Computational Complexity:

A Conceptual Perspective

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

October 12, 2006

Chapter 3

Variations on P and NP

In this chapter we consider variations on the complexity classes P and NP. We
refer specifically to the non-uniform version of P, and to the Polynomial-time Hier-
archy (which extends NP). These variations are motivated by relatively technical
considerations; still, the resulting classes are referred to quite frequently in the
literature.

Summary: Non-uniform polynomial-time (P/poly) captures efficient
computations that are carried out by devices that can each only handle
inputs of a specific length. The basic formalism ignore the complexity
of constructing such devices (i.e., a uniformity condition). A finer for-
malism that allows to quantify the amount of non-uniformity refers to
so called “machines that take advice.”

The Polynomial-time Hierarchy (PH) generalizes NP by considering
statements expressed by quantified Boolean formulae with a fixed num-
ber of alternations of existential and universal quantifiers. It is widely
believed that each quantifier alternation adds expressive power to the
class of such formulae.

The two different classes are related by showing that if NP is contained
in P/poly then the Polynomial-time Hierarchy collapses to its second
level. This result is commonly interpreted as supporting the common
belief that non-uniformity is irrelevant to the P-vs-NP Question; that is,
although P/poly extends beyond the class P, is is believed that P /poly
does not contain NP.

Except for the latter result, which is presented in Section 3.2.3, the treatments of
P/poly (in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) are
independently of one another.

109

110 CHAPTER 3. VARIATIONS ON P AND NP

3.1 Non-uniform polynomial-time (P /poly)

In this section we consider two formulations of the notion of non-uniform polynomial-
time, based on the two models of non-uniform computing devices that were pre-
sented in Section 1.2.4. That is, we specialize the treatment of non-uniform com-
puting devices, provided in Section 1.2.4, to the case of polynomially bounded
complexities. It turns out that both (polynomially bounded) formulations allow
for solving the same class of computational problems, which is a strict superset of
the class of problems solvable by polynomial-time algorithms.

The two models of non-uniform computing devices are Boolean circuits and
“machines that take advice” (cf. §1.2.4.1 and §1.2.4.2, respectively). We will focus
on the restriction of both models to the case of polynomial complexities, considering
(non-uniform) polynomial-size circuits and polynomial-time algorithms that take
(non-uniform) advice of polynomially bounded length.

The main motivation for considering non-uniform polynomial-size circuits is
that their computational limitations imply analogous limitations on polynomial-
time algorithms. The hope is that, as is often the case in mathematics and Science,
disposing of an auxiliary condition (i.e., uniformity) that seems secondary® and is
not well-understood may turn out fruitful. In particular, the (non-uniform) circuit
model facilitates a low-level analysis of the evolution of a computation, and allow
for the application of combinatorial techniques. The benefit of this approach has
been demonstrated in the study of restricted classes of circuits (see Sections B.2.2
and B.2.3).

Polynomial-time algorithms that take polynomially bounded advice are useful
in modeling auxiliary information available to possible efficient strategies that are
of interest to us. Indeed, the typical cases are the modeling of adversaries in
the context of cryptography and the modeling of arbitrary randomized algorithms
in the context of derandomization. Furthermore, the model of polynomial-time
algorithms that take advice allows for a quantitative study of the amount of non-
uniformity, ranging from zero to polynomial.

3.1.1 Boolean Circuits

We refer the reader to §1.2.4.1 for a definition of (families of) Boolean circuits
and the functions computed by them. For concreteness and simplicity, we assume
throughout this section that all circuits has bounded fan-in. We highlight the
following result stated in §1.2.4.1:

Theorem 3.1 (circuit evaluation): There ezists a polynomial-time algorithm that,
given a circuit C : {0,1}" — {0,1}™ and an n-bit long string z, returns C(z).

Recall that the algorithm works by performing the “value-determination” process
that underlies the definition of the computation of the circuit on a given input.

IThe common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question;
that is, that resolving the latter question by proving that P # AP is not easier than proving
that NP does not have polynomial-size circuits. For further discussion see Appendix B.2 and
Section 3.2.3.

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 111

This process assigns values to each of the circuit vertices based on the values of
its children (or the values of the corresponding bit of the input, in the case of an
input-terminal vertex).

Circuit size as a complexity measure. We recall the definitions of circuit
complexity presented in to §1.2.4.1: The size of a circuit is defined as the number
of edges, and the length of its description is almost linear in the latter; that is, a
circuit of size s is commonly described by the list of its edges and the labels of its
vertices, which means that its description length is O(slogs). We are interested
in families of circuits that solve computational problems, and thus we say that the
circuit family (C),en computes the function f : {0,1}* — {0,1}* if for every
x € {0,1}* it holds that C|;|(z) = f(x). The size complexity of this family is the
function s : N — N such that s(n) is the size of C,,. The circuit complexity of a
function f, denoted sy, is the size complexity of the smallest family of circuits that
computes f. An equivalent alternative follows.

Definition 3.2 (circuit complexity): The circuit complexity of f : {0,1}* — {0,1}*
is the function sy : N — N such that s;(n) is the size of the smallest circuit that
computes the restriction of f to m-bit strings.

We stress that non-uniformity is implicit in this definition, because no conditions
are made regarding the relation between the various circuits used to compute the
function on different input lengths.

An interesting feature of Definition 3.2 is that, unlike in the case of uniform
model of computation, the circuit complexity is the actual complexity of the func-
tion rather than an upper-bound on its complexity (cf. §1.2.3.4 and Section 4.2.1).
This is a consequence of the fact that the circuit model has no “free parameters”
(e.g., the finite algorithm in use).?

We will be interested in the class of problems that are solvable by families of
polynomial-size circuits. That is, a problem is solvable by polynomial-size circuits if
it can be solved by a function f that has polynomial circuit complexity (i.e., there
exists a polynomial p such that sf(n) < p(n), for every n € N).

A detour: uniform families. A family of polynomial-size circuits (C,,)n is
called uniform if given n one can construct the circuit C,, in poly(n)-time. More
generally:

Definition 3.3 (uniformity): A family of circuits (C,)n is called uniform if there
exists an algorithm A that on input n outputs C,, within a number of steps that is
polynomial in the size of C,,.

We note that stronger notions of uniformity have been considered. For example,
one may require the existence of a polynomial-time algorithm that on input n and
v, returns the label of vertex v as well as the list of its children (or an indication
that v is not a vertex in C,,). For further discussion see Section 5.2.3.

2 Advanced comment: Note that such “free parameters” underly linear speedup results such
as Exercise 4.7, which in turn prevent the specification of the exact complexities of functions.

112 CHAPTER 3. VARIATIONS ON P AND NP

Proposition 3.4 If a problem is solvable by a uniform family of polynomial-size
circuits then it is solvable by a polynomial-time algorithm.

As was hinted in §1.2.4.1, the converse holds as well. The latter fact follows easily
from the proof of Theorem 2.20 (see also the proof of Theorem 3.6).

Proof: On input x, the algorithm operates in two stages. In the first stage,

it invokes the algorithm guaranteed by the uniformity condition, on input n ef

|z|, and obtains the circuit C,,. Next, it invokes the circuit evaluation algorithm
(asserted in Theorem 3.1) on input C,, and z, and obtains C,(z). Since the size
and the description length of C,, are polynomial in n, it follows that each stage
of our algorithm runs in polynomial time (i.e., polynomial in n = |z|). Thus, the
algorithm emulates the computation of C|;(x), and does so in time polynomial in
the length of its own input (i.e., z). [

3.1.2 Machines that take advice

General (non-uniform) families of polynomial-size circuits and uniform families of
polynomial-size circuits are two extremes with respect to the “amounts of non-
uniformity” in the computing device. Intuitively, in the former, non-uniformity
is only bounded by the size of the device, whereas in the latter the amounts of
non-uniformity is zero. Here we consider a model that allows to decouple the size
of the computing device from the amount of non-uniformity, which may indeed
range from zero to the device’s size. Specifically, we consider algorithms that “take
a non-uniform advice” that depends only on the input length. The amount of
non-uniformity will be defined to equal the length of the corresponding advice (as
a function of the input length). Thus, we specialize Definition 1.12 to the case of
polynomial-time algorithms.

Definition 3.5 (non-uniform polynomial-time and P/poly): We say that a func-
tion f is computed in polynomial-time with advice of length ¢ : N — N if these exists
a polynomial-time algorithm A and an infinite advice sequence (an),eN Such that
1. For every x € {0,1}*, it holds that A(a|.|,z) = f(z).
2. For every n € N, it holds that |a,| = {(n).

We say that a computational problem can be solved in polynomial-time with ad-
vice of length € if a function solving this problem can be computed within these
resources. We denote by P/l the class of decision problems that can be solved in
polynomial-time with advice of length ¢, and by P/poly the union of P/p taken
over all polynomials p.

Clearly, P/0 = P. But allowing some (non-empty) advice increases the power of
the class (see Theorem 3.7). and allowing advice of length comparable to the time
complexity yields a formulation equivalent to circuit complexity (see Theorem 3.6).
We highlight the greater flexibility available by the formalism of machines that take
advice, which allows for separate specification of time complexity and advice length.
(Indeed, this comes at the expense of a more cumbersome formulation, when we
wish to focus on the case that both measures are equal.)

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 113

Relation to families of polynomial-size circuits. As hinted before, the class
of problems solvable by polynomial-time algorithms with polynomially bounded
advice equals the class of problems solvable by families of polynomial-size circuits.
For concreteness, we state this fact for decision problems.

Theorem 3.6 A decision problem is in P /poly if and only if it can be solved by a
family of polynomial-size circuits.

More generally, for any function ¢, the following proof establishes that equivalence
of the power of machines having time complexity ¢ and taking advice of length ¢
versus families of circuits of size polynomially related to .

Proof Sketch: Suppose that a problem can be solved by a polynomial-time al-
gorithm A using the polynomially bounded advice sequence (a,,),cn. We obtain
a family of polynomial-size circuits that solves the same problem by adapting the
proof of Theorem 2.20. Specifically, we observe that the computation of A(ay|,z)
can be emulated by a circuit of poly(|z|)-size, which incorporates a|,| and is given
x as input. That is, we construct a circuit C,, such that C,,(z) = A(a,,z) holds
for every z € {0,1}™ (analogously to the way C, was constructed in the proof
of Theorem 2.20, where it holds that C.(y) = Mg(x,y) for every y of adequate
length).

On the other hand, given a family of polynomial-size circuits, we obtain a
polynomial-time algorithm for emulating this family using advice that provide the
description of the relevant circuits. Specifically, we use the evaluation algorithm
asserted in Theorem 3.1, while using the circuit’s description as advice. That is, we
use the fact that a circuit of size s can be described by a string of length O(slog s),
where the log factor is due to the fact that a graph with v vertices and e edges can
be described by a string of length 2elog, v. O

Another perspective. A set S is called sparse if there exists a polynomial p such
that for every n it holds that |SN{0,1}"| < p(n). We note that P/poly equals the
class of sets that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SAT
is Cook-reducible to a sparse set if and only if NP C P/poly. In contrast, SAT is
Karp-reducible to a sparse set if and only if NP = P (see Exercise 3.12).

The power of P/poly. In continuation to Theorem 1.13 (which focuses on advice
and ignores the time complexity of the machine that takes this advice), we prove
the following (stronger) result.

Theorem 3.7 (the power of advice, revisited): The class P/1 C P/poly contains
P as well as some undecidable problems.

Actually, P/1 C P/poly. Furthermore, by using a counting argument, one can
show that for any two polynomially bounded functions ¢1,¢; : N — N such that
¢y — ¢y > 0 is unbounded, it holds that P/¢; is strictly contained in P/ls; see
Exercise 3.3.

114 CHAPTER 3. VARIATIONS ON P AND NP

Proof: Clearly, P = P/0 C P/1 C P/poly. To prove that P/1 contains some
undecidable problems, we review the proof of Theorem 1.13. The latter proof
established the existence of uncomputable Boolean function that only depend on
their input length. That is, there exists an undecidable set S C {0,1}* such that
for every pair of equal length strings (x,y) it holds that x € S if and only if y € S.
In other words, for every = € {0,1}* it holds that = € S if and only if 1/*/ € S. But
such a set is easily decidable in polynomial-time by a machine that takes one bit
of advice; that is, consider the algorithm A and the advice sequence (a,), N such
that a, = 1if and only if 1" € S and A(a,z) = a (for @ € {0,1} and = € {0,1}*).
Note that indeed A(aj,,z) =1 ifandonlyifz € S.

3.2 The Polynomial-time Hierarchy (PH)

We start with an informal motivating discussion, which will be made formal in
Section 3.2.1.

Sets in AP can be viewed as sets of valid assertions that can be expressed as
quantified Boolean formulae using only existential quantifiers. That is, a set S is
in NP if there is a Karp-reduction of S to the problem of deciding whether or not
an existentially quantified Boolean formula is valid (i.e., an instance x is mapped
by this reduction to a formula of the form 3y - - - Iypm(2) P (Y1, -, Um(a)))-

The conjectured intractability of A”P seems due to the long sequence of exis-
tential quantifiers. Of course, if somebody else (i.e., a “prover”) were to provide
us with an adequate assignment (to the y;’s) whenever such an assignment exists
then we would be in good shape. That is, we can efficiently verify proofs of validity
of existentially quantified Boolean formulae.

But what if we want to verify the validity of a universally quantified Boolean
formulae (i.e., formulae of the form Vy; ---Vy,oé(y1,...,ym)). Here we seem to
need the help of a totally different entity: we need a “refuter” that is guaranteed
to provide us with a refutation whenever such exist, and we need to believe that if
we were not presented with such a refutation then it is the case that no refutation
exists (and hence the universally quantified formulae is valid). Indeed, this new
setting (of a “refutation system”) is fundamentally different from the setting of a
proof system: In a proof system we are only convinced by proofs (to assertions)
that we have verified by ourselves, whereas in the “refutation system” we trust the
“refuter” to provide evidence against false assertions.> Furthermore, there seems
to be no way of converting one setting (e.g., the proof system) into another (resp.,
the refutation system).

Taking an additional step, we may consider a more complicated system in which
we use two agents: a “supporter” that tries to provide evidence in favor of an
assertion and an “objector” that tries to refute it. These two agents conduct a
debate (or an argument) in our presence, exchanging messages with the goal of

3More formally, in proof systems the soundness condition relies only on the actions of the
verifier, whereas completeness also relies on the prover using an adequate strategy. In contrast, in
“refutation system” the soundness condition relies on the proper actions of the refuter, whereas
completeness does not depend on the refuter’s actions.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 115

making us (the referee) rule their way. The assertions that can be proven in this
system take the form of general quantified formulae with alternating sequences
of quantifiers, where the number of alternations equals the number of rounds of
interaction in the said system. We stress that the exact length of each sequence
of quantifiers of the same type does not matter, what matters is the number of
alternations, denoted k.

The aforementioned system of alternations can be viewed as a two-party game,
and we may ask ourselves which of the two parties has a k-move winning strategy.
In general, we may consider any (0-1 zero-sum) two-party game, in which the game’s
position can be efficiently updated (by any given move) and efficiently evaluated.
For such a fixed game, given an initial position, we may ask whether the first party
has a (k-move) winning strategy. It seems that answering this type of question for
some fixed k& does not necessarily allow answering it for £ + 1. We now turn to
formalize the foregoing discussion.

3.2.1 Alternation of quantifiers

In the following definition, the aforementioned propositional formula ¢, is replaced
by the input x itself. (Correspondingly, the combination of the Karp-reduction and
a formula evaluation algorithm are replaced by the verification algorithm V (see
Exercise 3.7).) This is done in order to make the comparison to the definition
of N'P more transparent (as well as to fit the standard presentations). We also
replace a sequence of Boolean quantifiers of the same type by a single corresponding
quantifier that quantifies over all strings of the corresponding length.

Definition 3.8 (the class Xx): For a natural number k, a decision problem S C
{0,1}* is in Sy if there exists a polynomial p and a polynomial time algorithm V
such that © € S if and only if

Jy; €0, 1}?(\$\)vy2 {0, 1}?(\$\)§|y3 {0, 1}P(|w|) - Quyr €40, 1}P(|w|)
s.t. V(z,y1,.09k) =1

where Qy, is an existential quantifier if k is odd and is a universal quantifier oth-
erwise.

Note that ¥; = NP and ¥y = P. The Polynomial-time Hierarchy, denoted PH,
is the union of all the aforementioned classes (i.e., PH = U,Xy), and Xy is often
referred to as the k*" level of PH. The levels of the Polynomial-time Hierarchy

can also be defined inductively, by defining ;41 based on Il def coX, where

o € {{0,1}*\ S : S € i} (cf. Eq. (2.4)).

Proposition 3.9 For every k >0, a set S is in Y41 if and only if there exists a
polynomial p and a set S' € Iy, such that S = {z : Jy€{0,1}7U=D) st. (z,y)€ S'}.

Proof: Suppose that S is in 341 and let p and V be as in Definition 3.8. Then
define S’ as the set of pairs (z,y) such that |y| = p(|z|) and

Vz1 €40, 1320032, € {0, 137050 . Qrzp € {0, 130D st V(w,y, 21, oy 20) = 1.

116 CHAPTER 3. VARIATIONS ON P AND NP

Note that = € S if and only if there exists y € {0,1}?(*D) such that (z,y) € S’, and
that S’ € II; (see Exercise 3.6).

On the other hand, suppose that for some polynomial p and a set S’ € II}, it
holds that S = {z : 3y € {0,1}*(=D st. (z,y) € S'}. Then, for some p' and V', it
holds that (z,y) € S’ if and only if |y| = p(|z|) and

Vz €{0, 111503z, e {0, 110D o Q2 € {0,137 04D st V' (2, y, 21, ooy 20) # 1

(see Exercise 3.6 again). By suitable encoding (of y and the z;’s as strings of length
max(p(|z]),p'(|z]))) and a trivial modification of V', we conclude that S € Xjy;.

Determining the winner in k-move games. Definition 3.8 can be interpreted
as capturing the complexity of determining the winner in certain efficient two-party
game. Specifically, we refer to two-party games that satisfy the following three
conditions:

1. The parties alternate in taking moves that effect the game’s (global) position,
where each move has a description length that is bounded by a polynomial
in the length of the current position.

2. The current position can be updated in polynomial-time based on the previ-
ous position and the current party’s move.*

3. The winner in each position can be determined in polynomial-time.

A set S € X can be viewed as the set of initial positions (in a suitable game) for
which the first party has a k-move winning strategy. Specifically, € S if starting
at the initial position z, there exists move y; for the first party, such that for every
response move y, of the second party, there exists move y3 for the first party, etc,
such that after £ moves the parties reach a position in which the first party wins,
where the final position as well as which party wins in it are determined by the
predicate V' (in Definition 3.8). That is, V(x, y1, ..., yx) = 1 if the position that is
reached when starting from position x and taking the move sequence yi, ..., yx is a
winning position for the first party.

The collapsing effect of some equalities. Extending the intuition that un-
derlies the NP # coN'P conjecture, it is commonly conjectured that 3, # IIj for
every k € N. The failure of this conjecture causes the collapse of the Polynomial-
time Hierarchy to the corresponding level.

4Note that, since we consider a constant number of moves, the length of all possible final
positions is bounded by a polynomial in the length of the initial position, and thus all items have
an equivalent form in which one refers to the complexity as a function of the length of the initial
position. The latter form allows for a smooth generalization to games with a polynomial number
of moves (as in Section 5.4), where it is essential to state all complexities in terms of the length
of the initial position.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 117

Proposition 3.10 For every k > 1, if ¥ = Iy, then Xp41 = X, which in turn
implies PH = X.

The converse also holds (i.e., PH = X implies Xj1 = Xy and Xy = I1j). Needless
to say, Proposition 3.10 does not seem to hold for & = 0.

Proof: Assuming that X = II;, we first show that ¥;11 = X§. For any set S
in Ygy1, by Proposition 3.9, there exists a polynomial p and a set S’ € II; such
that S = {z : Jy€{0,1}?(=D) st. (z,y)€S'}. Using the hypothesis, we infer that
S' € ¥y, and so (using Proposition 3.9 and k > 1) there exists a polynomial p" and
aset S € I, such that $" = {z’ : Jy' € {0, 1}* (') st. (2', ") €S"}. It follows
that

S ={z:3ye{0,1}?1*D3z {0, 11X @9 st ((z,y),2)eS"}.

By collapsing the two adjacent existential quantifiers (and using Proposition 3.9
yet again), we conclude that S € X. This proves the first part of the proposition.

Turning to the second part, we note that X1 = 3y (or, equivalently, IT; =
1) implies ¥j42 = Y41 (again by using Proposition 3.9), and similarly X,4» =
Y41 for any j > k. Thus, X441 = Xy implies PH=%;. W

Decision problems that are Cook-reductions to NP. The Polynomial-time
Hierarchy contains all decision problems that are Cook-reductions to NP (see
Exercise 3.4). As shown next, the latter class contains many natural problems.
Recall that in Section 2.2.2 we defined two types of optimization problems and
showed that under some natural conditions these two types are computationally
equivalent (under Cook reductions). Specifically, one type of problems referred
to finding solutions that have a value exceeding some given threshold, whereas the
second type called for finding optimal solutions. In Section 2.3 we presented several
problems of the first type, and proved that they are NP-complete. We note that
corresponding versions of the second type are believed not to be in NP. For example,
we discussed the problem of deciding whether or not a given graph G has a clique
of a given size K, and showed that it is NP-complete. In contract, the problem of
deciding whether or not K is the maximum clique size of the graph G is not known
(and quite unlikely) to be in NP, although it is Cook-reducible to N'P. Thus, the
class of decision problems that are Cook-reducible to AP contains many natural
problems that are unlikely to be in NP. The Polynomial-time Hierarchy contains
all these problems.

Complete problems and a relation to AC0. We note that quantified Boolean
formulae with a bounded number of quantifier alternation provide complete prob-
lems for the various levels of the Polynomial-time Hierarchy (see Exercise 3.7).
We also note the correspondence between these formulae and (highly uniform)
constant-depth circuits of unbounded fan-in that get as input the truth-table of
the underlying (quantifier-free) formula (see Exercise 3.8).

118 CHAPTER 3. VARIATIONS ON P AND NP

3.2.2 Non-deterministic oracle machines

The Polynomial-time Hierarchy is commonly defined in terms of non-deterministic
polynomial-time (oracle) machines that are given oracle access to a set in the lower
level of the same hierarchy. Such machines are defined by combining the definitions
of non-deterministic (polynomial-time) machines (cf. Definition 2.7) and oracle
machines (cf. Definition 1.11). Specifically, for an oracle f : {0,1}* — {0,1}*, a
non-deterministic oracle machine M, and a string z, one considers the question of
whether or not there exists an accepting (non-deterministic) computation of M on
input x and access to the oracle f. The class of sets that can be accepted by non-
deterministic polynomial-time (oracle) machines with access to f is denoted NP
(We note that this notation makes sense because we can associate the class NP
with a collection of machines that lends itself to be extended to oracle machines.)
For any class of decision problems C, we denote by N’ P the union of NP’ taken
over all decision problems f in C. The following result provides an alternative
definition of the Polynomial-time Hierarchy.

Proposition 3.11 For every k > 1, it holds that X1 = NP>r,

Proof: The first direction (i.e., Xp11 C ./\/'PZ’”‘) is almost straightforward: For
any S € Xgy1, let S € IIy and p be as in Proposition 3.9; that is, S = {z :
Jy € {0,1}P0=) s.t. (w,y) € S'}. Consider the non-deterministic oracle machine
that, on input x, non-deterministically generates y € {0,1}?(*D) and accepts if and
ounly if (the oracle indicates that) (z,y) € S’. This machine demonstrates that
S € NP = NP¥ where the equality holds by letting the oracle machine flip
each (binary) answer that is provided by the oracle.®

For the opposite direction (i.e., NPE: C Yk+1), let M be a non-deterministic
polynomial-time oracle machine that accepts S when given oracle access to S' € Xy,
Note that (unlike the machine constructed in the foregoing argument) machine M
may issue several queries to S’, and these queries may be determined based on
previous oracle answers. To simplify the argument, we assume, without loss of
generality, that at the very beginning of its execution machine M guesses (non-
deterministic) all oracle answers and accepts only if the actual answers match its
guesses. Thus, M’s queries to the oracle are determined by its input, denoted z,
and its non-deterministic choices, denoted y. We denote by ¢(*)(x,y) the i*" query
made by M (on input z and non-deterministic choices y), and by a(*(z,y) the
corresponding (a priori) guessed answer (which is a bit in y). Thus, M accepts z
if and only if there exists y € {0, 1}P°¥(2D such that the following two conditions
hold:

1. Machine M accepts z, on input z and non-deterministic choices y, when for
every i it holds that the i*" oracle query made by M is answered by the
value a(” (z,y). We stress that we do not assume here that these answers are
consistent with S’; we merely refer to the decision of M on a given input,

5Do not get confused by the fact that the class of oracles may not be closed under comple-
mentation. From the point of view of the oracle machine, the oracle is merely a function, and the
machine may do with its answer whatever it pleases (and in particular negate it).

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 119

when it makes a specific sequence of non-deterministic choices, and is given
specific oracle answers.

2. Bach bit a(”(z,y) is consistent with S’; that is, for every 4, it holds that
a')(z,y)=1if and only if ¢ (z,y)€S".

Denoting the first event by A(z,y) and letting ¢(z,y) < poly(]z|) denote the num-
ber of queries made by M, it follows that x € S if and only if

q(z,y)

[Ay A A (@ (y)=1) & (@ @yes))

=1
Denoting the verification algorithm of S’ by V', it holds that z € S if and only if

q(z,y)

By | Alz,y) A ((a(i)(w,y) 1) & vy - Quu! Vi (@), 017,y

=1

The proof is completed by observing that the foregoing expression can be rear-
ranged to fit the definition of ¥;11. Details follow.

Starting with the foregoing expression, we first pull all quantifiers outside, and
obtain a quantiﬁed expression with k£ 4+ 1 alternations, starting with an existential
quantifier.’ (We get k + 1 alternations rather than k, because a9 (z,y) =0 intro-

v), ©) (i))z]_

duces an expression of the form —Ely()Vy DOk Y () V(g (Y17y U

?

which in turn is equivalent to the expression Vy§)Ely l) - Qp y —IV’(@ (z,y), ygi),

1).) Once this is done, we may incorporate the computation of all the 9 (x,y)’s
(and a(?) (z,y)’s) as well as the polynomial number of invocations of V' (and other
logical operations) into the new verification algorithm V. It follows that S € Xj41.

2

A general perspective — what does C:°® mean? By the foregoing discussion
it should be clear that the class Clcz can be defined for two complexity classes C;
and Cs, provided that C1 is associated with a class of machines that extends naturally
in a way that allows for oracle access. Actually, the class C1 is not defined based
on the class C; but rather by analogy to it. Specifically, suppose that C; is the
class of sets that are recognizable (or rather accepted) by machines of certain type
(e.g., deterministic or non-deterministic) with certain resource bounds (e.g., time
and/or space bounds). Then, we consider analogous oracle machines (i.e., of the
same type and with the same resource bounds), and say that S € €1 if there
exists an adequate oracle machine M; (i.e., of this type and resource bounds) and
a set Sy € Cy such that Mls2 accepts the set S.

6For example, note that for predicates P; and Pa, the expression Jy (P1(y) < 3z P2(y, 2)) is
equivalent to the expression Jy ((Pi(y) A 3z Pa(y, z)) V ((—=Pi(y) A =3z P>(y, 2))), which in turn
is equivalent to the expression Jy3z'Vz"" ((P1(y) A Pa(y,2")) V ((=Pi(y) A —=Pa(y, z"))). Note
that pulling the quantifiers outside in /\Ezlfly(i)VZ(i)P(y(i), z(i)) yields an expression of the type
Jy), L yDyzD)) AL, P(y®,2(®).

o)

oy

)=

120 CHAPTER 3. VARIATIONS ON P AND NP

Decision problems that are Cook-reductions to NP, revisited. Using the
foregoing notation, the class of decision problems that are Cook-reductions to NP
is denoted PNP, and thus is a subset of NPVP = ¥, (see Exercise 3.9). In
contrast, recall that the class of decision problems that are Karp-reductions to NP
equals N'P.

3.2.3 The P/poly-versus-NP Question and PH

As stated in Section 3.1, a main motivation for the definition of P/poly is the
hope that it can serve to separate P from NP (by showing that A'P is not even
contained in P/poly, which is a (strict) superset of P). In light of the fact that
P /poly extends far beyond P (and in particular contains undecidable problems),
one may wonder if this approach does not run the risk of asking too much (since it
may be that AP is in P/poly even if P # NP). The common feeling is that the
added power of non-uniformity is irrelevant with respect to the P-vs-NP Question.
Ideally, we would like to know that NP C P/poly may occur ounly if P = NP
(which may be phrased as saying that the Polynomial-time Hierarchy collapses
to its zero level). The following result seems to get close to such an implication,
showing that AP C P/poly may occur only if the Polynomial-time Hierarchy
collapses to its second level.

Theorem 3.12 If NP C P/poly then ¥y = I,.

Recall that Yo = I, implies PH = X2 (see Proposition 3.10). Thus, an unexpected
behavior of the non-uniform complexity class P/poly implies an unexpected be-
havior in the world of uniform complexity (i.e., the ability to reduce any constant
number of quantifier alternations to two quantifier alternations).

Proof: Using the hypothesis (i.e., NP C P/poly) and starting with an arbitrary
set S € Il,, we shall show that S € 5. Loosely speaking, S € II, means that
x € S if and only if for all y there exists a z such that some (fixed) polynomial-
time verifiable condition regarding (z,y, z) holds. Note that the residual condition
regarding (z,y) is of the NP-type, and thus (by the hypothesis) it can be verified
by a polynomial-size circuit. This suggests saying that z € S if and only if there
exists an adequate circuit C' such that for all y it holds that C'(x,y) = 1. Thus, we
managed to switch the order of the universal and existential quantifiers. Specifi-
cally, the resulting assertion is of the desired X»-type provided that we can either
verify the adequacy condition in coN'P (or even in ¥3) or keep out of trouble even
in the case that z ¢ S and C is inadequate. In the following proof we implement
the latter option by observing that the hypothesis yields small circuits for NP-
search problems (and not only for NP-decision problems). Specifically, we obtain
(small) circuits that given (z,y) find an NP-witness for (z,y) (whenever such a
witness exists) and relying on the fact that we can efficiently verify the correctness
of NP-witnesses. (The alternative approach of providing a coNP-type procedure
for verifying the adequacy of the circuit is pursued in Exercise 3.11.)

Let S be an arbitrary set in IIs. Then, by Proposition 3.9, there exists a
polynomial p and a set S’ € NP such that S = {z : Vy € {0, 1}?(=D (z,4) € §'}.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 121

Let R’ € PC be the witness-relation corresponding to S’; that is, there exists a
polynomial p', such that 2’ = (z,y) € S’ if and only if there exists z € {0, 1}¥ (1='])
such that (z',z2) € R'. It follows that

S = {z: ¥ye{0,1}*2D3z ¢ {0, 1} =)D ((z.y), 2) € R'}.

By the reduction of PC to NP (see the proof of Theorem 2.6 and further discus-
sion in Section 2.2.1), the theorem’s hypothesis (i.e., NP C P/poly) implies the
existence of polynomial-size circuits for solving the search problem of R’. Using
the existence of these circuits, it follows that for any x € S there exists a small
circuit C' such that for every y it holds that C'(z,y) € R'(x,y), whereas for any
x ¢ S there exists a y such that (x,y) ¢ S" and hence C'(z,y) & R'(z,y) for any
circuit C' (for the trivial reason that R'(x,y) = (). But let us first spell-out what
we mean by polynomial-size circuits for solving a search problem as well as further
justify their existence for the search problem of R'.

In Section 3.1, we have focused on polynomial-size circuits that solve decision
problems. However, the definition sketched in Section 3.1.1 also applies to solving
search problems, provided that an appropriate encoding is used for allowing so-
lutions of possibly varying lengths (for instances of fixed length) to be presented
as strings of fixed length. Next observe that combining the Cook-reduction of PC
to NP with the hypothesis NP C P/poly, implies that PC is Cook-reducible to
P /poly. In particular, this implies that any search problem in PC can be solved by
a family of polynomial-size circuits. Note that the resulting circuit that solves n-bit
long instances of such a problem may incorporate polynomially (in n) many circuits,
each solving a decision problem for m-bit long instances, where m € [poly(n)].
Needless to say, the size of the resulting circuit that solves the search problem
of the aforementioned R' € PC (for instances of length n) is upper-bounded by
poly(n) - 0™ poly(m).

It follows that z € S if and only if there ezists a poly(|z| + p(|z|))-size circuit
C" such that for all y€{0,1}*U=D it holds that ((x,y),C'(z,y)) € R'. Note that in
the case that € S we use the circuit C' that is guaranteed for inputs of length
|z] + p(|z|) by the foregoing discussion’, whereas in the case that z ¢ S it does not
matter which circuit C’ is used (because in that case there exists a y such that for
all z it holds that ({(x,y),z)) ¢ R').

The key observation regarding the foregoing condition (i.e., 3C'Vy ((z,y),C'(x,y)) €
R') is that it is of the desired form (of a Xs statement). Specifically, consider
the polynomial-time verification procedure V that given x,y and the descrip-
tion of the circuit C’, first computes z «— C'(z,y) and accepts if and only if
({z,y),z) € R', where the latter condition can be verified in polynomial-time (be-
cause R’ € PC). Denoting the description of a potential circuit by (C'), the
aforementioned (polynomial-time) computation of V' is denoted V(z,(C’),y), and
indeed z € S if and only if

3(C") e{o, 1yperteltrieNyy e {0, 131D V (2, (C), y) = 1.

"Thus, C' may actually depend only on ||, which in turn determines p(|z|).

122 CHAPTER 3. VARIATIONS ON P AND NP

Having established that S € X, for an arbitrary S € I, we conclude that IT, C 3.
The theorem follows (by applying Exercise 3.9.4). [l

Chapter Notes

The class P/poly was defined by Karp and Lipton [130] as part of a general for-
mulation of “machines which take advice” [130]. They also noted the equivalence
to the traditional formulation of polynomial-size circuits as well as the effect of
uniformity (Proposition 3.4).

The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [201]. A
third equivalent formulation of PH (via so-called “alternating machines”) can be
found in [48].

The implication of the failure of the conjecture that AP is not contained in
P /poly on the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered by
Karp and Lipton [130]. This interesting connection between non-uniform and uni-
form complexity provides the main motivation for presenting P/poly and PH in
the same chapter.

Exercises

Exercise 3.1 (a small variation on the definitions of P/poly) Using an ad-
equate encoding of strings of length smaller than n as n-bit strings (e.g., © €
Uicn{0,1}" is encoded as 210"~ 1*1=1) define circuits (resp., machines that take
advice) as devices that can handle inputs of various lengths up to a given bound
(rather than as devices that can handle inputs of a fixed length). Show that the
class P /poly remains invariant under this change (and Theorem 3.6 remains valid).

Exercise 3.2 (sparse sets) A set S C {0,1}* is called sparse if there exists a
polynomial p such that |S N {0,1}"| < p(n) for every n.
1. Prove that any sparse set is in P/poly. Note that a sparse set may be
undecidable.

2. Prove that a set is in P/poly if and only if it is Cook-reducible to some sparse
set.

Guideline: For the forward direction of Part 2, encode the advice sequence (an), N
as a sparse set {(1",4,0,,:) : n € N, i < |an|}, where o,; is the it" bit of a,,. For the
opposite direction, note that on input z the Cook-reduction makes queries of length at
most poly(|z|), and so emulating the reduction on an input of length n only requires
knowledge of all the strings that are in the sparse set and have length at most poly(n).

Exercise 3.3 (advice hierarchy) Prove that for any two functions ¢,6 : N — N
such that (n) < 2"~! and § is unbounded, it holds that P /¢ is strictly contained
in P/(£+6).

Guideline: For every sequence @ = (an), o such that |a,| = £(n) + §(n), consider the
set Sz that encodes @ such that = € Sz N {0,1}™ if and only if the idx(z)"™ bit in a,

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 123

equals 1 (and idx(z) < |an|), where idx(x) denotes the index of z in {0,1}". For more
details see Section 4.1.

Exercise 3.4 Prove that ¥, contains all sets that are Cook-reducible to N'P.

Guideline: This is quite obvious when using the definition of 35 as presented in Sec-
tion 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using some of the
ideas that underlie the proof of Theorem 2.33, while noting that a conjunction of NP and
coNP assertions forms an assertion of type Y2 (see also the second part of the proof of
Proposition 3.11).

Exercise 3.5 Let A = NP N coNP. Prove that A equals the class of decision
problems that are Cook-reducible to A (i.e., A = PA).

Guideline: See proof of Theorem 2.33.

Exercise 3.6 (the class II;) Recall that II; is defined to equal coXy, which in
turn is defined to equal {{0,1}*\ S : S € £;}. Prove that for any natural number
k, a decision problem S C {0,1}* is in II; if there exists a polynomial p and a
polynomial time algorithm V' such that « € S if and only if

vy, €40, 130D 3y, € {0, 130Dy, € {0, 1320<D . .. Qyy € {0, 1}#(1#D
s.t. V(z,y1,.09k) =1

where @y is a universal quantifier if £ is odd and is an existential quantifier other-
wise.

Exercise 3.7 (complete problems for the various levels of PH) A k-alternating
quantified Boolean formula is a quantified Boolean formula with up to &k alternations
between existential and universal quantifiers, starting with an existential quanti-
fier. For example, 3z1322Vz3h(21, 22, 23) (where the z;’s are Boolean variables) is

a 2-alternating quantified Boolean formula. Prove that the problem of deciding
whether or not a k-alternating quantified Boolean formula is valid is X-complete
under Karp-reductions. That is, denoting the aforementioned problem by kQBF,
prove that kQBF is in X; and that every problem in ¥ is Karp-reducible to kQBF.

Exercise 3.8 (on the relation between PH and AC’) Note that there is an
obvious analogy between PH and constant-depth polynomial-size circuits of un-
bounded fan-in, where existential (resp., universal) quantifiers are represented by
“large” \/ (resp., \) gates. To articulate this relationship, consider the following
definitions.

e A family of circuits {Cn} is called highly uniform if there exists a polynomial-
time algorithm that answers local queries regarding the structure of the rel-
evant circuit. Specifically, on input (N, u,v), the algorithm determines the
type of gates represented by the vertices u and v in Cy as well as whether
there exists a directed edge from u to v. Note that this algorithm operates
in time that polylogarithmic in the size of Cy.

We focus on family of polynomial-size circuits, meaning that the size of Cy
is polynomial in N, which in turn represents the number of inputs to Cy.

124 CHAPTER 3. VARIATIONS ON P AND NP

e Fixing a polynomial p, a p-succinctly represented input Z € {0,1}¥ is a circuit
cz of size at most p(log, N) such that for every i € [N] it holds that cz (i)
equals the ¢*" bit of Z.

e For a fixed family of highly uniform circuits {Cy } and a fixed polynomial p,
the problem of evaluating a succinctly represented input is defined as follows.
Given p-succinct representation of an input Z € {0,1}Y, determine whether
or not Cny(Z) = 1.

For every k and every S € Xj, show that there exists a family of highly uniform
unbounded fan-in circuits of depth k& and polynomial-size such that S is Karp-
reducible to evaluating a succinctly represented input (with respect to that family of
circuits). That is, the reduction should map an instance z € {0,1}" to a p-succinct
representation of some Z € {0,1}" such that # € § if and only if Cy(Z) = 1.
(Note that Z is represented by a circuit ¢z of size at most p(log, N), and that it
follows that |cz| < poly(n) and thus N < exp(poly(n)).)®

Guideline: Let S € X, and let V be the corresponding verification algorithm as in
Definition 3.8. That is, x € S if and only if Jy1Vys - - - Qryk, where each y; € {0, 1}p°1y(‘z‘)
such that V (z,y1,...,yx) =1. Then, for m = poly(|z|) and N = 2¥™ consider the fixed
circuit Cn (Z) = vile[2""] /\ige[2"“] e Q’ike[2""]Zi1,iz,---,ik: and the problem of evaluating
Cn at an input consisting of the truth-table of V(z,---) (i.e., when setting Z;, i,,... i, =
V(x,i1,...,i), where [2™] = {0,1}™). Note that the size of Cx is O(N).?

Exercise 3.9 Verify the following facts:

1. For every k > 1, it holds that X C P+ C Ykt

(Note that, for any complexity class C, the class P¢ is the class of sets that
are Cook-reducible to some set in C. In particular, P¥ = P.)

2. For every k > 1, I, C PWr C Ilpy,.

(Hint: For any complexity class C, it holds that P¢ = P<C and P¢ = coPC.)
3. Forevery k > 1, it holds that X C Ilx41 and Il C Xg41. Thus, PH = UgIl.
4. For every k > 1, if), CIIj (resp., Il C X)) then X; = II,.

(Hint: For any S € I}, (resp., S € Xy), apply the hypothesis to {0,1}*\ S.)
Exercise 3.10 In continuation to Exercise 3.7, prove that following claims:

1. SAT is computationally equivalent to 1QBF.

8 Assuming P # NP, it cannot be that N < poly(n) (because circuit evaluation can be
performed in time polynomial in the size of the circuit).

9 Advanced comment: the computational limitations of .AC? circuits (see, e.g., [78, 110]) imply
limitations on the functions of a generic input Z that the aforementioned circuits Cy can compute.
Unfortunately, these computational limitations do not seem to provide useful information on the
limitations of functions of inputs Z that have succinct representation (as obtained by setting
Ziy in,..ip = V(x,i1,...,1), where V is a polynomial-time algorithm). This fundamental problem
is “resolved” in the context of “relativization” by providing V with oracle access to an arbitrary
input of length N (or so); cf. [78].

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 125

2. For every k > 1, it holds that P>+ = PKQBF anq 5, , = A/pXUBF,

Guideline: Prove that if S is C-complete then P¢ = P5. Note that P¢ C P°
uses the polynomial-time reductions of C to S, whereas P° C P¢ uses S € C.

Exercise 3.11 (an alternative proof of Theorem 3.12) In continuation to the
discussion in the proof of Theorem 3.12, use the following guidelines to provide an
alternative proof of Theorem 3.12.

1. First, prove that if S’ is downwards self-reducible (as defined in Exercise 2.13)
then the correctness of circuits deciding S” can be decided in coNP. Specif-
ically, denoting by x the characteristic function of S’, show that the set

ckty = {(1",(C)) : Vw € {0,1}" C(w) = x(w)}

is in coNP.

Guideline: Using the more flexible formulation suggested in Exercise 3.1, it suf-
fices to verify that, for every ¢« < n and every i-bit string w, the value C(w) equals
the output of the downwards self-reduction on input w when obtaining answers
according to C'. Thus, for every ¢ < n, the correctness of C on inputs of length
¢ follows from its correctness on inputs of length less than ¢. Needless to say, the
correctness of C' on the empty string (or on all inputs of constant length) can be
verified by comparison to the fixed value of x on the empty string (resp., the values
of x on a constant number of strings).

2. Recalling that SAT is downwards self-reducible and that AP reduces to SAT,
derive Theorem 3.12 as a corollary of Part 1.

Exercise 3.12 In continuation to Part 2 of Exercise 3.2, we consider the class
of sets that are Karp-reducible to a sparse set. It can be proved that this class
contains SAT if and only if P = NP (see [76]). Here, we only consider the special
case in which the sparse set is contained in a polynomial-time decidable set that is
itself sparse (e.g., the latter set may be {1}*, in which case the former set may be
an arbitrary unary set). Actually, prove the following seemingly stronger claim:

if SAT is Karp-reducible to a set S C G such that G € P and G\ S is
sparse then SAT € P.

Using the hypothesis, we outline a polynomial-time procedure for solving the search
problem of SAT, and leave the task of providing the details as an exercise. The
procedure conducts a DFS on the tree of all possible partial truth assignment to the
input formula, while truncating the search at nodes that are roots of sub-trees that
were already demonstrated to contain no satisfying assignment (at the leaves).!?

Guideline: The key observation is that each internal node (which yields a formula derived
from the initial formulae by instantiating the corresponding partial truth assignment) is
mapped by the Karp-reduction either to a string not in G (in which case we conclude

10For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings,
and an internal node corresponding to 7 is the parent of nodes corresponding to 70 and 71.

126 CHAPTER 3. VARIATIONS ON P AND NP

that the sub-tree contains no satisfying assignments and backtrack from this node) or to
a string in G. In the latter case, unless we already know that this string is not in S, we
start a scan of the sub-tree rooted at this node. However, once we backtrack from this
internal node, we know that the corresponding element of GG is not in .S, and we will never
scan again a sub-tree rooted at a node that mapped to this element. Also note that once
we reach a leaf, we can check by ourselves whether or not it corresponds to a satisfying
assignment to the initial formula.

(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae ¢ the
number of times we start to scan a sub-tree is at most n - | Ufjf’(\@) {0,113 n(G\ 9)|.)

Chapter 4

More Resources, More
Power?

More electricity, less toil.

The Israeli Electricity Company, 1960s

Is it indeed the case that the more resources one has, the more one can achieve?
The answer may seem obvious, but the obvious answer (of yes) actually presumes
that the worker knows how much resources are at his/her disposal. In this case,
when allocated more resources, the worker (or computation) can indeed achieve
more. But otherwise, nothing may be gained by adding resources.

In the context of computational complexity, an algorithm knows the amount of
resources that it is allocated if it can determine this amount without exceeding the
corresponding resources. This condition is satisfies in all “reasonable” cases, but it
may not hold in general. The latter fact should not be that surprising: we already
know that some functions are not computable and if these functions are used to
determine resources then the algorithm may be in trouble. Needless to say, this
discussion requires some formalization, which is provided in the current chapter.

Summary: When using “nice” functions to determine the algorithm’s
resources, it is indeed the case that more resources allow for more tasks
to be performed. However, when “ugly” functions are used for the same
purpose, increasing the resources may have no effect. By nice functions
we mean functions that can be computed without exceeding the amount
of resources that they specify (e.g., t(n) = n? or t(n) = 2"). Naturally,
“ugly” functions do not allow to present themselves in such nice forms.

The forgoing discussion refers to a uniform model of computation and
to (natural) resources such as time and space complexities. Thus, we
get results asserting, for example, that there are functions computable
in cubic-time but not in quadratic-time. In case of non-uniform models

127

128 CHAPTER 4. MORE RESOURCES, MORE POWER?

of computation, the issue of “nicety” does not arise, and it is easy to
establish separations between levels of circuit complexity that differ by
any unbounded amount.

Results that separate the class of problems solvable within one resource
bound from the class of problems solvable within a larger resource
bound are called hierarchy theorems. Results that indicate the non-
existence of such separations, hence indicating a “gap” in the growth
of computing power (or a “gap” in the existence of algorithms that uti-
lize the added resources), are called gap theorems. A somewhat related
phenomenon, called speed-up theorems, refers to the inability to define
the complexity of some problems.

Caveat: Uniform complexity classes based on specific resource bounds (e.g.,
cubic-time) are model dependent. Furthermore, the tightness of separation re-
sults (i.e., how much more time is required to solve an additional computational
problem) is also model dependent. Still the existence of such separations is a
phenomenon common to all reasonable and general models of computation (as re-
ferred to in the Cobham-Edmonds Thesis). In the following presentation, we will
explicitly differentiate model-specific effects from generic ones.

Organization: We will first demonstrate the “more resources yield more power”
phenomenon in the context of non-uniform complexity. In this case the issue of
“knowing” the amount of resources allocated to the computing device does not
arise, because each device is tailored to the amount of resources allowed for the
input length that it handles (see Section 4.1). We then turn to the time complexity
of uniform algorithms; indeed, hierarchy and gap theorems for time-complexity,
presented in Section 4.2, constitute the main part of the current chapter. We end
by mentioning analogous results for space-complexity (see Section 4.3, which may
also be read after Section 5.1).

4.1 Non-uniform complexity hierarchies

The model of machines that use advice (cf. §1.2.4.2 and Section 3.1.2) offers a very
convenient setting for separation results. We refer specifically, to classes of the form
P/t, where £ : N — N is an arbitrary function (see Definition 3.5). Recall that
every Boolean function is in P/2", by virtue of a trivial algorithm that is given as
advice the truth-table of the function restricted to the relevant input length. An
analogous algorithm underlies the following separation result.

Theorem 4.1 For any two functions ¢',6 : N — N such that ¢'(n) + 6(n) < 2»
and 6 is unbounded, it holds that P/ is strictly contained in P /(£ + 6).

Proof: Let £ % ¢ + 6, and consider the algorithm A that given advice a, €
{0,1}*™) and input i € {1,...,2"} (viewed as an n-bit long string), outputs the i*"
bit of a, if ¢ < |a,| and zero otherwise. Clearly, for any @ = (a,),cn such that

4.2. TIME HIERARCHIES AND GAPS 129

lan| = £(n), it holds that the function fz(z) def A(a)y),x) is in P/L. Furthermore,
different sequences @ yield different functions fg. We claim that some of these
functions fz are not in P /¢, thus obtaining a separation.

The claim is proved by considering all possible (polynomial-time) algorithms
A" and all possible sequences @ = (al,),cN such that |al,| = ¢/(n). Fixing any
algorithm A’, we consider the number of n-bit long functions that are correctly
computed by A’(al,-). Clearly, the number of these functions is at most 2t'(n),
and thus A’ may account for at most 27" fraction of the functions fs (even
when restricted to m-bit strings). This consideration holds for every n and every
possible A, and thus the measure of the set of functions that are computable by
algorithms that take advice of length £’ is zero.! [

A somewhat less tight bound can be obtained by using the model of Boolean
circuits. In this case some slackness is needed in order to account for the gap
between the upper and lower bounds regarding the number of Boolean functions
over {0,1}™ that are computed by Boolean circuits of size s < 2™. Specifically
(see Exercise 4.1), an obvious lower-bound on this number is 2%/9(°8%) whereas
an obvious upper-bound is s2° = 22¢1°¢2¢. (Compare these bounds to the lower-
bound 2¢(™ and the upper-bound 2¢ (M+((8(n)=2)/2) which were used in the proof
of Theorem 4.1.)

4.2 Time Hierarchies and Gaps

In this section we show that in the “reasonable cases” increasing time-complexity
allows for more problems to be solved, whereas in “pathological cases” it may
happen that even a dramatic increase in the time-complexity provides no additional
computing power. As hinted in the introductory comments to the current chapter,
the “reasonable cases” correspond to time bounds that can be determined by the
algorithm itself within the specified time complexity.

We stress that also in the aforementioned “reasonable cases”, the added power
does not necessarily refer to natural computational problems. That is, like in
the case of non-uniform complexity (i.e., Theorem 4.1), the hierarchy theorems
are proved by introducing artificial computational problems. Needless to say, we
do not know of natural problems in P that are provably unsolvable in cubic (or
some other fixed polynomial) time (on, say, a two-tape Turing machine). Thus,
although P contains an infinite hierarchy of computational problems, each requiring
significantly more time than the other, we know of no such hierarchy of natural
computational problems. In contrast, it is our experience that any natural problem
shown to be solvable in polynomial-time is followed by a sequence of results that
eventually establish algorithms having running-time that is bounded by a moderate
polynomial.

11t suffices to show that this measure is strictly less than one. This is easily done by considering,
for every m, the performance of any algorithm A’ having description of length shorter than (6(n)—
2)/2 on all inputs of length n.

130 CHAPTER 4. MORE RESOURCES, MORE POWER?

4.2.1 Time Hierarchies

Note that the non-uniform computing devices, considered in Section 4.1, were ex-
plicitly given the relevant resource bounds (e.g., the length of advice). Actually,
they were given the resources themselves (e.g., the advice itself) and did not need
to monitor their usage of these resources. In contrast, when designing algorithms
of arbitrary time-complexity ¢t : N — N, we need to make sure that the algo-
rithm does not exceed the time bound. Furthermore, when invoked on input =,
the algorithm is not given the time bound ¢(|z|) explicitly, and a reasonable design
methodology is to have the algorithm compute this bound (i.e., t(|z|)) before doing
anything else. This, in turn, requires the algorithm to read the entire input (see
Exercise 4.3) as well as to compute t(n) using O(t(n)) (or so) time. The latter
requirement motivates the following definition (which is related to the standard
definition of “fully time constructibility” (cf. [117, Sec. 12.3])).

Definition 4.2 (time constructible functions): A function t : N — N is called
time constructible if there exists an algorithm that on input n outputs t(n) using at
most t(n) steps.

Equivalently, we may require that the mapping 1™ — t(n) be computable within
time complexity ¢t. We warn that the foregoing definition is model dependent;
however, typically nice functions are computable even faster (e.g., in poly(logt(n))
steps), in which case the model-dependency is irrelevant (for reasonable and general
models of computation, as referred to in the Cobham-Edmonds Thesis). For ex-
ample, in any reasonable and general model, functions like ¢;(n) = n?, t2(n) = 2",
and t3(n) = 22" are computable in poly(logt;(n)) steps.

Likewise, for a fixed model of computation (to be understood from the context)
and for any function ¢t : N — N, we denote by DTIME(t) the class of decision
problems that are solvable in time complexity t. We call the reader’s attention to
Exercise 4.7 that asserts that in many cases DTIME(t) = DTIME(t/2).

4.2.1.1 The Time Hierarchy Theorem

In the following theorem, we refer to the model of two-tape Turing machines. In
this case we obtain quite a tight hierarchy in terms of the relation between ¢; and
to. We stress that, using the Cobham-Edmonds Thesis, this results yields (possibly
less tight) hierarchy theorems for any reasonable and general model of computation.

Teaching note: The standard statement of Theorem 4.3 asserts that for any time
constructible function t2 and every function t1 such that t» = w(t1logti) and t1(n) > n
it holds that DTIME(t1) s strictly contained in DTIME(¢2). The current version is only
slightly weaker, but it allows a somewhat simpler and more intuitive proof. We comment

on the proof of the standard version of Theorem 4.3 after proving the current version.

Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time con-
structible function t; and every function ty such that to(n) > (logti(n))? - t1(n)
and t1(n) > n it holds that DTIME(t1) is strictly contained in DTIME(ts).

4.2. TIME HIERARCHIES AND GAPS 131

As will become clear from the proof, an analogous result holds for any model in
which a universal machine can emulate ¢ steps of another machine in O(t log t) time,
where the constant in the O-notation depends on the emulated machine. Before
proving Theorem 4.3, we derive the following corollary.

Corollary 4.4 (time hierarchy for any reasonable and general model): For any
reasonable and general model of computation there exists a positive polynomial p
such that for any time-computable function t, and every function ty such that
ta > p(t1) and t1(n) > n it holds that DTIME(t;) is strictly contained in DTIME(tz).

It follows that, for every such model and every polynomial ¢ (such that t(n) > n),
there exist problems in P that are not in DTIME(t). It also follows that P is a strict
subset of £ or even of “quasi-polynomial time”; moreover, P is a strict subset of
DTIME(q), where g(n) = n!°82™ (or even g(n) = n'o8z210827),

Proof of Corollary 4.4: Letting DTIME, denote the classes that correspond
to two-tape Turing machines, we have DTIME(¢;) C DTIME(t]) and DTIME(¢2) 2
DTiME»(th), where t] = poly(¢1) and ¢} is defined such that ¢2(n) = poly(t5(n)).
The latter unspecified polynomials, hereafter denoted p; and p respectively, are
the ones guaranteed by the Cobham-Edmonds Thesis. Also, the hypothesis that
t; is time-computable implies that t| = p;(¢1) is time-constructible with respect to
the two-tape Turing machine model. Thus, for a suitable choice of the polynomial
p, it holds that

ty(n) = py " (t2(n)) > p3 " (p(t1(n))) > p3 ™ (p(p7 " (t1(n)))) > t1(n)* .

Invoking Theorem 4.3, we have DTIME,(t}) O DTIME,(¢}), and the corollary fol-
lows. B

Proof of Theorem 4.3: The idea is to construct a Boolean function f such
that all machines having time complexity ¢; fail to compute f. This is done by
associating each possible machine M a different input zps (e.g., xpr = (M)), and
making sure that f(zy) # M'(x), where M'(z) denotes an emulation of M (x)
that is suspended after ¢;(|z|) steps. Actually, we are going to use a mapping u of
inputs to machines (i.e., u(xy) = M), such that each machine is in the range of p
and p is very easy to compute. Thus, by construction, f ¢ DTIME(t).

The issue is presenting an algorithm for computing f. This algorithm is straight-
forward: On input z, it computes ¢ = ¢;(|z|), determines the machine M = u(z)
that corresponds to z (outputting a default value of no such machine exists), em-
ulates M (x) for ¢ steps, and returns the value 1 — M'(z). The question is how
much time is required for this emulation. We should bear in mind that the time
complexity of our algorithm needs to be analyzed in the two-tape Turing machine
model, whereas M itself is a two-tape Turing machine. We start by implementing
our algorithm on a three-tape Turing-machine, and next emulate this machine on
a two-tape Turing-machine.

The obvious implementation of our algorithm on a three-tape Turing-machine
uses two tapes for the emulation itself and the third tape for the emulation proce-
dure. Thus, each step of the the two-tape machine M is emulated using O(|(M)|)

132 CHAPTER 4. MORE RESOURCES, MORE POWER?

steps (on the three-tape machine).? This includes also the amortized complexity
of maintaining a step-counter for the emulation (see Exercise 4.4). Next, we need
to emulate the foregoing three-tape machine on a two-tape machine. This is done
by using the fact (cf., e.g., [117, Thm. 12.6]) that ¢’ steps of a three-tape machine
can be emulated on a two-tape machine in O(t' logt') steps. Thus, the complexity
of computing f on input is upper-bounded by O(T),(.(|z|) log Tyyx)(|2])), where
Ty (n) = O(J(M)]-t1(n)) denotes the cost of emulating ¢1(n) steps of the two-tape
machine M on a three-tape machine (as in the foregoing discussion).

It turns out that the quality of the result we obtain depends on the mapping
u of inputs to machines. Using the naive (identity) mapping (i.e., u(z) = z) we
can only establish the theorem for ¢3(n) = w((n - t1(n)) - log(n - t1(n))), because
in this case T\ (|z]) = O(|z| - t1(|z])). (Note that in this case xpy = (M) is a
description of M.) The theorem follows by associating with machine M the input
zy = 0™1(M), where m = 2/(Ml; that is, we may use the mapping u such that
wz) =M ifz = Ozl(M)ll(M) and u(z) equals some fixed machine otherwise. In
tiscase)] < g] <10t () and 30 () = Ot -

Teaching note: Proving the standard version of Theorem 4.3 cannot be done by
associating a sufficiently long input x5 with each machine M, because this does not
allow to get rid from an additional unbounded factor in T},(,(|z|) (i-e., the |u(z)| factor
that multiplies ¢1(|z|)). Note that the latter factor needs to be computable (at the
very least) and thus cannot be accounted for by the generic w-notation that appears in
the standard version (cf. [117, Thm. 12.9]). Instead, a different approach is taken (see
Footnote 3).

Technical Comments. The proof of Theorem 4.3 associates with each potential
machine an input and makes this machine err on this input. The aforementioned
association is rather flexible: it should merely be efficiently computed (in the di-
rection from the input to a possible machine) and should be sufficiently shrinking
(in that direction). Specifically, we used the mapping p such that p(z) = M if
z = 02" 1(M) and p(x) equals some fixed machine otherwise. We comment that
each machine can be made to err on infinitely many inputs by redefining p such
that p(x) = M if 02! 1(M) is a prefix of z (and p(z) equals some fixed machine
otherwise). We also comment that, in contrast to the proof of Theorem 4.3, the

2This overhead accounts both for searching the code of M for the adequate action and for the
effecting of this action (which may refer to a larger alphabet than the one used by the emulator).

31n the standard proof the function f is not defined with reference to t1(|z s |) steps of M(zyr),
but rather with reference to the result of emulating M (x5r) while using a total of t2(|zas|) steps
in the emulation process (i.e., in the algorithm used to compute f). This guarantees that f is in
DriME(t2), and “pushes the problem” to showing that f is not in DTIME(¢1). It also explains why
t> (rather than t1) is assumed to be time constructible. As for the foregoing problem, it is resolved
by observing that for each relevant machine (i.e., having time complexity t1) the executions on
any sufficiently long input will be fully emulated. Thus, we merely need to associate with each
M a disjoint set of infinitely many inputs and make sure that M errs on each of these inputs.

4.2. TIME HIERARCHIES AND GAPS 133

proof of Theorem 1.5 utilizes a rigid mapping of inputs to machines (i.e., there
w(x) =M if x = (M)).

Digest: Diagonalization. The last comment highlights the fact that the proof
of Theorem 4.3 is merely a sophisticated version of the proof of Theorem 1.5.
Both proofs refer to versions of the universal function, which in the case of the
proof of Theorem 4.3 is (implicitly) defined such that its value at ({(M),z) equals
M'(z), where M'(x) denotes an emulation of M (x) that is suspended after ¢1(|z|)
steps.* Actually, both proofs refers to the “diagonal” of the aforementioned func-
tion, denoted d, which in the case of the proof of Theorem 4.3 is only defined
implicitly. Denoting the former function by U, the diagonal function is defined such
that d(z) = U({u(x)),). This is actually a definitional schema, as the choice of the
function p remains unspecified. Indeed, setting u(x) = x corresponds to a “real”
diagonal in the matrix depicting U, but other settings of p as a 1-1 function can be
viewed as “kind of diagonals” too. Either way, f is defined such that f(z) # d(z)
on every x. This guarantees that no machine of time-complexity ¢; can compute
f, and the focus is on presenting an algorithm that computes f (which, needless
to say, has time-complexity greater than t1). Part of the proof of Theorem 4.3 is
devoted to selecting p in a way that minimizes the time-complexity of computing
f, whereas in the proof of Theorem 1.5 we merely need to guarantee that f is
computable.

4.2.1.2 Impossibility of speed-up for universal computation

The Time Hierarchy Theorem (Theorem 4.3) implies that the computation of a

universal machine cannot be significantly sped-up. That is, consider the function

u'((M),z,t) def y if on input z machine M halts within ¢ steps and outputs the

string y, and v’ ((M), x,t) <] ifon input z machine M makes more than ¢ steps.

Recall that the value of u'((M),z,t) can be computed in O(|z| + [(M)| - t) steps.
Theorem 4.3 implies that this value cannot be computed with significantly less
steps.

Theorem 4.5 There exists no two-tape Turing machine that, on input (M), x and
t, computes w'((M),,1) in o((t + |]) - F(M)/log?(t + |al)) steps, where f is an
arbitrary function.

A similar result holds for any reasonable and general model of computation (cf.,
Corollary 4.4). In particular, it follows that u’ is not computable in polynomial
time (because the input ¢ is presented in binary). In fact, one can show that the
set {((M),z,t) :u'((M),z,t) # L} is not in P; see Exercise 4.5.

Proof: Suppose (towards the contradiction) that, for every fixed M, given x
and t > ||, the value of u'((M),z,t) can be computed in o(t/log®t) steps, where
the o-notation hides a constant that may depend on M. Counsider an arbitrary
time constructible ¢; (s.t. t1(n) > n) and an arbitrary set S € DTIME(t2), where

4Needless to say, in the proof of Theorem 1.5, M’ = M.

134 CHAPTER 4. MORE RESOURCES, MORE POWER?

ty(n) = t1(n) -log® t1(n). Let M be a machine of time complexity ¢, that decides
membership in S, and consider an algorithm that, on input x, first computes
t = t1(|z]), and then computes (and outputs) the value u'({(M),z,tlog*t). By
the time constructibility of ¢, the first computation can be implemented in ¢ steps,
and by the contradiction hypothesis the same holds for the second computation.
Thus, S can be decided in DTIME(2t;) = DTIME(¢1), implying that DTIME(t2) =
DTiME(t1), which in turn contradicts Theorem 4.3.

4.2.1.3 Hierarchy theorem for non-deterministic time

Analogously to DTIME, for a fixed model of computation (to be understood from
the context) and for any function ¢ : N — N, we denote by NTIME(t) the class
of sets that are accepted by some non-deterministic machine of time complezity t.
Alternatively, analogously to the definition of NP, a set S C {0,1}* is in NTIME(¢)
if there exists a linear-time algorithm V such that the two conditions hold

1. For every z € S there exists y € {0,1}*D such that V(z,y) = 1.
2. For every « ¢ S and every y € {0,1}* it holds that V(z,y) = 0.

We warn that the two formulations are not identical, but in sufficiently strong mod-
els (e.g., two-tape Turing machines) they are related up to logarithmic factors (see
Exercise 4.6). The hierarchy theorem itself is similar to the one for deterministic
time, except that here we require that to(n) > (logti(n + 1))% - t;(n + 1) (rather
than t3(n) > (logti(n))? - t1(n)). That is:

Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines):
For any time-constructible and monotonicly non-decreasing function t1 and every
function ta such that t2(n) > (logti(n +1))? - t1(n+ 1) and t1(n) > n it holds that
NTIME(ty) is strictly contained in NTIME(t2).

Proof: We cannot just apply the proof of Theorem 4.3, because the Boolean
function f defined there requires the ability to determine whether M accepts the
input z, in t;(|zp|) steps. In the current context, M is a non-deterministic
machine and so the only way we know how to determine this question (both for a
yes and no answers) is to try all the (2/1(I#%1)) relevant executions. But this would
put f in DTIME(2"), rather than in NTIME(O(t1)), and so a different approach is
needed.

We associate with each machine M, a large interval of strings (viewed as in-
tegers), denoted Iy = [aps, Bum], such that the various intervals do not intersect
and such that it is easy to determine for each string z in which interval it re-
sides. For each = € [ay, Oy — 1], we define f(z) = 1 if and only if there ex-

ists a non-deterministic computation of M that accepts the input z’ f +1in
t1(|z']) < ti(|z|+1) steps. Thus, unless either M accepts each string in the interval
Iy or rejects each such string, it (i.e., M) fails to accept {z : f(z) = 1}. So it is
left to deal with the case that M is invariant on I;;, which is where the definition
of the value of f(3x) comes into play: We define f(Bxr) to equal zero if and only

4.2. TIME HIERARCHIES AND GAPS 135

if there exists a non-deterministic computation of M that accepts the input «;, in
t1(|ap]) steps. We shall select 35, to be large enough relative to ays such that we
can afford to try all possible computations of M on input «js. Details follow.

We present the following non-deterministic machine for accepting the set {z :
f(z) = 1}. We assume that on input z it is easy to determine the machine M
as well as the interval n[ays, By] in which z reside. On input z € [an, By — 1],
this non-deterministic machine emulates a (single) non-deterministic computation
of M on input 2’ = x + 1, and decides accordingly. Indeed, this emulation can
be performed in time (logt;(|z + 1]))% - t1(Jz + 1]) < t2(|]z]). On input z = B,
our machine just tries all 2t2(I21) executions of M on input aj; and decides in a
suitable manner; that is, our machine emulates all 2t1(/@m1) pogsible executions of
M (apr) and accepts ayy if and only if all the emulated executions ended rejecting
apr- Note that this part of the emulation is deterministic, and it amounts to

emulating Ths et ota(Janl) - t1(|an|) steps of M. By a suitable choice of the
interval [aar, Bar], this number (i.e., Thy) is smaller than ¢1(|8u|) (e-g., |Ba| = Tar
implies T < t1(|8n])), and it follows that Ths steps of M can be emulated in
time (logy t1(|8:1))? - t1(|8um|) < t2(|Bar]). Thus, f is in NTIME(s).

Finally, we show that defining f as in the foregoing indeed guarantees that
it is not in NTIME(¢;). Suppose on the contrary, that some non-deterministic
machine M of time complexity ¢; accepts the set {z : f(z) = 1}. We define
a Boolean function Aps such that Ay (z) = 1 if and only if there exists a non-
deterministic computation of M that accepts the input x, and note that by the
contradiction hypothesis Ay (z) = f(z). Focusing on the interval [ayy, Bu], we
have Apr(z) = f(x) for every x € [apr, Bar], which (combined with the definition
of f) implies that Ay (x) = f(z) = Aym(xz + 1) for every z € [apr, B — 1] and
Apv(Bym) = f(Bm) =1 — Ay(ap). Thus, we reached a contraction (because we
gOt AM(OéM)ZZAM(ﬁM)Zl—AM(OéM)) .

4.2.2 Time Gaps and Speed-Up

In contrast to Theorem 4.3, there exists functions ¢ : N — N such that DTIME(t) =
DTIME(t?) (or even DTIME(t) = DTIME(2!)). Needless to say, these functions
are not time-constructible (and thus the aforementioned fact does not contradict
Theorem 4.3). The reason for this phenomenon is that, for such functions ¢, there
exists not algorithms that have time complexity above ¢ but below ¢? (resp., 2¢).

Theorem 4.7 (the time gap theorem): For every non-decreasing computable func-
tion g : N — N there exists a non-decreasing computable function t : N — N such
that DTIME(t) = DTIME(g(t))-

The forgoing examples referred to g(m) = m? and g(m) = 2™. Since we are
mainly interested in dramatic gaps (i-e., super-polynomial functions g), the model
of computation does not matter here (as long as it is reasonable and general).

Proof: Counsider an enumeration of all possible algorithms (or machines), which
also includes machines that do not halt on some inputs. (Recall that we cannot

136 CHAPTER 4. MORE RESOURCES, MORE POWER?

enumerate only all machines that halt on every input.) Let ¢; denote the time
complexity of the 7*! algorithm; that is, t;(n) = oo if the i*" machine does not halt
on some n-bit long input and otherwise ¢;(n) = max,co,13»{7i(x)}, where T;(z)
denotes the number of steps taken by the " machine on input z.

The basic idea is to define ¢ such that no ¢; is “sandwiched” between ¢ and g(¢),
and thus no algorithm will have time complexity between ¢ and g(¢). Intuitively, if
t;(n) is finite, then we may define ¢ such that t(n) > ¢;(n) and thus guarantee that
ti(n) & [t(n),g(t(n))], whereas if ¢;(n) = oo then any finite value of ¢(n) will do
(because then t;(n) > g(t(n))). Thus, for every m and n, we can define ¢t(n) such
that t;(n) ¢ [t(n), g(t(n))] for every i € [m] (e.g., t(n) = MaXic[m]:t,(n)£o0 1ti(N)} +
1).> This yields a weaker version of the theorem, in which the function ¢ is not
computable.

The problem is that we want ¢ to be computable, whereas given n we cannot tell
whether or not ¢;(n) is finite. However, we do not really need to make the latter
decision: for each candidate value v of ¢(n), we should just determine whether
or not t;(n) € [v,g(v)], which can be decided by running the i*" machine for
at most g(v) + 1 steps (on each n-bit long string). That is, as far as the ‘P
machine is concerned, we should just find a value v such that either v > t;(n) or
g(v) < ti(n) (which includes the case t;(n) = 00). This can be done by starting
with v = vy (where, say, vo = n + 1), and increasing v until either v > ¢;(n) or
g(v) < t;(n). The point is that if ¢;(n) is finite then we output v = t;(n) + 1
after performing Zj'z(zg 2" -7 emulation steps and otherwise we output v = vy after
emulating 2" - (g(vo) + 1) steps. Bearing in mind that we should deal with all
possible machines, we obtain the following procedure for setting ¢(n).

Let 1 : N — N be any unbounded and computable function (e.g., u(n) = n will
do). Starting with v = n 4+ 1, we keep incrementing v until v satisfies, for every
i € {1,...,p(n)}, either t;(n) < v or t;(n) > g(v). This condition can be verified
by computing u(n) and g(v), and emulating the execution of of the p(n) machines
on each of the n-bit long strings for g(v) steps. The procedure sets ¢(n) to equal
the first value v satisfying the aforementioned condition, and halts. To show that
the procedure halts on every n, consider the set H, C {1,...,u(n)} of indices of
the relevant machines that halt on all inputs of length n. Then the procedure
definitely halts before reaching the value v = T}, + 2, where T}, = max;cp, {ti(n)}.
(Indeed, the procedure may halt with a value v < T,,, but this will happen only if
g(v) < Ty.)

For the foregoing function ¢, we claim that DTiME(t) = DTIME(g(t)). Indeed,
let S € DTiME(g(t)) and suppose that the i'" algorithm decides S in time at most
g(t); that is, for every n, it holds that ¢;(n) < g(¢(n)). Then (by the construction),
for every n satisfying u(n) > 4, it holds that ¢;(n) < t(n), and it follows that the it
algorithm decides S in time at most ¢ on all but finitely many inputs. Combining
this algorithm with a “look-up table” machine that handles the exceptional inputs,
the theorem follows. [

5We may assume, without loss of generality, that ¢;(n) = 1 for every n; e.g., by letting the
machine that always halts after a single step be the first machine in our enumeration.

4.3. SPACE HIERARCHIES AND GAPS 137

Comment: The function ¢ defined by the foregoing proof is computable in time
that exceeds ¢(t). Specifically, the presented procedure computes t(n) (as well as
g(f(n))) in time O(2" - g(t(n)) + T,(t(n))), where Ty(m) denotes the number of
steps required to compute g(m) on input m.

Speed-up Theorems. Theorem 4.7 can be viewed as asserting that some time
complexity classes (i.e., DTIME(g(t)) in the theorem) collapse to lower classes (i.e.,
to DTIME(t)). A conceptually related phenomenon is of problems that have no
optimal algorithm (not even in a very mild sense); that is, every algorithm for
these (“pathological”) problems can be drastically sped-up. It follows that the
complexity of these problems can not be defined (i.e., as the complexity of the best
algorithm solving this problem). The following drastic speed-up theorem should
not be confused with the linear speed-up that is an artifact of the definition of a
Turing machine (see Exercise 4.7).

Theorem 4.8 (the time speed-up theorem): For every computable (and super-
linear) function g there exists a decidable set S such that if S € DTIME(t) then
S € DTIME(t") for t' satisfying g(t'(n)) < t(n).

Taking g(n) = n? (or g(n) = 2m), the theorem asserts that, for every ¢, if S €
DTIME(t) then S € DTIME(V/%) (resp., S € DTiME(logt)). Note that Theorem 4.8
can be applied any (constant) number of times, which means that we cannot give
a reasonable estimate to the complexity of deciding membership in S. In contrast,
recall that in some important cases, optimal algorithms for solving computational
problems do exist. Specifically, algorithms solving (candid) search problems in NP
cannot be speed-up (see Theorem 2.31), nor can the computation of a universal
machine (see Theorem 4.5).

We refrain from presenting a proof of Theorem 4.8, but comment on the com-
plexity of the sets involved in this proof. The proof (presented in [117, Sec. 12.6])
provides a construction of a set S in DTIME(t') \ DTIME(¢") for t'(n) = h(n —O(1))
and t'(n) = h(n — w(1)), where h(n) denoted ¢ iterated n times on 2 (i.e.,
h(n) = ¢(™(2), where gtV (m) = g(¢(m)) and ¢(Y) = g). The set S is con-
structed such that for every ¢ > 0 there exists a 7 > ¢ and an algorithm that
decides S in time ¢; but not in time ¢;, where tx(n) = h(n — k).

4.3 Space Hierarchies and Gaps

Hierarchy and Gap Theorems analogous to Theorem 4.3 and Theorem 4.7, respec-
tively, are known for space complexity. In fact, since space-efficient emulation of
space-bounded machines is simpler than time-efficient emulations of time-bounded
machines, the results tend to be sharper. This is most conspicuous in the case of

6We note that the linear speed-up phenomenon was implicitly addressed in the proof of Theo-
rem 4.3, by allowing an emulation overhead that depends on the length of the description of the
emulated machine.

138 CHAPTER 4. MORE RESOURCES, MORE POWER?

the separation result (stated next), which is optimal (in light of linear speed-up
results; see Exercise 4.7).

Before stating the result, we need a few preliminaries. We refer the reader to
§1.2.3.4 for a definition of space complexity (and to Chapter 5 for further discus-
sion). As in case of time complexity, we consider a specific model of computation,
but the results hold for any other reasonable and general model. Specifically, we
consider three-tape Turing machines, because we designate two special tapes for
input and output. For any function s : N — N, we denote by DSPACE(s) the
class of decision problems that are solvable in space complexity s. Analogously to
Definition 4.2, we call a function s : N — IN space constructible if there exists
an algorithm that on input n outputs s(n) using at most s(n) cells of the work-
tape. Actually, functions like s1(n) = logn, sa(n) = (logn)?, and s3(n) = 2" are
computable using log s;(n) space.

Theorem 4.9 (space hierarchy for three-tape Turing machines): For any space
constructible function so and every function sy such that so = w(s1) and sy(n) >
logn it holds that DSPACE(s;) is strictly contained in DSPACE(sz).

Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather to
the one we presented), and is proven using the alternative approach sketched in
Footnote 3. The details are left as an exercise (see Exercise 4.9).

Chapter Notes

The material presented in this chapter predates the theory of NP-completeness and
the dominant stature of the P-vs-NP Question. At these early days, the field (to be
known as complexity theory) did not yet develop an independent identity and its
perspectives were dominated by two classical theories: the theory of computability
(and recursive function) and the theory of formal languages. Nevertheless, we
believe that the results presented in this chapter are interesting for two reasons.
Firstly, as stated up-front, these results address the natural question of under what
conditions is it the case that more resources help. Secondly, the inapplicability of
these results to questions of the type of P-vs-NP illustrates the non-generic flavor of
the latter questions as referring to specific (and natural) aspects of the “complexity
of computation”.

The hierarchy theorems (e.g., Theorem 4.3) were proved by Hartmanis and
Stearns [109]. Gap theorems (e.g., Theorem 4.7, often referred to as Borodin’s
Gap Theorem) were proven by Borodin [43]. A axiomatic treatment of complexity
measures and corresponding speed-up theorems (e.g., Theorem 4.8, often referred
to as Blum’s Speed-up Theorem) are due to Blum [35].

Exercises

Exercise 4.1 Let F,(s) denote the number of different Boolean functions over
{0,1}™ that are computed by Boolean circuits of size s. Prove that, for any s < 2",
it holds that F,(s) > 2°/90°8%) and F,(s) < s%°.

4.3. SPACE HIERARCHIES AND GAPS 139

Guideline: Any Boolean function f : {0,1}* — {0,1} can be computed by a circuit of
size s = O(£ - 2%). Thus, for every £ < n, it holds that I}, (s¢) > 22" 5 9ue/OUosse) Oy
the other hand, the number of circuits of size s is less than 2° - (Sj), where the second
factor represents the number of possible choices of pair of gates that feed any gate in the

circuit.

Exercise 4.2 (advice can speed-up computation) For every time constructible
function ¢, show that there exists a set S in DTIME(#?) \ DTIME(#) that can be de-
cided in linear-time using an advice of linear length (i.e., S € DTIME({)/{ where
t(n) = O(n)).

Guideline: Starting with a set S' € Drime(T?) \ Drivme(T), where T(m) = t(2™),
consider the set S = {wozlwl_lml cwelS'h

Exercise 4.3 Referring to a reasonable model of computation (and assuming that
the input length is not given explicitly (e.g., as in Definition 10.10)), prove that
any algorithm that has sub-linear time-complexity actually has constant time-
complexity.

Guideline: Counsider the question of whether or not there exists an infinite set of strings
S such that when invoked on any input x € S the algorithm reads all of . Note that if
S is infinite then the algorithm cannot have sub-linear time-complexity, and prove that if
S is finite then the algorithm has constant time-complexity.

Exercise 4.4 (constant amortized time step-counter) A step-counter is an
algorithm that runs for a number of steps that is specified in its input. Actu-
ally, such an algorithm may run for a somewhat larger number of steps but halt
after issuing a number of “signals” as specified in its input, where these signals
are defined as entering (and leaving) a designated state (of the algorithm). A
step-counter may be run in parallel to another procedure in order to suspend the
execution after a desired number of steps (of the other procedure) has elapsed.
Show that there exists a simple deterministic machine that, on input n, halts after
issuing n signals while making O(n) steps.

Guideline: A slightly careful implementation of the straightforward algorithm will do,
when coupled with an “amortized” time complexity.

Exercise 4.5 (a natural set in £ \ P) In continuation to the proof of Theorem 4.5,

prove that the set {((M),z,t) : W' ((M),z,t) # L} is in £ \ P, where & Lo

U.DTiME(e.) and e.(n) = 2°™.

Exercise 4.6 Prove that the two definitions of NTIME, presented in §4.2.1.3, are
related up to logarithmic factors. Note the importance of condition that V has
linear (rather than polynomial) time-complexity.

Guideline: When emulating a non-deterministic machine by the verification procedure
V', encode the non-deterministic choices in y such that |y| is slightly larger than the
number of steps taken by the original machine. Specifically, having |y| = O(¢logt), where
t denotes the number of steps taken by the original machine, allows to emulate the latter

in linear time (i.e., linear in |y|).

140 CHAPTER 4. MORE RESOURCES, MORE POWER?

Exercise 4.7 (linear speed-up of Turing machine) Prove that any problem
that can be solved by a two-tape Turing machine that has time-complexity ¢ can
be solved by another two-tape Turing machine having time-complexity ¢, where
t'(n) = O(n) + (t(n)/2).

Guideline: Consider a machine that uses a larger alphabet, capable of encoding a con-
stant (denoted ¢) number of symbols of the original machine, and thus capable of emu-
lating ¢ steps of the original machine in O(1) steps, where the constant in the notation
O(1) is a universal constant (independent of ¢). Note that the O(n) term accounts to a
preprocessing required to encode the input in the work-alphabet of the new machine, and
that a similar result for one-tape Turing machine seems to require a O(n?) term.

Exercise 4.8 In continuation to Exercise 4.7, state and prove an analogous result
for space complexity, when using the standard definition of space as recalled in
Section 4.3. (Note that this result does not hold with respect to “binary space
complexity” as defined in Section 5.1.)

Exercise 4.9 Prove Theorem 4.9. As a warm-up, assume that s; (rather than so)
is space constructible.

Guideline: Note that providing a space-efficient emulation of one machine by another
machine is easier than providing an analogous time-efficient emulation.

538 CHAPTER 4. MORE RESOURCES, MORE POWER?

Appendix E

Explicit Constructions

It is easier for a camel to go through the eye of a
needle, than for a rich man to enter into the kingdom
of God.

Matthew, 19:24.

Complexity theory provides a clear definition of the intuitive notion of an explicit
construction. Furthermore, it also suggests a hierarchy of different levels of ex-
plicitness, referring to the ease of constructing the said object. The basic levels of
explicitness are provided by considering the complexity of fully constructing the
object (e.g., the time it takes to print the truth-table of a finite function). In this
context, explicitness often means outputting a full description of the object in time
that is polynomial in the length of that description. Stronger levels of explicitness
emerge when considering the complexity of answering natural queries regarding the
object (e.g., the time it takes to evaluate a fixed function at a given input). In this
context, (strong) explicitness often means answering such queries in polynomial-
time. The aforementioned themes are demonstrated in our brief overview of explicit
constructions of error correcting codes and expander graphs. These constructions
are, in turn, used in various parts of the main text.

Summary: We review several popular constructions of error correcting
codes, culminating with the construction of a concatenated code that
combines a Reed-Solomon code with a “mildly explicit” construction of
a small code. We also review briefly the notions of locally testable and
locally decodable codes, and a useful “list decoding bound” (i.e., bound-
ing the number of codewords that are close to any single sequence).

We review the two standard definitions of expanders, two levels of ex-
plicitness, and two properties of expanders that are related to (single-
step and multi-step) random walks on them. We then review two ex-
plicit constructions of expander graphs.

539

540 APPENDIX E. EXPLICIT CONSTRUCTIONS

E.1 Error Correcting Codes

In this section we highlight some issues and aspects of coding theory that are most
relevant to the current book. The interested reader is referred to [205] for a more
comprehensive treatment of the computational aspects of coding theory. Structural
aspects of coding theory, which are at the traditional focus of that field, are covered
in standard textbook such as [153].

Loosely speaking, an error correcting code is a mapping of strings to longer
strings such that any two different strings are mapped to a corresponding pair of
strings that are far apart (and not merely different). Specifically, C' : {0,1}* —
{0,1}™ is a (binary) code of distance d if for every = # y € {0, 1}* it holds that C(z)
and C(y) differ on at least d bit positions.

It will be useful to extend this definition to sequences over an arbitrary alphabet
¥, and to use some notations. Specifically, for x € ¥™, we denote the i*® symbol
of z by z; (i.e., x = x1 ---x,,), and consider codes over ¥ (i.e., mappings of X-
sequences to Y-sequences). The mapping (code) C : ¥* — X" has distance d if
for every # # y € X* it holds that |{i : C(z); # C(y):}| > d. The members of
{C(x) : z € ©*} are called codewords (and in some texts this set itself is called a
code).

In general, we define a metric, called Hamming distance, over the set of n-long
sequences over . The Hamming distance between y and z, where y,z € X", is
defined as the number of locations on which they disagree (i.e., |{¢ : y; # z:}|). The
Hamming weight of such sequences is defined as the number of non-zero elements
(assuming that one element of ¥ is viewed as zero). Typically, ¥ is associated
with an additive group, and in this case the distance between y and z equals the
Hamming weight of w = y — z, where w; = y; — z; (for every i).

Asymptotics. We will actually consider infinite families of codes; that is, {C} :
DI Ez(k)}keg, where S C N (and typically S = N). (N.B., we allow ¥, to
depend on k.) We say that such a family has distance d : N — N if for every
k € S it holds that C} has distance d(k). Needless to say, both n = n(k) (called
the block-length) and d(k) depend on k, and the aim is to have a linear dependence
(i.e., n(k) = O(k) and d(k) = Q(n(k))). In such a case, one talks of the relative rate
of the code (i.e., the constant k/n(k)) and its relative distance (i.e., the constant
(k) /n(k)).

In general, we will often refer to relative distances between sequences. For
example, for y,z € X", we say that y and z are e-close (resp., e-far) if |{i : y; #
zit| <e-n(resp., |[{i:y: #zi}| > e n).

Explicitness. A mild notion of explicitness refers to constructing the list of all
codewords in time that is polynomial in its length (which is exponential in k).
A more standard notion of explicitness refers to generating a specific codeword
(i.e., producing C(x) when given z), which coincides with the encoding task men-
tioned next. Stronger notions of explicitness refer to other computational problems
concerning codes (see next).

E.1. ERROR CORRECTING CODES 541

Computational problems. The most basic computational tasks associated with
codes are encoding and decoding (under noise). The definition of the encoding task
is straightforward (i.e., map z € XF to Cy(z)), and an efficient algorithm is required
to compute each symbol in Ci(z) in poly(k,log|Z|)-time.! When defining the de-
coding task we note that “minimum distance decoding” (i.e., given w € ZZ(’C),
find z such that Cy(z) is closest to y (in Hamming distance)) is just one natural

possibility. Two related variants, regarding a code of distance d, are:

Unique decoding: Given w € Zz(k) that is at Hamming distance less than d(k)/2

from some codeword Cy(x), retrieve the corresponding decoding of Cy(x)
(i.e., retrieve).

Needless to say, this task is well-defined because there cannot be two different
codewords that are each at Hamming distance less than d(k)/2 from w.

List decoding: Given w € Ez(k) and a parameter d’ > d(k)/2, output a list of all
z € Xf that are at Hamming distance at most d' from w.

Typically, one considers the case that d' < d(k). See Section E.1.3 for discus-
sion of upper-bounds on the number of codewords that are within a certain
distance from a generic sequence.

Two additional computational tasks are considered in Section E.1.2.

Linear codes. Associating) with some finite field, we call a code Cj, : ©§ —
Zz(k) linear if it satisfies Cy(z + y) = C(z) + Ci(y), where = and y (resp., Ci(x)
and Ci(y)) are viewed as k-dimensional (resp., n(k)-dimensional) vectors over Xy,
and the arithmetic is of the corresponding vector space. A useful property of linear
codes is that their distance equals the Hamming weight of the lightest codeword
other than C(0%); that is, min,, {|{i : Cx(2); # Cr(y):}|} equals min, o {|{i :
Ci(x); # 0}|}. Another useful property is that the code is fully specified by a
k-by-n(k) matrix, called the generating matrix, that consists of the codewords of
some fixed basis of X§. That is, the set of all codewords is obtained by taking all
|Xk|* different linear combination of the rows of the generating matrix.

E.1.1 A few popular codes

Our focus will be on explicitly constructible codes; that is, (families of) codes of the
form {C}, : Xk — Ez(k)}kes that are coupled with efficient encoding and decoding
algorithms. But before presenting a few such codes, let us consider a non-explicit
construction.

Proposition E.1 (random linear codes): Letc > 1 and n,d : N — N be such that,
for all sufficiently large k, it holds that n(k) > max(c-k/(1—Hz(d(k)/n(k))), 2d(k)),

IThis formulation is not the one common in coding theory, but it is the most natural one for
our applications. On one hand, this formulation is applicable also to codes with super-polynomial
block-length. On the other hand, this formulation does not support a discussion of practical
algorithms that compute the codeword faster than by computing each of its bits separately.

542 APPENDIX E. EXPLICIT CONSTRUCTIONS

where Ha(«) ef alog,(1/a) + (1 — a)log,(1/(1 — «)). Then, for all sufficiently
large k, with high probability, a random linear transformation of {0, 1}* to {0, 1}7(F)
constitutes a code of distance d(k).

Thus, for every constant 6 € (0,0.5) there exists a constant p > 0 and an infinite
family of codes {Cy, : {0,1}F — {O,I}k/P}keN of relative distance 6. Specifically,
p=(1—H(6))/c will do.

Proof: We counsider a uniformly selected k-by-n(k) generating matrix over GF(2),
and upper-bound the probability that it yields a linear code of distance less than
d(k). We use a union bound on all possible 2¥ —1 linear combinations of the rows of
the generating matrix, where for each such combination we compute the probability
that it yields a vector of Hamming weight less than d(k). Observe that the result
of each such linear combination is uniformly distributed over {0,1}"(*), and thus

has Hamming weight less than d(k) with probability S %%~ (k) 2=k <
2~ (1= Ha(d(k)/n(k))-n(k)) - Using (1 — Hy(d(k)/n(k))) - n(k) > c -k, the proposition
follows.

E.1.1.1 A mildly explicit version of Proposition E.1

Note that Proposition E.1 yields a (deterministic) exp(k - n(k))-time algorithm
that finds a linear code of distance d(k). The time bound can be improved to
exp(k +n(k)), by observing that we may choose the rows of the generating matrix
one by one, making sure that all non-empty linear combinations of the current rows
have weight at least d(k). Note that the proof of Proposition E.1 can be adapted
to assert that as long as we have less than k rows a random choice of the next row
will do with high probability. Note that in the case that n(k) = O(k), this yields
an algorithm that runs in time that is polynomial in the size of the code (i.e., the
number of codewords). Needless to say, this mild level of explicitness is inadequate
for most coding applications; however, it will be useful to us in §E.1.1.5.

E.1.1.2 The Hadamard Code

The Hadamard code is the longest (non-repetitive) linear code over {0,1} = GF(2).
That is, z € {0,1}* is mapped to the sequence of all n(k) = 2* possible linear
combinations of its bits (i.e., bit locations in the codewords are associated with k-bit
strings, and location o € {0,1}* in the codeword of z holds the value Zle ;T;).
It can be verified that each non-zero codeword has weight 2¢=1, and thus this code
has relative distance d(k)/n(k) = 1/2 (albeit its block-length n(k) is exponential
in k).

Turning to the computational aspects, we note that encoding is very easy. As
for decoding, the warm-up discussion at the beginning of the proof of Theorem 7.7
provides a very fast probabilistic algorithm for unique decoding, whereas Theo-
rem 7.8 provides a very fast probabilistic algorithm for list decoding.

We mention that the Hadamard code has played a key role in the proof of the
PCP Theorem (Theorem 9.16); see §9.3.2.1.

E.1. ERROR CORRECTING CODES 543

A propos long codes. We note that the longest (non-repetitive) binary code
(called the Long-Code and introduced in [26]) is extensively used in the design of
“advanced” PCP systems (see, e.g., [111, 112]). In this code, a k-bit long string
x is mapped to the sequence of n(k) = 22" values, each corresponding to the
evaluation of a different Boolean function at z; that is, bit locations in the code-

words are associated with Boolean functions such that the location associated with
f:{0,1}* = {0,1} in the codeword of x holds the value f(z).

E.1.1.3 The Reed—Solomon Code

A Reed-Solomon code is defined for a non-binary alphabet, which is associated
with a finite field of n elements, denoted GF(n). For any k < n, we consider the
mapping of univariate degree k — 1 polynomials over GF(n) to their evaluation at
all field elements. That is, p € GF(n)* (viewed as such a polynomial), is mapped
to the sequence (p(aq),...,p(arn)), where ai,...,a; is a canonical enumeration of
the elements of GF(n).2

The Reed-Solomon code offers infinite families of codes with constant rate and
constant relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but the
alphabet size grows with k (or rather with n(k) > k). Efficient algorithms for
unique decoding and list decoding are known (see [204] and references therein).
These computational tasks correspond to the extrapolation of polynomials based
on a noisy version of their values at all possible evaluation points.

E.1.1.4 The Reed—Muller Code

Reed-Muller codes generalize Reed-Solomon codes by considering multi-variate
polynomials rather than univariate polynomials. Consecutively, the alphabet may
be any finite field, and in particular the two-element field GF(2). Reed-Muller
codes (and variants of them) are extensively used in complexity theory; for ex-
ample, they underly Counstruction 7.11 and the PCP constructed at the end of
§9.3.2.2. The relevant property of these codes is that, under a suitable setting of
parameters that satisfies n(k) = poly(k), they allow super fast “codeword testing”
and “self-correction” (see discussion in Section E.1.2).

For any prime power ¢ and parameters m and r, we consider the set, denoted
P,, ., of all m-variate polynomials of total degree at most r over GF(gq). Each
polynomial in P, , is represented by the k = log, | Py | coefficients of all relevant
monomials, where in the case that r < g it holds that k = (™). We consider
the code C : GF(q)* — GF(q)", where n = ¢™, mapping m-variate polynomials of
total degree at most r to their values at all g™ evaluation points. That is, the m-
variate polynomial p of total degree at most r is mapped to the sequence of values
(p(@y1),...,p(a)), where @y, ...,@, is a canonical enumeration of all the m-tuples
of GF(g). The relative distance of this code is lower-bounded by (¢ — r)/q.

2 Alternatively, we may map (v1, ...,v) € GF(n)* to (p(a1), ..., p(ar)), where p is the unique
univariate polynomial of degree k — 1 that satisfies p(a;) = v; for ¢ = 1,...,k. Note that this
modification amounts to a linear transformation of the generating matrix.

544 APPENDIX E. EXPLICIT CONSTRUCTIONS

In typical applications one sets r = ©(m?logm) and g = poly(r), which yields
k> m™ and n = poly(r)™ = poly(m™). Thus we have n(k) = poly(k) but not
n(k) = O(k). As we shall see in Section E.1.2, the advantage (in comparison to the
Reed-Solomon code) is that codeword testing and self-correction can be performed
at complexity related to ¢ = poly(logn). Actually, in most complexity applications,
a variant in which only m-variate polynomials of individual degree r' = r/m are
used. In this case, an alternative presentation analogous to the one presented in
Footnote 2 is preferred: The information is viewed as a function f : H™ — GF(q),
where H C GF(q) is of size r' + 1, and is encoded by the evaluation at all points
in GF(¢)™ of the m-variate polynomial of individual degree 7’ that extends the
function f.

E.1.1.5 Binary codes of constant relative distance and constant rate

Recall that we seek binary codes of constant relative distance and constant rate.
Proposition E.1 asserts that such codes exists, but does not provide an explicit
construction. The Hadamard code is explicit but does not have a constant rate (to
say the least (since n(k) = 2¥)).> The Reed-Solomon code has constant relative
distance and constant rate but uses a non-binary alphabet (which grows at least
linearly with k). We achieve the desired construction by using the paradigm of con-
catenated codes [73], which is of independent interest. (Indeed, concatenated codes
may be viewed as a simple version of the proof composition paradigm presented in
§9.3.2.2.)

Intuitively, concatenated codes are obtained by first encoding information, viewed
as a sequence over a large alphabet, by some code and next encoding each resulting
symbol, which is viewed as a sequence of over a smaller alphabet, by a second code.
Formally, consider ¥; = %52 and two codes, C; : ¥¥* — £ and €, : £52 — n72,
Then, the concatenated code of Cy and Cs, maps (z1, ..., Tk,) € Z’fl = Z’;l’“ to
(C2(y1)7 ey C2(yn1))a where (yh "'7y’ﬂ1) =Ch (1'1, "'733761)'

Note that the resulting code C : £5%2 — %7172 has constant rate and con-
stant relative distance if both C; and Cs have these properties. Encoding in
the concatenated code is straightforward. To decode a corrupted codeword of
C, we view the input as an n;-long sequence of blocks, where each block is an
na-long sequence over 5. Applying the decoder of Cs to each block, we obtain
ny sequences (each of length ks) over ¥y, and interpret each such sequence as
a symbol of ¥;. Finally, we apply the decoder of C; to the resulting ni-long
sequence (over Xp), and interpret the resulting k;-long sequence (over ;) as a
k1 ko-long sequence over ¥,. The key observation is that if w € 5™ is e1e5-close
to C(x1, .., xky) = (Co(y1), ..., Co(Yn,) then at least (1 —e1) -ny of the blocks of w
are ex-close to the corresponding Co(y;).*

We are going to consider the concatenated code obtained by using the Reed-

3Binary Reed-Muller codes also fail to simultaneously provide constant relative distance and
constant rate.

4This observation offers unique decoding from a fraction of errors that is the product of the
fractions (of error) associated with the two original codes. Stronger statements regarding unique
decoding of the concatenated code can be made based on more refined analysis (cf. [73]).

E.1. ERROR CORRECTING CODES 545

Solomon Code C; : GF(ny)* — GF(n;)™ as the large code, setting ky = log, ny,
and using the mildly explicit version of Proposition E.1, Cy : {0,1}%2 — {0,1}"2 as
the small code. We use ny = 3k; and ny = O(k2), and so the concatenated code is
C :{0,1}* — {0,1}", where k = k1 ks and n = nin» = O(k). The key observation
is that Cs can be constructed in exp(ks)-time, whereas here exp(k2) = poly(k).
Furthermore, both encoding and decoding with respect to Cy can be performed in
time exp(ks) = poly(k). Thus, we get:

Theorem E.2 (an explicit good code): There exists constants 6,p > 0 and an
explicit family of binary codes of rate p and relative distance at least 6. That is,
there exists a polynomial-time (encoding) algorithm C such that |C(z)| = |z|/p (for
every x) and a polynomial-time (decoding) algorithm D such that for every y that
is 6/2-close to some C(x) it holds that D(y) = x. Furthermore, C is a linear code.

The linearity of C'is justified by using a Reed-Solomon code over the extension field
F = GF(2*2), and noting that this code induces a linear transformation over GF(2).
Specifically, the value of a polynomial p over F' at a point o € F' can be obtained
as a linear transformation of the coefficient of p, when viewed as ko-dimensional
vectors over GF(2).

Relative distance approaching one half. Starting with a Reed-Solomon code
of relative distance 6; and a smaller code Cs of relative distance 6y, we obtain a
concatenated code of relative distance 6;02. Note that, for any constant §; < 1,
there exists a Reed-Solomon code C; : GF(ny)* — GF(n;)™ of relative distance
61 and constant rate (i.e., 1 — 61). Giving up on constant rate, we may start with
a Reed-Solomon code of block-length n; (k1) = poly (k1) and distance nq (k1) — k3
over [ny(k1)], and use a Hadamard code (encoding [ny (k)] by {0,1}":(k1)) in the
role of the small code Cy. This yields a (concatenated) binary code of block length
n(k) = n1(k)? and distance (nq(k) — k) - n1(k)/2. Thus, the resulting explicit code
has relative distance approzimately (1/2) — (k/+/n(k)).

E.1.2 Two additional computational problems

In this section we briefly review relaxations of two traditional coding theoretic tasks.
The purpose of these relaxations is enabling super-fast (randomized) algorithms
that provide meaningful information. Specifically, these algorithms may run in sub-
linear (e.g., poly-logarithmic) time, and thus cannot possibly solve the unrelaxed
version of the problem.

Local testability. This task refers to testing whether a given word is a codeword
(in a predetermine code), based on (randomly) inspecting few locations in the
word. Needless to say, we can only hope to make an approximately correct
decision; that is, accept each codeword and reject with high probability each
word that is far from the code. (Indeed, this task is within the framework of
property testing; see Section 10.1.2.)

546 APPENDIX E. EXPLICIT CONSTRUCTIONS

Local decodability. Here the task is to recover a specified bit in the plaintext by
(randomly) inspecting few locations in a mildly corrupted codeword. This
task is somewhat related to the task of self-correction (i.e., recovering a spec-
ified bit in the codeword itself, by inspecting few locations in the mildly
corrupted codeword).

Note that the Hadamard code is both locally testable and locally decodable as well
as self-correctable (based on a constant number of queries into the word); these facts
were demonstrated and extensively used in §9.3.2.1. However, the Hadamard code
has an exponential block-length (i.e., n(k) = 2¥), and the question is whether one
can achieve analogous results with respect to a shorter code (e.g., n(k) = poly(k)).
As hinted in §E.1.1.4, the answer is positive (when we refer to performing these
operations in time that is poly-logarithmic in k):

Theorem E.3 For some constant § > 0 and polynomials n,q : N — N, there
ezists an ezplicit family of codes {Cy, : [q(k)]F — [g(k)]"® }ren of relative distance
6 that can be locally testable and locally decodable in poly(log k)-time. That is, the
following three conditions hold.

1. Encoding: There exists a polynomial time algorithm that on input x € [q(k)]*
returns Cy(x).

2. Local Testing: There exists a probabilistic polynomial-time oracle machine T
that given k (in binary)® and oracle access to w € [q(k)]"*) distinguishes the
case that w is a codeword from the case that w is 6/2-far from any codeword.
Specifically:

(a) For every x € [q(k)]* it holds that Pr[T<*(®)(k)=1] = 1.

(b) For every w € [q(k)]™*®) that is §/2-far from any codeword of Cy, it holds
that Pr[T%(k)=1] < 1/2.

As usual, the error probability can be reduced by repetitions.

3. Local Decoding: There exists a probabilistic polynomial-time oracle machine

D that given k and i € [k] (in binary) and oracle access to any w € [q(k)]™®)
that is 6/2-close to Cy(x) returns z;; that is, Pr[D¥(k,i)=x;] > 2/3.
Self correction holds too: there exists a probabilistic polynomial-time oracle
machine M that given k and © € [n(k)] (in binary) and oracle access to any
w € [q(k)]™™®) that is §/2-close to Cy(x) returns Cy(z);; that is, Pr[D® (k,i) =
Cr(z):] > 2/3.

We stress that all these oracle machines work in time that is polynomial in the bi-
nary representation of k, which means that they run in time that is poly-logarithmic
in k. The code asserted in Theorem E.3 is a (small modification of a) Reed-Muller
code, for r = m%logm < q(k) = poly(r) and [n(k)] = GF(q(k))™ (see §E.1.1.4).5

5Thus, the running time of T is poly(|k|) = poly(log k).

6The modification is analogous to the one presented in Footnote 2: For a suitable choice of
k points @1,...,a € GF(q(k))™, we map v1,...,v to (p(@1),...,p(@n)), where p is the unique
m-variate polynomial of degree at most r that satisfies p(a;) = v; fori =1, ..., k.

E.1. ERROR CORRECTING CODES 547

The aforementioned oracle machines query the oracle w : [n(k)] — GF(q(k))
at a non-constant number of locations. Specifically, self-correction for location
i € GF(gq(k))™ is performed by selecting a random line (over GF(g(k))™) that
passes through i, recovering the values assigned by w to all ¢(k) points on this
line, and performing univariate polynomial extrapolation (under mild noise). Lo-
cal testability is easily reduced to self-correction, and (under the aforementioned
modification) local decodability is a special case of self-correction.

Constant number of queries. The local testing and decoding algorithms as-
serted in Theorem E.3 make a polylogarithmic number of queries into the oracle.
In contrast, the Hadamard code supports these operation using a constant number
of queries. Can this be obtained with much shorter codewords? For local testability
the answer is definitely positive. One can obtain such locally testable codes with
length that is nearly linear (i.e., linear up to polylogarithmic factors; see [33, 62]).
For local decodability based on a constant number of queries, the shortest known
code has super-polynomial length (see [227]). In light of this state of affairs, we
advocate a relaxation of the local decodability task (e.g., the one studied in [32]).

The interested reader is referred to [89], which includes more details on locally
testable and decodable codes as well as a wider perspective. (Note, however, that
this survey was written prior to [62] and [227], which address two major open
problems discussed in [89].)

E.1.3 A list decoding bound

A necessary condition for the feasibility of the list decoding task is that the list
of codewords that are close to the given word is short. In this section we present
an upper-bound on the length of such lists, noting that this bound has found
several applications in complexity theory (and specifically to studies related to the
contents of this book). In contrast, we do not present far more famous bounds
(which typically refer to the relation among the main parameters of codes (i.e.,
k,n and d)), because they seem irrelevant to the contents of this book.

We start with a general statement that refers to any alphabet ¥ = [g], and later
specialize it to the case that ¢ = 2. Especially in the general case, it is natural and
convenient to consider the agreement (rather than the distance) between sequences
over [g]. Furthermore, it is natural to focus on agreement rate of at least 1/¢, and
it is convenient to state the following result in terms of the “excessive agreement
rate” (i.e., the excess beyond 1/q).”

Lemma E.4 (Part 2 of [101, Thm. 15]): Let C : [q]* — [q]™ be an arbitrary

code of distance d < n — (n/q), and let 1 Lef (1 =1(d/n))—(1/q) > 0 denote

the corresponding upper-bound on the excessive agreement rate between codewords.

"Indeed, we only consider codes with distance d < (1 —-1/q) - n and words that are at distance
at most d from the code. Note that 1/q is a natural threshold for an upper-bound on the relative
agreement between sequences over [g], because a random sequence is expected to agree with any
fixed sequence on a 1/q fraction of the locations.

548 APPENDIX E. EXPLICIT CONSTRUCTIONS

Suppose that n € (0,1) satisfies

0 > (1 - 3) e (B.1)

Then, for any w € [q|™, the number of codewords that agree with w on at least
((1/q) +n) - n positions (i.e., are at distance at most (1 — ((1/¢g) + 7)) - n from w)

is upper-bounded by
(1-(1/9)* = (1~ (1/q)) - ne
n? = (1= (1/q))ne

In the binary case (i.e., ¢ = 2), Eq. (E.1) requires n > 1/7¢/2 and Eq. (E.2) yields
the upper-bound (1 — 27¢)/(4n* — 2n.). We highlight two specific cases:

(E.2)

1. At the end of §D.4.2.2, we refer to this bound (for the binary case) while
setting e = (1/k)? and i = 1/k. Indeed, in this case (1—2nc)/(4n* —2n.) =
O(k?).

2. In the case of the Hadamard code, we have 5o = 0. Thus, for every w €
{0,1}™ and every n > 0, the number of codewords that are (0.5 — n)-close to
w is at most 1/(4n?).

In the general case (and specifically for g > 2) it is useful to simplify Eq. (E.1) by

n > min{\/n¢, (1/q) + /1nc — (1/¢)} and Eq. (E.2) by nQinc.

E.2 Expander Graphs

Loosely speaking, expander graphs are graphs of small degree that exhibit various
properties of cliques. In particular, we refer to properties such as the relative sizes
of cuts in the graph, and the rate at which a random walk converges to the uniform
distribution (relative to the logarithm of the graph size to the base of its degree).

Some technicalities. Typical presentations of expander graphs refer to one of
several variants. For example, in some sources, expanders are presented as bipartite
graphs, whereas in others they are presented as ordinary graphs (and are in fact
very far from being bipartite). We shall follow the latter convention. Furthermore,
at times we implicitly consider an augmentation of these graphs where self-loops
are added to each vertex. For simplicity, we also allow parallel edges.

We often talk of expander graphs while we actually mean an infinite collection
of graphs such that each graph in this collection satisfies the same property (which
is informally attributed to the collection). For example, when talking of a d-regular
expander (graph) we actually refer to an infinite collection of graphs such that each
of these graphs is d-regular. Typically, such a collection (or family) contains a single
N-vertex graph for every N € S, where S is an infinite subset of N. Throughout
this section, we denote such a collection by {G n } y¢cgs, with the understanding that
Gy is a graph with N vertices and S is an infinite set of natural numbers.

E.2. EXPANDER GRAPHS 549

E.2.1 Definitions and Properties

We consider two definitions of expander graphs, two different notions of explicit
constructions, and two useful properties of expanders.

E.2.1.1 Two Mathematical Definitions

We start with two different definitions of expander graphs. These definitions are
qualitatively equivalent and even quantitatively related. We start with an algebraic
definition, which seems technical in nature but is actually the definition typically
used in complexity theoretic applications, since it directly implies various “mixing
properties” (see §E£.2.1.3). We later present a very natural combinatorial definition
(which is the source of the term “expander”).

The algebraic definition (spectral gap). Identifying graphs with their adja-
cency matrix, we consider the eigenvalues (and eigenvectors) of a graph (or rather
of its adjacency matrix). Any d-regular graph G = (V, E) has the uniform vector
as an eigenvector corresponding to the eigenvalue d, and if G is connected and not
bipartite then (the absolute values of) all other eigenvalues are strictly smaller than
d. The second eigenvalue, denoted A2(G) < d, of such a graph G is thus a tight
upper-bound on the absolute value of all the other eigenvalues. Using the connec-
tion to the combinatorial definition, it follows that \2(G) < d — Q(1/|V]?) holds
(for every connected non-bipartite d-regular graph G). The algebraic definition of
expanders refers to an infinite family of d-regular graphs and requires the existence
of a constant eigenvalue bound that holds for all the graphs in the family.

Definition E.5 An infinite family of d-regular graphs, {Gn}ycs, where S C N,
satisfies the eigenvalue bound A if for every N € S it holds that A2(Gn) < A.

In such a case we say that the family has spectral gap d — A. It will be often
convenient to consider relative (or normalized) versions of these quantities, obtained
by division by d.

The combinatorial definition (expansion). Loosely speaking, expansion re-
quires that any (not too big) set of vertices of the graph has a relatively large set
of neighbors. Specifically, a graph G = (V, E) is c-expanding if, for every set S C V
of cardinality at most |V|/2, it holds that

To(S) Y {v:3ues st. (u,v)€E} (E.3)

has cardinality at least (1 + ¢) - |S|. Equivalently (assuming the existence of self-
loops on all vertices), we may require that [I'¢(S)\ S| > ¢-|S|. Clearly, every
connected graph G = (V, E) is (1/|V|)-expanding. The combinatorial definition of
expanders refers to an infinite family of d-regular graphs and requires the existence
of a constant expansion bound that holds for all the graphs in the family.

Definition E.6 An infinite family of d-regular graphs, {Gn}ycs is c-expanding if
for every N € S it holds that Gy is c-expanding.

550 APPENDIX E. EXPLICIT CONSTRUCTIONS

The two definitions of expander graphs are related (see [10, Sec. 9.2] or [118,
Sec. 4.5]).

Theorem E.7 Let G be a non-bipartite d-regular graph.
1. The graph G is c-ezpanding for ¢ > (d — A2(G))/2d.
2. If G is c-expanding then d — X\2(G) > /(4 + 2¢?).

Thus, any non-zero bound on the combinatorial expansion of a family of d-regular
graphs yields a non-zero bound on its spectral gap, and vice versa. Note, however,
that the back-and-forth translation between these definitions is not tight. The
applications presented in the main text refer to the algebraic definition, and the
loss incurred in Theorem E.7 is immaterial for them.

Amplification. The quality of expander graphs improves by raising them to
any power t > 1 (i.e., raising their adjacency matrix to the #*® power), which
corresponds to considering graphs in which ¢-paths are replaced by edges. Using
the algebraic definition, we have A2(G*) = A2(G)?, but indeed the degree also gets
raised to the power ¢. Still, the ratio \2(G")/d" deceases with t. An analogous
phenomenon occurs also under the combinatorial definition, provided that some
suitable modifications are applied. For example, if G = (V| E) is c-expanding (i.e.,
for every S C V' it holds that |[T'¢(S)| > min((1 + ¢) - |S],|V[/2)), then for every
S C V it holds that [Lge(S)| > min((1 + ¢) - |S|,|V]/2).

The optimal eigenvalue bound. For every d-regular graph G = (V, E), it
holds that A2(G) > 2v¢ - vd — 1, where v¢ =1 —O(1/log, |V]). Thus, 2v/d — 1 is
a lower-bound on the eigenvalue bound of any infinite family of d-regular graphs.

E.2.1.2 Two levels of explicitness

A mild level of explicit constructiveness refers to the complexity of constructing the
entire object (i.e., graph). Thus, an infinite family of graphs {Gn}yes is said to
be explicitly constructible if there exists a polynomial-time algorithm that, on input
1Y (where N € S), outputs the list of the edges in the N-vertex graph Gy.

The aforementioned level of explicitness suffices when the application requires
holding the entire graph and/or when the running-time of the application is lower-
bounded by the size of the graph. In contrast, other applications only refer to a
huge virtual graph (which is much bigger than their running time), and only require
the computation of the neighborhood relations in such a graph. In this case, the
following stronger level of explicitness is relevant.

A strongly explicit construction of an infinite family of (d-regular) graphs {Gn} yes
is a polynomial-time algorithm that on input N (in binary), @ vertex v in the N-
vertez graph Gy and an index i (i € {1,...,d}), returns the i*® neighbor of v. That
is, the neighbor is determined in time that is polylogarithmic in the size of the
graph. Needless to say, the strong level of explicitness implies the basic level.

E.2. EXPANDER GRAPHS 551

An additional requirement, which is often forgotten but is very important, refers
to the “tractability” of the set S. Specifically, we require the existence of an efficient
algorithm that given any n € N finds an s €S such that n < s < 2n. Corresponding
to the foregoing definitions, efficient may mean either running in time poly(n) or
running in time poly(logn). The requirement that n < s < 2n suffices in most
applications, but in some cases a smaller interval (e.g., n < s < n++/n) is required,
whereas in other cases a larger interval (e.g., n < s < poly(n)) suffices.

Greater flexibility. In continuation to the foregoing paragraph, we comment
that expanders can be combined in order to obtain expanders for a wider range
of sizes. For example, two d-regular c-expanding graphs, G; = (V1, Ey) and G, =
(Va, E) where |Vi| < |V] and ¢ < 1, can be combined into a (d + 1)-regular ¢/2-
expanding graph on |V; |+ |V2| vertices by connecting the two graphs with a perfect
matching of V; and |V;| of the vertices of V5 (and adding self-loops to the remaining

vertices of V). More generally, the d-regular c-expanding graphs, Gy = (V4, Eq)

through Gy = (V, B;), where N &' SUZHVi| < Vi, yield a (d + 1)-regular ¢/2-

K2
expanding graph on 2221 |V;| vertices by using a perfect matching of U!Z1V; and
N of the vertices of V;.

E.2.1.3 Two properties

The following two properties provide a quantitative interpretation to the statement
that expanders approximate the complete graph. The deviation from the latter is
represented by an error term that is linear in \/d.

The mixing lemma. The following lemma is folklore and has appeared in many
papers. Loosely speaking, the lemma asserts that expander graphs (for which d >
A) have the property that the fraction of edges between two large sets of vertices
approximately equals the product of the densities of these sets. This property is
called mizing.

Lemma E.8 (Expander Mixing Lemma): For every d-regular graph G = (V, E)
and for every two subsets A,B CV it holds that

(AxB)nE| Al |Bl| _ M@VIA Bl _ %a(G)
2] VIS T e T

(E.4)

where Eo denotes the set of directed edges that correspond to the undirected edges
of G (i.e., By = {(u,v) : {u,v} € E} and |Ex| = d|V]).

Proof: Let N % |[V] and A et A2(@). For any subset of the vertices S C V, we

denote its density in V' by p(S) Lef |S|/N. Hence, Eq. (E.4) is restated as
(A x B) N Ey| AV p(A) - p(B)

() ()| < D

552 APPENDIX E. EXPLICIT CONSTRUCTIONS

We proceed by providing bounds on the value of [(A x B) N Es|. To this end we let
@ denote the N-dimensional Boolean vector having 1 in the i*" component if and
only if i € A. The vector b is defined similarly. Denoting the adjacency matrix of
the graph G by M = (m,), we note that |(4 x B) N Fs| equals @' Mb (because
(¢,7) € (A x B) N E» if and only if it holds that i € A, j € B and m,; = 1).
We consider the orthogonal eigenvector basis, €7, ...,en, where ef = (1,...,1)" and
& e, = N for each 1, and write each vector as a linear combination of the vectors
in this basis. Specifically, we denote by a; the coefficient of @ in the direction of €;
that is, a; = (ETe_i)/N and@ =), a;€;. Note that a; = (aTa)/N = |A|/N = p(A)
and Zfil a? = (ETE)/N = |A|/N = p(A). Similarly for b. It now follows that

N
(AxB)NE, = a' M (bla+2bie_i>
1=2
N
= p(B)-a'Mei+» b-a Me;

1=2
N

= p(B)-d-a'er + Zbi)‘i a'e
=2

where); denotes the i*? eigenvalue of M (and indeed A\; = d). Thus,

N
|(Ax B)NEsy| Aibia;
el = o+ 32

Ny X
€ |p(B)p(4) + i Z a;b;
1=2

Using Zf\il a? = p(A) and YN b2 = p(B), and applying Cauchy-Schwartz In-

=1 "1

equality, we bound Zf\; a;b; by \/p(A)p(B). The lemma follows. [l

The random walk lemma. Loosely speaking, the first part of the following
lemma asserts that, as far as remaining trapped in some subset of the vertex set
is concerned, a random walk on an expander approximates a random walk on the
complete graph.

Lemma E.9 (Expander Random Walk Lemma): Let G = ([N], E) be a d-regular
graph, and consider walks on G that start from a uniformly chosen vertex and take
{—1 additional random steps, where in each such step we uniformly selects one out
of the d edges incident at the current verter and traverses it.

Theorem 8.28 (restated): Let W be a subset of [N] and p Lef |W|/N. Then the

probability that such a random walk stays in W 1is at most

,- (p+ (1-p)- %) (E5)

E.2. EXPANDER GRAPHS 553

Exercise 8.37 (restated): For any Wy, ..., W,_1 C [N], the probability that a random
walk of length € intersects Wy x Wy X --- x Wy_1 is at most

-1
Voo [Ve +Ovay, (E.6)

where p; |W;|/N.

The basic principle underlying Lemma E.9 was discovered by Ajtai, Komlos, and
Szemerédi [4], who proved a bound as in Eq. (E.6). The better analysis yielding
Theorem 8.28 is due to Kahale [127, Cor. 6.1]. More general bounds that refer
to the probability of visiting W for a number of times that approximates |W|/N
are given in [82], which actually considers an even more general problem (i.e.,
obtaining Chernoff-type bounds for random variables that are generated by a walk
on a Markov Chain).

Proof of Equation (E.6): The basic idea is to view the random walk as
the evolution of a corresponding probability vector under suitable transformations.
The transformations correspond to taking a random step in G and to passing
through a “sieve” that keeps only the entries that correspond to the current set
W;. The key observation is that the first transformation shrinks the component
that is orthogonal to the uniform distribution, whereas the second transformation
shrinks the component that is in the direction of the uniform distribution. Details
follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency

matrix of G divided by d), and let X denote the absolute value of the second

largest eigenvalue of A (ie., A Lef A2(G)/d). Note that the uniform distribution,

represented by the vector @ = (N~,..., N~1)T is the eigenvector of A that is
associated with the largest eigenvalue (which is 1). Let P; be a 0-1 matrix that
has 1l-entries only on its diagonal, and furthermore entry (j,7) is set to 1 if and
only if 5 € W;. Then, the probability that a random walk of length ¢ intersects
Wy x Wy x -+ x Wy_; is the sum of the entries of the vector

7Y P, 1A P,AP, APy (E.7)

We are interested in upper-bounding ||7||;, and use ||7]j; < V/N - ||7]|, where ||Z||,
and ||Z|| denote the Lj-norm and Le-norm of Z, respectively (e.g., ||@|1 = 1 and
|zl = N—1/?). The key observation is that the linear transformation P;A shrinks
every vector.

Main Claim. For every z, it holds that ||P,AZ]| < (p; + A2)Y/2 .|z

Proof. Intuitively, A shrinks the component of Z that is orthogonal to @, whereas P;
shrinks the component of Z that is in the direction of w. Specifically, we decompose
Z = Z1 + Zz such that z7 is the projection of Z on @ and z7 is the component
orthogonal to w. Then, using the triangle inequality and other obvious facts (which

554 APPENDIX E. EXPLICIT CONSTRUCTIONS

imply ||PiAzr|| = ||Pizr|| and [|PAZ|| < [|AZ]), we have

1P Az + P Az 1P AZL|| + || P Az

| PzL| + || AZ|]
Voi -zl + A -1z

where the last inequality uses the fact that P; shrinks any uniform vector by elimi-
nating 1 — p; of its elements, whereas A shrinks the length of any eigenvector except
% by a factor of at least A. Using the Cauchy-Schwartz inequality®, we get

IPAZI < i+ X VP + 1707
= \pi+ Az

where the equality is due to the fact that Zz7 is orthogonal to z3. O

IN N AN

Recalling Eq. (E.7) and using the Main Claim (and ||7]|; < V/N - |[7]|), we get

IN

VN - ||Pi_1A--- PyAP, APy
—1

VN - (H \/ pi + p) || Py
1=1

Finally, using ||Pou|| = /poN - (1/N)2 = \/po/N, we establish Eq. (E.6). W

1ol

IN

Rapid mixing. A property related to Lemma E.9 is that a random walk starting
at any vertex converges to the uniform distribution on the expander vertices after
a logarithmic number of steps. Using notation as in the proof of Eq. (E.6), we
claim that for every starting distribution s (including one that assigns all weight to
a single vertex), it holds that ||A'S —@||; < VN - \!, which is meaningful for any
t>0.5-log, ;5 N. The claim is proved by recalling that |A% -3, < VN-||A%S -]
and using the fact that 5 —w is orthogonal to u (because the former is a zero-sum
vector). Thus, A% — 7| = ||AYS —w)|| < XI5 — || and using |5 — @] < 1 the
claim follows.

E.2.2 Constructions

Many explicit constructions of expanders were discovered, starting in [154] and
culminating in the optimal construction of [150] where A = 24/d — 1. Most of these
constructions are quite simple (see, e.g., §E£.2.2.1), but their analysis is based on
non-elementary results from various branches of mathematics. In contrast, the
construction of Reingold, Vadhan, and Wigderson [180], presented in §E.2.2.2,

8That is, we get /p;|lz1] + 5\||z2\| < vpi + A2 [lz1]]? + ||22]|?, by using Z?zl a; - b;
n 1/2 n o\1/2 .
(Zi:l ai2) . (i1 biz) , with n =2, a1 = \/p;, b1 = ||z1]|, etc.

IN

E.2. EXPANDER GRAPHS 555

is based on an iterative process, and its analysis is based on a relatively simple
algebraic fact regarding the eigenvalues of matrices.

Before turning to these explicit constructions we note that it is relatively easy
to prove the existence of 3-regular expanders, by using the Probabilistic Method
(ct. [10]) and referring to the combinatorial definition of expansion.

Theorem E.10 For some constant A\ < 3 there exists a family of (3, X)-ezpanders
for any even graph size.

Proof Sketch:® As a warm-up, one may establish the existence of d-regular ex-
panders, for some constant d. In particular, foreseeing the case of d = 3, consider
a random graph G on the vertex set V = {0, ...,n — 1} constructed by augmenting
the fixed edge set {{i,i + Imodn} :¢ =0,...,n — 1} with d — 2 uniformly (and
independently) chosen perfect matchings of the vertices of F' def {0,...,(n/2) — 1}

to the vertices of L {n/2 ,n — 1}. For a sufficiently small universal con-
stant € > 0, we upper-bound the probability that such a random graph is not
e-expanding. Noting that for every set S it holds that [T'g(SNF)NF| > |SNF|-1
(and similarly for L), we focus on the sizes of |(I'¢(S N F)N L)\ T'g(SNL)
and |(Tg(SNL)NF)\Tg(SNF)|. Assuming without loss of generality that
|SNF|>|SnN L|, we upper-bound the probability that there exists a set S C V
of size at most n/2 such that |(Tg(SNF)NL)\Te(S ﬂ L)| < €|S]. Fixing a set
S, the corresponding probability is upper-bounded by pS ~2 where pg denotes the
probability that a uniformly selected matching of F' to L matches SNF toa set
that contains less than €|S| elements in L \ I'¢(S N L). That is,

def It (lLliie) ’ (Snfr —i) ((ng/zg—z) ’ (ZJsrrilz:?l)
PEX) S

i=0 |SNF| [SNF|

where £ = |T'¢(SNL)NL|. Indeed, we may focus on the case that |[SNF| < £+¢|5]
(because in the other case pg = 0), and observe that for every a < 1/2 there exists
a sufficiently small € > 0 such that ps < (‘ ‘) “. The claim follows for d > 5, by
using a union bound on all sets (and setting o = 1/3).

To deal with the case d = 3, we use a more sophisticated union bound. Specif-
ically, fixing an adequate constant ¢ > 6 (e.g., t = 1/4/2), we decompose S into
S’ and S”, where S’ contains the elements of S that reside on t-long arithmetic
subsequences of S that use an step increment of either 1 or 2, and S" = S\ S'.
It can be shown that [T'¢(S")\ S| > |S”|/2t (hint: an arithmetic subsequence has
neighborhood greater than itself whereas a suitable partition of the elements to
such subsequences guarantees that the overall excess is at least half the individual

9The proof is much simpler in the case that one refers to the alternative definition of combi-
natorial expansion in which for each relevant set S it holds that |[I'g(S)\ S| > ¢ - |S|. In this
case, for a sufficiently small € > 0 and all sufficiently large n, a random 3-regular n-vertex graph
is e-expanding with overwhelmingly high probability. The proof proceeds by considering a (not
necessarily simple) graph G generated by three perfect matchings of the elements of [n]. For
every S C [n] of size at most n/2 and for every set T of size ¢|S|, we consider the probability that
I'c(S) C SUT. The argument is concluded by applying a union bound.

556 APPENDIX E. EXPLICIT CONSTRUCTIONS

count). Thus, if [S”| > 2|S|/t then [T'¢(S”)\ S| > |S|/t?. Hence, it suffices to con-
sider the case |S"| < 2|S|/t (and ¢ > 6) and prove that [T'¢(S")| > (1 + (4/t)) -|S"].
The gain is that, when applying the union bound, it suffices to consider less than

Z?I:/lt 27 . (Z) < (3nrf/t) possible sets S’ of size n', which are each a union of at

most n'/t arithmetic sequences that use an step increment of either 1 or 2. O

E.2.2.1 The Margulis—Gabber—Galil Expander

For every natural number m, consider the graph with vertex set Z,, x Z,, and
edge set in which every (z,y) € Z,, X Z,, is connected to the vertices (z £ y,y),
(x£(y+1),y), (z,y £), and (x,y = (z + 1)), where the arithmetic is modulo m.
This yields an extremely simple and explicit 8-regular graph with second eigenvalue
that is bounded by a constant A < 8 that is independent of m. Thus we get:

Theorem E.11 For some constant A < 8 there exists a strongly explicit construc-
tion of a family of (8, \)-expanders for graph sizes {m? : m € N}. Furthermore, the
neighbors of a vertez can be computed in logarithmic-space.'°

An appealing property of Theorem E.11 is that, for every n € NN, it directly yields
expanders with vertex set {0,1}™. This is obvious in case n is even, but can be
easily achieved also for odd n (e.g., use two copies of the graph for n — 1, and
connect the two copies by the obvious perfect matching).

Theorem E.11 is due to Gabber and Galil [79], building on the basic approach
suggested by Margulis [154]. We mention again that the optimal construction
of [150] achieves A = 2v/d — 1, but there are annoying restrictions on the degree d
(i.e., d — 1 should be a prime congruent to 1 modulo 4) and on the graph sizes for
which this construction works.

E.2.2.2 The Iterated Zig-Zag Construction

The starting point of the following construction is a very good expander G of
constant size, which may be found by an exhaustive search. The construction
of a large expander graph proceeds in iterations, where in the ' iteration the
current graph G; and the fixed graph G are combined, resulting in a larger graph
Gi+1. The combination step guarantees that the expansion property of G;41 is at
least as good as the expansion of G;, while G;;1 maintains the degree of G; and
is a constant times larger than G;. The process is initiated with G; = G? and
terminates when we obtain a graph G of approximately the desired size (which
requires a logarithmic number of iterations).

10In fact, under a suitable encoding of the vertices and for m that is a power of two, the
neighbors can be computed by a on-line algorithm that uses a constant amount of space. The
same holds also for a variant in which each vertex (z,y) is connected to the vertices (z %+ 2y, y),
(x £ (2y +1),y), (x,y £ 2z), and (x,y + (22 + 1)). (This variant yields a better known bound on
A ie, A< 5v2 & 7.071.)

E.2. EXPANDER GRAPHS 557

In this example G' is 6-regular and G is a 3-regular graph having six
vertices. In the graph G’ (not shown), the 2nd edge of vertex u is
incident at v, as its 5th edge. The wide 3-segment line shows one of
the corresponding edges of G'@G, which connects the vertices (u, 3)
and (v, 2).

Figure E.1: Detail of the zig-zag product of G' and G.

The Zig-Zag product. The heart of the combination step is a new type of
“graph product” called Zig-Zag product. This operation is applicable to any pair
of graphs G = ([D],E) and G' = ([N], E'), provided that G’ (which is typically
larger than G) is D-regular. For simplicity, we assume that G is d-regular (where
typically d < D). The Zig-Zag product of G' and G, denoted G' @G, is defined as
a graph with vertex set [N] x [D] and an edge set that includes an edge between
(u,i) € [N] x [D] and (v, 5) if and only if (i, k), (¢, j) € E and the k' edge incident
at u equals the £*! edge incident at v. See Figure E.1 as well as further clarification
that follows.

Teaching note: The following paragraph, which provides a formal description of the
zig-zag product, can be ignored in first reading but is useful for more advanced discus-

sion.

It will be convenient to represent graphs like G’ by their edge rotation function,
denoted R’ : [N]|x [D] — [N]x[D], such that R'(u,i) = (v,j) if (u,v) is the i*® edge
incident at u as well as the j*" edge incident at v. For simplicity, we assume that G
is edge-colorable with d colors, which in turn yields a natural edge rotation function
(i.e., R(i,a) = (j,«) if the edge (7,7) is colored «). We will denote by E, (i) the
vertex reached from i € [D] by following the edge colored « (i.e., Ey(i) = j iff
R(i,a) = (j,)). The Zig-Zag product of G' and G, denoted G' @G, is then defined
as a graph with the vertex set [N] x [D] and the edge rotation function

((u,2), (@, B)) = ((0,9), (B, @) if R'(u, Ea(i)) = (v, Ep(5)). (E.8)

558 APPENDIX E. EXPLICIT CONSTRUCTIONS

That is, edges are labeled by pairs over [d], and the (a,ﬁ)th edge out of vertex

(u,i) € [N]x[D] is incident at the vertex (v, j) (asits (3, o)™ edge) if R(u, Eo(i)) =

(v, E3(j)). (That is, based on («, 3), we take a G-step from (u,3) to (u, E4 (7)),

then viewing (u, E, (1)) = (u, E4(i)) as an edge of G' we rotate it to (v,j') e

R'(u, Eq (1)), and take a G-step from (v, j') to (v, E5(j')), while defining j = Eg(j')
and using j' = By (Es(j")) = E()).)

Clearly, the graph G'@G is d?-regular and has D - N vertices. The key fact,
proved in [180] (using techniques as in §E.2.1.3), is that the relative eigenvalue
of the zig-zag product is upper-bounded by the sum of the relative eigenvalues of
the two graphs (i.e., \2(G'@G) < A2(G') + A2(G), where Ay () denotes the relative
eigenvalue of the relevant graph). The (qualitative) fact that G'@G is an expander
if both G’ and G are expanders is very intuitive (e.g., consider what happens if
G' or G is a clique). Things are even more intuitive if one considers the (related)
replacement product of G’ and G, denoted G'®G, where there is an edge between
(u,i) € [N] x [D] and (v,j) if and only if either w = v and (i,j) € E or the i*}
edge incident at u equals the j* edge incident at v.'!

The iterated construction. The iterated expander construction uses the afore-
mentioned zig-zag product as well as graph squaring. Specifically, the construction
starts with the d?-regular graph G; = G? = ([D], E?), where D = d* and \»(G) <
1/4, and proceeds in iterations such that G;41 = G?@G fori = 1,2,...,t — 1. That
is, in each iteration, the current graph is first squared and then composed with the
fixed (d-regular D-vertex) graph G via the zig-zag product. This process maintains
the following two invariants:

1. The graph G; is d?-regular and has D' vertices.

(The degree bound follows from the fact that a zig-zag product with a d-
regular graph always yields a d?-regular graph.)

2. The relative eigenvalue of G; is smaller than one half.

(Here we use the fact that A2(G7 | @G) < A2(G7 1) + A2(G), which in turn
equals Ao (G;_1)? + X2(G) < (1/2)? +(1/4). Note that graph squaring is used
to reduce the relative eigenvalue of G; before increasing it by zig-zag product
with G.)

To ensure that we can construct G;, we should show that we can actually construct
the edge rotation function that correspond to its edge set. This boils down to
showing that, given the edge rotation function of G;_;, we can compute the edge
rotation function of G?_; as well as of its zig-zag product with G. Note that
this computation amounts to two recursive calls to computations regarding G;_1
(and two computations that correspond to the constant graph G). But since the
recursion depth is logarithmic in the size of the final graph, the time spend in the
recursive computation is polynomial in the size of the final graph. This suffices for
the minimal notion of explicitness, but not for the stronger one.

11 As an exercise, the reader is encouraged to show that if both G’ and G are expanders according
to the combinatorial definition then so is G'©G.

E.2. EXPANDER GRAPHS 559

The strongly explicit version. To achieve a strongly explicit construction, we
slightly modify the iterative construction. Rather than letting G;1; = G2@G, we
let Giy1 = (Gi x G;)’@G, where G' x G' denotes the tensor product of G' with
itself; that is, it G' = (V', E') then G' x G' = (V' x V', E"), where

E" = {((u1, uz), (v, v2)) : (u1,v1), (uz,v2) EE'}

with an edge rotation function

R"((u1,uz2), (i1,42)) = ((v1,v2), (J1, J2))

where R'(uy,i1) = (vi,71) and R'(u2,i2) = (v2,52). (We still use G; = G2.) Using
the fact that tensor product preserves the relative eigenvalue (while squaring the
degree) and using a d-regular G' = ([D], E) with D = d®, we note that the modified
Gi = (Gio1 x Gi_1)*®G is a d?-regular graph with (Dz - 1)2.p = p¥!
vertices, and Ay (G;) < 1/2 (because A2 ((Gi_1 X G;1)?’@G) < Xa(Gi1)* +X2(Q)).
Computing the neighbor of a vertex in G; boils down to a constant number of such
computations regarding G;_1, but due to the tensor product operation the depth
of the recursion is only double-logarithmic in the size of the final graph (and hence
logarithmic in the length of the description of vertices in it).

Digest. In the first construction, the zig-zag product was used both in order to
increase the size of the graph and to reduce its degree. However, as indicated by
the second construction (where the tensor product of graphs is the main vehicle
for increasing the size of the graph), the primary effect of the zig-zag product is to
reduce the degree, and the increase in the size of the graph is merely a side-effect
(which is actually undesired in Section 5.2.4). In both cases, graph squaring is used
in order to compensate for the modest increase in the relative eigenvalue caused
by the zig-zag product. In retrospect, the second construction is the “correct”
one, because it decouples three different effects, and uses a natural operation to
obtain each of them: Increasing the size of the graph is obtained by tensor product
of graphs (which in turn increases the degree), a degree reduction is obtained by
the zig-zag product (which in turn increases the relative eigenvalue), and graph
squaring is used in order to reduce the relative eigenvalue.

Stronger bound regarding the effect of the zig-zag product. In the fore-
going description we relied on the fact, proved in [180], that the relative eigen-
value of the zig-zag product is upper-bounded by the sum of the relative eigenval-
ues of the two graphs. Actually, a stronger upper-bound is proved in [180]: For
g(z,y) = (1 —y?) - x/2, it holds that

A (G'@G)

IN

90e(6'),X2(G)) +\/90(G), 1a(G) + (G (E9)
29(%(G"), }2(@)) + a(G)
(1= X2(G)%) - A2(G") + Xa(G).

IN

560 APPENDIX E. EXPLICIT CONSTRUCTIONS

Thus, we get A2(G'@G) < A2(G') + A2(G). Furthermore, Eq. (E.9) yields a non-
trivial bound for any A2(G'), A2(G) < 1, even in case A2(G') is very close to 1 (as
in the proof of Theorem 5.6). Specifically, Eq. (E.9) is upper-bounded by

906, %a(G)) + J(%) + 2(G)?

(1= 2(G)?) - Xa(G) | 14 X(G)?
2 +7 2
(1= 2(G)%) - (1 - X(G))
2

= 1-

(E.10)

(1-X2(G)?)- (1= A2(G"))/2. In particular, if A»(G) < 1/v/3
(1 — X2(G"))/3. This fact plays an important role in the

Thus, 1-X:(G'@G)
then 1 — X2(G'@G)
proof of Theorem 5.6.

2
>

