Appendix A

Glossary of Complexity
Classes

Summary: This glossary includes self-contained definitions of most
complexity classes mentioned in the book. Needless to say, the glossary
offers a very minimal discussion of these classes and the reader is re-
ferred to the main text for further discussion. The items are organized
by topics rather than by alphabetic order. Specifically, the glossary is
partitioned into two parts, dealing separately with complexity classes
that are defined in terms of algorithms and their resources (i.e., time
and space complexity of Turing machines) and complexity classes de-
fined in terms of non-uniform circuits (and referring to their size and
depth). The algorithmic classes include time-complexity based classes
(such as P, NP, coN'P, BPP, RP, coRP, PH, £, EXP and NEXP)
and the space complexity classes £, N'L, RL and PSPACE. The non-
uniform classes include the circuit classes P /poly as well as N'C* and

ACk.

Definitions (and basic results) regarding many other complexity classes are available
at the constantly evolving Complexity Zoo [1].

A.1 Preliminaries

Complexity classes are sets of computational problems, where each class contains
problems that can be solved with specific computational resources. To define a
complexity class one specifies a model of computation, a complexity measure (like
time or space), which is always measured as a function of the input length, and a
bound on the complexity (of problems in the class).

We follow the tradition of focusing on decision problems, but refer to these
problems using the terminology of promise problems (see Section 2.4.1). That is,
we will refer to the problem of distinguishing inputs in Ilyes from inputs in II,,,

509

510 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES

and denote the corresponding decision problem by II = (Ilyes,II,,). Standard
decision problems are viewed as a special case in which Ilyes U Il , = {0,1}*, and
the standard formulation of complexity classes is obtained by postulating that this
is the case. We refer to this case as the case of a trivial promise.

The prevailing model of computation is that of Turing machines. This model
captures the notion of (uniform) algorithms (see Section 1.2.3). Another important
model is the one of non-uniform circuits (see Section 1.2.4). The term uniformity
refers to whether the algorithm is the same one for every input length or whether
a different “algorithm” (or rather a “circuit”) is considered for each input length.

We focus on natural complexity classes, obtained by considering natural com-
plexity measures and bounds. Typically, these classes contain natural computa-
tional problems (which are defined in Appendix G). Furthermore, almost all of
these classes can be “characterized” by natural problems, which capture every
problem in the class. Such problems are called complete for the class, which means
that they are in the class and every problem in the class can be “easily” reduced to
them, where “easily” means that the reduction takes less resources than whatever
seems to be requires for solving each individual problem in the class. Thus, any
efficient algorithm for a complete problem implies an algorithm of similar efficiency
for all problems in the class.

Organization: The glossary is organized by topics (rather than by alphabetic or-
der of the various items). Specifically, we partition the glossary to classes defined in
terms of algorithmic resources (i.e., time and space complexity of Turing machines)
and classes defined in terms of circuit (size and depth). The former (algorithm-
based) classes are reviewed in Section A.2, while the latter (circuit-based) classes
are reviewed in Section A.3.

A.2 Algorithm-based classes

The two main complexity measures considered in the context of (uniform) algo-
rithms are the number of steps taken by the algorithm (i.e., its time complexity)
and the amount of ”memory” or “work-space” consumed by the computation (i.e.,
its space complexity). We review the time complexity based classes P, NP, coNP,
BPP, RP, coRP, ZPP, PH, £, EXP and NEXP as well as the space complexity
classes £, NL, RL and PSPACE.

By prepending the name of a complexity class (of decision problems) with
the prefix “co” we mean the class of complement problems; that is, the problem
IT = (Ilyes,) is in coC if and only if (IL,,,Iles) is in C. Specifically, deciding
membership in the set S is in the class coC if and ouly if deciding membership in
the set {0,1}*\ S is in the class C. Thus, the definition of coNP and coRP can
be easily derived from the definitions of NP and RP, respectively. Complexity
classes defined in terms of symmetric acceptance criteria (e.g., deterministic and
two-sided error randomized classes) are trivially closed under complementation
(e.g., coP = P and coBPP = BPP) and so we do not present their “co”-classes.

A.2. ALGORITHM-BASED CLASSES 511

In other cases (most notably A'L), the closure property is highly non-trivial and
we comment about it.

A.2.1 Time complexity classes

We start with classes that are closely related to polynomial-time computations (i.e.,
P, NP, BPP, RP and ZPP), and latter consider the classes PH, £, EXP and
NEXP.

A.2.1.1 Classes closely related to polynomial time

The most prominent complexity classes are P and NP, which are extensively
discussed in Section 2.1. We also consider classes related to randomized polynomial-
time, which are discussed in Section 6.1.

P and NP. The class P consists of all decision problem that can be solved in
(deterministic) polynomial-time. A decision problem II = (Ilyes,1l,,) is in NP
if there exists a polynomial p and a (deterministic) polynomial-time algorithm V'
such that the following two conditions hold

1. For every x € Il there exists y € {0, 1}2(D such that V(z,y) = 1.
2. For every z € II,,, and every y € {0, 1}* it holds that V(z,y) = 0.

A string y satisfying Condition 1 is called an NP-witness (for z). Clearly, P C N'P.

Reductions and NP-completeness (NPC). A problem is NP-complete if
it is in AP and every problem in NP is polynomial-time reducible to it, where
polynomial-time reducibility is defined and discussed in Section 2.2. Loosely speak-
ing, a polynomial-time reduction of problem II to problem II' is a polynomial-time
algorithm that solves II by making queries to a subroutine that solves problem IT',
where the running-time of the subroutine is not counted in the algorithm’s time
complexity. Typically, NP-completeness is defined while restricting the reduction
to make a single query and output its answer. Such a reduction, called a Karp-
reduction, is represented by a polynomial-time computable mapping that maps
yes-instances of II to yes-instances of II' (and no-instances of II to no-instances of
IT"). Hundreds of NP-complete problems are listed in [85].

Probabilistic polynomial-time (BPP, RP and ZPP). A decision problem
IT = (Ilyes, o) is in BPP if there exists a probabilistic polynomial-time algorithm
A such that the following two conditions hold

1. For every z € Il it holds that Pr[A(z)=1] > 2/3.

2. For every z € II,,, it holds that Pr[A(z)=0] > 2/3.

512 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES

That is, the algorithm has two-sided error probability (of 1/3), which can be further
reduced by repetitions. We stress that due to the two-sided error probability of
BPP, it is not known whether or not BPP is contained in NP. In addition to
the two-sided error class BPP, we consider one-sided error and zero-error classes,
denoted RP and ZPP, respectively. A problem II = (Ilyes,11,,) is in RP if there
exists a probabilistic polynomial-time algorithm A such that the following two
conditions hold

1. For every z € Il it holds that Pr[A(z)=1] > 1/2.
2. For every z € Il,,, it holds that Pr[A(z)=0] = 1.

Again, the error probability can be reduced by repetitions, and thus RP C BPPN
NP. A problem IT = (Ilyg, II,,,) is in ZPP if there exists a probabilistic polynomial-
time algorithm A, which may output a special (“don’t know”) symbol L, such that
the following two conditions hold

1. For every x € Iy it holds that Pr[A(x)€{1, L}] =1 and Pr[A(z)=1] > 1/2.
2. For every x € Il it holds that Pr{A(z)€ {0, L}] = 1 and Pr[A(z)=0] > 1/2.

Note that P C ZPP = RP NcoRP. When defined in terms of promise problems,
all the aforementioned randomized classes have complete problems (w.r.t Karp-
reductions), but the same is not known when considering only standard decision
problems (with trivial promise).

The counting class #P. Functions in #P count the number of solutions to
an NP-type search problem (or, equivalently, the number of NP-witnesses for a
yes-instance of a decision problem in A"P). Formally, a function f is in #P if there
exists a polynomial p and a (deterministic) polynomial-time algorithm V' such that
f(z) = {y € {0,1}?U=D) . V(z,9) =1}|. Indeed, p and V are as in the definition
of NP, and it follows that deciding membership in the set {z : f(z) > 1} is in
NP. Clearly, #P problems are solvable in polynomial space. Surprisingly, the
permanent of positive integer matrices is #P-complete (i.e., it is in #P and any
function in #P is polynomial-time reducible to it).

Interactive proofs. A decision problem II = (Ilyes, II,,) has an interactive proof
system if there exists a polynomial-time strategy V such that the following two
conditions hold:

1. For every x € Il there exists a prover strategy P such that the verifier V
always accepts after interacting with the prover P on common input x.

2. For every = ¢ I, and every strategy P*, the verifier V rejects with proba-
bility at least 1 after interacting with P* on common input .

The corresponding class is denoted ZP, and turns out to equal PSPACE. (For
further details see Section 9.1.)

A.2. ALGORITHM-BASED CLASSES 513

A.2.1.2 Other time complexity classes

The classes £ and EX'P corresponding to problems that can be solved (by a deter-
ministic algorithm) in time 2°9(™) and 2P°W("™) respectively, for n-bit long inputs.
Clearly, NP C £EXP. We also mention NEXP, the class of problems that can be
solved by a non-deterministic machine in 2P°%¥(") gteps.!

In general, one may define a complexity class for every time bound and ev-
ery type of machine (i.e., deterministic, probabilistic and non-deterministic), but
polynomial and exponential bounds seem most natural and very robust. Another
robust type of time bounds that is sometimes used is quasi-polynomial time (i.e., P
denotes the class of problems solvable by deterministic machines of time complexity

exp(poly(logn))).

The Polynomial-time hierarchy, PH. For any natural number %, the k*? level
of the polynomial-time hierarchy consists of problems II = (Ilyes, o) such that
there a polynomial p and a polynomial-time algorithm V' that satisfies the following
two requirements:

1. For every z € Il there exists y; € {0,1}?(%D) such that for every y, €
{0, 1}70=) there exists y3 € {0,1}?U*D) such that for every y, € {0,1}(=D .
it holds that V(z, y1,y2,y3, Y4, -.,Yx)=1. That is, the condition regarding x
consists of k alternating quantifiers.

2. For every x € II,,, the foregoing (k-alternating) condition does not hold.
That is, for every y; € {0,1}?U=]) there exists yo € {0,1}?*) such that
for every y3 € {0,1}P(%D there exists y4 € {0,1}*(=D _ it holds that
V(waylay%y?ny‘l:"'7yk‘)=O‘

Such a problem II is said to be in X (and IIj def coXg). Indeed, NP = 3
corresponds to the special case where & = 1. Interestingly, PH is polynomial-time
reducible to #P.

A.2.2 Space complexity

When defining space-complexity classes, one counts only the space consumed by
the actual computation, and not the space occupied by the input and output. This
is formalized by postulating that the input is read from a read-only device (resp.,
the output is written on a write-only device). Four important classes of decision
problems are defined next.

L Alternatively, analogously to the definition of A"P, a problem II = (Iyes, IIno) is in NEXP
if there exists a polynomial p and a polynomial-time algorithm V such that the two conditions
hold

1. For every x € Ilyes there exists y € {0, 1}21’(\1'\) such that V(z,y) = 1.
2. For every x € I, and every y € {0,1}* it holds that V(z,y) = 0.

514 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES

e The class £ consists of problems solvable in logarithmic space. That is, a
problem IT is in £ if there exists a standard (i.e., deterministic) algorithm of
logarithmic space-complexity for solving II. This class contains some simple
computational problems (e.g., matrix multiplication), and arguably captures
the most space-efficient computations. Interestingly, £ contains the problem
of deciding connectivity of (undirected) graphs.

e Classes of problems solvable by randomized algorithms of logarithmic space-
complexity include RL and BPL, which are defined analogously to RP and
BPP. That is, RL corresponds to algorithms with one-sided error probabil-
ity, whereas BPL allows two-sided error.

e The class AL is the non-deterministic analogue of £, and is traditionally de-
fined in terms of non-deterministic machines of logarithmic space-complexity.2
The class N'L contains the problem of deciding whether there exists a directed
path between two given vertexes in a given directed graph. In fact, the lat-
ter problem is complete for the class (under logarithmic-space reductions).
Interestingly, coN £ equals A/ L.

e The class PSPACE consists of problems solvable in polynomial space. This
class contains very difficult problems, including the computation of winning
strategies for any “efficient 2-party games” (see Section 5.4).

Clearly, LC RL CNL CP and NP C PSPACE C EXP.

A.3 Circuit-based classes

We refer the reader to Section 1.2.4 for a definition of Boolean circuits as computing
devices. The two main complexity measures considered in the context of (non-
uniform) circuits are the number of gates (or wires) in the circuit (i.e., the circuit’s
size) and the length of the longest directed path from an input to an output (i.e.,
the circuit’s depth).

Throughout this section, when we talk of circuits, we actually refer to families of
circuits containing a circuit for each instance length, where the n-bit long instances
of the computational problem are handled by the nt" circuit in the family. Similarly,
when we talk of the size and depth of a circuit, we actually mean the (dependence
on n of the) size and depth of the n*® circuit in the family.

General polynomial-size circuits (P/poly). The main motivation for the in-
troduction of complexity classes based on (non-uniform) circuits is the development
of lower-bounds. For example, the class of problems solvable by polynomial-size
circuits, denoted P/poly, is a (strict)® super-set of P. Thus, showing that NP
is not contained in P/poly would imply P # NP. For further discussion see

2See further discussion of this definition in Section 5.3.
3In particular, P/poly contains some decision problems that are not solvable by any uniform
algorithm.

A.3. CIRCUIT-BASED CLASSES 515

Appendix B.2. An alternative definition of P/poly in terms of “machines that
take advice” is provided in Section 3.1.2. We mention that if NP C P/poly then
pH = 22.

The subclasses ACO and TCO. The class ACP, discussed in Appendix B.2.3,
consists of problems solvable by constant-depth polynomial-size circuits of wun-
bounded fan-in. The analogue class that allows also (unbounded fan-in) majority-
gates (or, equivalently, threshold-gates) is denoted 7C°.

The subclasses AC and NC. Turning back to the standard basis (of —, V
and A gates), for any non-negative integer k, we denote by NC* (resp., AC¥)
the class of problems solvable by polynomial-size circuits of bounded fan-in (resp.,
unbounded fan-in) having depth O(log* n), where n is the input length. Clearly,

NCF C AC® C NCFFL. A commonly referred class is N'C def UkENNCk.

We mention that the class NC? D N L is the habitat of most natural compu-
tational problems of Linear Algebra: solving a linear system of equations as well
as computing the rank, inverse and determinant of a matrix. The class NC* con-
tains all symmetric functions, regular languages as well as word problems for finite
groups and monoids. The class ACP contains all properties (of finite objects) that
are expressible by first-order logic.

Uniformity. The foregoing classes make no reference to the complexity of con-
structing the adequate circuits, and it is plausible that there is no effective way of
constructing these circuits (e.g., as in case of circuits that trivially solve undecid-
able problem regarding unary instances). A minimal notion of constructibility of
such (polynomial-size) circuits is the existence of a polynomial time algorithm that
given 1" produces the n'® relevant circuit (i.e., the circuit that solves the problem
on instances of length n). Such a notion of constructibility means that the family
of circuits is “uniform” in some sense (rather than consisting of circuits that have
no relation between one another). Stronger notions of uniformity (e.g., log-space
constructibility) are more adequate for subclasses such as AC and NC. We men-
tion that log-space uniform NC circuits correspond to parallel algorithms that use
polynomially many processors and run in polylogarithmic time.

516 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES

Appendix B

On the Quest for Lower
Bounds

Alas, Philosophy, Medicine, Law, and unfortunately also Theol-
ogy, have I studied in detail, and still remained a fool, not a bit
wiser than before. Magister and even Doctor am I called, and
for a decade am I sick and tired of pulling my pupils by the nose
and understanding that we can know nothing.!

J.W. Goethe, Faust, Lines 354-364

Summary: This appendix briefly surveys some attempts at proving
lower bounds on the complexity of natural computational problems. In
the first part, devoted to Circuit Complexity, we describe lower bounds
on the size of (restricted) circuits that solve natural computational
problems. This can be viewed as a program whose long-term goal is
proving that P # A/P. In the second part, devoted to Proof Complex-
ity, we describe lower bounds on the length of (restricted) propositional
proofs of natural tautologies. This can be viewed as a program whose
long-term goal is proving that NP # coNP.

We comment that while the activity in these areas is aimed towards
developing proof techniques that may be applied to the resolution of
the “big problems” (such as P versus NP), the current achievements
(though very impressive) seem very far from reaching this goal. Cur-
rent crown-jewel achievements in these areas take the form of tight (or
strong) lower bounds on the complexity of computing (resp., proving)
“relatively simple” functions (resp., claims) in restricted models of com-
putation (resp., proof systems).

IThis quote reflects a common sentiment, not shared by the author of the current book.

517

518 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

B.1 Preliminaries

Circuit complexity refers to a non-uniform model of computation (see Section 1.2.4),
focusing on the size of such circuits, while ignoring the complexity of constructing
adequate circuits. Similarly, proof complexity refers to proofs of tautologies, focus-
ing on the length of such proofs, while ignoring the complexity of generating such
proofs.

Both circuits and proofs are finite objects that are defined on top of the notion
of a directed acyclic graph (dag), reviewed in Appendix G.1. In such a dag, vertices
with no incoming edges are called inputs, vertices with no outgoing edges are called
outputs, and the remaining vertices are called internal vertices. The size of a dag
is defined as the number of its edges. We will be mostly interested in dags of
“bounded fan-in” (i.e., for each vertex, the number of incoming edges is at most
two).

In order to convert a dag into a computational device (resp., a proof), each
internal vertex is labeled by a rule, which transforms values assigned to its prede-
cessors to values at that vertex. Combined with any possible assignment of values
to the inputs, these fixed rules induce an assignment of values to all the vertices of
the dag (by a process that starts at the inputs, and assigns a value to each vertex
based on the values of its predecessors (and according to the corresponding rule)).

e In the case of computation devices, the internal vertices are labeled by (binary
or unary) functions over some fixed domain (e.g., a finite or infinite field).
These functions are called gates, and the labeled dag is called a circuit. Such
a circuit (with n inputs and m outputs) computes a finite function over the
corresponding domain (mapping sequences of length n to sequences of length
m).

e In the case of proofs, the internal vertices are labeled by sound deduction
(or inference) rules of some fixed proof system. Any assignment of axioms
(of the said system) to the inputs of this labeled dag yields a sequence of
tautologies (at all vertices). Typically the dag is assumed to have a single
output vertex, and the corresponding sequence of tautologies is viewed as a
proof of the tautology assigned to the output.

We note that both models partially adhere to the paradigm of simplicity that
underlies the definitions of (uniform) computational models (as discussed in Sec-
tion 1.2.3): the aforementioned rules are simple by definition — they are applied to
at most two values. However, unlike in the case of (uniform) computational mod-
els, the current models do not mandate a “uniform” consideration of all possible
“inputs” (but rather allow a seperate consideration of each finite “input” length).
For example, each circuit can compute only a finite function; that is, a function
defined over a fixed number of values (i.e., fixed input length). Likewise, a dag
that corresponds to a proof system, yields only proofs of tautologies that refer to
a fixed number of axioms.?

2N.B., we refer to a fixed number of axioms, and not merely to a fixed number of axiom forms.

B.2. BOOLEAN CIRCUIT COMPLEXITY 519

Focusing on circuits, we note that in order to allow the computation of func-
tions that are defined for all input lengths, one must consider infinite sequences
of dags, one for each length. This yields a model of computation in which each
“machine” has an infinite description (when referring to all input lengths). Indeed,
this significantly extends the power of the computation model beyond that of the
notion of algorithm (discussed in Section 1.2.3). However, since we are interested
in lower bounds here, this extension is certainly legitimate and hopefully fruitful:
For example, one may hope that the finiteness of the individual circuits will facili-
tate the application of combinatorial techniques towards the analysis of the model’s
power and limitations. Furthermore, as we shall see, these models open the door
to the introduction (and study) of meaningful restricted classes of computations.

Organization: The rest of this appendix is partitioned to three parts. In Sec-
tion B.2 we consider Boolean circuits, which are the archetypical model of non-
uniform computing devices. In Section B.3 we generalize the treatment by con-
sidering arithmetic circuits, which may be defined for every algebraic structure
(where Boolean circuits are viewed as a special case referring to the two-element
field, GF(2)). Lastly, in Section B.4, we consider proof complexity.

B.2 Boolean Circuit Complexity

In Boolean circuits the values assigned to all inputs as well as the values induced
(by the computation) at all intermediate vertices and outputs are bits. The set of
allowed gates is taken to be any complete basis (i.e., one that allows to compute all
Boolean functions). The most popular choice of a complete basis is the set {A, V, =}
corresponding to (two-bit) conjunction, (two-bit) disjunction and negation (of a
single bit), respectively. (The specific choice of a complete basis hardly effects the
study of circuit complexity.)

For a finite Boolean function f, we denote by S(f) the size of the smallest
Boolean circuit computing f. We will be interested in sequences of functions {f,},
where f, is a function on n input bits, and will study their size complexity (i.e.,
S(fn)) asymptotically (as a function of n). With some abuse of notation, for

flx) Lef flz|(z), we let S(f) denote the integer function that assigns to n the value
S(fn)- Thus, we refer to the following definition.

Definition B.1 (circuit complexity): Let f:{0,1}* — {0,1}* and {f.} be such
that f(x) = fi.|(z) for every x. The complexity of f (resp., {fn}), denoted S(f)
(resp., denoted n — S(fy)), is a function of n that represents the size of the
smallest Boolean circuit computing f,.

We stress that different circuits (e.g., having a different number of inputs) are used
for different f,,’s. Still there may be a simple description of this sequence of circuits,
say, an algorithm that on input n produces a circuit computing f,. In case such

Recall that an axiom form like ¢ V —¢ yields an infinite number of axioms, each obtained by
substituting the generic formula (or symbol) ¢ with a fixed propositional formula.

520 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

an algorithm exists and works in time polynomial in the size of its output, we say
that the corresponding sequence of circuits is uniform. Note that if f has a uniform
sequence of polynomial-size circuits then f € P. On the other hand, any f € P has
(a uniform sequence of) polynomial-size circuits. Consequently, a super-polynomial
size lower-bound on any function in NP would imply that P # NP.

Definition B.1 makes no reference to the uniformity condition (and indeed the
sequence of smallest circuits computing {f,} may be “highly nonuniform”). Ac-
tually, non-uniformity makes the circuit model stronger than Turing machines (or,
equivalently, stronger than the model of uniform circuits): there exist functions f
that cannot be computed by Turing machines (regardless of their running time),
but do have linear-size circuits.®> This raises the possibility that proving circuit
lower-bounds is even harder than resolving the P vs. NP Question.

The common belief is that the extra power provided by non-uniformity is irrel-
evant to the P vs. NP Question; in particular, it is conjectured that NP-complete
sets do not have polynomial-size circuits. This conjecture is supported by the fact
that its failure will yield an unexpected collapse in the world of uniform compu-
tational complexity (see Section 3.2). Furthermore, the hope is that abstracting
away the (supposedly irrelevant) uniformity condition will allow for combinatorial
techniques to analyze the power and limitations of polynomial-size circuits (w.r.t
NP-sets). This hope has materialized in the study of restricted classes of circuits
(see Sections B.2.2 and B.2.3). Indeed, another advantage of the circuit model is
that it offers a framework for describing naturally restricted models of computation.

We also mention that Boolean circuits are a natural computational model, cor-
responding to “hardware complexity” (which was indeed the original motivation
for their introduction by Shannon [202]), and so their study is of independent in-
terest. Moreover, some of the techniques for analyzing Boolean functions found
applications elsewhere (e.g., in computational learning theory, combinatorics and
game theory).

B.2.1 Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits. Another
basic fact is that most Boolean functions require exponential size circuits, which is
due to the gap between the number of functions and the number of small circuits.

Thus, hard functions (i.e., functions that require large circuits and thus have no
efficient algorithms) do exist, to say the least. However, the aforementioned hard-
ness result is proved via a counting argument, which provides no way of pointing
to any specific hard function. The situation is even worse: super-linear circuit-size
lower-bounds are not known for any ezplicit function f, even when explicitness
is defined in a very mild sense that only requires f € EXP.* One major open
problem of circuit complexity is establishing such lower-bounds.

3See either Theorem 1.13 or Theorem 3.7.

4Indeed, a more natural (and still mild) notion of explicitness requires that f € £. This notion
implies that the function’s description (restricted to n-bit long inputs) can be constructed in time
that is polynomial in the length of the description.

B.2. BOOLEAN CIRCUIT COMPLEXITY 521

Open Problem B.2 Find an explicit function f:{0,1}* — {0,1} (or even f:
{0,1}*—{0,1}* such that |f(z)| = O(|z|)) for which S(f) is not O(n).

A particularly basic special case of this open problem is the question of whether
addition is easier to perform than multiplication. Let ADD,, : {0,1}" x {0,1}" —
{0,1}"*1 and MULT, :{0,1}"x{0,1}"—{0,1}?>", denote the addition and multipli-
cation functions, respectively, applied to a pair of integers (presented in binary).
For addition we have an optimal upper bound; that is, S(ADD,) = O(n). For
multiplication, the standard (elementary school) quadratic-time algorithm can be
greatly improved (via Discrete Fourier Transforms) to almost-linear time, yield-
ing S(MULT,,) = 5(n) Now, the question is whether or not there exist linear-size
circuits for multiplication (i.e., is S(MULT,) = O(n))?

Unable to report on any super-linear lower-bound (for an explicit function),
we turn to restricted types of Boolean circuits. There has been some remarkable
successes in developing techniques for proving strong lower-bounds for natural re-
stricted classes of circuits. We describe the most important ones, and refer the
reader to [46, 235] for further detail.

Recall that general Boolean circuits can compute every function. In contrast,
restricted types of circuits (e.g., monotone circuits) may only be able to compute
a subclass of all functions (e.g., monotone functions), and in such a case we shall
seek lower-bounds on the size of such restricted circuits that compute a function in
the corresponding subclass. Such a restriction is appealing provided that the cor-
responding class of functions and the computations represented by the restricted
circuits are natural (from a conceptual or practical viewpoint). The models dis-
cussed below satisfy this condition.

B.2.2 Monotone Circuits

One very natural restriction on circuits arises by forbidding negation (in the set
of gates), namely allowing only A and V gates. The resulting circuits are called
monotone and they can compute a function f:{0,1}™ — {0,1} if and only if f is
monotone with respect to the standard partial order on n-bit strings (i.e., z <y
iff for every bit position i we have x; < y;). An extremely natural question in
this context is whether or not non-monotone operations (in the circuit) help in
computing monotone functions?

Before turning to this question, we note that most monotone functions re-
quire exponential size circuits (let alone monotone ones).® Still, proving a super-
polynomial lower-bound on the monotone circuit complexity of an explicit mono-
tone function was open for several decades, till the invention of the so-called ap-
prozimation method (by Razborov [187]).

Let CLIQUE, be the function that, given a graph on n vertices (by its adjacency
matrix), outputs 1 if and only if the graph contains a complete subgraph of size

5A key observation is that it suffices to consider the set of n-bit monotone functions that
evaluate to 1 (resp., to 0) on each string © = w1 ---x, satisfying Z?zl z; > |[n/2]| (resp.,

n . . . n .
Zi:l z; < [n/2]). Note that each such function is specified by (I_n/2J) bits.

522 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

(say) v/n. This function is clearly monotone, and CLIQUE = {CLIQUE,} is known
to be NP-complete.

Theorem B.3 ([187], improved in [7]): There are no polynomial-size monotone
circuits for CLIQUE.

We note that the lower-bounds are sub-exponential in the number of vertices (i.e.,
S(CLIQUE,) = exp(Q(n'/?))), and that similar lower-bounds are known for func-
tions in P. Thus, there exists an exponential separation between monotone circuit
complexity and non-monotone circuit complexity, where this separation refers (of
course) to the computation of monotone functions.

B.2.3 Bounded-Depth Circuits

The next restriction refers to the structure of the circuit (or rather to its underling
graph): we allow all gates, but limit the depth of the circuit. The depth of a dag
is simply the length of the longest directed path in it. So in a sense, depth cap-
tures the parallel time to compute the function: if a circuit has depth d, then the
function can be evaluated by enough processors in d phases (where in each phase
many gates are evaluated in parallel). Indeed, parallel time is a natural and im-
portant computational resource, referring to the following basic question: can one
speed up computation by using several computers in parallel? Determining which
computational tasks can be “parallelized” when many processors are available and
which are “inherently sequential” is clearly a fundamental question.

We will restrict d to be a constant, which still is interesting not only as a measure
of parallel time but also due to the relation of this model to expressibility in first
order logic as well as to the Polynomial-time Hierarchy (defined in Section 3.2). In
the current setting (of constant-depth circuits), we allow unbounded fan-in (i.e., A-
gates and V-gates taking any number of incoming edges), as otherwise each output
bit can depend only on a constant number of input bits.

Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (for
majority) be 1 if and only if there are more 1’s than 0’s among the input bits. The
invention of the random restriction method (by Furst, Saxe, and Sipser [83]) led to
the following basic result.

Theorem B.4 ([83], improved in [239, 115]): For all constant d, the functions PAR
and MAJ have no polynomial size circuit of depth d.

The aforementioned improvement (of Hastad [115], following Yao [115]) gives a
relatively tight lower-bound of exp(€2(n'/(#=1))) on the size of n-input PAR circuits
of depth d.

Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits)
even if the circuits are also allowed (unbounded fan-in) PAR-gates (this result is
based on yet another proof technique: approzimation by polynomials [209, 188]).
However, the “converse” does not hold (i.e., constant-depth polynomial-size cir-
cuits with MAJ-gates can compute PAR), and in general the class of constant-depth
polynomial-size circuits with MAJ-gates (denoted 7C°) seems quite powerful. In

B.2. BOOLEAN CIRCUIT COMPLEXITY 523

particular, nobody has managed to prove that there are functions in NP that can-
not be computed by such circuits, even if their depth is restricted to 3.

B.2.4 Formula Size

The final restriction is again structural — we require the underlying dag to be a
tree (i.e., a dag in which each vertex has at most one outgoing edge). Intuitively,
this forbids the computation from reusing a previously computed intermediate value
(and if this value is needed again then it has to be recomputed). Thus, the resulting
Boolean circuits are simply Boolean formulae. (Indeed, we are back to the basic
model allowing negation (=), and A,V gates of fan-in 2.)

Formulae are natural not only for their prevalent mathematical use, but also
because their size can be related to the depth of general circuits and to the memory
requirements of Turing machines (i.e., their space complexity). One of the oldest
results on Circuit Complexity, is that PAR and MAJ have nontrivial lower-bounds
in this model. The proof follows a simple combinatorial (or information theoretic)
argument.

Theorem B.5 [144]: Boolean formulae for n-bit PAR and MAJ require Q(n?) size.

This should be contrasted with the linear-size circuits that exist for both functions.%
Encouraged by Theorem B.5, one may hope to see super-polynomial lower-bounds
on the formula-size of explicit functions. This is indeed a famous open problem.

Open Problem B.6 Find an explicit Boolean function f that requires super-polynomial
size formulae.

An equivalent formulation of this open problem calls for proving a super-logarithmic
lower-bound on the depth of formulae (or circuits) computing f.

One appealing method for addressing such challenges is the communication
complezxity method (of Karchmer and Wigderson [141]). This method asserts that
the depth of a formula for a Boolean function f equals the communication com-
plexity in the following two party game, G . In the game, the first party is given
x € f71(1) N {0,1}", the second party is given y € f1(0) N {0,1}", and their
goal is to find a bit location on which = and y disagree (i.e., ¢ such that z; # y;,
which clearly exists). To that end, the party exchange messages, according to a
predetermined protocol, and the question is what is the communication complexity
(in terms of total number of bits exchanged on the worst-case input pair) of the
best such protocol. We stress that no computational restrictions are placed on the
parties in the game/protocol.

Note that proving a super-logarithmic lower-bound on the communication com-
plexity of the game Gy will establish a super-logarithmic lower-bound on the depth
of formulae (or circuits) computing f (and thus a super-polynomial lower-bound
on the size of formulae computing f). We stress the fact that a lower-bound of a
purely information theoretic nature implies a computational lower-bound!

65We comment that S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not.

524 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

We mention that the communication complexity method has a monotone ver-
sion such that the depth of monotone circuits is related to the communication
complexity of protocols that are required to find an ¢ such that x; > y; (rather
than any ¢ such that x; # y;).” In fact, the monotone version is better known
than the general one, due to its success in leading to linear lower-bounds on the
monotone depth of natural problems such as perfect matching (established by Raz
and Wigderson [186]).

B.3 Arithmetic Circuits

We now leave the Boolean rind, and discuss circuits over general fields. Fixing any
field F, the gates of the dag will now be the standard 4+ and x operations of the
field, yielding a so-called arithmetic circuit. The inputs of the dag will be assigned
elements of the field F', and these values induce an assignment of values (in F') to all
other vertices. Thus, an arithmetic circuit with n inputs and m outputs computes
a polynomial map p : F™* — F™, and every such polynomial map is computed
by some circuit (modulo the convention of allowing some inputs to be set to some
constants, most importantly the constant —1).8

Arithmetic circuits provide a natural description of methods for computing
polynomial maps, and consequently their size is a natural measure of the complexity
of such maps. We denote by Sp(p) the size of a smallest circuit computing the
polynomial map p (and when no subscript is specified, we mean that F = Q
(the field of rational numbers)). As usual, we shall be interested in sequences of
functions, one per each input size, and will study the corresponding circuit-size
asymptotically.

We note that, for any fized finite field, arithmetic circuits can simulate Boolean
circuits (on Boolean inputs) with only constant factor loss in size. Thus, the study
of arithmetic circuits focuses more on infinite fields, where lower bounds may be
easier to obtain.

As in the Boolean case, the existence of hard functions is easy to establish (via
dimension considerations, rather than counting argument), and we will be inter-
ested in explicit (families of) polynomials. Roughly speaking, a polynomial is called
explicit if there exists an efficient algorithm that, when given a degree sequence
(which specifies a monomial), outputs the (finite description of the) corresponding
coefficient.

An important parameter, which is absent in the Boolean model, is the degree of
the polynomial(s) computed. It is obvious, for example, that a degree d polynomial
(even in one variable, i.e., n = 1) requires size at least logd. We briefly consider
the univariate case (where d is the only measure of “problem size”), which already
contains striking and important open problems. Then we move to the general

"Note that since f is monotone, f(z) = 1 and f(y) = 0 implies the existence of an 4 such that
z; =1 and y; = 0.

8This allows the emulation of adding a constant, multiplication by a constant, and subtraction.
We mention that, for the purpose of computing polynomials (over infinite fields), division can be
efficiently emulated by the other operations.

B.3. ARITHMETIC CIRCUITS 525

multivariate case, in which (as usual) the number of variables (i.e., n) will be the
main parameter (and we shall assume that d < n). We refer the reader to [86, 215]
for further detail.

B.3.1 Univariate Polynomials

How tight is the log d lower-bounds for the size of an arithmetic circuit computing
a degree d polynomial? A simple dimension argument shows that for most degree
d polynomials p, it holds that S(p) = Q(d). However, we know of no explicit one:

Open Problem B.7 Find an explicit polynomial p of degree d, such that S(p) is
not O(log d).

To illustrate this open problem, we consider the following two concrete polynomials
pa(z) = 2% and gq(z) = (z + 1)(z +2) - (z + d). Clearly, S(ps) < 2logd (via
repeated squaring), so the trivial lower-bound is essentially tight. On the other
hand, it is a major open problem to determine S(gq), and the common conjecture
is that S(gq) is not polynomial in log d. To realize the importance of this conjecture,
we state the following proposition:

Proposition B.8 If S(qs) = poly(logd), then the integer factorization problem
can be solved by polynomial-size circuits.

Recall that it is widely believed that the integer factorization problem is intractable
(and, in particular, does not have polynomial-size circuits).

Proof Sketch: Proposition B.8 follows by observing that q4(t) = ((¢t + d)!)/(¢!)
and that a small circuit for computing ¢4 yields an efficient way of obtaining the
value ((t + d)!)/(t!) mod N (by emulating the computation of the former circuit
modulo N). Observing that (Zle K)! = Hle in(Zf:H_l K;), it follows that
the value of (K!) mod N can be obtained by using circuits for the polynomials
(goi i =1,..,|log, K|). Next, observe that (K!) mod N and N are relatively
prime if and only if all prime factors of N are bigger than K. Thus, given a
composite N (and circuits for (g : ¢ =1,.., |log, N])), we can find a factor of N
by performing a binary search for a suitable K. O

B.3.2 Multivariate Polynomials

We are now back to polynomials with n variables. To make n our only “problem
size” parameter, it is convenient to restrict ourselves to polynomials whose total
degree is at most n.

Once again, almost every polynomial p in m variables requires size S(p) >
exp(2(n)), and we seek explicit polynomial (families) that are hard. Unlike in
the Boolean world, here there are slightly nontrivial lower-bounds (via elementary
tools from algebraic geometry).

Theorem B.9 [26]: S(z] + x5 + --- +2})) = Q(nlogn).

n

526 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

The same techniques extend to prove a similar lower-bound for other natural poly-
nomials such as the symmetric polynomials and the determinant. Establishing a
stronger lower-bound for any explicit polynomial is a major open problem. Another
open problem is obtaining a super-linear lower-bound for a polynomial map of con-
stant (even 1) total degree. Outstanding candidates for the latter open problem
are the linear maps computing the Discrete Fourier Transform over the Complex
numbers, or the Walsh transform over the Rationals (for both O(nlogn)-time al-
gorithms are known, but no super-linear lower-bounds are known).

We now focus on specific polynomials of central importance. The most natural
and well studied candidate for the last open problem is the matrix multiplication
function MM: let A, B be two m x m matrices over F', and define MM, (A, B) to be
the sequence of n = m? values of the entries of the matrix A x B. Thus, MM, is a
sequence of n explicit bilinear forms over the 2n input variables (which represent
the entries of both matrices). It is known that Sgp(2)(MM,) > 3n (cf., [206]). On
the other hand, the obvious algorithm that takes O(m?) = O(n?/?) steps can be
improved.

Theorem B.10 [62]: For every field F, it holds that Sp(MM,,) = o(n'1?).

So what is the complexity of MM (even if one counts only multiplication gates)? Is
it linear or almost-linear or is it the case that S(MM) > n* for some « > 17 This is
indeed a famous open problem.

We next consider the determinant and permanent polynomials (DET and PER,
resp.) over the n = m? variables representing an m x m matrix. While DET plays
a major role in classical mathematics, PER is somewhat esoteric in that context
(though it appears in Statistical Mechanics and Quantum Mechanics). In the con-
text of complexity theory both polynomials are of great importance, because they
capture natural complexity classes. The function DET has relatively low complex-
ity (and is related to the class of polynomials having polynomial-sized arithmetic
formulae), whereas PER seems to have high complexity (and is complete for the
counting class #P (see §6.2.1)). Thus, it is conjectured that PER is not polynomial-
time reducible to DET. One restricted type of reduction that makes sense in this
algebraic context is a reduction by projection.

Definition B.11 (projections): Let p, : F™* — F* and qn : FN — F* be poly-
nomial maps and x1,...,T, be variables over F. We say that there is a projection
from p,, to gy over F, if there exists a function 7 : [N] — {x1,...,x, } UF such that
Pn(Z1, ey Tn) = gn(w(1), ..., 7(N)).

Clearly, if there is a projection from p, to gy then Sp(p,) < Sp(qy). Let DET,,
and PER,, denote the functions DET and PER restricted to m-by-m matrices. It is
known that there is a projection from PER,, to DET3=, but to yield a polynomial-
time reduction one would need a projection of PER,, to DET)- Needless to say,
it is conjectured that no such projection exists.

poly(m

B.4. PROOF COMPLEXITY 527

B.4 Proof Complexity

It is common practice to classify proofs according to the level of their difficulty,
but can this appealing classification be put on sound grounds? This is essentially
the task undertaken by Proof Complexity. It seeks to classify theorems according
to the difficulty of proving them, much like Circuit Complexity seeks to classify
functions according to the difficulty of computing them. Furthermore, just like
in circuit complexity, we shall also refer to a few (restricted) models, called proof
systems, which represent various methods of reasoning. Thus, the difficulty of
proving various theorems will be measured with respect to various proof systems.

We will consider only propositional proof systems, and so the theorems (in these
systems) will be propositional tautologies. Each of these systems will be complete
and sound; that is, each tautology and only a tautology will have a proof relative
to these systems. The formal definition of a proof system spells out what we take
for granted: the efficiency of the verification procedure. In the following definition
the efficiency of the verification procedure refers to its running-time measured in
terms of the total length of the alleged theorem and proof.’

Definition B.12 [61]: A (propositional) proof system is a polynomial-time Turing
machine M such that a formula T is a tautology if and only if there exists a string
m, called a proof, such that M (w,T) = 1.

In agreement with standard formalisms, the proof is viewed as coming before the
theorem. Definition B.12 guarantees the completeness and soundness of the proof
system as well as verification efficiency (relative to the total length of the alleged
proof-theorem pair). Note that Definition B.12 allows proofs of arbitrary length,
suggesting that the length of the proof 7 is a measure of the complexity of the
tautology T' with respect to the proof system M.

For each tautology T', let £ (1) denote the length of the shortest proof of T' in
M (i.e., the length of the shortest string 7 such that M accepts (7,7")). That is,
Ly captures the proof complexity of various tautologies with respect to the proof
system M. Abusing notation, we let £;(n) denotes the maximum £y, (7") over
all tautologies T' of length n. (By definition, for every proof system M, the value
L (n) is well-defined and so £y is a total function over the natural numbers.) The
following simple theorem provides a basic connection between proof complexity
(with respect to any propositional proof system) and computational complexity
(i.e., the NP-vs-coNP Question).

Theorem B.13 [61]: There exists a propositional proof system M such that the
function Ly is upper-bounded by a polynomial if and only if NP = coN'P.

In particular, a propositional proof system M such that £, is upper-bounded by
a polynomial coincides with a NP-proof system (as in Definition 2.5) for the set of
propositional tautologies, which is a coNP-complete set.

9Indeed, this convention differs from the convention emplyed in Chapter 9, where the com-
plexity of verification (i.e., verifier’s running-time) was measured as a function of the length of
the alleged theorem. Both approaches were mentioned in Section 2.1, where the two approaches
coincide because in Section 2.1 we mandated proofs of length polynomial in the alleged theorem.

528 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

The long-term goal of Proof Complexity is establishing super-polynomial lower-
bounds on the length of proofs in any propositional proof system (and thus es-
tablishing NP # coNP). It is natural to start this formidable project by first
counsidering simple (and thus weaker) proof systems, and then moving on to more
and more complex ones. Moreover, various natural proof systems, capturing ba-
sic (restricted) types and “primitives” of reasoning as well as natural tautologies,
suggest themselves as objects for this study. In the rest of this section we focus on
such restricted proof systems.

Different branches of Mathematics such as logic, algebra and geometry give rise
to different proof systems, often implicitly. A typical system would have a set of
axioms and a set of deduction rules. A proof (in this system) would proceed to
derive the desired tautology in a sequence of steps, each producing a formula (often
called a line of the proof), which is either an axiom, or follows from previous for-
mulae via one of the deduction rules. Regarding these proof systems, we make two
observations. First, proofs in these systems can be easily verified by an algorithm
and thus they fit the general framework of Definition B.12. Second, these proof
systems perfectly fit the model of a dag with internal vertices lbeled by deduction
rules (as in Section B.1): When assigning axioms to the inputs, the application of
the deduction rules at the internal vertices yields a proof of the tautology assigned
to each output.'?

For various proof systems II, we turn to study the proof length £;(7") of tau-
tologies T' in proof system II. The first observation, revealing a major difference
between proof complexity and circuit complexity, is that the trivial counting ar-
gument fails. The reason is that, while the number of functions on n bits is 22",
there are at most 2" tautologies of this length. Thus, in proof complexity, even the
existence of a hard tautology, not necessarily an explicit one, would be of interest
(and, in particular, if established for all propositional proof systems then it would
yield NP # coN'P). (Note that here we refer to hard instances of of a problem
and not to hard problems.) Anyhow, as we shall see, most known proof-length
lower-bounds (with respect to restricted proof systems) apply to very natural (let
alone explicit) tautologies.

An important convention: There is an equivalent and somewhat more conve-
nient view of (simple) proof systems, namely as (simple) refutation systems. First,
recalling that 3SAT is NP-complete, note that the negation of any (propositional)
tautology can be written as a conjunction of clauses, where each clause is a disjunc-
tion of only 3 literals (variables or their negation). Now, if we take these clauses
as axioms and derive (using the rules of the system) a obvious contradiction (e.g.,
the negation of an axiom, or better yet the empty clause), then we have proved the
tautology (since we have proved that its negation yields a contradiction). Proof
complexity often takes the refutation viewpoint, and often exchanges “tautology”
with its negation (“contradiction”).

10General proof systems as in Definition B.12 can also be adapted to this formalism, by con-
sidering a deduction rule that corresponds to a single step of the machine M. However, the
deduction rules considered below are even simpler, and more importantly they are more natural.

B.4. PROOF COMPLEXITY 529

Organization: The rest of this section is divided to three parts, referring to
logical, algebraic and geometric proof systems. We will briefly describe important
representative and basic results in each of these domains, and refer the reader
to [27] for further detail (and, in particular, to adequate references).

B.4.1 Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formulae,
and the differences will be in the structural limits imposed on these formulae. The
most basic proof system, called Frege system, puts no restriction on the formulae
manipulated by the proof. It has one derivation rule, called the cut rule: AVC, BV
-C F AV B (for any propositional formulae A, B and C'). Adding any other sound
rule, like modus ponens, has little effect on the length of proofs in this system.

Frege systems are basic in the sense that (in several variants) they are the
most common systems in Logic. Indeed, polynomial length proofs in Frege systems
naturally corresponds to “polynomial-time reasoning” about feasible objects. The
major open problem in proof complexity is finding any tautology (i.e., a family of
tautologies) that has no polynomial-long proof in the Frege system.

Since lower-bounds for Frege systems seem intractable at the moment, we turn
to subsystems of Frege which are interesting and natural. The most widely studied
system (of refutation) is Resolution, whose importance stems from its use by most
propositional (as well as first order) automated theorem provers. The formulae al-
lowed as lines in Resolution are clauses (disjunctions), and so the cut rule simplifies
to the resolution rule: AV z, BV -z + AV B, for any clauses A, B and variable z.

The gap between the power of general Frege systems and Resolution is reflected
by the existence of tautologies that are easy for Frege and hard for Resolution. A
specific example is provided by the pigeonhole principle, denoted PHP]', which is a
propositional tautology that expresses the fact that there is no one-to-one mapping
of m pigeons to n < m holes.

Theorem B.14 Lpege(PHP?) = n%W) but Lesorution(PHPET!) = 2%(m)

B.4.2 Algebraic Proof Systems

Just as a natural contradiction in the Boolean setting is an unsatisfiable collection
of clauses, a natural contradiction in the algebraic setting is a system of polyno-
mials without a common root. Moreover, CNF formulae can be easily converted
to a system of polynomials, one per clause, over any field. One often adds the
polynomials z? — ; which ensure Boolean values.

A natural proof system (related to Hilbert’s Nullstellensatz, and to computa-
tions of Grobner bases in symbolic algebra programs) is Polynomial Calculus, abbre-
viated PC. The lines in this system are polynomials (represented explicitly by all
coefficients), and it has two deduction rules: For any two polynomials g, h, the rule
g,h F g+ h, and for any polynomial g and variable z;, the rule g, z; - x;g. Strong
length lower-bounds (obtained from degree lower-bounds) are known for this sys-

530 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

tem. For example, encoding the pigeonhole principle PHP" as a contradicting set
of constant degree polynomials, we have the following lower-bound.

Theorem B.15 For every n and every m > n, it holds that Lpc(PHP™) > 27/2
over every field.

B.4.3 Geometric Proof Systems

Yet another natural way to represent contradictions is by a set of regions in space
that have empty intersection. Again, we care mainly about discrete (say, Boolean)
domains, and a wide source of interesting contradictions are integer programs aris-
ing from Combinatorial Optimization. Here, the constraints are (affine) linear
inequalities with integer coefficients (so the regions are subsets of the Boolean cube
carved out by half-spaces). The most basic system is called Cutting Planes (CP),
and its lines are linear inequalities with integer coefficients. The deduction rules
of PC are (the obvious) addition of inequalities, and the (less obvious) division of
the coeflicients by a constant (and rounding, taking advantage of the integrality of
the solution space).

While PHP]' is “easy” in this system, exponential lower-bounds are known for
other tautologies. We mention that they are obtained from the monotone circuit
lower bounds of Section B.2.2.

Appendix C

On the Foundations of
Modern Cryptography

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906-1995)

Summary: Cryptography is concerned with the construction of com-
puting systems that withstand any abuse: Such a system is constructed
so to maintain a desired functionality, even under malicious attempts
aimed at making it deviate from this functionality.

This appendix is aimed at presenting the foundations of cryptography,
which are the paradigms, approaches and techniques used to concep-
tualize, define and provide solutions to natural security concerns. It
presents some of these conceptual tools as well as some of the funda-
mental results obtained using them. The emphasis is on the clarification
of fundamental concepts, and on demonstrating the feasibility of solving
several central cryptographic problems. The presentation assumes ba-
sic knowledge of algorithms, probability theory and complexity theory,
but nothing beyond this.

The appendix augments the treatment of one-way functions, pseudoran-
dom generators and zero-knowledge proofs, given in Sections 7.1, 8.2
and 9.2, respectively.! Using these basic primitives, the appendix pro-
vides a treatment of basic cryptographic applications such as Encryp-
tion, Signatures, and General Cryptographic Protocols.

IThese augmentations are important for cryptography, but are not central to complexity theory
and thus were omitted from the main text.

531

532APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

C.1 Introduction and Preliminaries

The rigorous treatment and vast expansion of cryptography is one of the major
achievements of theoretical computer science. In particular, classical notions such
as secure encryption and unforgeable signatures were placed on sound grounds,
and new (unexpected) directions and connections were uncovered. Furthermore,
this development was coupled with the introduction of novel concepts such as com-
putational indistinguishability, pseudorandomness, and zero-knowledge interactive
proofs, which are of independent interest (see Sections 7.1, 8.2 and 9.2, respec-
tively). Indeed, modern cryptography is strongly coupled with complexity theory
(in contrast to “classical” cryptography which is strongly related to information
theory).

C.1.1 The Underlying Principles

Modern cryptography is concerned with the construction of information systems
that are robust against malicious attempts aimed at causing these systems to violate
their prescribed functionality. The prescribed functionality may be the secret and
authenticated communication of information over an insecure channel, the holding
of incoercible and secret electronic voting, or conducting any “fault-resilient” multi-
party computation. Indeed, the scope of modern cryptography is very broad, and
it stands in contrast to “classical” cryptography (which has focused on the single
problem of enabling secret communication over insecure channel).

C.1.1.1 Coping with adversaries

Needless to say, the design of cryptographic systems is a very difficult task. One
cannot rely on intuitions regarding the “typical” state of the environment in which
the system operates. For sure, the adversary attacking the system will try to ma-
nipulate the environment into “untypical” states. Nor can one be content with
counter-measures designed to withstand specific attacks, since the adversary (which
acts after the design of the system is completed) will try to attack the schemes in
ways that are different from the ones the designer had envisioned. Although the
validity of the foregoing assertions seems self-evident, still some people hope that
in practice ignoring these tautologies will not result in actual damage. Experi-
ence shows that these hopes rarely come true; cryptographic schemes based on
make-believe are broken, typically sooner than later.

In view of the foregoing, it makes little sense to make assumptions regarding
the specific strategy that the adversary may use. The only assumptions that can
be justified refer to the computational abilities of the adversary. Furthermore,
the design of cryptographic systems has to be based on firm foundations; whereas
ad-hoc approaches and heuristics are a very dangerous way to go.

The foundations of cryptography are the paradigms, approaches and techniques
used to conceptualize, define and provide solutions to natural “security concerns”.
Solving a cryptographic problem (or addressing a security concern) is a two-stage
process consisting of a definitional stage and a constructive stage. First, in the

C.1. INTRODUCTION AND PRELIMINARIES 533

definitional stage, the functionality underlying the natural concern is to be iden-
tified, and an adequate cryptographic problem has to be defined. Trying to list
all undesired situations is infeasible and prone to error. Instead, one should define
the functionality in terms of operation in an imaginary ideal model, and require
a candidate solution to emulate this operation in the real, clearly defined, model
(which specifies the adversary’s abilities). Once the definitional stage is completed,
one proceeds to construct a system that satisfies the definition. Such a construction
may use some simpler tools, and in such a case its security is proved relying on the
features of these tools.

Example: Starting with the wish to ensure secret (resp., reliable) communication
over insecure channels, the definitional stage leads to the formulation of the notion
of secure encryption schemes (resp., signature schemes). Next, such schemes are
constructed by using simpler primitives such as one-way functions, and the security
of the construction is proved via a “reducibility argument” (which demonstrates
how inverting the one-way function “reduces” to violating the claimed security of
the construction; cf., Section 7.1.2).

C.1.1.2 The use of computational assumptions

Like in the case of the foregoing example, most of the tools and applications of
cryptography exist only if some sort of computational hardness exists. Specifically,
these tools and applications require (either explicitly or implicitly) the ability to
generate instances of hard problems. Such ability is captured in the definition
of one-way functions. Thus, one-way functions are the very minimum needed for
doing most natural tasks of cryptography. (It turns out, as we shall see, that
this necessary condition is “essentially” sufficient; that is, the existence of one-way
functions (or augmentations and extensions of this assumption) suffices for doing
most of cryptography.)

Our current state of understanding of efficient computation does not allow us
to prove that one-way functions exist. In particular, as discussed in Sections 7.1.1
and C.2, proving that one-way functions exist seems even harder than proving that
P # N'P. Hence, we have no choice (at this stage of history) but to assume that
one-way functions exist. As justification to this assumption we can only offer the
combined beliefs of hundreds (or thousands) of researchers. Furthermore, these
beliefs concern a simply stated assumption, and their validity follows from several
widely believed conjectures which are central to various fields (e.g., the conjectured
intractability of integer factorization is central to computational number theory).

Since we need assumptions anyhow, “why not just assume whatever we want”
(i-e., the existence of a solution to some natural cryptographic problem)? Well,
firstly, we need to know what we want; that is, we must first clarify what ezactly
we want, which means going through the typically complex definitional stage. But
once this stage is completed and a definition is obtained, can we just assume the
existence of a system satisfying this definition? Not really: the mere existence of a
definition does not imply that it can be satisfied by any system.

534APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

The way to demonstrate that a cryptographic definition is viable (and that
the corresponding intuitive security concern can be satisfied) is to prove that it
can be satisfied based on a better understood assumption (i.e., one that is more
common and widely believed). For example, looking at the definition of zero-
knowledge proofs, it is not a-priori clear that such proofs exist at all (in a non-trivial
sense). The non-triviality of the notion was first demonstrated by presenting a zero-
knowledge proof system for statements, regarding Quadratic Residuosity, which are
believed to be hard to verify (without extra information). Furthermore, contrary
to prior beliefs, it was later shown that the existence of one-way functions implies
that any NP-statement can be proved in zero-knowledge. Thus, facts that were
not known at all to hold (and were even believed to be false), have been shown
to hold by “reduction” to widely believed assumptions (without which most of
cryptography collapses anyhow).

In summary: not all assumptions are equal. Thus, “reducing” a complex, new
and doubtful assumption to a widely-believed and simple (or even merely simpler)
assumption is of great value. Furthermore, “reducing” the solution of a new task
to the assumed security of a well-known primitive typically means providing a
construction that, using the known primitive, solves the new task. This means
that we do not only gain confidence about the solvability of the new task, but we
also obtain a solution based on a primitive that, being well-known, typically has
several candidate implementations.

C.1.2 The Computational Model

Cryptography, as surveyed here, is concerned with the construction of efficient
schemes for which it is infeasible to violate the security feature. Thus, we need a
notion of efficient computations as well as a notion of infeasible ones. The compu-
tations of the legitimate users of the scheme ought be efficient, whereas violating
the security features (by an adversary) ought to be infeasible. We stress that we do
not identify feasible computations with efficient ones, but rather view the former
notion as potentially more liberal. Let us elaborate.

C.1.2.1 Efficient Computations and Infeasible ones

Efficient computations are commonly modeled by computations that are polynomial-
time in the security parameter. The polynomial bounding the running-time of the
legitimate user’s strategy is fized and typically ezplicit (and small). Indeed, our
aim is to have a notion of efficiency that is as strict as possible (or, equivalently,
develop strategies that are as efficient as possible). Here (i.e., when referring to
the complexity of the legitimate users) we are in the same situation as in any algo-
rithmic setting. Things are different when referring to our assumptions regarding
the computational resources of the adversary, where we refer to the notion of fea-
sible, which we wish to be as wide as possible. A common approach is to postulate
that feasible computations are polynomial-time too, but here the polynomial is not
a-priori specified (and is to be thought of as arbitrarily large). In other words, the

C.1. INTRODUCTION AND PRELIMINARIES 535

adversary is restricted to the class of polynomial-time computations and anything
beyond this is considered to be infeasible.

Although many definitions explicitly refer to the convention of associating fea-
sible computations with polynomial-time ones, this convention is inessential to
any of the results known in the area. In all cases, a more general statement can
be made by referring to a general notion of feasibility, which should be preserved
under standard algorithmic composition, yielding theories that refer to adversaries
of running-time bounded by any specific super-polynomial function (or class of
functions). Still, for sake of concreteness and clarity, we shall use the former con-
vention in our formal definitions (but our motivational discussions will refer to an
unspecified notion of feasibility that covers at least efficient computations).

C.1.2.2 Randomized (or probabilistic) Computations

Randomized computations play a central role in cryptography. One fundamental
reason for this fact is that randomness is essential for the existence (or rather the
generation) of secrets. Thus, we must allow the legitimate users to employ random-
ized computations, and certainly (since we consider randomization as feasible) we
must consider also adversaries that employ randomized computations. This brings
up the issue of success probability: typically, we require that legitimate users suc-
ceed (in fulfilling their legitimate goals) with probability 1 (or negligibly close to
this), whereas adversaries succeed (in violating the security features) with negli-
gible probability. Thus, the notion of a negligible probability plays an important
role in our exposition.

One requirement of the definition of negligible probability is to provide a robust
notion of rareness: A rare event should occur rarely even if we repeat the experiment
for a feasible number of times. That is, in case we consider any polynomial-time
computation to be feasible, a function p: N — N is called negligible if 1 — (1 —
w(n))P(M) < 0.01 for every polynomial p and sufficiently big n (i.e., u is negligible
if for every positive polynomial p’ the function p(-) is upper-bounded by 1/p'(+)).

We will also refer to the notion of noticeable probability. Here the requirement
is that events that occur with noticeable probability, will occur almost surely (i.e.,
except with negligible probability) if we repeat the experiment for a polynomial
number of times. Thus, a function v:N— N is called noticeable if for some positive
polynomial p’ the function v(+) is lower-bounded by 1/p'(+).

C.1.3 Organization and Beyond

This appendix focuses on several archetypical cryptographic problems (e.g., en-
cryption and signature schemes) and on several central tools (e.g., computational
difficulty, pseudorandomness, and zero-knowledge proofs). For each of these prob-
lems, we start by presenting the natural concern underlying it, then define the
problem, and finally demonstrate that the problem may be solved. In the latter
step, our focus is on demonstrating the feasibility of solving the problem, not on
providing a practical solution.

536 APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Our aim is to present the basic concepts, techniques and results in cryptography,
and our emphasis is on the clarification of fundamental concepts and the relation-
ship among them. This is done in a way independent of the particularities of some
popular number theoretic examples. These particular examples played a central
role in the development of the field and still offer the most practical implementa-
tions of all cryptographic primitives, but this does not mean that the presentation
has to be linked to them. On the contrary, we believe that concepts are best clari-
fied when presented at an abstract level, decoupled from specific implementations.

Actual organization: The appendix is organized in two main parts, correspond-
ing to the Basic Tools of Cryptography and the Basic Applications of Cryptography.

The basic tools: The most basic tool is computational difficulty, which in turn is
captured by the notion of one-way functions. Another notion of key impor-
tance is that of computational indistinguishability, underlying the theory of
pseudorandomness as well as much of the rest of cryptography. Pseudoran-
dom generators and functions are important tools that are frequently used.
So are zero-knowledge proofs, which play a key role in the design of secure
cryptographic protocols and in their study.

The basic applications: Encryption and signature schemes are the most basic
applications of Cryptography. Their main utility is in providing secret and
reliable communication over insecure communication media. Loosely speak-
ing, encryption schemes are used for ensuring the secrecy (or privacy) of the
actual information being communicated, whereas signature schemes are used
to ensure its reliability (or authenticity). Another basic topic is the construc-
tion of secure cryptographic protocols for the implementation of arbitrary
functionalities.

The presentation of the basic tools in Sections C.2-C.4 augments (and sometimes
repeats parts of) Sections 7.1, 8.2, and 9.2 (which provide a basic treatment of one-
way functions, pseudorandom generators, and zero-knowledge proofs, respectively).
Sections C.5—C.7, provide a overview of the basic applications; that is, Encryption
Schemes, Signature Schemes, and General Cryptographic Protocols.

Suggestions for further reading. This appendix is a brief summary of the
author’s two-volume work on the subject [91, 92]. Furthermore, the first part (i.e.,
Basic Tools) corresponds to [91], whereas the second part (i.e., Basic Applications)
corresponds to [92]. Needless to say, the interested reader is referred to these
textbooks for further detail (and, in particular, for missing references).

Practice. The aim of this appendix is to introduce the reader to the theoretical
foundations of cryptography. As argued, such foundations are necessary for sound
practice of cryptography. Indeed, practice requires much more than theoretical
foundations, whereas the current text makes no attempt to provide anything be-
yond the latter. However, given a sound foundation, one can learn and evaluate

C.2. COMPUTATIONAL DIFFICULTY 537

various practical suggestions that appear elsewhere. On the other hand, lack of
sound foundations results in inability to critically evaluate practical suggestions,
which in turn leads to unsound decisions. Nothing could be more harmful to the
design of schemes that need to withstand adversarial attacks than misconceptions
about such attacks.

C.2 Computational Difficulty

Modern Cryptography is concerned with the construction of systems that are easy
to operate (properly) but hard to foil. Thus, a complexity gap (between the ease of
proper usage and the difficulty of deviating from the prescribed functionality) lies
at the heart of Modern Cryptography. However, gaps as required for Modern Cryp-
tography are not known to exist; they are only widely believed to exist. Indeed,
almost all of Modern Cryptography rises or falls with the question of whether one-
way functions exist. We mention that the existence of one-way functions implies
that AP contains search problems that are hard to solve on the average, which
in turn implies that AP is not contained in BPP (i.e., a worst-case complexity
conjecture).

Loosely speaking, one-way functions are functions that are easy to evaluate but
hard (on the average) to invert. Such functions can be thought of as an efficient
way of generating “puzzles” that are infeasible to solve (i.e., the puzzle is a random
image of the function and a solution is a corresponding preimage). Furthermore,
the person generating the puzzle knows a solution to it and can efficiently verify
the validity of (possibly other) solutions to the puzzle. Thus, one-way functions
have, by definition, a clear cryptographic flavor (i.e., they manifest a gap between
the ease of one task and the difficulty of a related one).

C.2.1 One-Way Functions

We start by reproducing the basic definition of one-way functions as appearing in
Section 7.1.1, where this definition is further discussed.

Definition C.1 (one-way functions, Definition 7.1 restated): A function f:{0,1}*—
{0,1}* is called one-way if the following two conditions hold:

1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =
f(z) for every x € {0,1}*.

2. Hard to invert: For every probabilistic polynomial-time algorithm A', every
polynomial p, and all sufficiently large n,

1

PrlA'(f(x),1") € f~ (f(z))] < —
[A'(f(x),17) (f(2))] o)

where the probability is taken uniformly over x € {0,1}™ and all the internal
coin tosses of algorithm A’.

538APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Some of the most popular candidates for one-way functions are based on the con-
jectured intractability of computational problems in number theory. One such
conjecture is that it is infeasible to factor large integers. Consequently, the func-
tion that takes as input two (equal length) primes and outputs their product is
widely believed to be a one-way function. Furthermore, factoring such a com-
posite is infeasible if and only if squaring modulo such a composite is a one-way
function (see [183]). For certain composites (i.e., products of two primes that are
both congruent to 3 mod 4), the latter function induces a permutation over the
set of quadratic residues modulo this composite. A related permutation, which is
widely believed to be one-way, is the RSA function [193]: z — 2z mod N, where
N = P - (@ is a composite as above, e is relatively prime to (P — 1) - (Q — 1), and
z € {0,..., N — 1}. The latter examples (as well as other popular suggestions) are
better captured by the following formulation of a collection of one-way functions
(which is indeed related to Definition C.1):

Definition C.2 (collections of one-way functions): A collection of functions, {f;:
D; — {0,1}*}, .7, is called one-way if there exists three probabilistic polynomial-
time algorithms, I, D and F, such that the following two conditions hold:

1. Easy to sample and compute: On input 1™, the output of (the index selection)
algorithm I is distributed over the set I N {0,1}" (i.e., is an n-bit long index
of some function). On input (an index of a function) i € I, the output of
(the domain sampling) algorithm D is distributed over the set D; (i.e., over
the domain of the function f;). On input i € I and x € D;, (the evaluation)
algorithm F always outputs f;(x).

2. Hard to invert:> For every probabilistic polynomial-time algorithm, A', every
positive polynomial p(-), and all sufficiently large n’s

PrlA', @) ef7 (Fi@)] < oo

where i — I(1™) and x «— D(i).

The collection is said to be a collection of permutations if each of the f;’s is a

permutation over the corresponding D;, and D(i) is almost uniformly distributed
m Di.

For example, in case of the RSA, one considers fy . : Dy, — Dy, that satisfies
fn,e(z) = 2° mod N, where Dy = {0,..., N — 1}. Definition C.2 is also a good
starting point for the definition of a trapdoor permutation.?> Loosely speaking,
the latter is a collection of one-way permutations augmented with an efficient al-
gorithm that allows for inverting the permutation when given adequate auxiliary
information (called a trapdoor).

2Note that this condition refers to the distributions I(1™) and D(3), which are merely required
to range over I N {0,1}" and D;, respectively. (Typically, the distributions I(1") and D(i) are
(almost) uniform over I N {0,1}" and D;, respectively.)

3Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter
(and less precise) term is the commonly used one.

C.2. COMPUTATIONAL DIFFICULTY 539

Definition C.3 (trapdoor permutations): A collection of permutations as in Def-
inition C.2 is called o trapdoor permutation if there are two auziliary probabilistic
polynomial-time algorithms I' and F~' such that (1) the distribution I'(1") ranges
over pairs of strings so that the first string is distributed as in I(1™), and (2) for
every (i,t) in the range of I'(1™) and every x € D; it holds that F~1(t, fi(z)) = x.
(That is, ¢ is a trapdoor that allows to invert f;.)

For example, in case of the RSA, the function fx . can be inverted by raising the
image to the power d (modulo N = P -Q), where d is the multiplicative inverse of
e modulo (P —1)-(Q —1). Indeed, in this case, the trapdoor information is (N, d).

Strong versus weak one-way functions (summary of Section 7.1.2). Re-
call that the foregoing definitions require that any feasible algorithm succeeds in
inverting the function with negligible probability. A weaker notion only requires
that any feasible algorithm fails to invert the function with noticeable probability.
It turns out that the existence of such weak one-way functions implies the exis-
tence of strong one-way functions (as in Definition C.1). The construction itself
is straightforward, but analyzing it transcends the analogous information theoretic
setting. Instead, the security (i.e., hardness of inverting) the resulting construction
is proved via a so called “reducibility argument” that transforms the violation of
the conclusion (i.e., the hypothetical insecurity of the resulting construction) into
a violation of the hypothesis (i.e., insecurity of the given primitive). This strategy
(i-e., a “reducibility argument”) is used to prove all conditional results in the area.

C.2.2 Hard-Core Predicates

Recall that saying that a function f is one-way implies that, given a typical f-
image y, it is infeasible to find a preimage of y under f. This does not mean
that it is infeasible to find partial information about the preimage(s) of y under f.
Specifically, it may be easy to retrieve half of the bits of the preimage (e.g., given

a one-way function f consider the function g defined by g(z,r) e (f(z),r), for
every |z|=]r|). As will become clear in subsequent sections, hiding partial infor-
mation (about the function’s preimage) plays an important role in many advanced
cryptographic constructs (e.g., secure encryption). This partial information can be
considered as a “hard core” of the difficulty of inverting f. Loosely speaking, a
polynomial-time computable (Boolean) predicate b, is called a hard-core of a func-
tion f if no feasible algorithm, given f(z), can guess b(x) with success probability
that is non-negligibly better than one half. The actual definition is presented in
Section 7.1.3 (i.e., Definition 7.6).

Note that if b is a hard-core of a 1-1 function f that is polynomial-time com-
putable then f is a one-way function. On the other hand, recall that Theorem 7.7
asserts that for any one-way function f, the inner-product mod 2 of x and r is a
hard-core of the function f', where f'(x,r) = (f(x),r).

540APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

C.3 Pseudorandomness

In practice “pseudorandom” sequences are often used instead of truly random se-
quences. The underlying belief is that if an (efficient) application performs well
when using a truly random sequence then it will perform essentially as well when
using a “pseudorandom” sequence. However, this belief is not supported by ad-
hoc notions of “pseudorandomness” such as passing the statistical tests in [146] or
having large “linear-complexity” (as defined in [112]). Needless to say, using such
“pseudorandom” sequences (instead of truly random sequences) in a cryptographic
application is very dangerous.

In contrast, truly random sequences can be safely replaced by pseudorandom
sequences provided that pseudorandom distributions are defined as being compu-
tationally indistinguishable from the uniform distribution. Such a definition makes
the soundness of this replacement an easy corollary. Loosely speaking, pseudoran-
dom generators are then defined as efficient procedures for creating long pseudo-
random sequences based on few truly random bits (i.e., a short random seed). The
relevance of such constructs to cryptography is in providing legitimate users that
share short random seeds a method for creating long sequences that look random
to any feasible adversary (which does not know the said seed).

C.3.1 Computational Indistinguishability

A central notion in Modern Cryptography is that of “effective similarity” (a.k.a
computational indistinguishability; cf. [108, 238]). The underlying thesis is that
we do not care whether or not objects are equal, all we care about is whether or
not a difference between the objects can be observed by a feasible computation. In
case the answer is negative, the two objects are equivalent as far as any practical
application is concerned. Indeed, in the sequel we will often interchange such
(computationally indistinguishable) objects. In this section we recall the definition
of computational indistinguishability (presented in Section 8.2.3), and consider two
variants.

Definition C.4 (computational indistinguishability, Definition 8.4 revised?): We
say that X = {X,}n,eny and Y = {Y,},cy are computationally indistinguishable
if for every probabilistic polynomial-time algorithm D every polynomial p, and all
sufficiently large n,

1

PAD(L", Xa) =1] = PAD(", Vo) =1]| < s

where the probabilities are taken over the relevant distribution (i.e., either X, or
Y,.) and over the internal coin tosses of algorithm D.

4For sake of streamlining Definition C.4 with Definition C.5 (and unlike in Definition 8.4), here
the distinguisher is explicitly given the index n of the distribution that it inspects. (In typical
applications, the difference between Definitions 8.4 and C.4 is immaterial because the index n is
easily determined from any sample of the corresponding distributions.)

C.3. PSEUDORANDOMNESS 541

See further discussion in Section 8.2.3. In particular, recall that for “efficiently
constructible” distributions, indistinguishability by a single sample (as in Defini-
tion C.4) implies indistinguishability by multiple samples (as in Definition 8.5).

Extension to ensembles indexed by strings. We consider a natural extension
of Definition C.4 in which, rather than referring to ensembles indexed by N, we refer
to ensembles indexed by an arbitrary set S C {0,1}*. Typically, for an ensemble
{Zus}aes, it holds that Z, ranges over strings of length that is polynomially-related
to the length of a.

Definition C.5 We say that {Xa}aes and {Ya}aes are computationally indistin-

guishable if for every probabilistic polynomial-time algorithm D every polynomial
p, and all sufficiently long a € S,

[Pr[D(a, X,)=1] — Pr[D(a,Y,) =1]] <

p(laf)

where the probabilities are taken over the relevant distribution (i.e., either X, or
Y.) and over the internal coin tosses of algorithm D.

Note that Definition C.4 is obtained as a special case by setting S = {1" : n € N}.

A non-uniform version. A non-uniform definition of computational indistin-
guishability can be derived from Definition C.5 by artificially augmenting the in-
dices of the distributions. That is, {X4}aes and {Y,}aes are computationally
indistinguishable in a non-uniform sense if for every polynomial p the ensembles
{XL }owes and {Y] }wcs are computationally indistinguishable (as in Defini-
tion C.5), where S = {afB : a« € S A B € {0,1}?U*D} and Xis = Xo (resp.,
Y5 = Ya) for every 3 € {0, 1}#UeD. An equivalent (alternative) definition can be
obtained by following the formulation that underlies Definition 8.12.

C.3.2 Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient (deterministic) algorithm
that on input a short random seed outputs a (typically much) longer sequence that
is computationally indistinguishable from a uniformly chosen sequence.

Definition C.6 (pseudorandom generator, Definition 8.1 restated): Let £:N—N
satisfy £(n) > n, for alln € N. A pseudorandom generator, with stretch function £,
is a (deterministic) polynomial-time algorithm G satisfying the following:

1. For every s € {0,1}*, it holds that |G(s)| = £(]s])-

2. {G(Un)}nen and {Uyn)}nen are computationally indistinguishable, where
U.. denotes the uniform distribution over {0,1}™.

Indeed, the probability ensemble {G (U,)} en s called pseudorandom.

542APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

We stress that pseudorandom sequences can replace truly random sequences not
only in “standard” algorithmic applications but also in cryptographic ones. That
is, any cryptographic application that is secure when the legitimate parties use
truly random sequences, is also secure when the legitimate parties use pseudo-
random sequences. The benefit in such a substitution (of random sequences by
pseudorandom ones) is that the latter sequences can be efficiently generated using
much less true randomness. Furthermore, in an interactive setting, it is possible to
eliminate all random steps from the on-line execution of a program, by replacing
them with the generation of pseudorandom bits based on a random seed selected
and fixed off-line (or at set-up time). This allows interactive parties to generate
a long sequence of common secret bits based on a shared random seed which may
have been selected at a much earlier time.

Various cryptographic applications of pseudorandom generators will be pre-
sented in the sequel, but let us first recall that pseudorandom generators exist if
and only if one-way functions exist (see Theorem 8.11). For further treatment of
pseudorandom generators, the reader is referred to Section 8.2.

C.3.3 Pseudorandom Functions

Recall that pseudorandom generators provide a way to efficiently generate long
pseudorandom sequences from short random seeds. Pseudorandom functions, in-
troduced and constructed by Goldreich, Goldwasser, and Micali [95], are even more
powerful: they provide efficient direct access to the bits of a huge pseudorandom
sequence (which is not feasible to scan bit-by-bit). More precisely, a pseudorandom
function is an efficient (deterministic) algorithm that given an n-bit seed, s, and an
n-bit argument, x, returns an n-bit string, denoted fs(z), such that it is infeasible
to distinguish the values of fs, for a uniformly chosen s € {0,1}", from the values
of a truly random function F : {0,1}" — {0,1}™. That is, the (feasible) testing
procedure is given oracle access to the function (but not its explicit description),
and cannot distinguish the case it is given oracle access to a pseudorandom function
from the case it is given oracle access to a truly random function.

Definition C.7 (pseudorandom functions): A pseudorandom function (ensemble),
is a collection of functions {f,:{0,1}1*1 = {0,1}*1} ;cq0.1}~ that satisfies the follow-
ing two conditions:

1. (efficient evaluation) There exists an efficient (deterministic) algorithm that
given a seed, s, and an argument, z € {0, 1}*, returns f.(z).

2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,
M, every positive polynomial p and all sufficiently large n’s
1

Pr(M/vn (1) = 1) = Pr[M T (1") = 1]| < —

P |- il 1< o

where F,, denotes a uniformly selected function mapping {0,1}™ to {0,1}"™.

C.3. PSEUDORANDOMNESS 543

One key feature of the foregoing definition is that pseudorandom functions can
be generated and shared by merely generating and sharing their seed; that is, a
“random looking” function f, : {0,1}™ — {0,1}", is determined by its n-bit seed
s. Thus, parties wishing to share a “random looking” function f, (determining
2"-many values), merely need to generate and share among themselves the n-bit
seed s. (For example, one party may randomly select the seed s, and communicate
it, via a secure channel, to all other parties.) Sharing a pseudorandom function
allows parties to determine (by themselves and without any further communication)
random-looking values depending on their current views of the environment (which
need not be known a priori). To appreciate the potential of this tool, one should
realize that sharing a pseudorandom function is essentially as good as being able
to agree, on the fly, on the association of random values to (on-line) given values,
where the latter are taken from a huge set of possible values. We stress that
this agreement is achieved without communication and synchronization: Whenever
some party needs to associate a random value to a given value, v € {0,1}", it will
associate to v the (same) random value r, € {0,1}" (by setting r, = fs(v), where
fs is a pseudorandom function agreed upon beforehand). Concrete applications of
(this power of) pseudorandom functions appear in Sections C.5.2 and C.6.2.

Theorem C.8 (How to construct pseudorandom functions): Pseudorandom func-
tions can be constructed using any pseudorandom generator.

Proof Sketch:®> Let G be a pseudorandom generator that stretches its seed by a
factor of two (i.e., £(n) = 2n), and let Go(s) (resp., G1(s)) denote the first (resp.,
last) |s| bits in G(s). Let

GU|5\'"0201 (3) d=9f GUM (o GUz (thl (S)) o ')7

define fs(z122---,) Lef Gz, - -z212,(8), and consider the function ensemble {f; :

{0,1}*1 = {o, 1}|5‘}5€{071}*. Pictorially, the function f, is defined by n-step walks
down a full binary tree of depth n having labels at the vertices. The root of the
tree, hereafter referred to as the level 0 vertex of the tree, is labeled by the string
s. If an internal vertex is labeled r then its left child is labeled Go(r) whereas its
right child is labeled G;(r). The value of fs(z) is the string residing in the leaf
reachable from the root by a path corresponding to the string z.

We claim that the function ensemble {f},cf0,11+ is pseudorandom. The proof
uses the hybrid technique (cf. Section 8.2.3): The i*" hybrid, denoted H, is a
function ensemble consisting of 22" functions {0,1}" — {0,1}", each determined
by 2* random n-bit strings, denoted 5 = (sg)geqo,13:- The value of such function
hs at © = af, where |§] = 4, is defined to equal G4 (sg). Pictorially, the function
hz is defined by placing the strings in § in the corresponding vertices of level 7, and
labeling vertices of lower levels using the very rule used in the definition of f,. The
extreme hybrids correspond to our indistinguishability claim (i.e., H? = fy, and
H" is a truly random function), and the indistinguishability of neighboring hybrids

5See details in [91, Sec. 3.6.2].

544APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

follows from our indistinguishability hypothesis (by using a reducibility argument).
Specifically, we show that the ability to distinguish H! from Hit! yields an ability
to distinguish multiple samples of G(U,,) from multiple samples of Us,, (by placing
on the fly, halves of the given samples at adequate vertices of the 7 +1%¢ level). O

Variants. Useful variants (and generalizations) of the notion of pseudorandom
functions include Boolean pseudorandom functions that are defined over all strings
(i-e., fs : {0,1}* — {0,1}) and pseudorandom functions that are defined for other
domains and ranges (i.e., f, : {0,1}4sD — {0,1}7UsD for arbitrary polynomially
bounded functions d,7 : N — N). Various transformations between these variants
are known (cf. [91, Sec. 3.6.4] and [92, Apdx. C.2]).

C.4 Zero-Knowledge

Zero-knowledge proofs provide a powerful tool for the design of cryptographic pro-
tocols as well as a good bench-mark for the study of various issues regarding such
protocols. Loosely speaking, zero-knowledge proofs are proofs that yield nothing
beyond the validity of the assertion. That is, a verifier obtaining such a proof
ounly gains conviction in the validity of the assertion (as if it was told by a trusted
party that the assertion holds). This is formulated by saying that anything that is
feasibly computable from a zero-knowledge proof is also feasibly computable from
the (valid) assertion itself. The latter formulation follows the simulation paradigm,
which is discussed next, while reproducing part of the discussion in §9.2.1.1 and
making additional comments regarding the use of this paradigm in cryptography.

C.4.1 The Simulation Paradigm

A key question regarding the modeling of security concerns is how to express the
intuitive requirement that an adversary “gains nothing substantial” by deviating
from the prescribed behavior of an honest user. The answer provided by the sim-
ulation paradigm is that the adversary gains nothing if whatever it can obtain by
unrestricted adversarial behavior can also be obtained, within essentially the same
computational effort, by a benign behavior. The definition of the “benign behavior”
captures what we want to achieve in terms of security, and is specific to the security
concern to be addressed. For example, in the context of zero-knowledge the unre-
stricted adversarial behavior is captured by an arbitrary probabilistic polynomial-
time verifier strategy, whereas the benign behavior is any computation that is
based (only) on the assertion itself (while assuming that the latter is valid). Other
examples are discussed in Sections C.5.1 and C.7.1.

The definitional approach to security represented by the simulation paradigm
(and more generally the entire definitional approach surveyed in this appendix) may
be considered overly cautious, because it seems to prohibit also “non-harmful” gains
of some “far fetched” adversaries.® We warn against this impression. Firstly, there

6Indeed, according to the simulation paradigm, a system is called secure only if all possible

C.4. ZERO-KNOWLEDGE 545

is nothing more dangerous in cryptography than to consider “reasonable” adver-
saries (a notion which is almost a contradiction in terms): typically, the adversaries
will try exactly what the system designer has discarded as “far fetched”. Secondly,
it seems impossible to come up with definitions of security that distinguish “break-
ing the system in a harmful way” from “breaking it in a non-harmful way”: what
is harmful is application-dependent, whereas a good definition of security ought to
be application-independent (as otherwise using the cryptographic system in any
new application will require a full re-evaluation of its security). Furthermore, even
with respect to a specific application, it is typically very hard to classify the set of
“harmful breakings”.

C.4.2 The Actual Definition

In §9.2.1.2 zero-knowledge was defined as a property of some prover strategies
(within the context of interactive proof systems, as defined in Section 9.1.2). More
generally, the term may apply to any interactive machine, regardless of its goal. A
strategy A is zero-knowledge on (inputs from) the set S if, for every feasible strategy
B*| there exists a feasible computation C* such that the following two probability
ensembles are computationally indistinguishable (according to Definition C.5):

1. {(A,B*)(®)}zes €' the output of B* after interacting with A on common
input « € S; and

2. {C*(z)}zes 4 the output of C* on input = € S.

Recall that the first ensemble represents an actual execution of an interactive pro-
tocol, whereas the second ensemble represents the computation of a stand-alone
procedure (called the “simulator”), which does not interact with anybody.

The foregoing definition does mnot account for auxiliary information that an
adversary B* may have prior to entering the interaction. Accounting for such
auxiliary information is essential for using zero-knowledge proofs as subprotocols
inside larger protocols. This is taken care of by a stricter notion called auxiliary-
input zero-knowledge, which was not presented in Section 9.2.

Definition C.9 (zero-knowledge, revisited): A strategy A is auxiliary-input zero-
knowledge on inputs from S if, for every probabilistic polynomial-time strategy B*
and every polynomial p, there exists a probabilistic polynomial-time algorithm C*

such that the following two probability ensembles are computationally indistinguish-
able:

1. {(A4,B"(2))(%)}ees, ze{o,1320D L the output of B* when having auziliary-
input z and interacting with A on common input x € S; and

2. {C*"(2,2)}ucs, -efo,1}00sD < the output of C* on inputs x € S and z €
{0,1}17(\76\),

adversaries can be adequately simulated by adequate benign behavior. Thus, this approach
considers also “far fetched” adversaries and does not disregard “non-harmful” gains that cannot
be simulated.

546 APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Almost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.
As hinted, auziliary-input zero-knowledge is preserved under sequential composi-
tion. A simulator for the multiple-session protocol can be constructed by itera-
tively invoking the single-session simulator that refers to the residual strategy of
the adversarial verifier in the given session (while feeding this simulator with the
transcript of previous sessions). Indeed, the residual single-session verifier gets the
transcript of the previous sessions as part of its auxiliary input (i.e., z in Defini-
tion C.9). For details, see [91, Sec. 4.3.4].

C.4.3 A General Result and a Generic Application

A question avoided so far is whether zero-knowledge proofs exist at all. Clearly,
every set in P (or rather in BPP) has a “trivial” zero-knowledge proof (in which the
verifier determines membership by itself); however, what we seek is zero-knowledge
proofs for statements that the verifier cannot decide by itself.

Assuming the existence of “commitment schemes” (cf. §C.4.3.1), which in
turn exist if one-way functions exist [169, 118], there ezist (auxiliary-input) zero-
knowledge proofs of membership in any NP-set. These zero-knowledge proofs, ab-
stractly depicted in Construction 9.10, have the following important property: the
prescribed prover strategy is efficient, provided it is given as auxiliary-input an NP-
witness to the assertion (to be proved).” Implementing the abstract boxes (referred
to in Construction 9.10) by commitment schemes, we get:

Theorem C.10 (On the applicability of zero-knowledge proofs (Theorem 9.11, re-
visited)): If (non-uniformly hard) one-way functions exist then every set S € NP
has an auxiliary-input zero-knowledge interactive proof. Furthermore, the pre-
scribed prover strategy can be implemented in probabilistic polynomial-time, pro-
vided that it is given as auziliary-input an NP-witness for membership of the com-
mon input in S.

Theorem C.10 makes zero-knowledge a very powerful tool in the design of crypto-
graphic schemes and protocols (see §C.4.3.2). We comment that the intractability
assumption used in Theorem C.10 seems essential.

C.4.3.1 Commitment schemes

Loosely speaking, commitment schemes are two-stage (two-party) protocols allow-
ing for one party to commit itself (at the first stage) to a value while keeping the
value secret. At a later (i.e., second) stage, the commitment is “opened” and it is
guaranteed that the “opening” can yield only a single value, which is determined

7The auxiliary-input given to the prescribed prover (in order to allow for an efficient imple-
mentation of its strategy) is not to be confused with the auxiliary-input that is given to malicious
verifiers (in the definition of auxiliary-input zero-knowledge). The former is typically an NP-
witness for the common input, which is available to the user that invokes the prover strategy (cf.
the generic application discussed in §C.4.3.2). In contrast, the auxiliary-input that is given to
malicious verifiers models arbitrary partial information that may be available to the adversary.

C.4. ZERO-KNOWLEDGE 547

during the committing phase. Thus, the (first stage of the) commitment scheme is
both binding and hiding.

A simple (uni-directional communication) commitment scheme can be con-
structed based on any one-way 1-1 function f (with a corresponding hard-core
b). To commit to a bit o, the sender uniformly selects s € {0,1}", and sends the
pair (f(s),b(s) ® o). Note that this is both binding and hiding. An alternative
construction, which can be based on any one-way function, uses a pseudorandom
generator G that stretches its seed by a factor of three (cf. Theorem 8.11). A
commitment is established, via two-way communication, as follows (cf. [169]): The
receiver selects uniformly r € {0,1}>" and sends it to the sender, which selects
uniformly s € {0,1}" and sends r & G(s) if it wishes to commit to the value one
and G(s) if it wishes to commit to zero. To see that this is binding, observe that
there are at most 22" “bad” values r that satisfy G(sg) =7 ® G(s;) for some pair
(s0, $1), and with overwhelmingly high probability the receiver will not pick one of
these bad values. The hiding property follows by the pseudorandomness of G.

C.4.3.2 A generic application

As mentioned, Theorem C.10 makes zero-knowledge a very powerful tool in the
design of cryptographic schemes and protocols. This wide applicability is due to
two important aspects regarding Theorem C.10: Firstly, Theorem C.10 provides a
zero-knowledge proof for every NP-set, and secondly the prescribed prover can be
implemented in probabilistic polynomial-time when given an adequate NP-witness.
We now turn to a typical application of zero-knowledge proofs.

In a typical cryptographic setting, a user U has a secret and is supposed to take
some action based on its secret. For example, U may be instructed to send several
different commitments (cf., §C.4.3.1) to a single secret value of its choice. The
question is how can other users verify that U indeed took the correct action (as
determined by U’s secret and publicly known information). Indeed, if U discloses
its secret then anybody can verify that U took the correct action. However, U does
not want to reveal its secret. Using zero-knowledge proofs we can satisfy both con-
flicting requirements (i.e., having other users verify that U took the correct action
without violating U’s interest in not revealing its secret). That is, U can prove
in zero-knowledge that it took the correct action. Note that U’s claim to having
taken the correct action is an NP-assertion (since U’s legal action is determined as
a polynomial-time function of its secret and the public information), and that U
has an NP-witness to its validity (i.e., the secret is an NP-witness to the claim that
the action fits the public information). Thus, by Theorem C.10, it is possible for
U to efficiently prove the correctness of its action without yielding anything about
its secret. Consequently, it is fair to ask U to prove (in zero-knowledge) that it
behaves properly, and so to force U to behave properly. Indeed, “forcing proper
behavior” is the canonical application of zero-knowledge proofs (see §C.7.3.2).

This paradigm (i.e., “forcing proper behavior” via zero-knowledge proofs), which
in turn is based on Theorem C.10, has been utilized in numerous different settings.
Indeed, this paradigm is the basis for the wide applicability of zero-knowledge
protocols in Cryptography.

548APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

C.4.4 Definitional Variations and Related Notions

In this section we consider numerous variants on the notion of zero-knowledge and
the underlying model of interactive proofs. These include black-box simulation and
other variants of zero-knowledge (cf. Section C.4.4.1), as well as notions such as
proofs of knowledge, non-interactive zero-knowledge, and witness indistinguishable
proofs (cf. Section C.4.4.2).

Before starting, we call the reader’s attention to the notion of computational
soundness and to the related notion of argument systems, discussed in §9.1.5.2.
We mention that argument systems may be more efficient than interactive proofs
as well as provide stronger zero-knowledge guarantees. Specifically, almost-perfect
zero-knowledge arguments for NP can be constructed based on any one-way func-
tion [172], where almost-perfect zero-knowledge means that the simulator’s output
is statistically close to the verifier’s view in the real interaction (see a discussion
in §C.4.4.1). Note that stronger security guarantee for the prover (as provided by
almost-perfect zero-knowledge) comes at the cost of weaker security guarantee for
the verifier (as provided by computational soundness). The answer to the question
of whether or not this trade-off is worthwhile seems to be application dependent,
and one should also take into account the availability and complexity of the corre-
sponding protocols.

C.4.4.1 Definitional variations

We consider several definitional issues regarding the notion of zero-knowledge (as
defined in Definition C.9).

Universal and black-box simulation. One strengthening of Definition C.9 is
obtained by requiring the existence of a universal simulator, denoted C, that can
simulate (the interactive gain of) any verifier strategy B* when given the verifier’s
program an auxiliary-input; that is, in terms of Definition C.9, one should replace
C*(x,z) by C(z, z,(B*)), where (B*) denotes the description of the program of B*
(which may depend on z and on z). That is, we effectively restrict the simulation
by requiring that it be a uniform (feasible) function of the verifier’s program (rather
than arbitrarily depend on it). This restriction is very natural, because it seems
hard to envision an alternative way of establishing the zero-knowledge property of
a given protocol. Taking another step, one may argue that since it seems infea-
sible to reverse-engineer programs, the simulator may as well just use the verifier
strategy as an oracle (or as a “black-box”). This reasoning gave rise to the notion
of black-box simulation, which was introduced and advocated in [98] and further
studied in numerous works. The belief was that inherent limitations regarding
black-box simulation represent inherent limitations of zero-knowledge itself. For
example, it was believed that the fact that the parallel version of the interactive
proof of Construction 9.10 cannot be simulated in a black-box manner (unless NP
is contained in BPP) implies that this version is not zero-knowledge (as per Defini-
tion C.9 itself). However, the (underlying) belief that any zero-knowledge protocol
can be simulated in a black-box manner was later refuted by Barak [25].

C.4. ZERO-KNOWLEDGE 549

Honest verifier versus general cheating verifier. Definition C.9 refers to
all feasible verifier strategies, which is most natural in the cryptographic setting,
because zero-knowledge is supposed to capture the robustness of the prover un-
der any feasible (i.e., adversarial) attempt to gain something by interacting with
it. A weaker and still interesting notion of zero-knowledge refers to what can be
gained by an “honest verifier” (or rather a semi-honest verifier)® that interacts
with the prover as directed, with the exception that it may maintain (and out-
put) a record of the entire interaction (i.e., even if directed to erase all records
of the interaction). Although such a weaker notion is not satisfactory for stan-
dard cryptographic applications, it yields a fascinating notion from a conceptual
as well as a complexity-theoretic point of view. Furthermore, every proof system
that is zero-knowledge with respect to the honest-verifier can be transformed into
a standard zero-knowledge proof (without using intractability assumptions and in
the case of “public-coin” proofs this is done without significantly increasing the
prover’s computational effort; see [228]).

Statistical versus Computational Zero-Knowledge. Recall that Definition C.9
postulates that for every probability ensemble of one type (i.e., representing the
verifier’s output after interaction with the prover) there exists a “similar” ensemble
of a second type (i.e., representing the simulator’s output). One key parameter is
the interpretation of “similarity”. Three interpretations, yielding different notions
of zero-knowledge, have been extensively considered in the literature:

1. Perfect Zero-Knowledge requires that the two probability ensembles be iden-
tically distributed.®

2. Statistical (or Almost-Perfect) Zero-Knowledge requires that these probability
ensembles be statistically close (i.e., the variation distance between them
should be negligible).

3. Computational (or rather general) Zero-Knowledge requires that these proba-
bility ensembles be computationally indistinguishable.

Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notion
considered in Definition C.9. We note that the class of problems having statistical
zero-knowledge proofs contains several problems that are considered intractable.
The interested reader is referred to [227].

8The term “honest verifier” is more appealing when considering an alternative (equivalent)
formulation of Definition C.9. In the alternative definition (see [91, Sec. 4.3.1.3]), the simulator
is “only” required to generate the verifier’s view of the real interaction, where the verifier’s view
includes its (common and auxiliary) inputs, the outcome of its coin tosses, and all messages it
has received.

9The actual definition of Perfect Zero-Knowledge allows the simulator to fail (while outputting
a special symbol) with negligible probability, and the output distribution of the simulator is
conditioned on its not failing.

550APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

C.4.4.2 Related notions: POK, NIZK, and WI

We briefly discuss the notions of proofs of knowledge (POK), non-interactive zero-
knowledge (NIZK), and witness indistinguishable proofs (WI).

Proofs of Knowledge. Loosely speaking, proofs of knowledge are interactive
proofs in which the prover asserts “knowledge” of some object (e.g., a 3-coloring
of a graph), and not merely its existence (e.g., the existence of a 3-coloring of the
graph, which in turn is equivalent to the assertion that the graph is 3-colorable).
See further discussion in Section 9.2.3. We mention that proofs of knowledge, and in
particular zero-knowledge proofs of knowledge, have many applications to the design
of cryptographic schemes and cryptographic protocols. One famous application of
zero-knowledge proofs of knowledge is to the construction of identification schemes
(e.g., the Fiat-Shamir scheme).

Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge
(NIZK) proof systems consists of three entities: a prover, a verifier and a uniformly
selected reference string (which can be thought of as being selected by a trusted
third party). Both the verifier and prover can read the reference string (as well as
the common input), and each can toss additional coins. The interaction consists of
a single message sent from the prover to the verifier, who is then left with the final
decision (whether or not to accept the common input). The (basic) zero-knowledge
requirement refers to a simulator that outputs pairs that should be computationally
indistinguishable from the distribution (of pairs consisting of a uniformly selected
reference string and a random prover message) seen in the real model.!° We men-
tion that NIZK proof systems have numerous applications (e.g., to the construction
of public-key encryption and signature schemes, where the reference string may be
incorporated in the public-key), which in turn motivate various augmentations of
the basic definition of NIZK (see [91, Sec. 4.10] and [92, Sec. 5.4.4.4]). Such NIZK
proofs for any NP-set can be constructed based on standard intractability assump-
tions (e.g., intractability of factoring), but even constructing basic NIZK proof
systems seems more difficult than constructing interactive zero-knowledge proof
systems.

Witness Indistinguishability. The notion of witness indistinguishability was
suggested in [76] as a meaningful relaxation of zero-knowledge. Loosely speaking,
for any NP-relation R, a proof (or argument) system for the corresponding NP-set
is called witness indistinguishable if no feasible verifier may distinguish the case in
which the prover uses one NP-witness to z (i.e., wy such that (z,w;) € R) from
the case in which the prover is using a different NP-witness to the same input z
(i.e., wo such that (z,ws) € R). Clearly, any zero-knowledge protocol is witness
indistinguishable, but the converse does not necessarily hold. Furthermore, it seems

10Note that the verifier does not effect the distribution seen in the real model, and so the basic
definition of zero-knowledge does not refer to it. The verifier (or rather a process of adaptively
selecting assertions to be proved) is referred to in the adaptive variants of the definition.

C.5. ENCRYPTION SCHEMES 551

that witness indistinguishable protocols are easier to construct than zero-knowledge
ones. Another advantage of witness indistinguishable protocols is that they are
closed under arbitrary concurrent composition, whereas (in general) zero-knowledge
protocols are not closed even under parallel composition. Witness indistinguishable
protocols turned out to be an important tool in the construction of more complex
protocols. We refer, in particular, to the technique of [75] for constructing zero-
knowledge proofs (and arguments) based on witness indistinguishable proofs (resp.,
arguments).

C.5 Encryption Schemes

The problem of providing secret communication over insecure media is the tra-
ditional and most basic problem of cryptography. The setting of this problem
consists of two parties communicating through a channel that is possibly tapped
by an adversary. The parties wish to exchange information with each other, but
keep the “wire-tapper” as ignorant as possible regarding the contents of this infor-
mation. The canonical solution to this problem is obtained by the use of encryption
schemes. Loosely speaking, an encryption scheme is a protocol allowing these par-
ties to communicate secretly with each other. Typically, the encryption scheme
consists of a pair of algorithms. One algorithm, called encryption, is applied by the
sender (i.e., the party sending a message), while the other algorithm, called decryp-
tion, is applied by the receiver. Hence, in order to send a message, the sender first
applies the encryption algorithm to the message, and sends the result, called the
ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., the
receiver) applies the decryption algorithm to it, and retrieves the original message
(called the plaintext).

In order for the foregoing scheme to provide secret communication, the receiver
must know something that is not known to the wire-tapper. (Otherwise, the wire-
tapper can decrypt the ciphertext exactly as done by the receiver.) This extra
knowledge may take the form of the decryption algorithm itself, or some parame-
ters and/or auxiliary inputs used by the decryption algorithm. We call this extra
knowledge the decryption-key. Note that, without loss of generality, we may assume
that the decryption algorithm is known to the wire-tapper, and that the decryp-
tion algorithm operates on two inputs: a ciphertext and a decryption-key. (This
description implicitly presupposes the existence of an efficient algorithm for gener-
ating (random) keys.) We stress that the existence of a decryption-key, not known
to the wire-tapper, is merely a necessary condition for secret communication.

Evaluating the “security” of an encryption scheme is a very tricky business.
A preliminary task is to understand what is “security” (i.e., to properly define
what is meant by this intuitive term). Two approaches to defining security are
known. The first (“classical”) approach, introduced by Shannon [204], is informa-
tion theoretic. It is concerned with the “information” about the plaintext that is
“present” in the ciphertext. Loosely speaking, if the ciphertext contains informa-
tion about the plaintext then the encryption scheme is considered insecure. It has
been shown that such high (i.e., “perfect”) level of security can be achieved only

552APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

if the key in use is at least as long as the total amount of information sent via the
encryption scheme [204]. This fact (i.e., that the key has to be longer than the
information exchanged using it) is indeed a drastic limitation on the applicability
of such (perfectly-secure) encryption schemes.

The second (“modern”) approach, followed in the current text, is based on
computational complexity. This approach is based on the thesis that it does not
matter whether the ciphertext contains information about the plaintext, but rather
whether this information can be efficiently extracted. In other words, instead of
asking whether it is possible for the wire-tapper to extract specific information, we
ask whether it is feasible for the wire-tapper to extract this information. It turns
out that the new (i.e., “computational complexity”) approach can offer security
even when the key is much shorter than the total length of the messages sent via
the encryption scheme.

The computational complexity approach enables the introduction of concepts
and primitives that cannot exist under the information theoretic approach. A typ-
ical example is the concept of public-key encryption schemes, introduced by Diffie
and Hellman [66] (with the most popular candidate suggested by Rivest, Shamir,
and Adleman [193]). Recall that in the foregoing discussion we concentrated on
the decryption algorithm and its key. It can be shown that the encryption algo-
rithm must also get, in addition to the message, an auxiliary input that depends on
the decryption-key. This auxiliary input is called the encryption-key. Traditional
encryption schemes, and in particular all the encryption schemes used in the millen-
nia until the 1980’s, operate with an encryption-key that equals the decryption-key.
Hence, the wire-tapper in these schemes must be ignorant of the encryption-key,
and consequently the key distribution problem arises; that is, how can two par-
ties wishing to communicate over an insecure channel agree on a secret encryp-
tion/decryption key. (The traditional solution is to exchange the key through an
alternative channel that is secure, though much more expensive to use.) The com-
putational complexity approach allows the introduction of encryption schemes in
which the encryption-key may be given to the wire-tapper without compromising
the security of the scheme. Clearly, the decryption-key in such schemes is different
from the encryption-key, and furthermore it is infeasible to obtain the decryption-
key from the encryption-key. Such encryption schemes, called public-key schemes,
have the advantage of trivially resolving the key distribution problem (because the
encryption-key can be publicized). That is, once some Party X generates a pair of
keys and publicizes the encryption-key, any party can send encrypted messages to
Party X such that Party X can retrieve the actual information (i.e., the plaintext),
whereas nobody else can learn anything about the plaintext.

In contrast to public-key schemes, traditional encryption schemes in which the
encryption-key equals the description-key are called private-key schemes, because
in these schemes the encryption-key must be kept secret (rather than be public
as in public-key encryption schemes). We note that a full specification of either
schemes requires the specification of the way in which keys are generated; that is, a
(randomized) key-generation algorithm that, given a security parameter, produces
a (random) pair of corresponding encryption/decryption keys (which are identical

C.5. ENCRYPTION SCHEMES 553

in case of private-key schemes).

Thus, both private-key and public-key encryption schemes consist of three ef-
ficient algorithms: a key generation algorithm denoted G, an encryption algorithm
denoted E, and a decryption algorithm denoted D. For every pair of encryption
and decryption keys (e, d) generated by G, and for every plaintext x, it holds that
Dy(E.(x)) = z, where E.(z) = E(e,z) and Dg4(y) et D(d,y). The difference be-
tween the two types of encryption schemes is reflected in the definition of security:
the security of a public-key encryption scheme should hold also when the adversary
is given the encryption-key, whereas this is not required for a private-key encryp-
tion scheme. In the following definitional treatment we focus on the public-key case
(and the private-key case can be obtained by omitting the encryption-key from the
sequence of inputs given to the adversary).

C.5.1 Definitions

A good disguise should not reveal the person’s height.
Shafi Goldwasser and Silvio Micali, 1982

For simplicity, we first consider the encryption of a single message (which, for fur-
ther simplicity, is assumed to be of length that equals the security parameter, n).!!
As implied by the foregoing discussion, a public-key encryption scheme is said to
be secure if it is infeasible to gain any information about the plaintext by looking
at the ciphertext (and the encryption-key). That is, whatever information about
the plaintext one may compute from the ciphertext and some a-priori informa-
tion, can be essentially computed as efficiently from the a-priori information alone.
This fundamental definition of security, called semantic security, was introduced
by Goldwasser and Micali [108].

Definition C.11 (semantic security): A public-key encryption scheme (G, E, D)
is semantically secure if for every probabilistic polynomial-time algorithm, A, there
exists a probabilistic polynomial-time algorithm B such that for every two functions
foh:{0,1}* —{0,1}* and all probability ensembles {X,}, cn that satisfy |h(x)| =
poly(|z|) and X,, € {0,1}™, it holds that

PrlA(e, Ee(x), h(z)) = f(2)] < Pr[B(1", h(z))=f(2)] + n(n)

where the plaintext © is distributed according to X,,, the encryption-key e is dis-
tributed according to G(1™), and p is a negligible function.

That is, it is feasible to predict f(z) from h(z) as successfully as it is to predict
f(x) from h(x) and (e, E.(x)), which means that nothing is gained by obtaining
(e, E.(z)). Note that no computational restrictions are made regarding the func-
tions h and f. We stress that the foregoing definition (as well as the next one)

H1In the case of public-key schemes no generality is lost by these simplifying assumptions, but in
the case of private-key schemes one should consider the encryption of polynomially-many messages
(as we do at the end of this section).

554APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

refers to public-key encryption schemes, and in the case of private-key schemes
algorithm A is not given the encryption-key e.

The following technical interpretation of security states that it is infeasible to
distinguish the encryptions of any two plaintexts (of the same length).'? As we
shall see, this definition (also originating in [108]) is equivalent to Definition C.11.

Definition C.12 (indistinguishability of encryptions): A public-key encryption
scheme (G, E, D) has indistinguishable encryptions if for every probabilistic polynomial-
time algorithm, A, and all sequences of triples, (n,Yn, Zn)neN, Where |T,| = |yn| =
n and |z,| = poly(n), it holds that

|Pr[A(e, Ee(zn), 2n) =1] — Pr[A(e, Ee(yn), 2n) =1]| = p(n)
Again, e is distributed according to G(1™), and u is a negligible function.

In particular, z, may equal (z,,y,). Thus, it is infeasible to distinguish the en-
cryptions of any two fixed messages (such as the all-zero message and the all-ones
message). Thus, the following motto is adequate too.

A good disguise should not allow a mother to distinguish her own children.

Shafi Goldwasser and Silvio Micali, 1982

Definition C.11 is more appealing in most settings where encryption is considered
the end goal. Definition C.12 is used to establish the security of candidate en-
cryption schemes as well as to analyze their application as modules inside larger
cryptographic protocols. Thus, the equivalence of these definitions is of major
importance.

Equivalence of Definitions C.11 and C.12 — proof ideas. Intuitively, in-
distinguishability of encryptions (i.e., of the encryptions of z,, and y,,) is a special
case of semantic security; specifically, it corresponds to the case that X,, is uni-
form over {z,,y,}, the function f indicates one of the plaintexts and h does not
distinguish them (i.e., f(w) =1 iff w = z,, and h(z,) = h(y,) = z,, where z, is
as in Definition C.12). The other direction is proved by considering the algorithm
B that, on input (1™,v) where v = h(x), generates (e,d) — G(1™) and outputs
A(e, E.(1™),v), where A is as in Definition C.11. Indistinguishability of encryptions
is used to prove that B performs as well as A (i.e., for every h, f and {X,},cn,
it holds that Pr[B(1™, h(X,)) = f(X,)] = Pr[A(e, E.(1™), h(X,)) = f(X,)] approx-
imately equals Pr[A(e, E.(X,,), h(X,))=f(X,)])-

Probabilistic Encryption: A secure public-key encryption scheme must em-
ploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given the
encryption-key as (additional) input, it is easy to distinguish the encryption of the

12Indeed, satisfying this condition requires using a probabilistic encryption algorithm.

C.5. ENCRYPTION SCHEMES 555

all-zero message from the encryption of the all-ones message.!® This explains the
association of the robust definitions of security with the paradigm of probabilistic
encryption, an association that originates in the title of the pioneering work of
Goldwasser and Micali [108].

Further discussion: We stress that (the equivalent) Definitions C.11 and C.12
go way beyond saying that it is infeasible to recover the plaintext from the ci-
phertext. The latter statement is indeed a minimal requirement from a secure
encryption scheme, but is far from being a sufficient requirement. Typically, en-
cryption schemes are used in applications where even obtaining partial information
on the plaintext may endanger the security of the application. When designing an
application-independent encryption scheme, we do not know which partial informa-
tion endangers the application and which does not. Furthermore, even if one wants
to design an encryption scheme tailored to a specific application, it is rare (to say
the least) that one has a precise characterization of all possible partial information
that endanger this application. Thus, we need to require that it is infeasible to
obtain any information about the plaintext from the ciphertext. Furthermore, in
most applications the plaintext may not be uniformly distributed and some a-priori
information regarding it may be available to the adversary. We require that the
secrecy of all partial information is preserved also in such a case. That is, even
in presence of a-priori information on the plaintext, it is infeasible to obtain any
(new) information about the plaintext from the ciphertext (beyond what is feasible
to obtain from the a-priori information on the plaintext). The definition of seman-
tic security postulates all of this. The equivalent definition of indistinguishability
of encryptions is useful in demonstrating the security of candidate constructions as
well as for arguing about their effect as part of larger protocols.

Security of multiple messages: Definitions C.11 and C.12 refer to the se-
curity of an encryption scheme that is used to encrypt a single plaintext (per a
generated key). Since the plaintext may be longer than the key!*, these defini-
tions are already non-trivial, and an encryption scheme satisfying them (even in
the private-key model) implies the existence of one-way functions. Still, in many
cases, it is desirable to encrypt many plaintexts using the same encryption-key.
Loosely speaking, an encryption scheme is secure in the multiple-messages setting
if conditions as in Definition C.11 (resp., Definition C.12) hold when polynomially-
many plaintexts are encrypted using the same encryption-key (cf. [92, Sec. 5.2.4]).
In the public-key model, security in the single-message setting implies security in
the multiple-messages setting. We stress that this is not necessarily true for the

13 The same holds for (stateless) private-key encryption schemes, when considering the security
of encrypting several messages (rather than a single message as in the foregoing text). For
example, if one uses a deterministic encryption algorithm then the adversary can distinguish two
encryptions of the same message from the encryptions of a pair of different messages.

14Recall that for sake of simplicity we have considered only messages of length n, but the
general definitions refer to messages of arbitrary (polynomial in n) length. We comment that, in
the general form of Definition C.11, one should provide the length of the message as an auxiliary
input to both algorithms (A and B).

556 APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

private-key model.

C.5.2 Constructions

It is common practice to use “pseudorandom generators” as a basis for private-
key encryption schemes. We stress that this is a very dangerous practice when
the “pseudorandom generator” is easy to predict (such as the “linear congruential
generator”). However, this common practice becomes sound provided one uses
pseudorandom generators (as defined in Section C.3.2). An alternative and more
flexible construction follows.

Private-Key Encryption Scheme based on Pseudorandom Functions:
We present a simple construction of a private-key encryption scheme that uses
pseudorandom functions as defined in Section C.3.3. The key-generation algorithm
consists of uniformly selecting a seed s € {0,1}" for a (pseudorandom) function, de-
noted fs. To encrypt a message x € {0,1}" (using key s), the encryption algorithm
uniformly selects a string r € {0,1}" and produces the ciphertext (r,z & fs(r)),
where @ denotes the exclusive-or of bit strings. To decrypt the ciphertext (r,y)
(using key s), the decryption algorithm just computes y @& fs(r). The proof of
security of this encryption scheme consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uniformly
selected function F':{0,1}" —{0,1}", rather than the pseudorandom function
fs, is secure.

2. Concluding that the real scheme is secure (because, otherwise one could dis-
tinguish a pseudorandom function from a truly random one).

Note that we could have gotten rid of the randomization (in the encryption process)
if we had allowed the encryption algorithm to be history dependent (e.g., use a
counter in the role of 7). This can be done if all parties that use the same key
(for encryption) coordinate their encryption actions (by maintaining a joint state
(e.g., counter)). Indeed, when using a private-key encryption scheme, a common
situation is that the same key is only used for communication between two specific
parties, which update a joint counter during their communication. Furthermore,
if the encryption scheme is used for FIFO communication between the parties and
both parties can reliably maintain the counter value, then there is no need (for
the sender) to send the counter value. (The resulting scheme is related to “stream
ciphers” which are commonly used in practice.)

We comment that the use of a counter (or any other state) in the encryption
process is not reasonable in the case of public-key encryption schemes, because it
is incompatible with the canonical usage of such schemes (i.e., allowing all parties
to send encrypted messages to the “owner of the encryption-key” without engaging
in any type of further coordination or communication). Furthermore (unlike in the
case of private-key schemes), probabilistic encryption is essential for the security
of public-key encryption schemes even in the case of encrypting a single message.

C.5. ENCRYPTION SCHEMES 557

Following Goldwasser and Micali [108], we now demonstrate the use of probabilistic
encryption in the construction of public-key encryption schemes.

Public-Key Encryption Scheme based on Trapdoor Permutations: We
present two constructions of public-key encryption schemes that employ a collection
of trapdoor permutations, as defined in Definition C.3. Let {f; : D; — D;}; be
such a collection, and let b be a corresponding hard-core predicate. In the first
scheme, the key-generation algorithm consists of selecting a permutation f; along
with a corresponding trapdoor ¢, and outputting (4,¢) as the key-pair. To encrypt
a (single) bit o (using the encryption-key %), the encryption algorithm uniformly
selects r € D;, and produces the ciphertext (f;(r),o @ b(r)). To decrypt the
ciphertext (y,7) (using the decryption-key t), the decryption algorithm computes
7 ®b(f; *(y)) (using the trapdoor t of f;). Clearly, (o ® b(r)) @ b(f; *(fi(r))) = 0.
Indistinguishability of encryptions is implied by the hypothesis that b is a hard-core
of f;. We comment that this scheme is quite wasteful in bandwidth; nevertheless,
the paradigm underlying its construction (i.e., applying the trapdoor permutation
to a randomized version of the plaintext rather than to the actual plaintext) is
valuable in practice.

A more efficient construction of a public-key encryption scheme, which uses
the same key-generation algorithm, follows. To encrypt an ¢-bit long string x
(using the encryption-key %), the encryption algorithm uniformly selects r € D,
computes y < b(r) - b(f;(r)) ---b(f{*(r)) and produces the ciphertext (f{(r),z ®
y). To decrypt the ciphertext (u,v) (using the decryption-key t), the decryption
algorithm first recovers r = f, “(u) (using the trapdoor ¢ of f;), and then obtains
v@b(r)-b(fi(r))---b(f1(r)). Note the similarity to the Blum-Micali Construction
(depicted in Eq. (8.10)), and the fact that the proof of the pseudorandomness of
Eq. (8.10) can be extended to establish the computational indistinguishability of
(b(r)---b(fI71(r)), fE(r)) and (', fE(r)), for random and independent r € D; and
r" € {0,1}*. Indistinguishability of encryptions follows, and thus the second scheme
is secure. We mention that, assuming the intractability of factoring integers, this
scheme has a concrete implementation with efficiency comparable to that of RSA.

C.5.3 Beyond Eavesdropping Security

Our treatment so far has referred only to a “passive” attack in which the adversary
merely eavesdrops the line over which ciphertexts are sent. Stronger types of at-
tacks (i.e., “active” ones), culminating in the so-called Chosen Ciphertext Attack,
may be possible in various applications. Specifically, in some settings it is feasible
for the adversary to make the sender encrypt a message of the adversary’s choice,
and in some settings the adversary may even make the receiver decrypt a ciphertext
of the adversary’s choice. This gives rise to chosen plaintext attacks and to chosen
ciphertext attacks, respectively, which are not covered by the security definitions
considered in Sections C.5.1 and C.5.2. Here we briefly discuss such “active” at-
tacks, focusing on chosen ciphertext attacks (of the strongest type known as “a
posteriori” or “CCA2”).

558 APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Loosely speaking, in a chosen ciphertext attack, the adversary may obtain the
decryptions of ciphertexts of its choice, and is deemed successful if it learns some-
thing regarding the plaintext that corresponds to some different ciphertext (see [92,
Sec. 5.4.4]). That is, the adversary is given oracle access to the decryption function
corresponding to the decryption-key in use (and, in the case of private-key schemes,
it is also given oracle access to the corresponding encryption function). The adver-
sary is allowed to query the decryption oracle on any ciphertext except for the “test
ciphertext” (i.e., the very ciphertext for which it tries to learn something about
the corresponding plaintext). It may also make queries that do not correspond to
legitimate ciphertexts, and the answer will be accordingly (i.e., a special ‘failure’
symbol). Furthermore, the adversary may effect the selection of the test cipher-
text (by specifying a distribution from which the corresponding plaintext is to be
drawn).

Private-key and public-key encryption schemes secure against chosen ciphertext
attacks can be constructed under (almost) the same assumptions that suffice for
the construction of the corresponding passive schemes. Specifically:

Theorem C.13 Assuming the existence of one-way functions, there exist private-
key encryption schemes that are secure against chosen ciphertext attack.

Theorem C.14 Assuming the emistence of enhanced'® trapdoor permutations,
there exist public-key encryption schemes that are secure against chosen cipher-
texrt attack.

Both theorems are proved by constructing encryption schemes in which the adver-
sary’s gain from a chosen ciphertext attack is eliminated by making it infeasible
(for the adversary) to obtain any useful knowledge via such an attack. In the case
of private-key schemes (i.e., Theorem C.13), this is achieved by making it infeasible
(for the adversary) to produce legitimate ciphertexts (other than those explicitly
given to it, in response to its request to encrypt plaintexts of its choice). This,
in turn, is achieved by augmenting the ciphertext with an “authentication tag”
that is hard to generate without knowledge of the encryption-key; that is, we use a
message-authentication scheme (as defined in Section C.6). In the case of public-
key schemes (i.e., Theorem C.14), the adversary can certainly generate ciphertexts
by itself, and the aim is to make it infeasible (for the adversary) to produce legit-
imate ciphertexts without “knowing” the corresponding plaintext. This, in turn,
will be achieved by augmenting the plaintext with a non-interactive zero-knowledge
“proof of knowledge” of the corresponding plaintext.

Security against chosen ciphertext attack is related to the notion of non-malleability
of the encryption scheme. Loosely speaking, in a non-malleable encryption scheme
it is infeasible for an adversary, given a ciphertext, to produce a valid ciphertext
for a related plaintext (e.g., given a ciphertext of a plaintext 1z, for an unknown z,
it is infeasible to produce a ciphertext to the plaintext Ox). For further discussion
see [92, Sec. 5.4.5].

5 Loosely speaking, the enhancement refers to the hardness condition of Definition C.2, and
requires that it be hard to recover f;l(y) also when given the coins used to sample y (rather
than merely y itself). See [92, Apdx. C.1].

C.6. SIGNATURES AND MESSAGE AUTHENTICATION 559

C.6 Signatures and Message Authentication

Both signature schemes and message authentication schemes are methods for “vali-
dating” data; that is, verifying that the data was approved by a certain party (or set
of parties). The difference between signature schemes and message authentication
schemes is that signatures should be universally verifiable, whereas authentication
tags are only required to be verifiable by parties that are also able to generate
them.

Signature Schemes: The need to discuss “digital signatures” (cf. [66, 182]) has
arisen with the introduction of computer communication to the business environ-
ment (in which parties need to commit themselves to proposals and /or declarations
that they make). Discussions of “unforgeable signatures” did take place also prior
to the computer age, but the objects of discussion were handwritten signatures
(and not digital ones), and the discussion was not perceived as related to cryp-
tography. Loosely speaking, a scheme for unforgeable signatures should satisfy the
following requirements:

e each user can efficiently produce its own signature on documents of its choice;

e every user can efficiently verify whether a given string is a signature of another
(specific) user on a specific document; but

e it is infeasible to produce signatures of other users to documents they did not
sign.

We note that the formulation of unforgeable digital signatures provides also a clear
statement of the essential ingredients of handwritten signatures. The ingredients
are each person’s ability to sign for itself, a universally agreed verification proce-
dure, and the belief (or assertion) that it is infeasible (or at least hard) to forge
signatures (i.e., produce some other person’s signatures to documents that were
not signed by it such that these “unauthentic” signatures are accepted by the
verification procedure).

Message authentication schemes: Message authentication is a task related
to the setting considered for encryption schemes; that is, communication over an
insecure channel. This time, we consider an active adversary that is monitoring
the channel and may alter the messages sent over it. The parties communicating
through this insecure channel wish to authenticate the messages they send such
that their counterpart can tell an original message (sent by the sender) from a
modified one (i.e., modified by the adversary). Loosely speaking, a scheme for
message authentication should satisfy the following requirements:

e cach of the communicating parties can efficiently produce an authentication
tag to any message of its choice;

e each of the communicating parties can efficiently verify whether a given string
is an authentication tag of a given message; but

560APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

e it is infeasible for an external adversary (i.e., a party other than the commu-
nicating parties) to produce authentication tags to messages not sent by the
communicating parties.

Note that, in contrast to the specification of signature schemes, we do not require
universal verification: only the designated receiver is required to be able to verify
the authentication tags. Furthermore, we do not require that the receiver can not
produce authentication tags by itself (i.e., we only require that external parties can
not do so). Thus, message authentication schemes cannot convince a third party
that the sender has indeed sent the information (rather than the receiver having
generated it by itself). In contrast, signatures can be used to convince third parties:
in fact, a signature to a document is typically sent to a second party so that in
the future this party may (by merely presenting the signed document) convince
third parties that the document was indeed generated (or rather approved) by the
signer.

C.6.1 Definitions

Both signature schemes and message authentication schemes consist of three effi-
cient algorithms: key generation, signing and verification. As in the case of encryp-
tion schemes, the key-generation algorithm, denoted G, is used to generate a pair of
corresponding keys, one is used for signing (via algorithm S) and the other is used
for verification (via algorithm V). That is, Ss(a) denotes a signature produced by
algorithm S on input a signing-key s and a document «, whereas V, («, 8) denotes
the verdict of the verification algorithm V' regarding the document « and the al-
leged signature g relative to the verification-key v. Needless to say, for any pair of
keys (s,v) generated by G and for every «, it holds that V,(a, Ss(a)) = 1.

The difference between the two types of schemes is reflected in the definition of
security. In the case of signature schemes, the adversary is given the verification-
key, whereas in the case of message authentication schemes the verification-key
(which may equal the signing-key) is not given to the adversary. Thus, schemes
for message authentication can be viewed as a private-key version of signature
schemes. This difference yields different functionalities (even more than in the case
of encryption): In typical use of a signature scheme, each user generates a pair of
signing and verification keys, publicizes the verification-key and keeps the signing-
key secret. Subsequently, each user may sign documents using its own signing-key,
and these signatures are universally verifiable with respect to its public verification-
key. In contrast, message authentication schemes are typically used to authenticate
information sent among a set of mutually trusting parties that agree on a secret
key, which is being used both to produce and verify authentication-tags. (Indeed,
it is assumed that the mutually trusting parties have generated the key together or
have exchanged the key in a secure way, prior to the communication of information
that needs to be authenticated.)

We focus on the definition of secure signature schemes, and consider very pow-
erful attacks on the signature scheme as well as a very liberal notion of breaking
it. Specifically, the attacker is allowed to obtain signatures to any message of its

C.6. SIGNATURES AND MESSAGE AUTHENTICATION 561

choice. One may argue that in many applications such a general attack is not pos-
sible (because messages to be signed must have a specific format). Yet, our view
is that it is impossible to define a general (i.e., application-independent) notion
of admissible messages, and thus a general/robust definition of an attack seems
to have to be formulated as suggested here. (Note that at worst, our approach is
overly cautious.) Likewise, the adversary is said to be successful if it can produce
a valid signature to any message for which it has not asked for a signature during
its attack. Again, this means that the ability to form signatures to “nonsensical”
messages is also viewed as a breaking of the scheme. Yet, again, we see no way
to have a general (i.e., application-independent) notion of “meaningful” messages
(such that only forging signatures to them will be considered a breaking of the
scheme).

Definition C.15 (secure signature schemes — a sketch): A chosen message attack
is a process that, on input a verification-key, can obtain signatures (relative to
the corresponding signing-key) to messages of its choice. Such an attack is said to
succeed (in existential forgery) if it outputs a valid signature to a message for which
it has not requested a signature during the attack. A signature scheme is secure (or
unforgeable) if every feasible chosen message attack succeeds with at most negligible
probability, where the probability is taken over the initial choice of the key-pair as
well as over the adversary’s actions.

One popular suggestion is signing messages by applying the inverse of a trapdoor
permutation, where the trapdoor is used as a signing-key and the permutation
itself is used (in the forward direction) towards verification. We warn that, in
general, this scheme does not satisty Definition C.15 (e.g., the permutation may be
a homomorphism of some group).

C.6.2 Constructions

Secure message authentication schemes can be constructed using pseudorandom
functions (or rather the generalized notion of pseudorandom functions discussed
at the end of Section C.3.3). Specifically, the key-generation algorithm consists of
uniformly selecting a seed s € {0,1}™ for such a function, denoted f,:{0,1}* —
{0,1}", and the (only valid) tag of message = with respect to the key s is f(z).
As in the case of our private-key encryption scheme, the proof of security of the
current message authentication scheme consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uniformly
selected function F': {0,1}* —{0,1}", rather than the pseudorandom function
fs, is secure (i.e., unforgeable).

2. Concluding that the real scheme is secure (because, otherwise one could dis-
tinguish a pseudorandom function from a truly random one).

Note that this message authentication scheme makes an “extensive use of pseu-
dorandom functions” (i.e., the pseudorandom function is applied directly to the

562APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

message, which may be rather long). More efficient schemes can be constructed
either based on a more restricted use of a pseudorandom function or based on other
cryptographic primitives.

Constructing secure signature schemes seems more difficult than constructing
message authentication schemes. Nevertheless, secure signature schemes can be
constructed based on the same assumptions.

Theorem C.16 The following three conditions are equivalent:

1. One-way functions exist.
2. Secure signature schemes exist.
3. Secure message authentication schemes exist.

We stress that, unlike in the case of public-key encryption schemes, the construction
of signature schemes (which may be viewed as a public-key analogue of message
authentication) does not require a trapdoor property. Three central paradigms
used in the construction of secure signature schemes are the “refreshing” of the
“effective” signing-key, the usage of an “authentication tree”, and the “hashing
paradigm” (to be all discussed in the sequel). In addition to being used in the
proof of Theorem C.16, these three paradigms are of independent interest.

The refreshing paradigm. Introduced in [110], the refreshing paradigm is aimed
at limiting the potential dangers of chosen message attacks. This is achieved by
signing the actual document using a newly (and randomly) generated instance
of the signature scheme, and authenticating (the verification-key of) this random
instance with respect to the fixed and public verification-key.'® Intuitively, the
gain in terms of security is that a full-fledged chosen message attack cannot be
launched on a fixed instance of the underlying signature schemes (i.e., on the fixed
verification-key that was published by the user and is known to the attacker). All
that an attacker may obtain (via a chosen message attack on the new scheme) is
signatures, relative to the original signing-key (which is coupled with the fixed and
public verification-key), to random strings (or rather random verification-keys) as
well as additional signatures that are each relative to a random and independently
distributed signing-key (which is coupled with a freshly generated verification-key).

Authentication trees. The security benefits of the refreshing paradigm are am-
plified when combining it with the use of authentication trees. The idea is to use the
public verification-key (only) for authenticating several (e.g., two) fresh instances
of the signature scheme, use each of these instances for authenticating several ad-
ditional fresh instances, and so on. Thus, we obtain a tree of fresh instances of the
basic signature scheme, where each internal node authenticates its children. We

L6 That is, consider a basic signature scheme (G, S, V) used as follows. Suppose that the user
U has generated a key-pair (s,v) < G(1™), and has placed the verification-key v on a public-file.
When a party asks U to sign some document «, the user U generates a new (“fresh”) key-pair
(s',v") < G(1™), signs v’ using the original signing-key s, signs a using the new signing-key s’,
and presents (Ss(v'),v', Sy () as a signature to . An alleged signature, (81,v', 32), is verified
by checking whether both V,, (v',31) =1 and V,/(a, B2) = 1 hold.

C.6. SIGNATURES AND MESSAGE AUTHENTICATION 563

can now use the leaves of this tree for signing actual documents, where each leaf is
used at most once. Thus, a signature to an actual document consists of

1. a signature to this document authenticated with respect to the verification-
key associated with some leaf, and

2. a sequence of verification-keys associated with the nodes along the path from
the root to this leaf, where each such verification-key is authenticated with
respect to the verification-key of its parent.

We stress that the same signature, relative to the key of the parent node, is used
for authenticating the verification-keys of all its children. Thus, each instance of
the signature scheme is used for signing at most one string (i.e., a single sequence of
verification-keys if the instance resides in an internal node, and an actual document
if the instance resides in a leaf).!” Hence, it suffices to use a signature scheme that is
secure as long as it is applied for legitimately signing a single string. Such signature
schemes, called one-time signature schemes, are easier to construct than standard
signature schemes, especially if one only wishes to sign strings that are significantly
shorter than the signing-key (resp., than the verification-key). For example, using
a one-way function f, we may let the signing-key consist of a sequence of n pairs of
strings, let the corresponding verification-key consist of the corresponding sequence
of images of f, and sign an n-bit long message by revealing the adequate preimages.
(That is, the signing-key consist of a sequence ((s?,s!), ..., (s2,s1)) € {0,1}2"", the
0 1

corresponding verification-key is (f(s?), f(s})), ..., (f(s2), f(s%))), and the signa-

n n
o1

ture of the message o1 - - -0y, is (s7', ..., s9").)

Y en

The hashing paradigm. Note, however, that in the foregoing authentication-
tree, the instances of the signature scheme (associated with internal nodes) are
used for signing a pair of verification-keys. Thus, we need a one-time signature
scheme that can be used for signing messages that are longer than the verification-
key. In order to bridge the gap between (one-time) signature schemes that are
applicable for signing short messages and schemes that are applicable for signing
long messages, we use the hashing paradigm. This paradigm refers to the common
practice of signing documents via a two stage process: First the actual document is
hashed to a (relatively) short string, and next the basic signature scheme is applied
to the resulting string. This practice is sound provided that the hashing function
belongs to a family of collision-resistant hashing (a.k.a collision-free hashing) func-
tions. Loosely speaking, the collision-resistant requirement means that, given a
hash function that is randomly selected in such a family, it is infeasible to find two
different strings that are hashed by this function to the same value. We also refer

17A naive implementation of the foregoing (full-fledged) signature scheme calls for storing in
(secure) memory all the instances of the basic (one-time) signature scheme that are generated
throughout the entire signing process (which refers to numerous documents). However, we note
that it suffices to be able to reconstruct the random-coins used for generating each of these
instances, and the former can be determined by a pseudorandom function (applied to the name
of the corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will be
part of the signing-key of the resulting (full-fledged) signature scheme.

564APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

the interested reader to a variant of the hashing paradigm that uses the seemingly
weaker notion of a family of Universal One-Way Hash Functions (see [171] or [92,
Sec. 6.4.3]).

C.7 General Cryptographic Protocols

The design of secure protocols that implement arbitrary desired functionalities is
a major part of modern cryptography. Taking the opposite perspective, the design
of any cryptographic scheme may be viewed as the design of a secure protocol for
implementing a corresponding functionality. Still, we believe that it makes sense to
differentiate between basic cryptographic primitives (which involve little interac-
tion) like encryption and signature schemes on one hand, and general cryptographic
protocols on the other hand.

In this section, we survey general results concerning secure multi-party com-
putations, where the two-party case is an important special case. In a nutshell,
these results assert that one can construct protocols for securely computing any
desirable multi-party functionality. Indeed, what is striking about these results is
their generality, and we believe that the wonder is not diminished by the (various
alternative) conditions under which these results hold.

A general framework for casting (m-party) cryptographic (protocol) problems
consists of specifying a random process'® that maps m inputs to m outputs. The
inputs to the process are to be thought of as the local inputs of m parties, and the
m outputs are their corresponding local outputs. The random process describes
the desired functionality. That is, if the m parties were to trust each other (or trust
some external party), then they could each send their local input to the trusted
party, who would compute the outcome of the process and send to each party the
corresponding output. A pivotal question in the area of cryptographic protocols is
to what extent can this (imaginary) trusted party be “emulated” by the mutually
distrustful parties themselves.

The results surveyed in this section describe a variety of models in which such
an “emulation” is possible. The models vary by the underlying assumptions re-
garding the communication channels, numerous parameters governing the extent
of adversarial behavior, and the desired level of emulation of the trusted party (i.e.,
level of “security”). Our treatment refers to the security of stand-alone executions.
The preservation of security in an environment in which many executions of many
protocols are attacked is beyond the scope of this section, and the interested reader
is referred to [92, Sec. 7.7.2].

18That is, we consider the secure evaluation of randomized functionalities, rather than “only”
the secure evaluation of functions. Specifically, we consider an arbitrary (randomized) process
F that on input (x1,...,&m), first selects at random (depending only on ¢ ef :’;1 |z;]) an m-
ary function f, and then outputs the m-tuple f(z1,...,2m) = (fi(@1, -0y Tm), ..., fm(T1, ..., Tm))-
In other words, F(z1,...,@m) = F'(r,x1,...,Tm), where r is uniformly selected in {0, 1}” (with
£' = poly(£)), and F' is a function mapping (m + 1)-long sequences to m-long sequences.

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 565

C.7.1 The Definitional Approach and Some Models

Before describing the aforementioned results, we further discuss the notion of
“emulating a trusted party”, which underlies the definitional approach to secure
multi-party computation. This approach follows the simulation paradigm (cf. Sec-
tion C.4.1) which deems a scheme to be secure if whatever a feasible adversary can
obtain after attacking it, is also feasibly attainable by a benign behavior. In the
general setting of multi-party computation we compare the effect of adversaries
that participate in the execution of the actual protocol to the effect of adversaries
that participate in an imaginary execution of a trivial (ideal) protocol for com-
puting the desired functionality with the help of a trusted party. If whatever the
adversaries can feasibly obtain in the real setting can also be feasibly obtained in
the ideal setting then the actual protocol “emulates the ideal setting” (i.e., “emu-
lates a trusted party”), and thus is deemed secure. This approach can be applied
in a variety of models, and is used to define the goals of security in these models.'?
We first discuss some of the parameters used in defining various models, and next
demonstrate the application of the foregoing approach in two important cases. For
further details, see [92, Sec. 7.2 and 7.5.1].

C.7.1.1 Some parameters used in defining security models

The following parameters are described in terms of the actual (or real) computation.
In some cases, the corresponding definition of security is obtained by imposing some
restrictions or provisions on the ideal model.2’ In all cases, the desired notion of
security is defined by requiring that for any adequate adversary in the real model,
there exist a corresponding adversary in the corresponding ideal model that obtains
essentially the same impact (as the real-model adversary).

The communication channels: Most works in cryptography assume that com-
munication is synchronous and that point-to-point channels exist between every
pair of processors (i.e., a complete network). It is further assumed that the ad-
versary cannot modify (or omit or insert) messages sent over any communication
channel that connects honest parties. In the standard model, the adversary may
tap all communication channels, and thus obtain any message sent between honest
parties. In an alternative model, called the private-channel model, one postulates

19A few technical comments are in place. Firstly, we assume that the inputs of all parties
are of the same length. We comment that as long as the lengths of the inputs are polynomially
related, the foregoing convention can be enforced by padding. On the other hand, some length
restriction is essential for the security results, because in general it is impossible to hide all
information regarding the length of the inputs to a protocol. Secondly, we assume that the
desired functionality is computable in probabilistic polynomial-time, because we wish the secure
protocol to run in probabilistic polynomial-time (and a protocol cannot be more efficient than
the corresponding centralized algorithm). Clearly, the results can be extended to functionalities
that are computable within any given (time-constructible) time bound, using adequate padding.

20For example, in the case of two-party computation (see §C.7.1.3), secure computation is
possible only if premature termination is not considered a breach of security. In that case, the
suitable security definition is obtained (via the simulation paradigm) by allowing (an analogue
of) premature termination in the ideal model.

566 APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

that the adversary cannot obtain messages sent between any pair of honest parties.
Indeed, in some cases, the private-channel model can be emulated by the standard
model (e.g., by using a secure encryption scheme).

Set-up assumptions: Ununless stated differently, no set-up assumptions are made
(except for the obvious assumption that all parties have identical copies of the
protocol’s program).

Computational limitations: Typically, the focus is on computationally-bounded
adversaries (e.g., probabilistic polynomial-time adversaries). However, the private-
channel model allows for the (meaningful) consideration of computationally-unbounded
adversaries.?!

Restricted adversarial behavior: The parameters of the model include ques-
tions like whether the adversary is “active” or “passive” (i.e., whether a dishonest
party takes active steps to disrupt the execution of the protocol or merely gathers
information) and whether or not the adversary is “adaptive” (i.e., whether the set
of dishonest parties is fixed before the execution starts or is adaptively chosen by
an adversary during the execution).

Restricted notions of security: One important example is the willingness to
tolerate “unfair” protocols in which the execution can be suspended (at any time)
by a dishonest party, provided that it is detected doing so. We stress that in case the
execution is suspended, the dishonest party does not obtain more information than
it could have obtained when not suspending the execution. (What may happen is
that the honest parties will not obtain their desired outputs, but will detect that
the execution was suspended.) We stress that the motivation to this restricted
model is the impossibility of obtaining general secure two-party computation in
the unrestricted model.

Upper bounds on the number of dishonest parties: These are assumed
in some models, when required. For example, in some models, secure multi-party
computation is possible only if a majority of the parties is honest.

C.7.1.2 Example: Multi-party protocols with honest majority

Here we consider an active, non-adaptive, and computationally-bounded adversary,
and do not assume the existence of private channels. Our aim is to define multi-

21'We stress that, also in the case of computationally-unbounded adversaries, security should
be defined by requiring that, for every real adversary, whatever the adversary can compute after
participating in the execution of the actual protocol is computable within comparable time by
an imaginary adversary participating in an imaginary execution of the trivial ideal protocol (for
computing the desired functionality with the help of a trusted party). That is, although no
computational restrictions are made on the real-model adversary, it is required that the ideal-
model adversary that obtains the same impact does so within comparable time (i.e., within time
that is polynomially related to the running time of the real-model adversary being simulated).

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 567

party protocols that remain secure provided that the honest parties are in majority.
(The reason for requiring an honest majority will be discussed at the end of this
subsection.)

We first observe that in any multi-party protocol, each party may change its
local input before even entering the execution of the protocol. However, this is
unavoidable also when the parties utilize a trusted party. Consequently, such an
effect of the adversary on the real execution (i.e., modification of its own input
prior to entering the actual execution) is not considered a breach of security. In
general, whatever cannot be avoided when the parties utilize a trusted party, is
not considered a breach of security. We wish secure protocols (in the real model)
to suffer only from whatever is unavoidable also when the parties utilize a trusted
party. Thus, the basic paradigm underlying the definitions of secure multi-party
computations amounts to requiring that the only situations that may occur in the
real execution of a secure protocol are those that can also occur in a corresponding
ideal model (where the parties may employ a trusted party). In other words, the
“effective malfunctioning” of parties in secure protocols is restricted to what is
postulated in the corresponding ideal model.

In light of the foregoing, we start by defining an ideal model (or rather the
misbehavior allowed in it). Since we are interested in executions in which the
majority of parties are honest, we consider an ideal model in which any minority
group (of the parties) may collude as follows:

1. First, the members of this dishonest minority share their original inputs and
decide together on replaced inputs to be sent to the trusted party. (The other
parties send their respective original inputs to the trusted party.)

2. Upon receiving inputs from all parties, the trusted party determines the cor-
responding outputs and sends them to the corresponding parties. (We stress
that the information sent between the honest parties and the trusted party
is not seen by the dishonest colluding minority.)

3. Upon receiving the output-message from the trusted party, each honest party
outputs it locally, whereas the members of the dishonest minority share the
output-messages and determine their local outputs based on all they know
(i-e., their initial inputs and their received output-messages).

A secure multi-party computation with honest majority is required to emulate this
ideal model. That is, the effect of any feasible adversary that controls a minority of
the parties in a real execution of such a (real) protocol, can be essentially simulated
by a (different) feasible adversary that controls the corresponding parties in the
ideal model.

Definition C.17 (secure protocols — a sketch): Let f be an m-ary functionality
and II be an m-party protocol operating in the real model.

e For a real-model adversary A, controlling some minority of the parties (and
tapping all communication channels), and an m-sequence T, we denote by
REAL[A(T) the sequence of m outputs resulting from the execution of I on
input T under the attack of the adversary A.

568APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

e For an ideal-model adversary A’, controlling some minority of the parties,
and an m-sequence T, we denote by IDEALy 4/ (T) the sequence of m outputs
resulting from the foregoing three-step ideal process, when applied to input T
under the attack of the adversary A' and when the trusted party employs the
functionality f.

We say that I1 securely implements f with honest majority if for every feasible real-
model adversary A, controlling some minority of the parties, there exists a feasible
ideal-model adversary A', controlling the same parties, such that the probability en-
sembles {REAL[, A(T)}z and {IDEALy 4/ (T)}z are computationally indistinguishable
(as in Definition C.5).

Thus, security means that the effect of each minority group in a real execution
of a secure protocol is “essentially restricted” to replacing its own local inputs
(independently of the local inputs of the majority parties) before the protocol
starts, and replacing its own local outputs (depending only on its local inputs and
outputs) after the protocol terminates. (We stress that in the real execution the
minority parties do obtain additional pieces of information; yet in a secure protocol
they gain nothing from these additional pieces of information, because they can
actually reproduce those by themselves.)

The fact that Definition C.17 refers to a model without private channels is
reflected in the fact that our (sketchy) definition of the real-model adversary al-
lowed it to tap all channels, which in turn effects the set of possible ensembles
{REAL[, 4(T)}z. When defining security in the private-channel model, the real-
model adversary is not allowed to tap channels between honest parties, and this
again effects the possible ensembles {REAL 4(T)}z. On the other hand, when
defining security with respect to passive adversaries, both the scope of the real-
model adversaries and the scope of the ideal-model adversaries change. In the
real-model execution, all parties follow the protocol but the adversary may alter
the output of the dishonest parties arbitrarily depending on their intermediate in-
ternal states during the entire execution. In the corresponding ideal-model, the
adversary is not allowed to modify the inputs of dishonest parties (in Step 1), but
is allowed to modify their outputs (in Step 3).

We comment that a definition analogous to Definition C.17 can be presented also
in the case that the dishonest parties are not in minority. In fact, such a definition
seems more natural, but the problem is that such a definition cannot be satisfied.
That is, most (natural) functionalities do not have protocols for computing them
securely in the case that at least half of the parties are dishonest and employ an
adequate adversarial strategy. This follows from an impossibility result regarding
two-party computation, which essentially asserts that there is no way to prevent a
party from prematurely suspending the execution. On the other hand, secure multi-
party computation with dishonest majority is possible if premature suspension of
the execution is not considered a breach of security (see §C.7.1.3).

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 569

C.7.1.3 Another example: Two-party protocols allowing abort

In light of the last paragraph, we now consider multi-party computations in which
premature suspension of the execution is not considered a breach of security. For
simplicity, we focus on the special case of two-party computations. (As in §C.7.1.2,
we consider a non-adaptive, active, and computationally-bounded adversary.)

Intuitively, in any two-party protocol, each party may suspend the execution
at any point in time, and furthermore it may do so as soon as it learns the desired
output. Thus, if the output of each party depends on the inputs of both parties,
then it is always possible for one of the parties to obtain the desired output while
preventing the other party from fully determining its own output.??> The same
phenomenon occurs even in the case that the two parties just wish to generate a
common random value. In order to account for this phenomenon, when considering
active adversaries in the two-party setting, we do not consider such premature
suspension of the execution a breach of security. Consequently, we consider an ideal
model in which each of the two parties may “shut-down” the trusted (third) party
at any point in time. In particular, this may happen after the trusted party has
supplied the outcome of the computation to one party but before it has supplied
the outcome to the other party. Thus, an execution in the corresponding ideal
model proceeds as follows:

1. Each party sends its input to the trusted party, where the dishonest party
may replace its input or send no input at all (which can be treated as sending
a default value).

2. Upon receiving inputs from both parties, the trusted party determines the
corresponding pair of outputs, and sends the first output to the first party.

3. If the first party is dishonest, then it may instruct the trusted party to halt,
otherwise it always instructs the trusted party to proceed. If instructed to
proceed, the trusted party sends the second output to the second party.

4. Upon receiving the output-message from the trusted party, an honest party
outputs it locally, whereas a dishonest party may determine its output based
on all it knows (i.e., its initial input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal
model. That is, as in Definition C.17, security is defined by requiring that for
every feasible real-model adversary A, there exists a feasible ideal-model adversary
A’ controlling the same party, such that the probability ensembles representing
the corresponding (real and ideal) executions are computationally indistinguish-
able. This means that each party’s “effective malfunctioning” in a secure protocol
is restricted to supplying an initial input of its choice and aborting the computation
at any point in time. (Needless to say, the choice of the initial input of each party
may not depend on the input of the other party.)

221n contrast, in the case of an honest majority (cf., §C.7.1.2), the honest party that fails to
obtain its output is not alone. It may seek help from the other honest parties, which (being in
majority and) by joining forces can do things that dishonest minorities cannot do: See §C.7.3.2.

570APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

We mention that an alternative way of dealing with the problem of premature
suspension of execution (i.e., abort) is to restrict the attention to single-output
functionalities; that is, functionalities in which only one party is supposed to obtain
an output. The definition of secure computation of such functionalities can be made
identical to Definition C.17, with the exception that no restriction is made on the
set of dishonest parties (and in particular one may consider a single dishonest party
in the case of two-party protocols). For further details, see [92, Sec. 7.2.3].

C.7.2 Some Known Results

We next list some of the models for which general secure multi-party computation
is known to be attainable (i.e., models in which one can construct secure multi-
party protocols for computing any desired functionality). We mention that the first
results of this type were obtained by Goldreich, Micali, Wigderson and Yao [100,
240, 101].

In the standard channel model. Assuming the existence of enhanced?® trap-
door permutations, secure multi-party computation is possible in the following three
models (cf. [100, 240, 101] and details in [92, Chap. 7]):

1. Passive adversaries, for any number of dishonest parties.
2. Active adversaries that may control only a minority of the parties.

3. Active adversaries, for any number of dishonest parties, provided that sus-
pension of execution is not considered a violation of security (cf. §C.7.1.3).

In all these cases, the adversaries are computationally-bounded and non-adaptive.
On the other hand, the adversaries may tap the communication lines between hon-
est parties (i.e., we do not assume “private channels” here). The results for active
adversaries assume a broadcast channel. Indeed, the latter can be implemented
(while tolerating any number of dishonest parties) using a signature scheme and
assuming that each party knows (or can reliably obtain) the verification-key corre-
sponding to each of the other parties.

In the private channels model. Making no computational assumptions and
allowing computationally-unbounded adversaries, but assuming private channels,
secure multi-party computation is possible in the following two models (cf. [34, 53]):

1. Passive adversaries that may control only a minority of the parties.
2. Active adversaries that may control only less than one third of the parties.

In both cases the adversaries may be adaptive.

23See Footnote 15.

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 571

C.7.3 Construction Paradigms and Two Simple Protocols

We briefly sketch a couple of paradigms used in the construction of secure multi-
party protocols. We focus on the construction of secure protocols for the model
of computationally-bounded and non-adaptive adversaries [100, 240, 101]. These
constructions proceed in two steps (see details in [92, Chap. 7]): First a secure pro-
tocol is presented for the model of passive adversaries (for any number of dishonest
parties), and next such a protocol is “compiled” into a protocol that is secure in
one of the two models of active adversaries (i.e., either in a model allowing the
adversary to control only a minority of the parties or in a model in which prema-
ture suspension of the execution is not considered a violation of security). These
two steps are presented in the following two corresponding subsections, in which
we also present two relatively simple protocols for two specific tasks, which in turn
are used extensively in the general protocols.

Recall that in the model of passive adversaries, all parties follow the prescribed
protocol, but at termination the adversary may alter the outputs of the dishonest
parties depending on their intermediate internal states (during the entire execu-
tion). We refer to protocols that are secure in the model of passive (resp., active)
adversaries by the term passively-secure (resp., actively-secure).

C.7.3.1 Passively-secure computation with shares

For sake of simplicity, we consider here only the special case of deterministic m-ary
functionalities (i.e., functions). We assume that the m parties hold a circuit for
computing the value of the function on inputs of the adequate length, and that the
circuit contains only and and not gates. The key idea is having each party “secretly
share” its input with everybody else, and having the parties “secretly transform”
shares of the input wires of the circuit into shares of the output wires of the
circuit, thus obtaining shares of the outputs (which allows for the reconstruction
of the actual outputs). The value of each wire in the circuit is shared such that
all shares yield the value, whereas lacking even one of the shares keeps the value
totally undetermined. That is, we use a simple secret sharing scheme such that a
bit b is shared by a random sequence of m bits that sum-up to b mod 2. First, each
party shares each of its input bits with all parties (by secretly sending each party a
random value and setting its own share accordingly). Next, all parties jointly scan
the circuit from its input wires to its output wires, processing each gate as follows:

e When encountering a gate, the parties already hold shares of the values of
the wires entering the gate, and their aim is to obtain shares of the value of
the wires exiting the gate.

e For a not-gate this is easy: the first party just flips the value of its share,
and all other parties maintain their shares.

e Since an and-gate corresponds to multiplication modulo 2, the parties need
to securely compute the following randomized functionality (where the z;’s
denote shares of one entry-wire, the y;’s denote shares of the second entry-
wire, the z;’s denote shares of the exit-wire, and the shares indexed by 7 are

572APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

held by Party 1):

((xlyyl);---;(wm;ym)) = (Zl,...,Zm), where (Cl)

That is, the z;’s are random subject to Eq. (C.2).

Finally, the parties send their shares of each circuit-output wire to the designated
party, which reconstructs the value of the corresponding bit. Thus, the parties have
propagated shares of the circuit-input wires into shares of the circuit-output wires,
by repeatedly conducting a passively-secure computation of the m-ary functionality
of Eq. (C.1)& (C.2). That is, securely evaluating the entire (arbitrary) circuit
“reduces” to securely conducting a specific (very simple) multi-party computation.
But things get even simpler: the key observation is that

(Z%) : (Z%) = Ziﬂz‘yi+ Z (ziy;j + 59i) - (C.3)

1<i<j<m

Thus, the m-ary functionality of Eq. (C.1) & (C.2) can be computed as follows
(where all arithmetic operations are mod 2):

1. Each Party ¢ locally computes z; ; def Tili-

2. Next, each pair of parties (i.e., Parties ¢ and j) securely compute random
shares of z;y; + y;z;. That is, Parties ¢ and j (holding (z;,y;) and (x;,y;),
respectively), need to securely compute the randomized two-party function-
ality (@i, i), (xj,y;)) — (2i,%;:), where the 2’s are random subject to
zij + 2 = xy; + yixj. Equivalently, Party j uniformly selects z;,; € {0,1},
and Parties ¢ and j securely compute the following deterministic functionality

(@i, v2), (5,95, 25,4) = (25 + Tiy; + yizj, A), (C.4)
where A denotes the empty string.

3. Finally, for every i = 1,...,m, the sum)77, z; ; yields the desired share of
Party .

The foregoing construction is analogous to a construction that was outlined in [101].
A detailed description and full proofs appear in [92, Sec. 7.3.4 and 7.5.2].

The foregoing construction “reduces” the passively-secure computation of any
m-ary functionality to the implementation of the simple 2-ary functionality of
Eq. (C.4). The latter can be implemented in a passively-secure manner by using a
1-out-of-4 Oblivious Transfer. Loosely speaking, a l-out-of-k Oblivious Transfer is
a protocol enabling one party to obtain one out of k secrets held by another party,
without the second party learning which secret was obtained by the first party.
That is, it allows a passively-secure computation of the two-party functionality

(1, (81, -, 8)) — (80, A). (C.5)

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 573

Note that any function f : [k] x {0,1}* — {0,1}* x {A} can be computed in a
passively-secure manner by invoking a 1l-out-of-k Oblivious Transfer on inputs ¢
and (f(1,v),..., f(k,y)), where i (resp., y) is the initial input of the first (resp.,
second) party.

A passively-secure 1-out-of-k Oblivious Transfer. Using a collection of en-
hanced trapdoor permutations, {fo : Do — Da}, 7 and a corresponding hard-core
predicate b, we outline a passively-secure implementation of the functionality of
Eq. (C.5), when restricted to single-bit secrets.

Inputs: The first party, hereafter called the receiver, has input ¢ € {1,2,...,k}. The
second party, called the sender, has input (01,02, ...,0%) € {0, 1}*.

Step S1: The sender selects at random a permutation f, along with a correspond-
ing trapdoor, denoted ¢, and sends the permutation f, (i.e., its index «) to
the receiver.

Step R1: The receiver uniformly and independently selects xi,...,xx € Dy, sets
¥i = fo(z;) and y; = x; for every j # i, and sends (y1,y2,...,yx) to the
sender.

Thus, the receiver knows f7!(y;) = ;, but cannot predict b(f;*(y;)) for any
J # 1. Needless to say, the last assertion presumes that the receiver follows
the protocol (i.e., we only consider passive-security).

Step S2: Upon receiving (y1,¥2,...,¥x), using the inverting-with-trapdoor algo-
rithm and the trapdoor ¢, the sender computes z; = f.'(y,), for every
j € {1,...,k}. It sends the k-tuple (o1 ® b(z1),02 D b(22),...,06 © b(21))
to the receiver.

Step R2: Upon receiving (ci, ca, ..., ¢k), the receiver locally outputs ¢; & b(z;).

We first observe that this protocol correctly computes 1-out-of-k Oblivious Trans-
fer; that is, the receiver’s local output (i.e., ¢;®b(x;)) indeed equals (o;Bb(7 (fu(i))))D
b(x;) = 0;. Next, we offer some intuition as to why this protocol counstitutes a
privately-secure implementation of 1-out-of-k Oblivious Transfer. Intuitively, the
sender gets no information from the execution because, for any possible value of i,
the sender sees the same distribution; specifically, a sequence of k uniformly and
independently distributed elements of D,. (Indeed, the key observation is that ap-
plying f, to a uniformly distributed element of D, yields a uniformly distributed
element of D,.) As for the receiver, intuitively, it gains no computational knowl-
edge from the execution because, for j # 4, the only information that the receiver
has regarding o; is the triple (o, z;,0; @ b(f,(z;))), where z; is uniformly dis-
tributed in D, and from this information it is infeasible to predict o; better than
by a random guess.?* (See [92, Sec. 7.3.2] for a detailed proof of security.)

24The latter intuition presumes that sampling D, is trivial (i.e., that there is an easily com-
putable correspondence between the coins used for sampling and the resulting sample), whereas
in general the coins used for sampling may be hard to compute from the corresponding outcome.
This is the reason that an enhanced hardness assumption is used in the general analysis of the
foregoing protocol.

574APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

C.7.3.2 From passively-secure protocols to actively-secure ones

We show how to transform any passively-secure protocol into a corresponding
actively-secure protocol. The communication model in both protocols consists of
a single broadcast channel. Note that the messages of the original protocol may
be assumed to be sent over a broadcast channel, because the adversary may see
them anyhow (by tapping the point-to-point channels), and because a broadcast
channel is trivially implementable in the case of passive adversaries. As for the re-
sulting actively-secure protocol, the broadcast channel it uses can be implemented
via an (authenticated) Byzantine Agreement protocol, thus providing an emulation
of this model on the standard point-to-point model (in which a broadcast channel
does not exist). We mention that authenticated Byzantine Agreement is typically
implemented using a signature scheme (and assuming that each party knows the
verification-key corresponding to each of the other parties).

Turning to the transformation itself, the main idea (mentioned in §C.4.3.2) is
using zero-knowledge proofs in order to force parties to behave in a way that is
counsistent with the (passively-secure) protocol. Actually, we need to confine each
party to a unique consistent behavior (i.e., according to some fixed local input and a
sequence of coin tosses), and to guarantee that a party cannot fix its input (and/or
its coin tosses) in a way that depends on the inputs (and/or coin tosses) of honest
parties. Thus, some preliminary steps have to be taken before the step-by-step
emulation of the original protocol may start. Specifically, the compiled protocol
(which, like the original protocol, is executed over a broadcast channel) proceeds
as follows:

1. Committing to the local input: Prior to the emulation of the original protocol,
each party commits to its input (using a commitment scheme as defined
in §C.4.3.1). In addition, using a zero-knowledge proof-of-knowledge (see
Section 9.2.3), each party also proves that it knows its own input; that is,
it proves that it can decommit to the commitment it sent. (These zero-
knowledge proof-of-knowledge prevent dishonest parties from setting their
inputs in a way that depends on inputs of honest parties.)

2. Generation of local random tapes: Next, all parties jointly generate a se-
quence of random bits for each party such that only this party knows the
outcome of the random sequence generated for it, and everybody else gets a
commitment to this outcome. These sequences will be used as the random-
inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in the
random-sequence generated for Party X is determined as the exclusive-or of
the outcomes of instances of an (augmented) coin-tossing protocol (cf. [92,
Sec. 7.4.3.5]) that Party X plays with each of the other parties. The lat-
ter protocol provides the other parties with a commitment to the outcome
obtained by Party X.

3. Effective prevention of premature termination: In addition, when compiling
(the passively-secure protocol to an actively-secure protocol) for the model
that allows the adversary to control only a minority of the parties, each party

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 575

shares its input and its random-input with all other parties using a “Verifiable
Secret Sharing” (VSS) protocol (cf. [92, Sec. 7.5.5.1]). Loosely speaking, a
VSS protocol allows sharing a secret in a way that enables each participant
to verify that the share it got fits the publicly posted information, which
includes commitments to all shares, where a sufficient number of the latter
allow for the efficient recovery of the secret. The use of VSS guarantees that
if Party X prematurely suspends the execution, then the honest parties can
together reconstruct all Party X’s secrets and carry on the execution while
playing its role. This step effectively prevents premature termination, and is
not needed in a model that does not consider premature termination a breach
of security.

4. Step-by-step emulation of the original protocol: Once all the foregoing steps
are completed, the new protocol emulates the steps of the original protocol.
In each step, each party augments the message determined by the original
protocol with a zero-knowledge proof that asserts that the message was in-
deed computed correctly. Recall that the next message (as determined by
the original protocol) is a function of the sender’s own input, its random-
input, and the messages it has received so far (where the latter are known to
everybody because they were sent over a broadcast channel). Furthermore,
the sender’s input is determined by its commitment (as sent in Step 1), and
its random-input is similarly determined (in Step 2). Thus, the next mes-
sage (as determined by the original protocol) is a function of publicly known
strings (i.e., the said commitments as well as the other messages sent over
the broadcast channel). Moreover, the assertion that the next message was
indeed computed correctly is an NP-assertion, and the sender knows a cor-
responding NP-witness (i.e., its own input and random-input as well as the
corresponding decommitment information). Thus, the sender can prove in
zero-knowledge (to each of the other parties) that the message it is sending
was indeed computed according to the original protocol.

The foregoing compilation was first outlined in [100, 101]. A detailed description
and full proofs appear in [92, Sec. 7.4 and 7.5].

A secure coin-tossing protocol. Using a commitment scheme, we outline a
secure (ordinary as opposed to augmented) coin-tossing protocol.

Step C1: Party 1 uniformly selects o € {0,1} and sends Party 2 a commitment,
denoted ¢, to o.

Step C2: Party 2 uniformly selects o’ € {0,1}, and sends o' to Party 1.

Step C3: Party 1 outputs the value o @ o', and sends ¢ along with the decommit-
ment information, denoted d, to Party 2.

Step C4: Party 2 checks whether or not (o, d) fit the commitment ¢ it has obtained
in Step 1. It outputs o @ o' if the check is satisfied and halts with output L

576 APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

otherwise, where L indicates that Party 1 has effectively aborted the protocol
prematurely.

Intuitively, Steps C1-C2 may be viewed as “tossing a coin into the well”. At
this point (i.e., after Step C2), the value of the coin is determined (essentially
as a random value), but only one party (i.e., Party 1) “can see” (i.e., knows) this
value. Clearly, if both parties are honest then they both output the same uniformly
chosen bit, recovered in Steps C3 and C4, respectively. Intuitively, each party
can guarantee that the outcome is uniformly distributed, and Party 1 can cause
premature termination by improper execution of Step 3. Formally, we have to show
how the effect of any real-model adversary can be simulated by an adequate ideal-
model adversary (which is allowed premature termination). This is done in [92,
Sec. 7.4.3.1].

C.7.4 Concluding Remarks

In Sections C.7.1-C.7.2 we have mentioned numerous definitions and results regard-
ing secure multi-party protocols, where some of these definitions are incomparable
to others (i.e., they neither imply the others nor are implies by them). For example,
in §C.7.1.2 and §C.7.1.3, we have presented two alternative definitions of “secure
multi-party protocols”, one requiring an honest majority and the other allowing
abort. These definitions are incomparable and there is no generic reason to prefer
one over the other. Actually, as mentioned in §C.7.1.2, one could formulate a nat-
ural definition that implies both definitions (i.e., waiving the bound on the number
of dishonest parties in Definition C.17). Indeed, the resulting definition is free of
the annoying restrictions that were introduced in each of the two aforementioned
definitions; the “only” problem with the resulting definition is that it cannot be
satisfied (in general). Thus, for the first time in this appendix, we have reached a
situation in which a natural (and general) definition cannot be satisfied, and we are
forced to choose between two weaker alternatives, where each of these alternatives
carries fundamental disadvantages.

In general, Section C.7 carries a stronger flavor of compromise (i.e., recognizing
inherent limitations and settling for a restricted meaningful goal) than previous
sections. In contrast to the impression given in other parts of this appendix, it
turns out that we cannot get all that we may want (and this is without mentioning
the problems involved in preserving security under concurrent composition; cf. [92,
Sec. 7.7.2]). Instead, we should study the alternatives, and go for the one that best
suits our real needs.

Indeed, as stated in Section C.1, the fact that we can define a cryptographic
goal does not mean that we can satisfy it as defined. In case we cannot satisfy
the initial definition, we should search for relaxations that can be satisfied. These
relaxations should be defined in a clear manner such that it would be obvious what
they achieve (and what they fail to achieve). Doing so will allow a sound choice of
the relaxation to be used in a specific application.

Appendix D

Probabilistic Preliminaries
and Advanced Topics in
Randomization

What is this? Chicken Curry and Seafood Salad?
Fine, but in the same plate? This is disgusting!

Johan Hastad at Grendel’s, Cambridge (1985)

Summary: This appendix lumps together some preliminaries regard-
ing probability theory and some advanced topics related to the role and
use of randomness in computation. Needless to say, each of these topics
appears in a separate section.

The probabilistic preliminaries include our conventions regarding ran-
dom variables, which are used throughout the book. Also included are
overviews of three useful probabilistic inequalities: Markov’s Inequality,
Chebyshev’s Inequality, and Chernoff Bound.

The advanced topics include hashing, sampling, and randomness ex-
traction. For hashing, we describe constructions of pairwise (and ¢t-wise
independent) hashing functions and (a few variants of) the Leftover
Hashing Lemma (used a few times in the main text). We then review
the “complexity of sampling”: that is, the number of samples and the
randomness complexity involved in estimating the average value of an
arbitrary function defined over a huge domain. Finally, we provide an
overview on the question of extracting almost perfect randomness from
sources of weak (or defected) randomness.

S77

578APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

D.1 Probabilistic preliminaries

Probability plays a central role in complexity theory (see, for example, Chapters 6—
9). We assume that the reader is familiar with the basic notions of probability
theory. In this section, we merely present the probabilistic notations that are used
throughout the book and three useful probabilistic inequalities.

D.1.1 Notational Conventions

Throughout the entire book we refer only to discrete probability distributions.
Specifically, the underlying probability space consists of the set of all strings of a
certain length ¢, taken with uniform probability distribution. That is, the sample
space is the set of all /-bit long strings, and each such string is assigned probability
measure 2~¢. Traditionally, random variables are defined as functions from the
sample space to the reals. Abusing the traditional terminology, we use the term
random variable also when referring to functions mapping the sample space into the
set of binary strings. We often do not specify the probability space, but rather talk
directly about random variables. For example, we may say that X is a random
variable assigned values in the set of all strings such that Pr[X = 00] = 1 and
Pr[X =111] = 2. (Such a random variable may be defined over the sample space
{0,1}2, so that X(11) = 00 and X (00) = X(01) = X(10) = 111.) One important
case of a random variable is the output of a randomized process (e.g., a probabilistic
polynomial-time algorithm, as in Section 6.1).

All our probabilistic statements refer to random variables that are defined be-
forehand. Typically, we may write Pr[f(X) = 1], where X is a random variable
defined beforehand (and f is a function). An important convention is that all oc-
currences of the same symbol in a probabilistic statement refer to the same (unique)
random variable. Hence, if B(-,-) is a Boolean expression depending on two vari-
ables, and X is a random variable then Pr[B(X, X)] denotes the probability that
B(z,z) holds when x is chosen with probability Pr[X =z]. For example, for every
random variable X, we have Pr[X = X] = 1. We stress that if we wish to discuss the
probability that B(z,y) holds when z and y are chosen independently with identi-
cal probability distribution, then we will define two independent random variables
each with the same probability distribution. Hence, if X and Y are two indepen-
dent random variables then Pr[B(X,Y")] denotes the probability that B(x,y) holds
when the pair (z,y) is chosen with probability Pr[X =z] - Pr[Y =y]. For example,

for every two independent random variables, X and Y, we have PrilX =Y] =1
only if both X and Y are trivial (i.e., assign the entire probability mass to a single
string).

Throughout the entire book, U, denotes a random variable uniformly dis-
tributed over the set of all strings of length n. Namely, Pr[U,, = a] equals 27"
if @ € {0,1}" and equals 0 otherwise. We often refer to the distribution of U, as
the uniform distribution (neglecting to qualify that it is uniform over {0,1}™). In ad-
dition, we occasionally use random variables (arbitrarily) distributed over {0,1}™
or {0,1}*™) for some function £ : N—N. Such random variables are typically
denoted by X,,, Y, Z,, etc. We stress that in some cases X, is distributed over

D.1. PROBABILISTIC PRELIMINARIES 579

{0,1}", whereas in other cases it is distributed over {0,1}*™), for some function ¢
(which is typically a polynomial). We often talk about probability ensembles, which
are infinite sequence of random variables {X,},cn such that each X,, ranges over
strings of length bounded by a polynomial in n.

Statistical difference. The statistical distance (a.k.a variation distance) between
the random variables X and Y is defined as

5 S IPAX = o]~ PrlY =] = max{Pr[X € 5]~ Py €S]}. (D)

We say that X is §-close (resp., 6-far) to Y if the statistical distance between them
is at most (resp., at least) 0.

D.1.2 Three Inequalities

The following probabilistic inequalities are very useful. These inequalities refer to
random variables that are assigned real values and provide upper-bounds on the
probability that the random variable deviates from its expectation.

D.1.2.1 Markov’s Inequality

The most basic inequality is Markov's Inequality that applies to any random variable
with bounded maximum or minimum value. For simplicity, this inequality is stated
for random variables that are lower-bounded by zero, and reads as follows: Let X
be a non-negative random variable and v be a non-negative real number. Then

E(X)

PriX>v] < (D.2)

Equivalently, Pr[X > r E(X)] < % The proof amounts to the following sequence:

E(X) = > PriX=a]-z
> ZPr[X::ﬂ]-O—l—ZPr[X:x]-v
z<v z>v
= PriX>v]-v

D.1.2.2 Chebyshev’s Inequality

Using Markov’s inequality, one gets a potentially stronger bound on the deviation
of a random variable from its expectation. This bound, called Chebyshev’s inequal-
ity, is useful when having additional information concerning the random variable

(specifically, a good upper bound on its variance). For a random variable X of

finite expectation, we denote by Var(X) et E[(X — E(X))?] the variance of X, and

580APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

observe that Var(X) = E(X?)—E(X)?. Chebyshev’s Inequality then reads as follows:
Let X be a random variable, and § > 0. Then

Var(X)

Pr(IX - E(0)|20] < =5

(D.3)
Proof: We define a random variable ¥ (X — E(X))?, and apply Markov’s
inequality. We get

PriX —E(X)|>¢ = Pr[(X —E(X))*>6]
E[(X — E(X))?]
< 52

and the claim follows. [l

Corollary (Pairwise Independent Sampling): Chebyshev’s inequality is particu-
larly useful in the analysis of the error probability of approximation via repeated
sampling. It suffices to assume that the samples are picked in a pairwise indepen-
dent manner, where X, Xo, ..., X,, are pairwise independent if for every i # j and
every «, (8 it holds that Pr[X; =a A X; =] = Pr[X,; =q] - Pr[X,; =]. The corol-
lary reads as follows: Let X1, X5, ..., X,, be pairwise independent random variables
with identical expectation, denoted u, and identical variance, denoted o®. Then,
for every € > 0, it holds that

noX, 2
[A
n

a

g] <Z (D.4)

v

e2n.

Proof: Define the random variables X; def X; — E(X;). Note that the X,’s are
pairwise independent, and each has zero expectation. Applying Chebyshev’s in-
equality to the random variable Y,)Ti , and using the linearity of the expectation
operator, we get

Var [37 &]

"
> =1 n
>e|l < 5

e[, X))

g2 .p2

N

Now (again using the linearity of expectation)

n 2 n
E (ZK‘) :ZE[Y?] + Y EXX))
i=1 i=1 1<i#j<n

By the pairwise independence of the X;’s, we get E[X;X;] = E[X,] - E[X;], and

using E[X;] = 0, we get

n 2
E (Zyz> =’I’L'U2
=1

D.1. PROBABILISTIC PRELIMINARIES 581

The corollary follows. [l

D.1.2.3 Chernoff Bound

When using pairwise independent sample points, the error probability in the ap-
proximation decreases linearly with the number of sample points (see Eq. (D.4)).
When using totally independent sample points, the error probability in the approx-
imation can be shown to decrease exponentially with the number of sample points.
(Recall that the random variables X, Xo, ..., X,, are said to be totally independent
if for every sequence ay, as, ..., an it holds that Pr[AT” X;=qa,] = [[\-, Pr{X;=a].)
Probability bounds supporting the foregoing statement are given next. The first
bound, commonly referred to as Chernoff Bound, concerns 0-1 random variables
(i.e., random variables that are assigned as values either 0 or 1), and asserts the
following. Let p < 1, and X, X5, ..., X, be independent 0-1 random variables such

PR
that Pr[X;=1] = p, for each i. Then, for every e € (0, p|, it holds that

- Xz' 2
Pr [‘2_71 - p‘ > Ej| < 2.e79" where ¢ = max(2, ﬁ) (D.5)
n

The more common formulation sets ¢ = 2, but the case ¢ = 1/3p is very useful
when p is small and one cares about a multiplicative deviation (e.g., € = p/2).

Proof Sketch: We upper-bound Pr[>"" | X; — pn > en], and Prjpn — > | X; >
en] is bounded similarly. Letting X; def X; — E(X;), we apply Markov’s inequality

to the random variable e* 2 Xi where A € (0,1] will be determined to optimize

the expressions that we derive. Thus, Pr[>"" | X; > en] is upper-bounded by

E[el\z?zlyi] —Xen : X;
R D I 0
=1

where the equality is due to the independence of the random variables. To simplify
the rest of the proof, we establish a sub-optimal bound as follows. Using a Taylor
expansion of e® (e.g., e* < 1+z+2? for |z| < 1) and observing that E[X;] = 0, we
get E[e*Xi] < 1+/\2E[Yj], which equals 1+A?p(1—p). Thus, Pr[}" | X;—pn > en]
is upper-bounded by e™*¢™ - (1 + A%p(1 — p))" < exp(—Xen + A%p(1 — p)n), which
yon) < exp(—e?-n). 0O

is optimized at A = ¢/(2p(1 — p)) yielding exp(—4p(51—2_p

The foregoing proof strategy can be applied in more general settings.! A more
general bound, which refers to independent random variables that are each bounded
but are not necessarily identical, is given next (and is commonly referred to as

Hoefding Inequality). Let X, X5, ..., X,, be n independent random wvariables, each

ranging in the (real) interval [a,b], and let p def L >oi, E(X;) denote the average

n

! For example, verify that the current proof actually applies to the case that X; € [0, 1] rather
than X; € {0, 1}, by noting that Var[X;] < p(1 — p) still holds.

582APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

expected value of these variables. Then, for every e > 0,
"X, 22
Pr HD_71 - ,u‘ > 6:| <2-e (-a)? (D.6)
n

The special case (of Eq. (D.6)) that refers to identically distributed random vari-
ables is easy to derive from the foregoing Chernoff Bound (by recalling Footunote 1
and using a linear mapping of the interval [a, b] to the interval [0, 1]). This special
case is useful in estimating the average value of a (bounded) function defined over
a large domain, especially when the desired error probability needs to be negligi-
ble (i.e., decrease faster than any polynomial in the number of samples). Such an
estimate can be obtained provided that we can sample the function’s domain (and
evaluate the function).

D.1.2.4 Pairwise independent versus totally independent sampling

To demonstrate the difference between the sampling bounds provided in §D.1.2.2
and §D.1.2.3, we consider the problem of estimating the average value of a function
f:Q — [0,1]. In general, we say that a random variable Z provides an (g, 6)-
approximation of a value v if Pr[|Z —v| > ¢] < 6. By Eq. (D.6), the average value
of f evaluated at n = O((e~2 - log(1/6)) independent samples (selected uniformly
in Q) yield an (g, 6)-approximation of p = 3 ¢ f(2)/|Q2|. Thus, the number of
sample points is polynomially related to ¢! and logarithmically related to §—1. In
contrast, by Eq. (D.4), an (¢, §)-approximation by n pairwise independent samples
calls for setting n = O(e=2 - §71). We stress that, in both cases the number of
samples is polynomially related to the desired accuracy of the estimation (i.e., €).
The only advantage of totally independent samples over pairwise independent ones
is in the dependency of the number of samples on the error probability (i.e., §).

D.2 Hashing

Hashing is extensively used in complexity theory (see, e.g., §6.2.2.2, Section 6.2.3,
§6.2.4.2, §8.2.5.3, and §8.4.2.1). The typical application is for mapping arbitrary
(unstructured) sets “almost uniformly” to a structured set of adequate size. Specif-
ically, hashing is used for mapping an arbitrary 2™-subset of {0,1}" to {0,1}™ in
an “almost uniform” manner.

For any fixed set S of cardinality 2™, there exists a 1-1 mapping fs : S —
{0,1}™, but this mapping is not necessarily efficiently computable (e.g., it may
require “knowing” the entire set S). On the other hand, no single function f :
{0,1}" — {0,1}"™ can map every 2™-subset of {0,1}" to {0,1}™ in a 1-1 manner
(or even approximately so). Nevertheless, for every 2™-subset S C {0,1}", a
random function f : {0,1}" — {0,1}™ has the property that, with overwhelmingly
high probability, f maps S to {0, 1}™ such that no point in the range has too many
f-preimages in S. The problem is that a truly random function is unlikely to have
a succinct representation (let alone an efficient evaluation algorithm). We thus seek
families of functions that have a “random mapping” property (as in Item 1 of the

D.2. HASHING 583

following definition), but do have a succinct representation as well as an efficient
evaluation algorithm (as in Items 2 and 3 of the following definition).

D.2.1 Definitions

Motivated by the foregoing discussion, we consider families of functions {H™}<n
such that the following properties hold:

1. For every S C {0,1}™, with high probability, a function h selected uniformly
in H™ maps S to {0,1}™ in an “almost uniform” manner. For example, we
may require that, for any |S| = 2™ and each point y, with high probability
over the choice of h, it holds that |{z € S : h(z) = y}| < poly(n).

2. The functions in H]* have succinct representation. For example, we may
require that H™ = {0,1}*™™)_ for some polynomial /.

3. The functions in H,* can be efficiently evaluated. That is, there exists a
polynomial-time algorithm that, on input a representation of a function, h
(in H]"), and a string = € {0, 1}", returns h(x). In some cases we make even
more stringent requirements regarding the algorithm (e.g., that it runs in
linear space).

Condition 1 was left vague on purpose. At the very least, we require that the
expected size of {z € S : h(z) = y} equals |S|/2™. We shall see (in Section D.2.3)
that different interpretations of Condition 1 are satisfied by different families of
hashing functions. We focus on ¢-wise independent hashing functions, defined next.

Definition D.1 (¢-wise independent hashing functions): A family HI" of func-
tions from m-bit strings to m-bit strings is called t-wise independent if for every t
distinct domain elements x1, ...,x¢ € {0,1}"™ and every yi,...,y; € {0,1}™ it holds
that

Procmm[Ai_ih(z;) =y = 270"

That is, a uniformly chosen h € H]* maps every ¢t domain elements to the range in
a totally uniform manner. Note that for ¢ > 2, it follows that the probability that
a random h € H® maps two distinct domain elements to the same image equals
27™. Such (families of) functions are called universal (cf. [50]), but we will focus
on the stronger condition of ¢-wise independence.

D.2.2 Counstructions

The following constructions are merely a re-interpretation of the constructions
presented in §8.5.1.1. (Alternatively, one may view the constructions presented
in §8.5.1.1 as a re-interpretation of the following two constructions.)

Construction D.2 (t-wise independent hashing): For t,m,n € N such that m <
n, consider the following family of hashing functions mapping n-bit strings to m-
bit strings. Each t-sequence 3 = (8¢, 81,-.-,5t—1) € {0,1}*'™ describes a function

584 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

hz :{0,1}™ — {0,1}™ such that hz(x) equals the m-bit prefix of the binary repre-
sentation of Z;;(l) s;x?, where the arithmetic is that of GF(2"), the finite field of
2™ elements.

Proposition 8.24 implies that Construction D.2 constitutes a family of ¢-wise inde-
pendent hash functions. Typically, we will use either t = 2 or t = ©(n). To make
the construction totally explicit, we need an explicit representation of GF(2");
see comment following Proposition 8.24. An alternative construction for the case
of t = 2 may be obtained analogously to the pairwise independent generator of
Proposition 8.25. Recall that a Toeplitz matrix is a matrix with all diagonals being
homogeneous; that is, T' = (¢; ;) is a Toeplitz matrix if ¢; ; = t;41 j41, for all 4, 5.

Construction D.3 (alternative pairwise independent hashing): For m <n, con-
sider the family of hashing functions in which each pair (T,b), consisting of a
n-by-m Toeplitz matriz T and an m-dimensional vector b, describes a function
hry : {0,1}™" — {0,1}™ such that hry(x) =Tz +b.

Proposition 8.25 implies that Construction D.3 constitutes a family of pairwise
independent hash functions. Note that a n-by-m Toeplitz matrix can be specified
by n +m — 1 bits, yielding a description length of n + 2m — 1 bits. An alternative
construction (analogous to Eq. (8.23) and requiring m-n+m bits of representation)
uses arbitrary n-by-m matrices rather than Toeplitz matrices.

D.2.3 The Leftover Hash Lemma

We now turn to the “almost uniform” cover condition (i.e., Condition 1) mentioned
in Section D.2.1. One concrete interpretation of this condition is given by the
following lemma (and another interpretation is implied by it: see Theorem D.5).

Lemma D.4 Let m < n be integers, H" be a family of pairwise independent hash
functions, and S C {0,1}™. Then, for every y € {0,1}™ and every € > 0, for all
but at most an % fraction of h € H"* it holds that

(1—5)-% < HzeS:hz)=y} < (1+¢)-

5]

o (D.7)

Note that by pairwise independence (or rather even by 1-wise independence), the
expected size of {x € S : h(z) = y} is |S]/2™, where the expectation is taken
uniformly over all A € H'. The lemma upper bounds the fraction of hA’s that
deviate from the expected behavior (i.e., for which |h=(y)N S| # (1 £e)-|S|/2™).
Needless to say, the bound is meaningful only in case |S| > 2™ /e?. Focusing on
the case that |S| > 2™ and setting ¢ = {/2™/|S|, we infer that for all but at most
an € fraction of h € H]* it holds that |[{x € S : h(z) = y}| = (1£¢e)-|S|/2™. Thus,
each range element has approximately the right number of h-preimages in the set
S, under almost all h € H,".

Proof: Fixing an arbitrary set S C {0,1}" and an arbitrary y € {0,1}™, we
estimate the probability that a uniformly selected h € H]™* violates Eq. (D.7). We

D.2. HASHING 585

define random variables (,, over the aforementioned probability space, such that

Cx = Ce(h) equal 1 if h(z) = y and (, = O otherwise. The expected value of

Y owes Ca is p def |S] - 2™, and we are interested in the probability that this sum

deviates from the expectation. Applying Chebyshev’s Inequality, we get

Prlu—zg—c

z€S
because Var[)_ ¢ (] <|S|-27™ by the pairwise independence of the (,’s and the
fact that E[(;] = 27™. The lemma follows. [l

I

<
e2p

>cop 5

A generalization (called mixing). The proof of Lemma D.4 can be easily
extended to show that for every set T C {0,1}™ and every € > 0, for all but
at most an \T\ZT\EZ fraction of h € H]* it holds that |[{x € S : h(z) € T} =
(1 xe¢)-|T|-|S|/2™. (Hint: redefine ¢, = ((h) = 1if h(z) € T and ¢, = 0
otherwise.) This assertion is meaningful provided that |T'|-|S| > 2™/e?, and in the
case that m = n it is called a mixing property.

An extremely useful corollary. The aforementioned generalization of Lemma D.4
asserts that, for any fixed set of preimages S C {0,1}™ and any fixed sets of images

T C {0,1}™, most functions in H}* behave well with respect to S and T' (in the
sense that they map approximately the adequate fraction of S (i.e., |T'|/2™) to T').

A seemingly stronger statement, which is (non-trivially) implied by Lemma D.4 it-
self, reverses the order of quantification with respect to T'; that is, for all adequate
sets S, most functions in H map S to {0,1}™ in an almost uniform manner (i.e.,
assign each set 7" approximately the adequate fraction of S, where here the ap-
proximation is up to an additive deviation). As we shall see, this is a consequence
of the following theorem.

Theorem D.5 (a.k.a Leftover Hash Lemma): Let H™ and S C {0,1}" be as in
Lemma D.4, and define ¢ = {/2™/|S|. Consider random variables X and H that
are uniformly distributed on S and H)", respectively. Then, the statistical distance
between (H, H(X)) and (H,U,,) is at most 2¢.

It follows that, for X and € as in Theorem D.5 and any « > 0, for all but at
most an « fraction of the functions h € H it holds that h(X) is (2¢/a)-close
to U,,.2 (Using the terminology of the subsequent Section D.4, we may say that
Theorem D.5 asserts that H" yields a strong extractor (with parameters to be
spelled out there).)

Proof: Let V denote the set of pairs (h,y) that violate Eq. (D.7), and V =

(H™ x {0,1}™)\ V. Then for every (h,y) € V it holds that
Pr((H, H(X)) = (h,y)] = Pr[H =h]-Pr[h(X) = y]
= (L£e)-Pr{(H,Un) = (h,y)].

2This follows by defining a random variable ¢ = ((h) such that ¢ equals the statistical distance
between h(X) and Uy, and applying Markov’s inequality.

586 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

On the other hand, by the setting of e and Lemma D.4 (which imply that Pr[(H,y) €
V] < e for every y € {0,1}™), we have Pr[(H,U,,) € V] <e. It follows that

Pr(H,H(X))€V] = 1-Pr[(H,H(X))€eV]
< 1—-Pr[(H,Uy)) €V]+e < 2e.
Using all these upper-bounds, we upper-bounded the statistical difference between

(H,H(X)) and (H,U,,), denoted A, by separating the contribution of V and V.
Specifically, we have

A = L. 3 Pr[(H, H(X))=(h,y)] — Pr[(H,Un)=(h,y)]|
(h,y)€H* x{0,1}™
< %+% > IPr(H, H(X))=(h,y)] = Pr[(H,Unm)=(h,p)]| ,
(h,y)eV

where the first term upper-bounds the contribution of all pairs (h,y) € V. Hence,

A

IN

Y (Pr{(H, H(X))=(h,y)] + Pr(H,Un)=(h,y)])

(h,y)EV

N =

s+
2

+

IN
N | =

'(2€+€)7

N ™

where the first inequality is trivial (i.e., |@ — 8] < a + (3 for any non-negative «
and), and the second inequality uses the foregoing upper-bounds (i.e., Pr[(H, H(X)) €
V] < 2e and Pr[(H,U,,) € V] < ¢). The theorem follows.

An alternative proof of Theorem D.5. Define the collision probability of a
random variable Z, denote cp(Z), as the probability that two independent samples

of Z yield the same result. Alternatively, cp(Z) Lef >..Pr[Z = z]?. Theorem D.5
follows by combining the following two facts:

1. A general fact: If Z € [N] and cp(Z) < (1 + 4€?)/N then Z is e-close to the
uniform distribution on [N].
We prove the contra-positive: Assuming that the statistical distance between
Z and the uniform distribution on [N] equals ¢, we show that cp(Z) >
(1+46%)/N. This is done by defining L < {z : Pr[Z = z] < 1/N}, and lower-
bounding cp(Z) by using the fact that the collision probability is minimized
on uniform distributions. Specifically, considering the uniform distributions
on L and [N]\ L respectively, we have

Pr[Z € L]\® PriZ € [N]\ L]*
cpZZL-<7>+N—L-<— D.8
(2= - (2 R e T IS
Using 6 = p — Pr[Z € L], where p = |L|/N, the r.h.s of Eq. (D.8) equals

(p=8)% | (A=(p=8)° _ 5° 1 2y 1
PN T AN T (1+(1_,,),,) v 2 (1+46%) - 5.

D.2. HASHING 587

2. The collision probability of (H, H(X)) is at most (1 + (2™/|S]))/(|H™|-2™).
(Furthermore, this holds even if H] is only universal.)

The proof is by a straightforward calculation. Specifically, note that cp(H, H(X)) =

[H}? |t Ene iy [ep(A(X))], whereas Ene e [ep(A(X))] = |S172 X0, 1es
H(xs)]. The sum equals |S| + (|S]? = |S]) - 2™™, and so cp(H,H(X)) <
[HP 727+ 1817,

It follows that (H, H(X)) is 24/2™/|S|-close to (H, U,,), which is actually a stronger
bound than the one asserted by Theorem D.5.

Stronger uniformity via higher independence. Recall that Lemma D.4 as-
serts that for each point in the range of the hash function, with high probability
over the choice of the hash function, this fized point has approximately the expected
number of preimages in S. A stronger condition asserts that, with high probability
over the choice of the hash function, every point in its range has approximately
the expected number of preimages in S. Such a guarantee can be obtained when
using n-wise independent hash functions (rather than using pairwise independent
hash functions).

Lemma D.6 Let m < n be integers, H" be a family of n-wise independent hash
functions, and S C {0,1}". Then, for every ¢ € (0,1), for all but at most an
2™ - (n-2™ [£2|S|)"/? fraction of the functions h € H™, it is the case that Eq. (D.7)
holds for every y € {0,1}™.

Indeed, the lemma should be used with 2™ < €2|S|/4n. In particular, using m =
log, |S| — log,(5n/e?) guarantees that with high probability (i.e., 1 — 2™ -5-"/2 >
1 — (4/5)™?) each range elements has (1 + ¢) - | S|/2™ preimages in S. Under this
setting of parameters |S|/2™ = 5n/e?, which is poly(n) whenever ¢ = 1/poly(n).
Needless to say, this guarantee is stronger than the conclusion of Theorem D.5.

Proof: The proof follows the footsteps of the proof of Lemma D.4, taking advan-
tage of the fact that here the random variables (i.e., the (,’s) are n-wise indepen-
dent. For t = n/2, this allows using the so-called 2t'" moment analysis, which
generalizes the second moment analysis of pairwise independent samplying (pre-
sented in §D.1.2.2). As in the proof of Lemma D.4, we fix any S and y, and define
Gz = Ce(h) = 1if and only if h(z) = y. Letting p = E[}_, s (] = |5]|/2™ and

C, = (o — E(¢), we start with Markov’s inequality:

| E(Cses L)

2t 2t
z€S eH
2 =
— ZIl,...,IQtES E[H’L:]. C$l] (D 9)
Using 2¢-wise independence, we note that only the terms in Eq. (D.9) that do not
vanish are those in which each variable appears with multiplicity. This mean that
only terms having less than ¢ distinct variables contribute to Eq. (D.9). Now, for

IN

>

- (SI72m)

Pr[H (z1)

588APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

every j < ¢, we have less than (lfl) S(2t1) < (2t!1/5) - |S]? terms with j distinct
variables, and each such term contributes less than (27™)7 to the sum (because for
every e > 1 it holds that E[C;,_] < E[¢z;] =27™). Thus, Eq. (D.9) is upper-bounded

by
2t (IS)/2m) 2t/ 2t-2m\ '
s i < sy <a-2|5|>

where the first inequality assumes |S| > n2™ (which is justified by the fact that the
claim hold vacuously otherwise). This upper-bounds the probability that a random
h € H violates Eq. (D.7) with respect to a fixed y. Using a union bound on all
y € {0,1}™, the lemma follows. [l

D.3 Sampling

In many settings repeated sampling is used to estimate the average (or other statis-
tics) of a huge set of values.> Namely, given a “value” function v:{0,1}" - R

one wishes to approximate 7 = 37 2zefo,1)» ¥(¢) without having to inspect the

value of v at each point of the domain. The obvious thing to do is sampling the
domain at random, and obtaining an approximation to 7 by taking the average of
the values of v on the sample points. It turns out that certain “pseudorandom”
sequences of sample points may serve almost as well as truly random sequences of
sample points, and thus the foregoing problem is indeed related to Section 8.5.

D.3.1 Formal Setting

It is essential to have the range of the function v be bounded (since otherwise no
reasonable approximation is possible). For simplicity, we adopt the convention of
having [0, 1] be the range of v, and the problem for other (predetermined) ranges
can be treated analogously. Our notion of approximation depends on two param-
eters: accuracy (denoted ¢) and error probability (denoted §). We wish to have an
algorithm that, with probability at least 1 — §, gets within ¢ of the correct value.
This leads to the following definition.

Definition D.7 (sampler): A sampler is a randomized oracle machine that on
input parameters n (length), e (accuracy) and 6 (error), and oracle access to any
function v:{0,1}"* —[0,1], outputs, with probability at least 1 — &, a value that is

at most € away from v ef 2i ce{0,1}n v(z). Namely,

Pr[|sampler” (n,e,8) — 7| >¢] < ¢

where the probability is taken over the internal coin tosses of the sampler.
A non-adaptive sampler is a sampler that consists of two deterministic algorithms:
a sample generating algorithm, G, and a evaluation algorithm, V. On input n,e,6

3Indeed, this problem was already mentioned in §D.1.2.4.

D.3. SAMPLING 589

and a random seed of adequate length, algorithm G generates a sequence of queries,
denoted si,...,5m € {0,1}™. Algorithm V is given the corresponding sequence of
v-values (i.e., v(s1), ..., ¥(sm)) and outputs an estimate to v.

We are interested in “the complexity of sampling” quantified as a function of the
parameters n, € and ¢. Specifically, we will consider three complexity measures:
The sample complexity (i.e., the number of oracle queries made by the sampler); the
randomness complexity (i.e., the length of the random seed used by the sampler);
and the computational complexity (i.e., the running-time of the sampler). We say
that a sampler is efficient if its running-time is polynomial in the total length of
its queries (i.e., polynomial in both its sample complexity and in n). We will focus
on efficient samplers. Furthermore, we will be most interested in efficient samplers
that have optimal (up-to a constant factor) sample complexity, and will seek to
minimize the randomness complexity of such samplers. Note that minimizing the
randomness complexity without referring to the sample complexity makes no sense.

D.3.2 Known Results

We note that all the following positive results refer to non-adaptive samplers,
whereas the lower bound hold also for general samplers. For more details on these
results, see [90, Sec. 3.6.4] and the references therein.

The naive sampler. The straightforward method (a.k.a the naive sampler)
consists of uniformly and independently selecting sufficiently many sample points
(queries), and outputting the average value of the function on these points. Using
Chernoff Bound it follows that O(loggﬁ) sample points suffice. As indicated next,
the naive sampler is optimal (up-to a constant factor) in its sample complexity, but
is quite wasteful in randomness.

It is known that Q(log’gﬁ) samples are needed in any sampler, and that any
sampler that makes s(n,e,0) queries must have randomness complexity at least
n + log,(1/6) — log, s(n,e,8) — O(1). These lower bounds are tight (as demon-
strated by non-explicit and inefficient samplers). The foregoing facts guide our
quest for improvements, which is aimed at finding more randomness-efficient ways
of efficiently generating sample sequences that can be used in conjunction with an
appropriate evaluation algorithm V. (We stress that V' need not necessarily take
the average of the values of the sampled points.)

The pairwise-independent sampler. Using a pairwise-independence genera-
tor (cf. §8.5.1.1) for generating sample points, along with the natural evaluation
algorithm (which outputs the average of the values of these points), we can ob-
tain a great saving in the randomness complexity: In particular, using a seed of
length 2n, we can generate O(1/8c2) pairwise-independent sample points, which
(by Eq. (D.4)) suffice for getting accuracy e with error 6. Thus, this (Pairwise-
Independent) sampler uses 2n coin tosses rather than the Q((log(1/6))e~2-n) coin
tosses used by the naive sampler. Furthermore, for constant § > 0, the Pairwise-
Independent Sampler is optimal up-to a constant factor in both its sample and

590APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

randomness complexities. However, for small § (i.e., § = o(1)), this sampler is
wasteful in sample complexity.

The Median-of-Averages sampler. A new idea is required for going fur-
ther, and a relevant tool — random walks on expander graphs (see Sections 8.5.3
and E.2) — is needed too. Specifically, we combine the Pairwise-Independent Sam-
pler with the Expander Random Walk Generator (of Proposition 8.29) to obtain
a new sampler. The new sampler uses a t-long random walk on an expander with

vertex set {0, 1}2" for generating a sequence of t Lef O(log(1/6)) related seeds for t
invocations of the Pairwise-Independent Sampler, where each of these invocations
uses the corresponding 2n bits to generate a sequence of O(1/¢?) samples in {0, 1}".
The new sampler, called the Median-of-Averages Sampler, outputs the median of
the ¢ values obtained in these t invocation of the Pairwise-Independent Sampler.
In analyzing this sampler, we first note that each of the foregoing ¢ invocations
returns a value that, with probability at least 0.9, is e-close to 7. By Theorem 8.28
(see also Exercise 8.44), with probability at least 1 —exp(—t) = 1 — 46, most of these
t invocations return an e-close approximation. Hence, the median among these t
values is an (g, 0)-approzimation to the correct value. The resulting sampler has
sample complexity O(loggw) and randomness complexity 2n +O(log(1/6)), which
is optimal up-to a constant factor in both complexities.

Further improvements. The randomness complexity of the Median-of-Averages
Sampler can be decreased from 2n + O(log(1/6)) to n + O(log(1/ée)), while main-
taining its (optimal) sample complexity (of O(b%#)) This is done by replacing
the Pairwise Independent Sampler by a sampler that picks a random vertex in a
suitable expander, samples all its neighbors, and outputs the average value seen.

Averaging Samplers. Averaging (a.k.a. “Oblivious”) samplers are non-adaptive
samplers in which the evaluation algorithm is the natural one: that is, it merely
outputs the average of the values of the sampled points. Indeed, the Pairwise-
Independent Sampler is an averaging sampler, whereas the Median-of-Averages
Sampler is not. Interestingly, averaging samplers have applications for which ordi-
nary non-adaptive samplers do not suffice. Averaging samplers are closely related
to randomness extractors, defined and discussed in the subsequent Section D.4.

An odd perspective. Recall that a non-adaptive sampler consists of a sample
generator G and an evaluator V' such that for every v:{0,1}" — [0, 1] it holds that

Pr(sl7...7s,,,l)<—G’(Uk)[|V(V(51)7 ...,I/(Sm)) — I7| > E] < 5, (D].O)

where k£ denotes the length of the sampler’s (random) seed. Thus, we may view
G as a pseudorandom generator that is subjected to a class of distinguishers that
is determined by a fixed algorithm V and an arbitrary function v : {0,1}" —
[0, 1]. Specifically, assuming that V' works well when the m samples are distributed

uniformly and independently (i.e., Pr[|V(V(UT(Ll)), ...,I/(UT(Lm))) -7 >e¢] < §), we

D.4. RANDOMNESS EXTRACTORS 591

require G to generate sequences that satisfy the corresponding condition (as stated
in Eq. (D.10)). What is a bit odd about the foregoing perspective is that, except
for the case of averaging samplers, the class of distinguishers considered here is
effected by a component (i.e., the evaluator V') that is potentially custom-made to
help the generator G fool the distinguisher.*

D.3.3 Hitters

Hitters may be viewed as a relaxation of samplers. Specifically, considering only
Boolean functions, hitters are required to generate a sample that contains a point
evaluating to 1 whenever at least an e fraction of the function values equal 1.
That is, a hitter is a randomized algorithm that on input parameters n (length),
e (accuracy) and ¢ (error), outputs a list of n-bit strings such that, for every set
S C {0,1}™ of density greater than e, with probability at least 1 — ¢, the list
contains at least one element of S. Note the correspondence to the (g, 6)-hitting
problem defined in Section 8.5.3.

Needless to say, any sampler yields a hitter (with respect to essentially the
same parameters n, ¢ and §).> However, hitting is strictly easier than evaluating
the density of the target set: O(1/¢) (pairwise independent) random samples suffice
to hit any set of density e with constant probability, whereas 2(1/c2) samples are
needed for approximating the average value of a Boolean function up to accuracy e
(with constant error probability). Indeed, adequate simplifications of the samplers
discussed in Appendix D.3.2 yield hitters with sample complexity proportional to
1/e (rather than to 1/¢?).

D.4 Randomness Extractors

Extracting almost-perfect randomness from sources of weak (i.e., defected) ran-
domness is crucial for the actual use of randomized algorithms, procedures and
protocols. The latter are analyzed assuming that they are given access to a perfect
random source, while in reality one typically has access only to sources of weak
(i.e., highly imperfect) randomness. This gap is bridged by using randomness ex-
tractors, which are efficient procedures that (possibly with the help of little extra
randomness) convert any source of weak randomness into an almost-perfect random
source. Thus, randomness extractors are devices that greatly enhance the quality

4 Another aspect in which samplers differ from the various pseudorandom generators discussed
in Chapter 8 is in the aim to minimize, rather than maximize, the number of “blocks” (denoted
here by m) in the output sequence. However, also in the case of samplers the aim is to maximize
the block-length (denoted here by n).

5Specifically, any sampler with respect to the parameters n, ¢ and §, yields a hitter with
respect to the parameters n, 2¢ and §. (The need for slackness is easily demonstrated by noting
that estimating the average with accuracy e = 1/2 is trivial, whereas hitting is non-trivial for any
accuracy (density) € < 1.) The claim is obvious for non-adaptive samplers, but actually holds
also for adaptive samplers. Note that adaptivity does not provide any advantage in the context
of hitters, because one may assume (without loss of generality) that all prior samples missed the
target set S.

592APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

of random sources. In addition, randomness extractors are related to several other
fundamental problems, to be further discussed later.

One key parameter, which was avoided in the foregoing discussion, is the class
of weak random sources from which we need to extract almost perfect randomness.
Needless to say, it is preferable to make as little assumptions as possible regarding
the weak random source. In other words, we wish to consider a wide class of
such sources, and require that the randomness extractor (often referred to as the
extractor) “works well” for any source in this class. A general class of such sources is
defined in §D.4.1.1, but first we wish to mention that even for very restricted classes
of sources no deterministic extractor can work.® To overcome this impossibility
result, two approaches are used:

Seeded extractors: The first approach consists of considering randomized ex-
tractors that use a relatively small amount of randomness (in addition to
the weak random source). That is, these extractors obtain two inputs: a
short truly random seed and a relatively long sequence generated by an arbi-
trary source that belongs to the specified class of sources. This suggestion is
motivated in two different ways:

1. The application may actually have access to an almost-perfect random
source, but bits from this high-quality source are much more expen-
sive than bits from the weak (i.e., low-quality) random source. Thus,
it makes sense to obtain few high-quality bits from the almost-perfect
source and use them to “purify” the cheap bits obtained from the weak
(low-quality) source. Thus, combining many cheap (but low-quality)
bits with few high-quality (but expensive) bits, we obtain many high-
quality bits.

2. In some applications (e.g., when using randomized algorithms), it may
be possible to invoke the application multiple times, and use the “typi-
cal” outcome of these invocations (e.g., rule by majority in the case of a
decision procedure). For such applications, we may proceed as follows:
first we obtain an outcome r of the weak random source, then we invoke
the application multiple times such that for every possible seed s we
invoke the application feeding it with extract(s,r), and finally we use
the “typical” outcome of these invocations. Indeed, this is analogous to
the context of derandomization (see Section 8.3), and likewise this al-
ternative is typically not applicable to cryptographic and/or distributed
settings.

Few independent sources: The second approach consists of considering deter-
ministic extractors that obtain samples from a few (say two) independent
sources of weak randomness. Such extractors are applicable in any setting
(including in cryptography), provided that the application has access to the
required number of independent weak random sources.

6For example, consider the class of sources that output m-bit strings such that no string
occurs with probability greater than 2= (n=1) (i.e., twice its probability weight under the uniform
distribution).

D.4. RANDOMNESS EXTRACTORS 593

In this section we focus on the first type of extractors (i.e., the seeded extractors).
This choice is motivated both by the relatively more mature state of the research
of seeded extractors and by the closer connection between seeded extractors and
other topics in complexity theory.

D.4.1 Definitions and various perspectives

We first present a definition that corresponds to the foregoing motivational discus-
sion, and later discuss its relation to other topics in complexity.

D.4.1.1 The Main Definition

A very wide class of weak random sources corresponds to sources in which no
specific output is too probable. That is, the class is parameterized by a (probability)
bound /5 and consists of all sources X such that for every z it holds that Pr[X =
x] < 3. In such a case, we say that X has min-entropy” at least log,(1/3). Indeed,
we represent sources as random variables, and assume that they are distributed over
strings of a fixed length, denoted n. An (n, k)-source is a source that is distributed
over {0,1}™ and has min-entropy at least k.

An interesting special case of (n, k)-sources is that of sources that are uniform
over some subset of 2¥ strings. Such sources are called (n, k)-flat. A useful obser-
vation is that each (n,k)-source is a convex combination of (n,k)-flat sources.

Definition D.8 (extractor for (n, k)-sources):

1. An algorithm Ext:{0,1}¢x{0,1}"— {0,1}™ is called an extractor with error
e for the class C if for every source X in C it holds that Ext(Ug, X) is e-close
to Uy,. If C is the class of (n,k)-sources then Ext is called a (k,e)-extractor.

2. An algorithm Ext is called a strong extractor with error € for C if for every
source X in C it holds that (Ug, Ext(Ugq, X)) is e-close to (Ug,U,,). A strong
(k,e)-extractor is defined analogously.

Using the aforementioned “decomposition” of (n, k)-sources into (n, k)-flat sources,
it follows that Ext is a (k,e)-extractor if and only if it is an extractor with error
e for the class of (n,k)-flat sources. (A similar claim holds for strong extractors.)
Thus, much of the technical analysis is conducted with respect to the class of
(n, k)-flat sources. For example, by analyzing the case of (n, k)-flat sources it is
easy to see that, for d = log,(n/c?) + O(1), there exists a (k,¢)-extractor Ext :
{0,1}% x {0,1}™ — {0,1}*. (The proof employs the Probabilistic Method and uses
a union bound on the (finite) set of all (n, k)-flat sources.)®

"Recall that the entropy of a random variable X is defined as Zz Pr[X = z]logy(1/Pr[X = z]).
Indeed the min-entropy of X equals ming{log,(1/Pr[X = z])}, and is always upper-bounded by
its entropy.

8Indeed, the key fact is that the number of (n, k)-flat sources is N def (;2) The probability

that a random function Ext : {0,1}¢ x {0,1}* — {0,1}* is not an extractor with error ¢ for a

594APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

We seek, however, explicit extractors; that is, extractors that are implementable
by polynomial-time algorithms. We note that the evaluation algorithm of any fam-
ily of pairwise independent hash functions mapping n-bit strings to m-bit strings
constitutes a (strong) (k, ¢)-extractor for ¢ = 2=**=™) (see Theorem D.5). How-
ever, these extractors necessarily use a long seed (i.e., d > 2m must hold (and
in fact d = n + 2m — 1 holds in Construction D.3)). In Section D.4.2 we survey
constructions of efficient (k,)-extractors that obtain logarithmic seed length (i.e.,
d = O(log(n/e))). But before doing so, we provide a few alternative perspectives
on extractors.

An important note on logarithmic seed length. The case of logarithmic seed
length (i.e., d = O(log(n/¢))) is of particular importance for a variety of reasons.
Firstly, when emulating a randomized algorithm using a defected random source
(as in Item 2 of the motivational discussion of seeded extractors), the overhead is
exponential in the length of the seed. Thus, the emulation of a generic probabilistic
polynomial-time algorithm can be done in polynomial time only if the seed length
is logarithmic. Similarly, the applications discussed in §D.4.1.2 and §D.4.1.3 are
feasible only if the seed length is logarithmic. Lastly, we note that logarithmic seed
length is an absolute lower-bound for (k, £)-extractors, whenever k < n — n(1)
(and the extractor is non-trivial (i.e., m > 1 and ¢ < 1/2)).

D.4.1.2 Extractors as averaging samplers

There is a close relationship between extractors and averaging samplers (which are
defined towards the end of Section D.3.2). We shall first show that any averaging
sampler gives rise to an extractor. Let G : {0,1}™ — ({0,1}™)" be the sample gen-
erating algorithm of an averaging sampler having accuracy € and error probability
6. That is, G uses n bits of randomness and generates ¢ sample points in {0,1}™
such that, for every f : {0,1}™ — [0, 1] with probability at least 1 — §, the average

of the f-values of these t pseudorandom points resides in the interval [f £ €], where

f def E[f(U.)]. Define Ext : [t] x {0,1}"™ — {0,1}™ such that Ext(i,r) is the

i*" sample generated by G(r). We shall prove that Ext is a (k, 2¢)-extractor, for
k=n —log,(e/é).

Suppose towards the contradiction that there exists a (n, k)-flat source X such
that for some S C {0,1}™ it is the case that Pr[Ext(Uy, X) € S] > Pr[U,, € S|+2¢,
where d = log, t and [t] = {0,1}¢. Define

B ={z €{0,1}" : Pr[Ext(Uy,z) € S] > (|S|/2™) +€}.

Then, |B| > e-2% = § - 2". Defining f(2) =1 if z € S and f(z) = 0 otherwise, we

have f < E[f(U.)] = |S]|/2™. But, for every r € B the f-average of the sample

fixed (n, k)-flat source is upper-bounded by p def 92" - exp(—£2(291*¢2)), because p bounds the
probability that when selecting 2¢* random k-bit long strings there exists a set T' C {0, 1}* that
is hit by more than ((|7'|/2%) 4) - 2¢F* of these strings. Note that for d = logy(n/e?) + O(1) it
holds that N - p < 1. In fact, the same analysis applies to the extraction of m = k + log, n bits
(rather than k bits).

D.4. RANDOMNESS EXTRACTORS 595

G(r) is greater than f +¢, in contradiction to the hypothesis that the sampler has
error probability 6 (with respect to accuracy €).

We now turn to show that extractors give rise to averaging samplers. Let Ext :
{0,1}¢ x {0,1}™ — {0,1}™ be a (k,¢)-extractor. Consider the sample generation
algorithm G : {0,1}" — ({0, 1}m)2d define by G(r) = (Ext(s,7))se{0,134- We prove
that G corresponds to an averaging sampler with accuracy € and error probability
§ = 2-(n—h-L),

Suppose towards the contradiction that there exists a function f : {0,1}™ —
[0,1] such that for 62" = 2FF! strings r € {0,1}" the average f-value of the

sample G(r) deviates from f def E[f(Uy,)] by more than . Suppose, without loss
of generality, that for at least half of these r’s the average is greater than f + ¢,
and let B denote the set of these r’s. Then, for X that is uniformly distributed on
B and is thus a (n, k)-source, we have

E[f(Ext(Us, X))] > E[f(Um)] + ¢,

which (using |f(z)| < 1 for every z) contradicts the hypothesis that Ext(Uy, X) is
e-close to U,,.

D.4.1.3 Extractors as randomness-efficient error-reductions

As may be clear from the foregoing discussion, extractors yield randomness-efficient
methods for error-reduction. This is the case because error-reduction is a spe-
cial case of the sampling problem, obtained by considering Boolean functions.
Specifically, for a two-sided error decision procedure A, consider the function
fe :{0,1}#U%D) — {0, 1} such that f.(r) = 1if A(z,r) = 1 and f.(r) = 0 otherwise.
Assuming that the probability that A is correct is at least 0.5 + ¢ (say ¢ = 1/6),
error reduction amounts to providing a sampler with accuracy ¢ and any desired
error probability 6 < e for the Boolean function f,. Thus, by §D.4.1.2, any (k, ¢)-
extractor Ext : {0,1}4 x {0,1}" — {0,1}*(#) with k = n —log(1/6) — 1 yields the
desired error-reduction, provided that 2¢ is feasible (e.g., 2¢ = poly(p(|z|)), where
p(+) represents the randomness complexity of the original algorithm A). The ques-
tion of interest here is how does n (which represents the randomness complexity of
the corresponding sampler) grow as a function of p(|z|) and §.

Error-reduction using the extractor Ext: [poly(p(|z|))] x {0,1}" — {0, 1}#(=])
| | error probability | randomness complexity |

original algorithm | 1/3 p(|z|) |
resulting algorithm | 6 (may depend on [z]) | n (function of p(Jz]) and ¢) |

Needless to say, the answer to the foregoing question depends on the quality of the
extractor that we use. In particular, using Part 1 of the forthcoming Theorem D.10,
we note that for every a > 1, one can obtain n = O(p(|z|)) + alog,(1/6), for any
§ > 2-poly(e(zl)) - Note that, for § < 2-9U2D) this bound on the randomness-
complexity of error-reduction is better than the bound of n = p(|z|) + O(log(1/6))
that is provided (for the reduction of one-sided error) by the Expander Random

596 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

Walk Generator (of Section 8.5.3), albeit the number of samples here is larger (i.e.,
poly(p(|z|)/6) rather than O(log(1/6))).

Mentioning the reduction of one-sided error-probability brings us to a cor-
responding relaxation of the notion of an extractor, which is called a disperser.
Loosely speaking, a (k, ¢)-disperser is only required to hit (with positive probabil-
ity) any set of density greater than ¢ in its image, rather than produce a distribution
that is e-close to uniform.

Definition D.9 (dispersers): An algorithm Dsp : {0,1}¢ x {0,1}" — {0,1}™ is
called a (k,€)-disperser if for every (n, k)-source X the support of Dsp(Uq, X) covers
at least (1 —) - 2™ points. Alternatively, for every set S C {0,1}™ of size greater
than 2™ it holds that Pr[Dsp(Uy, X) € S] > 0.

Dispersers can be used for the reduction of one-sided error analogously to the
use of extractors for the reduction of two-sided error. Specifically, regarding the
aforementioned function f, (and assuming that Pr[f,(Uy.))) =1] > €), we may use
any (k,¢e)-disperser Dsp : {0,1}¢ x {0,1}" — {0,1}*(*D) towards finding a point z
such that f.(z) = 1. Indeed, if Pr[f,(Uy.|)) =1] > € then there are less than 2"
points z such that (Vs€{0,1}%) f,(Dsp(s,z)) = 0, and thus the one-sided error can
be reduced from 1 —¢ to 2~(*~*) while using n random bits. (Note that dispersers
are closely related to hitters (cf. Appendix D.3.3), analogously to the relation of
extractors and averaging samplers.)

D.4.1.4 Other perspectives

Extractors and dispersers have an appealing interpretation in terms of bipartite
graphs. Starting with dispersers, we view any (k,¢)-disperser Dsp : {0,1}¢ x
{0,1}™ — {0,1}™ as a bipartite graph G = (({0,1}",{0,1}™), E) such that E =
{(x,Dsp(s,x)) : z € {0,1}*,s € {0,1}?}. This graph has the property that any
subset of 2F vertices on the left (i.e., in {0,1}") has a neighborhood that contains
at least a 1 — ¢ fraction of the vertices of the right, which is remarkable in the
typical case where d is small (e.g., d = O(logn/e)) and n > k > m whereas
m = Q(k) (or at least m = k*(1)). Furthermore, if Dsp is efficiently computable
then this bipartite graph is strongly constructible in the sense that, given a vertex
on the left, one can efficiently find each of its neighbors. Any (k,e)-extractor
Ext : {0,1}4 x {0,1}™ — {0,1}™ yields an analogous graph with an even stronger
property: the neighborhood multi-set of any subset of 2F vertices on the left covers
the vertices on the right in an almost uniform manner.

An odd perspective. In addition to viewing extractors as averaging samplers,
which in turn may be viewed within the scope of the pseudorandomness paradigm,
we mention here an even more odd perspective. Specifically, randomness extractors
may be viewed as randomized algorithms (distinguishers) designed on purpose such
that to be fooled by any weak random source (but not by an even worse source).
Specifically, for any (k, e)-extractor Ext : {0,1}¢ x {0,1}" — {0,1}™, where ¢ <
1/100, m = k = w(logn/c) and d = O(logn/e), consider the following class of

D.4. RANDOMNESS EXTRACTORS 597

distinguishers (or tests), parameterized by subsets of {0,1}™: for S C {0,1}™, the
test T's satisfies Pr[Ts(z) =1] = Pr[Ext(Uq, x) € S] (i.e., on input z € {0,1}", the
test uniformly selects s € {0,1}? and outputs 1 if and only if Ext(s,z) € S). Then,
as shown next, any (n, k)-source is “pseudorandom” with respect to this class of
distinguishers, but sufficiently “non-(n, k)-sources” are not “pseudorandom” with
respect to this class of distinguishers.

1. For every (n,k)-source X and every S C {0,1}™, the test T's does not dis-
tinguish X from U, (i.e., Pr[Ts(X) = 1] = Pr[Ts(U,) = 1] £ 2¢), because
Ext(Uyq, X) is 2e-close to Ext(Uy, U,,) (since each is e-close to U,,).

2. On the other hand, for every (n,k — d — 4)-flat source Y there exists a set
S such that Ts distinguish Y from U, with gap at least 0.9 (e.g., for S
that equals the support of Ext(Ug,Y"), it holds that Pr[Ts(Y)=1] = 1 but
Pr(Ts(U,)=1] < Pr[U,, € S] + & = 2¢+(k=d=4)=m = < (.1). Furthermore,
any source that has entropy below (k/4) — d will be detected as defected by
this class (with probability at least 2/3).°

Thus, this weird class of tests deems each (n, k)-source as “pseudorandom” while
deeming sources of significantly lower entropy (e.g., entropy lower than (k/4) — d)
as non-pseudorandom. Indeed, this perspective stretches the pseudorandomness
paradigm quite far.

D.4.2 Constructions

Recall that we seek explicit constructions of extractors; that is, functions Ext :
{0,1}% x {0,1}™ — {0,1}™ that can be computed in polynomial-time. The ques-
tion, of course, is of parameters; that is, having explicit (k, €)-extractors with m as
large as possible and d as small as possible. We first note that, except in “patholog-
ical” cases!?, both m < k+d—(2log,(1/e) —O(1)) and d > log,((n—k)/e?)—O(1)
must hold, regardless of the explicitness requirement. The aforementioned bounds
are in fact tight; that is, there exists (non-explicit) (k,e)-extractors with m =
k+d— 2logy(1/e) — O(1) and d = log,((n — k)/e?) + O(1). The obvious goal is
meeting these bounds via explicit constructions.

D.4.2.1 Some known results

Despite tremendous progress on this problem (and occasional claims regarding “op-
timal” explicit constructions), the ultimate goal was not reached yet. Nevertheless,
the known explicit constructions are pretty close to being optimal.

Theorem D.10 (explicit constructions of extractors): Explicit (k, €)-extractors of
the form Ext : {0,1}4x {0,1}™ — {0, 1}™ exist for the following cases (i.c., settings
of the parameters d and m):

9For any such source Y, the distribution Z = Ext(Uy,Y) has entropy at most k/4 = m/4,
and thus is 0.7-far from Uy, (and 2/3-far from Ext(Uy,Ur)). The lower-bound on the statistical
distance between Z and U,, can be proved by the contra-positive: if Z is é-close to Uy, then its
entropy is at least (1 — 6) -m — 1 (e.g., by using Fano’s inequality, see [63, Thm. 2.11.1]).

10That is, for ¢ < 1/2 and m > d.

598APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

1. Ford =0O(logn/e) and m = (1—a)-(k—0O(d)), where a > 0 is an arbitrarily
small constant and provided that ¢ > exp(—k'~%).

2. Ford = (14 a)-log,n and m = k/poly(logn), where e, > 0 are arbitrarily
small constants.

Proofs of Part 1 and Part 2 can be found in [113] and [201], respectively. We note
that, for sake of simplicity, we did not quote the best possible bounds. Furthermore,
we did not mention additional incomparable results (which are relevant for different
ranges of parameters).

We refrain from providing an overview of the proof of Theorem D.10, but rather
review the proof of a weaker result that provides ezplicit (n”, poly(1/n))-extractors
for the case of d = O(logn) and m = n*") | where v > 0 is an arbitrarily small
constant. Indeed, in §D.4.2.2, we review the conceptual insight that underlies this
result (as well as much of the subsequent developments in the area).

D.4.2.2 The pseudorandomness connection

We conclude this section with an overview of a fruitful connection between extrac-
tors and certain pseudorandom generators. The connection, discovered by Tre-
visan [222], is surprising in the sense that it goes in a non-standard direction: it
transforms certain pseudorandom generators into extractors. As argued throughout
this book (most conspicuously at the end of Section 7.1.2), computational objects
are typically more complex than the corresponding information theoretical objects.
Thus, if pseudorandom generators and extractors are at all related (which was not
suspected before [222]) then this relation should not be expected to help in the con-
struction of extractors, which seem an information theoretic object. Nevertheless,
the discovery of this relation did yield a breakthrough in the study of extractors.!!

Teaching note: The current text assumes familiarity with pseudorandom generators
and in particular with the Nisan—Wigderson Generator (presented in §8.3.2.1).

But before describing the connection, let us wonder for a moment. Just looking
at the syntax, we note that pseudorandom generators have a single input (i.e., the
seed), while extractors have two inputs (i.e., the n-bit long source and the d-bit
long seed). But taking a second look at the Nisan-Wigderson Generator (i.e., the
combination of Construction 8.17 with an amplification of worst-case to average-
case hardness), we note that this construction can be viewed as taking two inputs:
a d-bit long seed and a “hard” predicate on d'-bit long strings (where d’ = Q(d)).?
Now, an appealing idea is to use the n-bit long source as a (truth-table) description
of a (worse-case) hard predicate (which indeed means setting n = 2¢'). The key
observation is that even if the source is only weakly random then it is likely to
represent a predicate that is hard on the worst-case.

1'We note that once the connection became better understood, influence started going in the
“right” direction: from extractors to pseudorandom generators.

12Indeed, to fit the current context, we have modified some notations. In Construction 8.17 the
length of the seed is denoted by k and the length of the input for the predicate is denoted by m.

D.4. RANDOMNESS EXTRACTORS 599

Recall that the aforementioned construction is supposed to yield a pseudoran-
dom generator whenever it starts with a hard predicate. In the current context,
where there are no computational restrictions, pseudorandomness is supposed to
hold against any (computationally unbounded) distinguisher, and thus here pseudo-
randomness means being statistically close to the uniform distribution (on strings
of the adequate length, denoted £). Intuitively, this makes sense only if the ob-
served sequence is shorter that the amount of randomness in the source (and seed),
which is indeed the case (i-e., £ < k + d, where k denotes the min-entropy of the
source). Hence, there is hope to obtain a good extractor this way.

To turn the hope into a reality, we need a proof (which is sketched next). Look-
ing again at the Nisan—Wigderson Generator, we note that the proof of indistin-
guishability of this generator provides a black-box procedure for computing the un-
derlying predicate when given oracle access to any potential distinguisher. Specif-
ically, in the proofs of Theorems 7.19 and 8.18 (which holds for any ¢ = 22(4))13
this black-box procedure was implemented by a relatively small circuit (which
depends on the underlying predicate). Hence, this procedure contains relatively
little information (regarding the underlying predicate), on top of the observed ¢-
bit long output of the extractor/generator. Specifically, for some fixed polynomial
p, the amount of information encoded in the procedure (and thus available to it) is

upper-bound by b def p(¢), while the procedure is suppose to compute the underly-
ing predicate correctly on each input. That is, b bits of information are supposed
to fully determine the underlying predicate, which in turn is identical to the n-bit
long source. However, if the source has min-entropy exceeding b, then it cannot be
fully determine using only b bits of information. It follows that the foregoing con-
struction constitutes a (b4 O(1),1/6)-extractor (outputting ¢ = b(1) bits), where
the constant 1/6 is the one used in the proof of Theorem 8.18 (and the argument
holds provided that b = n®(1)). Note that this extractor uses a seed of length
d = O(d") = O(logn). The argument can be extended to obtain (k,poly(1/k))-
extractors that output £2(1) bits using a seed of length d = O(logn), provided that
k= n%1),

We note that the foregoing description has only referred to two abstract prop-
erties of the Nisan—Wigderson Generator: (1) the fact that this generator uses
any worst-case hard predicate as a black-box, and (2) the fact that its analysis
uses any distinguisher as a black-box. In particular, we viewed the amplification
of worst-case hardness to inapproximability (performed in Theorem 7.19) as part
of the construction of the pseudorandom generator. An alternative presentation,
which is more self-contained, replaces the amplification step of Theorem 7.19 by a
direct argument in the current (information theoretic) context and plugs the result-
ing predicate directly into Construction 8.17. The advantages of this alternative
include using a simpler amplification (since amplification is simpler in the informa-
tion theoretic setting than in the computational setting), and deriving transparent
construction and analysis (which mirror Construction 8.17 and Theorem 8.18, re-
spectively).

13Recalling that n = 2‘1’, the restriction £ = 2(d") implies £ = n©(1)

600APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

The alternative presentation. The foregoing analysis transforms a generic dis-
tinguisher into a procedure that computes the underlying predicate correctly on
each input, which fully determines this predicate. Hence, an upper-bound on the
information available to this procedure yields an upper-bound on the number of
possible outcomes of the source that are bad for the extractor. In the alternative
presentation, we transforms a generic distinguisher into a procedure that only ap-
proximates the underlying predicate; that is, the procedure yields a function that
is relatively close to the underlying predicate. If the potential underlying pred-
icates are far apart, then this yields the desired bound (on the number of bad
source-outcomes that correspond to such predicates). Thus, the idea is to encode
the n-bit long source by an error correcting code of length n’ = poly(n) and rel-
ative distance 0.5 — (1/n)?, and use the resulting codeword as a truth-table of a
predicate for Construction 8.17.1% Such codes (coupled with efficient encoding al-
gorithms) do exist (see §E.1.2.5), and the benefit in using them is that each n'-bit
long string (determined by the information available to the aforementioned ap-
proximation procedure) may be (0.5 — (1/n))-close to at most O(n?) codewords'®
(which correspond to potential predicates). Thus, each approximation procedure
rules out at most O(n?) potential predicates (i.e., source outcomes). In summary,
the resulting extractor converts the m-bit input x into a codeword x' € {0,1}”’,
viewed as a predicate over {0, 1}d’ (where d' =logyn'), and evaluates this predicate
at the € projections of the d-bit long seed, where these projections (to d' bits) are
determined by the corresponding set system (i.e., the ¢-long sequence of d'-subsets
of [d] that is used in Construction 8.17). The analysis mirrors the proof of Theo-
rem 8.18, and yields a bound of 20() . O(n?) on the number of bad outcomes for
the source, where O(¢?) upper-bounds the amount of information encoded in (and
available to) the approximation procedure, and O(n?) upper-bounds the number
of source-outcomes that correspond to codewords that are each (0.5 — (1/n))-close
to any fixed approximation procedure.

D.4.2.3 Recommended reading

The interested reader is referred to a survey of Shaltiel [200]. This survey con-
tains a comprehensive introduction to the area, including an overview of the ideas
that underly the various constructions. In particular, the survey describes the ap-
proaches used before the discovery of the pseudorandomness connection, the con-
nection itself (and the constructions that arise from it), and the “third generation”
of constructions that followed.

The aforementioned survey predates the most recent constructions (of extrac-
tors) that extract a constant fraction of the min-entropy using a logarithmically
long seed (cf. Part 1 of Theorem D.10). Such constructions were first presented
in [159] and improved (using different ideas) in [113]. Indeed, we refer to reader
to [113], which provides a self-contained description of the best known extractor
(for almost all settings of the relevant parameters).

Mndeed, the use of this error correcting code replaces the hardness-amplification step of The-
orem 7.19.
15See Appendix E.1.4.

Appendix E

Explicit Constructions

It is easier for a camel to go through the eye of a needle, than
for a rich man to enter into the kingdom of God.

Matthew, 19:24.

Complexity theory provides a clear definition of the intuitive notion of an explicit
construction. Furthermore, it also suggests a hierarchy of different levels of explic-
itness, referring to the ease of constructing the said object.

The basic levels of explicitness are provided by considering the complexity of
fully constructing the object (e.g., the time it takes to print the truth-table of
a finite function). In this context, explicitness often means outputting a full de-
scription of the object in time that is polynomial in the length of that description.
Stronger levels of explicitness emerge when considering the complexity of answering
natural queries regarding the object (e.g., the time it takes to evaluate a fixed func-
tion at a given input). In this context, (strong) explicitness often means answering
such queries in polynomial-time.

The aforementioned themes are demonstrated in our brief review of explicit
constructions of error correcting codes and expander graphs. These constructions
are, in turn, used in various parts of the main text.

Summary: This appendix provides a brief overview of aspects of cod-
ing theory and expander graphs that are most relevant to complexity
theory. Starting with coding theory, we review several popular con-
structions of error correcting codes, culminating in the construction of a
“c0od” binary code (i.e., a code that achieves constant relative distance
and constant rate). The latter code is obtained by “concatenating” a
Reed-Solomon code with a “mildly explicit” construction of a “good”
binary code (which is applied to small pieces of information). We also
briefly review the notions of locally testable and locally decodable codes,
and present a useful “list decoding bound” (i.e., an upper-bound on the
number of codewords that are close to any single sequence).

601

602 APPENDIX E. EXPLICIT CONSTRUCTIONS

Turning to expander graphs, we review two standard definitions of ex-
pansion (representing combinatorial and algebraic perspectives), and
two properties of expanders that are related to (single-step and multi-
step) random walks on them. We also spell-out two levels of explicitness
of graphs, which correspond to the aforementioned notions of basic and
strong explicitness. Finally, we review two explicit constructions of
expander graphs.

E.1 Error Correcting Codes

In this section we highlight some issues and aspects of coding theory that are most
relevant to the current book. The interested reader is referred to [217] for a more
comprehensive treatment of the computational aspects of coding theory. Structural
aspects of coding theory, which are at the traditional focus of that field, are covered
in standard textbook such as [163].

E.1.1 Basic Notions

Loosely speaking, an error correcting code is a mapping of strings to longer strings
such that any two different strings are mapped to a corresponding pair of strings
that are far apart (and not merely different). Specifically, C : {0,1}* — {0,1}"
is a (binary) code of distance d if for every z # y € {0, 1}* it holds that C(x) and
C(y) differ on at least d bit positions. Indeed, the relation between k, n and d is of
magjor concern: typically, the aim is having a large distance (i.e., large d) without
introducing too much redundancy' (i.e., have n as small as possible with respect to
k (and d)).

It will be useful to extend the foregoing definition to sequences over an arbitrary
(finite) alphabet ¥, and to use some notations. Specifically, for z € £™, we denote
the i*" symbol of = by z; (i.e., z = 1 ---x,,), and consider codes over ¥ (i.e.,
mappings of Y-sequences to ¥-sequences). The mapping (code) C : ¥¥ — ¥" has
distance d if for every = # y € ¥* it holds that |{i : C(z); # C(y):;}| > d. The
members of {C(z) : x € ¥} are called codewords (and in some texts this set itself
is called a code).

In general, we define a metric, called Hamming distance, over the set of n-long
sequences over Y. The Hamming distance between y and z, where y,z € X", is
defined as the number of locations on which they disagree (i.e., |{ : y; # z:}|). The
Hamming weight of such sequences is defined as the number of non-zero elements
(assuming that one element of ¥ is viewed as zero). Typically, ¥ is associated
with an additive group, and in this case the distance between y and z equals the
Hamming weight of w = y — z, where w; = y; — 2z; (for every i).

INote that a trivial way of obtaining distance d is to duplicate each symbol d times. This
(“repetition”) code satisfies n = d - k, while we shall seek n < d - k. Indeed, as we shall see, one
can obtain simultaneously n = O(k) and d = Q(k).

E.1. ERROR CORRECTING CODES 603

Asymptotics. We will actually consider infinite families of codes; that is, {C}, :
sk 2y s, where S € N (and typically S = N). (N.B., we allow %
to depend on k.) We say that such a family has distance d : N — N if for
every k € S it holds that Cj has distance d(k). Needless to say, both n = n(k)
(called the block-length) and d(k) depend on k, and the aim is having a linear
dependence (i.e., n(k) = O(k) and d(k) = Q(n(k))). In such a case, one talks of the
relative rate of the code (i.e., the constant k/n(k)) and its relative distance (i.e., the
constant d(k)/n(k)). In general, we will often refer to relative distances between
sequences. For example, for y, z € ", we say that y and z are e-close (resp., e-far)

if {i:y; # 2z} <e-n(resp., {i:y; # zi}| > e n).

Explicitness. A mild notion of explicitness refers to constructing the list of all
codewords in time that is polynomial in its length (which is exponential in k).
A more standard notion of explicitness refers to generating a specific codeword
(i.e., producing C(x) when given z), which coincides with the encoding task men-
tioned next. Stronger notions of explicitness refer to other computational problems
concerning codes (e.g., various decoding tasks).

Computational problems. The most basic computational tasks associated with
codes are encoding and decoding (under noise). The definition of the encoding task
is straightforward (i.e., map z € X¥ to Cy(z)), and an efficient algorithm is required
to compute each symbol in Ci(z) in poly(k,log|Z|)-time.? When defining the de-
coding task we note that “minimum distance decoding” (i.e., given w € Zz(k),
find z such that Cy(z) is closest to w (in Hamming distance)) is just one natural

possibility. Two related variants, regarding a code of distance d, are:

Unique decoding: Given w € Zz(k) that is at Hamming distance less than d(k)/2

from some codeword Cy(x), retrieve the corresponding decoding of Cy(x)
(i.e., retrieve).

Needless to say, this task is well-defined because there cannot be two different
codewords that are each at Hamming distance less than d(k)/2 from w.

List decoding: Given w € Zz(k) and a parameter d’ (which may be greater than

d(k)/2), output a list of all codewords (or rather their decoding) that are at
Hamming distance at most d' from w. (That is, the task is outputting the
list of all z € XF such that Cj(z) is at distance at most d’ from w.)

Typically, one considers the case that d' < d(k). See Section E.1.4 for a
discussion of upper-bounds on the number of codewords that are within a
certain distance from a generic sequence.

Two additional computational tasks are considered in Section E.1.3.

2The foregoing formulation is not the one that is common in coding theory, but it is the most
natural one for our applications. On one hand, this formulation is applicable also to codes with
super-polynomial block-length. On the other hand, this formulation does not support a discussion
of practical algorithms that compute the codeword faster than is possible when computing each
of the codeword’s bits separately.

604 APPENDIX E. EXPLICIT CONSTRUCTIONS

Linear codes. Associating X, with some finite field, we call a code Cy, : Eﬁ —
Zz(k) linear if it satisfies Cy(x + y) = Ci(x) + Ci(y), where z and y (resp., Ci(x)
and Ci(y)) are viewed as k-dimensional (resp., n(k)-dimensional) vectors over Xy,
and the arithmetic is of the corresponding vector space. A useful property of linear
codes is that their distance equals the Hamming weight of the lightest codeword
other than Cy(0F) (= 07(®); that is, min,.,{|{i : Cr(z); # Ck(y)i}|} equals
mingzor {[{¢ : Cr(z); # 0}|}. Another useful property of linear codes is that
the code is fully specified by a k-by-n(k) matrix, called the generating matrix,
that consists of the codewords of some fixed basis of Xf. That is, the set of all
codewords is obtained by taking all |Z|* different linear combination of the rows
of the generating matrix.

E.1.2 A Few Popular Codes

Our focus will be on explicitly constructible codes; that is, (families of) codes of the

form {C}, : E’,j — Ez(k)}kes that are coupled with efficient encoding and decoding
algorithms. But before presenting several such codes, let us consider a non-explicit
code (having “good parameters”); that is, the following result asserts the existence
of certain codes without pointing to any specific code (let alone an explicit one).

Proposition E.1 (on the distance of random linear codes): Let n,d,t : N — N
be such that, for all sufficiently large k, it holds that

k+t(k)
n(k) > max <2d(k), . HQ(d(k)/TL(k))) (E.1)

where Ha(«) ef alog,(1/a) + (1 — a)log,(1/(1 — «)). Then, for all sufficiently
large k, with probability greater than 1 — 2% o random linear transformation of
{0,1}* to {0, 1} constitutes a code of distance d(k).

Indeed, for asserting that most random linear codes are good it suffices to set t =1,
while for merely asserting the existence of a good linear code even setting ¢ = 0
will do. Also, for every constant § € (0,0.5) there exists a constant p > 0 and
an infinite family of codes {Cr : {0,1}* — {0,1}*/7}, o of relative distance 6.
Specifically, any constant p > (1 — H=2(6)) will do.

Proof: We counsider a uniformly selected k-by-n(k) generating matrix over GF(2),
and upper-bound the probability that it yields a linear code of distance less than
d(k). We use a union bound on all possible 2 — 1 linear combinations of the
rows of the generating matrix, where for each such combination we compute the
probability that it yields a codeword of Hamming weight less than d(k). Ob-
serve that the result of each such linear combination is uniformly distributed over
{0,1}"*) and thus this codeword has Hamming weight less than d(k) with prob-

ability p < SR (n()) L 9=n(k) Clearly, for d(k) < n(k)/2, it holds that
p < d(k) - 2 (I H(B) n(0) | byt actually p < 2~ (1 H(dE/nE) (k) holds
as well (e.g., use [11, Cor. 14.6.3]). Using (1 — Ha(d(k)/n(k))) - n(k) > k + t(k),

the proposition follows.

E.1. ERROR CORRECTING CODES 605

E.1.2.1 A mildly explicit version of Proposition E.1

Note that Proposition E.1 yields a deterministic algorithm that finds a linear code
of distance d(k) by conducting an exhaustive search over all possible generating
matrices; that is, a good code can be found in time exp(k - n(k)). The time
bound can be improved to exp(k + n(k)), by constructing the generating matrix
in iterations such that, at each iteration, the current set of rows is augmented
with a single row while maintaining the natural invariance (i.e., all non-empty
linear combinations of the current rows have weight at least d(k)). Thus, at each
iteration, we conduct an exhaustive search over all possible values of the next (n(k)-
bit long) row, and for each such candidate value we check whether the foregoing
invariance holds (by considering all linear combinations of the previous rows and
the current candidate).

Note that the proof of Proposition E.1 can be adapted to assert that, as long
as we have less than k rows, a random choice of the next row will do with positive
probability. Thus, the foregoing iterative algorithm finds a good code in time
Zle 27(k) . 21=1 . poly(n(k)) = exp(n(k) + k). In the case that n(k) = O(k), this
yields an algorithm that runs in time that is polynomial in the size of the code (i.e.,
the number of codewords (i.e., 2F)). Needless to say, this mild level of explicitness is
inadequate for most coding applications; however, it will be useful to us in §E.1.2.5.

E.1.2.2 The Hadamard Code

The Hadamard code is the longest (non-repetitive) linear code over {0,1} = GF(2).
That is, z € {0,1}* is mapped to the sequence of all n(k) = 2* possible linear
combinations of its bits; that is, bit locations in the codewords are associated with
k-bit strings such that location o € {0,1}* in the codeword of z holds the value
Zle «a;x;. It can be verified that each non-zero codeword has weight 281 and
thus this code has relative distance d(k)/n(k) = 1/2 (albeit its block-length n(k)
is exponential in k).

Turning to the computational aspects, we note that encoding is very easy. As
for decoding, the warm-up discussion at the beginning of the proof of Theorem 7.7
provides a very fast probabilistic algorithm for unique decoding, whereas Theo-
rem 7.8 itself provides a very fast probabilistic algorithm for list decoding.

We mention that the Hadamard code has played a key role in the proof of the
PCP Theorem (Theorem 9.16); see §9.3.2.1.

A propos long codes. We mention that the longest (non-repetitive) binary
code (called the Long-Code and introduced in [29]) is extensively used in the de-
sign of “advanced” PCP systems (see, e.g., [116, 117]). In this code, a k-bit long
string = is mapped to the sequence of n(k) = 22" values, each corresponding to
the evaluation of a different Boolean function at x; that is, bit locations in the
codewords are associated with Boolean functions such that the location associated
with f:{0,1}* —{0,1} in the codeword of z holds the value f(z).

606 APPENDIX E. EXPLICIT CONSTRUCTIONS

E.1.2.3 The Reed—Solomon Code

Reed-Solomon codes can be defined for any adequate non-binary alphabet, where
the alphabet is associated with a finite field of n elements, denoted GF(n). For
any k < n, the code maps univariate polynomials of degree k — 1 over GF(n)
to their evaluation at all field elements. That is, p € GF(n)* (viewed as such
a polynomial), is mapped to the sequence (p(ay),...,p(cr)), where ay,...,a, is a
canonical enumeration of the elements of GF(n).3 This mapping is called a Reed-
Solomon code with parameters k and n, and its distance is n — k + 1 (because any
non-zero polynomials of degree k—1 evaluates to zero at less than k points). Indeed,
this code is linear (over GF(n)), since p(«) is a linear combination of py, ..., pr—1,
k=1
where p(¢) = X255 piC"

The Reed-Solomon code yields infinite families of codes with constant rate and
constant relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but the
alphabet size grows with k (or rather with n(k) > k). Efficient algorithms for
unique decoding and list decoding are known (see [216] and references therein).
These computational tasks correspond to the extrapolation of polynomials based
on a noisy version of their values at all possible evaluation points.

E.1.2.4 The Reed—Muller Code

Reed-Muller codes generalize Reed-Solomon codes by considering multi-variate
polynomials rather than univariate polynomials. Consecutively, the alphabet may
be any finite field, and in particular the two-element field GF(2). Reed-Muller codes
(and variants of them) are extensively used in complexity theory; for example, they
underly Construction 7.11 and the PCP constructed at the end of §9.3.2.2. The
relevant property of these (non-binary) codes is that, under a suitable setting of
parameters that satisfies n(k) = poly(k), they allow super fast “codeword testing”
and “self-correction” (see discussion in Section E.1.3).

For any prime power ¢ and parameters m and r, we consider the set, denoted
P,, ., of all m-variate polynomials of total degree at most r over GF(g). Each
polynomial in P, , is represented by the k = log, | P .| coefficients of all relevant
monomials, where in the case that r < g it holds that k = (™'"). We consider
the code C : GF(q)* — GF(q)", where n = ¢™, mapping m-variate polynomials of
total degree at most r to their values at all g™ evaluation points. That is, the m-
variate polynomial p of total degree at most r is mapped to the sequence of values
(p(@y1),...,p(ay)), where @y, ...,@, is a canonical enumeration of all the m-tuples
of GF(gq). The relative distance of this code is lower-bounded by (¢ — r)/q (cf.,
Lemma 6.8).

In typical applications one sets r = ©(m?logm) and g = poly(r), which yields
k> m™ and n = poly(r)™ = poly(m™). Thus we have n(k) = poly(k) but not
n(k) = O(k). As we shall see in Section E.1.3, the advantage (in comparison to the
Reed-Solomon code) is that codeword testing and self-correction can be performed

3 Alternatively, we may map (v1, ...,v) € GF(n)* to (p(a1), ..., p(ar)), where p is the unique
univariate polynomial of degree k — 1 that satisfies p(a;) = v; for ¢ = 1,...,k. Note that this
modification amounts to a linear transformation of the generating matrix.

E.1. ERROR CORRECTING CODES 607

at complexity related to ¢ = poly(logn). Actually, most complexity applications
use a variant in which only m-variate polynomials of individual degree v’ = r/m are
encoded. In this case, an alternative presentation (analogous to the one presented in
Footnote 3) is preferred: The information is viewed as a function f : H™ — GF(q),
where H C GF(q) is of size 1’ + 1, and is encoded by the evaluation at all points in
GF(q)™ of the (unique) m-variate polynomial of individual degree r' that extends
the function f (see Construction 7.11).

E.1.2.5 Binary codes of constant relative distance and constant rate

Recall that we seek binary codes of constant relative distance and constant rate.
Proposition E.1 asserts that such codes exists, but does not provide an explicit
construction. The Hadamard code is explicit but does not have a constant rate (to
say the least (since n(k) = 2F)).* The Reed-Solomon code has constant relative
distance and constant rate but uses a non-binary alphabet (which grows at least
linearly with k). Thus, all codes we have reviewed so far fall short of providing
an explicit construction of binary codes of constant relative distance and constant
rate. We achieve the desired construction by using the paradigm of concatenated
codes [78], which is of independent interest. (Concatenated codes may be viewed
as a simple analogue of the proof composition paradigm presented in §9.3.2.2.)

Intuitively, concatenated codes are obtained by first encoding information, viewed
as a sequence over a large alphabet, by some code and next encoding each resulting
symbol, which is viewed as a sequence of over a smaller alphabet, by a second code.
Formally, consider $; = X5* and two codes, C; : X8 — X7 and Cy : 35> — 272,
Then, the concatenated code of Cy and Cs, maps (z1, ..., Tk,) € Z’fl = Z’;l’“ to
(Ca(y1), -y C2(Yny), where (y1,...;Yn,) = C1 (1, ..., Tp,)-

Note that the resulting code C : £5% — %712 has constant rate and con-
stant relative distance if both C; and C; have these properties. Encoding in
the concatenated code is straightforward. To decode a corrupted codeword of
C, we view the input as an ni-long sequence of blocks, where each block is an
ns-long sequence over 5. Applying the decoder of Cs to each block, we obtain
ny sequences (each of length ks) over ¥y, and interpret each such sequence as
a symbol of ;. Finally, we apply the decoder of C; to the resulting ni-long
sequence (over X), and interpret the resulting k;-long sequence (over ;) as a
k1 ko-long sequence over ¥,. The key observation is that if w € 5™ is e1e5-close
to C(x1, .., xky) = (Co(y1), ..., Co(Yn,) then at least (1 —e1) -ny of the blocks of w
are ex-close to the corresponding Ca(y;).5

We are going to consider the concatenated code obtained by using the Reed-
Solomon Code C; : GF(ny)* — GF(n;)™ as the large code, setting ks = log, n1,
and using the mildly explicit version of Proposition E.1 (see also §E.1.2.1) Cs :
{0,1}*2 — {0,1}" as the small code. We use n; = 3k; and na = O(k2), and so the

4Binary Reed-Muller codes also fail to simultaneously provide constant relative distance and
constant rate.

5This observation offers unique decoding from a fraction of errors that is the product of the
fractions (of error) associated with the two original codes. Stronger statements regarding unique
decoding of the concatenated code can be made based on more refined analysis (cf. [78]).

608 APPENDIX E. EXPLICIT CONSTRUCTIONS

concatenated code is C' : {0,1}* — {0,1}", where k = kikz and n = nyny = O(k).
The key observation is that Cy can be constructed in exp(ks)-time, whereas here
exp(ks) = poly(k). Furthermore, both encoding and decoding with respect to C»
can be performed in time exp(k2) = poly(k). Thus, we get:

Theorem E.2 (an explicit good code): There exists constants 6,p > 0 and an
explicit family of binary codes of rate p and relative distance at least 6. That is,
there exists a polynomial-time (encoding) algorithm C such that |C(z)| = |z|/p (for
every x) and a polynomial-time (decoding) algorithm D such that for every y that
is 8/2-close to some C(x) it holds that D(y) = x. Furthermore, C is a linear code.

The linearity of C'is justified by using a Reed-Solomon code over the extension field
F = GF(2*2), and noting that this code induces a linear transformation over GF(2).
Specifically, the value of a polynomial p over F' at a point o € F' can be obtained
as a linear transformation of the coefficient of p, when viewed as ko-dimensional
vectors over GF(2).

Relative distance approaching one half. Note that starting with a Reed-
Solomon code of relative distance ¢; and a smaller code Cs of relative distance
02, we obtain a concatenated code of relative distance 6;0>. Recall that, for any
constant §; < 1, there exists a Reed-Solomon code C; : GF(n1)* — GF(ny)™ of
relative distance 6; and constant rate (i.e., 1 — &;). Thus, for any constant e > 0,
we may obtain an explicit code of constant rate and relative distance (1/2) — ¢
(e.g., by using 6; = 1 — (¢/2) and 62 = (1 — €)/2). Furthermore, giving up on
constant rate, we may start with a Reed-Solomon code of block-length n4 (k1) =
poly(k;) and distance ny (k1) —k1 over [n1(k1)], and use a Hadamard code (encoding
[n1(k1)] = {0,1}°82m1(k1) by {0, 1}1(k)) in the role of the small code Cy. This
yields a (concatenated) binary code of block length n(k) = ni(k)? = poly(k) and
distance (n1(k) — k) -nq(k)/2. Thus, the resulting explicit code has relative distance
1 k

i + —o(1), provided that n(k) = w(k?).

E.1.3 Two Additional Computational Problems

In this section we briefly review relaxations of two traditional coding theoretic tasks.
The purpose of these relaxations is enabling the design of super-fast (randomized)
algorithms that provide meaningful information. Specifically, these algorithms may
run in sub-linear (e.g., poly-logarithmic) time, and thus cannot possibly solve the
unrelaxed version of the corresponding problem.

Local testability. This task refers to testing whether a given word is a codeword
(in a predetermine code), based on (randomly) inspecting few locations in the
word. Needless to say, we can only hope to make an approximately correct
decision; that is, accept each codeword and reject with high probability each
word that is far from the code. (Indeed, this task is within the framework of
property testing; see Section 10.1.2.)

E.1. ERROR CORRECTING CODES 609

Local decodability. Here the task is to recover a specified bit in the plaintext by
(randomly) inspecting few locations in a mildly corrupted codeword. This
task is somewhat related to the task of self-correction (i.e., recovering a spec-
ified bit in the codeword itself, by inspecting few locations in the mildly
corrupted codeword).

Note that the Hadamard code is both locally testable and locally decodable as well
as self-correctable (based on a constant number of queries into the word); these facts
were demonstrated and extensively used in §9.3.2.1. However, the Hadamard code
has an exponential block-length (i.e., n(k) = 2¥), and the question is whether one
can achieve analogous results with respect to a shorter code (e.g., n(k) = poly(k)).
As hinted in §E.1.2.4) the answer is positive (when we refer to performing these
operations in time that is poly-logarithmic in k):

Theorem E.3 For some constant § > 0 and polynomials n,q : N — N, there
ezists an ezplicit family of codes {Cy, : [q(k)]* — [q(k)]" ™ }ren of relative distance
6 that can be locally testable and locally decodable in poly(log k)-time. That is, the
following three conditions hold.

1. Encoding: There exists a polynomial time algorithm that on input x € [q(k)]*
returns Cy(x).

2. Local Testing: There exists a probabilistic polynomial-time oracle machine
T that given k (in binary)® and oracle access to w € [q(k)]"®) (viewed as
w:[n(k)] — [q(k)]) distinguishes the case that w is a codeword from the case
that w is 6/2-far from any codeword. Specifically:

(a) For every x € [q(k)]* it holds that Pr[T<+(®)(k)=1] = 1.
(b) For every w € [q(k)]™®) that is §/2-far from any codeword of Cy, it holds
that Pr[T%(k)=1] < 1/2.

As usual, the error probability can be reduced by repetitions.

3. Local Decoding: There exists a probabilistic polynomial-time oracle machine

D that given k and i € [k] (in binary) and oracle access to any w € [q(k)]"¥)
that is 6/2-close to Cy(x) returns z;; that is, Pr[D¥(k,i)=xz;] > 2/3.
Self correction holds too: there exists a probabilistic polynomial-time oracle
machine M that given k and ¢ € [n(k)] (in binary) and oracle access to any
w € [q(k)]™™®) that is §/2-close to Cy(x) returns Cy(z);; that is, Pr[D® (k,i) =
Cr(z):] > 2/3.

We stress that all these oracle machines work in time that is polynomial in the bi-
nary representation of k, which means that they run in time that is poly-logarithmic
in k. The code asserted in Theorem E.3 is a (small modification of a) Reed-Muller
code, for r = m?logm < q(k) = poly(r) and [n(k)] = GF(q(k))™ (see §E.1.2.4).7

6Thus, the running time of T is poly(|k|) = poly(log k).

“The modification is analogous to the one presented in Footnote 3: For a suitable choice of
k points @1,...,a € GF(q(k))™, we map v1,...,v to (p(@1),...,p(@n)), where p is the unique
m-variate polynomial of degree at most r that satisfies p(a;) = v; fori =1, ..., k.

610 APPENDIX E. EXPLICIT CONSTRUCTIONS

The aforementioned oracle machines queries the oracle w : [n(k)] — GF(q(k))
at a non-constant number of locations. Specifically, self-correction for location
i € GF(gq(k))™ is performed by selecting a random line (over GF(g(k))™) that
passes through ¢, recovering the values assigned by w to all ¢(k) points on this
line, and performing univariate polynomial extrapolation (under mild noise). Lo-
cal testability is easily reduced to self-correction, and (under the aforementioned
modification) local decodability is a special case of self-correction.

Constant number of (binary) queries. The local testing and decoding al-
gorithms asserted in Theorem E.3 make a polylogarithmic number of queries into
the oracle. Furthermore, these queries (which refer to a non-binary code) are
non-binary (i.e., they are each answered by a non-binary value). In contrast, the
Hadamard code has local testing and decoding algorithms that use a constant num-
ber of binary queries. Can this be obtained with much shorter (binary) codewords?
That is, redefining local testability and decodability as requiring a constant number
of queries, we ask whether binary codes of significantly shorter block-length can be
locally testable and decodable. For local testability the answer is definitely positive:
one can construct such (locally testable and binary) codes with block-length that
is nearly linear (i.e., linear up to polylogarithmic factors; see [36, 67]). For local
decodability, the shortest known code has super-polynomial length (see [241]). In
light of this state of affairs, we advocate natural relaxations of the local decodability
task (e.g., the one studied in [35]).

The interested reader is referred to [93], which includes more details on locally
testable and decodable codes as well as a wider perspective. (Note, however, that
this survey was written prior to [67] and [241], which resolve two major open
problems discussed in [93].)

E.1.4 A List Decoding Bound

A necessary condition for the feasibility of the list decoding task is that the list
of codewords that are close to the given word is short. In this section we present
an upper-bound on the length of such lists, noting that this bound has found
several applications in complexity theory (and specifically to studies related to the
contents of this book). In contrast, we do not present far more famous bounds
(which typically refer to the relation among the main parameters of codes (i.e.,
k,n and d)), because they seem less relevant to the contents of this book.

We start with a general statement that refers to any alphabet ¥ = [g], and later
specialize it to the case that ¢ = 2. Especially in the general case, it is natural and
convenient to consider the agreement (rather than the distance) between sequences
over [g]. Furthermore, it is natural to focus on agreement rate of at least 1/¢, and
it is convenient to state the following result in terms of the “excessive agreement
rate” (i.e., the excess beyond 1/¢).® Loosely speaking, the following result upper-
bounds the number of codewords that have a (sufficient) large agreement rate with

8Indeed, we only consider codes with distance d < (1 —1/q)-n (i.e., agreement rate of at least
1/q) and words that are at distance at most d from the code. Note that a random sequence is
expected to agree with any fixed sequence on a 1/q fraction of the locations.

E.2. EXPANDER GRAPHS 611

any fixed sequence, where the upper-bound depends only on this agreement rate
and the agreement rate between codewords (as well as on the alphabet size, but
not on k and n).

Lemma E.4 (Part 2 of [105, Thm. 15]): Let C : [¢]* — [q]® be an arbitrary

code of distance d < n — (n/q), and let ne e (1 -(d/n))—(1/q) > 0 denote

the corresponding upper-bound on the excessive agreement rate between codewords.
Suppose that € (0,1) satisfies

0 > (1 - é) o (E2)

Then, for any w € [q|™, the number of codewords that agree with w on at least
((1/q) +n) - n positions (i.e., are at distance at most (1 — ((1/¢g) + 7)) - n from w)
s upper-bounded by
(1-(1/9)* - (1 - (1/q)) - nc
n? = (1= (1/9)) - ne

(E.3)

In the binary case (i.e., ¢ = 2), Eq. (E.2) requires n > y/1¢/2 and Eq. (E.3) yields
the upper-bound (1 — 2n¢)/(4n? — 2nc). We highlight two specific cases:

1. At the end of §D.4.2.2, we refer to this bound (for the binary case) while
setting ne = (1/k)? and 7 = 1/k. Indeed, in this case (1 —2n¢)/(4n* —2nc) =
O(k?).

2. In the case of the Hadamard code, we have no = 0. Thus, for every w €
{0,1}"™ and every 5 > 0, the number of codewords that are (0.5 — n)-close to
w is at most 1/4n?.

In the general case (and specifically for ¢ > 2) it is useful to simplify Eq. (E.2) by

n > min{\/n¢, (1/q) + \/m} and Eq. (E.3) by ’qziTIC'

E.2 Expander Graphs

In this section we review basic facts regarding expander graphs that are most
relevant to the current book. For a wider perspective, the interested reader is
referred to [124].

Loosely speaking, expander graphs are regular graphs of small degree that ex-
hibit various properties of cliques.® In particular, we refer to properties such as the
relative sizes of cuts in the graph (i.e., relative to the number of edges), and the
rate at which a random walk converges to the uniform distribution (relative to the
logarithm of the graph size to the base of its degree).

9 Another useful intuition is that expander graphs exhibit various properties of random regular
graphs of the same degree.

612 APPENDIX E. EXPLICIT CONSTRUCTIONS

Some technicalities. Typical presentations of expander graphs refer to one of
several variants. For example, in some sources, expanders are presented as bipartite
graphs, whereas in others they are presented as ordinary graphs (and are in fact
very far from being bipartite). We shall follow the latter convention. Furthermore,
at times we implicitly consider an augmentation of these graphs where self-loops
are added to each vertex. For simplicity, we also allow parallel edges.

We often talk of expander graphs while we actually mean an infinite collection
of graphs such that each graph in this collection satisfies the same property (which
is informally attributed to the collection). For example, when talking of a d-regular
expander (graph) we actually refer to an infinite collection of graphs such that each
of these graphs is d-regular. Typically, such a collection (or family) contains a single
N-vertex graph for every N € S, where S is an infinite subset of N. Throughout
this section, we denote such a collection by {G n} ycs, with the understanding that
Gy is a graph with N vertices and S is an infinite set of natural numbers.

E.2.1 Definitions and Properties

We consider two definitions of expander graphs, two different notions of explicit
constructions, and two useful properties of expanders.

E.2.1.1 Two mathematical definitions

We start with two different definitions of expander graphs. These definitions are
qualitatively equivalent and even quantitatively related. We start with an algebraic
definition, which seems technical in nature but is actually the definition typically
used in complexity theoretic applications, since it directly implies various “mixing
properties” (see §E£.2.1.3). We later present a very natural combinatorial definition
(which is the source of the term “expander”).

The algebraic definition (eigenvalue gap). Identifying graphs with their ad-
jacency matrix, we consider the eigenvalues (and eigenvectors) of a graph (or rather
of its adjacency matrix). Any d-regular graph G = (V, E) has the uniform vector
as an eigenvector corresponding to the eigenvalue d, and if G is connected and
non-bipartite then the absolute values of all other eigenvalues are strictly smaller
than d. The eigenvalue bound, denoted A\(G) < d, of such a graph G is defined as
a tight upper-bound on the absolute value of all the other eigenvalues. (In fact,
in this case it holds that A(G) < d — Q(1/d|V|*).)!® The algebraic definition of
expanders refers to an infinite family of d-regular graphs and requires the existence
of a constant eigenvalue bound that holds for all the graphs in the family.

Definition E.5 An infinite family of d-regular graphs, {Gn}ncs, where S C N,
satisfies the eigenvalue bound 3 if for every N € S it holds that A(Gn) < 8. In

10T his follows from the connection to the combinatorial definition (see Theorem E.7). Specif-
ically, the square of this graph, denoted G2, is |V|~!-expanding and thus it holds that A\(G)? =
AG?) < d? - Q(V]|72).

E.2. EXPANDER GRAPHS 613

such a case, we say that {Gn}ncs s a family of (d, B)-expanders, and call d — 8
its eigenvalue gap.

It will be often convenient to consider relative (or normalized) versions of the
foregoing quantities, obtained by division by d.

The combinatorial definition (expansion). Loosely speaking, expansion re-
quires that any (not too big) set of vertices of the graph has a relatively large set
of neighbors. Specifically, a graph G = (V, E) is c-expanding if, for every set S C V
of cardinality at most |V|/2, it holds that

To(S) Y {v:FueS st {u,v}€E} (E.4)
has cardinality at least (1 + ¢) - |S|. Assuming the existence of self-loops on all
vertices, the foregoing requirement is equivalent to requiring that |[I'¢(S) \ S| >
¢+ |S|. In this case, every connected graph G = (V,E) is (1/|V])-expanding.!!
The combinatorial definition of expanders refers to an infinite family of d-regular
graphs and requires the existence of a constant expansion bound that holds for all
the graphs in the family.

Definition E.6 An infinite family of d-reqular graphs, {Gn}ycs is c-expanding if
for every N € S it holds that Gy is c-expanding.

The two definitions of expander graphs are related (see [11, Sec. 9.2] or [124,
Sec. 4.5]). Specifically, the “expansion bound” and the “eigenvalue bound” are
related as follows.

Theorem E.7 Let G be a d-reqular graph having a self-loop on each vertez.
1. The graph G is c-expanding for ¢ > (d — A(G))/2d.
2. If G is c-expanding then d — A(G) > ¢?/(4 + 2¢?).

Thus, any non-zero bound on the combinatorial expansion of a family of d-regular
graphs yields a non-zero bound on its eigenvalue gap, and vice versa. Note, how-
ever, that the back-and-forth translation between these measures is not tight. We
note that the applications presented in the main text (see, e.g., Section 8.5.3 and
§9.3.2.3) refer to the algebraic definition, and that the loss incurred in Theorem E.7
is immaterial for them.

n contrast, a bipartite graph G = (V, E) is not expanding, because it always contains a set
S of size at most |V|/2 such that |[['g(S)| < |S| (although it may hold that |[T'¢(S) \ S| > |S]).

2Recall that in such a graph G = (V, E) it holds that T'g(S) D S for every S C V, and thus
Ta(S)| = [Ta(S)\ S| + |S|. Furthermore, in such a graph all eigenvalues are greater than or
equal to —d + 1, and thus if d — A(G) < 1 then this is due to a positive eigenvalue of G. These
facts are used for bridging the gap between Theorem E.7 and the more standard versions (see,
e.g., [11, Sec. 9.2]) that refer to variants of both definitions. Specifically, [11, Sec. 9.2] refers to
Fg(S) =Tg(S)\ S and X2(G), where XA2(G) is the second largest eigenvalue of G, rather than
referring to I'g(S) and A(G). Note that, in general, I'¢(S) may be attained by the difference
between the smallest eigenvalue of G (which may be negative) and —d.

614 APPENDIX E. EXPLICIT CONSTRUCTIONS

Amplification. The “quality of expander graphs improves” by raising these
graphs to any power t > 1 (i.e., raising their adjacency matrix to the t*® power),
where this operation corresponds to replacing t-paths (in the original graphs)
by edges (in the resulting graphs). Specifically, when considering the algebraic
definition, it holds that A(G') = A(G)', but indeed the degree also gets raised
to the power ¢. Still, the ratio A(G')/d"' deceases with ¢. An analogous phe-
nomenon occurs also under the combinatorial definition, provided that some suit-
able modifications are applied. For example, if for every S C V it holds that
T (S)| > min((1 + ¢) - |S],|V|/2), then for every S C V it holds that |I'g:(S)| >
min((1 + ¢)* - |5],[V]/2).

The optimal eigenvalue bound. For every d-regular graph G = (V, E), it holds
that A(G) > 2y - vVd — 1, where 7¢ = 1 — O(1/log, |V'|). Thus, for any infinite
family of (d, A)-expanders, it must holds that A > 2+v/d — 1.

E.2.1.2 Two levels of explicitness

Towards discussing various notions of explicit constructions of graphs, we need to
fix a representation of such graphs. Specifically, throughout this section, when
referring to an infinite family of graphs {Gn } yes, we shall assume that the vertex
set of Gy equals [N]. Indeed, at times, we shall consider vertex sets having a
different structure (e.g., [m] x [m] for some m € N), but in all these cases there
exists a simple isomorphism of these sets to the canonical representation (i.e., there
exists an efficiently computable and invertible mapping of the vertex set of Gy to
V).

Recall that a mild notion of explicit constructiveness refers to the complezity of
constructing the entire object (i.e., the graph). Applying this notion to our setting,
we say that an infinite family of graphs {Gn} yes is explicitly constructible if there
exists a polynomial-time algorithm that, on input 1V (where N € S), outputs the
list of the edges in the N -vertex graph G . That is, the entire graph is constructed
in time that is polynomial in its size (i.e., in poly(V)-time).

The foregoing (mild) level of explicitness suffices when the application requires
holding the entire graph and/or when the running-time of the application is lower-
bounded by the size of the graph. In contrast, other applications refer to a huge
virtual graph (which is much bigger than their running time), and only require
the computation of the neighborhood relation in such a graph. In this case, the
following stronger level of explicitness is relevant.

A strongly explicit construction of an infinite family of (d-regular) graphs {G'n} ycs
is a polynomial-time algorithm that on input N € S (in binary), a vertez v in the
N-vertex graph Gy (ie., v € [N]), and an indez i € [d], returns the i*® neighbor
of v. That is, the “neighbor query” is answered in time that is polylogarithmic in
the size of the graph. Needless to say, this strong level of explicitness implies the
basic (mild) level.

An additional requirement, which is often forgotten but is very important, refers
to the “tractability” of the set S. Specifically, we require the existence of an
efficient algorithm that given any n € N finds an s €S such that n < s < 2n.

E.2. EXPANDER GRAPHS 615

Corresponding to the two foregoing levels of explicitness, “efficient” may mean
either running in time poly(n) or running in time poly(logn). The requirement
that n < s < 2n suffices in most applications, but in some cases a smaller interval
(e.g., m < s < n+ +/n) is required, whereas in other cases a larger interval (e.g.,
n < s < poly(n)) suffices.

Greater flexibility. In continuation to the foregoing paragraph, we comment
that expanders can be combined in order to obtain expanders for a wider range of
graph sizes. For example, given two d-regular c-expanding graphs, G; = (V1, Ey)
and G2 = (Va, Es) where V1| < |V3| and ¢ < 1, we can obtain a (d + 1)-regular
¢/2-expanding graph on |V;| + |Va| vertices by connecting the two graphs using a
perfect matching of V4 and |V1| of the vertices of V> (and adding self-loops to the
remaining vertices of V3). More generally, combining the d-regular c-expanding

graphs Gy = (Vi, Ey) through G, = (V;, Ey), where N’ % /21 V] < Vi, yields
a (d 4 1)-regular ¢/2-expanding graph on 3_._, |V;| vertices (by using a perfect
matching of U!_1V; and N’ of the vertices of V).

E.2.1.3 Two properties

The following two properties provide a quantitative interpretation to the statement
that expanders approximate the complete graph (or behave approximately like
a complete graph). When referring to (d, A)-expanders, the deviation from the
behavior of a complete graph is represented by an error term that is linear in \/d.

The mixing lemma. Loosely speaking, the following (folklore) lemma asserts
that in expander graphs (for which A < d) the fraction of edges connecting two
large sets of vertices approximately equals the product of the densities of these sets.
This property is called mizing.

Lemma E.8 (Expander Mixing Lemma): For every d-regular graph G = (V, E)
and for every two subsets A,B CV it holds that

I(AxB)ﬂEI_@_@ < MOVIA[- Bl _ AG)
|E| Vi VI~ d-|V] - d

(E.5)

where E denotes the set of directed edges (i.e., vertex pairs) that correspond to the
undirected edges of G (ie., E = {(u,v) : {u,v} € E} and |E| = d|V|).

In particular, |(A x A) N E| = (p(A) - d £ A(G)) - |A|, where p(A) = |A|/|V]. It
follows that |(A x (V \ 4)) N E| =((1—-p(A) -d£ A(G)) - |A]|

Proof: Let N &' |[V| and A Lef A(G). For any subset of the vertices S C V, we
denote its density in V' by p(S) e |S|/N. Hence, Eq. (E.5) is restated as
(AxB)NE| AP p(B)

LS () p(B)| < S

616 APPENDIX E. EXPLICIT CONSTRUCTIONS

We proceed by providing bounds on the value of |(4 x B) N E|. To this end we let
@ denote the N-dimensional Boolean vector having 1 in the i*" component if and
only if i € A. The vector b is defined similarly. Denoting the adjacency matrix of
the graph G by M = (m;;), we note that |(4A x B) N E| equals @" Mb (because
(i,7) € (A x B)N E if and only if it holds that i € A, j € B and m,; = 1).
We consider the orthogonal eigenvector basis, €7, ...,exn, where e7 = (1,...,1)T and
€ & = N for each i, and write each vector as a linear combination of the vectors
in this basis. Specifically, we denote by a; the coefficient of @ in the direction of €;
that is, a; = (@' ;)/N and @ = Y, a;&;. Note that a; = (a'er)/N = |A|/N = p(A)
and Zil a? = (@'a)/N = |A|/N = p(A). Similarly for b. It now follows that

N
(AxB)NE| = @' MY b&
=1

N
E bi\; - ETe_Z-
=1

where \; denotes the t® eigenvalue of M. Note that A\; = d and for every ¢ > 2 it
holds that |\;| < A. Thus,

(A x B) N E| ibm-ai
N

Using Zf\il a? = p(A) and YN b2 = p(B), and applying Cauchy-Schwartz In-

=1 "1

equality, we bound Zf\; a;b; by \/p(A)p(B). The lemma follows. [l

The random walk lemma. Loosely speaking, the first part of the following
lemma asserts that, as far as remaining “trapped” in some subset of the vertex set
is concerned, a random walk on an expander approximates a random walk on the
complete graph.

Lemma E.9 (Expander Random Walk Lemma): Let G = ([N], E) be a d-regular
graph, and consider walks on G that start from a uniformly chosen vertex and take
{—1 additional random steps, where in each such step we uniformly selects one out
of the d edges incident at the current verter and traverses it.

Theorem 8.28 (restated): Let W be a subset of [N] and p = |W|/N. Then the

probability that such a random walk stays in W 1is at most

) (p F(1-p): @) (E6)

E.2. EXPANDER GRAPHS 617

Exercise 8.43 (restated): For any Wy, ..., W,_1 C [N], the probability that a random
walk of length € intersects Wy x Wy X --- x Wy_1 is at most

£—1
v TV e+ vy, (E7)

where p; |W;|/N.

The basic principle underlying Lemma E.9 was discovered by Ajtai, Komlos, and
Szemerédi [4], who proved a bound as in Eq. (E.7). The better analysis yielding
Theorem 8.28 is due to [135, Cor. 6.1]. A more general bound that refer to the
probability of visiting W for a number of times that approximates |W|/N is given
in [120], which actually considers an even more general problem (i.e., obtaining
Chernoff-type bounds for random variables that are generated by a walk on an
expander).

Proof of Equation (E.7): The basic idea is viewing events occuring during the
random walk as an evolution of a corresponding probability vector under suitable
transformations. The transformations correspond to taking a random step in G
and to passing through a “sieve” that keeps only the entries that correspond to
the current set W;. The key observation is that the first transformation shrinks
the component that is orthogonal to the uniform distribution, whereas the sec-
ond transformation shrinks the component that is in the direction of the uniform
distribution. Details follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency

matrix of G divided by d), and let A < A\(G)/d (i.e., A upper-bounds the abso-

lute value of every eigenvalue of A except the first one). Note that the uniform
distribution, represented by the vector w = (N !, ..., N~1) T is the eigenvector of
A that is associated with the largest eigenvalue (which is 1). Let P; be a 0-1 ma-
trix that has 1l-entries only on its diagonal such that entry (7, ;) is set to 1 if and
ounly if 5 € W;. Then, the probability that a random walk of length ¢ intersects
Wy x Wy x +++ x Wy_q is the sum of the entries of the vector

7 P,_ A P,AP, APyu. (E.8)

We are interested in upper-bounding ||7||;, and use ||7]j; < V/N - ||7]|, where ||Z||,
and [|z]| denote the Li-norm and Le-norm of Z, respectively (e.g., ||[u]l1 = 1 and
|zl = N—1/?). The key observation is that the linear transformation P;A shrinks
every vector.

Main Claim. For every %, it holds that ||P;AZ]| < (p; + A2)Y/2 - |z

Proof. Intuitively, A shrinks the component of Z that is orthogonal to @, whereas P;
shrinks the component of Z that is in the direction of w. Specifically, we decompose
Z = Z1 + Zz such that z7 is the projection of Z on @ and z7 is the component
orthogonal to w. Then, using the triangle inequality and other obvious facts (which

618 APPENDIX E. EXPLICIT CONSTRUCTIONS

imply ||PiAzr|| = ||Pizr|| and [|PAZ|| < [|AZ]), we have

|1 P Az + P Az | 1P AZL]| + || Pi Az |

1Pzl + || Azl

VPi Izl + A Iz

where the last inequality uses the fact that P; shrinks any uniform vector by elimi-
nating 1 — p; of its elements, whereas A shrinks the length of any eigenvector except
u by a factor of at least A. Using the Cauchy-Schwartz inequality'®, we get

IPAZI < i+ X VP + 170

= e+

IN N AN

where the equality is due to the fact that Zz7 is orthogonal to z3. O

Recalling Eq. (E.8) and using the Main Claim (and ||7]|; < V/N - |[7]|), we get

IN

VN - ||Pi_1A--- PyAP, APy
—1

VN - (H \/ pi + p) || Py
1=1

Finally, using ||Pou|| = /poN - (1/N)2 = \/po/N, we establish Eq. (E.7). W

1ol

IN

Rapid mixing. A property related to Lemma E.9 is that a random walk starting
at any vertex converges to the uniform distribution on the expander vertices after a
logarithmic number of steps. Specifically, we claim that starting at any distribution
5 (including a distribution that assigns all weight to a single vertex) after £ steps
on a (d,\)-ezpander G = ([N], E) we reach a distribution that is /N - (\/d)‘-close
to the uniform distribution over [N]. Using notation as in the proof of Eq. (E.7),
the claim asserts that A% —@||; < VN - Af, which is meaningful only for ¢ >
0.5-log, ;5 N. The claim is proved by recalling that |A% — ||, < VN -||A% -
and using the fact that 3 — @ is orthogonal to @ (because the former is a zero-sum
vector). Thus, |A% — | = ||AYS —w)|| < A5 — || and using |5 — @] < 1 the
claim follows.

E.2.2 Constructions

Many explicit constructions of (d, A)-expanders are known. The first such con-
struction was presented in [164] (where A < d was not explicitly bounded), and an
optimal construction (i.e., an optimal eigenvalue bound of A = 24/d — 1) was first

13That is, we get /pillz1ll + Allz2ll < v/ pi +A2 - \/||z1]|2 + ||22]|2, by using Z?zl a; - b;
n 1/2 n o\1/2 .
(Zi:l ai2) . (i1 biz) , with n =2, a1 = \/p;, b1 = ||z1]|, etc.

IN

E.2. EXPANDER GRAPHS 619

provided in [160]. Most of these constructions are quite simple (see, e.g., §£.2.2.1),
but their analysis is based on non-elementary results from various branches of math-
ematics. In contrast, the construction of Reingold, Vadhan, and Wigderson [191],
presented in §E.2.2.2 is based on an iterative process, and its analysis is based on
a relatively simple algebraic fact regarding the eigenvalues of matrices.

Before turning to these explicit constructions we note that it is relatively easy
to prove the existence of 3-regular expanders, by using the Probabilistic Method
(cf. [11]) and referring to the combinatorial definition of expansion.'*

E.2.2.1 The Margulis—Gabber—Galil Expander

For every natural number m, consider the graph with vertex set Z,, X Z,, and the
edge set in which every (x,y) € Zy, X Z, is connected to the vertices (z £ y,y),
(r £ (y+1),y), (x,y £ x), and (z,y £ (x + 1)), where the arithmetic is modulo m.
This yields an extremely simple 8-regular graph with an eigenvalue bound that is
a constant A < 8 (which is independent of m). Thus, we get:

Theorem E.10 There exists a strongly explicit construction of a family of (8,7.9999)-
expanders for graph sizes {m? : me€N}. Furthermore, the neighbors of a vertex in
these expanders can be computed in logarithmic-space.'®

An appealing property of Theorem E.10 is that, for every n € N, it directly yields
expanders with vertex set {0,1}"™. This is obvious in case n is even, but can be
easily achieved also for odd n (e.g., use two copies of the graph for n — 1, and
connect the two copies by the obvious perfect matching).

Theorem E.10 is due to Gabber and Galil [84], building on the basic approach
suggested by Margulis [164]. We mention again that the (strongly explicit) (d, A)-
expanders of [160] achieve the optimal eigenvalue bound (i.e., A = 24/d — 1), but
there are annoying restrictions on the degree d (i.e., d — 1 should be a prime
congruent to 1 modulo 4) and on the graph sizes for which this construction works.'%

14 This can be done by considering a 3-regular graph obtained by combining an N-cycle with a
random matching of the first N/2 vertices and the remaining N/2 vertices. It is actually easier
to prove the related statement that refers to the alternative definition of combinatorial expansion
that refers to the relative size of Fg(S) =Tg(S)\ S (rather than to the relative size of I'(S)).
In this case, for a sufficiently small ¢ > 0 and all sufficiently large N, a random 3-regular N-
vertex graph is “c-expanding” with overwhelmingly high probability. The proof proceeds by
considering a (not necessarily simple) graph G obtained by combining three uniformly chosen
perfect matchings of the elements of [N]. For every S C [N] of size at most N/2 and for every set
T of size ¢|S|, we consider the probability that for a random perfect matching M it holds that
rt (S) CT. The argument is concluded by applying a union bound.

5In fact, for m that is a power of two (and under a suitable encoding of the vertices), the
neighbors can be computed by a on-line algorithm that uses a constant amount of space. The
same holds also for a variant in which each vertex (z,y) is connected to the vertices (z &£ 2y, y),
(x £ (2y +1),y), (z,y £ 2z), and (z,y £ (2¢ + 1)). This variant yields a better known bound on
A e, A< 5v2~ 7.071.

16 The construction in [160] allows graph sizes of the form (p® — p)/2, where p =1 (mod 4) is
a prime such that d — 1 is a quadratic residue modulo p. As stated in [8, Sec. 2], the construction

can be extended to graph sizes of the form (p3* — p3*=2)/2, for any k € N and p as in the
foregoing.

620 APPENDIX E. EXPLICIT CONSTRUCTIONS

E.2.2.2 The Iterated Zig-Zag Construction

The starting point of the following construction is a very good expander G of
constant size, which may be found by an exhaustive search. The construction
of a large expander graph proceeds in iterations, where in the ‘! iteration the
current graph G; and the fixed graph G are combined, resulting in a larger graph
Gi+1. The combination step guarantees that the expansion property of G,41 is at
least as good as the expansion of G;, while G,;+1 maintains the degree of G; and
is a constant times larger than G;. The process is initiated with G; = G? and
terminates when we obtain a graph G, of approximately the desired size (which
requires a logarithmic number of iterations).

In this example G' is 6-regular and G is a 3-regular graph having six
vertices. In the graph G' (not shown), the 2nd edge of vertex u is
incident at v, as its 5th edge. The wide 3-segment line shows one of
the corresponding edges of G'@G, which connects the vertices (u, 3)
and (v, 2).

Figure E.1: Detail of the zig-zag product of G' and G.

The Zig-Zag product. The heart of the combination step is a new type of
“graph product” called Zig-Zag product. This operation is applicable to any pair
of graphs G = ([D],E) and G' = (|[N], E'), provided that G’ (which is typically
larger than @) is D-regular. For simplicity, we assume that G is d-regular (where
typically d < D). The Zig-Zag product of G' and G, denoted G' @G, is defined as
a graph with vertex set [IN] x [D] and an edge set that includes an edge between
(u,i) € [N]x[D] and (v, j) if and only if {i, k},{¢,5} € E and the k** edge incident
at u equals the /*" edge incident at v. That is, (u,4) and (v, j) are connected in
G'@QG if there exists a “three step sequence” consisting of a G-step from (u,) to
(u, k) (according to the edge {i, k} of G), followed by a G'-step from (u, k) to (v, £)

E.2. EXPANDER GRAPHS 621

(according to the k' edge of u in G’ (which is the £** edge of v)), and a final G-step
from (v,£) to (v, j) (according to the edge {¢,j} of G). See Figure E.1 as well as
further formalization (which follows).

Teaching note: The following paragraph, which provides a formal description of the

zig-zag product, can be ignored in first reading but is useful for more advanced discus-

sion.

It will be convenient to represent graphs like G' by their edge-rotation function,
denoted R’ : [N] x [D] — [N] x [D], such that R'(u,i) = (v,j) if {u,v} is the i‘}
edge incident at u as well as the j" edge incident at v. That is, R’ rotates the
pair (u,), which represents one “side” of the edge {u, v} (i.e., the side incident at
u as its i*? edge), resulting in the pair (v,), which represents the other side of the
same edge (which is the j* edge incident at v). For simplicity, we assume that
the (constant-size) d-regular graph G = ([D], E) is edge-colorable with d colors,
which in turn yields a natural edge-rotation function (i.e., R(i,«) = (j,«) if the
edge {i,7} is colored «). We will denote by FE,(i) the vertex reached from i € [D]
by following the edge colored « (i.e., E,(i) = j iff R(i,a) = (j,a)). The Zig-Zag
product of G’ and G, denoted G’ @G, is then defined as a graph with the vertex set
[N] x [D] and the edge-rotation function

((u,2), (e, B)) = ((v,9), (B,) i R'(u, Ba(2)) = (v, Ep(7)). (E.9)

That is, edges are labeled by pairs over [d], and the (a,ﬁ)th edge out of vertex
(u,i) € [N]x[D] is incident at the vertex (v, j) (as its (3,)" edge) if R(u, E4(i)) =
(v, E3(j)), where indeed Eg(Eg(j)) = j. Intuitively, based on («, (), we first
take a G-step from (u,i) to (u, E.(7)), then viewing (u, Eo(1)) = (u, Es(7)) as

a side of an edge of G' we rotate it (i.e., we effectively take a G'-step) reaching

(v,5") % R'(u, E,(i)), and finally we take a G-step from (v, ') to (v, E5(j")).

Clearly, the graph G'@G is d?-regular and has D - N vertices. The key fact,
proved in [191] (using techniques as in §E.2.1.3), is that the relative eigenvalue-value
of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-values
of the two graphs; that is, A\(G'@G) < A(G')+A(G), where A(-) denotes the relative
eigenvalue-bound of the relevant graph. The (qualitative) fact that G'@G is an
expander if both G’ and G are expanders is very intuitive (e.g., consider what
happens if G’ or G is a clique). Things are even more intuitive if one considers the
(related) replacement product of G’ and G, denoted G'©G, where there is an edge
between (u,i) € [N] x [D] and (v, j) if and only if either u = v and {i,j} € E or
the i*? edge incident at u equals the j** edge incident at v.

The iterated construction. The iterated expander construction uses the afore-
mentioned zig-zag product as well as graph squaring. Specifically, the construc-
tion starts'” with the d*-regular graph G1 = G? = ([D], E?), where D = d* and
A(G) < 1/4, and proceeds in iterations such that G;41 = G?@G fori = 1,2, ..., t—1,

171:{eca4117tha4t, for a sufficiently large constant d, we first find a d-regular graph G = ([d*], E)
satisfying A(G) < 1/4, by exhaustive search.

622 APPENDIX E. EXPLICIT CONSTRUCTIONS

where t is logarithmic in the desired graph size. That is, in each iteration, the cur-
rent graph is first squared and then composed with the fixed (d-regular D-vertex)
graph G via the zig-zag product. This process maintains the following two invari-
ants:

1. The graph G; is d?-regular and has D' vertices.

(The degree bound follows from the fact that a zig-zag product with a d-
regular graph always yields a d?-regular graph.)

2. The relative eigenvalue-bound of G; is smaller than one half (i.e., A(G;) <
1/2).
(Here we use the fact that A(G7 ,@G) < A(G7 ;) + A(G), which in turn
equals A\(G;_1)% + M(G) < (1/2)? + (1/4). Note that graph squaring is used
to reduce the relative eigenvalue of G; before increasing it by zig-zag product
with G.)

In order to show that we can actually construct G;, we show that we can com-
pute the edge-rotation function that correspond to its edge set. This boils down
to showing that, given the edge-rotation function of G;_;, we can compute the
edge-rotation function of G?_, as well as of its zig-zag product with G. Note
that this entire computation amounts to two recursive calls to computations re-
garding G;_; (and two computations that correspond to the constant graph G).
But since the recursion depth is logarithmic in the size of the final graph (i.e.,
t = logp |vertices(G})|), the total number of recursive calls is polynomial in the
size of the final graph (and thus the entire computation is polynomial in the size of
the final graph). This suffices for the minimal (i.e., “mild”) notion of explicitness,
but not for the strong one.

The strongly explicit version. To achieve a strongly explicit construction, we
slightly modify the iterative construction. Rather than letting G;11 = G?@G, we
let Giy1 = (G x G;)?@G, where G' x G' denotes the tensor product of G' with
itself; that is, if G' = (V', E') then G' x G' = (V' x V', E"), where

E" = {{{u1,u2), (v1,v2)} : {ur,v1}, {uz,v2} €L}

(i.e., {(u1,us) and (vy,vs) are connected in G’ x G' if for ¢ = 1,2 it holds that w; is
connected to v; in G'). The corresponding edge-rotation function is

R"({uy,uz), (i1,42)) = ((vi,v2), (J1,72)),

where R'(u1,41) = (v1,71) and R'(uz,is) = (v2,j2). We still use G; = G?, where
(as before) G is d-regular and A\(G) < 1/4, but here G has D = d® vertices.!® Using
the fact that tensor product preserves the relative eigenvalue-bound while squaring
the degree (and the number of vertices), we note that the modified iteration G;4+1 =

(G; x G;)?@G yields a d2-regular graph with (D2 ~1)2.D = D2 ~1 vertices, and

18 The reason for the change is that (G; x G;)? will be d®-regular, since G; will be d?-regular.

E.2. EXPANDER GRAPHS 623

that A(Gir1) < 1/2 (because A((G; X G;)*@G) < A(G;)? + A\(G)). Computing the
neighbor of a vertex in G; 41 boils down to a constant number of such computations
regarding G;, but due to the tensor product operation the depth of the recursion
is only double-logarithmic in the size of the final graph (and hence logarithmic in
the length of the description of vertices in this graph).

Digest. In the first construction, the zig-zag product was used both in order to
increase the size of the graph and to reduce its degree. However, as indicated by
the second construction (where the tensor product of graphs is the main vehicle
for increasing the size of the graph), the primary effect of the zig-zag product is
reducing the graph’s degree, and the increase in the size of the graph is merely a
side-effect.!® In both cases, graph squaring is used in order to compensate for the
modest increase in the relative eigenvalue-bound caused by the zig-zag product. In
retrospect, the second construction is the “correct” one, because it decouples three
different effects, and uses a natural operation to obtain each of them: Increasing the
size of the graph is obtained by tensor product of graphs (which in turn increases
the degree), the desired degree reduction is obtained by the zig-zag product (which
in turn slightly increases the relative eigenvalue-bound), and graph squaring is used
in order to reduce the relative eigenvalue-bound.

Stronger bound regarding the effect of the zig-zag product. In the fore-
going description we relied on the fact, proved in [191], that the relative eigenvalue-
bound of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-
bounds of the two graphs (i.e., A(G'@G) < A(G') + A(@))). Actually, a stronger
upper-bound is proved in [191]: It holds that A(G'@G) < f(M(G'), A\(GQ))), where

Flay) s L2 >'I+\/(<1‘g2>'$) g2 (E.10)

Indeed, f(z,y) < (1 —%?)-2+y <2 +y. On the other hand, for < 1, we have
2 2
z Yy 1 (

— U=v)0=2) which implies

(1-XG)%) - (1 = AG)
5 .

(E.11)

Thus, 1 — A(G'@G) > (1 — M(G)?) - (1 — X(G"))/2, and it follows that the zig-zag
product has a positive eigenvalue-gap if both graphs have positive eigenvalue-gaps
(ie., A(G'®G) < 1if both A(G) < 1 and A\(G') < 1). Furthermore, if A(G) < 1/v/3
then 1 — A(G'®@G) > (1 — A(G"))/3. This fact plays an important role in the proof
of Theorem 5.6.

19We mention that this side-effect may actually be undesired in some applications. For example,
in Section 5.2.4 we would rather not have the graph grow in size, but we can tolerate the constant
size blow-up (caused by zig-zag product with a constant-size graph).

624 APPENDIX E. EXPLICIT CONSTRUCTIONS

Appendix F

Some Omitted Proofs

A word of a Gentleman is better than a proof,
but since you are not a Gentleman — please provide a proof.

Leonid A Levin (1986)

The proofs presented in this appendix were not included in the main text for a
variety of reasons (e.g., they were deemed too technical and/or out-of-pace for the
corresponding location). On the other hand, since our presentation of these proofs
is sufficiently different from the original and/or standard presentation, we see a
benefit in including these proofs in the current book.

Summary: This appendix contains proofs of the following results:

1. PH is reducible to #P (and in fact to &P) via randomized Karp-
reductions. The proof follows the underlying ideas of Toda’s orig-
inal proof, but the actual presentation is quite different.

2. For any integral function f that satisfies f(n) € {2, ..., poly(n)}, it
holds that ZP(f) € AM(O(f)) and AM(O(f)) € AM(f). The
proofs differ from the original proofs (provided in [111] and [23],
respectively) only in secondary details, but these details seem sig-
nificant.

F.1 Proving that PH reduces to #P

Recall that Theorem 6.16 asserts that PH is Cook-reducible to #P (via determin-
istic reductions). Here we prove a closely related result (also due to Toda [220]),
which relaxes the requirement from the reduction (allowing it to be randomized)
but uses an oracle to a seemingly weaker class. The latter class is denoted &P
and is the “modulo 2 analogue” of #P. Specifically, a Boolean function f is
in &P if there exists a function g € #P such that for every x it holds that

625

626 APPENDIX F. SOME OMITTED PROOFS

f(z) = g(z) mod 2. Equivalently, f is in &P if there exists a search problem

R € PC such that f(z) = |R(z)| mod 2, where R(z) = {y : (z,y) € R}. Thus, for

any R € PC, the set ®R = {z :|R(z)| =1 (mod 2)}isin &P. (The & symbol

in the notation &P actually represents parity, which is merely addition modulo 2.
Indeed, a notation such as #,P would have been more appropriate.)

Theorem F.1 Every set in PH is reducible to &P via a probabilistic polynomial-
time reduction. Furthermore, the reduction is via a many-to-one randomized map-
ping and it fails with negligible error probability.

The proof follows the underlying ideas of the original proof [220], but the actual
presentation is quite different. Alternative proofs of Theorem F.1 can be found
in [136, 212].

Teaching note: It is quite easy to prove a non-uniform analogue of Theorem F.1, which
asserts that ACO circuits can be approximated by circuits consisting of an unbounded
parity of conjunctions, where each conjunction has polylogarithmic fan-in. Turning this
argument into a proof of Theorem F'.1 requires a careful implementation as well as using
transitions of the type presented in Exercise 3.8. Furthermore, such a presentation tends

to obscure the conceptual steps that underly the argument.

Proof Outline: The proof uses three main ingredients. The first ingredient is
the fact that NP is reducible to ®P via a probabilistic Karp-reduction, and that
this reduction “relativizes” (i.e., reduces NP* to @P* for any oracle 4).! The
second ingredient is the fact that error-reduction is available in the current context
(of randomized reductions to ®P), resulting in reductions that have exponentially
vanishing error probability.? The third ingredient is the extension of the first
ingredient to i, which relies on Proposition 3.9 as well as on the aforementioned
error-reduction. These ingredients correspond to the three main steps of the proof,
which are outlined next:

Step 1: Present a randomized Karp-reduction of NP to &P.

Step 2: Decrease the error probability of the foregoing Karp-reduction such that
the error probability becomes exponentially vanishing. Such a low error prob-
ability is crucial as a starting point for the next step.

ndeed, the “relativization” requirement presumes that both NP and @P are each asso-
ciated with a class of (standard) machines that generalizes to a class of corresponding oracle
machines (see comment at Section 3.2.2). This presumption holds for both classes, by virtue
of a (deterministic polynomial-time) machine that decide membership in the corresponding rela-
tion that belongs to PC. Alternatively, one may use the fact that the aforementioned reduction
is “highly structured” in the sense that for some polynomial-time computable predicate 1 this
reduction maps x to (z,s) such that for every non-empty set S, C {0,1}P(2D) it holds that
Pro[[{y€ S : ¥(z,5,9)}| =1 (mod 2)] > 1/3.

2We comment that such an error-reduction is not available in the context of reductions to
unique solution problems. This comment is made in view of the similarity between the reduction
of NP to ®P and the reduction of NP to problems of unique solution.

F.1. PROVING THAT PH REDUCES TO #P 627

Step 3: Prove that ¥, is randomly reducible to &P by extending the reduction
of Step 1 (while using Step 2). Intuitively, for any oracle A, the reduction
of Step 1 offers a reduction of NP* to &P, whereas a reduction of A to
B having exponentially vanishing error probability allows reducing &P to
aP? (or, similarly, reduce NP to NPP). Observing that &P%" = @P,
we obtain a randomized Karp-reduction of ¥y (viewed as N’PNP) to ®P.

When completing the third step, we shall have all the ingredients needed for the
general case (of randomly reducing X4 to &P, for any k > 2). We shall finish the
proof by sketching the extension of the case of X5 (treated in Step 3) to the general
case of Xy (for any k > 2). The actual extension is quite cumbersome, but the
ideas are all present in the case of ¥5. Furthermore, we believe that the case of Xo
is of significant interest per se.

Teaching note: The foregoing sketch of Step 3 suggests an abstract treatment that
evolves around definitions such as NP4 and @PP. We prefer a concrete presentation
that performs Step 3 as an extension of Step 1 (while using Step 2). This is one
reason for explicitly performing Step 1 (i.e., present a randomized Karp-reduction of
NP to &P). We note that Step 1 (i.e., a reduction of NP to &P) follows immediately
from the NP-hardness of deciding unique solution for some relations R € PC (i.e.,
Theorem 6.29), because the promise problem (USg,Sr), where USg = {z : |R(z)| =1}
and Sg = {z : |R(z)| = 0}, is reducible to ®R = {z : |R(z)|=1 (mod 2)} by the
identity mapping. However, for the sake of self-containment and conceptual rightness,
we present an alternative proof.

Step 1: a direct proof for the case of N’P. As in the proof of Theorem 6.29,
we start with any R € PC and our goal is reducing Sg = {z : |R(z)| >1} to &P by a
randomized Karp-reduction.® The standard way of obtaining such a reduction (e.g.,
in [136, 178, 212, 220]) consists of just using the reduction (to “unique solution”)
that was presented in the proof of Theorem 6.29, but we believe that this way is
conceptually wrong. Let us explain.

Recall that the proof of Theorem 6.29 consists of implementing a randomized
sieve that has the following property. For any = € Sk, with noticeable probability,
a single element of R(x) passes the sieve (and this event can be detected by an
oracle to a unique solution problem). Indeed, an adequate oracle in &P correctly
detects the case in which a single element of R(z) passes the sieve. However, by
definition, this oracle correctly detects the more general case in which any odd
number of elements of R(z) pass the sieve. Thus, insisting on a random sieve that
allows the passing of a single element of R(z) seems an over-kill (or at least is
conceptually wrong). Instead, we should just apply a less stringent random sieve
that, with noticeable probability, allows the passing of an odd number of elements

3As in Theorem 6.29, if any search problem in PC is reducible to R via a parsimonious reduc-
tion, then we can reduce Sg to @R. Specifically, we shall show that Sg is randomly reducible
to ®R2, for some Ry € PC, and a reduction of Sg to @R follows (by using the parsimonious
reduction of Ry to R).

628 APPENDIX F. SOME OMITTED PROOFS

of R(x). The adequate tool for such a random sieve is a small-bias generator (see
Section 8.5.2).

Indeed, we randomly reduce Sg to @P by sieving potential solutions via a small-
bias generator. Intuitively, we randomly map x to (z, s), where s is a random seed
for such a generator, and y is considered a solution to the instance (xz,s) if and
only if y € R(x) and the y'" bit of G(s) equals 1. (Indeed, if |R(x)| > 1 then, with
probability approximately 1/2, the instance (z, s) has an odd number of solutions,
whereas if |R(x)| = 0 then (z, s) has no solutions.) Specifically, we use a strongly
efficient generator (see §8.5.2.1), denoted G : {0,1}* — {0,1}*®)| where G(U}) has
bias at most 1/6 and £(k) = exp(Q2(k)). That is, given a seed s € {0,1}* and index
i € [£(k)], we can produce the i*! bit of G(s), denoted G(s,i), in polynomial-time.
Assuming, without loss of generality, that R(x) C {0,1}*{*) for some polynomial
p, we consider the relation

Ry = {((w,5),9) : (z,9) ER N G(s,y) =1} (F.1)

where y € {0,1}(=D) = [2¢(=D] and s € {0,1}°U¥D such that £(|s|) = 2!¥I. In
other words, Ra({z,s)) = {y : v € R(z) A G(s,y) = 1}. Then, for every z €
Sk, with probability at least 1/3, a uniformly selected s € {0,1}°(¥D satisfies
|R2((7,5))] = 1 (mod 2), whereas for every x ¢ Sg and every s € {0,1}°U¥D it
holds that |R2({x,s))| = 0. A key observation is that Ry € PC (and thus &R, is
in ®@P). Thus, deciding membership in Sg is randomly reducible to @Ry (by the
many-to-one randomized mapping of x to (z,s), where s is uniformly selected in
{0,1}°(=D)), Since the foregoing holds for any R € PC, it follows that NP is
reducible to &P via randomized Karp-reductions.

Dealing with coN’P. We may Cook-reduce coNP to NP and thus prove that
coNP is randomly reducible to ®&P, but we wish to highlight the fact that a
randomized Karp-reduction will also do. Starting with the reduction presented for
the case of sets in NP, we note that for S € coNP (i.e., S = {z : R(z)=0}) we
obtain a relation R» such that z € S is indicated by |R2((z,-})] =0 (mod 2). We
wish to flip the parity such that z € S will be indicated by |Rz({z,-))| =1 (mod 2),
and this can be done by augmenting the relation R, with a single dummy solution
per each z. For example, we may redefine Ro((z,s)) as {Oy : y € Ra((z,s))} U
{10710}, Indeed, we have just demonstrated and used the fact that ©P is closed
under complementation.

We note that dealing with the cases of NP and coN'P is of interest only because
we reduced these classes to &P rather than to #P. In contrast, even a reduction
of ¥y to #P is of interest, and thus the reduction of ¥y to @P (presented in
Step 3) is interesting. This reduction relies heavily on the fact that error-reduction
is applicable to the context of randomized Karp-reductions to &P.

Step 2: error reduction. An important observation, towards the core of the
proof, is that it is possible to drastically decrease the (one-sided) error probability
in randomized Karp-reductions to ®P. Specifically, let R2 be as in Eq. (F.1) and

F.1. PROVING THAT PH REDUCES TO #P 629

t be any polynomial. Then, a binary relation Rgt) that satisfies

t(|z])
IR (@, 51, oo suep))| = 1+ [(1 + |R2((z,5:))]) (F.2)

=1

offers such an error-reduction, because |R§t)((a:, 815+ St(|2|)))| is 0dd if and only if
for some ¢ € [t(|z])] it holds that |R2((z, s;))| is odd. Thus,

Prsl"'”st(\w\)HRgt)(('T: S1y ey 5t(|w|)>)| = 0 (mOd 2)]
= Pr,[|Rz((z,5))| = 0 (mod 2)]"*)

where 8, 51, ..., 8¢(|¢|) are uniformly and independently distributed in {0, 1}0(7’(““))

(and p is such that R(z) € {0,1}?(2D), This means that the one-sided error
probability of a randomized reduction of Sg to @Ry (which maps z to (z,s)) can
be drastically decreased by reducing Sg to @Rg), where the reduction maps = to
(w, 81, 54(j2)))- Specifically, an error probability of € (e.g., ¢ = 2/3) in the case
that we desn"e an “odd outcome” (i.e., x € Sg) is decreased to error probability
et, whereas the zero error probability in the case of a desired “even outcome” (i.e.,
T € Sg) is preserved.

A key question is whether @Rét) isin ®P; that is, whether Rgt) (as postulated in
Eq. (F.2)) can be implemented in PC. The answer is positive, and this can be shown
by using a Cartesian product construction (and adding some dummy solutions).
For example, let Rét)((a:, 815+ S1(|2|))) consists of tuples (o, Y1, .-, Y¢(|«|)) Such that
either op = 1 and y1 = -+ = yy(jo|) = 0P(zD+1 or gy = 0 and for every i € [t(|z])]
it holds that y; € ({0} xRa({z,s;)))U {1070} (i.e., either y; = 10P(=D or y; = Oy!
and y! € Ry((z, s:)))-

We wish to stress that, when starting with R, as in Eq. (F.1), the forgoing
process of error-reduction can be used for obtaining error probability that is upper-
bounded by exp(—g(|z|)) for any desired polynomial g. The importance of this
comment will become clear shortly.

Step 3: the case of ¥;. With the foregoing preliminaries, we are now ready to
handle the case of S € ¥5. By Proposition 3.9, there exists a polynomial p and a
set S’ € II; = coN'P such that S = {z : Iy € {0,1}?(2D) st. (2,y) € S'}. Using
S" € coN'P, we apply the forgoing reduction of S’ to ®P as well as an adequate
error-reduction that yields an upper-bound of e - 27P(12D) on the error probability,
where e < 1/7 is unspecified at this point. (For the case of ¥, the setting ¢ = 1/7
will do, but for the dealing with X; we will need a much smaller value of € > 0.)
Thus, for an adequate polynomial ¢ (i.e., t(n+p(n)) = O(p(n)log(1/¢))), we obtain
a relation R() € PC such that the following holds: for every x and y€ {0, 1}P\® (=)

with probability at least 1 — e - 27PU=D) over the random choice of s "e{0, 1}1’0ly |””|)

it holds that ' (z,y)€S" if and only if |R2 ((z',s"))| is odd.*

4Recall that |s'| = t(|z'|) - O(p'(|2'])), where R'(z") C {0, I}Pl(‘z") is the “witness-relation”
corresponding to S’ (i.e,, ¢’ € S" if and only if R'(z') = {0,1}1”('“3")). Thus, R2((z',s")) C

630 APPENDIX F. SOME OMITTED PROOFS

Using a union bound (over all possible y € {0,1}?(=D) it follows that, with
probability ot least 1 —e over the choice of s', it holds that x € S if and only if there
exists a y such that |Rét)(((x,y), s'))| is odd. Now, as in the treatment of NP, we
wish to reduce the latter “existential problem” to &P. That is, we wish to define a
relation R3 € PC such that for a randomly selected s the value |R3((x, s, s"))| mod 2
provides an indication to whether or not z € S (by indicating whether or not there
exists a y such that |R;t)(((x,y),s’))| is odd). Analogously to Eq. (F.1), consider
the binary relation

I; def {((x,s,s'),y) : |Rgt)(((x,y),5')| = 1(mod 2) A G(s,y)zl}' (F.3)

In other words, I5((z,s,s") = {y : |RY (((z,y),s')] = 1(mod 2) A G(s,y) = 1}.
Indeed, if z € S then, with probability at least 1 —e¢ over the random choice of s’ and
probability at least 1/3 over the random choice of s, it holds that |I5((z,s,s'))| is
odd, whereas for every z ¢ S and every choice of s it holds that Prg [|I5((z, s,s"))| =
0] > 1 —¢e.5 Note that, for ¢ < 1/7, it follows that for every z € S we have
Proo[|[I3((z,s,s'))] = 1 (mod 2)] > (1 —¢€)/3 > 2/7, whereas for every x ¢ S
we have Prs o [|I3({z,s,s'))] = 1 (mod 2)] < e < 1/7. Thus, |I3({z,-,))| mod 2
provides a randomized indication to whether or not x € S, but it is not clear
whether I5 is in PC (and in fact I3 is likely not to be in PC). The key observation
is that there exists R3 € PC such that &Rs = ®13. Specifically, consider

Ry = (5,5, (02 ((@,0),), 2) € B A Gsp) =1} (F.4)

where (y,z) € {0,1}7(=) x {0,1}poWU=D (That is, (y,z) is in Rs((z,s,s")) if
(((z,y),s"),2) € Rgt) and G(s,y)=1.) Clearly R3 € PC, and so it is left to show
that |R3((z,s,s"))| = |I3({z,s,s'))] (mod 2). The claim follows by letting x, -
(resp., &) indicate the event ({(z,y),s'),z) € Rét) (resp., the event G(s,y) = 1),
noting that

|Bs((z,5,8'))| mod 2 = @y-(xy,- A&y)
[I3((z,s,8") [mod 2 = &y((@:=xy,2) A&y)

{O,I}P’(|El|)+1 and Rgt)((a;’,s’)) is a subset of {0,1}1+t(‘”")'(P’(‘”’D‘Q). Note that (since we
started with S’ € coNP) the error probability occurs on no-instances of S’, whereas yes-instances
are always accepted. However, to simplify the exposition, we allow possible errors also on yes-
instances of S’. This does not matter because we will anyhow have an error probability on
yes-instances of S (see Footnote 5).

5In continuation to Footnote 4, we note that actually, if € S then there exists a y such that

(z,y) € S" and consequently for every choice of s’ it holds that |R;t)(((x, y),s'))| is odd (because
the reduction from S’ € coNP to @P has zero error on yes-instances). Thus, for every € S and
s', with probability at least 1/3 over the random choice of s, it holds that |I3((z, s,s’))| is odd
(because the reduction from S € ./\/"PSI to 63775’ has non-zero error on yes—instances). On the

other hand, if z ¢ S then Pr,/ [(Vy) |Rg)(<(w, y),s'})| =0 (mod 2)] > 1 — € (because for every y it
holds that (z,y) ¢ S’ and the reduction from coNP to @P has non-zero error on no-instances).
Thus, for every ¢ S and s, it holds that Pry[|I3((z,s,s’))] = 0] > 1 — ¢ (because the reduction
from S € NP5 to EBPS’ has zero error on no-instances). To sum-up, the combined reduction has
two-sided error, because each of the two reductions introduces an error in a different direction.

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 631

and using the equivalence of the two corresponding Boolean expressions. Thus, S is
randomly Karp-reducible to ®Rs € &P (by the many-to-one randomized mapping
of z to (x,s,s'), where (s, s") is uniformly selected in {0, 1}9®(I=D) x {0, 1}pely(lzD).
Since this holds for any S € 32, we conclude that X5 is randomly Karp-reducible
to @P.

Again, error-reduction may be applied to this reduction (of Xy to ®P) such
that the resulting reduction can be used for dealing with X3 (viewed as N'P¥2). A
technical difficulty arises since the foregoing reduction has two-sided error proba-
bility, where one type (or “side”) of error is due to the error in the reduction of
S" € coN'P to @Rét) (which occurs on no-instances of S’) and the second type
(or “side”) of error is due to the (new) reduction of S to ®R3 (and occurs on the
yes-instances of S). However, the error probability in the first reduction is (or can
be made) very small and thus can be ignored when applying error-reduction to the
second reduction. See following comments.

The general case. First note that, as in the case of coNP, we can obtain
a similar reduction (to ®P) for sets in Il = coXs. It remains to extend the
treatment of Xo to X, for every £ > 2. Indeed, we show how to reduce Xj to
®P by using a reduction of ¥y (or rather II;_;) to ®P. Specifically, S € X
is treated by considering a polynomial p and a set S’ € IIx_; such that S = {z :
Jy € {0,1}7U2D) st. (z,y) € S’}. Relying on the treatment of IT_;, we use a
relation RSA‘) such that, with overwhelmingly high probability over the choice of

s', the value |R§ctk)(((x,y), s'))| mod 2 indicates whether or not (z,y) € S’. Using
the ideas underlies the treatment of NP (and X5) we check whether there exists
y € {0,1}2U=D such that |R§f"')(((x,y),s’))| = 1 (mod 2). This yields a relation
Ry 41 such that for random s, s’ the value |Rg41({z, s,s’))| mod 2 indicates whether

or not x € S. Finally, we apply error reduction, while ignoring the probability that

(tet1)
k+1

We comment that the foregoing inductive process should be implemented with
some care. Specifically, if we wish to upper-bound the error probability in the

s' is bad, and obtain the desired relation R

reduction (of S) to EBRSJ_T) by er+1, then the error probability in the reduction

(of 5') to ®R\"™) should be upper-bounded by e, < eg41-27P(1=D (and t; should be
set accordingly). Thus, the proof that PH is randomly reducible to ®P actually
proceed “top down” (at least partially); that is, starting with an arbitrary S € Xy,
we first determine the auxiliary sets (as per Proposition 3.9) as well as the error-
bounds that should be proved for the reductions of these sets (which reside in lower
levels of PH), and only then we establish the existence of such reductions. Indeed,
this latter (and main) step is done “bottom up” using the reduction (to @P) of
the set in the i*! level when reducing (to ®P) the set in the i + 1°¢ level.

F.2 Proving that IP(f) C AM(O(f)) € AM(f)

Using the notations presented in §9.1.4.3, we restate two results mentioned there.

632 APPENDIX F. SOME OMITTED PROOFS

Theorem F.2 (round-efficient emulation of ZP by AM): Let f : N—>N be a
polynomially bounded function. Then ITP(f) C AM(f + 3).

We comment that, in light of the following linear speed-up in round-complexity for

AM, it suffices to establish ZP(f) € AM(O(f)).

Theorem F.3 (linear speed-up for AM): Let f : N— N be a polynomially bounded
function. Then AM(2f) C AM(f +1).

Combining these two theorems, we obtain a linear speed-up for ZP; that is, for any
polynomially bounded f : N — (N\ {1}), it holds that ZP(O(f)) € AM(f) C
ZP(f). In this appendix we prove both theorems.

Note: The proof of Theorem F.2 relies on the fact that, for every f, error-
reduction is possible for ZP(f). Specifically, error-reduction can be obtained via
parallel repetitions (see [90, Apdx. C.1]). We mention that error-reduction (in the
context of AM(f)) is implicit also in the proof of Theorem F.3 (and is explicit in
the original proof of [23]).

F.2.1 Emulating general interactive proofs by AM-games

In this section we prove Theorem F.2. Our proof differs from the original proof of
Goldwasser and Sipser [111] only in the conceptualization and implementation of
the iterative emulation process.

F.2.1.1 Overview

Our aim is to transform a general interactive proof system (P, V') into a public-
coin interactive proof system for the same set. Suppose, without loss of generality,
that P constitutes an optimal prover with respect to V' (i.e., P maximizes the
acceptance probability of V' on any input). Then, for any yes-instance x, the set
A, of coin sequences that make V' accept when interacting with this optimal prover
contains all possible outcomes, whereas for a no-instance z (of equal length) the set
A, is significantly smaller. The basic idea is having a public-coin system in which,
on common input x, the prover proves to the verifier that the said set A, is big.
Such a proof system can be constructed using ideas as in the case of approximate
counting (see the proof of Theorem 6.27), while replacing the NP-oracle with a
prover that is required to prove the correctness of its answers. Implementing this
idea requires taking a closer look at the set of coin sequences that make V' accept
an input.

A very restricted case. Let us first demonstrate the implementation of the
foregoing approach by considering a restricted type of two-message interactive proof
systems. Recall that in a two-message interactive proof system the verifier, denoted
V', sends a single message (based on the common input and its internal coin tosses)
to which the prover, denoted P, responds with a single message and then V' decides

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 633

whether to accept or reject the input. We further restrict our attention by assuming
that each possible message of V is equally likely and that the number of possible
V-messages is easy to determine from the input. Thus, on input x, the verifier V'
tosses ¢ = £(|x|) coins and sends one out of N = N(z) possible messages. Note that
if x is a yes-instance then for each possible V -message there exists a P-response that
is accepted by the 2°/N corresponding coin sequences of V (i.e., the coin sequences
that lead V to send this V-message). On the other hand, if z is a no-instance
then, in expectation, for a uniformly selected V-message, the optimal P-response
is accepted by a significantly smaller number of corresponding coin sequences. We
now show how such an interactive proof system can be emulated by a public-coin
system.

In the public-coin system, on input x, the prover will attempt to prove that
for each possible V-message (in the original system) there exists a response (by
the original prover) that is accepted by 2°/N corresponding coin sequences of V.
Recall that N = N(z) and ¢ = {(|z|) are easily determined by both parties, and
so if the foregoing claim holds then « must be a yes-instance. The new interaction
itself proceeds as follows: First, the verifier selects uniformly a coin sequence for
V', denoted r, and sends it to the prover. The coin sequence r determines a V-
message, denoted a. Next, the prover sends back an adequate P-message, denoted
B, and interactively proves to the verifier that 8 would have been accepted by
2¢/N possible coin sequences of V that correspond to the V-message a (i.e., 3
should be accepted not only by r but rather by the 2¢/N coin sequences of V' that
correspond to the V-message «). The latter interactive proof follows the idea of
the proof of Theorem 6.27: The verifier applies a random sieve that lets only a
(2°/N)~! fraction of the elements pass, and the prover shows that some adequate
sequence of V-coins has passed this sieve (by merely presenting such a sequence).%
We stress that the foregoing interaction (and in particular the random sieve) can
be implemented in the public-coin model.

Waiving one restriction. Next, we waive the restriction that the number of
possible V-messages is easy to determine from the input, but still assume that
all possible V-messages are equally likely. In this case, the prover should provide
the number N of possible V-messages and should prove that indeed there exist at
least N possible V-messages (and that, as in the prior case, for each V-message
there exists a P-response that is accepted by 2°/N corresponding coin sequences
of V). That is, the prover should prove that for at least N possible V-messages
there exists a P-response that is accepted by 2°/N corresponding coin sequences
of V. This calls for a double (or rather nested) application of the aforementioned
“lower-bound” protocol. That is, first the parties apply a random sieve to the set
of possible V-messages such that only a N~! fraction of these messages pass, and
next the parties apply a random sieve to the set coin sequences that fit a passing
V-message such that only a (2¢/N)~! fraction of these sequences pass.

6Indeed, the verifier can easily check whether a coin sequence r’ passes the sieve as well as fits
the initial message o and would have made V accept when the prover responds with 3 (i.e., V
would have accepted the input, on coins 7/, when receiving the prover message £3).

634 APPENDIX F. SOME OMITTED PROOFS

The general case of Z7P(2). Treating general two-message interactive proofs re-
quires waiving also the restriction that all possible V-messages are equally likely. In
this case, the prover may cluster the V-messages into few (say £) clusters such that
the messages in each cluster are sent (by V') with roughly the same probability (say,
up to a factor of two). Then, focusing on the cluster having the largest probability
weight, the prover can proceed as in the previous case (i.e., send ¢ and claim that
there are 2¢/¢ possible V-messages that are each supported by 2¢ coin sequences).
This has a potential of cutting the probabilistic gap between yes-instances and
no-instances by a factor related to the number of clusters times the approximation
level within clusters (e.g., a factor of O(£))7, but this loss is negligible in comparison
to the initial gap (which can be obtained via error-reduction).

Dealing with all levels of ZP. So far, we only dealt with two-message systems
(i.e., ZP(2)). We shall see that the general case of ZP(f) can be dealt by recursion
(or rather by iterations), where each level of recursion (resp., each iteration) is
analogous to the (general) case of ZP(2). Recall that our treatment of the case
of ZP(2) boils down to selecting a random V-message, «, and having the prover
send a P-response, 3, and prove that 3 is acceptable by many V-coins. In other
words, the prover should prove that in the conditional probability space defined
by a V-message «, the original verifier V' accepts with high probability. In the
general case (of ZP(f)), the latter claim refers to the probability of accepting in
the residual interaction, which consists of f — 2 messages, and thus the very same
protocol can be applied iteratively (until we get to the last message, which is dealt
as in the case of ZP(2)). The only problem is that, in the residual interactions, it
may not be easy for the verifier to select a random V-message (as done in the very
restricted case). However, as already done when waiving the first restriction, the
the verifier can be assisted by the prover, while making sure that it is not being
fooled by the prover. This process is made explicit in §F.2.1.2, where we define an
adequate notion of a “random selection” protocol (which need to be implemented in
the public-coin model). For simplicity, we may consider the problem of uniformly
selecting a sequence of coins in the corresponding (residual) probability space,
because such a sequence determines the desired random V-message.

F.2.1.2 Random selection

Various types of “random selection” protocols have appeared in the literature (see,
e.g., [227, Sec. 6.4]). The common theme in these protocols is that they allow
for a probabilistic polynomial-time player (called the wverifier) to sample a set,
denoted S C {0,1}*, while being assisted by a second player (called the prover)
that is powerful but not trustworthy. These nicknames fit the common conventions
regarding interactive proofs and are further justified by the typical applications of
such protocols as subroutines within an interactive proof system (where indeed the

"The loss is due to the fact that the distribution of (probability) weights may not be identical
on all instances. For example, in one case (e.g., of some yes-instance) all clusters may have equal
weight, and thus a corresponding factor is lost, while in another case (e.g., of some no-instance)
all the probability mass may be concentrated in a single cluster.

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 635

first party is played by the higher-level verifier while the second party is played by
the higher-level prover). The various types of random selection protocols differ by
what is known about the set S and what is required from the protocol.

Here we will assume that the verifier is given a parameter N, which is supposed
to equal |S|, and the performance guarantee of the protocol will be meaningful
only for sets of size at most N. We seek a constant-round (preferably two-message)
public-coin protocol (for this setting) such that the following two conditions hold,
with respect to a security parameter e > 1/poly(£).

1. If both players follow the protocol and N = |S| then the verifier’s output is
e-close to the uniform distribution over S. Furthermore, the verifier always
outputs an element of S.

2. For any set S’ C {0,1}* if the verifier follows the protocol then, no matter
how the prover behaves, the verifier’s output resides in S’ with probability
at most poly(¢/e) - (|S'|/N).

Indeed, the second property is meaningful only for sets S’ having size that is (sig-
nificantly) smaller than N. We shall be using such a protocol while setting & to be
a constant (say, £ = 1/2).

A three-message public-coin protocol that satisfies the foregoing properties can
be obtained by using the ideas that underly Construction 6.32. Specifically, we
set m = max(0,log, N — O(log{/¢)) in order to guarantee that if |S| = N then,
with overwhelmingly high probability, each of the 2™ cells defined by a uniformly
selected hashing function contains (1 £ ¢) - |S|/2™ elements of S. In the protocol,
the prover arbitrarily selects a good hashing function (i.e., one defining such a good
partition of S) and sends it to the verifier, which answers with a uniformly selected
cell, to which the prover responds with a uniformly selected element of S that resides
in this cell®

We stress that the foregoing protocol is indeed in the public-coin model, and
comment that the fact that it uses three messages rather than two will have a
minor effect on our application (see §F.2.1.3). Indeed, this protocol satisfies the
two foregoing properties. In particular, the second property follows because for
every possible hashing function, the fraction of cells containing an element of S’ is
at most |S'|/2™, which is upper-bounded by poly(¢/e) - |S'|/N.

8We mention that the foregoing protocol is but one out of several possible implementations of
the ideas that underly Construction 6.32. Firstly, note that an alternative implementation may
designate the task of selecting a hashing function to the verifier, who may do so by selecting a
function at random. Although this seems more natural, it actually offers no advantage with respect
to the “soundness-like” property (i.e., the second property). Furthermore, in this case, it may
happen (rarely) that the hashing function selected by the verifier is not good, and consequently
the furthermore clause of the first property (i.e., requiring that the output always resides in
S) is not satisfied. Secondly, recall that in the foregoing protocol the last step consists of the
prover selecting a random element of S that resides in the selected (by the verifier) cell. An
alternative implementation may replace this step by two steps such that first the prover sends a
list of (1 —€) - N/2™ elements (of S) that resides in the said cell, and then the verifier outputs a
uniformly selected element of this list. This alternative yields an improvement in the “soundness-
like” property (i.e., the verifier’s output resides in S’ with probability at most (|S’|/N) +), but
requires an additional message (which we prefer to avoid, although this not that crucial).

636 APPENDIX F. SOME OMITTED PROOFS

F.2.1.3 The iterated partition protocol

Using the random selection protocol of §F.2.1.2, we now present a public-coin
emulation of an arbitrary interactive proof system, (P,V). We start with some
notations.

Fixing any input = to (P,V), we denote by ¢t = ¢(|z|) the number of pairs
of messages exchanged in the corresponding interaction, while assuming that the
verifier takes the first move in (P, V). We denote by ¢ = £(|z|) the number of coins
tossed by V', and assume that ¢ > ¢. Recall that we assume that P is an optimal
prover (with respect to V'), and that (without loss of generality) P is deterministic.
Let us denote by (P,V(r))(x) the full transcript of the interaction of P and V
on input z, when V uses coins r; that is, (P, V(r))(z) = (a1, 01, ..., s, Br,0) if
o=V(z,r p,..,0) € {0,1} is V’s final verdict and for every ¢ = 1,...,¢ it holds
that «; = V(x,r,B1,...,0i—1) and B; = P(z,qq,...,«;). For any partial transcript
ending with a P-message, v = (a1, 51, ..., @i—1, Bi—1), we denote by ACC,(v) the
set of coin sequences that are consistent with the partial transcript v and lead V'
to accept = when interacting with P; that is, r € ACC,(v) if and only if for some
7" € {0,1}2=pely(lz]) it holds that (P, V(r))(z) = (a1, 1, @i 1,6i-1,7,1).
The same notation is also used for a partial transcript ending with a V-message;
that is, r € ACC,(au, B, -.., ;) if and only if (P, V (r))(x) = (a1, b1, .-, iy, 1)
for some «'.

Motivation. By suitable error reduction, we may assume that (P, V) has sound-
ness error 1 = p(|z|) that is smaller than poly(£)~!. Thus, for any yes-instance z it
holds that [ACC,()\)| = 2¢, whereas for any no-instance x it holds that [ACC,()\)| <
p- 2% Indeed, the gap between the initial set sizes is huge, and we can maintain a
gap between the sizes of the corresponding residual sets (i.e., ACC, (a1, B1, .-, @i))
provided that we lose at most a factor of poly(¢) per each round. The key ob-
servations is that, for any partial transcript v = (a1, 51, ..., %—1,3i—1), it holds
that

|ACC.(7)] =) [ACC.(v,), (F.5)

whereas |ACC, (v, a)| = maxg{|ACC,(v,a, §)|}. Clearly, we can prove that |ACC, (v, o)
is big by providing an adequate § and proving that |ACC, (7, «, 8)| is big. Likewise,
proving that [ACC,(7)| is big reduces to proving that the sum) |[ACC, (v,)| is
big. The problem is that this sum may contain exponentially many terms, and so we
cannot even afford reading the value of each of these terms.!® As hinted in §F.2.1.1,
we may cluster these terms into ¢ clusters, such that the j** cluster contains sets of
cardinality approximately 27 (i.e., a’s such that 27 < |[ACC,(vy,a)| < 29t1). One
of these clusters must account for a 1/2¢ fraction of the claimed size of |[ACC,(v)],

9We note if the prover takes the first move in (P, V) then its first message can be emulated
with no cost (in the number of rounds).

10Furthermore, we cannot afford verifying more than a single claim regarding the value of one
of these terms, because examining at least two values per round will yield an exponential blow-up
(i.e., time complexity that is exponential in the number of rounds).

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 637

and so we focus on this cluster; that is, the prover we construct will identify a suit-
able j (i.e., such that there are at least |[ACC,.(y)|/2¢ elements in the sets of the
7' cluster), and prove that there are at least N = |[ACC,(7)|/(2¢-2711) sets (i.e.,
ACC,(v,a)’s) each of size at least 2/. Note that this establishes that |[ACC,(7)]
is bigger than NV - 27 = |ACC,(v)|/O(f), which means that we lost a factor of O()
of the size of ACC, (7). But as stated previously, we may afford such a lost.

Before we turn to the actual protocol, let us discuss the method of proving that
that there are at least N sets (i.e., ACC,(7,a)’s) each of size at least 27. This
claim is proved by employing the random selection protocol (while setting the size
parameter to N) with the goal of selecting such a set (or rather its index «). If
indeed N such sets exists then the first property of the protocol guarantees that
such a set is always chosen, and we will proceed to the next iteration with this set,
which has size at least 2/ (and so we should be able to establish a corresponding
lower-bound there). Thus, entering the current iteration with a valid claim, we
proceed to the next iteration with a new valid claim. On the other hand, suppose
that |ACC,(y)| < N-27. Then, the second property of the protocol implies'! that,
with probability at least 1 — (1/3t), the selected « is such that |[ACC,(y,a)| <
poly(¢) - [ACC,(7)|/N < 27, whereas at the next iteration we will need to prove
that the selected set has size at least 27. Thus, entering the current iteration with
a false claim that is wrong by a factor F > poly(¢), with probability at least
1 —(1/3t), we proceed to the next iteration with a false claim that is wrong by a
factor of at least F'/poly(¥).

We note that, although the foregoing motivational discussion refers to proving
lower-bounds on various set sizes, the actual implementation refers to randomly
selecting elements in such sets. If the sets are smaller than claimed, the selected
elements are likely to reside outside these sets, which will be eventually detected.

Construction F.4 (the actual protocol). On common input x, the 2t-message
interaction of P and V is “quasi-emulated” in t iterations, where t = t(|x|). The
i*h iteration starts with a partial transcript v; 1 = (a1, B1,...,@i1,8i-1) and a
claimed bound M; 1, where in the first iteration 7o is the empty sequence and
My = 2%, The it iteration proceeds as follows.

1. The prover determines an index j such that the cluster C; = {a : 27 <

|[ACC, (i1,)| < 27F'} has size at least N def M;_1/(27F20), and sends j
to the verifier. Note that if |ACCy(vi—1)| > M;—1 then such a j ewxists.

2. The prover invokes the random selection protocol with size parameter N in
order to select o € Cj, where for simplicity we assume that C; C {0,1}*.
Recall that this public-coin protocol involves three messages with the first and
last message being sent by the prover. Let us denote the outcome of this
protocol by «;.

UFor a loss factor L = poly(£), consider the set S’ = {a : |[ACCy (v, @)| > L - |ACC.(v)|/N}.
Then |S’| < N/L, and it follows that an element in S’ is selected with probability at most
poly(£)/L, which is upper-bounded by 1/3t when using a suitable choice of L.

638 APPENDIX F. SOME OMITTED PROOFS

3. The prover determines [3; such that ACC,(v;—1, s, ;) = ACCy(vi—1, ;) and
sends (3; to the verifier.

Towards the next iteration M; «— 27 and vy; = (a1, B1, .y i, Bi) = (Vio1, i, Bi).

After the last iteration,'? the prover invokes the random selection protocol with size
parameter N = M, in order to select 1 € ACC,(aq, B, ..., o, B¢). Upon obtain-
ing this T, the verifier accepts if and only if V(z,r,B1,...,0t) = 1 and for every
i =1,...,t it holds that o; = V(x,r,0B1,-.-, Bi—1), where the a;’s and B;’s are as
determined in the foregoing iterations.

Note that the three steps of each iteration involve a single message by the (public-
coin) verifier, and thus the foregoing protocol can be implemented using 2¢ + 3
messages.

Clearly, if = is a yes-instance then the prover can make the verifier accept
with probability one (because an adequately large cluster exists at each iteration,
and the random selection protocol guarantees that the selected a; will reside in this
cluster).!® On the other hand, if z is a no-instance then by using the low soundness
error of (P, V) we can establish the soundness of Construction F.4. This is proved
in the following claim, which refers to a polynomial p that is sufficiently large.

Proposition F.5 Suppose that |ACC,(\)| < 6125 where § = 1/p(€). Then,
the verifier of Construction F.4 accepts x with probability smaller than 1/2.

Proof Sketch: We first prove that, for every i = 1,...,t, if |ACC,(vi_1)| <
§t+1=G=1. M, then, with probability at least 1—(1/3t), it holds that [ACC,(v:)| <
§1=% . M;. Fixing any i, let j be the value selected by the prover in Step 1 of
iteration i, and define S’ = {a : |[ACC,(y;_1,)| > §'T1~. 27}, Then

|S"] - 61117127 < |ACC, (yi1)] < 80D L ay

where the second inequality represents the claim’s hypothesis. Letting N = M;_1/(2712¢)
(as in Step 1 of this iteration), it follows that |S'| < 446 - N. By the second prop-
erty of the random selection protocol (invoked in Step 2 of this iteration with size
parameter V), it follows that
: |15

Prla; € S'] < poly(¢) - A < poly(¥) - 6,
which is smaller than 1/3¢ (provided that the polynomial p that determines § =
1/p(¢) is sufficiently large). Thus, with probability at least 1 — (1/3t), it holds that
|ACC,(yie1, ;)| < §'F17¢.27. The claim regarding |ACC,(7;)| follows by recalling
that M; = 27 (in Step 3) and that for every 3 it holds that |ACC,(v;_1, s,)| <
|ACC, (Vi-1, 4)l.

12 Alternatively, we may modify (P, V') by adding a last V-message in which V sends its internal
coin tosses (i.e.,). In this case, the additional invocation of the random selection protocol occurs
as a special case of handling the added t + 15¢ iteration.

13Thus, at the last invocation of the random selection protocol, the verifier always obtains
r € ACCy(7¢) and accepts.

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 639

Using the hypothesis [ACC,(79)| < §'T!- My and the foregoing claim, it follows
that, with probability at least 2/3, the execution of the aforementioned ¢ iterations
yields values ¢ and M, such that |ACC,(y:)| < §-M;. In this case, the last invoca-
tion of the random selection protocol (invoked with size parameter M;) produces an
element of ACC,(;) with probability at most poly(¢) -6 < 1/6, and otherwise the
verifier rejects (because the conditions that the verifier checks regarding the output
r of the random selection protocol are logically equivalent to r € ACC,.(7:)). The
proposition follows. [

F.2.2 Linear speed-up for AM

In this section we prove Theorem F.3. Our proof differs from the original proof of
Babai and Moran [23] in the way we analyze the basic switch (of MA to AM).

We adopt the standard terminology of public-coin (a.k.a Arthur-Merlin) inter-
active proof systems, where the verifier is called Arthur and the prover is called
Merlin. More importantly, we view the execution of such a proof system, on any
fixed common input z, as a (full-information) game (indexed by z) between an
honest Arthur and powerful Merlin. These parties alternate in taking moves such
that Arthur takes random moves and Merlin takes optimal moves with respect to
a fixed (polynomial-time computable) predicate v, that is evaluated on the full
transcript of the game’s execution. We stress that (in contrast to general inter-
active proof systems), each of Arthur’s moves is uniformly distributed in a set of
possible values that is predetermined independently of prior moves (e.g., the set
{0,1}t0=D)), The value of the game is defined as the expected value of an execution
of the game, where the expectation is taken over Arthur’s moves (and Merlin’s
moves are assumed to be optimal).

We shall assume, without loss of generality, that all messages of Arthur are
of the same length, denoted ¢ = ¢(|z|). Similarly, each of Merlin’s messages is of
length m = m(|z]).

Recall that AM = AM(2) denotes a two-message system in which Arthur
moves first and does not toss coins after receiving Merlin’s answer, whereas MA =
AM(1) denotes a one-message system in which Merlin sends a single message and
Arthur tosses additional coins after receiving this message. Thus, both AM and
MA are viewed as two-move games, and differ in the order in which the two parties
take these moves. As we shall shortly see (in §F.2.2.1), the “MA order” can be
emulated by the “AM order” (i.e., MA C AM). This fact will be the basis of the
“round speed-up” transformation (presented in §F.2.2.2).

F.2.2.1 The basic switch (from MA to AM)

The basic idea is transforming an MA-game (i.e., a two-move game in which Merlin
moves first and Arthur follows) into an AM-game (in which Arthur moves first and
Merlin follows). In the original game (on input z), first Merlin sends a message
B € {0,1}™, then Arthur responds with a random « € {0,1}¢, and Arthur’s verdict
(i.e., the value of this execution of the game) is given by v, (3, a) € {0,1}. In the
new game (see Figure F.1), the order of these moves will be switched, but to limit

640 APPENDIX F. SOME OMITTED PROOFS

Merlin’s potential gain from the switch we require it to provide a single answer
that should “fit” several random messages of Arthur. That is, for a parameter ¢ to
be specified, first Arthur send a random sequence (V) ...,a(®) € {0,1}*, then
Merlin responds with a string 8 € {0,1}"™, and Arthur accepts if and only if for
every i € {1,...t} it holds that v.(3,a'?) = 1 (i.e., the value of this transcript of
the new game is defined as [[._, v. (3, a(?))). Intuitively, Merlin gets the advantage
of choosing its move after seeing Arthur’s move(s), but Merlin’s choice must fit the
t choices of Arthur’s move, which leaves Merlin with little gain (if ¢ is sufficiently
large).

Theoriginal MA game Thenew AM game
Merlin Arthur Merlin Arthur
B ORI
—_—— B
G% B%

The value of the transcript (3, «) of the original MA-game is given
by v, (B, a), whereas the value of the transcript (e, ..., a®),3) of
the new AM-game is given by [['_, v.(3,a").

Figure F.1: The transformation of an MA-game into an AM-game.

Recall that the value, v, of the transcript (@, 3) of the new game, where @ =
(oD, ...,a®), is defined as szl v, (B, (). Thus, the value of the new game is

defined as ,
Ez [mg,x {E v (8, a(i))}] (F.6)

)

which is upper-bounded by

1 .
Ex [mgx{; ;vz(,@, ol))}l (F.7)

Note that the upper-bound provided in Eq. (F.7) is tight in the case that the value
of the original MA-game equals one (i.e., if = is a yes-instance), and that in this case
the value of the new game is one (because in this case there exists a move [such
that v, (5, @) = 1 holds for every a). However, the interesting case, where Merlin
may gain something by the switch, is when the value of the original MA-game is
strictly smaller than one (i.e., when x is a no-instance). The main observation is
that, for a suitable choice of t, it is highly improbable that Merlin’s gain from the
switch is significant.

Recall that in the original MA-game Merlin selects 8 obliviously of Arthur’s
choice of «, and thus Merlin’s “profit” (i.e., the value of the game) is represented
by maxg{Es(v.(8,))}. In the new AM-game, Merlin selects § based on the

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 641

sequence @ chosen by Arthur, and we have upper-bounded its “profit” (in the new
AM-game) by Eq. (F.7). Merlin’s gain from the switch is thus the excess profit (of
the new AM-game as compared to the original MA-game). We upper-bound the
probability that Merlin’s gain from the switch exceeds a parameter, denoted ¢, as
follows.

def

1 o .
Dz,s = Pr(a(1)7,,,,a(t)) [mgx {z ’ ZvI(ﬁ;a(Z))} > mgx{Ea(vI(,@, a))} +6
=1

=1

< Pr(a(1)7...7a(t)) [HﬂE{O,l}m s.t. >0

< 2™ exp(=Q(8% - 1)),

where the last inequality is due to combining the Union Bound with the Chernoff
Bound. Denoting by V, = maxg{E.(v.(8,))} the value of the original game,
we upper-bound Eq. (F.7) by p.s + Vi + 6. Using t = O((m + k)/6%) we have
Da,s < 2% and thus

Ve [mgx{%Zm(&M”)}] < mgx{Ea(vw(ﬂ,a))}+6+2_k. (F.8)

Needless to say, Eq. (F.7) is lower-bounded by V, (since Merlin may just use the
optimal move of the MA-game). In particular, using § = 27F = 1/8 and assuming
that V,, < 1/4, we obtain V! < 1/2. Thus, starting from an MA proof system for
some set, we obtain an AM proof system for the same set; that is, we just proved
that MA C AM.

Extension. We note that the foregoing transformation as well as its analysis
does not refer to the fact that v, (8, «) is efficiently computable from (3,). Fur-
thermore, the analysis remain valid for arbitrary v,(-,-) € [0,1], because for any
V1,0 € [0,1] it holds that [Ti_, vi < ([T, vi)"/t < 3¢, v;/t. Thus, we may
apply the foregoing transformation to any two consecutive Merlin-Arthur moves
in any public-coin interactive proof, provided that all the subsequent moves are
performed in ¢ copies, where each copy corresponds to a different a(?) used in the
switch. That is, if the j*® move is by Merlin then we can switch the players in the
j and j + 1 moves, by letting Arthur take the j*® move, sending (a(l), ...,a(t)), fol-
lowed by Merlin’s move, answering 3. Subsequent moves will be played in ¢ copies
such that the i*® copy corresponds to the moves o and 8. The value of the new
game may increase by at most 27F + § < 1/4, and so we obtain an “equivalent”
game with the two steps switched. Schematically, acting on the middle MA (in-
dicated in bold font), we can replace [AM]?*t AMA[MA}’2 by [AM]’*t AAM[MA]2,
which in turn allows the collapse of two consecutive A-moves (and two consec-
utive M-moves if jo > 1). In particular (using only the case j; = 0), we get
AMAP+ = A[MA) = -.- = AMA = AM. Thus, for any constant f, we get
AM(f) = AM(2).

642 APPENDIX F. SOME OMITTED PROOFS

We stress that the foregoing switching process can be applied only a constant
number of times, because each time we apply the switch the length of messages
increases by a factor of ¢t = Q(m). Thus, a different approach is required to deal
with a non-constant number of messages (i.e., unbounded function f).

F.2.2.2 The augmented switch (from [MAMA)’ to [AM A)’ A)

Sequential applications of the “MA-to-AM switch” allows for reducing the number
of rounds by any additive constant. However, each time this switch is applied,
all subsequent moves are performed ¢ times (in parallel). That is, the “MA-to-
AM switch” splits the rest of the game to ¢ independent copies, and thus this
switch cannot be performed more than a constant number of times. Fortunately,
Eq. (F.7) suggests a way of shrinking the game back to a single copy: just have
Arthur select 4 € [t] uniformly and have the parties continue with the i*" copy.'* In
order to avoid introducing an Arthur-Merlin alternation, the extra move of Arthur
is postpone to after the following move of Merlin (see Figure F.2). Schematically
(indicating the action by bold font), we replace MAMA by AMMAA=AMA
(rather than replacing MAMA by AMAMA and obtaining no reduction in the
number of move-alternations).

The MAMA game The AMA game
Merlin Arthur Merlin Arthur
1 t
By of - - -af
aj B1
(1) (1)
2 2 =
B2
i
_——————
o0} az
_—— _——

The value of the transcript (1, a1, B=2,as) of the original MAMA-
game is given by v.(B1, a1, B2, az2), whereas the value of the tran-
script ((agl), - agt)), (41, ﬂél), . ﬁét)), (i,as)) of the new AMA-game

is given by v, (f1, Oz(li), éi); az).

Figure F.2: The transformation of MAMA into AMA.

The value of game obtained via the aforementioned augmented switch is given
by Eq. (F.7), which can be written as

Ea(1)7...7a(t) [mg‘X{EiE[t] (Uz (ﬂ: a(z)))}]7

MIndeed, the relaxed form of Eq. (F.7) plays a crucial role here (in contrast to Eq. (F.6)).

F.2. PROVING THAT IP(F) C AM(O(F)) C AM(F) 643

which in turn is upper-bounded (in Eq. (F.8)) by maxg{E(v.(8,))} + 6 +27*.
As in §F.2.2.1, the argument applies to any two consecutive Merlin-Arthur moves
in any public-coin interactive proof. Recall that in order to avoid the introduc-
tion of an extra Arthur move, we actually postpone the last move of Arthur to
after the next move of Merlin. Thus, we may apply the augmented switch to the
first two moves in any block of four consecutive moves that start with a Merlin
move, transforming the schematic sequence MAMA into AMMAA=AMA (see Fig-
ure F.2). The key point is that the moves that take place after the said block,
remain intact. Hence, we may apply the augmented “MA-to-AM switch” (which
is actually an “MAMA-to-AMA switch”) concurrently to disjoint segments of the
game. Schematically, we can replace [MAMA]? by [AMA])’ = A[MA}?. Note that
Merlin’s gain from each such switch is upper-bounded by ¢ + 27% but selecting
t = O(f(|z])* - m(]z|)) = poly(|z|) allows to upper-bound the total gain by a con-
stant (using, say, 6 = 27% = 1/8f(|z|)). We thus obtain AM(4f) C AM(2f + 1),
and Theorem F.3 follows.

644 APPENDIX F. SOME OMITTED PROOFS

Appendix G

Some Computational
Problems

Although we view specific (natural) computational problems as secondary to (nat-
ural) complexity classes, we do use the former for clarification and illustration of
the latter. This appendix provides definitions of such computational problems,
grouped according to the type of objects to which they refer (e.g., graphs, Boolean
formula, etc.).

We start by addressing the central issue of the representation of the various
objects that are referred to in the aforementioned computational problems. The
general principle is that elements of all sets are “compactly” represented as binary
strings (without much redundancy). For example, the elements of a finite set S
(e.g., the set of vertices in a graph or the set of variables appearing in a Boolean
formula) will be represented as binary strings of length log, |S].

G.1 Graphs

Graph theory has long become recognized as one of the more
useful mathematical subjects for the computer science student to
master. The approach which is natural in computer science is the
algorithmic one; our interest is not so much in existence proofs or
enumeration techniques, as it is in finding efficient algorithms for
solving relevant problems, or alternatively showing evidence that
no such algorithms exist. Although algorithmic graph theory was
started by Euler, if not earlier, its development in the last ten
years has been dramatic and revolutionary.

Shimon Even, Graph Algorithms [71]

A simple graph G = (V, E) cousists of a finite set of vertices V and a finite set of
edges E, where each edge is an unordered pair of vertices; that is, E C {{u,v} :

645

646 APPENDIX G. SOME COMPUTATIONAL PROBLEMS

u,v€V Auzwv}. This formalism does not allow self-loops and parallel edges, which
are allowed in general (i.e., non-simple) graphs, where E is a multi-set that may
contain (in addition to two-element subsets of V' also) singletons (i.e., self-loops).
The vertex w is called an end-point of the edge {u,v}, and the edge {u,v} is said
to be incident at v. In such a case we say that u and v are adjacent in the graph,
and that u is a neighbor of v. The degree of a vertex in G is defined as the number
of edges that are incident at this vertex.

We will consider various sub-structures of graphs, the simplest one being paths.

A path in a graph G=(V, E) is a sequence of vertices (vp, ..., v¢) such that for every

i e = {1,...,¢} it holds that v;_; and v; are adjacent in G. Such a path is said

to have length ¢. A simple path is a path in which each vertex appears at most
once, which implies that the longest possible simple path in G has length |V| — 1.
The graph is called connected if there exists a path between each pair of vertices
in it.

A cycle is a path in which the last vertex equals the first one (i.e., v, = wp).
The cycle (v, ...,v¢) is called simple if £ > 2 and |{vo, ..., ve}| = £ (i.e., if v; = v;
then s =j (mod ¢), and the cycle (u,v,u) is not considered simple). A graph is
called acyclic (or a forest) if it has no simple cycles, and if it is also connected then
it is called a tree. Note that G=(V, E) is a tree if and only if it is connected and
|E| = |V]—1, and that there is a unique simple path between each pair of vertices
in a tree.

A subgraph of the graph G=(V, E) is any graph G'=(V’, E') satisfying V' C V
and E' C E. Note that a simple cycle in G is a connected subgraph of G in which
each vertex has degree exactly two. An induced subgraph of the graph G =(V, E)
is any subgraph G'=(V', E') that contain all edges of E that are contained in V.
In such a case, we say that G' is the subgraph induced by V.

Directed graphs. We will also consider (simple) directed graphs (a.k.a digraphs),
where edges are ordered pairs of vertices. In this case the set of edges is a subset
of V. x V\ {(v,v) : v€V}, and the edges (u,v) and (v,) are called anti-parallel.
General (i.e., non-simple) directed graphs are defined analogously. The edge (u, v)
is viewed as going from u to v, and thus is called an outgoing edge of u (resp.,
incoming edge of v). The out-degree (resp., in-degree) of a vertex is the number of
its outgoing edges (resp., incoming edges). Directed paths and the related objects
are defined analogously; for example, v, ..., v; is a directed path if for every i € [{]
it holds that (v;—1,v;) is a directed edge (which is directed from v;_1 to v;). It is
common to consider also a pair of anti-parallel edges as a simple directed cycle.

A directed acyclic graph (DAG) is a digraph that has no directed cycles. Every
DAG has at least one vertex having out-degree (resp., in-degree) zero, called a sink
(resp., a source). A simple directed acyclic graph G = (V, E) is called an inward
(resp., outward) directed tree if |E| = |V| — 1 and there exists a unique vertex,
called the root, having out-degree (resp., in-degree) zero. Note that each vertex
in an inward (resp., outward) directed tree can reach the root (resp., is reachable
from the root) by a unique directed path.!

INote that in any DAG, there is a directed path from each vertex v to some sink (resp., from

G.1. GRAPHS 647

Representation. Graphs are commonly represented by their adjacency matrix
and/or their incidence lists. The adjacency matrix of a simple graph G=(V,E) is a
|[V'|-by-|V| Boolean matrix in which the (7, j)-th entry equals 1 if and only if ¢ and
j are adjacent in G. The incidence list representation of G consists of |V| sequences
such that the i'" sequence is an ordered list of the set of edges incident at vertex i.

Computational problems. Simple computational problems regarding graphs
include determining whether a given graph is connected (and/or acyclic) and find-
ing shortest paths in a given graph. Another simple problem is determining whether
a given graph is bipartite, where a graph G = (V, E) is bipartite (or 2-colorable) if
there exists a 2-coloring of its vertices that does not assign neighboring vertices the
same color. All these problems are easily solvable by BFS.

Moving to more complicated tasks that are still solvable in polynomial-time, we
mention the problem of finding a perfect matching (or a maximum matching) in a
given graph, where a matching is a subgraph in which all vertices have degree 1, a
perfect matching is a matching that contains all the graph’s vertices, and a maximum
matching is a matching of maximum cardinality (among all matching of the said
graph).

Turning to seemingly hard problems, we mention that the problem of deter-
mining whether a given graph is 3-colorable (i.e., G3C) is NP-complete. A few
additional NP-complete problems follow.

e A Hamiltonian path (resp., Hamiltonian cycle) in the graph G = (V, E) is a
simple path (resp., cycle) that passes through all the vertices of G. Such a
path (resp., cycle) has length |V|—1 (resp., |V'|). The problem is to determine
whether a given graph contains a Hamiltonian path (resp., cycle).

e An independent set (resp., clique) of the graph G=(V, E) is a set of vertices
V' C V such that the subgraph induced by V' contains no edges (resp.,
contains all possible edges). The problem is to determine whether a given
graph has an independent set (resp., a clique) of a given size.

A vertex cover of the graph G=(V, E) is a set of vertices V' C V such that
each edge in E has at least one end-point in V'. Note that V' is a vertex
cover of G if and only if V' \ V' is an independent set of V.

A natural computational problem which is believed to be neither in P nor NP-
complete is the graph isomorphism problem. The input consists of two graphs,
G1=(V1,Ey) and Go=(V2, E»), and the question is whether there exist a 1-1 and
onto mapping ¢ : V3 — V5 such that {u,v} is in E if and only if {#(u), d(v)} is in
E,. (Such a mapping is called an isomorphism.)

some source to each vertex v). In an inward (resp., outward) directed tree this sink (resp., source)
must be unique. The condition |E| = |V| — 1 enforces the uniqueness of these paths, because
(combined with the reachability condition) it implies that the underlying graph (obtained by
disregarding the orientation of the edges) is a tree.

648 APPENDIX G. SOME COMPUTATIONAL PROBLEMS

G.2 Boolean Formulae

In §1.2.4.3, Boolean formulae are defined as a special case of Boolean circuits
(§1.2.4.1). Here we take the more traditional approach, and define Boolean for-
mulae as structured sequences over an alphabet consisting of variable names and
various connectives. It is most convenient to define Boolean formulae recursively
as follows:

e A variable is a Boolean formula.

o If ¢1,...,¢; are Boolean formulae and v is a t-ary Boolean operation then
U(¢1, ..., ¢t) is a Boolean formula.

Typically, we consider three Boolean operations: the unary operation of negation
(denoted neg or —), and the (bounded or unbounded) conjunction and disjunction
(denoted A and V, respectively). Furthermore, the convention is to shorthand —(¢)
by —¢, and to write (Al_;#;) or (¢ A---A¢y) instead of A(¢y, ..., ¢;), and similarly
for v.

Two important special cases of Boolean formulae are CNF and DNF formulae.
A CNF formula is a conjunction of disjunctions of variables and/or their negation;
that is, Al_, ¢; is a CNF if each ¢; has the form (V}_, ¢; ;), where each ¢; ; is either
a variable or a negation of a variable (and is called a literal). If for every ¢ it holds
that ¢; < 3 then we say that the formula is a 3CNF. Similarly, DNF formulae are
defined as disjunctions of conjunctions of literals.

The value of a Boolean formula under a truth assignment to its variables is
defined recursively along its structure. For example, A!_, ¢, has the value true
under an assignment 7 if and only if every ¢; has the value true under 7. We say
that a formula ¢ is satisfiable if there exists a truth assignment 7 to its variables
such that the value of ¢ under 7 is true.

The set of satisfiable CNF (resp., 3CNF) formulae is denoted SAT (resp., 3SAT),
and the problem of deciding membership in it is NP-complete. The set of tau-
tologies (i.e., formula that have the value true under any assignment) is coNP-
complete, even when restricted to 3SDNF formulae.

Quantified Boolean Formulae. In contrast to the foregoing that refers to un-
quantified Boolean formulae, a quantified Boolean formula is a formula augmented
with quantifiers that refer to each variable appearing in it. That is, if ¢ is a for-
mula in the Boolean variables 1, ..., z, and Q1, ..., @, are Boolean quantifiers (i.e.,
each Q; is either 3 or V) then Q1 z1 - Qn zp, &(21, ..., T,) is a quantified Boolean
formula. A k-alternating quantified Boolean formula is a quantified Boolean for-
mula with up to k alternating sequences of existential and universal quantifiers,
starting with an existential quantifier. For example, 31 3xoVesd(w, x2,x3) is a 2-
alternating quantified Boolean formula. (We say that a quantified Boolean formula
is satisfiable if it evaluates to true.)

The set of satisfiable k-alternating quantified Boolean formulae is denoted kQBF
and is Yg-complete, whereas the set of all satisfiable quantified Boolean formulae
is denoted QBF and is PSP ACE-complete.

G.3. FINITE FIELDS, POLYNOMIALS AND VECTOR SPACES 649

The foregoing definition refers to the canonical form of quantified Boolean for-
mulae, in which all the quantifiers appear at the leftmost side of the formula.
A more general definition allows each variable to be quantified at an arbitrary
place to the left of its leftmost occurrence in the formula (e.g., (Va1)(3x2) (x; =
x2) A (3z3)(x3 = x1)). Note that such generalized formulae (used in the proof of
Theorems 5.15 and 9.4) can be transformed to the canonical form by “pulling” all
quantifiers to the left of the formula (e.g., Vz;3dzo3zs (21 = z2) A (z3 = 271))).

G.3 Finite Fields, Polynomials and Vector Spaces

Various algebraic objects, computational problems and techniques play an impor-
tant role in complexity theory. The most dominant such objects are finite fields as
well as vector spaces and polynomials over such fields.

Finite Fields. We denote by GF(q) the finite field of ¢ elements and note that
g may be either a prime or a prime power. In the first case, GF(q) is viewed
as consisting of the elements {0, ...,¢ — 1} with addition and multiplication being
defined modulo ¢. Indeed, GF(2) is an important special case. In the case that
g = p°, where p is a prime and e > 1, the standard representation of GF(p®)
refers to an irreducible polynomial of degree e over GF(p). Specifically, if f is
an irreducible polynomial of degree e over GF(p) then GF(p®) can be represented
as the set of polynomials of degree at most e — 1 over GF(p) with addition and
multiplication defined modulo the polynomial f.

We mention that finding representations of large finite fields is a non-trivial
computational problem, where in both cases we seek an efficient algorithm that
finds a representation (i.e., either a large prime or an irreducible polynomial) in
time that is polynomial in the length of the representation. In the case of a field
of prime cardinality, this calls for generating a prime number of adequate size,
which can be done efficiently by a randomized algorithm (while a corresponding
deterministic algorithm is not known). In the case of GF(p®), where p is a prime
and e > 1, we need to find an irreducible polynomial of degree e over GF(p).
Again, this task is efficiently solvable by a randomized algorithm (see [24]), but
a corresponding deterministic algorithm is not known for the general case (i.e.,
for arbitrary prime p and e > 1). Fortunately, for e = 2- 3¢ (with ¢’ being an
integer), the polynomial ¢ + 2°/2 + 1 is irreducible over GF(2), which means that
finding a representation of GF(2°¢) is easy in this case. Thus, there exists a strongly
explicit construction of an infinite family of finite fields (i.e., {GF(2°)}.cr, where
L={2-3:¢eN}).

Polynomials and Vector Spaces. The set of degree d — 1 polynomials over a
finite field F' (of cardinality at least d) forms a d-dimensional vector space over F'
(e.g., consider the basis {1, ,...,2%7'}). Indeed, the standard representation of this
vector space refers to the basis 1,z,...,297, and (when referring to this basis) the
polynomial Z?:_ol c;x" is represented as the vector (co, ¢, ..., c4—1). An alternative

650 APPENDIX G. SOME COMPUTATIONAL PROBLEMS

basis is obtained by considering the evaluation at d distinct points «ay,...,aq € F;
that is, the degree d — 1 polynomial p is represented by the sequence of values
(p(a1),...,p(aq)). Needless to say, moving between such representations (i.e., rep-
resentations with respect to different bases) amounts to applying an adequate linear
transformation; that is, for p(z) = Zf;ol c;zt, we have

p(ay) 1 o af_ Co
plaz) 1 ay --- odt c1

=] : : (G.1)
p(aa) 1 ag - ag_l Cd—1

where the (full rank) matrix in Eq. (G.1) is called a Vandermonde matrix. The
foregoing transformation (or rather its inverse) is closely related to the task of
polynomial interpolation (i.e., given the values of a degree d — 1 polynomial at d
points, find the polynomial itself).

G.4 The Determinant and the Permanent

Recall that the permanent of an n-by-n matrix M = (a; ;) is defined as the sum
> Ilimq @i x(j) taken over all permutations 7 of the set {1,...,n}. This is related
to the definition of the determinant in which the same sum is used except that
some elements are negated; that is, the determinant of M = (a; ;) is defined as
S (=17 [T, a;(j), where o(m) = 1 if 7 is an even permutation (i.e., can be
expressed by an even number of transpositions) and o(7) = —1 otherwise.

The corresponding computational problems (i.e., computing the determinant
or permanent of a given matrix) seem to have vastly different complexities. The
determinant can be computed in polynomial-time; moreover, it can be computed
in uniform NC?. In contrast, computing the permanent is #P-complete, even in
the special case of matrices with entries in {0,1} (see Theorem 6.20).

G.5 Primes and Composite Numbers

A prime is a natural number that is not divisible by any natural number other than
itself and 1. A natural number that is not a prime is called composite, and its prime
factorization is the set of primes that divide it; that is, if N = Hle Pfi, where the
P;’s are distinct primes (greater than 1) and e; > 1, then {P; : 4 = 1,...,t} is the
prime factorization of N. (If ¢t = 1 then N is a prime power.)

Two famous computational problems, identified by Gauss as fundamental ones,
are testing primality (i.e., given a natural number, determine whether it is prime or
composite) and factoring composite integers (i.e., given a composite number, find its
prime factorization). Needless to say, in both cases, the input is presented in binary
representation. Although testing primality is reducible to integer factorization,
the problems seem to have different complexities: While testing primality is in P
(see [3] (and §6.1.2.2 showing that the problem is in BPP)), it is conjectured that

G.5. PRIMES AND COMPOSITE NUMBERS 651

factoring composite integers is intractable. In fact, many popular candidates for
various cryptographic systems are based on this conjecture.

Extracting modular square roots. Two related computational problems are
extracting (modular) square roots with respect to prime and composite moduli.
Specifically, a quadratic residue modulo a prime P is an integer s such that there
exists an integer r satisfying s =72 (mod P). The corresponding search problem
(i.e., given such P and s, find 7) can be solved in probabilistic polynomial-time
(see Exercise 6.16). The corresponding problem for composite moduli is compu-
tationally equivalent to factoring (see [183]); furthermore, extracting square roots
modulo N is easily reducible to factoring IV, and factoring IV is randomly reducible
to extracting square roots modulo N (even in a typical-case sense). We mention
that even the problem of deciding whether or not a given integer has a modular
square Toot modulo a given composite is conjectured to be hard (but is not known
to be computationally equivalent to factoring).

652 APPENDIX G. SOME COMPUTATIONAL PROBLEMS

Bibliography

[1]

2]

3]

[4]

[6]

[7]

(8]

S. Aaronson. Complexity Zoo. A continueously updated web-site at
http://qwiki.caltech.edu/wiki/Complexity Zoo/.

L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties Over
Finite Fields. Springer-Verlag Lecture Notes in Computer Science (Vol. 1512),
1992. Preliminary version in 19th STOC, 1987.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathe-
matics, Vol. 160 (2), pages 781-793, 2004.

M. Ajtai, J. Komlos, E. Szemerédi. Deterministic Simulation in LogSpace.
In 19th ACM Symposium on the Theory of Computing, pages 132—-140, 1987.

R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovdsz and C. Rackoff. Random
walks, universal traversal sequences, and the complexity of maze problems. In
20th IEEE Symposium on Foundations of Computer Science, pages 218-223,
1979.

N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm
for the Maximal Independent Set Problem. .J. of Algorithms, Vol. 7, pages
567-583, 1986.

N. Alon and R. Boppana. The monotone circuit complexity of Boolean func-
tions. Combinatorica, Vol. 7 (1), pages 1-22, 1987.

N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth. Construction of Asymp-
totically Good, Low-Rate Error-Correcting Codes through Pseudo-Random
Graphs. IEEE Transactions on Information Theory, Vol. 38, pages 509-516,
1992.

N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Charac-
terization of the Testable Graph Properties: It’s All About Regularity. In
38th ACM Symposium on the Theory of Computing, pages 251-260, 2006.

N. Alon, O. Goldreich, J. Hastad, R. Peralta. Simple Constructions of Almost
k-wise Independent Random Variables. Journal of Random Structures and
Algorithms, Vol. 3, No. 3, pages 289-304, 1992. Preliminary version in $1st
FOCS, 1990.

653

654

[11]

[12]

[13]

[14]

[15]

[24]

[25]

BIBLIOGRAPHY

N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,
Inc., 1992. Second edition, 2000.

R. Armoni. On the derandomization of space-bounded computations. In
the proceedings of Random98, Springer-Verlag, Lecture Notes in Computer
Science (Vol. 1518), pages 49-57, 1998.

S. Arora. Approximation schemes for NP-hard geometric optimization prob-
lems: A survey. Math. Programming, Vol. 97, pages 43—69, July 2003.

S. Arora abd B. Barak. Complexity Theory: A Modern Approach. Cambridge
University Press, to appear.

S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification
and Intractability of Approximation Problems. Journal of the ACM, Vol. 45,
pages 501-555, 1998. Preliminary version in 33rd FOCS, 1992.

S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-
tion of NP. Journal of the ACM, Vol. 45, pages 70-122, 1998. Preliminary
version in $8rd FOCS, 1992.

H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics. McGraw-Hill, 1998.

L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium
on the Theory of Computing, pages 421-429, 1985.

L. Babai. Random oracles separate PSPACE from the Polynomial-Time
Hierarchy. Information Processing Letters, Vol. 26, pages 51-53, 1987.

L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has
Two-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1,
pages 3-40, 1991. Preliminary version in 31st FOCS, 1990.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in
Polylogarithmic Time. In 28rd ACM Symposium on the Theory of Computing,
pages 21-31, 1991.

L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-
tial Time Simulations unless EXPTIME has Publishable Proofs. Complezity
Theory, Vol. 3, pages 307-318, 1993.

L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System
and a Hierarchy of Complexity Classes. Journal of Computer and System
Science, Vol. 36, pp. 254-276, 1988.

E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: Efficient
Algorithms). MIT Press, 1996.

B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-
mann Institute of Science, 2004.

BIBLIOGRAPHY 655

[26]

[27]

[28]

W. Baur and V. Strassen. The Complexity of Partial Derivatives. Theor.
Comput. Sci. 22, pages 317-330, 1983.

P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, and
Future. In Bulletin of the European Association for Theoretical Computer
Science, Vol. 65, June 1998, pp. 66—89.

M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-
witnesses using an NP-oracle. Information and Computation, Vol. 163, pages
510-526, 2000.

M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-
Approximability — Towards Tight Results. SIAM Journal on Computing,
Vol. 27, No. 3, pages 804-915, 1998. Extended abstract in $6th FOCS, 1995.

S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average
Case Complexity. Journal of Computer and System Science, Vol. 44 (2), pages
193-219, 1992.

A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing and
Systems, IEEE Computer Society Press, pages 108-117, 1993.

M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali
and P. Rogaway. Everything Provable is Probable in Zero-Knowledge. In
Crypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),
pages 37-56, 1990

M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-
active Proofs: How to Remove Intractability. In 20th ACM Symposium on
the Theory of Computing, pages 113-131, 1988.

M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM
Symposium on the Theory of Computing, pages 1-10, 1988.

E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust
PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Jour-
nal on Computing, Vol. 36 (4), 2006, pages 889-974. Extended abstract in
36th STOC, 2004.

E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query
Complexity. In 37th ACM Symposium on the Theory of Computing, pages
266—275, 2005.

L. Berman and J. Hartmanis. On isomorphisms and density of NP and other
complete sets. STAM Journal on Computing, Vol. 6 (2), 1977, pages 305-322.

M. Blum. A Machine-Independent Theory of the Complexity of Recursive
Functions. Journal of the ACM, Vol. 14 (2), pages 290-305, 1967.

656

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

M. Blum and S. Kannan. Designing Programs that Check their Work. In
21st ACM Symposium on the Theory of Computing, pages 86-97, 1989.

M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-
cations to Numerical Problems. Journal of Computer and System Science,
Vol. 47, No. 3, pages 549-595, 1993.

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850—
864, 1984. Preliminary version in 23rd FOCS, 1982.

A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-
colorability in bounded-degree graphs. In 43rd IEEE Symposium on Foun-
dations of Computer Science, pages 93-102, 2002.

A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for
NP problems. SIAM Journal on Computing, Vol. 36 (4), 2006, pages 1119—
1159. Extended abstract in 44th FOCS, 2003.

A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and
Trends in Theoretical Computer Science, Vol. 2:1, 2006.

R. Boppana, J. Hastad, and S. Zachos. Does Co-NP Have Short Interactive
Proofs? Information Processing Letters, Vol. 25, May 1987, pages 127-132.

R. Boppana and M. Sipser. The complexity of finite functions. In Handbook
of Theoretical Computer Science: Volume A — Algorithms and Complezity,
J. van Leeuwen editor, MIT Press/Elsevier, 1990, pages 757-804.

A. Borodin. Computational Complexity and the Existence of Complexity
Gaps. Journal of the ACM, Vol. 19 (1), pages 158-174, 1972.

A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journal
on Computing, Vol. 6 (4), pages 733-744, 1977.

G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages
156-189, 1988. Preliminary version by Brassard and Crépeau in 27th FOCS,
1986.

L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer
and System Science, Vol. 18, 1979, pages 143-154.

G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-
quences. Journal of the ACM, Vol. 13, pages 547-570, 1966.

A K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of the
ACM, Vol. 28, pages 114-133, 1981.

BIBLIOGRAPHY 657

[53]

[54]

[55]

[56]

[57]

[63]

[64]

[65]

[66]

[67]

D. Chaum, C. Crépeau and I. Damgard. Multi-party unconditionally Secure
Protocols. In 20th ACM Symposium on the Theory of Computing, pages
11-19, 1988.

B. Chor and O. Goldreich. On the Power of Two—Point Based Sampling.
Jour. of Complexity, Vol 5, 1989, pages 96-106. Preliminary version dates
1985.

A. Church. An Unsolvable Problem of Elementary Number Theory. Amer.
J. of Math., Vol. 58, pages 345-363, 1936.

N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete
Mathematics and Applications, 2001.

A. Cobham. The Intristic Computational Difficulty of Functions. In Proc.
1964 Iternational Congress for Logic Methodology and Philosophy of Science,
pages 24-30, 1964.

S.A. Cook. The Complexity of Theorem Proving Procedures. In $rd ACM
Symposium on the Theory of Computing, pages 151-158, 1971.

S.A. Cook. An Overview of Computational Complexity. Turing Award Lec-
ture. CACM, Vol. 26 (6), pages 401-408, 1983.

S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Infor-
mation and Control, Vol. 64, pages 2-22, 1985.

S.A. Cook and R.A. Reckhow. The Relative Efficiency of Propositional Proof
Systems. J. of Symbolic Logic, Vol. 44 (1), pages 36-50, 1979.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation, 9, pages 251-280, 1990.

T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley
& Somns, Inc., New-York, 1991.

P. Crescenzi and V. Kann. A compendium of NP Optimization problems.
Available at http://www.nada.kth.se/~viggo/wwwcompendium/

R.A. DeMillo and R.J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, Vol. 7 (4), pages 193—-195, June 1978.

W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory, IT-22 (Nov. 1976), pages 644—654.

I. Dinur. The PCP Theorem by Gap Amplification. In 88th ACM Symposium
on the Theory of Computing, pages 241-250, 2006.

I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof
of the PCP-Theorem. SIAM Journal on Computing, Vol. 36 (4), 2006, pages
975-1024. Extended abstract in 45th FOCS, 2004.

658

[69]

[70]

[71]
[72]

[76]

[77]

[78]
[79]

[80]

BIBLIOGRAPHY

I. Dinur and S. Safra. The importance of being biased. In 34th ACM Sym-
posium on the Theory of Computing, pages 33—42, 2002.

J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages
449-467, 1965.

S. Even. Graph Algorithms. Computer Science Press, 1979.

S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Information and Control,
Vol. 61, pages 159-173, 1984.

U. Feige, S. Goldwasser, L. Lovasz and S. Safra. On the Complexity of
Approximating the Maximum Size of a Clique. Unpublished manuscript,
1990.

U. Feige, S. Goldwasser, L. Lovdsz, S. Safra, and M. Szegedy. Approximating
Clique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268-292,
1996. Preliminary version in $2nd FOCS, 1991.

U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-
Knowledge Proofs Under General Assumptions. SIAM Journal on Com-
puting, Vol. 29 (1), pages 1-28, 1999. Preliminary version in 81st FOCS,
1990.

U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. In 22nd ACM Symposium on the Theory of Computing, pages
416426, 1990.

E. Fischer. The art of uninformed decisions: A primer to property test-
ing. Bulletin of the European Association for Theoretical Computer Science,
Vol. 75, pages 97-126, 2001.

G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.

L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lower
bounds for satisfiability. Journal of the ACM, Vol. 52 (6), pages 835-865,
November 2005.

L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-
tive protocols. In 3rd IEEE Symp. on Structure in Complexity Theory, pages
156161, 1988. See errata in 5th IEEE Symp. on Structure in Complezity
Theory, pages 318-319, 1990.

S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing,
Vol. 8, pages 431-433, 1979.

M. Fiirer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-
ness and Soundness in Interactive Proof Systems. Advances in Computing
Research: a research annual, Vol. 5 (Randomness and Computation, S. Mi-
cali, ed.), pages 429-442, 1989.

BIBLIOGRAPHY 659

[83]

[84]

[85]

[86]

[87]

[88]

[89]

M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-
Time Hierarchy. Mathematical Systems Theory, Vol. 17 (1), pages 13-27,
1984. Preliminary version in 22nd FOCS, 1981.

O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-
trators. Journal of Computer and System Science, Vol. 22, pages 407-420,
1981.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

J. von zur Gathen. Algebraic Complexity Theory. Ann. Rev. Comput. Sci.,
Vol. 3, pages 317-347, 1988.

O. Goldreich. Foundation of Cryptography — Class Notes. Computer Science
Dept., Technion, Israel, Spring 1989. Superseded by [91, 92].

O. Goldreich. A Note on Computational Indistinguishability. Information
Processing Letters, Vol. 34, pages 277-281, May 1990.

O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC,
TR97-058, Dec. 1997.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.

O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge
University Press, 2004.

O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC,
TRO05-014, 2005.

O. Goldreich. On Promise Problems (a survey in memory of Shimon Even
[1935-2004]). ECCC, TR05-018, 2005.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions. Journal of the ACM, Vol. 33, No. 4, pages 792-807, 1986.

O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation of
Huge Random Objects. In 44th IEEE Symposium on Foundations of Com-
puter Science, pages 68—79, 2002.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection
to learning and approximation. Journal of the ACM, pages 653750, July
1998. Extended abstract in 37th FOCS, 1996.

O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996,
pages 169-192. Preliminary version in 17th ICALP, 1990.

660

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

BIBLIOGRAPHY

O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-
tion. In 21st ACM Symposium on the Theory of Computing, pages 25-32,
1989.

O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but
their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
Journal of the ACM, Vol. 38, No. 3, pages 691-729, 1991. Preliminary version
in 27th FOCS, 1986.

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game —
A Completeness Theorem for Protocols with Honest Majority. In 19th ACM
Symposium on the Theory of Computing, pages 218-229, 1987.

O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. ECCC,
TR95-050, 1995.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-
rithmica, pages 302-343, 2002. Extended abstract in 29th STOC, 1997.

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree
graphs. Combinatorica, Vol. 19 (3), pages 335-373, 1999. Extended abstract
in 30th STOC, 1998.

O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries:
the highly noisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535-570,
2000.

O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a
laconic provers. Computational Complexity, Vol. 11, pages 1-53, 2002.

O. Goldreich and A. Wigderson. Computational Complexity. In The Prince-
ton Companion to Mathematics, to appear.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer
and System Science, Vol. 28, No. 2, pages 270-299, 1984. Preliminary version
in 14th STOC, 1982.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186—
208, 1989. Preliminary version in 17th STOC, 1985. Earlier versions date to
1982.

S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
April 1988, pages 281-308.

S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. Advances in Computing Research: a research annual, Vol. 5
(Randomness and Computation, S. Micali, ed.), pages 73-90, 1989. Extended
abstract in 18th STOC, 1986.

BIBLIOGRAPHY 661

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

S.W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean Park
Press, revised edition, 1982.)

V. Guruswami, C. Umans, and S. Vadhan. Extractors and condensers from
univariate polynomials. FCCC, TR06-134, 2006.

J. Hartmanis and R.E. Stearns. On the Computational Complexity of of
Algorithms. Transactions of the AMS, Vol. 117, pages 285-306, 1965.

J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits. Ad-
vances in Computing Research: a research annual, Vol. 5 (Randomness and
Computation, S. Micali, ed.), pages 143-170, 1989. Extended abstract in
18th STOC, 1986.

J. Hastad. Clique is hard to approximate within n'=¢. Acte Mathematica,
Vol. 182, pages 105-142, 1999. Preliminary versions in 28th STOC (1996)
and 37th FOCS (1996).

J. Hastad. Getting optimal in-approximability results. Journal of the ACM,
Vol. 48, pages 798-859, 2001. Extended abstract in 29th STOC, 1997.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gen-
erator from any One-way Function. SIAM Journal on Computing, Volume
28, Number 4, pages 1364-1396, 1999. Preliminary versions by Impagliazzo
et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).

J. Hastad and S. Khot. Query efficient PCPs with pefect completeness. In
42nd IEEE Symposium on Foundations of Computer Science, pages 610-619,
2001.

A. Healy. Randomness-Efficient Sampling within NC1. Computational Com-
plezity, to appear. Preliminary version in 10th RANDOM, 2006.

A. Healy, S. Vadhan and E. Viola. Using nondeterminism to amplify hardness.
SIAM Journal on Computing, Vol. 35 (4), pages 903-931, 2006.

D. Hochbaum (ed.). Approzimation Algorithms for NP-Hard Problems. PWS,
1996.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

S. Hoory, N. Linial, and A. Wigderson. Ezpander Graphs and their Applica-
tions. Bull. AMS, Vol. 43 (4), pages 439-561, 2006.

N. Immerman. Nondeterministic Space is Closed Under Complementation.
SIAM Journal on Computing, Vol. 17, pages 760-778, 1988.

R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In
36th IEEE Symposium on Foundations of Computer Science, pages 538-545,
1995.

662

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

BIBLIOGRAPHY

R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP In-
stances than Picking Uniformly at Random. In 31st IEEE Symposium on
Foundations of Computer Science, pages 812-821, 1990.

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:
Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theory
of Computing, pages 220-229, 1997.

R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomization
under a Uniform Assumption. Journal of Computer and System Science,
Vol. 63 (4), pages 672-688, 2001.

R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In
Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),
pages 40-51, 1987.

M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time Approximation
Algorithm for the Permanent of a Matrix with Non-Negative Entries. Journal
of the ACM, Vol. 51 (4), pages 671-697, 2004.

M. Jerrum, L. Valiant, and V.V. Vazirani. Random Generation of Combina-
torial Structures from a Uniform Distribution. Theoretical Computer Science,
Vol. 43, pages 169-188, 1986.

B. Juba and M. Sudan.
Towards Universal Semantic Communication. Manuscript, February 2007.
Available from http://theory.csail.mit.edu/~madhu/papers/juba.pdf

V. Kabanets and R. Impagliazzo. Derandomizing Polynomial Identity Tests
Means Proving Circuit Lower Bounds. Computational Complexity, Vol. 13,
pages 1-46, 2004. Preliminary version in 35th STOC, 2003.

N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of the
ACM, Vol. 42 (5), pages 1091-1106, September 1995.

R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A Circuit-based
Proof of Toda’s Theorem. Information and Computation, Vol. 104 (2), pages
271-276, 1993.

R.M. Karp. Reducibility among Combinatorial Problems. In Complezity
of Computer Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum
Press, pages 85-103, 1972.

R.M. Karp and R.J. Lipton. Some connections between nonuniform and uni-
form complexity classes. In 12th ACM Symposium on the Theory of Com-
puting, pages 302-309, 1980.

R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and re-
liability problems. In 24th IEEE Symposium on Foundations of Computer
Science, pages 56-64, 1983.

BIBLIOGRAPHY 663

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

R.M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory
Machines. In Handbook of Theoretical Computer Science, Vol A: Algorithms
and Complezity, 1990.

M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity Require
Super-logarithmic Depth. STAM J. Discrete Math., Vol. 3 (2), pages 255-265,
1990. Preliminary version in 20th STOC, 1988.

M.J. Kearns and U.V. Vazirani. An introduction to Computational Learning
Theory. MIT Press, 1994.

S. Khot and O. Regev. Vertex Cover Might be Hard to Approximate to
within 2 —e. In 18th IEEE Conference on Computational Complexity, pages
379-386, 2003.

V.M. Khrapchenko. A method of determining lower bounds for the com-
plexity of Pi-schemes. In Matematicheskie Zametki, Vol. 10 (1), pages 83-92,
1971 (in Russian). English translation in Mathematical Notes of the Academy
of Sciences of the USSR, Vol. 10 (1), pages 474-479, 1971.

J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
24th ACM Symposium on the Theory of Computing, pages 723-732, 1992.

D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical
Algorithms). Addison-Wesley Publishing Company, Inc., 1969 (first edition)
and 1981 (second edition).

A. Kolmogorov. Three Approaches to the Concept of “The Amount Of In-
formation”. Probl. of Inform. Transm., Vol. 1/1, 1965.

E. Kushilevitz and N. Nisan. Communication Complerity. Cambridge Uni-
versity Press, 1996.

R.E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of
the ACM, Vol. 22, 1975, pages 155-171.

C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing
Letters, Vol. 17, pages 215-217, 1983.

F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9,
pages 115-116, 1973 (in Russian). English translation in Problems of Infor-
mation Transmission 9, pages 265-266.

L.A. Levin. Randomness Conservation Inequalities: Information and Inde-
pendence in Mathematical Theories. Information and Control, Vol. 61, pages
15-37, 1984.

664

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

BIBLIOGRAPHY

L.A. Levin. Average Case Complete Problems. STAM Journal on Computing,
Vol. 15, pages 285-286, 1986.

L.A. Levin. Fundamentals of Computing. SIGACT News, Education Forum,
special 100th issue, Vol. 27 (3), pages 89-110, 1996.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer Verlag, August 1993.

R.J. Lipton. New directions in testing. Distributed Computing and Cryp-
tography, J. Feigenbaum and M. Merritt (ed.), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American Mathematics So-
ciety, Vol. 2, pages 191-202, 1991.

N. Livne. All Natural NPC Problems Have Average-Case Complete Versions.
ECCC, TR06-122, 2006.

C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up
to constant factors. In 35th ACM Symposium on the Theory of Computing,
pages 602-611, 2003.

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica,
Vol. 8, pages 261-277, 1988.

M. Luby and A. Wigderson. Pairwise Independence and Derandomization.
Foundations and Trends in Theoretical Computer Science, Vol. 1:4, 2005.
Preliminary version: TR-95-035, ICSI, Berkeley, 1995.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for In-
teractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859-868,
1992. Preliminary version in $1st FOCS, 1990.

F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-
Holland, 1981.

G.A. Margulis. Explicit Construction of Concentrators. Prob. Per. Infor.,
Vol. 9 (4), pages 71-80, 1973 (in Russian). English translation in Problems
of Infor. Trans., pages 325-332, 1975.

S. Micali. Computationally Sound Proofs. SIAM Journal on Computing,
Vol. 30 (4), pages 1253-1298, 2000. Preliminary version in 35th FOCS, 1994.

G.L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Com-
puter and System Science, Vol. 13, pages 300-317, 1976.

P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin
Games using Hitting Sets. Computational Complezity, Vol. 14 (3), pages
256-279, 2005. Preliminary version in 40th FOCS, 1999.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

BIBLIOGRAPHY 665

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

M. Naor. Bit Commitment using Pseudorandom Generators. Journal of
Cryptology, Vol. 4, pages 151-158, 1991.

J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions
and Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838-856.
Preliminary version in 22nd STOC, 1990.

M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Application. In 21st ACM Symposium on the Theory of Computing,
1989, pages 33-43.

M. Nguyen, S.J. Ong, S. Vadhan. Statistical Zero-Knowledge Arguments for
NP from Any One-Way Function. In 47th IEEE Symposium on Foundations
of Computer Science, pages 3-14, 2006.

N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
Vol. 11 (1), pages 63-70, 1991.

N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-
binatorica, Vol. 12 (4), pages 449—461, 1992. Preliminary version in 22nd
STOC, 1990.

N. Nisan. RL C SC. Computational Complexity, Vol. 4, pages 1-11, 1994.
Preliminary version in 24/th STOC, 1992.

N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer
and System Science, Vol. 49, No. 2, pages 149-167, 1994. Preliminary version
in 29th FOCS, 1988.

N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of
Computer and System Science, Vol. 52 (1), pages 43-52, 1996. Preliminary
version in 25th STOC, 1993.

C.H. Papadimitriou. Computational Complezxity. Addison Wesley, 1994.

C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and
Complexity Classes. In 20th ACM Symposium on the Theory of Computing,
pages 229-234, 1988.

N. Pippenger and M.J. Fischer. Relations among complexity measures. Jour-
nal of the ACM, Vol. 26 (2), pages 361-381, 1979.

E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52,
pages 264-268, 1946.

M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation
(R.A. DeMillo et. al. eds.), Academic Press, 1977.

M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable
as Factoring. MIT/LCS/TR-212, 1979.

666

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

BIBLIOGRAPHY

M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Num-
ber Theory, Vol. 12, pages 128-138, 1980.

R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,
Vol. 27 (3), pages 763-803, 1998. Extended abstract in 27th STOC, 1995.

R. Raz and A. Wigderson. Monotone Circuits for Matching Require Linear
Depth. Journal of the ACM, Vol. 39 (3), pages 736—744, 1992. Preliminary
version in 22nd STOC, 1990.

A. Razborov. Lower bounds for the monotone complexity of some Boolean
functions. In Doklady Akademii Nauk SSSR, Vol. 281, No. 4, 1985, pages
798-801 (in Russian). English translation in Soviet Math. Doklady, 31, pages
354-357, 1985.

A. Razborov. Lower bounds on the size of bounded-depth networks over a
complete basis with logical addition. In Matematicheskie Zametki, Vol. 41,
No. 4, pages 598-607, 1987 (in Russian). English translation in Mathematical
Notes of the Academy of Sci. of the USSR, Vol. 41 (4), pages 333-338, 1987.

A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer and
System Science, Vol. 55 (1), pages 24-35, 1997. Preliminary version in 26th
STOC, 1994.

O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Sym-
posium on the Theory of Computing, pages 376-385, 2005.

O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag
Graph Product, and New Constant-Degree Expanders and Extractors. An-
nals of Mathematics, Vol. 155 (1), pages 157-187, 2001. Preliminary version
in 41st FOCS, pages 3—13, 2000.

H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Prob-
lems. Trans. AMS, Vol. 89, pages 25-59, 1953.

R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages
120-126.

D. Ron. Property testing. In Handbook on Randomization, Volume II,
pages 597-649, 2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif
and J.D.P. Rolim.)

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal on Computing, Vol. 25 (2),
pages 252-271, 1996.

M. Saks and S. Zhou. BPSPACE(S) C DSPACE(S%/2). Journal of Com-
puter and System Science, Vol. 58 (2), pages 376-403, 1999. Preliminary
version in $6th FOCS, 1995.

BIBLIOGRAPHY 667

[197]

[198]

[199]

200]

201]

202]

203]

[204]

205]

206]

[207]

208]

[209]

[210]

[211]

W.J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Science, Vol. 4 (2), pages 177-
192, 1970.

A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol. 21 (6),
page 310, 1974.

J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, Vol. 27 (4), pages 701-717, October 1980.

R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. In
Current Trends in Theoretical Computer Science: The Challenge of the New
Century, Vol 1: Algorithms and Complexity, World scietific, 2004. (Editors:
G. Paun, G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin of
the EATCS 77, pages 67-95, 2002.

R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a
New Pseudo-Random Generator. In 42nd IEEE Symposium on Foundations
of Computer Science, pages 648-657, 2001.

C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.
American Institute of Electrical Engineers, Vol. 57, pages 713-723, 1938.

C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.
Jour., Vol. 27, pages 623-656, 1948.

C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.
Jour., Vol. 28, pages 656-715, 1949.

A. Shamir. TP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages
869-877, 1992. Preliminary version in $1st FOCS, 1990.

A. Shpilka. Lower Bounds for Matrix Product. SIAM Journal on Computing,
pages 1185-1200, 2003.

M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM
Symposium on the Theory of Computing, pages 330-335, 1983.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity. In 19th ACM Symposium on the Theory of Computing
pages 77-82, 1987.

R.J. Solomonoff. A Formal Theory of Inductive Inference. Information and
Control, Vol. 7/1, pages 1-22, 1964.

R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM
Journal on Computing, Vol. 6, pages 84-85, 1977. Addendum in SIAM Jour-
nal on Computing, Vol. 7, page 118, 1978.

668

[212]

[213]

214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

BIBLIOGRAPHY

D.A. Spielman. Advanced Complexity Theory, Lectures 10 and 11.
Notes (by D. Lewin and S. Vadhan), March 1997. Available
from http://www.cs.yale.edu/homes/spielman/AdvComplexity/1998/ as
lect10.ps and lectll.ps.

L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer
Science, Vol. 3, pages 1-22, 1977.

L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACM
Symposium on the Theory of Computing, pages 118-126, 1983.

V. Strassen. Algebraic Complexity Theory. In Handbook of Theoretical Com-
puter Science: Volume A — Algorithms and Complexity, J. van Leeuwen edi-
tor, MIT Press/Elsevier, 1990, pages 633-672.

M. Sudan. Decoding of Reed Solomon codes beyond the error-correction
bound. Journal of Complezity, Vol. 13 (1), pages 180-193, 1997.

M. Sudan. Algorithmic introduction to coding theory. Lecture notes, Avail-
able from http://theory.csail.mit.edu/ madhu/FT01/, 2001.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without
the XOR Lemma. Journal of Computer and System Science, Vol. 62, No. 2,
pages 236-266, 2001.

R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Au-
tomata. Acta Informatica, Vol. 26, pages 279-284, 1988.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, Vol. 20 (5), pages 865-877, 1991.

B.A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute Force
Search) Algorithms. Annals of the History of Computing, Vol. 6 (4), pages
384-398, 1984.

L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM,
Vol. 48 (4), pages 860-879, 2001. Preliminary version in 31st STOC, 1999.

L. Trevisan. On uniform amplification of hardness in NP. In 37th ACM
Symposium on the Theory of Computing, pages 31-38, 2005.

V. Trifonov. An O(lognloglogn) Space Algorithm for Undirected st-
Connectivity. In 37th ACM Symposium on the Theory of Computing, pages
623-633, 2005.

C.E. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages
230-265, 1936. A Correction, ibid., Vol. 43, pages 544-546.

C. Umans. Pseudo-random generators for all hardness. Journal of Computer
and Systemn Science, Vol. 67 (2), pages 419-440, 2003.

BIBLIOGRAPHY 669

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD
Thesis, Department of Mathematics, MIT, 1999. Available from
http://www.eecs.harvard.edu/~salil/papers/phdthesis-abs.html.

S. Vadhan. An Unconditional Study of Computational Zero Knowledge.
SIAM Journal on Computing, Vol. 36 (4), 2006, pages 1160-1214. Extended
abstract in 45th FOCS, 2004.

S. Vadhan. Lecture Notes for CS 225: Pseudorandomness, Spring 2007.
Available from http://www.eecs.harvard.edu/~salil.

L.G. Valiant. The Complexity of Computing the Permanent. Theoretical
Computer Science, Vol. 8, pages 189-201, 1979.

L.G. Valiant. A theory of the learnable. CACM, Vol. 27/11, pages 1134-1142,
1984.

L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions.
Theoretical Computer Science, Vol. 47 (1), pages 85-93, 1986.

J. von Neumann, First Draft of a Report on the EDVAC, 1945. Contract No.
W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn.,
Philadelphia. Reprinted (in part) in Origins of Digital Computers: Selected
Papers, Springer-Verlag, Berlin Heidelberg, pages 383—-392, 1982.

J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische An-
nalen, 100, pages 295-320, 1928.

I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

I. Wegener. Branching Programs and Binary Decision Diagrams — Theory and
Applications. STAM Monographs on Discrete Mathematics and Applications,
2000.

A. Wigderson. The amazing power of pairwise independence. In 26th ACM
Symposium on the Theory of Computing, pages 645—-647, 1994.

A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEFE
Symposium on Foundations of Computer Science, pages 80-91, 1982,

A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26th
IEEE Symposium on Foundations of Computer Science, pages 1-10, 1985.

A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium
on Foundations of Computer Science, pages 162—-167, 1986.

S. Yekhanin. New Locally Decodable Codes and Private Information Re-
trieval Schemes. ECCC, TR06-127, 2006.

670 BIBLIOGRAPHY

[242] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In the Proceed-
ings of EUROSAM ’79: International Symposium on Symbolic and Algebraic
Manipulation, E. Ng (Ed.), Lecture Notes in Computer Science (Vol. 72),
pages 216-226, Springer, 1979.

[243] D. Zuckerman. Linear-Degree Extractors and the Inapproximability of Max-
Clique and Chromatic Number. In 38th ACM Symposium on the Theory of
Computing, 2006, pages 681-690.

Index

Author Index

Adleman, L.M., 250, 552

Agrawal, M., 250

Ajtai, M., 372

Aleliunas, R., 250

Arora, S., 446

Babai, L., 445, 639

Barak, B., 548

Ben-Or, M., 445

Blum, M., 153, 250, 305, 370

Borodin, A., 153, 192

Brassard, G., 447

Chaitin, G.J., 315, 338

Chaum, D., 447

Church, A., 48

Cobham, A., 48

Cook, S.A., 108, 109, 252

Crépeau, C., 447

Diffie, W., 305, 552

Dinur, L., 446

Edmonds, J., 48

Even, S., 109

Feige, U., 445, 496

Fortnow, L., 445

Furst, M.L., 522

Goldreich, O., 305, 370, 445, 497,
542, 570

Goldwasser, S., 370, 445, 496, 497,
542, 553, 555, 557, 632

Hastad, J., 370, 496, 522

Hartmanis, J., 153

Hellman, M.E., 305, 552

Huang, M., 250

Immerman, N., 193

Impagliazzo, R., 305, 370, 371

Jerrum, M., 252

671

Karchmer, M., 523

Karloff, H., 445

Karp, R.M., 108, 109, 133, 250

Kayal, N., 250

Kilian, J., 445, 447

Kolmogorov, A., 315, 338

Komlos, J., 372

Ladner, R.E., 109

Lautemann, C., 251

Levin, L.A.) 108, 109, 305, 370,
445, 497

Lipton, R.J., 133, 250, 305

Lovasz, L., 250, 445, 496

Luby, M., 305, 370

Lund, C., 445, 446

Micali, S., 305, 370, 445, 447,
542, 553, 555, 557, 570

Miller, G.L., 250

Moran, S., 639

Motwani, R., 446

Naor, J., 372

Naor, M., 372

Nisan, N., 305, 371, 445

Papadimitriou, C.H., 499

Rabin, M.O., 250

Rackoff, C., 250, 305, 445

Raz, R., 524

Razborov, A.R., 521

Reingold, O., 193, 619

Rivest, R.L., 552

Ron, D., 497

Rubinfeld, R., 305, 497

Safra, S., 445, 446, 496

Savitch, W.J., 192

Saxe, J.B., 522

Saxena, N., 250

672

Selman, A.L., 109

Shamir, A., 445, 552

Shannon, C.E., 48, 314, 520, 551

Sipser, M., 251, 252, 522, 632

Solomonov, R.J., 315

Solovay, R., 250

Stearns, R.E., 153

Stockmeyer, L.J., 133, 252

Strassen, V., 250

Sudan, M., 306, 446, 497

Szegedy, M., 445, 446

Szelepcsenyi, R., 193

Szemerédi, E., 372

Toda, S., 252, 625

Trevisan, L., 306, 598

Turing, A.M., 48, 391

Vadhan, S., 306, 619

Valiant, L., 252

Vazirani, V.V., 252

Wigderson, A., 305, 371, 445, 523,
524, 570, 619

Yacobi, Y., 109

Yannakakis, M., 499

Yao, A.C., 305, 370, 522, 570

Zuckerman, D., 371

Algorithms, see Computability the-
ory
Approximate counting, 232—-238, 243—
246
satisfying assignments to a DNF,
234-235
Approximation, 458471
Counting, see Approximate count-
ing
Hardness, see Hardness of Ap-
proximation
Arithmetic Circuits, 524-526
Average Case Complexity, 471-495

Blum-Micali Generator, see Pseudo-
random Generators
Boolean Circuits, 41-47, 80-86, 120—
124, 141, 336, 519-524
bounded fan-in, 43
constant-depth, 47, 347, 522-523

INDEX

depth, 47

Monotone, 47, 521-522

Natural Proofs, 338

size, 43-44, 121

unbounded fan-in, 43, 46, 47
uniform, 44, 45, 121-122, 170-

171
Boolean Formulae, 41, 45-47, 523—
524, 647-649
clauses, 46
CNF, 46, 80-86, 648
DNF, 46, 648

literals, 46

Monotone, 524

Quantified, 648-649
Byzantine Agreement, 574

Chebyshev’s Inequality, 579-581, 585
Chernoff Bound, 581-582
Chinese Reminder Theorem, 449
Church-Turing Thesis, 28, 37
Circuits, see Boolean Circuits
CNF, see Boolean Formulae
Cobham-Edmonds Thesis, 37, 52, 83,
140, 142
Coding Theory, 602-611
concatenated codes, 607-608
Connection to Hardness Ampli-
fication, 283, 293-296
good codes, 608
Hadamard Code, 280, 310, 426—
427, 605
List Decoding, 280, 293-296, 600,
603, 610
locally decodable, 609-610
locally testable, 608-610
Long Code, 605
Reed-Muller Code, 294, 606-607
Reed-Solomon Code, 606
Unique Decoding, 603
Commitment Schemes, see Cryptog-
raphy
Communication Complexity, 523524
Complexity classes
@P, 625-631
¢P, 222-238, 512, 625-631

INDEX

ACO, 128, 347, 515
AM, 404
BPL, 221, 352, 356-358, 514
BPP, 208-213, 215-219, 335-337,
339-344, 352, 511
coNL, 158, 184-187
coNP, 91, 104-108, 127, 157, 184,
517, 527
coRP, 213-220
Dspace, 152, 159, 182
Dtime, 142
DTISP, 168
E, 513
EXP, 61, 513, 514
IP, see Interactive Proof systems,
392, 396, 404, 417, 512
L, 169, 170, 172, 514
MA, 219, 403
NC, 171, 184, 515
NEXP, 513
NL, 158, 180-187, 220221, 356,
514
NP, 49-108, 124, 126-128, 130-
132, 157, 180, 184, 347, 393,
396, 403, 417, 422-444, 511,
513, 514, 517, 526, 527
as proof system, 57-59
as search problem, 54-55
Optimal search, 102-104

traditional definition, 61-63, 128—

130, 179, 205
NPC, see NP-Completeness
NPI, 90
Nspace, 182
two models, 179-180
Ntime, 147
P, 49-108, 123, 124, 126, 127,
168-171, 180, 181, 511, 517,
520, 522
as search problem, 53-54
P/poly, 119-124, 130-133, 515
PCP, see Probabilistically Check-
able Proof systems
PH, 124-133, 210, 224, 513, 625—
631

673

PSPACE, 189-192, 396, 514

quasi-P, 347, 513

RL, 221-222, 357, 514

RP, 213-220, 512

SC, 168, 356

SZK, 418

TCo0, 515

ZK, see Zero-Knowledge proof sys-
tems, 410, 417

ZPP, 219-220, 512

Computability theory, 18—40
Computational Indistinguishability, 318,

320, 322, 325-330, 370, 540—
541

multiple samples, 326-330

non-triviality, 326

The Hybrid Technique, 327-331,
334, 345, 356, 370

vs statistical closeness, 326

Computational Learning Theory, 338
Computational problems

3SAT, 85, 648

3XC, 87

Bipartiteness, 468, 470, 647

Bounded Halting, 78

Bounded Non-Halting, 78-79

CEVL, 170

Clique, 88, 460-462, 468, 647

CSAT, 80-85

CSP, 434-438

Determinant, 226, 526, 650

Directed Connectivity, 181-187,
221

Exact Set Cover, 87

Extracting modular square roots,
651

Factoring Integers, 107, 110, 112,
533, 538, 557, 650

Graph 2-Colorability, 647

Graph 3-Colorability, 89, 414, 470,
647

Graph Isomorphism, 395, 412, 647

Graph k-Colorability, 468

Graph Non-Isomorphism, 395

674

Halting Problem, 30-31, 78, 79,
391
Hamiltonian path, 647
Independent Set, 88, 647
kQBF, 135, 648
Perfect Matching, 225-232, 243,
647
Permanent, 226232, 259, 526, 650
Primality Testing, 110, 211-213,
650
QBF, 190-192, 400—401, 448, 648,
649
SAT, 71-72, 80-86, 105, 463, 648
Set Cover, 86
st-CONN, 181-187
Testing polynomial identity, 214—
215
TSP, 461
UCONN, 171-178
Undirected Connectivity, 171-178,
182, 221-222, 647
Vertex Cover, 88, 460, 463, 647
Computational Tasks and Models, 18—
48
Computationally-Sound proof systems
Arguments, 447
Constant-depth circuits, see Boolean
Circuits
Constraint satisfaction problems, see
CSp
Cook-reductions, see Reduction
Counting Problems, 222-249
Approximation, see Approximate
counting
perfect matching, 225-232
satisfying assignments to a DNF,
225
Cryptography, 531-576
Coin Tossing, 574-576
Commitment Schemes, 416, 546—
547, 574-576
Computational Indistinguishabil-
ity, see Computational In-
distinguishability
Encryption Schemes, 551-558

INDEX

General Protocols, 564-576

Hard-Core Predicates, see One-
Way Functions

Hashing, see Hashing

Message Authentication Schemes,
558-564

Modern vs Classical, 532, 551

Oblivious Transfer, 572-573

One-Way Functions, see One-Way
Functions

Pseudorandom Functions, see Pseu-
dorandom Functions

Pseudorandom Generators, see Pseu-
dorandom Generators

Secret Sharing, 571-572, 575

Signature Schemes, 558-564

Trapdoor Permutations, 538-539,
557-558, 561, 570, 573

Verifiable Secret Sharing, 575

Zero-Knowledge, see Zero-Knowledge
proof systems

CSP, see Computational problems

Decision problems, 21-22, 55-61, 486—

488
unique solutions, see Unique so-

lutions

Diagonalization, 145-146

Direct Product Theorems, 287-292,
304

Dispersers, 596

Error Correcting Codes, see Coding
Theory
Error-reduction, 208, 209, 234, 236,
242, 253-255, 388, 391, 392,
407, 422, 443, 447, 632
randomness-efficient, 595-596
Expander Graphs, 367, 611-623
amplification, 613
constructions, 618-623
eigenvalue gap, 612614
expansion, 613
explicitness, 614615
mixing, 615-616
random walk, 368-369, 616618

INDEX

Extractors, see Randomness Extrac-
tors

Finite automata, 40

Finite fields, 649

Formulae, see Boolean Formulae
Fourier coefficients, 363

Godel’s Incompleteness Theorem, 391
Game Theory

Min-max principle, 299-300
Gap Problems, see Promise Problems
Gap Theorems, see Time Gaps
GF(2), 649
GF(2™), 649
Graph properties, 467
Graph theory, 645647

Hadamard Code, see Coding Theory
Halting Problem, see Computational
problems
Hard Regions, see Inapproximable Pred-
icates
Hardness of Approximation
Max3SAT, 440
MaxClique, 442
The PCP connection, 438-442,
462465
Hashing, 582-588
as a random sieve, 236241, 246—
249
Collision-Free, 563-564
Collision-Resistant, 563—-564
Extraction Property, 594
highly independent, 583, 587-588
Leftover Hash Lemma, 584-588
Mixing Property, 353, 585
pairwise independent, 584-587
Universal, 335, 583
Universal One-Way, 564
Hierarchy Theorems, see Time Hier-
archies
Hitters, 591
Hoefding Inequality, 581

Inapproximable Predicates, 281-305

675

hard regions, 298-301
Information Theory, 274, 314, 532
Interactive Proof systems, 388-407,

445

algebraic methods, 396

Arthur-Merlin, 402, 404, 631-643

computational-soundness, 406—-407,

548

constant-round, 347, 371, 403

for Graph Non-Isomorphism, 395

for PSPACE, 396401

Hierarchy, 403-404, 631-643

linear speed-up, 403

power of the prover, 405-406

public-coin, 347, 402, 404, 631-

643
two-sided error, 402, 404

Karp-reductions, see Reduction

Knowledge Complexity, 411

Kolmogorov Complexity, 34-35, 44,
315, 338

Levin-reductions, see Reduction

Linear Feedback Shift Registers, 364

List Decoding, see Coding Theory

Low Degree Tests, see Property Test-
ing

Lower Bounds, 517-530

Markov’s Inequality, 579

Min-max principle, see Game Theory

Monotone circuits, see Boolean Cir-
cuits

Multi-Prover Interactive Proof systems,
443, 445

Nisan-Wigderson Generator, see Pseu-
dorandom Generators
Non-Interactive Zero-Knowledge, 550
Notation
asymptotic, 17
combinatorial, 18
graph theory, 18
integrality issues, 18
NP-Completeness, 74-97, 105-108, 170,
417-418, 511

676

One-Way Functions, 266—-280, 326, 414,
417, 495, 533-534, 537-539,
542, 546-547, 558, 562
Hard-Core Predicates, 274-280,
370, 539, 547, 557, 573
Strong vs Weak, 270-274
Optimal search for NP, 102-104
Oracle machines, 39-40

P versus NP Question, 51-64, 472,
476, 478, 490, 520
PCP, see Probabilistically Checkable
Proof systems
Polynomial-time Reductions, see Re-
duction
Post Correspondence Problem, 32, 34
Probabilistic Log-Space, 220-222
Probabilistic Polynomial-Time, 203—
222
Probabilistic Proof Systems, 385—-456
Probabilistically Checkable Proof sys-
tems, 420447
adaptive, 422, 442
Approximation, see Hardness of
Approximation
for NEXP, 444
for NP, 424-438, 441-444
free-bit complexity, 442, 452
non-adaptive, 422, 423, 429, 431,
439, 442
non-binary queries, 443
of proximity, 430, 433, 443-444
proof length, 442
query complexity, 442
Robustness, 430431, 433
Probability Theory
conventions, 578-579
inequalities, 579-582
Promise Problems, 22, 97-102, 106,
212, 238, 465-471
Gap Problems, 462-465
Proof Complexity, 518, 526-530
Proofs of Knowledge, 418-420, 550
Property Testing, 465471
Codeword Testing, see Coding The-
ory

INDEX

for graph properties, 467-470
Low Degree Tests, 433, 470-471
Self-Correcting, see Self-Correcting
Self-Testing, see Self-Testing
Pseudorandom Functions, 338, 370,
542-544
Pseudorandom Generators, 313-384
archetypical case, 320-339, 370
Blum-Micali Construction, 334,
557
conceptual discussion, 338-339,
347-348
Connection to Extractors, 598—
600
derandomization, 335-337, 339—
348, 370
high end, 344
low end, 344
discrepancy sets, 366
expander random walks, 304, 367—
369
Extractors, see Randomness Ex-
tractors
general paradigm, 314-320, 369—
370
general-purpose, 320-339, 370
application, 321-325
construction, 332-335
definition, 320-321
stretch, 330-334
hitting, 367-369, 591
Nisan-Wigderson Construction, 304,
305, 342-348, 369, 371, 598,
599
pairwise independence, 302, 360—
363
samplers, see Sampling
small bias, 363-367, 432
space, 348-358, 371
special purpose, 359-369, 371
universal sets, 366
unpredictability, 332-334, 345, 370

Random variables, 578-582
pairwise independent, 580582
totally independent, 581-582

INDEX

Randomized Computation
Log-Space, see Probabilistic Log-
Space
Polynomial-Time, see Probabilis-
tic Polynomial-Time
Proof Systems, see Probabilistic
Proof Systems
Reductions, see Reductions
Sub-linear Time, see Property Test-
ing
Randomness Extractors, 371, 591-600
Connection to Error-reduction, 595—
596
Connection to Pseudorandomness,
598-600
Connection to Samplers, 594-595
from few independent sources, 592
Seeded Extractors, 592-593
using Weak Random Sources, 591
593
Reductions
among distributional problems, 477—
485, 487-488, 490
Cook-Reductions, 66-76, 90-94,
105-107, 223-249, 477
Downwards self-reducibility, 111,
137
gap amplifying, 441
Karp-Reductions, 66-68, 76-90,
105, 224-225, 477, 511
Levin-Reductions, 67-68, 70, 76—
86
parsimonious, 116, 224-225, 239—
241, 243-246
Polynomial-time Reductions, 65—
94, 208, 511, 512
Randomized Reductions, 215-218,
253
Reducibility Argument, 271, 273—
274, 276, 281, 329, 345, 478,
533, 539
Self-reducibility, 70-74, 406
Space-bounded, 164—-170, 174-178,
181-182
Turing-reductions, 31, 39-40

677

worst-case to average-case, 283~
286
Rice’s Theorem, 32

Samplers, see Sampling
Sampling, 588-591
Averaging Samplers, 590, 594-595
Search problems, 20-21, 52-55, 60—
61, 167-168, 182, 486488
Uniform generation, see Uniform
generation
unique solutions, see Unique so-
lutions
versus decision, 60-61, 66, 68, 70—
74, 167-168, 182, 486488
Self-Correcting, 284-286, 305, 425, 427,
428, 433, 606, 609-610
Self-reducibility, see Reduction
Self-Testing, 426, 606
Space Complexity, 38-39, 157-202
Circuit Evaluation, 168-170
composition lemmas, 161-163, 177—
178
conventions, 158-160
Logarithmic Space, 169-178
Non-Determinism, 178-189
Polynomial Space, 189-192
Pseudorandomness, see Pseudo-
random Generators
Randomness, see Probabilistic Log-
Space
Reductions, see Reductions
sub-logarithmic, 160-161
versus time complexity, 161-168
Space Gaps, 152, 168
Space Hierarchies, 152, 168
Space-constructible, 152
Speed-up Theorems, 151
st-CONN, see Computational prob-
lems
Statistical difference, 326, 579

Time complexity, 24, 36-38

Time Gaps, 149-151

Time Hierarchies, 141-149
Time-constructible, 142, 143, 149, 341

678

Turing machines, 25-29
multi-tape, 27, 142
non-deterministic, 61-63
single-tape, 27
with advice, 45, 122-124, 140
141, 336
Turing-reductions, see Reductions

UCONN, see Computational problems

Uncomputable functions, 29-33

Undecidability, 30, 32, 391

Uniform generation, 241-249

Unique solutions, 226, 238-241, 260,
487488

Universal algorithms, 33-35, 38, 146—
147

Universal machines, 33-35

Variation distance, see Statistical dif-
ference

Witness Indistinguishability, 550

Yao’s XOR Lemma, 283, 286-293, 297—
298
derandomized version, 301-305

Zero-Knowledge proof systems, 407—
420, 445, 544-551, 574-575

Almost-Perfect, 418
black-box simulation, 548
Computational, 410, 549
for 3-Colorability, 414
for Graph Non-Isomorphism, 412
for NP, 414
Honest verifier, 549
Knowledge Complexity, 411
Perfect, 409, 418, 447, 549
Statistical, 410, 418, 549
universal simulation, 548

INDEX

