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Preface

The strive for efficiency is ancient and universal, as time and other resources are
always in shortage. Thus, the question of which tasks can be performed efficiently
is central to the human experience.

A key step towards the systematic study of the aforementioned question is a
rigorous definition of the notion of a task and of procedures for solving tasks. These
definitions were provided by computability theory, which emerged in the 1930’s.
This theory focuses on computational tasks, and considers automated procedures
(i.e., computing devices and algorithms) that may solve such tasks.

In focusing attention on computational tasks and algorithms, computability
theory has set the stage for the study of the computational resources (like time) that
are required by such algorithms. When this study focuses on the resources that are
necessary for any algorithm that solves a particular task (or a task of a particular
type), the study becomes part of the theory of Computational Complexity (also
known as Complexity Theory).!

Complexity Theory is a central field of the theoretical foundations of Computer
Science. It is concerned with the study of the intrinsic complexity of computational
tasks. That is, a typical Complexity theoretic study looks at the computational re-
sources required to solve a computational task (or a class of such tasks), rather than
at a specific algorithm or an algorithmic schema. Actually, research in Complexity
Theory tends to start with and focus on the computational resources themselves,
and addresses the effect of limiting these resources on the class of tasks that can be
solved. Thus, Computational Complexity is the study of the what can be achieved
within limited time (and/or other limited natural computational resources).

The (half-century) history of Complexity Theory has witnessed two main re-
search efforts (or directions). The first direction is aimed towards actually estab-
lishing concrete lower bounds on the complexity of computational problems, via
an analysis of the evolution of the process of computation. Thus, in a sense, the
heart of this direction is a “low-level” analysis of computation. Most research in
circuit complexity and in proof complexity falls within this category. In contrast, a

n contrast, when the focus is on the design and analysis of specific algorithms (rather than
on the intrinsic complexity of the task), the study becomes part of a related subfield that may
be called Algorithmic Design and Analysis. Furthermore, Algorithmic Design and Analysis tends
to be sub-divided according to the domain of mathematics, science and engineering in which the
computational tasks arise. In contrast, Complexity Theory typically maintains a unity of the
study of tasks solveable within certain resources (regardless of the origins of these tasks).
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second research effort is aimed at exploring the connections among computational
problems and notions, without being able to provide absolute statements regarding
the individual problems or notions. This effort may be viewed as a “high-level”
study of computation. The theory of NP-completeness as well as the studies of
approximation, probabilistic proof systems, pseudorandomness and cryptography
all fall within this category.

The current book focuses on the latter effort (or direction). We list several
reasons for our decision to focus on the “high-level” direction. The first is the great
conceptual significance of the known results; that is, many known results (as well as
open problems) in this direction have an extremely appealing conceptual message,
which can be appreciated also by non-experts. Furthermore, these conceptual
aspects may be explained without entering excessive technical detail. Consequently,
the “high-level” direction is more suitable for an exposition in a book of the current
nature. Finally, there is a subjective reason: the “high-level” direction is within
our own expertise, while this cannot be said about the “low-level” direction.

The last paragraph brings us to a discussion of the nature of the current book,
which is captured by the subtitle (i.e., “a conceptual perspective”). Our main
thesis is that complexity theory is extremely rich in conceptual content, and that
this contents should be explicitly communicated in expositions and courses on the
subject. The desire to provide a corresponding textbook is indeed the motivation
for writing the current book and its main governing principle.

This book offers a conceptual perspective on complexity theory, and the pre-
sentation is designed to highlight this perspective. It is intended to serve as an
introduction to the field, and can be used either as a textbook or for self-study.
Indeed, the book’s primary target audience counsists of students that wish to learn
complexity theory and educators that intend to teach a course on complexity the-
ory. The book is also intended to promote interest in complexity theory and make
it acccessible to general readers with adequate background (which is mainly being
comfortable with abstract discussions, definitions and proofs). We expect most
readers to have a basic knowledge of algorithms, or at least be fairly comfortable
with the notion of an algorithm.

The book focuses on several sub-areas of complexity theory (see the following
organization and chapter summaries). In each case, the exposition starts from the
intuitive questions addresses by the sub-area, as embodied in the concepts that it
studies. The exposition discusses the fundamental importance of these questions,
the choices made in the actual formulation of these questions and notions, the
approaches that underly the answers, and the ideas that are embedded in these
answers. Our view is that these (“non-technical”) aspects are the core of the field,
and the presentation attempts to reflect this view.

We note that being guided by the conceptual contents of the material leads, in
some cases, to technical simplifications. Indeed, for many of the results presented
in this book, the presentation of the proof is different (and arguably easier to
understand) than the standard presentations.



Organization and Chapter
Summaries

This book consists of ten chapters and seven appendices. The chapters constitute
the core of this book and are written in a style adequate for a textbook, whereas the
appendices provide additional perspective and are written in the style of a survey
article. The relative length and ordering of the chapters (and appendices) does not
reflect their relative importance, but rather an attempt at the best logical order
(i-e., minimizing the number of forward pointers).

Following are brief summaries of the book’s chapters and appendices. Theses
summaries are more novice-friendly than those provided in Section 1.1.3 but less
detailed than the summaries provided at the beginning of each chapter.

Chapter 1: Introduction and Preliminaries. The introduction provides a
high-level overview of some of the content of complexity theory as well as a discus-
sion of some of the characteristic features of this field. In addition, the introduction
contains several important comments regarding the approach and conventions of
the current book. The preliminaries provide the relevant background on com-
putability theory, which is the setting in which complexity theoretic questions are
being studied. Most importantly, central notions such as search and decision prob-
lems, algorithms that solve such problems, and their complexity, are defined. In
addition, this part presents the basic notions underlying non-uniform models of
computation (like Boolean circuits).

Chapter 2: P, NP and NP-completeness. The P-vs-NP Question can be
phrased as asking whether or not finding solutions is harder than checking the cor-
rectness of solutions. An alternative formulation asks whether or not discovering
proofs is harder than verifying their correctness; that is, is proving harder than
verifying. It is widely believed that the answer to the two equivalent formulation
is that finding (resp., proving) is harder than checking (resp., verifying); that is,
it is believed that P is different from NP. At present, when faced with a hard
problem in NP, we can only hope to prove that it is not in P assuming that NP
is different from P. This is where the theory of NP-completeness, which is based
on the notion of a reduction, comes into the picture. In general, one computa-
tional problem is reducible to another problem if it is possible to efficiently solve
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the former when provided with an (efficient) algorithm for solving the latter. A
problem (in NP) is NP-complete if any problem in NP is reducible to it. Amaz-
ingly enough, NP-complete problems exist, and furthermore hundreds of natural
computational problems arising in many different areas of mathematics and science
are NP-complete.

Chapter 3: Variations on P and NP. Non-uniform polynomial-time (P/poly)
captures efficient computations that are carried out by devices that handle specific
input lengths. The basic formalism ignores the complexity of constructing such
devices (i.e., a uniformity condition), but a finer formalism (based on “machines
that take advice”) allows to quantify the amount of non-uniformity. This provides
a generalization of P. In contrast, the Polynomial-time Hierarchy (PH) generalizes
NP by considering statements expressed by a quantified Boolean formula with a
fixed number of alternations of existential and universal quantifiers. It is widely
believed that each quantifier alternation adds expressive power to the class of such
formulae. The two different classes are related by showing that if NP is contained
in P/poly then the Polynomial-time Hierarchy collapses to its second level (i.e.,
o).

Chapter 4: More Resources, More Power? When using “nice” functions to
determine the algorithm’s resources, it is indeed the case that more resources allow
for more tasks to be performed. However, when “ugly” functions are used for the
same purpose, increasing the resources may have no effect. By nice functions we
mean functions that can be computed without exceeding the amount of resources
that they specify. Thus, we get results asserting, for example, that there are
problems that are solvable in cubic-time but not in quadratic-time. In the case of
non-uniform models of computation, the issue of “nicety” does not arise, and it is
easy to establish separations results.

Chapter 5: Space Complexity. This chapter is devoted to the study of the
space complexity of computations, while focusing on two rather extreme cases.
The first case is that of algorithms having logarithmic space complexity, which
seem a proper and natural subset of the set of polynomial-time algorithms. The
second case is that of algorithms having polynomial space complexity, which in
turn can solve almost all computational problems considered in this book. Among
the many results presented in this chapter are a log-space algorithm for exploring
(undirected) graphs, and a log-space reduction of the set of directed graphs that are
not strongly connected to the set of directed graphs that are strongly connected.
These results capture fundamental properties of space-complexity, which seems to
differentiate it from time-complexity.

Chapter 6: Randomness and Counting. Probabilistic polynomial-time algo-
rithms with various types of failure give rise to complexity classes such as BPP,
RP,and ZPP. The results presented include the emulation of probabilistic choices
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by non-uniform advice (i.e., BPP C P/poly) and the emulation of two-sided prob-
abilistic error by an JV-sequence of quantifiers (i.e., BPP C X,). Turning to
counting problems (i.e., counting the number of solutions for NP-type problems),
we distinguish between exact counting and approximate counting (in the sense of
relative approximation). While any problem in PH is reducible to the exact count-
ing class #P, approximate counting (for #7P) is (probabilisticly) reducible to A"P.
Additional related topics include #P-completeness, the complexity of searching for
unique solutions, and the relation between approximate counting and generating
almost uniformly distributed solutions.

Chapter 7: The Bright Side of Hardness. It turns out that hard problem can
be “put to work” to our benefit, most notably in cryptography. One key issue that
arises in this context is bridging the gap between “occasional” hardness (e.g., worst-
case hardness or mild average-case hardness) and “typical” hardness (i.e., strong
average-case hardness). We consider two conjectures that are related to P # NP.
The first conjecture is that there are problems that are solvable in exponential-
time but are not solvable by (non-uniform) families of small (say polynomial-size)
circuits. We show that these types of worst-case conjectures can be transformed
into average-case hardness results that yield non-trivial derandomizations of BPP
(and even BPP = P). The second conjecture is that there are problems in NP
for which it is easy to generate (solved) instances that are hard to solve for other
people. This conjecture is captured in the notion of one-way functions, which are
functions that are easy to evaluate but hard to invert (in an average-case sense). We
show that functions that are hard to invert in a relatively mild average-case sense
yield functions that are hard to invert almost everywhere, and that the latter yield
predicates that are very hard to approximate (called hard-core predicates). The
latter are useful for the construction of general-purpose pseudorandom generators
as well as for a host of cryptographic applications.

Chapter 8: Pseudorandom Generators. A fresh view at the question of ran-
domness was taken in the theory of computing: It has been postulated that a
distribution is pseudorandom if it cannot be told apart from the uniform distri-
bution by any efficient procedure. The paradigm, originally associating efficient
procedures with polynomial-time algorithms, has been applied also with respect
to a variety of limited classes of such distinguishing procedures. The archetypical
case of pseudorandom generators refers to efficient generators that fool any feasible
procedure; that is, the potential distinguisher is any probabilistic polynomial-time
algorithm, which may be more complex than the generator itself. These generators
are called general-purpose, because their output can be safely used in any efficient
application. In contrast, for purposes of derandomization, one may use pseudoran-
dom generators that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this approach and
using various hardness assumptions, one may obtain corresponding derandomiza-
tions of BPP (including a full derandomization; i.e., BPP = P). Other forms of
pseudorandom generators include ones that fool space-bounded distinguishers, and
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even weaker ones that only exhibit some limited random behavior (e.g., outputting
a pair-wise independent sequence).

Chapter 9: Probabilistic Proof Systems. Randomized and interactive veri-
fication procedures, giving rise to interactive proof systems, seem much more pow-
erful than their deterministic counterparts. In particular, interactive proof systems
exist for any set in PSPACE D coNP (e.g., for the set of unsatisfied proposi-
tional formulae), whereas it is widely believed that some sets in coNP do not
have NP-proof systems. Interactive proofs allow the meaningful conceptualization
of zero-knowledge proofs, which are interactive proofs that yield nothing (to the
verifier) beyond the fact that the assertion is indeed valid. Under reasonable com-
plexity assumptions, every set in A"P has a zero-knowledge proof system. (This
result has many applications in cryptography.) A third type of probabilistic proof
systems underlies the model of PCPs, which stands for probabilistically checkable
proofs. These are (redundant) NP-proofs that offers a trade-off between the number
of locations (randomly) examined in the proof and the confidence in its validity.
In particular, a small constant error probability can be obtained by reading a con-
stant number of bits in the redundant NP-proof. The PCP Theorem asserts that
NP-proofs can be efficiently transformed into PCPs. The study of PCPs is closely
related to the study of the complexity of approximation problems.

Chapter 10: Relaxing the Requirement. In light of the apparent infeasibility
of solving numerous useful computational problems, it is natural to seek relaxations
of these problems that remain useful for the original applications and yet allow for
feasible solving procedures. Two such types of relaxations are provided by adequate
notions of approximation and a theory of average-case complexity. The notions of
approximation refer to the computational problems themselves; that is, for each
problem instance we extend the set of admissible solutions. In the context of search
problems this means settling for solutions that have a value that is “sufficiently
close” to the value of the optimal solution, whereas in the context of decision
problems this means settling for procedures that distinguish yes-instances from
instances that are “far” from any yes-instance. Turning to average-case complexity,
we note that a systematic study of this notion requires the development of a non-
trivial conceptual framework. One major aspect of this framework is limiting the
class of distributions in a way that, on one hand, allows for various types of natural
distributions and, on the other hand, prevents the collapse of average-case hardness
to worst-case hardness.

Appendix A: Glossary of Complexity Classes. The glossary provides self-
contained definitions of most complexity classes mentioned in the book. The glos-
sary is partitioned into two parts, dealing separately with complexity classes that
are defined in terms of algorithms and their resources (i.e., time and space com-
plexity of Turing machines) and complexity classes defined in terms of non-uniform
circuit (and referring to their size and depth). In particular, the following classes
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are defined: P, NP, coN'P, BPP, RP, coRP, ZPP, #P, PH, E, EXP, NEXP,
L, NL, RL, PSPACE, P/poly, NC*, and AC*.

Appendix B: On the Quest for Lower Bounds. This brief survey describes
the most famous attempts at proving lower bounds on the complexity of natural
computational problems. The first part, devoted to Circuit Complexity, reviews
lower bounds for the size of (restricted) circuits that solve natural computational
problems. This represents a program whose long-term goal is proving that P #
NP. The second part, devoted to Proof Complexity, reviews lower bounds on the
length of (restricted) propositional proofs of natural tautologies. This represents a
program whose long-term goal is proving that NP # coNP.

Appendix C: On the Foundations of Modern Cryptography. This sur-
vey of the foundations of cryptography, focuses on the paradigms, approaches and
techniques that are used to conceptualize, define and provide solutions to natu-
ral security concerns. It presents some of these conceptual tools as well as some
of the fundamental results obtained using them. The appendix augments the par-
tial treatment of one-way functions, pseudorandom generators, and zero-knowledge
proofs (which is included in Chapters 7-9). Using these basic tools, the appendix
provides a treatment of basic cryptographic applications such as encryption, sig-
natures, and general cryptographic protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-
domization. The probabilistic preliminaries include conventions regarding ran-
dom variables as well as three useful inequalities (i.e., Markov Inequality, Cheby-
shev’s Inequality, and Chernoff Bound). The advanced topics include constructions
and lemmas regarding families of hashing functions, a study of the sample- and
randomness- complexities of estimating the average value of an arbitrary function,
and the problem of randomness extraction (i.e., procedures for extracting almost
perfect randomness from sources of weak or defected randomness).

Appendix E: Explicit Constructions. Complexity theory provides a clear
perspective on the intuitive notion of an explicit construction. This perspective is
demonstrated with respect to error correcting codes and expander graphs. Starting
with codes, the appendix focuses on various computational aspects, and offers a
review of several popular constructions as well as a construction of a binary code
of constant rate and constant relative distance. Also included are a brief review
of the notions of locally testable and locally decodable codes, and a useful upper-
bound on the number of codewords that are close to any single sequence. Turning
to expander graphs, the appendix contains a review of two standard definitions of
expanders, two levels of explicitness, two properties of expanders that are related to
(single-step and multi-step) random walks on them, and two explicit constructions
of expander graphs.



Appendix F: Some Omitted Proofs. This appendix contains some proofs
that were not included in the main text (for a variety of reasons) and still are
beneficial as alternatives to the original and/or standard presentations. Included
are a proof that PH is reducible to #P via randomized Karp-reductions, and the
presentation of two useful transformations regarding interactive proof systems.

Appendix G: Some Computational Problems. This appendix includes def-
initions of most of the specific computational problems that are referred to in the
main text. In particular, it contains a brief introduction to graph algorithms,
Boolean formulae, and finite fields.
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Chapter 1

Introduction and
Preliminaries

When you set out on your journey to Ithaca,
pray that the road is long,
full of adventure, full of knowledge.

K.P. Cavafy, Ithaca

The current chapter consists of two parts. The first part provides a high-level
introduction to (computational) complexity theory. This introduction is much
more detailed than the laconic statements made in the preface, but is quite sparse
when compared to the richness of the field. In addition, the introduction contains
several important comments regarding the contents, approach, and conventions of
the current book.

average-case approximation
pseudorandomness
PCP
PSPACE 1P ZK
PH
BPP RP
NP coNP
P
NL

L

lower bounds

The second part of this chapter provides the necessary preliminaries to the rest
of the book. It includes a discussion of computational tasks and computational
models, as well as natural complexity measures associated with the latter. More
specifically, this part recalls the basic notions and results of computability theory
(including the definition of Turing machines, some undecidability results, the notion
of universal machines, and the definition of oracle machines). In addition, this part
presents the basic notions underlying non-uniform models of computation (like
Boolean circuits).



2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

This introduction consists of two parts: the first part refers to the area itself,
whereas the second part refers to the current book. The first part provides a brief
overview of Complexity Theory (Section 1.1.1) as well as some reflections about
its characteristics (Section 1.1.2). The second part describes the contents of this
book (Section 1.1.3), the considerations underlying the choice of topics as well as
the way they are presented (Section 1.1.4), and various notations and conventions
(Section 1.1.5).

1.1.1 A brief overview of Complexity Theory

Out of the tough came forth sweetness'

Judges, 14:14

The following brief overview is intended to give a flavor of the questions addressed
by Complexity Theory. This overview is quite vague, and is merely meant as a
teaser. Most of the topics mentioned in it will be discussed at length in the various
chapters of this book.

Complexity Theory is concerned with the study of the intrinsic complexity of
computational tasks. Its “final” goals include the determination of the complex-
ity of any well-defined task. Additional goals include obtaining an understanding
of the relations between various computational phenomena (e.g., relating one fact
regarding computational complexity to another). Indeed, we may say that the
former type of goals is concerned with absolute answers regarding specific compu-
tational phenomena, whereas the latter type is concerned with questions regarding
the relation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with
goals of the latter (“relative”) type. In fact, the failure to resolve questions of the
“absolute” type, led to the flourishing of methods for coping with questions of the
“relative” type. Musing for a moment, let us say that, in general, the difficulty
of obtaining absolute answers may naturally lead to seeking conditional answers,
which may in turn reveal interesting relations between phenomena. Furthermore,
the lack of absolute understanding of individual phenomena seems to facilitate the
development of methods for relating different phenomena. Anyhow, this is what
happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining
absolute answers, we must admit that there is something fascinating in the success
to relate different phenomena: in some sense, relations between phenomena are
more revealing than absolute statements about individual phenomena. Indeed, the
first example that comes to mind is the theory of NP-completeness. Let us consider
this theory, for a moment, from the perspective of these two types of goals.

Complexity theory has failed to determine the intrinsic complexity of tasks such
as finding a satisfying assignment to a given (satisfiable) propositional formula

IThe quote is commonly interpreted as meaning that benefit arose out of misfortune.
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or finding a 3-coloring of a given (3-colorable) graph. But it has succeeded in
establishing that these two seemingly different computational tasks are in some
sense the same (or, more precisely, are computationally equivalent). We find this
success amazing and exciting, and hope that the reader shares these feelings. The
same feeling of wonder and excitement is generated by many of the other discoveries
of Complexity theory. Indeed, the reader is invited to join a fast tour of some of
the other questions and answers that make up the field of Complexity theory.

We will indeed start with the P versus NP Question. Our daily experience is
that it is harder to solve a problem than it is to check the correctness of a solution
(e.g., think of either a puzzle or a research problem). Is this experience merely a
coincidence or does it represent a fundamental fact of life (i.e., a property of the
world)? Could you imagine a world in which solving any problem is not significantly
harder than checking a solution to it? Would the term “solving a problem” not
lose its meaning in such a hypothetical (and impossible in our opinion) world?
The denial of the plausibility of such a hypothetical world (in which “solving” is
not harder than “checking”) is what “P different from NP” actually means, where
P represents tasks that are efficiently solvable and NP represents tasks for which
solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs. Indeed,
finding proofs is a special type of the aforementioned task of “solving a problem”
(and verifying the validity of proofs is a corresponding case of checking correctness).
Again, “P different from NP” means that there are theorems that are harder to
prove than to be convinced of their correctness when presented with a proof. This
means that the notion of a “proof” is meaningful; that is, proofs do help when
seeking to be convinced of the correctness of assertions. Here NP represents sets
of assertions that can be efficiently verified with the help of adequate proofs, and
P represents sets of assertions that can be efficiently verified from scratch (i.e.,
without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is
a fundamental scientific question of far-reaching consequences. The fact that this
question seems beyond our current reach led to the development of the theory of
NP-completeness. Loosely speaking, this theory identifies a set of computational
problems that are as hard as NP. That is, the fate of the P-versus-NP Question lies
with each of these problems: if any of these problems is easy to solve then so are all
problems in NP. Thus, showing that a problem is NP-complete provides evidence
to its intractability (assuming, of course, “P different than NP”). Indeed, demon-
strating the NP-completeness of computational tasks is a central tool in indicating
hardness of natural computational problems, and it has been used extensively both
in computer science and in other disciplines. Note that NP-completeness indicates
not only the conjectured intractability of a problem but rather also its “richness”
in the sense that the problem is rich enough to “encode” any other problem in
NP. The use of the term “encoding” is justified by the exact meaning of NP-
completeness, which in turn establishes relations between different computational
problems (without referring to their “absolute” complexity).
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The foregoing discussion of NP-completeness hints to the importance of repre-
sentation, since it referred to different problems that encode one another. Indeed,
the importance of representation is a central aspect of complexity theory. In gen-
eral, complexity theory is concerned with problems for which the solutions are
implicit in the problem’s statement (or rather in the instance). That is, the prob-
lem (or rather its instance) contains all necessary information, and one merely
needs to process this information in order to supply the answer.? Thus, complex-
ity theory is concerned with manipulation of information, and its transformation
from one representation (in which the information is given) to another representa-
tion (which is the one desired). Indeed, a solution to a computational problem is
merely a different representation of the information given; that is, a representation
in which the answer is explicit rather than implicit. For example, the answer to
the question of whether or not a given Boolean formula is satisfiable is implicit in
the formula itself (but the task is to make the answer explicit). Thus, complex-
ity theory clarifies a central issue regarding representation; that is, the distinction
between what is explicit and what is implicit in a representation. Furthermore, it
even suggests a quantification of the level of non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena
that were considered also by past thinkers. Examples include the aforementioned
concepts of solutions, proofs, and representation as well as concepts like random-
ness, knowledge, interaction, secrecy and learning. We next discuss the latter
concepts and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective
can be described as ontological: they asked “what is randomness” and wondered
whether it exist at all (or is the world deterministic). The perspective of complexity
theory is behavioristic: it is based on defining objects as equivalent if they cannot
be told apart by any efficient procedure. That is, a coin toss is (defined to be)
“random” (even if one believes that the universe is deterministic) if it is infeasible
to predict the coin’s outcome. Likewise, a string (or a distribution of strings) is
“random” if it is infeasible to distinguish it from the uniform distribution (regard-
less of whether or not one can generate the latter). Interestingly, randomness (or
rather pseudorandomness) defined this way is efficiently expandable; that is, under
a reasonable complexity assumption (to be discussed next), short pseudorandom
strings can be deterministically expanded into long pseudorandom strings. Indeed,
it turns out that randomness is intimately related to intractability. Firstly, note
that the very definition of pseudorandomness refers to intractability (i.e., the infea-
sibility of distinguishing a pseudorandomness object from a uniformly distributed
object). Secondly, as stated, a complexity assumption, which refers to the exis-
tence of functions that are easy to evaluate but hard to invert (called one-way
functions), implies the existence of deterministic programs (called pseudorandom
generators) that stretch short random seeds into long pseudorandom sequences. In
fact, it turns out that the existence of pseudorandom generators is equivalent to

2In contrast, in other disciplines, solving a problem may require gathering information that is
not available in the problem’s statement. This information may either be available from auxiliary
(past) records or be obtained by conducting new experiments.
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the existence of one-way functions.

Complexity theory offers its own perspective on the concept of knowledge (and
distinguishes it from information). Specifically, complexity theory views knowledge
as the result of a hard computation. Thus, whatever can be efficiently done by any-
one is not considered knowledge. In particular, the result of an easy computation
applied to publicly available information is not considered knowledge. In contrast,
the value of a hard-to-compute function applied to publicly available information
is knowledge, and if somebody provides you with such a value then it has provided
you with knowledge. This discussion is related to the notion of zero-knowledge
interactions, which are interactions in which no knowledge is gained. Such interac-
tions may still be useful, because they may convince a party of the correctness of
specific data that was provided beforehand. For example, a zero-knowledge inter-
active proof may convince a party that a given graph is 3-colorable without yielding
any 3-coloring.

The foregoing paragraph has explicitly referred to interaction, viewing it as a
vehicle for gaining knowledge and /or gaining confidence. Let us highlight the latter
application by noting that it may be easier to verify an assertion when allowed to
interact with a prover rather than when reading a proof. Put differently, interaction
with a good teacher may be more beneficial than reading any book. We comment
that the added power of such interactive proofs is rooted in their being randomized
(i.e., the verification procedure is randomized), because if the verifier’s questions
can be determined beforehand then the prover may just provide the transcript of
the interaction as a traditional written proof.

Another concept related to knowledge is that of secrecy: knowledge is something
that one party may have while another party does not have (and cannot feasibly
obtain by itself) — thus, in some sense knowledge is a secret. In general, complexity
theory is related to Cryptography, where the latter is broadly defined as the study
of systems that are easy to use but hard to abuse. Typically, such systems involve
secrets, randomness and interaction as well as a complexity gap between the ease
of proper usage and the infeasibility of causing the system to deviate from its pre-
scribed behavior. Thus, much of Cryptography is based on complexity theoretic
assumptions and its results are typically transformations of relatively simple com-
putational primitives (e.g., one-way functions) into more complex cryptographic
applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning
from a teacher versus learning from a book. Recall that complexity theory provides
evidence to the advantage of the former. This is in the context of gaining knowledge
about publicly available information. In contrast, computational learning theory
is concerned with learning objects that are only partially available to the learner
(i.e., reconstructing a function based on its value at a few random locations or even
at locations chosen by the learner). Complexity theory sheds light on the intrinsic
limitations of learning (in this sense).

Complexity theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or rather “find-
ing solutions”) and making decisions (e.g., regarding the validity of assertions). We
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have also hinted that in some cases these two types of tasks can be related. Now
we consider two additional types of tasks: counting the number of solutions and
generating random solutions. Clearly, both the latter tasks are at least as hard as
finding arbitrary solutions to the corresponding problem, but it turns out that for
some natural problems they are not significantly harder. Specifically, under some
natural conditions on the problem, approximately counting the number of solutions
and generating an approximately random solution is not significantly harder than
finding an arbitrary solution.

Having mentioned the notion of approrimation, we note that the study of the
complexity of finding “approximate solutions” is also of natural importance. One
type of approximation problems refers to an objective function defined on the set of
potential solutions: Rather than finding a solution that attains the optimal value,
the approximation task consists of finding a solution that attains an “almost opti-
mal” value, where the notion of “almost optimal” may be understood in different
ways giving rise to different levels of approximation. Interestingly, in many cases,
even a very relaxed level of approximation is as difficult to obtain as solving the
original (exact) search problem (i.e., finding an approximate solution is as hard
as finding an optimal solution). Surprisingly, these hardness of approximation re-
sults are related to the study of probabilistically checkable proofs, which are proofs
that allow for ultra-fast probabilistic verification. Amazingly, every proof can be
efficiently transformed into one that allows for probabilistic verification based on
probing a constant number of bits (in the alleged proof). Turning back to approx-
imation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. An-
other natural relaxation is the study of average-case complexity, where the “aver-
age” is taken over some “simple” distributions (representing a model of the prob-
lem’s instances that may occur in practice). We stress that, although it was not
stated explicitly, the entire discussion so far has referred to “worst-case” analysis
of algorithms. We mention that worst-case complexity is a more robust notion
than average-case complexity. For starters, one avoids the controversial question
of what are the instances that are “important in practice” and correspondingly
the selection of the class of distributions for which average-case analysis is to be
conducted. Nevertheless, a relatively robust theory of average-case complexity has
been suggested, albeit it is less developed than the theory of worst-case complexity.

In view of the central role of randomness in complexity theory (as evident, say,
in the study of pseudorandomness, probabilistic proof systems, and cryptography),
one may wonder as to whether the randomness needed for the various applications
can be obtained in real-life. One specific question, which received a lot of atten-
tion, is the possibility of “purifying” randomness (or “extracting good randomness
from bad sources”). That is, can we use “defected” sources of randomness in or-
der to implement almost perfect sources of randomness. The answer depends, of
course, on the model of such defected sources. This study turned out to be related
to complexity theory, where the most tight connection is between some type of
randomness extractors and some type of pseudorandom generators.
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So far we have focused on the time complexity of computational tasks, while
relying on the natural association of efficiency with time. However, time is not
the only resource one should care about. Another important resource is space:
the amount of (temporary) memory consumed by the computation. The study
of space-complexity has uncovered several fascinating phenomena, which seem to
indicate a fundamental difference between space-complexity and time-complexity.
For example, in the context of space-complexity, verifying proofs of validity of
assertions (of any specific type) has the same complexity as verifying proofs of
invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of
some mountain tops, and dizziness is to be expected. Needless to say, the rest of
the book offers a totally different touring experience. We will climb some of these
mountains by foot, step by step, and will often stop to look around and reflect.

Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-
sults are not known for many of the “big questions” of complexity theory (most
notably the P-versus-NP Question). However, several highly non-trivial absolute
results have been proved. For example, it was shown that using negation can
speed-up the computation of monotone functions (which do not require negation
for their mere computation). In addition, many promising techniques were intro-
duced and employed with the aim of providing a low-level analysis of the progress of
computation. However, as stated in the preface, the focus of this book is elsewhere.

1.1.2 Characteristics of Complexity Theory

We are successful because we use the right level of abstraction

Avi Wigderson (1996)

Using the “right level of abstraction” seems to be a main characteristic of the The-
ory of Computation at large. The right level of abstraction means abstracting away
second-order details, which tend to be context-dependent, while using definitions
that reflect the main issues (rather than abstracting them away too). Indeed, using
the right level of abstraction calls for an extensive exercising of good judgment, and
one indication for having chosen the right abstractions is the result of their study.

One major choice, taken by the theory of computation at large, is the choice
of a model of computation and corresponding complezity measures and classes.
The choice, which is currently taken for granted, was to use a simple model that
avoids both the extreme of being too realistic (and thus too detailed) as well as the
extreme of being too abstract (and vague). On the one hand, the main model of
computation (which is used in complexity theory) does not try to mimic (or mirror)
the actual operation of real-life computers used at a specific historical time. Such
a choice would have made it very hard to develop complexity theory as we know it
and to uncover the fundamental relations discussed in this book: the mass of details
would have obscured the view. On the other hand, avoiding any reference to any
concrete model (like in the case of recursive function theory) does not encourage the
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introduction and study of natural measures of complexity. Indeed, as we shall see in
Section 1.2.3, the choice was (and is) to use a simple model of computation (which
does not mirror real-life computers), while avoiding any effects that are specific to
that model (by keeping a eye on a host of variants and alternative models). The
freedom from the specifics of the basic model is obtained by considering complexity
classes that are invariant under a change of model (as long as the alternative model
is “reasonable”).

Another major choice is the use of asymptotic analysis. Specifically, we con-
sider the complexity of an algorithm as a function of its input length, and study
the asymptotic behavior of this function. It turns out that structure that is hidden
by concrete quantities appears at the limit. Furthermore, depending on the case,
we classify functions according to different criteria. For example, in case of time
complexity we consider classes of functions that are closed under multiplication,
whereas in case of space complexity we consider closure under addition. In each
case, the choice is governed by the nature of the complexity measure being consid-
ered. Indeed, one could have developed a theory without using these conventions,
but this would have resulted in a far more cumbersome theory. For example, rather
than saying that finding a satisfying assignment for a given formula is polynomial-
time reducible to deciding the satisfiability of some other formulae, one could have
stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem.

Both the aforementioned choices are common to other branches of the theory of
computation. One aspect that makes complexity theory unique is its perspective
on the most basic question of the theory of computation; that is, the way it studies
the question of what can be efficiently computed. The perspective of complexity
theory is general in nature. This is reflected in its primary focus on the relevant
notion of efficiency (captured by corresponding resource bounds) rather than on
specific computational problems. In most cases, complexity theoretic studies do
not refer to any specific computational problems or refer to such problems merely
as an illustration. Furthermore, even when specific computational problems are
studied, this study is (explicitly or at least implicitly) aimed at understanding the
computational limitations of certain resource bounds.

The aforementioned general perspective seems linked to the significant role of
conceptual considerations in the field: The rigorous study of an intuitive notion of
efficiency must be initiated with an adequate choice of definitions. Since this study
refers to any possible (relevant) computation, the definitions cannot be derived by
abstracting some concrete reality (e.g., a specific algorithmic schema). Indeed, the
definitions attempt to capture any possible reality, which means that the choice
of definitions is governed by conceptual principles and not merely by empirical
observations.

1.1.3 Contents of this book

This book is intended to serve as an introduction to Computational Complexity
theory. It consists of ten chapters and seven appendices, and can be used either
as a textbook or for self-study. The chapters constitute the core of this book and



1.1. INTRODUCTION 9

are written in a style adequate for a textbook, whereas the appendices provide
additional perspective and are written in the style of a survey article.

Section 1.2 and Chapter 2 are a prerequisite for the rest of the book. Technically
speaking, the notions and results that appear in these parts are extensively used
in the rest of the book. More importantly, the former parts are the conceptual
framework that shapes the field and provides a good perspective on the field’s
questions and answers. Indeed, Section 1.2 and Chapter 2 provide the very basic
material that must be understood by anybody having an interest in complexity
theory.

In contrast, the rest of the book covers more advanced material, which means
that none of it can be claimed to be absolutely necessary for a basic understanding
of complexity theory. In particular, although some advanced chapters refer to
material in other advanced chapters, the relation between these chapters is not a
fundamental one. Thus, one may choose to read and/or teach an arbitrary subset
of the advanced chapters and do so in an arbitrary order, provided one is willing
to follow the relevant references to some parts of other chapters (see Figure 1.1).
Needless to say, we recommend reading and/or teaching all the advanced chapters,
and doing so by following the order presented in this book.

As illustrated by Figure 1.1, some chapters (i.e., Chapters 3, 6 and 10) lump
together topics that are usually presented separately. These decisions are related
to our perspective on the corresponding topics.

The rest of this section provides a brief summary of the contents of the various
chapters and appendices. This summary is intended for the teacher and/or the
expert, whereas the student is referred to the more novice-friendly summaries that
appear in the book’s prefix.

Section 1.2: Preliminaries. This section provides the relevant background on
computability theory, which is the basis for the rest of this book (as well as for
complexity theory at large). Most importantly, it contains a discussion of central
notions such as search and decision problems, algorithms that solve such problems,
and their complexity. In addition, this section presents non-uniform models of
computation (e.g., Boolean circuits).

Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NP
Question both in terms of search problems and in terms of decision problems. The
second main topic of this chapter is the theory of NP-completeness. The chapter
also provides a treatment of the general notion of a (polynomial-time) reduction,
with special emphasis on self-reducibility. Additional topics include the existence of
problems in NP that are neither NP-complete nor in P, optimal search algorithms,
the class coNP, and promise problems.

Chapter 3: Variations on P and NP. This chapter provides a treatment
of non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy
(PH). Each of the two classes is defined in two equivalent ways (e.g., P/poly is
defined both in terms of circuits and in terms of “machines that take advice”). In
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Figure 1.1: Dependencies among the advanced chapters.

addition, it is shown that if NP is contained in P/poly then PH collapses to its
second level (i.e., ¥y).

Chapter 4: More Resources, More Power? The focus of this chapter is
on Hierarchy Theorems, which assert that typically more resources allow for solv-
ing more problems. These results depend on using bounding functions that can
be computed without exceeding the amount of resources that they specify, and
otherwise Gap Theorems may apply.

Chapter 5: Space Complexity. Among the results presented in this chapter
are a log-space algorithm for testing connectivity of (undirected) graphs, a proof
that 'L = coN'L, and complete problems for N'£ and PSPACE (under log-space
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and poly-time reductions, respectively).

Chapter 6: Randomness and Counting. This chapter focuses on various
randomized complexity classes (i.e., BPP, RP, and ZPP) and the counting class
#P. The results presented in this chapter include BPP C P/poly and BPP C
Yo, the #P-completeness of the Permanent, the connection between approximate
counting and uniform generation of solutions, and the randomized reductions of
approximate counting to AP and of NP to solving problems with unique solutions.

Chapter 7: The Bright Side of Hardness. This chapter deals with two con-
jectures that are related to P # N'P. The first conjecture is that there are problems
in £ that are not solvable by (non-uniform) families of small (say polynomial-size)
circuits, whereas the second conjecture is equivalent to the notion of one-way func-
tions. Most of this chapter is devoted to “hardness amplification” results that
convert these conjectures into tools that can be used for non-trivial derandomiza-
tions of BPP (resp., for a host of cryptographic applications).

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-
tion of computational indistinguishability and corresponding notions of pseudoran-
domness. The definition of general-purpose pseudorandom generators (running in
polynomial-time and withstanding any polynomial-time distinguisher) is presented
as a special case of a general paradigm. The chapter also contains a presentation
of other instantiations of the latter paradigm, including generators aimed at deran-
domizing complexity classes such as BPP, generators withstanding space-bounded
distinguishers, and some special-purpose generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides a treatment
of three types of probabilistic proof systems: interactive proofs, zero-knowledge
proofs, and probabilistic checkable proofs. The results presented include ZP =
PSPACE, zero-knowledge proofs for any NP-set, and the PCP Theorem. For the
latter, only overviews of the two different known proofs are provided.

Chapter 10: Relaxing the Requirement. This chapter provides a treatment
of two types of approximation problems and a theory of average-case (or rather
typical-case) complexity. The traditional type of approximation problems refers
to search problems and consists of a relaxation of standard optimization prob-
lems. The second type is known as “property testing” and consists of a relaxation
of standard decision problems. The theory of average-case complexity involves
several non-trivial definitional choices (e.g., an adequate choice of the class of dis-
tributions).

Appendix A: Glossary of Complexity Classes. The glossary provides self-
contained definitions of most complexity classes mentioned in the book.
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Appendix B: On the Quest for Lower Bounds. The first part, devoted
to Circuit Complexity, reviews lower bounds for the size of (restricted) circuits
that solve natural computational problems. The second part, devoted to Proof
Complexity, reviews lower bounds on the length of (restricted) propositional proofs
of natural tautologies.

Appendix C: On the Foundations of Modern Cryptography. The first
part of this appendix augments the partial treatment of one-way functions, pseu-
dorandom generators, and zero-knowledge proofs (which is included in Chapters
7-9). Using these basic tools, the second part provides a treatment of basic cryp-
tographic applications such as encryption, signatures, and general cryptographic
protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-
domization. The probabilistic preliminaries include conventions regarding ran-
dom variables and overviews of three useful inequalities (i.e., Markov Inequality,
Chebyshev’s Inequality, and Chernoff Bound). The advanced topics include con-
structions of hashing functions and variants of the Leftover Hashing Lemma, and
overviews of samplers and extractors (i.e., the problem of randomness extraction).

Appendix E: Explicit Constructions. This appendix focuses on various com-
putational aspects of error correcting codes and expander graphs. On the topic
of codes, the appendix contains a review of the Hadamard code, Reed-Solomon
codes, Reed-Muller codes, and a construction of a binary code of constant rate and
constant relative distance. Also included are a brief review of the notions of locally
testable and locally decodable codes, and a list-decoding bound. On the topic of
expander graphs, the appendix contains a review of the standard definitions and
properties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zag
constructions.

Appendix F: Some Omitted Proofs. This appendix contains some proofs
that are beneficial as alternatives to the original and/or standard presentations.
Included are proofs that PH is reducible to #P via randomized Karp-reductions,

and that ZP(f) C AM(O(f)) € AM(f).

Appendix G: Some Computational Problems. This appendix contains a
brief introduction to graph algorithms, Boolean formulae, and finite fields.

Bibliography. As stated in §1.1.4.4, we tried to keep the bibliographic list as
short as possible (and still reached a couple of hundreds of entries). As a result,
many relevant references were omitted. In general, our choice of references was
biased in favor of textbooks and survey articles. We tried, however, not to omit
references to key papers in an area.
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Absent from this book. Asstated in the preface, the current book does not pro-
vide a uniform cover of the various areas of complexity theory. Notable omissions
include the areas of circuit complezity (cf. [43, 225]) and proof complezity (cf. [25]),
which are briefly reviewed in Appendix B. Additional topics that are commonly
covered in complexity theory courses but are omitted here include the study of
branching programs and decision trees (cf. [226]), parallel computation [134], and
communication complexity [142]. We mention that the forthcoming textbook of
Arora and Barak [13] contains a treatment of all these topics. Finally, we men-
tion two areas that we consider related to complexity theory, although this view is
not very common. These areas are distributed computing [16] and computational
learning theory [136].

1.1.4 Approach and style of this book

According to a common opinion, the most important aspect of a scientific work
is the technical result that it achieves, whereas explanations and motivations are
merely redundancy introduced for the sake of “error correction” and/or comfort. It
is further believed that, like in a work of art, the interpretation of the work should
be left with the reader.

The author strongly disagrees with the aforementioned opinions, and argues
that there is a fundamental difference between art and science, and that this dif-
ference refers exactly to the meaning of a piece of work. Science is concerned with
meaning (and not with form), and in its quest for truth and/or understanding sci-
ence follows philosophy (and not art). The author holds the opinion that the most
important aspects of a scientific work are the intuitive question that it addresses,
the reason that it addresses this question, the way it phrases the question, the ap-
proach that underlies its answer, and the ideas that are embedded in the answer.
Following this view, it is important to communicate these aspects of the work.

The foregoing issues are even more acute when it comes to complexity theory,
firstly because conceptual considerations seems to play an even more central role in
complexity theory (than in other fields; cf., Section 1.1.2). Secondly (and even more
importantly), complexity theory is extremely rich in conceptual content. Thus,
communicating this content is of primary importance, and failing to do so misses
the most important aspects of complexity theory.

Unfortunately, the conceptual content of complexity theory is rarely communi-
cated (explicitly) in books and/or surveys of the area.®> The annoying (and quite
amazing) consequences are students that have only a vague understanding of the
meaning and general relevance of the fundamental notions and results that they
were taught. The author’s view is that these consequences are easy to avoid by tak-
ing the time to explicitly discuss the meaning of definitions and results. A closely
related issue is using the “right” definitions (i.e., those that reflect better the fun-
damental nature of the notion being defined) and emphasizing the (conceptually)

31t is tempting to speculate on the reasons for this phenomenon. One speculation is that
communicating the conceptual content of complexity theory involves making bold philosophical
assertions that are technically straightforward, whereas this combination does not fit the person-
ality of most researchers in complexity theory.
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“right” results. The current book is written accordingly.

1.1.4.1 The general principle

In accordance with the foregoing, the focus of this book is on the conceptual aspects
of the technical material. Whenever presenting a subject, the starting point is the
intuitive questions being addressed. The presentation explains the importance of
these questions, the specific ways that they are phrased (i.e., the choices made in
the actual formulation), the approaches that underly the answers, and the ideas
that are embedded in these answers. Thus, a significant portion of the text is
devoted to motivating discussions that refer to the concepts and ideas that underly
the actual definitions and results.

The material is organized around conceptual themes, which reflect fundamen-
tal notions and/or general questions. Specific computational problems are rarely
referred to, with exceptions that are used either for sake of clarity or because the
specific problem happens to capture a general conceptual phenomenon. For exam-
ple, in this book, “complete problems” (e.g., NP-complete problems) are always
secondary to the class for which they are complete.*

1.1.4.2 On a few specific choices

Our technical presentation often differs from the standard one. In many cases
this is due to conceptual considerations. At times, this leads to some technical
simplifications. In this subsection we only discuss general themes and/or choices
that have a global impact on much of the presentation. This discussion is intended
mainly for the teacher and/or the expert.

Avoiding non-deterministic machines. We try to avoid non-deterministic
machines as much as possible. As argued in several places (e.g., Section 2.1.4),
we believe that these fictitious “machines” have a negative effect both from a
conceptual and technical point of view. The conceptual damage caused by using
non-deterministic machines is that it is unclear why one should care about what
such machines can do. Needless to say, the reason to care is clear when noting that
these fictitious “machines” offer a (convenient but rather slothful) way of phrasing
fundamental issues. The technical damage caused by using non-deterministic ma-
chines is that they tend to confuse the students. Furthermore, they do not offer
the best way to handle more advanced issues (e.g., counting classes).

In contrast, we use search problems as the basis for much of the presentation.
Specifically, the class PC (see Definition 2.3), which consists of search problems

4We admit that a very natural computational problem can give rise to a class of problems that
are computationally equivalent to it, and that in such a case the class may be less interesting
than the original problem. This is not the case for any of the complexity classes presented in
this book. Still, in some cases (e.g., NP and #7P), the historical evolution actually went from a
specific computational problem to a class of problems that are computationally equivalent to it.
However, in all cases presented in this book, a retrospective evaluation of the material suggests
that the class is actually more important than the original problem.
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having efficiently checkable solutions, plays a central role in our presentation. In-
deed, defining this class is slightly more complicated than the standard definition
of NP (which is based on non-deterministic machines), but the technical benefits
start accumulating as we proceed. Needless to say, the class PC is a fundamental
class of computational problems and this fact is the main motivation for its presen-
tation. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Question
consists of asking whether every search problem in PC can be solved efficiently.)

Avoiding model-dependent effects. Complexity theory evolves around the
notion of efficient computation. Indeed, a rigorous study of this notion seems to
require reference to some concrete model of computation; however, all questions and
answers considered in this book are invariant under the choice of such a concrete
model, provided of course that the model is “reasonable” (which, needless to say,
is a matter of intuition). The foregoing text reflects the tension between the need
to make rigorous definitions and the desire to be independent of technical choices,
which are unavoidable when making rigorous definitions. It also reflects the fact
that, by their fundamental nature, the questions that we address are quite model-
independent (i.e., are independent of various technical choices). Note that we do
not deny the existence of model-dependent questions, but rather avoid addressing
such questions and view them as less fundamental in nature. In contrast to common
beliefs, the foregoing comments refer not only to time-complexity but also to space-
complexity. However, in both cases, the claim of invariance may not hold for
marginally small resources (e.g., linear-time or sub-logarithmic space).

In contrast to the foregoing paragraph, in some cases we choose to be spe-
cific. The most notorious case is the association of efficiency with polynomial-time
complexity (see §1.2.3.5). Indeed, all the questions and answers regarding efficient
computation can be phrased without referring to polynomial-time complexity (i.e.,
by stating explicit functional relations between the complexities of the problems
involved), but such a generalized treatment will be painful to follow.

1.1.4.3 On the presentation of technical details

In general, the more complex the technical material is, the more levels of exposi-
tions we employ (starting from the most high-level exposition, and when necessary
providing more than one level of details). In particular, whenever a proof is not
very simple, we try to present the key ideas first, and postpone implementation
details to later. We also try to clearly indicate the passage from a high-level presen-
tation to its implementation details (e.g., by using phrases such as “details follow”).
In some cases, especially in the case of advanced results, only proof sketches are
provided and the implication is that the reader should be able to fill-up the missing
details.

Few results are stated without a proof. In some of these cases the proof idea
or a proof overview is provided, but the reader is not expected to be able to fill-up
the highly non-trivial details. (In these cases, the text clearly indicates this state
of affairs.) One notable example is the proof of the PCP Theorem (Theorem 9.16).
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We tried to avoid the presentation of material that, in our opinion, is neither
the “last word” on the subject nor represents the “right” way of approaching the
subject. Thus, we do not always present the “best” known result.

1.1.4.4 Organizational principles

Each of the main chapters starts with a high-level summary and ends with chapter
notes and exercises. The latter are not aimed at testing or inspiring creativity, but
are rather designed to help and verify the basic understanding of the main text. In
some cases, exercises (augmented by adequate guidelines) are used for presenting
additional related material.

The book contains material that ranges from topics that are currently taught
in undergraduate courses (on computability and basic complexity theory) to topics
that are currently taught mostly in advanced graduate courses. Although this sit-
uation may (and hopefully will) change in the future so that undergraduates will
enjoy greater exposure to complexity theory, we believe that it will continue to be
the case that typical readers of the advanced chapters will be more sophisticated
than typical readers of the basic chapters (i.e., Section 1.2 and Chapter 2). Ac-
cordingly, the style of presentation becomes more sophisticated as one progresses
from Chapter 2 to later chapters.

As stated in the preface, this book focuses on the high-level approach to com-
plexity theory, whereas the low-level approach (i.e., lower bounds) is only briefly
reviewed (in Appendix B). Other appendices contain material that is closely re-
lated to complexity theory but is not an integral part of it (e.g., the Foundations
of Cryptography).® Further details on the contents of the various chapters and
appendices are provided in Section 1.1.3.

In an attempt to keep the bibliographic list from becoming longer than an
average chapter, we omitted many relevant references. One trick used towards this
end is referring to lists of references in other texts, especially when the latter are
cited anyhow. Indeed, our choices of references were biased in favor of textbooks
and survey articles, because we believe that they provide the best way to further
learn about a research direction and/or approach. We tried, however, not to omit
references to key papers in an area. In some cases, when we needed a reference for
a result of interest and could not resort to the aforementioned trick, we cited also
less central papers.

As a matter of policy, we tried to avoid references and credits in the main text.
The few exceptions are either pointers to texts that provide details that we chose to
omit or usage of terms (bearing researchers’ names) that are too popular to avoid.
In general, in each chapter, references and credits are provided in the chapter’s
notes.

5As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-
tography within a course on complexity theory. Indeed, cryptography may be claimed to be
the most appealing application of complexity theory, but a superficial treatment of cryptography
(from this perspective) is likely to be misleading and cause more harm than good.
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Teaching note: The text also includes some teaching notes, which are typeset as this
one. Some of these notes express quite opinionated recommendations and/or justify
various expositional choices made in the text.

1.1.4.5 Additional notes

The author’s guess is that the text will be criticized for lengthy discussions of tech-
nically trivial issues. Indeed, most researchers dismiss various conceptual clarifica-
tions as being trivial and devote all their attention to the technically challenging
parts of the material. The consequence is students that master the technical ma-
terial but are confused about its meaning. In contrast, the author recommends
not being embarrassed of devoting time to conceptual clarifications, even if some
students may view them as obvious.

The motivational discussions presented in the text do not necessarily represent
the original motivation of the researchers that pioneered a specific study and/or
contributed greatly to it. Instead, these discussions provide what the author con-
siders to be a good motivation and/or a good perspective on the corresponding
concepts.

1.1.5 Standard notations and other conventions

Following are some notations and conventions that are freely used in this book.

Standard asymptotic notation: When referring to integral functions, we use
the standard asymptotic notation; that is, for f,g : N — N, we write f = O(g)
(resp., f = Q(g)) if there exists a constant ¢ > 0 such that f(n) < c¢- g(n) (resp.,
f(n) > c-g(n)) holds for all n € N. We usually denote by “poly” an unspecified
polynomial, and write f(n) = poly(n) instead of “there exists a polynomial p such
that f(n) < p(n) for all n € N.”” We also use the notation f = O(g) that mean
f(n) = poly(logn) - g(n), and f = o(g) (resp., f = w(g)) that mean f(n) < c-g(n)
(resp., f(n) > c¢- g(n)) for every constant ¢ > 0 and all sufficiently large n.

Integrality issues: Typically, we ignore integrality issues. This means that we
may assume that log, n is an integer rather than using a more cumbersome form as
|log, n]. Likewise, we may assume that various equalities are satisfied by integers
(e.g., 2" = m™), even when this cannot possibly be the case (e.g., 2" = 3™). In
all these cases, one should consider integers that approximately satisfy the relevant
equations (and deal with the problems that emerge by such approximations, which
will be ignored in the current text).

Standard combinatorial and graph theory terms and notation: For any
set S, we denote by 2° the set of all subsets of S (i.e., 2° = {S' : §'C S}). For

a natural number n € N, we denote [n] def {1,...,n}. Many of the computational
problems that we mention refer to finite (undirected) graphs. Such a graph, denoted
G = (V, E), cousists of a set of vertices, denoted V', and a set of edges, denoted E,
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which are unordered pairs of vertices. By default, graphs are undirected, whereas
directed graphs consists of vertices and directed edges, where a directed edge is
an order pair of vertices. We also refer to other graph theoretic terms such as
connectivity, being acyclic (i.e., having no simple cycles), being a tree (i.e., being
connected and acyclic), k-colorability, etc. For further background on graphs and
computational problems regarding graphs, the reader is referred to Appendix G.1.

Typographic conventions: We denote formally defined complexity classes by
calligraphic letters (e.g., N'P), but we do so only after defining these classes. Fur-
thermore, when we wish to maintain some ambiguity regarding the specific formu-
lation of a class of problems we use Roman font (e.g., NP may denote either a class
of search problems or a class of decision problems). Likewise, we denote formally
defined computational problems by typewriter font (e.g., SAT). In contrast, generic
problems and algorithms will be denoted by italic font.

1.2 Computational Tasks and Models

But, you may say, we asked you to speak about
women and fiction — what, has that got to do with a
room of one’s own? I will try to explain.

Virginia Woolf, A room of one’s own

This section provides the necessary preliminaries for the rest of the book; that is,
we discuss the notion of a computational task and present computational models
(for describing methods) for solving such tasks. We start by introducing the general
framework for our discussion of computational tasks (or problems): this framework
refers to the representation of instances (as binary sequences) and focuses on two
types of tasks (i.e., searching for solutions and making decisions). In order to
facilitate a study of methods for solving such tasks, the latter are defined with
respect to infinitely many possible instances (each being a finite object).’

Once computational tasks are defined, we turn to methods for solving such
tasks, which are described in terms of some model of computation. The description
of such models is the main contents of this section. Specifically, we consider two
types of models of computation: uniform models and non-uniform models. The
uniform models correspond to the intuitive notion of an algorithm, and will pro-
vide the stage for the rest of the book (which focuses on efficient algorithms). In
contrast, non-uniform models (e.g., Boolean circuits) facilitate a closer look at the
way a computation progresses, and will be used only sporadically in this book.

6The comparison of different methods seems to require the consideration of infinitely many
possible instances; otherwise, the choice of the language in which the methods are described may
totally dominated and even distort the discussion (cf. the discussion of Kolmogorov Complexity
in §1.2.3.4).
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Organization of Section 1.2. Sections 1.2.1-1.2.3 corresponds to the contents
of a traditional Computability course, except that our presentation emphasizes
some aspects and deemphasizes others. In particular, the presentation highlights
the notion of a universal machine (see §1.2.3.4), justifies the association of efficient
computation with polynomial-time algorithm (§1.2.3.5), and provides a definition
of oracle machines (§1.2.3.6). This material (with the exception of Kolmogorov
Complexity) is taken for granted in the rest of the current book. In contrast,
Section 1.2.4 presents basic preliminaries regarding non-uniform models of compu-
tation (i.e., various types of Boolean circuits), and these are only used lightly in the
rest of the book. (We also call the reader’s attention to the discussion of generic
complexity classes in Section 1.2.5.) Thus, whereas Sections 1.2.1-1.2.3 (and 1.2.5)
are absolute prerequisites for the rest of this book, Section 1.2.4 is not.

Teaching note: The author believes that there is no real need for a semester-long
course in Computability (i.e., a course that focuses on what can be computed rather
than on what can be computed efficiently). Instead, undergraduates should take a
course in Computational Complexity, which should contain the computability aspects
that serve as a basis for the rest of the course. Specifically, the former aspects should
occupy at most 25% of the course, and the focus should be on basic complexity issues
(captured by P, NP, and NP-completeness) augmented by a selection of some more
advanced material. Indeed, such a course can be based on Chapters 1 and 2 of the

current book (augmented by a selection of some topics from other chapters).

1.2.1 Representation

In Mathematics and related sciences, it is customary to discuss objects without
specifying their representation. This is not possible in the theory of computation,
where the representation of objects plays a central role. In a sense, a computation
merely transforms one representation of an object to another representation of the
same object. In particular, a computation designed to solve some problem merely
transforms the problem instance to its solution, where the latter can be though
of as a (possibly partial) representation of the instance. Indeed, the answer to
any fully specified question is implicit in the question itself, and computation is
employed to make this answer explicit.

Computational tasks refers to objects that are represented in some canonical
way, where such canonical representation provides an “explicit” and “full” (but
not “overly redundant”) description of the corresponding object. We will consider
only finite objects like numbers, sets, graphs, and functions (and keep distinguish-
ing these types of objects although, actually, they are all equivalent). While the
representation of numbers, sets and functions is quite straightforward, we refer the
reader to Appendix G.1 for a discussion of the representation of graphs.

Strings. We consider finite objects, each represented by a finite binary sequence,
called a string. For a natural number n, we denote by {0,1}™ the set of all strings
of length n, hereafter referred to as n-bit (long) strings. The set of all strings is
denoted {0, 1}*; that is, {0,1}* = U,,en{0,1}". For z € {0,1}*, we denote by |z
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the length of = (i.e., # € {0,1}/*]), and often denote by x; the i*" bit of z (i.e.,
T = 21Ty -T|y). For z,y € {0,1}*, we denote by xy the string resulting from
concatenation of the strings « and y.

At times, we associate {0,1}*x{0,1}* with {0, 1}*; the reader should merely
consider an adequate encoding (e.g., the pair (1 - - Ty, y1 - - - yn) €{0,1}*x {0, 1}*
may be encoded by the string z121 -+ Tz, 01ly; - - -y, € {0,1}*). Likewise, we
may represent sequences of strings (of fixed or varying length) as single strings.
When we wish to emphasize that such a sequence (or some other object) is to be
counsidered as a single object we use the notation (-) (e.g., “the pair (z,y) is encoded
as the string (z,y)”).

Numbers. Unless stated differently, natural numbers will be encoded by their
binary expansion; that is, the string b,_1---b1bp € {0,1}"™ encodes the number
Z?:_Ol b; - 2¢, where typically we assume that this representation has no leading
zeros (i.e., b,—_1 = 1). Rational numbers will be represented as pairs of natural
numbers. In the rare cases in which one considers real numbers as part of the
input to a computational problem, one actually mean rational approximations of
these real numbers.

Special symbols. We denote the empty string by A (i.e., A € {0,1}* and |\| = 0),
and the empty set by 0. It will be convenient to use some special symbols that are
not in {0,1}*. One such symbol is L, which typically denotes an indication (e.g.,
produced by some algorithm) that something is wrong.

1.2.2 Computational Tasks

Two fundamental types of computational tasks are the so-called search problems
and decision problems. In both cases, the key notions are the problem’s instances
and the problem’s specification.

1.2.2.1 Search problems

A search problem consists of a specification of a set of valid solutions (possibly an
empty one) for each possible instance. That is, given an instance, one is required
to find a corresponding solution (or to determine that no such solution exists).
For example, consider the problem in which one is given a system of equations
and is asked to find a valid solution. Needless to say, much of computer science
is concerned with solving various search problems (e.g., finding shortest paths in
a graph, sorting a list of numbers, finding an occurrence of a given pattern in a
given string, etc). Furthermore, search problems correspond to the daily notion
of “solving a problem” (e.g., finding one’s way between two locations), and thus a
discussion of the possibility and complexity of solving search problems corresponds
to the natural concerns of most people.

In the following definition of solving search problems, the potential solver is a
function (which may be thought of as a solving strategy), and the sets of possible
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solutions associated with each of the various instances are “packed” into a single
binary relation.

Definition 1.1 (solving a search problem): Let R C {0,1}* x {0,1}* and R(x) =
{y : (z,y) € R} denote the set of solutions for the instance x. A function f :
{0,1}* — {0,1}* U {L} solves the search problem of R if for every x the following
holds: if R(z) # 0 then f(z) € R(x) and otherwise f(x) = L.

Indeed, R = {(z,y) € {0,1}* x {0,1}* : y € R(x)}, and the solver f is required to
find a solution (i.e., given z output y € R(z)) whenever one exists (i.e., the set
R(x) is not empty). It is also required that the solver f never outputs a wrong
solution (i.e., if R(x) # () then f(x) € R(z) and if R(z) = @ then f(z) = L), which
in turn means that f indicates whether z has any solution.

A special case of interest is the case of search problems having a unique solution
(for each possible instance); that is, the case that |R(z)| = 1 for every z. In this
case, R is essentially a (total) function, and solving the search problem of R means
computing (or evaluating) the function R (or rather the function R’ defined by

R'(z) def y if and only if R(x) = {y}). Popular examples include sorting a sequence
of numbers, multiplying integers, finding the prime factorization of a composite
number, etc.

1.2.2.2 Decision problems

A decision problem consists of a specification of a subset of the possible instances.
Given an instance, one is required to determine whether the instance is in the
specified set (e.g., the set of prime numbers, the set of connected graphs, or the
set of sorted sequences). For example, consider the problem where one is given a
natural number, and is asked to determine whether or not the number is a prime.
One important case, which corresponds to the aforementioned search problems, is
the case of the set of instances having a solution; that is, for any binary relation
R C {0,1}* x {0,1}* we consider the set {x : R(z) # 0}. Indeed, being able
to determine whether or not a solution exists is a prerequisite to being able to
solve the corresponding search problem (as per Definition 1.1). In general, decision
problems refer to the natural task of making binary decision, a task that is not
uncommon in daily life (e.g., determining whether a traffic light is red). In any
case, in the following definition of solving decision problems, the potential solver
is again a function; that is, in this case the solver is a Boolean function, which is
supposed to indicate membership in a predetermined set.

Definition 1.2 (solving a decision problem): Let S C {0,1}*. A function f :
{0,1}* — {0, 1} solves the decision problem of S (or decides membership in S) if for
every x it holds that f(z) =1 if and only if x € S.

We often identify the decision problem of S with S itself, and identify S with its
characteristic function (i.e., with the function xgs : {0,1}* — {0,1} defined such
that xs(x) = 1 if and only if x € S). Note that if f solves the search problem of R
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then the Boolean function f : {0,1}* — {0,1} defined by f'(z) € 1 if and only if
f(z) # L solves the decision problem of {x : R(z) # 0}.

Reflection: Most people would consider search problems to be more natural
than decision problems: typically, people seeks solutions more than they stop to
wonder whether or not solutions exist. Definitely, search problems are not less
important than decision problems, it is merely that their study tends to require
more cumbersome formulations. This is the main reason that most expositions
choose to focus on decision problems. The current book attempts to devote at
least a significant amount of attention also to search problerms.

1.2.2.3 Promise problems (an advanced comment)

Many natural search and decision problems are captured more naturally by the
terminology of promise problems, in which the domain of possible instances is a
subset of {0,1}* rather than {0,1}* itself. In particular, note that the natural
formulation of many search and decision problems refers to instances of a certain
types (e.g., a system of equations, a pair of numbers, a graph), whereas the natural
representation of these objects uses only a strict subset of {0,1}*. For the time
being, we ignore this issue, but we shall re-visit it in Section 2.4.1. Here we just
note that, in typical cases, the issue can be ignored by postulating that every
string represents some legitimate object (e.g., each string that is not used in the
natural representation of these objects is postulated as a representation of some
fixed object).

1.2.3 Uniform Models (Algorithms)

Science is One.

Laci Lovéasz (according to Silvio Micali, ca. 1990).

We finally reach the heart of the current section (Section 1.2), which is the definition
of uniform models of computation. We are all familiar with computers and with
the ability of computer programs to manipulate data. This familiarity seems to
be rooted in the positive side of computing; that is, we have some experience
regarding some things that computers can do. In contrast, complexity theory is
focused at what computers cannot do, or rather with drawing the line between
what can be done and what cannot be done. Drawing such a line requires a precise
formulation of all possible computational processes; that is, we should have a clear
model of all possible computational processes (rather than some familiarity with
some computational processes).

1.2.3.1 Overview and general principles

Before being formal, let we offer a general and abstract description, which is aimed
at capturing any artificial as well as natural process. Indeed, artificial processes will
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be associated with computers, whereas by natural processes we mean (attempts to
model) the “mechanical” aspects the natural reality (be it physical, biological, or
even social).

A computation is a process that modifies an environment via repeated applica-
tions of a predetermined rule. The key restriction is that this rule is simple: in each
application it depends and affects only a (small) portion of the environment, called
the active zone. We contrast the a-priori bounded size of the active zone (and of
the modification rule) with the a-priori unbounded size of the entire environment.
We note that, although each application of the rule has a very limited effect, the
effect of many applications of the rule may be very complex. Put in other words, a
computation may modify the relevant environment in a very complex way, although
it is merely a process of repeatedly applying a simple rule.

As hinted, the notion of computation can be used to model the “mechanical”
aspects of the natural reality; that is, the rules that determine the evolution of
the reality (rather than the specific state of the reality at a specific time). In this
case, the starting point of the study is the actual evolution process that takes place
in the natural reality, and the goal of the study is finding the (computation) rule
that underlies this natural process. In a sense, the goal of Science at large can be
phrased as finding (simple) rules that govern various aspects of reality (or rather
one’s abstraction of these aspects of reality).

Our focus, however, is on artificial computation rules designed by humans in
order to achieve specific desired effects on a corresponding artificial environment.
Thus, our starting point is a desired functionality, and our aim is to design compu-
tation rules that effect it. Such a computation rule is referred to as an algorithm.
Loosely speaking, an algorithm corresponds to a computer program written in a
high-level (abstract) programming language. Let us elaborate.

We are interested in the transformation of the environment as affected by the
computational process (or the algorithm). Throughout (most of) this book, we
will assume that, when invoked on any finite initial environment, the computation
halts after a finite number of steps. Typically, the initial environment to which
the computation is applied encodes an input string, and the end environment (i.e.,
at termination of the computation) encodes an output string. We consider the
mapping from inputs to outputs induced by the computation; that is, for each
possible input z, we consider the output y obtained at the end of a computation
initiated with input z, and say that the computation maps input z to output y.
Thus, a computation rule (or an algorithm) determines a function (computed by
it): this function is exactly the aforementioned mapping of inputs to outputs.

In the rest of this book (i.e., outside the current chapter), we will also consider
the number of steps (i.e., applications of the rule) taken by the computation on
each possible input. The latter function is called the time complexity of the com-
putational process (or algorithm). While time complexity is defined per input, we
will often considers it per input length, taking the maximum over all inputs of the
same length.

In order to define computation (and computation time) rigorously, one needs
to specify some model of computation; that is, provide a concrete definition of
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environments and a class of rules that may be applied to them. Such a model
corresponds to an abstraction of a real computer (be it a PC, mainframe or net-
work of computers). One simple abstract model that is commonly used is that of
Turing machines (see, §1.2.3.2). Thus, specific algorithms are typically formalized
by corresponding Turing machines (and their time complexity is represented by the
time complexity of the corresponding Turing machines). We stress, however, that
most results in the Theory of Computation hold regardless of the specific compu-
tational model used, as long as it is “reasonable” (i.e., satisfies the aforementioned
simplicity condition and can perform some apparently simple computations).

What is being computed? The forgoing discussion has implicitly referred to
algorithms (i.e., computational processes) as means of computing functions. Specif-
ically, an algorithm A computes the function f4 : {0,1}* — {0,1}* defined by
fa(z)=y if, when invoked on input z, algorithm A halts with output y. However,
algorithms can also serve as means of “solving search problems” or “making de-
cisions” (as in Definitions 1.1 and 1.2). Specifically, we will say that algorithm A
solves the search problem of R (resp., decides membership in S) if f4 solves the
search problem of R (resp., decides membership in S). In the rest of this exposition
we associate the algorithm A with the function f4 computed by it; that is, we write
A(z) instead of fa(z). For sake of future reference, we summarize the foregoing
discussion.

Definition 1.3 (algorithms as problem-solvers): We denote by A(x) the output
of algorithm A on input x. Algorithm A solves the search problem R (resp., the
decision problem S) if A, viewed as a function, solves R (resp., S).

Organization of the rest of Section 1.2.3. In §1.2.3.2 we provide a rough
description of the model of Turing machines. This is done merely for sake of pro-
viding a concrete model that supports the study of computation and its complexity,
whereas most of the material in this book will not depend on the specifics of this
model. In §1.2.3.3 and §1.2.3.4 we discuss two fundamental properties of any rea-
sonable model of computation: the existence of uncomputable functions and the
existence of universal computations. The time (and space) complexity of compu-
tation is defined in §1.2.3.5. We also discuss oracle machines and restricted models
of computation (in §1.2.3.6 and §1.2.3.7, respectively).

1.2.3.2 A concrete model: Turing machines

The model of Turing machines offer a relatively simple formulation of the notion
of an algorithm. The fact that the model is very simple complicates the design of
machines that solve problems of interest, but makes the analysis of such machines
simpler. Since the focus of complexity theory is on the analysis of machines and not
on their design, the trade-off offers by this model is suitable for our purposes. We
stress again that the model is merely used as a concrete formulation of the intuitive
notion of an algorithm, whereas we actually care about the intuitive notion and
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not about its formulation. In particular, all results mentioned in this book hold for
any other “reasonable” formulation of the notion of an algorithm.

The model of Turing machines is not meant to provide an accurate (or “tight”)
model of real-life computers, but rather to capture their inherent limitations and
abilities (i.e., a computational task can be solved by a real-life computer if and only
if it can be solved by a Turing machine). In comparison to real-life computers, the
model of Turing machines is extremely over-simplified and abstract away many
issues that are of great concern to computer practice. However, these issues are
irrelevant to the higher-level questions addressed by complexity theory. Indeed, as
usual, good practice requires more refined understanding than the one provided by
a good theory, but one should first provide the latter.

Historically, the model of Turing machines was invented before modern com-
puters were even built, and was meant to provide a concrete model of computation
and a definition of computable functions.” Indeed, this concrete model clarified
fundamental properties of computable functions and plays a key role in defining
the complexity of computable functions.

The model of Turing machines was envisioned as an abstraction of the process
of an algebraic computation carried out by a human using a sheet of paper. In
such a process, at each time, the human looks at some location on the paper, and
depending on what he/she sees and what he/she has in mind (which is little...),
he/she modifies the contents of this location and shifts his/her look to an adjacent
location.

The actual model. Following is a high-level description of the model of Turing
machines; the interested reader is referred to standard textbooks (e.g., [200]) for
further details. Recall that we need to specify the set of possible environments, the
set of machines (or computation rules), and the effect of applying such a rule on
an environment.

e The main component in the environment of a Turing machine is an infinite
sequence of cells, each capable of holding a single symbol (i.e., member of a
finite set ¥ D {0,1}). This sequence is envisioned as starting at a left-most
cell, and extending infinitely to the right (cf., Figure 1.2). In addition, the
environment contains the current location of the machine on this sequence,
and the internal state of the machine (which is a member of a finite set )). The
aforementioned sequence of cells is called the tape, and its contents combined
with the machine’s location and its internal state is called the instantaneous
configuration of the machine.

e The main component in the Turing machine itself is a finite rule (i.e., a finite
function), called the transition function, which is defined over the set of all
possible symbol-state pairs. Specifically, the transition function is a mapping

“In contrast, the abstract definition of “recursive functions” yields a class of “computable”
functions without referring to any model of computation (but rather based on the intuition that
any such model should support functional composition).
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Figure 1.2: A single step by a Turing machine.

from ¥ x Q to ¥ x Q x {—1,0,+1}, where {—1,+1,0} correspond to a move-
ment instruction (which is either “left” or “right” or “stay”, respectively).
In addition, the machine’s description specifies an initial state and a halting
state, and the computation of the machine halts when the machine enters its
halting state.®

We stress that, in contrast to the finite description of the machine, the tape
has an a priori unbounded length (and is considered, for simplicity, as being
infinite).

e A single computation step of such a Turing machine depends on its current
location on the tape, on the contents of the corresponding cell, and on the in-
ternal state of the machine. Based on the latter two elements, the transition
function determines a new symbol-state pair as well as a movement instruc-
tion (i.e., “left” or “right” or “stay”). The machine modifies the contents of
the said cell and its internal state accordingly, and moves as directed. That
is, suppose that the machine is in state ¢ and resides in a cell containing the
symbol o, and suppose that the transition function maps (e, q) to (¢/,¢', D).
Then, the machine modifies the contents of the said cell to ¢’, modifies its
internal state to ¢’, and moves one cell in direction D. Figure 1.2 shows a
single step of a Turing machine that, when in state ‘b’ and seeing a binary
symbol o, replaces o with the symbol o + 2, maintains its internal state, and
moves one position to the right.”

Formally, we define the successive configuration function which maps each
instantaneous configuration to the one resulting by letting the machine take
a single step. This function modifies its argument in a very minor manner,
as described in the foregoing; that is, the contents of at most one cell (i.e., at

8Envisioning the tape as in Figure 1.2, we also use the convention by which if the machine
tries to move left of the end of the tape then it is considered to have halted.

9Figure 1.2 corresponds to a machine that, when in the initial state (i.e., ‘a’), replaces the
symbol o by o + 4, modifies its internal state to ‘b’, and moves one position to the right. Indeed,
“marking” the leftmost cell (in order to allow for recognizing it in the future), is a common
practice in the design of Turing machines.
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which the machine currently resides) is changed, and in addition the internal
state of the machine and its location may change too.

The initial environment (or configuration) of a Turing machine consists of the
machine residing in the first (i.e., left-most) cell and being in its initial state.
Typically, one also mandates that, in the initial configuration, a prefix of the tape’s
cells hold bit values, which concatenated together are considered the input, and the
rest of the tape’s cells hold a special symbol (which in Figure 1.2 is denoted by ‘-’).
Once the machine halts, the output is defined as the contents of the cells that are
to the left of its location (at termination time).!° Thus, each machine defines a
function mapping inputs to outputs, called the function computed by the machine.

Multi-tape Turing machines. We comment that in most expositions, one
refers to the location of the “head of the machine” on the tape (rather than to
the “location of the machine on the tape”). The standard terminology is more
intuitive when extending the basic model, which refers to a single tape, to a model
that supports a constant number of tapes. In the corresponding model of so-called
multi-tape machines, the machine maintains a single head on each such tape, and
each step of the machine depends and effects the cells that are at the machine’s
head location on each tape. As we shall see in Chapter 5 (and in §1.2.3.5), the
extension of the model to multi-tape Turing machines is crucial to the definition of
space complexity. A less fundamental advantage of the model of multi-tape Turing
machines is that it facilitates the design of machines that compute functions of
interest.

Teaching note: We strongly recommend avoiding the standard practice of teaching
the student to program with Turing machines. These exercises seem very painful and
pointless. Instead, one should prove that the Turing machine model is exactly as pow-
erful as a model that is closer to a real-life computer (see the following “sanity check”);
that is, a function can be computed by a Turing machine if and only if it is computable
by a machine of the latter model. For starters, one may prove that a function can be
computed by a single-tape Turing machine if and only if it is computable by a multi-tape

(e.g., two-tape) Turing machine.

The Church-Turing Thesis: The entire point of the model of Turing machines
is its simplicity. That is, in comparison to more “realistic” models of computation,
it is simpler to formulate the model of Turing machines and to analyze machines in
this model. The Church-Turing Thesis asserts that nothing is lost by considering
the Turing machine model: A function can be computed by some Turing machine
if and only if it can be computed by some machine of any other “reasonable and
general” model of computation.

This is a thesis, rather than a theorem, because it refers to an intuitive notion
(i-e., the notion of a reasonable and general model of computation) that is left unde-
fined on purpose. The model should be reasonable in the sense that it should allow

10By an alternative convention, the machine halts while residing in the left-most cell, and the
output is defined as the maximal prefix of the tape contents that contains only bit values.
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only computation rules that are “simple” in some intuitive sense. For example,
we should be able to envision a mechanical implementation of these computation
rules. On the other hand, the model should allow to compute “simple” functions
that are definitely computable according to our intuition. At the very least the
model should allow to emulate Turing machines (i.e., compute the function that,
given a description of a Turing machine and an instantaneous configuration, returns
the successive configuration).

A philosophical comment. The fact that a thesis is used to link an intuitive
concept to a formal definition is common practice in any science (or, more broadly,
in any attempt to reason rigorously about intuitive concepts). Any attempt to
rigorously define an intuitive concept yields a formal definition that necessarily
differs from the original intuition, and the question of correspondence between
these two objects arises. This question can never be rigorously treated, because
it relates to two objects, where one of them is undefined. That is, the question
of correspondence between the intuition and the definition always transcends a
rigorous treatment (i.e., it always belongs to the domain of the intuition).

A sanity check: Turing machines can emulate an abstract RAM. To gain
confidence in the Church-Turing Thesis, one may attempt to define an abstract
Random-Access Machine (RAM), and verify that it can be emulated by a Turing
machine. An abstract RAM consists of an infinite number of memory cells, each
capable of holding an integer, a finite number of similar registers, one designated
as program counter, and a program consisting of instructions selected from a finite
set. The set of possible instructions includes the following instructions:

e reset(r), where r is an index of a register, results in setting the value of
register r to zero.

e inc(r), where 7 is an index of a register, results in incrementing the content
of register r. Similarly dec(r) causes a decrement.

e load(ry,72), where 7 and ry are indices of registers, results in loading to
register r1 the contents of the memory location m, where m is the current
contents of register 7.

e store(r;,rs), stores the contents of register 71 in the memory, analogously
to load.

e cond-goto(r,{), where r is an index of a register and ¢ does not exceed the
program length, results in setting the program counter to £ — 1 if the content
of register r is non-negative.

The program counter is incremented after the execution of each instruction, and
the next instruction to be executed by the machine is the one to which the program
counter points (and the machine halts if the program counter exceeds the program’s
length). The input to the machine may be defined as the contents of the first n
memory cells, where n is placed in a special input register.

We note that, as stated, the abstract RAM model is as powerful as the Tur-
ing machine model (see following details). However, in order to make the RAM
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model closer to real-life computers, we may augment it with additional instruc-
tions that are available on real-life computers like the instruction add(ry,r2) (resp.,
mult(ry,r2)) that results in adding (resp., multiplying) the contents of registers 71
and ro (and placing the result in register 7). We suggest proving that this abstract
RAM can be emulated by a Turing machine.t' (Hint: note that during the emula-
tion, we only need to hold the input, the contents of all registers, and the contents
of the memory cells that were accessed during the computation.)!?

Reflections: Observe that the abstract RAM model is significantly more cum-
bersome than the Turing machine model. Furthermore, seeking a sound choice
of the instruction set (i.e., the instructions to be allowed in the model) creates
a vicious cycle (because the sound guideline for such a choice should have been
allowing only instructions that correspond to “simple” operations, whereas the lat-
ter correspond to easily computable functions...). This vicious cycle was avoided in
the foregoing paragraph by trusting the reader to include only instructions that are
available in some real-life computer. (We comment that this empirical considera-
tion is justifiable in the current context, because our current goal is merely linking
the Turing machine model with the reader’s experience of real-life computers.)

1.2.3.3 Uncomputable functions

Strictly speaking, the current subsection is not necessary for the rest of this book,
but we feel that it provides a useful perspective.

In contrast to what every layman would think, we know that not all functions
are computable. Indeed, an important message to be communicated to the world is
that not every well-defined task can be solved by applying a “reasonable” automated
procedure (i.e., a procedure that has a simple description that can be applied to
any instance of the problem at hand). Furthermore, not only is it the case that
there exist uncomputable functions, but it is rather the case that most functions
are uncomputable. In fact, only relatively few functions are computable.

Theorem 1.4 (on the scarcity of computable functions): The set of computable
functions is countable, whereas the set of all functions (from strings to string) has
cardinality N.

We stress that the theorem holds for any reasonable model of computation. In
fact, it only relies on the postulate that each machine in the model has a finite
description (i.e., can be described by a string).

1'We emphasize this direction of the equivalence of the two models, because the RAM model is
introduced in order to convince the reader that Turing machines are not too weak (as a model of
general computation). The fact that they are not too strong seems self-evident. Thus, it seems
pointless to prove that the RAM model can emulate Turing machines. Still, note that this is
indeed the case, by using the RAM’s memory cells to store the contents of the cells of the Turing
machine’s tape.

12Thus, at each time, the Turning machine’s tape contains a list of the RAM’s memory cells
that were accessed so far as well as their current contents. When we emulate a RAM instruction,
we first check whether the relevant RAM cell appears on this list, and augment the list by a
corresponding entry or modify this entry as needed.
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Proof: Since each computable function is computable by a machine that has
a finite description, there is a 1-1 correspondence between the set of computable
functions and the set of strings (which in turn is in 1-1 correspondence to the
natural numbers). On the other hand, there is a 1-1 correspondence between the
set of Boolean functions (i.e., functions from strings to a single bit) and the set
of real number in [0,1). This correspondence associates each real r € [0, 1) to the
function f : N — {0, 1} such that f(i) is the ¢*® bit in the infinite binary expansion
ofr.

The Halting Problem: In contrast to the discussion in §1.2.3.1, at this point
we consider also machines that may not halt on some inputs. (The functions
computed by such machines are partial functions that are defined only on inputs
on which the machine halts.) Again, we rely on the postulate that each machine
in the model has a finite description, and denote the description of machine M by
(M) € {0,1}*. The halting function, h : {0,1}* x {0,1}* — {0, 1}, is defined such
that h({M}),x) 4 1 if and only if M halts on input . The following result goes
beyond Theorem 1.4 by pointing to an explicit function (of natural interest) that
is not computable.

Theorem 1.5 (undecidability of the halting problem): The halting function is not
computable.

The term undecidability means that the corresponding decision problem cannot be
solved by an algorithm. That is, Theorem 1.5 asserts that the decision problem
associated with the set h=1(1) = {((M),z) : h({(M),r) = 1} is not solvable by
an algorithm (i.e., there exists no algorithm that, given a pair ((M),z), decides
whether or not M halts on input ). Actually, the following proof shows that there
exists no algorithm that, given (M), decides whether or not M halts on input (M).

Proof: We will show that even the restriction of h to its “diagonal” (i.e., the func-

tion d({M})) Lef h((M),(M}))) is not computable. Note that the value of d({M})

refers to the question of what happens when we feed M with its own description,
which is indeed a “nasty” (but legitimate) thing to do. We will actually do some-
thing “worse”: towards the contradiction, we will consider the value of d when
evaluated at a (machine that is related to a) hypothetical machine that supposedly
computes d.

We start by considering a related function, d’, and showing that this function
is uncomputable. The function d’ is defined on purpose so to foil any attempt to
compute it; that is, for every machine M, the value d'({(M)) is defined to differ

from M((M)). Specifically, the function d' : {0,1}* — {0,1} is defined such

that d'({(M)) e if and only if M halts on input (M) with output 0. (That is,

d'((M)) = 0 if either M does not halt on input (M) or its output does not equal
the value 0.) Now, suppose, towards the contradiction, that d' is computable by
some machine, denoted My,. Note that machine My, is supposed to halt on every
input, and so Mg, halts on input (Mg,). But, by definition of d’, it holds that
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d'((Mg,)) = 1if and only if Mg, halts on input (My,) with output O (i.e., if and
only if Mg, ((Mg.)) = 0). Thus, My ((Mg.)) # d'({(Mg,)) in contradiction to the
hypothesis that My, computes d'.

We next prove that d is uncomputable, and thus h is uncomputable (because
d(z) = h(z, z) for every z). To prove that d is uncomputable, we show that if d
is computable then so is @' (which we already know not to be the case). Indeed,
suppose towards the contradiction that A is an algorithm for computing d (i.e.,
A((M)) = d({M)) for every machine M). Then we construct an algorithm for
computing d'; which given (M'), invokes A on (M"), where M" is defined to
operate as follows:

1. On input x, machine M" emulates M' on input z.

2. If M’ halts on input z with output 0 then M" halts.

3. If M’ halts on input z with an output different from O then M" enters an
infinite loop (and thus does not halt).

4. Otherwise (i.e., M’ does not halt on input z), then machine M" does not
halt (because it just stays stuck in Step 1 forever).

Note that the mapping from (M') to (M") is easily computable (by augmenting
M'" with instructions to test its output and enter an infinite loop if necessary), and
that d((M")) = d'((M')), because M" halts on x if and only if M" halts on x with
output 0. We thus derived an algorithm for computing d’ (i.e., transform the input
(M'") into (M") and output A((M"))), which contradicts the already established
fact by which d’ is uncomputable. W

Turing-reductions. The core of the second part of the proof of Theorem 1.5 is
an algorithm that solves one problem (i.e., computes d’) by using as a subroutine
an algorithm that solves another problem (i.e., computes d (or h)). In fact, the
first algorithm is actually an algorithmic scheme that refers to a “functionally spec-
ified” subroutine rather than to an actual (implementation of such a) subroutine,
which may not exist. Such an algorithmic scheme is called a Turing-reduction (see
formulation in §1.2.3.6). Hence, we have Turing-reduced the computation of d’ to
the computation of d, which in turn Turing-reduces to h. The “natural” (“posi-
tive”) meaning of a Turing-reduction of f' to f is that, when given an algorithm
for computing f, we obtain an algorithm for computing f’. In contrast, the proof
of Theorem 1.5 uses the “unnatural” (“negative”) counter-positive: if (as we know)
there exists no algorithm for computing f' = d’ then there exists no algorithm for
computing f = d (which is what we wanted to prove). Jumping ahead, we mention
that resource-bounded Turing-reductions (e.g., polynomial-time reductions) play a
central role in complexity theory itself, and again they are used mostly in a “nega-
tive” way. We will define such reductions and extensively use them in subsequent
chapters.

Rice’s Theorem. The undecidability of the halting problem (or rather the fact
that the function d is uncomputable) is a special case of a more general phe-
nomenon: Every non-trivial decision problem regarding the function computed by
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a given Turing machine has no algorithmic solution. We state this fact next, clar-
ifying the definition of the aforementioned class of problems. (Again, we refer to
Turing machines that may not halt on all inputs.)

Theorem 1.6 (Rice’s Theorem): Let F be any non-trivial subset' of the set of all
computable partial functions, and let Sx be the set of strings that describe machines
that compute functions in F. Then deciding membership in Sx cannot be solved by
an algorithm.

Theorem 1.6 can be proved by a Turing-reduction from d. We do not provide
a proof because this is too remote from the main subject matter of the book.
We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation
(referring both to the potential solvers and to the machines the description of which
is given as input to these solvers). Thus, Theorem 1.6 means that no algorithm can
determine any non-trivial property of the function computed by a given computer
program (written in any programming language). For example, no algorithm can
determine whether or not a given computer program halts on each possible input.
The relevance of this assertion to the project of program verification is obvious.

The Post Correspondence Problem. We mention that undecidability arises
also outside of the domain of questions regarding computing devices (given as
input). Specifically, we consider the Post Correspondence Problem in which the
input consists of two sequences of strings, (ay,...,ax) and (5, ..., 5), and the
question is whether or not there exists a sequence of indices i, ...,7¢ € {1,...,k}
such that o, -+ ay, = Bi, -+ Bi,. (We stress that the length of this sequence is not
a priori bounded.)'*

Theorem 1.7 The Post Correspondence Problem is undecidable.

Again, the omitted proof is by a Turing-reduction from d (or h).!?

1.2.3.4 Universal algorithms

So far we have used the postulate that, in any reasonable model of computation,
each machine (or computation rule) has a finite description. Furthermore, we
also used the fact that such model should allow for the easy modification of such
descriptions such that the resulting machine computes an easily related function
(see the proof of Theorem 1.5). Here we go one step further and postulate that the
description of machines (in this model) is “effective” in the following natural sense:
there exists an algorithm that, given a description of a machine (resp., computation

13The set S is called a non-trivial subset of U if both S and U \ S are non-empty. Clearly, if F
is a trivial set of computable functions then the corresponding decision problem can be solved by
a “trivial” algorithm that outputs the corresponding constant bit.

141n contrast, the existence of an adequate sequence of a specified length can be determined in
time that is exponential in this length.

15We mention that the reduction maps an instance ((M),z) of h to a pair of sequences
((@1, ..., %), (B1, -, Br)) such that only a1 and 81 depend on x, whereas k as well as the other
strings depend only on M.
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rule) and a corresponding environment, determines the environment that results
from performing a single step of this machine on this environment (resp. the effect
of a single application of the computation rule). This algorithm can, in turn, be
implemented in the said model of computation (assuming this model is general; see
the Church-Turing Thesis). Successive applications of this algorithm leads to the
notion of a universal machine, which (for concreteness) is formulated next in terms
of Turing machines.

Definition 1.8 (universal machines): A universal Turing machine is a Turing ma-
chine that on input a description of a machine M and an input x returns the value
of M(x) if M halts on x and otherwise does not halt.

That is, a universal Turing machine computes the partial function u on pairs
((M),z) such that M halts on input z, in which case it holds that u((M),z) =
M(z). That is, u((M),z) = M(z) if M halts on input = and u is undefined on
((M),z) otherwise. We note that if A halts on all possible inputs then u({(M), z)
is defined for every z.

We stress that the mere fact that we have defined something (i.e., a universal
Turing machine) does not mean that it exists. Yet, as hinted in the foregoing dis-
cussion and obvious to anyone who has written a computer program (and thought
about what he/she was doing), universal Turing machines do exist.

Theorem 1.9 There exists a universal Turing machine.

Theorem 1.9 asserts that the partial function u is computable. In contrast, it can
be shown that any extension of u to a total function is uncomputable. That is, for
any total function 4 that agrees with the partial function u on all the inputs on
which the latter is defined, it holds that 4 is uncomputable.'8

Proof: Given a pair ((M),z), we just emulate the computation of machine M
on input . This emulation is straightforward, because (by the effectiveness of the
description of M) we can iteratively determine the next instantaneous configuration
of the computation of M on input z. If the said computation halts then we will
obtain its output and can output it (and so, on input ({M),z), our algorithm
returns M (z)). Otherwise, we turn out emulating an infinite computation, which
means that our algorithm does not halt on input ((M),z). Thus, the foregoing
emulation procedure constitutes a universal machine (i.e., yields an algorithm for
computing u). W

As hinted already, the existence of universal machines is the fundamental fact
underlying the paradigm of general-purpose computers. Indeed, a specific Turing
machine (or algorithm) is a device that solves a specific problem. A priori, solving

16The claim is easy to prove for the total function @ that extends u and assigns the special

symbol L to inputs on which u is undefined (i.e., a({(M), z) 2" | ifu is not defined on (M), z)

and 4((M), x) ef u((M), x) otherwise). In this case h((M),z) = 1 if and only if 4((M),z) # L,

and so the halting function h is Turing-reducible to 4. In the general case, we may adapt the
proof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holds
that 4((M),z) = u({(M), z) for every z (and in particular for x = (M)).
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each problem would have required building a new physical device that allows for
this problem to be solved in the physical world (rather than as a thought exper-
iment). The existence of a universal machine asserts that it is enough to build
one physical device; that is, a general purpose computer. Any specific problem
can then be solved by writing a corresponding program to be executed (or emu-
lated) by the general-purpose computer. Thus, universal machines correspond to
general-purpose computers, and provide the basis for separating hardware from
software. In other words, the existence of universal machines says that software
can be viewed as (part of the) input.

In addition to their practical importance, the existence of universal machines
(and their variants) has important consequences in the theories of computability
and computational complexity. Here we merely note that Theorem 1.9 implies that
many questions about the behavior of a universal machine on certain input types are
undecidable. For example, it follows that, for some fixed machines (i.e., universal
ones), there is no algorithm that determines whether or not the (fixed) machine
halts on a given input. Revisiting the proof of Theorem 1.7 (see Footunote 15),
it follows that the Post Correspondence Problem remains undecidable even if the
input sequences are restricted to have a specific length (i.e., k is fixed). A more
important application of universal machines to the theory of computability follows.

A detour: Kolmogorov Complexity. The existence of universal machines,
which may be viewed as universal languages for writing effective and succinct
descriptions of objects, plays a central role in Kolmogorov Complexity. Loosely
speaking, the latter theory is concerned with the length of (effective) descriptions
of objects, and views the minimum such length as the inherent “complexity” of the
object; that is, “simple” objects (or phenomena) are those having short description
(resp., short explanation), whereas “complex” objects have no short description.
Needless to say, these (effective) descriptions have to refer to some fixed “language”
(i.e., to a fixed machine that, given a succinct description of an object, produces
its explicit description). Fixing any machine M, a string z is called a description
of s with respect to M if M(x) = s. The complexity of s with respect to M, de-
noted Kjs(s), is the length of the shortest description of s with respect to M.
Certainly, we want to fix M such that every string has a description with respect
to M, and furthermore such that this description is not “significantly” longer than
the description with respect to a different machine M'. The following theorem
make it natural to use a universal machine as the “point of reference” (i.e., as the
aforementioned M).

Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-
chine. Then, for every machine M', there exists a constant ¢ such that Ky(s) <
K yy1(s) + ¢ for every string s.

The theorem follows by (setting ¢ = O(|(M')]|) and) observing that if = is a de-
scription of s with respect to M’ then ((M'),x) is a description of s with respect
to U. Here it is important to use an adequate encoding of pairs of strings (e.g.,
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the pair (oq -+ -0k, 71 - -+ 7¢) is encoded by the string o107 - - - 00,017y - - 73). Fix-

ing any universal machine U, we define the Kolmogorov Complexity of a string s as

K(s) Lef Ky (s). The reader may easily verify the following facts:

1. K(s) < |s| +O(1), for every s.
(Hint: apply Theorem 1.10 to a machine that computes the identity map-
ping.)

2. There exist infinitely many strings s such that K(s) < [s|.

(Hint: consider s = 1™. Alternatively, consider any machine M such that
|M ()| > |z| for every z.)

3. Some strings of length n have complexity at least n. Furthermore, for every
n and 1, _
H{s € {0,1}": K(s) <n—i}| <2n !
(Hint: different strings must have different descriptions with respect to U.)

It can be shown that the function K is uncomputable. The proof is related to the
paradox captured by the following “description” of a natural number: the largest
natural number that can be described by an English sentence of up-to a
thousand letters. (The paradox amounts to observing that if the above num-
ber is well-defined then so is the integer-successor of the largest natural
number that can be described by an English sentence of up-to a thousand
letters.) Needless to say, the foregoing sentences presuppose that any English sen-
tence is a legitimate description in some adequate sense (e.g., in the sense captured
by Kolmogorov Complexity). Specifically, the foregoing sentences presuppose that
we can determine the Kolmogorov Complexity of each natural number, and fur-
thermore that we can effectively produce the largest number that has Kolmogorov
Complexity not exceeding some threshold. Indeed, the paradox suggests a proof
to the fact that the latter task cannot be performed; that is, there exists no algo-
rithm that given t produces the lezicographically last string s such that K(s) < t,
because if such an algorithm A would have existed then K(s) < O(|(A)|) + logt
and K(s0) < K(s)+ O(1) < t in contradiction to the definition of s.

1.2.3.5 Time and space complexity

Fixing a model of computation (e.g., Turing machines) and focusing on algorithms
that halt on each input, we consider the number of steps (i.e., applications of
the computation rule) taken by the algorithm on each possible input. The lat-
ter function is called the time complexity of the algorithm (or machine); that is,
ta:{0,1}* — N is called the time complexity of algorithm A if, for every z, on
input z algorithm A halts after exactly t4(x) steps.

We will be mostly interested in the dependence of the time complexity on the

input length, when taking the maximum over all inputs of the relevant length. That

is, for t4 as in the forgoing, we will consider T4 : N — N defined by T'4(n) def

maXgeqo,13n{ta(z)}. Abusing terminology, we sometimes refer to T4 as the time
complexity of A.
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The time complexity of a problem. As stated in the preface and in the intro-
duction, typically complexity theory is not concerned with the (time) complexity
of a specific algorithm. It is rather concerned with the (time) complexity of a
problem, assuming that this problem is solvable at all (by some algorithm). Intu-
itively, the time complexity of such a problem is defined as the time complexity
of the fastest algorithm that solves this problem (assuming that the latter term is
well-defined).!” Actually, we shall be interested in upper- and lower-bounds on the
(time) complexity of algorithms that solve the problem. Thus, when we say that a
certain problem II has complexity 7', we actually mean that II has complexity at
most 7T'. Likewise, when we say that II requires time 7', we actually mean that II
has time-complexity at least T'.

Recall that the foregoing discussion refers to some fixed model of computa-
tion. Indeed, the complexity of a problem II may depend on the specific model
of computation in which algorithms that solve II are implemented. The following
Cobham-Edmonds Thesis asserts that the variation (in the time complexity) is not
too big, and in particular is irrelevant to much of the current focus of complexity
theory (e.g., for the P-vs-NP Question).

The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-
lem may depend on the model of computation. For example, deciding membership
in the set {zz : x € {0,1}*} can be done in linear-time on a two-tape Turing ma-
chine, but requires quadratic-time on a single-tape Turing machine.'® On the other
hand, any problem that has time complexity ¢ in the model of multi-tape Turing
machines, has complexity O(#?) in the model of single-tape Turing machines. The
Cobham-Edmonds Thesis asserts that the time-complexities in any two “reasonable
and general” models of computation are polynomially related. That is, a problem
has time-complexity t in some “reasonable and general” model of computation if
and only if it has time complezity poly(t) in the model of (single-tape) Turing
machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.
It asserts not only that the class of solvable problems is invariant as far as “rea-
sonable and general” models of computation are concerned, but also that the time
complexity (of the solvable problems) in such models is polynomially related.

17Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-
tion that a “fastest algorithm” for solving a problem exists is not always justified. On the other
hand, the assumption is essentially justified in some important cases (see, e.g., Theorem 2.33).
But even in these cases the said algorithm is “fastest” (or “optimal”) only up to a constant factor.

18Proving the latter fact is quite non-trivial. One proof is by a “reduction” from a communica-
tion complexity problem [142, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides
membership in the aforementioned set can be viewed as a channel of communication between the
two parts of the input. Focusing our attention on inputs of the form y0™z0™, for y,z € {0,1}",
each time the machine passes from the first part to the second part it carries O(1) bits of infor-
mation (in its internal state) while making at least n steps. The proof is completed by invoking
the linear lower-bound on the communication complexity of the (two-argument) identity function
(i.e, id(y,2) = 1 if y = z and id(y, z) = 0 otherwise, cf. [142, Chap. 1]).
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Efficient algorithms. As hinted in the foregoing discussions, much of complexity
theory is concerned with efficient algorithms. The latter are defined as polynomial-
time algorithms (i.e., algorithms that have time-complexity that is upper-bounded
by a polynomial in the length of the input). By the Cobham-Edmonds Thesis, the
definition of this class is invariant under the choice of a “reasonable and general”
model of computation. The association of efficient algorithms with polynomial-time
computation is grounded in the following two considerations:

e Philosophical consideration: Intuitively, efficient algorithms are those that
can be implemented within a number of steps that is a moderately growing
function of the input length. To allow for reading the entire input, at least
linear time should be allowed. On the other hand, apparently slow algorithms
and in particular “exhaustive search” algorithms, which take expomnential
time, must be avoided. Furthermore, a good definition of the class of efficient
algorithms should be closed under natural composition of algorithms (as well
as be robust with respect to reasonable models of computation and with
respect to simple changes in the encoding of problems’ instances).

Choosing polynomials as the set of time-bounds for efficient algorithms sat-
isfy all the foregoing requirements: polynomials constitute a “closed” set of
moderately growing functions, where “closure” means closure under addition,
multiplication and functional composition. These closure properties guaran-
tee the closure of the class of efficient algorithm under natural composition
of algorithms (as well as its robustness with respect to any reasonable and
general model of computation). Furthermore, polynomial-time algorithms
can conduct computations that are apparently simple (although not neces-
sarily trivial), and on the other hand they do not include algorithms that are
apparently inefficient (like exhaustive search).

e Empirical consideration: It is clear that algorithms that are considered effi-
cient in practice have running-time that is bounded by a small polynomial
(at least on the inputs that occur in practice). The question is whether any
polynomial-time algorithm can be considered efficient in an intuitive sense.
The belief, which is supported by past experience, is that every natural prob-
lem that can be solved in polynomial-time also has a “reasonably efficient”
algorithm.

We stress that the association of efficient algorithms with polynomial-time compu-
tation is not essential to most of the notions, results and questions of complexity
theory. Any other class of algorithms that supports the aforementioned closure
properties and allows to conduct some simple computations but not overly com-
plex omnes gives rise to a similar theory, albeit the formulation of such a theory
may be more complicated. Specifically, all results and questions treated in this
book are concerned with the relation among the complexities of different computa-
tional tasks (rather than with providing absolute assertions about the complexity
of some computational tasks). These relations can be stated explicitly, by stating
how any upper-bound on the time complexity of one task gets translated to an
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upper-bound on the time complexity of another task.!’® Such cumbersome state-
ments will maintain the contents of the standard statements; they will merely be
much more complicated. Thus, we follow the tradition of focusing on polynomial-
time computations, while stressing that this focus is both natural and provides the
simplest way of addressing the fundamental issues underlying the nature of efficient
computation.

Universal machines, revisited. The notion of time complexity gives rise to a

time-bounded version of the universal function u (presented in §1.2.3.4). Specifi-

cally, we define u'((M), z,t) def y if on input z machine M halts within ¢ steps and

outputs the string y, and v'({M), x,t) 4 | ifon input  machine M makes more

than ¢ steps. Unlike u, the function u’ is a total function. Furthermore, unlike
any extension of u to a total function, the function u’ is computable. Moreover, u’
is computable by a machine U’ that on input X = ((M),z,t) halts after poly(t)
steps. Indeed, machine U’ is a variant of a universal machine (i.e., on input X, ma-
chine U’ merely emulates M for ¢ steps rather than emulating M till it halts (and
potentially indefinitely)). Note that the number of steps taken by U’ depends on
the specific model of computation (and that some overhead is unavoidable because
emulating each step of M requires reading the relevant portion of the description
of M).

Space complexity. Another natural measure of the “complexity” of an algo-
rithm (or a task) is the amount of memory consumed by the computation. We
refer to the memory used for storing some intermediate results of the computation.
Since much of our focus will be on using memory that is sub-linear in the input
length, it is important to use a model in which one can differentiate memory used
for computation from memory used for storing the initial input or the final output.
In the context of Turing machines, this is done by considering multi-tape Turing
machines such that the input is presented on a special read-only tape (called the
input tape), the output is written on a special write-only tape (called the output
tape), and intermediate results are stored on a work-tape. Thus, the input and
output tapes cannot be used for storing intermediate results. The space complexity
of such a machine M is defined as a function sjs such that sas(x) is the number of
cells of the work-tape that are scanned by M on input xz. As in the case of time

complexity, we will usually refer to S4(n) Lef max,eo,13»{54(2)}.

1.2.3.6 Oracle machines

The notion of Turing-reductions, which was discussed in §1.2.3.3, is captured by
the following definition of so-called oracle machines. Loosely speaking, an oracle

YFor example, the NP-completeness of SAT (cf. Theorem 2.22) implies that any algorithm
solving SAT in time T yields an algorithm that factors composite numbers in time T such that
T'(n) = poly(n) - (1 + T'(poly(n))). (More generally, if the correctness of solutions for m-bit
instances of some search problem R can be verified in time t(n) then the hypothesis regarding
SAT implies that solutions (for n-bit instances of R) can be found in time T” such that T'(n) =

t(n) - (1 +T(0(t(n))*)).)
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machine is a machine that is augmented such that it may pose questions to the
outside. We consider the case in which these questions, called queries, are answered
consistently by some function f : {0,1}* — {0,1}*, called the oracle. That is, if
the machine makes a query ¢ then the answer it obtains is f(g). In such a case, we
say that the oracle machine is given access to the oracle f. For an oracle machine
M, a string r and a function f, we denote by M7 (x) the output of M on input
x when given access to the oracle f. (Re-examining the second part of the proof
of Theorem 1.5, observe that we have actually described an oracle machine that
computes d’ when given access to the oracle d.)

The notion of an oracle machine extends the notion of a standard computing
device (machine), and thus a rigorous formulation of the former extends a formal
model of the latter. Specifically, extending the model of Turing machines, we derive
the following model of oracle Turing machines.

Definition 1.11 (using an oracle):

e An oracle machine is a Turing machine with a special additional tape, called
the oracle tape, and two special states, called oracle invocation and oracle spoke.

e The computation of the oracle machine M on input = and access to the oracle
f:{0,1}* — {0,1}* is defined based on the successive configuration function.
For configurations with state different from oracle invocation the next config-
uration is defined as usual. Let v be a configuration in which the machine’s
state is oracle invocation and suppose that the actual contents of the oracle
tape is q (i.e., q is the contents of the mazimal prefiz of the tape that holds bit
values).?? Then, the configuration following v is identical to v, except that
the state is oracle spoke, and the actual contents of the oracle tape is f(q)-
The string q is called M ’s query and f(q) is called the oracle's reply.

o The output of the oracle machine M on input © when given oracle access to
f is denote M7 ().

We stress that the running time of an oracle machine is the number of steps made
during its (own) computation, and that the oracle’s reply on each query is obtained
in a single step.

1.2.3.7 Restricted models

We mention that restricted models of computation are often mentioned in the
context of a course on computability, but they will play no role in the current book.
One such model is the model of finite automata, which in some variant coincides
with Turing machines that have space-complexity zero (equiv., constant).

20This fits the definition of the actual initial contents of a tape of a Turing machine (ct.
§1.2.3.2). A common convention is that the oracle can be invoked only when the machine’s
head resides at the left-most cell of the oracle tape. We comment that, in the context of space
complexity, one uses two oracle tapes: a write-only tape for the query and a read-only tape for
the answer.
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In our opinion, the most important motivation for the study of these restricted
models of computation is that they provide simple models for some natural (or
artificial) phenomena. This motivation, however, seems only remotely related to
the study of the complexity of various computational tasks, which calls for the
consideration of general models of computation and the evaluation of complexity
of computation with respect to such models.

Teaching note: Indeed, we reject the common coupling of computability theory with
the theory of automata and formal languages. Although the historical links between
these two theories (at least in the West) can not be denied, this fact cannot justify
coupling two fundamentally different theories (especially when such a coupling promotes
a wrong perspective on computability theory). Thus, in our opinion, the study of any
of the lower levels of Chomsky’s Hierarchy [119, Chap. 9] should be decoupled from the
study of computability theory (let alone the study of complexity theory).

1.2.4 Non-uniform Models (Circuits and Advice)

The main use of non-uniform models of computation, in this book, will be as a
source of some natural computational problems (cf. §2.3.3.1 and Theorem 5.4). In
addition, these models will be briefly studied in Sections 3.1 and 4.1.

By a non-uniform model of computation we mean a model in which for each
possible input length a different computing device is considered, while there is
no “uniformity” requirement relating devices that correspond to different input
lengths. Furthermore, this collection of devices is infinite by nature, and (in absence
of a uniformity requirement) this collection may not even have a finite description.
Nevertheless, each device in the collection has a finite description. In fact, the
relationship between the size of the device (resp., the length of its description) and
the length of the input that it handles will be of major concern.

Non-uniform models of computation are studied either towards the develop-
ment of lower-bound techniques or as simplified limits on the ability of efficient
algorithms.?! In both cases, the uniformity condition is eliminated in the interest
of simplicity and with the hope (and belief) that nothing substantial is lost as far
as the issues at hand are concerned. In the context of developing lower-bound, the
hope is that the finiteness of all parameters (i.e., the input length and the device’s
description) will allow for the application of combinatorial techniques to analyze
the limitations of certain settings of parameters.

We will focus on two related models of non-uniform computing devices: Boolean
circuits (§1.2.4.1) and “machines that take advice” (§1.2.4.2). The former model is
more adequate for the study of the evolution of computation (i.e., development of
lower-bound techniques), whereas the latter is more adequate for modeling purposes
(e.g., limiting the ability of efficient algorithms).

21The second case refers mainly to efficient algorithms that are given a pair of inputs (of
(polynomially) related length) such that these algorithms are analyzed with respect to fixing
one input (arbitrarily) and varying the other input (typically, at random). Typical examples
include the context of de-randomization (cf. Section 8.3) and the setting of zero-knowledge (cf.
Section 9.2).
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1.2.4.1 Boolean Circuits

The most popular model of non-uniform computation is the one of Boolean circuits.
Historically, this model was introduced for the purpose of describing the “logic
operation” of real-life electronic circuits. Ironically, nowadays this model provides
the stage for some of the most practically removed studies in complexity theory
(which aim at developing methods that may eventually lead to an understanding
of the inherent limitations of efficient algorithms).

A Boolean circuit is a directed acyclic graph?? with labels on the vertices, to be
discussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., vertices
with no in-going or out-going edges), and thus the graph’s vertices are of three
types: sources, sinks, and internal vertices.

1. Internal vertices are vertices having in-coming and out-going edges (i.e., they
have in-degree and out-degree at least 1). In the context of Boolean cir-
cuits, internal vertices are called gates. Each gate is labeled by a Boolean
operation, where the operations that are typically considered are A, V and —
(corresponding to and, or and neg). In addition, we require that gates la-
beled — have in-degree 1. The in-coming degree of A-gates and V-gates may
be any number greater than zero, and the same holds for the out-degree of
any gate.

2. The graph sources (i.e., vertices with no in-going edges) are called input ter-
minals. Each input terminal is labeled by a natural number (which is to be
thought of the index of an input variable). (For sake of defining formulae
(see §1.2.4.3), we allow different input terminals to be labeled by the same
number.)??

3. The graph sinks (i.e., vertices with no out-going edges) are called output ter-
minals, and we require that they have in-degree 1. Each output terminal is
labeled by a natural number such that if the circuit has m output terminals
then they are labeled 1,2,...,m. That is, we disallow different output ter-
minals to be labeled by the same number, and insist that the labels of the
output terminals are consecutive numbers. (Indeed, the labels of the output
terminals will correspond to the indices of locations in the circuit’s output.)

For sake of simplicity, we also mandate that the labels of the input terminals are
consecutive numbers.?*

22Gee Appendix G.1.

23This is not needed in case of general circuits, because we can just feed out-going edges of the
same input terminal to many gates. Note, however, that this is not allowed in case of formulae,
where all non-sinks are required to have out-degree exactly 1.

24T his convention slightly complicates the construction of circuits that ignore some of the input
values. Specifically, we use artificial gadgets that have in-coming edges from the corresponding
input terminals, and compute an adequate constant. To avoid having this constant as an output
terminal, we feed it into an auxiliary gate such that the value of the latter is determined by the
other in-going edge (e.g., a constant 0 fed into an V-gate). See example of dealing with x3 in
Figure 1.3.
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Figure 1.3: A circuit computing f(z1,z2,x3,24) = (T1 D T2, 21 A ~Z2 A T4).

A Boolean circuit with n different input labels and m output terminals induces
(and indeed computes) a function from {0,1}" to {0,1}™ defined as follows. For
any fixed string = € {0,1}", we iteratively define the value of vertices in the circuit
such that the input terminals are assigned the corresponding bits in z = z; - - -z,
and the values of other vertices are determined in the natural manner. That is:

e An input terminal with label ¢ € {1,...,n} is assigned the i*® bit of z (i.e.,
the value ;).

e If the children of a gate (of in-degree d) that is labeled A have values vy, va, ..., v4,
then the gate is assigned the value AZ_;v;. The value of a gate labeled Vv (or —|)
is determined analogously.

Indeed, the hypothesis that the circuit is acyclic implies that the following
natural process of determining values for the circuit’s vertices is well-defined:
As long as the value of some vertex is undetermined, there exists a vertex
such that its value is undetermined but the values of all its children are
determined. Thus, the process can make progress, and terminates when the
values of all vertices (including the output terminals) are determined.

The value of the circuit on input z (i.e., the output computed by the circuit on
input z) is y = y1 - - - Ym, where y; is the value assigned by the foregoing process
to the output terminal labeled 2. We note that there ewists a polynomial-time
algorithm that, given a circuit C' and a corresponding input x, outputs the value of
C on input . This algorithm determines the values of the circuit’s vertices, going
from the circuit’s input terminals to its output terminals.

We say that a family of circuits (Cy,),,en computes a function f : {0,1}* — {0,1}*
if for every n the circuit C,, computes the restriction of f to strings of length n. In
other words, for every x € {0,1}*, it must hold that C|;|(z) = f(z).
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Bounded and unbounded fan-in. We will be most interested in circuits in
which each gate has at most two in-coming edges. In this case, the types of (two-
argument) Boolean operations that we allow is immaterial (as long as we consider
a “full basis” of such operations; i.e., a set of operations that can implement any
other two-argument Boolean operation). Such circuits are called circuits of bounded
fan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,
where each gate may have an arbitrary number of in-going edges. Needless to say,
in the case of circuits of unbounded fan-in, the choice of allowed Boolean operations
is important and one focuses on operations that are “uniform” (across the number
of operants; e.g., A and V).

Circuit size as a complexity measure. The size of a circuit is the number of
its edges. When considering a family of circuits (C,,), <y that computes a function
f :{0,1}* — {0,1}*, we are interested in the size of C,, as a function of n.
Specifically, we say that this family has size complexity s : N — N if for every n the
size of C,, is s(n). The circuit complexity of a function f, denoted sy, is the infimum
of the size complexity of all families of circuits that compute f. Alternatively, for
each n we may consider the size of the smallest circuit that computes the restriction
of f to n-bit strings (denoted f,), and set s¢(n) accordingly. We stress that non-
uniformity is implicit in this definition, because no conditions are made regarding
the relation between the various circuits used to compute the function on different
input lengths.?

On the circuit complexity of functions. We highlight some simple facts about
the circuit complexity of functions. (These facts are in clear correspondence to facts
regarding Kolmogorov Complexity mentioned in §1.2.3.4.)

1. Most importantly, any Boolean function can be computed by some family
of circuits, and thus the circuit complexity of any function is well-defined.
Furthermore, each function has at most exponential circuit complexity.

(Hint: f, : {0,1}™ — {0,1} can be computed by a circuit of size O(n2") that
implements a look-up table.)

2. Some functions have polynomial circuit complexity. In particular, any func-
tion that has time complexity ¢ (i.e., is computed by an algorithm of time
complexity t) has circuit complexity poly(¢). Furthermore, the correspond-
ing circuit family is uniform (in a natural sense to be discussed in the next
paragraph).

(Hint: consider a Turing machine that computes the function, and consider
its computation on a generic n-bit long input. The corresponding compu-
tation can be emulated by a circuit that consists of ¢(n) layers such that
each layer represents an instantaneous configuration of the machine, and the

25 Advanced comment: We also note that, in contrast to Footnote 17, the circuit model
and the (circuit size) complexity measure support the notion of an optimal computing device:
each function f has a unique size complexity sy (and not merely upper- and lower-bounds on its
complexity).
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relation between consecutive configurations is captured by (“uniform”) local
gadgets in the circuit. For further details see the proof of Theorem 2.21,
which presents a similar emulation.)

3. Almost all Boolean functions have exponential circuit complexity. Specifi-
cally, the number of functions mapping {0,1}™ to {0, 1} that can be computed
by some circuit of size s is smaller than s2°.

(Hint: the number of circuits having v vertices and s edges is at most
v s
(2-(3) +0)°)
Note that the first fact implies that families of circuits can compute functions that
are uncomputable by algorithms. Furthermore, this phenomenon occurs also when

restricting attention to families of polynomial-size circuits. See further discussion
in §1.2.4.2.

Uniform families. A family of polynomial-size circuits (Cy,),,cn is called uniform
if given n one can construct the circuit C,, in poly(n)-time. Note that if a function
is computable by a uniform family of polynomial-size circuits then it is computable
by a polynomial-time algorithm. This algorithm first constructs the adequate cir-
cuit (which can be done in polynomial-time by the uniformity hypothesis), and
then evaluate this circuit on the given input (which can be done in time that is
polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of polynomial-
size circuits certainly hold for uniform families (of polynomial-size), which in turn
yield limitations on the computing power of polynomial-time algorithms. Thus,
lower-bounds on the circuit-complexity of functions yield analogous lower-bounds
on their time-complexity. Furthermore, as is often the case in mathematics and
Science, disposing of an auxiliary condition that is not well-understood (i.e., uni-
formity) may turn out fruitful. Indeed, this has occured in the study of classes of
restricted circuits, which is reviewed in §1.2.4.3 (and Appendix B.2).

1.2.4.2 Machines that take advice

General (non-uniform) circuit families and uniform circuit families are two extremes
with respect to the “amounts of non-uniformity” in the computing device. Intu-
itively, in the former, non-uniformity is only bounded by the size of the device,
whereas in the latter the amounts of non-uniformity is zero. Here we consider a
model that allows to decouple the size of the computing device from the amount
of non-uniformity, which may range from zero to the device’s size. Specifically, we
consider algorithms that “take a non-uniform advice” that depends only on the
input length. The amount of non-uniformity will be defined to equal the length of
the corresponding advice (as a function of the input length).

Definition 1.12 (taking advice): We say that algorithm A computes the function
f using advice of length ¢ : N — N if there exists an infinite sequence (an)pen such
that

1. For every x € {0,1}*, it holds that A(a|.|,z) = f(z).
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2. For every n € N, it holds that |a,| = {(n).

The sequence (an),en %5 called the advice sequence.

Note that any function having circuit complexity s can be computed using advice
of length O(slogs), where the log factor is due to the fact that a graph with v
vertices and e edges can be described by a string of length 2elog, v. Note that the
model of machines that use advice allows for some sharper bounds than the ones
stated in §1.2.4.1: every function can be computed using advice of length ¢ such
that £(n) = 2", and some uncomputable functions can be computed using advice
of length 1.

Theorem 1.13 (the power of advice): There exist functions that can be computed
using one-bit advice but cannot be computed without advice.

Proof: Starting with any uncomputable Boolean function f : N — {0, 1}, consider
the function f’ defined as f'(z) = f(|z|). Note that f is Turing-reducible to f’ (e.g.,
on input n make any n-bit query to f', and return the answer).?® Thus, f' cannot be
computed without advice. On the other hand, f' can be easily computed by using
the advice sequence (a,),en such that a, = f(n); that is, the algorithm merely
outputs the advice bit (and indeed a|,| = f(|z|) = f'(x), for every x € {0,1}").

1.2.4.3 Restricted models

The model of Boolean circuits (cf. §1.2.4.1) allows for the introduction of many
natural subclasses of computing devices. Following is a laconic review of a few of
these subclasses. For further detail regarding the study of these subclasses, the
interested reader is referred to Appendix B.2. Since we shall refer to various types
of Boolean formulae in the rest of this book, we suggest not to skip the following
two paragraphs.

Boolean formulae. In (general) Boolean circuits the non-sink vertices are al-
lowed arbitrary out-degree. This means that the same intermediate value can be
re-used without being re-computed (and while increasing the size complexity by
only one unit). Such “free” re-usage of intermediate values is disallowed in Boolean
formulae, which are formally defined as Boolean circuits in which all non-sink ver-
tices have out-degree 1. This means that the underlying graph of a Boolean formula
is a tree (see §G.2), and it can be written as a Boolean expression over Boolean
variables by traversing this tree (and registering the vertices’ labels in the order tra-
versed). Indeed, we have allowed different input terminals to be assigned the same
label in order to allow formulae in which the same variable occurs multiple times.
As in case of general circuits, one is interested in the size of these restricted circuits
(i.e., the size of families of formulae computing various functions). We mention that

26Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |n| = log, n),
but this is immaterial in the current context.
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quadratic lower bounds are known for the formula size of simple functions (e.g.,
parity), whereas these functions have linear circuit complexity. This discrepancy
is depicted in Figure 1.4.

PARITY PARITY PARITY PARITY PARITY PARITY
of X ...X of x__.X of X ...X of x X of X ...X of X  _.X
1 n n+1""2n 1 n+1""2n 1 n+1""2n

\ / \ /
:
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Figure 1.4: Recursive construction of parity circuits and formulae.

Formulae in CNF and DNF. A restricted type of Boolean formulae consists
of formulae that are in conjunctive normal form (CNF). Such a formula consists of
a conjunction of clauses, where each clause is a disjunction of literals each being
either a variable or its negation. That is, such formulae are represented by layered
circuits of unbounded fan-in in which the first layer consists of neg-gates that
compute the negation of input variables, the second layer consist of or-gates that
compute the logical-or of subsets of inputs and negated inputs, and the third layer
consists of a single and-gate that computes the logical-and of the values computed
in the second layer. Note that each Boolean function can be computed by a family
of CNF formulae of exponential size, and that the size of CNF formulae may be
exponentially larger than the size of ordinary formulae computing the same function
(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF has
disjunctions of size at most k. An analogous restricted type of Boolean formulae
refers to formulae that are in disjunctive normal form (DNF). Such a formula consists
of a disjunction of a conjunctions of literals, and when each conjunction has at most
k literals we say that the formula is in k-DNF.

Constant-depth circuits. Circuits have a “natural structure” (i.e., their struc-
ture as graphs). One natural parameter regarding this structure is the depth of a
circuit, which is defined as the longest directed path from any source to any sink. Of
special interest are constant-depth circuits of unbounded fan-in. We mention that
sub-exponential lower bounds are known for the size of such circuits that compute
a simple function (e.g., parity).

Monotone circuits. The circuit model also allows for the consideration of mono-
tone computing devices: a monotone circuit is one having only monotone gates
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(e.g., gates computing A and V, but no negation gates (i.e., —-gates)). Needless
to say, monotone circuits can only compute monotone functions, where a function
f:{0,1}"* — {0,1} is called monotone if for any « < y it holds that f(z) < f(y)
(where x1 -+, < y1-- -y, if and only if for every bit position ¢ it holds that
x; < y;)- One natural question is whether, as far as monotone functions are con-
cerned, there is a substantial loss in using only monotone circuits. The answer is
yes: there exist monotone functions that have polynomial circuit complexity but
require sub-exponential size monotone circuits.

1.2.5 Complexity Classes

Complexity classes are sets of computational problems. Typically, such classes are
defined by fixing three parameters:

1. A type of computational problems (see Section 1.2.2). Indeed, most classes
refer to decision problems, but classes of search problems, promise problems,
and other types of problems will also be considered.

2. A model of computation, which may be either uniform (see Section 1.2.3) or
non-uniform (see Section 1.2.4).

3. A complezity measure and a limiting function (or a set of functions), which
put together limit the class of computations of the previous item; that is,
we refer to the class of computations that have complexity not exceeding the
specified function (or set of functions). For example, in §1.2.3.5, we mentioned
time-complexity and space-complexity, which apply to any uniform model of
computation. We also mentioned polynomial-time computations, which are
computations in which the time-complexity (as a function) does not exceed
some polynomial (i.e., a member of the set of polynomial functions).

The most common complexity classes refer to decision problems, and are sometimes
defined as classes of sets rather than classes of the corresponding decision problems.
That is, one often says that a set S C {0,1}* is in the class C rather than saying
that the problem of deciding membership in S is in the class C. Likewise, one talks
of classes of relations rather than classes of the corresponding search problems (i.e.,
saying that R C {0,1}* x {0,1}* is in the class C means that the search problem of
R is in the class C).

Chapter Notes

It is quite remarkable that the theories of uniform and non-uniform computational
devices have emerged in two single papers. We refer to Turing’s paper [216], which
introduced the model of Turing machines, and to Shannon’s paper [194], which
introduced Boolean circuits.

In addition to introducing the Turing machine model and arguing that it cor-
responds to the intuitive notion of computability, Turing’s paper [216] introduces
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universal machines and contains proofs of undecidability (e.g., of the Halting Prob-
lem).

The Church-Turing Thesis is attributed to the works of Church [52] and Tur-
ing [216]. In both works, this thesis is invoked for claiming that the fact that
Turing machines cannot solve some problem implies that this problem cannot be
solved in any “reasonable” model of computation. The RAM model is attributed
to von Neumann’s report [223].

The association of efficient computation with polynomial-time algorithms is
attributed to the papers of Cobham [54] and Edmonds [66]. It is interesting to
note that Cobham’s starting point was his desire to present a philosophically sound
concept of efficient algorithms, whereas Edmonds’s starting point was his desire to
articulate why certain algorithms are “good” in practice.

Rice’s Theorem is proven in [185], and the undecidability of the Post Correspon-
dence Problem is proven in [174]. The formulation of machines that take advice
(as well as the equivalence to the circuit model) originates in [132].



Chapter 2

P, NP and
NP-Completeness

Forasmuch as many have taken in hand to set forth in order a
declaration of those things which are most surely believed among
us; Even as they delivered them unto us, who from the beginning
were eyewitnesses, and ministers of the word; It seems good to
me also, having had perfect understanding of all things from the
very first, to write unto thee in order, most excellent Theophilus;
That thou mightest know the certainty of those things, wherein
thou hast been instructed.

Luke, 1:14

The main focus of this chapter is the P-vs-NP Question and the theory of NP-
completeness. Additional topics covered in this chapter include the general notion
of a polynomial-time reduction (with a special emphasis on self-reducibility), the
existence of problems in NP that are neither NP-complete nor in P, the class coNP,
optimal search algorithms, and promise problems.

Summary: Loosely speaking, the P-vs-NP Question refers to search
problems for which the correctness of solutions can be efficiently checked
(i.e., there is an efficient algorithm that given a solution to a given
instance determines whether or not the solution is correct). Such search
problems correspond to the class NP, and the question is whether or
not all these search problems can be solved efficiently (i.e., is there
an efficient algorithm that given an instance finds a correct solution).
Thus, the P-vs-NP Question can be phrased as asking whether or not
finding solutions is harder than checking the correctness of solutions.

An alternative formulation, in terms of decision problems, refers to as-
sertions that have efficiently verifiable proofs (of relatively short length).
Such sets of assertions correspond to the class NP, and the question is

49
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whether or not proofs for such assertions can be found efficiently (i.e.,
is there an efficient algorithm that given an assertion determines its va-
lidity and/or finds a proof for its validity). Thus, the P-vs-NP Question
can be phrased as asking whether or not discovering proofs is harder
than verifying their correctness; that is, is proving harder than verifying
(or are proofs valuable at all).

Indeed, it is widely believed that the answer to the two equivalent
formulations is that finding (resp., discovering) is harder than checking
(resp., verifying); that is, that P is different than NP. The fact that
this natural conjecture is unsettled seems to be one of the big sources
of frustration of complexity theory. The author’s opinion, however, is
that this feeling of frustration is out of place. In any case, at present,
when faced with a hard problem in NP, we cannot expect to prove that
the problem is not in P (unconditionally). The best we can expect
is a conditional proof that the said problem is not in P, based on the
assumption that NP is different from P. The contrapositive is proving
that if the said problem is in P, then so is any problem in NP (i.e., NP
equals P). This is where the theory of NP-completeness comes into the
picture.

The theory of NP-completeness is based on the notion of a reduction,
which is a relation between computational problems. Loosely speaking,
one computational problem is reducible to another problem if it is pos-
sible to efficiently solve the former when provided with an (efficient)
algorithm for solving the latter. Thus, the first problem is not harder
to solve than the second one. A problem (in NP) is NP-complete if any
problem in NP is reducible to it. Thus, the fate of the entire class NP
(with respect to inclusion in P) rests with each individual NP-complete
problem. In particular, showing that a problem is NP-complete implies
that this problem is not in P unless NP equals P. Amazingly enough,
NP-complete problems exist, and furthermore hundreds of natural com-
putational problems arising in many different areas of mathematics and
science are NP-complete.

We stress that NP-complete problems are not the only hard problems
in NP (i.e., if P is different than NP then NP contains problems that
are neither NP-complete nor in P). We also note that the P-vs-NP
Question is not about inventing sophisticated algorithms or ruling out
their existence, but rather boils down to the analysis of a single known
algorithm; that is, we will present an optimal search algorithm for any
problem in NP, while having not clue about its time-complexity.

Teaching note: Indeed, we suggest presenting the P-vs-NP Question both in terms
of search problems and in terms of decision problems. Furthermore, in the latter case,
we suggest introducing NP by explicitly referring to the terminology of proof systems.
As for the theory of NP-completeness, we suggest emphasizing the mere existence of
NP-complete problems.
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Prerequisites: We assume familiarity with the notions of search and decision
problems (see Section 1.2.2), algorithms (see Section 1.2.3) and their time com-
plexity (see §1.2.3.5). We will also refer to the notion of an oracle machine (see
§1.2.3.6).

Organization: In Section 2.1 we present the two formulations of the P-vs-NP
Question. The general notion of a reduction is presented in Section 2.2, where we
highlight its applicability outside the domain of NP-completeness. Section 2.3
is devoted to the theory of NP-completeness, whereas Section 2.4 treats three
relatively advanced topics (i.e., the framework of promise problems, the existence
of optimal search algorithms for NP, and the class coNP).

Teaching note: This chapter has more teaching notes than any other chapter in the
book. This reflects the author’s concern regarding the way in which this fundamental
material is often taught. Specifically, it is the author’s impression that the material
covered in this chapter is often taught in wrong ways, which fail to communicate its

fundamental nature.

2.1 The P versus NP Question

Our daily experience is that it is harder to solve a problem than it is to check the
correctness of a solution. Is this experience merely a coincidence or does it represent
a fundamental fact of life (or a property of the world)? This is the essence of the P
versus NP Question, where P represents search problems that are efficiently solvable
and NP represents search problems for which solutions can be efficiently checked.

Another natural question captured by the P versus NP Question is whether
proving theorems is harder that verifying the validity of these proofs. In other
words, the question is whether deciding membership in a set is harder than being
convinced of this membership by an adequate proof. In this case, P represents
decision problems that are efficiently solvable, whereas NP represents sets that have
efficiently checkable proofs of membership.

These two meanings of the P versus NP Question are rigorously presented and
discussed in Sections 2.1.1 and 2.1.2, respectively. The equivalence of the two
formulations is shown in Section 2.1.3, and the common belief that P is different
from NP is further discussed in Section 2.1.5. We start by recalling the notion of
efficient computation.

Teaching note: Most students have heard of P and NP before, but we suspect that
many of them have not obtained a good explanation of what the P-vs-NP Question actu-
ally represents. This unfortunate situation is due to using the standard technical defini-
tion of NP (which refers to the fictitious and confusing device called a non-deterministic
polynomial-time machine). Instead, we advocate the use of the more cumbersome defi-
nitions, sketched in the forgoing paragraphs (and elaborated in Sections 2.1.1 and 2.1.2),
which clearly capture the fundamental nature of NP.
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The notion of efficient computation. Recall that we associate efficient com-
putation with polynomial-time algorithms.! This association is justified by the fact
that polynomials are a class of moderately growing functions that is closed under
operations that correspond to natural composition of algorithms. Furthermore, the
class of polynomial-time algorithms is independent of the specific model of com-
putation, as long as the latter is “reasonable” (cf. the Cobham-Edmonds Thesis).
Both issues are discussed in §1.2.3.5.

Advanced note on the representation of problem instances. As noted in
§1.2.2.3, many natural (search and decision) problems are captured more naturally
by the terminology of promise problems (cf. Section 2.4.1), where the domain of
possible instances is a subset of {0, 1}* rather than {0, 1}* itself. For example, com-
putational problems in graph theory presume some simple encoding of graphs as
strings, but this encoding is typically not onto (i.e., not all strings encode graphs),
and thus not all strings are legitimate instances. However, in these cases, the set
of legitimate instances (e.g., encodings of graphs) is efficiently recognizable (i.e.,
membership in it can be decided in polynomial-time). Thus, artificially extending
the set of instances to the set of all possible strings (and allowing trivial solutions
for the corresponding dummy instances) does not change the complexity of the
original problem. We further discuss this issue in Section 2.4.1.

2.1.1 The search version: finding versus checking

Teaching note: Complexity theorists are so accustomed to focus on decision problem
that they seem to forget that search problems are at least as natural as decision prob-
lems. Furthermore, to many non-experts, search problems may seem even more natural
than decision problems: Typically, people seeks solutions more than they pause to won-
der whether or not solutions exist. Thus, we recommend starting with a formulation
of the P-vs-NP Question in terms of search problems. Admittingly, the cost is more
cumbersome formulations, but it is more than worthwhile.

Much of computer science is concerned with solving various search problems (as in
Definition 1.1). Examples of such problems include finding a solution to a system of
linear (or polynomial) equations, finding a prime factor of a given integer, finding a
spanning tree in a graph, finding a short traveling salesman tour in a metric space,
and finding a scheduling of jobs to machines such that various constraints are
satisfied. Furthermore, search problems correspond to the daily notion of “solving
problems” and thus are of natural general interest. In the current section, we will
consider the question of which search problems can be solved efficiently.

One type of search problems that cannot be solved efficiently consists of search
problems for which the solutions are too long in terms of the problem’s instances.

lAdvanced comment: In this chapter, we consider deterministic (polynomial-time) algo-
rithms as the basic model of efficient computation. A more liberal view, which includes also
probabilistic (polynomial-time) algorithms is presented in Chapter 6. We stress that the most
important facts and questions that are addressed in the current chapter hold also with respect to
probabilistic polynomial-time algorithms.
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In such a case, merely typing the solution amounts to an activity that is deemed
inefficient. Thus, we focus our attention on search problems that are not in this
class. That is, we consider only search problems in which the length of the solution
is bounded by a polynomial in the length of the instance. Recalling that search
problems are associated with binary relations (see Definition 1.1), we focus our
attention on polynomially bounded relations.

Definition 2.1 (polynomially bounded relations): We say that R C {0,1}* x
{0,1}* is polynomially-bounded if there ezists a polynomial p such that for every
(x,y) € R it holds that |y| < p(|z|).

Recall that (z,y) € R means that y is a solution to the problem instance z, where
R represents the problem itself. For example, in the case of finding a prime factor
of a given integer, we refer to a relation R such that (z,y) € R if the integer y is a
prime factor of the integer x.

For a polynomially bounded relation R it makes sense to ask whether or not,
given a problem instance z, one can efficiently find an adequate solution y (i.e.,
find y such that (z,y) € R). The polynomial bound on the length of the solution
(i.e., y) guarantees that a negative answer is not merely due to the length of the
required solution.

2.1.1.1 The class P as a natural class of search problems

Recall that we are interested in the class of search problems that can be solved
efficiently; that is, problems for which solutions (whenever they exist) can be found
efficiently. Restricting our attention to polynomially bounded relations, we identify
the corresponding fundamental class of search problem (or binary relation), denoted
PF (standing for “Polynomial-time Find”). (The relationship between PF and
the standard definition of P will be discussed in Sections 2.1.3 and 2.2.3.) The
following definition refers to the formulation of solving search problems provided
in Definition 1.1.

Definition 2.2 (efficiently solvable search problems):

e The search problem of a polynomially bounded relation R C {0,1}* x {0,1}*
is efficiently solvable if there exists a polynomial time algorithm A such that,
for every x, it holds that A(x) € R(x) = {y : (z,y) € R} if and only if R(x)
is not empty. Furthermore, if R(x) = 0 then A(z) = L, indicating that x has
no solution.

o We denote by PF the class of search problems that are efficiently solvable
(and correspond to polynomially bounded relations). That is, R € PF if
R is polynomially bounded and there exists a polynomial time algorithm that
given z finds y such that (z,y) € R (or asserts that no such y exists).

Note that R(z) denotes the set of valid solutions for the problem instance z. Thus,
the solver A is required to find a valid solution (i.e., satisfy A(z) € R(z)) whenever
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such a solution exists (i.e., R(z) is not empty). On the other hand, if the instance
x has no solution (i.e., R(z) = 0) then clearly A(z) € R(x). The extra condition
(also made in Definition 1.1) requires that in this case A(x) = L. Thus, algorithm
A always outputs a correct answer, which is a valid solution in the case that such
a solution exists and otherwise provides an indication that no solution exists.

We have defined a fundamental class of problems, and we do know of many
natural problems in this class (e.g., solving linear equations over the rationals,
finding a perfect matching in a graph, etc). However, we must admit that we do
not have a good understanding regarding the actual contents of this class (i.e., we
are unable to characterize many natural problems with respect to membership in
this class). This situation is quite common in complexity theory, and seems to
be a consequence of the fact that complexity classes are defined in terms of the
“external behavior” (of potential algorithms) rather than in terms of the “internal
structure” (of the problem). Turning back to PF, we note that, while it contains
many natural search problems, there are also many natural search problems that
are not known to be in PF. A natural class containing a host of such problems is
presented next.

2.1.1.2 The class NP as another natural class of search problems

Natural search problems have the property that valid solutions can be efficiently
recognized. That is, given an instance x of the problem R and a candidate solution
y, one can efficiently determine whether or not y is a valid solution for z (with
respect to the problem R; i.e., whether or not y € R(z)). The class of all such
search problems is a natural class per se, because it is not clear why one should care
about a solution unless one can recognize a valid solution once given. Furthermore,
this class is a natural domain of candidates for PF, because the ability to efficiently
recognize a valid solution seems to be a natural (albeit not absolute) prerequisite
for a discussion regarding the complexity of finding such solutions.

We restrict our attention again to polynomially bounded relations, and consider
the class of relations for which membership of pairs in the relation can be decided
efficiently. We stress that we consider deciding membership of given pairs of the

form (z,y) in a fixed relation R, and not deciding membership of = in the set

Sp & {z : R(z) # 0}. (The relationship between the following definition and the

standard definition of NP will be discussed in Sections 2.1.3-2.1.4 and 2.2.3.)

Definition 2.3 (search problems with efficiently checkable solutions):

e The search problem of a polynomially bounded relation R C {0,1}* x {0,1}*
has efficiently checkable solutions if there exists a polynomial time algorithm A
such that, for every x and y, it holds that A(x,y) = 1 if and only if (z,y) € R.

e We denote by PC (standing for “Polynomial-time Check”) the class of search
problems that correspond to polynomially-bounded binary relations that have
efficiently checkable solutions. That is, R € PC if the following two conditions
hold:
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1. For some polynomial p, if (z,y) € R then |y| < p(|z]).

2. There exists a polynomial-time algorithm that given (x,y) determines
whether or not (z,y) € R.

The class PC contains thousands of natural problems (e.g., finding a traveling
salesman tour of length that does not exceed a given threshold, finding the prime
factorization of a given composite, etc). In each of these natural problems, the
correctness of solutions can be checked efficiently (e.g., given a traveling salesman
tour it is easy to compute its length and check whether or not it exceeds the given
threshold).?

The class PC is the natural domain for the study of which problems are in PF,
because the ability to efficiently recognize a valid solution is a natural prerequisite
for a discussion regarding the complexity of finding such solutions. We warn, how-
ever, that PF contains (unnatural) problems that are not in PC (see Exercise 2.1).

2.1.1.3 The P versus NP question in terms of search problems

Is it the case that every search problem in PC is in PF? That is, if one can
efficiently check the correctness of solutions with respect to some (polynomially-
bounded) relation R, then is it necessarily the case that the search problem of R
can be solved efficiently? In other words, if it is easy to check whether or not a
given solution for a given instance is correct, then is it also easy to find a solution
to a given instance?

If PC C PF then this would mean that whenever solutions to given instances
can be efficiently checked (for correctness) it is also the case that such solutions
can be efficiently found (when given only the instance). This would mean that all
reasonable search problems (i.e., all problems in PC) are easy to solve. Needless to
say, such a situation would contradict the intuitive feeling (and the daily experience)
that some reasonable search problems are hard to solve. Furthermore, in such a
case, the notion of “solving a problem” would lose its meaning (because finding a
solution will not be significantly more difficult than checking its validity).

On the other hand, if PC\ PF # 0 then there exist reasonable search problems
(i.e., some problems in PC) that are hard to solve. This conforms with our basic
intuition by which some reasonable problems are easy to solve whereas others are
hard to solve. Furthermore, it reconfirms the intuitive gap between the notions of
solving and checking (asserting that in some cases “solving” is significantly harder
than “checking”).

2.1.2 The decision version: proving versus verifying

As we shall see in the sequel, the study of search problems (e.g., the PC-vs-PF
Question) can be “reduced” to the study of decision problems. Since the latter

2In the traveling salesman problem (TSP), the instance is a matrix of distances between cities
and a threshold, and the task is to find a tour that passes all cities and covers a total distance
that does not exceed the threshold.
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problems have a less cumbersome terminology, complexity theory tends to focus
on them (and maintains its relevance to the study of search problems via the afore-
mentioned reduction). Thus, the study of decision problems provides a convenient
way for studying search problems. For example, the study of the complexity of de-
ciding the satisfiability of Boolean formulae provides a convenient way for studying
the complexity of finding satisfying assignments for such formulae.

We wish to stress, however, that decision problems are interesting and natural
per se (i.e., beyond their role in the study of search problems). After all, some
people do care about the truth, and so determining whether certain claims are true
is a natural computational problem. Specifically, determining whether a given ob-
ject (e.g., a Boolean formula) has some predetermined property (e.g., is satisfiable)
constitutes an appealing computational problem. The P-vs-NP Question refers to
the complexity of solving such problems for a wide and natural class of properties
associated with the class NP. The latter class refers to properties that have “effi-
cient proof systems” allowing for the verification of the claim that a given object
has a predetermined property (i.e., is a member of a predetermined set). Jumping
ahead, we mention that the P-vs-NP Question refers to the question of whether
properties that have efficient proof systems can also be decided efficiently (without
proofs). Let us clarify all these notions.

Properties of objects are modeled as subsets of the set of all possible objects (i.e.,
a property is associated with the set of objects having this property). For example,
the property of being a prime is associated with the set of prime numbers, and
the property of being connected (resp., having a Hamiltonian path) is associated
with the set of connected (resp., Hamiltonian) graphs. Thus, we focus on deciding
membership in sets (as in Definition 1.2). The standard formulation of the P-vs-
NP Question refers to the questionable equality of two natural classes of decision
problems, denoted P and NP (and defined in §2.1.2.1 and §2.1.2.2, respectively).

2.1.2.1 The class P as a natural class of decision problems

Needless to say, we are interested in the class of decision problems that are efficiently
solvable. This class is traditionally denoted P (standing for Polynomial-time). The
following definition refers to the formulation of solving decision problems (provided
in Definition 1.2).

Definition 2.4 (efficiently solvable decision problems):

e A decision problem S C {0,1}* is efficiently solvable if there ezxists a polyno-
mial time algorithm A such that, for every z, it holds that A(x) = 1 if and
only if z € S.

o We denote by P the class of decision problems that are efficiently solvable.

As in Definition 2.2, we have defined a fundamental class of problems, which con-
tains many natural problems (e.g., determining whether or not a given graph is
connected), but we do not have a good understanding regarding its actual contents
(i-e., we are unable to characterize many natural problems with respect to mem-
bership in this class). In fact, there are many natural decision problems that are
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not known to reside in P, and a natural class containing a host of such problems
is presented next. This class of decision problems is denoted NP (for reasons that
will become evident in Section 2.1.4).

2.1.2.2 The class NP and NP-proof systems

We view NP as the class of decision problems that have efficiently verifiable proof
systems. Loosely speaking, we say that a set S has a proof system if instances
in S have valid proofs of membership (i.e., proofs accepted as valid by the sys-
tem), whereas instances not in S have no valid proofs. Indeed, proofs are defined
as strings that (when accompanying the instance) are accepted by the (efficient)
verification procedure. We say that V is a verification procedure for membership
in S if it satisfies the following two conditions:

1. Completeness: True assertions have valid proofs; that is, proofs accepted as
valid by V. Bearing in mind that assertions refer to membership in S, this
means that for every z € S there exists a string y such that V(z,y) =1 (i.e.,
V' accepts y as a valid proof for the membership of z in 5).

2. Soundness: False assertions have no valid proofs. That is, for every « ¢ S
and every string y it holds that V' (z,y) = 0, which means that V rejects y as
a proof for the membership of z in S.

We note that the soundness condition captures the “security” of the verification
procedure; that is, its ability not to be fooled (by anything) into proclaiming a
wrong assertion. The completeness condition captures the “viability” of the veri-
fication procedure; that is, its ability to be convinced of any valid assertion, when
presented with an adequate proof. (We stress that, in general, proof systems are
defined in terms of their verification procedures, which must satisfy adequate com-
pleteness and soundness conditions.) Our focus here is on efficient verification
procedures that utilize relatively short proofs (i.e., proofs that are of length that
is polynomially bounded by the length of the corresponding assertion).?

Let us consider a couple of examples before turning to the actual definition.
Starting with the set of Hamiltonian graphs, we note that this set has a verification
procedure that, given a pair (G, ), accepts if and only if 7 is a Hamiltonian path in
the graph G. In this case 7 serves as a proof that G is Hamiltonian. Note that such
proofs are relatively short (i.e., the path is actually shorter than the description
of the graph) and are easy to verify. Needless to say, this proof system satisfies

3Advanced comment: In continuation to Footnote 1, we note that in this chapter we consider
deterministic (polynomial-time) verification procedures, and consequently the completeness and
soundness conditions that we state here are error-less. In contrast, in Chapter 9, we will consider
various types of probabilistic (polynomial-time) verification procedures as well as probabilistic
completeness and soundness conditions. A common theme that underlies both treatments is
that efficient verification is interpreted as meaning verification by a process that runs in time
that is polynomial in the length of the assertion. In the current chapter, we use the equivalent
formulation that considers the running time as a function of the total length of the assertion and
the proof, but require that the latter has length that is polynomially bounded by the length of
the assertion.
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the aforementioned completeness and soundness conditions. Turning to the case
of satisfiable Boolean formulae, given a formula ¢ and a truth assignment 7, the
verification procedure instantiates ¢ (according to 7), and accepts if and only if
simplifying the resulting Boolean expression yields the value true. In this case 7
serves as a proof that ¢ is satisfiable, and the alleged proofs are indeed relatively
short and easy to verify.

Definition 2.5 (efficiently verifiable proof systems):

e A decision problem S C {0,1}* has an efficiently verifiable proof system if
there exists a polynomial p and a polynomial-time (verification) algorithm V
such that the following two conditions hold:

1. Completeness: For every x € S, there exists y of length at most p(|z|)
such that V(z,y) = 1.

(Such a string y is called an NP-witness for z € S.)
2. Soundness: For every x € S and every y, it holds that V(z,y) = 0.

Thus, x € S if and only if there exists y of length at most p(|x|) such that
V(z,y)=1.

In such a case, we say that S has an NP-proof system, and refer to V' as its
verification procedure (or as the proof system itself).

e We denote by N'P the class of decision problems that have efficiently verifiable
proof systems.

We note that the term NP-witness is commonly used.? In some cases, V (or the
set of pairs accepted by V) is called a witness relation of S. We stress that the same
set S may have many different NP-proof systems (see Exercise 2.2), and that in
some cases the difference is not artificial (see Exercise 2.3).

Teaching note: Using Definition 2.5, it is typically easy to show that natural decision
problems are in N'P. All that is needed is designing adequate NP-proofs of membership,
which is typically quite straightforward and natural, because natural decision problems
are typically phrased as asking about the existence of a structure (or object) that can
be easily verified as valid. For example, SAT is defined as the set of satisfiable Boolean
formulae, which means asking about the existence of satisfying assignments. Indeed, we
can efficiently check whether a given assignment satisfies a given formula, which means

that we have (a verification procedure for) an NP-proof system for SAT.

Note that for any search problem R in PC, the set of instances that have a so-
lution with respect to R (i.e., the set Sg = {z : R(z) # 0}) is in N'P. Specifically,
for any R € PC, consider the verification procedure V such that V(z,y) <1 if and

4In most cases this is done without explicitly defining V', which is understood from the context
and/or by common practice. In many texts, V is not called a proof system (nor a verification
procedure of such a system), although this term is most adequate.
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only if (z,y) € R, and note that the latter condition can be decided in poly(|z|)-
time. Thus, any search problem in PC can be viewed as a problem of searching
for (efficiently verifiable) proofs (i.e., NP-witnesses for membership in the set of
instances having solutions). On the other hand, any NP-proof system gives rise to
a natural search problem in PC; that is, the problem of searching for a valid proof
(i.e., an NP-witness) for the given instance (i.e, the verification procedure V' yields
the search problem that corresponds to R = {(z,y) : V(z,y)=1}). Thus, S € NP
if and only if there exists R € PC such that S = {x : R(z) # 0}.

Teaching note: The last paragraph suggests another easy way of showing that natural
decision problems are in N'P: just thinking of the corresponding natural search problem.
The point is that natural decision problems (in N'P) are phrased as referring to whether
a solution exists for the corresponding natural search problem. For example, in the case
of SAT, the question is whether there exists a satisfying assignment to given Boolean
formula, and the corresponding search problem is finding such an assignment. But in
all these cases, it is easy to check the correctness of solutions; that is, the corresponding
search problem is in PC, which implies that the decision problem is in N'P.

Observe that P C NP holds: A verification procedure for claims of member-
ship in a set S € P may just ignore the alleged NP-witness and run the decision
procedure that is guaranteed by the hypothesis S € P; that is, V(z,y) = A(z),
where A is the aforementioned decision procedure. Indeed, the latter verification
procedure is quite an abuse of the term (because it makes no use of the proof);
however, it is a legitimate one. As we shall shortly see, the P-vs-NP Question refers
to the question of whether such proof-oblivious verification procedures can be used
for every set that has some efficiently verifiable proof system. (Indeed, given that
P C NP, the P-vs-NP Question is whether NP C P.)

2.1.2.3 The P versus NP question in terms of decision problems

Is it the case that NP-proofs are useless? That is, is it the case that for every ef-
ficiently verifiable proof system one can easily determine the validity of assertions
without looking at the proof? If that were the case, then proofs would be meaning-
less, because they would offer no fundamental advantage over directly determining
the validity of the assertion. The conjecture P # NP asserts that proofs are useful:
there exists sets in NP that cannot be decided by a polynomial-time algorithm,
and so for these sets obtaining a proof of membership (for some instances) is useful
(because we cannot efficiently determine membership by ourselves).

In the foregoing paragraph we viewed P # NP as asserting the advantage of
obtaining proofs over deciding the truth by ourselves. That is, P # NP asserts that
(in some cases) verifying is easier than deciding. A slightly different perspective
is that P # NP asserts that finding proofs is harder than verifying their validity.
This is the case because, for any set S that has an NP-proof system, the ability to
efficiently find proofs of membership with respect to this system (i.e., finding an
NP-witness of membership in S for any given z € 5), yields the ability to decide
membership in S. Thus, for S € NP \ P, it must be harder to find proofs of
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membership in S than to verify the validity of such proofs (which can be done in
polynomial-time).

2.1.3 Equivalence of the two formulations

As hinted several times, the two formulations of the P-vs-NP Questions are equiva-
lent. That is, every search problem having efficiently checkable solutions is solvable
in polynomial time (i.e., PC C PF) if and only if membership in any set that has
an NP-proof system can be decided in polynomial time (i.e., NP C P). Recalling
that P C NP (whereas PF is not contained in PC (Exercise 2.1)), we prove the
following.

Theorem 2.6 PC C PF if and only if P = N'P.

Proof: Suppose, on the one hand, that the inclusion holds for the search version
(i.e., PC C PF). We will show that this implies the existence of an efficient algo-
rithm for finding NP-witnesses for any set in AP, which in turn implies that this
set is in P. Specifically, let S be an arbitrary set in NP, and V be the correspond-
ing verification procedure (i.e., satisfying the conditions in Definition 2.5). Then

RY {(z,y) : V(z,y) = 1} is a polynomially bounded relation in PC, and by the
hypothesis its search problem is solvable in polynomial time (i.e., R € PC C PF).
Denoting by A the polynomial-time algorithm solving the search problem of R, we
decide membership in S in the obvious way. That is, on input =, we output 1 if
and only if A(xz) # L, where the latter event holds if and ounly if A(z) € R(z),
which in turn occurs if and only if R(x) # 0 (equiv., x € S). Thus, NP C P (and
NP = P) follows.

Suppose, on the other hand, that NP = P. We will show that this implies
an efficient algorithm for determining whether a given string ¢’ is a prefix of some
solution to a given instance x of a search problem in PC, which in turn yields an
efficient algorithm for finding solutions. Specifically, let R be an arbitrary search
problem in PC. Then the set S} e {z,y') : Iy" s.t. (z,y'y") € R} is in NP
(because R € PC), and hence S}, is in P (by the hypothesis NP = P). This yields
a polynomial-time algorithm for solving the search problem of R, by extending
a prefix of a potential solution bit-by-bit (while using the decision procedure to
determine whether or not the current prefix is valid). That is, on input z, we
first check whether or not (z,A\) € S and output L (indicating R(z) = 0) in
case (z,A) ¢ Si. Next, we proceed in iterations, maintaining the invariant that
(xz,y') € Sk. In each iteration, we set y' «— 3’0 if (z,y'0) € Si and ¥’ «— y'l
if (z,y'l) € Si. If none of these conditions hold (which happens after at most
polynomially many iterations) then the current y’ satisfies (z,y’) € R. Thus, for
an arbitrary R € PC we obtain that R € PF, and PC C PF follows.

Reflection: The first part of the proof of Theorem 2.6 associates with each set
S in NP a natural relation R (in PC). Specifically, R consists of all pairs (z,y)
such that y is an NP-witness for membership of x in S. Thus, the search problem
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of R consists of finding such an NP-witness, when given z as input. Indeed, R
is called the witness relation of S, and solving the search problem of R allows to
decide membership in S. Thus, R € PC C PF implies S € P. In the second part

of the proof, we associate with each R € PC a set Sj (in N'P), but S} is more

“expressive” than the set Sg = {z : Jy s.t. (z,y) € R} (which gives rise to R as its

witness relation). Specifically, S, consists of strings that encode pairs (z,y’) such
that ' is a prefix of some string in R(z) = {y : (z,y) € R}. The key observation
is that deciding membership in S}, allows to solve the search problem of R; that
is, S € P implies R € PF.

Conclusion: Theorem 2.6 justifies the traditional focus on the decision version
of the P-vs-NP Question. Indeed, given that both formulations of the question are
equivalent, we may just study the less cumbersome one.

2.1.4 The traditional definition of NP

Unfortunately, Definition 2.5 is not the commonly used definition of AP. Instead,
traditionally, NP is defined as the class of sets that can be decided by a ficti-
tious device called a non-deterministic polynomial-time machine (which explains
the source of the notation NP). The reason that this class of fictitious devices is in-
teresting is due to the fact that it captures (indirectly) the definition of NP-proofs.
Since the reader may come across the traditional definition of NP when studying
different works, the author feels obliged to provide the traditional definition as well
as a proof of its equivalence to Definition 2.5.

Definition 2.7 (non-deterministic polynomial-time Turing machines):

e A non-deterministic Turing machine is define as in §1.2.3.2, except that the
transition function maps symbol-state pairs to subsets of triples (rather than
to a single triple) in ¥ x @ x {—1,0,+1}. Accordingly, the configuration
following o specific instantaneous configuration may be one of several possi-
bilities, each determine by a different possible triple. Thus, the computations
of a non-deterministic machine on a fixed input may result in different outputs.

In the context of decision problems one typically considers the question of
whether or not there exists a computation that starting with a fized input
halts with output 1. We say that the non-deterministic machine M accept x if
there exists a computation of M, on input x, that halts with output 1. The set
accepted by a non-deterministic machine is the set of inputs that are accepted
by the machine.

e A non-deterministic polynomial-time Turing machine is defined as one that
makes a number of steps that is polynomial in the length of the input. Tra-
ditionally, N'P is defined as the class of sets that are each accepted by some
non-deterministic polynomial-time Turing machine.

We stress that Definition 2.7 refers to a fictitious model of computation. Specif-
ically, Definition 2.7 makes no reference to the number (or fraction) of possible
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computations of the machine (on a specific input) that yield a specific output.®
Definition 2.7 only refers to whether or not computations leading to a certain out-
put exist (for a specific input). The question of what does the mere existence of
such possible computations mean (in terms of real-life) is not addressed, because
the model of a non-deterministic machine is not meant to provide a reasonable
model of a (real-life) computer. The model is meant to capture something com-
pletely different (i.e., it is meant to provide an elegant definition of the class NP,
while relying on the fact that Definition 2.7 is equivalent to Definition 2.5).

Teaching note: Whether or not Definition 2.7 is elegant is a matter of taste. For sure,
many students find Definition 2.7 quite confusing, possibly because they assume that it
represents some natural model of computation and consequently they allow themselves
to be fooled by their intuition regarding such models. (Needless to say, the students’

intuition regarding computation is irrelevant when applied to a fictitious model.)

Note that, unlike other definitions in this chapter, Definition 2.7 makes explicit
reference to a specific model of computation. Still, a similar extension can be
applied to other models of computation by considering adequate non-deterministic
computation rules. Also note that, without loss of generality, we may assume that
the transition function maps each possible symbol-state pair to exactly two triples
(cf. Exercise 2.4).

Theorem 2.8 Definition 2.5 is equivalent to Definition 2.7. That is, a set S has
an NP-proof system if and only if there exists a non-deterministic polynomial-time
machine that accepts S.

Proof Sketch: Suppose, on one hand, that the set S has an NP-proof system,
and let us denote the corresponding verification procedure by V. Consider the
following non-deterministic polynomial-time machine, denoted M. On input z,
machine M makes an adequate m = poly(|z|) number of non-deterministic steps,
producing (non-deterministically) a string y € {0,1}™, and then emulates V (z,y).
We stress that these non-deterministic steps may result in producing any m-bit
string y. Recall that x € S if and only if there exists y of length at most poly(|z|)
such that V(x,y) = 1. This implies that the set accepted by M equals S.

Suppose, on the other hand, that there exists a non-deterministic polynomial-
time machine M that accepts the set S. Consider a deterministic machine M’ that
on input (z,y), where y has adequate length, emulates a computation of M on
input = while using y to determine the non-deterministic steps of M. That is, the
i*h step of M on input z is determined by the ' bit of y (which indicates which
of the two possible moves to make at the current step). Note that x € S if and
only if there exists y of length at most poly(|z|) such that M'(z,y) = 1. Thus, M’
gives rise to an NP-proof system for S. O

5Advanced comment: In contrast, the definition of a probabilistic machine refers to this
number (or, equivalently, to the probability that the machine produces a specific output, when the
probability is essentially taken uniformly over all possible computations). Thus, a probabilistic
machine refers to a natural model of computation that can be realized provided we can equip the
machine with a source of randomness. For details, see Section 6.1.
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2.1.5 In support of P different from NP

Intuition and concepts constitute... the elements of all our knowl-
edge, so that neither concepts without an intuition in some way
corresponding to them, nor intuition without concepts, can yield
knowledge.

Immanuel Kant (1724-1804)

Kant speaks of the importance of both philosophical considerations (referred to
as “concepts”) and empirical considerations (referred to as “intuition”) to science
(referred to as (sound) “knowledge”).

It is widely believed that P is different than NP; that is, that PC contains
search problems that are not efficiently solvable, and that there are NP-proof sys-
tems for sets that cannot be decided efficiently. This belief is supported by both
philosophical and empirical considerations.

e Philosophical considerations: Both formulations of the P-vs-NP Question re-
fer to natural questions about which we have strong conceptions. The notion
of solving a (search) problem seems to presume that, at least in some cases
(if not in general), finding a solution is significantly harder than checking
whether a presented solution is correct. This translates to PC \ PF # 0.
Likewise, the notion of a proof seems to presume that, at least in some cases
(if not in general), the proof is useful in determining the validity of the asser-
tion; that is, that verifying the validity of an assertion may be made signifi-
cantly easier when provided with a proof. This translates to P # NP, which
also implies that it is significantly harder to find proofs than to verify their
correctness, which again coincides with the daily experience of researchers
and students.

o Empirical considerations: The class NP (or rather PC) contains thousands of
different problems for which no efficient solving procedure is known. Many
of these problems have arisen in vastly different disciplines, and were the
subject of extensive research of numerous different communities of scientists
and engineers. These essentially independent studies have all failed to provide
efficient algorithms for solving these problems, a failure that is extremely hard
to attribute to sheer coincidence or a stroke of bad luck.

Throughout the rest of this book, we will adopt the common belief that P is
different from NP. At some places, we will explicitly use this conjecture (or even
stronger assumptions), whereas in other places we will present results that are
interesting (if and) only if P # NP (e.g., the entire theory of NP-completeness
becomes uninteresting if P = N'P).

The P # NP conjecture is indeed very appealing and intuitive. The fact that
this natural conjecture is unsettled seems to be one of the sources of frustration of
complexity theory. The author’s opinion, however, is that this feeling of frustration
is not in place. In contrast, the fact that complexity theory evolves around natural
and simply-stated questions that are so difficult to resolve makes its study very
exciting.
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2.1.6 Two technical comments regarding NP

Recall that when defining PC (resp., N'P) we have explicitly confined our atten-
tion to search problems of polynomially bounded relations (resp., NP-witnesses of
polynomial length). An alternative formulation may allow a binary relation R to
be in PC (resp., S € N'P) if membership of (z,y) in R can be decided in time
that is polynomial in the length of z (resp., the verification of a candidate NP-
witness y for membership of z in S is required to be performed in poly(|z|)-time).
Indeed, this mean that the validity of y can be determined without reading all of it
(which means that some substring of y can be used as the effective y in the original
definitions).

We comment that problems in PC (resp., NP) can be solved in exponential-
time (i.e., time exp(poly(|z|)) for input z). This can be done by an exhaustive
search among all possible candidate solutions (resp., all possible candidate NP-
witnesses). Thus, NP C EXP, where EXP denote the class of decision problems
that can be solved in exponential-time (i.e., time exp(poly(|z|)) for input z).

2.2 Polynomial-time Reductions

We present a general notion of (polynomial-time) reductions among computational
problems, and view the notion of a “Karp-reduction” as an important special case
that suffices (and is more convenient) in many cases. Reductions play a key role
in the theory of NP-completeness, which is the topic of Section 2.3. In the current
section, we stress the fundamental nature of the notion of a reduction per se and
highlight two specific applications (i.e., reducing search and optimization problems
to decision problems). Furthermore, in the latter applications, it will be important
to use the general notion of a reduction (i.e., “Cook-reduction” rather than “Karp-
reduction”).

Teaching note: We assume that many students have heard of reductions, but we fear
that most have obtained a conceptually poor view of their fundamental nature. In
particular, we fear that reductions are identified with the theory of NP-completeness,
while reductions have numerous other important applications that have little to do with
NP-completeness (or completeness with respect to some other class). Furthermore, we
believe that it is important to show that natural search and optimization problems can

be reduced to decision problems.

2.2.1 The general notion of a reduction

Reductions are procedures that use “functionally specified” subroutines. That is,
the functionality of the subroutine is specified, but its operation remains unspecified
and its running-time is counted at unit cost. Analogously to algorithms, which
are modeled by Turing machines, reductions can be modeled as oracle (Turing)
machines. A reduction solves one computational problem (which may be either
a search or a decision problem) by using oracle (or subroutine) calls to another
computational problem (which again may be either a search or a decision problem).
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2.2.1.1 The actual formulation

The notion of a general algorithmic reduction was discussed in §1.2.3.3 and §1.2.3.6.
These reductions, called Turing-reductions (cf. §1.2.3.3) and modeled by oracle
machines (cf. §1.2.3.6), made no reference to the time complexity of the main
algorithm (i.e., the oracle machine). Here, we focus on efficient (i.e., polynomial-
time) reductions, which are often called Cook reductions. That is, we consider
oracle machines (as in Definition 1.11) that run in time polynomial in the length
of their input. We stress that the running time of an oracle machine is the number
of steps made during its (own) computation, and that the oracle’s reply on each
query is obtained in a single step.

The key property of efficient reductions is that they allow for the transformation
of efficient implementations of the subroutine into efficient implementations of the
task reduced to it. That is, as we shall see, if one problem is Cook-reducible to
another problem and the latter is polynomial-time solvable then so is the former.

The most popular case is that of reducing decision problems to decision prob-
lems, but we will also consider reducing search problems to search problems and
reducing search problems to decision problems. Note that when reducing to a de-
cision problem, the oracle is determined as the single valid solver of the decision
problem (i.e., the function f : {0,1}* — {0,1} solves the decision problem of mem-
bership in S if, for every z, it holds that f(z) = 1if z € S and f(z) = 0 otherwise).
In contrast, when reducing to a search problem, there may be many different valid
solvers (i.e., the function f:{0,1}* — {0,1}* U {L} solves the search problem of
R if, for every x, it holds that f(z) € R(z) if € Sg and f(x) = L otherwise). We
capture both cases in the following definition.

Definition 2.9 (Cook reduction): A problem I is Cook-reducible to a problem II'
if there exists a polynomial-time oracle machine M such that for every function f
that solves II' it holds that M7 solves I1, where M7 (x) denotes the output of M on
input T when given oracle access to f.

Note that II (resp., II') may be either a search problem or a decision problem (or
even a yet undefined type of a problem). At this point the reader should verify
that if II is Cook-reducible to II" and II' is solvable in polynomial-time then so is
II. (See Exercise 2.5 for other properties of Cook-reductions.)

Observe that the second part of the proof of Theorem 2.6 is actually a Cook-
reduction of the search problem of any R in PC to a decision problem regarding a
related set S, = {(z,vy') : Iy" s.t. (z,y'y") € R}, which in N'P. Thus, that proof
establishes the following result.

Theorem 2.10 Ewvery search problem in PC is Cook-reducible to some decision
problem in N'P.

We shall see a tighter relation between search and decision problems in Section 2.2.3;
that is, in some cases, R will be reduced to Sg = {z : Jy s.t. (z,y) € R} rather
than to S%.
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2.2.1.2 Special cases

A Karp-reduction is a special case of a reduction (from a decision problem to a
decision problem). Specifically, for decision problems S and S’, we say that S is
Karp-reducible to S’ if there is a reduction of S to S’ that operates as follows: On
input z (an instance for S), the reduction computes z', makes query z' to the oracle
S’ (i.e., invokes the subroutine for S’ on input z'), and answers whatever the latter
returns. This reduction is often represented by the polynomial-time computable
mapping of x to z'; that is, the standard definition of a Karp-reduction is actually
as follows.

Definition 2.11 (Karp reduction): A polynomial-time computable function f is
called a Karp-reduction of S to S’ if, for every x, it holds that x € S if and only if
f(z) e s

Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but it
trivially gives rise to one (i.e., on input z, the oracle machine makes query f(z),
and returns the oracle answer). Being slightly inaccurate but essentially correct,
we shall say that Karp-reductions are special cases of Cook-reductions. Needless
to say, Karp-reductions constitute a very restricted case of Cook-reductions. Still,
this restricted case suffices for many applications (e.g., most importantly for the
theory of NP-completeness (when developed for decision problems)), but not for
reducing a search problem to a decision problem. Furthermore, whereas each deci-
sion problem is Cook-reducible to its complement, some decision problems are not
Karp-reducible to their complement (see Exercises 2.7 and 2.33).

We comment that Karp-reductions may (and should) be augmented in order
to handle reductions of search problems to search problems. Such an augmented
Karp-reduction of the search problem of R to the search problem of R’ operates as
follows: On input z (an instance for R), the reduction computes z', makes query =’
to the oracle R’ (i.e., invokes the subroutine for searching R’ on input z') obtaining
y' such that (z',y’) € R’, and uses y' to compute a solution y to = (i.e., y € R(x)).
Thus, such a reduction can be represented by two polynomial-time computable
mappings, f and g, such that (z,g(z,y")) € R for any y' that is a solution of
f(z) (i.e., for y' that satisfies (f(z),y’) € R'). (Indeed, in general, unlike in the
case of decision problems, the reduction cannot just return y' as an answer to z.)
This augmentation is called a Levin-reduction and, analogously to the case of a
Karp-reduction, it is often represented by the two aforementioned polynomial-time
computable mappings (i.e., of x to z’, and of (z,y") to y).

Definition 2.12 (Levin reduction): A pair of polynomial-time computable func-
tions, f and g, is called a Levin-reduction of R to R' if f is a Karp reduction of
Sr ={z: 3y st. (z,y) € R} to S = {2’ : Iy’ s.t. (2',y') € R'} and for every
x € Sg and y' € R'(f(x)) it holds that (z,g(z,y")) € R, where R'(z') = {y :
(«',y')eR'}.

Indeed, the function f preserves the existence of solutions; that is, for any z, it
holds that R(z) # 0 if and only if R'(f(x)) # 0. As for the second function (i.e., g),
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it maps any solution y’ for the reduced instance f(z) to a solution for the original
instance = (where this mapping may also depend on x). We note that it is natural
to consider also a third function that maps solutions for R to solutions for R’ (see
Exercise 2.28).

2.2.1.3 Terminology and a brief discussion

In the sequel, whenever we neglect to mention the type of a reduction, we refer to
a Cook-reduction. Two additional terms, which will be particularly useful in the
advanced chapters, are presented next.

e We say that two problems are computationally equivalent if they are reducible
to one another. This means that the two problems are essentially as hard (or
as easy). Note that computationally equivalent problems need not reside in
the same complexity class.

For example, as we shall see in Section 2.2.3, there exist many natural
R € PC such that the search problem of R and the decision problem of
Sr = {x: 3y s.t. (x,y) € R} are computationally equivalent, although (even
syntactically) the two problems do not belong to the same class (i.e., R € PC
whereas Sg € N'P). Also, each decision problem is computationally equiv-
alent to its complement, although the two problems may not belong to the
same class (see Section 2.4.3).

e We say that a class of problems, C, is reducible to a problem II' if every
problem in C, is reducible to II'. We say that the class C is reducible to the
class C' if for every II € C there exists II' € C’ such that IT is reducible to IT'.

For example, Theorem 2.10 asserts that PC is reducible to N'P.

The fact that we allow Cook-reductions is essential to various important connec-
tions between decision problems and other computational problems. For exam-
ple, as will be shown in Section 2.2.2, a natural class of optimization problems
is reducible to N'P. Also recall that PC is reducible to NP (cf. Theorem 2.10).
Furthermore, as will be shown in Section 2.2.3, many natural search problems in
PC are reducible to a corresponding natural decision problem in AP (rather than
merely to some problem in A'P). In all these results, the reductions in use are (and
must be) Cook-reductions.

2.2.2 Reducing optimization problems to search problems

Many search problems refer to a set of potential solutions, associated with each
problem instance, such that different solutions are assigned different “values” (resp.,
“costs”). In such a case, one may be interested in finding a solution that has value
exceeding some threshold (resp., cost below some threshold). Alternatively, one
may seek a solution of maximum value (resp., minimum cost). For simplicity, let
us focus on the case of a value that we wish to maximize. Still, there are two
different objectives (i.e., exceeding a threshold and optimizing), giving rise to two
different (auxiliary) search problems related to the same relation R. Specifically,
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for a binary relation R and a value function f :{0,1}* x {0,1}* — R, we consider
two search problems.

1. Ezceeding a threshold: Given a pair (z,v) the task is to find y € R(z) such
that f(z,y) > v, where R(z) = {y : (z,y) € R}. That is, we are actually
referring to the search problem of the relation

Rf d:ef {((I,U):y) : ('Tay)ER/\f(x:y) ZU}, (2']‘)

where (z,v) denotes a string that encodes the pair (z,v).

2. Mazimization: Given x the task is to find y € R(z) such that f(z,y) = v,
where v, is the maximum value of f(z,y') over all ¥’ € R(x). That is, we are
actually referring to the search problem of the relation

Ry {(w9) €R: f(r,y) = max {f(r,0)}). (2.2)

Examples of value functions include the size of a clique in a graph, the amount of
flow in a network (with link capacities), etc. The task may be to find a clique of
size exceeding a given threshold in a given graph or to find a maximum-size clique
in a given graph. Note that, in these examples, the “base” search problem (i.e.,
the relation R) is quite easy to solve, and the difficulty arises from the auxiliary
condition on the value of a solution (presented in Ry and RY). Indeed, one may
trivialize R (i.e., let R(z) = {0,1}P°¥(=D) for every z), and impose all necessary
structure by the function f (see Exercise 2.8).

We confine ourselves to the case that f is polynomial-time computable, which
in particular means that f(z,y) can be represented by a rational number of length
polynomial in |z|+|y|. We will show next that, in this case, the two aforementioned
search problems (i.e., of Ry and R) are computationally equivalent.

Theorem 2.13 For any polynomial-time computable f:{0,1}*x{0,1}* >R and
a polynomially bounded binary relation R, let Ry and R be as in Eq. (2.1) and
Eq. (2.2), respectively. Then the search problems of Ry and R’f are computationally
equivalent.

Note that, for R € PC and polynomial-time computable f, it holds that Ry € PC.
Combining Theorems 2.10 and 2.13, it follows that in this case both Ry and R, are
reducible to N'P. We note, however, that even in this case it does not necessarily
hold that R} € PC. See further discussion following the proof.

Proof: The search problem of Ry is reduced to the search problem of R} by
finding an optimal solution (for the given instance) and comparing its value to the
given threshold value. That is, we construct an oracle machine that solves Ry by
making a single query to R}. Specifically, on input (z,v), the machine issues the
query z (to a solver for R}), obtaining the optimal solution y (or an indication L
that R(z) = 0), computes f(z,y), and returns y if f(z,y) > v. Otherwise (i.e.,
either y = L or f(z,y) < v), the machine returns an indication that Rs(z,v) = 0.
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Turning to the opposite direction, we reduce the search problem of R} to the
search problem of Ry by first finding the optimal value v, = max,cr(.){f(7,¥)}
(by binary search on its possible values), and next finding a solution of value v,.
In both steps, we use oracle calls to Ry. For simplicity, we assume that f assigns
positive integer values, and let ¢ = poly(|x|) be such that f(z,y) < 2° —1 for every
y € R(z). Then, on input z, we first find v, = max{f(z,y) : y€ R(z)}, by making
oracle calls of the form (z,v). The point is that v, < v if any only if R;({z,v)) = 0,
which in turn is indicated by the oracle answer L (to the query (x,v)). Making ¢
queries, we determine v, (see Exercise 2.9). Note that in case R(z) = 0, all answers
will indicate that Rs((z,v)) = 0, which we treat as if v, = 0. Finally, we make the
query (z,v;), and halt returning the oracle’s answer (which is y € R(z) such that
f(z,y) = v, if v; > 0 and an indication that R(z) = 0 otherwise). [

Proof’s digest. Note that the first direction uses the hypothesis that f is polynomial-
time computable, whereas the opposite direction only used the fact that the optimal
value lies in a finite space of exponential size that can be “efficiently searched”.
While the first direction can be proved using a Levin-reduction, this seems impos-
sible for the opposite direction (in general).

On the complexity of Ry and R}. We focus on the natural case in which
R € PC and f is polynomial-time computable. In this case, Theorem 2.13 asserts
that Ry and R’f are computationally equivalent. A closer look reveals, however,
that Ry € PC always holds, whereas R € PC does not necessarily hold. That
is, the problem of finding a solution (for a given instance) that exceeds a given
threshold is in the class PC, whereas the problem of finding an optimal solution
is not necessarily in the class PC. For example, the problem of finding a clique
of a given size K in a given graph G is in PC, whereas the problem of finding a
maximum size clique in a given graph G is not known (and is quite unlikely) to be
in PC (although it is Cook-reducible to PC). Indeed, the class of problems that
are reducible to PC is a natural and interesting class (see further discussion at
the end of Section 3.2.1). Needless to say, for every R € PC and polynomial-time
computable f, the former class contains R}.

2.2.3 Self-reducibility of search problems

The results to be presented in this section further justify the focus on decision
problems. Loosely speaking, these results show that for many natural relations R,
the question of whether or not the search problem of R is efficiently solvable (i.e.,
is in PF) is equivalent to the question of whether or not the “decision problem
implicit in R” (i.e., Sg = {z : Jy s.t. (z,y) € R}) is efficiently solvable (i.e.,
is in P). In fact, we will show that these two computational problems (i.e., R
and Sp) are computationally equivalent. Note that the decision problem of Sg
is easily reducible to the search problem of R, and so our focus is on the other
direction. That is, we are interested in relations R for which the search problem
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of R is reducible to the decision problem of Si. In such a case, we say that R is
self-reducible.

Teaching note: Our usage of the term self-reducibility differs from the traditional
one. Traditionally, a decision problem is called (downwards) self-reducible if it is Cook-
reducible to itself via a reduction that on input x only makes queries that are smaller
than z (according to some appropriate measure on the size of strings). Under some
natural restrictions (i.e., the reduction takes the disjunction of the oracle answers) such
reductions yield reductions of search to decision (as discussed in the main text). For

further details, see Exercise 2.13.

Definition 2.14 (the decision implicit in a search and self-reducibility): The de-
cision problem implicit the search problem of R is deciding membership in the set
Sr = {z: R(z) # 0}, where R(xz) = {y : (z,y) € R}. The search problem of R is
called self-reducible if it can be reduced to the decision problem of Sgr.

Note that the search problem of R and the problem of deciding membership in
Sk refer to the same instances: The search problem requires finding an adequate
solution (i.e., given z find y € R(x)), whereas the decision problem refers to the
question of whether such solutions exist (i.e., given z determine whether or not
R(z) is non-empty). Thus, Sg is really the “decision problem implicit in R,
because it is a decision problem that one implicitly solves when solving the search
problem of R. Indeed, for any R, the decision problem of Sr is easily reducible to
the search problem for R (and if R is in PC then Sg is in N'P).5 It follows that
if a search problem R is self-reducible then it is computationally equivalent to the
decision problem Sg.

Note that the general notion of a reduction (i.e., Cook-reduction) seems inher-
ent to the notion of self-reducibility. This is the case not only due to syntactic
considerations, but rather due to the following inherent reason. An oracle to any
decision problem returns a single bit per invocation, while the intractability of a
search problem in PC must be due to lacking more than a “single bit of information”
(see Exercise 2.10).

We shall see that self-reducibility is a property of many natural search problems
(including all NP-complete search problems). This justifies the relevance of decision
problems to search problems in a stronger sense than established in Section 2.1.3:
Recall that in Section 2.1.3 we showed that the fate of the search problem class PC
(w.r.t PF) is determined by the fate of the decision problem class NP (w.r.t P).
Here we show that, for many natural search problems in PC (i.e., self-reducible
ones), the fate of such a problem R (w.r.t PF) is determined by the fate of the
decision problem Sk (w.r.t P), where Sy is the decision problem implicit in R.

2.2.3.1 Examples

We now present a few search problems that are self-reducible. We start with SAT
(see Section G.2), the set of satisfiable Boolean formulae (in CNF), and consider

6For example, the reduction invokes the search oracle and answer 1 if and only if the oracle
returns some string (rather than the “no solution” symbol).
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the search problem in which given a formula one should provide a truth assignment
that satisfies it. The corresponding relation is denoted RgpT; that is, (¢, 7) € RgpT
if 7 is a satisfying assignment to the formula ¢. The decision problem implicit in
Rgpt is indeed SAT. Note that RgpT is in PC (i.e., it is polynomially-bounded
and membership of (¢,7) in RgpT is easy to decide (by evaluating a Boolean
expression)).

Proposition 2.15 (Rgpt is self-reducible): The search problem of Rgpr is re-
ducible to SAT.

Thus, the search problem of RgpT is computationally equivalent to deciding mem-
bership in SAT. Hence, in studying the complexity of SAT, we also address the
complexity of the search problem of RgpT.

Proof: We present an oracle machine that solves the search problem of RgpT by
making oracle calls to SAT. Given a formula ¢, we find a satisfying assignment to ¢
(in case such an assignment exists) as follows. First, we query SAT on ¢ itself, and
return an indication that there is no solution if the oracle answer is 0 (indicating
¢ ¢ SAT). Otherwise, we let 7, initiated to the empty string, denote a prefix of a
satisfying assignment of ¢. We proceed in iterations, where in each iteration we
extend 7 by one bit. This is done as follows: First we derive a formula, denoted ¢',
by setting the first |7| 4+ 1 variables of ¢ according to the values 70. We then query
SAT on ¢’ (which means that we ask whether or not 70 is a prefix of a satisfying
assignment of ¢). If the answer is positive then we set 7 < 70 else we set 7 «— 71.
This procedure relies on the fact that if 7 is a prefix of a satisfying assignment of
¢ and 70 is not a prefix of a satisfying assignment of ¢ then 71 must be a prefix of
a satisfying assignment of ¢.

We wish to highlight a key point that has been blurred in the foregoing de-
scription. Recall that the formula ¢' is obtained by replacing some variables by
constants, which means that ¢’ per se contains Boolean variables as well as Boolean
constants. However, the standard definition of SAT disallows Boolean constants in
its instances.” Nevertheless, ¢' can be simplified such that the resulting formula
contains no Boolean constants. This simplification is performed according to the
straightforward Boolean rules: That is, the constant false can be omitted from
any clause, but if a clause contains only occurrences of the constant false then
the entire formula simplifies to false. Likewise, if the constant true appears in
a clause then the entire clause can be omitted, and if all clauses are omitted then
the entire formula simplifies to true. Needless to say, if the simplification process
yields a Boolean constant then we may skip the query, and otherwise we just use
the simplified form of ¢' as our query.

Other examples: Reductions analogous to the one used in the proof of Propo-
sition 2.15 can be presented also for other search problems (and not only for NP-
complete ones). Two such examples are searching for a 3-coloring of a given graph

“While the problem seems rather technical at the current setting (as it merely amounts to
whether or not the definition of SAT allows Boolean constants in its instances), it is far from being
so technical in other cases (see Exercises 2.11 and 2.12).
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and searching for an isomorphism between a given pair of graphs (where the first
problem is known to be NP-complete and the second problem is believed not to
be NP-complete). In both cases, the reduction of the search problem to the cor-
responding decision problem consists of iteratively extending a prefix of a valid
solution, by making suitable queries in order to decide which extension to use.
Note, however, that in these two cases the process of getting rid of constants (rep-
resenting partial solutions) is more involved. Specifically, in the case of Graph
3-Colorability (resp., Graph Isomorphism) we need to enforce a partial coloring of
a given graph (resp., a partial isomorphism between a given pair of graphs); see
Exercises 2.11 and 2.12, respectively.

Reflection: The proof of Proposition 2.15 (as well as the proofs of similar results)
consists of two observations.

1. For every relation R in PC, it holds that the search problem of R is reducible
to the decision problem of Si = {(z,vy') : y" s.t. (z,y'y") € R}. Such a
reduction is explicit in the proof of Theorem 2.6 and is implicit in the proof
of Proposition 2.15.

2. For specific R € PC (e.g., SgaT), deciding membership in S’ is reducible to
deciding membership in Sg = {z : Jy s.t. (z,y) € R}. This is where the
specific structure of SAT was used, allowing for a direct and natural transfor-
mation of instances of S} to instances of Sg.

(We comment that if Sg is NP-complete then S}, which is always in NP, is
reducible to Sg by the mere fact that Sg is NP-complete; this comment is
related to the following advanced comment.)

For an arbitrary R € PC, deciding membership in S’ is not necessarily reducible to
deciding membership in Sg. Furthermore, deciding membership in S} is not nec-
essarily reducible to the search problem of R. (See Exercises 2.14, 2.15, and 2.16.)

In general, self-reducibility is a property of the search problem and not of the
decision problem implicit in it. Furthermore, under plausible assumptions (e.g.,
the intractability of factoring), there exists relations R;, Re € PC having the same
implicit-decision problem (i.e., {z : Ri(z) # 0} = {z : Ry(z) # 0}) such that R; is
self-reducible but Ry is not (see Exercise 2.17). However, for many natural decision
problems this phenomenon does not arise; that is, for many natural NP-decision
problems S, any NP-witness relation associated with S (i.e., R € PC such that
{z: R(x) # 0} = S) is self-reducible. Indeed, see the other examples following the
proof of Proposition 2.15 as well as the advanced discussion in §2.2.3.2.

2.2.3.2 Self-reducibility of NP-complete problems

Teaching note: In this advanced subsection, we assume that the students have heard
of NP-completeness. Actually, we only need the students to know the definition of NP-
completeness (i.e., a set S is N'P-complete if S € NP and every set in NP is reducible
to S). Yet, the teacher may prefer postponing the presentation of the following advanced

discussion to Section 2.3.1 (or even to a later stage).
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Recall that, in general, self-reducibility is a property of the search problem R and
not of the decision problem implicit in it (i.e., Sg = {z : R(z) # 0}). In contrast,
in the special case of NP-complete problems, self-reducibility holds for any witness
relation associated with the (NP-complete) decision problem. That is, all search
problems that refer to finding NP-witnesses for any NP-complete decision problem
are self-reducible.

Theorem 2.16 For every R in PC such that Sgr is N'P-complete, the search prob-
lem of R is reducible to deciding membership in Sg.

In many cases, as in the proof of Proposition 2.15, the reduction of the search
problem to the corresponding decision problem is quite natural. The following
proof presents a generic reduction (which may be “unnatural” in some cases).

Proof: In order to reduce the search problem of R to deciding Sk, we compose
the following two reductions:

1. A reduction of the search problem of R to deciding membership in Sj =
{(z,y") : " s.t. (z,y'y")ER}.
As stated in the foregoing paragraph (titled “reflection”), such a reduction
is implicit in the proof of Proposition 2.15 (as well as being explicit in the
proof of Theorem 2.6).

2. A reduction of Sy to Sg.

This reduction exists by the hypothesis that Sg is ANP-complete and the
fact that S, € NP. (Note that we do not assume that this reduction is a
Karp-reduction, and furthermore it may be a “unnatural” reduction).

The theorem follows. [}

2.3 NP-Completeness

In light of the difficulty of settling the P-vs-NP Question, when faced with a hard
problem H in NP, we cannot expect to prove that H is not in P (unconditionally).
The best we can expect is a conditional proof that H is not in P, based on the
assumption that NP is different from P. The contrapositive is proving that if H is
in P, then so is any problem in NP (i.e., NP equals P). One possible way of proving
such an assertion is showing that any problem in NP is polynomial-time reducible
to H. This is the essence of the theory of NP-completeness.

Teaching note: Some students heard of NP-completeness before, but we suspect that
many have missed important conceptual points. Specifically, we fear that they missed
the point that the mere existence of NP-complete problems is amazing (let alone that
these problems include natural ones such as SAT). We believe that this situation is a
consequence of presenting the detailed proof of Cook’s Theorem as the very first thing
right after defining NP-completeness.
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2.3.1 Definitions

The standard definition of NP-completeness refers to decision problems. Below
we will also present a definition of NP-complete (or rather PC-complete) search
problems. In both cases, NP-completeness of a problem IT combines two conditions:

1. IT is in the class (i.e., IT being in NP or PC, depending on whether II is a
decision or a search problem).

2. Each problem in the class is reducible to II. This condition is called NP-
hardness.

Although a perfectly good definition of NP-hardness could have allowed arbitrary
Cook-reductions, it turns out that Karp-reductions (resp., Levin-reductions) suffice
for establishing the NP-hardness of all natural NP-complete decision (resp., search)
problems. Consequently, NP-completeness is usually defined using this restricted
notion of a polynomial-time reduction.

Definition 2.17 (NP-completeness of decision problems, restricted notion): A set
S is N'P-complete if it is in NP and every set in N'P is Karp-reducible to S.

A set is N'P-hard if every set in NP is Karp-reducible to it. Indeed, there is no
reason to insist on Karp-reductions (rather than using arbitrary Cook-reductions),
except that the restricted notion suffices for all known demonstrations of NP-
completeness and is easier to work with. An analogous definition applies to search
problems.

Definition 2.18 (NP-completeness of search problems, restricted notion): A bi-
nary relation R is PC-complete if it is in PC and every relation in PC is Levin-
reducible to R.

In the sequel, we will sometimes abuse the terminology and refer to search problems
as NP-complete (rather than PC-complete). Likewise, we will say that a search
problem is NP-hard (rather than PC-hard) if every relation in PC is Levin-reducible
to it.

We stress that the mere fact that we have defined a property (i.e., NP-completeness)
does not mean that there exist objects that satisfy this property. It is indeed re-
markable that NP-complete problems do exist. Such problems are “universal” in
the sense that solving them allows to solve any other (reasonable) problem (i.e.,
problems in NP).

2.3.2 The existence of NP-complete problems

We suggest not to confuse the mere existence of NP-complete problems, which
is remarkable by itself, with the even more remarkable existence of “natural” NP-
complete problems. The following proof delivers the first message as well as focuses
on the essence of NP-completeness, rather than on more complicated technical
details. The essence of NP-completeness is that a single computational problem
may “effectively encode” a wide class of seemingly unrelated problems.
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Theorem 2.19 There exist NP-complete relations and sets.

Proof: The proof (as well as any other NP-completeness proofs) is based on the
observation that some decision problems in NP (resp., search problems in PC) are
“rich enough” to encode all decision problems in A'P (resp., all search problems
in PC). This fact is most obvious for the “generic” decision and search problems,
denoted Sy and Ry (and defined next), which are used to derive the simplest proof
of the current theorem.

We consider the following relation Ry and the decision problem Sy implicit in
Ry (ie., Su = {T: Jy s.t. (T,y) € Ru}). Both problems refer to the same type of
instances, which in turn have the form T = (M,z,1'), where M is a description
of a (deterministic) Turing machine, x is a string, and ¢ is a natural number.
The number ¢ is given in unary (rather than in binary) in order to allow various
complexity measures, which depend on the instance length, to be polynomial in ¢
(rather than poly-logarithmic in ¢).

Definition: The relation Ry consists of pairs ((M,x,1%),y) such that M accepts the
input pair (z,y) within t steps, where |y| < t.8 The corresponding set Sy def {z:
Jy s.t. (T,y) € Ru} consists of triples (M,x,1") such that machine M accepts
some input of the form (z,-) within ¢ steps.

It is easy to see that Ry is in PC and that Sy is in NP. Indeed, Ry is
recognizable by a universal Turing machine, which on input ((M,z, 1), y) emulates
(t steps of) the computation of M on (z,y). (The fact that Sy € NP follows
similarly.) We comment that u indeed stands for universal (i.e., universal machine),
and the proof extends to any reasonable model of computation (which has adequate
universal machines).

We now turn to show that Ry and Sy are NP-hard in the adequate sense (i.e.,
Ry is PC-hard and Sy is N'P-hard). We first show that any set in NP is Karp-
reducible to Su. Let S be a set in AP and let us denote its witness relation by
R; that is, R is in PC and = € S if and only if there exists y such that (x,y) € R.
Let pr be a polynomial bounding the length of solutions in R (i.e., |y| < pr(|z|)
for every (z,y) € R), let My be a polynomial-time machine deciding membership
(of alleged (z,y) pairs) in R, and let tg be a polynomial bounding its running-
time. Then, the desired Karp-reduction maps an instance z (for S) to the instance
(M, z, 12(lel+pe(<D)y (for Sy): that is,

w s f(z) (Mg, @, 1te(el+prleh)y, (2.3)

Note that this mapping can be computed in polynomial-time, and that x € S if
and only if f(z) = (Mg, z, 1trzl+rr(=))y € S, Details follow.

First, note that the mapping f does depend (of course) on S, and so it may
depend on the fixed objects Mg, pr and Tr (which depend on S). Thus, computing
f oninput x calls for printing the fixed string Mg, copying x, and printing a number
of 1’s that is a fixed polynomial in the length of z. Hence, f is polynomial-time

8Instead of requiring that |y| < t, one may require that M is “canonical” in the sense that it
reads its entire input before halting.
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computable. Second, recall that z € S if and only if there exists y such that
lyl < pr(jz|) and (z,y) € R. Since Mg accepts (z,y) € R within tgr(|z| + |y|)
steps, it follows that « € S if and only if there exists y such that |y| < pr(|z|) and
Mp accepts (z,y) within tg(|z| + |y|) steps. It follows that € S if and only if
f(l‘) S Su.

We now turn to the search version. For reducing the search problem of any
R € PC to the search problem of Ry, we use essentially the same reduction. On
input an instance x (for R), we make the query (Mg,x,1te(=l+rr(2D)) to the
search problem of Ry and return whatever the latter returns. Note that if © ¢ S
then the answer will be “no solution”, whereas for every = and y it holds that
(z,y) € Rif and only if ((Mpg,z, 1tzlel+Pr(2D)) ») € Ry. Thus, a Levin-reduction
of R to Ry consists of the pair of functions (f,g), where f is the foregoing Karp-
reduction and g(x,y) = y. Note that indeed, for every (f(z),y) € Ru, it holds that

(z,9(x,9) = (z,y) € R. N

Advanced comment. Note that the role of 1! in the definition of Ry is to
allow placing Ry in PC. In contrast, consider the relation Ry that consists of
pairs ((M, z,t),y) such that M accepts xy within ¢ steps. Indeed, the difference is
that in Ry the time-bound ¢ appears in unary notation, whereas in Ry; it appears
in binary. Then, as will become obvious in §4.2.1.2, membership in Ry, cannot be
decided in polynomial time. Going even further, we note that omitting ¢ altogether

from the problem instance yields a search problem that is not solvable at all. That

is, consider the relation Ry {({M,z),y) : M(zy) = 1} (which is related to the

halting problem). Indeed, the search problem of any relation (an in particular of
any relation in PC) is Karp-reducible to the search problem of Ry, but the latter
is not solvable at all (i.e., there exists no algorithm that halts on every input and
on input T = (M, z) outputs y such that (Z,y) € Ry if and only such a y exists).

Bounded Halting and Non-Halting

We note that the problem shown to be NP-complete in the proof of Theorem 2.19
is related to the following two problems, called Bounded Halting and Bounded
Non-Halting. Fixing any programming language, the instance to each of these
problems consists of a program 7 and a time bound ¢ (presented in unary). The
decision version of Bounded Halting (resp., Bounded Non-Halting) consists of
determining whether or not there ezists an input (of length at most ¢) on which
the program 7 halts in t steps (resp., does not halt in ¢ steps), whereas the search
problem consists of finding such an input.

The decision version of Bounded Non-Halting refers to a fundamental compu-
tational problem in the area of program verification; specifically, the problem of
determining whether a given program halts within a given time-bound on all inputs
of a given length. We have mentioned Bounded Halting because it is often re-

9The length parameter need not equal the time-bound. Indeed, a more general version of the
problem refers to two bounds, £ and ¢, and to whether the given program halts within ¢ steps on
each possible £-bit input. It is easy to prove that the problem remains NP-complete also in the
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ferred to in the literature, but we believe that Bounded Non-Halting is much more
relevant to the project of program verification (because one seeks programs that
halt on all inputs rather than programs that halt on some input).

It is easy to prove that both problems are NP-complete (see Exercise 2.19).
Note that the two (decision) problems are not complementary (i.e., (M, 1*) may be
a yes-instance of both decision problems).1?

The fact that Bounded Non-Halting is probably intractable (i.e., is intractable
provided that P # NP) is even more relevant to the project of program verification
than the fact that the Halting Problem is undecidable. The reason being that the
latter problem (as well as other related undecidable problems) refers to arbitrarily
long computations, whereas the former problem refers to an explicitly bounded
number of computational steps. Specifically, Bounded Non-Halting is concerned
with the existence of an input that causes the program to violate a certain condition
(i-e., halting) within a given time-bound.

In light of the foregoing, the common practice of bashing Bounded (Non-
)Halting as an “unnatural” problem seems very odd at an age in which computer
programs plays such a central role. (Nevertheless, we will use the term “natu-
ral” in this traditionally and odd sense in the next title, which refers to natural
computational problems that seem unrelated to computation.)

2.3.3 Some natural NP-complete problems

Having established the mere existence of NP-complete problems, we now turn to
prove the existence of NP-complete problems that do not (explicitly) refer to com-
putation in the problem’s definition. We stress that thousands of such problems
are known (and a list of several hundreds can be found in [81]).

We will prove that deciding the satisfiability of propositional formulae is NP-
complete (i.e., Cook’s Theorem), and also present some combinatorial problems
that are NP-complete. This presentation is aimed at providing a (small) sample
of natural NP-completeness results as well as some tools towards proving NP-
completeness of new problems of interest. We start by making a comment regarding
the latter issue.

The reduction presented in the proof of Theorem 2.19 is called “generic” because
it (explicitly) refers to any (generic) NP-problem. That is, we actually presented
a scheme for the design of reductions from any desired NP-problem to the single
problem proved to be NP-complete. Indeed, in doing so, we have followed the def-
inition of NP-completeness. However, once we know some NP-complete problems,

case that the instances are restricted to have parameters £ and t such that t = p(¢), for any fixed
polynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).

0Tndeed, (M, 1*) can not be a no-instance of both decision problems, but this does not make
the problems complementary. In fact, the two decision problems yield a three-way partition of
the instances (M, 1%): (1) pairs (M, 1%) such that for every input x (of length at most t) the
computation of M(z) halts within t steps, (2) pairs (M, 1¢) for which such halting occurs on some
inputs but mot on all inputs, and (3) pairs (M, 1%) such that there ezists no input (of length at
most ¢) on which M halts in ¢ steps. Note that instances of type (1) are exactly the no-instances
of Bounded Non-Halting, whereas instances of type (3) are exactly the no-instances of Bounded
Halting.
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a different route is open to us. We may establish the NP-completeness of a new
problem by reducing a known NP-complete problem to the new problem. This
alternative route is indeed a common practice, and it is based on the following
simple proposition.

Proposition 2.20 If an NP-complete problem II is reducible to some problem II' in
NP then I is NP-complete. Furthermore, reducibility via Karp-reductions (resp.,
Levin-reductions) is preserved.

Proof: The proof boils down to asserting the transitivity of reductions. Specif-
ically, the NP-hardness of II means that every problem in NP is reducible to II,
which in turn is reducible to II'. Thus, by transitivity of reduction (see Exer-
cise 2.6), every problem in NP is reducible to II', which means that II' is NP-hard
and the proposition follows. I

2.3.3.1 Circuit and formula satisfiability: CSAT and SAT

We consider two related computational problems, CSAT and SAT, which refer (in
the decision version) to the satisfiability of Boolean circuits and formulae, respec-
tively. (We refer the reader to the definition of Boolean circuits, formulae and CNF
formulae that appear in §1.2.4.1.)

Teaching note: We suggest establishing the NP-completeness of SAT by a reduction
from the circuit satisfaction problem (CSAT), after establishing the NP-completeness
of the latter. Doing so allows to decouple two important parts of the proof of the NP-
completeness of SAT: the emulation of Turing machines by circuits, and the emulation
of circuits by formulae with auxiliary variables.

CSAT. Recall that Boolean circuits are directed acyclic graphs with internal
vertices, called gates, labeled by Boolean operations (of arity either 2 or 1), and
external vertices called terminals that are associated with either inputs or outputs.
When setting the inputs of such a circuit, all internal nodes are assigned values in
the natural way, and this yields a value to the output(s), called an evaluation of the
circuit on the given input. The evaluation of circuit C' on input z is denoted C(z).
We focus on circuits with a single output, and let CSAT denote the set of satisfiable
Boolean circuits (i.e., a circuit C is in CSAT if there exists an input z such that
C(z) =1). We also consider the related relation Rogat = {(C, 2) : C(2) = 1}.

Theorem 2.21 (NP-completeness of CSAT): The set (resp., relation) CSAT (resp.,
Regpat) is N'P-complete (resp., PC-complete).

Proof: It is easy to see that CSAT € N'P (resp., Regpat € PC). Thus, we turn to
showing that these problems are NP-hard. We will focus on the decision version
(but also discuss the search version).

We will present (again, but for the last time in this book) a generic reduction,
this time of any NP-problem to CSAT. The reduction is based on the observation,
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mentioned in §1.2.4.1, that the computation of polynomial-time algorithms can be
emulated by polynomial-size circuits. In the current context, we wish to emulate
the computation of a fixed machine M on input (x,y), where x is fized and y
varies (but |y| = poly(|z|) and the total number of steps of M(z,y) is polynomial
in |z| + |y|). Thus, « will be “hard-wired” into the circuit, whereas y will serve as
the input to the circuit. The circuit itself, denoted C,, will consists of “layers” such
that each layer will represent an instantaneous configuration of the machine M, and
the relation between consecutive configurations in a computation of this machine
will be captured by (“uniform”) local gadgets in the circuit. The number of layers
will depend on (x and on) the polynomial that upper-bounds the running-time of
M, and an additional gadget will be used to detect whether the last configuration
is accepting. Thus, only the first layer of the circuit C, (which will represent an
initial configuration with input prefixed by z) will depend on x. The punch-line
is that determining whether, for a given x, there exists a y (Jy| = poly(|z|)) such
that M(z,y) = 1 (in a given number of steps) will be reduced to whether there
exists a y such that C,(y) = 1. Performing this reduction for any machine Mg
that corresponds to any R € PC (as in the proof of Theorem 2.19), we establish
the fact that CSAT is NP-complete. Details follow.

Recall that we wish to reduce an arbitrary set S € NP to CSAT. Let R, pg,
Mp and ti be as in the proof of Theorem 2.19 (i.e., R is the witness relation of
S, whereas pr bounds the length of the NP-witnesses, Mg is the machine deciding
membership in R, and tg is its polynomial time-bound). Without loss of generality
(and for simplicity), suppose that Mg is a one-tape Turing machine. We will
construct a Karp-reduction that maps an instance z (for S) to a circuit, denoted

fx) <! ¢, such that C.(y) =1 if and only if My accepts the input (z,y) within
tr(|z| + pr(|z|)) steps. Thus, it will follow that # € S if and only if there exists
y € {0,1}7=(2D) such that C,(y) = 1 (i.e., if and only if C, € CSAT). The circuit
C, will depend on z as well as on Mg, pr and tg. (We stress that Mpg,pr and tg
are fixed, whereas x varies and is thus explicit in our notation.)

Before describing the circuit C,, let us consider a possible computation of Mg
on input (z,y), where z is fixed and y represents a generic string of length at
most pr(]z|). Such a computation proceeds for t = tg(|z| + pr(|z|)) steps, and
corresponds to a sequence of ¢t + 1 instantaneous configurations, each of length
t. Each such configuration can be encoded by t pairs of symbols, where the first
symbol in each pair indicates the contents of a cell and the second symbol indicates
either a state of the machine or the fact that the machine is not located in this
cell. Thus, each pair is a member of ¥ x (Q U {L}), where ¥ is the finite “work
alphabet” of Mg, @ is its finite set of internal states, and L is an indication
that the machine is not present at a cell. The initial configuration includes zy as
input, and the decision of Mg(z,y) can be read from (the leftmost cell of) the last
configuration.!! With the exception of the first row, the values of the entries in each
row are determined by the entries of the row just above it, where this determination
reflects the transition function of Mg. Furthermore, the value of each entry in the

H'We refer to the output convention presented in §1.2.3.2, by which the output is written in
the leftmost cells and the machine halts at the cell to its right.
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said array is determined by the values of (up to) three entries that reside in the row
above it (see Exercise 2.20). Thus, the aforementioned computation is represented
by a (t + 1) x t array, where each entry encodes one out of a constant number of
possibilities, which in turn can be encoded by a constant-length bit string. See
Figure 2.1.

(13 | (1) [O5) [ (1) | 07) | ) [Co) |G |G | 0) initial configuration
(with input 110y,y5 )

(3B @) [0 | 0) | 0) | ) |G |G 6 |60

(3 | (@) |OD) | (1) | 06 | ) [ ) |G [ | 60)

(31') (l,C) (01') ‘

(3,0) (1V') (Ov')

(L) | (h | ©)

last configuration

Blank characters as well as the indication that the machine is not present in the
cell are marked by a hyphen (-). The three arrows represent the determination
of an entry by the three entries that reside above it. The machine underlying
this example accepts the input if and only if the input contains a zero.

Figure 2.1: An array representing ten computation steps on input 110y;y>.

The circuit C, has a structure that corresponds to the aforementioned array.
Each entry in the array is represented by a constant number of gates such that when
C, is evaluated at y these gates will be assigned values that encode the contents
of the said entry (in the computation of Mpg(z,y)). In particular, the entries of
the first row of the array are “encoded” by hard-wiring the reduction’s input (i.e.,
z), and feeding the circuit’s input (i.e., y) to the adequate input terminals. That
is, the circuit has pr(|z|) (“real”) input terminals (corresponding to y), and the
hard-wiring of constants to the other O(t — pr(|z|)) gates that represent the first
row is done by simple gadgets (as in Figure 1.3). Indeed, the additional hard-wiring
in the first row corresponds to the other fixed elements of the initial configuration
(i.e., the blank symbols, and the encoding of the initial state and of the initial
location; cf. Figure 2.1). The entries of subsequent rows will be “encoded” (or
rather computed at evaluation time) by using constant-size circuits that determine
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the value of an entry based on the three relevant entries in the row above it. Recall
that each entry is encoded by a constant number of gates, and thus these constant-
size circuits merely compute the constant-size function described in Exercise 2.20.
In addition, the circuit C, has a few extra gates that check the values of the
entries of the last row in order to determine whether or not it encodes an accepting
configuration.!? Note that the circuit C, can be constructed in polynomial time
from the string z, because we just need to encode z in an appropriate manner as
well as generate a “highly uniform” grid-like circuit of size O(tg(|z| + pr(|z]))?).*?

Although the foregoing construction of C, capitalizes on various specific details
of the (one-tape) Turing machine model, it can be adapted to any other “rea-
sonable” model of efficient computation.'* Alternatively, we recall the Cobham-
Edmonds Thesis asserting that any problem that is solvable in polynomial-time
(on some “reasonable” model) can be solved in polynomial-time by a (one-tape)
Turing machine.

Turning back to the circuit C,, we observe that indeed C,(y) = 1 if and only
if Mg accepts the input (z,y) while making at most ¢ = tg(|z| + pr(|z|)) steps.
Recalling that S = {z : Jy s.t. ly| < pr(|z]) A (z,y) € R} and that Mp decides
membership in R in time tg, we infer that z € S if and only if f(z) = C, € CSAT.
Furthermore, (z,y) € R if and only if (f(z),y) € Regat- It follows that f is a

Karp-reduction of S to CSAT, and, for g(z,y) def y, it holds that (f,g) is a Levin-
reduction of R to Rggpr. The theorem follows. [l

SAT. Recall that Boolean formulae are special types of Boolean circuits (i.e.,
circuits having a tree structure).!®> We further restrict our attention to formulae
given in conjunctive normal form (CNF). We denote by SAT the set of satisfiable
CNF formulae (i.e., a CNF formula ¢ is in SAT if there exists an truth assignment 7
such that ¢(7) = 1). We also consider the related relation Rgpt = {(¢,7) : ¢(7) =

1.

Theorem 2.22 (NP-completeness of SAT): The set (resp., relation) SAT (resp.,
Rgpt) is N'P-complete (resp., PC-complete).

Proof: Since the set of possible instances of SAT is a subset of the set of instances
of CSAT, it is clear that SAT € NP (resp., Rgpr € PC). To prove that SAT

121 continuation to Footnote 11, we note that it suffices to check the values of the two leftmost
entries of the last row. We assumed here that the circuit propagates a halting configuration to
the last row. Alternatively, we may check for the existence of an accepting/halting configuration
in the entire array, since this condition is quite simple.

13Advanced comment: A more efficient construction, which generate almost-linear sized
circuits (i.e., circuits of size O(tg(|z| + pr(|z|)))) is known; see [173].

14 Advanced comment: Note that it is actually inessential that each entry in each con-
figuration is determined by a constant number of entries in the previous configuration. Any
polynomial-time computable transformation of configurations will do, since we can emulate such
a transformation by a polynomial-size circuit. Indeed, this emulation will be based on presenting
the said transformation in some concrete model of computation, which brings us to the next
comment (invoking the Cobham-Edmonds Thesis).

5 For an alternative definition, see Section G.2.
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is NP-hard, we reduce CSAT to SAT (and use Proposition 2.20). The reduction
boils down to introducing auxiliary variables in order to “cut” the computation of
an arbitrary (“deep”) circuit into a conjunction of related computations of “shal-
low” circuits (i.e., depth-2 circuits) of unbounded fan-in, which in turn may be
presented as a CNF formula. The aforementioned auxiliary variables hold the pos-
sible values of the internal gates of the original circuit, and the clauses of the CNF
formula enforce the consistency of these values with the corresponding gate oper-
ation. For example, if gate; and gate; feed into gate,, which is a A-gate, then
the corresponding auxiliary variables g;, g;, gr should satisfy the Boolean condition
g = (9: A g;), which can be written as a 3CNF with four clauses. Details follow.

Y

gate3

gated @

O

Using auxiliary variables (i.e., the g;’s) to “cut” a depth-5 circuit (into a CNF).
The dashed regions will be replaced by equivalent CNF formulae. The dashed cy-
cle representing an unbounded fan-in and-gate is the conjunction of all constant-
size circuits (which enforce the functionalities of the original gates) and the vari-
able that represents the gate that feed the output terminal in the original circuit.

Figure 2.2: The idea underlying the reduction of CSAT to SAT.

We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C, with
n input terminals and m gates, we first construct m constant-size formulae on
n + m variables, where the first n variables correspond to the input terminals of
the circuit, and the other m variables correspond to its gates. The i*! formula will
depend on the variable that correspond to the i*! gate and the 1-2 variables that
correspond to the vertices that feed into this gate (i.e., 2 vertices in case of A-gate
or V-gate and a single vertex in case of a —-gate, where these vertices may be either
input terminals or other gates). This (constant-size) formula will be satisfied by
a truth assignment if and only if this assignment matches the gate’s functionality
(i.e., feeding this gate with the corresponding values result in the corresponding
output value). Note that these constant-size formulae can be written as constant-
size CNF formulae (in fact, as 3CNF formulae).!® Taking the conjunction of these

16Recall that any Boolean function can be written as a CNF formula having size that is expo-
nential in the length of its input, which in this case is a constant (i.e., either 2 or 3). Indeed, note
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m formulae and the variable associated with the gate that feeds into the output
terminal, we obtain a formula ¢ in CNF (see Figure 2.2, where n = 3 and m = 4).

Note that ¢ can be constructed in polynomial-time from the circuit C; that is,
the mapping of C to ¢ = f(C) is polynomial-time computable. We claim that C
is in CSAT if and only if ¢ is in SAT.

1. Suppose that for some string s it holds that C(s) = 1. Then, assigning to
the i*P auxiliary variable the value that is assigned to the i*" gate of C' when
evaluated on s, we obtain (together with s) a truth assignment that satisfies
¢. This is the case because such an assignment satisfies all m constant-size
CNF's as well as the variable associated with the output of C.

2. On the other hand, if 7 satisfies ¢ then the first n bits in 7 correspond to an
input on which C evaluates to 1. This is the case because the m constant-size
CNF's guarantee that the variables of ¢ are assigned values that correspond
to the evaluation of C on the first n bits of 7, while the fact that the variable
associated with the output of C' has value true guarantees that this evaluation
of C' yields the value 1.

Note that the latter mapping (of 7 to its n-bit prefix) is the second mapping
required by the definition of a Levin-reduction.

Thus, we have established that f is a Karp-reduction of CSAT to SAT, and that
augmenting f with the aforementioned second mapping yields a Levin-reduction
of RogaT to RgpT- [ |

Comment. The fact that the second mapping required by the definition of a
Levin-reduction is explicit in the proof of the validity of the corresponding Karp-
reduction is a fairly common phenomenon. Actually (see Exercise 2.28), typical pre-
sentations of Karp-reductions provide two auxiliary polynomial-time computable
mappings (in addition to the main mapping of instances from one problem (e.g.,
CSAT) to instances of another problem (e.g., SAT)): The first auxiliary mapping
is of solutions for the preimage instance (e.g., of CSAT) to solutions for the image
instance of the reduction (e.g., of SAT), whereas the second mapping goes the other
way around. (Note that only the main mapping and the second auxiliary mapping
are required in the definition of a Levin-reduction.) For example, the proof of the
validity of the Karp-reduction of CSAT to SAT, denoted f, specified two additional
mappings h and g such that (C,s) € Regat implies (f(C),h(C,s)) € Rgpr and
(f(C),7) € Rgpt implies (C,g(C, 7)) € Regat- Specifically, in the proof of Theo-
rem 2.22, we used h(C,s) = (s,ai, ..., an) where a; is the value assigned to the i‘"
gate in the evaluation of C(s), and g(C,7) being the n-bit prefix of 7.

3SAT. Note that the formulae resulting from the Karp-reduction presented in
the proof of Theorem 2.22 are in conjunctive normal form (CNF) with each clause

that the Boolean functions that we refer to here depends on 2-3 Boolean variables (since they
indicate whether or not the corresponding values respect the gate’s functionality).
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referring to at most three variables. Thus, the above reduction actually establishes
the NP-completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three
variables per clause). Alternatively, one may Karp-reduce SAT (i.e., satisfiability
of CNF formula) to 3SAT (i.e., satisfiability of 3CNF formula), by replacing long
clauses with conjunctions of three-variable clauses (using auxiliary variables; see
Exercise 2.21). Either way, we get the following result, where the furthermore part
is proved by an additional reduction.

Proposition 2.23 3SAT is NP-complete. Furthermore, the problem remains NP-
complete also if we restrict the instances such that each variable appears in at most
three clauses.

Proof Sketch: The furthermore part is proved by reduction from 3SAT. We just
replace each occurrence of each Boolean variable by a new copy of this variable, and
add clauses to enforce that all these copies are assigned the same value. Specifically,
replacing the variable z by copies z(1), ..., 2™ we add the clauses z(:+1) v =2(9) for
i =1...,m (where m + 1 is understood as 1). O

Related problems. Note that instances of SAT can be viewed as systems of
Boolean conditions over Boolean variables. Such systems can be emulated by vari-
ous types of systems of arithmetic conditions, implying the NP-hardness of solving
the latter types of systems. Examples include systems of integer linear inequalities
(see Exercise 2.23), and systems of quadratic equalities (see Exercise 2.25).

2.3.3.2 Combinatorics and graph theory

Teaching note: The purpose of this subsection is to expose the students to a sample of
NP-completeness results and proof techniques (i.e., the design of reductions among com-
putational problems). The author believes that this traditional material is insightful,
but one may skip it in the context of a complexity class.

We present just a few of the many appealing combinatorial problems that are known
to be NP-complete. Throughout this section, we focus on the decision versions of
the various problems, and adopt a more informal style. Specifically, we will present
a typical decision problem as a problem of deciding whether a given instance, which
belongs to a set of relevant instances, is a “yes-instance” or a “no-instance” (rather
than referring to deciding membership of arbitrary strings in a set of yes-instances).
For further discussion of this style and its rigorous formulation, see Section 2.4.1.
We will also neglect showing that these decision problems are in NP; indeed, for
natural problems in NP, showing membership in NP is typically straightforward.

Set Cover. We start with the set cover problem, in which an instance consists of
a collection of finite sets 51, ..., S,, and an integer K and the question (for decision)
is whether or not there exist (at most)'” K sets that cover (J;~, S; (i.e., indices

i1,...,1x such that Uszl Si, =UL, Si).

17Clearly, in case of Set Cover, the two formulations (i.e., asking for exactly K sets or at most
K sets) are computationally equivalent.
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Proposition 2.24 Set Cover is NP-complete.

Proof Sketch: We sketch a reduction of SAT to Set Cover. For a CNF formula
¢ with m clauses and n variables, we consider the sets Sy t,5; f,-,Snt, S, ¢ C
{1,...,m} such that S; ¢ (resp., S, £) is the set of the indices of the clauses (of ¢)
that are satisfied by setting the i*! variable to true (resp., false). That is, if
the ¢*® variable appears unnegated (resp., negated) in the j*™ clause then j € S, ¢

resp., 7 € S, ). Note that the union of these 2n sets equals {1,...,m}. Now,
i,f

on input ¢, the reduction outputs the Set Cover instance f(¢) def ((S1, .., S2n),m),

where Sp;_1 = 5; ¢ U{m +i} and Sy; = S; U {m+i}fori=1,..,n.

Note that f is computable in polynomial-time, and that if ¢ is satisfied by
T1 -+ Tn then the collection {S2;—,, : ¢ = 1,...,n} covers {1,...,m + n}. Thus,
¢ € SAT implies that f(¢) is a yes-instance of Set Cover. On the other hand,
each cover of {m + 1,....m +n} C {1,...,m + n} must include either Sy, 1 or Sy;
for each 7. Thus, a cover of {1,...,m + n} using n of the S;’s must contain, for
every 14, either So;_1 or Sa; but not both. Setting 7; accordingly (i.e., 7, = 1 if and
only if Si;—1 is in the cover) implies that {S2;—,, : i = 1,...,n} covers {1,...,m},
which in turn implies that 7 - - - 7, satisfies ¢. Thus, if f(¢) is a yes-instance of
Set Cover then ¢ € SAT. O

Exact Cover and 3XC. The exact cover problem is similar to the set cover prob-
lem, except that here the sets that are used in the cover are not allowed to intersect.
That is, each element in the universe should be covered by exactly one set in the
cover. Restricting the set of instances to sequences of subsets each having exactly
three elements, we get the restricted problem called 3-Exact Cover (3XC), where
it is unnecessary to specify the number of sets to be used in the cover. The problem
3XCis rather technical, but it is quite useful for demonstrating the NP-completeness
of other problems (by reducing 3XC to them).

Proposition 2.25 3-Exact Cover is NP-complete.

Indeed, it follows that the Exact Cover (in which sets of arbitrary size are allowed)
is NP-complete. This follows both for the case that the number of sets in the desired
cover is unspecified and for the various cases in which this number is bounded (i.e.,
upper-bounded or lower-bounded or both).

Proof Sketch: The reduction is obtained by composing three reductions. We first
reduce a restricted case of 3SAT to a restricted version of Set Cover, denoted 3SC,
in which each set has at most three elements (and an instance consists, as in the
general case, of a sequence of finite sets as well as an integer K). Specifically,
we refer to 3SAT instances that are restricted such that each wvariable appears in
at most three clauses, and recall that this restricted problem is NP-complete (see
Proposition 2.23). Actually, we further reduce this special case of 3SAT to one
in which each literal appears in at most two clauses.'® Now, we reduce the new

18This can be done by observing that if all three occurrences of a variable are of the same
type (i.e., they are all negated or all non-negated) then this variable can be assigned a value that
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version of 3SAT to 3SC by using the (very same) reduction presented in the proof of
Proposition 2.24, and observing that the size of each set in the reduced instance is
at most three (i.e., one more than the number of occurrences of the corresponding
literal).

Next, we reduce 3SC to the following restricted case of Exact Cover, denoted
3XC’, in which each set has at most three elements, an instance consists of a sequence
of finite sets as well as an integer K, and the question is whether there exists an
exact cover with at most K sets. The reduction maps an instance ((S1, ..., Sm), K)
of 33C to the instance (C', K) such that C’ is a collection of all subsets of each of the
sets S, ..., Sm- Since each S; has size at most 3, we introduce at most 7 non-empty
subsets per each such set, and the reduction can be computed in polynomial-time.
The reader may easily verify the validity of this reduction.

Finally, we reduce 3XC’ to 3XC. Consider an instance ((S1, ..., Sm), K) of 3XC’,
and suppose that | J;~, S; = [n]. If n > 3K then this is definitely a no-instance,

which can be mapped to a dummy no-instance of 3XC, and so we assume that

¥ 3K —n > 0. Note that z represents the “excess” covering ability of an

exact cover having K sets, each having three elements. Thus, we augment the set
system with x new elements, denoted n + 1, ...,3K, and replace each S; such that
|Si] < 3 by a sub-collection of 3-sets that cover S; as well as arbitrary elements
from {n +1,...,3K}. That is, in case |S;| = 2, the set S, is replaced by the sub-
collection (S;U{n+1},...,S;U{3K}), whereas a singleton S, is replaced by the sets
S; U {j1,J2} for every j1 < jo in {n +1,...,3K}. In addition, we add all possible
3-subsets of {n + 1,...,3K}. This completes the description of the third reduction,
the validity of which is left as an exercise. O

Vertex Cover, Independent Set, and Clique. Turning to graph theoretic
problems (see Section G.1), we start with the Vertex Cover problem, which is
a special case of the Set Cover problem. The instances consists of pairs (G, K),
where G = (V, E) is a simple graph and K is an integer, and the problem is whether
or not there exists a set of (at most) K vertices that is incident to all graph edges
(i-e., each edge in G has at least one endpoint in this set). Indeed, this instance
of Vertex Cover can be viewed as an instance of Set Cover by considering the
collection of sets (S,)sev, where S, denotes the set of edges incident at vertex v
(i.e., Sy = {e € E :v € e}). Thus, the NP-hardness of Set Cover follows from the
NP-hardness of Vertex Cover (but this implication is unhelpful for us here: we
already know that Set Cover is NP-hard and we wish to prove that Vertex Cover
is NP-hard). We also note that the Vertex Cover problem is computationally
equivalent to the Independent Set and Clique problems (see Exercise 2.26), and
thus it suffices to establish the NP-hardness of one of these problems.

satisfies all clauses in which it appears, and so the variable and the clauses in which it appear can
be omitted from the instance. This yields a reduction of 3SAT instances in which each variable
appears in at most three clauses to 3SAT instances in which each literal appears in at most two
clauses. Actually, a closer look at the proof of Proposition 2.23 reveals the fact that the reduced
instances satisfy the latter property anyhow.
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Proposition 2.26 The problems Vertex Cover, Independent Set and Clique
are NP-complete.

Teaching note: The following reduction is not the “standard” one (see Exercise 2.27).
It is rather adapted from the FGLSS-reduction (see Exercise 9.14), and is used here
in anticipation of the latter. Furthermore, although the following reduction tends to

create a larger graph, the author finds it more clear than the “standard” reduction.

Proof Sketch: We show a reduction from 3SAT to Independent Set. On input
a 3CNF formula ¢ with m clauses and n variables, we construct a graph with 7m
vertices, denoted G45. The vertices are grouped in m cliques, each corresponding
to one of the clauses and containing 7 vertices that correspond to the 7 truth
assignments (to the 3 variables in the clause) that satisfy the clause. In addition to
the internal edges of these m cliques, we add an edge between each pair of vertices
that correspond to partial assignments that are mutually inconsistent. That is, if a
specific (satisfying) assignment to the variables of the i*® clause is inconsistent with
some (satisfying) assignment to the variables of the j*% clause then we connect the
corresponding vertices by an edge. (Note that the internal edges of the m cliques
may be viewed as a special case of the edges connecting mutually inconsistent
partial assignments.) Thus, on input ¢, the reduction outputs the pair (Gg,m).

Note that if ¢ is satisfiable by a truth assignment 7 then there are no edges
between the m vertices that correspond to the partial satisfying assignment derived
from 7. (We stress that any truth assignment to ¢ yields an independent set, but
only a satisfying assignment guarantees that this independent set contains a vertex
from each of the m cliques.) Thus, ¢ € SAT implies that G4 has an independent
set of size m. On the other hand, an independent set of size m in G must contain
exactly one vertex in each of the m cliques, and thus induces a truth assignment
that satisfies ¢. (We stress that each independent set induces a consistent truth
assignment to ¢, because the partial assignments selected in the various cliques
must be consistent, and that an independent set containing a vertex from a specific
clique induces an assignment that satisfies the corresponding clause.) Thus, if G,
has an independent set of size m then ¢ € SAT. O

Graph 3-Colorability (G3C). In this problem the instances are graphs and the
question is whether or not the graph can be colored using three colors such that
neighboring vertices are not assigned the same color.

Proposition 2.27 Graph 3-Colorability is NP-complete.

Proof Sketch: We reduce 3SAT to G3C by mapping a 3CNF formula ¢ to the
graph G, which consists of two special (“designated”) vertices, a gadget per each
variable of ¢, a gadget per each clause of ¢, and edges connecting some of these
components.

e The two designated vertices are called ground and false, and are connected
by an edge that ensures that they must be given different colors in any 3-
coloring of G4. We will refer to the color assigned to the vertex ground (resp.,
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false) by the name ground (resp., false). The third color will be called
true.

e The gadget associated with variable x is a pair of vertices, associated with
the two literals of x (i.e., # and —x). These vertices are connected by an
edge, and each of them is also connected to the vertex ground. Thus, in a
3-coloring of G, one of the vertices associated with the variable is colored
true and the other is colored false.

In a generic 3-coloring of the sub-gadget it must hold that if z = y
then x = y = 1. Thus, if the three terminals of the gadget are
assigned the same color, x, then M is also assigned the color x.

Figure 2.3: The reduction to G3C — the clause gadget and its sub-gadget.

e The gadget associated with a clause C' is depicted in Figure 2.3. It contains
a master vertex, denoted M, and three terminal vertices, denoted T1, T2
and T3. The master vertex is connected by edges to the vertices ground
and false, and thus in a 3-coloring of G4 the master vertex must be colored
true. The gadget has the property that it is possible to color the terminals
with any combination of the colors true and false, except for coloring all
terminals with false. The terminals of the gadget associated with clause C
will be identified with the vertices that are associated with the corresponding
literals appearing in C'. This means that the various clause-gadgets are not
vertex-disjoint but may rather share some terminals (with the vertex-gadgets
as well as among themselves).!? See Figure 2.4.

Verifying the validity of the reduction is left as an exercise. [

2.3.4 NP sets that are neither in P nor NP-complete

As stated in Section 2.3.3, thousands of problems have been shown to be NP-
complete (cf., [81, Apdx.], which contains a list of more than three hundreds main
entries). Things reached a situation in which people seem to expect any NP-set to
be either NP-complete or in P. This naive view is wrong: Assuming NP # P, there

19 Alternatively, we may use disjoint gadgets and “connect” each terminal with the correspond-
ing literal (in the corresponding vertex gadget). Such a connection (i.e., an auxiliary gadget)
should force the two end-points to have the same color in any 3-coloring of the graph.
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GROUND

the two designated verices

variable gadgets

clause gadgets

A single clause gadget and the relevant variables gadgets.
Figure 2.4: The reduction to G3C — connecting the gadgets.

exist sets in NP that are neither NP-complete nor in P, where here NP-hardness
allows also Cook-reductions.

Theorem 2.28 Assuming N'P # P, there exist a set T in NP \'P such that some
sets in NP are not Cook-reducible to T'.

Theorem 2.28 asserts that if NP # P then NP is partitioned into three non-empty
classes: the class P, the class of problems to which NP is Cook-reducible, and the
rest, denote A"PZ. We already know that the first two classes are not empty,
and Theorem 2.28 establishes the non-emptiness of NPZ under the condition that
NP # P, which is actually a necessary condition (because if NP = P then every
set in AP is Cook-reducible to any other set in A'P).

The following proof of Theorem 2.28 presents an unnatural decision problem
in A"PZ. We mention that some natural decision problems (e.g., some that are
computationally equivalent to factoring) are conjectured to be in NPZ. We also

mention that if NP # coNP, where coNP = {{0,1}*\ S : S € NP}, then

A NP M coNP € PUNPT holds (as a corollary to Theorem 2.35). Thus, if

NP # coNP then A\ P is a (natural) subset of NPZ, and the non-emptiness
of NPT follows provided that A # P. Recall that Theorem 2.28 establishes the
non-emptiness of A’PZ under the seemingly weaker assumption that NP # P.

Teaching note: We recommend either stating Theorem 2.28 without a proof or merely

presenting the proof idea.
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Proof Sketch: The basic idea is modifying an arbitrary set in AP \ P so as to
fail all possible reductions (from NP to the modified set) as well as all possible
polynomial-time decision procedures (for the modified set). Specifically, starting
with S € NP\ P, we derive S’ C S such that on one hand there is no polynomial-
time reduction of S to S’ while on the other hand S’ € NP\ P. The process of
modifying S into S’ proceeds in iterations, alternatively failing a potential reduction
(by dropping sufficiently many strings from the rest of S) and failing a potential
decision procedure (by including sufficiently many strings from the rest of S).
Specifically, each potential reduction of S to S’ can be failed by dropping finitely
many elements from the current S’, whereas each potential decision procedure can
be failed by keeping finitely many elements of the current S’. These two assertions
are based on the following two corresponding facts:

1. Any polynomial-time reduction (of any set not in P) to any finite set (e.g.,
a finite subset of S) must fail, because only sets in P are Cook-reducible to
a finite set. Thus, for any finite set F; and any potential reduction (i.e.,
a polynomial-time oracle machine), there exists an input x on which this
reduction to Fj fails.

We stress that the aforementioned reduction fails while the only queries that
are answered positively are those residing in F}. Furthermore, the aforemen-
tioned failure is due to a finite set of queries (i.e., the set of all queries made
by the reduction when invoked on an input that is smaller or equal to z).
Thus, for every finite set F; C S’ C S, any reduction of S to S’ can be
failed by dropping a finite number of elements from S’ and without dropping
elements of Fj.

2. For every finite set F3, any polynomial-time decision procedure for S\ F
must fail, because S is Cook-reducible to S\ F;. Thus, for any potential
decision procedure (i.e., a polynomial-time algorithm), there exists an input
2 on which this procedure fails.

We stress that this failure is due to a finite “prefix” of S\ F» (i.e., the set
{z € S\ Fy» : z < z}). Thus, for every finite set F», any polynomial-time
decision procedure for S\ F, can be failed by keeping a finite subset of S'\ Fb.

As stated, the process of modifying S into S’ proceeds in iterations, alternatively
failing a potential reduction (by dropping finitely many strings from the rest of S)
and failing a potential decision procedure (by including finitely many strings from
the rest of S). This can be done efficiently because it is inessential to determine the
first possible points of alternation (in which sufficiently many strings were dropped
(resp., included) to fail the next potential reduction (resp., decision procedure)). It
suffices to guarantee that adequate points of alternation (albeit highly non-optimal
ones) can be efficiently determined. Thus, S’ is the intersection of S and some set
in P, which implies that S" € NP. Following are some comments regarding the
implementation of the foregoing idea.

The first issue is that the foregoing plan calls for an (“effective”) enumeration of
all polynomial-time oracle machines (resp., polynomial-time algorithms). However,
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none of these sets can be enumerated (by an algorithm). Instead, we enumerate
all corresponding machines along with all possible polynomials, and for each pair
(M, p) we consider executions of machine M with time bound specified by the
polynomial p. That is, we use the machine M, obtained from the pair (M, p) by
suspending the execution of M on input z after p(|z|) steps. We stress that we do
not know whether machine M runs in polynomial-time, but the computations of
any polynomial-time machine is “covered” by some pair (M, p).

Next, let us clarify the process in which reductions and decision procedures are
ruled out. We present a construction of a “filter” set F' in P such that the final set
S" will equal S N F. Recall that we need to select F' such that each polynomial-
time reduction of S to SN F fails, and each polynomial-time procedure for deciding
S N F fails. The key observation is that for every finite F’ each polynomial-time
reduction of S to SN F” fails, whereas for every co-finite F” (i.e., finite {0,1}*\ F")
each polynomial-time procedure for deciding SNF” fails. Furthermore, each of these
failures occur on some input, and such an input can be determined by finite portions
of S and F. Thus, we alternate between failing possible reductions and decision
procedures on some inputs, while not trying to determine the “optimal” points
of alternation but rather determining points of alternation in an efficient manner
(which in turn allows for efficiently deciding membership in F'). Specifically, we
let F = {x: f(|z]) = 1 mod 2}, where f : N — {0} UN will be defined such that
(i) each of the first f(n) — 1 machines is failed by some input of length at most n,
and (ii) the value f(n) can be computed in time poly(n).

The value of f(n) is defined by the following process that performs exactly
n? computation steps (where cubic-time is a rather arbitrary choice). The process
proceeds in (an a priori unknown number of) iterations, where in the i+1°¢ iteration
we try to find an input on which the ¢ + 15¢ (modified) machine fails. Specifically,
in the 7 + 1% iteration we scan all inputs, in lexicographic order, until we find an
input on which the 4+ 1%* (modified) machine fails, where this machine is an oracle
machine if ¢ + 1 is odd and a standard machine otherwise. If we detect a failure of
the ¢ 4+ 1* machine, then we increment ¢ and proceed to the next iteration. When
we reach the allowed number of steps (i.e., n® steps), we halt outputting the current
value of 7 (i.e., the current ¢ is output as the value of f(n)). Needless to say, this
description is heavily based on determining whether or not the 7+ 15* machine fails
on specific inputs. Intuitively, these inputs will be much shorter than n, and so
performing these decisions in time n® (or so) is not out of the question — see next
paragraph.

In order to determine whether or not a failure (of the ¢ + 1% machine) occurs
on a particular input z, we need to emulate the computation of this machine on
input z as well as determine whether x is in the relevant set (which is either S or
S'=SNF). Recall that if i + 1 is even then we need to fail a standard machine
(which attempts to decide S’) and otherwise we need to fail an oracle machine
(which attempts to reduce S to S'). Thus, for even ¢ + 1 we need to determine
whether z is in S’ = S N F, whereas for odd 7 + 1 we need to determine whether
x is in S as well as whether some other strings (which appear as queries) are in
S'. Deciding membership in S € NP can be done in exponential-time (by using
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the exhaustive search algorithm that tries all possible NP-witnesses). Indeed, this
means that when computing f(n) we may only complete the treatment of inputs
that are of logarithmic (in n) length, but anyhow in n3 steps we can not hope to
reach (in our lexicographic scanning) strings of length greater than 3log, n. As for
deciding membership in F', this requires ability to compute f on adequate integers.
That is, we may need to compute the value of f(n') for various integers n’, but as
noted n' will be much smaller than n (since n’ < poly(|z|) < poly(logn)). Thus,
the value of f(n') is just computed recursively (while counting the recursive steps
in our total number of steps).2’ The point is that, when considering an input z,
we may need the values of f only on {1,...,p;+1(]z|)}, where p;41 is the polynomial
bounding the running-time of the i + 1°* (modified) machine, and obtaining such
a value takes at most p;+1(|z])® steps. We conclude that the number of steps
performed towards determining whether or not a failure (of the 7 + 1°* machine)
occurs on the input « is upper-bounded by an (exponential) function of |z|.

As hinted in the foregoing, the procedure will complete n® steps much before
examining inputs of length greater than 3log,n, but this does not matter. What
matters is that f is unbounded (see Exercise 2.34). Furthermore, by construction,
f(n) is computed in poly(n) time. O

Comment: The proof of Theorem 2.28 actually establishes that for every S & P
there exists S’ € P such that S" is Karp-reducible to S but S is not Cook-reducible
to S'.2! Thus, if P # NP then there exists an infinite sequence of sets Si, S, ...
in NP \ P such that S;;1 is Karp-reducible to S; but S; is not Cook-reducible
to Sit1. That is, there exists an infinite hierarchy of problems (albeit unnatural
ones), all in A"P, such that each problem is “easier” than the previous ones (in the
sense that it can be reduced to the previous problems while these problems cannot
be reduced to it).

2.4 Three relatively advanced topics

In this section we discuss three relatively advanced topics. The first topic, which
was eluded to in previous sections, is the notion of promise problems (Section 2.4.1).
Next we present an optimal search algorithm for NP (Section 2.4.2), and discuss
the class (coNP) of sets that are complements of sets in NP.

Teaching note: These topics are typically not mentioned in a basic course on com-
plexity. Still, pending on time constraints, we suggest discussing them at least at a high

level.

20We do not bother to present a more efficient implementation of this process. That is, we may
afford to recompute f(n') every time we need it (rather than store it for later use).

21The said Karp-reduction (of S’ to S) maps z to itself if z € F' and otherwise maps x to a
fixed no-instance of S.
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2.4.1 Promise Problems

Promise problems are a natural generalization of search and decision problems,
where one explicitly considers a set of legitimate instances (rather than consider-
ing any string as a legitimate instance). As noted previously, this generalization
provides a more adequate formulation of natural computational problems (and in-
deed this formulation is used in all informal discussions). For example, in §2.3.3.2
we presented such problems using phrases like “given a graph and an integer...” (or
“given a collection of sets...” ). In other words, we assumed that the input instance
has a certain format (or rather we “promised the solver” that this is the case).
Indeed, we claimed that in these cases the assumption can be removed without af-
fecting the complexity of the problem, but we avoided providing a formal treatment
of this issue, which is done next.

Teaching note: The notion of promise problems was originally introduced in the
context of decision problems, and is typically used only in that context. However, we
believe that promise problems are as natural in the context of search problems.

2.4.1.1 Definitions

In the context of search problems, a promise problem is a relaxation in which one
is only required to find solutions to instances in a predetermined set, called the
promise. The requirement regarding efficient checkability of solutions is adapted in
an analogous manner.

Definition 2.29 (search problems with a promise): A search problem with a promise
consists of a binary relation R C {0,1}* x {0,1}* and a promise set P. Such a
problem is also referred to as the search problem R with promise P.

e The search problem R with promise P is solved by algorithm A if for every
x € P it holds that (z,A(z)) € R if v € Sp = {z : R(z) # 0} and A(x) = L
otherwise, where R(x) = {y : (x,y) € R}.

The time complexity of A on inputsin P is defined as Ty p(n) = max,epnfo1}n1ta(z)},
where t 4(x) is the running time of A(x) and Typ(n) =0 if PN{0,1}" = 0.

e The search problem R with promise P is in the promise problem extension of
PF if there exists a polynomial-time algorithm that solves this problem.??

e The search problem R with promise P is in the promise problem extension of
PC if there exists a polynomial T and an algorithm A such that, for every
x € P andy € {0,1}*, algorithm A makes at most T'(|x|) steps and it holds
that A(x,y) = 1 if and only if (z,y) € R.

22In this case it does not matter whether the time complexity of A is defined on inputs in P
or on all possible strings. Suppose that A has (polynomial) time complexity T on inputs in P,
then we can modify A to halt on any input « after at most 7'(|x|) steps. This modification may
only effects the output of A on inputs not in P (which is OK by us). The modification can be
implemented in polynomial-time by computing ¢ = T'(|z|) and emulating the execution of A(x)
for t steps. A similar comment applies to the definition of PC, P and N'P.
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We stress that nothing is required of the solver in the case that the input violates
the promise (i.e., z ¢ P); in particular, in such a case the algorithm may halt
with a wrong output. (Indeed, the standard formulation of search problems is
obtained by considering the trivial promise P = {0,1}*.)?3 In addition to the
foregoing motivation for promise problems, we mention one natural class of search
problems with a promise. These are search problem in which the promise is that

the instance has a solution (i.e., in terms of the foregoing notation P = Sg, where

Sp & {z : Jy s.t. (z,y) € R}). We refer to such search problems by the name

candid search problems.

Definition 2.30 (candid search problems): An algorithm A solves the candid
search problem of the binary relation R if for every x € Sg (i.e., for every (z,y) € R)
it holds that (z, A(x)) € R. The time complexity of such an algorithm is defined as

Tas,(n) et maxXgepnfoyn{ta(z)}, where t4(x) is the running time of A(x) and
TA\SR(n) =0 Zan {0,1}” = V.

Note that nothing is required when x ¢ Sg: In particular, algorithm A may ei-
ther output a wrong solution (although no solutions exist) or run for more than
Tajs,(|z]) steps. The first case can be essentially eliminated whenever R € PC.
Furthermore, for R € PC, if we “know” the time complezxity of algorithm A (e.g.,
if we can compute T'|s,(n) in poly(n)-time), then we may modify A into an algo-
rithm A’ that solves the (general) search problem of R (i.e., halts with a correct
output on each input) in time Tar(n) = Ty, (n) + poly(n). However, we do not
necessarily know the running-time of an algorithm that we consider. Furthermore,
as we shall see in Section 2.4.2, the naive assumption by which we always know the
running-time of an algorithm that we design is not valid.

Decision problems with a promise. In the context of decision problems, a
promise problem is a relaxation in which one is only required to determine the
status of instances that belong to a predetermined set, called the promise. The
requirement of efficient verification is adapted in an analogous manner. In view
of the standard usage of the term, we refer to decision problems with a promise
by the name promise problems. Formally, promise problems refer to a three-way
partition of the set of all strings into yes-instances, no-instances and instances that
violate the promise. Standard decision problems are obtained as a special case by
insisting that all inputs are allowed (i.e., the promise is trivial).

Definition 2.31 (promise problems): A promise problem consists of a pair of non-
intersecting sets of strings, denoted (Syes, Sno), and Syes U Swo is called the promise.

o The promise problem (Syes, Sno) s solved by algorithm A if for every © € Syes
it holds that A(x) = 1 and for every x € Sy, it holds that A(z) = 0. The
promise problem is in the promise problem extension of P if there exists a
polynomial-time algorithm that solves it.

23Here we refer to the formulation presented in Section 2.1.6.
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e The promise problem (Syes, Sno) is in the promise problem extension of NP if
there exists a polynomial p and a polynomial-time algorithm V such that the
following two conditions hold:

1. Completeness: For every x € Syes, there exists y of length at most p(|x|)
such that V(z,y) = 1.

2. Soundness: For every x € Sy, and every y, it holds that V(z,y) = 0.

We stress that for algorithms of polynomial-time complexity, it does not matter
whether the time complexity is defined only on inputs that satisfy the promise or
on all strings (see Footnote 22). Thus, the extended classes P and NP (like PF
and PC) are invariant under this choice.

Reducibility among promise problems. The notion of a Cook-reduction ex-
tend naturally to promise problems, when postulating that a query that violates
the promise (of the problem at the target of the reduction) may be answered
arbitrarily.?* That is, the oracle machine should solve the original problem no
matter how queries that violate the promise are answered. The latter requirement
is consistent with the conceptual meaning of reductions and promise problems. Re-
call that reductions captures procedures that make subroutine calls to an arbitrary
procedure that solves the reduced problem. But, in the case of promise problems,
such a solver may behave arbitrarily on instances that violate the promise. We
stress that the main property of a reduction is preserved (see Exercise 2.35): if
the promise problem II is Cook-reducible to a promise problem that is solvable in
polynomial-time, then II is solvable in polynomial-time.

We warn that the extension of a complexity class to promise problems does not
necessarily inherit the “structural” properties of the standard class. For example,
in contrast to Theorem 2.35, there exists promise problems in A/P N coANP such
that every set in AP can be Cook-reduced to them: see Exercise 2.36. Needless
to say, NP = coN'P does not seem to follow from Exercise 2.36. See further
discussion at the end of §2.4.1.2.

2.4.1.2 Applications

The following discussion refers both to the decision and search versions of promise
problems. Recall that promise problems offer the most direct way of formulating
natural computational problems (e.g., when referring to computational problems
regarding graphs, the promise mandates that the input is a graph). In addition to
the foregoing application of promise problems, we mention their use in formulating
the natural notion of a restriction of a computational problem to a subset of the in-
stances. Specifically, such a restriction means that the promise set of the restricted
problem is a subset of the promise set of the unrestricted problem.

241t follows that Karp-reductions among promise problems are not allowed to make queries
that violate the promise. Specifically, we say that the promise problem II = (Ilyes, Ino) is Karp-
reducible to the promise problem II' = (II{, I1},,) if there exists a polynomial-time mapping f

such that for every € Ilyes (resp., @ € Ilyo) it holds that f(z) € I1i.g (resp., f(z) € I1},).
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Definition 2.32 (restriction of computational problems):

e For any P' C P and binary relation R, we say that the search problem R
with promise P' is a restriction of the search problem R with promise P.

e We say that the promise problem (S!..,Sl.) is a restriction of the promise

yes? ~no
problem (Syes, Sno) if both S’; C Syes and Sl C Sy, hold.

For example, when we say that 3SAT is a restriction of SAT, we refer to the fact
that the set of allowed instances is now restricted to 3CNF formulae (rather than to
arbitrary CNF formulae). In both cases, the computational problem is to determine
satisfiability (or to find a satisfying assignment), but the set of instances (i.e., the
promise set) is further restricted in the case of 3SAT. The fact that a restricted
problem is never harder than the original problem is captured by the fact that the
restricted problem is reducible to the original one (via the identity mapping).

Other uses and some reservations. In addition to the two aforementioned
generic uses of the notion of a promise problem, we mention that this notion
provides adequate formulations for a variety of specific computational complex-
ity notions and results. Examples include the notion of “unique solutions” (see
Section 6.2.3) and the formulation of “gap problems” as capturing various approx-
imation tasks (see Section 10.1). In all these cases, promise problems allow to
discuss natural computational problems and make statements about their inher-
ent complexity. Thus, the complexity of promise problems (and classes of such
problems) addresses natural questions and concerns. Consequently, demonstrating
the intractability of a promise problem that belongs to some class (e.g., saying
that some promise problem in NP cannot be solved by a polynomial-time algo-
rithm) carries the same conceptual message as demonstrating the intractability of
a standard problem in the corresponding class. In contrast, as indicated at the
end of §2.4.1.1, structural properties of promise problems may not hold for the
corresponding classes of standard problems (e.g., see Exercise 2.36). Indeed, we do
distinguish here between the inherent (or absolute) properties such as intractability
and structural (or relative) properties such as reducibility.

2.4.1.3 The standard convention of avoiding promise problems

Recall that, although promise problems provide a good framework for presenting
natural computational problems, we managed to avoid this framework in previous
sections. This was done by relying on the fact that, for all the (natural) problems
considered in the previous sections, it is easy to decide whether or not a given
instance satisfies the promise. For example, given a formula it is easy to decide
whether or not it is in CNF (or 3CNF). Actually, the issue arises already when
talking about formulae: What we are actually given is a string that is supposed to
encode a formula (under some predetermined encoding scheme), and so the promise
(which is easy to decide for natural encoding schemes) is that the input string is a
valid encoding of some formula. In any case, if the promise is efficiently recognizable
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(i.e., membership in it can be decided in polynomial-time) then we may avoid
mentioning the promise by using one of the following two “nasty” conventions:

1. Eztending the set of instances to the set of all possible strings (and allowing
trivial solutions for the corresponding dummy instances). For example, in
the case of a search problem, we may either define all instance that violate
the promise to have no solution or define them to have a trivial solution (e.g.,
be a solution for themselves); that is, for a search problem R with promise
P, we may consider the (standard) search problem of R where R is modified
such that R(x) = 0 for every « ¢ P (or, say, R(z) = {z} for every z ¢ P).
In the case of a promise (decision) problem (Syes, Sno), we may consider the
problem of deciding membership in Syes, which means that instances that
violate the promise are considered as no-instances.

2. Considering every string as a valid encoding of an object that satisfies the
promise. That is, fixing any string x( that satisfies the promise, we consider
every string that violates the promise as if it were xg. In the case of a search
problem R with promise P, this means considering the (standard) search
problem of R where R is modified such that R(z) = R(xo) for every x ¢ P.
Similarly, in the case of a promise (decision) problem (Syes, Sno), We consider
the problem of deciding membership in Sy.s (provided zy € Sy, and otherwise
we consider the problem of deciding membership in {0,1}*\ Sy,).

We stress that in the case that the promise is efficiently recognizable the aforemen-
tioned conventions (or modifications) do not effect the complexity of the relevant
(search or decision) problem. That is, rather than considering the original promise
problem, we consider a (search or decision) problem (without a promise) that is
computational equivalent to the original one. Thus, in some sense we loss nothing
by studying the latter problem rather than the original one. On the other hand,
even in the case that these two problems are computationally equivalent, it is useful
to have a formulation that allows to distinguish between them (as we do distinguish
between the different NP-complete problems although they are all computationally
equivalent). This conceptual concern becomes of crucial importance in the case (to
be discussed next) that the promise is not efficiently recognizable.

The foregoing transformations of promise problems into computationally equiv-
alent standard (decision and search) problems does not necessarily preserve the
complexity of the problem in the case that the promise is not efficiently recogniz-
able. In this case, the terminology of promise problems is unavoidable. Consider,
for example, the problem of deciding whether a Hamiltonian graph is 3-colorable.
On the face of it, such a problem may have fundamentally different complexity than
the problem of deciding whether a given graph is both Hamiltonian and 3-colorable.

In spite of the foregoing opinions, we adopt the convention of focusing on stan-
dard decision and search problems. That is, by default, all complexity classes
discussed in this book refer to standard decision and search problems, and the ex-
ceptions in which we refer to promise problems are explicitly stated as such. Such
exceptions appear in Sections 2.4.2; 6.1.2, 6.2.3, and 10.1.
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2.4.2 Optimal search algorithms for NP

We actually refer to solving the candid search problem of any relation in PC.
Recall that PC is the class of search problems that allow for efficient checking of
the correctness of candidate solutions (see Definition 2.3), and that the candid
search problem is a search problem in which the solver is promised that the given
instance has a solution (see Definition 2.30).

We claim the existence of an optimal algorithm for solving the candid search
problem of any relation in PC. Furthermore, we will explicitly present such an
algorithm, and prove that it is optimal in a very strong sense: for any algorithm
solving the candid search problem of R € PC, our algorithm solves the same
problem in time that is at most a constant factor slower (ignoring a fixed additive
polynomial term, which may be disregarded in the case that the problem is not
solvable in polynomial-time). Needless to say, we do not know the time-complexity
of the aforementioned optimal algorithm (indeed if we knew it then we would have
resolved the P-vs-NP Question). In fact, the P-vs-NP Question boils down to
determining the time-complexity of a single explicitly presented algorithm (i.e.,
the optimal algorithm claimed in Theorem 2.33).

Theorem 2.33 For every binary relation R € PC there exists an algorithm A that
satisfies the following:

1. A solves the candid search problem of R.

2. There exists a polynomial p such that for every algorithm A’ that solves the
candid search problem of R and for every x € Sk (i.e., for every (z,y) € R)
it holds that ta(z) = O(ta(z) + p(|x|)), where t4 (resp., ta) denotes the
number of steps taken by A (resp., A') on input x.

Interestingly, we establish the optimality of A without knowing what its (optimal)
running-time is. Furthermore, the optimality claim is “point-wise” (i.e., it refers to
any input) rather than “global” (i.e., referring to the (worst-case) time-complexity
as a function of the input length).

We stress that the hidden constant in the O-notation depends only on A’,
but in the following proof this dependence is exponential in the length of the
description of algorithm A’ (and it is not known whether a better dependence can
be achieved). Indeed, this dependence as well as the idea underlying it constitute
one negative aspect of this otherwise amazing result. Another negative aspect is
that the optimality of algorithm A refers only to inputs that have a solution (i.e.,
inputs in Sg). Finally, we note that the theorem as stated refers only to models of
computation that have machines that can emulate a given number of steps of other
machines with a constant overhead. We mention that in most natural models the
overhead of such emulation is at most poly-logarithmic in the number of steps, in

which case it holds that t4(z) = O(tar(z) + p(|z])).

Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decides
membership in R, and let p be a polynomial bounding the running-time of M
(as a function of the length of the first element in the input pair). Using M, we
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present an algorithm A that solves the candid search problem of R as follows. On
input z, algorithm A emulates all possible search algorithms “in parallel” (on input
x), checks the result provided by each of them (using M), and halts whenever it
recognizes a correct solution. Indeed, most of the emulated algorithms are totally
irrelevant to the search, but using M we can screen the bad solutions offered by
them and output a good solution once obtained.

Since there are infinitely many possible algorithms, it may not be clear what
we mean by the expression “emulating all possible algorithms in parallel.” What
we mean is emulating them at different “rates” such that the infinite sum of these
rates converges to 1 (or to any other constant). Specifically, we will emulate the i‘"
possible algorithm at rate 1/(i + 1)?, which means emulating a single step of this
algorithm per (i + 1)? emulation steps (performed for all algorithms). Note that
a straightforward implementation of this idea may create a significant overhead,
involved in switching frequently from the emulation of one machine to the emulation
of another. Instead, we present an alternative implementation that proceeds in
iterations.

In the j'" iteration, for i = 1,...,2//2 —1, algorithm A emulates 27 /(i +1)? steps
of the 7" machine (where the machines are ordered according to the lexicographic
order of their descriptions). Each of these emulations is conducted in one chunk,
and thus the overhead of switching between the various emulations is insignificant
(in comparison to the total number of steps being emulated). In the case that
some of these emulations (on input z) halts with output y, algorithm A invokes
M on input (x,y) and output y if and ounly if M(z,y) = 1. Furthermore, the
verification of a solution provided by a candidate algorithm is also emulated at the
expense of its step-count. (Put in other words, we augment each algorithm with
a canonical procedure (i.e., M) that checks the validity of the solution offered by
the algorithm.)

By its construction, whenever A(z) outputs a string y (i.e., y # L) it must hold
that (z,y) € R. To show the optimality of A, we consider an arbitrary algorithm
A’ that solves the candid search problem of R. Our aim is to show that A is
not much slower than A’. Intuitively, this is the case because the overhead of A
results from emulating other algorithms (in addition to A’), but the total number
of emulation steps wasted (due to these algorithms) is inversely proportional to
the rate of algorithm A’, which in turn is exponentially related to the length of
the description of A’. The punch-line is that since A’ is fixed, the length of its
description is a constant. Details follow.

For every z, let us denote by t'(z) the number of steps taken by A’ on in-
put z, where t'(z) also accounts for the running time of M (z,-); that is, ¢'(z) =
tar(z) + p(|z]), where ta:(z) is the number of steps taken by A'(x) itself. Then,
the emulation of #'(z) steps of A’ on input z is “covered” by the ;' iteration of A,
provided that 27/(2141+1)2 > #(z) where |A’| denotes the length of the description
of A’. (Indeed, we use the fact that the algorithms are emulated in lexicographic
order, and note that there are at most 2 A+ _ 9 algorithms that precede A’ in
lexicographic order.) Thus, on input x, algorithm A halts after at most jar(z)
iterations, where ja: (z) = 2(JA'|+1) +logy(tar (z) +p(|z])), after emulating a total
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number of steps that is at most

Jar(z) 29/21

def 2 e '
@S g < PO = 2 (o) + i),
j=1 =1

The question of how much time is required for emulating these many steps depends
on the specific model of computation. In many models of computation, the em-
ulation of ¢ steps of one machine by another machine requires O(t) steps of the
emulating machines, and in some models this emulation can even be performed
with constant overhead. The theorem follows. O

Comment: By construction, the foregoing algorithm A does not halt on input
x ¢ Sg. This can be easily rectified by letting A emulate a straightforward ex-
haustive search for a solution, and halt with output L if and only if this exhaustive
search indicates that there is no solution to the current input. This extra emulation
can be performed in parallel to all other emulations (e.g., at a rate of one step for
the extra emulation per each step of everything else).

2.4.3 The class coNP and its intersection with NP

By prepending the name of a complexity class (of decision problems) with the prefix
“co” we mean the class of complement sets; that is,

def

coC = {{0,1}"\ S:SeC}. (2.4)

Specifically, coNP = {{0,1}*\ S : S € NP} is the class of sets that are comple-
ments of sets in N/P.

Recalling that sets in A'P are characterized by their witness relations such that
x € S if and ouly if there exists an adequate NP-witness, it follows that their
complement sets consists of all instances for which there are no NP-witness (i.e.,
x € {0,1}*\ S if there is no NP-witness for = being in S). For example, SAT € NP
implies that the set of unsatisfiable CNF formulae is in coN"P. Likewise, the set
of graphs that are not 3-colorable is in coA"P. (Jumping ahead, we mention that
it is widely believed that these sets are not in N'P.)

Another perspective on coA P is obtained by considering the search problems
in PC. Recall that for such R € PC, the set of instances having a solution (i.e.,
Sg ={x: 3y s.t. (z,y) €R}) is in N'P. It follows that the set of instances having
no solution (i.e., {0,1}*\ Sg = {z : Vy (z,y) € R}) is in coN'P.

It is widely believed that AP # coNP (which means that NP is not closed
under complementation). Indeed, this conjecture implies P # NP (because P is
closed under complementation). The conjecture NP # coNP means that some
sets in coN P do not have NP-proof systems (because AP is the class of sets having
NP-proof systems). As we will show next, under this conjecture, the complements
of NP-complete sets do not have NP-proof systems; for example, there exists no
NP-proof system for proving that a given CNF formula is not satisfiable. We first
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establish this fact for NP-completeness in the standard sense (i.e., under Karp-
reductions, as in Definition 2.17).

Proposition 2.34 Suppose that NP # coN'P and let S € N'P such that every set
— def

in NP is Karp-reducible to S. Then S = {0,1}*\ S is not in N'P.

Proof Sketch: We first observe that the fact that every set in NP is Karp-
reducible to S implies that every set in coNP is Karp-reducible to S. We next
claim that if S’ is in NP then every set that is Karp-reducible to S’ is also in N'P.
Applying the claim to S’ = S, we conclude that S € AP implies coNP C NP,
which in turn implies NP = coN P in contradiction to the main hypothesis.

We now turn to prove the foregoing claim; that is, we prove that if S’ has an NP-
proof system and S” is Karp-reducible to S’ then S has an NP-proof system. Let
V' be the verification procedure associated with S’, and let f be a Karp-reduction
of S to S’. Then, we define the verification procedure V" (for membership in S")
by V'(z,y) = V'(f(z),y). That is, any NP-witness that f(z) € S’ serves as an
NP-witness for € S” (and these are the only NP-witnesses for € §”). This may
not be a “natural” proof system (for S), but it is definitely an NP-proof system
for S”. O

Assuming that NP # coNP, Proposition 2.34 implies that sets in NP NcoNP
cannot be NP-complete with respect to Karp-reductions. In light of other limita-
tions of Karp-reductions (see, e.g., Exercise 2.7), one may wonder whether or not
the exclusion of NP-complete sets from the class NP N coNP is due to the use
of a restricted notion of reductions (i.e., Karp-reductions). The following theorem
asserts that this is not the case: some sets in NP cannot be reduced to sets in the
intersection N'P N coN'P even under general reductions (i.e., Cook-reductions).

Theorem 2.35 If every set in N'P can be Cook-reduced to some set in N'PNcoNP
then N'P = coN'P.

In particular, assuming NP # coN P, no set in NP N coNP can be NP-complete,
even when NP-completeness is defined with respect to Cook-reductions. Since
NP N coNP is conjectured to be a proper superset of P, it follows (assuming
NP # coN'P) that there are decision problems in NP that are neither in P
nor NP-hard (i.e., specifically, the decision problems in (NP N coN'P) \ P). We
stress that Theorem 2.35 refers to standard decision problems and not to promise
problems (see Section 2.4.1 and Exercise 2.36).

Proof: Analogously to the proof of Proposition 2.34 , the current proof boils down
to proving that if S is Cook-reducible to a set in NPNcoNP then S € NPNcoNP.
Using this claim, the theorem’s hypothesis implies that NP C AP NcoN P, which
in turn implies NP C coN'P and NP = coNP.

Fixing any S and S’ € NP N coN'P such that S is Cook-reducible to S’, we
prove that S € NP (and the proof that S € coNP is similar).?> Let us denote by

25 Alternatively, we show that S € coN'P by applying the following argument to gt {0,1}*\S
and noting that S is Cook-reducible to S’ (via S, or alternatively that S is Cook-reducible to
{0,1}*\ S’ e NP NcoNP).
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M the oracle machine reducing S to S’. That is, on input x, machine M makes
queries and decides whether or not to accept z, and its decision is correct provided
that all queries are answered according to S’. To show that S € NP, we will
present an NP-proof system for S. This proof system (or rather its verification
procedure), denoted V', accepts a pair of the form (z, ((z1, 01, w1), ..., (2¢, 04, wy)) if
the following two conditions hold:

1. On input z, machine M accepts after making the queries 21, ..., z;, and ob-
taining the corresponding answers o7y, ..., 0¢.

That is, V' check that, on input z, after obtaining the answers oy, ...,0,—1 to
the first 4 — 1 queries, the i** query made by M equals z;,. In addition, V'
checks that, on input = and after receiving the answers oy, ..., 0y, machine M
halts with output 1 (indicating acceptance).

Note that V' does not have oracle access to S’. The procedure V rather
emulates the computation of M (x) by answering, for each 4, the it" query of
M (x) by using the bit ¢; (provided to V' as part of its input). The correctness
of these answers will be verified (by V') separately (i.e., see the next item).

2. For every 4, it holds that if o; = 1 then w; is an NP-witness for z; € S’,
whereas if 0; = 0 then w; is an NP-witness for z; € {0,1}*\ S".

Thus, if this condition holds then it is the case that each o; indicates the
correct status of z; with respect to S’ (i.e., 0; = 1 if and only if z; € S').
We stress that we use the fact that both S’ and 5§ <
systems, and refer to the corresponding NP-witnesses.
Note that V' is indeed an NP-proof system for S. Firstly, the length of the
corresponding witnesses is bounded by the running-time of the reduction (and the
length of the NP-witnesses supplied for the various queries). Next note that V'
runs in polynomial time (i.e., verifying the first condition requires an emulation of
the polynomial-time execution of M on input  when using the o;’s to emulate the
oracle, whereas verifying the second condition is done by invoking the relevant NP-
proof systems). Finally, observe that z € S if and ouly if there exists a sequence

{0,1}*\ S have NP-proof

y def ((z1,01,w1), ..., (21,00, wy)) such that V(z,y) = 1. In particular, V(z,y) =1
holds only if y contains a valid sequence of queries and answers as made in a
computation of M on input x and oracle access to S’, and M accepts based on
that sequence. [l

The world view — a digest. Recall that on top of the P # AP conjecture, we
mentioned two other conjectures (which clearly imply P # N'P):

1. The conjecture that NP # coN'P (equivalently, NP N coN'P # NP).

This conjecture is equivalent to the conjecture that CNF formulae have no
short proofs of unsatisfiability (i.e., the set {0,1}* \ SAT has no NP-proof
system).
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2. The conjecture that NP N coN'P #£ P.

Notable candidates for the class AP N coN'P # P include decision problems
that are computationally equivalent to the integer factorization problem (i.e.,
the search problem (in PC) in which, given a composite number, the task is
to find its prime factors).

Combining these conjectures, we get the world view depicted in Figure 2.5, which
also shows the class of coNP-complete sets (defined next).

—--—-NP

~<---coNP

Figure 2.5: The world view under P # coNP NNP # NP.

Definition 2.36 A set S is called coN'P-hard if every set in coN'P is Karp-
reducible to S. A set is called coNP-complete if it is both in coN'P and coNP-hard.

Indeed, insisting on Karp-reductions is essential for a distinction between NP-
hardness and coN P-hardness.

Chapter Notes

Many sources provide historical accounts of the developments that led to the formu-
lation of the P vs NP Problem and to the discovery of the theory of NP-completeness
(see, e.g., [81, Sec. 1.5] and [213]). Still, we feel that we should not refrain from
offering our own impressions, which are based on the texts of the original papers.
Nowadays, the theory of NP-completeness is commonly attributed to Cook [55],
Karp [131], and Levin [146]. It seems that Cook’s starting point was his interest
in theorem proving procedures for propositional calculus [55, P. 151]. Trying to
provide evidence to the difficulty of deciding whether or not a given formula is a tau-
tology, he identified AP as a class containing “many apparently difficult problems”
(cf, e.g., [65, P. 151]), and showed that any problem in NP is reducible to deciding
membership in the set of 3DNF tautologies. In particular, Cook emphasized the
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importance of the concept of polynomial-time reductions and the complexity class
NP (both explicitly defined for the first time in his paper). He also showed that
CLIQUE is computationally equivalent to SAT, and envisioned a class of problems of
the same nature.

Karp’s paper [131] can be viewed as fulfilling Cook’s prophecy: Stimulated by
Cook’s work, Karp demonstrated that a “large number of classic difficult computa-
tional problems, arising in fields such as mathematical programming, graph theory,
combinatorics, computational logic and switching theory, are [NP-]Jcomplete (and
thus equivalent)” [131, P. 86]. Specifically, his list of twenty-one NP-complete prob-
lems includes Integer Linear Programming, Hamilton Circuit, Chromatic Number,
Exact Set Cover, Steiner Tree, Knapsack, Job Scheduling, and Max Cut. Interest-
ingly, Karp defined NP in terms of verification procedures (i.e., Definition 2.5),
pointed to its relation to “backtrack search of polynomial bounded depth” [131,
P. 86], and viewed AP as the residence of a “wide range of important computa-
tional problems” (which are not in P).

Independently of these developments, while being in the USSR, Levin proved the
existence of “universal search problems” (where universality meant NP-completeness).
The starting point of Levin’s work [146] was his interest in the “perebor” conjec-
ture asserting the inherent need for brute-force in some search problems that have
efficiently checkable solutions (i.e., problems in PC). Levin emphasized the impli-
cation of polynomial-time reductions on the relation between the time-complexity
of the related problems (for any growth rate of the time-complexity), asserted the
NP-completeness of six “classical search problems”, and claimed that the underly-
ing method “provides a mean for readily obtaining” similar results for “many other
important search problems.”

It is interesting to note that although the works of Cook [55], Karp [131], and
Levin [146] were received with different levels of enthusiasm, none of the con-
temporaries realized the depth of the discovery and the difficulty of the question
posed (i.e., the P-vs-NP Question). This fact is evident in every account from the
early 1970’s, and may explain the frustration of the corresponding generation of
researchers, which expected the P-vs-NP Question to be resolved in their life-time
(if not in a matter of years). Needless to say, the author’s opinion is that there
was absolutely no justification for these expectations, and that one should have
actually expected quite the opposite.

We mention that the three “founding papers” of the theory of NP-completeness
(i.e., Cook [55], Karp [131], and Levin [146]) use the three different types of reduc-
tions used in this chapter. Specifically, Cook uses the general notion of polynomial-
time reduction [55], often referred to as Cook-reductions (Definition 2.9). The
notion of Karp-reductions (Definition 2.11) originates from Karp’s paper [131],
whereas its augmentation to search problems (i.e., Definition 2.12) originates from
Levin’s paper [146]. It is worth stressing that Levin’s work is stated in terms of
search problems, unlike Cook and Karp’s works, which treat decision problems.

The reductions presented in §2.3.3.2 are not necessarily the original ones. Most
notably, the reduction establishing the NP-hardness of the Independent Set prob-
lem (i.e., Proposition 2.26) is adapted from [70] (see also Exercise 9.14). In contrast,
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the reductions presented in §2.3.3.1 are merely a re-interpretation of the original
reduction as presented in [55]. The equivalence of the two definitions of NP (i.e.,
Theorem 2.8) was proved in [131].

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theo-
rem 2.28) was proven by Ladner [143], Theorem 2.35 was proven by Selman [191],
and the existence of optimal search algorithms for NP-relations (i.e., Theorem 2.33)
was proven by Levin [146]. (Interestingly, the latter result was proved in the same
paper in which Levin presented the discovery of NP-completeness, independently
of Cook and Karp.) Promise problems were explicitly introduced by Even, Selman
and Yacobi [68]; see [90] for a survey of their numerous applications.

We mention that the standard reductions used to establish natural NP-completeness
results have several additional properties or can be modified to have such properties.
These properties include an efficient transformation of solutions in the direction of
the reduction (see Exercise 2.28), the preservation of the number of solutions (see
Exercise 2.29), being computable by a log-space algorithm (see Section 5.2.2), and
being invertible in polynomial-time (see Exercise 2.30). We also mention the fact
that all known NP-complete sets are (effectively) isomorphic (see Exercise 2.31).

Exercises

Exercise 2.1 (PF contains problems that are not in PC) Show that PF con-
tains some (unnatural) problems that are not in PC.

Guideline: Consider the relation R = {(z,1) : € {0,1}*} U{(«,0) : z € S}, where S is
some undecidable set. Note that R is the disjoint union of two binary relations, denoted
Ry and R2, where R, is in PF whereas Rs is not in PC. Furthermore, for every z it holds
that Ry (z) # 0.

Exercise 2.2 Show that any S € A'P has many different NP-proof systems (i.e.,
verification procedures Vi, V5, ... such that V;(z,y) = 1 does not imply Vj(z,y) =1

for i # j).

Guideline: For V and p be as in Definition 2.5, define V;(z,y) = 1 if |y| = p(|z|) + ¢ and
there exists a prefix y' of y such that V(z,y') = 1.

Exercise 2.3 Relying on the fact that primality is decidable in polynomial-time
and assuming that there is no polynomial-time factorization algorithm, present two
“natural but fundamentally different” NP-proof systems for the set of composite
numbers.

Guideline: Consider the following verification procedures V; and V> for the set of com-
posite numbers. Let Vi(n,y) = 1 if and only if y = n and n is not a prime, and
Va(n,m) = 1 if and only if m is a non-trivial divisor of n. Show that valid proofs with
respect to V1 are easy to find, whereas valid proofs with respect to V2 are hard to find.

Exercise 2.4 Regarding Definition 2.7, show that if S is accepted by some non-
deterministic machine of time complexity ¢ then it is accepted by a non-deterministic
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machine of time complexity O(t) that has a transition function that maps each pos-
sible symbol-state pair to exactly two triples.

Exercise 2.5 Verify the following properties of Cook-reductions:

1. If IT is Cook-reducible to IT" and II’ is solvable in polynomial-time then so is
II.

2. Cook-reductions are transitive (i.e., if IT is Cook-reducible to II' and II' is
Cook-reducible to IT" then II is Cook-reducible to II").

3. If II is solvable in polynomial-time then it is Cook-reducible to any problem
IT'.

In continuation to the last item, show that a problem II is solvable in polynomial-
time if and only if it is Cook-reducible to a trivial problem (e.g., deciding member-
ship in the empty set).

Exercise 2.6 Show that Karp-reductions (and Levin-reductions) are transitive.

Exercise 2.7 Show that some decision problems are not Karp-reducible to their
complement (e.g., the empty set is not Karp-reducible to {0,1}*).

A popular exercise of dubious nature is showing that any decision problem in P
is Karp-reducible to any non-trivial decision problem, where the decision problem
regarding a set S is called non-trivial if S # @ and S # {0,1}*. It follows that
every non-trivial set in P is Karp-reducible to its complement.

Exercise 2.8 (reducing search problems to optimization problems) For ev-
ery polynomially bounded relation R (resp., R € PC), present a function f (resp.,
a polynomial-time computable function f) such that the search problem of R is
computationally equivalent to the search problem in which given (z,v) one has to
find a y € {0,1}P°¥(=) such that f(z,y) > v.

(Hint: use a Boolean function.)

Exercise 2.9 (binary search) Show that using ¢ binary queries of the form “is
z < v” it is possible to determine the value of an integer z that is a priori known
to reside in the interval [0,2° — 1].

Guideline: Consider a process that iteratively halves the interval in which z is known
to reside in.

Exercise 2.10 Show that if R € PC\PF is self-reducible then the relevant Cook-
reduction makes more than a logarithmic number of queries to Sg. More generally,
show that if R € PC \ PF is Cook-reducible to any decision problem, then this
reduction makes more than a logarithmic number of queries.

Guideline: Note that the oracle answers can be emulated by trying all possibilities, and
that the correctness of the output of the oracle machine can be efficiently tested.
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Exercise 2.11 Show that the standard search problem of Graph 3-Colorability is
self-reducible, where this search problem consists of finding a 3-coloring for a given
input graph.

Guideline: Iteratively extend the current prefix of a 3-coloring of the graph by making
adequate oracle calls to the decision problem of Graph 3-Colorability. Specifically, encode
the question of whether or not (x1,...,x:) € {1,2,3}" is a prefix of a 3-coloring of the
graph G as a query regarding the 3-colorability of an auxiliary graph G'.)%°

Exercise 2.12 Show that the standard search problem of Graph Isomorphism
is self-reducible, where this search problem consists of finding an isomorphism
between a given pair of graphs.

Guideline: Iteratively extend the current prefix of an isomorphism between the two
N-vertex graphs by making adequate oracle calls to the decision problem of Graph Iso-
morphism. Specifically, encode the question of whether or not (1, ..., 7;) € [N]" is a prefix
of an isomorphism between G1 = ([N], £1) and G2 = ([N], £2) as a query regarding iso-
morphism between two auxiliary graphs G and Gb.)*"

Exercise 2.13 (downwards self-reducibility) We say that a set S is down-
wards self-reducible if there exists a Cook-reduction of S to itself that only makes
queries that are each shorter than the reduction’s input (i.e., if on input z the
reduction makes the query g then |g| < |z]).2®

1. Show that SAT is downwards self-reducible with respect to a natural encoding
of CNF formulae. Note that this encoding should have the property that
instantiating a variable in a formula results in a shorter formula.

A harder exercise consists of showing that Graph 3-Colorability is downwards
self-reducible with respect to some reasonable encoding of graphs. Note that
this encoding has to be selected carefully (if it is to work for a process anal-
ogous to the one used in Exercise 2.11).

2. Suppose that S is downwards self-reducible by a reduction that outputs the
disjunction of the oracle answers. (Note that this is the case for SAT.) Show
that in this case, S is characterized by a witness relation R € PC (i.e.,
S = {z : R(z) # 0}) that is self-reducible (i.e., the search problem of R is
Cook-reducible to S). Needless to say, it follows that S € N'P.

Guideline: Include (zo, (z1,...,z:)) in R if z; € SN {0,1}°®) and, for every
1 €{0,1,...,t—1}, on input z; the self-reduction makes a set of queries that contains

zi41. Prove that, indeed, R € PC and S = {z : R(z) # 0}.

26Note that we merely need to check whether G has a 3-coloring in which the equalities and
inequalities induced by (X1, ..., x¢) hold. This can be done by adequate gadgets (e.g., inequality
is enforced by an edge between the corresponding vertices, whereas equality is enforced by an
adequate subgraph that includes the relevant vertices as well as auxiliary vertices). For Part 1 of
Exercise 2.13, equality is better enforced by combining the two vertices.

27This can be done by attaching adequate gadgets to pairs of vertices that we wish to be mapped
to one another (by the isomorphism). For example, we may connect the vertices in the ith pair
to an auxiliary star consisting of (N + @) vertices.

28Note that on some instances the reduction may make no queries at all. (This prevent a
possible non-viability of the definition due to very short instances.)
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Note that the notion of downwards self-reducibility may be generalized in some
natural ways. For example, we may say that S is downwards self-reducible also
in case it is computationally equivalent via Karp-reductions to some set that is
downwards self-reducible (in the foregoing strict sense). Note that Part 2 still
holds.

Exercise 2.14 (NP problems that are not self-reducible)

1. Assuming that P # NP N coNP, show that there exists a search problem R
in PC that is not self-reducible.

Guideline: Given S € NP NcoNP \ P, present relations Ri, R» € PC such
that S = {& : Ri(z) # 0} = {z : Ra(z) = 0}. Then, consider the relation
R = {(z,1y) : (z,y) € R1} U{(z,0y) : (z,y) € R2}, and prove that R ¢ PF but
Sr ={0,1}".

2. Prove that if a search problem R is not self-reducible then S, = {(z,y’) :
Jy" s.t. (z,y'y") € R} is not Cook-reducible to Sg = {z : Jy s.t. (z,y) € R}.

Exercise 2.15 (extending any prefix of any solution versus PC and PF)
Assuming that P # NP, present a search problem R in PCNPF such that deciding
% is not reducible to the search problem of R.

Guideline: Consider the relation R = {(z,0z) : @ € {0,1}*} U {(w,1y) : (z,y) € R'},
where R’ is an arbitrary relation in PC \ P, and prove that R € PF but Si € P.

Exercise 2.16 In continuation to Exercise 2.14, present a natural search problem
R in PC such that if factoring integers is intractable then the search problem R
(and so also S%) is not reducible to Sg.

Guideline: Consider the relation R such that (IV, Q) € R if the integer @ is a non-trivial
divisor of the integer N. Use the fact that the set of prime numbers is in P.

Exercise 2.17 In continuation to Exercises 2.14 and 2.16, show that under suit-
able assumptions there exists relations R;, R, € PC having the same implicit-
decision problem (ie., {z : Ri(z) # 0} = {z : Ra(x) # 0}) such that Ry is
self-reducible but Ry is not.

Exercise 2.18 Provide an alternative proof of Theorem 2.16 without referring to
the set S = {(z,y') : "' s.t. (z,y'y"") € R}. Hint: use Proposition 2.15.

Guideline: Reduce the search problem of R to the search problem of RgpT, next reduce
RgpT to SAT, and finally reduce SAT to Sg. Justify the existence of each of these three
reductions.

Exercise 2.19 Prove that Bounded Halting and Bounded Non-Halting are NP-
complete, where the problems are defined as follows. The instance consists of a pair
(M, 1%), where M is a Turing machine and ¢ is an integer. The decision version of
Bounded Halting (resp., Bounded Non-Halting) consists of determining whether
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or not there exists an input (of length at most ¢) on which M halts (resp., does not
halt) in ¢ steps, whereas the search problem consists of finding such an input.

Guideline: Either modify the proof of Theorem 2.19 or present a reduction of (say) the
search problem of Ry to the search problem of Bounded (Non-)Halting. (Indeed, the
exercise is more straightforward in the case of Bounded Halting.)

Exercise 2.20 In the proof of Theorem 2.21, we claimed that the value of each
entry in the “array of configurations” of a machine M is determined by the values
of the three entries that reside in the row above it (as in Figure 2.1). Present a
function fpr : I - I', where I' = ¥ x (Q U {L}), that substantiates this claim.

Guideline: For example, for every o1, 02,03 € X, it holds that fu ((o1, L), (02,1), (03, L)) =
(o2,1). More interestingly, if the transition function of M maps (o,q) to (7,p,+1)
then, for every o1,02,03 € @, it holds that fa ((o,q),(02,L),(0s,L)) = (o2,p) and
fM((Uh J—): (Uz q): (03: J—)) = (T: J—)

Exercise 2.21 Present and analyze a reduction of SAT to 3SAT.

Guideline: For a clause C, consider auxiliary variables such that the 7** variable indicates
whether one of the first ¢ literals is satisfied, and replace C' by a 3CNF that uses the
original variables of C as well as the auxiliary variables. For example, the clause VI_jz;
is replaced by the conjunction of 3CNFs that are logically equivalent to the formulae
(y2 = (1 V 22)), (vi = (yi=1 V x3)) for 2 = 3,...,t, and y:. We comment that this is not
the standard reduction, but we find it conceptually more appealing.?®

Exercise 2.22 (efficient solveability of 2SAT) In contrast to Exercise 2.21,
prove that 2SAT (i.e., the satisfiability of 2CNF formulae) is in P.

Guideline: Consider the following “forcing process” for CNF formulae. If the formula
contains a singleton clause (i.e., a clause having a single literal), then the corresponding
variable is assigned the only value that satisfies the clause, and the formula is simplified
accordingly (possibly yielding a constant formula, which is either true or false). The
process is repeated until the formula is either a constant or contains only non-singleton
clauses. Note that a formula ¢ is satisfiable if and only if the formula obtained from ¢ by
the forcing process is satisfiable. Consider the following algorithm for solving the search
problem associated with 2SAT.

1. Choose an arbitrary variable in ¢. For each o € {0,1}, denote by ¢, the formula
obtained from ¢ by assigning this variable the value o.

2. If, for some o € {0,1}, applying the forcing process to ¢, yields a (non-constant)
2CNF formula ¢, then set ¢ «— ¢’ and goto Step 1. (The case that this happens
for both o € {0,1} is treated as the case that this happens for a single o; that is,
in such a case we proceed with an arbitrary choice of o.)

3. If one of these assignments yields (via the application of the forcing process) the
constant true then we halt with a satisfying assignment for the original formula.
Otherwise (i.e., both assignments yield the constant false), we halt asserting that
the original formula is unsatisfiable.

29The standard reduction replaces the clause \/lewi by the conjunction of the 3CNFs (z1 V
2V 22), ((mzi—1) Va; Vz;) for i = 3,...,t, and —z¢.
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Proving the correctness of this algorithm boils down to observing that the arbitrary choice
made in Step 2 is immaterial. Indeed, this observation relies on the fact that we refer to
3CNF formulae.

Exercise 2.23 (Integer Linear Programming) Prove that the following prob-
lem is NP-complete. An instance of the problem is a systems of linear inequalities
(say with integer constants), and the problem is to determine whether the system
has an integer solution. A typical instance of this decision problem follows.

r+2y—z > 3
—3r—z > -5
z > 0
—-r > -1

Guideline: Reduce from SAT. Specifically, consider an arithmetization of the input CNF
by replacing V with addition and -z by 1 —z. Thus, each clause gives rise to an inequality
(e.g., the clause z V —y is replaced by the inequality = + (1 — y) > 1, which simplifies
to x —y > 2). Enforce a 0-1 solution by introducing inequalities of the form = > 0 and
—x > —1, for every variable .

Exercise 2.24 (Maximum Satisfiability of Linear Systems over GF(2)) Prove
that the following problem is NP-complete. An instance of the problem consists of

a systems of linear equations over GF(2) and an integer k, and the problem is to
determine whether there exists an assignment that satisfies at least k equations.
(Note that the problem of determining whether there exists an assignment that
satisfies all the equations is in P.)

Guideline: Reduce from 3SAT, using the following arithmetization. Replace each clause
that contains ¢ < 3 literals by 2/ — 1 linear GF(2) equations that correspond to the
different non-empty subsets of these literals, and assert that their sum (modulo 2) equals
one; for example, the clause xV -y is replaced by the equations z+(1—y) =1, x = 1, and
1—y = 1. Identifying {false, true} with {0, 1}, prove that if the original clause is satisfied
by a Boolean assignment T then exactly 27! of the corresponding equations are satisfied
by v, whereas if the original clause is unsatisfied by v then none of the corresponding
equations is satisfied by v.

Exercise 2.25 (Satisfiability of Quadratic Systems over GF(2)) Prove that
the following problem is NP-complete. An instance of the problem consists of a sys-
tem of quadratic equations over GF(2), and the problem is to determine whether
there exists an assignment that satisfies all the equations. Note that the result
holds also for systems of quadratic equations over the reals (by adding conditions
that enforce a value in {0,1}).

Guideline: Start by showing that the corresponding problem for cubic equations is NP-
complete, by a reduction from 3SAT that maps the clause  V =y V z to the equation
(I1—=z)-y-(1—-2)=0. Reduce the problem for cubic equations to the problem for
quadratic equations by introducing auxiliary variables; that is, given an instance with
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variables 1, ..., xn, introduce the auxiliary variables x; ;’s and add equations of the form

T =T Tj.

Exercise 2.26 (Clique and Independent Set) An instance of the Independent
Set problem consists of a pair (G, K), where G is a graph and K is an integer,
and the question is whether or not the graph G contains an independent set (i.e.,
a set with no edges between its members) of size (at least) K. The Clique prob-
lem is analogous. Prove that both problems are computationally equivalent via
Karp-reductions to the Vertex Cover problem.

Exercise 2.27 (an alternative proof of Proposition 2.26) Counsider the fol-
lowing sketch of a reduction of 3SAT to Independent Set. On input a 3CNF
formula ¢ with m clauses and n variables, we construct a graph G4 consisting of m
triangles (corresponding to the m clauses) augmented with edges that link conflict-
ing literals. That is, if z appears as the {® literal of the ji* clause and -z appears
as the ith literal of the ji" clause, then we draw an edge between the it" vertex of
the ji triangle and the it" vertex of the ji" triangle. Prove that ¢ € 3SAT if and
only if G4 has an independent set of size m.

Exercise 2.28 (additional properties of standard reductions) In continua-
tion to the discussion in the main text, consider the following augmented form of
Karp-reductions. Such a reduction of R to R’ consists of three polynomial-time
mappings (f, h,g) such that f is a Karp-reduction of Sg to Sg and the following
two conditions hold:

1. For every (z,y) € R it holds that (f(z), h(z,y)) € R'.
2. For every (f(z),y’) € R it holds that (z,g(z,y")) € R.

(We note that this definition is actually the one used by Levin in [146], except that
he restricted h and g to only depend on their second argument.)

Prove that such a reduction implies both a Karp-reduction and a Levin-Reduction,
and show that all reductions presented in this chapter satisfy this augmented re-
quirement. Furthermore, prove that in all these cases the main mapping (i.e., f)
is 1-1 and polynomial-time invertible.

Exercise 2.29 (parsimonious reductions) Let R, R' € PC and let f be a Karp-
reduction of Sg = {x : R(z)#0} to Sgpr = {z : R'(x) #0}. We say that f is parsi-
monious (with respect to R and R') if for every z it holds that |R(z)| = |R'(f(z))|.
For each of the reductions presented in this chapter, checked whether or not it
is parsimonious. For the reductions that are not parsimonious, find alternative
reductions that are parsimonious (cf. [81, Sec. 7.3]).

Exercise 2.30 (on polynomial-time invertible reductions (following [35]))
We say that a set S is markable if there exists a polynomial-time (marking) algo-
rithm M such that

1. For every z,« € {0,1}* it holds that
(a) M(z,a) € Sifand only if z € S.
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(b) [M(z, )| > |-

2. There exists a polynomial-time (de-marking) algorithm D such that, for every
z,a € {0,1}*, it holds that D(M (z,a)) = a.

Note that all natural NP-sets (e.g., those considered in this chapter) are markable
(e.g., for SAT, one may mark a formula by augmenting it with additional satisfi-
able clauses that use specially designated auxiliary variables). Prove that if S’ is
Karp-reducible to S and S is markable then S’ is Karp-reducible to S by a length-
increasing, one-to-one, and polynomial-time invertible mapping.3° Infer that for
any natural NP-complete problem S, any set in NP is Karp-reducible to S by a
length-increasing, one-to-one, and polynomial-time invertible mapping.

Guideline: Let f be a Karp-reduction of S’ to S, and let M be the guaranteed marking
algorithm. Consider the reduction that maps z to M (f(z),z).

Exercise 2.31 (on the isomorphism of NP-complete sets (following [35]))
Suppose that S and 1" are Karp-reducible to one another by length-increasing, one-
to-one, and polynomial-time invertible mappings, denoted f and g respectively.
Using the following guidelines, prove that S and T are “effectively” isomorphic;

that is, present a polynomial-time computable and invertible one-to-one mapping

¢ such that T = ¢(5) < {4(z) : €S}

1. Let F & {f(z) : 2 € {0,1}*} and G = {9(z) : © € {0,1}*}. Using the
length-preserving condition of f (resp., g), prove that F' (resp., G) is a proper
subset of {0,1}*. Prove that for every y € {0,1}* there exists a unique triple
(4,2,1) € {1,2} x {0,1}* x ({0} U N) that satisfies one of the following two
conditions:

(@) j=1,2€G ¥ {0,1}*\G, and y = (go f)'(a);

. — def % i
(b) j=2,0€F ={0,1}"\ F,and y = (g0 f)'(g(x))-
(In both cases h’(z) = z, hi(z) = h(h'~%(2)), and (g o f)(z) = g(f(2)). Hint:
consider the maximal sequence of inverse operations g~ %, f~1,¢71,... that
can be applied to y, and note that each inverse shrinks the current string.)

2. Let Uy < {(go f)i(z) : 2€GAi>0} and Uy = {(go f)i(g(x)) : € F Ai >0}
Prove that (Uy,Us) is a partition of {0,1}*. Using the fact that f and g are
length increasing and polynomial-time invertible, present a polynomial-time
procedure for deciding membership in the set U;.

Prove the same for the sets V; = {(fog)i(z) : 1€ FA4i>0} and Vy =
{(fog)'(f(z): z€G Ai=0}.

3. Note that Us C G, and define ¢(z) = f(z) if z € Uy and ¢(z) = ¢~(2)
otherwise.

30When given a string that is not in the image of the mapping, the inverting algorithm returns
a special symbol.
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(a) Prove that ¢ is a Karp-reduction of S to T

(b) Note that ¢ maps Uy to f(U1) = {f(z) : x € U1} = V5 and U; to
g~ (Uz2) = {g7 (z) : z€Us} = V1. Prove that ¢ is one-to-one and onto.

Observe that ¢~ !(z) = f~(z) if z € f(U;) and ¢ '(z) = g(z) otherwise.
Prove that ¢! is a Karp-reduction of T' to S. Infer that ¢(S) =T.

Using Exercise 2.30, infer that all natural NP-complete sets are isomorphic.

Exercise 2.32 Prove that a set S is Karp-reducible to some set in AP if and only
if Sis in N'P.

Guideline: For the non-trivial direction, see the proof of Proposition 2.34.

Exercise 2.33 Recall that the empty set is not Karp-reducible to {0,1}*, whereas
any set is Cook-reducible to its complement. Thus our focus here is on the Karp-
reducibility of non-trivial sets to their complements, where a set is non-trivial if it
is neither empty nor contains all strings. Furthermore, since any non-trivial set in
P is Karp-reducible to its complement (see Exercise 2.7), we assume that P # NP
and focus on sets in NP\ P.

1. Prove that NP = coN'P implies that some sets in NP\ P are Karp-reducible
to their complements.

2. Prove that NP # coN'P implies that some sets in NP\ P are not Karp-
reducible to their complements.

Guideline: Use NP-complete sets in both parts, and Exercise 2.32 in the second part.

Exercise 2.34 Referring to the proof of Theorem 2.28, prove that the function f
is unbounded (i.e., for every i there exists an n such that n® steps of the process
defined in the proof allow for failing the ¢ + 1" machine).

Guideline: Note that f is monotonically non-decreasing (because more steps allow to fail
at least as many machines). Assume, towards the contradiction that f is bounded. Let
i =sup, n{f(n)} and n' be the smallest integer such that f(n') =i. If i is odd then the
set I determined by f is co-finite (because F' = {z : f(|z])=1 (mod 2)} D {z : |z|>n'}).
In this case, the i+1°* machine tries to decide SN F' (which differs from S on finitely many
strings), and must fail on some z. Derive a contradiction by showing that the number of
steps taken till reaching and considering this z is at most exp(poly(|z|)), which is smaller
than n® for some sufficiently large n. A similar argument applies to the case that i is
even, where we use the fact that F C {& : |#|<n'} is finite and so the relevant reduction
of S to SN F must fail on some input x.

Exercise 2.35 Prove that if the promise problem II is Cook-reducible to a promise
problem that is solvable in polynomial-time, then II is solvable in polynomial-time.
Note that the solver may not halt on inputs that violate the promise.

Guideline: Any polynomial-time algorithm solving any promise problem can be modified
such that it halts on all inputs.
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Exercise 2.36 (NP-complete promise problems in coNP (following [68]))
Consider the promise problem xSAT, having instances that are pairs of CNF formu-
lae. The yes-instances consists of pairs (@1, ¢=) such that ¢, is satisfiable and ¢s is
unsatisfiable, whereas the no-instances consists of pairs such that ¢; is unsatisfiable
and ¢ is satisfiable.

1. Show that xSAT is in the intersection of (the promise problem classes that
are analogous to) NP and coN'P.

2. Prove that any promise problem in NP is Cook-reducible to xSAT. In de-
signing the reduction, recall that queries that violate the promise may be
answered arbitrarily.

Guideline: Note that the promise problem version of AP is reducible to SAT,
and show a reduction of SAT to xSAT. Specifically, show that the search problem
associated with SAT is Cook-reducible to xSAT, by adapting the ideas of the proof
of Proposition 2.15. That is, suppose that we know (or assume) that 7 is a prefix
of a satisfying assignment to ¢, and we wish to extend 7 by one bit. Then, for each
o € {0,1}, we construct a formula, denoted ¢,,, by setting the first |7| + 1 variables
of ¢ according to the values 7o. We query the oracle about the pair (¢7, ¢(), and
extend 7 accordingly (i.e., we extend 7 by the value 1 if and only if the answer is
positive). Note that if both ¢} and ¢{ are satisfiable then it does not matter which
bit we use in the extension, whereas if exactly one formula is satisfiable then the

oracle answer is reliable.

3. Pinpoint the source of failure of the proof of Theorem 2.35 when applied to
the reduction provided in the previous item.



