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Preface

The strive for efficiency is ancient and universal, as time and other resources are
always in shortage. Thus, the question of which tasks can be performed efficiently
is central to the human experience.

A key step towards the systematic study of the aforementioned question is a
rigorous definition of the notion of a task and of procedures for solving tasks. These
definitions were provided by computability theory, which emerged in the 1930’s.
This theory focuses on computational tasks, and considers automated procedures
(i.e., computing devices and algorithms) that may solve such tasks.

In focusing attention on computational tasks and algorithms, computability
theory has set the stage for the study of the computational resources (like time) that
are required by such algorithms. When this study focuses on the resources that are
necessary for any algorithm that solves a particular task (or a task of a particular
type), the study becomes part of the theory of Computational Complexity (also
known as Complexity Theory).!

Complexity Theory is a central field of the theoretical foundations of Computer
Science. It is concerned with the study of the intrinsic complexity of computational
tasks. That is, a typical Complexity theoretic study looks at the computational re-
sources required to solve a computational task (or a class of such tasks), rather than
at a specific algorithm or an algorithmic schema. Actually, research in Complexity
Theory tends to start with and focus on the computational resources themselves,
and addresses the effect of limiting these resources on the class of tasks that can be
solved. Thus, Computational Complexity is the study of the what can be achieved
within limited time (and/or other limited natural computational resources).

The (half-century) history of Complexity Theory has witnessed two main re-
search efforts (or directions). The first direction is aimed towards actually estab-
lishing concrete lower bounds on the complexity of computational problems, via
an analysis of the evolution of the process of computation. Thus, in a sense, the
heart of this direction is a “low-level” analysis of computation. Most research in
circuit complexity and in proof complexity falls within this category. In contrast, a

n contrast, when the focus is on the design and analysis of specific algorithms (rather than
on the intrinsic complexity of the task), the study becomes part of a related subfield that may
be called Algorithmic Design and Analysis. Furthermore, Algorithmic Design and Analysis tends
to be sub-divided according to the domain of mathematics, science and engineering in which the
computational tasks arise. In contrast, Complexity Theory typically maintains a unity of the
study of tasks solveable within certain resources (regardless of the origins of these tasks).
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second research effort is aimed at exploring the connections among computational
problems and notions, without being able to provide absolute statements regarding
the individual problems or notions. This effort may be viewed as a “high-level”
study of computation. The theory of NP-completeness as well as the studies of
approximation, probabilistic proof systems, pseudorandomness and cryptography
all fall within this category.

The current book focuses on the latter effort (or direction). We list several
reasons for our decision to focus on the “high-level” direction. The first is the great
conceptual significance of the known results; that is, many known results (as well as
open problems) in this direction have an extremely appealing conceptual message,
which can also be appreciated by non-experts. Furthermore, these conceptual
aspects may be explained without entering excessive technical detail. Consequently,
the “high-level” direction is more suitable for an exposition in a book of the current
nature. Finally, there is a subjective reason: the “high-level” direction is within
our own expertise, while this cannot be said about the “low-level” direction.

The last paragraph brings us to a discussion of the nature of the current book,
which is captured by the subtitle (i.e., “a conceptual perspective”). Our main
thesis is that complexity theory is extremely rich in conceptual content, and that
this contents should be explicitly communicated in expositions and courses on the
subject. The desire to provide a corresponding textbook is indeed the motivation
for writing the current book and its main governing principle.

This book offers a conceptual perspective on complexity theory, and the pre-
sentation is designed to highlight this perspective. It is intended to serve as an
introduction to Computational Complexity that can be used either as a textbook
or for self-study. Indeed, the book’s primary target audience consists of students
that wish to learn complexity theory and educators that intend to teach a course
on complexity theory. The book is also intended to promote interest in complexity
theory and make it acccessible to general readers with adequate background (which
is mainly being comfortable with abstract discussions, definitions and proofs). We
expect most readers to have a basic knowledge of algorithms, or at least be fairly
comfortable with the notion of an algorithm.

The book focuses on several sub-areas of complexity theory (see the following
organization and chapter summaries). In each case, the exposition starts from the
intuitive questions addresses by the sub-area, as embodied in the concepts that it
studies. The exposition discusses the fundamental importance of these questions,
the choices made in the actual formulation of these questions and notions, the
approaches that underly the answers, and the ideas that are embedded in these
answers. Our view is that these (“non-technical”) aspects are the core of the field,
and the presentation attempts to reflect this view.

We note that being guided by the conceptual contents of the material leads, in
some cases, to technical simplifications. Indeed, for many of the results presented
in this book, the presentation of the proof is different (and arguably easier to
understand) than the standard presentations.



Organization and Chapter
Summaries

This book consists of ten chapters and seven appendices. The chapters constitute
the core of this book and are written in a style adequate for a textbook, whereas the
appendices provide additional perspective and are written in the style of a survey
article. The relative length and ordering of the chapters (and appendices) does not
reflect their relative importance, but rather an attempt at the best logical order
(i-e., minimizing the number of forward pointers).

Following are brief summaries of the book’s chapters and appendices. Theses
summaries are more detailed than those provided in Section 1.1.3 but less detailed
than the summaries provided at the beginning of each chapter.

Chapter 1: Introduction and Preliminaries. The introduction provides a
high-level overview of some of the content of complexity theory as well as a discus-
sion of some of the characteristic features of this field. The preliminaries provide
the relevant background on computability theory, which is the setting in which
complexity theoretic questions are being studied. Most importantly, central no-
tions such as search and decision problems, algorithms that solve such problems,
and their complexity are defined. In addition, this part presents the basic notions
underlying non-uniform models of computation (like Boolean circuits).

Chapter 2: P, NP and NP-completeness. The P-vs-NP Question can be
phrased as asking whether or not finding solutions is harder than checking the
correctness of solutions. An alternative formulation in terms of decision problems
asks whether or not discovering proofs is harder than verifying their correctness;
that is, is proving harder than verifying. It is widely believed that the answer
to the two equivalent formulation is that finding (resp., proving) is harder than
checking (resp., verifying); that is, that P is different from NP. At present, when
faced with a hard problem in NP, we can only hope to prove that it is not in P
assuming that NP is different from P. This is where the theory of NP-completeness,
which is based on the notion of a reduction, comes into the picture. In general,
one computational problem is reducible to another problem if it is possible to
efficiently solve the former when provided with an (efficient) algorithm for solving
the latter. A problem (in NP) is NP-complete if any problem in NP is reducible



to it. Amazingly enough, NP-complete problems exist, and furthermore hundreds
of natural computational problems arising in many different areas of mathematics
and science are NP-complete.

Chapter 3: Variations on P and NP. Non-uniform polynomial-time (P /poly)
captures efficient computations that are carried out by devices that handle specific
input lengths. The basic formalism ignores the complexity of constructing such de-
vices (i.e., a uniformity condition), but a finer formalism (based on “machines that
take advice”) allows to quantify the amount of non-uniformity. The Polynomial-
time Hierarchy (PH) generalizes NP by considering statements expressed by a
quantified Boolean formula with a fixed number of alternations of existential and
universal quantifiers. It is widely believed that each quantifier alternation adds ex-
pressive power to the class of such formulae. The two different classes are related
by showing that if NP is contained in P/poly then the Polynomial-time Hierarchy
collapses to its second level.

Chapter 4: More Resources, More Power? When using “nice” functions to
determine the algorithm’s resources, it is indeed the case that more resources allow
for more tasks to be performed. However, when “ugly” functions are used for the
same purpose, increasing the resources may have no effect. By nice functions we
mean functions that can be computed without exceeding the amount of resources
that they specify. Thus, we get results asserting, for example, that there are
problems that are solvable in cubic-time but not in quadratic-time. In the case of
non-uniform models of computation, the issue of “nicety” does not arise, and it is
easy to establish separations results.

Chapter 5: Space Complexity. This chapter is devoted to the study of the
space complexity of computations, while focusing on two rather extreme cases.
The first case is that of algorithms having logarithmic space complexity, which
seem a proper and natural subset of the set of polynomial-time algorithms. The
second case is that of algorithms having polynomial space complexity, which in turn
can solve almost all computational problems considered in this book. Among the
results presented in this chapter are a log-space algorithm for exploring (undirected)
graphs, a non-deterministic log-space procedure for recognizing directed graphs
that are mot strongly connected, and complete problems for N'£ and PSPACE
(under log-space and polynomial-time reductions, respectively).

Chapter 6: Randomness and Counting. Various failure types of probabilis-
tic polynomial-time algorithms give rise to complexity classes such as BPP, RP,
and ZPP. The results presented include the emulation of probabilistic choices by
non-uniform advice (i.e., BPP C P/poly) and the emulation of two-sided prob-
abilistic error by an JV-sequence of quantifiers (i.e., BPP C X,). Turning to
counting problems (i.e., counting the number of solutions for NP-type problems),
we distinguish between exact counting and approximate counting (in the sense of



relative approximation). While any problem in PH is reducible to the exact count-
ing class #P, approximate counting (for #7P) is (probabilisticly) reducible to A"P.
Additional related topics include #P-completeness, the complexity of searching for
unique solutions, and the relation between approximate counting and generating
almost uniformly distributed solutions.

Chapter 7: The Bright Side of Hardness. It turns out that hard problem can
be “put to work” to our benefit, most notably in cryptography. One key issue that
arises in this context is bridging the gap between “occasional” hardness (e.g., worst-
case hardness or mild average-case hardness) and “typical” hardness (i.e., strong
average-case hardness). We consider two conjectures that are related to P # NP.
The first conjecture is that there are problems that are solvable in exponential-
time but are not solvable by (non-uniform) families of small (say polynomial-size)
circuits. We show that these types of worst-case conjectures can be transformed
into average-case hardness results that yield non-trivial derandomizations of BPP
(and even BPP = P). The second conjecture is that there are problems in NP
for which it is easy to generate (solved) instances that are hard to solve for other
people. This conjecture is captured in the notion of one-way functions, which are
functions that are easy to evaluate but hard to invert (in an average-case sense). We
show that functions that are hard to invert in a relatively mild average-case sense
yield functions that are hard to invert almost everywhere, and that the latter yield
predicates that are very hard to approximate (called hard-core predicates). The
latter are useful for the construction of general-purpose pseudorandom generators
as well as for a host of cryptographic applications.

Chapter 8: Pseudorandom Generators. A fresh view at the question of ran-
domness was taken in the theory of computing: It has been postulated that a
distribution is pseudorandom if it cannot be told apart from the uniform distri-
bution by any efficient procedure. The paradigm, originally associating efficient
procedures with polynomial-time algorithms, has been applied also with respect
to a variety of limited classes of such distinguishing procedures. The archetypical
case of pseudorandom generators refers to efficient generators that fool any feasible
procedure; that is, the potential distinguisher is any probabilistic polynomial-time
algorithm, which may be more complex than the generator itself. These generators
are called general-purpose, because their output can be safely used in any efficient
application. In contrast, for purposes of derandomization, one may use pseudoran-
dom generators that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this approach and
using various hardness assumptions, one may obtain corresponding derandomiza-
tions of BPP (including a full derandomization; i.e., BPP = P). Other forms of
pseudorandom generators include ones that fool space-bounded distinguishers, and
even weaker ones that only exhibit some limited random behavior (e.g., outputting
a pair-wise independent sequence).



Chapter 9: Probabilistic Proof Systems. Randomized and interactive veri-
fication procedures, giving rise to interactive proof systems, seem much more pow-
erful than their deterministic counterparts. In particular, interactive proof systems
exist for any set in PSPACE D coNP (e.g., for the set of unsatisfied proposi-
tional formulae), whereas it is widely believed that some sets in coNP do not
have NP-proof systems. Interactive proofs allow the meaningful conceptualization
of zero-knowledge proofs, which are interactive proofs that yield nothing (to the
verifier) beyond the fact that the assertion is indeed valid. Under reasonable com-
plexity assumptions, every set in A'P has a zero-knowledge proof system. (This
result has many applications in cryptography.) A third type of probabilistic proof
systems is the model of PCPs, standing for probabilistically checkable proofs. These
are (redundant) NP-proofs that offers a trade-off between the number of locations
(randomly) examined in the proof and the confidence in its validity. In particular,
a small constant error probability can be obtained by reading a constant number
of bits in the redundant NP-proof. The PCP Theorem asserts that NP-proofs can
be efficiently transformed into PCPs. The study of PCPs is closely related to the
study of the complexity of approximation problems.

Chapter 10: Relaxing the Requirement. In light of the apparent infeasibility
of solving numerous useful computational problems, it is natural to seek relaxations
of these problems that remain useful for the original applications and yet allow
for feasible solving procedures. Two such types of relaxations are provided by
adequate notions of approximation and a theory of average-case complexity. The
notions of approximation refer to the computational problems themselves; that
is, for each problem instance we extend the set of admissible solutions. In the
context of search problems this means settling for solutions that have a value
that is “sufficiently close” to the value of the optimal solution, whereas in the
context of decision problems this means settling for procedures that distinguish
yes-instances from instances that are “far” from any yes-instance. Turning to
average-case complexity, we note that a systematic study of this notion requires
the development of a non-trivial conceptual framework. A major aspect of this
framework is limiting the class of distributions in a way that, on one hand, allows
for various types of natural distributions and, on the other hand, prevents the
collapse of average-case hardness to worst-case hardness.

Appendix A: Glossary of Complexity Classes. The glossary provides self-
contained definitions of most complexity classes mentioned in the book. The glos-
sary is partitioned into two parts, dealing separately with complexity classes that
are defined in terms of algorithms and their resources (i.e., time and space com-
plexity of Turing machines) and complexity classes defined in terms of non-uniform
circuit (and referring to their size and depth). The following classes are defined:
P, NP, coNP, BPP, RP, coRP, ZPP, #P, PH,E, EXP, NEXP, L, NL, RL,
PSPACE, P/poly, NC*, and AC*.



Appendix B: On the Quest for Lower Bounds. This appendix surveys some
attempts at proving lower bounds on the complexity of natural computational prob-
lems. The first part, devoted to Circuit Complexity, reviews lower bounds for the
size of (restricted) circuits that solve natural computational problems. This repre-
sents a program whose long-term goal is proving that P # NP. The second part,
devoted to Proof Complexity, reviews lower bounds on the length of (restricted)
propositional proofs of natural tautologies. This represents a program whose long-
term goal is proving that NP # coNP.

Appendix C: On the Foundations of Modern Cryptography. This ap-
pendix surveys the foundations of cryptography, which are the paradigms, ap-
proaches and techniques used to conceptualize, define and provide solutions to
natural security concerns. It presents some of these conceptual tools as well as
some of the fundamental results obtained using them. The appendix augments
the partial treatment of one-way functions, pseudorandom generators, and zero-
knowledge proofs (which is included in Chapters 7-9). Using these basic tools, the
appendix provides a treatment of basic cryptographic applications such as Encryp-
tion, Signatures, and General Cryptographic Protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-
domization. The probabilistic preliminaries include conventions regarding ran-
dom variables and overviews of three useful inequalities (i.e., Markov Inequality,
Chebyshev’s Inequality, and Chernoff Bound). The advanced topics include con-
structions and lemmas regarding families of hashing functions, a study of the sam-
ple and randomness complexities of estimating the average value of an arbitrary
function, and the problem of randomness extraction (i.e., procedures for extracting
almost perfect randomness from sources of weak or defected randomness).

Appendix E: Explicit Constructions. Complexity theory provides a clear
perspective on the intuitive notion of an explicit construction. This perspective is
demonstrated with respect to error correcting codes and expander graphs. On the
topic of codes, the appendix focuses on various computational aspects, containing
a review of several popular constructions as well as a construction of a binary code
of constant rate and constant relative distance. Also included are a brief review
of the notions of locally testable and locally decodable codes, and a useful upper-
bound on the number of codewords that are close to any single word. Turning
to expander graphs, the appendix contains a review of two standard definitions of
expanders, two levels of explicitness, two properties of expanders that are related to
(single-step and multi-step) random walks on them, and two explicit constructions
of expander graphs.

Appendix F: Some Omitted Proofs. This appendix contains some proofs that
were not included in the main text (for a variety of reasons) and still are beneficial
as alternatives to the original and/or standard presentations. Included are proofs
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that PH is reducible to #P via randomized Karp-reductions, and that ZP(f) C
AM(O(f)) € AM(f), for any function f such that f(n) € {2, ..., poly(n)}.

Appendix G: Some Computational Problems. This appendix includes def-
initions of most of the specific computational problems that are referred to in the
main text. In particular, it contains a brief introduction to graph algorithms,
boolean formulae and finite fields.
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Chapter 1

Introduction and
Preliminaries

You can start by putting the DO NOT DISTURB sign.

Cay, in Desert Hearts (1985).

The current chapter consists of two parts. The first part provides a high-level
introduction to (computational) complexity theory. This introduction is much
more detailed than the laconic statements made in the preface, but is quite sparse
when compared to the richness of the field. In addition, the introduction contains
several important comments regarding the contents, approach and style of the
current book.

average-case approximation
pseudorandomness
PCP
PSPACE 1P ZK
PH
BPP RP
NP coNP
P
NL

L

lower bounds

The second part of this chapter provides the necessary preliminaries to the rest
of the book. It includes a discussion of computational tasks and computational
models, as well as natural complexity measures associated with the latter. More
specifically, this part recalls the basic notions and results of computability theory
(including the definition of Turing machines, some undecidability results, the notion
of universal machines, and the definition of oracle machines). In addition, this part
presents the basic notions underlying non-uniform models of computation (like
Boolean circuits).



4 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

This section consists of two parts: the first part refers to the area itself, whereas
the second part refers to the current book. The first part provides a brief overview
of Complexity Theory (Section 1.1.1) as well as some reflections about its char-
acteristics (Section 1.1.2). The second part describes the contents of this book
(Section 1.1.3), the considerations underlying the choice of topics as well as the
way they are presented (Section 1.1.4), and various notations and conventions (Sec-
tion 1.1.5).

1.1.1 A brief overview of Complexity Theory

Out of the tough came forth sweetness'

Judges, 14:14

Complexity Theory is concerned with the study of the intrinsic complexity of com-
putational tasks. Its “final” goals include the determination of the complexity of
any well-defined task. Additional goals include obtaining an understanding of the
relations between various computational phenomena (e.g., relating one fact regard-
ing computational complexity to another). Indeed, we may say that the former
type of goals is concerned with absolute answers regarding specific computational
phenomena, whereas the latter type is concerned with questions regarding the re-
lation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with
goals of the latter (“relative”) type. In fact, the failure to resolve questions of the
“absolute” type, led to the flourishing of methods for coping with questions of the
“relative” type. Musing for a moment, let us say that, in general, the difficulty
of obtaining absolute answers may naturally lead to seeking conditional answers,
which may in turn reveal interesting relations between phenomena. Furthermore,
the lack of absolute understanding of individual phenomena seems to facilitate the
development of methods for relating different phenomena. Anyhow, this is what
happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining
absolute answers, we must admit that there is something fascinating in the success
to relate different phenomena: in some sense, relations between phenomena are
more revealing than absolute statements about individual phenomena. Indeed, the
first example that comes to mind is the theory of NP-completeness. Let us consider
this theory, for a moment, from the perspective of these two types of goals.

Complexity theory has failed to determine the intrinsic complexity of tasks such
as finding a satisfying assignment to a given (satisfiable) propositional formula or
finding a 3-coloring of a given (3-colorable) graph. But it has established that
these two seemingly different computational tasks are in some sense the same (or,
more precisely, are computationally equivalent). We find this success amazing

IThe quote is commonly used to mean that benefit arose out of misfortune.
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and exciting, and hopes that the reader shares these feelings. The same feeling of
wonder and excitement is generated by many of the other discoveries of Complexity
theory. Indeed, the reader is invited to join a fast tour of some of the other questions
and answers that make up the field of Complexity theory.

We will indeed start with the “P versus NP Question”. Our daily experience is
that it is harder to solve a problem than it is to check the correctness of a solution
(e.g., think of either a puzzle or a research problem). Is this experience merely
a coincidence or does it represent a fundamental fact of life (or a property of the
world)? Could you imagine a world in which solving any problem is not significantly
harder than checking a solution to it? Would the term “solving a problem” not
lose its meaning in such a hypothetical (and impossible in our opinion) world?
The denial of the plausibility of such a hypothetical world (in which “solving” is
not harder than “checking”) is what “P different from NP” actually means, where
P represents tasks that are efficiently solvable and NP represents tasks for which
solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs. Indeed,
finding proofs is a special type of the aforementioned task of “solving a problem”
(and verifying the validity of proofs is a corresponding case of checking correctness).
Again, “P different from NP” means that there are theorems that are harder to
prove than to be convinced of their correctness when presented with a proof. This
means that the notion of a proof is meaningful (i.e., that proofs do help when
trying to be convinced of the correctness of assertions). Here NP represents sets
of assertions that can be efficiently verified with the help of adequate proofs, and
P represents sets of assertions that can be efficiently verified from scratch (i.e.,
without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is
a fundamental scientific question of far-reaching consequences. The fact that this
question seems beyond our current reach led to the development of the theory of
NP-completeness. Loosely speaking, this theory identifies a set of computational
problems that are as hard as NP. That is, the fate of the P-versus-NP Question
lies with each of these problems: if any of these problems is easy to solve then
so are all problems in NP. Thus, showing that a problem is NP-complete provides
evidence to its intractability (assuming, of course, “P different than NP”). Indeed,
demonstrating NP-completeness of computational tasks is a central tool in indicat-
ing hardness of natural computational problems, and it has been used extensively
both in computer science and in other disciplines. NP-completeness indicates not
only the conjectured intractability of a problem but rather also its “richness” in the
sense that the problem is rich enough to “encode” any other problem in NP. The
use of the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn is based on establishing relations between different computational
problems (without referring to their “absolute” complexity).

The foregoing discussion of the P-versus-NP Question also hints to the impor-
tance of representation, a phenomenon that is central to complexity theory. In
general, complexity theory is concerned with problems the solutions of which are
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implicit in the problem’s statement (or rather in the instance). That is, the problem
(or rather its instance) contains all necessary information, and one merely needs to
process this information in order to supply the answer.? Thus, complexity theory is
concerned with manipulation of information, and its transformation from one rep-
resentation (in which the information is given) to another representation (which
is the one desired). Indeed, a solution to a computational problem is merely a
different representation of the information given; that is, a representation in which
the answer is explicit rather than implicit. For example, the answer to the question
of whether or not a given Boolean formula is satisfiable is implicit in the formula
itself (but the task is to make the answer explicit). Thus, complexity theory clari-
fies a central issue regarding representation; that is, the distinction between what
is explicit and what is implicit in a representation. Furthermore, it even suggests
a quantification of the level of non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena
that were considered also by past thinkers. Examples include the aforementioned
concepts of proofs and representation as well as concepts like randomness, knowl-
edge, interaction, secrecy and learning. We next discuss some of these concepts
and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective
can be described as ontological: they asked “what is randomness” and wondered
whether it exist at all (or is the world deterministic). The perspective of complexity
theory is behavioristic: it is based on defining objects as equivalent if they cannot
be told apart by any efficient procedure. That is, a coin toss is (defined to be)
“random” (even if one believes that the universe is deterministic) if it is infeasible
to predict the coin’s outcome. Likewise, a string (or a distribution of strings) is
“random” if it is infeasible to distinguish it from the uniform distribution (regard-
less of whether or not one can generate the latter). Interestingly, randomness (or
rather pseudorandomuess) defined this way is efficiently expandable; that is, under
a reasonable complexity assumption (to be discussed next), short pseudorandom
strings can be deterministically expanded into long pseudorandom strings. Indeed,
it turns out that randomness is intimately related to intractability. Firstly, note
that the very definition of pseudorandomness refers to intractability (i.e., the infea-
sibility of distinguishing a pseudorandomness object from a uniformly distributed
object). Secondly, as stated, a complexity assumption, which refers to the exis-
tence of functions that are easy to evaluate but hard to invert (called one-way
functions), implies the existence of deterministic programs (called pseudorandom
generators) that stretch short random seeds into long pseudorandom sequences. In
fact, it turns out that the existence of pseudorandom generators is equivalent to
the existence of one-way functions.

Complexity theory offers its own perspective on the concept of knowledge (and
distinguishes it from information). Specifically, complexity theory views knowledge
as the result of a hard computation. Thus, whatever can be efficiently done by any-

2In contrast, in other disciplines, solving a problem may require gathering information that is
not available in the problem’s statement. This information may either be available from auxiliary
(past) records or be obtained by conducting new experiments.



1.1. INTRODUCTION 7

one is not considered knowledge. In particular, the result of an easy computation
applied to publicly available information is not considered knowledge. In contrast,
the value of a hard to compute function applied to publicly available information
is knowledge, and if somebody provides you with such a value then it has provided
you with knowledge. This discussion is related to the notion of zero-knowledge
interactions, which are interactions in which no knowledge is gained. Such inter-
actions may still be useful, because they may convince a party of the correctness
of specific data that was provided beforehand.

The foregoing paragraph has explicitly referred to interaction. It has pointed
one possible motivation for interaction: gaining knowledge. It turns out that in-
teraction may help in a variety of other contexts. For example, it may be easier to
verify an assertion when allowed to interact with a prover rather than when reading
a proof. Put differently, interaction with a good teacher may be more beneficial
than reading any book. We comment that the added power of such interactive
proofs is rooted in their being randomized (i.e., the verification procedure is ran-
domized), because if the verifier’s questions can be determined beforehand then the
prover may just provide the transcript of the interaction as a traditional written
proof.

Another concept related to knowledge is that of secrecy: knowledge is some-
thing that one party has while another party does not have (and cannot feasibly
obtain by itself) — thus, in some sense knowledge is a secret. In general, complexity
theory is related to Cryptography, where the latter is broadly defined as the study
of systems that are easy to use but hard to abuse. Typically, such systems involve
secrets, randomness and interaction as well as a complexity gap between the ease
of proper usage and the infeasibility of causing the system to deviate from its pre-
scribed behavior. Thus, much of Cryptography is based on complexity theoretic
assumptions and its results are typically transformations of relatively simple com-
putational primitives (e.g., one-way functions) into more complex cryptographic
applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning
from a teacher versus learning from a book. Recall that complexity theory provides
evidence to the advantage of the former. This is in the context of gaining knowledge
about publicly available information. In contrast, computational learning theory
is concerned with learning objects that are only partially available to the learner
(i.e., learning a function based on its value at a few random locations or even at
locations chosen by the learner). Complexity theory sheds light on the intrinsic
limitations of learning (in this sense).

Complexity theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or rather “find-
ing solutions”) and making decisions (e.g., regarding the validity of assertion). We
have also hinted that in some cases these two types of tasks can be related. Now
we consider two additional types of tasks: counting the number of solutions and
generating random solutions. Clearly, both the latter tasks are at least as hard as
finding arbitrary solutions to the corresponding problem, but it turns out that for
some natural problems they are not significantly harder. Specifically, under some
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natural conditions on the problem, approximately counting the number of solutions
and generating an approximately random solution is not significantly harder than
finding an arbitrary solution.

Having mentioned the notion of approrimation, we note that the study of the
complexity of finding approximate solutions has also received a lot of attention.
One type of approximation problems refers to an objective function defined on the
set of potential solutions. Rather than finding a solution that attains the optimal
value, the approximation task consists of finding a solution that attains an “almost
optimal” value, where the notion of “almost optimal” may be understood in dif-
ferent ways giving rise to different levels of approximation. Interestingly, in many
cases, even a very relaxed level of approximation is as difficult to obtain as solving
the original (exact) search problem (i.e., finding an approximate solution is as hard
as finding an optimal solution). Surprisingly, these hardness of approximation re-
sults are related to the study of probabilistically checkable proofs, which are proofs
that allow for ultra-fast probabilistic verification. Amazingly, every proof can be
efficiently transformed into one that allows for probabilistic verification based on
probing a constant number of bits (in the alleged proof). Turning back to approx-
imation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. An-
other natural relaxation is the study of average-case complexity, where the “aver-
age” is taken over some “simple” distributions (representing a model of the prob-
lem’s instances that may occur in practice). We stress that, although it was not
stated explicitly, the entire discussion so far has referred to “worst-case” analysis
of algorithms. We mention that worst-case complexity is a more robust notion
than average-case complexity. For starters, one avoids the controversial question
of what are the instances that are “important in practice” and correspondingly
the selection of the class of distributions for which average-case analysis is to be
conducted. Nevertheless, a relatively robust theory of average-case complexity has
been suggested, albeit it is less developed than the theory of worst-case complexity.

In view of the central role of randomness in complexity theory (as evident, say,
in the study of pseudorandomness, probabilistic proof systems, and cryptography),
one may wonder as to whether the randomness needed for the various applications
can be obtained in real-life. One specific question, which received a lot of atten-
tion, is the possibility of “purifying” randomness (or “extracting good randomness
from bad sources”). That is, can we use “defected” sources of randomness in or-
der to implement almost perfect sources of randomness. The answer depends, of
course, on the model of such defected sources. This study turned out to be related
to complexity theory, where the most tight connection is between some type of
randomness extractors and some type of pseudorandom generators.

So far we have focused on the time complexity of computational tasks, while
relying on the natural association of efficiency with time. However, time is not
the only resource one should care about. Another important resource is space:
the amount of (temporary) memory consumed by the computation. The study
of space complexity has uncovered several fascinating phenomena, which seem to
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indicate a fundamental difference between space complexity and time complexity.
For example, in the context of space complexity, verifying proofs of validity of
assertions (of any specific type) has the same complexity as verifying proofs of
invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of
some mountain tops, and dizziness is to be expected. Needless to say, the rest of
the book offers a totally different touring experience. We will climb some of these
mountains by foot, step by step, and will often stop to look around and reflect.

Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-
sults are not known for many of the “big questions” of complexity theory (most
notably the P-versus-NP Question). However, several highly non-trivial absolute
results have been proved. For example, it was shown that using negation can
speed-up the computation of monotone functions (which do not require negation
for their mere computation). In addition, many promising techniques were intro-
duced and employed with the aim of providing a low-level analysis of the progress of
computation. However, as stated in the preface, the focus of this book is elsewhere.

1.1.2 Characteristics of Complexity Theory

We are successful because we use the right level of abstraction

Avi Wigderson (1996)

Using the “right level of abstraction” seems to be a main characteristic of the The-
ory of Computation at large. The right level of abstraction means abstracting away
second-order details, which tend to be context-dependent, while using definitions
that reflect the main issues (rather than abstracting them away too). Indeed, using
the right level of abstraction calls for an extensive exercising of good judgment, and
one indication for having chosen the right abstractions is the result of their study.

One major choice of the theory of computation, which is currently taken for
granted, is the choice of a model of computation and corresponding complexity
measures and classes. Two extreme choices that were avoided are a too realistic
model and a too abstract model. On the one hand, the main model of computation
used in complexity theory does not try to reflect (or mirror) the specific operation
of real-life computers used at a specific historical time. Such a choice would have
made it very hard to develop complexity theory as we know it and to uncover
the fundamental relations discussed in this book: the mass of details would have
obscured the view. On the other hand, avoiding any reference to any concrete
model (like in the case of recursive function theory) does not encourage the intro-
duction and study of natural measures of complexity. Indeed, as we shall see in
Section 1.2.3, the choice was (and is) to use a simple model of computation (which
does not mirror real-life computers), while avoiding any effects that are specific to
that model (by keeping a eye on a host of variants and alternative models). The
freedom from the specifics of the basic model is obtained by considering complexity
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classes that are invariant under a change of model (as long as the alternative model
is “reasonable”).

Another major choice is the use of asymptotic analysis. Specifically, we con-
sider the complexity of an algorithm as a function of its input length, and study
the asymptotic behavior of this function. It turns out that structure that is hidden
by concrete quantities appears at the limit. Furthermore, depending on the case,
we classify functions according to different criteria. For example, in case of time
complexity we consider classes of functions that are closed under multiplication,
whereas in case of space complexity we consider closure under addition. In each
case, the choice is governed by the nature of the complexity measure being consid-
ered. Indeed, one could have developed a theory without using these conventions,
but this would have resulted in a far more cumbersome theory. For example, rather
than saying that finding a satisfying assignment for a given formula is polynomial-
time reducible to deciding the satisfiability of some other formulae, one could have
stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem.

Both the aforementioned choices are common to other branches of the theory of
computation. One aspect that makes complexity theory unique is its perspective
on the most basic question of the theory of computation; that is, the way it studies
the question of what can be efficiently computed. The perspective of complexity
theory is general in nature. This is reflected in its primary focus on the relevant
notion of efficiency (captured by corresponding resource bounds) rather than on
specific computational problems. In most cases, complexity theoretic studies do
not refer to any specific computational problems or refer to such problems merely
as an illustration. Furthermore, even when specific computational problems are
studied, this study is (explicitly or at least implicitly) aimed at understanding the
computational limitations of certain resource bounds.

The aforementioned general perspective seems linked to the significant role of
conceptual considerations in the field: The rigorous study of an intuitive notion of
efficiency must be initiated with an adequate choice of definitions. Since this study
refers to any possible (relevant) computation, the definitions cannot be derived by
abstracting some concrete reality (e.g., a specific algorithmic schema). Indeed, the
definitions attempt to capture any possible reality, which means that the choice
of definitions is governed by conceptual principles and not merely by empirical
observations.

1.1.3 Contents of this book

This book is intended to serve as an introduction to Computational Complexity
that can be used either as a textbook or for self-study. It consists of ten chapters
and seven appendices. The chapters constitute the core of this book and are written
in a style adequate for a textbook, whereas the appendices provide additional
perspective and are written in the style of a survey article.

Section 1.2 and Chapter 2 are a prerequisite to the rest of the book. Technically
speaking, the notions and results that appear in these parts are extensively used
in the rest of the book. More importantly, the former parts are the conceptual
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framework that shapes the field and provides a good perspective on the field’s
questions and answers. Indeed, Section 1.2 and Chapter 2 provide the very basic
material that must be understood by anybody having an interest in complexity
theory.

In contrast, the rest of the book covers more advanced material, which means
that none of it can be claimed to be absolutely necessary for a basic understanding
of complexity theory. Indeed, although some advanced chapters refer to material in
other advanced chapters, the relation between these chapters is not a fundamental
one. Thus, one may choose to read and /or teach an arbitrary subset of the advanced
chapters and do so in an arbitrary order, provided one is willing to follow the
relevant references to some parts of other chapters (see Figure 1.1). Needless to
say, we recommend reading and/or teaching all the advanced chapters, and doing
so by following the order presented in this book.

The rest of this section provides a brief summary of the contents of the various
chapters and appendices. This summary is intended for the teacher and/or the
expert, whereas the student is referred to the more reader-friendly summaries that
appear in the book’s prefix.

Section 1.2: Preliminaries. This section provides the relevant background on
computability theory, which is the basis for the rest of this book (as well as for
complexity theory at large). Most importantly, it contains a discussion of central
notions such as search and decision problems, algorithms that solve such problems,
and their complexity. In addition, this section presents non-uniform models of
computation (e.g., Boolean circuits).

Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NP
Question both in terms of search problems and in terms of decision problems. The
second main topic of this chapter is the theory of NP-completeness. The chapter
also provides a treatment of the general notion of a (polynomial-time) reduction,
with special emphasis on self-reducibility. Additional topics include the existence of
problems in NP that are neither NP-complete nor in P, optimal search algorithms,
the class coNP, and promise problems.

Chapter 3: Variations on P and NP. This chapter provides a treatment
of non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy
(PH). Each of the two classes is defined in two equivalent ways (e.g., P/poly is
defined both in terms of circuits and in terms of “machines that take advice”). In
addition, it is shown that if NP is contained in P/poly then PH collapses to its
second level (i.e., ¥j).

Chapter 4: More Resources, More Power? The focus of this chapter is
on Hierarchy Theorems, which assert that typically more resources allow for solv-
ing more problems. These results depend on using bounding functions that can
be computed without exceeding the amount of resources that they specify, and
otherwise Gap Theorems may apply.
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Figure 1.1: Dependencies among the advanced chapters.

Chapter 5: Space Complexity. Among the results presented in this chapter
are a log-space algorithm for testing connectivity of (undirected) graphs, a proof
that 'L = coN L, and complete problems for N'£ and PSP ACE (under log-space
and poly-time reductions, respectively).

Chapter 6: Randomness and Counting. This chapter focuses on various
randomized complexity classes (i.e., BPP, RP, and ZPP) and the counting class
#P. The results presented in this chapter include BPP C P/poly and BPP C
Yo, the #P-completeness of the Permanent, the connection between approximate
counting and uniform generation of solutions, and the randomized reductions of
approximate counting to NP and of NP to solving problems with unique solutions.
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Chapter 7: The Bright Side of Hardness. This chapter deals with two con-
jectures that are related to P # N'P. The first conjecture is that there are problems
in £ that are not solvable by (non-uniform) families of small (say polynomial-size)
circuits, whereas the second conjecture is equivalent to the notion of one-way func-
tions. Most of this chapter is devoted to “hardness amplification” results that
convert these conjectures into tools that can be used for non-trivial derandomiza-
tions of BPP (resp., for a host of cryptographic applications).

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-
tion of computational indistinguishability and corresponding notions of pseudoran-
domness. The definition of general-purpose pseudorandom generators (running in
polynomial-time and withstanding any polynomial-time distinguisher) is presented
as a special case of a general paradigm. The chapter also contains a presentation
of other instantiations of the latter paradigm, including generators aimed at deran-
domizing complexity classes such as BPP, generators withstanding space-bounded
distinguishers, and some special-purpose generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides a treatment
of three types of probabilistic proof systems: interactive proofs, zero-knowledge
proofs, and probabilistic checkable proofs. The results presented include ZP =
PSPACE, zero-knowledge proofs for any NP-set, and the PCP Theorem. For the
latter, only overviews of the two different known proofs are provided.

Chapter 10: Relaxing the Requirement. This chapter provides a treatment
of two types of approximation problems and a theory of average-case (or rather
typical-case) complexity. The traditional type of approximation problems refers
to search problems and consists of a relaxation of standard optimization prob-
lems. The second type is known as “property testing” and consists of a relaxation
of standard decision problems. The theory of average-case complexity involves
several non-trivial definitional choices (e.g., an adequate choice of the class of dis-
tributions).

Appendix A: Glossary of Complexity Classes. The glossary provides self-
contained definitions of most complexity classes mentioned in the book.

Appendix B: On the Quest for Lower Bounds. The first part, devoted
to Circuit Complexity, reviews lower bounds for the size of (restricted) circuits
that solve natural computational problems. The second part, devoted to Proof
Complexity, reviews lower bounds on the length of (restricted) propositional proofs
of natural tautologies.

Appendix C: On the Foundations of Modern Cryptography. The first
part of this appendix augments the partial treatment of one-way functions, pseu-
dorandom generators, and zero-knowledge proofs (which is included in Chapters
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7-9). Using these basic tools, the second part provides a treatment of basic cryp-
tographic applications such as Encryption, Signatures, and General Cryptographic
Protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-
domization. The probabilistic preliminaries include conventions regarding ran-
dom variables and overviews of three useful inequalities (i.e., Markov Inequality,
Chebyshev’s Inequality, and Chernoff Bound). The advanced topics include con-
structions of hashing functions and variants of the Leftover Hashing Lemma, and
overviews of samplers and extractors (i.e., the problem of randomness extraction).

Appendix E: Explicit Constructions. This appendix focuses on various com-
putational aspects of error correcting codes and expander graphs. On the topic
of codes, the appendix contains a review of the Hadamard code, Reed-Solomon
codes, Reed-Muller codes, and a construction of a binary code of constant rate and
constant relative distance. Also included are a brief review of the notions of locally
testable and locally decodable codes, and a list-decoding bound. On the topic of
expander graphs, the appendix contains a review of the standard definitions and
properties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zag
constructions.

Appendix F: Some Omitted Proofs. This appendix contains some proofs
that are beneficial as alternatives to the original and/or standard presentations.
Included are proofs that PH is reducible to #P via randomized Karp-reductions,

and that ZP(f) € AM(O(f)) € AM(f).

Appendix G: Some Computational Problems. This appendix contains a
brief introduction to graph algorithms, Boolean formulae, and finite fields.

Bibliography. As stated in §1.1.4.4, we tried to keep the bibliographic list as
short as possible (and still reached a couple of hundreds of entries). As a result
many relevant references were omitted. In general, our choice of references was
biased in favor of textbooks and survey articles. We tried, however, not to omit
references to key papers in an area.

Absent from this book. As stated in the preface, the current book does not
provide a uniform cover of the various areas of complexity theory. Notable omis-
sions include the areas of circuit complexity (cf. [43, 225]) and proof complexity
(cf. [25]), which are briefly reviewed in Appendix B. Additional topics that are
commonly covered in complexity theory courses but omitted here include the study
of branching programs and decision trees (cf. [226]), parallel computation [134], and
communication complezity [142]. We mention that the recent textbook of Arora
and Barak [13] contains a treatment of all these topics. Finally, we mention two
areas that we consider related to complexity theory, although this view is not very
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common. These areas are distributed computing [16] and computational learning
theory [136].

1.1.4 Approach and style of this book

According to a common opinion, the most important aspect of a scientific work
is the technical result that it achieves, whereas explanations and motivations are
merely redundancy introduced for the sake of “error correction” and/or comfort. It
is further believed that, like in a work of art, the interpretation of the work should
be left with the reader (or viewer or listener).

The author strongly disagrees with the aforementioned opinions, and argues
that there is a fundamental difference between art and science, and that this dif-
ference refers exactly to the meaning of a piece of work. Science is concerned with
meaning (and not with form), and in its quest for truth and/or understanding sci-
ence follows philosophy (and not art). The author holds the opinion that the most
important aspects of a scientific work are the intuitive question that it addresses,
the reason that it addresses this question, the way it phrases the question, the ap-
proach that underlies its answer, and the ideas that are embedded in the answer.
Following this view, it is important to communicate these aspects of the work, and
the current book is written accordingly.

The foregoing issues are even more acute when it comes to complexity theory,
firstly because conceptual considerations seems to play an even more central role in
complexity theory (as opposed to other fields; cf., Section 1.1.2). Furthermore (or
maybe consequently), complexity theory is extremely rich in conceptual content.
Unfortunately, this content is rarely communicated (explicitly) in books and/or
surveys of the area.> The annoying (and quite amazing) consequences are students
that have only a vague understanding of the meaning and general relevance of the
fundamental notions and results that they were taught. The author’s view is that
these consequences are easy to avoid by taking the time to explicitly discuss the
meaning of definitions and results. A related issue is using the “right” definitions
(i.e., those that reflect better the fundamental nature of the notion being defined)
and teaching things in the (conceptually) “right” order.

1.1.4.1 The general principle

In accordance with the foregoing, the focus of this book is on the conceptual aspects
of the technical material. Whenever presenting a subject, the starting point is the
intuitive questions being addressed. The presentation explains the importance of
these questions, the specific ways that they are phrased (i.e., the choices made in
the actual formulation), the approaches that underly the answers, and the ideas
that are embedded in these answers. Thus, a significant portion of the text is

31t is tempting to speculate on the reasons for this phenomenon. One speculation is that
communicating the conceptual content of complexity theory involves making bold philosophical
assertions that are technically straightforward, whereas this combination does not fit the person-
ality of most researchers in complexity theory.
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devoted to motivating discussions that refer to the concepts and ideas that underly
the actual definitions and results.

The material is organized around conceptual themes, which reflect fundamen-
tal notions and/or general questions. Specific computational problems are rarely
referred to, with exceptions that are used either for sake of clarity or because the
specific problem happens to capture a general conceptual phenomenon. For exam-
ple, in this book, “complete problems” (e.g., NP-complete problems) are always
secondary to the class for which they are complete.*

1.1.4.2 On a few specific choices

Our technical presentation often differs from the standard one. In many cases
this is due to conceptual considerations. At times, this leads to some technical
simplifications. In this section we only discuss general themes and/or choices that
have a global impact on much of the presentation.

Avoiding non-deterministic machines. We try to avoid non-deterministic
machines as much as possible. As argued in several places (e.g., Section 2.1.4),
we believe that these fictitious “machines” have a negative effect both from a
conceptual and technical point of view. The conceptual damage caused by using
non-deterministic machines is that it is unclear why one should care about what
such machines can do. Needless to say, the reason to care is clear when noting that
these fictitious “machines” offer a (convenient or rather slothful) way of phrasing
fundamental issues. The technical damage caused by using non-deterministic ma-
chines is that they tend to confuse the students. Furthermore, they do not offer
the best way to handle more advanced issues (e.g., counting classes).

In contrast, we use search problems as the basis for much of the presentation.
Specifically, the class PC (see Definition 2.3), which consists of search problems
having efficiently checkable solutions, plays a central role in our presentation. In-
deed, defining this class is slightly more complicated than the standard definition
of NP (based on non-deterministic machines), but the technical benefits start ac-
cumulating as we proceed. Needless to say, the class PC is a fundamental class
of computational problems and this fact is the main motivation to its presenta-
tion. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Question
consists of asking whether every search problem in PC can be solved efficiently.)

Avoiding model-dependent effects. Our focus is on the notion of efficient
computation. A rigorous definition of this notion seems to require reference to
some concrete model of computation; however, all questions and answers considered

4We admit that a very natural computational problem can give rise to a class of problems that
are computationally equivalent to it, and that in such a case the class may be less interesting
than the original problem. This is not the case for any of the complexity classes presented in
this book. Still, in some cases (e.g., NP and #7P), the historical evolution actually went from a
specific computational problem to a class of problems that are computationally equivalent to it.
However, in all cases presented in this book, a retrospective evaluation suggests that the class is
actually more important than the original problem.
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in this book are invariant under the choice of such a concrete model, provided
of course that the model is “reasonable” (which, needless to say, is a matter of
intuition). Indeed, the foregoing text reflects the tension between the need to
make rigorous definitions and the desire to be independent of technical choices,
which are unavoidable when making rigorous definitions. Furthermore, in contrast
to common beliefs, the foregoing comments refer not only to time-complexity but
also to space-complexity. However, in both cases, the claim of invariance may not
hold for marginally small resources (e.g., linear-time or sub-logarithmic space).

In contrast to the foregoing paragraph, in some cases we choose to be specific.
The most notorious case is the association of efficiency with polynomial-time (see
§1.2.3.4). Indeed, all the questions and answers regarding efficient computation can
be phrased without referring to polynomial-time (i.e., by stating explicit functional
relations between the complexities of the problems involved), but such a generalized
treatment will be painful to follow.

1.1.4.3 On the presentation of technical details

In general, the more complex the technical material is, the more levels of exposi-
tions we employ (starting from the most high-level exposition, and when necessary
providing more than one level of details). In particular, whenever a proof is not
very simple, we try to present the key ideas first, and postpone implementation
details to later. We also try to clearly indicate the passage from a high-level presen-
tation to its implementation details (e.g., by using phrases such as “details follow”).
In some cases, especially in the case of advanced results, only proof sketches are
provided and the implication is that the reader should be able to fill-up the missing
details.

Few results are stated without a proof. In some of these cases the proof idea
or a proof overview is provided, but the reader is not expected to be able to fill-up
the highly non-trivial details. (In these cases, the text clearly indicates this state
of affairs.) One notable example is the proof of the PCP Theorem (Theorem 9.16).

We tried to avoid the presentation of material that, in our opinion, is neither
the “last word” on the subject nor represents the “right” way of approaching the
subject. Thus, we do not always present the “best” known result.

1.1.4.4 Organizational principles

Each of the main chapters starts with a high-level summary and ends with chapter
notes and exercises. The latter are not aimed at testing or inspiring creativity, but
are rather designed to help and verify the basic understanding of the main text. In
some cases, exercises (augmented by adequate guidelines) are used for presenting
additional related material.

The book contains material that ranges from topics that are currently taught
in undergraduate courses on computability (and basic complexity) to topics that
are currently taught mostly in advanced graduate courses. Although this situation
may (and hopefully will) change in the future, we believe that it will remain to be
the case that typical readers of the advanced chapters will be more sophisticated
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than typical readers of the basic chapters (i.e., Section 1.2 and Chapter 2). Ac-
cordingly, the style of presentation becomes more sophisticated as one progresses
from Chapter 2 to later chapters.

As stated in the preface, this book focuses on the high-level approach to com-
plexity theory, whereas the low-level approach (i.e., lower bounds) is only briefly
reviewed (in Appendix B). Other appendices contain material that is closely re-
lated to complexity theory but is not an integral part of it (e.g., the Foundations
of Cryptography).® Further details on the contents of the various chapters and
appendices are provided in Section 1.1.3.

In an attempt to keep the bibliographic list from becoming longer than an
average chapter, we omitted many relevant references. One trick used towards this
end is referring to lists of references in other texts, especially when these texts are
cited anyhow. Indeed, our choices of references were biased in favor of textbooks
and survey articles, because we believe that they provide the best way to further
learn about a research direction and/or approach. We tried, however, not to omit
references to key papers in an area. In some cases, when we needed a reference for
a result of interest and could not resort to the aforementioned trick, we cited also
less central papers.

As a matter of policy, we tried to avoid credits in the main text. The few
exceptions are either pointers to texts that provide details that we chose to omit
or usage of terms (bearing researchers’ names) that are too popular to avoid.

Teaching note: The text also includes some teaching notes, which are typeset as this
one. Some of these notes express quite opinionated recommendations and/or justify
various expositional choices made in the text.

1.1.4.5 Additional notes

The author’s guess is that the text will be criticized for lengthy discussions of tech-
nically trivial issues. Indeed, most researchers dismiss various conceptual clarifica-
tions as being trivial and devote all their attention to the technically challenging
parts of the material. The consequence is students that master the technical ma-
terial but are confused about its meaning. In contrast, the author recommends
not being embarrassed of devoting time to conceptual clarifications, even if some
students may view them as obvious.

The motivational discussions presented in the text do not necessarily represent
the original motivation of the researchers that pioneered a specific study and/or
contributed greatly to it. Instead, these discussions provide what the author con-
siders to be a good motivation and/or perspective on the corresponding concepts.

1.1.5 Standard notations and other conventions

Following are some notations and conventions that are freely used in this book.

5As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-
tography within a course on complexity theory. Indeed, cryptography may be claimed to be
the most appealing application of complexity theory, but a superficial treatment of cryptography
(from this perspective) is likely to be misleading and cause more harm than good.



1.2. COMPUTATIONAL TASKS AND MODELS 19

Standard asymptotic notation: When referring to integral functions, we use
the standard asymptotic notation; that is, for f,g : N — N, we write f = O(g)
(resp., f = Q(g)) if there exists a constant ¢ > 0 such that f(n) < c¢-g(n) (resp.,
f(n) > c¢-g(n)) holds for all n € N. We usually denote by “poly” an unspecified
polynomial, and write f(n) = poly(n) instead of “there exists a polynomial p such
that f(n) < p(n) for all n € N.” We also use the notation f = O(g) that mean
f(n) = poly(logn) - g(n), and = o(g) (resp., f = w(g)) that mean f(n) < c- g(n)
(resp., f(n) > c¢- g(n)) for every constant ¢ > 0 and all sufficiently large n.

Integrality issues: Typically, we ignore integrality issues. This means that we
may assume that log, n is an integer rather than using a more cumbersome form as
|log, n|. Likewise, we may assume that various equalities are satisfied by integers
(e.g., 2" = m™), even when this cannot possibly be the case (e.g., 2" = 3™). In
all these cases, one should consider integers that approximately satisfy the relevant
equations (and deal with the problems that emerge by such approximations, which
will be ignored in the current text).

Standard combinatorial and graph theory terms and notation: For any
set S, we denote by 2° the set of all subsets of S (i.e., 2° = {S': §'C S}). For

a natural number n € N, we denote [n] def {1,...,n}. Many of the computational
problems refer to finite (undirected) graphs. Such a graph, denoted G = (V, E),
consists of a set of vertices, denoted V', and a set of edges, denoted E, which are
unordered pairs of vertices. By default, graphs are undirected, whereas directed
graphs consists of vertices and directed edges, where a directed edge is an order
pair of vertices. We also refer to other graph theoretic terms such as connectivity,
being acyclic (i.e., having no simple cycles), being a tree (i.e., being connected and
acyclic), k-colorability, etc. For further background on graphs and computational
problems regarding graphs, the reader is referred to Appendix G.1.

Typographic conventions: We denote formally defined complexity classes by
calligraphic letters (e.g., N'P), but we do so only after defining these classes. Fur-
thermore, when we wish to maintain some ambiguity regarding the specific formu-
lation of a class of problems we use Roman font (e.g., NP may denote either a class
of search problems or a class of decision problems). Likewise, we denote formally
defined computational problems by typewriter font (e.g., SAT). In contrast, generic
problems and algorithms will be denoted by italic font.

1.2 Computational Tasks and Models

We start by introducing the general framework for our discussion of computational
tasks (or problems) This framework refers to the representation of instances and
to two types of tasks (i.e., searching for solutions and making decisions). Once the
stage is set, we consider two types of models of computation: uniform models that
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correspond to the intuitive notion of an algorithm, and non-uniform models (e.g.,
Boolean circuits) that facilitates a closer look at the way computation progresses.

Contents of Section 1.2. The contents of Sections 1.2.1-1.2.3 corresponds to a
traditional Computability course, except that it includes a keen interest in universal
machines (see §1.2.3.3), a discussion of the association of efficient computation with
polynomial-time algorithm (§1.2.3.4), and a definition of oracle machines (§1.2.3.5).
This material (with the exception of Kolmogorov Complexity) is taken for granted
in the rest of the current book. (We also call the reader’s attention to the dis-
cussion of generic complexity classes in Section 1.2.5.) In contrast, Section 1.2.4
presents basic preliminaries regarding non-uniform models of computation (i.e.,
various types of Boolean circuits), and these are only used lightly in the rest of the
book. Thus, whereas Sections 1.2.1-1.2.3 (and 1.2.5) are absolute prerequisites for
the rest of this book, Section 1.2.4 is not.

Teaching note: The author believes that there is no real need for a semester-long
course in Computability (i.e., a course that focuses on what can be computed rather
than on what can be computed efficiently). Instead, undergraduates should take a
course in Computational Complexity, which should contain the computability aspects
that serve as a basis for the rest of the course. Specifically, the former aspects should
occupy at most 25% of the course, and the focus should be on basic complexity issues
(captured by P, NP, and NP-completeness) augmented by a selection of some more
advanced material. Indeed, such a course can be based on Chapters 1 and 2 of the

current book (augmented by a selection of some topics from other chapters).

1.2.1 Representation

In Mathematics and related sciences, it is customary to discuss objects without
specifying their representation. This is not possible in the theory of computation,
where the representation of objects plays a central role. In a sense, a computation
merely transforms one representation of an object to another representation of the
same object. In particular, a computation designed to solve some problem merely
transforms the problem instance to its solution, where the latter can be though of
as a (possibly partial) representation of the instance. Indeed, the answer to any
fully specified question is implicit in the question itself.

Computation refers to objects that are represented in some canonical way, where
such canonical representation provides an “explicit” and “full” (but not “overly
redundant”) description of the corresponding object. We will consider only finite
objects like sets, graphs, numbers, and functions (and keep distinguishing these
types of objects although, actually, they are all equivalent). (For example, see
Appendix G.1 for a discussion of the representation of graphs.)

Strings. We consider finite objects, each represented by a finite binary sequence,
called a string. For a natural number n, we denote by {0,1}"™ the set of all strings
of length n, hereafter referred to as m-bit strings. The set of all strings is denoted
{0,1}*; that is, {0,1}* = U,,cn{0,1}". For z€{0,1}*, we denote by |z| the length
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of z (i.e., 7€{0,1}/®l), and often denote by z; the i*® bit of z (i.e., z = z1 25 - - “Tg|)-
For z,y € {0,1}*, we denote by zy the string resulting from concatenation of the
strings = and y.

At times, we associate {0,1}*x{0,1}* with {0, 1}*; the reader should merely
consider an adequate encoding (e.g., the pair (1 - - Ty, y1 - - - yn) €{0,1}*x {0, 1}*
may be encoded by the string z;21 -+ Tz, 01ly; - - -y, € {0,1}*). Likewise, we
may represent sequences of strings (of fixed or varying length) as single strings.
When we wish to emphasize that such a sequence (or some other object) is to be
counsidered as a single object we use the notation (-) (e.g., “the pair (z,y) is encoded
as the string (z,y)”).

Numbers. Unless stated differently, natural numbers will be encoded by their
binary expansion; that is, the string b,_1---b1bp € {0,1}"™ encodes the number
Z?:_Ol b; - 2¢, where typically we assume that this representation has no leading
zeros (i.e., b,_1 = 1). Rational numbers will be represented as pairs of natural
numbers. In the rare cases in which one considers real numbers as part of the
input to a computational problem, one actually mean rational approximations of
these real numbers.

Special symbols. We denote the empty string by A (i.e., A € {0,1}* and |\| = 0),
and the empty set by 0. It will be convenient to use some special symbols that
are not in {0,1}*. One such symbol is L, which typically denotes an indication by
some algorithm that something is wrong.

1.2.2 Computational Tasks

Two fundamental types of computational tasks are so-called search problems and
decision problems. In both cases, the key notions are the problem’s instances and
the problem’s specification.

1.2.2.1 Search problems

A search problem consists of a specification of a set of valid solutions (possibly an
empty one) for each possible instance. That is, given an instance, one is required
to find a corresponding solution (or to determine that no such solution exists).
For example, consider the problem in which one is given a system of equations
and is asked to find a valid solution. Needless to say, much of computer science
is concerned with solving various search problems (e.g., finding shortest paths in
a graph, sorting a list of numbers, finding an occurrence of a given pattern in a
given string, etc). Furthermore, search problems correspond to the daily notion
of “solving a problem” (e.g., finding one’s way between two locations), and thus a
discussion of the possibility and complexity of solving search problems corresponds
to the natural concerns of most people.

In the following definition of solving search problems, the potential solver is a
function (which may be thought of as a solving strategy), and the sets of possible
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solutions associated with each of the various instances are “packed” into a single
binary relation.

Definition 1.1 (solving a search problem): Let R C {0,1}* x {0,1}* and R(x) =
{y : (z,y) € R} denote the set of solutions for the instance x. A function f :
{0,1}* — {0,1}* U {L} solves the search problem of R if for every x the following
holds: if R(z) # 0 then f(z) € R(x) and otherwise f(z) = L.

Indeed, R = {(z,y) : y€ R(x)}, and the solver f is required to find a solution (i.e.,
given x output y € R(x)) whenever one exists (i.e., the set R(x) is not empty). It
is also required that the solver f never outputs a wrong solution (i.e., if R(x) # 0
then f(z) € R(z) and if R(z) = 0 then f(z) = L), which in turn means that f
indicates whether x has any solution.

A special case of interest is the case of search problems having a unique solution
(for each possible instance); that is, the case that |R(z)| = 1 for every z. In this
case, R is essentially a (total) function, and solving the search problem of R means

computing (or evaluating) the function R (or rather the function R’ defined by

R'(z) def y where R(z) = {y}). Popular examples include sorting a sequence

of numbers, multiplying integers, finding the prime factorization of a composite
number, etc.

1.2.2.2 Decision problems

A decision problem consists of a specification of a subset of the possible instances.
Given an instance, one is required to determine whether the instance is in the
specified set (e.g., the set of prime numbers, the set of connected graphs, or the
set of sorted sequences). For example, consider the problem where one is given a
natural number, and is asked to determine whether or not the number is a prime.
One important case, which corresponds to the aforementioned search problems, is
the case of the set of instances having a solution; that is, for any binary relation
R C {0,1}* x {0,1}* we consider the set {x : R(z) # 0}. Indeed, being able
to determine whether or not a solution exists is a prerequisite to being able to
solve the corresponding search problem (as per Definition 1.1). In general, decision
problems refer to the natural task of making binary decision, a task that is not
uncommon in daily life (e.g., determining whether a traffic light is red). In any
case, in the following definition of solving decision problems, the potential solver
is again a function (i.e., in this case it is a Boolean function that is supposed to
indicate membership in the said set).

Definition 1.2 (solving a decision problem): Let S C {0,1}*. A function f :
{0,1}* — {0, 1} solves the decision problem of S (or decides membership in S) if for
every x it holds that f(z) =1 if and only if x € S.

We often identify the decision problem of S with S itself, and identify S with its
characteristic function (i.e., with xs : {0,1}* — {0, 1} defined such that ys(z) =1
if and only if x € S). Note that if f solves the search problem of R then the
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Boolean function f : {0,1}* — {0,1} defined by f'(z) ® 1if and only if f(z) # L
solves the decision problem of {x : R(z) # 0}.

Most people would consider search problems to be more natural than decision
problems: typically, people seeks solutions more than they stop to wonder whether
or not solutions exist. Definitely, search problems are not less important than
decision problems, it is merely that their study tends to require more cumbersome
formulations. This is the main reason that most expositions choose to focus on
decision problems. The current book attempts to devote at least a significant
amount of attention also to search problems.

1.2.2.3 Promise problems (an advanced comment)

Many natural search and decision problems are captured more naturally by the
terminology of promise problems, where the domain of possible instances is a subset
of {0,1}* rather than {0, 1}* itself. In particular, note that the natural formulation
of many search and decision problems refers to instances of a certain types (e.g., a
system of equations, a pair of numbers, a graph), whereas the natural representation
of these objects uses only a strict subset of {0,1}*. For the time being, we ignore
this issue, but we shall re-visit it in Section 2.4.1. Here we just note that, in typical
cases, the issue can be ignored by postulating that every string represents some
legitimate object (i.e., each string that is not used in the natural representation of
these objects is postulated as a representation of some fixed object).

1.2.3 Uniform Models (Algorithms)

We are all familiar with computers and with the ability of computer programs
to manipulate data. This familiarity seems to be rooted in the positive side of
computing; that is, we have some experience regarding some things that computers
can do. In contrast, complexity theory is focused at what computers cannot do, or
rather with drawing the line between what can be done and what cannot be done.
Drawing such a line requires a precise formulation of all possible computational
processes; that is, we should have a clear model of all possible computational
processes (rather than some familiarity with some computational processes).

Before being formal, let we offer a general and abstract description, which
is aimed at capturing any artificial as well as natural process. Indeed, artificial
processes will be associated with computers, whereas by natural processes we mean
(attempts to model) the “mechanical” aspects the natural reality (be it physical,
biological, or even social).

A computation is a process that modifies an environment via repeated applica-
tions of a predetermined rule. The key restriction is that this rule is simple: in each
application it depends and affects only a (small) portion of the environment, called
the active zone. We contrast the a-priori bounded size of the active zone (and of
the modification rule) with the a-priori unbounded size of the entire environment.
We note that, although each application of the rule has a very limited effect, the
effect of many applications of the rule may be very complex. Put in other words, a
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computation may modify the relevant environment in a very complex way, although
it is merely a process of repeatedly applying a simple rule.

As hinted, the notion of computation can be used to model the “mechanical”
aspects of the natural reality; that is, the rules that determine the evolution of
the reality (rather than the specifics of reality itself). In this case, the evolution
process that takes place in the natural reality is the starting point of the study, and
the goal of the study is finding the (computation) rule that underlies this natural
process. In a sense, the goal of Science at large can be phrased as finding (simple)
rules that govern various aspects of reality (or rather one’s abstraction of these
aspects of reality).

Our focus, however, is on artificial computation rules designed by humans in
order to achieve specific desired effects on a corresponding artificial environment.
Thus, our starting point is a desired functionality, and our aim is to design compu-
tation rules that effect it. Such a computation rule is referred to as an algorithm.
Loosely speaking, an algorithm corresponds to a computer program written in a
high-level (abstract) programming language. Let us elaborate.

We are interested in the transformation of the environment affected by the
computational process (or the algorithm). Throughout (most of) this book, we
will assume that, when invoked on any finite initial environment, the computation
halts after a finite number of steps. Typically, the initial environment to which
the computation is applied encodes an input string, and the end environment (i.e.,
at termination of the computation) encodes an output string. We consider the
mapping from inputs to outputs induced by the computation; that is, for each
possible input z, we consider the output y obtained at the end of a computation
initiated with input x, and say that the computation maps input = to output y.
Thus, a computation rule (or an algorithm) determines a function (computed by
it): this function is exactly the aforementioned mapping of inputs to outputs.

In the rest of this book (i.e., outside the current chapter), we will also consider
the number of steps (i.e., applications of the rule) taken by the computation on
each possible input. The latter function is called the time complexity of the com-
putational process (or algorithm). While time complexity is defined per input, we
will often considers it per input length, taking the maximum over all inputs of the
same length.

In order to define computation (and computation time) rigorously, one needs
to specify some model of computation; that is, provide a concrete definition of
environments and a class of rules that may be applied to them. Such a model
corresponds to an abstraction of a real computer (be it a PC, mainframe or net-
work of computers). One simple abstract model that is commonly used is that of
Turing machines (see, §1.2.3.1). Thus, specific algorithms are typically formalized
by corresponding Turing machines (and their time complexity is represented by the
time complexity of the corresponding Turing machines). We stress, however, that
most results in the Theory of Computation hold regardless of the specific compu-
tational model used, as long as it is “reasonable” (i.e., satisfies the aforementioned
simplicity condition and can perform some obviously simple computations).
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What is being computed? The forgoing discussion has implicitly referred to
algorithms (i.e., computational processes) as means of computing functions. Specif-
ically, an algorithm A computes the function f4 : {0,1}* — {0,1}* defined by
fa(z)=y if, when invoked on input z, algorithm A halts with output y. However,
algorithms can also serve as means of “solving search problems” or “making de-
cisions” (as in Definitions 1.1 and 1.2). Specifically, we will say that algorithm A
solves the search problem of R (resp., decides membership in S) if f4 solves the
search problem of R (resp., decides membership in S). In the rest of this exposition
we associate the algorithm A with the function f4 computed by it; that is, we write
A(z) instead of fa(xz). For sake of future reference, we summarize the foregoing
discussion.

Definition 1.3 (algorithms as problem-solvers): We denote by A(x) the output
of algorithm A on input x. Algorithm A solves the search problem R (resp., the
decision problem S) if A, viewed as a function, solves R (resp., S).

Organization of the rest of Section 1.2.3. In §1.2.3.1 we provide a sketchy
description of the model of Turing machines. This is done merely for sake of pro-
viding a concrete model that supports the study of computation and its complexity,
whereas most of the material in this book will not depend on the specifics of this
model. In §1.2.3.2 and §1.2.3.2 we discuss two fundamental properties of any rea-
sonable model of computation: the existence of uncomputable functions and the
existence of universal computations. The time (and space) complexity of compu-
tation is defined in §1.2.3.4. We also discuss oracle machines and restricted models
of computation (in §1.2.3.5 and §1.2.3.6, respectively).

1.2.3.1 Turing machines

The model of Turing machines offer a relatively simple formulation of the notion
of an algorithm. The fact that the model is very simple complicates the design of
machines that solve problems of interest, but makes the analysis of such machines
simpler. Since the focus of complexity theory is on the analysis of machines and not
on their design, the trade-off offers by this model is suitable for our purposes. We
stress again that the model is merely used as a concrete formulation of the intuitive
notion of an algorithm, whereas we actually care about the intuitive notion and
not about its formulation. In particular, all results mentioned in this book hold for
any other “reasonable” formulation of the notion of an algorithm.

The model of Turing machines is not meant to provide an accurate (or “tight”)
model of real-life computers, but rather to capture their inherent limitations and
abilities (i.e., a computational task can be solved by a real-life computer if and only
if it can be solved by a Turing machine). In comparison to real-life computers, the
model of Turing machines is extremely over-simplified and abstract away many
issues that are of great concern to computer practice. However, these issues are
irrelevant to the higher-level questions addressed by complexity theory. Indeed, as
usual, good practice requires more refined understanding than the one provided by
a good theory, but one should first provide the latter.
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Historically, the model of Turing machines was invented before modern com-
puters were even built, and was meant to provide a concrete model of computation
and a definition of computable functions.® Indeed, this concrete model clarified
fundamental properties of computable functions and plays a key role in defining
the complexity of computable functions.

The model of Turing machines was envisioned as an abstraction of the process
of an algebraic computation carried out by a human using a sheet of paper. In
such a process, at each time, the human looks at some location on the paper, and
depending on what he/she sees and what he/she has in mind (which is little...),
he/she modifies the contents of this location and shifts his/her look to an adjacent
location.

The actual model. Following is a high-level description of the model of Turing
machines; the interested reader is referred to standard textbooks (e.g., [200]) for
further details. Recall that we need to specify the set of possible environments, the
set of machines (or computation rules), and the effect of applying such a rule on
an environment.

e The main component in the environment of a Turing machine is an infinite
sequence of cells, each capable of holding a single symbol (i.e., member of
a finite set ¥ D {0,1}). In addition, the environment contains the current
location of the machine on this sequence, and the internal state of the machine
(which is a member of a finite set ()). The aforementioned sequence of cells
is called the tape, and its contents combined with the machine’s location and
its internal state is called the instantaneous configuration of the machine.

e The Turing machine itself consists of a finite rule (i.e., a finite function), called
the transition function, which is defined over the set of all possible symbol-
state pairs. Specifically, the transition function is a mapping from ¥ x @ to
Yx@Qx{-1,0,+1}, where {—1,+1,0} correspond to a movement instruction
(which is either “left” or “right” or “stay”, respectively). In addition, the
machine’s description specifies an initial state and a halting state, and the
computation of the machine halts when the machine enters its halting state.”

We stress that, in contrast to the finite description of the machine, the tape
has an a priori unbounded length (and is considered, for simplicity, as being
infinite).

e A single computation step of such a Turing machine depends on its current
location on the tape, on the contents of the corresponding cell and on the in-
ternal state of the machine. Based on the latter two elements, the transition
function determines a new symbol-state pair as well as a movement instruc-
tion (i.e., “left” or “right” or “stay”). The machine modifies the contents of

6In contrast, the abstract definition of “recursive functions” yields a class of “computable”
functions defined recursively in terms of the composition of such functions.

"Envisioning the tape as extending from left to right, we also use the convention by which if
the machine tries to move left of the end of the tape then it is considered to have halted.
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the said cell and its internal state accordingly, and moves as directed. That
is, suppose that the machine is in state ¢ and resides in a cell containing the
symbol o, and suppose that the transition function maps (o, q) to (¢, ¢, D).
Then, the machine modifies the contents of the said cell to ¢’, modifies its
internal state to ¢’, and moves one cell in direction D. Figure 1.2 shows a
single step of a Turing machine that, when in state ‘b’ and seeing a binary
symbol o, replaces o with the symbol o + 2, maintains its internal state, and
moves one position to the right.®

Formally, we define the successive configuration function that maps each in-
stantaneous configuration to the one resulting by letting the machine take a
single step. This function modifies its argument in a very minor manner, as
described in the foregoing; that is, the contents of at most one cell (i.e., at
which the machine currently resides) is changed, and in addition the internal
state of the machine and its location may change too.

e[ efeelz s e o[- [-[-[-[-]- |-

©
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Figure 1.2: A single step by a Turing machine.

The initial environment (or configuration) of a Turing machine consists of the
machine residing in the first (i.e., left-most) cell and being in its initial state.
Typically, one also mandates that, in the initial configuration, a prefix of the tape’s
cells hold bit values, which concatenated together are considered the input, and the
rest of the tape’s cells hold a special symbol (which in Figure 1.2 is denoted by
7). Once the machine halts, the output is defined as the contents of the cells that
are to the left of its location (at termination time).® Thus, each machine defines a
function mapping inputs to outputs, called the function computed by the machine.

Multi-tape Turing machines. We comment that in most expositions, one
refers to the location of the “head of the machine” on the tape (rather than to

8Figure 1.2 corresponds to a machine that, when in the initial state (i.e., ‘a’), replaces the

symbol o by o + 4, modifies its internal state to ‘b’, and moves one position to the right. Indeed,
“marking” the leftmost cell (in order to allow for recognizing it in the future), is a common
practice in the design of Turing machines.

9By an alternative convention, the machine halts while residing in the left-most cell, and the
output is defined as the maximal prefix of the tape contents that contains only bit values.
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the “location of the machine on the tape”). The standard terminology is more
intuitive when extending the basic model, which refers to a single tape, to a model
that supports a constant number of tapes. In the model of multi-tape machines,
each step of the machine depends and effects the cells that are at the head location
of the machine on each tape. As we shall see in Chapter 5 (and in §1.2.3.4), the
extension of the model to multi-tape Turing machines is crucial to the definition of
space complexity. A less fundamental advantage of the model of multi-tape Turing
machines is that it facilitates the design of machines that compute functions of
interest.

Teaching note: We strongly recommend avoiding the standard practice of teaching
the student to program with Turing machines. These exercises seem very painful and
pointless. Instead, one should prove that a function can be computed by a Turing
machine if and only if it is computable by a model that is closer to a real-life computer
(see the following “sanity check”). For starters, one should prove that a function can be
computed by a single-tape Turing machine if and only if it is computable by a multi-tape
(e.g., two-tape) Turing machine.

The Church-Turing Thesis: The entire point of the model of Turing machines
is its simplicity. That is, in comparison to more “realistic” models of computation,
it is simpler to formulate the model of Turing machines and to analyze machines in
this model. The Church-Turing Thesis asserts that nothing is lost by considering
the Turing machine model: A function can be computed by some Turing machine
if and only if it can be computed by some machine of any other “reasonable and
general” model of computation.

This is a thesis, rather than a theorem, because it refers to an intuitive notion
that is left undefined on purpose (i.e., the notion of a reasonable and general model
of computation). The model should be reasonable in the sense that it should refer
to computation rules that are “simple” in some intuitive sense. On the other hand,
the model should allow to compute functions that intuitively seem computable. At
the very least the model should allow to emulate Turing machines (i.e., compute
the function that given a description of a Turing machine and an instantaneous
configuration returns the successive configuration).

A philosophical comment. The fact that a thesis is used to link an intuitive
concept to a formal definition is common practice in any science (or, more broadly,
in any attempt to reason rigorously about intuitive concepts). The moment an
intuition is rigorously defined, it stops being an intuition and becomes a definition,
and the question of the correspondence between the original intuition and the
derived definition arises. This question can never be rigorously treated, because
it relates to two objects, where one of them is undefined. Thus, the question
of correspondence between the intuition and the definition always transcends a
rigorous treatment (i.e., it always belongs to the domain of the intuition).

A sanity check: Turing machines can emulate an abstract RAM. To gain
confidence in the Church-Turing Thesis, one may attempt to define an abstract
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Random-Access Machine (RAM), and verify that it can be emulated by a Turing
machine. An abstract RAM consists of an infinite number of memory cells, each
capable of holding an integer, a finite number of similar registers, one designated
as program counter, and a program consisting of instructions selected from a finite
set. The set of possible instructions includes the following instructions:

e reset(r), where r is an index of a register, results in setting the value of
register r to zero.

e inc(r), where r is an index of a register, results in incrementing the content
of register 7. Similarly dec(r) causes a decrement.

e load(ry,r2), where 7 and ro are indices of registers, results in loading to
register r1 the contents of the memory location m, where m is the current
contents of register ro.

e store(ry,rs), stores the contents of register 71 in the memory, analogously
to load.

e cond-goto(r,{), where r is an index of a register and ¢ does not exceed the
program length, results in setting the program counter to £ — 1 if the content
of register r is non-negative.

The program counter is incremented after the execution of each instruction, and
the next instruction to be executed by the machine is the one to which the program
counter points (and the machine halts if the program counter exceeds the program’s
length). The input to the machine may be defined as the contents of the first n
memory cells, where n is placed in a special input register. We note that the RAM
model satisfies the Church-Turing Thesis, but in order to make it closer to real-
life computers we may augment the model with additional instructions that are
available on such computers (e.g., the instruction add(ry,r2) (resp., mult(ry,r2))
that results in adding (resp., multiplying) the contents of registers r; and ry and
placing the result in register r1). We suggest proving that this abstract RAM can
be emulated by a Turing machine.!® (Hint: note that during the emulation, we
only need to hold the input, the contents of all registers, and the contents of the
memory cells that were accessed during the computation.)!?

Observe that the abstract RAM model is significantly more cumbersome than
the Turing machine model. Furthermore, seeking a sound choice of the instruc-
tion set (i.e., the instructions to be allowed in the model) creates a vicious cycle
(because the sound guideline would have been to allow only instructions that corre-
spond to “simple” operations, whereas the latter correspond to easily computable

10We emphasize this direction of the equivalence of the two models, because the RAM model is
introduced in order to convince the reader that Turing machines are not too weak (as a model of
general computation). The fact that they are not too strong seems self-evident. Thus, it seems
pointless to prove that the RAM model can emulate Turing machines. Still, note that this is
indeed the case, by using the RAM’s memory cells to store the contents of the cells of the Turing
machine’s tape.

HThus, at each time, the Turning machine’s tape contains a list of the RAM’s memory cells
that were accessed so far as well as their current contents. When we emulate a RAM instruction,
we first check whether the relevant RAM cell appears on this list, and augment the list by a
corresponding entry or modify this entry as needed.
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functions...). This vicious cycle was avoided by trusting the reader to consider only
instructions that are available in some real-life computer. (We comment that this
empirical consideration is justifiable in the current context, because our current
goal is merely linking the Turing machine model with the reader’s experience of
real-life computers.)

1.2.3.2 Uncomputable functions

Strictly speaking, the current subsection is not necessary for the rest of this book,
but we feel that it provides a useful perspective.

In contrast to what every layman would think, we know that not all functions
are computable. Indeed, an important message to be communicated to the world
is that not every well-defined task can be solved by applying a “reasonable” pro-
cedure (i.e., a procedure that has a simple description that can be applied to any
instance of the problem at hand). Furthermore, not only is it the case that there
exist uncomputable functions, but it is rather the case that most functions are
uncomputable. In fact, only relatively few functions are computable.

Theorem 1.4 (on the scarcity of computable functions): The set of computable
functions is countable, whereas the set of all functions (from strings to string) has
cardinality N.

We stress that the theorem holds for any reasonable model of computation. In
fact, it only relies on the postulate that each machine in the model has a finite
description (i.e., can be described by a string).

Proof: Since each computable function is computable by a machine that has
a finite description, there is a 1-1 correspondence between the set of computable
functions and the set of strings (which in turn is in 1-1 correspondence to the
natural numbers). On the other hand, there is a 1-1 correspondence between the
set of Boolean functions (i.e., functions from strings to a bit) and the set of real
number in [0,1). This correspondence associates each real r € [0, 1) to the function
f:N — {0,1} such that f(i) is the i bit in the binary expansion of 7. [l

The Halting Problem: In contrast to the preliminary discussion, at this point
we consider also machines that may not halt on some inputs. (The functions
computed by such machines are partial functions that are defined only on inputs
on which the machine halts.) Again, we rely on the postulate that each machine
in the model has a finite description, and denote the description of machine M by
(M) € {0,1}*. The halting function, h : {0,1}* x {0,1}* — {0, 1}, is defined such
that h({M}), z) ' 1 if and only if M halts on input . The following result goes
beyond Theorem 1.4 by pointing to an explicit function (of natural interest) that
is not computable.

Theorem 1.5 (undecidability of the halting problem): The halting function is not
computable.
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The term undecidability means that the corresponding decision problem cannot be
solved by an algorithm. That is, Theorem 1.5 asserts that the decision problem
associated with the set h=1(1) = {((M),z) : h({(M),z) = 1} is not solvable by
an algorithm (i.e., there exists no algorithm that, given a pair ((M),z), decides
whether or not M halts on input ). Actually, the following proof shows that there
exists no algorithm that, given (M), decides whether or not M halts on input (M).

Proof: We will show that even the restriction of h to its “diagonal” (i.e., the

function d({(M)) Lef h({(M), (M))) is not computable. Note that the value of d({M}))

refers to the question of what happens when we feed M with its own description,
which is indeed a “nasty” (but legitimate) thing to do. We will actually do worse:
towards the contradiction, we will consider the value of d when evaluated at a
(machine that is related to a) machine that supposedly computes d.

We start by considering a related function, d’, and showing that this function
is uncomputable. This function is defined on purpose so to foil any attempt to
compute it; that is, for every machine M, the value d'((M)) is defined to differ

from M({M)). Specifically, the function d' : {0,1}* — {0,1} is defined such

that d'((M)) e if and only if M halts on input (M) with output 0. (That is,

d'((M)) = 0 if either M does not halt on input (M) or its output does not equal
the value 0.) Now, suppose, towards the contradiction, that d' is computable by
some machine, denoted Mgy,. Note that machine My, is supposed to halt on every
input, and so Mg, halts on input (Mgy,). But, by definition of d’, it holds that
d'((Mg,)) = 1if and only if Mg, halts on input (My,) with output O (i.e., if and
only if My, ({(Mg,)) = 0). Thus, Mg ((My,)) # d'({(Mg,)) in contradiction to the
hypothesis that My, computes d'.

We next prove that d is uncomputable, and thus h is uncomputable (because
d(z) = h(z, z) for every z). To prove that d is uncomputable, we show that if d is
computable then so is d' (which we already know not to be the case). Indeed, let
A be an algorithm for computing d (i.e., A((M)) = d((M)) for every machine M).
Then we construct an algorithm for computing d’, which given (M'), invokes A on
(M'"y, where M" is defined to operate as follows:

1. On input z, machine M" emulates M’ on input z.
2. If M’ halts on input z with output 0 then M" halts.

3. If M’ halts on input z with an output different from 0 then M" enters an
infinite loop (and thus does not halt).

4. Otherwise (i.e., M’ does not halt on input z), then machine M" does not
halt (because it just stays stuck in Step 1 forever).

Note that the mapping from (M') to (M") is easily computable (by augmenting
M' with instructions to test its output and enter an infinite loop if necessary), and
that d((M")) = d'((M')), because M" halts on x if and only if M" halts on x with
output 0. We thus derived an algorithm for computing d' (i.e., transform the input
(M'") into (M") and output A((M"))), which contradicts the already established
fact by which d’ is uncomputable. W
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Turing-reductions. The core of the second part of the proof of Theorem 1.5 is
an algorithm that solves one problem (i.e., computes d’) by using as a subroutine
an algorithm that solves another problem (i.e., computes d (or h)). In fact, the
first algorithm is actually an algorithmic scheme that refers to a “functionally spec-
ified” subroutine rather than to an actual (implementation of such a) subroutine,
which may not exist. Such an algorithmic scheme is called a Turing-reduction (see
formulation in §1.2.3.5). Hence, we have Turing-reduced the computation of d’ to
the computation of d, which in turn Turing-reduces to h. The “natural” (“posi-
tive”) meaning of a Turing-reduction of f' to f is that when given an algorithm for
computing f we obtain an algorithm for computing f’. In contrast, the proof of
Theorem 1.5 uses the “unnatural” (“negative”) counter-positive: if (as we know)
there exists no algorithm for computing f’ = @’ then there exists no algorithm for
computing f = d (which is what we wanted to prove). Jumping ahead, we mention
that resource-bounded Turing-reductions (e.g., polynomial-time reductions) play a
central role in complexity theory itself, and again they are used mostly in a “nega-
tive” way. We will define such reductions and extensively use them in subsequent
chapters.

Rice’s Theorem. The undecidability of the halting problem (or rather the fact
that the function d is uncomputable) is a special case of a more general phe-
nomenon: Every non-trivial decision problem regarding the function computed by
a given Turing machine has no algorithmic solution. We state this fact next, clar-
ifying what is the aforementioned class of problems. (Again, we refer to Turing
machines that may not halt on all inputs.)

Theorem 1.6 (Rice’s Theorem): Let F be a non-trivial subset'? of the set of all
computable partial functions, and let Sx be the set of strings that describe machines
that compute functions in F. Then deciding membership in Sx cannot be solved by
an algorithm.

Theorem 1.6 can be proved by a Turing-reduction from d. We do not provide
a proof because this is too remote from the main subject matter of the book.
We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation
(referring both to the potential solvers and to the machines the description of which
is given as input to these solvers). Thus, Theorem 1.6 means that no algorithm can
determine any non-trivial property of the function computed by a given computer
program (written in any programming language). For example, no algorithm can
determine whether or not a given computer program halts on each possible input.
The relevance of this assertion to the project of program verification is obvious.

The Post Correspondence Problem. We mention that undecidability arises
also outside of the domain of questions regarding computing devices (given as
input). Specifically, we consider the Post Correspondence Problem in which the

12The set S is called a non-trivial subset of U if both S and U \ S are non-empty. Clearly, if F
is a trivial set of computable functions then the corresponding decision problem can be solved by
a “trivial” algorithm that outputs the corresponding constant bit.
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input consists of two sequences of strings, (ay,...,ax) and (51, ..., Bk), and the
question is whether or not there exists a sequence of indices i1, ...,7¢ € {1,...,k}
such that o, -+~ oy, = B4, -+ Bi,- (We stress that the length of this sequence is not
bounded.)*?

Theorem 1.7 The Post Correspondence Problem is undecidable.

Again, the omitted proof is by a Turing-reduction from d (or h).*

1.2.3.3 Universal algorithms

So far we have used the postulate that, in any reasonable model of computation,
each machine (or computation rule) has a finite description. Furthermore, we
also used the fact that such model should allow for the easy modification of such
descriptions such that the resulting machine computes an easily related function
(see the proof of Theorem 1.5). Here we go one step further and postulate that the
description of machines (in this model) is “effective” in the following natural sense:
there exists an algorithm that, given a description of a machine (resp., computation
rule) and a corresponding environment, determines the environment that results
from performing a single step of this machine on this environment (resp. the effect
of a single application of the computation rule). This algorithm can, in turn, be
implemented in the said model of computation (assuming this model is general; see
the Church-Turing Thesis). Successive applications of this algorithm leads to the
notion of a universal machine, which (for concreteness) is formulated next in terms
of Turing machines.

Definition 1.8 (universal machines): A universal Turing machine is a Turing ma-
chine that on input a description of a machine M and an input x returns the value
of M(x) if M halts on x and otherwise does not halt.

That is, a universal Turing machine computes the partial function u that is defined
over pairs ((M),x) such that M halts on input z, in which case it holds that
u((M),x) = M(x). We note that if M halts on all possible inputs then u({M), z)
is defined for every x. We stress that the mere fact that we have defined something
does not mean that it exists. Yet, as hinted in the foregoing discussion and obvious
to anyone who has written a computer program (and thought about what he/she
was doing), universal Turing machines do exist.

Theorem 1.9 There exists a universal Turing machine.

Theorem 1.9 asserts that the partial function u is computable. In contrast, it can
be shown that any extension of u to a total function is uncomputable. That is, for

13In contrast, the existence of an adequate sequence of a specified length can be determined in
time that is exponential in this length.

14We mention that the reduction maps an instance ((M),z) of h to a pair of sequences such
that only the first string in each sequence depends on x, whereas the other strings as well as their
number depend only on M.
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any total function 4 that agrees with the partial function u on all the inputs on
which the latter is defined, it holds that @ is uncomputable.t®

Proof: Given a pair ({(M),x), we just emulate the computation of machine M
on input . This emulation is straightforward, because (by the effectiveness of the
description of M) we can iteratively determine the next instantaneous configuration
of the computation of M on input z. If the said computation halts then we will
obtain its output and can output it (and so, on input ((M),z), our algorithm
returns M (x)). Otherwise, we turn out emulating an infinite computation, which
means that our algorithm does not halt on input ((M),z). Thus, the foregoing
emulation procedure constitutes a universal machine (i.e., yields an algorithm for
computing u). W

As hinted already, the existence of universal machines is the fundamental fact
underlying the paradigm of general-purpose computers. Indeed, a specific Turing
machine (or algorithm) is a device that solves a specific problem. A priori, solving
each problem would have required building a new physical device that allows for this
problem to be solved in the physical world (rather than as a thought experiment).
The existence of a universal machine asserts that it is enough to build one physical
device; that is, a general purpose computer. Any specific problem can then be
solved by writing a corresponding program to be executed (or emulated) by the
general purpose computer. Thus, universal machines correspond to general purpose
computers, and provide the basis for separating hardware from software. In other
words, the existence of universal machines says that software can be viewed as
(part of the) input.

In addition to their practical importance, the existence of universal machines
(and their variants) has important consequences in the theories of computability
and computational complexity. Here we merely note that Theorem 1.9 implies that
many questions about the behavior of a universal machine on certain input types are
undecidable. For example, it follows that, for some fixed machines (i.e., universal
ones), there is no algorithm that determines whether or not the (fixed) machine
halts on a given input. Revisiting the proof of Theorem 1.7 (see Footnote 14),
it follows that the Post Correspondence Problem remains undecidable even if the
input sequences are restricted to have a specific length (i.e., k is fixed). A more
important application of universal machines to the theory of computability follows.

A detour: Kolmogorov Complexity. The existence of universal machines,
which may be viewed as universal languages for writing effective and succinct
descriptions of objects, plays a central role in Kolmogorov Complexity. Loosely
speaking, the latter theory is concerned with the length of (effective) descriptions

15The claim is easy to prove for the total function @ that extends u and assigns the special

symbol L to inputs on which u is undefined (i.e., a({(M), z) 2" | ifu is not defined on (M), z)

and 4((M), x) ef u((M), x) otherwise). In this case h((M),z) = 1 if and only if 4((M),z) # L,

and so the halting function h is Turing-reducible to 4. In the general case, we may adapt the
proof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holds
that 4((M),z) = u({(M), z) for every z (and in particular for x = (M)).



1.2. COMPUTATIONAL TASKS AND MODELS 35

of objects, and views the minimum such length as the inherent “complexity” of the
object; that is, “simple” objects (or phenomena) are those having short description
(resp., short explanation), whereas “complex” objects have no short description.
Needless to say, these (effective) descriptions have to refer to some fixed “language”
(i-e., to a fixed machine that, given a succinct description of an object, produces
its explicit description). Fixing any machine M, a string z is called a description
of s with respect to M if M(xz) = s. The complexity of s with respect to M, de-
noted Kj(s), is the length of the shortest description of s with respect to M.
Certainly, we want to fix M such that every string has a description with respect
to M, and furthermore such that this description is not “significantly” longer than
the description with respect to a different machine M'. The following theorem
make it natural to use a universal machine as the “point of reference” (i.e., as the
aforementioned M).

Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-
chine. Then, for every machine M', there exists a constant ¢ such that Ky(s) <
K yy(s) + ¢ for every string s.

The theorem follows by (setting ¢ = O(|(M')|) and) observing that if z is a de-
scription of s with respect to M’ then ((M'),z) is a description of s with respect
to U. Here it is important to use an adequate encoding of pairs of strings (e.g.,
the pair (o1 -+ -0k, 71 -+ 7¢) is encoded by the string o107 - - 00,017 - - - 7¢). Fix-
ing any universal machine U, we define the Kolmogorov Complexity of a string s as

K(s) LK v(s). The reader may easily verify the following facts:

1. K(s) < [s| + O(1), for every s.
(Hint: apply Theorem 1.10 to a machine that computes the identity map-
ping.)

2. There exist infinitely many strings s such that K(s) < |s].

(Hint: consider s = 1™. Alternatively, consider any machine M such that
|M(z)| > |z| for every z.)

3. Some strings of length n have complexity at least n. Furthermore, for every
n and 1, _
s € {0,1}": K(s) <n—i}| <2n !

(Hint: different strings must have different descriptions with respect to U.)

It can be shown that the function K is uncomputable. The proof is related to the
paradox captured by the following “description” of a natural number: the largest
natural number that can be described by an English sentence of up-to a
thousand letters. (The paradox amounts to observing that if the above num-
ber is well-defined then so is the integer-successor of the largest natural
number that can be described by an English sentence of up-to a thousand
letters.) Needless to say, the foregoing sentences presuppose that any English sen-
tence is a legitimate description in some adequate sense (e.g., in the sense captured
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by Kolmogorov Complexity). Specifically, the foregoing sentences presuppose that
we can determine the Kolmogorov Complexity of each natural number, and fur-
thermore that we can effectively produce the largest number that has Kolmogorov
Complexity not exceeding some threshold. Indeed, the paradox provides a proof
to the fact that the latter task cannot be performed; that is, there exists no algo-
rithm that given ¢ produces the lexicographically last string s such that K(s) <,
because if such an algorithm A would have existed then K(s) < O(|(A)]) + logt
and K(s0) < K(s)+ O(1) < t in contradiction to the definition of s.

1.2.3.4 Time and space complexity

Fixing a model of computation (e.g., Turing machines) and focusing on algorithms
that halt on each input, we consider the number of steps (i.e., applications of
the computation rule) taken by the algorithm on each possible input. The latter
function is called the time complexity of the algorithm (or machine); that is, ¢4 :
{0,1}* — N is called the time complexity of algorithm A if, for every x, on input
x algorithm A halts after exactly ta(z) steps.

We will be mostly interested in the dependence of the time complexity on the

input length, when taking the maximum over all inputs of the relevant length.

That is, for t4 as above, we will consider T4 : N — N defined by Ta(n) def

maxXgeqo,13» {ta(z)}. Abusing terminology, we sometimes refer to T4 as the time
complexity of A.

The time complexity of a problem. As stated in the preface and in the intro-
duction, typically is complexity theory not concerned with the (time) complexity
of a specific algorithm. It is rather concerned with the (time) complexity of a
problem, assuming that this problem is solvable at all (by some algorithm). Intu-
itively, the time complexity of such a problem is defined as the time complexity
of the fastest algorithm that solves this problem (assuming that the latter term is
well-defined).!® Actually, we shall be interested in upper and lower bounds on the
(time) complexity of algorithms that solve the problem. However, the complexity
of a problem may depend on the specific model of computation in which algorithms
that solve it are implemented. The following Cobham-Edmonds Thesis asserts that
the variation (in the time complexity) is not too big, and in particular is irrelevant
to much of the current focus of complexity theory (e.g., for the P-vs-NP Question).

The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-
lem may depend on the model of computation. For example, deciding membership
in the set {zz : x € {0,1}*} can be done in linear-time on a two-tape Turing ma-
chine, but requires quadratic-time on a single-tape Turing machine.!” On the other

16 Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-
tion that a “fastest algorithm” for solving a problem exists is not always justified. On the other
hand, the assumption is essentially justified in some important cases (see, e.g., Theorem 2.31).
But even in these case the said algorithm is “fastest” (or “optimal”) only up to a constant factor.

7Proving the latter fact is quite non-trivial. One proof is by a “reduction” from a communica-
tion complexity problem [142, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides
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hand, any problem that has time complexity ¢ in the model of multi-tape Turing
machines, has complexity O(#?) in the model of single-tape Turing machines. The
Cobham-Edmonds Thesis asserts that the time complexities in any two “reasonable
and general” models of computation are polynomially related. That is, a problem
has time complexity t in some “reasonable and general” model of computation if
and only if it has time complezity poly(t) in the model of (single-tape) Turing
machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.
It asserts not only that the class of solvable problems is invariant as far as “rea-
sonable and general” models of computation are concerned, but also that the time
complexity (of the solvable problems) in such models is polynomially related.

Efficient algorithms. As hinted in the foregoing discussions, much of complexity
theory is concerned with efficient algorithms. The latter are defined as polynomial-
time algorithms (i.e., algorithms that have a time complexity that is bounded by
a polynomial in the length of the input). By the Cobham-Edmonds Thesis, the
choice of a “reasonable and general” model of computation is irrelevant to the
definition of this class. The association of efficient algorithms with polynomial-
time computation is grounded in the following two considerations:

e Philosophical consideration: Intuitively, efficient algorithms are those that
can be implemented within a number of steps that is a moderately growing
function of the input length. To allow for reading the entire input, at least
linear time complexity should be allowed, whereas exponential time (as in
“exhaustive search”) must be avoided. Furthermore, a good definition of
the class of efficient algorithms should be closed under natural composition
of algorithms (as well as be robust with respect to reasonable models of
computation and with respect to simple changes in the encoding of problems’
instances).

Selecting polynomials as the set of time-bounds for efficient algorithms sat-
isfy all the foregoing requirements: polynomials constitute a “closed” set of
moderately growing functions, where “closure” means closure under addition,
multiplication and functional composition. These closure properties guaran-
tee the closure of the class of efficient algorithm under natural composition
of algorithms (as well as its robustness with respect to any reasonable and
general model of computation). Furthermore, polynomial-time algorithms
can conduct computations that are intuitively simple (although not necessar-
ily trivial), and on the other hand they do not include algorithms that are
intuitively inefficient (like exhaustive search).

membership in the aforementioned set can be viewed as a channel of communication between the
two parts of the input. Focusing our attention on inputs of the form y0™z0™, for y,z € {0,1}",
each time the machine passes from the first part to the second part it carries O(1) bits of infor-
mation (in its internal state) while making at least n steps. The proof is completed by invoking
the linear lower bound on the communication complexity of the (two-argument) identity function
(i.e, id(y,z) = 1 if y = z and id(y, z) = 0 otherwise, cf. [142, Chap. 1]).
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o Empirical consideration: It is clear that algorithms that are considered effi-
cient in practice have running-time that is bounded by a small polynomial
(at least on the inputs that occur in practice). The question is whether any
polynomial-time algorithm can be considered efficient in an intuitive sense.
The belief, which is supported by past experience, is that every natural prob-
lem that can be solved in polynomial-time also has “reasonably efficient”
algorithms.

We stress that the association of efficient algorithms with polynomial-time compu-
tation is not essential to most of the notions, results and questions of complexity
theory. Any other class of algorithms that supports the aforementioned closure
properties and allows to conduct some simple computations but not overly com-
plex ones gives rise to a similar theory, albeit the formulation of such a theory may
be much more complicated. Specifically, all results and questions treated in this
book are concerned with the relation among the complexities of different computa-
tional tasks (rather than with providing absolute assertions about the complexity
of some computational tasks). These relations can be stated explicitly, by stating
how any upper-bound on the time complexity of one task gets translated to an
upper-bound on the time complexity of another task.'® Such cumbersome state-
ments will maintain the contents of the standard statements; they will merely be
much more complicated. Thus, we follow the tradition of focusing on polynomial-
time computations, while stressing that this focus is both natural and provides the
simplest way of addressing the fundamental issues underlying the nature of efficient
computation.

Universal machines, revisited. The notion of time complexity gives rise to a

time-bounded version of the universal function u (presented in §1.2.3.3). Specifi-

cally, we define u'({(M), z,t) e y if on input & machine M halts within ¢ steps and

outputs the string y, and u'((M),z,t) 4 | ifon input  machine M makes more

than ¢ steps. Unlike u, the function u’ is a total function. Furthermore, unlike
any extension of u to a total function the function u’ is computable. Moreover, u’
is computable by a machine U’ that on input X = ((M),z,t) halts after poly(¢)
steps. Indeed, machine U’ is a variant of a universal machine (i.e., on input X, ma-
chine U’ merely emulates M for ¢ steps rather than emulating M till it halts (and
potentially indefinitely)). Note that the number of steps taken by U’ depends on
the specific model of computation (and that some overhead is unavoidable because
emulating each step of M requires reading the relevant portion of the description
of M).

Space complexity. Another natural measure of the “complexity” of an algo-
rithm (or a task) is the amount of memory consumed by the computation. We

18For example, the NP-completeness of SAT (cf. Theorem 2.21) implies that any algorithm
solving SAT in time T yields an algorithm that factors composite numbers in time T such that
T'(n) = poly(n) - (1 + T'(poly(n))). (More generally, if the correctness of solutions for n-bit
instances of some search problem can be verified in time ¢(n) then such solutions can be found in
time T such that 77(n) = t(n) - (1 + T(O(t(n))2)))
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refer to the memory used for storing some intermediate results of the computation.
Since much of our focus will be on using memory that is sub-linear in the input
length, it is important to use a model in which one can differentiate memory used
for computation from memory used for storing the initial input or the final output.
In the context of Turing machines, this is done by considering multi-tape Turing
machines such that the input is presented on a special read-only tape (called the
input tape), the output is written on a special write-only tape (called the output
tape), and intermediate results are stored on a work-tape. Thus, the input and
output tapes cannot be used for storing intermediate results. The space complexity
of such a machine M is defined as a function sjs such that sas(x) is the number of
cells of the work-tape that are scanned by M on input . As in the case of time

complexity, we will usually refer to S4(n) Lef max,eo,1}»{54(2)}.

1.2.3.5 Oracle machines

The notion of Turing-reductions, which was discussed in §1.2.3.2, is captured by
the following definition of so-called oracle machines. Loosely speaking, an oracle
machine is a machine that is augmented such that it may pose questions to the
outside. (A rigorous formulation of this notion is provided below.) We consider
the case in which these questions, called queries, are answered consistently by some
function f : {0,1}* — {0,1}*, called the oracle. That is, if the machine makes a
query ¢ then the answer it obtains is f(g). In such a case, we say that the oracle
machine is given access to the oracle f. For an oracle machine M, a string « and a
function f, we denote by M/ (z) the output of M on input # when given access to
the oracle f. (Re-examining the second part of the proof of Theorem 1.5, observe
that we have actually described an oracle machine that computes d' when given
access to the oracle d.)

The notion of an oracle machine extends the notion of a standard computing
device (machine), and thus a rigorous formulation of the former extends a formal
model of the latter. Specifically, extending the model of Turing machines, we derive
the following model of oracle Turing machines.

Definition 1.11 (using an oracle):

e An oracle machine is a Turing machine with an additional tape, called the
oracle tape, and two special states, called oracle invocation and oracle spoke.

e The computation of the oracle machine M on input = and access to the oracle
f:40,1}* — {0,1}* is defined based on the successive configuration function.
For configurations with state different from oracle invocation the next config-
uration is defined as usual. Let v be a configuration in which the machine’s
state is oracle invocation and suppose that the actual contents of the oracle
tape is q (i.e., q is the contents of the mazimal prefiz of the tape that holds bit
values).® Then, the configuration following v is identical to v, except that

19This fits the definition of the actual contents of a tape of a Turing machine (cf. §1.2.3.1).
A common convention is that the oracle can be invoked only when the machine’s head resides at
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the state is oracle spoke, and the actual contents of the oracle tape is f(q).
The string q is called M ’s query and f(q) is called the oracle's reply.

e The output of M on input  when given oracle access to f is denote M/ (z).

We stress that the running time of an oracle machine is the number of steps made
during its computation, and that the oracle’s reply on each query is obtained in a
single step.

1.2.3.6 Restricted models

We mention that restricted models of computation are often mentioned in the
context of a course on computability, but they will play no role in the current book.
One such model is the model of finite automata, which in some variant coincides
with Turing machines that have space-complexity zero (equiv., constant).

In our opinion, the most important motivation for the study of these restricted
models of computation is that they provide simple models for some natural (or
artificial) phenomena. This motivation, however, seems only remotely related to
the study of the complexity of various computational tasks. Thus, in our opinion,
the study of these restricted models (e.g., any of the lower levels of Chomsky’s
Hierarchy [119, Chap. 9]) should be decoupled from the study of computability
theory (let alone the study of complexity theory).

Teaching note: Indeed, we reject the common coupling of computability theory with
the theory of automata and formal languages. Although the historical links between
these two theories (at least in the West) can not be denied, this fact cannot justify
coupling two fundamentally different theories (especially when such a coupling promotes
a wrong perspective on computability theory).

1.2.4 Non-uniform Models (Circuits and Advice)

By a non-uniform model of computation we mean a model in which for each possible
input length one considers a different computing device. That is, there is no “uni-
formity” requirement relating devices that correspond to different input lengths.
Furthermore, this collection of devices is infinite by nature, and (in absence of
a uniformity requirement) this collection may not even have a finite description.
Nevertheless, each device in the collection has a finite description. In fact, the
relationship between the size of the device (resp., the length of its description) and
the length of the input that it handles will be of major concern. The hope is that
the finiteness of all parameters (which refer to a single device in such a collection)
will allow for the application of combinatorial techniques to analyze the limitations
of certain settings of parameters.

In complexity theory, non-uniform models of computation are studied either
towards the development of lower-bound techniques or as simplified upper-bounds

the left-most cell of the oracle tape. We comment that, in the context of space complexity, one
uses two oracle tapes: a write-only tape for the query and a read-only tape for the answer.
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on the ability of efficient algorithms. In both cases, the uniformity condition is
eliminated in the interest of simplicity and with the hope (and belief) that nothing
substantial is lost as far as the issues at hand are concerned.

We will focus on two related models of non-uniform computing devices: Boolean
circuits (§1.2.4.1) and “machines that take advice” (§1.2.4.2). The former model is
more adequate for the study of the evolution of computation (i.e., development of
lower-bound techniques), whereas the latter is more adequate for modeling purposes
(e.g., upper-bounding the ability of efficient algorithms). (These models will be
further studied in Sections 3.1 and 4.1.)

1.2.4.1 Boolean Circuits

The most popular model of non-uniform computation is the one of Boolean circuits.
Historically, this model was introduced for the purpose of describing the “logic
operation” of real-life electronic circuits. Ironically, nowadays this model provides
the stage for some of the most practically removed studies in complexity theory
(which aim at developing methods that may eventually lead to an understanding
of the inherent limitations of efficient algorithms).

A Boolean circuit is a directed acyclic graph?® with labels on the vertices, to be
discussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., vertices
with no in-going or out-going edges), and thus the graph’s vertices are of three
types: sources, sinks, and internal vertices.

1. Internal vertices are vertices having in-coming and out-going edges (i.e., they
have in-degree and out-degree at least 1). In the context of Boolean cir-
cuits, internal vertices are called gates. Each gate is labeled by a Boolean
operation, where the operations that are typically considered are A, V and
- (corresponding to and, or and neg). In addition, we require that gates
labeled — have in-degree 1. (The in-coming degree of A-gates and V-gates
may be any number greater than zero, and the same holds for the out-degree
of any gate.)

2. The graph sources (i.e., vertices with no in-going edges) are called input ter-
minals. Each input terminal is labeled by a natural number (which is to be
thought of the index of an input variable). (For sake of defining formulae
(see §1.2.4.3), we allow different input terminals to be labeled by the same
number.)?!

3. The graph sinks (i.e., vertices with no out-going edges) are called output ter-
minals, and we require that they have in-degree 1. Each output terminal is
labeled by a natural number such that if the circuit has m output terminals
then they are labeled 1,2,...,m. That is, we disallow different output ter-
minals to be labeled by the same number, and insist that the labels of the

20See Appendix G.1.

21This is not needed in case of general circuits, because we can just feed out-going edges of the
same input terminal to many gates. Note, however, that this is not allowed in case of formulae,
where all non-sinks are required to have out-degree exactly 1.
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output terminals are consecutive numbers. (Indeed, the labels of the output
terminals will correspond to the indices of locations in the circuit’s output.)

For sake of simplicity, we also mandate that the labels of the input terminals are
consecutive numbers.??

(g

o ©

Figure 1.3: A circuit computing f(z1,z2,x3,24) = (T1 D T2, 21 A ~Z2 A T4).

A Boolean circuit with n different input labels and m output terminals induces
(and indeed computes) a function from {0,1}" to {0,1}™ defined as follows. For
any fixed string = € {0,1}", we iteratively define the value of vertices in the circuit
such that the input terminals are assigned the corresponding bits in z = z; - - -z,
and the values of other vertices are determined in the natural manner. That is:

e An input terminal with label i € {1,...,n} is assigned the i*® bit of z (i.e.,
the value z;).

e If the children of a gate (of in-degree d) that is labeled A have values vy, va, ..., v4,
then the gate is assigned the value AZ_;v;. The value of a gate labeled V (or
—) is determined analogously.

Indeed, the hypothesis that the circuit is acyclic implies that the process
of determining values for the circuit’s vertices is well-defined: As long as the
value of some vertex is undetermined, there exists a vertex such that its value
is undetermined but the values of all its children are determined. Thus, the
process can make progress, and terminates when the values of all vertices
(including the output terminals) are determined.

22T his convention slightly complicates the construction of circuits that ignore some of the input
values. Specifically, we use artificial gadgets that have in-coming edges from the corresponding
input terminals, and compute an adequate constant. To avoid having this constant as an output
terminal, we feed it into an auxiliary gate such that the value of the latter is determined by the
other in-going edge (e.g., a constant 0 fed into an V-gate). See example of dealing with x3 in
Figure 1.3.
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The value of the circuit on input z (i.e., the output computed by the circuit on
input z) is y = y1 - - - Ym, where y; is the value assigned by the foregoing process
to the output terminal labeled 2. We note that there ewists a polynomial-time
algorithm that, given a circuit C' and a corresponding input x, outputs the value of
C on input . This algorithm determines the values of the circuit’s vertices, going
from the circuit’s input terminals to its output terminals.

We say that a family of circuits (C,),,en computes a function f : {0,1}* — {0,1}*
if for every n the circuit C,, computes the restriction of f to strings of length n. In
other words, for every z € {0,1}*, it must hold that C|;|(z) = f(z).

Bounded and unbounded fan-in. We will be most interested in circuits in
which each gate has at most two in-coming edges. In this case, the types of (two-
argument) Boolean operations that we allow is immaterial (as long as we consider
a “full basis” of such operations; i.e., a set of operations that can implement any
other two-argument Boolean operation). Such circuits are called circuits of bounded
fan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,
where each gate may have an arbitrary number of in-going edges. Needless to say,
in the case of circuits of unbounded fan-in, the choice of allowed Boolean operations
is important and one focuses on operations that are “uniform” (across the number
of operants; e.g., A and V).

Circuit size as a complexity measure. The size of a circuit is the number of
its edges. When considering a family of circuits (C,),cn that computes a function
f :{0,1}* — {0,1}*, we are interested in the size of C,, as a function of n.
Specifically, we say that this family has size complexity s : N — N if for every n the
size of Cy, is s(n). The circuit complexity of a function f, denoted sy, is the infimum
of the size complexity of all families of circuits that compute f. Alternatively, for
each n we may consider the size of the smallest circuit that computes the restriction
of f to n-bit strings (denoted f,,), and set s¢(n) accordingly. We stress that non-
uniformity is implicit in this definition, because no conditions are made regarding
the relation between the various circuits used to compute the function on different
input lengths.

The circuit complexity of functions. We highlight some simple facts about
the circuit complexity of functions. (These facts are in clear correspondence to
facts regarding Kolmogorov Complexity mentioned in §1.2.3.3.)

1. Most importantly, any Boolean function can be computed by some family
of circuits, and thus the circuit complexity of any function is well-defined.
Furthermore, each function has at most exponential circuit complexity.
(Hint: f, : {0,1}™ — {0,1} can be computed by a circuit of size O(n2") that
implements a look-up table.)

2. Some functions have polynomial circuit complexity. In particular, any func-
tion that has time complexity ¢ (i.e., is computed by an algorithm of time
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complexity ¢) has circuit complexity poly(¢). Furthermore, the correspond-
ing circuit family is uniform (in a natural sense to be discussed in the next
paragraph).

(Hint: consider a Turing machine that computes the function, and consider
its computation on a generic n-bit long input. The corresponding compu-
tation can be emulated by a circuit that consists of ¢(n) layers such that
each layer represents an instantaneous configuration of the machine, and the
relation between consecutive configurations is captured by (“uniform”) local
gadgets in the circuit. For further details see the proof of Theorem 2.20,
which presents a similar emulation.)

3. Almost all Boolean functions have exponential circuit complexity. Specifi-
cally, the number of functions mapping {0,1}™ to {0, 1} that can be computed
by some circuit of size s is at most s2°.

(Hint: the number of circuits having v vertices and s edges is at most 27 (3) °)

Note that the first fact implies that families of circuits can compute functions that
are uncomputable by algorithms. Furthermore, this phenomenon occurs also when
restricting attention to families of polynomial-size circuits. See further discussion
in §1.2.4.2.

Uniform families. A family of polynomial-size circuits (C,,), N is called uniform
if given n one can construct the circuit C,, in poly(n)-time. Note that if a function
is computable by a uniform family of polynomial-size circuits then it is computable
by a polynomial-time algorithm. This algorithm first constructs the adequate cir-
cuit (which can be done in polynomial-time by the uniformity hypothesis), and
then evaluate this circuit on the given input (which can be done in time that is
polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of polynomial-
size circuits certainly hold for uniform families (of polynomial-size), which in turn
yield limitations on the computing power of polynomial-time algorithms. Thus,
lower bounds on the circuit complexity of functions yield analogous lower bounds
on their time complexity. Furthermore, as is often the case in mathematics and
Science, disposing of an auxiliary condition that is not well-understood (i.e., uni-
formity) may turn out fruitful. Indeed, this has occured in the study of classes of
restricted circuits, which is reviewed in §1.2.4.3 (and Appendix B).

1.2.4.2 Machines that take advice

General (non-uniform) circuit families and uniform circuit families are two extremes
with respect to the “amounts of non-uniformity” in the computing device. Intu-
itively, in the former, non-uniformity is only bounded by the size of the device,
whereas in the latter the amounts of non-uniformity is zero. Here we consider a
model that allows to decouple the size of the computing device from the amount
of non-uniformity, which may range from zero to the device’s size. Specifically, we
consider algorithms that “take a non-uniform advice” that depends only on the
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input length. The amount of non-uniformity will be defined to equal the length of
the corresponding advice (as a function of the input length).

Definition 1.12 (taking advice): We say that algorithm A computes the function
f using advice of length ¢ : N — N if there exists an infinite sequence (an),cn such
that

1. For every x € {0,1}*, it holds that A(a|.|,z) = f(z).
2. For every n € N, it holds that |a,| = {(n).

The sequence (an)nen s called the advice sequence.

Note that any function having circuit complexity s can be computed using advice
of length O(slogs), where the log factor is due to the fact that a graph with v
vertices and e edges can be described by a string of length 2elog, v. Note that the
model of machines that use advice allows for some sharper bounds than the ones
stated in §1.2.4.1: every function can be computed using advice of length ¢ such
that ¢(n) = 2", and some uncomputable functions can be computed using advice
of length 1.

Theorem 1.13 (the power of advice): There exist functions that can be computed
using one-bit advice but cannot be computed without advice.

Proof: Starting with any uncomputable Boolean function f : N — {0, 1}, consider
the function f’ defined as f'(z) = f(|z|). Note that f is Turing-reducible to f’ (e.g.,
on input n make any n-bit query to f’, and return the answer).2? Thus, f’ cannot be
computed without advice. On the other hand, f' can be easily computed by using
the advice sequence (a,),en such that a, = f(n); that is, the algorithm merely
outputs the advice bit (and indeed a|,| = f(|z|) = f'(x), for every x € {0,1}").

1.2.4.3 Restricted models

As noted in §1.2.4.1, the model of Boolean circuits allows for the introduction of
many natural subclasses of computing devices. Following is a laconic review of a
few of these subclasses. For more detail, see Appendix B.2. Since we shall refer to
various types of Boolean formulae in the rest of this book, we suggest not to skip
the following two paragraphs.

Boolean formulae. In general Boolean circuits the non-sink vertices are allowed
arbitrary out-degree. This means that the same intermediate value can be re-used
(without being re-computed (and while increasing the size complexity by only one
unit)). Such “free” re-usage of intermediate values is disallowed in Boolean formu-
lae, which corresponds to a Boolean expression over Boolean variables. Formally,
a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,

23Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |n| = log, n),
but this is immaterial in the current context.
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which means that the underlying graph is a tree (see §G.2) and the formula as
an expression can be read by traversing the tree (and registering the vertices’ la-
bels in the order traversed). Indeed, we have allowed different input terminals to
be assigned the same label in order to allow formulae in which the same variable
occurs multiple times. As in case of general circuits, one is interested in the size
of these restricted circuits (i.e., the size of families of formulae computing various
functions). We mention that quadratic lower bounds are known for the formula
size of simple functions (e.g., parity), whereas these functions have linear circuit
complexity. This discrepancy is depicted in Figure 1.4.

PARITY PARITY PARITY PARITY PARITY PARITY
of X ...X of x of X ...X of x X of X ...X of x
1 n 1 n+1""2n 1

n+1%on n n+ 2 %on

ViRV
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Figure 1.4: Recursive construction of parity circuits and formulae.
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Formulae in CNF and DNF. A restricted type of Boolean formulae consists
of formulae that are in conjunctive normal form (CNF). Such a formula consists of
a conjunction of clauses, where each clause is a disjunction of literals each being
either a variable or its negation. That is, such formulae are represented by layered
circuits of unbounded fan-in in which the first layer consists of neg-gates that
compute the negation of input variables, the second layer consist of or-gates that
compute the logical-or of subsets of inputs and negated inputs, and the third layer
consists of a single and-gate that computes the logical-and of the values computed
in the second layer. Note that each Boolean function can be computed by a family
of CNF formulae of exponential size, and that the size of CNF formulae may be
exponentially larger than the size of ordinary formulae computing the same function
(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF has
disjunctions of size at most k. An analogous restricted type of Boolean formulae
refers to formulae that are in disjunctive normal form (DNF). Such a formula consists
of a disjunction of a conjunctions of literals, and when each conjunction has at most
k literals we say that the formula is in k-DNF.

Constant-depth circuits. Circuits have a “natural structure” (i.e., their struc-
ture as graphs). One natural parameter regarding this structure is the depth of a
circuit, which is defined as the longest directed path from any source to any sink. Of
special interest are constant-depth circuits of unbounded fan-in. We mention that
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sub-exponential lower bounds are known for the size of such circuits that compute
a simple function (e.g., parity).

Monotone circuits. The circuit model also allows for the consideration of mono-
tone computing devices: a monotone circuit is one having only monotone gates
(e.g., gates computing A and V, but no negation gates (i.e., —=-gates)). Needless
to say, monotone circuits can only compute monotone functions, where a function
f:{0,1}™ — {0, 1} is called monotone if for any = < y it holds that f(z) < f(y)
(where z; -z, < y1---y, if and only if for every bit position 7 it holds that
x; < y;)- One natural question is whether, as far as monotone functions are con-
cerned, there is a substantial loss in using only monotone circuits. The answer is
yes: there exist monotone functions that have polynomial circuit complexity but
require sub-exponential size monotone circuits.

1.2.5 Complexity Classes

Complexity classes are sets of computational problems. Typically, such classes are
defined by fixing three parameters:

1. A type of computational problems (see Section 1.2.2). Indeed, most classes
refer to decision problems, but classes of search problems, promise problems,
and other types of problems will also be considered.

2. A model of computation, which may be either uniform (see Section 1.2.3) or
non-uniform (see Section 1.2.4).

3. A complexity measure and a function (or a set of functions), which put to-
gether limit the class of computations of the previous item; that is, we refer
to the class of computations that have complexity not exceeding the speci-
fied function (or set of functions). For example, in §1.2.3.4, we mentioned
time complexity and space complexity, which apply to any uniform model of
computation. We also mentioned polynomial-time computations, which are
computations in which the time complexity (as a function) does not exceed
some polynomial (i.e., a member of the set of polynomial functions).

The most common complexity classes refer to decision problems, and are sometimes
defined as classes of sets rather than classes of the corresponding decision problems.
That is, one often says that a set S C {0,1}* is in the class C rather than saying
that the problem of deciding membership in S is in the class C. Likewise, one talks
of classes of relations rather than classes of the corresponding search problems (i.e.,
saying that R C {0,1}* x {0,1}* is in the class C means that the search problem of
R is in the class C).

Chapter Notes

It is quite remarkable that the theories of uniform and non-uniform computational
devices have emerged in two single papers. We refer to Turing’s paper [216], which
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introduced the model of Turing machines, and to Shannon’s paper [194], which
introduced Boolean circuits.

In addition to introducing the Turing machine model and arguing that it cor-
responds to the intuitive notion of computability, Turing’s paper [216] introduces
universal machines and contains proofs of undecidability (e.g., of the Halting Prob-
lem).

The Church-Turing Thesis is attributed to the works of Church [52] and Tur-
ing [216]. In both works, this thesis is invoked for claiming that the fact that
Turing machines cannot solve some problem implies that this problem cannot be
solved in any “reasonable” model of computation. The RAM model is attributed
to von Neumann’s report [223].

The association of efficient computation with polynomial-time algorithms is
attributed to the papers of Cobham [54] and Edmonds [66]. It is interesting to
note that Cobham’s starting point was his desire to present a philosophically sound
concept of efficient algorithms, whereas Edmonds’s starting point was his desire to
articulate why certain algorithms are “good” in practice.

Rice’s Theorem is proven in [185], and the undecidability of the Post Correspon-
dence Problem is proven in [174]. The formulation of machines that take advice
(as well as the equivalence to the circuit model) originates in [132].
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Chapter 10

Relaxing the Requirements

The philosophers have only interpreted the world, in
various ways; the point is to change it.

Karl Marx, Theses on Feuerbach

In light of the apparent infeasibility of solving numerous useful computational prob-
lems, it is natural to ask whether these problems can be relaxed such that the
relaxation is both useful and allows for feasible solving procedures. We stress two
aspects about the foregoing question: on one hand, the relaxation should be suf-
ficiently good for the intended applications; but, on the other hand, it should be
significantly different from the original formulation of the problem so to escape the
infeasibility of the latter. We note that whether a relaxation is adequate for an
intended application depends on the application, and thus much of the material
in this chapter is less robust (or generic) than the treatment of the non-relaxed
computational problems.

Summary: We consider two types of relaxations. The first type of
relaxation refers to the computational problems themselves; that is, for
each problem instance we extend the set of admissible solutions. In
the context of search problems this means settling for solutions that
have a value that is “sufficiently close” to the value of the optimal
solution (with respect to some value function). Needless to say, the
specific meaning of ‘sufficiently close’ is part of the definition of the
relaxed problem. In the context of decision problems this means that
for some instances both answers are considered valid; put differently,
we consider promise problems in which the no-instances are “far” from
the yes-instances in some adequate sense (which is part of the definition
of the relaxed problem).

The second type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead,
the behavior of the solver is analyzed with respect to a predetermined

409
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input distribution (or a class of such distributions), and bad behavior
may occur with negligible probability where the probability is taken
over this input distribution. That is, we replace worst-case analysis by
average-case (or rather typical-case) analysis. Needless to say, a major
component in this approach is limiting the class of distributions in a way
that, on one hand, allows for various types of natural distributions and,
on the other hand, prevents the collapse of the corresponding notion of
average-case hardness to the standard notion of worst-case hardness.

10.1 Approximation

The notion of approximation is a natural one, and has arisen also in other disci-
plines. Approximation is most commonly used in references to quantities (e.g., “the
length of one meter is approximately forty inches”), but it is also used when refer-
ring to qualities (e.g., “an approximately correct account of a historical event”). In
the context of computation, the notion of approximation modifies computational
tasks such as search and decision problems. (In fact, we have already encountered
it as a modifier of counting problems; see Section 6.2.2.)

Two major questions regarding approximation are (1) what is a “good” approx-
imation, and (2) can it be found easier than finding an exact solution. The answer
to the first question seems intimately related to the specific computational task
at hand and to its role in the wider context (i.e., the higher level application): a
good approximation is one that suffices for the intended application. Indeed, the
importance of certain approximation problems is much more subjective than the
importance of the corresponding optimization problems. This fact seems to stand
in the way of attempts at providing a comprehensive theory of natural approxi-
mation problems (e.g., general classes of natural approximation problems that are
shown to be computationally equivalent).

Turning to the second question, we note that in numerous cases natural approx-
imation problems seem to be significantly easier than the corresponding original
(“exact”) problems. On the other hand, in numerous other cases, natural approxi-
mation problems are computationally equivalent to the original problems. We shall
exemplify both cases by reviewing some specific results, but regret not being able
to provide a general systematic classification.!

Mimicking the two standard uses of the word approzimation, we shall distinguish
between approximation problems that are of the “search type” and problems that
have a clear “decisional” flavor. In the first case we shall refer to a function that
assigns values to possible solutions (of a search problem); whereas in the second
case we shall refer to distances between instances (of a decision problem). We note
that, in some cases, the same computational problem may be cast in both ways,
but for most natural approximation problems one of the two frameworks is more
appealing than the other. The common theme is that in both cases we extend the
set of admissible solutions. In the case of search problems, we extend the set of

LA systematic classification of a restricted class of approximation problems, which refer to
Constraint Satisfaction Problems, has appeared in [53].
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optimal solutions by including also almost-optimal solutions. In the case of decision
problems, we extend the set of solutions by allowing an arbitrary answer (solution)
to some instances, which may be viewed as a promise problem that disallows these
instances. In this case we focus on promise problems in which the yes- and no-
instances are far apart (and the instances that violate the promise are closed to
yes-instances).

Teaching note: Most of the results presented in this section refer to specific computa-
tional problems and (with one exception) are presented without a proof. In view of the
complexity of the corresponding proofs and the merely illustrative role of these results

in the context of complexity theory, we recommend doing the same in class.

10.1.1 Search or Optimization

As noted in Section 2.2.2, many search problems involve a set of potential solutions
(per each problem instance) such that different solutions are assigned different “val-
ues” (resp., “costs”) by some “value” (resp., “cost”) function. In such a case, one is
interested in finding a solution of maximum value (resp., minimum cost). A corre-
sponding approximation problem may refer to finding a solution of approximately
maximum value (resp., approximately minimum cost), where the specification of
the desired level of approximation is part of the problem’s definition. Let us elab-
orate.

For concreteness, we focus on the case of a value that we wish to maximize. For
greater flexibility, we allow the value of the solution to depend also on the instance
itself. Thus, for a (polynomially bounded) binary relation R and a value function
f:{0,1}*x{0,1}* — R, we consider the problem of finding solutions (with respect
to R) that maximize the value of f. That is, given = (such that R(z) # 0), the
task is finding y € R(x) such that f(z,y) = v,, where v, is the maximum value
of f(z,y") over all y' € R(x). Typically, R is in PC and f is polynomial-time
computable.? Indeed, without loss of generality, we may assume that for every z
it holds that R(z) = {0,1}*U=D for some polynomial ¢ (see Exercise 2.8). Thus,
the optimization problem is recast as the following search problem: given z, find
y such that f(z,y) = vy, where v, = max o 1yea=n{f(2,y')}.

We shall focus on relative approximation problems, where for some gap function
g:{0,1}* - {reR : r>1} the (maximization) task is finding y such that f(z,y) >
vz /g(x). Indeed, in some cases the approximation factor is stated as a function of
the length of the input (i.e., g(x) = ¢'(|z|) for some ¢’ : N — {reR :r>1}), but
often the approximation factor is stated in terms of some more refined parameter
of the input (e.g., as a function of the number of vertices in a graph). Typically, g
is polynomial-time computable.

Definition 10.1 (g-factor approximation): Let f : {0,1}* x {0,1}* — R, ¢ :
N-N, and g:{0,1}* - {reR:r>1}.

2In this case, we may assume without loss of generality that the function f depends only on
the solution. This can be obtained by redefining the relation R such that each solution y € R(x)
consists of a pair of the form (z,y’). Needless to say, this modification cannot be applied along
with getting rid of R (as in Exercise 2.8).
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Maximization version: The g-factor approximation of maximizing f (w.r.t £) is the
search problem R such that R(x) = {y € {0,1}*(=D : f(z,y) > v./g(2)},
where v, = maXyero 1yea«n{f (€, y')}-

Minimization version: The g-factor approximation of minimizing f (w.r.t £) is the
search problem R such that R(z) = {y € {0,1}0=D) : f(x,y) < g(z) - 2},
where ¢, = minegg 1 yea«n {f(2,9')}-

We note that for numerous NP-complete optimization problems, polynomial-time
algorithms provide meaningful approximations. A few examples will be mentioned
in §10.1.1.1. In contrast, for numerous other NP-complete optimization problems,
natural approximation problems are computationally equivalent to the correspond-
ing optimization problem. A few examples will be mentioned in §10.1.1.2, where
we also introduce the notion of a gap problem, which is a promise problem (of
the decision type) intended to capture the difficulty of the (approximate) search
problem.

10.1.1.1 A few positive examples

Let us start with a trivial example. Considering a problem such as finding the
maximum clique in a graph, we note that finding a linear factor approximation is
trivial (i.e., given a graph G = (V, E), we may output any vertex in V as a |V]-
factor approximation of the maximum clique in G). A famous non-trivial example
is presented next.

Proposition 10.2 (factor two approximation to minimum Vertex Cover): There
exists a polynomial-time approzimation algorithm that given a graph G = (V, E)
outputs a vertex cover that is at most twice as large as the minimum vertex cover
of G.

We warn that an approximation algorithm for minimum Vertex Cover does not
yield such an algorithm for the complementary problem (of maximum Independent
Set). This phenomenon stands in contrast to the case of optimization, where an
optimal solution for one problem (e.g., minimum Vertex Cover) yields an optimal
solution for the complementary problem (maximum Independent Set).

Proof Sketch: The main observation is a connection between the set of maximal
matchings and the set of vertex covers in a graph. Let M be any mazimal matching
in the graph G = (V, E); that is, M C E is a matching but augmenting it by any
single edge yields a set that is not a matching. Then, on one hand, the set of all
vertices participating in M is a vertex cover of G, and, on the other hand, each
vertex cover of G must contain at least one vertex of each edge of M. Thus, we can
find the desired vertex cover by finding a maximal matching, which in turn can be
found by a greedy algorithm. O
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Another example. An instance of the traveling salesman problem (TSP) consists
of a symmetric matrix of distances between pairs of points, and the task is finding
a shortest tour that passes through all points. In general, no reasonable approx-
imation is feasible for this problem (see Exercise 10.1), but here we consider two
special cases in which the distances satisfy some natural constraints (and pretty
good approximations are feasible).

Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-
rithms exist for the following two computational problems.

1. Providing a 1.5-factor approximation for the special case of TSP in which the
distances satisfy the triangle inequality.

2. For every € > 1, providing a (1 + ¢)-factor approzimation for the special case
of Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points reside
in a k-dimensional Euclidean space, and the distances refer to the standard
Euclidean norm).

A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2
is provided in [12]. We note the difference examplified by the two items of Theo-
rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a specific
constant factor, Part 2 provides such an algorithm for any constant factor. Such a
result is called a polynomial-time approzimation scheme (abbreviated PTAS).

10.1.1.2 A few negative examples

Let us start again with a trivial example. Cousidering a problem such as finding
the maximum clique in a graph, we note that given a graph G = (V, E) finding
a (1 + |V|7!)-factor approximation of the maximum clique in G is as hard as
finding a maximum clique in G. Indeed, this “result” is not really meaningful.
In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that
finding a |V|1_°(1)-fact0r approximation of the maximum clique in G is as hard as
finding a maximum clique in G. This follows from the fact that the approximation
problem is NP-hard (cf. Theorem 10.5).

The statement of inapproximability results is made stronger by referring to a
promise problem that consists of distinguishing instances of sufficiently far apart
values. Such promise problems are called gap problems, and are typically stated
with respect to two bounding functions g, gs : {0,1}* — R (which replace the gap
function g of Definition 10.1). Typically, g; and g» are polynomial-time computable.

Definition 10.4 (gap problem for approximation of f): Let f be as in Defini-
tion 10.1 and g1, : {0,1}* — R

Maximization version: For g1 > g2, the gap,, ,, problem of maximizing f consists
of distinguishing between {x : v, > gi(x)} and {z : v, < g2(x)}, where
Uy = maXyero 1y3eaen{f (@, )}
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Minimization version: For g1 < g2, the gap, ,, problem of minimizing f consists
of distinguishing between {x : ¢, < gi(z)} and {z : ¢ > ga2(z)}, where
Ca = milyero 1ye=n {f (@, y)}-

For example, the gap,, ,, problem of maximizing the size of a clique in a graph
consists of distinguishing between graphs G that have a clique of size g1(G) and
graphs G that have no clique of size g»(G). In this case, we typically let g;(G) be a
function of the number of vertices in G =(V, E); that is, g;(G) = ¢i(|V]). Indeed,
letting w(G) denote the size of the largest clique in the graph G, we let gapClique; |
denote the gap problem of distinguishing between {G =(V, E) : w(G) > L(|V])}
and {G = (V,E) : w(G) < s(|V])}, where L > s. Using this terminology, we
restate (and strengthen) the aforementioned |V|'~°()-factor inapproximation of
the maximum clique problem.

Theorem 10.5 For some L(N) = N'=°(1) and s(N) = N°W) it holds that gapClique; |
is NP-hard.

The proof of Theorem 10.5 is based on a major refinement of Theorem 9.16 that
refers to a PCP system of amortized free-bit complexity that tends to zero (cf.
§9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented in
Exercise 10.3.

As we shall show next, results of the type of Theorem 10.5 imply the hardness
of a corresponding approximation problem; that is, the hardness of deciding a gap
problem implies the hardness of a search problem that refers to an analogous factor
of approximation.

Proposition 10.6 Let f,g1,92 be as in Definition 10.4 and suppose that these
functions are polynomial-time computable. Then the gap,, ,, problem of mazimiz-
ing f (resp., minimizing f) is reducible to the g1/gs-factor (resp., g2/g1-factor)
approzimation of mazimizing f (resp., minimizing f).

Note that a reduction in the opposite direction does not necessarily exist (even in
the case that the underlying optimization problem is self-reducible in some natural
sense). Indeed, this is another difference between the current context (of approx-
imation) and the context of optimization problems, where the search problem is
reducible to a related decision problem.

Proof Sketch: We focus on the maximization version. On input z, we solve the
gap,, 4, problem, by making the query z, obtaining the answer y, and ruling that
x has value exceeding g;(x) if and only if f(z,y) > g2(x). Recall that we need to
analyze this reduction only on inputs that satisfy the promise. Thus, if v, > g1 (z)
then the oracle must return a solution y that satisfies f(z,y) > v./(g1(z)/g2(x)),
which implies that f(z,y) > g2(z). On the other hand, if v, < g2(z) then f(z,y) <
v, < g2(x) holds for any possible solution y. O
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Additional examples. Let us consider gapVC, ,, the gap, , problem of mini-
mizing the vertex cover of a graph, where s and L are constants and gs(G) = s-|V|
(resp., gr(G) = L - |V]) for any graph G=(V, E). Then, Proposition 10.2 implies
(via Proposition 10.6) that, for every constant s, the problem gapVC, ,, is solvable
in polynomial-time. In contrast, sufficiently narrowing the gap between the two
thresholds yields an inapproximability result. In particular:

Theorem 10.7 For some constants 0 < s < L <1 (e.g., s =0.62 and L = 0.84
will do), the problem gapVC, ; is NP-hard.

The proof of Theorem 10.7 is based on a complicated refinement of Theorem 9.16.
Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).

As noted, refinements of the PCP Theorem (Theorem 9.16) play a key role in
establishing inapproximability results such as Theorems 10.5 and 10.7. In that
respect, it is adequate to recall that Theorem 9.21 establishes the equivalence of
the PCP Theorem itself and the NP-hardness of a gap problem concerning the
maximization of the number of clauses that are satisfies in a given 3-CNF for-
mula. Specifically, gapSAT? was defined (in Definition 9.20) as the gap problem
consisting of distinguishing between satisfiable 3-CNF formulae and 3-CNF formu-
lae for which each truth assignment violates at least an ¢ fraction of the clauses.
Although Theorem 9.21 does not specify the quantitative relation that underlies
its qualitative assertion, when (refined and) combined with the best known PCP
construction, it does yield the best possible bound.

Theorem 10.8 For every v < 1/8, the problem gapSAT? is NP-hard.

On the other hand, gapSATf/8 is solvable in polynomial-time.

Sharp thresholds. The aforementioned opposite results (regarding gapSAT?) ex-
emplify a sharp threshold on the (factor of) approximation that can be obtained
by an efficient algorithm. Another appealing example refers to the following maxi-
mization problem in which the instances are systems of linear equations over GF(2)
and the task is finding an assignment that satisfies as many equations as possible.
Note that by merely selecting an assignment at random, we expect to satisfy half
of the equations. Also note that it is easy to determine whether there exists an
assignment that satisfies all equations. Let gapLin, ; denote the problem of dis-
tinguishing between systems in which one can satisfy at least an L fraction of the
equations and systems in which one cannot satisfy an s fraction (or more) of the
equations. Then, as just noted, gapLin; ;5 is trivial and gapLin,; , is feasible
(for every s < 1). In contrast, moving both thresholds (slightly) away from the
corresponding extremes, yields an NP-hard gap problem:

Theorem 10.9 For every constante > 0, the problem gapLin, . , 5. is NP-hard.

The proof of Theorem 10.9 is based on a major refinement of Theorem 9.16. In fact,
the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:
the verifier makes three queries and tests a linear condition regarding the answers,
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while using a logarithmic number of coin tosses. This verifier accepts any yes-
instance with probability at least 1 — ¢ (when given oracle access to a suitable
proof), and rejects any no-instance with probability at least 0.5 — & (regardless
of the oracle being accessed). A weaker result, which follows from Theorem 9.16
itself, is presented in Exercise 10.5.

Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations with
respect to the “location” of the “gap” for which the corresponding promise prob-
lem is hard. Recall that both gapSAT and gapLin are formulated with respect
to two thresholds, where each threshold bounds the fraction of “local” conditions
(i-e., clauses or equations) that are satisfiable in the case of yes- and no-instances,
respectively. In the case of gapSAT, the high threshold (referring to yes-instances)
was set to 1, and thus only the low threshold (referring to no-instances) remained
a free parameter. Nevertheless, a hardness result was established for gapSAT, and
furthermore this was achieved for an optimal value of the low threshold (cf. the
foregoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-
ting the high threshold to 1 makes the gap problem efficiently solvable. Thus,
the hardness of gapLin was established at a different location of the high thresh-
old. Specifically, hardness (for an optimal value of the ratio of thresholds) was
established when setting the high threshold to 1 — ¢, for any € > 0.

A final comment. All the aforementioned inapproximability results refer to ap-
proximation (resp., gap) problems that are relaxations of optimization problems
in NP (i.e., the optimization problem is computationally equivalent to a decision
problem in N'P; see Section 2.2.2). In these cases, the NP-hardness of the approx-
imation (resp., gap) problem implies that the corresponding optimization problem
is reducible to the approximation (resp., gap) problem. In other words, in these
cases nothing is gained by relaxing the original optimization problem, because the
relaxed version remains just as hard.

10.1.2 Decision or Property Testing

A natural notion of relaxation for decision problems arises when considering the
distance between instances, where a natural notion of distance is the Hamming
distance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,
this relaxation (called property testing) refers to distinguishing inputs that reside
in a predetermined set S from inputs that are “relatively far” from any input that
resides in the set. Two natural types of promise problems emerge (with respect to
any predetermined set S (and the Hamming distance between strings)):

1. Relazed decision w.r.t a fived distance: Fixing a distance parameter ¢, we
consider the problem of distinguishing inputs in S from inputs in I's(S),
where

Ts(S) Y {z:Vz e SN {0, 11 Az, 2) > 6 ||} (10.1)
and A(x1 - X, 21 2m) = |{# : ©; # z;}| denotes the number of bits on
which = z1---%,, and z = 2, --- 2, disagree. Thus, here we consider a
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promise problem that is a restriction (or a special case) of the problem of
deciding membership in S.

2. Relazed decision w.r.t a variable distance: Here the instances are pairs (z, ),
where z is as in Type 1 and § € [0,1] is a distance parameter. The yes-
instances are pairs (x,0) such that z € S, whereas (z, ) is a no-instance if
T € F§(S)

We shall focus on Type 1 formulation, which seems to capture the essential question
of whether or not these relaxations lower the complexity of the original decision
problem. The study of Type 2 formulation refers to a relatively secondary question,
which assumes a positive answer to the first question; that is, assuming that the
relaxed form is easier than the original form, we ask how is the complexity of the
problem affected by making the distance parameter smaller (which means making
the relaxed problem “tighter” and ultimately equivalent to the original problem).

We note that for numerous NP-complete problems there exist natural (Type 1)
relaxations that are solvable in polynomial-time. Actually, these algorithms run in
sub-linear time (specifically, polylogarithmic time), when given direct access to the
input. A few examples will be presented in §10.1.2.2. As indicated in §10.1.2.2,
this is not a generic phenomenon. But before turning to these results, we discuss
several important definitional issues.

10.1.2.1 Definitional issues

Property testing is concerned not only with solving relaxed versions of NP-hard
problems, but rather solving these problems (as well as problems in P) in sub-
linear time. Needless to say, such results assume a model of computation in which
algorithms have direct access to bits in the (representation of the) input (see Defi-
nition 10.10).

Definition 10.10 (a direct access model — conventions): An algorithm with direct
access to its input is given its main input on a special input device that is accessed
as an oracle (see §1.2.3.5). In addition, the algorithm is given the length of the
input and possibly other parameters on a secondary input device. The complexity of
such an algorithm is stated in terms of the length of its main input.

Indeed, the description in §5.2.4.2 refers to such a model, but there the main input
is viewed as an oracle and the secondary input is viewed as the input. In this
model, polylogarithmic time means time that is polylogarithmic in the length of
the main input, which means time that is polynomial in the length of the binary
representation of the length of the main input. Thus, polylogarithmic time yields
a robust notion of extremely efficient computations.

Definition 10.11 (property testing for S): For any fized § > 0, the promise
problem of distinguishing S from Ts(S) is called property testing for S (with respect
to 4).
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Recall that we say that a randomized algorithm solves a promise problem if it
accepts every yes-instance (resp., rejects every no-instance) with probability at
least 2/3. Thus, a (randomized) property testing for S accepts every input in S
(resp., rejects every input in I's(S)) with probability at least 2/3.

The question of representation. The specific representation of the input is of
major concern in the current context. This is due to (1) the effect of the represen-
tation on the distance measure and to (2) the dependence of direct access machines
on the specific representation of the input. Let us elaborate on both aspects.

1. Recall that we defined the distance between objects in terms of the Hamming
distance between their representations. Clearly, in such a case, the choice of
representation is crucial and different representations may yield different dis-
tance measures. Furthermore, in this case, the distance between objects is
not preserved under various (natural) representations that are considered
“equivalent” in standard studies of computational complexity. For example,
in previous parts of this book, when referring to computational problems con-
cerning graphs, we did not care whether the graphs were represented by their
adjacency matrix or by their incidence-lists. In contrast, these two represen-
tations induce very different distance measures and correspondingly different
property testing problems (see §10.1.2.2). Likewise, the use of padding (and
other trivial syntactic conventions) becomes problematic (e.g., when using a
significant amount of padding, all objects are deemed close to one another
(and property testing for any set becomes trivial)).

2. Since our focus is on sub-linear time algorithms, we may not afford trans-
forming the input from one natural format to another. Thus, representations
that are considered equivalent with respect to polynomial-time algorithms,
may not be equivalent with respect to sub-linear time algorithms that have
a direct access to the representation of the object. For example, adjacency
queries and incidence queries cannot emulate one another in small time (i.e.,
in time that is sub-linear in the number of vertices).

Both aspects are further clarified by the examples provided in §10.1.2.2.

The essential role of the promise. Recall that, for a fixed constant § > 0,
we consider the promise problem of distinguishing S from I's(S). The promise
means that all instances that are neither in S nor far from S (i.e., not in I's(.S))
are ignored, which is essential for sub-linear algorithms for natural problems. This
makes the property testing task potentially easier than the corresponding stan-
dard decision task (cf. §10.1.2.2). To demonstrate the point, consider the set S
consisting of strings that have a majority of 1’s. Then, deciding membership in
S requires linear time, because random n-bit long strings with |n/2]| ones cannot
be distinguished from random n-bit long strings with [n/2] + 1 ones by probing
a sub-linear number of locations (even if randomization and error probability are
allowed — see Exercise 10.8). On the other hand, the fraction of 1’s in the input can
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be approximated by a randomized polylogarithmic time algorithm (which yields a
property tester for S; see Exercise 10.9). Thus, for some sets, deciding membership
requires linear time, while property testing can be done in polylogarithmic time.

The essential role of randomization. Referring to the foregoing example, we
note that randomization is essential for any sub-linear time algorithm that distin-
guishes this set S from, say, g 4(S). Specifically, a sub-linear time deterministic
algorithm cannot distinguish 1" from any input that has 1’s in each position probed
by that algorithm on input 1. In general, on input x, a (sub-linear time) deter-
ministic algorithm always reads the same bits of  and thus cannot distinguish x
from any z that agrees with = on these bit locations.

Note that, in both cases, we are able to prove lower-bounds on the time com-
plexity of algorithms. This success is due to the fact that these lower-bounds are
actually information theoretic in nature; that is, these lower-bounds actually refer
to the number of queries performed by these algorithms.

10.1.2.2 Two models for testing graph properties

In this subsection we consider the complexity of property testing for sets of graphs
that are closed under graph isomorphism; such sets are called graph properties. In
view of the importance of representation in the context of property testing, we
counsider two standard representations of graphs (cf. Appendix G.1), which indeed
yield two different models of testing graph properties.

1. The adjacency matrix representation. Here a graph G = ([N], E) is rep-
resented (in a somewhat redundant form) by an N-by-N Boolean matrix
Mg = (m; ;)i je[n) such that m; ; = 1 if and only if {i,j} € E.

2. Bounded incidence-lists representation. For a fixed parameter d, a graph
G = ([N], E) of degree at most d is represented (in a somewhat redundant
form) by a mapping pg : [N] X [d] — [N]U{L} such that pg(u,i) = v if v is
the i*" neighbor of u and pg(u,i) = L if v has less than i neighbors.

We stress that the aforementioned representations determine both the notion of
distance between graphs and the type of queries performed by the algorithm. As
we shall see, the difference between these two representations yields a big difference
in the complexity of corresponding property testing problems.

Theorem 10.12 (property testing in the adjacency matrix representation): For
any fized § > 0 and each of the following sets, there exists a polylogarithmic time
randomized algorithm that solves the corresponding property testing problem (with
respect to 0).

o For every fived k > 2, the set of k-colorable graphs.

e For every fized p > 0, the set of graphs having a clique (resp., independent
set) of density p.
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e For every fized p > 0, the set of N-vertex graphs having a cut® with at least
p-N? edges.

e For every fized p > 0, the set of N-vertez graphs having a bisection3with at
most p- N? edges.

In contrast, for some § > 0, there exists a graph property in N'P for which property
testing (with respect to &) requires linear time.

The testing algorithms use a constant number of queries, where this constant is
polynomial in the constant 1/6. We highlight the fact that exact decision proce-
dures for the corresponding sets require a linear number of queries. The running
time of the aforementioned algorithms hides a constant that is exponential in their
query complexity (except for the case of 2-colorability where the hidden constant
is polynomial in 1/6). Note that such dependencies seem essential, since setting
§ = 1/N? regains the original (non-relaxed) decision problems (which, with the
exception of 2-colorability, are all NP-complete). Turning to the lower-bound, we
note that the graph property for which this bound is proved is not a natural one.
Again, the lower-bound on the time complexity follows from a lower-bound on the
query complexity.

Theorem 10.12 exhibits a dichotomy between graph properties for which prop-
erty testing is possible by a constant number of queries and graph properties for
which property testing requires a linear number of queries. A combinatorial charac-
terization of the graph properties for which property testing is possible (in the ad-
jacency matrix representation) when using a constant number of queries is known.*
We note that the constant in this characterization may depend arbitrarily on 6 (and
indeed, in some cases, it is a function growing faster than a tower of 1/6 exponents).
For example, property testing for the set of triangle-free graphs is possible by using
a number of queries that depends only on 6, but it is known that this number must
grow faster than any polynomial in 1/6.

Turning back to Theorem 10.12, we note that the results regarding property
testing for the sets corresponding to max-cut and min-bisection yield approximation
algorithms with an additive error term (of §N?2). For dense graphs (i.e., N-vertex
graphs having Q(N?) edges), this yields a constant factor approximation for the
standard approximation problem (as in Definition 10.1). That is, for every constant
¢ > 1, we obtain a c-factor approzimation of the problem of maximizing the size of a
cut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,
the result regarding clique yields a so called dual-approximation for maximum
clique; that is, we approximate the minimum number of missing edges in the densest
induced subgraph of a given size.

3A cut in a graph G = ([N], E) is a partition (S1, S2) of the set of vertices (i.e., S1 US2 = [N]
and S1 NSy = (D), and the edges of the cut are the edges with exactly one endpoint in S1. A
bisection is a cut of the graph to two parts of equal cardinality.

4Describing this fascinating result of Alon et. al. [8], which refers to the notion of regular
partitions (introduced by Szemerédi), is beyond the scope of the current text.
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Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, in
general, for any graph property in the adjacency matrix representation.® Also note
that property testing is trivial, under the adjacency matrix representation, for any
graph property S satisfying I',(1)(S) = @ (e.g., the set of connected graphs, the set
of Hamiltonian graphs, etc).

We now turn to the bounded incidence-lists representation, which is relevant
only for bounded degree graphs. The problems of max-cut, min-bisection and clique
(as in Theorem 10.12) are trivial under this representation, but graph connectivity
becomes non-trivial, and the complexity of property testing for the set of bipartite
graphs changes dramatically.

Theorem 10.13 (property testing in the bounded incidence-lists representation):
The following assertions refer to the representation of graphs by incidence-lists of
length d.

e For any fized d and 6 > 0, there ezists a polylogarithmic time randomized
algorithm that solves the property testing problem for the set of connected
graphs of degree at most d.

o For any fired d and § > 0, there ezists a sub-linear randomized algorithm that
solves the property testing problem for the set of bipartite graphs of degree at
most d. Specifically, on input an N-vertex graph, the algorithm runs for

O(V/N) time.

o For any fized d > 3 and some § > 0, property testing for the set of N-vertex
(3-regular) bipartite graphs requires (v N) queries.

o For some fized d and & > 0, property testing for the set of N -vertex 3-colorable
graphs requires Q(N) queries.

The running time of the algorithms hides a constant that is polynomial in 1/6.
Providing a characterization of graph properties according to the complexity of the
corresponding tester (in the bounded incidence-lists representation) is an interest-
ing open problem.

Decoupling the distance from the representation. So far, we have confined
our attention to the Hamming distance between the representations of graphs.
This made the choice of representation even more important than usual (i.e., more
crucial than is common in complexity theory). In contrast, it is natural to consider
a notion of distance between graphs that is independent of their representation.
For example, the distance between Gy =(V1, E1) and G2 =(V2, Es) can be defined

5In this model, as shown next, property testing of non-dense graphs is trivial. Specifically,
fixing the distance parameter §, we call a N-vertex graph non-dense if it has less than (6/2) - (g)
edges. The point is that, for non-dense graphs, the property testing problem for any set S is
trivial, because we may just accept any non-dense graph if and only if S contains some non-dense
graph. Clearly, the decision is correct in the case that S does not contain non-dense graphs.
However, the decision is admissible also in the case that S does contain some non-dense graph,
because in this case every non-dense graph is “6-close” to S (i.e., it is not in I's(S)).
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as the minimum of the size of symmetric difference between E; and the set of edges
in a graph that is isomorphic to G;. The corresponding relative distance may be
defined as the distance divided by |E;| + |E2| (or by max(|E1],|Ez|))-

10.1.2.3 Beyond graph properties

Property testing has been applied to a variety of computational problems beyond
the domain of graph theory. In fact, this area first emerged in the algebraic domain,
where the instances (to be viewed as inputs to the testing algorithm) are functions
and the relevant properties are sets of algebraic functions. The archetypical ex-
ample is the set of low-degree polynomials; that is, m-variate polynomials of total
(or individual) degree d over some finite field GF(g), where m,d and ¢ are param-
eters that may depend on the length of the input (or satisfy some relationships;
e.g., ¢ = d°> = m®). Note that, in this case, the input is the (“full” or “explicit”)
description of an m-variate function over GF(¢), which means that it has length
g™ -log, q. Viewing the problem instance as a function suggests a natural measure
of distance (i.e., the fraction of arguments on which the functions disagree) as well
as a natural way of accessing the instance (i.e., querying the function for the value
of selected arguments).

Note that we have referred to these computational problems, under a different
terminology, in §9.3.2.2 and in §9.3.2.1. In particular, in §9.3.2.1 we refereed to
the special case of linear Boolean functions (i.e., individual degree 1 and ¢ = 2),
whereas in §9.3.2.2 we used the setting ¢ = poly(d) and m = d/logd (where d is a
bound on the total degree).

Other domains of computational problems in which property testing was stud-
ied include geometry (e.g., clustering problems), formal languages (e.g., testing
membership in regular sets), coding theory (cf. Appendix E.1.2), probability the-
ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone and
junta functions). As discuss at the end of §10.1.2.2, it is often natural to decou-
ple the distance measure from the representation of the objects (i.e., the way of
accessing the problem instance). This is done by introducing a representation-
independent notion of distance between instances, which should be natural in the
context of the problem at hand.

10.2 Average Case Complexity

Teaching note: We view average-case complexity as referring to the performance on
average (or typical) instances, and not as the average performance on random instances.
This choice is justified in §10.2.1.1. Thus, it may be more justified to refer to the
following theory by the name typical-case complexity. Still, the name average-case was

retained for historical reasons.

Our approach so far (including in Section 10.1) is termed worst-case complex-
ity, because it refers to the performance of potential algorithms on each legitimate
instance (and hence to the performance on the worst possible instance). That is,
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computational problems were defined as referring to a set of instances and perfor-
mance guarantees were required to hold for each instance in this set. In contrast,
average-case complexity allows ignoring a negligible measure of the possible in-
stances, where the identity of the ignored instances is determined by the analysis
of potential solvers and not by the problem’s statement.

A few comments are in place. Firstly, as just hinted, the standard statement
of the worst-case complexity of a computational problem (especially one having
a promise) may also ignores some instances (i.e., those considered inadmissible
or violating the promise), but these instances are determined by the problem’s
statement. In contrast, the inputs ignored in average-case complexity are not
inadmissible in any inherent sense (and are certainly not identified as such by
the problem’s statement). It is just that they are viewed as exceptional when
claiming that a specific algorithm solve the problem; furthermore, these exceptional
instances are determined by the analysis of that algorithm. Needless to say, these
exceptional instances ought to be rare (i.e., occur with negligible probability).

The last sentence raises a couple of issues. Firstly, a distribution on the set
of admissible instances has to be specified. In fact, we shall consider a new type
of computational problems, each consisting of a standard computational problem
coupled with a probability distribution on instances. Consequently, the question of
which distributions should be considered in the theory of average-case complexity
arises. This question and numerous other definitional issues will be addressed in
§10.2.1.1.

Before proceeding, let us spell out the rather straightforward motivation to the
study of the average-case complexity of computational problems: It is that, in real-
life applications, one may be perfectly happy with an algorithm that solves the
problem fast on almost all instances that arise in the relevant application. That is,
one may be willing to tolerate error provided that it occurs with negligible proba-
bility, where the probability is taken over the distribution of instances encountered
in the application. The study of average-case complexity is aimed at exploring the
possible benefit of such a relaxation, distinguishing cases in which a benefit exists
from cases in which it does not exist. A key aspect in such a study is a good
modeling of the type of distributions (of instances) that are encountered in natural
algorithmic applications.

A preliminary question that arises is whether every natural computational prob-
lem be solve efficiently when restricting attention to typical instances? The conjec-
ture that underlies this section is that, for a well-motivated choice of definitions, the
answer is negative; that is, our conjecture is that the “distributional version” of NP
is not contained in the average-case (or typical-case) version of P. This means that
some NP problems are not merely hard in the worst-case, but are rather “typically
hard” (i.e., hard on typical instances drawn from some simple distribution). Specif-
ically, hard instances may occur in natural algorithmic applications (and not only
in cryptographic (or other “adversarial”) applications that are design on purpose
to produce hard instances).b

6We highlight two differences between the current context (of natural algorithmic applications)
and the context of cryptography. Firstly, in the current context and when referring to problems
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The foregoing conjecture motivates the development of an average-case analogue
of NP-completeness, which will be presented in this section. Indeed, the entire
section may be viewed as an average-case analogue of Chapter 2. In particular, this
(average-case) theory identifies distributional problems that are “typically hard”
provided that distributional problems that are “typically hard” exist at all. If one
believes the foregoing conjecture then, for such complete (distributional) problems,
one should not seek algorithms that solve these problems efficiently on typical
instances.

Organization. A major part of our exposition is devoted to the definitional is-
sues that arise when developing a general theory of average-case complexity. These
issues are discussed in §10.2.1.1. In §10.2.1.2 we prove the existence of distribu-
tional problems that are “NP-complete” in the average-case complexity sense. In
particular, we show how to obtain such a distributional version for any natural NP-
complete decision problem. In §10.2.1.3 we extend the treatment to randomized
algorithms. Additional ramifications are presented in Section 10.2.2.

10.2.1 The basic theory

In this section we provide a basic treatment of the theory of average-case com-
plexity, while postponing important ramifications to Section 10.2.2. The basic
treatment consists of the preferred definitional choices for the main concepts as
well as the identification of complete problems for a natural class of average-case
computational problems.

10.2.1.1 Definitional issues

The theory of average-case complexity is more subtle than may appear at first
thought. In addition to the generic difficulty involved in defining relaxations, dif-
ficulties arise from the “interface” between standard probabilistic analysis and the
conventions of complexity theory. This is most striking in the definition of the
class of feasible average-case computations. Referring to the theory of worst-case
complexity as a guideline, we shall address the following aspects of the analogous
theory of average-case complexity.

1. Setting the general framework. We shall consider distributional problems,
which are standard computational problems (see Section 1.2.2) coupled with
distributions on the relevant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-
case analogue of classes such as P, we shall reject the first definition that
comes to mind (i.e., the naive notion of “average polynomial-time”), briefly

that are typically hard, the simplicity of the underlying input distribution is of great concern:
the simpler this distribution, the more appealing the hardness assertion becomes. This concern
is irrelevant in the context of cryptography. On the other hand (see discussion at the beginning
of Section 7.1.1 and/or at end of §10.2.2.2), cryptographic applications require the ability to
efficiently generate hard instances together with corresponding solutions.
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discuss several related alternatives, and adopt one of them for the main treat-
ment.

3. Identifying the class of interesting (distributional) problems. Seeking an
average-case analogue of the class NP, we shall avoid both the extreme
of allowing arbitrary distributions (which collapses average-case hardness to
worst-case hardness) and the opposite extreme of confining the treatment to
a single distribution such as the uniform distribution.

4. Developing an adequate notion of reduction among (distributional) problems.
As in the theory of worst-case complexity, this notion should preserve feasible
solveability (in the current distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.

Step 1: Defining distributional problems. Focusing on decision problems,
we define distributional problems as pairs consisting of a decision problem and a
probability ensemble.” For simplicity, here a probability ensemble {Xolnen is a
sequence of random variables such that X,, ranges over {0,1}". Thus, (S, {X,},cn)
is the distributional problem consisting of the problem of deciding membership in
the set S with respect to the probability ensemble {X,}, cn. (The treatment of
search problem is similar; see §10.2.2.1.) We denote the uniform probability ensemble
by U = {U,} .en; that is, U, is uniform over {0,1}".

Step 2: Identifying the class of feasible problems. The first idea that
comes to mind is defining the problem (S, {X,},cn) as feasible (on the average)
if there exists an algorithm A that solves S such that the average running time
of A on X, is bounded by a polynomial in n (i.e., there exists a polynomial p
such that E[t4(X,)] < p(n), where t4(z) denotes the running-time of A on input
x). The problem with this definition is that it very sensitive to the model of
computation and is not closed under algorithmic composition. Both deficiencies
are a consequence of the fact that ¢4 may be polynomial on the average with
respect to {X,},en but 4 may fail to be so (e.g., consider ta(z'z") = 21*'| if
' = 2" and ta(z'x") = |x'z"|? otherwise, coupled with the uniform distribution
over {0,1}"). We conclude that the average running-time of algorithms is not a
robust notion. We also doubt the naive appeal of this notion, and view the typical
running time of algorithms (as defined next) as a more natural notion. Thus, we
shall consider an algorithm as feasible if its running-time is typically polynomial.®

"We mention that even this choice is not evident. Specifically, Levin [148] (see discussion
in [85]) advocates the use of a single probability distribution defined over the set of all strings.
His argument is that this makes the theory less representation-dependent. At the time we were
convinced of his argument (see [85]), but currently we feel that the representation-dependent
effects discussed in [85] are legitimate. Furthermore, the alternative formulation of [148, 85|
comes across as unnatural and tends to confuse some readers.

8 An alternative choice, taken by Levin [148] (see discussion in [85]), is considering as feasible
(wrt X = {X"}neN) any algorithm that runs in time that is polynomial in a function that is
linear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function
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We say that A is typically polynomial-time on X = {X,},cn if there exists a
polynomial p such that the probability that A runs more that p(n) steps on X,
is negligible (i.e., for every polynomial ¢ and all sufficiently large n it holds that
Prita(X,) > p(n)] < 1/¢q(n)). The question is what is required in the “untypical”
cases, and two possible definitions follow.

1. The simpler option is saying that (S, {X,},en) is (typically) feasible if there
exists an algorithm A that solves S such that A is typically polynomial-time
on X = {X,},en. This effectively requires A to correctly solve S on each
instance, which is more than was required in the motivational discussion.
(Indeed, if the underlying motivation is ignoring rare cases, then we should
ignore them altogether rather than ignoring them in a partial manner (i.e.,
only ignore their affect on the running-time).)

2. The alternative, which fits the motivational discussion, is saying that (S, X)
is (typically) feasible if there exists an algorithm A such that A typically
solves S on X in polynomial-time; that is, there exists a polynomial p such
that the probability that on input X,, algorithm A either errs or runs more
that p(n) steps is negligible. This formulation totally ignores the untypical
instances. Indeed, in this case we may assume, without loss of generality,
that A always runs in polynomial-time (see Exercise 10.11), but we shall not
do so here (in order to facilitate viewing the first option as a special case of
the current option).

We stress that both alternatives actually define typical feasibility and not average-
case feasibility. To illustrate the difference between the two options, consider the
distributional problem of deciding whether a uniformly selected (n-vertex) graph
contains a Hamiltonian path. Intuitively, this problem is “typically trivial” (with
respect to the uniform distribution)? because the algorithm may always say yes and
be wrong with exponentially vanishing probability. Indeed, this trivial algorithm
is admissible by the second approach, but not by the first approach. In light of the
foregoing discussions, we adopt the second approach.

Definition 10.14 (the class tpcP): We say that A typically solves (S, {X,},en)
in polynomial-time if there exists a polynomial p such that the probability that on
input X,, algorithm A either errs or runs more that p(n) steps is negligible.*® We
denote by tpcP the class of distributional problems that are typically solvable in
polynomial-time.

£:{0,1}* — N such that t(x) < p(L(x)) and E[¢(X,)] = O(n). This definition is robust (i.e., it
does not suffer from the aforementioned deficiencies) and is arguably as “natural” as the naive
definition (i.e., E[t4(Xn)] < poly(n)).

9In contrast, testing whether a given graph contains a Hamiltonian path seems “typically
hard” for other distributions (see Exercise 10.27). Needless to say, in the latter distributions both
yes-instances and no-instances appear with noticeable probability.

10Recall that a function p : N - Nis negligible if for every positive polynomial ¢ and all
sufficiently large n it holds that p(n) < 1/q(n). We say that A errs on « if A(x) differs from the
indicator value of the predicate € S.
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Clearly, for every S € P and every probability ensemble X, it holds that (S, X) €
tpcP. However, tpcP contains also distributional problems (S, X) with S ¢ P
(see Exercises 10.12 and 10.13). The big question, which underlies the theory of
average-case complexity, is whether natural distributional versions of NP are in
tpcP. Thus, we turn to identify such versions.

Step 3: Identifying the class of interesting problems. Seeking to identify
reasonable distributional versions of NP, we note that two extreme choices should
be avoided. On one hand, we must limit the class of admissible distributions so to
prevent the collapse of average-case hardness to worst-case hardness (by a selection
of a pathological distribution that resides on the “worst case” instances). On the
other hand, we should allow for various types of natural distributions rather than
confining attention merely to the uniform distribution.!! Recall that our aim is
addressing all possible input distributions that may occur in applications, and thus
there is no justification for confining attention to the uniform distribution. Still,
arguably, the distributions occuring in applications are “relatively simple” and so
we seek to identify a class of simple distributions. One such notion (of simple
distributions) underlies the following definition, while a more liberal notion will be
presented in §10.2.2.2.

Definition 10.15 (the class distN'P): We say that a probability ensemble X =
{Xn}nen is simple if there exists a polynomial time algorithm that, on any input
x € {0,1}*, outputs Pr[X ;| < w], where the inequality refers to the standard lewico-
graphic order of strings. We denote by distN'P the class of distributional problems
consisting of decision problems in NP coupled with simple probability ensembles.

Note that the uniform probability ensemble is simple, but so are many other “sim-
ple” probability ensembles. Actually, it makes sense to relax the definition such
that the algorithm is only required to output an approximation of Pr[X ;| < x], say,
to within a factor of 14 22l, We note that Definition 10.15 interprets simplicity
in computational terms; specifically, as the feasibility of answering very basic ques-
tions regarding the probability distribution (i.e., determining the probability mass
assigned to a single (n-bit long) string and even to an interval of such strings). This
simplicity condition is closely related to being polynomial-time sampleable via a
monotone mapping (see Exercise 10.14).

Teaching note: The following two paragraphs attempt to address some doubts re-

garding Definition 10.15. One may postpone such discussions to a later stage.

We admit that the indentification of simple distributions as the class of inter-
esting distribution is significantly more questionable than any other indentification
advocated in this book. Nevertheless, we believe that we were fully justified in re-
jecting both the aforementioned extremes (i.e., of either allowing all distributions

1 Confining attention to the uniform distribution seems misguided by the naive belief according
to which this distribution is the only one relevant to applications. In contrast, we believe that,
for most natural applications, the uniform distribution over instances is not relevant at all.
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or allowing only the uniform distribution). Yet, the reader may wonder whether
or not we have struck the right balance between “generality” and “simplicity” (in
the intuitive sense). One specific concern is that we might have restricted the class
of distributions too much. We briefly address this concern next.

A more intuitive and very robust class of distributions, which seems to contain
all distributions that may occur in applications, is the class of polynomial-time
sampleable probability ensembles (treated in §10.2.2.2). Fortunately, the combi-
nation of the results presented in §10.2.1.2 and §10.2.2.2 seems to retrospectively
endorse the choice underlying Definition 10.15. Speficically, we note that enlarging
the class of distributions weakens the conjecture that the corresponding class of
distributional NP problems contains infeasible problems. On the other hand, the
conclusion that a specific distributional problem is not feasible becomes stronger
when the problem belongs to a smaller class that corresponds to a restricted def-
inition of admissible distributions. Now, the combined results of §10.2.1.2 and
§10.2.2.2 assert that a conjecture that refers to the larger class of polynomial-time
sampleable ensembles implies a conclusion that refers to a (very) simple probability
ensemble (which resides in the smaller class). Thus, the current setting in which
both the conjecture and the conclusion refer to simple probability ensembles may
be viewed as just an intermediate step.

Indeed, the big question in the current context is whether dist AP is contained
in tpcP. A positive answer (especially if extended to sampleable ensembles) would
deem the P-vs-NP Question of little practical significant. However, our daily ex-
perience as well as much research effort indicate that some NP problems are not
merely hard in the worst-case, but rather “typically hard”. This leads to the con-
jecture that distAP is not contained in tpcP.

Needless to say, the latter conjecture implies P # NP, and thus we should
not expect to see a proof of it. In particular, we should not expect to see a proof
that some specific problem in dist AP is not in tpcP. What we may hope to see
is “dist/NP-complete” problems; that is, problems in distA/P that are not in tpcP
unless the entire class dist AP is contained in tpcP. An adequate notion of a
reduction is used towards formulating this possibility (which in turn is captured
by the notion of “distA/P-complete” problems).

Step 4: Defining reductions among (distributional) problems. Intuitively,
such reductions must preserve average-case feasibility. Thus, in addition to the
standard conditions (i.e., that the reduction be efficiently computable and yield a
correct result), we require that the reduction “respects” the probability distribu-
tion of the corresponding distributional problems. Specifically, the reduction should
not map very likely instances of the first (“starting”) problem to rare instances of
the second (“target”) problem. Otherwise, having a typically polynomial-time al-
gorithm for the second distributional problem does not necessarily yield such an
algorithm for the first distributional problem. Following is the adequate analogue
of a Cook reduction (i.e., general polynomial-time reduction), where the analogue
of a Karp-reduction (many-to-one reduction) can be easily derived as a special case.
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Teaching note: One may prefer presenting in class only the special case of many-to-
one reductions, which suffices for Theorem 10.17. See Footnote 13.

Definition 10.16 (reductions among distributional problems): We say that the
oracle machine M reduces the distributional problem (S,X) to the distributional
problem (T,Y) if the following three conditions hold.

1. Efficiency: The machine M runs in polynomial-time.'?

2. Validity: For every x € {0,1}*, it holds that M*(z) = 1 if an only if v € S,
where MT (x) denotes the output of the oracle machine M on input v and
access to an oracle for T.

3. Domination:'®> The probability that, on input X, and oracle access to T,

machine M makes the query y is upper-bounded by poly(|y|) - Pr[Y],| = y].
That is, there exists a polynomial p such that, for every y € {0,1}* and every
n € N, it holds that

PriQ(Xn) 3 9] < p(ly|) - Pr[Y}y =yl (10.2)

where Q(x) denotes the set of queries made by M on input x and oracle access
toT'.

In addition, we require that the reduction does not make too short queries;
that is, there exists a polynomial p' such that if y € Q(z) then p'(|y|) > |z|.

The Lh.s. of Eq. (10.2) refers to the probability that, on input distributed as X,
the reduction makes the query y. This probability is required not to exceed the
probability that y occurs in the distribution Y}, by more than a polynomial factor
in [y|. In this case we say that the L.h.s. of Eq. (10.2) is dominated by Pr[Y},| = y].

Indeed, the domination condition is the only aspect of Definition 10.16 that ex-
tends beyond the worst-case treatment of reductions and refers to the distributional
setting. The domination condition does not insist that the distribution induced by
Q(X) equals Y, but rather allows some slackness that, in turn, is bounded so to
guarantee preservation of typical feasibility (see Exercise 10.15).1

We note that the reducibility arguments extensively used in Chapters 7 and 8
(see discussion in Section 7.1.2) are actually reductions in the spirit of Defini-
tion 10.16 (except that they refer to different types of computational tasks).

121n fact, one may relax the requirement and only require that M is typically polynomial-time
with respect to X. The validity condition may also be relaxed similarly.

13Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions
(i.e., MT(x) = 1 if and only if f(z) € T, where f is a polynomial-time computable function):
in this case Pr[Q(X,) 3 y] is replaced by Pr[f(X,) = y]. That is, Eq. (10.2) simplifies to
Prif(Xn) =yl < p(ly]) - Pr[Y]y| = y]. Indeed, this condition holds vacuously for any y that is not
in the image of f.

14We stress that the notion of domination is incomparable to the notion of statistical (resp.,
computational) indistinguishability. On one hand, domination is a local requirement (i.e., it
compares the two distribution on a point-by-point basis), whereas indistinguishability is a global
requirement (which allows rare exceptions). On the other hand, domination does not require
approximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-
tion is not symmetric. We comment that a more relaxed notion of domination that allows rare
violations (as in Footnote 12) suffices for the preservation of typical feasibility.
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10.2.1.2 Complete problems

Recall that our conjecture is that distA/P is not contained in tpcP, which in turn
strengthens the conjecture P # NP (making infeasibility a typical phenomenon
rather than a worst-case one). Having no hope of proving that distA/P is not
contained in tpcP, we turn to the study of complete problems with respect to that
conjecture. Specifically, we say that a distributional problem (5, X) is distA/P-
complete if (9, X) € dist AP and every (S’, X') € distA'P is reducible to (5, X)
(under Definition 10.16).

Recall that it is quite easy to prove the mere existence of NP-complete problems
and many natural problems are NP-complete. In contrast, in the current context,
establishing completeness results is quite hard. This should not be surprising in
light of the restricted type of reductions allowed in the current context. The re-
striction (captured by the domination condition) requires that “typical” instances
of one problem should not be mapped to “untypical” instances of the other prob-
lem. However, it is fair to say that standard Karp-reductions (used in establishing
NP-completeness results) map “typical” instances of one problem to somewhat
“bizarre” instances of the second problem. Thus, the current subsection may be
viewed as a study of reductions that do not commit this sin.'?

Theorem 10.17 (distN'P-completeness): distA'P contains a distributional prob-
lem (T,Y") such that each distributional problem in distN'P is reducible (per Defini-
tion 10.16) to (T,Y). Furthermore, the reductions are via many-to-one mappings.

Proof: We start by introducing such a (distributional) problem, which is a
natural distributional version of the decision problem Sy (used in the proof of
Theorem 2.18). Recall that Sy contains the instance (M,z,1%) if there exists
y € U;<¢{0, 1}" such that M accepts the input pair (z,y) within ¢ steps. We couple
Su with the “quasi-uniform” probability ensemble U’ that assigns to the instance
(M, x,1%) a probability mass proportional to 2~ UM+l Specifically, for every
(M, x,1%) it holds that

2—(IM|+]z])

(5)

where n %' [(M,z,1')| = |M]| + |z| + t. Note that, under a suitable natural
encoding, the ensemble U’ is indeed simple.'®

The reader can easily verify that the generic reduction used when reducing
any set in NP to Sy (see the proof of Theorem 2.18), fails to reduce distAP
to (Su,U’). Specifically, in some cases (see next paragraph), these reductions do
not satisfy the domination condition. Indeed, the difficulty is that we have to

Pr{U,, = (M,z,1")] = (10.3)

15The latter assertion is somewhat controversial. While it seems totally justified with respect
to the proof of Theorem 10.17, opinions regarding the proof of Theorem 10.19 may differ.

16For example, we may encode (M, z,1%), where M = 01 ---0}, € {0,1}* and z =71 --- 74 €
{0,1}¢, by the string o107 --- 00017171 - - - 74701t. Then (g) - Pr[U!, < (M,z,1%)] equals
(iparpfep,e — 1) + 27 M (M€ {0, 1M1 M7 < MY+ 27 (MIFED L fal € {0,131 1#) 2 o < @},
where iy, ¢ ; is the ranking of {k,k + £} among all 2-subsets of [k + £+ t].
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reduce all dist AP problems (i.e., pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e., (Su,U’)). Applying the
aforementioned reductions, we end up with many distributional versions of Sy,
and furthermore the corresponding distributions are very different (and are not
necessarily dominated by a single distribution).

Let us take a closer look at the aforementioned generic reduction, when applied
to an arbitrary (S, X) € distAVP. This reduction maps an instance x to a triple
(Mg, z,1Ps(2D)) where Mg is a machine verifying membership in S (while using
adequate NP-witnesses) and ps is an adequate polynomial. The problem is that z
may have relatively large probability mass (i.e., it may be that Pr[X|,| =] > 2~ Iy
while (Mg, z,175(*D) has “uniform” probability mass (i.e., (Mg, z, 172D} has
probability mass smaller than 2-1%! in U’). This violates the domination condition
(see Exercise 10.18), and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encoding of
strings taken from an arbitrary simple distribution by strings that have a similar
probability mass under the uniform distribution. This means that the encoding
should shrink strings that have relatively large probability mass under the origi-
nal distribution. Specifically, this encoding will map x (taken from the ensemble
{X.}nen) to a codeword z' of length that is upper-bounded by the logarithm of
1/Pr[X|;| = ], ensuring that Pr[X; =2] = O(271#'l). Accordingly, the reduction
will map « to a triple (Mg x, ', 17" (*D) where |z'| < O(1) + log, (1/Pr[X ;| =x])
and Mg x is an algorithm that (given z' and x) first verifies that «’ is a proper
encoding of z and next applies the standard verification (i.e., Mg) of the problem
S. Such a reduction will be shown to satisfy all three conditions (i.e., efficiency,
validity, and domination). Thus, instead of forcing the structure of the original
distribution X on the target distribution U’, the reduction will incorporate the
structure of X in the reduced instance. A key ingredient in making this possible is
the fact that X is simple (as per Definition 10.15).

With the foregoing motivation in mind, we now turn to the actual proof; that
is, proving that any (S,X) € distA’P is reducible to (Su,U’). The following
technical lemma is the basis of the reduction. In this lemma as well as in the
sequel, it will be convenient to consider the (accumulative) distribution function

of the probability ensemble X. That is, we consider u(z) def Pr[X; < ], and
note that p : {0,1}* — [0,1] is polynomial-time computable (because X satisfies
Definition 10.15).

Coding Lemma:'” Let p : {0,1}* — [0, 1] be a polynomial-time computable function
that is monotonically non-decreasing over {0,1}" for every n (i.e., u(z') < p(z")
for any z’ < 2’ € {0,1}1*'l). For # € {0,1}"\ {0}, let & — 1 denote the string
preceding z in the lexicographic order of n-bit long strings. Then there exist an
encoding function C), that satisfies the following three conditions.

17The lemma actually refers to {0,1}™, for any fixed value of n, but the efficiency condition
is stated more easily when allowing n to vary (and using the standard asymptotic analysis of
algorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-
time computable functions that are monotonically non-decreasing over {0, 1}* (rather than over
{0,1}™). See further discussion in Exercise 10.19.
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1. Compression: For every « it holds that |Cy(2)| < 1+ min{|z|,log,(1/p1'(z))},

where p'(z) Lef w(x) —p(z —1) if z € {0}* and p/(0™) Lef 1(0™) otherwise.

2. Efficient Encoding: The function C, is computable in polynomial-time.

3. Unique Decoding: For every n € N, when restricted to {0,1}", the function
C, is one-to-one (i.e., if Cy(x) = C,(2') and |z| = |2'| then z = z').

Proof: The function C, is defined as follows. If z/(z) < 27/° then C,(z) = 0z
(i.e., in this case = serves as its own encoding). Otherwise (i.e., u'(z) > 2771
then Cy(x) = 1z, where z is chosen such that |z| < log,(1/u'(z)) and the mapping
of n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected to
equal the shortest binary expansion of a number in the interval (u(z) —p'(z), p(z)].
Bearing in mind that this interval has length p'(z) and that the different intervals
are disjoint, we obtain the desired encoding. Details follows.

We focus on the case that p'(z) > 2~1%, and detail the way that z is selected
(for the encoding C\(z) = 1z). If & > 0l and p(x) < 1, then we let z be the
longest common prefix of the binary expansions of u(z — 1) and u(x); for example,
if 14(1010) = 0.10010 and p(1011) = 0.10101111 then C,(1011) = 1z with z = 10.
Thus, in this case 0.z1 is in the interval (u(z—1), u(z)] (i.e., p(z—1) < 0.21 < p(z)).
For z = 0%, we let z be the longest common prefix of the binary expansions of 0
and p(x) and again 0.z1 is in the relevant interval (i.e., (0, u(x)]). Finally, for z such
that u(z) = 1and p(z—1) < 1, we let z be the longest common prefix of the binary
expansions of p(z—1) and 1 —2-1¢1-1 and again 0.21 is in (u(x—1), u(x)] (because
W (x) > 271 and p(r — 1) < p(z) = 1 imply that pu(z — 1) < 1 — 27171 < p(2)).
Note that if pu(z) = p(z — 1) = 1 then p/(z) = 0 < 2121,

We now verify that the foregoing C), satisfies the conditions of the lemma. We
start with the compression condition. Clearly, if u'(z) < 2~1°l then |C,(z)| =
1+ |z| <14 logy(1/p/(x)). On the other hand, suppose that u'(z) > 27/l and
let us focus on the sub-case that z > 01l and pu(z) < 1. Let z = 2, --- 2 be
the longest common prefix of the binary expansions of u(z — 1) and u(z). Then,
w(z — 1) = 0.20u and pu(x) = 0.z1v, where w,v € {0,1}*. We infer that

¢ poly(|z|) 4
pr) = pla)—ple—1) < [ D27+ Y 27| =) 27 < 275
i=1 i=041 i=1

and |z| < log,(1/p'(x)) < |z| follows. Thus, |Cp(z)| < 1+ min(|z|,log,(1/p'(x)))
holds in both cases. Clearly, C, can be computed in polynomial-time by computing
p(z—1) and p(x). Finally, note that C,, satisfies the unique decoding condition, by
separately considering the two aforementioned cases (i.e., C\,(z) = Oz and C(x) =
1z). Specifically, in the second case (i.e., Cy(z) = 1z), use the fact that p(z —1) <
0.z21 <p(z). O

To obtain an encoding that is one-to-one when applied to strings of different
lengths we augment C), in the obvious manner; that is, we consider Cj (z) def

(||, Cu(x)), which may be implemented as C),(z) = o101 -+ 0¢0,01C,(x) where
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01 ---0¢ is the binary expansion of |z|. Note that |C} (z)| = O(log|z|) + |Cy(z)]
and that C), is one-to-one.

The machine associated with (S, X). Let p be the accumulative probability func-
tion associated with the probability ensemble X, and Mg be the polynomial-time
machine that verifies membership in S while using adequate NP-witnesses (i.e.,
x € S if and only if there exists y € {0,1}P°¥(2]) such that M(z,y) = 1). Using
the encoding function C},, we introduce an algorithm Mg, with the intension of
reducing the distributional problem (S, X) to (Su,U’) such that all instances (of
S) are mapped to triples in which the first element equals Mg ,. Machine Mg,
is given an alleged encoding (under Cj,) of an instance to S along with an alleged
proof that the corresponding instance is in S, and verifies these claims in the ob-
vious manner. That is, on input ' and (z,y), machine Mg, first verifies that
z' = C),(z), and next verifiers that z € S by running Ms(z,y). Thus, Ms,, verifies
membership in the set S' = {C},(z) : z € S}, while using proofs of the form (z,y)
such that Mg(z,y) = 1 (for the instance C/,(z))."®

The reduction. We maps an instance x (of S) to the triple (MS,H,CL(x),lp(‘$‘)),

where p(n) et ps(n)+pc(n) such that pg is a polynomial representing the running-
time of Mg and p¢ is a polynomial representing the running-time of the encoding
algorithm.

Analyzing the reduction. Our goal is proving that the foregoing mapping constitutes
a reduction of (S, X) to (Su,U’). We verify the corresponding three requirements
(of Definition 10.16).

1. Using the fact that C, is polynomial-time computable (and noting that p
is a polynomial), it follows that the foregoing mapping can be computed in
polynomial-time.

2. Recall that, on input (z', (z,y)), machine Mg, , accepts if and only if 2’ =
C,(z) and Mg accepts (z,y) within ps(|z|) steps. Using the fact that C;, (z)
uniquely determines z, it follows that = € S if and only if there exists a string
y of length at most p(|z|) such that Mg, accepts (C) (), (z,y)) in at most
p(|z|) steps. Thus, z € S if and only if (Ms,,,C,(z), 172Dy € Sy, and the
validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing
mapping is one-to-one (because the transformation z — Cj () is one-to-
one). Next, we note that it suffices to consider instances of Sy that have
a preimage under the foregoing mapping (since instances with no preimage
trivially satisfy the domination condition). Each of these instances (i.e., each
image of this mapping) is a triple with the first element equal to Ms,, and

18Note that |y| = poly(|z|), but |z| = poly(|C),(z)]) does not necessarily hold (and so S' is not

necessarily in NP). As we shall see, the latter point is immaterial.
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the second element being an encoding under Cj,. By the definition of U’, for
every such image (Ms ,, C, (), 17(=Dy € {0,1}", it holds that

—1
PHU = (M Cy(). 1900 = (3) -2 (satviciion

> c-p2. 27 (Cu@)[+0og]e]))
where ¢ = 27IMs.xl=1 is a constant depending only on S and p (i.e., on the
distributional problem (S, X)). Thus, for some positive polynomial ¢, we

have
Pr{U;, = (Ms,,, C,,(x), 1P1D)] > 2719 @) g (), (10.4)

By virtue of the compression condition (of the Coding Lemma), we have
2=1Cu(@)] > g—1-min(|e[log2(1/1'(2)) Tt follows that

Recalling that x is the only preimage that is mapped to (Ms ., C, (), 17(1=D)
and combining Eq. (10.4) & (10.5), we establish the domination condition.

The theorem follows. [}

Reflections. The proof of Theorem 10.17 highlights the fact that the reduction
used in the proof of Theorem 2.18 does not introduce much structure in the reduced
instances (i.e., does not reduce the original problem to a “highly structured special
case” of the target problem). Put in other words, unlike more advanced worst-case
reductions, this reduction does not map “random” (i.e., uniformly distributed)
instances to highly structured instances (which occur with negligible probability
under the uniform distribution). Thus, the reduction used in the proof of The-
orem 2.18 suffices for reducing any distributional problem in dist AP to a distri-
butional problem consisting of Sy coupled with some simple probability ensemble
(see Exercise 10.20).?

However, Theorem 10.17 states more than the latter assertion. That is, it states
that any distributional problem in dist/A/P is reducible to the same distributional
version of Sy. Indeed, the effort involved in proving Theorem 10.17 was due to
the need for mapping instances taken from any simple probability ensemble (which
may not be the uniform ensemble) to instances distributed in a manner that is
dominated by a single probability ensemble (i.e., the quasi-uniform ensemble U').

Once we have established the existence of one distAV/P-complete problem, we
may establish the dist/VP-completeness of other problems (in distAP) by reduc-
ing some distA"P-complete problem to them (and relying on the transitivity of
reductions (see Exercise 10.17)). Thus, the difficulties encountered in the proof of

19Note that this cannot be said of most known Karp-reductions, which do map random instances
to highly structured ones. Furthermore, the same (structure creating property) holds for the
reductions obtained by Exercise 2.31.
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Theorem 10.17 are no longer relevant. Unfortunately, a seemingly more severe dif-
ficulty arises: almost all known reductions in the theory of NP-completeness work
by introducing much structure in the reduced instances (i.e., they actually reduce
to highly structured special cases). Furthermore, this structure is too complex in
the sense that the distribution of reduced instances does not seem simple (in the
sense of Definition 10.15). Actually, as demonstrated next, the problem is not
the existence of a structure in the reduced instances but rather the complexity of
this structure. In particular, if the aforementioned reduction is “monotone” and
“length regular” then the distribution of the reduced instances is simple enough.

Proposition 10.18 (sufficient condition for distA/P-completeness): Suppose that
f is a Karp-reduction of the set S to the set T such that, for every «',z" € {0,1}*,
the following two conditions hold:

1. (f is monotone): If 2’ < ' then f(z') < f(z"), where the inequalities refer
to the standard lezicographic order of strings.?°

2. (f is length-regular): |2'| = |2"| if and only if |f(z")| = |f(z")].

Then if there exists an ensemble X such that (S, X) is distN"P-complete then there
exists an ensemble Y such that (T,Y) is dist\P-complete.

Proof Sketch: Note that the monotonicity of f implies that f is one-to-one
and that for every z it holds that f(z) > z. Furthermore, as shown next, f
is polynomial-time invertible. Intuitively, the fact that f is both monotone and
polynomial-time computable implies that a preimage can be found by a binary
search. Specifically, given y = f(z), we search for x by iteratively halving the
interval of potential solutions, which is initialized to [0,y] (since z < f(x)). Note
that if this search is invoked on a string y that is not in the image of f, then it
terminates while detecting this fact.

Relying on the fact that f is one-to-one (and length-regular), we define the
probability ensemble Y = {Y, }, such that for every x it holds that Pr[Y|s() =
f(z)] = Pr[X|; = a]. Specifically, letting £(m) = |f(1™)| and noting that ¢ is
one-to-one and monotonically non-decreasing, we define

PriX ;=] ifz= f~(y)
PriY,,j=y]=4¢ 0 if Im s.t.y € {0,110\ {f(x) : w€{0,1}"}
2~ 1yl otherwise (i.e., if |y| & {¢(m) : meN})2L,

Clearly, (S,X) is reducible to (7,Y) (via the Karp-reduction f, which, due to
our construction of Y, also satisfies the domination condition). Thus, using the
hypothesis that distA/P is reducible to (S, X) and the transitivity of reductions (see
Exercise 10.17), it follows that every problem in distA/P is reducible to (7',Y"). The

20Tn particular, if |2’| < [2"'| then 2z’ < 2. Recall that for |2/| = [2"'] it holds that 2’ < 2" if
and only if there exists w,u’,u” € {0,1}* such that z/ = wOu’ and 2" = wlu".

21Having Y, be uniform in this case is a rather arbitrary choice, which is merely aimed at
guaranteeing a “simple” distribution on n-bit strings (also in this case).
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key observation, to be established next, is that Y is a simple probability ensemble,
and it follows that (7,Y) is in distA/P.

Loosely speaking, the simplicity of Y follows by combining the simplicity of
X and the properties of f (i.e., the fact that f is monotone, length-regular, and
polynomial-time invertible). The monotonicity and length-regularity of f implies
that Pr[Y);(,) < f(2)] = Pr[X},| <z]. More generally, for any y € {0,1}*™), it holds
that Pr[Yy(m) <y] = Pr[X,, <z], where z is the lexicographicly largest string such
that f(x) <y (and, indeed, if |z| < m then Pr[Yy,) <y] = Pr[X,, <] = 0). Note
that this « can be found in polynomial-time by the inverting algorithm sketched in
the first paragraph of the proof. Thus, we may compute Pr[Y],| <y| by finding the
adequate x and computing Pr[X|; <z]. Using the hypothesis that X is simple, it
follows that Y is simple (and the proposition follows). O

On the existence of adequate Karp-reductions. Proposition 10.18 implies
that a sufficient condition for dist/A/P-completeness of a distributional version of
some (NP-complete) set T is the existence of an adequate Karp-reduction from the
set Sy to the set T'; that is, this Karp-reduction should be monotone and length-
regular. While the length-regularity condition seems easy to impose (by using
adequate padding), the monotonicity condition seems more problematic. Fortu-
nately, it turns out that the monotonicity condition can also be imposed by using
adequate padding (or rather an adequate “marking” —see Exercises 2.30 and 10.21).
We highlight the fact that the existence of an adequate padding (or “marking”) is
a property of the set T itself. In Exercise 10.21 we review a method for modifying
any Karp-reduction to a “monotonically markable” set 7" into a Karp-reduction
(to T') that is monotone and length-regular. In Exercise 10.23 we provide evidence
to the thesis that all natural NP-complete sets are monotonically markable. Com-
bining all these facts, we conclude that any natural NP-complete decision problem
can be coupled with a simple probability ensemble such that the resulting distribu-
tional problem is distA"P-complete. As a concrete illustration we state the (formal)
result for the twenty-one NP-complete problems treated in Karp’s paper on NP-
completeness [131].

Theorem 10.19 (a modest version of a general thesis): For each of the twenty-
one NP-complete problems treated in [131] there exists a simple probability ensemble
such that the combined distributional problem is distN'P-complete.

The said list of problems includes SAT, Clique, and 3-Colorability.

10.2.1.3 Probabilistic versions

The definitions in §10.2.1.1 can be extended so that to account also for randomized
computations. For example, extending Definition 10.14, we have:

Definition 10.20 (the class tpcBPP): For a probabilistic algorithm A, a Boolean
function f, and a time-bound function t:N— N, we say that the string = is t-bad for
A with respect to f if with probability exceeding 1/3, on input x, either A(z) # f(z)
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or A runs more that t(|x|) steps. We say that A typically solves (S, {X,},cN) in
probabilistic polynomial-time if there exists a polynomial p such that the probability
that X,, is p-bad for A with respect to the characteristic function of S is negligible.
We denote by tpcBPP the class of distributional problems that are typically solvable
in probabilistic polynomial-time.

The definition of reductions can be similarly extended. This means that in Defini-
tion 10.16, both M*(z) and Q(z) (mentioned in Items 2 and 3, respectively) are
random variables rather than fixed objects. Furthermore, validity is required to
hold (for every input) only with probability 2/3, where the probability space refers
only to the internal coin tosses of the reduction. Randomized reductions are closed
under composition and preserve typical feasibility (see Exercise 10.24).

Randomized reductions allow the presentation of a dist/A/P-complete problem
that refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-
lishes the distA"P-completeness of (Su,U’), where U’ is a quasi-uniform ensemble
(ie., PrlU, = (M,z,1%)] = 27UMI+eD /() where n = |(M,z,1%)]). We first
note that (Su,U’) can be randomly reduced to (Sy,U"), where Sy, = {(M,z,z2) :
(M, z,117l) € Sy} and Pr[U)! = (M, z, 2)] = 2~ UM IFI=I+=D /(7) for every (M, z, ) €
{0,1}". The randomized reduction consists of mapping (M,z,1%) to (M, z, z),
where z is uniformly selected in {0,1}". Recalling that U = {U, },cn denotes the
uniform probability ensemble (i.e., U,, is uniformly distributed on strings of length
n) and using a suitable encoding we get.

Proposition 10.21 There ezists S € NP such that every (S',X') € distN'P is
randomly reducible to (S,U).

Proof Sketch: By the forgoing discussion, every (S’, X') € distA/P is randomly
reducible to (S, U"), where the reduction goes through (Su,U’). Thus, we focus
on reducing (53, U") to (Sy,U), where Sj] € NP is defined as follows. The string
bing (|u|)-bine(|v|)uvw is in Sy if and only if (u,v,w) € Sy and £ = [log, |uvw|] +1,
where bin, (i) denotes the ¢-bit long binary encoding of the integer i € [2°71] (i.e.,
the encoding is padded with zeros to a total length of ¢). The reduction maps
(M, z, z) to the string bin,(|z|)bin, (| M |Mwz, where £ = [log,(|M| + |x| + |z|)]+1.
Noting that this reduction satisfies all conditions of Definition 10.16, the proposi-
tion follows. [

10.2.2 Ramifications

In our opinion, the most problematic aspect of the theory described in Section 10.2.1
is the choice to focus on simple probability ensembles, which in turn restricts “dis-
tributional versions of NP” to the class distA/P (Definition 10.15). As indicated
§10.2.1.1, this restriction raises two opposite concerns (i.e., that distA/P is either
too wide or too narrow).?? Here we address the concern that the class of sim-
ple probability ensembles is too restricted, and consequently that the conjecture

220n one hand, if the definition of distA/P were too liberal then membership in distA/P would
mean less than one may desire. On the other hand, if distA/P were too restricted then the
conjecture that dist AP contains hard problems would have been very questionable.
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dist VP & tpcBPP is too strong (which would mean that distA/P-completeness is
a weak evidence for typical-case hardness). An appealing extension of the class of
simple probability ensembles is presented in §10.2.2.2; yielding an corresponding
extension of dist AP, and it is shown that if this extension of distA/P is not con-
tained in tpcBPP then distA/P itself is not contained in tpcBPP. Consequently,
dist A"P-complete problems enjoy the benefit of both being in the more restricted
class (i.e., dist 'P) and being hard as long as some problems in the extended class
is hard.

Another extension appears in §10.2.2.1, where we extend the treatment from
decision problems to search problems. This extension is motivated by the realiza-
tion that search problem are actually of greater importance to real-life applications
(cf. Section 2.1.1), and hence a theory motivated by real-life applications must
address such problems, as we do next.

Prerequisites: For the technical development of §10.2.2.1, we assume familiar-
ity with the notion of unique solution and results regarding it as presented in
Section 6.2.3. For the technical development of §10.2.2.2, we assume familiarity
with hashing functions as presented in Appendix D.2.

10.2.2.1 Search versus Decision

Indeed, as in the case of worst-case complexity, search problems are at least as im-
portant as decision problems. Thus, an average-case treatment of search problems
is indeed called for. We first present distributional versions of PF and PC (cf.
Section 2.1.1), following the underlying principles of the definitions of tpcP and
dist A/ P.

Definition 10.22 (the classes tpcPF and distPC): As in Section 2.1.1, we con-
sider only polynomially bounded search problems; that is, binary relations R C
{0,1}* x {0,1}* such that for some polynomial q it holds that (x,y) € R implies
lyl < q(Jz]). Recall that R(z) < {y : (z,y) R} and Sp <= {x : R(z) # 0}.

e A distributional search problem consists of a polynomially bounded search prob-
lem coupled with a probability ensemble.

o The class tpcPF consists of all distributional search problems that are typ-
ically solvable in polynomial-time. That is, (R,{Xn}neN) € tpcPF if there
exists an algorithm A and a polynomial p such that the probability that on
input X,, algorithm A either errs or runs more that p(n) steps is negligible,
where A errs on x € Sg if A(x) € R(z) and errs on x & Sk if A(x) # L.

o A distributional search problem (R,X) is in distPC if R € PC and X is
simple (as in Definition 10.15).

Likewise, the class tpcBPPF consists of all distributional search problems that
are typically solvable in probabilistic polynomial-time (cf., Definition 10.20). The
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definitions of reductions among distributional problems, presented in the context of
decision problem, extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of distribu-
tional search problems “reduces” to the study of distributional decision problems.

Theorem 10.23 (reducing search to decision): distPC C tpcBPPF if and only if
dist AP C tpcBPP. Furthermore, every problem in distA'P is reducible to some
problem in distPC, and every problem in distPC is randomly reducible to some
problem in distA/P.

Proof Sketch: The furthermore part is analogous to the actual contents of the
proof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.15). Indeed the
reduction of NP to PC presented in the proof of Theorem 2.6 extends to the current
context. Specifically, for any S € NP, we consider a relation R € PC such that
S = {x : R(z) # 0}, and note that, for any probability ensemble X, the identity
transformation reduces (S, X) to (R, X).

A difficulty arises in the opposite direction. Recall that in the proof of The-
orem 2.6 we reduced the search problem of R € PC to deciding membership in

Sk def {(z,y"y : " st. (z,y'y") € R} € NP. The difficulty encountered here is
that, on input x, this reduction makes queries of the form (z,y'), where y' is a
prefix of some string in R(x). These queries may induce a distribution that is not
dominated by any simple distribution. Thus, we seek an alternative reduction.

As a warm-up, let us assume for a moment that R has unique solutions (in the
sense of Definition 6.28); that is, for every z it holds that |R(z)| < 1. In this case
we may easily reduce the search problem of R € PC to deciding membership in
S% € NP, where (x,i,0) € S% if and only if R(x) contains a string in which the
i*" bit equals o. Specifically, on input z, the reduction issues the queries (z,i,0),
where ¢ € [{] (with £ = poly(|z|)) and o € {0,1}, which allows for determining the
single string in the set R(z) C {0,1}* (whenever |R(x)| = 1). The point is that this
reduction can be used to reduce any (R, X) € distPC (having unique solutions) to
(S%, X") € distN'P, where X" equally distributes the probability mass of « (under
X) to all the tuples (z,i,0); that is, for every i € [{] and o € {0,1}, it holds that
Pr[X’ZNJH = (z,1,0)] equals Pr[X,,| = x]/2¢.

anfortunately, in the general case, R may not have unique solutions. Nev-
ertheless, applying the main idea that underlies the proof of Theorem 6.29, this
difficulty can be overcome. We first note that the foregoing mapping of instances
of the distributional problem (R, X) € distPC to instances of (S%,X") € distA’P
satisfies the efficiency and domination conditions even in the case that R does not
have unique solutions. What may possibly fail (in the general case) is the validity
condition (i.e., if |R(z)| > 1 then we may fail to recover any element of R(x)).

Recall that the main part of the proof of Theorem 6.29 is a randomized reduction
that maps instances of R to triples of the form (z,m,h) such that m is uniformly
distributed in [¢] and h is uniformly distributed in a family of hashing function
H}™, where ¢ = poly(|z|) and H}" is as in Appendix D.2. Furthermore, if R(z) # 0
then, with probability ©(1/¢) over the choices of m € [¢] and h € H}", there exists a

unique y € R(z) such that h(y) = 0™. Defining R'(x,m,h) = {yeR : h(y) =0"},
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this yields a randomized reduction of the search problem of R to the search problem
of R such that with noticeable probability?? the reduction maps instances that have
solutions to instances having a unique solution. Furthermore, this reduction can be
used to reduce any (R, X) € distPC to (R, X') € distPC, where X' distributes the
probability mass of x (under X) to all the triples (x, m, h) such that for every m € [{]
and h € H™ it holds that Pr[X"($7m7h)‘ = (w,m, h)] equals Pr[X|, = x]/(£- |H]"|).
(Note that with a suitable encoding, X' is indeed simple.)

The theorem follows by combining the two aforementioned reductions. That is,
we first apply the randomized reduction of (R, X) to (R', X'), and next reduce the
resulting instance to an instance of the corresponding decision problem (S%,, X"),
where X" is obtained by modifying X' (rather than X'). The combined randomized
mapping satisfies the efficiency and domination conditions, and is valid with notice-
able probability. The error probability can be made negligible by straightforward
amplification (see Exercise 10.24). O

10.2.2.2 Simple versus sampleable distributions

Recall that the definition of simple probability ensembles (underlying Definition 10.15)
requires that the accumulating distribution function is polynomial-time computable.
Recall that p : {0,1}* — [0,1] is called the accumulating distribution function of

X ={X, }pen if for every n € N and z € {0,1}" it holds that u(z) = PriX, <z,
where the inequality refers to the standard lexicographic order of n-bit strings.

As argued in §10.2.1.1, the requirement that the accumulating distribution func-
tion is polynomial-time computable imposes severe restrictions on the set of ad-
missible ensembles. Furthermore, it seems that these simple ensembles are indeed
“simple” in some intuitive sense, and that they represent a reasonable (alas dis-
putable) model of distributions that may occur in practice. Still, in light of the fear
that this model is too restrictive (and consequently that distVP-hardness is weak
evidence for typical-case hardness), we seek a maximalistic model of distributions
that may occur in practice. Such a model is provided by the notion of polynomial-
time sampleable ensembles (underlying Definition 10.24). Our maximality thesis
is based on the belief that the real world should be modeled as a feasible ran-
domized process (rather than as an arbitrary process). This belief implies that all
objects encountered in the world may be viewed as samples generated by a feasible
randomized process.

Definition 10.24 (sampleable ensembles and the class sampAP): We say that a
probability ensemble X = {X,},en %5 (polynomial-time) sampleable if there exists
a probabilistic polynomial-time algorithm A such that for every z € {0,1}* it holds
that PrlA(1*)) = 2] = Pr(X|,) = z]. We denote by sampN'P the class of distri-
butional problems consisting of decision problems in NP coupled with sampleable
probability ensembles.

23Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it is
greater than the reciprocal of some positive polynomial. In the context of randomized reductions,
the relevant parameter is the length of the input to the reduction.
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We first note that all simple probability ensembles are indeed sampleable (see
Exercise 10.25), and thus distA"P C sampAP. On the other hand, there exist
sampleable probability ensembles that do not seem simple (see Exercise 10.26).

Extending the scope of distributional problems (from distA/P to sampNP)
allows proving that every NP-complete problem has a distributional version in
sampA P that is distA’P-hard (see Exercise 10.27). Furthermore, it is possible to
prove that all natural NP-complete problem have distributional versions that are
sampA\ P-complete.

Theorem 10.25 (sampA P-completeness): Suppose that S € NP and that every
set in NP is reducible to S by a Karp-reduction that does not shrink the input.
Then there exists a polynomial-time sampleable ensemble X such that any problem
in sampN'P is reducible to (S, X)

The proof of Theorem 10.25 is based on the observation that there exists a polynomial-
time sampleable ensemble that dominates all polynomial-time sampleable ensembles.
The existence of this ensemble is based on the notion of a universal (sampling) ma-
chine. For further details see Exercise 10.28.

sampNP-complete [Thm 10.25]

distNP-complete [Thm 10.17 and 10.19]

Figure 10.1: Two types of average-case completeness

Theorem 10.25 establishes a rich theory of samp A\ P-completeness, but does not
relate this theory to the previously presented theory of distAVP-completeness (see
Figure 10.1). This is done in the next theorem, which asserts that the existence of
typically hard problems in sampA/ P implies their existence in distA/P.

Theorem 10.26 (sampA P-completeness versus dist/VP-completeness): If samp NP
is not contained in tpcBPP then distA'P is not contained in tpcBPP.

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are
equivalent. That is, if some “sampleable distribution” versions of NP are not
typically feasible then some “simple distribution” versions of NP are not typically
feasible. In particular, if sampNP-complete problems are not in tpcBPP then
dist N"P-complete problems are not in tpcBPP.
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The foregoing assertions would all follow if sampA P were (randomly) reducible
to dist AP (i.e., if every problem in sampNP were reducible (under a randomized
version of Definition 10.16) to some problem in distA/P); but, unfortunately, we
do not know whether such reductions exist. Yet, underlying the proof of Theo-
rem 10.26 is a more liberal notion of a reduction among distributional problem.

Proof Sketch: We shall prove that if dist AP is contained in tpcBPP then the
same holds for sampNP (i.e., sampAN P is contained in tpcBPP). Actually, we
shall show that if dist’PC is contained in tpcBPPF then the sampleable version of
distPC, denoted sampPC, is contained in tpcBPPF (and refer to Exercise 10.29).
Specifically, we shall show that under a relaxed notion of a randomized reduction,
every problem in sampPC is reduced to some problem in distPC. Loosely speaking,
this relaxed notion (of a randomized reduction) only requires that the validity and
domination conditions (of Definition 10.16 (when adapted to randomized reduc-
tions)) hold with respect to a noticeable fraction of the probability space of the
reduction.?* We start by formulating this notion, when referring to distributional
search problems.

Teaching note: The following proof is quite involved and is better left for advanced
reading. Its main idea is related in one of the central ideas underlying the currently
known proof of Theorem 8.11. This fact as well as numerous other applications of this
idea, provide a good motivation for getting familiar with this idea.

Definition: A relaxed reduction of the distributional problem (R, X) to the distri-
butional problem (7',Y) is a probabilistic polynomial-time oracle machine M that
satisfies the following conditions:

Notation: For every z € {0,1}*, we denote by m(|z|) = poly(]z|) the number of
internal coin tosses of M on input x, and denote by M7 (x,7) the execution
of M on input z, internal coins r € {0,1}™, and oracle access to T'.

Validity: For some noticeable function p : N — [0,1] (i.e., p(n) > 1/poly(n)) it
holds that for every = € {0,1}*, there exists a set Q, C {0,1}™*D of size at
least p(|z|) - 2"U#D such that for every r € Q, the reduction yields a correct
answer (i.e., MT(z,7) € R(x) if R(z) # 0 and M T (x,r) = L otherwise).

Domination: There exists a positive polynomial p such that, for every y € {0,1}*
and every n € IN, it holds that

Pr[Q"(Xn) 3 y] < p(lyl) - PrYiy = o], (10.6)

where Q'(x) is a random variable, defined over the set Q. (of the validity
condition), representing the set of queries made by M on input x and oracle

24We warn that the existence of such a relaxed reduction between two specific distributional
problems does not necessarily imply the existence of a corresponding (standard average-case)
reduction. Specifically, although standard validity can be guaranteed (for problems in PC) by
repeated invocations of the reduction, such a process will not redeem the violation of the standard
domination condition.
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access to T'. That is, Q'(x) is defined by uniformly selecting r € 2, and
considering the set of queries made by M on input z, internal coins r, and
oracle access to T'. (In addition, as in Definition 10.16, we also require that
the reduction does not make too short queries.)

The reader may verify that this relaxed notion of a reduction preserves typical
feasibility; that is, for R € PC, if there exists a relaxed reduction of (R, X) to
(T,Y) and (T,Y) is in tpcBPPF then (R, X) is in tpcBPPF. The key observation
is that the analysis may discard the case that, on input x, the reduction selects
coins not in €2,. Indeed, the queries made in that case may be untypical and the
answers received may be wrong, but this is immaterial. What matter is that, on
input z, with noticeable probability the reduction selects coins in 2., and produces
“typical with respect to Y queries (by virtue of the relaxed domination condition).
Such typical queries are answered correctly by the algorithm that typically solves
(T,Y), and if = has a solution then these answers yield a correct solution to x
(by virtue of the relaxed validity condition). Thus, if « has a solution then with
noticeable probability the reduction outputs a correct solution. On the other hand,
the reduction never outputs a wrong solution (even when using coins not in ),
because incorrect solutions are detected by relying on R € PC.

Our goal is presenting, for every (R,X) € sampPC, a relaxed reduction of
(R,X) to a related problem (R',X') € distPC, where (as usual) X = {X,},¢cN
and X' = {X]},en-

An oversimplified case: For starters, suppose that X, is uniformly distributed on
some set S, C {0,1}" and that there is a polynomial-time computable and invert-
ible mapping p of S, to {0,1}*™) where £(n) = log,|S,|. Then, mapping z to
1l=l=4=Doy(z), we obtain a reduction of (R, X) to (R', X"), where X/, ; is uniform
over {1"‘M0v : v € {0,1}*™} and R'(1"*™0v) = R(u ' (v)) (or, equivalently,
R(z) = R'(11*1-t0=Doy(z))). Note that X' is a simple ensemble and R’ € PC;
hence, (R', X') € distPC. Also note that the foregoing mapping is indeed a valid
reduction (i.e., it satisfies the efficiency, validity, and domination conditions). Thus,
(R, X) is reduced to a problem in dist’PC (and indeed the relaxation was not used
here).

A simple but more instructive case: Next, we drop the assumption that there is
a polynomial-time computable and invertible mapping p of S, to {0,1}/(™), but
maintain the assumption that X, is uniform on some set S, C {0,1}" and as-
sume that |S,| = 24" is easily computable (from n). In this case, we may map
x € {0,1}" to its image under a suitable randomly chosen hashing function h, which
in particular maps n-bit strings to £(n)-bit strings. That is, we randomly map x to
(h, 1"=4")0h(z)), where h is uniformly selected in a set HE™ of suitable hash func-
tions (see Appendix D.2). This calls for redefining R’ such that R'(h,1"~4™0v)
corresponds to the preimages of v under h that are in S,,. Assuming that h is a
1-1 mapping of S, to {0,1}*(™)| we may define R'(h, 1" “™0v) = R(x) where z is
the unique string satisfying = € S,, and h(z) = v, where the condition z € S,, may
be verified by providing the internal coins of the sampling procedure that generate
x. Denoting the sampling procedure of X by S, and letting S(1™,r) denote the
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output of S on input 1™ and internal coins r, we actually redefine R’ as
R'(h,1"™0v) = {(r,y) : L(S(1",7))=v Aye R(S(1",7))}. (10.7)

We note that (r,y) € R'(h, 11¢1=¢0=Don(z)) yields a solution y € R(z) if S(11*I,r) =
x, but otherwise “all bets are off” (as y will be a solution for S(11%l,r) # 2). Now,
although typically h will not be a 1-1 mapping of S,, to {0, 1}‘3(”), it is the case that
for each © € Sy, with constant probability over the choice of h, it holds that h(z)
has a unique preimage in S, under h. (See the proof of Theorem 6.29.) In this
case (r,y) € R'(h,11*I=%U=D0On(x)) implies S(1%,r) = 2 (which, in turn, implies
y € R(z)). We claim that the randomized mapping of x to (h, 1" “™0h(x)), where
Z(‘lzl), yields a relazed reduction of (R,X) to (R',X"),

|z
where X!, is uniform over HE™ x {1740y ;v € {0,1}(™}. Needless to say, the
claim refers to the reduction that makes the query (h, 1"~“™0h(z)) and returns y
if the oracle answer equals (r,y) and y € R(x).

h is uniformly selected in H,

The claim is proved by considering the set 2, of choices of h € H, “;(‘le) for
which z € S, is the only preimage of h(x) under h that resides in S, (ie.,
{z' € S, : h(z') = h(x)}| = 1). In this case (i.e.,, h € Q) it holds that (r,y) €
R'(h, 11#1=¢0=Don(z)) implies that S(1!*l,7) = z and y € R(x), and the (relaxed)
validity condition follows. The (relaxed) domination condition follows by noting
that Pr[X,, =] ~ 2~%D  that = is mapped to (h, 11*I=*(=D0h(x)) with proba-
bility 1/|Hf$(‘|z|)|, and that x is the only preimage of (h, 11*1=¢1zD0h(z)) under the
mapping (among z' € S, such that Q, 3 h).

Before going any further, let us highlight the importance of hashing X,, to ¢(n)-
bit strings. On one hand, this mapping is “sufficiently” one-to-one, and thus (with
constant probability) the solution provided for the hashed instance (i.e., h(x)) yield
a solution for the original instance (i.e., ). This guarantees the validity of the re-
duction. On the other hand, for a typical h, the mapping of X,, to h(X,,) covers the
relevant range almost uniformly. This guarantees that the reduction satisfies the
domination condition. Note that these two phenomena impose conflicting require-
ments that are both met at the correct value of ¢; that is, the one-to-one condition
requires £(n) > log, |Sy,|, whereas an almost uniform cover requires £(n) < log, |S,|-
Also note that ¢(n) = log,(1/Pr[X,, = z]) for every x in the support of X,; the
latter quantity will be in our focus in the general case.

The general case: Finally, get rid of the assumption that X,, is uniformly distributed
over some subset of {0,1}". All that we know is that there exists a probabilistic
polynomial-time (“sampling”) algorithm S such that S(1™) is distributed identi-
cally to X,,. In this (general) case, we map instances of (R, X) according to their
probability mass such that z is mapped to an instance (of R') that consists of
(h, h(z)) and additional information, where h is a random hash function mapping
n-bit long strings to ¢,-bit long strings such that

lx = log,(1/Pr[X s =2])]. (10.8)

Since (in the general case) there may be more than 2% strings in the support of
X, we need to augment the reduced instance in order to ensure that it is uniquely
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associated with z. The basic idea is augmenting the mapping of z to (h, h(z)) with
additional information that restricts X, to strings that occur with probability at
least 27%. Indeed, when X, is restricted in this way, the value of h(X,,) uniquely
determines X,,.

Let g(n) denote the randomness complexity of S and S(1",r) denote the out-
put of S on input 1™ and internal coin tosses r € {0, 1}‘1(”). Then, we randomly
map = to (h,h(z),h',v"), where h : {0,1}* — {0,1}% and A’ : {0,1}9(2D) —
{0,1}90=D =% are random hash functions and v’ € {0,1}202D~% is uniformly dis-
tributed. The instance (h,v,h’,v") of the redefined search problem R’ has solutions
that consists of pairs (r, y) such that A(S(1™,r))=vAh'(r) = v and y€ R(S(1™,7)).
As we shall see, this augmentation guarantees that, with constant probability (over
the choice of h,h',v"), the solutions to the reduced instance (h,h(z),h',v") corre-
spond to the solutions to the original instance x.

The foregoing description assumes that, on input z, we can determine £,
which is an assumption that cannot be justified. Instead, we select ¢ uniformly
in {0,1,...,q(]z|)}, and so with noticeable probability we do select the correct
value (i.e., Pr[¢ = ¢;] = 1/(q(|z]) + 1) = 1/poly(|z|)). For clarity, we make n
and ¢ explicit in the reduced instance. Thus, we randomly map z € {0,1}" to

(17,14, h, h(z), b, 0') € {0,1}", where £ € {0,1,...,q(n)}, h € HS, b € HYW ™,
and v' € {0,1}2") =% are uniformly distributed in the corresponding sets.> This
mapping will be used to reduce (R, X) to (R', X'), where R’ and X' = {X], },ven

are redefined (yet again). Specifically, we let
R'(1", 1, hyv, b 0') = {(r,y) : R(S(1", 7)) =vAh' (r)=v' Ay € R(S(1", 7))} (10.9)

and X/, assigns equal probability to each X, . (for £ € {0,1,...,n}), where each

X, is isomorphic to the uniform distribution over H: x {0,1}¢ x Hf((;?% X

{0,1}9(™ ¢ Note that indeed (R', X') € distPC.

The aforementioned randomized mapping is analyzed by considering the correct
choice for ¢; that is, on input z, we focus on the choice ¢ = ¢,. Under this
conditioning (as we shall show), with constant probability over the choice of h,h'
and v', the instance x is the only value in the support of X, that is mapped to
(1™, 1%  h,h(x),h',v") and satisfies {r : h(S(1",7)) = h(z) AW (1) = v'} # 0. It
follows that (for such h,h' and v') any solution (r,y) € R'(1",1% h,h(z),h',v")
satisfies S(1™,r) = = and thus y € R(z), which means that the (relaxed) validity
condition is satisfied. The (relaxed) domination condition is satisfied too, because
(conditioned on ¢ = £, and for such h, h’,v") the probability that X,, is mapped to
(1,1%, h, h(x), ', v") approximately equals Pr[X/, , =(1",1%, h, h(z),h',v")].

We now turn to analyze the probability, over the choice of h, h' and v', that the
instance z is the only value in the support of X,, that is mapped to (17, 1%  h, h(z), h',v")
and satisfies {r : h(S(1™,r)) = h(z) A W' (r) = v'} # 0. Firstly, we note that

25 As in other places, a suitable encoding will be used such that the reduction maps strings of the
same length to strings of the same length (i.e., n-bit string are mapped to n/-bit strings, for n' =
poly(n)). For example, we may encode (1™, 1¢, h, h(z), k', v') as 1701¢019)=L0(R) (h(z))(h') (v'),
where each (w) denotes an encoding of w by a string of length (n' — (n + g(n) + 3))/4.
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{r: S(1™,r)=x}| > 270" ~% and thus, with constant probability over the choice
of W € Hg((::))_zz and v' € {0,1}4(™M ¢ there exists r that satisfies S(1",r) = =
and A'(r) = v'. Next, we note that, with constant probability over the choice of
h € Hs it holds that x is the only string having probability mass at least 2~

(under X,,) that is mapped to h(z) under h. Finally, we prove that, with constant
probability over the choice of h € H% and h' € Hg(:)_zz (and even when con-
ditioning on the previous items), the mapping r — (h(S(1™,7)),h'(r)) maps the
set {r: Pr[X,,=S5(1",7)] < 27%} to {0,1}4") in an almost 1-1 manner. Specifi-
cally, with constant probability, no other r is mapped to the aforementioned pair
(h(x),v"). Thus, the claim follows and so does the theorem. O

Reflection. Theorem 10.26 implies that if sampA/P is not contained in tpcBPP
then every distA/P-complete problem is not in tpcBPP. This means that the
hardness of some distributional problems that refer to sampleable distributions im-
plies the hardness of some distributional problems that refer to simple distributions.
Furthermore, by Proposition 10.21, this implies the hardness of distributional prob-
lems that refer to the uniform distribution. Thus, hardness with respect to some
distribution in an utmost wide class (which arguably captures all distributions that
may occur in practice) implies hardness with respect to a single simple distribution
(which arguably is the simplest one).

Relation to one-way functions. We note that the existence of one-way func-
tions (see Section 7.1) implies the existence of problems in samp?PC that are not in
tpcBPPF (which in turn implies the existence of such problems in distPC). Specif-
ically, for a length-preserving one-way function f, consider the distributional search
problem (Ry,{f(Un)},en), where Ry = {(f(r),r) : r € {0,1}*}.2° On the other
hand, it is not known whether the existence of a problem in sampPC \ tpcBPPF
implies the existence of one-way functions. In particular, the existence of a prob-
lem (R,X) in sampPC \ tpcBPPF represents the feasibility of generating hard
instances for the search problem R, whereas the existence of one-way function rep-
resents the feasibility of generating instance-solution pairs such that the instances
are hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hard
instances can be efficiently gemerated together with corresponding solutions. Our
world view is thus depicted in Figure 10.2, where lower levels indicate seemingly
weaker assumptions.

Chapter Notes

In this chapter, we presented two different approaches to the relaxation of com-
putational problems. The first approach refers to the concept of approximation,
while the second approach refers to average-case analysis. We demonstrated that

26Note that the distribution f(Uy,) is uniform in the special case that f is a permutation over

{0,1}".
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one-way functions exist

distNP isnot in tpcBPP
(equiv., sampNP is not in tpcBPP)

P isdifferent than NP

Figure 10.2: Worst-case vs average-case assumptions

various natural notions of approximation can be cast within the standard frame-
works, where the framework of promise problems (presented in Section 2.4.1) is
the least-standard framework we used (and it suffices for casting gap problems and
property testing). In contrast, the study of average-case complexity requires the
introduction of a new conceptual framework and addressing of various definitional
issues.

A natural question at this point is what have we gained by relaxing the require-
ments. In the context of approximation, the answer is mixed: in some natural cases
we gain a lot (i.e., we obtained feasible relaxations of hard problems), while in other
natural cases we gain nothing (i.e., even extreme relaxations remain as intractable
as the original version). In the context of average-case complexity, the negative
side seems more prevailing (at least in the sense of being more systematic). In par-
ticular, assuming the existence of one-way functions, every natural NP-complete
problem has a distributional version that is (typical-case) hard, where this version
refers to a sampleable ensemble (and, in fact, even to a simple ensemble). Fur-
thermore, in this case, some problems in NP have hard distributional versions that
refer to the uniform distribution.

Another difference between the two approaches is that the theory of approxima-
tion seems to lack a comprehensive structure, whereas the theory of average-case
complexity seems to have a too rigid structure (which seems to foil attempts to
present more appealing dist/N/P-complete problems).

Approximation

The following bibliographic comments are quite laconic and neglect mentioning
various important works (including credits for some of the results mentioned in our
text). As usual, the interested reader is referred to corresponding surveys.

Search or Optimization. The interest in approximation algorithms increased
considerably following the demonstration of the NP-completeness of many nat-
ural optimization problems. But, with some exceptions (most notably [172]),
the systematic study of the complexity of such problems stalled till the discov-
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ery of the “PCP connection” (see Section 9.3.3) by Feige, Goldwasser, Lovasz, and
Safra [69]. Indeed the relatively “tight” inapproximation results for max-Clique,
max-SAT, and the maximization of linear equations, due to Hastad [112, 113],
build on previous work regarding PCP and their connection to approximation (cf.,
e.g., [70, 15, 14, 27, 178]). Specifically, Theorem 10.5 is due to [112], while Theo-
rems 10.8 and 10.9 are due to [113]. The best known inapproximation result for
minimum Vertex Cover (see Theorem 10.7) is due to [65], but we doubt it is tight
(see, e.g., [137]). Reductions among approximation problems were defined and
presented in [172]; see Exercise 10.7, which presents a major technique introduced
in [172]. For general texts on approximation algorithms and problems (as discussed
in Section 10.1.1), the interested reader is referred to the surveys collected in [118].
A compendium of NP optimization problems is available at [61].

Recall that a different type of approximation problems, which are naturally
associated with search problems, refer to approximately counting the number of
solutions. These approximation problems were treated in Section 6.2.2 in a rather
ad hoc manner. We note that a more systematic treatment of approximate counting
problems can be obtained by using the definitional framework of Section 10.1.1 (e.g.,
the notions of gap problems, polynomial-time approximation schemes, etc).

Property testing. The study of property testing was initiated by Rubinfeld and
Sudan [188] and re-initiated by Goldreich, Goldwasser, and Ron [93]. While the
focus of [188] was on algebraic properties such as low-degree polynomials, the focus
of [93] was on graph properties (and Theorem 10.12 is taken from [93]). The model
of bounded-degree graphs was introduced in [99] and Theorem 10.13 combines
results from [99, 100, 39]. For surveys of the area, the interested reader is referred
to [73, 187).

Average-case complexity

The theory of average-case complexity was initiated by Levin [148], who in partic-
ular proved Theorem 10.17. In light of the laconic nature of the original text [148],
we refer the interested reader to a survey [85], which provides a more detailed
exposition of the definitions suggested by Levin as well as a discussion of the con-
siderations underlying these suggestions. (This survey [85] provides also a brief
account of further developments.)

As noted in §10.2.1.1, the current text uses a variant of the original definitions.
In particular, our definition of “typical-case feasibility” differs from the original
definition of “average-case feasibility” in totally discarding exceptional instances
and in even allowing the algorithm to fail on them (and not merely run for an
excessive amount of time). The alternative definition was suggested by several
researchers, and appears as a special case of the general treatment provided in [41].

Turning to §10.2.1.2, we note that while the existence of distA"P-complete prob-
lems (cf. Theorem 10.17) was established in Levin’s original paper [148], the ex-
istence of dist/NP-complete versions of all natural NP-complete decision problems
(cf. Theorem 10.19) was established more than two decades later in [151].
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Section 10.2.2 is based on [28, 123]. Specifically, Theorem 10.23 (or rather the
reduction of search to decision) is due to [28] and so is the introduction of the class
sampANP. A version of Theorem 10.26 was proven in [123], and our proof follows
their ideas, which in turn are closely related to the ideas underlying the proof of
Theorem 8.11 (proved in [114]).

Recall that we know of the existence of problems in distA/P that are hard pro-
vided sampA P contains hard problems. However, these distributional problems do
not seem very natural (i.e., they either refer to somewhat generic decision problems
such as Sy or to somewhat contrived probability ensembles (cf. Theorem 10.19)).
The presentation of dist/A/P-complete problems that combine a more natural deci-
sion problem (like SAT or Clique) with a natural probability ensemble is an open
problem.

Exercises

Exercise 10.1 (general TSP) For any function g, prove that the following ap-
proximation problem is NP-Hard. Given a general TSP instance I, represented
by a symmetric matrix of pairwise distances, the task is finding a tour of length
that is at most a factor g(I) of the minimum. Show that the result holds with
g(I) = exp(poly(]|I])) and for instances in which all distances are positive,

Guideline: By reduction from Hamiltonian path. Specifically, reduce the instance G =
([n], £) to an n-by-n distance matrix D = (di ;); je[n; such that d;; = exp(poly(n)) if
{l,]} € F and di,j =1.

Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-
factor approximation for the special case of TSP in which the distances satisfy the
triangle inequality.

Guideline: First note that the length of any tour is lower-bounded by the weight of
a minimum spanning tree in the corresponding weighted graph. Next note that such a
tree yields a tour (of length twice the weight of this tree) that may visit some points
several times. The triangle inequality guarantees that the tour does not become longer
by “shortcuts” that eliminate multiple visits at the same point.

Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 prove
that, for some constants 0 < @ < b < 1 when setting L(N) = N® and s(N) = N¢,
it holds that gapClique,, ; is NP-hard.

Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator
(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness and
query complexities that accepts no-instances of length n with probability at most 1/n.
The claim follows by applying the FGLSS-reduction (of Exercise 9.14), while noting that
z is reduced to a graph of size poly(|z|) such that the gap between yes- and no-instances

is at least a factor of |z|.

Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 prove
that, for some constants 0 < s < L <1, the problem gapVC, , is NP-hard.
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Guideline: Note that combining Theorem 9.16 and Exercise 9.14 implies that for some
constants b < 1 it holds that gapClique, ; is NP-hard, where L(N) =b- N and s(N) =
(b/2) - N. The claim follows using the relations between cliques, independent sets, and

vertex covers.

Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 prove
that, for some constants 0.5 < s < L <1, the problem gapLin, , is NP-hard.

Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSATg is NP-
Hard. Note that the result holds even if we restrict the instances to have exactly three
(not necessarily different) literals in each clause. Applying the reduction of Exercise 2.24,
note that, for any assignment 7, a clause that is satisfied by 7 is mapped to seven equations
of which exactly three are violated by 7, whereas a clause that is not satisfied by 7 is

mapped to seven equations that are all violated by 7.

Exercise 10.6 (natural inapproximability without the PCP Theorem) In
contrast to the inapproximability results reviewed in §10.1.1.2, the NP-completeness
of the following gap problem can be established (rather easily) without referring
to the PCP Theorem. The instances of this problem are systems of quadratic
equations over GF(2) (as in Exercise 2.25), yes-instances are systems that have a
solution, and no-instances are systems for which any assignment violates at least
one third of the equations.

Guideline: By Exercise 2.25, when given such a quadratic system, it is NP-hard to
determine whether or not there exists an assignment that satisfies all the equations. Using
an adequate small-bias generator (cf. Section 8.5.2), present an amplifying reduction (cf.
Section 9.3.3) of the foregoing problem to itself. Specifically, if the input system has m
equations then we use a generator that defines a sample space of poly(m) many m-bit
strings, and consider the corresponding linear combinations of the input equations. Note
that it suffices to bound the bias of the generator by 1/6, whereas using an e-biased
generator yields an analogous result with 1/3 replaced by 0.5 — ¢.

Exercise 10.7 (enforcing multi-way equalities via expanders) The aim of
this exercise is presenting a major technique of Papadimitriou and Yannakakis [172],
which is useful for designing reductions among approximation problems. Recall-
ing that gapSATS , is NP-hard, our goal is proving NP-hard of the following gap
problem, denoted gapSAT?:, which is a special case of gapSAT?. Specifically, the
instances are restricted to 3CNF formulae with each variable appearing in at most ¢
clauses, where ¢ (as €) is a fixed constant. Note that the standard reduction of 3SAT
to the corresponding special case (see proof of Proposition 2.22) does not preserve
an approximation gap.?” The idea is enforcing equality of the values assigned to the

27Recall that in this reduction each occurrence of each Boolean variable is replaced by a new
copy of this variable, and clauses are added for enforcing the assignment of the same value to all
these copies. Specifically, the m occurrence of variable z are replaced by the variables z(l), ey z(m),
while adding the clauses 20 v 2+ and 204D v —z() (for i =1,...,,m — 1). The problem is
that almost all clauses of the reduced formula may be satisfied by an assignment in which half
of the copies of each variable are assigned one value and the rest are assigned an opposite value.
That is, an assignment in which z(1) = ... = z2(0) £ z(+1) = ... = 2(m) yiolates only one of the



10.2. AVERAGE CASE COMPLEXITY 451

auxiliary variables (i.e., the copies of each original variable) by introducing equal-
ity constraints only for pairs of variables that correspond to edges of an expander
graph (see Appendix E.2). For example, we enforce equality among the values of
2D 2(™) by adding the clauses z() v =zU) for every {i,j} € E, where E is the
set of edges of am m-vertex expander graph. Prove that, for some constants ¢ and
e > 0, the corresponding mapping reduces gapSAT; ; to gapSAT?*.

Guideline: Using d-regular expanders, we map 3CNF to instances in which each variable
appears in at most 2d+1 clauses. Note that the number of added clauses is linearly related
to the number of original clauses. Clearly, if the original formula is satisfiable then so is
the reduced one. On the other hand, consider an arbitrary assignment 7’ to the reduced
formula ¢' (i.e., the formula obtained by mapping ¢). For each original variable z, if
7' assigns the same value to almost all copies of z then we consider the corresponding
assignment in ¢. Otherwise, by virtue of the added clauses, 7' does not satisfy a constant

fraction of the clauses containing a copy of z.

Exercise 10.8 (deciding majority requires linear time) Prove that deciding
majority requires linear-time even in a direct access model and when using a ran-
domized algorithm that may err with probability at most 1/3.

Guideline: Consider the problem of distinguishing X,, from Y,, where X, (resp., Y3 ) is
uniformly distributed over the set of n-bit strings having exactly |n/2]| (resp., [n/2] +1)
ones. For any fixed set I C [n], denote the projection of X,, (resp., Y,) on I by X, (resp.,
Y,.). Prove that the statistical difference between X, and Y, is bounded by O(|I|/n).
Note that the argument needs to be extended to the case that the examined locations are

selected adaptively.

Exercise 10.9 (testing majority in polylogarithmic time) Show that test-
ing majority (with respect to §) can be done in polylogarithmic time by probing
the input at a constant number of randomly selected locations.

Exercise 10.10 (on the triviality of some testing problems) Show that the
following sets are trivially testable in the adjacency matrix representation (i.e., for
every 0 > 0 and any such set S, there exists a trivial algorithm that distinguishes
S from T's(.5)).

1. The set of connected graphs.
2. The set of Hamiltonian graphs.
3. The set of Eulerian graphs.

Indeed, show that in each case I's(S) = 0.

Guideline (for Item 3): Note that, in general, the fact that the sets S’ and S are
testable within some complexity does not imply the same for the set S’ N S".

auxiliary clauses introduced for enforcing equality among the copies of z. Using an alternative
reduction that adds the clauses z(¥) v =z(9) for every 4,5 € [m] will not do either, because the
number of added clauses may be quadratic in the number of original clauses.
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Exercise 10.11 (an equivalent definition of tpcP) Prove that (S5, X) € tpcP
if and only if there exists a polynomial-time algorithm A such that the probability
that A(X,,) errs (in determining membership in S) is a negligible function in n.

Exercise 10.12 (tpcP versus P — Part 1) Prove that tpcP contains a problem
(S, X) such that S is not even recursive. Furthermore, use X = U.

Guideline: Let S = {01/ : & € S}, where S’ is an arbitrary (non-recursive) set.

Exercise 10.13 (tpcP versus P — Part 2) Prove that there exists a distribu-
tional problem (S, X) such that S ¢ P and yet there exists an algorithm solving
S (correctly on all inputs) in time that is typically polynomial with respect to X.
Furthermore, use X =U.

Guideline: For any time-constructible function ¢ : N— N that is super-polynomial and
sub-exponential, use S = {0/"lz : z € §'} for any S’ € DTIME(?) \ P.

Exercise 10.14 (simple distributions and monotone sampling) We say that
a probability ensemble X = {X,,},cn is polynomial-time sampleable via a monotone
mapping if there exists a polynomial p and a polynomial-time computable function
f such that the following two conditions hold:

1. For every n, the random variables f(Up(n)) and X,, are identically distributed.

2. For every n and every r’ < " € {0,1}*(") it holds that f(r') < f(r""), where
the inequalities refers to the standard lexicographic order of strings.

Prove that X is simple if and only if it is polynomial-time sampleable via a mono-
tone mapping.

Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-
time of the algorithm that on input « outputs Pr[X,; <«]. Consider a mapping, denoted
m, of [0,1] to {0,1}" such that 7 €[0, 1] is mapped to z € {0,1}" if and only if r € [Pr[X,, <
], Pr[X,, <z]). The desired function f : {0,1}*™) — {0,1}" can be obtained from 7 by
considering the binary representation of the numbers in [0, 1] (and recalling that the binary
representation of Pr[X ;| <] has length at most p(|z|)). Note that f can be computed by
binary search, using the fact that X is simple. Turning to the opposite direction, we note
that any efficiently computable and monotone mapping f : {0,1}?"™) — {0,1}" can be
efficiently inverted by a binary search. Furthermore, similar methods allow for efficiently
determining the interval of p(n)-bit long strings that are mapped to any given n-bit long
string.

Exercise 10.15 (reductions preserve typical polynomial-time solveability)
Prove that if the distributional problem (S, X) is reducible to the distributional
problem (5", X') and (S’, X') € tpcP, then (S, X) is in tpcP.

Guideline: Let B’ denote the set of exceptional instances for the distributional problem
(S’, X'); that is, B’ is the set of instances on which the solver in the hypothesis either
errs or exceeds the typical running-time. Prove that Pr[Q(X,) N B’ # 0] is a negligible
function (in n), using both Prly € Q(X,)] < p(|y|)-Pr[X"y| = y] and |z| < p'(|y|) for every
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y € Q(x). Specifically, use the latter condition for inferring that ZyEB’ Prly € Q(Xn)]
equals ZyE{y’EB’:p’(ly’|)>n} Prly € Q(X,)], which guarantees that a negligible function in
ly| for any y € Q(X,.) is negligible in n.

Exercise 10.16 (reductions preserve error-less solveability) In continuation
to Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-
ability by algorithms that never err and typically run in polynomial-time).

Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-
tributional problems (as in Definition 10.16) are transitive.

Guideline: The point is establishing the domination property of the composed reduction.
The hypothesis that reductions do not make too short queries is instrumental here.

Exercise 10.18 For any S € NP present a simple probability ensemble X such
that the generic reduction used in the proof of Theorem 2.18, when applied to
(S, X), violates the domination condition with respect to (Su,U’).

Guideline: Consider X = {X"}neN such that X, is uniform over {On/zm' =

{0,137/2}.

Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-
ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).

1. A variant that refers to any efficiently computable function p : {0,1}* — [0, 1]
that is monotonically non-decreasing over {0,1}* (i.e., p(z') < p(z") for any
z' < z" € {0,1}*). That is, unlike in the proof of Theorem 10.17, here it
holds that p(0™*1) > u(1™) for every n.

2. As in Part 1, except that in this variant the function p is strictly increasing
and the compression condition requires that |C,(z)| < log,(1/p'(z)) rather

than |Cy,(2)| < 1+ min{|z,log,(1/4' ()}, where 4/(z) = p(z) — plw — 1).

In both cases, the proof is less cumbersome than the one presented in the main
text.

Exercise 10.20 Prove that for any problem (S, X) in dist VP there exists a simple
probability ensemble Y such that the reduction used in the proof of Theorem 2.18
suffices for reducing (S, X) to (Su,Y).

Guideline: Consider Y = {Y,.}, . such that Y, assigns to the instance (M,z,1) a
probability mass proportional to 7, Lof Pr[X|.| ==|. Specifically, for every (M, =,1") it
holds that Pr[Y, = (M,z,1%)] = 27 M Wz/(;), where n %' [(M,z,1%)] = | M| + |z| +¢.
Alternatively, we may set Pr[Y, = (M,z,1%)] = 7, if M = Ms and t = ps(|z|) and
Pr[Y, = (M, x,1%)] = 0 otherwise, where Ms and Ps are as in the proof of Theorem 2.18.

Exercise 10.21 (monotone markability and monotone reductions) In con-
tinuation to Exercise 2.30, we say that a set 1" is monotonically markable if there
exists a polynomial-time (marking) algorithm M such that
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1. For every z,a € {0,1}* it holds that M(z,«) € T if and only if z € T
2. For every |2'| = |2"] and |&'| = ||, it holds that

(a) If o/ < & then M(2',a') < M(2",a").
(b) [M(z', o) = |M(2", a")|.

3. For every / there exists ¢/ € [{, poly(¢)] such that for every z € U‘_,{0,1}*
there exists £ € [¢'] such that [M(z,1¢)| = £'.

Note that Condition 1 is reproduced from Exercise 2.30, whereas Conditions 2 and 3
are new. Prove that if the set S is Karp-reducible to the set T' and T is monotoni-
cally markable then S is Karp-reducible to T by a reduction that is monotone and
length-regular (i.e., the reduction satisfies the conditions of Proposition 10.18).

Guideline: Given a Karp-reduction f from S to 7', first obtain a length-regular reduction
f' from S to T (by applying the marking algorithm to f(z), while using Conditions 1
and 3). Next, obtain a reduction f" that is also monotone (e.g., by letting f"(z) =
M (f'(z),z), while using Conditions 1 and 2).

Exercise 10.22 (monotone markability and markability) Prove that if a set
is monotonically markable (as per Exercise 10.21) then it is markable (as per Ex-
ercise 2.30).

Exercise 10.23 (some monotonically markable sets) Referring to Exercise 10.21,
verify that each of the twenty-one NP-complete problems treated in in Karp’s first
paper on NP-completeness [131] is monotonically markable. For starters, consider

the sets SAT, Clique, and 3-Colorability.

Guideline: For SAT consider the following marking algorithm M. This algorithm uses
two (fixed) satisfiable formulae of the same length, denoted )9, 11, such that ¥¢ < v1. For
any formula ¢ and o1 -+ - o, € {0,1}™, it holds that M ($,01 - 0m) = Yo, A+ - Ao, N,
where 10,11 use variables that do not appear in ¢. Note that the multiple occurrences
of ¥, can be easily avoided (by using “variations” of v, ).

Exercise 10.24 (randomized reductions) Following the outline in §10.2.1.3,
provide a definition of randomized reductions among distributional problems.

1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-
sible solveability (i.e., typical solveability in probabilistic polynomial-time).
That is, if the distributional problem (S, X) is randomly reducible to the
distributional problem (S',X') and (S',X') € tpcBPP, then (S,X) is in
tpcBPP.

2. In analogy to Exercise 10.16, prove that randomized reductions preserve
solveability by probabilistic algorithms that err with probability at most 1/3
on each input and typically run in polynomial-time.

3. Prove that randomized reductions are transitive (cf. Exercise 10.17).
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4. Show that the error probability of randomized reductions can be reduced
(while preserving the domination condition).

Extend the foregoing to reductions that involve distributional search problems.

Exercise 10.25 (simple vs sampleable ensembles — Part 1) Prove that any
simple probability ensemble is polynomial-time sampleable.

Guideline: See Exercise 10.14.

Exercise 10.26 (simple vs sampleable ensembles — Part 2) Assuming that
#P contains functions that are not computable in polynomial-time, prove that
there exists polynomial-time sampleable ensembles that are not simple.

Guideline: Consider any R € PC and suppose that p is a polynomial such that (z,y) € R
implies |y| = p(|z|). Then consider the sampling algorithm A that, on input 1", uniformly
selects (z,y) € {0,1}"7% x {0,1}*~Y and outputs #1 if (z,y) € R and z0 otherwise.
Note that #R(z) = 2°U=1=D . prlA(11*1=1) = 21].

Exercise 10.27 (distributional versions of NPC problems — Part 1 [28])
Prove that for any NP-complete problem S there exists a polynomial-time sam-
pleable ensemble X such that any problem in distA/P is reducible to (S, X). We
actually assume that the many-to-one reductions establishing the NP-completeness
of S do not shrink the length of the input.

Guideline: Prove that the guaranteed reduction of Sy to S also reduces (Su,U') to
(S, X), for some sampleable probability ensemble X. Consider first the case that the
standard reduction of Su to S is length preserving, and prove that, when applied to a
sampleable probability ensemble, it induces a sampleable distribution on the instances
of S. (Note that U’ is sampleable (by Exercise 10.25).) Next extend the treatment to
the general case, where applying the standard reduction to U, induces a distribution on
UEfLy,E”){o, 1}™ (rather than a distribution on {0,1}").

Exercise 10.28 (distributional versions of NPC problems — Part 2 [28])
Prove Theorem 10.25 (i.e., for any NP-complete problem S there exists a polynomial-
time sampleable ensemble X such that any problem in sampANP is reducible to
(S,X)). As in Exercise 10.27, we actually assume that the many-to-one reductions
establishing the NP-completeness of S do not shrink the length of the input.

Guideline: We establish the claim for Su, and the general claim follows by using the
reduction of Sy to S (as in Exercise 10.27). Thus, we focus on showing that, for some
(suitably chosen) sampleable ensemble X, any (S’, X') € sampN P is reducible to (Su, X).
Loosely speaking, X will be an adequate convex combination of all sampleable distribu-
tions (and thus X will not equal U’ or U). Specifically, X = {X,}, . is defined such
that X, uniformly selects i € [n], emulates the execution of the i*® algorithm (in lexi-

cographic order) on input 1" for n® steps,”® and outputs whatever the latter has output

28Needless to say, the choice to consider n algorithms in the definition of X,, is quite arbitrary.
Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-
time) will do. (More generally, we may select the ith algorithm with p;, as long as p; is a noticeable
function of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rather
some other fixed polynomial number of steps) is quite arbitrary.
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or 0" in case the said algorithm has not halted within n® steps). Prove that, for any
g

(S",X") € sampNP such that X" is sampleable in cubic time, the standard reduction

of §" to Sy reduces (S”,X") to (Su,X) (as per Definition 10.15; i.e., in particular,

it satisfies the domination condition).?® Finally, using adequate padding, reduce any

S, X") € sampNP to some (S”,X") € sampNP such that X" is sampleable in cubic

(s P ; P P

time.

Exercise 10.29 (search vs decision in the context of sampleable ensembles)
Prove that every problem in sampNP is reducible to some problem in sampPC,
and every problem in sampPC is randomly reducible to some problem in sampA/P.

Guideline: See proof of Theorem 10.23.

29Note that applying this reduction to X'’ yields an ensembles that is also sampleable in cubic
time. This claim uses the fact that the standard reduction runs in time that is less than cubic
(and in fact almost linear) in its output, and the fact that the output is longer than the input.
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