
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.December 9, 2006

1to Dana

c
Copyright 2006 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for pro�t or com-mercial advantage and that new copies bear this notice and the full citation on the �rstpage. Abstracting with credit is permitted.

2

PrefaceThe strive for e�ciency is ancient and universal, as time and other resources arealways in shortage. Thus, the question of which tasks can be performed e�cientlyis central to the human experience.A key step towards the systematic study of the aforementioned question is arigorous de�nition of the notion of a task and of procedures for solving tasks. Thesede�nitions were provided by computability theory, which emerged in the 1930's.This theory focuses on computational tasks, and considers automated procedures(i.e., computing devices and algorithms) that may solve such tasks.In focusing attention on computational tasks and algorithms, computabilitytheory has set the stage for the study of the computational resources (like time) thatare required by such algorithms. When this study focuses on the resources that arenecessary for any algorithm that solves a particular task (or a task of a particulartype), the study becomes part of the theory of Computational Complexity (alsoknown as Complexity Theory).1Complexity Theory is a central �eld of the theoretical foundations of ComputerScience. It is concerned with the study of the intrinsic complexity of computationaltasks. That is, a typical Complexity theoretic study looks at the computational re-sources required to solve a computational task (or a class of such tasks), rather thanat a speci�c algorithm or an algorithmic schema. Actually, research in ComplexityTheory tends to start with and focus on the computational resources themselves,and addresses the e�ect of limiting these resources on the class of tasks that can besolved. Thus, Computational Complexity is the study of the what can be achievedwithin limited time (and/or other limited natural computational resources).The (half-century) history of Complexity Theory has witnessed two main re-search e�orts (or directions). The �rst direction is aimed towards actually estab-lishing concrete lower bounds on the complexity of computational problems, viaan analysis of the evolution of the process of computation. Thus, in a sense, theheart of this direction is a \low-level" analysis of computation. Most research incircuit complexity and in proof complexity falls within this category. In contrast, a1In contrast, when the focus is on the design and analysis of speci�c algorithms (rather thanon the intrinsic complexity of the task), the study becomes part of a related sub�eld that maybe called Algorithmic Design and Analysis. Furthermore, Algorithmic Design and Analysis tendsto be sub-divided according to the domain of mathematics, science and engineering in which thecomputational tasks arise. In contrast, Complexity Theory typically maintains a unity of thestudy of tasks solveable within certain resources (regardless of the origins of these tasks).3

4second research e�ort is aimed at exploring the connections among computationalproblems and notions, without being able to provide absolute statements regardingthe individual problems or notions. This e�ort may be viewed as a \high-level"study of computation. The theory of NP-completeness as well as the studies ofapproximation, probabilistic proof systems, pseudorandomness and cryptographyall fall within this category.The current book focuses on the latter e�ort (or direction). We list severalreasons for our decision to focus on the \high-level" direction. The �rst is the greatconceptual signi�cance of the known results; that is, many known results (as well asopen problems) in this direction have an extremely appealing conceptual message,which can also be appreciated by non-experts. Furthermore, these conceptualaspects may be explained without entering excessive technical detail. Consequently,the \high-level" direction is more suitable for an exposition in a book of the currentnature. Finally, there is a subjective reason: the \high-level" direction is withinour own expertise, while this cannot be said about the \low-level" direction.The last paragraph brings us to a discussion of the nature of the current book,which is captured by the subtitle (i.e., \a conceptual perspective"). Our mainthesis is that complexity theory is extremely rich in conceptual content, and thatthis contents should be explicitly communicated in expositions and courses on thesubject. The desire to provide a corresponding textbook is indeed the motivationfor writing the current book and its main governing principle.This book o�ers a conceptual perspective on complexity theory, and the pre-sentation is designed to highlight this perspective. It is intended to serve as anintroduction to Computational Complexity that can be used either as a textbookor for self-study. Indeed, the book's primary target audience consists of studentsthat wish to learn complexity theory and educators that intend to teach a courseon complexity theory. The book is also intended to promote interest in complexitytheory and make it acccessible to general readers with adequate background (whichis mainly being comfortable with abstract discussions, de�nitions and proofs). Weexpect most readers to have a basic knowledge of algorithms, or at least be fairlycomfortable with the notion of an algorithm.The book focuses on several sub-areas of complexity theory (see the followingorganization and chapter summaries). In each case, the exposition starts from theintuitive questions addresses by the sub-area, as embodied in the concepts that itstudies. The exposition discusses the fundamental importance of these questions,the choices made in the actual formulation of these questions and notions, theapproaches that underly the answers, and the ideas that are embedded in theseanswers. Our view is that these (\non-technical") aspects are the core of the �eld,and the presentation attempts to re
ect this view.We note that being guided by the conceptual contents of the material leads, insome cases, to technical simpli�cations. Indeed, for many of the results presentedin this book, the presentation of the proof is di�erent (and arguably easier tounderstand) than the standard presentations.

Organization and ChapterSummariesThis book consists of ten chapters and seven appendices. The chapters constitutethe core of this book and are written in a style adequate for a textbook, whereas theappendices provide additional perspective and are written in the style of a surveyarticle. The relative length and ordering of the chapters (and appendices) does notre
ect their relative importance, but rather an attempt at the best logical order(i.e., minimizing the number of forward pointers).Following are brief summaries of the book's chapters and appendices. Thesessummaries are more detailed than those provided in Section 1.1.3 but less detailedthan the summaries provided at the beginning of each chapter.Chapter 1: Introduction and Preliminaries. The introduction provides ahigh-level overview of some of the content of complexity theory as well as a discus-sion of some of the characteristic features of this �eld. The preliminaries providethe relevant background on computability theory, which is the setting in whichcomplexity theoretic questions are being studied. Most importantly, central no-tions such as search and decision problems, algorithms that solve such problems,and their complexity are de�ned. In addition, this part presents the basic notionsunderlying non-uniform models of computation (like Boolean circuits).Chapter 2: P, NP and NP-completeness. The P-vs-NP Question can bephrased as asking whether or not �nding solutions is harder than checking thecorrectness of solutions. An alternative formulation in terms of decision problemsasks whether or not discovering proofs is harder than verifying their correctness;that is, is proving harder than verifying. It is widely believed that the answerto the two equivalent formulation is that �nding (resp., proving) is harder thanchecking (resp., verifying); that is, that P is di�erent from NP. At present, whenfaced with a hard problem in NP, we can only hope to prove that it is not in Passuming that NP is di�erent from P. This is where the theory of NP-completeness,which is based on the notion of a reduction, comes into the picture. In general,one computational problem is reducible to another problem if it is possible toe�ciently solve the former when provided with an (e�cient) algorithm for solvingthe latter. A problem (in NP) is NP-complete if any problem in NP is reducible5

6to it. Amazingly enough, NP-complete problems exist, and furthermore hundredsof natural computational problems arising in many di�erent areas of mathematicsand science are NP-complete.Chapter 3: Variations on P and NP. Non-uniform polynomial-time (P/poly)captures e�cient computations that are carried out by devices that handle speci�cinput lengths. The basic formalism ignores the complexity of constructing such de-vices (i.e., a uniformity condition), but a �ner formalism (based on \machines thattake advice") allows to quantify the amount of non-uniformity. The Polynomial-time Hierarchy (PH) generalizes NP by considering statements expressed by aquanti�ed Boolean formula with a �xed number of alternations of existential anduniversal quanti�ers. It is widely believed that each quanti�er alternation adds ex-pressive power to the class of such formulae. The two di�erent classes are relatedby showing that if NP is contained in P/poly then the Polynomial-time Hierarchycollapses to its second level.Chapter 4: More Resources, More Power? When using \nice" functions todetermine the algorithm's resources, it is indeed the case that more resources allowfor more tasks to be performed. However, when \ugly" functions are used for thesame purpose, increasing the resources may have no e�ect. By nice functions wemean functions that can be computed without exceeding the amount of resourcesthat they specify. Thus, we get results asserting, for example, that there areproblems that are solvable in cubic-time but not in quadratic-time. In the case ofnon-uniform models of computation, the issue of \nicety" does not arise, and it iseasy to establish separations results.Chapter 5: Space Complexity. This chapter is devoted to the study of thespace complexity of computations, while focusing on two rather extreme cases.The �rst case is that of algorithms having logarithmic space complexity, whichseem a proper and natural subset of the set of polynomial-time algorithms. Thesecond case is that of algorithms having polynomial space complexity, which in turncan solve almost all computational problems considered in this book. Among theresults presented in this chapter are a log-space algorithm for exploring (undirected)graphs, a non-deterministic log-space procedure for recognizing directed graphsthat are not strongly connected, and complete problems for NL and PSPACE(under log-space and polynomial-time reductions, respectively).Chapter 6: Randomness and Counting. Various failure types of probabilis-tic polynomial-time algorithms give rise to complexity classes such as BPP, RP ,and ZPP. The results presented include the emulation of probabilistic choices bynon-uniform advice (i.e., BPP � P=poly) and the emulation of two-sided prob-abilistic error by an 98-sequence of quanti�ers (i.e., BPP � �2). Turning tocounting problems (i.e., counting the number of solutions for NP-type problems),we distinguish between exact counting and approximate counting (in the sense of

7relative approximation). While any problem in PH is reducible to the exact count-ing class #P, approximate counting (for #P) is (probabilisticly) reducible to NP .Additional related topics include #P-completeness, the complexity of searching forunique solutions, and the relation between approximate counting and generatingalmost uniformly distributed solutions.Chapter 7: The Bright Side of Hardness. It turns out that hard problem canbe \put to work" to our bene�t, most notably in cryptography. One key issue thatarises in this context is bridging the gap between \occasional" hardness (e.g., worst-case hardness or mild average-case hardness) and \typical" hardness (i.e., strongaverage-case hardness). We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable in exponential-time but are not solvable by (non-uniform) families of small (say polynomial-size)circuits. We show that these types of worst-case conjectures can be transformedinto average-case hardness results that yield non-trivial derandomizations of BPP(and even BPP = P). The second conjecture is that there are problems in NPfor which it is easy to generate (solved) instances that are hard to solve for otherpeople. This conjecture is captured in the notion of one-way functions, which arefunctions that are easy to evaluate but hard to invert (in an average-case sense). Weshow that functions that are hard to invert in a relatively mild average-case senseyield functions that are hard to invert almost everywhere, and that the latter yieldpredicates that are very hard to approximate (called hard-core predicates). Thelatter are useful for the construction of general-purpose pseudorandom generatorsas well as for a host of cryptographic applications.Chapter 8: Pseudorandom Generators. A fresh view at the question of ran-domness was taken in the theory of computing: It has been postulated that adistribution is pseudorandom if it cannot be told apart from the uniform distri-bution by any e�cient procedure. The paradigm, originally associating e�cientprocedures with polynomial-time algorithms, has been applied also with respectto a variety of limited classes of such distinguishing procedures. The archetypicalcase of pseudorandom generators refers to e�cient generators that fool any feasibleprocedure; that is, the potential distinguisher is any probabilistic polynomial-timealgorithm, which may be more complex than the generator itself. These generatorsare called general-purpose, because their output can be safely used in any e�cientapplication. In contrast, for purposes of derandomization, one may use pseudoran-dom generators that are somewhat more complex than the potential distinguisher(which represents the algorithm to be derandomized). Following this approach andusing various hardness assumptions, one may obtain corresponding derandomiza-tions of BPP (including a full derandomization; i.e., BPP = P). Other forms ofpseudorandom generators include ones that fool space-bounded distinguishers, andeven weaker ones that only exhibit some limited random behavior (e.g., outputtinga pair-wise independent sequence).

8Chapter 9: Probabilistic Proof Systems. Randomized and interactive veri-�cation procedures, giving rise to interactive proof systems, seem much more pow-erful than their deterministic counterparts. In particular, interactive proof systemsexist for any set in PSPACE � coNP (e.g., for the set of unsatis�ed proposi-tional formulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems. Interactive proofs allow the meaningful conceptualizationof zero-knowledge proofs, which are interactive proofs that yield nothing (to theveri�er) beyond the fact that the assertion is indeed valid. Under reasonable com-plexity assumptions, every set in NP has a zero-knowledge proof system. (Thisresult has many applications in cryptography.) A third type of probabilistic proofsystems is the model of PCPs, standing for probabilistically checkable proofs. Theseare (redundant) NP-proofs that o�ers a trade-o� between the number of locations(randomly) examined in the proof and the con�dence in its validity. In particular,a small constant error probability can be obtained by reading a constant numberof bits in the redundant NP-proof. The PCP Theorem asserts that NP-proofs canbe e�ciently transformed into PCPs. The study of PCPs is closely related to thestudy of the complexity of approximation problems.Chapter 10: Relaxing the Requirement. In light of the apparent infeasibilityof solving numerous useful computational problems, it is natural to seek relaxationsof these problems that remain useful for the original applications and yet allowfor feasible solving procedures. Two such types of relaxations are provided byadequate notions of approximation and a theory of average-case complexity. Thenotions of approximation refer to the computational problems themselves; thatis, for each problem instance we extend the set of admissible solutions. In thecontext of search problems this means settling for solutions that have a valuethat is \su�ciently close" to the value of the optimal solution, whereas in thecontext of decision problems this means settling for procedures that distinguishyes-instances from instances that are \far" from any yes-instance. Turning toaverage-case complexity, we note that a systematic study of this notion requiresthe development of a non-trivial conceptual framework. A major aspect of thisframework is limiting the class of distributions in a way that, on one hand, allowsfor various types of natural distributions and, on the other hand, prevents thecollapse of average-case hardness to worst-case hardness.Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book. The glos-sary is partitioned into two parts, dealing separately with complexity classes thatare de�ned in terms of algorithms and their resources (i.e., time and space com-plexity of Turing machines) and complexity classes de�ned in terms of non-uniformcircuit (and referring to their size and depth). The following classes are de�ned:P , NP , coNP , BPP, RP , coRP , ZPP, #P , PH, E , EXP , NEXP , L, NL, RL,PSPACE , P=poly, NCk, and ACk.

9Appendix B: On the Quest for Lower Bounds. This appendix surveys someattempts at proving lower bounds on the complexity of natural computational prob-lems. The �rst part, devoted to Circuit Complexity, reviews lower bounds for thesize of (restricted) circuits that solve natural computational problems. This repre-sents a program whose long-term goal is proving that P 6= NP . The second part,devoted to Proof Complexity, reviews lower bounds on the length of (restricted)propositional proofs of natural tautologies. This represents a program whose long-term goal is proving that NP 6= coNP .Appendix C: On the Foundations of Modern Cryptography. This ap-pendix surveys the foundations of cryptography, which are the paradigms, ap-proaches and techniques used to conceptualize, de�ne and provide solutions tonatural security concerns. It presents some of these conceptual tools as well assome of the fundamental results obtained using them. The appendix augmentsthe partial treatment of one-way functions, pseudorandom generators, and zero-knowledge proofs (which is included in Chapters 7{9). Using these basic tools, theappendix provides a treatment of basic cryptographic applications such as Encryp-tion, Signatures, and General Cryptographic Protocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables and overviews of three useful inequalities (i.e., Markov Inequality,Chebyshev's Inequality, and Cherno� Bound). The advanced topics include con-structions and lemmas regarding families of hashing functions, a study of the sam-ple and randomness complexities of estimating the average value of an arbitraryfunction, and the problem of randomness extraction (i.e., procedures for extractingalmost perfect randomness from sources of weak or defected randomness).Appendix E: Explicit Constructions. Complexity theory provides a clearperspective on the intuitive notion of an explicit construction. This perspective isdemonstrated with respect to error correcting codes and expander graphs. On thetopic of codes, the appendix focuses on various computational aspects, containinga review of several popular constructions as well as a construction of a binary codeof constant rate and constant relative distance. Also included are a brief reviewof the notions of locally testable and locally decodable codes, and a useful upper-bound on the number of codewords that are close to any single word. Turningto expander graphs, the appendix contains a review of two standard de�nitions ofexpanders, two levels of explicitness, two properties of expanders that are related to(single-step and multi-step) random walks on them, and two explicit constructionsof expander graphs.Appendix F: Some Omitted Proofs. This appendix contains some proofs thatwere not included in the main text (for a variety of reasons) and still are bene�cialas alternatives to the original and/or standard presentations. Included are proofs

10that PH is reducible to #P via randomized Karp-reductions, and that IP(f) �AM(O(f)) � AM(f), for any function f such that f(n) 2 f2; :::; poly(n)g.Appendix G: Some Computational Problems. This appendix includes def-initions of most of the speci�c computational problems that are referred to in themain text. In particular, it contains a brief introduction to graph algorithms,boolean formulae and �nite �elds.

AcknowledgmentsMy perspective on complexity theory was most in
uenced by Shimon Even andLeonid Levin. In fact, it was hard not to be in
uenced by these two remarkable andhighly opinionated researchers (especially for somebody like me who was fortunateto spend a lot of time with them).2Shimon Even viewed complexity theory as the study of the limitations of al-gorithms, a study concerned with natural computational resources and naturalcomputational tasks. Complexity theory was there to guide the engineer and toaddress the deepest questions that bother an intellectually curious computer scien-tist. I believe that this book shares Shimon's view of complexity theory as evolvingaround such questions.Leonid Levin emphasized the general principles that underly complexity theory,rejecting any \model-dependent e�ects" as well as the common coupling of com-plexity theory with the theory of automata and formal languages. In my opinion,this book is greatly in
uenced by these opinions of Levin.I wish to acknowledge the in
uence of numerous other colleagues on my pro-fessional perspectives and attitudes. These include Sha� Goldwasser, Dick Karp,Silvio Micali, and Avi Wigderson. I also wish to thank many colleagues for theircomments and advice regarding earlier versions of this text. A partial list includesNoam Livne, Omer Reingold, Dana Ron, Ronen Shaltiel, Amir Shpilka, MadhuSudan, Salil Vadhan, and Avi Wigderson.Lastly, I am grateful to Mohammad Mahmoody Ghidary and Or Meir for theircareful reading of drafts of this manuscript and for the numerous corrections andsuggestions they have provided.Relation to previous texts of mine. Some of the text of this book has beenadapted from previous texts of mine. In particular, Chapters 8 and 9 were writtenbased on my surveys [86, Chap. 3] and [86, Chap. 2], respectively; but the expositionhas been extensively revised to �t the signi�cantly di�erent aims of the currentbook. Similarly, Section 7.1 and Appendix C were written based on my survey [86,Chap. 1] and books [87, 88]; but, again, the previous texts are very di�erent in manyways. In contrast, Appendix B was adapted with relatively little modi�cations froman early draft of a section of an article by Avi Wigderson and myself [103].2Shimon Even was my graduate studies adviser (at the Technion, 1980-83); whereas I had alot of meetings with Leonid Levin during my post-doctoral period (at MIT, 1983-86).1

2

Chapter 1Introduction andPreliminariesYou can start by putting the do not disturb sign.Cay, in Desert Hearts (1985).The current chapter consists of two parts. The �rst part provides a high-levelintroduction to (computational) complexity theory. This introduction is muchmore detailed than the laconic statements made in the preface, but is quite sparsewhen compared to the richness of the �eld. In addition, the introduction containsseveral important comments regarding the contents, approach and style of thecurrent book.
P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the restof the book. It includes a discussion of computational tasks and computationalmodels, as well as natural complexity measures associated with the latter. Morespeci�cally, this part recalls the basic notions and results of computability theory(including the de�nition of Turing machines, some undecidability results, the notionof universal machines, and the de�nition of oracle machines). In addition, this partpresents the basic notions underlying non-uniform models of computation (likeBoolean circuits). 3

4 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.1 IntroductionThis section consists of two parts: the �rst part refers to the area itself, whereasthe second part refers to the current book. The �rst part provides a brief overviewof Complexity Theory (Section 1.1.1) as well as some re
ections about its char-acteristics (Section 1.1.2). The second part describes the contents of this book(Section 1.1.3), the considerations underlying the choice of topics as well as theway they are presented (Section 1.1.4), and various notations and conventions (Sec-tion 1.1.5).1.1.1 A brief overview of Complexity TheoryOut of the tough came forth sweetness1Judges, 14:14Complexity Theory is concerned with the study of the intrinsic complexity of com-putational tasks. Its \�nal" goals include the determination of the complexity ofany well-de�ned task. Additional goals include obtaining an understanding of therelations between various computational phenomena (e.g., relating one fact regard-ing computational complexity to another). Indeed, we may say that the formertype of goals is concerned with absolute answers regarding speci�c computationalphenomena, whereas the latter type is concerned with questions regarding the re-lation between computational phenomena.Interestingly, so far Complexity Theory has been more successful in coping withgoals of the latter (\relative") type. In fact, the failure to resolve questions of the\absolute" type, led to the
ourishing of methods for coping with questions of the\relative" type. Musing for a moment, let us say that, in general, the di�cultyof obtaining absolute answers may naturally lead to seeking conditional answers,which may in turn reveal interesting relations between phenomena. Furthermore,the lack of absolute understanding of individual phenomena seems to facilitate thedevelopment of methods for relating di�erent phenomena. Anyhow, this is whathappened in Complexity Theory.Putting aside for a moment the frustration caused by the failure of obtainingabsolute answers, we must admit that there is something fascinating in the successto relate di�erent phenomena: in some sense, relations between phenomena aremore revealing than absolute statements about individual phenomena. Indeed, the�rst example that comes to mind is the theory of NP-completeness. Let us considerthis theory, for a moment, from the perspective of these two types of goals.Complexity theory has failed to determine the intrinsic complexity of tasks suchas �nding a satisfying assignment to a given (satis�able) propositional formula or�nding a 3-coloring of a given (3-colorable) graph. But it has established thatthese two seemingly di�erent computational tasks are in some sense the same (or,more precisely, are computationally equivalent). We �nd this success amazing1The quote is commonly used to mean that bene�t arose out of misfortune.

1.1. INTRODUCTION 5and exciting, and hopes that the reader shares these feelings. The same feeling ofwonder and excitement is generated by many of the other discoveries of Complexitytheory. Indeed, the reader is invited to join a fast tour of some of the other questionsand answers that make up the �eld of Complexity theory.We will indeed start with the \P versus NP Question". Our daily experience isthat it is harder to solve a problem than it is to check the correctness of a solution(e.g., think of either a puzzle or a research problem). Is this experience merelya coincidence or does it represent a fundamental fact of life (or a property of theworld)? Could you imagine a world in which solving any problem is not signi�cantlyharder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world?The denial of the plausibility of such a hypothetical world (in which \solving" isnot harder than \checking") is what \P di�erent from NP" actually means, whereP represents tasks that are e�ciently solvable and NP represents tasks for whichsolutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider thetask of proving theorems versus the task of verifying the validity of proofs. Indeed,�nding proofs is a special type of the aforementioned task of \solving a problem"(and verifying the validity of proofs is a corresponding case of checking correctness).Again, \P di�erent from NP" means that there are theorems that are harder toprove than to be convinced of their correctness when presented with a proof. Thismeans that the notion of a proof is meaningful (i.e., that proofs do help whentrying to be convinced of the correctness of assertions). Here NP represents setsof assertions that can be e�ciently veri�ed with the help of adequate proofs, andP represents sets of assertions that can be e�ciently veri�ed from scratch (i.e.,without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question isa fundamental scienti�c question of far-reaching consequences. The fact that thisquestion seems beyond our current reach led to the development of the theory ofNP-completeness. Loosely speaking, this theory identi�es a set of computationalproblems that are as hard as NP. That is, the fate of the P-versus-NP Questionlies with each of these problems: if any of these problems is easy to solve thenso are all problems in NP. Thus, showing that a problem is NP-complete providesevidence to its intractability (assuming, of course, \P di�erent than NP"). Indeed,demonstrating NP-completeness of computational tasks is a central tool in indicat-ing hardness of natural computational problems, and it has been used extensivelyboth in computer science and in other disciplines. NP-completeness indicates notonly the conjectured intractability of a problem but rather also its \richness" in thesense that the problem is rich enough to \encode" any other problem in NP. Theuse of the term \encoding" is justi�ed by the exact meaning of NP-completeness,which in turn is based on establishing relations between di�erent computationalproblems (without referring to their \absolute" complexity).The foregoing discussion of the P-versus-NP Question also hints to the impor-tance of representation, a phenomenon that is central to complexity theory. Ingeneral, complexity theory is concerned with problems the solutions of which are

6 CHAPTER 1. INTRODUCTION AND PRELIMINARIESimplicit in the problem's statement (or rather in the instance). That is, the problem(or rather its instance) contains all necessary information, and one merely needs toprocess this information in order to supply the answer.2 Thus, complexity theory isconcerned with manipulation of information, and its transformation from one rep-resentation (in which the information is given) to another representation (whichis the one desired). Indeed, a solution to a computational problem is merely adi�erent representation of the information given; that is, a representation in whichthe answer is explicit rather than implicit. For example, the answer to the questionof whether or not a given Boolean formula is satis�able is implicit in the formulaitself (but the task is to make the answer explicit). Thus, complexity theory clari-�es a central issue regarding representation; that is, the distinction between whatis explicit and what is implicit in a representation. Furthermore, it even suggestsa quanti�cation of the level of non-explicitness.In general, complexity theory provides new viewpoints on various phenomenathat were considered also by past thinkers. Examples include the aforementionedconcepts of proofs and representation as well as concepts like randomness, knowl-edge, interaction, secrecy and learning. We next discuss some of these conceptsand the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspectivecan be described as ontological: they asked \what is randomness" and wonderedwhether it exist at all (or is the world deterministic). The perspective of complexitytheory is behavioristic: it is based on de�ning objects as equivalent if they cannotbe told apart by any e�cient procedure. That is, a coin toss is (de�ned to be)\random" (even if one believes that the universe is deterministic) if it is infeasibleto predict the coin's outcome. Likewise, a string (or a distribution of strings) is\random" if it is infeasible to distinguish it from the uniform distribution (regard-less of whether or not one can generate the latter). Interestingly, randomness (orrather pseudorandomness) de�ned this way is e�ciently expandable; that is, undera reasonable complexity assumption (to be discussed next), short pseudorandomstrings can be deterministically expanded into long pseudorandom strings. Indeed,it turns out that randomness is intimately related to intractability. Firstly, notethat the very de�nition of pseudorandomness refers to intractability (i.e., the infea-sibility of distinguishing a pseudorandomness object from a uniformly distributedobject). Secondly, as stated, a complexity assumption, which refers to the exis-tence of functions that are easy to evaluate but hard to invert (called one-wayfunctions), implies the existence of deterministic programs (called pseudorandomgenerators) that stretch short random seeds into long pseudorandom sequences. Infact, it turns out that the existence of pseudorandom generators is equivalent tothe existence of one-way functions.Complexity theory o�ers its own perspective on the concept of knowledge (anddistinguishes it from information). Speci�cally, complexity theory views knowledgeas the result of a hard computation. Thus, whatever can be e�ciently done by any-2In contrast, in other disciplines, solving a problem may require gathering information that isnot available in the problem's statement. This information may either be available from auxiliary(past) records or be obtained by conducting new experiments.

1.1. INTRODUCTION 7one is not considered knowledge. In particular, the result of an easy computationapplied to publicly available information is not considered knowledge. In contrast,the value of a hard to compute function applied to publicly available informationis knowledge, and if somebody provides you with such a value then it has providedyou with knowledge. This discussion is related to the notion of zero-knowledgeinteractions, which are interactions in which no knowledge is gained. Such inter-actions may still be useful, because they may convince a party of the correctnessof speci�c data that was provided beforehand.The foregoing paragraph has explicitly referred to interaction. It has pointedone possible motivation for interaction: gaining knowledge. It turns out that in-teraction may help in a variety of other contexts. For example, it may be easier toverify an assertion when allowed to interact with a prover rather than when readinga proof. Put di�erently, interaction with a good teacher may be more bene�cialthan reading any book. We comment that the added power of such interactiveproofs is rooted in their being randomized (i.e., the veri�cation procedure is ran-domized), because if the veri�er's questions can be determined beforehand then theprover may just provide the transcript of the interaction as a traditional writtenproof.Another concept related to knowledge is that of secrecy: knowledge is some-thing that one party has while another party does not have (and cannot feasiblyobtain by itself) { thus, in some sense knowledge is a secret. In general, complexitytheory is related to Cryptography, where the latter is broadly de�ned as the studyof systems that are easy to use but hard to abuse. Typically, such systems involvesecrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its pre-scribed behavior. Thus, much of Cryptography is based on complexity theoreticassumptions and its results are typically transformations of relatively simple com-putational primitives (e.g., one-way functions) into more complex cryptographicapplications (e.g., secure encryption schemes).We have already mentioned the concept of learning when referring to learningfrom a teacher versus learning from a book. Recall that complexity theory providesevidence to the advantage of the former. This is in the context of gaining knowledgeabout publicly available information. In contrast, computational learning theoryis concerned with learning objects that are only partially available to the learner(i.e., learning a function based on its value at a few random locations or even atlocations chosen by the learner). Complexity theory sheds light on the intrinsiclimitations of learning (in this sense).Complexity theory deals with a variety of computational tasks. We have alreadymentioned two fundamental types of tasks: searching for solutions (or rather \�nd-ing solutions") and making decisions (e.g., regarding the validity of assertion). Wehave also hinted that in some cases these two types of tasks can be related. Nowwe consider two additional types of tasks: counting the number of solutions andgenerating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that forsome natural problems they are not signi�cantly harder. Speci�cally, under some

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIESnatural conditions on the problem, approximately counting the number of solutionsand generating an approximately random solution is not signi�cantly harder than�nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of thecomplexity of �nding approximate solutions has also received a lot of attention.One type of approximation problems refers to an objective function de�ned on theset of potential solutions. Rather than �nding a solution that attains the optimalvalue, the approximation task consists of �nding a solution that attains an \almostoptimal" value, where the notion of \almost optimal" may be understood in dif-ferent ways giving rise to di�erent levels of approximation. Interestingly, in manycases, even a very relaxed level of approximation is as di�cult to obtain as solvingthe original (exact) search problem (i.e., �nding an approximate solution is as hardas �nding an optimal solution). Surprisingly, these hardness of approximation re-sults are related to the study of probabilistically checkable proofs, which are proofsthat allow for ultra-fast probabilistic veri�cation. Amazingly, every proof can bee�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approx-imation problems, we note that in other cases a reasonable level of approximationis easier to achieve than solving the original (exact) search problem.Approximation is a natural relaxation of various computational problems. An-other natural relaxation is the study of average-case complexity, where the \aver-age" is taken over some \simple" distributions (representing a model of the prob-lem's instances that may occur in practice). We stress that, although it was notstated explicitly, the entire discussion so far has referred to \worst-case" analysisof algorithms. We mention that worst-case complexity is a more robust notionthan average-case complexity. For starters, one avoids the controversial questionof what are the instances that are \important in practice" and correspondinglythe selection of the class of distributions for which average-case analysis is to beconducted. Nevertheless, a relatively robust theory of average-case complexity hasbeen suggested, albeit it is less developed than the theory of worst-case complexity.In view of the central role of randomness in complexity theory (as evident, say,in the study of pseudorandomness, probabilistic proof systems, and cryptography),one may wonder as to whether the randomness needed for the various applicationscan be obtained in real-life. One speci�c question, which received a lot of atten-tion, is the possibility of \purifying" randomness (or \extracting good randomnessfrom bad sources"). That is, can we use \defected" sources of randomness in or-der to implement almost perfect sources of randomness. The answer depends, ofcourse, on the model of such defected sources. This study turned out to be relatedto complexity theory, where the most tight connection is between some type ofrandomness extractors and some type of pseudorandom generators.So far we have focused on the time complexity of computational tasks, whilerelying on the natural association of e�ciency with time. However, time is notthe only resource one should care about. Another important resource is space:the amount of (temporary) memory consumed by the computation. The studyof space complexity has uncovered several fascinating phenomena, which seem to

1.1. INTRODUCTION 9indicate a fundamental di�erence between space complexity and time complexity.For example, in the context of space complexity, verifying proofs of validity ofassertions (of any speci�c type) has the same complexity as verifying proofs ofinvalidity for the same type of assertions.In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour ofsome mountain tops, and dizziness is to be expected. Needless to say, the rest ofthe book o�ers a totally di�erent touring experience. We will climb some of thesemountains by foot, step by step, and will often stop to look around and re
ect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-sults are not known for many of the \big questions" of complexity theory (mostnotably the P-versus-NP Question). However, several highly non-trivial absoluteresults have been proved. For example, it was shown that using negation canspeed-up the computation of monotone functions (which do not require negationfor their mere computation). In addition, many promising techniques were intro-duced and employed with the aim of providing a low-level analysis of the progress ofcomputation. However, as stated in the preface, the focus of this book is elsewhere.1.1.2 Characteristics of Complexity TheoryWe are successful because we use the right level of abstractionAvi Wigderson (1996)Using the \right level of abstraction" seems to be a main characteristic of the The-ory of Computation at large. The right level of abstraction means abstracting awaysecond-order details, which tend to be context-dependent, while using de�nitionsthat re
ect the main issues (rather than abstracting them away too). Indeed, usingthe right level of abstraction calls for an extensive exercising of good judgment, andone indication for having chosen the right abstractions is the result of their study.One major choice of the theory of computation, which is currently taken forgranted, is the choice of a model of computation and corresponding complexitymeasures and classes. Two extreme choices that were avoided are a too realisticmodel and a too abstract model. On the one hand, the main model of computationused in complexity theory does not try to re
ect (or mirror) the speci�c operationof real-life computers used at a speci�c historical time. Such a choice would havemade it very hard to develop complexity theory as we know it and to uncoverthe fundamental relations discussed in this book: the mass of details would haveobscured the view. On the other hand, avoiding any reference to any concretemodel (like in the case of recursive function theory) does not encourage the intro-duction and study of natural measures of complexity. Indeed, as we shall see inSection 1.2.3, the choice was (and is) to use a simple model of computation (whichdoes not mirror real-life computers), while avoiding any e�ects that are speci�c tothat model (by keeping a eye on a host of variants and alternative models). Thefreedom from the speci�cs of the basic model is obtained by considering complexity

10 CHAPTER 1. INTRODUCTION AND PRELIMINARIESclasses that are invariant under a change of model (as long as the alternative modelis \reasonable").Another major choice is the use of asymptotic analysis. Speci�cally, we con-sider the complexity of an algorithm as a function of its input length, and studythe asymptotic behavior of this function. It turns out that structure that is hiddenby concrete quantities appears at the limit. Furthermore, depending on the case,we classify functions according to di�erent criteria. For example, in case of timecomplexity we consider classes of functions that are closed under multiplication,whereas in case of space complexity we consider closure under addition. In eachcase, the choice is governed by the nature of the complexity measure being consid-ered. Indeed, one could have developed a theory without using these conventions,but this would have resulted in a far more cumbersome theory. For example, ratherthan saying that �nding a satisfying assignment for a given formula is polynomial-time reducible to deciding the satis�ability of some other formulae, one could havestated the exact functional dependence of the complexity of the search problem onthe complexity of the decision problem.Both the aforementioned choices are common to other branches of the theory ofcomputation. One aspect that makes complexity theory unique is its perspectiveon the most basic question of the theory of computation; that is, the way it studiesthe question of what can be e�ciently computed. The perspective of complexitytheory is general in nature. This is re
ected in its primary focus on the relevantnotion of e�ciency (captured by corresponding resource bounds) rather than onspeci�c computational problems. In most cases, complexity theoretic studies donot refer to any speci�c computational problems or refer to such problems merelyas an illustration. Furthermore, even when speci�c computational problems arestudied, this study is (explicitly or at least implicitly) aimed at understanding thecomputational limitations of certain resource bounds.The aforementioned general perspective seems linked to the signi�cant role ofconceptual considerations in the �eld: The rigorous study of an intuitive notion ofe�ciency must be initiated with an adequate choice of de�nitions. Since this studyrefers to any possible (relevant) computation, the de�nitions cannot be derived byabstracting some concrete reality (e.g., a speci�c algorithmic schema). Indeed, thede�nitions attempt to capture any possible reality, which means that the choiceof de�nitions is governed by conceptual principles and not merely by empiricalobservations.1.1.3 Contents of this bookThis book is intended to serve as an introduction to Computational Complexitythat can be used either as a textbook or for self-study. It consists of ten chaptersand seven appendices. The chapters constitute the core of this book and are writtenin a style adequate for a textbook, whereas the appendices provide additionalperspective and are written in the style of a survey article.Section 1.2 and Chapter 2 are a prerequisite to the rest of the book. Technicallyspeaking, the notions and results that appear in these parts are extensively usedin the rest of the book. More importantly, the former parts are the conceptual

1.1. INTRODUCTION 11framework that shapes the �eld and provides a good perspective on the �eld'squestions and answers. Indeed, Section 1.2 and Chapter 2 provide the very basicmaterial that must be understood by anybody having an interest in complexitytheory.In contrast, the rest of the book covers more advanced material, which meansthat none of it can be claimed to be absolutely necessary for a basic understandingof complexity theory. Indeed, although some advanced chapters refer to material inother advanced chapters, the relation between these chapters is not a fundamentalone. Thus, one may choose to read and/or teach an arbitrary subset of the advancedchapters and do so in an arbitrary order, provided one is willing to follow therelevant references to some parts of other chapters (see Figure 1.1). Needless tosay, we recommend reading and/or teaching all the advanced chapters, and doingso by following the order presented in this book.The rest of this section provides a brief summary of the contents of the variouschapters and appendices. This summary is intended for the teacher and/or theexpert, whereas the student is referred to the more reader-friendly summaries thatappear in the book's pre�x.Section 1.2: Preliminaries. This section provides the relevant background oncomputability theory, which is the basis for the rest of this book (as well as forcomplexity theory at large). Most importantly, it contains a discussion of centralnotions such as search and decision problems, algorithms that solve such problems,and their complexity. In addition, this section presents non-uniform models ofcomputation (e.g., Boolean circuits).Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NPQuestion both in terms of search problems and in terms of decision problems. Thesecond main topic of this chapter is the theory of NP-completeness. The chapteralso provides a treatment of the general notion of a (polynomial-time) reduction,with special emphasis on self-reducibility. Additional topics include the existence ofproblems in NP that are neither NP-complete nor in P, optimal search algorithms,the class coNP, and promise problems.Chapter 3: Variations on P and NP. This chapter provides a treatmentof non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy(PH). Each of the two classes is de�ned in two equivalent ways (e.g., P/poly isde�ned both in terms of circuits and in terms of \machines that take advice"). Inaddition, it is shown that if NP is contained in P/poly then PH collapses to itssecond level (i.e., �2).Chapter 4: More Resources, More Power? The focus of this chapter ison Hierarchy Theorems, which assert that typically more resources allow for solv-ing more problems. These results depend on using bounding functions that canbe computed without exceeding the amount of resources that they specify, andotherwise Gap Theorems may apply.

12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

6.1 6.2

7.1 7.2

in E

8.2 8.3 8.4 8.5

8.1 paragidm

de-ran. space
gen.
pur.

OWF

 case

10.1.1

prop.
test.

10.1.2

9.1 IP

9.2 ZK

PCP

9.3

average

10.2

rand. count.

6.1.4

7.1.3

5.2
L

5.4

4.1 advice

4.3 space
3.1

PHP/poly

5.3
PSPACE

5.1 general
3.2.3

3.2
4.2 TIME

5.2.4

(of opt.)
approx.

5.3.1

NL

(RL)

Solid arrows indicate the use of speci�c results that are stated in thesection to which the arrow points. Dashed lines (and arrows) indicatean important conceptual connection; the wider the line, the tighterthe connection. When relations are only between subsections, theirindex is indicated.Figure 1.1: Dependencies among the advanced chapters.Chapter 5: Space Complexity. Among the results presented in this chapterare a log-space algorithm for testing connectivity of (undirected) graphs, a proofthat NL = coNL, and complete problems for NL and PSPACE (under log-spaceand poly-time reductions, respectively).Chapter 6: Randomness and Counting. This chapter focuses on variousrandomized complexity classes (i.e., BPP, RP , and ZPP) and the counting class#P . The results presented in this chapter include BPP � P=poly and BPP ��2, the #P-completeness of the Permanent, the connection between approximatecounting and uniform generation of solutions, and the randomized reductions ofapproximate counting to NP and ofNP to solving problems with unique solutions.

1.1. INTRODUCTION 13Chapter 7: The Bright Side of Hardness. This chapter deals with two con-jectures that are related to P 6= NP . The �rst conjecture is that there are problemsin E that are not solvable by (non-uniform) families of small (say polynomial-size)circuits, whereas the second conjecture is equivalent to the notion of one-way func-tions. Most of this chapter is devoted to \hardness ampli�cation" results thatconvert these conjectures into tools that can be used for non-trivial derandomiza-tions of BPP (resp., for a host of cryptographic applications).Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-tion of computational indistinguishability and corresponding notions of pseudoran-domness. The de�nition of general-purpose pseudorandom generators (running inpolynomial-time and withstanding any polynomial-time distinguisher) is presentedas a special case of a general paradigm. The chapter also contains a presentationof other instantiations of the latter paradigm, including generators aimed at deran-domizing complexity classes such as BPP, generators withstanding space-boundeddistinguishers, and some special-purpose generators.Chapter 9: Probabilistic Proof Systems. This chapter provides a treatmentof three types of probabilistic proof systems: interactive proofs, zero-knowledgeproofs, and probabilistic checkable proofs. The results presented include IP =PSPACE , zero-knowledge proofs for any NP-set, and the PCP Theorem. For thelatter, only overviews of the two di�erent known proofs are provided.Chapter 10: Relaxing the Requirement. This chapter provides a treatmentof two types of approximation problems and a theory of average-case (or rathertypical-case) complexity. The traditional type of approximation problems refersto search problems and consists of a relaxation of standard optimization prob-lems. The second type is known as \property testing" and consists of a relaxationof standard decision problems. The theory of average-case complexity involvesseveral non-trivial de�nitional choices (e.g., an adequate choice of the class of dis-tributions).Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book.Appendix B: On the Quest for Lower Bounds. The �rst part, devotedto Circuit Complexity, reviews lower bounds for the size of (restricted) circuitsthat solve natural computational problems. The second part, devoted to ProofComplexity, reviews lower bounds on the length of (restricted) propositional proofsof natural tautologies.Appendix C: On the Foundations of Modern Cryptography. The �rstpart of this appendix augments the partial treatment of one-way functions, pseu-dorandom generators, and zero-knowledge proofs (which is included in Chapters

14 CHAPTER 1. INTRODUCTION AND PRELIMINARIES7{9). Using these basic tools, the second part provides a treatment of basic cryp-tographic applications such as Encryption, Signatures, and General CryptographicProtocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables and overviews of three useful inequalities (i.e., Markov Inequality,Chebyshev's Inequality, and Cherno� Bound). The advanced topics include con-structions of hashing functions and variants of the Leftover Hashing Lemma, andoverviews of samplers and extractors (i.e., the problem of randomness extraction).Appendix E: Explicit Constructions. This appendix focuses on various com-putational aspects of error correcting codes and expander graphs. On the topicof codes, the appendix contains a review of the Hadamard code, Reed-Solomoncodes, Reed-Muller codes, and a construction of a binary code of constant rate andconstant relative distance. Also included are a brief review of the notions of locallytestable and locally decodable codes, and a list-decoding bound. On the topic ofexpander graphs, the appendix contains a review of the standard de�nitions andproperties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zagconstructions.Appendix F: Some Omitted Proofs. This appendix contains some proofsthat are bene�cial as alternatives to the original and/or standard presentations.Included are proofs that PH is reducible to #P via randomized Karp-reductions,and that IP(f) � AM(O(f)) � AM(f).Appendix G: Some Computational Problems. This appendix contains abrief introduction to graph algorithms, Boolean formulae, and �nite �elds.Bibliography. As stated in x1.1.4.4, we tried to keep the bibliographic list asshort as possible (and still reached a couple of hundreds of entries). As a resultmany relevant references were omitted. In general, our choice of references wasbiased in favor of textbooks and survey articles. We tried, however, not to omitreferences to key papers in an area.Absent from this book. As stated in the preface, the current book does notprovide a uniform cover of the various areas of complexity theory. Notable omis-sions include the areas of circuit complexity (cf. [43, 225]) and proof complexity(cf. [25]), which are brie
y reviewed in Appendix B. Additional topics that arecommonly covered in complexity theory courses but omitted here include the studyof branching programs and decision trees (cf. [226]), parallel computation [134], andcommunication complexity [142]. We mention that the recent textbook of Aroraand Barak [13] contains a treatment of all these topics. Finally, we mention twoareas that we consider related to complexity theory, although this view is not very

1.1. INTRODUCTION 15common. These areas are distributed computing [16] and computational learningtheory [136].1.1.4 Approach and style of this bookAccording to a common opinion, the most important aspect of a scienti�c workis the technical result that it achieves, whereas explanations and motivations aremerely redundancy introduced for the sake of \error correction" and/or comfort. Itis further believed that, like in a work of art, the interpretation of the work shouldbe left with the reader (or viewer or listener).The author strongly disagrees with the aforementioned opinions, and arguesthat there is a fundamental di�erence between art and science, and that this dif-ference refers exactly to the meaning of a piece of work. Science is concerned withmeaning (and not with form), and in its quest for truth and/or understanding sci-ence follows philosophy (and not art). The author holds the opinion that the mostimportant aspects of a scienti�c work are the intuitive question that it addresses,the reason that it addresses this question, the way it phrases the question, the ap-proach that underlies its answer, and the ideas that are embedded in the answer.Following this view, it is important to communicate these aspects of the work, andthe current book is written accordingly.The foregoing issues are even more acute when it comes to complexity theory,�rstly because conceptual considerations seems to play an even more central role incomplexity theory (as opposed to other �elds; cf., Section 1.1.2). Furthermore (ormaybe consequently), complexity theory is extremely rich in conceptual content.Unfortunately, this content is rarely communicated (explicitly) in books and/orsurveys of the area.3 The annoying (and quite amazing) consequences are studentsthat have only a vague understanding of the meaning and general relevance of thefundamental notions and results that they were taught. The author's view is thatthese consequences are easy to avoid by taking the time to explicitly discuss themeaning of de�nitions and results. A related issue is using the \right" de�nitions(i.e., those that re
ect better the fundamental nature of the notion being de�ned)and teaching things in the (conceptually) \right" order.1.1.4.1 The general principleIn accordance with the foregoing, the focus of this book is on the conceptual aspectsof the technical material. Whenever presenting a subject, the starting point is theintuitive questions being addressed. The presentation explains the importance ofthese questions, the speci�c ways that they are phrased (i.e., the choices made inthe actual formulation), the approaches that underly the answers, and the ideasthat are embedded in these answers. Thus, a signi�cant portion of the text is3It is tempting to speculate on the reasons for this phenomenon. One speculation is thatcommunicating the conceptual content of complexity theory involves making bold philosophicalassertions that are technically straightforward, whereas this combination does not �t the person-ality of most researchers in complexity theory.

16 CHAPTER 1. INTRODUCTION AND PRELIMINARIESdevoted to motivating discussions that refer to the concepts and ideas that underlythe actual de�nitions and results.The material is organized around conceptual themes, which re
ect fundamen-tal notions and/or general questions. Speci�c computational problems are rarelyreferred to, with exceptions that are used either for sake of clarity or because thespeci�c problem happens to capture a general conceptual phenomenon. For exam-ple, in this book, \complete problems" (e.g., NP-complete problems) are alwayssecondary to the class for which they are complete.41.1.4.2 On a few speci�c choicesOur technical presentation often di�ers from the standard one. In many casesthis is due to conceptual considerations. At times, this leads to some technicalsimpli�cations. In this section we only discuss general themes and/or choices thathave a global impact on much of the presentation.Avoiding non-deterministic machines. We try to avoid non-deterministicmachines as much as possible. As argued in several places (e.g., Section 2.1.4),we believe that these �ctitious \machines" have a negative e�ect both from aconceptual and technical point of view. The conceptual damage caused by usingnon-deterministic machines is that it is unclear why one should care about whatsuch machines can do. Needless to say, the reason to care is clear when noting thatthese �ctitious \machines" o�er a (convenient or rather slothful) way of phrasingfundamental issues. The technical damage caused by using non-deterministic ma-chines is that they tend to confuse the students. Furthermore, they do not o�erthe best way to handle more advanced issues (e.g., counting classes).In contrast, we use search problems as the basis for much of the presentation.Speci�cally, the class PC (see De�nition 2.3), which consists of search problemshaving e�ciently checkable solutions, plays a central role in our presentation. In-deed, de�ning this class is slightly more complicated than the standard de�nitionof NP (based on non-deterministic machines), but the technical bene�ts start ac-cumulating as we proceed. Needless to say, the class PC is a fundamental classof computational problems and this fact is the main motivation to its presenta-tion. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Questionconsists of asking whether every search problem in PC can be solved e�ciently.)Avoiding model-dependent e�ects. Our focus is on the notion of e�cientcomputation. A rigorous de�nition of this notion seems to require reference tosome concrete model of computation; however, all questions and answers considered4We admit that a very natural computational problem can give rise to a class of problems thatare computationally equivalent to it, and that in such a case the class may be less interestingthan the original problem. This is not the case for any of the complexity classes presented inthis book. Still, in some cases (e.g., NP and #P), the historical evolution actually went from aspeci�c computational problem to a class of problems that are computationally equivalent to it.However, in all cases presented in this book, a retrospective evaluation suggests that the class isactually more important than the original problem.

1.1. INTRODUCTION 17in this book are invariant under the choice of such a concrete model, providedof course that the model is \reasonable" (which, needless to say, is a matter ofintuition). Indeed, the foregoing text re
ects the tension between the need tomake rigorous de�nitions and the desire to be independent of technical choices,which are unavoidable when making rigorous de�nitions. Furthermore, in contrastto common beliefs, the foregoing comments refer not only to time-complexity butalso to space-complexity. However, in both cases, the claim of invariance may nothold for marginally small resources (e.g., linear-time or sub-logarithmic space).In contrast to the foregoing paragraph, in some cases we choose to be speci�c.The most notorious case is the association of e�ciency with polynomial-time (seex1.2.3.4). Indeed, all the questions and answers regarding e�cient computation canbe phrased without referring to polynomial-time (i.e., by stating explicit functionalrelations between the complexities of the problems involved), but such a generalizedtreatment will be painful to follow.1.1.4.3 On the presentation of technical detailsIn general, the more complex the technical material is, the more levels of exposi-tions we employ (starting from the most high-level exposition, and when necessaryproviding more than one level of details). In particular, whenever a proof is notvery simple, we try to present the key ideas �rst, and postpone implementationdetails to later. We also try to clearly indicate the passage from a high-level presen-tation to its implementation details (e.g., by using phrases such as \details follow").In some cases, especially in the case of advanced results, only proof sketches areprovided and the implication is that the reader should be able to �ll-up the missingdetails.Few results are stated without a proof. In some of these cases the proof ideaor a proof overview is provided, but the reader is not expected to be able to �ll-upthe highly non-trivial details. (In these cases, the text clearly indicates this stateof a�airs.) One notable example is the proof of the PCP Theorem (Theorem 9.16).We tried to avoid the presentation of material that, in our opinion, is neitherthe \last word" on the subject nor represents the \right" way of approaching thesubject. Thus, we do not always present the \best" known result.1.1.4.4 Organizational principlesEach of the main chapters starts with a high-level summary and ends with chapternotes and exercises. The latter are not aimed at testing or inspiring creativity, butare rather designed to help and verify the basic understanding of the main text. Insome cases, exercises (augmented by adequate guidelines) are used for presentingadditional related material.The book contains material that ranges from topics that are currently taughtin undergraduate courses on computability (and basic complexity) to topics thatare currently taught mostly in advanced graduate courses. Although this situationmay (and hopefully will) change in the future, we believe that it will remain to bethe case that typical readers of the advanced chapters will be more sophisticated

18 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthan typical readers of the basic chapters (i.e., Section 1.2 and Chapter 2). Ac-cordingly, the style of presentation becomes more sophisticated as one progressesfrom Chapter 2 to later chapters.As stated in the preface, this book focuses on the high-level approach to com-plexity theory, whereas the low-level approach (i.e., lower bounds) is only brie
yreviewed (in Appendix B). Other appendices contain material that is closely re-lated to complexity theory but is not an integral part of it (e.g., the Foundationsof Cryptography).5 Further details on the contents of the various chapters andappendices are provided in Section 1.1.3.In an attempt to keep the bibliographic list from becoming longer than anaverage chapter, we omitted many relevant references. One trick used towards thisend is referring to lists of references in other texts, especially when these texts arecited anyhow. Indeed, our choices of references were biased in favor of textbooksand survey articles, because we believe that they provide the best way to furtherlearn about a research direction and/or approach. We tried, however, not to omitreferences to key papers in an area. In some cases, when we needed a reference fora result of interest and could not resort to the aforementioned trick, we cited alsoless central papers.As a matter of policy, we tried to avoid credits in the main text. The fewexceptions are either pointers to texts that provide details that we chose to omitor usage of terms (bearing researchers' names) that are too popular to avoid.Teaching note: The text also includes some teaching notes, which are typeset as thisone. Some of these notes express quite opinionated recommendations and/or justifyvarious expositional choices made in the text.1.1.4.5 Additional notesThe author's guess is that the text will be criticized for lengthy discussions of tech-nically trivial issues. Indeed, most researchers dismiss various conceptual clari�ca-tions as being trivial and devote all their attention to the technically challengingparts of the material. The consequence is students that master the technical ma-terial but are confused about its meaning. In contrast, the author recommendsnot being embarrassed of devoting time to conceptual clari�cations, even if somestudents may view them as obvious.The motivational discussions presented in the text do not necessarily representthe original motivation of the researchers that pioneered a speci�c study and/orcontributed greatly to it. Instead, these discussions provide what the author con-siders to be a good motivation and/or perspective on the corresponding concepts.1.1.5 Standard notations and other conventionsFollowing are some notations and conventions that are freely used in this book.5As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-tography within a course on complexity theory. Indeed, cryptography may be claimed to bethe most appealing application of complexity theory, but a super�cial treatment of cryptography(from this perspective) is likely to be misleading and cause more harm than good.

1.2. COMPUTATIONAL TASKS AND MODELS 19Standard asymptotic notation: When referring to integral functions, we usethe standard asymptotic notation; that is, for f; g : N ! N , we write f = O(g)(resp., f =
(g)) if there exists a constant c > 0 such that f(n) � c � g(n) (resp.,f(n) � c � g(n)) holds for all n 2 N . We usually denote by \poly" an unspeci�edpolynomial, and write f(n) = poly(n) instead of \there exists a polynomial p suchthat f(n) � p(n) for all n 2 N ." We also use the notation f = eO(g) that meanf(n) = poly(logn) � g(n), and f = o(g) (resp., f = !(g)) that mean f(n) < c � g(n)(resp., f(n) > c � g(n)) for every constant c > 0 and all su�ciently large n.Integrality issues: Typically, we ignore integrality issues. This means that wemay assume that log2 n is an integer rather than using a more cumbersome form asblog2 nc. Likewise, we may assume that various equalities are satis�ed by integers(e.g., 2n = mm), even when this cannot possibly be the case (e.g., 2n = 3m). Inall these cases, one should consider integers that approximately satisfy the relevantequations (and deal with the problems that emerge by such approximations, whichwill be ignored in the current text).Standard combinatorial and graph theory terms and notation: For anyset S, we denote by 2S the set of all subsets of S (i.e., 2S = fS0 : S0 � Sg). Fora natural number n 2 N , we denote [n] def= f1; :::; ng. Many of the computationalproblems refer to �nite (undirected) graphs. Such a graph, denoted G = (V;E),consists of a set of vertices, denoted V , and a set of edges, denoted E, which areunordered pairs of vertices. By default, graphs are undirected, whereas directedgraphs consists of vertices and directed edges, where a directed edge is an orderpair of vertices. We also refer to other graph theoretic terms such as connectivity,being acyclic (i.e., having no simple cycles), being a tree (i.e., being connected andacyclic), k-colorability, etc. For further background on graphs and computationalproblems regarding graphs, the reader is referred to Appendix G.1.Typographic conventions: We denote formally de�ned complexity classes bycalligraphic letters (e.g., NP), but we do so only after de�ning these classes. Fur-thermore, when we wish to maintain some ambiguity regarding the speci�c formu-lation of a class of problems we use Roman font (e.g., NP may denote either a classof search problems or a class of decision problems). Likewise, we denote formallyde�ned computational problems by typewriter font (e.g., SAT). In contrast, genericproblems and algorithms will be denoted by italic font.1.2 Computational Tasks and ModelsWe start by introducing the general framework for our discussion of computationaltasks (or problems) This framework refers to the representation of instances andto two types of tasks (i.e., searching for solutions and making decisions). Once thestage is set, we consider two types of models of computation: uniform models that

20 CHAPTER 1. INTRODUCTION AND PRELIMINARIEScorrespond to the intuitive notion of an algorithm, and non-uniform models (e.g.,Boolean circuits) that facilitates a closer look at the way computation progresses.Contents of Section 1.2. The contents of Sections 1.2.1{1.2.3 corresponds to atraditional Computability course, except that it includes a keen interest in universalmachines (see x1.2.3.3), a discussion of the association of e�cient computation withpolynomial-time algorithm (x1.2.3.4), and a de�nition of oracle machines (x1.2.3.5).This material (with the exception of Kolmogorov Complexity) is taken for grantedin the rest of the current book. (We also call the reader's attention to the dis-cussion of generic complexity classes in Section 1.2.5.) In contrast, Section 1.2.4presents basic preliminaries regarding non-uniform models of computation (i.e.,various types of Boolean circuits), and these are only used lightly in the rest of thebook. Thus, whereas Sections 1.2.1{1.2.3 (and 1.2.5) are absolute prerequisites forthe rest of this book, Section 1.2.4 is not.Teaching note: The author believes that there is no real need for a semester-longcourse in Computability (i.e., a course that focuses on what can be computed ratherthan on what can be computed e�ciently). Instead, undergraduates should take acourse in Computational Complexity, which should contain the computability aspectsthat serve as a basis for the rest of the course. Speci�cally, the former aspects shouldoccupy at most 25% of the course, and the focus should be on basic complexity issues(captured by P, NP, and NP-completeness) augmented by a selection of some moreadvanced material. Indeed, such a course can be based on Chapters 1 and 2 of thecurrent book (augmented by a selection of some topics from other chapters).1.2.1 RepresentationIn Mathematics and related sciences, it is customary to discuss objects withoutspecifying their representation. This is not possible in the theory of computation,where the representation of objects plays a central role. In a sense, a computationmerely transforms one representation of an object to another representation of thesame object. In particular, a computation designed to solve some problem merelytransforms the problem instance to its solution, where the latter can be though ofas a (possibly partial) representation of the instance. Indeed, the answer to anyfully speci�ed question is implicit in the question itself.Computation refers to objects that are represented in some canonical way, wheresuch canonical representation provides an \explicit" and \full" (but not \overlyredundant") description of the corresponding object. We will consider only �niteobjects like sets, graphs, numbers, and functions (and keep distinguishing thesetypes of objects although, actually, they are all equivalent). (For example, seeAppendix G.1 for a discussion of the representation of graphs.)Strings. We consider �nite objects, each represented by a �nite binary sequence,called a string. For a natural number n, we denote by f0; 1gn the set of all stringsof length n, hereafter referred to as n-bit strings. The set of all strings is denotedf0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. For x2f0; 1g�, we denote by jxj the length

1.2. COMPUTATIONAL TASKS AND MODELS 21of x (i.e., x2f0; 1gjxj), and often denote by xi the ith bit of x (i.e., x = x1x2 � � �xjxj).For x; y 2 f0; 1g�, we denote by xy the string resulting from concatenation of thestrings x and y.At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merelyconsider an adequate encoding (e.g., the pair (x1 � � �xm; y1 � � � yn)2f0; 1g��f0; 1g�may be encoded by the string x1x1 � � �xmxm01y1 � � � yn 2 f0; 1g�). Likewise, wemay represent sequences of strings (of �xed or varying length) as single strings.When we wish to emphasize that such a sequence (or some other object) is to beconsidered as a single object we use the notation h�i (e.g., \the pair (x; y) is encodedas the string hx; yi").Numbers. Unless stated di�erently, natural numbers will be encoded by theirbinary expansion; that is, the string bn�1 � � � b1b0 2 f0; 1gn encodes the numberPn�1i=0 bi � 2i, where typically we assume that this representation has no leadingzeros (i.e., bn�1 = 1). Rational numbers will be represented as pairs of naturalnumbers. In the rare cases in which one considers real numbers as part of theinput to a computational problem, one actually mean rational approximations ofthese real numbers.Special symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0),and the empty set by ;. It will be convenient to use some special symbols thatare not in f0; 1g�. One such symbol is ?, which typically denotes an indication bysome algorithm that something is wrong.1.2.2 Computational TasksTwo fundamental types of computational tasks are so-called search problems anddecision problems. In both cases, the key notions are the problem's instances andthe problem's speci�cation.1.2.2.1 Search problemsA search problem consists of a speci�cation of a set of valid solutions (possibly anempty one) for each possible instance. That is, given an instance, one is requiredto �nd a corresponding solution (or to determine that no such solution exists).For example, consider the problem in which one is given a system of equationsand is asked to �nd a valid solution. Needless to say, much of computer scienceis concerned with solving various search problems (e.g., �nding shortest paths ina graph, sorting a list of numbers, �nding an occurrence of a given pattern in agiven string, etc). Furthermore, search problems correspond to the daily notionof \solving a problem" (e.g., �nding one's way between two locations), and thus adiscussion of the possibility and complexity of solving search problems correspondsto the natural concerns of most people.In the following de�nition of solving search problems, the potential solver is afunction (which may be thought of as a solving strategy), and the sets of possible

22 CHAPTER 1. INTRODUCTION AND PRELIMINARIESsolutions associated with each of the various instances are \packed" into a singlebinary relation.De�nition 1.1 (solving a search problem): Let R � f0; 1g��f0; 1g� and R(x) def=fy : (x; y) 2 Rg denote the set of solutions for the instance x. A function f :f0; 1g� ! f0; 1g� [f?g solves the search problem of R if for every x the followingholds: if R(x) 6= ; then f(x) 2 R(x) and otherwise f(x) = ?.Indeed, R = f(x; y) : y2R(x)g, and the solver f is required to �nd a solution (i.e.,given x output y 2 R(x)) whenever one exists (i.e., the set R(x) is not empty). Itis also required that the solver f never outputs a wrong solution (i.e., if R(x) 6= ;then f(x) 2 R(x) and if R(x) = ; then f(x) = ?), which in turn means that findicates whether x has any solution.A special case of interest is the case of search problems having a unique solution(for each possible instance); that is, the case that jR(x)j = 1 for every x. In thiscase, R is essentially a (total) function, and solving the search problem of R meanscomputing (or evaluating) the function R (or rather the function R0 de�ned byR0(x) def= y where R(x) = fyg). Popular examples include sorting a sequenceof numbers, multiplying integers, �nding the prime factorization of a compositenumber, etc.1.2.2.2 Decision problemsA decision problem consists of a speci�cation of a subset of the possible instances.Given an instance, one is required to determine whether the instance is in thespeci�ed set (e.g., the set of prime numbers, the set of connected graphs, or theset of sorted sequences). For example, consider the problem where one is given anatural number, and is asked to determine whether or not the number is a prime.One important case, which corresponds to the aforementioned search problems, isthe case of the set of instances having a solution; that is, for any binary relationR � f0; 1g� � f0; 1g� we consider the set fx : R(x) 6= ;g. Indeed, being ableto determine whether or not a solution exists is a prerequisite to being able tosolve the corresponding search problem (as per De�nition 1.1). In general, decisionproblems refer to the natural task of making binary decision, a task that is notuncommon in daily life (e.g., determining whether a tra�c light is red). In anycase, in the following de�nition of solving decision problems, the potential solveris again a function (i.e., in this case it is a Boolean function that is supposed toindicate membership in the said set).De�nition 1.2 (solving a decision problem): Let S � f0; 1g�. A function f :f0; 1g� ! f0; 1g solves the decision problem of S (or decides membership in S) if forevery x it holds that f(x) = 1 if and only if x 2 S.We often identify the decision problem of S with S itself, and identify S with itscharacteristic function (i.e., with �S : f0; 1g� ! f0; 1g de�ned such that �S(x) = 1if and only if x 2 S). Note that if f solves the search problem of R then the

1.2. COMPUTATIONAL TASKS AND MODELS 23Boolean function f 0 : f0; 1g� ! f0; 1g de�ned by f 0(x) def= 1 if and only if f(x) 6= ?solves the decision problem of fx : R(x) 6= ;g.Most people would consider search problems to be more natural than decisionproblems: typically, people seeks solutions more than they stop to wonder whetheror not solutions exist. De�nitely, search problems are not less important thandecision problems, it is merely that their study tends to require more cumbersomeformulations. This is the main reason that most expositions choose to focus ondecision problems. The current book attempts to devote at least a signi�cantamount of attention also to search problems.1.2.2.3 Promise problems (an advanced comment)Many natural search and decision problems are captured more naturally by theterminology of promise problems, where the domain of possible instances is a subsetof f0; 1g� rather than f0; 1g� itself. In particular, note that the natural formulationof many search and decision problems refers to instances of a certain types (e.g., asystem of equations, a pair of numbers, a graph), whereas the natural representationof these objects uses only a strict subset of f0; 1g�. For the time being, we ignorethis issue, but we shall re-visit it in Section 2.4.1. Here we just note that, in typicalcases, the issue can be ignored by postulating that every string represents somelegitimate object (i.e., each string that is not used in the natural representation ofthese objects is postulated as a representation of some �xed object).1.2.3 Uniform Models (Algorithms)We are all familiar with computers and with the ability of computer programsto manipulate data. This familiarity seems to be rooted in the positive side ofcomputing; that is, we have some experience regarding some things that computerscan do. In contrast, complexity theory is focused at what computers cannot do, orrather with drawing the line between what can be done and what cannot be done.Drawing such a line requires a precise formulation of all possible computationalprocesses; that is, we should have a clear model of all possible computationalprocesses (rather than some familiarity with some computational processes).Before being formal, let we o�er a general and abstract description, whichis aimed at capturing any arti�cial as well as natural process. Indeed, arti�cialprocesses will be associated with computers, whereas by natural processes we mean(attempts to model) the \mechanical" aspects the natural reality (be it physical,biological, or even social).A computation is a process that modi�es an environment via repeated applica-tions of a predetermined rule. The key restriction is that this rule is simple: in eachapplication it depends and a�ects only a (small) portion of the environment, calledthe active zone. We contrast the a-priori bounded size of the active zone (and ofthe modi�cation rule) with the a-priori unbounded size of the entire environment.We note that, although each application of the rule has a very limited e�ect, thee�ect of many applications of the rule may be very complex. Put in other words, a

24 CHAPTER 1. INTRODUCTION AND PRELIMINARIEScomputation may modify the relevant environment in a very complex way, althoughit is merely a process of repeatedly applying a simple rule.As hinted, the notion of computation can be used to model the \mechanical"aspects of the natural reality; that is, the rules that determine the evolution ofthe reality (rather than the speci�cs of reality itself). In this case, the evolutionprocess that takes place in the natural reality is the starting point of the study, andthe goal of the study is �nding the (computation) rule that underlies this naturalprocess. In a sense, the goal of Science at large can be phrased as �nding (simple)rules that govern various aspects of reality (or rather one's abstraction of theseaspects of reality).Our focus, however, is on arti�cial computation rules designed by humans inorder to achieve speci�c desired e�ects on a corresponding arti�cial environment.Thus, our starting point is a desired functionality, and our aim is to design compu-tation rules that e�ect it. Such a computation rule is referred to as an algorithm.Loosely speaking, an algorithm corresponds to a computer program written in ahigh-level (abstract) programming language. Let us elaborate.We are interested in the transformation of the environment a�ected by thecomputational process (or the algorithm). Throughout (most of) this book, wewill assume that, when invoked on any �nite initial environment, the computationhalts after a �nite number of steps. Typically, the initial environment to whichthe computation is applied encodes an input string, and the end environment (i.e.,at termination of the computation) encodes an output string. We consider themapping from inputs to outputs induced by the computation; that is, for eachpossible input x, we consider the output y obtained at the end of a computationinitiated with input x, and say that the computation maps input x to output y.Thus, a computation rule (or an algorithm) determines a function (computed byit): this function is exactly the aforementioned mapping of inputs to outputs.In the rest of this book (i.e., outside the current chapter), we will also considerthe number of steps (i.e., applications of the rule) taken by the computation oneach possible input. The latter function is called the time complexity of the com-putational process (or algorithm). While time complexity is de�ned per input, wewill often considers it per input length, taking the maximum over all inputs of thesame length.In order to de�ne computation (and computation time) rigorously, one needsto specify some model of computation; that is, provide a concrete de�nition ofenvironments and a class of rules that may be applied to them. Such a modelcorresponds to an abstraction of a real computer (be it a PC, mainframe or net-work of computers). One simple abstract model that is commonly used is that ofTuring machines (see, x1.2.3.1). Thus, speci�c algorithms are typically formalizedby corresponding Turing machines (and their time complexity is represented by thetime complexity of the corresponding Turing machines). We stress, however, thatmost results in the Theory of Computation hold regardless of the speci�c compu-tational model used, as long as it is \reasonable" (i.e., satis�es the aforementionedsimplicity condition and can perform some obviously simple computations).

1.2. COMPUTATIONAL TASKS AND MODELS 25What is being computed? The forgoing discussion has implicitly referred toalgorithms (i.e., computational processes) as means of computing functions. Specif-ically, an algorithm A computes the function fA : f0; 1g� ! f0; 1g� de�ned byfA(x)=y if, when invoked on input x, algorithm A halts with output y. However,algorithms can also serve as means of \solving search problems" or \making de-cisions" (as in De�nitions 1.1 and 1.2). Speci�cally, we will say that algorithm Asolves the search problem of R (resp., decides membership in S) if fA solves thesearch problem of R (resp., decides membership in S). In the rest of this expositionwe associate the algorithm A with the function fA computed by it; that is, we writeA(x) instead of fA(x). For sake of future reference, we summarize the foregoingdiscussion.De�nition 1.3 (algorithms as problem-solvers): We denote by A(x) the outputof algorithm A on input x. Algorithm A solves the search problem R (resp., thedecision problem S) if A, viewed as a function, solves R (resp., S).Organization of the rest of Section 1.2.3. In x1.2.3.1 we provide a sketchydescription of the model of Turing machines. This is done merely for sake of pro-viding a concrete model that supports the study of computation and its complexity,whereas most of the material in this book will not depend on the speci�cs of thismodel. In x1.2.3.2 and x1.2.3.2 we discuss two fundamental properties of any rea-sonable model of computation: the existence of uncomputable functions and theexistence of universal computations. The time (and space) complexity of compu-tation is de�ned in x1.2.3.4. We also discuss oracle machines and restricted modelsof computation (in x1.2.3.5 and x1.2.3.6, respectively).1.2.3.1 Turing machinesThe model of Turing machines o�er a relatively simple formulation of the notionof an algorithm. The fact that the model is very simple complicates the design ofmachines that solve problems of interest, but makes the analysis of such machinessimpler. Since the focus of complexity theory is on the analysis of machines and noton their design, the trade-o� o�ers by this model is suitable for our purposes. Westress again that the model is merely used as a concrete formulation of the intuitivenotion of an algorithm, whereas we actually care about the intuitive notion andnot about its formulation. In particular, all results mentioned in this book hold forany other \reasonable" formulation of the notion of an algorithm.The model of Turing machines is not meant to provide an accurate (or \tight")model of real-life computers, but rather to capture their inherent limitations andabilities (i.e., a computational task can be solved by a real-life computer if and onlyif it can be solved by a Turing machine). In comparison to real-life computers, themodel of Turing machines is extremely over-simpli�ed and abstract away manyissues that are of great concern to computer practice. However, these issues areirrelevant to the higher-level questions addressed by complexity theory. Indeed, asusual, good practice requires more re�ned understanding than the one provided bya good theory, but one should �rst provide the latter.

26 CHAPTER 1. INTRODUCTION AND PRELIMINARIESHistorically, the model of Turing machines was invented before modern com-puters were even built, and was meant to provide a concrete model of computationand a de�nition of computable functions.6 Indeed, this concrete model clari�edfundamental properties of computable functions and plays a key role in de�ningthe complexity of computable functions.The model of Turing machines was envisioned as an abstraction of the processof an algebraic computation carried out by a human using a sheet of paper. Insuch a process, at each time, the human looks at some location on the paper, anddepending on what he/she sees and what he/she has in mind (which is little...),he/she modi�es the contents of this location and shifts his/her look to an adjacentlocation.The actual model. Following is a high-level description of the model of Turingmachines; the interested reader is referred to standard textbooks (e.g., [200]) forfurther details. Recall that we need to specify the set of possible environments, theset of machines (or computation rules), and the e�ect of applying such a rule onan environment.� The main component in the environment of a Turing machine is an in�nitesequence of cells, each capable of holding a single symbol (i.e., member ofa �nite set � � f0; 1g). In addition, the environment contains the currentlocation of the machine on this sequence, and the internal state of the machine(which is a member of a �nite set Q). The aforementioned sequence of cellsis called the tape, and its contents combined with the machine's location andits internal state is called the instantaneous con�guration of the machine.� The Turing machine itself consists of a �nite rule (i.e., a �nite function), calledthe transition function, which is de�ned over the set of all possible symbol-state pairs. Speci�cally, the transition function is a mapping from ��Q to��Q�f�1; 0;+1g, where f�1;+1; 0g correspond to a movement instruction(which is either \left" or \right" or \stay", respectively). In addition, themachine's description speci�es an initial state and a halting state, and thecomputation of the machine halts when the machine enters its halting state.7We stress that, in contrast to the �nite description of the machine, the tapehas an a priori unbounded length (and is considered, for simplicity, as beingin�nite).� A single computation step of such a Turing machine depends on its currentlocation on the tape, on the contents of the corresponding cell and on the in-ternal state of the machine. Based on the latter two elements, the transitionfunction determines a new symbol-state pair as well as a movement instruc-tion (i.e., \left" or \right" or \stay"). The machine modi�es the contents of6In contrast, the abstract de�nition of \recursive functions" yields a class of \computable"functions de�ned recursively in terms of the composition of such functions.7Envisioning the tape as extending from left to right, we also use the convention by which ifthe machine tries to move left of the end of the tape then it is considered to have halted.

1.2. COMPUTATIONAL TASKS AND MODELS 27the said cell and its internal state accordingly, and moves as directed. Thatis, suppose that the machine is in state q and resides in a cell containing thesymbol �, and suppose that the transition function maps (�; q) to (�0; q0; D).Then, the machine modi�es the contents of the said cell to �0, modi�es itsinternal state to q0, and moves one cell in direction D. Figure 1.2 shows asingle step of a Turing machine that, when in state `b' and seeing a binarysymbol �, replaces � with the symbol �+2, maintains its internal state, andmoves one position to the right.8Formally, we de�ne the successive con�guration function that maps each in-stantaneous con�guration to the one resulting by letting the machine take asingle step. This function modi�es its argument in a very minor manner, asdescribed in the foregoing; that is, the contents of at most one cell (i.e., atwhich the machine currently resides) is changed, and in addition the internalstate of the machine and its location may change too.
3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -Figure 1.2: A single step by a Turing machine.The initial environment (or con�guration) of a Turing machine consists of themachine residing in the �rst (i.e., left-most) cell and being in its initial state.Typically, one also mandates that, in the initial con�guration, a pre�x of the tape'scells hold bit values, which concatenated together are considered the input, and therest of the tape's cells hold a special symbol (which in Figure 1.2 is denoted by`-'). Once the machine halts, the output is de�ned as the contents of the cells thatare to the left of its location (at termination time).9 Thus, each machine de�nes afunction mapping inputs to outputs, called the function computed by the machine.Multi-tape Turing machines. We comment that in most expositions, onerefers to the location of the \head of the machine" on the tape (rather than to8Figure 1.2 corresponds to a machine that, when in the initial state (i.e., `a'), replaces thesymbol � by �+4, modi�es its internal state to `b', and moves one position to the right. Indeed,\marking" the leftmost cell (in order to allow for recognizing it in the future), is a commonpractice in the design of Turing machines.9By an alternative convention, the machine halts while residing in the left-most cell, and theoutput is de�ned as the maximal pre�x of the tape contents that contains only bit values.

28 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthe \location of the machine on the tape"). The standard terminology is moreintuitive when extending the basic model, which refers to a single tape, to a modelthat supports a constant number of tapes. In the model of multi-tape machines,each step of the machine depends and e�ects the cells that are at the head locationof the machine on each tape. As we shall see in Chapter 5 (and in x1.2.3.4), theextension of the model to multi-tape Turing machines is crucial to the de�nition ofspace complexity. A less fundamental advantage of the model of multi-tape Turingmachines is that it facilitates the design of machines that compute functions ofinterest.Teaching note: We strongly recommend avoiding the standard practice of teachingthe student to program with Turing machines. These exercises seem very painful andpointless. Instead, one should prove that a function can be computed by a Turingmachine if and only if it is computable by a model that is closer to a real-life computer(see the following \sanity check"). For starters, one should prove that a function can becomputed by a single-tape Turing machine if and only if it is computable by a multi-tape(e.g., two-tape) Turing machine.The Church-Turing Thesis: The entire point of the model of Turing machinesis its simplicity. That is, in comparison to more \realistic" models of computation,it is simpler to formulate the model of Turing machines and to analyze machines inthis model. The Church-Turing Thesis asserts that nothing is lost by consideringthe Turing machine model: A function can be computed by some Turing machineif and only if it can be computed by some machine of any other \reasonable andgeneral" model of computation.This is a thesis, rather than a theorem, because it refers to an intuitive notionthat is left unde�ned on purpose (i.e., the notion of a reasonable and general modelof computation). The model should be reasonable in the sense that it should referto computation rules that are \simple" in some intuitive sense. On the other hand,the model should allow to compute functions that intuitively seem computable. Atthe very least the model should allow to emulate Turing machines (i.e., computethe function that given a description of a Turing machine and an instantaneouscon�guration returns the successive con�guration).A philosophical comment. The fact that a thesis is used to link an intuitiveconcept to a formal de�nition is common practice in any science (or, more broadly,in any attempt to reason rigorously about intuitive concepts). The moment anintuition is rigorously de�ned, it stops being an intuition and becomes a de�nition,and the question of the correspondence between the original intuition and thederived de�nition arises. This question can never be rigorously treated, becauseit relates to two objects, where one of them is unde�ned. Thus, the questionof correspondence between the intuition and the de�nition always transcends arigorous treatment (i.e., it always belongs to the domain of the intuition).A sanity check: Turing machines can emulate an abstract RAM. To gaincon�dence in the Church-Turing Thesis, one may attempt to de�ne an abstract

1.2. COMPUTATIONAL TASKS AND MODELS 29Random-Access Machine (RAM), and verify that it can be emulated by a Turingmachine. An abstract RAM consists of an in�nite number of memory cells, eachcapable of holding an integer, a �nite number of similar registers, one designatedas program counter, and a program consisting of instructions selected from a �niteset. The set of possible instructions includes the following instructions:� reset(r), where r is an index of a register, results in setting the value ofregister r to zero.� inc(r), where r is an index of a register, results in incrementing the contentof register r. Similarly dec(r) causes a decrement.� load(r1; r2), where r1 and r2 are indices of registers, results in loading toregister r1 the contents of the memory location m, where m is the currentcontents of register r2.� store(r1; r2), stores the contents of register r1 in the memory, analogouslyto load.� cond-goto(r; `), where r is an index of a register and ` does not exceed theprogram length, results in setting the program counter to `� 1 if the contentof register r is non-negative.The program counter is incremented after the execution of each instruction, andthe next instruction to be executed by the machine is the one to which the programcounter points (and the machine halts if the program counter exceeds the program'slength). The input to the machine may be de�ned as the contents of the �rst nmemory cells, where n is placed in a special input register. We note that the RAMmodel satis�es the Church-Turing Thesis, but in order to make it closer to real-life computers we may augment the model with additional instructions that areavailable on such computers (e.g., the instruction add(r1; r2) (resp., mult(r1; r2))that results in adding (resp., multiplying) the contents of registers r1 and r2 andplacing the result in register r1). We suggest proving that this abstract RAM canbe emulated by a Turing machine.10 (Hint: note that during the emulation, weonly need to hold the input, the contents of all registers, and the contents of thememory cells that were accessed during the computation.)11Observe that the abstract RAM model is signi�cantly more cumbersome thanthe Turing machine model. Furthermore, seeking a sound choice of the instruc-tion set (i.e., the instructions to be allowed in the model) creates a vicious cycle(because the sound guideline would have been to allow only instructions that corre-spond to \simple" operations, whereas the latter correspond to easily computable10We emphasize this direction of the equivalence of the two models, because the RAM model isintroduced in order to convince the reader that Turing machines are not too weak (as a model ofgeneral computation). The fact that they are not too strong seems self-evident. Thus, it seemspointless to prove that the RAM model can emulate Turing machines. Still, note that this isindeed the case, by using the RAM's memory cells to store the contents of the cells of the Turingmachine's tape.11Thus, at each time, the Turning machine's tape contains a list of the RAM's memory cellsthat were accessed so far as well as their current contents. When we emulate a RAM instruction,we �rst check whether the relevant RAM cell appears on this list, and augment the list by acorresponding entry or modify this entry as needed.

30 CHAPTER 1. INTRODUCTION AND PRELIMINARIESfunctions...). This vicious cycle was avoided by trusting the reader to consider onlyinstructions that are available in some real-life computer. (We comment that thisempirical consideration is justi�able in the current context, because our currentgoal is merely linking the Turing machine model with the reader's experience ofreal-life computers.)1.2.3.2 Uncomputable functionsStrictly speaking, the current subsection is not necessary for the rest of this book,but we feel that it provides a useful perspective.In contrast to what every layman would think, we know that not all functionsare computable. Indeed, an important message to be communicated to the worldis that not every well-de�ned task can be solved by applying a \reasonable" pro-cedure (i.e., a procedure that has a simple description that can be applied to anyinstance of the problem at hand). Furthermore, not only is it the case that thereexist uncomputable functions, but it is rather the case that most functions areuncomputable. In fact, only relatively few functions are computable.Theorem 1.4 (on the scarcity of computable functions): The set of computablefunctions is countable, whereas the set of all functions (from strings to string) hascardinality @.We stress that the theorem holds for any reasonable model of computation. Infact, it only relies on the postulate that each machine in the model has a �nitedescription (i.e., can be described by a string).Proof: Since each computable function is computable by a machine that hasa �nite description, there is a 1-1 correspondence between the set of computablefunctions and the set of strings (which in turn is in 1-1 correspondence to thenatural numbers). On the other hand, there is a 1-1 correspondence between theset of Boolean functions (i.e., functions from strings to a bit) and the set of realnumber in [0; 1). This correspondence associates each real r 2 [0; 1) to the functionf : N ! f0; 1g such that f(i) is the ith bit in the binary expansion of r.The Halting Problem: In contrast to the preliminary discussion, at this pointwe consider also machines that may not halt on some inputs. (The functionscomputed by such machines are partial functions that are de�ned only on inputson which the machine halts.) Again, we rely on the postulate that each machinein the model has a �nite description, and denote the description of machine M byhMi 2 f0; 1g�. The halting function, h : f0; 1g� � f0; 1g� ! f0; 1g, is de�ned suchthat h(hMi; x) def= 1 if and only if M halts on input x. The following result goesbeyond Theorem 1.4 by pointing to an explicit function (of natural interest) thatis not computable.Theorem 1.5 (undecidability of the halting problem): The halting function is notcomputable.

1.2. COMPUTATIONAL TASKS AND MODELS 31The term undecidability means that the corresponding decision problem cannot besolved by an algorithm. That is, Theorem 1.5 asserts that the decision problemassociated with the set h�1(1) = f(hMi; x) : h(hMi; x) = 1g is not solvable byan algorithm (i.e., there exists no algorithm that, given a pair (hMi; x), decideswhether or notM halts on input x). Actually, the following proof shows that thereexists no algorithm that, given hMi, decides whether or notM halts on input hMi.Proof: We will show that even the restriction of h to its \diagonal" (i.e., thefunction d(hMi) def= h(hMi; hMi)) is not computable. Note that the value of d(hMi)refers to the question of what happens when we feed M with its own description,which is indeed a \nasty" (but legitimate) thing to do. We will actually do worse:towards the contradiction, we will consider the value of d when evaluated at a(machine that is related to a) machine that supposedly computes d.We start by considering a related function, d0, and showing that this functionis uncomputable. This function is de�ned on purpose so to foil any attempt tocompute it; that is, for every machine M , the value d0(hMi) is de�ned to di�erfrom M(hMi). Speci�cally, the function d0 : f0; 1g� ! f0; 1g is de�ned suchthat d0(hMi) def= 1 if and only if M halts on input hMi with output 0. (That is,d0(hMi) = 0 if either M does not halt on input hMi or its output does not equalthe value 0.) Now, suppose, towards the contradiction, that d0 is computable bysome machine, denoted Md0 . Note that machine Md0 is supposed to halt on everyinput, and so Md0 halts on input hMd0i. But, by de�nition of d0, it holds thatd0(hMd0i) = 1 if and only if Md0 halts on input hMd0i with output 0 (i.e., if andonly if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in contradiction to thehypothesis that Md0 computes d0.We next prove that d is uncomputable, and thus h is uncomputable (becaused(z) = h(z; z) for every z). To prove that d is uncomputable, we show that if d iscomputable then so is d0 (which we already know not to be the case). Indeed, letA be an algorithm for computing d (i.e., A(hMi) = d(hMi) for every machine M).Then we construct an algorithm for computing d0, which given hM 0i, invokes A onhM 00i, where M 00 is de�ned to operate as follows:1. On input x, machine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters anin�nite loop (and thus does not halt).4. Otherwise (i.e., M 0 does not halt on input x), then machine M 00 does nothalt (because it just stays stuck in Step 1 forever).Note that the mapping from hM 0i to hM 00i is easily computable (by augmentingM 0 with instructions to test its output and enter an in�nite loop if necessary), andthat d(hM 00i) = d0(hM 0i), because M 00 halts on x if and only if M 00 halts on x withoutput 0. We thus derived an algorithm for computing d0 (i.e., transform the inputhM 0i into hM 00i and output A(hM 00i)), which contradicts the already establishedfact by which d0 is uncomputable.

32 CHAPTER 1. INTRODUCTION AND PRELIMINARIESTuring-reductions. The core of the second part of the proof of Theorem 1.5 isan algorithm that solves one problem (i.e., computes d0) by using as a subroutinean algorithm that solves another problem (i.e., computes d (or h)). In fact, the�rst algorithm is actually an algorithmic scheme that refers to a \functionally spec-i�ed" subroutine rather than to an actual (implementation of such a) subroutine,which may not exist. Such an algorithmic scheme is called a Turing-reduction (seeformulation in x1.2.3.5). Hence, we have Turing-reduced the computation of d0 tothe computation of d, which in turn Turing-reduces to h. The \natural" (\posi-tive") meaning of a Turing-reduction of f 0 to f is that when given an algorithm forcomputing f we obtain an algorithm for computing f 0. In contrast, the proof ofTheorem 1.5 uses the \unnatural" (\negative") counter-positive: if (as we know)there exists no algorithm for computing f 0 = d0 then there exists no algorithm forcomputing f = d (which is what we wanted to prove). Jumping ahead, we mentionthat resource-bounded Turing-reductions (e.g., polynomial-time reductions) play acentral role in complexity theory itself, and again they are used mostly in a \nega-tive" way. We will de�ne such reductions and extensively use them in subsequentchapters.Rice's Theorem. The undecidability of the halting problem (or rather the factthat the function d is uncomputable) is a special case of a more general phe-nomenon: Every non-trivial decision problem regarding the function computed bya given Turing machine has no algorithmic solution. We state this fact next, clar-ifying what is the aforementioned class of problems. (Again, we refer to Turingmachines that may not halt on all inputs.)Theorem 1.6 (Rice's Theorem): Let F be a non-trivial subset12 of the set of allcomputable partial functions, and let SF be the set of strings that describe machinesthat compute functions in F . Then deciding membership in SF cannot be solved byan algorithm.Theorem 1.6 can be proved by a Turing-reduction from d. We do not providea proof because this is too remote from the main subject matter of the book.We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation(referring both to the potential solvers and to the machines the description of whichis given as input to these solvers). Thus, Theorem 1.6 means that no algorithm candetermine any non-trivial property of the function computed by a given computerprogram (written in any programming language). For example, no algorithm candetermine whether or not a given computer program halts on each possible input.The relevance of this assertion to the project of program veri�cation is obvious.The Post Correspondence Problem. We mention that undecidability arisesalso outside of the domain of questions regarding computing devices (given asinput). Speci�cally, we consider the Post Correspondence Problem in which the12The set S is called a non-trivial subset of U if both S and U n S are non-empty. Clearly, if Fis a trivial set of computable functions then the corresponding decision problem can be solved bya \trivial" algorithm that outputs the corresponding constant bit.

1.2. COMPUTATIONAL TASKS AND MODELS 33input consists of two sequences of strings, (�1; :::; �k) and (�1; :::; �k), and thequestion is whether or not there exists a sequence of indices i1; :::; i` 2 f1; :::; kgsuch that �i1 � � ��i` = �i1 � � ��i` . (We stress that the length of this sequence is notbounded.)13Theorem 1.7 The Post Correspondence Problem is undecidable.Again, the omitted proof is by a Turing-reduction from d (or h).141.2.3.3 Universal algorithmsSo far we have used the postulate that, in any reasonable model of computation,each machine (or computation rule) has a �nite description. Furthermore, wealso used the fact that such model should allow for the easy modi�cation of suchdescriptions such that the resulting machine computes an easily related function(see the proof of Theorem 1.5). Here we go one step further and postulate that thedescription of machines (in this model) is \e�ective" in the following natural sense:there exists an algorithm that, given a description of a machine (resp., computationrule) and a corresponding environment, determines the environment that resultsfrom performing a single step of this machine on this environment (resp. the e�ectof a single application of the computation rule). This algorithm can, in turn, beimplemented in the said model of computation (assuming this model is general; seethe Church-Turing Thesis). Successive applications of this algorithm leads to thenotion of a universal machine, which (for concreteness) is formulated next in termsof Turing machines.De�nition 1.8 (universal machines): A universal Turing machine is a Turing ma-chine that on input a description of a machine M and an input x returns the valueof M(x) if M halts on x and otherwise does not halt.That is, a universal Turing machine computes the partial function u that is de�nedover pairs (hMi; x) such that M halts on input x, in which case it holds thatu(hMi; x) = M(x). We note that if M halts on all possible inputs then u(hMi; x)is de�ned for every x. We stress that the mere fact that we have de�ned somethingdoes not mean that it exists. Yet, as hinted in the foregoing discussion and obviousto anyone who has written a computer program (and thought about what he/shewas doing), universal Turing machines do exist.Theorem 1.9 There exists a universal Turing machine.Theorem 1.9 asserts that the partial function u is computable. In contrast, it canbe shown that any extension of u to a total function is uncomputable. That is, for13In contrast, the existence of an adequate sequence of a speci�ed length can be determined intime that is exponential in this length.14We mention that the reduction maps an instance (hMi; x) of h to a pair of sequences suchthat only the �rst string in each sequence depends on x, whereas the other strings as well as theirnumber depend only on M .

34 CHAPTER 1. INTRODUCTION AND PRELIMINARIESany total function û that agrees with the partial function u on all the inputs onwhich the latter is de�ned, it holds that û is uncomputable.15Proof: Given a pair (hMi; x), we just emulate the computation of machine Mon input x. This emulation is straightforward, because (by the e�ectiveness of thedescription ofM) we can iteratively determine the next instantaneous con�gurationof the computation of M on input x. If the said computation halts then we willobtain its output and can output it (and so, on input (hMi; x), our algorithmreturns M(x)). Otherwise, we turn out emulating an in�nite computation, whichmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoingemulation procedure constitutes a universal machine (i.e., yields an algorithm forcomputing u).As hinted already, the existence of universal machines is the fundamental factunderlying the paradigm of general-purpose computers. Indeed, a speci�c Turingmachine (or algorithm) is a device that solves a speci�c problem. A priori, solvingeach problem would have required building a new physical device that allows for thisproblem to be solved in the physical world (rather than as a thought experiment).The existence of a universal machine asserts that it is enough to build one physicaldevice; that is, a general purpose computer. Any speci�c problem can then besolved by writing a corresponding program to be executed (or emulated) by thegeneral purpose computer. Thus, universal machines correspond to general purposecomputers, and provide the basis for separating hardware from software. In otherwords, the existence of universal machines says that software can be viewed as(part of the) input.In addition to their practical importance, the existence of universal machines(and their variants) has important consequences in the theories of computabilityand computational complexity. Here we merely note that Theorem 1.9 implies thatmany questions about the behavior of a universal machine on certain input types areundecidable. For example, it follows that, for some �xed machines (i.e., universalones), there is no algorithm that determines whether or not the (�xed) machinehalts on a given input. Revisiting the proof of Theorem 1.7 (see Footnote 14),it follows that the Post Correspondence Problem remains undecidable even if theinput sequences are restricted to have a speci�c length (i.e., k is �xed). A moreimportant application of universal machines to the theory of computability follows.A detour: Kolmogorov Complexity. The existence of universal machines,which may be viewed as universal languages for writing e�ective and succinctdescriptions of objects, plays a central role in Kolmogorov Complexity. Looselyspeaking, the latter theory is concerned with the length of (e�ective) descriptions15The claim is easy to prove for the total function û that extends u and assigns the specialsymbol ? to inputs on which u is unde�ned (i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x)and û(hMi; x) def= u(hMi; x) otherwise). In this case h(hMi; x) = 1 if and only if û(hMi; x) 6= ?,and so the halting function h is Turing-reducible to û. In the general case, we may adapt theproof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holdsthat û(hMi; x) = u(hMi; x) for every x (and in particular for x = hMi).

1.2. COMPUTATIONAL TASKS AND MODELS 35of objects, and views the minimum such length as the inherent \complexity" of theobject; that is, \simple" objects (or phenomena) are those having short description(resp., short explanation), whereas \complex" objects have no short description.Needless to say, these (e�ective) descriptions have to refer to some �xed \language"(i.e., to a �xed machine that, given a succinct description of an object, producesits explicit description). Fixing any machine M , a string x is called a descriptionof s with respect to M if M(x) = s. The complexity of s with respect to M , de-noted KM (s), is the length of the shortest description of s with respect to M .Certainly, we want to �x M such that every string has a description with respectto M , and furthermore such that this description is not \signi�cantly" longer thanthe description with respect to a di�erent machine M 0. The following theoremmake it natural to use a universal machine as the \point of reference" (i.e., as theaforementioned M).Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-chine. Then, for every machine M 0, there exists a constant c such that KU (s) �KM 0(s) + c for every string s.The theorem follows by (setting c = O(jhM 0ij) and) observing that if x is a de-scription of s with respect to M 0 then (hM 0i; x) is a description of s with respectto U . Here it is important to use an adequate encoding of pairs of strings (e.g.,the pair (�1 � � ��k ; �1 � � � �`) is encoded by the string �1�1 � � ��k�k01�1 � � � �`). Fix-ing any universal machine U , we de�ne the Kolmogorov Complexity of a string s asK(s) def= KU (s). The reader may easily verify the following facts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 1.10 to a machine that computes the identity map-ping.)2. There exist in�nitely many strings s such that K(s)� jsj.(Hint: consider s = 1n. Alternatively, consider any machine M such thatjM(x)j � jxj for every x.)3. Some strings of length n have complexity at least n. Furthermore, for everyn and i, jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent descriptions with respect to U .)It can be shown that the function K is uncomputable. The proof is related to theparadox captured by the following \description" of a natural number: the largestnatural number that can be described by an English sentence of up-to athousand letters. (The paradox amounts to observing that if the above num-ber is well-de�ned then so is the integer-successor of the largest naturalnumber that can be described by an English sentence of up-to a thousandletters.) Needless to say, the foregoing sentences presuppose that any English sen-tence is a legitimate description in some adequate sense (e.g., in the sense captured

36 CHAPTER 1. INTRODUCTION AND PRELIMINARIESby Kolmogorov Complexity). Speci�cally, the foregoing sentences presuppose thatwe can determine the Kolmogorov Complexity of each natural number, and fur-thermore that we can e�ectively produce the largest number that has KolmogorovComplexity not exceeding some threshold. Indeed, the paradox provides a proofto the fact that the latter task cannot be performed; that is, there exists no algo-rithm that given t produces the lexicographically last string s such that K(s) � t,because if such an algorithm A would have existed then K(s) � O(jhAij) + log tand K(s0) < K(s) +O(1) < t in contradiction to the de�nition of s.1.2.3.4 Time and space complexityFixing a model of computation (e.g., Turing machines) and focusing on algorithmsthat halt on each input, we consider the number of steps (i.e., applications ofthe computation rule) taken by the algorithm on each possible input. The latterfunction is called the time complexity of the algorithm (or machine); that is, tA :f0; 1g� ! N is called the time complexity of algorithm A if, for every x, on inputx algorithm A halts after exactly tA(x) steps.We will be mostly interested in the dependence of the time complexity on theinput length, when taking the maximum over all inputs of the relevant length.That is, for tA as above, we will consider TA : N ! N de�ned by TA(n) def=maxx2f0;1gnftA(x)g. Abusing terminology, we sometimes refer to TA as the timecomplexity of A.The time complexity of a problem. As stated in the preface and in the intro-duction, typically is complexity theory not concerned with the (time) complexityof a speci�c algorithm. It is rather concerned with the (time) complexity of aproblem, assuming that this problem is solvable at all (by some algorithm). Intu-itively, the time complexity of such a problem is de�ned as the time complexityof the fastest algorithm that solves this problem (assuming that the latter term iswell-de�ned).16 Actually, we shall be interested in upper and lower bounds on the(time) complexity of algorithms that solve the problem. However, the complexityof a problem may depend on the speci�c model of computation in which algorithmsthat solve it are implemented. The following Cobham-Edmonds Thesis asserts thatthe variation (in the time complexity) is not too big, and in particular is irrelevantto much of the current focus of complexity theory (e.g., for the P-vs-NP Question).The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-lem may depend on the model of computation. For example, deciding membershipin the set fxx : x 2 f0; 1g�g can be done in linear-time on a two-tape Turing ma-chine, but requires quadratic-time on a single-tape Turing machine.17 On the other16Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-tion that a \fastest algorithm" for solving a problem exists is not always justi�ed. On the otherhand, the assumption is essentially justi�ed in some important cases (see, e.g., Theorem 2.31).But even in these case the said algorithm is \fastest" (or \optimal") only up to a constant factor.17Proving the latter fact is quite non-trivial. One proof is by a \reduction" from a communica-tion complexity problem [142, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides

1.2. COMPUTATIONAL TASKS AND MODELS 37hand, any problem that has time complexity t in the model of multi-tape Turingmachines, has complexity O(t2) in the model of single-tape Turing machines. TheCobham-Edmonds Thesis asserts that the time complexities in any two \reasonableand general" models of computation are polynomially related. That is, a problemhas time complexity t in some \reasonable and general" model of computation ifand only if it has time complexity poly(t) in the model of (single-tape) Turingmachines.Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.It asserts not only that the class of solvable problems is invariant as far as \rea-sonable and general" models of computation are concerned, but also that the timecomplexity (of the solvable problems) in such models is polynomially related.E�cient algorithms. As hinted in the foregoing discussions, much of complexitytheory is concerned with e�cient algorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have a time complexity that is bounded bya polynomial in the length of the input). By the Cobham-Edmonds Thesis, thechoice of a \reasonable and general" model of computation is irrelevant to thede�nition of this class. The association of e�cient algorithms with polynomial-time computation is grounded in the following two considerations:� Philosophical consideration: Intuitively, e�cient algorithms are those thatcan be implemented within a number of steps that is a moderately growingfunction of the input length. To allow for reading the entire input, at leastlinear time complexity should be allowed, whereas exponential time (as in\exhaustive search") must be avoided. Furthermore, a good de�nition ofthe class of e�cient algorithms should be closed under natural compositionof algorithms (as well as be robust with respect to reasonable models ofcomputation and with respect to simple changes in the encoding of problems'instances).Selecting polynomials as the set of time-bounds for e�cient algorithms sat-isfy all the foregoing requirements: polynomials constitute a \closed" set ofmoderately growing functions, where \closure" means closure under addition,multiplication and functional composition. These closure properties guaran-tee the closure of the class of e�cient algorithm under natural compositionof algorithms (as well as its robustness with respect to any reasonable andgeneral model of computation). Furthermore, polynomial-time algorithmscan conduct computations that are intuitively simple (although not necessar-ily trivial), and on the other hand they do not include algorithms that areintuitively ine�cient (like exhaustive search).membership in the aforementioned set can be viewed as a channel of communication between thetwo parts of the input. Focusing our attention on inputs of the form y0nz0n, for y; z 2 f0; 1gn,each time the machine passes from the �rst part to the second part it carries O(1) bits of infor-mation (in its internal state) while making at least n steps. The proof is completed by invokingthe linear lower bound on the communication complexity of the (two-argument) identity function(i.e, id(y; z) = 1 if y = z and id(y; z) = 0 otherwise, cf. [142, Chap. 1]).

38 CHAPTER 1. INTRODUCTION AND PRELIMINARIES� Empirical consideration: It is clear that algorithms that are considered e�-cient in practice have running-time that is bounded by a small polynomial(at least on the inputs that occur in practice). The question is whether anypolynomial-time algorithm can be considered e�cient in an intuitive sense.The belief, which is supported by past experience, is that every natural prob-lem that can be solved in polynomial-time also has \reasonably e�cient"algorithms.We stress that the association of e�cient algorithms with polynomial-time compu-tation is not essential to most of the notions, results and questions of complexitytheory. Any other class of algorithms that supports the aforementioned closureproperties and allows to conduct some simple computations but not overly com-plex ones gives rise to a similar theory, albeit the formulation of such a theory maybe much more complicated. Speci�cally, all results and questions treated in thisbook are concerned with the relation among the complexities of di�erent computa-tional tasks (rather than with providing absolute assertions about the complexityof some computational tasks). These relations can be stated explicitly, by statinghow any upper-bound on the time complexity of one task gets translated to anupper-bound on the time complexity of another task.18 Such cumbersome state-ments will maintain the contents of the standard statements; they will merely bemuch more complicated. Thus, we follow the tradition of focusing on polynomial-time computations, while stressing that this focus is both natural and provides thesimplest way of addressing the fundamental issues underlying the nature of e�cientcomputation.Universal machines, revisited. The notion of time complexity gives rise to atime-bounded version of the universal function u (presented in x1.2.3.3). Speci�-cally, we de�ne u0(hMi; x; t) def= y if on input x machine M halts within t steps andoutputs the string y, and u0(hMi; x; t) def= ? if on input x machine M makes morethan t steps. Unlike u, the function u0 is a total function. Furthermore, unlikeany extension of u to a total function the function u0 is computable. Moreover, u0is computable by a machine U 0 that on input X = (hMi; x; t) halts after poly(t)steps. Indeed, machine U 0 is a variant of a universal machine (i.e., on input X , ma-chine U 0 merely emulates M for t steps rather than emulating M till it halts (andpotentially inde�nitely)). Note that the number of steps taken by U 0 depends onthe speci�c model of computation (and that some overhead is unavoidable becauseemulating each step of M requires reading the relevant portion of the descriptionof M).Space complexity. Another natural measure of the \complexity" of an algo-rithm (or a task) is the amount of memory consumed by the computation. We18For example, the NP-completeness of SAT (cf. Theorem 2.21) implies that any algorithmsolving SAT in time T yields an algorithm that factors composite numbers in time T 0 such thatT 0(n) = poly(n) � (1 + T (poly(n))). (More generally, if the correctness of solutions for n-bitinstances of some search problem can be veri�ed in time t(n) then such solutions can be found intime T 0 such that T 0(n) = t(n) � (1 + T (O(t(n))2)).)

1.2. COMPUTATIONAL TASKS AND MODELS 39refer to the memory used for storing some intermediate results of the computation.Since much of our focus will be on using memory that is sub-linear in the inputlength, it is important to use a model in which one can di�erentiate memory usedfor computation from memory used for storing the initial input or the �nal output.In the context of Turing machines, this is done by considering multi-tape Turingmachines such that the input is presented on a special read-only tape (called theinput tape), the output is written on a special write-only tape (called the outputtape), and intermediate results are stored on a work-tape. Thus, the input andoutput tapes cannot be used for storing intermediate results. The space complexityof such a machine M is de�ned as a function sM such that sM (x) is the number ofcells of the work-tape that are scanned by M on input x. As in the case of timecomplexity, we will usually refer to SA(n) def= maxx2f0;1gnfsA(x)g.1.2.3.5 Oracle machinesThe notion of Turing-reductions, which was discussed in x1.2.3.2, is captured bythe following de�nition of so-called oracle machines. Loosely speaking, an oraclemachine is a machine that is augmented such that it may pose questions to theoutside. (A rigorous formulation of this notion is provided below.) We considerthe case in which these questions, called queries, are answered consistently by somefunction f : f0; 1g� ! f0; 1g�, called the oracle. That is, if the machine makes aquery q then the answer it obtains is f(q). In such a case, we say that the oraclemachine is given access to the oracle f . For an oracle machine M , a string x and afunction f , we denote by Mf (x) the output of M on input x when given access tothe oracle f . (Re-examining the second part of the proof of Theorem 1.5, observethat we have actually described an oracle machine that computes d0 when givenaccess to the oracle d.)The notion of an oracle machine extends the notion of a standard computingdevice (machine), and thus a rigorous formulation of the former extends a formalmodel of the latter. Speci�cally, extending the model of Turing machines, we derivethe following model of oracle Turing machines.De�nition 1.11 (using an oracle):� An oracle machine is a Turing machine with an additional tape, called theoracle tape, and two special states, called oracle invocation and oracle spoke.� The computation of the oracle machine M on input x and access to the oraclef : f0; 1g� ! f0; 1g� is de�ned based on the successive con�guration function.For con�gurations with state di�erent from oracle invocation the next con�g-uration is de�ned as usual. Let
 be a con�guration in which the machine'sstate is oracle invocation and suppose that the actual contents of the oracletape is q (i.e., q is the contents of the maximal pre�x of the tape that holds bitvalues).19 Then, the con�guration following
 is identical to
, except that19This �ts the de�nition of the actual contents of a tape of a Turing machine (cf. x1.2.3.1).A common convention is that the oracle can be invoked only when the machine's head resides at

40 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthe state is oracle spoke, and the actual contents of the oracle tape is f(q).The string q is called M 's query and f(q) is called the oracle's reply.� The output of M on input x when given oracle access to f is denote Mf (x).We stress that the running time of an oracle machine is the number of steps madeduring its computation, and that the oracle's reply on each query is obtained in asingle step.1.2.3.6 Restricted modelsWe mention that restricted models of computation are often mentioned in thecontext of a course on computability, but they will play no role in the current book.One such model is the model of �nite automata, which in some variant coincideswith Turing machines that have space-complexity zero (equiv., constant).In our opinion, the most important motivation for the study of these restrictedmodels of computation is that they provide simple models for some natural (orarti�cial) phenomena. This motivation, however, seems only remotely related tothe study of the complexity of various computational tasks. Thus, in our opinion,the study of these restricted models (e.g., any of the lower levels of Chomsky'sHierarchy [119, Chap. 9]) should be decoupled from the study of computabilitytheory (let alone the study of complexity theory).Teaching note: Indeed, we reject the common coupling of computability theory withthe theory of automata and formal languages. Although the historical links betweenthese two theories (at least in the West) can not be denied, this fact cannot justifycoupling two fundamentally di�erent theories (especially when such a coupling promotesa wrong perspective on computability theory).1.2.4 Non-uniform Models (Circuits and Advice)By a non-uniform model of computation we mean a model in which for each possibleinput length one considers a di�erent computing device. That is, there is no \uni-formity" requirement relating devices that correspond to di�erent input lengths.Furthermore, this collection of devices is in�nite by nature, and (in absence ofa uniformity requirement) this collection may not even have a �nite description.Nevertheless, each device in the collection has a �nite description. In fact, therelationship between the size of the device (resp., the length of its description) andthe length of the input that it handles will be of major concern. The hope is thatthe �niteness of all parameters (which refer to a single device in such a collection)will allow for the application of combinatorial techniques to analyze the limitationsof certain settings of parameters.In complexity theory, non-uniform models of computation are studied eithertowards the development of lower-bound techniques or as simpli�ed upper-boundsthe left-most cell of the oracle tape. We comment that, in the context of space complexity, oneuses two oracle tapes: a write-only tape for the query and a read-only tape for the answer.

1.2. COMPUTATIONAL TASKS AND MODELS 41on the ability of e�cient algorithms. In both cases, the uniformity condition iseliminated in the interest of simplicity and with the hope (and belief) that nothingsubstantial is lost as far as the issues at hand are concerned.We will focus on two related models of non-uniform computing devices: Booleancircuits (x1.2.4.1) and \machines that take advice" (x1.2.4.2). The former model ismore adequate for the study of the evolution of computation (i.e., development oflower-bound techniques), whereas the latter is more adequate for modeling purposes(e.g., upper-bounding the ability of e�cient algorithms). (These models will befurther studied in Sections 3.1 and 4.1.)1.2.4.1 Boolean CircuitsThe most popular model of non-uniform computation is the one of Boolean circuits.Historically, this model was introduced for the purpose of describing the \logicoperation" of real-life electronic circuits. Ironically, nowadays this model providesthe stage for some of the most practically removed studies in complexity theory(which aim at developing methods that may eventually lead to an understandingof the inherent limitations of e�cient algorithms).A Boolean circuit is a directed acyclic graph20 with labels on the vertices, to bediscussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., verticeswith no in-going or out-going edges), and thus the graph's vertices are of threetypes: sources, sinks, and internal vertices.1. Internal vertices are vertices having in-coming and out-going edges (i.e., theyhave in-degree and out-degree at least 1). In the context of Boolean cir-cuits, internal vertices are called gates. Each gate is labeled by a Booleanoperation, where the operations that are typically considered are ^, _ and: (corresponding to and, or and neg). In addition, we require that gateslabeled : have in-degree 1. (The in-coming degree of ^-gates and _-gatesmay be any number greater than zero, and the same holds for the out-degreeof any gate.)2. The graph sources (i.e., vertices with no in-going edges) are called input ter-minals. Each input terminal is labeled by a natural number (which is to bethought of the index of an input variable). (For sake of de�ning formulae(see x1.2.4.3), we allow di�erent input terminals to be labeled by the samenumber.)213. The graph sinks (i.e., vertices with no out-going edges) are called output ter-minals, and we require that they have in-degree 1. Each output terminal islabeled by a natural number such that if the circuit has m output terminalsthen they are labeled 1; 2; :::;m. That is, we disallow di�erent output ter-minals to be labeled by the same number, and insist that the labels of the20See Appendix G.1.21This is not needed in case of general circuits, because we can just feed out-going edges of thesame input terminal to many gates. Note, however, that this is not allowed in case of formulae,where all non-sinks are required to have out-degree exactly 1.

42 CHAPTER 1. INTRODUCTION AND PRELIMINARIESoutput terminals are consecutive numbers. (Indeed, the labels of the outputterminals will correspond to the indices of locations in the circuit's output.)For sake of simplicity, we also mandate that the labels of the input terminals areconsecutive numbers.22
1 2

1 2

0

4 3

and and

and

and

or
or

negneg neg

Figure 1.3: A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).A Boolean circuit with n di�erent input labels and m output terminals induces(and indeed computes) a function from f0; 1gn to f0; 1gm de�ned as follows. Forany �xed string x 2 f0; 1gn, we iteratively de�ne the value of vertices in the circuitsuch that the input terminals are assigned the corresponding bits in x = x1 � � �xnand the values of other vertices are determined in the natural manner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e.,the value xi).� If the children of a gate (of in-degree d) that is labeled ^ have values v1; v2; :::; vd,then the gate is assigned the value ^di=1vi. The value of a gate labeled _ (or:) is determined analogously.Indeed, the hypothesis that the circuit is acyclic implies that the processof determining values for the circuit's vertices is well-de�ned: As long as thevalue of some vertex is undetermined, there exists a vertex such that its valueis undetermined but the values of all its children are determined. Thus, theprocess can make progress, and terminates when the values of all vertices(including the output terminals) are determined.22This convention slightly complicates the construction of circuits that ignore some of the inputvalues. Speci�cally, we use arti�cial gadgets that have in-coming edges from the correspondinginput terminals, and compute an adequate constant. To avoid having this constant as an outputterminal, we feed it into an auxiliary gate such that the value of the latter is determined by theother in-going edge (e.g., a constant 0 fed into an _-gate). See example of dealing with x3 inFigure 1.3.

1.2. COMPUTATIONAL TASKS AND MODELS 43The value of the circuit on input x (i.e., the output computed by the circuit oninput x) is y = y1 � � � ym, where yi is the value assigned by the foregoing processto the output terminal labeled i. We note that there exists a polynomial-timealgorithm that, given a circuit C and a corresponding input x, outputs the value ofC on input x. This algorithm determines the values of the circuit's vertices, goingfrom the circuit's input terminals to its output terminals.We say that a family of circuits (Cn)n2N computes a function f : f0; 1g� ! f0; 1g�if for every n the circuit Cn computes the restriction of f to strings of length n. Inother words, for every x 2 f0; 1g�, it must hold that Cjxj(x) = f(x).Bounded and unbounded fan-in. We will be most interested in circuits inwhich each gate has at most two in-coming edges. In this case, the types of (two-argument) Boolean operations that we allow is immaterial (as long as we considera \full basis" of such operations; i.e., a set of operations that can implement anyother two-argument Boolean operation). Such circuits are called circuits of boundedfan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,where each gate may have an arbitrary number of in-going edges. Needless to say,in the case of circuits of unbounded fan-in, the choice of allowed Boolean operationsis important and one focuses on operations that are \uniform" (across the numberof operants; e.g., ^ and _).Circuit size as a complexity measure. The size of a circuit is the number ofits edges. When considering a family of circuits (Cn)n2N that computes a functionf : f0; 1g� ! f0; 1g�, we are interested in the size of Cn as a function of n.Speci�cally, we say that this family has size complexity s : N ! N if for every n thesize of Cn is s(n). The circuit complexity of a function f , denoted sf , is the in�mumof the size complexity of all families of circuits that compute f . Alternatively, foreach n we may consider the size of the smallest circuit that computes the restrictionof f to n-bit strings (denoted fn), and set sf (n) accordingly. We stress that non-uniformity is implicit in this de�nition, because no conditions are made regardingthe relation between the various circuits used to compute the function on di�erentinput lengths.The circuit complexity of functions. We highlight some simple facts aboutthe circuit complexity of functions. (These facts are in clear correspondence tofacts regarding Kolmogorov Complexity mentioned in x1.2.3.3.)1. Most importantly, any Boolean function can be computed by some familyof circuits, and thus the circuit complexity of any function is well-de�ned.Furthermore, each function has at most exponential circuit complexity.(Hint: fn : f0; 1gn ! f0; 1g can be computed by a circuit of size O(n2n) thatimplements a look-up table.)2. Some functions have polynomial circuit complexity. In particular, any func-tion that has time complexity t (i.e., is computed by an algorithm of time

44 CHAPTER 1. INTRODUCTION AND PRELIMINARIEScomplexity t) has circuit complexity poly(t). Furthermore, the correspond-ing circuit family is uniform (in a natural sense to be discussed in the nextparagraph).(Hint: consider a Turing machine that computes the function, and considerits computation on a generic n-bit long input. The corresponding compu-tation can be emulated by a circuit that consists of t(n) layers such thateach layer represents an instantaneous con�guration of the machine, and therelation between consecutive con�gurations is captured by (\uniform") localgadgets in the circuit. For further details see the proof of Theorem 2.20,which presents a similar emulation.)3. Almost all Boolean functions have exponential circuit complexity. Speci�-cally, the number of functions mapping f0; 1gn to f0; 1g that can be computedby some circuit of size s is at most s2s.(Hint: the number of circuits having v vertices and s edges is at most 2v ��v2�s.)Note that the �rst fact implies that families of circuits can compute functions thatare uncomputable by algorithms. Furthermore, this phenomenon occurs also whenrestricting attention to families of polynomial-size circuits. See further discussionin x1.2.4.2.Uniform families. A family of polynomial-size circuits (Cn)n2N is called uniformif given n one can construct the circuit Cn in poly(n)-time. Note that if a functionis computable by a uniform family of polynomial-size circuits then it is computableby a polynomial-time algorithm. This algorithm �rst constructs the adequate cir-cuit (which can be done in polynomial-time by the uniformity hypothesis), andthen evaluate this circuit on the given input (which can be done in time that ispolynomial in the size of the circuit).Note that limitations on the computing power of arbitrary families of polynomial-size circuits certainly hold for uniform families (of polynomial-size), which in turnyield limitations on the computing power of polynomial-time algorithms. Thus,lower bounds on the circuit complexity of functions yield analogous lower boundson their time complexity. Furthermore, as is often the case in mathematics andScience, disposing of an auxiliary condition that is not well-understood (i.e., uni-formity) may turn out fruitful. Indeed, this has occured in the study of classes ofrestricted circuits, which is reviewed in x1.2.4.3 (and Appendix B).1.2.4.2 Machines that take adviceGeneral (non-uniform) circuit families and uniform circuit families are two extremeswith respect to the \amounts of non-uniformity" in the computing device. Intu-itively, in the former, non-uniformity is only bounded by the size of the device,whereas in the latter the amounts of non-uniformity is zero. Here we consider amodel that allows to decouple the size of the computing device from the amountof non-uniformity, which may range from zero to the device's size. Speci�cally, weconsider algorithms that \take a non-uniform advice" that depends only on the

1.2. COMPUTATIONAL TASKS AND MODELS 45input length. The amount of non-uniformity will be de�ned to equal the length ofthe corresponding advice (as a function of the input length).De�nition 1.12 (taking advice): We say that algorithm A computes the functionf using advice of length ` : N ! N if there exists an in�nite sequence (an)n2N suchthat1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).The sequence (an)n2N is called the advice sequence.Note that any function having circuit complexity s can be computed using adviceof length O(s log s), where the log factor is due to the fact that a graph with vvertices and e edges can be described by a string of length 2e log2 v. Note that themodel of machines that use advice allows for some sharper bounds than the onesstated in x1.2.4.1: every function can be computed using advice of length ` suchthat `(n) = 2n, and some uncomputable functions can be computed using adviceof length 1.Theorem 1.13 (the power of advice): There exist functions that can be computedusing one-bit advice but cannot be computed without advice.Proof: Starting with any uncomputable Boolean function f : N ! f0; 1g, considerthe function f 0 de�ned as f 0(x) = f(jxj). Note that f is Turing-reducible to f 0 (e.g.,on input nmake any n-bit query to f 0, and return the answer).23 Thus, f 0 cannot becomputed without advice. On the other hand, f 0 can be easily computed by usingthe advice sequence (an)n2N such that an = f(n); that is, the algorithm merelyoutputs the advice bit (and indeed ajxj = f(jxj) = f 0(x), for every x 2 f0; 1g�).1.2.4.3 Restricted modelsAs noted in x1.2.4.1, the model of Boolean circuits allows for the introduction ofmany natural subclasses of computing devices. Following is a laconic review of afew of these subclasses. For more detail, see Appendix B.2. Since we shall refer tovarious types of Boolean formulae in the rest of this book, we suggest not to skipthe following two paragraphs.Boolean formulae. In general Boolean circuits the non-sink vertices are allowedarbitrary out-degree. This means that the same intermediate value can be re-used(without being re-computed (and while increasing the size complexity by only oneunit)). Such \free" re-usage of intermediate values is disallowed in Boolean formu-lae, which corresponds to a Boolean expression over Boolean variables. Formally,a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,23Indeed, this Turing-reduction is not e�cient (i.e., it runs in exponential time in jnj = log2 n),but this is immaterial in the current context.

46 CHAPTER 1. INTRODUCTION AND PRELIMINARIESwhich means that the underlying graph is a tree (see xG.2) and the formula asan expression can be read by traversing the tree (and registering the vertices' la-bels in the order traversed). Indeed, we have allowed di�erent input terminals tobe assigned the same label in order to allow formulae in which the same variableoccurs multiple times. As in case of general circuits, one is interested in the sizeof these restricted circuits (i.e., the size of families of formulae computing variousfunctions). We mention that quadratic lower bounds are known for the formulasize of simple functions (e.g., parity), whereas these functions have linear circuitcomplexity. This discrepancy is depicted in Figure 1.4.
1 n

of x x
1 n

of x x
1 n

of x x
2n

of x ...x
n+1 2n

of x ...x
n+12n

of x ...x
n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure 1.4: Recursive construction of parity circuits and formulae.Formulae in CNF and DNF. A restricted type of Boolean formulae consistsof formulae that are in conjunctive normal form (CNF). Such a formula consists ofa conjunction of clauses, where each clause is a disjunction of literals each beingeither a variable or its negation. That is, such formulae are represented by layeredcircuits of unbounded fan-in in which the �rst layer consists of neg-gates thatcompute the negation of input variables, the second layer consist of or-gates thatcompute the logical-or of subsets of inputs and negated inputs, and the third layerconsists of a single and-gate that computes the logical-and of the values computedin the second layer. Note that each Boolean function can be computed by a familyof CNF formulae of exponential size, and that the size of CNF formulae may beexponentially larger than the size of ordinary formulae computing the same function(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF hasdisjunctions of size at most k. An analogous restricted type of Boolean formulaerefers to formulae that are in disjunctive normal form (DNF). Such a formula consistsof a disjunction of a conjunctions of literals, and when each conjunction has at mostk literals we say that the formula is in k-DNF.Constant-depth circuits. Circuits have a \natural structure" (i.e., their struc-ture as graphs). One natural parameter regarding this structure is the depth of acircuit, which is de�ned as the longest directed path from any source to any sink. Ofspecial interest are constant-depth circuits of unbounded fan-in. We mention that

1.2. COMPUTATIONAL TASKS AND MODELS 47sub-exponential lower bounds are known for the size of such circuits that computea simple function (e.g., parity).Monotone circuits. The circuit model also allows for the consideration of mono-tone computing devices: a monotone circuit is one having only monotone gates(e.g., gates computing ^ and _, but no negation gates (i.e., :-gates)). Needlessto say, monotone circuits can only compute monotone functions, where a functionf : f0; 1gn ! f0; 1g is called monotone if for any x � y it holds that f(x) � f(y)(where x1 � � �xn � y1 � � � yn if and only if for every bit position i it holds thatxi � yi). One natural question is whether, as far as monotone functions are con-cerned, there is a substantial loss in using only monotone circuits. The answer isyes: there exist monotone functions that have polynomial circuit complexity butrequire sub-exponential size monotone circuits.1.2.5 Complexity ClassesComplexity classes are sets of computational problems. Typically, such classes arede�ned by �xing three parameters:1. A type of computational problems (see Section 1.2.2). Indeed, most classesrefer to decision problems, but classes of search problems, promise problems,and other types of problems will also be considered.2. A model of computation, which may be either uniform (see Section 1.2.3) ornon-uniform (see Section 1.2.4).3. A complexity measure and a function (or a set of functions), which put to-gether limit the class of computations of the previous item; that is, we referto the class of computations that have complexity not exceeding the speci-�ed function (or set of functions). For example, in x1.2.3.4, we mentionedtime complexity and space complexity, which apply to any uniform model ofcomputation. We also mentioned polynomial-time computations, which arecomputations in which the time complexity (as a function) does not exceedsome polynomial (i.e., a member of the set of polynomial functions).The most common complexity classes refer to decision problems, and are sometimesde�ned as classes of sets rather than classes of the corresponding decision problems.That is, one often says that a set S � f0; 1g� is in the class C rather than sayingthat the problem of deciding membership in S is in the class C. Likewise, one talksof classes of relations rather than classes of the corresponding search problems (i.e.,saying that R � f0; 1g��f0; 1g� is in the class C means that the search problem ofR is in the class C).Chapter NotesIt is quite remarkable that the theories of uniform and non-uniform computationaldevices have emerged in two single papers. We refer to Turing's paper [216], which

48 CHAPTER 1. INTRODUCTION AND PRELIMINARIESintroduced the model of Turing machines, and to Shannon's paper [194], whichintroduced Boolean circuits.In addition to introducing the Turing machine model and arguing that it cor-responds to the intuitive notion of computability, Turing's paper [216] introducesuniversal machines and contains proofs of undecidability (e.g., of the Halting Prob-lem).The Church-Turing Thesis is attributed to the works of Church [52] and Tur-ing [216]. In both works, this thesis is invoked for claiming that the fact thatTuring machines cannot solve some problem implies that this problem cannot besolved in any \reasonable" model of computation. The RAM model is attributedto von Neumann's report [223].The association of e�cient computation with polynomial-time algorithms isattributed to the papers of Cobham [54] and Edmonds [66]. It is interesting tonote that Cobham's starting point was his desire to present a philosophically soundconcept of e�cient algorithms, whereas Edmonds's starting point was his desire toarticulate why certain algorithms are \good" in practice.Rice's Theorem is proven in [185], and the undecidability of the Post Correspon-dence Problem is proven in [174]. The formulation of machines that take advice(as well as the equivalence to the circuit model) originates in [132].

408 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Chapter 10Relaxing the RequirementsThe philosophers have only interpreted the world, invarious ways; the point is to change it.Karl Marx, Theses on FeuerbachIn light of the apparent infeasibility of solving numerous useful computational prob-lems, it is natural to ask whether these problems can be relaxed such that therelaxation is both useful and allows for feasible solving procedures. We stress twoaspects about the foregoing question: on one hand, the relaxation should be suf-�ciently good for the intended applications; but, on the other hand, it should besigni�cantly di�erent from the original formulation of the problem so to escape theinfeasibility of the latter. We note that whether a relaxation is adequate for anintended application depends on the application, and thus much of the materialin this chapter is less robust (or generic) than the treatment of the non-relaxedcomputational problems.Summary: We consider two types of relaxations. The �rst type ofrelaxation refers to the computational problems themselves; that is, foreach problem instance we extend the set of admissible solutions. Inthe context of search problems this means settling for solutions thathave a value that is \su�ciently close" to the value of the optimalsolution (with respect to some value function). Needless to say, thespeci�c meaning of `su�ciently close' is part of the de�nition of therelaxed problem. In the context of decision problems this means thatfor some instances both answers are considered valid; put di�erently,we consider promise problems in which the no-instances are \far" fromthe yes-instances in some adequate sense (which is part of the de�nitionof the relaxed problem).The second type of relaxation deviates from the requirement that thesolver provides an adequate answer on each valid instance. Instead,the behavior of the solver is analyzed with respect to a predetermined409

410 CHAPTER 10. RELAXING THE REQUIREMENTSinput distribution (or a class of such distributions), and bad behaviormay occur with negligible probability where the probability is takenover this input distribution. That is, we replace worst-case analysis byaverage-case (or rather typical-case) analysis. Needless to say, a majorcomponent in this approach is limiting the class of distributions in a waythat, on one hand, allows for various types of natural distributions and,on the other hand, prevents the collapse of the corresponding notion ofaverage-case hardness to the standard notion of worst-case hardness.10.1 ApproximationThe notion of approximation is a natural one, and has arisen also in other disci-plines. Approximation is most commonly used in references to quantities (e.g., \thelength of one meter is approximately forty inches"), but it is also used when refer-ring to qualities (e.g., \an approximately correct account of a historical event"). Inthe context of computation, the notion of approximation modi�es computationaltasks such as search and decision problems. (In fact, we have already encounteredit as a modi�er of counting problems; see Section 6.2.2.)Two major questions regarding approximation are (1) what is a \good" approx-imation, and (2) can it be found easier than �nding an exact solution. The answerto the �rst question seems intimately related to the speci�c computational taskat hand and to its role in the wider context (i.e., the higher level application): agood approximation is one that su�ces for the intended application. Indeed, theimportance of certain approximation problems is much more subjective than theimportance of the corresponding optimization problems. This fact seems to standin the way of attempts at providing a comprehensive theory of natural approxi-mation problems (e.g., general classes of natural approximation problems that areshown to be computationally equivalent).Turning to the second question, we note that in numerous cases natural approx-imation problems seem to be signi�cantly easier than the corresponding original(\exact") problems. On the other hand, in numerous other cases, natural approxi-mation problems are computationally equivalent to the original problems. We shallexemplify both cases by reviewing some speci�c results, but regret not being ableto provide a general systematic classi�cation.1Mimicking the two standard uses of the word approximation, we shall distinguishbetween approximation problems that are of the \search type" and problems thathave a clear \decisional"
avor. In the �rst case we shall refer to a function thatassigns values to possible solutions (of a search problem); whereas in the secondcase we shall refer to distances between instances (of a decision problem). We notethat, in some cases, the same computational problem may be cast in both ways,but for most natural approximation problems one of the two frameworks is moreappealing than the other. The common theme is that in both cases we extend theset of admissible solutions. In the case of search problems, we extend the set of1A systematic classi�cation of a restricted class of approximation problems, which refer toConstraint Satisfaction Problems, has appeared in [53].

10.1. APPROXIMATION 411optimal solutions by including also almost-optimal solutions. In the case of decisionproblems, we extend the set of solutions by allowing an arbitrary answer (solution)to some instances, which may be viewed as a promise problem that disallows theseinstances. In this case we focus on promise problems in which the yes- and no-instances are far apart (and the instances that violate the promise are closed toyes-instances).Teaching note: Most of the results presented in this section refer to speci�c computa-tional problems and (with one exception) are presented without a proof. In view of thecomplexity of the corresponding proofs and the merely illustrative role of these resultsin the context of complexity theory, we recommend doing the same in class.10.1.1 Search or OptimizationAs noted in Section 2.2.2, many search problems involve a set of potential solutions(per each problem instance) such that di�erent solutions are assigned di�erent \val-ues" (resp., \costs") by some \value" (resp., \cost") function. In such a case, one isinterested in �nding a solution of maximum value (resp., minimum cost). A corre-sponding approximation problem may refer to �nding a solution of approximatelymaximum value (resp., approximately minimum cost), where the speci�cation ofthe desired level of approximation is part of the problem's de�nition. Let us elab-orate.For concreteness, we focus on the case of a value that we wish to maximize. Forgreater
exibility, we allow the value of the solution to depend also on the instanceitself. Thus, for a (polynomially bounded) binary relation R and a value functionf : f0; 1g��f0; 1g� ! R, we consider the problem of �nding solutions (with respectto R) that maximize the value of f . That is, given x (such that R(x) 6= ;), thetask is �nding y 2 R(x) such that f(x; y) = vx, where vx is the maximum valueof f(x; y0) over all y0 2 R(x). Typically, R is in PC and f is polynomial-timecomputable.2 Indeed, without loss of generality, we may assume that for every xit holds that R(x) = f0; 1g`(jxj) for some polynomial ` (see Exercise 2.8). Thus,the optimization problem is recast as the following search problem: given x, �ndy such that f(x; y) = vx, where vx = maxy02f0;1g`(jxj)ff(x; y0)g.We shall focus on relative approximation problems, where for some gap functiong : f0; 1g� ! fr2R : r�1g the (maximization) task is �nding y such that f(x; y) �vx=g(x). Indeed, in some cases the approximation factor is stated as a function ofthe length of the input (i.e., g(x) = g0(jxj) for some g0 : N ! fr2R : r�1g), butoften the approximation factor is stated in terms of some more re�ned parameterof the input (e.g., as a function of the number of vertices in a graph). Typically, gis polynomial-time computable.De�nition 10.1 (g-factor approximation): Let f : f0; 1g� � f0; 1g� ! R, ` :N!N , and g : f0; 1g� ! fr2R : r�1g.2In this case, we may assume without loss of generality that the function f depends only onthe solution. This can be obtained by rede�ning the relation R such that each solution y 2 R(x)consists of a pair of the form (x; y0). Needless to say, this modi�cation cannot be applied alongwith getting rid of R (as in Exercise 2.8).

412 CHAPTER 10. RELAXING THE REQUIREMENTSMaximization version: The g-factor approximation of maximizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � vx=g(x)g,where vx = maxy02f0;1g`(jxj)ff(x; y0)g.Minimization version: The g-factor approximation of minimizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � g(x) � cxg,where cx = miny02f0;1g`(jxj)ff(x; y0)g.We note that for numerous NP-complete optimization problems, polynomial-timealgorithms provide meaningful approximations. A few examples will be mentionedin x10.1.1.1. In contrast, for numerous other NP-complete optimization problems,natural approximation problems are computationally equivalent to the correspond-ing optimization problem. A few examples will be mentioned in x10.1.1.2, wherewe also introduce the notion of a gap problem, which is a promise problem (ofthe decision type) intended to capture the di�culty of the (approximate) searchproblem.10.1.1.1 A few positive examplesLet us start with a trivial example. Considering a problem such as �nding themaximum clique in a graph, we note that �nding a linear factor approximation istrivial (i.e., given a graph G = (V;E), we may output any vertex in V as a jV j-factor approximation of the maximum clique in G). A famous non-trivial exampleis presented next.Proposition 10.2 (factor two approximation to minimum Vertex Cover): Thereexists a polynomial-time approximation algorithm that given a graph G = (V;E)outputs a vertex cover that is at most twice as large as the minimum vertex coverof G.We warn that an approximation algorithm for minimum Vertex Cover does notyield such an algorithm for the complementary problem (of maximum IndependentSet). This phenomenon stands in contrast to the case of optimization, where anoptimal solution for one problem (e.g., minimum Vertex Cover) yields an optimalsolution for the complementary problem (maximum Independent Set).Proof Sketch: The main observation is a connection between the set of maximalmatchings and the set of vertex covers in a graph. LetM be anymaximal matchingin the graph G = (V;E); that is, M � E is a matching but augmenting it by anysingle edge yields a set that is not a matching. Then, on one hand, the set of allvertices participating in M is a vertex cover of G, and, on the other hand, eachvertex cover of G must contain at least one vertex of each edge ofM . Thus, we can�nd the desired vertex cover by �nding a maximal matching, which in turn can befound by a greedy algorithm.

10.1. APPROXIMATION 413Another example. An instance of the traveling salesman problem (TSP) consistsof a symmetric matrix of distances between pairs of points, and the task is �ndinga shortest tour that passes through all points. In general, no reasonable approx-imation is feasible for this problem (see Exercise 10.1), but here we consider twospecial cases in which the distances satisfy some natural constraints (and prettygood approximations are feasible).Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-rithms exist for the following two computational problems.1. Providing a 1.5-factor approximation for the special case of TSP in which thedistances satisfy the triangle inequality.2. For every " > 1, providing a (1+ ")-factor approximation for the special caseof Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points residein a k-dimensional Euclidean space, and the distances refer to the standardEuclidean norm).A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2is provided in [12]. We note the di�erence exampli�ed by the two items of Theo-rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a speci�cconstant factor, Part 2 provides such an algorithm for any constant factor. Such aresult is called a polynomial-time approximation scheme (abbreviated PTAS).10.1.1.2 A few negative examplesLet us start again with a trivial example. Considering a problem such as �ndingthe maximum clique in a graph, we note that given a graph G = (V;E) �ndinga (1 + jV j�1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. Indeed, this \result" is not really meaningful.In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that�nding a jV j1�o(1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. This follows from the fact that the approximationproblem is NP-hard (cf. Theorem 10.5).The statement of inapproximability results is made stronger by referring to apromise problem that consists of distinguishing instances of su�ciently far apartvalues. Such promise problems are called gap problems, and are typically statedwith respect to two bounding functions g1; g2 : f0; 1g� ! R (which replace the gapfunction g of De�nition 10.1). Typically, g1 and g2 are polynomial-time computable.De�nition 10.4 (gap problem for approximation of f): Let f be as in De�ni-tion 10.1 and g1; g2 : f0; 1g� ! R.Maximization version: For g1 � g2, the gapg1;g2 problem of maximizing f consistsof distinguishing between fx : vx � g1(x)g and fx : vx < g2(x)g, wherevx = maxy2f0;1g`(jxj)ff(x; y)g.

414 CHAPTER 10. RELAXING THE REQUIREMENTSMinimization version: For g1 � g2, the gapg1;g2 problem of minimizing f consistsof distinguishing between fx : cx � g1(x)g and fx : cx > g2(x)g, wherecx = miny2f0;1g`(jxj)ff(x; y)g.For example, the gapg1;g2 problem of maximizing the size of a clique in a graphconsists of distinguishing between graphs G that have a clique of size g1(G) andgraphs G that have no clique of size g2(G). In this case, we typically let gi(G) be afunction of the number of vertices in G=(V;E); that is, gi(G) = g0i(jV j). Indeed,letting !(G) denote the size of the largest clique in the graphG, we let gapCliqueL;sdenote the gap problem of distinguishing between fG= (V;E) : !(G) � L(jV j)gand fG = (V;E) : !(G) < s(jV j)g, where L � s. Using this terminology, werestate (and strengthen) the aforementioned jV j1�o(1)-factor inapproximation ofthe maximum clique problem.Theorem 10.5 For some L(N) = N1�o(1) and s(N) = No(1), it holds that gapCliqueL;sis NP-hard.The proof of Theorem 10.5 is based on a major re�nement of Theorem 9.16 thatrefers to a PCP system of amortized free-bit complexity that tends to zero (cf.x9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented inExercise 10.3.As we shall show next, results of the type of Theorem 10.5 imply the hardnessof a corresponding approximation problem; that is, the hardness of deciding a gapproblem implies the hardness of a search problem that refers to an analogous factorof approximation.Proposition 10.6 Let f; g1; g2 be as in De�nition 10.4 and suppose that thesefunctions are polynomial-time computable. Then the gapg1;g2 problem of maximiz-ing f (resp., minimizing f) is reducible to the g1=g2-factor (resp., g2=g1-factor)approximation of maximizing f (resp., minimizing f).Note that a reduction in the opposite direction does not necessarily exist (even inthe case that the underlying optimization problem is self-reducible in some naturalsense). Indeed, this is another di�erence between the current context (of approx-imation) and the context of optimization problems, where the search problem isreducible to a related decision problem.Proof Sketch: We focus on the maximization version. On input x, we solve thegapg1;g2 problem, by making the query x, obtaining the answer y, and ruling thatx has value exceeding g1(x) if and only if f(x; y) � g2(x). Recall that we need toanalyze this reduction only on inputs that satisfy the promise. Thus, if vx � g1(x)then the oracle must return a solution y that satis�es f(x; y) � vx=(g1(x)=g2(x)),which implies that f(x; y) � g2(x). On the other hand, if vx < g2(x) then f(x; y) �vx < g2(x) holds for any possible solution y.

10.1. APPROXIMATION 415Additional examples. Let us consider gapVCs;L, the gapgs;gL problem of mini-mizing the vertex cover of a graph, where s and L are constants and gs(G) = s � jV j(resp., gL(G) = L � jV j) for any graph G=(V;E). Then, Proposition 10.2 implies(via Proposition 10.6) that, for every constant s, the problem gapVCs;2s is solvablein polynomial-time. In contrast, su�ciently narrowing the gap between the twothresholds yields an inapproximability result. In particular:Theorem 10.7 For some constants 0 < s < L < 1 (e.g., s = 0:62 and L = 0:84will do), the problem gapVCs;L is NP-hard.The proof of Theorem 10.7 is based on a complicated re�nement of Theorem 9.16.Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).As noted, re�nements of the PCP Theorem (Theorem 9.16) play a key role inestablishing inapproximability results such as Theorems 10.5 and 10.7. In thatrespect, it is adequate to recall that Theorem 9.21 establishes the equivalence ofthe PCP Theorem itself and the NP-hardness of a gap problem concerning themaximization of the number of clauses that are satis�es in a given 3-CNF for-mula. Speci�cally, gapSAT3" was de�ned (in De�nition 9.20) as the gap problemconsisting of distinguishing between satis�able 3-CNF formulae and 3-CNF formu-lae for which each truth assignment violates at least an " fraction of the clauses.Although Theorem 9.21 does not specify the quantitative relation that underliesits qualitative assertion, when (re�ned and) combined with the best known PCPconstruction, it does yield the best possible bound.Theorem 10.8 For every v < 1=8, the problem gapSAT3v is NP-hard.On the other hand, gapSAT31=8 is solvable in polynomial-time.Sharp thresholds. The aforementioned opposite results (regarding gapSAT3v) ex-emplify a sharp threshold on the (factor of) approximation that can be obtainedby an e�cient algorithm. Another appealing example refers to the following maxi-mization problem in which the instances are systems of linear equations over GF(2)and the task is �nding an assignment that satis�es as many equations as possible.Note that by merely selecting an assignment at random, we expect to satisfy halfof the equations. Also note that it is easy to determine whether there exists anassignment that satis�es all equations. Let gapLinL;s denote the problem of dis-tinguishing between systems in which one can satisfy at least an L fraction of theequations and systems in which one cannot satisfy an s fraction (or more) of theequations. Then, as just noted, gapLinL;0:5 is trivial and gapLin1;s is feasible(for every s < 1). In contrast, moving both thresholds (slightly) away from thecorresponding extremes, yields an NP-hard gap problem:Theorem 10.9 For every constant " > 0, the problem gapLin1�";0:5+" is NP-hard.The proof of Theorem 10.9 is based on a major re�nement of Theorem 9.16. In fact,the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:the veri�er makes three queries and tests a linear condition regarding the answers,

416 CHAPTER 10. RELAXING THE REQUIREMENTSwhile using a logarithmic number of coin tosses. This veri�er accepts any yes-instance with probability at least 1 � " (when given oracle access to a suitableproof), and rejects any no-instance with probability at least 0:5 � " (regardlessof the oracle being accessed). A weaker result, which follows from Theorem 9.16itself, is presented in Exercise 10.5.Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations withrespect to the \location" of the \gap" for which the corresponding promise prob-lem is hard. Recall that both gapSAT and gapLin are formulated with respectto two thresholds, where each threshold bounds the fraction of \local" conditions(i.e., clauses or equations) that are satis�able in the case of yes- and no-instances,respectively. In the case of gapSAT, the high threshold (referring to yes-instances)was set to 1, and thus only the low threshold (referring to no-instances) remaineda free parameter. Nevertheless, a hardness result was established for gapSAT, andfurthermore this was achieved for an optimal value of the low threshold (cf. theforegoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-ting the high threshold to 1 makes the gap problem e�ciently solvable. Thus,the hardness of gapLin was established at a di�erent location of the high thresh-old. Speci�cally, hardness (for an optimal value of the ratio of thresholds) wasestablished when setting the high threshold to 1� ", for any " > 0.A �nal comment. All the aforementioned inapproximability results refer to ap-proximation (resp., gap) problems that are relaxations of optimization problemsin NP (i.e., the optimization problem is computationally equivalent to a decisionproblem in NP ; see Section 2.2.2). In these cases, the NP-hardness of the approx-imation (resp., gap) problem implies that the corresponding optimization problemis reducible to the approximation (resp., gap) problem. In other words, in thesecases nothing is gained by relaxing the original optimization problem, because therelaxed version remains just as hard.10.1.2 Decision or Property TestingA natural notion of relaxation for decision problems arises when considering thedistance between instances, where a natural notion of distance is the Hammingdistance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,this relaxation (called property testing) refers to distinguishing inputs that residein a predetermined set S from inputs that are \relatively far" from any input thatresides in the set. Two natural types of promise problems emerge (with respect toany predetermined set S (and the Hamming distance between strings)):1. Relaxed decision w.r.t a �xed distance: Fixing a distance parameter �, weconsider the problem of distinguishing inputs in S from inputs in ��(S),where ��(S) def= fx : 8z 2 S \ f0; 1gjxj �(x; z) > � � jxjg (10.1)and �(x1 � � �xm; z1 � � � zm) = jfi : xi 6= zigj denotes the number of bits onwhich x = x1 � � �xm and z = z1 � � � zm disagree. Thus, here we consider a

10.1. APPROXIMATION 417promise problem that is a restriction (or a special case) of the problem ofdeciding membership in S.2. Relaxed decision w.r.t a variable distance: Here the instances are pairs (x; �),where x is as in Type 1 and � 2 [0; 1] is a distance parameter. The yes-instances are pairs (x; �) such that x 2 S, whereas (x; �) is a no-instance ifx 2 ��(S).We shall focus on Type 1 formulation, which seems to capture the essential questionof whether or not these relaxations lower the complexity of the original decisionproblem. The study of Type 2 formulation refers to a relatively secondary question,which assumes a positive answer to the �rst question; that is, assuming that therelaxed form is easier than the original form, we ask how is the complexity of theproblem a�ected by making the distance parameter smaller (which means makingthe relaxed problem \tighter" and ultimately equivalent to the original problem).We note that for numerous NP-complete problems there exist natural (Type 1)relaxations that are solvable in polynomial-time. Actually, these algorithms run insub-linear time (speci�cally, polylogarithmic time), when given direct access to theinput. A few examples will be presented in x10.1.2.2. As indicated in x10.1.2.2,this is not a generic phenomenon. But before turning to these results, we discussseveral important de�nitional issues.10.1.2.1 De�nitional issuesProperty testing is concerned not only with solving relaxed versions of NP-hardproblems, but rather solving these problems (as well as problems in P) in sub-linear time. Needless to say, such results assume a model of computation in whichalgorithms have direct access to bits in the (representation of the) input (see De�-nition 10.10).De�nition 10.10 (a direct access model { conventions): An algorithm with directaccess to its input is given its main input on a special input device that is accessedas an oracle (see x1.2.3.5). In addition, the algorithm is given the length of theinput and possibly other parameters on a secondary input device. The complexity ofsuch an algorithm is stated in terms of the length of its main input.Indeed, the description in x5.2.4.2 refers to such a model, but there the main inputis viewed as an oracle and the secondary input is viewed as the input. In thismodel, polylogarithmic time means time that is polylogarithmic in the length ofthe main input, which means time that is polynomial in the length of the binaryrepresentation of the length of the main input. Thus, polylogarithmic time yieldsa robust notion of extremely e�cient computations.De�nition 10.11 (property testing for S): For any �xed � > 0, the promiseproblem of distinguishing S from ��(S) is called property testing for S (with respectto �).

418 CHAPTER 10. RELAXING THE REQUIREMENTSRecall that we say that a randomized algorithm solves a promise problem if itaccepts every yes-instance (resp., rejects every no-instance) with probability atleast 2=3. Thus, a (randomized) property testing for S accepts every input in S(resp., rejects every input in ��(S)) with probability at least 2=3.The question of representation. The speci�c representation of the input is ofmajor concern in the current context. This is due to (1) the e�ect of the represen-tation on the distance measure and to (2) the dependence of direct access machineson the speci�c representation of the input. Let us elaborate on both aspects.1. Recall that we de�ned the distance between objects in terms of the Hammingdistance between their representations. Clearly, in such a case, the choice ofrepresentation is crucial and di�erent representations may yield di�erent dis-tance measures. Furthermore, in this case, the distance between objects isnot preserved under various (natural) representations that are considered\equivalent" in standard studies of computational complexity. For example,in previous parts of this book, when referring to computational problems con-cerning graphs, we did not care whether the graphs were represented by theiradjacency matrix or by their incidence-lists. In contrast, these two represen-tations induce very di�erent distance measures and correspondingly di�erentproperty testing problems (see x10.1.2.2). Likewise, the use of padding (andother trivial syntactic conventions) becomes problematic (e.g., when using asigni�cant amount of padding, all objects are deemed close to one another(and property testing for any set becomes trivial)).2. Since our focus is on sub-linear time algorithms, we may not a�ord trans-forming the input from one natural format to another. Thus, representationsthat are considered equivalent with respect to polynomial-time algorithms,may not be equivalent with respect to sub-linear time algorithms that havea direct access to the representation of the object. For example, adjacencyqueries and incidence queries cannot emulate one another in small time (i.e.,in time that is sub-linear in the number of vertices).Both aspects are further clari�ed by the examples provided in x10.1.2.2.The essential role of the promise. Recall that, for a �xed constant � > 0,we consider the promise problem of distinguishing S from ��(S). The promisemeans that all instances that are neither in S nor far from S (i.e., not in ��(S))are ignored, which is essential for sub-linear algorithms for natural problems. Thismakes the property testing task potentially easier than the corresponding stan-dard decision task (cf. x10.1.2.2). To demonstrate the point, consider the set Sconsisting of strings that have a majority of 1's. Then, deciding membership inS requires linear time, because random n-bit long strings with bn=2c ones cannotbe distinguished from random n-bit long strings with bn=2c + 1 ones by probinga sub-linear number of locations (even if randomization and error probability areallowed { see Exercise 10.8). On the other hand, the fraction of 1's in the input can

10.1. APPROXIMATION 419be approximated by a randomized polylogarithmic time algorithm (which yields aproperty tester for S; see Exercise 10.9). Thus, for some sets, deciding membershiprequires linear time, while property testing can be done in polylogarithmic time.The essential role of randomization. Referring to the foregoing example, wenote that randomization is essential for any sub-linear time algorithm that distin-guishes this set S from, say, �0:4(S). Speci�cally, a sub-linear time deterministicalgorithm cannot distinguish 1n from any input that has 1's in each position probedby that algorithm on input 1n. In general, on input x, a (sub-linear time) deter-ministic algorithm always reads the same bits of x and thus cannot distinguish xfrom any z that agrees with x on these bit locations.Note that, in both cases, we are able to prove lower-bounds on the time com-plexity of algorithms. This success is due to the fact that these lower-bounds areactually information theoretic in nature; that is, these lower-bounds actually referto the number of queries performed by these algorithms.10.1.2.2 Two models for testing graph propertiesIn this subsection we consider the complexity of property testing for sets of graphsthat are closed under graph isomorphism; such sets are called graph properties. Inview of the importance of representation in the context of property testing, weconsider two standard representations of graphs (cf. Appendix G.1), which indeedyield two di�erent models of testing graph properties.1. The adjacency matrix representation. Here a graph G = ([N]; E) is rep-resented (in a somewhat redundant form) by an N -by-N Boolean matrixMG = (mi;j)i;j2[N] such that mi;j = 1 if and only if fi; jg 2 E.2. Bounded incidence-lists representation. For a �xed parameter d, a graphG = ([N]; E) of degree at most d is represented (in a somewhat redundantform) by a mapping �G : [N]� [d]! [N][f?g such that �G(u; i) = v if v isthe ith neighbor of u and �G(u; i) = ? if v has less than i neighbors.We stress that the aforementioned representations determine both the notion ofdistance between graphs and the type of queries performed by the algorithm. Aswe shall see, the di�erence between these two representations yields a big di�erencein the complexity of corresponding property testing problems.Theorem 10.12 (property testing in the adjacency matrix representation): Forany �xed � > 0 and each of the following sets, there exists a polylogarithmic timerandomized algorithm that solves the corresponding property testing problem (withrespect to �).� For every �xed k � 2, the set of k-colorable graphs.� For every �xed � > 0, the set of graphs having a clique (resp., independentset) of density �.

420 CHAPTER 10. RELAXING THE REQUIREMENTS� For every �xed � > 0, the set of N-vertex graphs having a cut3 with at least� �N2 edges.� For every �xed � > 0, the set of N-vertex graphs having a bisection3with atmost � �N2 edges.In contrast, for some � > 0, there exists a graph property in NP for which propertytesting (with respect to �) requires linear time.The testing algorithms use a constant number of queries, where this constant ispolynomial in the constant 1=�. We highlight the fact that exact decision proce-dures for the corresponding sets require a linear number of queries. The runningtime of the aforementioned algorithms hides a constant that is exponential in theirquery complexity (except for the case of 2-colorability where the hidden constantis polynomial in 1=�). Note that such dependencies seem essential, since setting� = 1=N2 regains the original (non-relaxed) decision problems (which, with theexception of 2-colorability, are all NP-complete). Turning to the lower-bound, wenote that the graph property for which this bound is proved is not a natural one.Again, the lower-bound on the time complexity follows from a lower-bound on thequery complexity.Theorem 10.12 exhibits a dichotomy between graph properties for which prop-erty testing is possible by a constant number of queries and graph properties forwhich property testing requires a linear number of queries. A combinatorial charac-terization of the graph properties for which property testing is possible (in the ad-jacency matrix representation) when using a constant number of queries is known.4We note that the constant in this characterization may depend arbitrarily on � (andindeed, in some cases, it is a function growing faster than a tower of 1=� exponents).For example, property testing for the set of triangle-free graphs is possible by usinga number of queries that depends only on �, but it is known that this number mustgrow faster than any polynomial in 1=�.Turning back to Theorem 10.12, we note that the results regarding propertytesting for the sets corresponding to max-cut and min-bisection yield approximationalgorithms with an additive error term (of �N2). For dense graphs (i.e., N -vertexgraphs having
(N2) edges), this yields a constant factor approximation for thestandard approximation problem (as in De�nition 10.1). That is, for every constantc > 1, we obtain a c-factor approximation of the problem of maximizing the size of acut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,the result regarding clique yields a so called dual-approximation for maximumclique; that is, we approximate the minimum number of missing edges in the densestinduced subgraph of a given size.3A cut in a graph G = ([N]; E) is a partition (S1; S2) of the set of vertices (i.e., S1 [S2 = [N]and S1 \ S2 = ;), and the edges of the cut are the edges with exactly one endpoint in S1. Abisection is a cut of the graph to two parts of equal cardinality.4Describing this fascinating result of Alon et. al. [8], which refers to the notion of regularpartitions (introduced by Szemer�edi), is beyond the scope of the current text.

10.1. APPROXIMATION 421Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, ingeneral, for any graph property in the adjacency matrix representation.5 Also notethat property testing is trivial, under the adjacency matrix representation, for anygraph property S satisfying �o(1)(S) = ; (e.g., the set of connected graphs, the setof Hamiltonian graphs, etc).We now turn to the bounded incidence-lists representation, which is relevantonly for bounded degree graphs. The problems of max-cut, min-bisection and clique(as in Theorem 10.12) are trivial under this representation, but graph connectivitybecomes non-trivial, and the complexity of property testing for the set of bipartitegraphs changes dramatically.Theorem 10.13 (property testing in the bounded incidence-lists representation):The following assertions refer to the representation of graphs by incidence-lists oflength d.� For any �xed d and � > 0, there exists a polylogarithmic time randomizedalgorithm that solves the property testing problem for the set of connectedgraphs of degree at most d.� For any �xed d and � > 0, there exists a sub-linear randomized algorithm thatsolves the property testing problem for the set of bipartite graphs of degree atmost d. Speci�cally, on input an N-vertex graph, the algorithm runs foreO(pN) time.� For any �xed d � 3 and some � > 0, property testing for the set of N-vertex(3-regular) bipartite graphs requires
(pN) queries.� For some �xed d and � > 0, property testing for the set of N-vertex 3-colorablegraphs requires
(N) queries.The running time of the algorithms hides a constant that is polynomial in 1=�.Providing a characterization of graph properties according to the complexity of thecorresponding tester (in the bounded incidence-lists representation) is an interest-ing open problem.Decoupling the distance from the representation. So far, we have con�nedour attention to the Hamming distance between the representations of graphs.This made the choice of representation even more important than usual (i.e., morecrucial than is common in complexity theory). In contrast, it is natural to considera notion of distance between graphs that is independent of their representation.For example, the distance between G1=(V1; E1) and G2=(V2; E2) can be de�ned5In this model, as shown next, property testing of non-dense graphs is trivial. Speci�cally,�xing the distance parameter �, we call a N-vertex graph non-dense if it has less than (�=2) � �N2 �edges. The point is that, for non-dense graphs, the property testing problem for any set S istrivial, because we may just accept any non-dense graph if and only if S contains some non-densegraph. Clearly, the decision is correct in the case that S does not contain non-dense graphs.However, the decision is admissible also in the case that S does contain some non-dense graph,because in this case every non-dense graph is \�-close" to S (i.e., it is not in ��(S)).

422 CHAPTER 10. RELAXING THE REQUIREMENTSas the minimum of the size of symmetric di�erence between E1 and the set of edgesin a graph that is isomorphic to G2. The corresponding relative distance may bede�ned as the distance divided by jE1j+ jE2j (or by max(jE1j; jE2j)).10.1.2.3 Beyond graph propertiesProperty testing has been applied to a variety of computational problems beyondthe domain of graph theory. In fact, this area �rst emerged in the algebraic domain,where the instances (to be viewed as inputs to the testing algorithm) are functionsand the relevant properties are sets of algebraic functions. The archetypical ex-ample is the set of low-degree polynomials; that is, m-variate polynomials of total(or individual) degree d over some �nite �eld GF(q), where m; d and q are param-eters that may depend on the length of the input (or satisfy some relationships;e.g., q = d3 = m6). Note that, in this case, the input is the (\full" or \explicit")description of an m-variate function over GF(q), which means that it has lengthqm � log2 q. Viewing the problem instance as a function suggests a natural measureof distance (i.e., the fraction of arguments on which the functions disagree) as wellas a natural way of accessing the instance (i.e., querying the function for the valueof selected arguments).Note that we have referred to these computational problems, under a di�erentterminology, in x9.3.2.2 and in x9.3.2.1. In particular, in x9.3.2.1 we refereed tothe special case of linear Boolean functions (i.e., individual degree 1 and q = 2),whereas in x9.3.2.2 we used the setting q = poly(d) and m = d= log d (where d is abound on the total degree).Other domains of computational problems in which property testing was stud-ied include geometry (e.g., clustering problems), formal languages (e.g., testingmembership in regular sets), coding theory (cf. Appendix E.1.2), probability the-ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone andjunta functions). As discuss at the end of x10.1.2.2, it is often natural to decou-ple the distance measure from the representation of the objects (i.e., the way ofaccessing the problem instance). This is done by introducing a representation-independent notion of distance between instances, which should be natural in thecontext of the problem at hand.10.2 Average Case ComplexityTeaching note: We view average-case complexity as referring to the performance onaverage (or typical) instances, and not as the average performance on random instances.This choice is justi�ed in x10.2.1.1. Thus, it may be more justi�ed to refer to thefollowing theory by the name typical-case complexity. Still, the name average-case wasretained for historical reasons.Our approach so far (including in Section 10.1) is termed worst-case complex-ity, because it refers to the performance of potential algorithms on each legitimateinstance (and hence to the performance on the worst possible instance). That is,

10.2. AVERAGE CASE COMPLEXITY 423computational problems were de�ned as referring to a set of instances and perfor-mance guarantees were required to hold for each instance in this set. In contrast,average-case complexity allows ignoring a negligible measure of the possible in-stances, where the identity of the ignored instances is determined by the analysisof potential solvers and not by the problem's statement.A few comments are in place. Firstly, as just hinted, the standard statementof the worst-case complexity of a computational problem (especially one havinga promise) may also ignores some instances (i.e., those considered inadmissibleor violating the promise), but these instances are determined by the problem'sstatement. In contrast, the inputs ignored in average-case complexity are notinadmissible in any inherent sense (and are certainly not identi�ed as such bythe problem's statement). It is just that they are viewed as exceptional whenclaiming that a speci�c algorithm solve the problem; furthermore, these exceptionalinstances are determined by the analysis of that algorithm. Needless to say, theseexceptional instances ought to be rare (i.e., occur with negligible probability).The last sentence raises a couple of issues. Firstly, a distribution on the setof admissible instances has to be speci�ed. In fact, we shall consider a new typeof computational problems, each consisting of a standard computational problemcoupled with a probability distribution on instances. Consequently, the question ofwhich distributions should be considered in the theory of average-case complexityarises. This question and numerous other de�nitional issues will be addressed inx10.2.1.1.Before proceeding, let us spell out the rather straightforward motivation to thestudy of the average-case complexity of computational problems: It is that, in real-life applications, one may be perfectly happy with an algorithm that solves theproblem fast on almost all instances that arise in the relevant application. That is,one may be willing to tolerate error provided that it occurs with negligible proba-bility, where the probability is taken over the distribution of instances encounteredin the application. The study of average-case complexity is aimed at exploring thepossible bene�t of such a relaxation, distinguishing cases in which a bene�t existsfrom cases in which it does not exist. A key aspect in such a study is a goodmodeling of the type of distributions (of instances) that are encountered in naturalalgorithmic applications.A preliminary question that arises is whether every natural computational prob-lem be solve e�ciently when restricting attention to typical instances? The conjec-ture that underlies this section is that, for a well-motivated choice of de�nitions, theanswer is negative; that is, our conjecture is that the \distributional version" of NPis not contained in the average-case (or typical-case) version of P. This means thatsome NP problems are not merely hard in the worst-case, but are rather \typicallyhard" (i.e., hard on typical instances drawn from some simple distribution). Specif-ically, hard instances may occur in natural algorithmic applications (and not onlyin cryptographic (or other \adversarial") applications that are design on purposeto produce hard instances).66We highlight two di�erences between the current context (of natural algorithmic applications)and the context of cryptography. Firstly, in the current context and when referring to problems

424 CHAPTER 10. RELAXING THE REQUIREMENTSThe foregoing conjecture motivates the development of an average-case analogueof NP-completeness, which will be presented in this section. Indeed, the entiresection may be viewed as an average-case analogue of Chapter 2. In particular, this(average-case) theory identi�es distributional problems that are \typically hard"provided that distributional problems that are \typically hard" exist at all. If onebelieves the foregoing conjecture then, for such complete (distributional) problems,one should not seek algorithms that solve these problems e�ciently on typicalinstances.Organization. A major part of our exposition is devoted to the de�nitional is-sues that arise when developing a general theory of average-case complexity. Theseissues are discussed in x10.2.1.1. In x10.2.1.2 we prove the existence of distribu-tional problems that are \NP-complete" in the average-case complexity sense. Inparticular, we show how to obtain such a distributional version for any natural NP-complete decision problem. In x10.2.1.3 we extend the treatment to randomizedalgorithms. Additional rami�cations are presented in Section 10.2.2.10.2.1 The basic theoryIn this section we provide a basic treatment of the theory of average-case com-plexity, while postponing important rami�cations to Section 10.2.2. The basictreatment consists of the preferred de�nitional choices for the main concepts aswell as the identi�cation of complete problems for a natural class of average-casecomputational problems.10.2.1.1 De�nitional issuesThe theory of average-case complexity is more subtle than may appear at �rstthought. In addition to the generic di�culty involved in de�ning relaxations, dif-�culties arise from the \interface" between standard probabilistic analysis and theconventions of complexity theory. This is most striking in the de�nition of theclass of feasible average-case computations. Referring to the theory of worst-casecomplexity as a guideline, we shall address the following aspects of the analogoustheory of average-case complexity.1. Setting the general framework. We shall consider distributional problems,which are standard computational problems (see Section 1.2.2) coupled withdistributions on the relevant instances.2. Identifying the class of feasible (distributional) problems. Seeking an average-case analogue of classes such as P , we shall reject the �rst de�nition thatcomes to mind (i.e., the naive notion of \average polynomial-time"), brie
ythat are typically hard, the simplicity of the underlying input distribution is of great concern:the simpler this distribution, the more appealing the hardness assertion becomes. This concernis irrelevant in the context of cryptography. On the other hand (see discussion at the beginningof Section 7.1.1 and/or at end of x10.2.2.2), cryptographic applications require the ability toe�ciently generate hard instances together with corresponding solutions.

10.2. AVERAGE CASE COMPLEXITY 425discuss several related alternatives, and adopt one of them for the main treat-ment.3. Identifying the class of interesting (distributional) problems. Seeking anaverage-case analogue of the class NP , we shall avoid both the extremeof allowing arbitrary distributions (which collapses average-case hardness toworst-case hardness) and the opposite extreme of con�ning the treatment toa single distribution such as the uniform distribution.4. Developing an adequate notion of reduction among (distributional) problems.As in the theory of worst-case complexity, this notion should preserve feasiblesolveability (in the current distributional context).We now turn to the actual treatment of each of the aforementioned aspects.Step 1: De�ning distributional problems. Focusing on decision problems,we de�ne distributional problems as pairs consisting of a decision problem and aprobability ensemble.7 For simplicity, here a probability ensemble fXngn2N is asequence of random variables such thatXn ranges over f0; 1gn. Thus, (S; fXngn2N)is the distributional problem consisting of the problem of deciding membership inthe set S with respect to the probability ensemble fXngn2N. (The treatment ofsearch problem is similar; see x10.2.2.1.) We denote the uniform probability ensembleby U = fUngn2N; that is, Un is uniform over f0; 1gn.Step 2: Identifying the class of feasible problems. The �rst idea thatcomes to mind is de�ning the problem (S; fXngn2N) as feasible (on the average)if there exists an algorithm A that solves S such that the average running timeof A on Xn is bounded by a polynomial in n (i.e., there exists a polynomial psuch that E[tA(Xn)] � p(n), where tA(x) denotes the running-time of A on inputx). The problem with this de�nition is that it very sensitive to the model ofcomputation and is not closed under algorithmic composition. Both de�cienciesare a consequence of the fact that tA may be polynomial on the average withrespect to fXngn2N but t2A may fail to be so (e.g., consider tA(x0x00) = 2jx0j ifx0 = x00 and tA(x0x00) = jx0x00j2 otherwise, coupled with the uniform distributionover f0; 1gn). We conclude that the average running-time of algorithms is not arobust notion. We also doubt the naive appeal of this notion, and view the typicalrunning time of algorithms (as de�ned next) as a more natural notion. Thus, weshall consider an algorithm as feasible if its running-time is typically polynomial.87We mention that even this choice is not evident. Speci�cally, Levin [148] (see discussionin [85]) advocates the use of a single probability distribution de�ned over the set of all strings.His argument is that this makes the theory less representation-dependent. At the time we wereconvinced of his argument (see [85]), but currently we feel that the representation-dependente�ects discussed in [85] are legitimate. Furthermore, the alternative formulation of [148, 85]comes across as unnatural and tends to confuse some readers.8An alternative choice, taken by Levin [148] (see discussion in [85]), is considering as feasible(w.r.t X = fXngn2N) any algorithm that runs in time that is polynomial in a function that islinear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function

426 CHAPTER 10. RELAXING THE REQUIREMENTSWe say that A is typically polynomial-time on X = fXngn2N if there exists apolynomial p such that the probability that A runs more that p(n) steps on Xnis negligible (i.e., for every polynomial q and all su�ciently large n it holds thatPr[tA(Xn) > p(n)] < 1=q(n)). The question is what is required in the \untypical"cases, and two possible de�nitions follow.1. The simpler option is saying that (S; fXngn2N) is (typically) feasible if thereexists an algorithm A that solves S such that A is typically polynomial-timeon X = fXngn2N. This e�ectively requires A to correctly solve S on eachinstance, which is more than was required in the motivational discussion.(Indeed, if the underlying motivation is ignoring rare cases, then we shouldignore them altogether rather than ignoring them in a partial manner (i.e.,only ignore their a�ect on the running-time).)2. The alternative, which �ts the motivational discussion, is saying that (S;X)is (typically) feasible if there exists an algorithm A such that A typicallysolves S on X in polynomial-time; that is, there exists a polynomial p suchthat the probability that on input Xn algorithm A either errs or runs morethat p(n) steps is negligible. This formulation totally ignores the untypicalinstances. Indeed, in this case we may assume, without loss of generality,that A always runs in polynomial-time (see Exercise 10.11), but we shall notdo so here (in order to facilitate viewing the �rst option as a special case ofthe current option).We stress that both alternatives actually de�ne typical feasibility and not average-case feasibility. To illustrate the di�erence between the two options, consider thedistributional problem of deciding whether a uniformly selected (n-vertex) graphcontains a Hamiltonian path. Intuitively, this problem is \typically trivial" (withrespect to the uniform distribution)9 because the algorithmmay always say yes andbe wrong with exponentially vanishing probability. Indeed, this trivial algorithmis admissible by the second approach, but not by the �rst approach. In light of theforegoing discussions, we adopt the second approach.De�nition 10.14 (the class tpcP): We say that A typically solves (S; fXngn2N)in polynomial-time if there exists a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible.10 Wedenote by tpcP the class of distributional problems that are typically solvable inpolynomial-time.` : f0; 1g� ! N such that t(x) � p(`(x)) and E[`(Xn)] = O(n). This de�nition is robust (i.e., itdoes not su�er from the aforementioned de�ciencies) and is arguably as \natural" as the naivede�nition (i.e., E[tA(Xn)] � poly(n)).9In contrast, testing whether a given graph contains a Hamiltonian path seems \typicallyhard" for other distributions (see Exercise 10.27). Needless to say, in the latter distributions bothyes-instances and no-instances appear with noticeable probability.10Recall that a function � : N ! N is negligible if for every positive polynomial q and allsu�ciently large n it holds that �(n) < 1=q(n). We say that A errs on x if A(x) di�ers from theindicator value of the predicate x 2 S.

10.2. AVERAGE CASE COMPLEXITY 427Clearly, for every S 2 P and every probability ensemble X , it holds that (S;X) 2tpcP. However, tpcP contains also distributional problems (S;X) with S 62 P(see Exercises 10.12 and 10.13). The big question, which underlies the theory ofaverage-case complexity, is whether natural distributional versions of NP are intpcP. Thus, we turn to identify such versions.Step 3: Identifying the class of interesting problems. Seeking to identifyreasonable distributional versions of NP , we note that two extreme choices shouldbe avoided. On one hand, we must limit the class of admissible distributions so toprevent the collapse of average-case hardness to worst-case hardness (by a selectionof a pathological distribution that resides on the \worst case" instances). On theother hand, we should allow for various types of natural distributions rather thancon�ning attention merely to the uniform distribution.11 Recall that our aim isaddressing all possible input distributions that may occur in applications, and thusthere is no justi�cation for con�ning attention to the uniform distribution. Still,arguably, the distributions occuring in applications are \relatively simple" and sowe seek to identify a class of simple distributions. One such notion (of simpledistributions) underlies the following de�nition, while a more liberal notion will bepresented in x10.2.2.2.De�nition 10.15 (the class distNP): We say that a probability ensemble X =fXngn2N is simple if there exists a polynomial time algorithm that, on any inputx 2 f0; 1g�, outputs Pr[Xjxj � x], where the inequality refers to the standard lexico-graphic order of strings. We denote by distNP the class of distributional problemsconsisting of decision problems in NP coupled with simple probability ensembles.Note that the uniform probability ensemble is simple, but so are many other \sim-ple" probability ensembles. Actually, it makes sense to relax the de�nition suchthat the algorithm is only required to output an approximation of Pr[Xjxj � x], say,to within a factor of 1� 2�2jxj. We note that De�nition 10.15 interprets simplicityin computational terms; speci�cally, as the feasibility of answering very basic ques-tions regarding the probability distribution (i.e., determining the probability massassigned to a single (n-bit long) string and even to an interval of such strings). Thissimplicity condition is closely related to being polynomial-time sampleable via amonotone mapping (see Exercise 10.14).Teaching note: The following two paragraphs attempt to address some doubts re-garding De�nition 10.15. One may postpone such discussions to a later stage.We admit that the indenti�cation of simple distributions as the class of inter-esting distribution is signi�cantly more questionable than any other indenti�cationadvocated in this book. Nevertheless, we believe that we were fully justi�ed in re-jecting both the aforementioned extremes (i.e., of either allowing all distributions11Con�ning attention to the uniform distribution seems misguided by the naive belief accordingto which this distribution is the only one relevant to applications. In contrast, we believe that,for most natural applications, the uniform distribution over instances is not relevant at all.

428 CHAPTER 10. RELAXING THE REQUIREMENTSor allowing only the uniform distribution). Yet, the reader may wonder whetheror not we have struck the right balance between \generality" and \simplicity" (inthe intuitive sense). One speci�c concern is that we might have restricted the classof distributions too much. We brie
y address this concern next.A more intuitive and very robust class of distributions, which seems to containall distributions that may occur in applications, is the class of polynomial-timesampleable probability ensembles (treated in x10.2.2.2). Fortunately, the combi-nation of the results presented in x10.2.1.2 and x10.2.2.2 seems to retrospectivelyendorse the choice underlying De�nition 10.15. Spe�cically, we note that enlargingthe class of distributions weakens the conjecture that the corresponding class ofdistributional NP problems contains infeasible problems. On the other hand, theconclusion that a speci�c distributional problem is not feasible becomes strongerwhen the problem belongs to a smaller class that corresponds to a restricted def-inition of admissible distributions. Now, the combined results of x10.2.1.2 andx10.2.2.2 assert that a conjecture that refers to the larger class of polynomial-timesampleable ensembles implies a conclusion that refers to a (very) simple probabilityensemble (which resides in the smaller class). Thus, the current setting in whichboth the conjecture and the conclusion refer to simple probability ensembles maybe viewed as just an intermediate step.Indeed, the big question in the current context is whether distNP is containedin tpcP. A positive answer (especially if extended to sampleable ensembles) woulddeem the P-vs-NP Question of little practical signi�cant. However, our daily ex-perience as well as much research e�ort indicate that some NP problems are notmerely hard in the worst-case, but rather \typically hard". This leads to the con-jecture that distNP is not contained in tpcP .Needless to say, the latter conjecture implies P 6= NP , and thus we shouldnot expect to see a proof of it. In particular, we should not expect to see a proofthat some speci�c problem in distNP is not in tpcP . What we may hope to seeis \distNP-complete" problems; that is, problems in distNP that are not in tpcPunless the entire class distNP is contained in tpcP . An adequate notion of areduction is used towards formulating this possibility (which in turn is capturedby the notion of \distNP-complete" problems).Step 4: De�ning reductions among (distributional) problems. Intuitively,such reductions must preserve average-case feasibility. Thus, in addition to thestandard conditions (i.e., that the reduction be e�ciently computable and yield acorrect result), we require that the reduction \respects" the probability distribu-tion of the corresponding distributional problems. Speci�cally, the reduction shouldnot map very likely instances of the �rst (\starting") problem to rare instances ofthe second (\target") problem. Otherwise, having a typically polynomial-time al-gorithm for the second distributional problem does not necessarily yield such analgorithm for the �rst distributional problem. Following is the adequate analogueof a Cook reduction (i.e., general polynomial-time reduction), where the analogueof a Karp-reduction (many-to-one reduction) can be easily derived as a special case.

10.2. AVERAGE CASE COMPLEXITY 429Teaching note: One may prefer presenting in class only the special case of many-to-one reductions, which su�ces for Theorem 10.17. See Footnote 13.De�nition 10.16 (reductions among distributional problems): We say that theoracle machine M reduces the distributional problem (S;X) to the distributionalproblem (T; Y) if the following three conditions hold.1. E�ciency: The machine M runs in polynomial-time.122. Validity: For every x 2 f0; 1g�, it holds that MT (x) = 1 if an only if x 2 S,where MT (x) denotes the output of the oracle machine M on input x andaccess to an oracle for T .3. Domination:13 The probability that, on input Xn and oracle access to T ,machine M makes the query y is upper-bounded by poly(jyj) � Pr[Yjyj = y].That is, there exists a polynomial p such that, for every y 2 f0; 1g� and everyn 2 N , it holds thatPr[Q(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.2)where Q(x) denotes the set of queries made by M on input x and oracle accessto T .In addition, we require that the reduction does not make too short queries;that is, there exists a polynomial p0 such that if y 2 Q(x) then p0(jyj) � jxj.The l.h.s. of Eq. (10.2) refers to the probability that, on input distributed as Xn,the reduction makes the query y. This probability is required not to exceed theprobability that y occurs in the distribution Yjyj by more than a polynomial factorin jyj. In this case we say that the l.h.s. of Eq. (10.2) is dominated by Pr[Yjyj = y].Indeed, the domination condition is the only aspect of De�nition 10.16 that ex-tends beyond the worst-case treatment of reductions and refers to the distributionalsetting. The domination condition does not insist that the distribution induced byQ(X) equals Y , but rather allows some slackness that, in turn, is bounded so toguarantee preservation of typical feasibility (see Exercise 10.15).14We note that the reducibility arguments extensively used in Chapters 7 and 8(see discussion in Section 7.1.2) are actually reductions in the spirit of De�ni-tion 10.16 (except that they refer to di�erent types of computational tasks).12In fact, one may relax the requirement and only require that M is typically polynomial-timewith respect to X. The validity condition may also be relaxed similarly.13Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions(i.e., MT (x) = 1 if and only if f(x) 2 T , where f is a polynomial-time computable function):in this case Pr[Q(Xn) 3 y] is replaced by Pr[f(Xn) = y]. That is, Eq. (10.2) simpli�es toPr[f(Xn) = y] � p(jyj) � Pr[Yjyj = y]. Indeed, this condition holds vacuously for any y that is notin the image of f .14We stress that the notion of domination is incomparable to the notion of statistical (resp.,computational) indistinguishability. On one hand, domination is a local requirement (i.e., itcompares the two distribution on a point-by-point basis), whereas indistinguishability is a globalrequirement (which allows rare exceptions). On the other hand, domination does not requireapproximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-tion is not symmetric. We comment that a more relaxed notion of domination that allows rareviolations (as in Footnote 12) su�ces for the preservation of typical feasibility.

430 CHAPTER 10. RELAXING THE REQUIREMENTS10.2.1.2 Complete problemsRecall that our conjecture is that distNP is not contained in tpcP , which in turnstrengthens the conjecture P 6= NP (making infeasibility a typical phenomenonrather than a worst-case one). Having no hope of proving that distNP is notcontained in tpcP , we turn to the study of complete problems with respect to thatconjecture. Speci�cally, we say that a distributional problem (S;X) is distNP-complete if (S;X) 2 distNP and every (S0; X 0) 2 distNP is reducible to (S;X)(under De�nition 10.16).Recall that it is quite easy to prove the mere existence of NP-complete problemsand many natural problems are NP-complete. In contrast, in the current context,establishing completeness results is quite hard. This should not be surprising inlight of the restricted type of reductions allowed in the current context. The re-striction (captured by the domination condition) requires that \typical" instancesof one problem should not be mapped to \untypical" instances of the other prob-lem. However, it is fair to say that standard Karp-reductions (used in establishingNP-completeness results) map \typical" instances of one problem to somewhat\bizarre" instances of the second problem. Thus, the current subsection may beviewed as a study of reductions that do not commit this sin.15Theorem 10.17 (distNP-completeness): distNP contains a distributional prob-lem (T; Y) such that each distributional problem in distNP is reducible (per De�ni-tion 10.16) to (T; Y). Furthermore, the reductions are via many-to-one mappings.Proof: We start by introducing such a (distributional) problem, which is anatural distributional version of the decision problem Su (used in the proof ofTheorem 2.18). Recall that Su contains the instance hM;x; 1ti if there existsy 2 [i�tf0; 1gi such that M accepts the input pair (x; y) within t steps. We coupleSu with the \quasi-uniform" probability ensemble U 0 that assigns to the instancehM;x; 1ti a probability mass proportional to 2�(jM j+jxj). Speci�cally, for everyhM;x; 1ti it holds that Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)�n2� (10.3)where n def= jhM;x; 1tij def= jM j + jxj + t. Note that, under a suitable naturalencoding, the ensemble U 0 is indeed simple.16The reader can easily verify that the generic reduction used when reducingany set in NP to Su (see the proof of Theorem 2.18), fails to reduce distNPto (Su; U 0). Speci�cally, in some cases (see next paragraph), these reductions donot satisfy the domination condition. Indeed, the di�culty is that we have to15The latter assertion is somewhat controversial. While it seems totally justi�ed with respectto the proof of Theorem 10.17, opinions regarding the proof of Theorem 10.19 may di�er.16For example, we may encode hM;x; 1ti, where M = �1 � � ��k 2 f0; 1gk and x = �1 � � � �` 2f0; 1g`, by the string �1�1 � � ��k�k01�1�1 � � � �`�`01t. Then �n2� � Pr[U 0n � hM;x; 1ti] equals(ijMj;jxj;t � 1) + 2�jMj � jfM 0 2 f0; 1gjMj : M 0 < Mgj + 2�(jMj+jxj) � jfx0 2 f0; 1gjxj : x0 � xgj,where ik;`;t is the ranking of fk; k + `g among all 2-subsets of [k + `+ t].

10.2. AVERAGE CASE COMPLEXITY 431reduce all distNP problems (i.e., pairs consisting of decision problems and simpledistributions) to one single distributional problem (i.e., (Su; U 0)). Applying theaforementioned reductions, we end up with many distributional versions of Su,and furthermore the corresponding distributions are very di�erent (and are notnecessarily dominated by a single distribution).Let us take a closer look at the aforementioned generic reduction, when appliedto an arbitrary (S;X) 2 distNP . This reduction maps an instance x to a triple(MS ; x; 1pS(jxj)), where MS is a machine verifying membership in S (while usingadequate NP-witnesses) and pS is an adequate polynomial. The problem is that xmay have relatively large probability mass (i.e., it may be that Pr[Xjxj=x]� 2�jxj)while (MS ; x; 1pS(jxj)) has \uniform" probability mass (i.e., hMS ; x; 1pS(jxj)i hasprobability mass smaller than 2�jxj in U 0). This violates the domination condition(see Exercise 10.18), and thus an alternative reduction is required.The key to the alternative reduction is an (e�ciently computable) encoding ofstrings taken from an arbitrary simple distribution by strings that have a similarprobability mass under the uniform distribution. This means that the encodingshould shrink strings that have relatively large probability mass under the origi-nal distribution. Speci�cally, this encoding will map x (taken from the ensemblefXngn2N) to a codeword x0 of length that is upper-bounded by the logarithm of1=Pr[Xjxj=x], ensuring that Pr[Xjxj=x] = O(2�jx0j). Accordingly, the reductionwill map x to a triple (MS;X ; x0; 1p0(jxj)), where jx0j < O(1) + log2(1=Pr[Xjxj=x])and MS;X is an algorithm that (given x0 and x) �rst veri�es that x0 is a properencoding of x and next applies the standard veri�cation (i.e., MS) of the problemS. Such a reduction will be shown to satisfy all three conditions (i.e., e�ciency,validity, and domination). Thus, instead of forcing the structure of the originaldistribution X on the target distribution U 0, the reduction will incorporate thestructure of X in the reduced instance. A key ingredient in making this possible isthe fact that X is simple (as per De�nition 10.15).With the foregoing motivation in mind, we now turn to the actual proof; thatis, proving that any (S;X) 2 distNP is reducible to (Su; U 0). The followingtechnical lemma is the basis of the reduction. In this lemma as well as in thesequel, it will be convenient to consider the (accumulative) distribution functionof the probability ensemble X . That is, we consider �(x) def= Pr[Xjxj � x], andnote that � : f0; 1g� ! [0; 1] is polynomial-time computable (because X satis�esDe�nition 10.15).Coding Lemma:17 Let � : f0; 1g� ! [0; 1] be a polynomial-time computable functionthat is monotonically non-decreasing over f0; 1gn for every n (i.e., �(x0) � �(x00)for any x0 < x00 2 f0; 1gjx0j). For x 2 f0; 1gn n f0ng, let x � 1 denote the stringpreceding x in the lexicographic order of n-bit long strings. Then there exist anencoding function C� that satis�es the following three conditions.17The lemma actually refers to f0; 1gn, for any �xed value of n, but the e�ciency conditionis stated more easily when allowing n to vary (and using the standard asymptotic analysis ofalgorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-time computable functions that are monotonically non-decreasing over f0; 1g� (rather than overf0; 1gn). See further discussion in Exercise 10.19.

432 CHAPTER 10. RELAXING THE REQUIREMENTS1. Compression: For every x it holds that jC�(x)j � 1+minfjxj; log2(1=�0(x))g,where �0(x) def= �(x) � �(x� 1) if x 62 f0g� and �0(0n) def= �(0n) otherwise.2. E�cient Encoding: The function C� is computable in polynomial-time.3. Unique Decoding: For every n 2 N , when restricted to f0; 1gn, the functionC� is one-to-one (i.e., if C�(x) = C�(x0) and jxj = jx0j then x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x(i.e., in this case x serves as its own encoding). Otherwise (i.e., �0(x) > 2�jxj)then C�(x) = 1z, where z is chosen such that jzj � log2(1=�0(x)) and the mappingof n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected toequal the shortest binary expansion of a number in the interval (�(x)��0(x); �(x)].Bearing in mind that this interval has length �0(x) and that the di�erent intervalsare disjoint, we obtain the desired encoding. Details follows.We focus on the case that �0(x) > 2�jxj, and detail the way that z is selected(for the encoding C�(x) = 1z). If x > 0jxj and �(x) < 1, then we let z be thelongest common pre�x of the binary expansions of �(x� 1) and �(x); for example,if �(1010) = 0:10010 and �(1011) = 0:10101111 then C�(1011) = 1z with z = 10.Thus, in this case 0:z1 is in the interval (�(x�1); �(x)] (i.e., �(x�1) < 0:z1 � �(x)).For x = 0jxj, we let z be the longest common pre�x of the binary expansions of 0and �(x) and again 0:z1 is in the relevant interval (i.e., (0; �(x)]). Finally, for x suchthat �(x) = 1 and �(x�1) < 1, we let z be the longest common pre�x of the binaryexpansions of �(x�1) and 1�2�jxj�1, and again 0:z1 is in (�(x�1); �(x)] (because�0(x) > 2�jxj and �(x � 1) < �(x) = 1 imply that �(x � 1) < 1 � 2�jxj < �(x)).Note that if �(x) = �(x � 1) = 1 then �0(x) = 0 < 2�jxj.We now verify that the foregoing C� satis�es the conditions of the lemma. Westart with the compression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j =1 + jxj � 1 + log2(1=�0(x)). On the other hand, suppose that �0(x) > 2�jxj andlet us focus on the sub-case that x > 0jxj and �(x) < 1. Let z = z1 � � � z` bethe longest common pre�x of the binary expansions of �(x � 1) and �(x). Then,�(x� 1) = 0:z0u and �(x) = 0:z1v, where u; v 2 f0; 1g�. We infer that�0(x) = �(x)� �(x � 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A�X̀i=1 2�izi < 2�jzj;and jzj < log2(1=�0(x)) � jxj follows. Thus, jC�(x)j � 1 + min(jxj; log2(1=�0(x)))holds in both cases. Clearly, C� can be computed in polynomial-time by computing�(x�1) and �(x). Finally, note that C� satis�es the unique decoding condition, byseparately considering the two aforementioned cases (i.e., C�(x) = 0x and C�(x) =1z). Speci�cally, in the second case (i.e., C�(x) = 1z), use the fact that �(x� 1) <0:z1 � �(x).To obtain an encoding that is one-to-one when applied to strings of di�erentlengths we augment C� in the obvious manner; that is, we consider C 0�(x) def=(jxj; C�(x)), which may be implemented as C 0�(x) = �1�1 � � ��`�`01C�(x) where

10.2. AVERAGE CASE COMPLEXITY 433�1 � � ��` is the binary expansion of jxj. Note that jC 0�(x)j = O(log jxj) + jC�(x)jand that C 0� is one-to-one.The machine associated with (S;X). Let � be the accumulative probability func-tion associated with the probability ensemble X , and MS be the polynomial-timemachine that veri�es membership in S while using adequate NP-witnesses (i.e.,x 2 S if and only if there exists y 2 f0; 1gpoly(jxj) such that M(x; y) = 1). Usingthe encoding function C 0�, we introduce an algorithm MS;� with the intension ofreducing the distributional problem (S;X) to (Su; U 0) such that all instances (ofS) are mapped to triples in which the �rst element equals MS;�. Machine MS;�is given an alleged encoding (under C 0�) of an instance to S along with an allegedproof that the corresponding instance is in S, and veri�es these claims in the ob-vious manner. That is, on input x0 and hx; yi, machine MS;� �rst veri�es thatx0 = C 0�(x), and next veri�ers that x 2 S by runningMS(x; y). Thus, MS;� veri�esmembership in the set S0 = fC 0�(x) : x 2 Sg, while using proofs of the form hx; yisuch that MS(x; y) = 1 (for the instance C 0�(x)).18The reduction. We maps an instance x (of S) to the triple (MS;�; C 0�(x); 1p(jxj)),where p(n) def= pS(n)+pC(n) such that pS is a polynomial representing the running-time of MS and pC is a polynomial representing the running-time of the encodingalgorithm.Analyzing the reduction. Our goal is proving that the foregoing mapping constitutesa reduction of (S;X) to (Su; U 0). We verify the corresponding three requirements(of De�nition 10.16).1. Using the fact that C� is polynomial-time computable (and noting that pis a polynomial), it follows that the foregoing mapping can be computed inpolynomial-time.2. Recall that, on input (x0; hx; yi), machine MS;� accepts if and only if x0 =C 0�(x) and MS accepts (x; y) within pS(jxj) steps. Using the fact that C 0�(x)uniquely determines x, it follows that x 2 S if and only if there exists a stringy of length at most p(jxj) such that MS;� accepts (C 0�(x); hx; yi) in at mostp(jxj) steps. Thus, x 2 S if and only if (MS;�; C 0�(x); 1p(jxj)) 2 Su, and thevalidity condition follows.3. In order to verify the domination condition, we �rst note that the foregoingmapping is one-to-one (because the transformation x ! C 0�(x) is one-to-one). Next, we note that it su�ces to consider instances of Su that havea preimage under the foregoing mapping (since instances with no preimagetrivially satisfy the domination condition). Each of these instances (i.e., eachimage of this mapping) is a triple with the �rst element equal to MS;� and18Note that jyj = poly(jxj), but jxj = poly(jC0�(x)j) does not necessarily hold (and so S0 is notnecessarily in NP). As we shall see, the latter point is immaterial.

434 CHAPTER 10. RELAXING THE REQUIREMENTSthe second element being an encoding under C 0�. By the de�nition of U 0, forevery such image hMS;�; C 0�(x); 1p(jxj)i 2 f0; 1gn, it holds thatPr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] = �n2��1 � 2�(jMS;�j+jC0�(x)j)> c � n�2 � 2�(jC�(x)j+O(log jxj));where c = 2�jMS;�j�1 is a constant depending only on S and � (i.e., on thedistributional problem (S;X)). Thus, for some positive polynomial q, wehave Pr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] > 2�jC�(x)j=q(n): (10.4)By virtue of the compression condition (of the Coding Lemma), we have2�jC�(x)j � 2�1�min(jxj;log2(1=�0(x))). It follows that2�jC�(x)j � Pr[Xjxj = x]=2: (10.5)Recalling that x is the only preimage that is mapped to hMS;�; C 0�(x); 1p(jxj)iand combining Eq. (10.4)& (10.5), we establish the domination condition.The theorem follows.Re
ections. The proof of Theorem 10.17 highlights the fact that the reductionused in the proof of Theorem 2.18 does not introduce much structure in the reducedinstances (i.e., does not reduce the original problem to a \highly structured specialcase" of the target problem). Put in other words, unlike more advanced worst-casereductions, this reduction does not map \random" (i.e., uniformly distributed)instances to highly structured instances (which occur with negligible probabilityunder the uniform distribution). Thus, the reduction used in the proof of The-orem 2.18 su�ces for reducing any distributional problem in distNP to a distri-butional problem consisting of Su coupled with some simple probability ensemble(see Exercise 10.20).19However, Theorem 10.17 states more than the latter assertion. That is, it statesthat any distributional problem in distNP is reducible to the same distributionalversion of Su. Indeed, the e�ort involved in proving Theorem 10.17 was due tothe need for mapping instances taken from any simple probability ensemble (whichmay not be the uniform ensemble) to instances distributed in a manner that isdominated by a single probability ensemble (i.e., the quasi-uniform ensemble U 0).Once we have established the existence of one distNP-complete problem, wemay establish the distNP-completeness of other problems (in distNP) by reduc-ing some distNP-complete problem to them (and relying on the transitivity ofreductions (see Exercise 10.17)). Thus, the di�culties encountered in the proof of19Note that this cannot be said of most known Karp-reductions, which do map random instancesto highly structured ones. Furthermore, the same (structure creating property) holds for thereductions obtained by Exercise 2.31.

10.2. AVERAGE CASE COMPLEXITY 435Theorem 10.17 are no longer relevant. Unfortunately, a seemingly more severe dif-�culty arises: almost all known reductions in the theory of NP-completeness workby introducing much structure in the reduced instances (i.e., they actually reduceto highly structured special cases). Furthermore, this structure is too complex inthe sense that the distribution of reduced instances does not seem simple (in thesense of De�nition 10.15). Actually, as demonstrated next, the problem is notthe existence of a structure in the reduced instances but rather the complexity ofthis structure. In particular, if the aforementioned reduction is \monotone" and\length regular" then the distribution of the reduced instances is simple enough.Proposition 10.18 (su�cient condition for distNP-completeness): Suppose thatf is a Karp-reduction of the set S to the set T such that, for every x0; x00 2 f0; 1g�,the following two conditions hold:1. (f is monotone): If x0 < x00 then f(x0) < f(x00), where the inequalities referto the standard lexicographic order of strings.202. (f is length-regular): jx0j = jx00j if and only if jf(x0)j = jf(x00)j.Then if there exists an ensemble X such that (S;X) is distNP-complete then thereexists an ensemble Y such that (T; Y) is distNP-complete.Proof Sketch: Note that the monotonicity of f implies that f is one-to-oneand that for every x it holds that f(x) � x. Furthermore, as shown next, fis polynomial-time invertible. Intuitively, the fact that f is both monotone andpolynomial-time computable implies that a preimage can be found by a binarysearch. Speci�cally, given y = f(x), we search for x by iteratively halving theinterval of potential solutions, which is initialized to [0; y] (since x � f(x)). Notethat if this search is invoked on a string y that is not in the image of f , then itterminates while detecting this fact.Relying on the fact that f is one-to-one (and length-regular), we de�ne theprobability ensemble Y = fYngn such that for every x it holds that Pr[Yjf(x)j =f(x)] = Pr[Xjxj = x]. Speci�cally, letting `(m) = jf(1m)j and noting that ` isone-to-one and monotonically non-decreasing, we de�nePr[Yjyj=y] =8<: Pr[Xjxj=x] if x = f�1(y)0 if 9m s.t. y 2 f0; 1g`(m) n ff(x) : x2f0; 1gmg2�jyj otherwise (i.e., if jyj 62 f`(m) : m2Ng)21 .Clearly, (S;X) is reducible to (T; Y) (via the Karp-reduction f , which, due toour construction of Y , also satis�es the domination condition). Thus, using thehypothesis that distNP is reducible to (S;X) and the transitivity of reductions (seeExercise 10.17), it follows that every problem in distNP is reducible to (T; Y). The20In particular, if jz0j < jz00j then z0 < z00. Recall that for jz0j = jz00j it holds that z0 < z00 ifand only if there exists w;u0; u00 2 f0; 1g� such that z0 = w0u0 and z00 = w1u00.21Having Yn be uniform in this case is a rather arbitrary choice, which is merely aimed atguaranteeing a \simple" distribution on n-bit strings (also in this case).

436 CHAPTER 10. RELAXING THE REQUIREMENTSkey observation, to be established next, is that Y is a simple probability ensemble,and it follows that (T; Y) is in distNP .Loosely speaking, the simplicity of Y follows by combining the simplicity ofX and the properties of f (i.e., the fact that f is monotone, length-regular, andpolynomial-time invertible). The monotonicity and length-regularity of f impliesthat Pr[Yjf(x)j�f(x)] = Pr[Xjxj�x]. More generally, for any y 2 f0; 1g`(m), it holdsthat Pr[Y`(m)�y] = Pr[Xm�x], where x is the lexicographicly largest string suchthat f(x) � y (and, indeed, if jxj < m then Pr[Y`(m)�y] = Pr[Xm�x] = 0). Notethat this x can be found in polynomial-time by the inverting algorithm sketched inthe �rst paragraph of the proof. Thus, we may compute Pr[Yjyj�y] by �nding theadequate x and computing Pr[Xjxj�x]. Using the hypothesis that X is simple, itfollows that Y is simple (and the proposition follows).On the existence of adequate Karp-reductions. Proposition 10.18 impliesthat a su�cient condition for distNP-completeness of a distributional version ofsome (NP-complete) set T is the existence of an adequate Karp-reduction from theset Su to the set T ; that is, this Karp-reduction should be monotone and length-regular. While the length-regularity condition seems easy to impose (by usingadequate padding), the monotonicity condition seems more problematic. Fortu-nately, it turns out that the monotonicity condition can also be imposed by usingadequate padding (or rather an adequate \marking" { see Exercises 2.30 and 10.21).We highlight the fact that the existence of an adequate padding (or \marking") isa property of the set T itself. In Exercise 10.21 we review a method for modifyingany Karp-reduction to a \monotonically markable" set T into a Karp-reduction(to T) that is monotone and length-regular. In Exercise 10.23 we provide evidenceto the thesis that all natural NP-complete sets are monotonically markable. Com-bining all these facts, we conclude that any natural NP-complete decision problemcan be coupled with a simple probability ensemble such that the resulting distribu-tional problem is distNP-complete. As a concrete illustration we state the (formal)result for the twenty-one NP-complete problems treated in Karp's paper on NP-completeness [131].Theorem 10.19 (a modest version of a general thesis): For each of the twenty-one NP-complete problems treated in [131] there exists a simple probability ensemblesuch that the combined distributional problem is distNP-complete.The said list of problems includes SAT, Clique, and 3-Colorability.10.2.1.3 Probabilistic versionsThe de�nitions in x10.2.1.1 can be extended so that to account also for randomizedcomputations. For example, extending De�nition 10.14, we have:De�nition 10.20 (the class tpcBPP): For a probabilistic algorithm A, a Booleanfunction f , and a time-bound function t :N!N , we say that the string x is t-bad forA with respect to f if with probability exceeding 1=3, on input x, either A(x) 6= f(x)

10.2. AVERAGE CASE COMPLEXITY 437or A runs more that t(jxj) steps. We say that A typically solves (S; fXngn2N) inprobabilistic polynomial-time if there exists a polynomial p such that the probabilitythat Xn is p-bad for A with respect to the characteristic function of S is negligible.We denote by tpcBPP the class of distributional problems that are typically solvablein probabilistic polynomial-time.The de�nition of reductions can be similarly extended. This means that in De�ni-tion 10.16, both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) arerandom variables rather than �xed objects. Furthermore, validity is required tohold (for every input) only with probability 2=3, where the probability space refersonly to the internal coin tosses of the reduction. Randomized reductions are closedunder composition and preserve typical feasibility (see Exercise 10.24).Randomized reductions allow the presentation of a distNP-complete problemthat refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-lishes the distNP-completeness of (Su; U 0), where U 0 is a quasi-uniform ensemble(i.e., Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)=�n2�, where n = jhM;x; 1tij). We �rstnote that (Su; U 0) can be randomly reduced to (S0u; U 00), where S0u = fhM;x; zi :hM;x; 1jzji 2 Sug and Pr[U 00n = hM;x; zi] = 2�(jM j+jxj+jzj)=�n2� for every hM;x; zi 2f0; 1gn. The randomized reduction consists of mapping hM;x; 1ti to hM;x; zi,where z is uniformly selected in f0; 1gt. Recalling that U = fUngn2N denotes theuniform probability ensemble (i.e., Un is uniformly distributed on strings of lengthn) and using a suitable encoding we get.Proposition 10.21 There exists S 2 NP such that every (S0; X 0) 2 distNP israndomly reducible to (S;U).Proof Sketch: By the forgoing discussion, every (S0; X 0) 2 distNP is randomlyreducible to (S0u; U 00), where the reduction goes through (Su; U 0). Thus, we focuson reducing (S0u; U 00) to (S00u; U), where S00u 2 NP is de�ned as follows. The stringbin`(juj)�bin`(jvj)�u�v�w is in S00u if and only if hu; v; wi 2 S0u and ` = dlog2 juvwje+1,where bin`(i) denotes the `-bit long binary encoding of the integer i 2 [2`�1] (i.e.,the encoding is padded with zeros to a total length of `). The reduction mapshM;x; zi to the string bin`(jxj)�bin`(jM j)�M�x�z, where ` = dlog2(jM j+ jxj+ jzj)e+1.Noting that this reduction satis�es all conditions of De�nition 10.16, the proposi-tion follows.10.2.2 Rami�cationsIn our opinion, the most problematic aspect of the theory described in Section 10.2.1is the choice to focus on simple probability ensembles, which in turn restricts \dis-tributional versions of NP" to the class distNP (De�nition 10.15). As indicatedx10.2.1.1, this restriction raises two opposite concerns (i.e., that distNP is eithertoo wide or too narrow).22 Here we address the concern that the class of sim-ple probability ensembles is too restricted, and consequently that the conjecture22On one hand, if the de�nition of distNP were too liberal then membership in distNP wouldmean less than one may desire. On the other hand, if distNP were too restricted then theconjecture that distNP contains hard problems would have been very questionable.

438 CHAPTER 10. RELAXING THE REQUIREMENTSdistNP 6� tpcBPP is too strong (which would mean that distNP-completeness isa weak evidence for typical-case hardness). An appealing extension of the class ofsimple probability ensembles is presented in x10.2.2.2, yielding an correspondingextension of distNP, and it is shown that if this extension of distNP is not con-tained in tpcBPP then distNP itself is not contained in tpcBPP. Consequently,distNP-complete problems enjoy the bene�t of both being in the more restrictedclass (i.e., distNP) and being hard as long as some problems in the extended classis hard.Another extension appears in x10.2.2.1, where we extend the treatment fromdecision problems to search problems. This extension is motivated by the realiza-tion that search problem are actually of greater importance to real-life applications(cf. Section 2.1.1), and hence a theory motivated by real-life applications mustaddress such problems, as we do next.Prerequisites: For the technical development of x10.2.2.1, we assume familiar-ity with the notion of unique solution and results regarding it as presented inSection 6.2.3. For the technical development of x10.2.2.2, we assume familiaritywith hashing functions as presented in Appendix D.2.10.2.2.1 Search versus DecisionIndeed, as in the case of worst-case complexity, search problems are at least as im-portant as decision problems. Thus, an average-case treatment of search problemsis indeed called for. We �rst present distributional versions of PF and PC (cf.Section 2.1.1), following the underlying principles of the de�nitions of tpcP anddistNP .De�nition 10.22 (the classes tpcPF and distPC): As in Section 2.1.1, we con-sider only polynomially bounded search problems; that is, binary relations R �f0; 1g� � f0; 1g� such that for some polynomial q it holds that (x; y) 2 R impliesjyj � q(jxj). Recall that R(x) def= fy : (x; y)2Rg and SR def= fx : R(x) 6= ;g.� A distributional search problem consists of a polynomially bounded search prob-lem coupled with a probability ensemble.� The class tpcPF consists of all distributional search problems that are typ-ically solvable in polynomial-time. That is, (R; fXngn2N) 2 tpcPF if thereexists an algorithm A and a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible,where A errs on x 2 SR if A(x) 62 R(x) and errs on x 62 SR if A(x) 6= ?.� A distributional search problem (R;X) is in distPC if R 2 PC and X issimple (as in De�nition 10.15).Likewise, the class tpcBPPF consists of all distributional search problems thatare typically solvable in probabilistic polynomial-time (cf., De�nition 10.20). The

10.2. AVERAGE CASE COMPLEXITY 439de�nitions of reductions among distributional problems, presented in the context ofdecision problem, extend to search problems.Fortunately, as in the context of worst-case complexity, the study of distribu-tional search problems \reduces" to the study of distributional decision problems.Theorem 10.23 (reducing search to decision): distPC � tpcBPPF if and only ifdistNP � tpcBPP. Furthermore, every problem in distNP is reducible to someproblem in distPC, and every problem in distPC is randomly reducible to someproblem in distNP.Proof Sketch: The furthermore part is analogous to the actual contents of theproof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.15). Indeed thereduction ofNP to PC presented in the proof of Theorem 2.6 extends to the currentcontext. Speci�cally, for any S 2 NP, we consider a relation R 2 PC such thatS = fx : R(x) 6= ;g, and note that, for any probability ensemble X , the identitytransformation reduces (S;X) to (R;X).A di�culty arises in the opposite direction. Recall that in the proof of The-orem 2.6 we reduced the search problem of R 2 PC to deciding membership inS0R def= fhx; y0i : 9y00 s.t. (x; y0y00)2Rg 2 NP . The di�culty encountered here isthat, on input x, this reduction makes queries of the form hx; y0i, where y0 is apre�x of some string in R(x). These queries may induce a distribution that is notdominated by any simple distribution. Thus, we seek an alternative reduction.As a warm-up, let us assume for a moment that R has unique solutions (in thesense of De�nition 6.28); that is, for every x it holds that jR(x)j � 1. In this casewe may easily reduce the search problem of R 2 PC to deciding membership inS00R 2 NP , where hx; i; �i 2 S00R if and only if R(x) contains a string in which theith bit equals �. Speci�cally, on input x, the reduction issues the queries hx; i; �i,where i 2 [`] (with ` = poly(jxj)) and � 2 f0; 1g, which allows for determining thesingle string in the set R(x) � f0; 1g` (whenever jR(x)j = 1). The point is that thisreduction can be used to reduce any (R;X) 2 distPC (having unique solutions) to(S00R; X 00) 2 distNP , where X 00 equally distributes the probability mass of x (underX) to all the tuples hx; i; �i; that is, for every i 2 [`] and � 2 f0; 1g, it holds thatPr[X 00jhx;i;�ij = hx; i; �i] equals Pr[Xjxj = x]=2`.Unfortunately, in the general case, R may not have unique solutions. Nev-ertheless, applying the main idea that underlies the proof of Theorem 6.29, thisdi�culty can be overcome. We �rst note that the foregoing mapping of instancesof the distributional problem (R;X) 2 distPC to instances of (S00R; X 00) 2 distNPsatis�es the e�ciency and domination conditions even in the case that R does nothave unique solutions. What may possibly fail (in the general case) is the validitycondition (i.e., if jR(x)j > 1 then we may fail to recover any element of R(x)).Recall that the main part of the proof of Theorem 6.29 is a randomized reductionthat maps instances of R to triples of the form (x;m; h) such that m is uniformlydistributed in [`] and h is uniformly distributed in a family of hashing functionHm̀, where ` = poly(jxj) and Hm̀ is as in Appendix D.2. Furthermore, if R(x) 6= ;then, with probability
(1=`) over the choices ofm 2 [`] and h 2 Hm̀, there exists aunique y 2 R(x) such that h(y) = 0m. De�ning R0(x;m; h) def= fy2R : h(y) = 0mg,

440 CHAPTER 10. RELAXING THE REQUIREMENTSthis yields a randomized reduction of the search problem of R to the search problemof R0 such that with noticeable probability23 the reduction maps instances that havesolutions to instances having a unique solution. Furthermore, this reduction can beused to reduce any (R;X) 2 distPC to (R0; X 0) 2 distPC, where X 0 distributes theprobability mass of x (underX) to all the triples (x;m; h) such that for every m 2 [`]and h 2 Hm̀ it holds that Pr[X 0j(x;m;h)j = (x;m; h)] equals Pr[Xjxj = x]=(` � jHm̀j).(Note that with a suitable encoding, X 0 is indeed simple.)The theorem follows by combining the two aforementioned reductions. That is,we �rst apply the randomized reduction of (R;X) to (R0; X 0), and next reduce theresulting instance to an instance of the corresponding decision problem (S00R0 ; X 00),where X 00 is obtained by modifying X 0 (rather than X). The combined randomizedmapping satis�es the e�ciency and domination conditions, and is valid with notice-able probability. The error probability can be made negligible by straightforwardampli�cation (see Exercise 10.24).10.2.2.2 Simple versus sampleable distributionsRecall that the de�nition of simple probability ensembles (underlying De�nition 10.15)requires that the accumulating distribution function is polynomial-time computable.Recall that � : f0; 1g� ! [0; 1] is called the accumulating distribution function ofX = fXngn2N if for every n 2 N and x 2 f0; 1gn it holds that �(x) def= Pr[Xn � x],where the inequality refers to the standard lexicographic order of n-bit strings.As argued in x10.2.1.1, the requirement that the accumulating distribution func-tion is polynomial-time computable imposes severe restrictions on the set of ad-missible ensembles. Furthermore, it seems that these simple ensembles are indeed\simple" in some intuitive sense, and that they represent a reasonable (alas dis-putable) model of distributions that may occur in practice. Still, in light of the fearthat this model is too restrictive (and consequently that distNP-hardness is weakevidence for typical-case hardness), we seek a maximalistic model of distributionsthat may occur in practice. Such a model is provided by the notion of polynomial-time sampleable ensembles (underlying De�nition 10.24). Our maximality thesisis based on the belief that the real world should be modeled as a feasible ran-domized process (rather than as an arbitrary process). This belief implies that allobjects encountered in the world may be viewed as samples generated by a feasiblerandomized process.De�nition 10.24 (sampleable ensembles and the class sampNP): We say that aprobability ensemble X = fXngn2N is (polynomial-time) sampleable if there existsa probabilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holdsthat Pr[A(1jxj) = x] = Pr[Xjxj = x]. We denote by sampNP the class of distri-butional problems consisting of decision problems in NP coupled with sampleableprobability ensembles.23Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it isgreater than the reciprocal of some positive polynomial. In the context of randomized reductions,the relevant parameter is the length of the input to the reduction.

10.2. AVERAGE CASE COMPLEXITY 441We �rst note that all simple probability ensembles are indeed sampleable (seeExercise 10.25), and thus distNP � sampNP . On the other hand, there existsampleable probability ensembles that do not seem simple (see Exercise 10.26).Extending the scope of distributional problems (from distNP to sampNP)allows proving that every NP-complete problem has a distributional version insampNP that is distNP-hard (see Exercise 10.27). Furthermore, it is possible toprove that all natural NP-complete problem have distributional versions that aresampNP-complete.Theorem 10.25 (sampNP-completeness): Suppose that S 2 NP and that everyset in NP is reducible to S by a Karp-reduction that does not shrink the input.Then there exists a polynomial-time sampleable ensemble X such that any problemin sampNP is reducible to (S;X)The proof of Theorem 10.25 is based on the observation that there exists a polynomial-time sampleable ensemble that dominates all polynomial-time sampleable ensembles.The existence of this ensemble is based on the notion of a universal (sampling) ma-chine. For further details see Exercise 10.28.
distNP

sampNP

tpcBPP

distNP-complete [Thm 10.17 and 10.19]

sampNP-complete [Thm 10.25]

Figure 10.1: Two types of average-case completenessTheorem 10.25 establishes a rich theory of sampNP-completeness, but does notrelate this theory to the previously presented theory of distNP-completeness (seeFigure 10.1). This is done in the next theorem, which asserts that the existence oftypically hard problems in sampNP implies their existence in distNP .Theorem 10.26 (sampNP-completeness versus distNP-completeness): If sampNPis not contained in tpcBPP then distNP is not contained in tpcBPP.Thus, the two \typical-case complexity" versions of the P-vs-NP Question areequivalent. That is, if some \sampleable distribution" versions of NP are nottypically feasible then some \simple distribution" versions of NP are not typicallyfeasible. In particular, if sampNP-complete problems are not in tpcBPP thendistNP-complete problems are not in tpcBPP.

442 CHAPTER 10. RELAXING THE REQUIREMENTSThe foregoing assertions would all follow if sampNP were (randomly) reducibleto distNP (i.e., if every problem in sampNP were reducible (under a randomizedversion of De�nition 10.16) to some problem in distNP); but, unfortunately, wedo not know whether such reductions exist. Yet, underlying the proof of Theo-rem 10.26 is a more liberal notion of a reduction among distributional problem.Proof Sketch: We shall prove that if distNP is contained in tpcBPP then thesame holds for sampNP (i.e., sampNP is contained in tpcBPP). Actually, weshall show that if distPC is contained in tpcBPPF then the sampleable version ofdistPC, denoted sampPC, is contained in tpcBPPF (and refer to Exercise 10.29).Speci�cally, we shall show that under a relaxed notion of a randomized reduction,every problem in sampPC is reduced to some problem in distPC. Loosely speaking,this relaxed notion (of a randomized reduction) only requires that the validity anddomination conditions (of De�nition 10.16 (when adapted to randomized reduc-tions)) hold with respect to a noticeable fraction of the probability space of thereduction.24 We start by formulating this notion, when referring to distributionalsearch problems.Teaching note: The following proof is quite involved and is better left for advancedreading. Its main idea is related in one of the central ideas underlying the currentlyknown proof of Theorem 8.11. This fact as well as numerous other applications of thisidea, provide a good motivation for getting familiar with this idea.De�nition: A relaxed reduction of the distributional problem (R;X) to the distri-butional problem (T; Y) is a probabilistic polynomial-time oracle machine M thatsatis�es the following conditions:Notation: For every x 2 f0; 1g�, we denote by m(jxj) = poly(jxj) the number ofinternal coin tosses of M on input x, and denote by MT (x; r) the executionof M on input x, internal coins r 2 f0; 1gm, and oracle access to T .Validity: For some noticeable function � : N ! [0; 1] (i.e., �(n) > 1=poly(n)) itholds that for every x 2 f0; 1g�, there exists a set
x � f0; 1gm(jxj) of size atleast �(jxj) � 2m(jxj) such that for every r 2
x the reduction yields a correctanswer (i.e., MT (x; r) 2 R(x) if R(x) 6= ; and MT (x; r) = ? otherwise).Domination: There exists a positive polynomial p such that, for every y 2 f0; 1g�and every n 2 N , it holds thatPr[Q0(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.6)where Q0(x) is a random variable, de�ned over the set
x (of the validitycondition), representing the set of queries made by M on input x and oracle24We warn that the existence of such a relaxed reduction between two speci�c distributionalproblems does not necessarily imply the existence of a corresponding (standard average-case)reduction. Speci�cally, although standard validity can be guaranteed (for problems in PC) byrepeated invocations of the reduction, such a process will not redeem the violation of the standarddomination condition.

10.2. AVERAGE CASE COMPLEXITY 443access to T . That is, Q0(x) is de�ned by uniformly selecting r 2
x andconsidering the set of queries made by M on input x, internal coins r, andoracle access to T . (In addition, as in De�nition 10.16, we also require thatthe reduction does not make too short queries.)The reader may verify that this relaxed notion of a reduction preserves typicalfeasibility; that is, for R 2 PC, if there exists a relaxed reduction of (R;X) to(T; Y) and (T; Y) is in tpcBPPF then (R;X) is in tpcBPPF. The key observationis that the analysis may discard the case that, on input x, the reduction selectscoins not in
x. Indeed, the queries made in that case may be untypical and theanswers received may be wrong, but this is immaterial. What matter is that, oninput x, with noticeable probability the reduction selects coins in
x, and produces\typical with respect to Y " queries (by virtue of the relaxed domination condition).Such typical queries are answered correctly by the algorithm that typically solves(T; Y), and if x has a solution then these answers yield a correct solution to x(by virtue of the relaxed validity condition). Thus, if x has a solution then withnoticeable probability the reduction outputs a correct solution. On the other hand,the reduction never outputs a wrong solution (even when using coins not in
x),because incorrect solutions are detected by relying on R 2 PC.Our goal is presenting, for every (R;X) 2 sampPC, a relaxed reduction of(R;X) to a related problem (R0; X 0) 2 distPC, where (as usual) X = fXngn2Nand X 0 = fX 0ngn2N.An oversimpli�ed case: For starters, suppose that Xn is uniformly distributed onsome set Sn � f0; 1gn and that there is a polynomial-time computable and invert-ible mapping � of Sn to f0; 1g`(n), where `(n) = log2 jSnj. Then, mapping x to1jxj�`(jxj)0�(x), we obtain a reduction of (R;X) to (R0; X 0), where X 0n+1 is uniformover f1n�`(n)0v : v 2 f0; 1g`(n)g and R0(1n�`(n)0v) = R(��1(v)) (or, equivalently,R(x) = R0(1jxj�`(jxj)0�(x))). Note that X 0 is a simple ensemble and R0 2 PC;hence, (R0; X 0) 2 distPC. Also note that the foregoing mapping is indeed a validreduction (i.e., it satis�es the e�ciency, validity, and domination conditions). Thus,(R;X) is reduced to a problem in distPC (and indeed the relaxation was not usedhere).A simple but more instructive case: Next, we drop the assumption that there isa polynomial-time computable and invertible mapping � of Sn to f0; 1g`(n), butmaintain the assumption that Xn is uniform on some set Sn � f0; 1gn and as-sume that jSnj = 2`(n) is easily computable (from n). In this case, we may mapx 2 f0; 1gn to its image under a suitable randomly chosen hashing function h, whichin particular maps n-bit strings to `(n)-bit strings. That is, we randomly map x to(h; 1n�`(n)0h(x)), where h is uniformly selected in a set H`(n)n of suitable hash func-tions (see Appendix D.2). This calls for rede�ning R0 such that R0(h; 1n�`(n)0v)corresponds to the preimages of v under h that are in Sn. Assuming that h is a1-1 mapping of Sn to f0; 1g`(n), we may de�ne R0(h; 1n�`(n)0v) = R(x) where x isthe unique string satisfying x 2 Sn and h(x) = v, where the condition x 2 Sn maybe veri�ed by providing the internal coins of the sampling procedure that generatex. Denoting the sampling procedure of X by S, and letting S(1n; r) denote the

444 CHAPTER 10. RELAXING THE REQUIREMENTSoutput of S on input 1n and internal coins r, we actually rede�ne R0 asR0(h; 1n�`(n)0v) = fhr; yi : h(S(1n; r))=v ^ y2R(S(1n; r))g: (10.7)We note that hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) yields a solution y 2 R(x) if S(1jxj; r) =x, but otherwise \all bets are o�" (as y will be a solution for S(1jxj; r) 6= x). Now,although typically h will not be a 1-1 mapping of Sn to f0; 1g`(n), it is the case thatfor each x 2 Sn, with constant probability over the choice of h, it holds that h(x)has a unique preimage in Sn under h. (See the proof of Theorem 6.29.) In thiscase hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) implies S(1jxj; r) = x (which, in turn, impliesy 2 R(x)). We claim that the randomized mapping of x to (h; 1n�`(n)0h(x)), whereh is uniformly selected in H`(jxj)jxj , yields a relaxed reduction of (R;X) to (R0; X 0),where X 0n0 is uniform over H`(n)n �f1n�`(n)0v : v 2 f0; 1g`(n)g. Needless to say, theclaim refers to the reduction that makes the query (h; 1n�`(n)0h(x)) and returns yif the oracle answer equals hr; yi and y 2 R(x).The claim is proved by considering the set
x of choices of h 2 H`(jxj)jxj forwhich x 2 Sn is the only preimage of h(x) under h that resides in Sn (i.e.,jfx0 2 Sn : h(x0) = h(x)gj = 1). In this case (i.e., h 2
x) it holds that hr; yi 2R0(h; 1jxj�`(jxj)0h(x)) implies that S(1jxj; r) = x and y 2 R(x), and the (relaxed)validity condition follows. The (relaxed) domination condition follows by notingthat Pr[Xn = x] � 2�`(jxj), that x is mapped to (h; 1jxj�`(jxj)0h(x)) with proba-bility 1=jH`(jxj)jxj j, and that x is the only preimage of (h; 1jxj�`(jxj)0h(x)) under themapping (among x0 2 Sn such that
x0 3 h).Before going any further, let us highlight the importance of hashing Xn to `(n)-bit strings. On one hand, this mapping is \su�ciently" one-to-one, and thus (withconstant probability) the solution provided for the hashed instance (i.e., h(x)) yielda solution for the original instance (i.e., x). This guarantees the validity of the re-duction. On the other hand, for a typical h, the mapping of Xn to h(Xn) covers therelevant range almost uniformly. This guarantees that the reduction satis�es thedomination condition. Note that these two phenomena impose con
icting require-ments that are both met at the correct value of `; that is, the one-to-one conditionrequires `(n) � log2 jSnj, whereas an almost uniform cover requires `(n) � log2 jSnj.Also note that `(n) = log2(1=Pr[Xn = x]) for every x in the support of Xn; thelatter quantity will be in our focus in the general case.The general case: Finally, get rid of the assumption that Xn is uniformly distributedover some subset of f0; 1gn. All that we know is that there exists a probabilisticpolynomial-time (\sampling") algorithm S such that S(1n) is distributed identi-cally to Xn. In this (general) case, we map instances of (R;X) according to theirprobability mass such that x is mapped to an instance (of R0) that consists of(h; h(x)) and additional information, where h is a random hash function mappingn-bit long strings to `x-bit long strings such that`x def= dlog2(1=Pr[Xjxj=x])e: (10.8)Since (in the general case) there may be more than 2`x strings in the support ofXn, we need to augment the reduced instance in order to ensure that it is uniquely

10.2. AVERAGE CASE COMPLEXITY 445associated with x. The basic idea is augmenting the mapping of x to (h; h(x)) withadditional information that restricts Xn to strings that occur with probability atleast 2�`x . Indeed, when Xn is restricted in this way, the value of h(Xn) uniquelydetermines Xn.Let q(n) denote the randomness complexity of S and S(1n; r) denote the out-put of S on input 1n and internal coin tosses r 2 f0; 1gq(n). Then, we randomlymap x to (h; h(x); h0; v0), where h : f0; 1gjxj ! f0; 1g`x and h0 : f0; 1gq(jxj) !f0; 1gq(jxj)�`x are random hash functions and v0 2 f0; 1gq(jxj)�`x is uniformly dis-tributed. The instance (h; v; h0; v0) of the rede�ned search problem R0 has solutionsthat consists of pairs hr; yi such that h(S(1n; r))=v^h0(r) = v0 and y2R(S(1n; r)).As we shall see, this augmentation guarantees that, with constant probability (overthe choice of h; h0; v0), the solutions to the reduced instance (h; h(x); h0; v0) corre-spond to the solutions to the original instance x.The foregoing description assumes that, on input x, we can determine `x,which is an assumption that cannot be justi�ed. Instead, we select ` uniformlyin f0; 1; :::; q(jxj)g, and so with noticeable probability we do select the correctvalue (i.e., Pr[` = `x] = 1=(q(jxj) + 1) = 1=poly(jxj)). For clarity, we make nand ` explicit in the reduced instance. Thus, we randomly map x 2 f0; 1gn to(1n; 1`; h; h(x); h0; v0) 2 f0; 1gn0 , where ` 2 f0; 1; :::; q(n)g, h 2 Hǹ, h0 2 Hq(n)�`q(n) ,and v0 2 f0; 1gq(n)�` are uniformly distributed in the corresponding sets.25 Thismapping will be used to reduce (R;X) to (R0; X 0), where R0 and X 0 = fX 0n0gn02Nare rede�ned (yet again). Speci�cally, we letR0(1n; 1`; h; v; h0; v0) = fhr; yi : h(S(1n; r))=v^h0(r)=v0^y2R(S(1n; r))g (10.9)and X 0n0 assigns equal probability to each Xn0;` (for ` 2 f0; 1; :::; ng), where eachXn0;` is isomorphic to the uniform distribution over Hǹ � f0; 1g` � Hq(n)�`q(n) �f0; 1gq(n)�`. Note that indeed (R0; X 0) 2 distPC.The aforementioned randomized mapping is analyzed by considering the correctchoice for `; that is, on input x, we focus on the choice ` = `x. Under thisconditioning (as we shall show), with constant probability over the choice of h; h0and v0, the instance x is the only value in the support of Xn that is mapped to(1n; 1`x ; h; h(x); h0; v0) and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. Itfollows that (for such h; h0 and v0) any solution hr; yi 2 R0(1n; 1`x ; h; h(x); h0; v0)satis�es S(1n; r) = x and thus y 2 R(x), which means that the (relaxed) validitycondition is satis�ed. The (relaxed) domination condition is satis�ed too, because(conditioned on ` = `x and for such h; h0; v0) the probability that Xn is mapped to(1n; 1`x ; h; h(x); h0; v0) approximately equals Pr[X 0n0;`x=(1n; 1`x ; h; h(x); h0; v0)].We now turn to analyze the probability, over the choice of h; h0 and v0, that theinstance x is the only value in the support ofXn that is mapped to (1n; 1`x ; h; h(x); h0; v0)and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. Firstly, we note that25As in other places, a suitable encoding will be used such that the reduction maps strings of thesame length to strings of the same length (i.e., n-bit string are mapped to n0-bit strings, for n0 =poly(n)). For example, we may encode h1n; 1`; h; h(x); h0; v0i as 1n01`01q(n)�`0hhihh(x)ihh0ihv0i,where each hwi denotes an encoding of w by a string of length (n0 � (n+ q(n) + 3))=4.

446 CHAPTER 10. RELAXING THE REQUIREMENTSjfr : S(1n; r)=xgj � 2q(n)�`x , and thus, with constant probability over the choiceof h0 2 Hq(n)�`xq(n) and v0 2 f0; 1gq(n)�`x , there exists r that satis�es S(1n; r) = xand h0(r) = v0. Next, we note that, with constant probability over the choice ofh 2 H`xn , it holds that x is the only string having probability mass at least 2�`x(under Xn) that is mapped to h(x) under h. Finally, we prove that, with constantprobability over the choice of h 2 H`xn and h0 2 Hq(n)�`xq(n) (and even when con-ditioning on the previous items), the mapping r 7! (h(S(1n; r)); h0(r)) maps theset fr : Pr[Xn=S(1n; r)] � 2�`xg to f0; 1gq(n) in an almost 1-1 manner. Speci�-cally, with constant probability, no other r is mapped to the aforementioned pair(h(x); v0). Thus, the claim follows and so does the theorem.Re
ection. Theorem 10.26 implies that if sampNP is not contained in tpcBPPthen every distNP-complete problem is not in tpcBPP. This means that thehardness of some distributional problems that refer to sampleable distributions im-plies the hardness of some distributional problems that refer to simple distributions.Furthermore, by Proposition 10.21, this implies the hardness of distributional prob-lems that refer to the uniform distribution. Thus, hardness with respect to somedistribution in an utmost wide class (which arguably captures all distributions thatmay occur in practice) implies hardness with respect to a single simple distribution(which arguably is the simplest one).Relation to one-way functions. We note that the existence of one-way func-tions (see Section 7.1) implies the existence of problems in sampPC that are not intpcBPPF (which in turn implies the existence of such problems in distPC). Specif-ically, for a length-preserving one-way function f , consider the distributional searchproblem (Rf ; ff(Un)gn2N), where Rf = f(f(r); r) : r 2 f0; 1g�g.26 On the otherhand, it is not known whether the existence of a problem in sampPC n tpcBPPFimplies the existence of one-way functions. In particular, the existence of a prob-lem (R;X) in sampPC n tpcBPPF represents the feasibility of generating hardinstances for the search problem R, whereas the existence of one-way function rep-resents the feasibility of generating instance-solution pairs such that the instancesare hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hardinstances can be e�ciently generated together with corresponding solutions. Ourworld view is thus depicted in Figure 10.2, where lower levels indicate seeminglyweaker assumptions.Chapter NotesIn this chapter, we presented two di�erent approaches to the relaxation of com-putational problems. The �rst approach refers to the concept of approximation,while the second approach refers to average-case analysis. We demonstrated that26Note that the distribution f(Un) is uniform in the special case that f is a permutation overf0; 1gn.

10.2. AVERAGE CASE COMPLEXITY 447
P is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure 10.2: Worst-case vs average-case assumptionsvarious natural notions of approximation can be cast within the standard frame-works, where the framework of promise problems (presented in Section 2.4.1) isthe least-standard framework we used (and it su�ces for casting gap problems andproperty testing). In contrast, the study of average-case complexity requires theintroduction of a new conceptual framework and addressing of various de�nitionalissues.A natural question at this point is what have we gained by relaxing the require-ments. In the context of approximation, the answer is mixed: in some natural caseswe gain a lot (i.e., we obtained feasible relaxations of hard problems), while in othernatural cases we gain nothing (i.e., even extreme relaxations remain as intractableas the original version). In the context of average-case complexity, the negativeside seems more prevailing (at least in the sense of being more systematic). In par-ticular, assuming the existence of one-way functions, every natural NP-completeproblem has a distributional version that is (typical-case) hard, where this versionrefers to a sampleable ensemble (and, in fact, even to a simple ensemble). Fur-thermore, in this case, some problems in NP have hard distributional versions thatrefer to the uniform distribution.Another di�erence between the two approaches is that the theory of approxima-tion seems to lack a comprehensive structure, whereas the theory of average-casecomplexity seems to have a too rigid structure (which seems to foil attempts topresent more appealing distNP-complete problems).ApproximationThe following bibliographic comments are quite laconic and neglect mentioningvarious important works (including credits for some of the results mentioned in ourtext). As usual, the interested reader is referred to corresponding surveys.Search or Optimization. The interest in approximation algorithms increasedconsiderably following the demonstration of the NP-completeness of many nat-ural optimization problems. But, with some exceptions (most notably [172]),the systematic study of the complexity of such problems stalled till the discov-

448 CHAPTER 10. RELAXING THE REQUIREMENTSery of the \PCP connection" (see Section 9.3.3) by Feige, Goldwasser, Lov�asz, andSafra [69]. Indeed the relatively \tight" inapproximation results for max-Clique,max-SAT, and the maximization of linear equations, due to H�astad [112, 113],build on previous work regarding PCP and their connection to approximation (cf.,e.g., [70, 15, 14, 27, 178]). Speci�cally, Theorem 10.5 is due to [112], while Theo-rems 10.8 and 10.9 are due to [113]. The best known inapproximation result forminimum Vertex Cover (see Theorem 10.7) is due to [65], but we doubt it is tight(see, e.g., [137]). Reductions among approximation problems were de�ned andpresented in [172]; see Exercise 10.7, which presents a major technique introducedin [172]. For general texts on approximation algorithms and problems (as discussedin Section 10.1.1), the interested reader is referred to the surveys collected in [118].A compendium of NP optimization problems is available at [61].Recall that a di�erent type of approximation problems, which are naturallyassociated with search problems, refer to approximately counting the number ofsolutions. These approximation problems were treated in Section 6.2.2 in a ratherad hoc manner. We note that a more systematic treatment of approximate countingproblems can be obtained by using the de�nitional framework of Section 10.1.1 (e.g.,the notions of gap problems, polynomial-time approximation schemes, etc).Property testing. The study of property testing was initiated by Rubinfeld andSudan [188] and re-initiated by Goldreich, Goldwasser, and Ron [93]. While thefocus of [188] was on algebraic properties such as low-degree polynomials, the focusof [93] was on graph properties (and Theorem 10.12 is taken from [93]). The modelof bounded-degree graphs was introduced in [99] and Theorem 10.13 combinesresults from [99, 100, 39]. For surveys of the area, the interested reader is referredto [73, 187].Average-case complexityThe theory of average-case complexity was initiated by Levin [148], who in partic-ular proved Theorem 10.17. In light of the laconic nature of the original text [148],we refer the interested reader to a survey [85], which provides a more detailedexposition of the de�nitions suggested by Levin as well as a discussion of the con-siderations underlying these suggestions. (This survey [85] provides also a briefaccount of further developments.)As noted in x10.2.1.1, the current text uses a variant of the original de�nitions.In particular, our de�nition of \typical-case feasibility" di�ers from the originalde�nition of \average-case feasibility" in totally discarding exceptional instancesand in even allowing the algorithm to fail on them (and not merely run for anexcessive amount of time). The alternative de�nition was suggested by severalresearchers, and appears as a special case of the general treatment provided in [41].Turning to x10.2.1.2, we note that while the existence of distNP-complete prob-lems (cf. Theorem 10.17) was established in Levin's original paper [148], the ex-istence of distNP-complete versions of all natural NP-complete decision problems(cf. Theorem 10.19) was established more than two decades later in [151].

10.2. AVERAGE CASE COMPLEXITY 449Section 10.2.2 is based on [28, 123]. Speci�cally, Theorem 10.23 (or rather thereduction of search to decision) is due to [28] and so is the introduction of the classsampNP. A version of Theorem 10.26 was proven in [123], and our proof followstheir ideas, which in turn are closely related to the ideas underlying the proof ofTheorem 8.11 (proved in [114]).Recall that we know of the existence of problems in distNP that are hard pro-vided sampNP contains hard problems. However, these distributional problems donot seem very natural (i.e., they either refer to somewhat generic decision problemssuch as Su or to somewhat contrived probability ensembles (cf. Theorem 10.19)).The presentation of distNP-complete problems that combine a more natural deci-sion problem (like SAT or Clique) with a natural probability ensemble is an openproblem.ExercisesExercise 10.1 (general TSP) For any function g, prove that the following ap-proximation problem is NP-Hard. Given a general TSP instance I , representedby a symmetric matrix of pairwise distances, the task is �nding a tour of lengththat is at most a factor g(I) of the minimum. Show that the result holds withg(I) = exp(poly(jI j)) and for instances in which all distances are positive,Guideline: By reduction from Hamiltonian path. Speci�cally, reduce the instance G =([n]; E) to an n-by-n distance matrix D = (di;j)i;j2[n] such that di;j = exp(poly(n)) iffi; jg 2 E and di;j = 1.Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-factor approximation for the special case of TSP in which the distances satisfy thetriangle inequality.Guideline: First note that the length of any tour is lower-bounded by the weight ofa minimum spanning tree in the corresponding weighted graph. Next note that such atree yields a tour (of length twice the weight of this tree) that may visit some pointsseveral times. The triangle inequality guarantees that the tour does not become longerby \shortcuts" that eliminate multiple visits at the same point.Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 provethat, for some constants 0 < a < b < 1 when setting L(N) = N b and s(N) = Na,it holds that gapCliqueL;s is NP-hard.Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness andquery complexities that accepts no-instances of length n with probability at most 1=n.The claim follows by applying the FGLSS-reduction (of Exercise 9.14), while noting thatx is reduced to a graph of size poly(jxj) such that the gap between yes- and no-instancesis at least a factor of jxj.Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 provethat, for some constants 0 < s < L < 1, the problem gapVCs;L is NP-hard.

450 CHAPTER 10. RELAXING THE REQUIREMENTSGuideline: Note that combining Theorem 9.16 and Exercise 9.14 implies that for someconstants b < 1 it holds that gapCliqueL;s is NP-hard, where L(N) = b �N and s(N) =(b=2) � N . The claim follows using the relations between cliques, independent sets, andvertex covers.Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 provethat, for some constants 0:5 < s < L < 1, the problem gapLinL;s is NP-hard.Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSAT3" is NP-Hard. Note that the result holds even if we restrict the instances to have exactly three(not necessarily di�erent) literals in each clause. Applying the reduction of Exercise 2.24,note that, for any assignment � , a clause that is satis�ed by � is mapped to seven equationsof which exactly three are violated by � , whereas a clause that is not satis�ed by � ismapped to seven equations that are all violated by � .Exercise 10.6 (natural inapproximability without the PCP Theorem) Incontrast to the inapproximability results reviewed in x10.1.1.2, the NP-completenessof the following gap problem can be established (rather easily) without referringto the PCP Theorem. The instances of this problem are systems of quadraticequations over GF(2) (as in Exercise 2.25), yes-instances are systems that have asolution, and no-instances are systems for which any assignment violates at leastone third of the equations.Guideline: By Exercise 2.25, when given such a quadratic system, it is NP-hard todetermine whether or not there exists an assignment that satis�es all the equations. Usingan adequate small-bias generator (cf. Section 8.5.2), present an amplifying reduction (cf.Section 9.3.3) of the foregoing problem to itself. Speci�cally, if the input system has mequations then we use a generator that de�nes a sample space of poly(m) many m-bitstrings, and consider the corresponding linear combinations of the input equations. Notethat it su�ces to bound the bias of the generator by 1=6, whereas using an "-biasedgenerator yields an analogous result with 1=3 replaced by 0:5� ".Exercise 10.7 (enforcing multi-way equalities via expanders) The aim ofthis exercise is presenting a major technique of Papadimitriou and Yannakakis [172],which is useful for designing reductions among approximation problems. Recall-ing that gapSAT30:1 is NP-hard, our goal is proving NP-hard of the following gapproblem, denoted gapSAT3;c" , which is a special case of gapSAT3". Speci�cally, theinstances are restricted to 3CNF formulae with each variable appearing in at most cclauses, where c (as ") is a �xed constant. Note that the standard reduction of 3SATto the corresponding special case (see proof of Proposition 2.22) does not preservean approximation gap.27 The idea is enforcing equality of the values assigned to the27Recall that in this reduction each occurrence of each Boolean variable is replaced by a newcopy of this variable, and clauses are added for enforcing the assignment of the same value to allthese copies. Speci�cally, them occurrence of variable z are replaced by the variables z(1); :::; z(m),while adding the clauses z(i) _ :z(i+1) and z(i+1) _ :z(i) (for i = 1; :::;m � 1). The problem isthat almost all clauses of the reduced formula may be satis�ed by an assignment in which halfof the copies of each variable are assigned one value and the rest are assigned an opposite value.That is, an assignment in which z(1) = � � � = z(i) 6= z(i+1) = � � � = z(m) violates only one of the

10.2. AVERAGE CASE COMPLEXITY 451auxiliary variables (i.e., the copies of each original variable) by introducing equal-ity constraints only for pairs of variables that correspond to edges of an expandergraph (see Appendix E.2). For example, we enforce equality among the values ofz(1); :::; z(m) by adding the clauses z(i) _ :z(j) for every fi; jg 2 E, where E is theset of edges of am m-vertex expander graph. Prove that, for some constants c and" > 0, the corresponding mapping reduces gapSAT30:1 to gapSAT3;c" .Guideline: Using d-regular expanders, we map 3CNF to instances in which each variableappears in at most 2d+1 clauses. Note that the number of added clauses is linearly relatedto the number of original clauses. Clearly, if the original formula is satis�able then so isthe reduced one. On the other hand, consider an arbitrary assignment � 0 to the reducedformula �0 (i.e., the formula obtained by mapping �). For each original variable z, if� 0 assigns the same value to almost all copies of z then we consider the correspondingassignment in �. Otherwise, by virtue of the added clauses, � 0 does not satisfy a constantfraction of the clauses containing a copy of z.Exercise 10.8 (deciding majority requires linear time) Prove that decidingmajority requires linear-time even in a direct access model and when using a ran-domized algorithm that may err with probability at most 1=3.Guideline: Consider the problem of distinguishing Xn from Yn, where Xn (resp., Yn) isuniformly distributed over the set of n-bit strings having exactly bn=2c (resp., bn=2c+1)ones. For any �xed set I � [n], denote the projection of Xn (resp., Yn) on I by X 0n (resp.,Y 0n). Prove that the statistical di�erence between X 0n and Y 0n is bounded by O(jIj=n).Note that the argument needs to be extended to the case that the examined locations areselected adaptively.Exercise 10.9 (testing majority in polylogarithmic time) Show that test-ing majority (with respect to �) can be done in polylogarithmic time by probingthe input at a constant number of randomly selected locations.Exercise 10.10 (on the triviality of some testing problems) Show that thefollowing sets are trivially testable in the adjacency matrix representation (i.e., forevery � > 0 and any such set S, there exists a trivial algorithm that distinguishesS from ��(S)).1. The set of connected graphs.2. The set of Hamiltonian graphs.3. The set of Eulerian graphs.Indeed, show that in each case ��(S) = ;.Guideline (for Item 3): Note that, in general, the fact that the sets S0 and S00 aretestable within some complexity does not imply the same for the set S0 \ S00.auxiliary clauses introduced for enforcing equality among the copies of z. Using an alternativereduction that adds the clauses z(i) _ :z(j) for every i; j 2 [m] will not do either, because thenumber of added clauses may be quadratic in the number of original clauses.

452 CHAPTER 10. RELAXING THE REQUIREMENTSExercise 10.11 (an equivalent de�nition of tpcP) Prove that (S;X) 2 tpcPif and only if there exists a polynomial-time algorithm A such that the probabilitythat A(Xn) errs (in determining membership in S) is a negligible function in n.Exercise 10.12 (tpcP versus P { Part 1) Prove that tpcP contains a problem(S;X) such that S is not even recursive. Furthermore, use X = U .Guideline: Let S = f0jxjx : x 2 S0g, where S0 is an arbitrary (non-recursive) set.Exercise 10.13 (tpcP versus P { Part 2) Prove that there exists a distribu-tional problem (S;X) such that S 62 P and yet there exists an algorithm solvingS (correctly on all inputs) in time that is typically polynomial with respect to X .Furthermore, use X = U .Guideline: For any time-constructible function t : N!N that is super-polynomial andsub-exponential, use S = f0jxjx : x 2 S0g for any S0 2 Dtime(t) n P.Exercise 10.14 (simple distributions and monotone sampling) We say thata probability ensemble X = fXngn2N is polynomial-time sampleable via a monotonemapping if there exists a polynomial p and a polynomial-time computable functionf such that the following two conditions hold:1. For every n, the random variables f(Up(n)) andXn are identically distributed.2. For every n and every r0 < r00 2 f0; 1gp(n) it holds that f(r0) � f(r00), wherethe inequalities refers to the standard lexicographic order of strings.Prove that X is simple if and only if it is polynomial-time sampleable via a mono-tone mapping.Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-time of the algorithm that on input x outputs Pr[Xjxj�x]. Consider a mapping, denoted�, of [0; 1] to f0; 1gn such that r2 [0; 1] is mapped to x2f0; 1gn if and only if r 2 [Pr[Xn<x];Pr[Xn�x]). The desired function f : f0; 1gp(n) ! f0; 1gn can be obtained from � byconsidering the binary representation of the numbers in [0; 1] (and recalling that the binaryrepresentation of Pr[Xjxj�x] has length at most p(jxj)). Note that f can be computed bybinary search, using the fact that X is simple. Turning to the opposite direction, we notethat any e�ciently computable and monotone mapping f : f0; 1gp(n) ! f0; 1gn can bee�ciently inverted by a binary search. Furthermore, similar methods allow for e�cientlydetermining the interval of p(n)-bit long strings that are mapped to any given n-bit longstring.Exercise 10.15 (reductions preserve typical polynomial-time solveability)Prove that if the distributional problem (S;X) is reducible to the distributionalproblem (S0; X 0) and (S0; X 0) 2 tpcP , then (S;X) is in tpcP .Guideline: Let B0 denote the set of exceptional instances for the distributional problem(S0; X 0); that is, B0 is the set of instances on which the solver in the hypothesis eithererrs or exceeds the typical running-time. Prove that Pr[Q(Xn) \ B0 6= ;] is a negligiblefunction (in n), using both Pr[y 2 Q(Xn)] � p(jyj) �Pr[X 0jyj = y] and jxj � p0(jyj) for every

10.2. AVERAGE CASE COMPLEXITY 453y 2 Q(x). Speci�cally, use the latter condition for inferring that Py2B0 Pr[y 2 Q(Xn)]equalsPy2fy02B0:p0(jy0j)�ng Pr[y 2 Q(Xn)], which guarantees that a negligible function injyj for any y 2 Q(Xn) is negligible in n.Exercise 10.16 (reductions preserve error-less solveability) In continuationto Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-ability by algorithms that never err and typically run in polynomial-time).Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-tributional problems (as in De�nition 10.16) are transitive.Guideline: The point is establishing the domination property of the composed reduction.The hypothesis that reductions do not make too short queries is instrumental here.Exercise 10.18 For any S 2 NP present a simple probability ensemble X suchthat the generic reduction used in the proof of Theorem 2.18, when applied to(S;X), violates the domination condition with respect to (Su; U 0).Guideline: Consider X = fXngn2N such that Xn is uniform over f0n=2x0 : x0 2f0; 1gn=2g.Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).1. A variant that refers to any e�ciently computable function � : f0; 1g� ! [0; 1]that is monotonically non-decreasing over f0; 1g� (i.e., �(x0) � �(x00) for anyx0 < x00 2 f0; 1g�). That is, unlike in the proof of Theorem 10.17, here itholds that �(0n+1) � �(1n) for every n.2. As in Part 1, except that in this variant the function � is strictly increasingand the compression condition requires that jC�(x)j � log2(1=�0(x)) ratherthan jC�(x)j � 1 +minfjxj; log2(1=�0(x))g, where �0(x) def= �(x)� �(x � 1).In both cases, the proof is less cumbersome than the one presented in the maintext.Exercise 10.20 Prove that for any problem (S;X) in distNP there exists a simpleprobability ensemble Y such that the reduction used in the proof of Theorem 2.18su�ces for reducing (S;X) to (Su; Y).Guideline: Consider Y = fYngn2N such that Yn assigns to the instance hM;x; 1ti aprobability mass proportional to �x def= Pr[Xjxj = x]. Speci�cally, for every hM;x; 1ti itholds that Pr[Yn = hM;x; 1ti] = 2�jMj � �x=�n2�, where n def= jhM; x; 1tij def= jM j + jxj + t.Alternatively, we may set Pr[Yn = hM;x; 1ti] = �x if M = MS and t = pS(jxj) andPr[Yn = hM;x; 1ti] = 0 otherwise, where MS and PS are as in the proof of Theorem 2.18.Exercise 10.21 (monotone markability and monotone reductions) In con-tinuation to Exercise 2.30, we say that a set T is monotonically markable if thereexists a polynomial-time (marking) algorithm M such that

454 CHAPTER 10. RELAXING THE REQUIREMENTS1. For every z; � 2 f0; 1g� it holds that M(z; �) 2 T if and only if z 2 T .2. For every jz0j = jz00j and j�0j = j�00j, it holds that(a) If �0 < �00 then M(z0; �0) < M(z00; �00).(b) jM(z0; �0)j = jM(z00; �00)j.3. For every ` there exists `0 2 [`; poly(`)] such that for every z 2 [ì=1f0; 1githere exists `00 2 [`0] such that jM(z; 1`00)j = `0.Note that Condition 1 is reproduced from Exercise 2.30, whereas Conditions 2 and 3are new. Prove that if the set S is Karp-reducible to the set T and T is monotoni-cally markable then S is Karp-reducible to T by a reduction that is monotone andlength-regular (i.e., the reduction satis�es the conditions of Proposition 10.18).Guideline: Given a Karp-reduction f from S to T , �rst obtain a length-regular reductionf 0 from S to T (by applying the marking algorithm to f(x), while using Conditions 1and 3). Next, obtain a reduction f 00 that is also monotone (e.g., by letting f 00(x) =M(f 0(x); x), while using Conditions 1 and 2).Exercise 10.22 (monotone markability and markability) Prove that if a setis monotonically markable (as per Exercise 10.21) then it is markable (as per Ex-ercise 2.30).Exercise 10.23 (some monotonically markable sets) Referring to Exercise 10.21,verify that each of the twenty-one NP-complete problems treated in in Karp's �rstpaper on NP-completeness [131] is monotonically markable. For starters, considerthe sets SAT, Clique, and 3-Colorability.Guideline: For SAT consider the following marking algorithm M . This algorithm usestwo (�xed) satis�able formulae of the same length, denoted 0; 1, such that 0 < 1. Forany formula � and �1 � � ��m 2 f0; 1gm, it holds thatM(�; �1 � � � �m) = �1 ^� � �^ �m^�,where 0; 1 use variables that do not appear in �. Note that the multiple occurrencesof � can be easily avoided (by using \variations" of �).Exercise 10.24 (randomized reductions) Following the outline in x10.2.1.3,provide a de�nition of randomized reductions among distributional problems.1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-sible solveability (i.e., typical solveability in probabilistic polynomial-time).That is, if the distributional problem (S;X) is randomly reducible to thedistributional problem (S0; X 0) and (S0; X 0) 2 tpcBPP, then (S;X) is intpcBPP.2. In analogy to Exercise 10.16, prove that randomized reductions preservesolveability by probabilistic algorithms that err with probability at most 1=3on each input and typically run in polynomial-time.3. Prove that randomized reductions are transitive (cf. Exercise 10.17).

10.2. AVERAGE CASE COMPLEXITY 4554. Show that the error probability of randomized reductions can be reduced(while preserving the domination condition).Extend the foregoing to reductions that involve distributional search problems.Exercise 10.25 (simple vs sampleable ensembles { Part 1) Prove that anysimple probability ensemble is polynomial-time sampleable.Guideline: See Exercise 10.14.Exercise 10.26 (simple vs sampleable ensembles { Part 2) Assuming that#P contains functions that are not computable in polynomial-time, prove thatthere exists polynomial-time sampleable ensembles that are not simple.Guideline: Consider any R 2 PC and suppose that p is a polynomial such that (x; y) 2 Rimplies jyj = p(jxj). Then consider the sampling algorithm A that, on input 1n, uniformlyselects (x; y) 2 f0; 1gn�1 � f0; 1gp(n�1) and outputs x1 if (x; y) 2 R and x0 otherwise.Note that #R(x) = 2p(jxj�1) � Pr[A(1jxj�1)=x1].Exercise 10.27 (distributional versions of NPC problems { Part 1 [28])Prove that for any NP-complete problem S there exists a polynomial-time sam-pleable ensemble X such that any problem in distNP is reducible to (S;X). Weactually assume that the many-to-one reductions establishing the NP-completenessof S do not shrink the length of the input.Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su; U 0) to(S;X), for some sampleable probability ensemble X. Consider �rst the case that thestandard reduction of Su to S is length preserving, and prove that, when applied to asampleable probability ensemble, it induces a sampleable distribution on the instancesof S. (Note that U 0 is sampleable (by Exercise 10.25).) Next extend the treatment tothe general case, where applying the standard reduction to U 0n induces a distribution on[poly(n)m=n f0; 1gm (rather than a distribution on f0; 1gn).Exercise 10.28 (distributional versions of NPC problems { Part 2 [28])Prove Theorem 10.25 (i.e., for any NP-complete problem S there exists a polynomial-time sampleable ensemble X such that any problem in sampNP is reducible to(S;X)). As in Exercise 10.27, we actually assume that the many-to-one reductionsestablishing the NP-completeness of S do not shrink the length of the input.Guideline: We establish the claim for Su, and the general claim follows by using thereduction of Su to S (as in Exercise 10.27). Thus, we focus on showing that, for some(suitably chosen) sampleable ensembleX, any (S0; X 0) 2 sampNP is reducible to (Su; X).Loosely speaking, X will be an adequate convex combination of all sampleable distribu-tions (and thus X will not equal U 0 or U). Speci�cally, X = fXngn2N is de�ned suchthat Xn uniformly selects i 2 [n], emulates the execution of the ith algorithm (in lexi-cographic order) on input 1n for n3 steps,28 and outputs whatever the latter has output28Needless to say, the choice to consider n algorithms in the de�nition of Xn is quite arbitrary.Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-time) will do. (More generally, we may select the ith algorithm with pi, as long as pi is a noticeablefunction of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rathersome other �xed polynomial number of steps) is quite arbitrary.

456 CHAPTER 10. RELAXING THE REQUIREMENTS(or 0n in case the said algorithm has not halted within n3 steps). Prove that, for any(S00; X 00) 2 sampNP such that X 00 is sampleable in cubic time, the standard reductionof S00 to Su reduces (S00; X 00) to (Su; X) (as per De�nition 10.15; i.e., in particular,it satis�es the domination condition).29 Finally, using adequate padding, reduce any(S0; X 0) 2 sampNP to some (S00; X 00) 2 sampNP such that X 00 is sampleable in cubictime.Exercise 10.29 (search vs decision in the context of sampleable ensembles)Prove that every problem in sampNP is reducible to some problem in sampPC,and every problem in sampPC is randomly reducible to some problem in sampNP .Guideline: See proof of Theorem 10.23.

29Note that applying this reduction to X00 yields an ensembles that is also sampleable in cubictime. This claim uses the fact that the standard reduction runs in time that is less than cubic(and in fact almost linear) in its output, and the fact that the output is longer than the input.

Bibliography[1] S. Aaronson. Complexity Zoo. A continueously updated web-site athttp://qwiki.caltech.edu/wiki/Complexity Zoo/.[2] L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties OverFinite Fields. Springer-Verlag Lecture Notes in Computer Science (Vol. 1512),1992. Preliminary version in 19th STOC, 1987.[3] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathe-matics, Vol. 160 (2), pages 781{793, 2004.[4] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140, 1987.[5] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz and C. Racko�. Randomwalks, universal traversal sequences, and the complexity of maze problems. In20th IEEE Symposium on Foundations of Computer Science, pages 218{223,1979.[6] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithmfor the Maximal Independent Set Problem. J. of Algorithms, Vol. 7, pages567{583, 1986.[7] N. Alon and R. Boppana. The monotone circuit complexity of Boolean func-tions. Combinatorica, Vol. 7 (1), pages 1{22, 1987.[8] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Charac-terization of the Testable Graph Properties: It's All About Regularity. In38th ACM Symposium on the Theory of Computing, pages 251{260, 2006.[9] N. Alon, O. Goldreich, J. H�astad, R. Peralta. Simple Constructions of Almostk-wise Independent Random Variables. Journal of Random Structures andAlgorithms, Vol. 3, No. 3, pages 289{304, 1992. Preliminary version in 31stFOCS, 1990.[10] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,Inc., 1992. 599

600 BIBLIOGRAPHY[11] R. Armoni. On the derandomization of space-bounded computations. Inthe proceedings of Random98, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 1518), pages 49{57, 1998.[12] S. Arora. Approximation schemes for NP-hard geometric optimization prob-lems: A survey. Math. Programming, Vol. 97, pages 43{69, July 2003.[13] S. Arora abd B. Barak. Complexity Theory: A Modern Approach. CambridgeUniversity Press, to appear.[14] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cationand Intractability of Approximation Problems. Journal of the ACM, Vol. 45,pages 501{555, 1998. Preliminary version in 33rd FOCS, 1992.[15] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-tion of NP. Journal of the ACM, Vol. 45, pages 70{122, 1998. Preliminaryversion in 33rd FOCS, 1992.[16] H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simulationsand Advanced Topics. McGraw-Hill, 1998.[17] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposiumon the Theory of Computing, pages 421{429, 1985.[18] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time hasTwo-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1,pages 3{40, 1991. Preliminary version in 31st FOCS, 1990.[19] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations inPolylogarithmic Time. In 23rd ACM Symposium on the Theory of Computing,pages 21{31, 1991.[20] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-tial Time Simulations unless EXPTIME has Publishable Proofs. ComplexityTheory, Vol. 3, pages 307{318, 1993.[21] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof Systemand a Hierarchy of Complexity Classes. Journal of Computer and SystemScience, Vol. 36, pp. 254{276, 1988.[22] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: E�cientAlgorithms). MIT Press, 1996.[23] B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-mann Institute of Science, 2004.[24] W. Baur and V. Strassen. The Complexity of Partial Derivatives. Theor.Comput. Sci. 22, pages 317{330, 1983.

BIBLIOGRAPHY 601[25] P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, andFuture. In Bulletin of the European Association for Theoretical ComputerScience, Vol. 65, June 1998, pp. 66{89.[26] M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-witnesses using an NP-oracle. Information and Computation, Vol. 163, pages510{526, 2000.[27] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { Towards Tight Results. SIAM Journal on Computing,Vol. 27, No. 3, pages 804{915, 1998. Extended abstract in 36th FOCS, 1995.[28] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of AverageCase Complexity. Journal of Computer and System Science, Vol. 44 (2), pages193{219, 1992.[29] A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing andSystems, IEEE Computer Society Press, pages 108-117, 1993.[30] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micaliand P. Rogaway. Everything Provable is Probable in Zero-Knowledge. InCrypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),pages 37{56, 1990[31] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-active Proofs: How to Remove Intractability. In 20th ACM Symposium onthe Theory of Computing, pages 113{131, 1988.[32] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems forNon-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACMSymposium on the Theory of Computing, pages 1{10, 1988.[33] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. RobustPCPs of proximity, Shorter PCPs and Applications to Coding. In 36th ACMSymposium on the Theory of Computing, pages 1{10, 2004. Full version inECCC, TR04-021, 2004.[34] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and QueryComplexity. ECCC, TR04-060, 2004.[35] L. Berman and J. Hartmanis. On isomorphisms and density of NP and othercomplete sets. SIAM Journal on Computing, Vol. 6 (2), 1977, pages 305{322.[36] M. Blum. A Machine-Independent Theory of the Complexity of RecursiveFunctions. Journal of the ACM, Vol. 14 (2), pages 290{305, 1967.[37] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequencesof Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.

602 BIBLIOGRAPHY[38] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-cations to Numerical Problems. Journal of Computer and System Science,Vol. 47, No. 3, pages 549{595, 1993.[39] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-degree graphs. In 43rd IEEE Symposium on Foun-dations of Computer Science, pages 93{102, 2002.[40] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions forNP problems. In Proc. 44th IEEE Symposium on Foundations of ComputerScience, pages 308{317, 2003.[41] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations andTrends in Theoretical Computer Science, to appear.[42] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short InteractiveProofs? Information Processing Letters, 25, May 1987, pages 127-132.[43] R. Boppana and M. Sipser. The complexity of �nite functions. In Handbookof Theoretical Computer Science: Volume A { Algorithms and Complexity,J. van Leeuwen editor, MIT Press/Elsevier, 1990, pages 757{804.[44] A. Borodin. Computational Complexity and the Existence of ComplexityGaps. Journal of the ACM, Vol. 19 (1), pages 158{174, 1972.[45] A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journalon Computing, Vol. 6 (4), pages 733{744, 1977.[46] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs ofKnowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27th FOCS,1986.[47] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computerand System Science, Vol. 18, 1979, pages 143{154.[48] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-quences. Journal of the ACM, Vol. 13, pages 547{570, 1966.[49] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of theACM, Vol. 28, pages 114{133, 1981.[50] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally SecureProtocols. In 20th ACM Symposium on the Theory of Computing, pages11{19, 1988.[51] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling.Jour. of Complexity, Vol 5, 1989, pages 96{106. Preliminary version dates1985.

BIBLIOGRAPHY 603[52] A. Church. An Unsolvable Problem of Elementary Number Theory. Amer.J. of Math., Vol. 58, pages 345{363, 1936.[53] N. Creignou, S. Khanna, and M. Sudan. Complexity Classi�cations ofBoolean Constraint Satisfaction Problems. SIAM Monographs on DiscreteMathematics and Applications, 2001.[54] A. Cobham. The Intristic Computational Di�culty of Functions. In Proc.1964 Iternational Congress for Logic Methodology and Philosophy of Science,pages 24{30, 1964.[55] S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACMSymposium on the Theory of Computing, pages 151{158, 1971.[56] S.A. Cook. A overview of Computational Complexity. Turing Award Lecture.CACM, Vol. 26 (6), pages 401{408, 1983.[57] S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Infor-mation and Control, Vol. 64, pages 2{22, 1985.[58] S.A. Cook and R.A. Reckhow. Stephen A. Cook, Robert A. Reckhow: TheRelative E�ciency of Propositional Proof Systems. J. of Symbolic Logic,Vol. 44 (1), pages 36{50, 1979.[59] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-gressions. Journal of Symbolic Computation, 9, pages 251{280, 1990.[60] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley& Sons, Inc., New-York, 1991.[61] P. Crescenzi and V. Kann. A compendium of NP Optimization problems.Available at http://www.nada.kth.se/�viggo/wwwcompendium/[62] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans.on Info. Theory, IT-22 (Nov. 1976), pages 644{654.[63] I. Dinur. The PCP Theorem by Gap Ampli�cation. In 38th ACM Symposiumon the Theory of Computing, pages 241{250, 2006.[64] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proofof the PCP-Theorem. In 45th IEEE Symposium on Foundations of ComputerScience, pages 155{164, 2004.[65] I. Dinur and S. Safra. The importance of being biased. In 34th ACM Sym-posium on the Theory of Computing, pages 33{42, 2002.[66] J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages449{467, 1965.[67] S. Even. Graph Algorithms. Computer Science Press, 1979.

604 BIBLIOGRAPHY[68] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problemswith Applications to Public-Key Cryptography. Information and Control,Vol. 61, pages 159{173, 1984.[69] U. Feige, S. Goldwasser, L. Lov�asz and S. Safra. On the Complexity ofApproximating the Maximum Size of a Clique. Unpublished manuscript,1990.[70] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. ApproximatingClique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268{292,1996. Preliminary version in 32nd FOCS, 1991.[71] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions. SIAM Journal on Com-puting, Vol. 29 (1), pages 1{28, 1999.[72] U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd ACM Symposium on the Theory of Computing, pages416{426, 1990.[73] E. Fischer. The art of uninformed decisions: A primer to property test-ing. Bulletin of the European Association for Theoretical Computer Science,Vol. 75, pages 97{126, 2001.[74] G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.[75] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lowerbounds for satis�ability. Journal of the ACM, Vol. 52 (6), pages 835{865,November 2005.[76] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-tive protocols. In 3rd IEEE Symp. on Structure in Complexity Theory, pages156{161, 1988. See errata in 5th IEEE Symp. on Structure in ComplexityTheory, pages 318{319, 1990.[77] S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing,Vol. 8, pages 431{433, 1979.[78] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-ness and Soundness in Interactive Proof Systems. Advances in ComputingResearch: a research annual, Vol. 5 (Randomness and Computation, S. Mi-cali, ed.), pages 429{442, 1989.[79] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory, Vol. 17 (1), pages 13{27,1984. Preliminary version in 22nd FOCS, 1981.[80] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.

BIBLIOGRAPHY 605[81] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W.H. Freeman and Company, New York, 1979.[82] J. von zur Gathen. Algebraic Complexity Theory. Ann. Rev. Comput. Sci.,Vol. 3, pages 317{347, 1988.[83] O. Goldreich. Foundation of Cryptography { Class Notes. Computer ScienceDept., Technion, Israel, Spring 1989. Superseded by [87, 88].[84] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.[85] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. ECCC,TR97-058, Dec. 1997.[86] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[87] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-sity Press, 2001.[88] O. Goldreich. Foundation of Cryptography: Basic Applications. CambridgeUniversity Press, 2004.[89] O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC,TR05-014, 2005.[90] O. Goldreich. On Promise Problems (a survey in memory of Shimon Even[1935-2004]). ECCC, TR05-018, 2005.[91] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[92] O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation ofHuge Random Objects. In 44th IEEE Symposium on Foundations of Com-puter Science, pages 68{79, 2002.[93] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connectionto learning and approximation. Journal of the ACM, pages 653{750, July1998.[94] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996,pages 169{192. Preliminary version in 17th ICALP, 1990.[95] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.

606 BIBLIOGRAPHY[96] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing buttheir Validity or All Languages in NP Have Zero-Knowledge Proof Systems.Journal of the ACM, Vol. 38, No. 3, pages 691{729, 1991. Preliminary versionin 27th FOCS, 1986.[97] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game {A Completeness Theorem for Protocols with Honest Majority. In 19th ACMSymposium on the Theory of Computing, pages 218{229, 1987.[98] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC,TR95-050, 1995.[99] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-rithmica, pages 302{343, 2002.[100] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degreegraphs. Combinatorica, Vol. 19 (3), pages 335{373, 1999.[101] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries:the highly noisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535{570,2000.[102] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with alaconic provers. Computational Complexity, Vol. 11, pages 1{53, 2002.[103] O. Goldreich and A. Wigderson. Computational Complexity. In The Prince-ton Companion to Mathematics, to appear.[104] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computerand System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminary versionin 14th STOC, 1982.[105] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity ofInteractive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985. Earlier versions date to1982.[106] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme SecureAgainst Adaptive Chosen-Message Attacks. SIAM Journal on Computing,April 1988, pages 281{308.[107] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in InteractiveProof Systems. Advances in Computing Research: a research annual, Vol. 5(Randomness and Computation, S. Micali, ed.), pages 73{90, 1989. Extendedabstract in 18th STOC, 1986.[108] S.W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean ParkPress, revised edition, 1982.)[109] V. Guruswami, C. Umans, and S. Vadhan. Extractors and condensers fromunivariate polynomials. ECCC, TR06-134, 2006.

BIBLIOGRAPHY 607[110] J. Hartmanis and R.E. Stearns. On the Computational Complexity of ofAlgorithms. Transactions of the AMS, Vol. 117, pages 285{306, 1965.[111] J. H�astad. Almost Optimal Lower Bounds for Small Depth Circuits. Ad-vances in Computing Research: a research annual, Vol. 5 (Randomness andComputation, S. Micali, ed.), pages 143{170, 1989. Extended abstract in18th STOC, 1986.[112] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica,Vol. 182, pages 105{142, 1999. Preliminary versions in 28th STOC (1996)and 37th FOCS (1996).[113] J. H�astad. Getting optimal in-approximability results. Journal of the ACM,Vol. 48, pages 798{859, 2001. Extended abstract in 29th STOC, 1997.[114] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gen-erator from any One-way Function. SIAM Journal on Computing, Volume28, Number 4, pages 1364{1396, 1999. Preliminary versions by Impagliazzoet. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[115] J. H�astad and S. Khot. Query e�cient PCPs with pefect completeness. In42nd IEEE Symposium on Foundations of Computer Science, pages 610{619,2001.[116] A. Healy. Randomness-E�cient Sampling within NC1. Journal of Com-putational Complexity, to appear. Preliminary version in 10th RANDOM,2006.[117] A. Healy, S. Vadhan and E. Viola. Using nondeterminism to amplify hardness.In 36th ACM Symposium on the Theory of Computing, pages 192{201, 2004.[118] D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS,1996.[119] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languagesand Computation. Addison-Wesley, 1979.[120] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and their Applica-tions. Bull. AMS, Vol. 43 (4), pages 439{561, 2006.[121] N. Immerman. Nondeterministic Space is Closed Under Complementation.SIAM Journal on Computing, Vol. 17, pages 760{778, 1988.[122] R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In36th IEEE Symposium on Foundations of Computer Science, pages 538{545,1995.[123] R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP In-stances than Picking Uniformly at Random. In 31st IEEE Symposium onFoundations of Computer Science, pages 812{821, 1990.

608 BIBLIOGRAPHY[124] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theoryof Computing, pages 220{229, 1997.[125] R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomizationunder a Uniform Assumption. Journal of Computer and System Science,Vol. 63 (4), pages 672-688, 2001.[126] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. InCrypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),pages 40{51, 1987.[127] M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time ApproximationAlgorithm for the Permanent of a Matrix with Non-Negative Entries. Journalof the ACM, Vol. 51 (4), pages 671{697, 2004.[128] M. Jerrum, L. Valiant, and V.V. Vazirani. Random Generation of Combina-torial Structures from a Uniform Distribution. Theoretical Computer Science,Vol. 43, pages 169{188, 1986.[129] N. Kahale, Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, September 1995.[130] R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A Circuit-basedProof of Toda's Theorem. Information and Computation, Vol. 104 (2), pages271{276, 1993.[131] R.M. Karp. Reducibility among Combinatorial Problems. In Complexityof Computer Computations, R.E. Miller and J.W. Thatcher (eds.), PlenumPress, pages 85{103, 1972.[132] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uni-form complexity classes. In 12th ACM Symposium on the Theory of Com-puting, pages 302-309, 1980.[133] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and re-liability problems. In 24th IEEE Symposium on Foundations of ComputerScience, pages 56-64, 1983.[134] R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared-MemoryMachines. In Handbook of Theoretical Computer Science, Vol A: Algorithmsand Complexity, 1990.[135] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity RequireSuper-logarithmic Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255{265,1990. Preliminary version in 20th STOC, 1988.[136] M.J. Kearns and U.V. Vazirani. An introduction to Computational LearningTheory. MIT Press, 1994.

BIBLIOGRAPHY 609[137] S. Khot and O. Regev. Vertex Cover Might be Hard to Approximate towithin 2� ". In 18th IEEE Conference on Computational Complexity, pages379{386, 2003.[138] V.M. Khrapchenko. A method of determining lower bounds for the com-plexity of Pi-schemes. In Matematicheskie Zametki 10 (1),pages 83{92, 1971(in Russian). English translation in Mathematical Notes of the Academy ofSciences of the USSR 10 (1) 1971, pages 474{479.[139] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In24th ACM Symposium on the Theory of Computing, pages 723{732, 1992.[140] D.E. Knuth. The Art of Computer Programming, Vol. 2 (SeminumericalAlgorithms). Addison-Wesley Publishing Company, Inc., 1969 (�rst edition)and 1981 (second edition).[141] A. Kolmogorov. Three Approaches to the Concept of \The Amount Of In-formation". Probl. of Inform. Transm., Vol. 1/1, 1965.[142] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-versity Press, 1996.[143] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Journal ofthe ACM, Vol. 22, 1975, pages 155{171.[144] C. Lautemann. BPP and the Polynomial Hierarchy. Information ProcessingLetters, 17, pages 215{217, 1983.[145] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.[146] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9,pages 115{116, 1973. Translated in problems of Information Transmission 9,pages 265{266.[147] L.A. Levin. Randomness Conservation Inequalities: Information and Inde-pendence in Mathematical Theories. Information and Control, Vol. 61, pages15{37, 1984.[148] L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing,Vol. 15, pages 285{286, 1986.[149] L.A. Levin. Fundamentals of Computing. SIGACT News, Education Forum,special 100-th issue, Vol. 27 (3), pages 89{110, 1996.[150] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[151] N. Livne. All Natural NPC Problems Have Average-Case Complete Versions.ECCC, TR06-122, 2006.

610 BIBLIOGRAPHY[152] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal upto constant factors. In 35th ACM Symposium on the Theory of Computing,pages 602{611, 2003.[153] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[154] M. Luby and A. Wigderson. Pairwise Independence and Derandomization.TR-95-035, International Computer Science Institute (ICSI), Berkeley, 1995.ISSN 1075-4946.[155] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for In-teractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859{868,1992. Preliminary version in 31st FOCS, 1990.[156] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-Holland, 1981.[157] G.A. Margulis. Explicit Construction of Concentrators. (In Russian.) Prob.Per. Infor., Vol. 9 (4), pages 71{80, 1973. English translation in Problems ofInfor. Trans., pages 325{332, 1975.[158] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing,Vol. 30 (4), pages 1253{1298, 2000. Preliminary version in 35th FOCS, 1994.[159] G.L. Miller. Riemann's Hypothesis and Tests for Primality. Journal of Com-puter and System Science, Vol. 13, pages 300{317, 1976.[160] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-MerlinGames using Hitting Sets. Journal of Computational Complexity, Vol. 14 (3),pages 256{279, 2005. Preliminary version in 40th FOCS, 1999.[161] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge UniversityPress, 1995.[162] M. Naor. Bit Commitment using Pseudorandom Generators. Journal ofCryptology, Vol. 4, pages 151{158, 1991.[163] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructionsand Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838{856.Preliminary version in 22nd STOC, 1990.[164] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-graphic Application. In 21st ACM Symposium on the Theory of Computing,1989, pages 33{43.[165] M. Nguyen, S.J. Ong, S. Vadhan. Statistical Zero-Knowledge Arguments forNP from Any One-Way Function. In 47th IEEE Symposium on Foundationsof Computer Science, pages 3-14, 2006.

BIBLIOGRAPHY 611[166] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,Vol. 11 (1), pages 63{70, 1991.[167] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-binatorica, Vol. 12 (4), pages 449{461, 1992.[168] N. Nisan. RL � SC. Journal of Computational Complexity, Vol. 4, pages1-11, 1994.[169] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computerand System Science, Vol. 49, No. 2, pages 149{167, 1994.[170] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996.[171] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.[172] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, andComplexity Classes. In 20th ACM Symposium on the Theory of Computing,pages 229{234, 1988.[173] N. Pippenger and M.J. Fischer. Relations among complexity measures. Jour-nal of the ACM, Vol. 26 (2), pages 361{381, 1979.[174] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52,pages 264{268, 1946.[175] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation(R.A. DeMillo et. al. eds.), Academic Press, 1977.[176] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractableas Factoring. MIT/LCS/TR-212, 1979.[177] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Num-ber Theory, Vol. 12, pages 128{138, 1980.[178] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,Vol. 27 (3), pages 763{803, 1998. Extended abstract in 27th STOC, 1995.[179] R. Raz and A. Wigderson. Monotone Circuits for Matching Require LinearDepth. Journal of the ACM, Vol. 39 (3), pages 736{744, 1992. Preliminaryversion in 22nd STOC, 1990.[180] A. Razborov. Lower bounds for the monotone complexity of some Booleanfunctions. In Doklady Akademii Nauk SSSR, Vol. 281, No. 4, 1985, pages798{801. English translation in Soviet Math. Doklady, 31, pages 354{357,1985.[181] A. Razborov. Lower bounds on the size of bounded-depth networks over acomplete basis with logical addition. In Matematicheskie Zametki, Vol. 41,No. 4, pages 598{607, 1987. English translation in Mathematical Notes of theAcademy of Sci. of the USSR, Vol. 41 (4), pages 333{338, 1987.

612 BIBLIOGRAPHY[182] A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer andSystem Science, Vol. 55 (1), pages 24{35, 1997.[183] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Sym-posium on the Theory of Computing, pages 376{385, 2005.[184] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-ZagGraph Product, and New Constant-Degree Expanders and Extractors. An-nals of Mathematics, Vol. 155 (1), pages 157{187, 2001. Preliminary versionin 41st FOCS, pages 3{13, 2000.[185] H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Prob-lems. Trans. AMS, Vol. 89, pages 25{59, 1953.[186] R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining DigitalSignatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages120{126.[187] D. Ron. Property testing. In Handbook on Randomization, Volume II,pages 597{649, 2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reifand J.D.P. Rolim.)[188] R. Rubinfeld and M. Sudan. Robust characterization of polynomials withapplications to program testing. SIAM Journal on Computing, Vol. 25 (2),pages 252{271, 1996.[189] M. Saks and S. Zhou. RSPACE(S) � DSPACE(S3=2). In 36th IEEE Sym-posium on Foundations of Computer Science, pages 344{353, 1995.[190] W.J. Savitch. Relationships between nondeterministic and deterministic tapecomplexities. JCSS, Vol. 4 (2), pages 177-192, 1970.[191] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol. 21 (6),page 310, 1974.[192] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. InCurrent Trends in Theoretical Computer Science: The Challenge of the NewCentury, Vol 1: Algorithms and Complexity, World scieti�c, 2004. (Editors:G. Paun, G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin ofthe EATCS 77, pages 67{95, 2002.[193] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and aNew Pseudo-Random Generator. In 42nd IEEE Symposium on Foundationsof Computer Science, pages 648{657, 2001.[194] C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.American Institute of Electrical Engineers, Vol. 57, pages 713{723, 1938.[195] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.Jour., Vol. 27, pages 623{656, 1948.

BIBLIOGRAPHY 613[196] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.Jour., Vol. 28, pages 656{715, 1949.[197] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages869{877, 1992. Preliminary version in 31st FOCS, 1990.[198] A. Shpilka. Lower Bounds for Matrix Product. SIAM Journal on Computing,pages 1185-1200, 2003.[199] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACMSymposium on the Theory of Computing, pages 330{335, 1983.[200] M. Sipser. Introduction to the Theory of Computation. PWS PublishingCompany, 1997.[201] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for BooleanCircuit Complexity. In 19th ACM Symposium on the Theory of Computingpages 77{82, 1987.[202] R.J. Solomono�. A Formal Theory of Inductive Inference. Information andControl, Vol. 7/1, pages 1{22, 1964.[203] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAMJournal on Computing, Vol. 6, pages 84{85, 1977. Addendum in SIAM Jour-nal on Computing, Vol. 7, page 118, 1978.[204] D.A. Spielman. Advanced Complexity Theory, Lectures 10 and 11.Notes (by D. Lewin and S. Vadhan), March 1997. Availablefrom http://www.cs.yale.edu/homes/spielman/AdvComplexity/1998/aslect10.ps and lect11.ps.[205] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical ComputerScience, Vol. 3, pages 1{22, 1977.[206] L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACMSymposium on the Theory of Computing, pages 118{126, 1983.[207] V. Strassen. Algebraic Complexity Theory. In Handbook of Theoretical Com-puter Science: Volume A { Algorithms and Complexity, J. van Leeuwen edi-tor, MIT Press/Elsevier, 1990, pages 633{672.[208] M. Sudan. Decoding of Reed Solomon codes beyond the error-correctionbound. Journal of Complexity, Vol. 13 (1), pages 180{193, 1997.[209] M. Sudan. Algorithmic introduction to coding theory. Lecture notes, Avail-able from http://theory.csail.mit.edu/~madhu/FT01/, 2001.[210] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators withoutthe XOR Lemma. Journal of Computer and System Science, Vol. 62, No. 2,pages 236{266, 2001.

614 BIBLIOGRAPHY[211] R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Au-tomata. Acta Informatica, Vol. 26, pages 279{284, 1988.[212] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal onComputing, Vol. 20 (5), pages 865{877, 1991.[213] B.A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute ForceSearch) Algorithms. Annals of the History of Computing, Vol. 6 (4), pages384{398, 1984.[214] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Generators. In 31st ACM Symposium on the Theory of Computing,pages 141{148, 1998.[215] V. Trifonov. An O(log n log logn) Space Algorithm for Undirected st-Connectivity. In 37th ACM Symposium on the Theory of Computing, pages623{633, 2005.[216] C.E. Turing. On Computable Numbers, with an Application to the Entschei-dungsproblem. Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages230{265, 1936. A Correction, ibid., Vol. 43, pages 544{546.[217] C. Umans. Pseudo-random generators for all hardness. Journal of Computerand System Science, Vol. 67 (2), pages 419{440, 2003.[218] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhDThesis, Department of Mathematics, MIT, 1999. Available fromhttp://www.eecs.harvard.edu/�salil/papers/phdthesis-abs.html.[219] S. Vadhan. An Unconditional Study of Computational Zero Knowledge. In45th IEEE Symposium on Foundations of Computer Science, pages 176{185,2004.[220] L.G. Valiant. The Complexity of Computing the Permanent. TheoreticalComputer Science, Vol. 8, pages 189{201, 1979.[221] L.G. Valiant. A theory of the learnable. CACM, Vol. 27/11, pages 1134{1142,1984.[222] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions.Theoretical Computer Science, Vol. 47 (1), pages 85{93, 1986.[223] J. von Neumann, First Draft of a Report on the EDVAC, 1945. Contract No.W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn.,Philadelphia. Reprinted (in part) in Origins of Digital Computers: SelectedPapers, Springer-Verlag, Berlin Heidelberg, pages 383{392, 1982.[224] J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische An-nalen, 100, pages 295{320, 1928.[225] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

BIBLIOGRAPHY 615[226] I. Wegener. Branching Programs and Binary Decision Diagrams { Theory andApplications. SIAM Monographs on Discrete Mathematics and Applications,2000.[227] A. Wigderson. The amazing power of pairwise independence. In 26th ACMSymposium on the Theory of Computing, pages 645{647, 1994.[228] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.[229] A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26thIEEE Symposium on Foundations of Computer Science, pages 1-10, 1985.[230] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposiumon Foundations of Computer Science, pages 162{167, 1986.[231] S. Yekhanin. New Locally Decodable Codes and Private Information Re-trieval Schemes. ECCC, TR06-127, 2006.

