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Abstract. We study methods of converting algorithms that distinguish
pairs of distributions with a gap that has an absolute value that is notice-
able into corresponding algorithms in which the gap is always positive

(and noticeable). Our focus is on designing algorithms that, in addition
to the tested string, obtain a fixed number of samples from each distri-
bution. Needless to say, such algorithms can not provide a very reliable
guess for the sign of the original distinguishability gap, still we show that
even guesses that are noticeably better than random are useful in this
setting.
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1 The problem and its solutions

This work addresses a generic technical problem that arises in the context of try-
ing to establish the computational indistinguishability of certain pairs of prob-
ability ensembles. The problem refers to the fact that computational (and also
statistical) indistinguishability is defined in terms of the absolute difference be-
tween probabilities, whereas it is typically easier to manipulate the difference
itself. Thus, we seek a method of converting a non-negligible absolute difference
into a non-negligible difference; that is, we wish the difference itself (rather than
its absolute value) to be positive.

1.1 A motivational example

Many security definitions are formulated by referring to two pairs of proba-
bility ensembles that are indexed by strings, and requiring that these pairs of
probability ensembles are computationally indistinguishable (see, e.g., the def-
initions of computational zero-knowledge [2, Sec. 4.3.1.2] and secure two-party
computation [3, Sec. 7.2]). Such a probability ensemble {Zα}α∈S consists of (an
infinite number of) “random variables” Zα’s, which are each distributed over
some finite set (related to its index, α). Two such ensembles, {Xα}α∈S and
{Yα}α∈S , are said to be computationally indistinguishable if for every proba-
bilistic polynomial-time algorithm D it holds that

gD(α)
def
= |Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]| (1)
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is negligible as a function of |α| (i.e., for every positive polynomial p and all
sufficiently long α, the value of gD(α) is upper bounded by 1/p(|α|)).

The aforementioned formulation mandates that the value of gD(α) is small
for every α ∈ S. A weaker requirement, which suffices in practice, is that it is in-
feasible to find α ∈ S for which the value of gD(α) is not small. This requirement
may be formulated as mandating that for every probabilistic polynomial-time
algorithm F , representing a potential finder that given 1n outputs an n-bit long
string α ∈ S, the expected value of gD(α) (when defined as in Eq. (1)) is negligi-
ble (as a function of n); that is, E[gD(F (1n))] is negligible in n. This condition
means that

∑

α

Pr[F (1n)=α] · |Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]| (2)

is negligible as a function of n.
When trying to establish a condition as in Eq. (2) it is often easier to estab-

lish a corresponding condition in which the absolute value operator is dropped.
Indeed, suppose that for every F and D as above it holds that

∑

α

Pr[F (1n)=α] · (Pr[D(α, Xα)=1] − Pr[D(α, Yα)=1]) (3)

is negligible (as a function of n). Can we infer that Eq. (2) holds too?
In the case that both ensembles are polynomial-time sampleable, a positive

answer is implicit in many works. Essentially, given a probabilistic polynomial-
time algorithm D such that Eq. (2) is not negligible, one derives a probabilistic
polynomial-time algorithm D′ such that Eq. (3) is not negligible by estimat-
ing the difference between Pr[D(α, Xα) = 1] and Pr[D(α, Yα) = 1] and flipping
D’s output if the estimated difference is negative. Thus, the construction of D′

depends also on gD (which determines the adequate level of approximation). In
particular, the time complexity of D′ is (polynomially) related to gD. Our goal is
to get rid of this dependency; in particular, we wish to avoid the aforementioned
approximation.

1.2 A generic problem and one solution

The generic problem we face is converting an algorithm D that distinguishes Xα

and Yα (i.e., |Pr[D(α, Xα)=1]−Pr[D(α, Yα)=1]| is noticeable) into an algorithm
D′ that on input (α, Xα) outputs 1 with probability that is noticeably higher
than Pr[D(α, Yα) = 1]. We stress that we wish this transformation to hold for
every α, whereas it may be that for some α’s the difference Pr[D(α, Xα) =
1] − Pr[D(α, Yα) = 1] is positive while for other α’s the difference is negative.
Clearly, D′ must know something about Xα and Yα in order for this to be
possible, and indeed we provide D′ with samples taken from Xα and Yα (or,
actually, with algorithms for sampling these distributions).

Thus, the problem we face is actually the following one. We are given a
probabilistic polynomial-time algorithm D and sampling algorithms for two en-
sembles, {Xα}α∈S and {Yα}α∈S (i.e., probabilistic polynomial-time algorithms
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X and Y such that on any input α it holds that Xα ≡ X(α) and Yα ≡ Y (α)).
Our task is to construct a probabilistic polynomial-time algorithm D′ such that
for some function ρ : (0, 1]→ (0, 1] it holds that

Pr[D′(α, Xα)=1]−Pr[D′(α, Yα)=1] ≥ ρ (|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]|) .
(4)

We stress that the r.h.s of Eq. (4) refers to the absolute difference between two
probabilities, whereas the l.h.s refers to a corresponding difference that is not
taken in absolute value and yet is required to be positive (whenever the former
difference is positive).

We seek a universal transformation of D into D′, whereas this transformation
may use a predetermined number of auxiliary samples of the two distributions.
That is, the resulting algorithm D′ is given as input a single sample that is
drawn from one of two distributions (i.e., either from Xα or from Yα), but in
addition it can obtain (a predetermined number of) samples from each of the two
distributions. Like D, algorithm D′ should distinguish the two cases (which cor-
respond to the source of its input). We stress that we wish the complexity of D′

(and specifically the number of auxiliary samples it obtains) to be independent
of gD(α). We note that such a transformation (of D into D′) may be useful also
in other settings. One such generic example is provided by settings in which the
notion of negligible probability being considered is significantly smaller than the
reciprocal of the complexity of the distinguishers (e.g., consider polynomial-time
distinguishers coupled with (sub-)exponentially small distinguishing gaps).

A simple transformation. One solution to the foregoing problem is to let D′

estimate the sign of Pr[D(α, Xα)=1]−Pr[D(α, Yα)=1] by using a single sample
of Xα and a single sample of Yα. (Although this estimate is quite poor, it can be
shown to suffice.) Specifically, on input (α and) z (where z is taken from either
Xα or Yα), algorithm D′ proceeds as follows:

1. Ignoring its (“main”) input (i.e., z), algorithm D′ obtains a single sample x of
Xα and a single sample y of Yα, and computes σ ← D(α, x) and τ ← D(α, y);

2. If σ > τ , then D′ invokes D on its input (i.e., z), and outputs D(α, z).
If σ < τ , then D′ outputs 1−D(α, z).
Otherwise (i.e., σ = τ), algorithm D′ outputs the outcome of a fair coin toss.

(Indeed, we have assumed here, without loss of generality, that D always outputs
a Boolean value.)1 Intuitively, σ− τ provides a probabilistic guess of the sign of
Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1], and (as we show next) using this guess in
the obvious manner yields the desired result.

Proposition 1.1 (analysis of the simple transformation): Let D and D′ be as
above. Then,

Pr[D′(α, Xα)=1]−Pr[D′(α, Yα)=1] = (|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]|)2 .

1 In general, the distinguishing gap of D is defined in terms of the probability that D

outputs 1, and so any non-1 output may be considered as a 0.
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Proof: For the analysis of the performance of D′, we consider an algorithm D′′,
which may output any number in [0, 1], such that

D′′(α, z)
def
=

1

2
·
(
1 + sign(D(α, Xα)−D(α, Yα)) · (−1)D(α,z)+1

)
, (5)

where sign(r) = 1 if r > 0 (resp., sign(r) = −1 if r < 0), and sign(0) = 0.
Recall that in Step 2 of D′(α, z), the output is set to D(α, z) if σ > τ , to
1−D(α, z) if σ < τ , and is random if σ = τ . Using D(α, z) ∈ {0, 1} and assuming
σ 6= τ , the output of D′(α, z) can be written as (1+sign(σ−τ)·(−1)D(α,z)+1)/2.
Thus, D′(α, z) outputs 1 with probability E[D′′(α, z)], and it suffices to analyze
the l.h.s of the following equality

E[D′′(α, Xα)]− E[D′′(α, Yα)] = Pr[D′(α, Xα)=1]− Pr[D′(α, Yα)=1]. (6)

Wishing to substitute Eq. (5) in Eq. (6), we denote by X ′
α and Y ′

α independent
copies of Xα and Yα, and analyze Eq. (6) as follows.

gD′′(α)
def
= E[D′′(α, Xα)]− E[D′′(α, Yα)]

=
1

2
· E
[
1 + sign(D(α, X ′

α)−D(α, Y ′
α)) · (−1)D(α,Xα)+1

]

−1

2
· E
[
1 + sign(D(α, X ′

α)−D(α, Y ′
α)) · (−1)D(α,Yα)+1

]

=
1

2
· E [sign(D(α, X ′

α)−D(α, Y ′
α))] · E

[
(−1)D(α,Xα)+1 − (−1)D(α,Yα)+1

]

where the last equality uses the statistical independence of (X ′
α, Y ′

α) and (Xα, Yα).
Denoting p = Pr[D(α, Xα)=1] and q = Pr[D(α, Yα)=1], we use E[(−1)D(α,Xα)+1] =
p− (1 − p) = 2p− 1 and E[(−1)D(α,Yα)+1] = 2q − 1, and get

gD′′(α) = (p− q) · E [sign(D(α, Xα)−D(α, Yα))]

= (p− q) · (Pr[D(α, Xα)>D(α, Yα)]− Pr[D(α, Xα)<D(α, Yα)])

= (p− q) · (p · (1− q)− (1− p) · q) ,

which equals (p− q)2.

1.3 Other transformations

Two natural questions arise:

1. Is the foregoing construction of D′ optimal (with respect to all constructions
that use a single auxiliary sample from each of the two distributions)?

2. Can we do better if we obtain k auxiliary samples from each of the two
distributions (rather than one auxiliary sample from each of the two distri-
butions)? How good can such a construction be?
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Before answering these questions we note that no construction (which is given a
single test sample from one of the two distribution) can outperform the variation
distance between the tested distributions, (i.e., |p−q|, where p = Pr[D(α, Xα)=
1] and q = Pr[D(α, Yα)= 1]). This holds also when we have full information of
the two tested distributions. Turning back to the foregoing questions, we answer
them as follows.

Theorem 1.2 (Main Result): For every k ≥ 1, the best construction that uses
k auxiliary samples from each of the two distributions is the one that rules anal-
ogously to Eq. (5), when applying the sign function to the difference between
the average values of D on the k samples of each of the two distributions. That
is, on input an index α, a main input z, and 2k auxiliary samples, denoted
x1, ..., xk, y1, ..., yk, where x1, ..., xk are samples of Xα and y1, ..., yk are samples
of Yα, the optimal algorithm D′ outputs 1 with probability (1+δ ·(−1)D(α,z)+1)/2,
where

δ
def
= sign

(
k∑

i=1

D(α, xi)−
k∑

i=1

D(α, yi)

)
∈ {−1, 0, 1}.

In other words, algorithm D outputs

· D(α, z) if
∑k

i=1 D(α, xi) >
∑k

i=1 D(α, yi),

· 1−D(α, z) if
∑k

i=1 D(α, xi) <
∑k

i=1 D(α, yi), and
· the outcome of a fair coin toss otherwise.

This algorithm yields a gap that equals the minimum of Ω(
√

k) · (p − q)2 and
(1− ǫp,q(k)) · |p− q|, where ǫp,q(k) = exp(−Ω((p− q)2 · k)).

Note that for k = o(1/(p − q)2) the said gap is Ω(
√

k) · (p − q)2, whereas for
k = ω(1/(p− q)2) we approach the ultimate value of |p− q|. We stress that the
foregoing result holds both in the computational setting and in the information
theoretic setting.

2 The general treatment

Let X and Y be 0-1 random variables (representing D(α, Xα) and D(α, Yα),
respectively), and let Xi’s (resp., Yi’s) be independent copies of X (resp., Y )
representing additional samples available to us. We seek a randomized process
Π : {0, 1}2k+1 → {0, 1} such that

E[Π(X1, ..., Xk, Y1, ..., Yk, X)]− E[Π(X1, ..., Xk, Y1, ..., Yk, Y )] (7)

is maximized (as a function of δ = |E[X ] − E[Y ]|, when maximizing over all
possible 0-1 random variables X and Y that are at statistical distance δ). Indeed,
the probability that Π(a1, ..., ak, b1, ..., bk, c) = 1 is determined by the function
f : {0, 1}2k+1 → [0, 1] such that

f(a1, ..., ak, b1, ..., bk, c)
def
= Pr[Π(a1, ..., ak, b1, ..., bk, c)=1].
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Thus, it suffices to seek a function f : {0, 1}2k+1 → [0, 1] that maximizes

E[f(X1, ..., Xk, Y1, ..., Yk, X)]− E[f(X1, ..., Xk, Y1, ..., Yk, Y )] (8)

(as a function of δ = |E[X ] − E[Y ]|). Let us formally define a more general
optimization problem.

The general question (and its accompanied notation). For a function
f : {0, 1}2k+1 → [0, 1] and a pair (p, q) ∈ [0, 1], we denote by V(p,q)(f) the
value of Eq. (8), where X and Y are 0-1 random variables that satisfy p =
E[X ] and q = E[Y ]. Now, for any (possibly infinite) set (or class) of pairs in

[0, 1], denoted C, and any function f : {0, 1}2k+1 → [0, 1], we denote VC(f)
def
=

min(p,q)∈C{V(p,q)(f)}. We seek a function f for which VC(f) is maximal.

Summary of our results (and their organization). First, we will show
that, without loss of generality, the function f(x1, ..., xk, y1, ...., yk, z) may only

depend on s
def
=
∑

i∈[k] xi, t
def
=
∑

i∈[k] yi and z, and furthermore that it can take

a specific canonical form (see Section 2.1). Next, in Section 2.2, we will show
that, in all natural cases (i.e., for “symmertic” classes), the canonical form can
be further simplified to depend only on sign(s− t) and z. Actually, this will yield
a single optimal function. Lastly, in Section 2.3, we will analyze the performance
of this function.

2.1 Canonical functions

We will first show that it suffices to consider functions f of the form

f(a1, ...., ak, b1, ...., bk, c) =
1 + g

(∑
i∈[k] ai ,

∑
i∈[k] bi

)
· (−1)c

2
(9)

where g : N
2 → [−1, +1]. We call such an f canonical. Note that the normaliza-

tion (i.e., shifting by 1 and dividing by 2) is used to map [−1, +1] to [0, 1]. (Note
that an additive shift of f leaves the value of Eq. (8) intact, whereas multiplying
f by any factor has the same effect on the value of Eq. (8).)

Definition 2.1 (dominating strategies) We say that f ′ dominates f (w.r.t C) if
for every (p, q) ∈ C it holds that V(p,q)(f

′) ≥ V(p,q)(f).

Proposition 2.2 (strong optimality): For every C and every f : {0, 1}2k+1 →
[0, 1] there exists a canonical function that dominates f (w.r.t C).

Proof: Given any function f , we consider the function f ′ such that for ev-
ery a, b ∈ {0, 1, ..., k} and c ∈ {0, 1}, the value f ′(a, b, c) equals the aver-
age of f(a1, ...., ak, b1, ...., bk, c) taken over all (a1, ...., ak), (b1, ...., bk) ∈ {0, 1}k
that satisfy

∑
i∈[k] ai = a and

∑
i∈[k] bi = b. Then, for every (p, q), we have

V(p,q)(f
′) = V(p,q)(f), because each permuation of any fixed sequence (v1, ..., vk)
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is as likely to be the outcome of k independently and identically distributed sam-
ples. Next, note that the value of f ′ at any (a, b) ∈ {0, 1, ..., k}2 and c ∈ {0, 1}
(i.e., the value f ′(a, b, c)) can be written as

1 + (−1)c

2
· f ′(a, b, 0) +

1− (−1)c

2
· f ′(a, b, 1)

=
1

2
· (f ′(a, b, 0) + f ′(a, b, 1)) +

(−1)c

2
· (f ′(a, b, 0)− f ′(a, b, 1))

= g0(a, b) + g1(a, b) · (−1)c

where g0(a, b) = (f ′(a, b, 0)+f ′(a, b, 1))/2 and g1(a, b) = (f ′(a, b, 0)−f ′(a, b, 1))/2.
Note that g1(a, b) ∈ [−0.5, +0.5] and that replacing g0(a, b) by 0.5 does not
change the value of V(p,q)(f

′). Thus, setting f ′′(a, b, c) = (1+2g1(a, b) · (−1)c)/2,
we obtain a canonical function f ′′ that dominates f (because V(p,q)(f

′′) =
V(p,q)(f

′) = V(p,q)(f)).

Conclusion and notation. At this point we can limit our search for good functions
(i.e., functions that maximize Eq. (8)) to canonical functions. Thus, for every

function g : N
2×{0, 1} → [−1, +1] and every k ∈ N, we define f

(k)
g as in Eq. (9),

and consider the value V(p,q)(f
(k)
g ). To estimate V(p,q)(f

(k)
g ), we let X and Y be

0-1 random variables with E[X ] = p and E[Y ] = q and get

V(p,q)(f
(k)
g ) =

1

2
· E


g



∑

i∈[k]

Xi ,
∑

i∈[k]

Yi


 · (−1)X


 (10)

−1

2
· E



g




∑

i∈[k]

Xi ,
∑

i∈[k]

Yi



 · (−1)Y





.

(11)

Using the independence of X, Y and the Xi’s and Yi’s, we rewrite Eq. (10)&(11)
as

V(p,q)(f
(k)
g ) =

1

2
· E



g




∑

i∈[k]

Xi ,
∑

i∈[k]

Yi







 · E
[
(−1)X − (−1)Y

]
.

(12)

Recalling that E[(−1)X ] = (1 − p) − p = 1 − 2p and E[(−1)Y ] = 1− 2q, we get
E[(−1)X − (−1)Y ] = 2(q − p) and so

V(p,q)(f
(k)
g ) = (q − p) · E[g(X ′, Y ′)], (13)

where X ′ =
∑

i∈[k] Xi and Y ′ =
∑

i∈[k] Yi. Denoting B(p, i, k) =
(
k
i

)
· pi · (1 −

p)k−i, we get

V(p,q)(f
(k)
g ) = (q − p) ·

∑

i,j∈{0,1,...,k}
B(p, i, k) · B(q, j, k) · g(i, j). (14)
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2.2 Symmetric classes

We focus on symmetric classes of pairs, where C is symmetric if for every (p, q) ∈ C
it also holds that (q, p) ∈ C. In contrast, if C contains only pairs (p, q) such
that p > q, then we may set k = 0 and use the identity function (because
E[X ]− E[Y ] = p− q = StatDiff(X, Y )). We show that, for symmetric classes,
the “sign of the difference” function (i.e., sd(a, b) = sign(b − a) ∈ {−1, 0, +1})
is optimal as a function g.

Proposition 2.3 (optimality): For every symmetric C and every k ∈ N and g :

N
2 → [−1, +1], it holds that VC(f

(k)
sd

) ≥ VC(f
(k)
g ), where sd(a, b) = sign(b− a).

Recall that sign(d) = −1 if d < 0 (resp., sign(d) = 1 if d > 0), and sign(0) = 0.

Proof: Let (p, q) ∈ C be such that V(p,q)(f
(k)
sd

) = VC(f
(k)
sd

). Then, by definition

of VC(f
(k)
g ) and the fact that (q, p) ∈ C (which follows by the symmetry of C), it

holds that

VC(f (k)
g ) ≤ V(p,q)(f

(k)
g ) + V(q,p)(f

(k)
g )

2 .

On the other hand, by the choice of (p, q) ∈ C, it holds that VC(f
(k)
sd

) ≥ V(p,q)(f
(k)
sd

).

Furthermore, V(p,q)(f
(k)
sd

) = V(q,p)(f
(k)
sd

), because by Eq. (13) we have

V(p,q)(f
(k)
sd

) = (q − p) · E[sd(X ′, Y ′)]

= (q − p) · E[sign(Y ′ −X ′)]

= (p− q) · E[sd(Y ′, X ′)]

= V(q,p)(f
(k)
sd

).

Thus, it suffices to show that

V(p,q)(f
(k)
sd

) + V(q,p)(f
(k)
sd

) ≥ V(p,q)(f
(k)
g ) + V(q,p)(f

(k)
g ). (15)

For every a, b ∈ {0, 1, ..., k}, we shall show that replacing g(a, b) by sign(b− a)

may only increase the value of V(p,q)(f
(k)
g )+V(q,p)(f

(k)
g ). Let us start by recalling

Eq. (14), which yields

V(p,q)(f
(k)
g ) + V(q,p)(f

(k)
g )

= (q − p) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · g(i, j)

+(p− q) ·
∑

i,j∈{0,1,...,k}
B(q, i, k)B(p, j, k) · g(i, j)

= (q − p) ·
∑

i,j∈{0,1,...,k}
[B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k)] · g(i, j).
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Clearly, for i = j we have B(p, i, k)B(q, j, k) = B(q, i, k)B(p, j, k). For i < j
(resp., j < i), it holds that B(p, i, k)B(q, j, k) > B(q, i, k)B(p, j, k) if and only
if p < q (resp., q < p). The latter claim seems self-evident, yet we provide a
detailed proof next (for the case p, q ∈ (0, 1)).

B(p, i, k)B(q, j, k) =

(
k

i

)
· pi · (1− p)k−i ·

(
k

j

)
· qj · (1− q)k−j

=

(
k

i

)
· (1− p)k ·

(
k

j

)
· (1 − q)k · (p/(1− p))i · (q/(1− q))j

Thus, B(p,i,k)B(q,j,k)
B(q,i,k)B(p,j,k) equals

(p/(1− p))i · (q/(1− q))j

(q/(1− q))i · (p/(1− p))j
=

(q/(1− q))j−i

(p/(1− p))j−i

Note that we have p < q iff (p/(1 − p)) < (q/(1 − q)), and so p < q iff
(p/(1 − p))j−i < (q/(1 − q))j−i. It follows that p < q iff B(p, i, k)B(q, j, k) >
B(q, i, k)B(p, j, k).

Recall that for i < j, it holds that B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k) > 0
if and only if q > p. Thus, in this case, we maximize

(q − p) · [B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k)] · g(i, j) (16)

by setting g(i, j) = 1 (because the first two factors have the same sign). Similarly,
for j > i, it holds that B(p, i, k)B(q, j, k) − B(q, i, k)B(p, j, k) > 0 if and only
if q < p, and so the maximization requires g(i, j) = −1. Indeed, for i = j, any
setting of g(i, j) will do. Thus, an optimal setting of g(i, j) is sign(j − i), which
equals sd(i, j). The claim follows.

2.3 The performance of the function f
(k)
sd

We now turn to evaluating the performance of the optimal function; that is, we

evaluate V(p,q)(f
(k)
sd

). Recall that

V(p,q)(f
(k)
sd

) = (q − p) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · sd(i, j)

= (p− q) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · sign(i− j)

which yields V(p,q)(f
(k)
sd

) = (p− q) · v(k)
p,q , where

v(k)
p,q

def
= E


sign



∑

i∈[k]

Xi −
∑

i∈[k]

Yi




 (17)
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such that the Xi’s (resp., Yi’s) are 0-1 i.i.d with expectation p (resp., q). Letting
Ti = Xi − Yi, we rewrite Eq. (17) as E[sign(

∑
i∈[k] Ti)], which equals

Pr




∑

i∈[k]

Ti > 0



− Pr




∑

i∈[k]

Ti < 0



 . (18)

Note that E[Ti] = p−q and Var[Ti] = p(1−p)+q(1−q). Thus, it is apparent that

V(p,q)(f
(k)
sd

) grows with k, unless either {p, q} = {0, 1} or p = q (in which case

V(p,q)(f
(k)
sd

) = |p − q| for every k ≥ 1), and that limk→∞ V(p,q)(f
(k)
sd

) = |p − q|.
All that remains is to determines the behavior of V(p,q)(f

(k)
sd

) as a function of
k, which calls for analyzing Eq. (18). It should come at little surprise that all

we can offer is functional relations (e.g., relating V(p,q)(f
(k+1)
sd

) to V(p,q)(f
(k)
sd

)),
approximations, and close expressions for small values of k. We start with the
latter.

The cases of k = 1 and k = 2. For small k, we can write explicit expressions
for Eq. (18); for example, for k = 1 Eq. (18) yields Pr[T1 > 0] − Pr[T1 < 0] =

p(1− q)− q(1− p) = p− q, and so V(p,q)(f
(1)
sd

) = (p− q)2. For k = 2, we have

Pr[T1 + T2 >0]− Pr[T1 + T2 <0] = Pr[T1 + T2 =2] + 2Pr[T1 =1 ∧ T2 =0]

− (Pr[T1 + T2 =−2] + 2Pr[T1 =−1 ∧ T2 =0])

= p2(1− q)2 + 2p(1− q)(pq + (1− p)(1− q))

−
(
q2(1− p)2 + 2q(1− p)(pq + (1− p)(1 − q))

)

= (1 + (1− p)(1 − q) + pq) · (p− q)

and so V(p,q)(f
(2)
sd

) = (1 + (1− p)(1− q) + pq) · (p− q)2 (see an alternative proof
following the statement of Proposition 2.4). Thus, the improvement of the case
of k = 2 over the case of k = 1 is a factor of (1 + (1 − p)(1 − q) + pq), which
is greater than 1 unless {p, q} = {0, 1} (where a single sample is as good as k
samples, for any k > 1).

The general case of k > 1. We now turn to a general analysis of Eq. (18)

(and V(p,q)(f
(k)
sd

)). Specifically, we consider the increase in the value of Eq. (18)
when going from k to k + 1; that is, we define

∆(p,q)(k)
def
= E


sign



∑

i∈[k+1]

Ti




− E


sign



∑

i∈[k]

Ti




 (19)

and note that V(p,q)(f
(k+1)
sd

) = V(p,q)(f
(k)
sd

) + (p− q) ·∆(p,q)(k).

Proposition 2.4 (the growth of V(p,q)(f
(k)
sd

) as a function of k): For every k ≥ 1,

it holds that ∆(p,q)(k) = (p− q) · Pr[Sk =0], where Sk
def
=
∑

i∈[k] Ti.
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It follows that V(p,q)(f
(k+1)
sd

) = V(p,q)(f
(k)
sd

) + (p − q)2 · Pr[Sk = 0], and so

V(p,q)(f
(k+1)
sd

) ≥ V(p,q)(f
(k)
sd

), where equality holds if and only if {p, q} = {0, 1}
(when ignoring the case of p = q). Proposition 2.4 can also be used to re-establish

V(p,q)(f
(2)
sd

) = (1 + pq + (1− p)(1− q)) · (p− q)2, since V(p,q)(f
(1)
sd

) = (p− q)2 and
Pr[S1 =0] = pq + (1− p)(1− q).

Proof: Starting with Eq. (19), we have

∆(p,q)(k) = E[sign(Sk + Tk+1)]− E[sign(Sk)]

=
∑

s∈{−1,0,1}
Pr[Sk =s] · E[sign(s + Tk+1)− sign(s)]

= Pr[Sk =0] · (Pr[Tk+1 =1]− Pr[Tk+1 =−1])

+Pr[Sk =−1] · Pr[Tk+1 =1]− Pr[Sk =1] · Pr[Tk+1 =−1].

By symmetry (e.g., consider the case of k = 1), it is rather self-evident that
Pr[Sk =−1] ·Pr[Tk+1 =1] = Pr[Sk =1] ·Pr[Tk+1 =−1], yet we provide a detailed
proof next.

Pr[Sk =−1] · Pr[Tk+1 =1] = p(1− q) ·
k∑

j=1

B(p, j − 1, k)B(q, j, k)

= p(1− q) ·
k∑

j=1

(
k

j − 1

)
pj−1(1− p)k−j+1

(
k

j

)
qj(1− q)k−j

=

k∑

j=1

(
k

j − 1

)
pj(1− p)k+1−j

(
k

j

)
qj(1− q)k−j+1

= (1− p)q

k∑

j=1

(
k

j − 1

)
pj(1− p)k−j

(
k

j

)
qj−1(1− q)k−j+1

= (1− p)q ·
k∑

j=1

B(p, j, k)B(q, j − 1, k)

= Pr[Sk =1] · Pr[Tk+1 =−1].

Hence, ∆(p,q)(k) = Pr[Sk = 0] · (Pr[Tk+1 =1]− Pr[Tk+1 =−1]), and the claim
follows (since Pr[Tk+1 =1]− Pr[Tk+1 =−1] = p− q).

Another expression for V(p,q)(f
(k)
sd

). Proposition 2.4 yields another expression

for V(p,q)(f
(k)
sd

):

V(p,q)(f
(k)
sd

) = V(p,q)(f
(1)
sd

) + (p− q) ·
k−1∑

ℓ=1

∆(p,q)(ℓ) (20)



148

= (p− q)2 + (p− q)2 ·
k−1∑

ℓ=1

Pr[Sℓ =0] (21)

Note that for {p, q} = {0, 1} this expression (i.e., Eq. (21)) equals 1 (for any
k ≥ 1), whereas for p = q it equals 0. In all other cases (i.e., 0 < (p − q)2 < 1)

Eq. (21) grows with k. Using Pr[Sℓ =0] =
∑ℓ

j=0 B(p, j, ℓ)B(q, j, ℓ), we get

V(p,q)(f
(k)
sd

) = (p− q)2 + (p− q)2 ·
k−1∑

ℓ=1

ℓ∑

j=0

(
ℓ

j

)2

(pq)j((1 − p)(1− q))ℓ−j (22)

In the special case of p = 0, Eq. (22) yields

V(0,q)(f
(k)
sd

) = q2 + q2 ·
k−1∑

ℓ=1

(1− q)ℓ

= q2 + q ·
(
(1− q)− (1− q)k

)

which converges to q = |p − q| when k → ∞. Similarly, V(1,q)(f
(k)
sd

) converges
to 1 − q = |p − q| (where p = 1). Note that in these cases convergence occurs
with k ≫ |p − q|−1. As we shall see next, in the other cases (i.e., p, q ∈ (0, 1)),
convergence occurs with k ≫ |p− q|−2.

Approximating V(p,q)(f
(k)
sd

) when p, q ∈ (0, 1). The hidden constants in the ap-
proximation given next depend on the distance of p and q from the boundaries of
(0, 1); that is, the constants in the Θ-notation depends on min(p, q, 1− p, 1− q).

Proposition 2.5 (the approximate value of V(p,q)(f
(k)
sd

)): For any fixed p, q ∈
(0, 1) and every k > 2, it holds that V(p,q)(f

(k)
sd

) = v · |p− q|, where v = Θ(
√

k) ·
|p− q| if k ≤ 5(p− q)−2 and v ≥ 1− exp(−(p− q)2k/3) otherwise.

Proof: We shall approximate V(p,q)(f
(k)
sd

) by using Eq. (17) (rather than Eq. (22)).
Recall that by Eq. (17) we have

V(p,q)(f
(k)
sd

) = (p− q) · E[sign(Sk)] (23)

where Sk =
∑k

i=1 Ti (and Ti = Xi − Yi). We assume, without loss of generality,
that p > q and lower bound the value of E[sign(Sk)], using E[Ti] = p − q. We
distinguish three cases according to the relation between k and p− q:

Case 1: k ≥ 5(p− q)−2
. In this case we use the (standard additive) Chernoff

Bound, and derive

E[sign(Sk)] = Pr[Sk >0]− Pr[Sk <0]

> 1− 2 · Pr[Sk≤0]

> 1− 2 · exp

(
− (p− q)2 · k

2

)

.
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This establishes the relevant part of the claim (i.e., V(p,q)(f
(k)
sd

) = v · |p− q|,
where v = 1− 2 exp(−(p− q)2k/2) > 1− exp(−(p− q)2k/3)).
The following complemantary two cases are distinguished according to a

constant c ≥ 5 that depends only on γp,q
def
=
√

p(1− p) + q(1− q).
Case 2: k ∈ [c · (p− q)−1, 5(p− q)−2]. In this case we use the Berry–Esseen es-

timate of the Central Limit Theorem (cf., e.g., [1, Sec. XVI.5]). Specifically,

we approximate E[sign(Sk)] by E[sign(S̃k)], where S̃k is the normal distri-
bution approximation of Sk; that is,

S̃k
def
= k · (p− q) +

√
k · γp,q ·N(0, 1),

where N(0, 1) denotes the normal distribution (with mean 0 and variance 1),
and
√

k ·γp,q replaces
√

Var[Sk] =
√

k ·
√

p(1− p) + q(1− q). More formally,
we use the fact that for every r it holds that that

|Pr[Sk >r]− Pr[S̃k >r]| < ǫ
def
=

3ρ

γp,q
3
√

k

where ρ = E[|T1 − (p− q)|3] < 2 · γp,q
2. It follows that

E[sign(Sk)] = Pr[Sk >0]− Pr[Sk <0]

= Pr[S̃k >0]− Pr[S̃k <0]± 2ǫ

= 2Pr[S̃k >0]− 1± 2ǫ. (24)

Now, we analyze Pr[S̃k >0] via

Pr[(p− q)k +
√

kγp,q · N(0, 1) > 0] = Pr

[
N(0, 1) > −p− q

γp,q
·
√

k

]

Setting r
def
= (p−q)

√
k ≤ 1, it follows that Pr[N(0, 1) > −r/γp,q] = 0.5+Θ(r).

So Eq. (24) yields Θ(
√

k · (p − q)) − Θ(k−1/2), which is lower bounded by
Θ(
√

k · (p− q)), when using k ≥ c · (p− q)−1 (where c is large enough w.r.t

the above hidden constants). It follows V(p,q)(f
(k)
sd

) = Θ(
√

k) · (p− q)2, which
establishes the other part of the claim for the current case.

Case 3: k ≤ c · (p− q)−1
. It suffices to establish that V(p,q)(f

(k)
sd

) = Θ(
√

k) ·
(p− q)2, for k ≤ (p− q)−1. This is done by writing Ti as T ′

i + (1− T ′
i ) · T ′′

i ,
where T ′

i ∈ {0, 1} and T ′′
i ∈ {−1, 0, 1} are independent random variables

satisfying Pr[T ′
i = 1] = p − q and Pr[T ′′

i = 1] = Pr[T ′′
i = −1] = q−pq

1−(p−q) .

Letting S′
k =

∑
i∈[k] T

′
i and S′′

k =
∑

i∈[k] T
′′
i , we have

E[sign(Sk)] =

k∑

j=0

Pr[S′
k =j] · E[sign(S′′

k−j +j)]

=

k∑

j=0

Pr[S′
k =j] ·

(
E[sign(S′′

k−j)] + 2 · Pr[0≤S′′
k−j <j]

)
(25)
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where S′′
k−j represents the sum of the k − j variables T ′′

i that correspond
to the indices i that satisfy T ′

i = 0 (i.e., S′′
k−j represents

∑
i∈I T ′′

i , where
I = {i : T ′

i = 0}). Since E[sign(S′′
k−j)] = 0 (becuase E[T ′′

i ] = 0), Eq. (25)
simplifies to

2 ·
k∑

j=1

Pr[S′
k = j] · Pr[0 ≤ S′′

k−j < j]. (26)

The lower bound in the claim (i.e., v = Ω(
√

k · (p − q))) follows once we
prove that Pr[S′

k = 1] · Pr[S′′
k−1 = 0] = Ω(

√
k · (p − q)). We start by noting

that

Pr[S′
k = 1] · Pr[S′′

k−1 = 0] = k · (p− q)(1− (p− q))k−1 · Pr[S′′
k−1 = 0](27)

>
(p− q)k

3
· Pr[S′′

k−1 = 0]

In order to estimate Pr[S′′
k−1 = 0], we write S′′

k−1 as the difference of∑
i∈[k−1] X

′′
i and

∑
i∈[k−1] Y

′′
i , where the X ′′

i ’s and Y ′′
i ’s are iid 0-1 ran-

dom valiables (i.e., p′′ = Pr[X ′′
i = 1] satisfies p′′(1 − p′′) = (1−p)q

1−(p−q) ). We
get

Pr[S′′
k−1 = 0] ≥

∑

j=(k−1)p′′±
√

k−1

Pr



∑

i∈[k−1]

X ′′
i = j


 · Pr



∑

i∈[k−1]

Y ′′
i = j




=
∑

j=(k−1)p′′±
√

k−1

Pr



∑

i∈[k−1]

X ′′
i = j




2

>
Pr
[∑

i∈[k−1] X
′′
i = (k − 1)p′′ ±

√
k − 1

]2

2
√

k − 1 + 1

>
Pr
[√

(k − 1)γp′′,p′′ ·N(0, 1) = ±
√

k − 1
]2
− o(1)

2
√

k − 1 + 1

where the last inequality uses the Berry–Esseen estimate of the Central Limit
Theorem. Observing that Pr[N(0, 1) = ±1/γp′′,p′′ ] = Ω(1), it follows that
Pr[S′′

k−1 = 0] = Ω(1/
√

k − 1), and so Eq. (27) is Ω((p − q)k/
√

k − 1) (and
the same holds w.r.t Eq. (26)). To upper bound Eq. (26), we note that it
can be upper bounded by

2 ·
k∑

j=1

Pr[S′
k = j] · j · Pr[S′′

k−j = 0] < 2 ·
k∑

j=1

(
k

j

)
· (p− q)j · j · Pr[S′′

k−j = 0]

= O((p− q)k · Pr[S′′
k−1 = 0])

and the claim follows because Pr[S′′
k−1 = 0] = O(1/

√
k). This establishes

V(p,q)(f
(k)
sd

) = Θ(
√

k) · (p− q)2 also in the current case.

The proposition follows.
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3 Conclusion

The obvious way of using statistical information (e.g., a binary guess that is
positively correlated with the correct value) is to amplify the confidence level
of the information and use it as if it were certainly correct. The current work
studies an alternative method of using statistical information and shows that in
some settings using unreliable information directly works quite well. This was
demonstrated already in Section 1.2, whereas the rest of this work studies the
question of how to make the best use of multiple independent copies of such
statistical information.
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