NP AND NP-COMPLETENESSM) that checks the validity of the solution o�ered by the algorithm.)By its construction, whenever A(x) outputs a string y (i.e., y 6= ?) it must holdthat (x; y) 2 R. To show the optimality of A, we consider an arbitrary algorithmA0 that solves the candid search problem of R. Our aim is to show that A isnot much slower than A0. Intuitively, this is the case because the overhead of Aresults from emulating other algorithms (in addition to A0), but the total numberof emulation steps wasted (due to these algorithms) is inversely proportional tothe rate of algorithm A0, which in turn is exponentially related to the length ofthe description of A0. The punch-line is that since A0 is �xed, the length of itsdescription is a constant. Details follow.For every x, let us denote by t0(x) the number of steps taken by A0 on input x,where t0(x) also accounts for the running time of M(x; �); that is, t0(x) = tA0(x) +p(jxj), where tA0(x) is the number of steps taken by A0(x). Then, the emulation oft0(x) steps of A0 on input x is \covered" by the jth iteration of A, provided that2j=(2jA0j+1)2 � t0(x) where jA0j denotes the length of the description of A0. (Indeed,we use the fact that the algorithms are emulated in lexicographic order, and notethat there are at most 2jA0j+1 � 2 algorithms that precede A0 in lexicographicorder.) Thus, on input x, algorithm A halts after at most jA0(x) iterations, wherejA0(x) = 2(jA0j+1)+ log2(tA0(x)+ p(jxj)), after emulating a total number of stepsthat is at mostt(x) def= jA0 (x)Xj=1 2j=2�1Xi=1 2j(i+ 1)2 < 2jA0 (x)+1 = 22jA0j+3 � (tA0(x) + p(jxj)):The question of how much time is required for emulating these many steps dependson the speci�c model of computation. In many models of computation, the em-ulation of t steps of one machine by another machine requires eO(t) steps of theemulating machines, and in some models this emulation can even be performedwith constant overhead. The theorem follows.Comment: By construction, the foregoing algorithm A does not halt on inputx 62 SR. This can be easily recti�ed by letting A emulate a straightforward ex-haustive search for a solution, and halt with output ? if this this exhaustive searchindicates that there is no solution to the current input. This extra emulation canbe performed in parallel to all other emulations (e.g., at a rate of one step for theextra emulation per each step of everything else).2.4.3 The class coNP and its intersection with NPBy prepending the name of a complexity class (of decision problems) with the pre�x\co" we mean the class of complement sets; that is,coC def= ff0; 1g� n S : S 2 CgSpeci�cally, coNP = ff0; 1g� n S : S 2 NPg is the class of sets that are comple-ments of sets in NP .

2.4. THREE RELATIVELY ADVANCED TOPICS 95Recalling that sets in NP are characterized by their witness relations such thatx 2 S if and only if there exists an adequate NP-witness, it follows that theircomplement sets consists of all instances for which there are no NP-witness (i.e.,x 2 f0; 1g� nS if there is no NP-witness for x being in S). For example, SAT 2 NPimplies that the set of unsatis�able CNF formulae is in coNP . Likewise, the setof graphs that are not 3-colorable is in coNP . (Jumping ahead, we mention thatit is widely believed that these sets are not in NP .)Another perspective on coNP is obtained by considering the search problemsin PC. Recall that for such R 2 PC, the set of instances having a solution (i.e.,SR = fx : 9y s.t. (x; y)2Rg) is in NP . It follows that the set of instances havingno solution (i.e., f0; 1g� n SR = fx : 8y (x; y) 62Rg) is in coNP .It is widely believed that NP 6= coNP (which means that NP is not closedunder complementation). Indeed, this conjecture implies P 6= NP (because P isclosed under complementation). The conjecture NP 6= coNP means that somesets in coNP do not have NP-proof systems (because NP is the class of sets havingNP-proof systems). As we will show next, under this conjecture, the complementsof NP-complete sets do not have NP-proof systems; for example, there exists noNP-proof system for proving that a given CNF formula is not satis�able. We �rstestablish this fact for NP-completeness in the standard sense (i.e., under Karp-reductions, as in De�nition 2.16).Proposition 2.32 Suppose that NP 6= coNP and let S 2 NP such that every setin NP is Karp-reducible to S. Then S def= f0; 1g� n S is not in NP.Proof Sketch: We �rst observe that the fact that every set in NP is Karp-reducible to S implies that every set in coNP is Karp-reducible to S. We nextclaim that if S0 is in NP then every set that is Karp-reducible to S0 is also in NP .Applying the claim to S0 = S, we conclude that S 2 NP implies coNP � NP ,which in turn implies NP = coNP in contradiction to the main hypothesis.We now turn to prove the foregoing claim; that is, we prove that if S0 has an NP-proof system and S00 is Karp-reducible to S0 then S00 has an NP-proof system. LetV 0 be the veri�cation procedure associated with S0, and let f be a Karp-reductionof S00 to S0. Then, we de�ne the veri�cation procedure V 00 (for membership in S00)by V 00(x; y) = V 0(f(x); y). That is, any NP-witness that f(x) 2 S0 serves as anNP-witness for x 2 S00 (and these are the only NP-witnesses for x 2 S00). This maynot be a \natural" proof system (for S00), but it is de�nitely an NP-proof systemfor S00.Assuming that NP 6= coNP , Proposition 2.32 implies that sets in NP \ coNPcannot be NP-complete with respect to Karp-reductions. In light of other limita-tions of Karp-reductions (see, e.g., Exercise 2.7), one may wonder whether or notthe exclusion of NP-complete sets from the class NP \ coNP is due to the useof a restricted notion of reductions (i.e., Karp-reductions). The following theoremasserts that this is not the case: some sets in NP cannot be reduced to sets in theintersection NP \ coNP even under general reductions (i.e., Cook-reductions).

96 CHAPTER 2. P, NP AND NP-COMPLETENESSTheorem 2.33 If every set in NP can be Cook-reduced to some set in NP\coNPthen NP = coNP.In particular, assuming NP 6= coNP , no set in NP \ coNP can be NP-complete,even when NP-completeness is de�ned with respect to Cook-reductions. SinceNP \ coNP is conjectured to be a proper superset of P , it follows (assumingNP 6= coNP) that there are decision problems in NP that are neither in Pnor NP-hard (i.e., speci�cally, the decision problems in (NP \ coNP) n P). Westress that Theorem 2.33 refers to standard decision problems and not to promiseproblems (see Section 2.4.1 and Exercise 2.36).Proof: Analogously to the proof of Proposition 2.32 , the current proof boils downto proving that if S is Cook-reducible to a set in NP\coNP then S 2 NP\coNP .Using this claim, the theorem's hypothesis implies that NP � NP \ coNP , whichin turn implies NP � coNP and NP = coNP .Fixing any S and S0 2 NP \ coNP such that S is Cook-reducible to S0, weprove that S 2 NP (and the proof that S 2 coNP is similar).24 Let us denote byM the oracle machine reducing S to S0. That is, on input x, machine M makesqueries and decides whether or not to accept x, and its decision is correct providedall queries are answered according to S0. To show that S 2 NP , we will presentan NP-proof system for S. This proof system (or rather its veri�cation procedure),denoted V , accepts a pair of the form (x; ((z1; �1; w1); :::; (zt; �t; wt)) if the followingtwo conditions hold:1. On input x, machine M accepts after making the queries z1; :::; zt, and ob-taining the corresponding answers �1; :::; �t.That is, V check that, on input x, after obtaining the answers �1; :::; �i�1 tothe �rst i � 1 queries, the ith query made by M equals zi. In addition, Vchecks that M outputs 1 (indicating acceptance), while making the queriesz1; :::; zt and receiving the answers �1; :::; �t, respectively.2. For every i, it holds that if �i = 1 then wi is an NP-witness for zi 2 S0,whereas if �i = 0 then wi is an NP-witness for zi 2 f0; 1g� n S0.Thus, if this condition holds then it is the case that each �i indicates thecorrect status of zi with respect to S0 (i.e., �i = 1 if and only if zi 2 S0).We stress that we use the fact that both S0 and S0 def= f0; 1g� n S have NP-proofsystems, and refer to the corresponding NP-witnesses.Note that V is indeed an NP-proof system for S. Firstly, the length of thecorresponding witnesses is bounded by the running-time of the reduction (and thelength of the NP-witnesses supplied for the various queries). Next note that Vruns in polynomial time (i.e., verifying the �rst condition requires an emulation ofthe polynomial-time execution of M on input x when using the �i's to emulate the24Alternatively, we show that S 2 coNP by applying the following argument to S def= f0; 1g� nSand noting that S is Cook-reducible to S0 (via S, or alternatively that S is Cook-reducible tof0; 1g� n S0 2 NP \ coNP).

2.4. THREE RELATIVELY ADVANCED TOPICS 97oracle, whereas verifying the second condition is done by invoking the relevant NP-proof systems). Finally, observe that x 2 S if and only if there exists a sequencey def= ((z1; �1; w1); :::; (zt; �t; wt)) such that V (x; y) = 1. In particular, V (x; y) = 1holds only if y contains a valid sequence of queries and answers made by M(x) andanswered by the oracle S0, and M accepts based on that sequence.The world view { a digest. Recall that on top of the P 6= NP conjecture, wementioned two other conjectures (which clearly imply P 6= NP):1. The conjecture that NP 6= coNP (equivalently, NP \ coNP 6= NP).This conjecture is equivalent to the conjecture that CNF formulae have noshort proofs of unsatis�ability (i.e., the set f0; 1g� n SAT has no NP-proofsystem).2. The conjecture that NP \ coNP 6= P .Notable candidates for the class NP \ coNP 6= P include decision problemsthat are computationally equivalent to the integer factorization problem (i.e.,the search problem (in PC) in which, given a composite number, the task isto �nd its prime factors).Combining these conjectures, we get the world view depicted in Figure 2.5, whichalso shows the class of coNP-complete sets (de�ned next).
P

NPC

coNP

NP

coNPCFigure 2.5: The world view under P 6= coNP \NP 6= NP .De�nition 2.34 A set S is called coNP-hard if every set in coNP is Karp-reducible to S. A set is called coNP-complete if it is both in coNP and coNP-hard.Indeed, insisting on Karp-reductions is essential for a distinction between NP-hardness and coNP-hardness.

98 CHAPTER 2. P, NP AND NP-COMPLETENESSChapter NotesMany sources provide historical accounts of the developments that led to the formu-lation of the P vs NP Problem and to the discovery of the theory of NP-completeness(see, e.g., [81, Sec. 1.5] and [210]). Still, we feel that we should not refrain fromo�ering our own impressions, which are based on the texts of the original papers.Nowadays, the theory of NP-completeness is commonly attributed to Cook [55],Karp [130], and Levin [145]. It seems that Cook's starting point was his interestin theorem proving procedures for propositional calculus [55, P. 151]. Trying toprovide evidence to the di�culty of deciding whether or not a given formula is a tau-tology, he identi�ed NP as a class containing \many apparently di�cult problems"(cf, e.g., [55, P. 151]), and showed that any problem in NP is reducible to decidingmembership in the set of 3DNF tautologies. In particular, Cook emphasized theimportance of the concept of polynomial-time reductions and the complexity classNP (both explicitly de�ned for the �rst time in his paper). He also showed thatCLIQUE is computationally equivalent to SAT, and envisioned a class of problems ofthe same nature.Karp's paper [130] can be viewed as ful�lling Cook's prophecy: Stimulated byCook's work, Karp demonstrated that a \large number of classic di�cult computa-tional problems, arising in �elds such as mathematical programming, graph theory,combinatorics, computational logic and switching theory, are [NP-]complete (andthus equivalent)" [130, P. 86]. Speci�cally, his list of twenty-one NP-complete prob-lems includes Integer Linear Programming, Hamilton Circuit, Chromatic Number,Exact Set Cover, Steiner Tree, Knapsack, Job Scheduling, and Max Cut. Interest-ingly, Karp de�ned NP in terms of veri�cation procedures (i.e., De�nition 2.5),pointed to its relation to \backtrack search of polynomial bounded depth", andviewed NP as the residence of a \wide range of important computational prob-lems" (which are not in P).Independently of these developments, while being in the USSR, Levin proved theexistence of \universal search problems" (where universality meant NP-completeness).The starting point of Levin's work [145] was his interest in the \perebor" conjec-ture asserting the inherent need for brute-force in some search problems that havee�ciently checkable solutions (i.e., problems in PC). Levin emphasized the impli-cation of polynomial-time reductions on the relation between the time complexityof the related problem (for any growth rate of the time complexity), asserted theNP-completeness of six \classical search problems", and claimed that the underly-ing method \provides a mean for readily obtaining" similar results for \many otherimportant search problems."It is interesting to note that although the works of Cook [55], Karp [130], andLevin [145] were received with di�erent levels of enthusiasm, none of the con-temporaries realized the depth of the discovery and the di�culty of the questionposed (i.e., the P-vs-NP Question). This fact is evident in every account from theearly 1970's, and may explain the frustration of the corresponding generation ofresearchers, which expected the P-vs-NP Question to be resolved in their life-time(if not in a matter of years). Needless to say, the author's opinion is that therewas absolutely no justi�cation for these expectations, and that one should have

2.4. THREE RELATIVELY ADVANCED TOPICS 99actually expected quite the opposite.We mention that the three \founding papers" of the theory of NP-completeness(i.e., Cook [55], Karp [130], and Levin [145]) use the three di�erent types of reduc-tions used in this chapter. Speci�cally, Cook uses the general notion of polynomial-time reduction [55], often referred to as Cook-reductions (De�nition 2.9). Thenotion of Karp-reductions (De�nition 2.10) originates from Karp's paper [130],whereas its augmentation to search problems (i.e., De�nition 2.11) originates fromLevin's paper [145]. It is worth noting that unlike Cook and Karp's works, whichtreat decision problems, Levin's work is stated in terms of search problems.The reductions presented in x2.3.3.2 are not necessarily the original ones. Mostnotably, the reduction establishing the NP-hardness of the Independent Set prob-lem (i.e., Proposition 2.25) is adapted from [70] (see also Exercise 9.14). In contrast,the reductions presented in x2.3.3.1 are merely a re-interpretation of the originalreduction as presented in [55]. The equivalence of the two de�nitions of NP (i.e.,Theorem 2.8) was proved in [130].The existence of NP-sets that are neither in P nor NP-complete (i.e., Theo-rem 2.27) was proven by Ladner [142], Theorem 2.33 was proven by Selman [188],and the existence of optimal search algorithms for NP-relations (i.e., Theorem 2.31)was proven by Levin [145]. (Interestingly, the latter result was proved in the samepaper in which Levin presented the discovery of NP-completeness, independentlyof Cook and Karp.) Promise problems were explicitly introduced by Even, Selmanand Yacobi [68]; see [91] for a survey of their numerous applications.We mention that the standard reductions used to establish natural NP-completenessresults have several additional properties or can be modi�ed to have such properties.These properties include an e�cient transformation of solutions in the direction ofthe reduction (see Exercise 2.28), the preservation of the number of solutions (seeExercise 2.29), being computable by a log-space algorithm (see Section 5.2.2), andbeing invertible in polynomial-time (see Exercise 2.30).ExercisesExercise 2.1 (PF contains problems that are not in PC) Show that PF con-tains some (unnatural) problems that are not in PC.Guideline: Consider the relation R = f(x; 1) : x 2 f0; 1g�g [f(x; 0) : x 2 Sg, where S issome undecidable set. Note that R is the disjoint union of two binary relations, denotedR1 and R2, where R1 is in PF whereas R2 is not in PC. Furthermore, for every x it holdsthat R1(x) 6= ;.Exercise 2.2 Show that any S 2 NP has many di�erent NP-proof systems (i.e.,veri�cation procedures V1; V2; ::: such that Vi(x; y) = 1 does not imply Vj(x; y) = 1for i 6= j).Guideline: For V and p be as in De�nition 2.5, de�ne Vi(x; y) = 1 if jyj = p(jxj)+ i andthere exists a pre�x y0 of y such that V (x; y0) = 1.

100 CHAPTER 2. P, NP AND NP-COMPLETENESSExercise 2.3 Relying on the fact that primality is decidable in polynomial-timeand assuming that there is no polynomial-time factorization algorithm, present two\natural but fundamentally di�erent" NP-proof systems for the set of compositenumbers.Guideline: Consider the following veri�cation procedures V1 and V2 for the set of com-posite numbers. Let V1(n; y) = 1 if and only if y = n and n is not a prime, andV2(n;m) = 1 if and only if m is a non-trivial divisor of n. Show that valid proofs withrespect to V1 are easy to �nd, whereas valid proofs with respect to V2 are hard to �nd.Exercise 2.4 Regarding De�nition 2.7, show that if S is accepted by some non-deterministic machine of time complexity t then it is accepted by a non-deterministicmachine of time complexity O(t) that has a transition function that maps each pos-sible symbol-state pair to exactly two triples.Exercise 2.5 Verify the following properties of Cook-reductions:1. If � is Cook-reducible to �0 and �0 is solvable in polynomial-time then so is�.2. Cook-reductions are transitive (i.e., if � is Cook-reducible to �0 and �0 isCook-reducible to �00 then � is Cook-reducible to �00).3. If � is solvable in polynomial-time then it is Cook-reducible to any problem�0.In continuation to the last item, show that a problem � is solvable in polynomial-time if and only if it is Cook-reducible to a trivial problem (e.g., deciding member-ship in the empty set).Exercise 2.6 Show that Karp-reductions (and Levin-reductions) are transitive.Exercise 2.7 Show that some decision problems are not Karp-reducible to theircomplement (e.g., the empty set is not Karp-reducible to f0; 1g�).A popular exercise of dubious nature is showing that any decision problem in Pis Karp-reducible to any non-trivial decision problem, where the decision problemregarding a set S is called non-trivial if S 6= ; and S 6= f0; 1g�. It follows thatevery non-trivial set in P is Karp-reducible to its complement.Exercise 2.8 (reducing search problems to optimization problems) For ev-ery polynomially bounded relation R (resp., R 2 PC), present a function f (resp.,a polynomial-time computable function f) such that the search problem of R iscomputationally equivalent to the search problem in which given (x; v) one has to�nd a y 2 f0; 1gpoly(jxj) such that f(x; y) � v.(Hint: use a Boolean function.)Exercise 2.9 (binary search) Show that using ` binary queries of the form \isz � v" it is possible to determine the value of an integer z that is a priori knownto reside in the interval [0; 2` � 1].Guideline: Consider a process that iteratively halves the interval in which z is knownto reside in.

2.4. THREE RELATIVELY ADVANCED TOPICS 101Exercise 2.10 Show that if R 2 PC nPF is self-reducible then the relevant Cook-reduction makes more than a logarithmic number of queries to SR. More generally,show that if R 2 PC n PF is Cook-reducible to any decision problem, then thisreduction makes more than a logarithmic number of queries.Guideline: Note that the oracle answers can be emulated by trying all possibilities, andthat the correctness of the output of the oracle machine can be e�ciently tested.Exercise 2.11 Show that the standard search problem of Graph 3-Colorability isself-reducible, where this search problem consists of �nding a 3-coloring for a giveninput graph.(Hint: Iteratively extend the current pre�x of a 3-coloring of the graph by making adequateoracle calls to the decision problem of Graph 3-Colorability. Speci�cally, encode the questionof whether or not (�1; :::; �t) 2 f1; 2; 3gt is a pre�x of a 3-coloring of the graph G as a queryregarding the 3-colorability of an auxiliary graph G0.)25Exercise 2.12 Show that the standard search problem of Graph Isomorphismis self-reducible, where this search problem consists of �nding an isomorphismbetween a given pair of graphs.(Hint: Iteratively extend the current pre�x of an isomorphism between the two N-vertex graphsby making adequate oracle calls to the decision problem of Graph Isomorphism. Speci�cally,encode the question of whether or not (�1; :::; �t) 2 [N]t is a pre�x of an isomorphism betweenG1 = ([N]; E1) and G2 = ([N]; E2) as a query regarding isomorphism between two auxiliarygraphs G01 and G02.)26Exercise 2.13 (downwards self-reducibility) We say that S is downwards self-reducible if there exists a Cook-reduction of S to itself that only makes queries thatare each shorter than the reduction's input (i.e., if on input x the reduction makesthe query q then jqj < jxj).271. Show that SAT is downwards self-reducible with respect to a natural encodingof CNF formulae. Note that this encoding should have the propery thatinstantiating a variable in a formula results in a shorter formula.A harder exercise consists of showing that Graph 3-Colorability is downwardsself-reducible with respect to some reasonable encoding of graphs. Note thatthis encoding has to be selected carefully (if it is to work for a process anal-ogous to the one used in Exercise 2.11).25Note that we merely need to check whether G has a 3-coloring in which the equalities andinequalities induced by (�1; :::; �t) hold. This can be done by adequate gadgets (e.g., inequalityis enforced by an edge between the corresponding vertices, whereas equality is enforced by anadequate subgraph that includes the relevant vertices as well as auxiliary vertices). For Part 1 ofExercise 2.13, equality is better enforced by combining the two vertices.26This can be done by attaching adequate gadgets to pairs of vertices that we wish to be mappedto one another (by the isomorphism). For example, we may connect the vertices in the ith pairto an auxiliary star consisting of (N + i) vertices.27Note that on some instances the reduction may make no queries at all. (This prevent apossible non-viability of the de�nition due to very short instances.)

102 CHAPTER 2. P, NP AND NP-COMPLETENESS2. Suppose that S is downwards self-reducible by a reduction that outputs thedisjunction of the oracle answers. (Note that this is the case for SAT.) Showthat in this case, S is characterized by a witness relation R 2 PC (i.e.,S = fx : R(x) 6= ;g) that is self-reducible (i.e., the search problem of R isCook-reducible to S). Needless to say, it follows that S 2 NP .Guideline: Include (x0; hx1; :::; xti) in R if xt 2 S \ f0; 1gO(1) and, for everyi 2 f0; 1; :::; t�1g, on input xi the self-reduction makes a set of queries that containsxi+1. Prove that, indeed, R 2 PC and S = fx : R(x) 6= ;g.Note that the notion of downwards self-reducibility may be generalized in somenatural ways. For example, we may say that S is downwards self-reducible also incase it is computationally equivalent to some set that is downwards self-reducible(in the foregoing strict sense). Note that Part 2 still holds.Exercise 2.14 (NP problems that are not self-reducible) Assuming that P 6=NP \ coNP , show that there exists a search problem R in PC that is not self-reducible (i.e., the search problem of R is not Cook-reducible to the decision prob-lem SR implicit in R). Prove that it follows that S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg is not Cook-reducible to SR = fx : 9y s.t. (x; y)2Rg.Guideline: Given S 2 NP \ coNP n P, present relations R1; R2 2 PC such that S =fx : R1(x) 6= ;g = fx : R2(x) = ;g. Then, consider the relation R = f(x; 1y) : (x; y) 2R1g [f(x; 0y) : (x; y) 2 R2g, and prove that R 62 PF but SR = f0; 1g�.Exercise 2.15 In continuation to Exercise 2.14 and assuming that P 6= NP ,present a search problem R in PC such that deciding S0R is not reducible to thesearch problem of R.Guideline: Consider the relation R = f(x; 0x) : x 2 f0; 1g�g [f(x; 1y) : (x; y) 2 R0g,where R0 is an arbitrary relation in PC n PF , and prove that R 2 PF but S0R 62 P.Exercise 2.16 In continuation to Exercise 2.14, present a natural search problemR in PC such that if factoring integers is intractable then the search problem R(and so also S0R) is not reducible to SR.Guideline: Consider the relation R such that (N;Q) 2 R if the integer Q is a non-trivialdivisor of the integer N . Use the fact that SR is in P.Exercise 2.17 In continuation to Exercises 2.14 and 2.16, show that under suit-able assumptions there exists relations R1; R2 2 PC having the same implicit-decision problem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) such that R1 isself-reducible but R2 is not.Exercise 2.18 Provide an alternative proof of Theorem 2.15 without referring tothe set S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg. Hint: use Proposition 2.14.Guideline: Reduce the search problem of R to the search problem of RSAT, next reduceRSAT to SAT, and �nally reduce SAT to SR. Justify the existence of each of these threereductions.

2.4. THREE RELATIVELY ADVANCED TOPICS 103Exercise 2.19 Prove that Bounded Halting and Bounded Non-Halting are NP-complete, where the problems are de�ned as follows. The instance consists of a pair(M; 1t), where M is a Turing machine and t is an integer. The decision version ofBounded Halting (resp., Bounded Non-Halting) consists of determining whetheror not there exists an input (of length at most t) on which M halts (resp., does nothalt) in t steps, whereas the search problem consists of �nding such an input.(Hint: Either modify the proof of Theorem 2.18 or present a reduction of (say) the searchproblem of Ru to the search problem of Bounded (Non-)Halting. Indeed, the exercise is morestraightforward in the case of Bounded Halting.)Exercise 2.20 In the proof of Theorem 2.20, we claimed that the value of eachentry in the \array of con�gurations" of a machine M is determined by the valuesof the three entries that reside in the row above it (as in Figure 2.1). Present afunction fM : �3 ! �, where � = �� (Q [f?g), that substantiates this claim.Guideline: For example, for every �1; �2; �3 2 �, it holds that fM((�1;?); (�2;?); (�3;?)) =(�2;?). More interestingly, if the transition function of M maps (�; q) to (�; p;+1)then, for every �1; �2; �3 2 Q, it holds that fM ((�; q); (�2;?); (�3;?)) = (�2; p) andfM ((�1;?); (�; q); (�3;?)) = (�;?).Exercise 2.21 Present and analyze a reduction of SAT to 3SAT.Guideline: For a clause C, consider auxiliary variables such that the ith variable indicateswhether one of the �rst i literals is satis�ed, and replace C by a 3CNF that uses theoriginal variables of C as well as the auxiliary variables. For example, the clause _ti=1xiis replaced by the conjunction of 3CNFs that are logically equivalent to the formulae(y2 � (x1 _ x2)), (yi � (yi�1 _ xi)) for i = 3; :::; t, and yt. We comment that this is notthe standard reduction, but we �nd it more appealing conceptually.28Exercise 2.22 (e�cient solvability of 2SAT) In contrast to Exercise 2.21, provethat 2SAT (i.e., the satis�ability of 2CNF formulae) is in P .Guideline: Consider the following \forcing process" for CNF formulae. If the formulacontains a singleton clause (i.e., a clause having a single literal), then the correspondingvariable is assigned the only value that satis�es the clause, and the formula is simpli�edaccordingly (possibly yielding a constant, which is either true or false). The processis repeated until the formula is either a constant or contains only 2-literal clauses. Notethat a formula � is satis�able if and only if the formula obtained from � by the forcingprocess is satis�able.1. Prove that a 2CNF formula is unsatis�able if and only if there exists a variable suchthat any truth assignment to this variable yields a formula that the forcing processmaps to the constant false.(Extra hint: Applying the forcing process to a 2CNF formula we obtain a sub-formula ofit; that is, each clause of the resulting formula is a clause (rather than a sub-clause) of theoriginal formula.)2. Using Part 1, present a polynomial-time algorithm for solving the search problemof 2SAT.28The standard reduction replaces the clause _ti=1xi by the conjunction of the 3CNFs (x1 _x2 _ z2), ((:zi�1) _ xi _ zi) for i = 3; :::; t, and :zt.

104 CHAPTER 2. P, NP AND NP-COMPLETENESSExercise 2.23 (Integer Linear Programming) Prove that the following prob-lem is NP-complete. An instance of the problem is a systems of linear inequalities(say with integer constants), and the problem is to determine whether the systemhas an integer solution. For example, is there an integer solution to the followingsystem x+ 2y � z � 3�3x� z � �5x � 0�x � �1Guideline: Reduce from SAT. Speci�cally, consider an arithmetization of the input CNFby replacing _ with addition and :x by 1�x. Thus, each clause gives rize to an inequality(e.g., the clause x _ :y is replaced by the inequality x + (1 � y) � 1, which simpli�esto x � y � 2). Enforce a 0-1 solution by introducing inequalities of the form x � 0 and�x � �1, for every variable x.Exercise 2.24 (Maximum Satis�ability of Linear Systems over GF(2)) Provethat the following problem is NP-complete. An instance of the problem consists ofa systems of linear equations over GF(2) and an integer k, and the problem is todetermine whether there exists an assignment that satis�es at least k equations.(Note that the problem of determining whether there exists an assignment thatsatis�es all the equations is in P .)Guideline: Reduce from 3SAT, using an arithetization similar to the one in Exercise 2.23.Speci�cally, replace each clause that contains t � 3 literals by 2t�1 linear GF(2) equationsthat correspond to the di�erent non-empty subsets of these literals, and assert that theirsum (modulo 2) equals one; for example, the clause x _ :y is replaced by the equationsx + (1 � y) = 1, x = 1, and 1 � y = 1. Identifying ffalse; trueg with f0; 1g, provethat if the original clause is satis�ed by a Boolean assignment v then exactly 2t�1 of thecorresponding equations are satis�ed by v, whereas if the original clause is unsatis�ed byv then none of the corresponding equations is satis�ed by v.Exercise 2.25 (Satis�ability of Quadratic Systems over GF(2)) Prove thatthe following problem is NP-complete. An instance of the problem consists of a sys-tem of quadratic equations over GF(2), and the problem is to determine whetherthere exists an assignment that satis�es all the equations. Note that the resultholds also for systems of quadratic equations over the reals (by adding conditionsthat enforce a value in f0; 1g).Guideline: Start by showing that the corresponding problem for cubic equations is NP-complete, by a reduction from 3SAT that maps the clause x _ :y _ z to the equation(1 � x) � y � (1 � z) = 0. Reduce the problem for cubic equations to the problem forquadaric equations by introducing auxiliary variables; that is, given an instance withvariables x1; :::; xn, introduce the auxiliary variables xi;j 's and add equations of the formxi;j = xi � xj .

2.4. THREE RELATIVELY ADVANCED TOPICS 105Exercise 2.26 (Clique and Independent Set) The instance of the IndependentSet problem consists of a pair (G;K), where G is a graph and K is an integer, andthe question is whether or not the graph G contains an independent set (i.e., a setwith no edges between its members) of size (at least) K. The Clique problem isanalogous. Prove that both problems are computationally equivalent to the VertexCover problem.Exercise 2.27 (an alternative proof of Proposition 2.25) Consider the fol-lowing sketch of a reduction of 3SAT to Independent Set. On input a 3CNFformula � with m clauses and n variables, we construct a graph G� consisting of mtriangles (corresponding to the m clauses) augmented with edges that link con
ict-ing literals. That is, if x appears as the ith1 literal of the jth1 clause and :x appearsas the ith2 literal of the jth2 clause, then we draw an edge between the ith1 vertex ofthe jth1 triangle and the ith2 vertex of the jth2 triangle. Prove that � 2 3SAT if andonly if G� has an independent set of size m.Exercise 2.28 (additional properties of standard reductions) In continua-tion to the discussion in the main text, consider the following augmented form ofKarp-reductions. Such a reduction of R to R0 consists of three polynomial-timemappings (f; h; g) such that f is a Karp-reduction of SR to SR0 and the followingtwo conditions hold:1. For every (x; y) 2 R it holds that (f(x); h(x; y)) 2 R0.2. For every (f(x); y0) 2 R0 it holds that (x; g(x; y0)) 2 R.(We note that this de�nition is actually the one used by Levin in [145], except thathe restricted h and g to only depend on their second argument.)Prove that such a reduction implies both a Karp-reduction and a Levin-Reduction,and show that all reductions presented in this chapter satisfy this augmented re-quirement. Furthermore, prove that in all these cases the main mapping (i.e., f)is 1-1 and polynomial-time invertible.Exercise 2.29 (parsimonious reductions) Let R;R0 2 PC and let f be a Karp-reduction of SR = fx : R(x) 6=;g to SR0 = fx : R0(x) 6=;g. We say that f is parsi-monious (with respect to R and R0) if for every x it holds that jR(x)j = jR0(f(x))j.For each of the reductions presented in this chapter, checked whether or not itis parsimonious. For the reductions that are not parsimonious, �nd alternativereductions that are parsimonious (cf. [81, Sec. 7.3]).Exercise 2.30 (on polynomial-time invertible reductions (following [35]))We say that a set S is markable if there exists a polynomial-time (marking) algo-rithm M such that1. For every x; � 2 f0; 1g� it holds that(a) M(x; �) 2 S if and only if x 2 S.(b) jM(x; �)j > jxj.

106 CHAPTER 2. P, NP AND NP-COMPLETENESS2. There exists a polynomial-time (de-marking) algorithmD such that, for everyx; � 2 f0; 1g�, it holds that D(M(x; �)) = �.Note that all natural NP-sets (e.g., those considered in this chapter) are markable.Prove that if S0 is Karp-reducible to S and S is markable then S0 is Karp-reducibleto S by a length-increasing, one-to-one, and polynomial-time invertable mapping.29Infer that for any natural NP-complete problem S, any set in NP is Karp-reducibleto S by a length-increasing, one-to-one, and polynomial-time invertable mapping.Guideline: Let f be a Karp-reduction of S0 to S, and let M be the guaranteed markingalgorithm. Consider the reduction that maps x to M(f(x); x).Exercise 2.31 (on the isomorphism of NP-complete sets (following [35]))Suppose that S and T are Karp-reducible to one another by length-increasing, one-to-one, and polynomial-time invertable mappings, denoted f and g respectively.Using the following guidelines, prove that S and T are \e�ectively" isomorphic;that is, present a polynomial-time computable and invertable one-to-one mapping� such that T = �(S) def= f�(x) : x2Sg.1. Let F def= ff(x) : x 2 f0; 1g�g and G def= fg(x) : x 2 f0; 1g�g. Using thelength-preserving condition of f (resp., g), prove that F (resp., G) is a propersubset of f0; 1g�. Prove that for every y 2 f0; 1g� there exists a unique triple(j; x; i) 2 f1; 2g�f0; 1g��N that satis�es one of the following two conditions:(a) j = 1, x 2 G def= f0; 1g� nG, and y = (g � f)i(x);(b) j = 2, x 2 F def= f0; 1g� n F , and y = (g � f)i(g(x)).(In both cases i = 0 is allowed, h0(z) = z, hi(z) = h(hi�1(z)), and (g�f)(z) =g(f(z)). Hint: starting with y consider the maximal sequence of inverseoperations g�1; f�1; g�1; :::, and note that each inverse shrinks the currentstring.)2. Let U1 def= f(g �f)i(x) : x2G^ i�0g and U2 def= f(g �f)i(g(x)) : x2F ^ i�0g.Prove that (U1; U2) is a partition of f0; 1g�. Using the fact that f and g arelength increasing and polynomial-time invertible, present a polynomial-timeprocedure for deciding membership in the set U1.Prove the same for the sets V1 = f(f � g)i(x) : x 2 F ^ i � 0g and V2 =f(f � g)i(f(x)) : x2G ^ i�0g.3. Note that U2 � G, and de�ne �(x) def= f(x) if x 2 U1 and �(x) def= g�1(x)otherwise.(a) Prove that � is a Karp-reduction of S to T .29When given a string that is not in the image of the mapping, the inverting algorithm returnsa special symbol.

2.4. THREE RELATIVELY ADVANCED TOPICS 107(b) Note that � maps U1 (resp., U2) to f(U1) = ff(x) : x2U1g = V2 (resp.,g�1(U2) = fg�1(x) : x 2 U2g = V1). Prove that � is one-to-one andonto.Observe that ��1(x) = f�1(x) if x 2 f(U1) and ��1(x) = g(x) otherwise.Prove that ��1 is a Karp-reduction of T to S. Infer that �(S) = T .Using Exercise 2.30, infer that all natural NP-complete sets are isomorphic.Exercise 2.32 Prove that a set S is Karp-reducible to some set in NP if and onlyif S is in NP .(Hint: For the non-trivial direction, see the proof of Proposition 2.32.)Exercise 2.33 Recall that the empty set is not Karp-reducible to f0; 1g�, whereasany set is Cook-reducible to its complement. Thus our focus here is on the Karp-reducibility of non-trivial sets to their complements, where a set is non-trivial if itis neither empty nor contains all strings. Furthermore, since any non-trivial set inP is Karp-reducible to its complement (see Exercise 2.7), we assume that P 6= NPand focus on sets in NP n P .1. Prove that NP = coNP implies that some sets in NPnP are Karp-reducibleto their complements.2. Prove that NP 6= coNP implies that some sets in NP n P are not Karp-reducible to their complements.(Hint: Use NP-complete sets in both parts, and Exercise 2.32 in the second part.)Exercise 2.34 Referring to the proof of Theorem 2.27, prove that the function fis unbounded (i.e., for every i there exists an n such that n3 steps of the processde�ned in the proof allow for failing the i+ 1st machine).Guideline: Assume, towards the contradiction that f is bounded. Let j = maxn2Nff(n)gand n0 be the smallest integer such that f(n0) = j. If j is even then the set F determinedby f is co-�nite (because F = fx : f(jxj)� 0 (mod 2)g � fx : jxj � n0g). In this case,the jth machine tries to decide S \F (which di�ers from S on �nitely many strings), andmust fail on some x. Derive a contradiction by showing that the number of steps takentill reaching and considering this x is at most exp(poly(jxj)), which is smaller than n3 forsome su�ciently large n. A similar argument applies to the case that j is odd, where weuse the fact that F � fx : jxj<n0g is �nite and so the relevant reduction of S to S \ Fmust fail on some input x.Exercise 2.35 Prove that if the promise problem � is Cook-reducible to a promiseproblem that is solvable in polynomial-time, then � is solvable in polynomial-time.Note that the solver may not halt on inputs that violate the promise.Guideline: Any polynomial-time algorithm solving any promise problem can be modi�edsuch that it halts on all inputs.

108 CHAPTER 2. P, NP AND NP-COMPLETENESSExercise 2.36 (NP-complete promise problems in coNP (following [68]))Consider the promise problem xSAT, having instances that are pairs of CNF formu-lae. The yes-instances consists of pairs (�1; �2) such that �1 is satis�able and �2 isunsatis�able, whereas the no-instances consists of pairs such that �1 is unsatis�ableand �2 is satis�able.1. Show that xSAT is in the intersection of (the promise problem classes thatare analogous to) NP and coNP .2. Prove that any promise problem in NP is Cook-reducible to xSAT. In de-signing the reduction, recall that queries that violate the promise may beanswered arbitrarily.Guideline: Show a reduction of SAT to xSAT. Speci�cally, show that the searchproblem associated with SAT is Cook-reducible to xSAT, by following the ideas ofthe proof of Proposition 2.14. Actually, we need a more careful implementationof the search process. Suppose that we know (or assume) that � is a pre�x of asatisfying assignment to �, and we wish to extend � by one bit. Then, for each� 2 f0; 1g, we construct a formula, denoted �0�, by setting the �rst j� j+1 variablesof � according to the values ��. We query the oracle about the pair (�01; �00), andextend � accordingly (i.e., we extend � by the value 1 if and only if the answer ispositive). Note that if both �01 and �00 are satis�able then it does not matter whichbit we use in the extension, whereas if exactly one formula is satis�able then theoracle answer is reliable.3. Pinpoint the source of failure of the proof of Theorem 2.33 when applied tothe reduction provided in the previous item.

