
Two Comments on Targeted Canonical

Derandomizers

Oded Goldreich

August 18, 2019

Abstract

We revisit the notion of a targeted canonical derandomizer, intro-
duced in our prior work (ECCC, TR10-135) as a uniform notion of
a pseudorandom generator that suffices for yielding BPP = P . The
original notion was derived (as a variant of the standard notion of a
canonical derandomizer) by providing both the distinguisher and the
generator with the same auxiliary-input. Here we take one step fur-
ther and consider pseudorandom generators that fool a single circuit
that is given to both (the distinguisher and the generator) as auxiliary
input. Building on the aforementioned prior work, we show that such
pseudorandom generators of constant seed length exist if and only if
BPP = P , which means that they exist if and only if the previously
defined targeted canonical derandomizers (of exponential stretch, as in
the prior work) exist. We also relate such targeted canonical deran-
domizer to targeted hitters, which are the analogous canonical deran-
domizers for RP .

An early version of this work appeared as TR11-047 of ECCC. The current
revision is quite minimal and cosmetic in nature.

1 Introduction

In prior work [4], we presented two results that relate the existence of cer-
tain pseudorandom generators to certain derandomizations of the class BPP .
The first result referred to the standard notion of a uniform canonical de-
randomizer (as introduced in [5]) and asserted that such pseudorandom gen-
erators of exponential stretch exist if and only if BPP is effectively in P (in
the sense that it is infeasible to find an input on which the polynomial-time

1

derandomized algorithm errs).1

The second result referred to a new notion of a canonical derandomizer,
which was introduced in [4] and called a targeted canonical derandomizer.
This notion is the subject of the current note. We mention that it was shown
in [4] that targeted canonical derandomizers (of exponential stretch) exist if
and only if BPP = P.

The foregoing notion of a targeted canonical derandomizer was derived
as a variant of the standard notion of a canonical derandomizer, which is
required to produce sequences that look random to any (linear size) non-
uniform circuit. Specifically, a targeted canonical derandomizer is only re-
quired to fool uniform (deterministic) linear-time algorithms that obtain any
auxiliary input (of linear length), but the generator is given the same auxil-
iary input. (This auxiliary input represent the main input given to a generic
probabilistic polynomial-time algorithm that we wish to derandomize.)

In this note we revisit the notion of a targeted canonical derandomizer.
Specifically, we take this approach to its logical conclusion, and consider
pseudorandom generators that fool a single circuit that is given to them as
auxiliary input. (This circuit represents the combination of the probabilistic
polynomial-time algorithm that we wish to derandomize coupled with the
main input given to that algorithm. In terms of the notion of a targeted
canonical derandomizer as defined in [4], we replace the free choice of a uni-
form (deterministic) linear-time algorithm by a fixed choice of an evaluation
algorithm for circuits.)

We stress that constructing such generators is not trivial. In fact, build-
ing on the ideas of [4], we show that such pseudorandom generators (of
logarithmic seed length (equiv., exponentiual stretch)) exist if and only if

BPP = P. Furthermore, such pseudorandom generators may use a seed of
constant length (i.e., a two-bit long random seed).

Applying the same approach to hitting set generators, we derive a notion
of a targeted hitter, which is adequate for derandomizing RP. Specifically, a
targeted hitter is a deterministic polynomial-time algorithm that, on input
a circuit that accepts most strings of a certain length, finds a string that
satisfies this circuit. Clearly, such a targeted hitter implies that RP = P,
which in turn implies BPP = P (see, e.g., [3, §6.1.3.2]). Thus, targeted

hitters exist if and only if targeted canonical derandomizers exist.

1More accurately, for any S ∈ BPP and every polynomial p, there exists a deterministic
polynomial-time A such that no probabilistic p-time algorithm F can find (with probability
exceeding 1/p) an input on which A errs; that is, the probability that F (1n) equals an
n-bit string x such that A(x) 6= χS(x) is at most 1/p(n), where χS is the characteristic
function of S.

2

Organization. For sake of self-containment, we recall (in Sections 2 and 3)
the preliminaries and background that forms the basis for the current work.
These parts are reproduced from [4], and contain the prior notion of targeted
canonical derandomizers (see Definition 3.2). The new part of this work
start in Section 3.3, which presents the new notion of targeted canonical
derandomizers (see Definition 3.3). Sections 4 and 5 present the (modest)
technical contribution of this work, and Section 6 de-constructs them.

2 Preliminaries

In Section 2.1, we review the notion of promise problems, while adapting it
to the context of search problems, and in Section 2.2 we define “BPP search
problem” (while warning that the definition is not straightforward). The
entire section is reproduced from [4].

Standard notation. For a natural number n, we let [n]
def
= {1, 2, ..., n}

and denote by Un a random variable that is uniformly distributed over
{0, 1}n. When referring to the probability that a uniformly distributed n-
bit long string hits a set S, we shall use notation such as Pr[Un ∈ S] or
Prr∈{0,1}n [r∈S].

2.1 Promise problems

We rely heavily on the formulation of promise problems (introduced in [2]).
We believe that, in general, the formulation of promise problems is far more
suitable for any discussion of feasibility results. The original formulation
of [2] refers to decisional problems, but we shall also extend it to search
problem.

In the setting of decisional problems, a promise problem, denoted 〈P,Q〉,
consists of a promise (set), denoted P , and a question (set), denoted Q, such
that the problem 〈P,Q〉 is defined as given an instance x ∈ P , determine

whether or not x ∈ Q. That is, the solver is required to distinguish inputs
in P ∩ Q from inputs in P \ Q, and nothing is required in case the input
is outside P . Indeed, an equivalent formulation refers to two disjoint sets,
denoted Πyes and Πno, of yes- and no-instances, respectively. We shall
actually prefer to present promise problems in these terms; that is, as pairs
(Πyes,Πno) of disjoint sets. Indeed, standard decision problems appear as
special cases in which Πyes ∪ Πno = {0, 1}∗. In the general case, inputs
outside of Πyes ∪Πno are said to violate the promise.

3

Unless explicitly stated otherwise, all decisional problems discussed in
this work are actually promise problems, and P,BPP etc denote the corre-
sponding classes of promise problems. For example, (Πyes,Πno) ∈ BPP if
there exists a probabilistic polynomial-time algorithm A such that for every

x ∈ Πyes it holds that Pr[A(x) = 1] ≥ 2/3, and for every x ∈ Πno it holds

that Pr[A(x)=0] ≥ 2/3.

2.2 BPP search problem

Typically, search problems are captured by binary relations that determine
the set of valid instance-solution pairs. For a binary relation R ⊆ {0, 1}∗ ×

{0, 1}∗, we denote by R(x)
def
= {y : (x, y)∈R} the set of valid solutions for

the instance x, and by SR
def
= {x : R(x) 6= ∅} the set of instances having

valid solutions. Solving a search problem R means that given any x ∈ SR,
we should find an element of R(x) (whereas, possibly, we should indicate
that no solution exists if x 6∈ SR).

The definition of “BPP search problems” is supposed to capture search
problems that can be solved efficiently, when random steps are allowed. In-
tuitively, we do not expect randomization to make up for more than an
exponential blow-up, and so the naive formulation that merely asserts that
solutions can be found in probabilistic polynomial-time is not good enough.
Consider, for example, the relation R such that (x, y) ∈ R if |y| = |x| and for
every i < |x| it holds that Mi(x) 6= y, where Mi is the ith deterministic ma-
chine (in some fixed enumeration of such machines). Then, the search prob-
lem R can be solved by a probabilistic polynomial-time algorithm (which,
on input x, outputs a uniformly distributed |x|-bit long string), but cannot
be solved by any deterministic algorithm (regardless of its running time).

What is missing in the naive formulation is any reference to the “com-
plexity” of the solutions found by the solver, let alone to the complexity
of the set of all valid solutions. We just postulate the latter (i.e., that the
set of all valid instance-solutions pairs is easily recognizable). Actually2,
we generalize the treatment to search problems with a promise, where the
promise allows to possibly discard some instance-solution pairs. (At first
reading, the reader may assume that Rno = {0, 1}∗ \Ryes.)

Definition 2.1 (BPP search problems): Let Ryes and Rno be two disjoint

binary relations. We say that (Ryes, Rno) is a BPP-search problem if the

following two conditions hold.

2See motivational discussion in [4, Sec. 3.1].

4

1. The decisional problem represented by (Ryes, Rno) is solvable in proba-

bilistic polynomial-time; that is, there exists a probabilistic polynomial-

time algorithm V such that for every (x, y) ∈ Ryes it holds that Pr[V (x, y)=
1] ≥ 2/3, and for every (x, y) ∈ Rno it holds that Pr[V (x, y)=1] ≤ 1/3.

2. There exists a probabilistic polynomial-time algorithm A such that,

for every x ∈ SRyes
, it holds that Pr[A(x) ∈ Ryes(x)] ≥ 2/3, where

Ryes(x) = {y : (x, y)∈Ryes} and SRyes
= {x : Ryes(x) 6= ∅}.

We may assume, without loss of generality, that, for every x such that
Rno(x) = {0, 1}∗, it holds that Pr[A(x) = ⊥] ≥ 2/3, since algorithm A
can avoid outputting invalid solutions (i.e., elements of Rno(x)) by checking
them using algorithm V . Note that the algorithms postulated in Defini-
tion 2.1 allow for finding valid solutions (i.e., elements of Ryes(x)) as well
as distinguishing valid solutions (i.e., elements of Ryes(x)) from invalid ones
(i.e., elements of Rno(x)), but they do not offer a way of increasing the
probability of finding valid solutions (since they do not provide a way of dis-
tinguishing elements of Ryes(x) from elements of {0, 1}∗\(Ryes(x)∪Rno(x)).

3 Definitional Treatment

For sake of clarity and perspective, we start by reviewing the standard
definition of (non-uniformly strong) canonical derandomizer (cf., e.g., [3,
Sec. 8.3.1]). Next, we review the notion of a targeted canonical derandom-
izer that was introduced in [4, Sec. 4.4], and finally we present the new
definition of a targeted canonical derandomizer. The first two subsections
are reproduced from [4].

3.1 The standard (non-uniformly strong) definition

Recall that in order to “derandomize” a probabilistic polynomial-time algo-
rithm A, we first obtain a functionally equivalent algorithm AG that uses a
pseudorandom generator G in order to reduce the randomness-complexity
of A, and then take the majority vote on all possible executions of AG (on
the given input). That is, we scan all possible outcomes of the coin tosses of
AG(x), which means that the deterministic algorithm will run in time that
is exponential in the randomness complexity of AG. Thus, it suffices to have
a pseudorandom generator that can be evaluated in time that is exponential
in its seed length (and polynomial in its output length).

In the standard setting, algorithm AG has to maintain A’s input-output
behavior on all (but finitely many) inputs, and so the pseudorandomness

5

property of G should hold with respect to distinguishers that receive non-
uniform advice (which models a potentially exceptional input x on which
A(x) and AG(x) are sufficiently different). Without loss of generality, we
may assume that A’s running-time is linearly related to its randomness
complexity, and so the relevant distinguishers may be confined to linear
time. Similarly, for simplicity (and by possibly padding the input x), we may
assume that both complexities are linear in the input length, |x|. (Actually,
for simplicity we shall assume that both complexities just equal |x|, although
some constant slackness seems essential.) Finally, since we are going to scan
all possible random-pads of AG and rule by majority (and since A’s error
probability is at most 1/3), it suffices to require that for every x it holds that
|Pr[A(x) = 1]−Pr[AG(x) = 1]| < 1/6. This leads to the pseudorandomness
requirement stated in the following definition.

Definition 3.1 (canonical derandomizers, standard version [3, Def, 8.14])3:
Let ℓ : N → N be a function such that ℓ(n) > n for all n. A canonical
derandomizer of stretch ℓ is a deterministic algorithm G that satisfies the

following two conditions.

(generation time): On input a k-bit long seed, G makes at most poly(2k ·
ℓ(k)) steps and outputs a string of length ℓ(k).

(pseudorandomness): For every (deterministic) linear-time algorithm D, all

sufficiently large k and all x ∈ {0, 1}ℓ(k), it holds that

|Pr[D(x,G(Uk)) = 1] − Pr[D(x,Uℓ(k)) = 1] | <
1

6
(1)

The algorithm D represents a potential distinguisher, which is given two
ℓ(k)-bit long strings as input, where the first string (i.e., x) represents a
(non-uniform) auxiliary input and the second string is sampled either from
G(Uk) or from Uℓ(k). When seeking to derandomize a linear-time algorithm
A, the first string (i.e., x) represents a potential main input for A, whereas
the second string represents a possible sequence of coin tosses of A (when
invoked on a generic (primary) input x of length ℓ(k)).

3.2 The original notion of targeted generators

Our main focus in [4] was on the standard notion of a uniform canonical
derandomizer (as introduced in [5]), which was shown to exist (with expo-
nential stretch) exist if and only if BPP is effectively in P (in the sense

3To streamline our exposition, we preferred to avoid the standard additional step of
replacing D(x, ·) by an arbitrary (non-uniform) Boolean circuit of quadratic size.

6

that it is infeasible to find an input on which the polynomial-time deran-
domized algorithm errs). Still, seeking a notion of a canonical derandomizer
that can be shown to exist if and onbly if BPP = P (proper), we suggested
the following notion of a targeted canonical derandomizer, where both the
generator and the distinguisher are presented with the same auxiliary input
(or “target”).

Definition 3.2 (targeted canonical derandomizers, [4, Def. 4.10]): Let ℓ :
N → N be a function such that ℓ(n) > n for all n. A targeted canonical
derandomizer of stretch ℓ is a deterministic algorithm G that satisfies the

following two conditions.

(generation time): On input a k-bit long seed and an ℓ(k)-bit long auxiliary

input, G makes at most poly(2k · ℓ(k)) steps and outputs a string of

length ℓ(k).

(pseudorandomness (targeted)): For every (deterministic) linear-time algo-

rithm D, all sufficiently large k and all x ∈ {0, 1}ℓ(k), it holds that

|Pr[D(x,G(Uk, x)) = 1] − Pr[D(x,Uℓ(k)) = 1] | <
1

6
(2)

Definition 3.1 is obtained from Definition 3.2 by mandating that G ignores
s (i.e., G(s, x) = G′(s)). On the other hand, Definition 3.2 is a special case
of related definitions that appeared in [8, Sec. 2.4]. Specifically, Vadhan [8]
studied auxiliary-input pseudorandom generators (of the general-purpose
type [1, 9]), while offering a general treatment in which pseudorandomness
needs to hold for an arbitrary set of targets (i.e., x ∈ I for some set I ⊆
{0, 1}∗, whereas in Definition 3.2 we mandate I = {0, 1}∗).4

The notion of a targeted canonical derandomizer is not as odd as it looks
at first glance. Indeed, the generator is far from being general-purpose (i.e.,
it is tailored to a specific x), but this merely takes to (almost) the limit the
insight of Nisan and Wigderson regarding relaxations that are still useful
towards derandomization [6]. Indeed, even if we were to fix the distin-
guisher D, constructing a generator that just fools D(x, ·) is not straightfor-
ward, because we need to find a suitable “fooling set” deterministically (in
polynomial-time). The latter sentence (which is also reproduced from [4]),
leads to the new definition.

4His treatment vastly extends the original notion of auxiliary-input one-way functions
put forward in [7].

7

3.3 The new notion of targeted generators

Indeed, we suggest to consider canonical derandomizers that fool a single
distinguisher, which is presented to them as input. The distinguisher is
presented as a (deterministic) circuit, which determines the length of the
sequence that the generator ought to produce. Thus, we no longer use
a stretch function in our definitions. Instead, the seed length may be a
function of the length of the output sequence, but it turns out that we
may just use a fixed seed length (for all possible output lengths). We thus
simplify our exposition by just using a fixed seed length.5

Definition 3.3 (targeted canonical derandomizers, revised): A targeted
canonical derandomizer (with seed length k) is a deterministic algorithm G
that satisfies the following two conditions.

(generation time): On input a k-bit long seed and a circuit C with ℓ input

bits, algorithm G makes at most poly(|〈C〉|) steps and outputs a string

of length ℓ, where 〈C〉 denotes the description of the circuit C.

(pseudorandomness (targeted)): The (ℓ-bit input) circuit C cannot distin-

guish G(Uk, 〈C〉)) from Uℓ; that is,

|Pr[C(G(Uk, 〈C〉)) = 1] − Pr[C(Uℓ) = 1] | <
1

6
(3)

A version of Definition 3.3 (in which k is logarithmic in the size of the circuit
and ℓ(k) = exp(k))6 can be obtained as a special case of Definition 3.2 by
replacing the generic (linear-time) D with a specific (linear-time) algorithm;
the circuit evaluation algorithm E (i.e., E(〈C〉, y) = C(y)).7

Indeed, Definition 3.3 takes the approach of [6] to its logical conclusion:
The derandomization of algorithm A with respect to input x just yields a
single circuit Cx(·) = A(x, ·) that we need to fool, and Definition 3.3 (even
more than Definition 3.2) is tailored to just do that. Indeed, the existence of
a generator (as in Definition 3.3), even with a seed length that is logarithmic
in the circuit size, implies BPP = P (see proof of Theorem 4.1).

5Indeed, in general, one may allow k to be a function of the size of the circuit.
6In general, using a non-decreasing function k : N → N, we need to couple it with a

function ℓ : N → N such that s ≤ ℓ(k(s)) ≤ poly(s) for every s ∈ N, because these pair
of functions allow to handle circuits of sizes in {ℓ(k(s)) : s ∈ N}. So, actually, we use
k(s) = ⌈logb s⌉ and ℓ(k) = bk, for any constant b > 1, which implies ℓ(k(s)) < b1+logb s =

O(s). Hence, we may even have k(s) = ⌈log
b
log

b
n⌉ (since bb

k(s)

= bb logb s = sb), but not
significantly smaller.

7This requires using a slightly redundent description of circuits such that evaluating
them can be done in linear-time.

8

4 The Main Result

Building on the ideas of [4], we prove the following

Theorem 4.1 (main equivalence): Targeted canonical derandomizers (as
per Definition 3.3) exist if and only if BPP = P. Furthermore, seed length

two suffices.

It follows that targeted canonical derandomizers as per Definition 3.3 exist
if and only if generators as in Definition 3.2 (with exponential stretch) exist,
since the latter also exist if and only if BPP = P (see [4, Thm. 4.11]).

Proof: Using any targeted canonical derandomizer we obtain BPP = P
(by just feeding to the targeted canonical derandomizer the circuit that
results from combining the randomized algorithm with the relevant input).
That is, let A be a probabilistic polynomial-time algorithm for deciding
a promise problem Π = (Πyes,Πno), and let G be a targeted canonical
derandomizer with seed length k = O(1). We first consider the probabilistic
polynomial-time A′ that, on input x, constructs the circuit Cx(·) = A(x, ·),
and outputs A(x,G(Uk, 〈Cx〉)). Clearly, if x ∈ Πyes, then Pr[A′(x,Uk) =
1] > 2/3 − 1/6 = 1/2 (resp., if x ∈ Πno, then Pr[A′(x,Uk) = 1] < 1/2).
Next, scanning all possible k-bit long random inputs to A′(x) and ruling by
majority, we obtain the desired deterministic algorithm, and Π ∈ P follows.

Turning to the opposite direction, we construct a targeted canonical
derandomizer (with constant seed length) based on BPP = P. We do so
by following the approach of [4]; that is, we first show that constructing a
targeted canonical derandomizer is a BPP-search problem, which is reducible
to a decisional BPP problem (by [4, Thm. 3.5]), which yields a deterministic
construction (since BPP = P by the hypothesis). Details follow.

The BPP-search problem. We first detail a BPP-search problem, denoted
(Ryes, Rno), that captures the desired construction (for seed length k = 2).
This promise problem refers to pairs of the form (〈C〉, s) such that, for some
ℓ, the string 〈C〉 describes a circuit with ℓ input bits and s = (s1, ..., s4)
is a quadruple of ℓ-bit long strings. We place a pair (〈C〉, s) in Ryes if the
difference between Pri∈[4][C(si)=1] and Pr[C(Uℓ)=1]| is smaller than 0.16
and place it in Rno if the difference is at least 1/6 > 0.16. That is:

• (〈C〉, s) ∈ Ryes if and only if |Pri∈[4][C(si)=1]−Pr[C(Uℓ)=1]| < 0.16.

• (〈C〉, s) ∈ Rno if and only if |Pri∈[4][C(si)=1]− Pr[C(Uℓ)=1]| ≥ 1/6.

9

Indeed, we intentionally left a gap between the pairs in the two cases. Hence,
a probabilistic polynomial-time can distinguish elements of Ryes from ele-
ments of Rno, and so showing that (Ryes, Rno) is a BPP-search problem
amounts to detailing a suitable probabilistic polynomial-time algorithm for
finding valid solutions. Such an algorithm is given a circuit C with ℓ input
bits, and needs to find s such that (〈C〉, s) ∈ Ryes. This can be done as
follows:

1. Using a constant number of samples, approximate pC
def
= Pr[C(Uℓ)=1]

such that the approximation p̃C satisfies Pr[|p̃C − pC | > 0.01] < 0.01.

2. Let iC = ⌊4 · p̃C⌉ ∈ {0, 1, 2, 3, 4}, where ⌊α⌉ denotes the integer closest
to α ∈ R. Note that iC

4 is in the interval [p̃C −
1
8 , p̃C + 1

8].

If iC ∈ {1, 2, 3}, then (using a constant number of samples) find strings
x0, x1 ∈ {0, 1}

ℓ such that C(xσ) = σ for every σ ∈ {0, 1}. If iC = 0
(resp., iC = 4), then just find a string x0 (resp., x1) as above.

3. For i = 1, ..., 4, let si = x1 if i ≤ iC and let si = x0 otherwise (i.e., if
i > iC). Recall that s = (s1, s2, s3, s4).

(Indeed, s contains iC occurances of x1 and 4− iC occurances of x0.)

Note that the probability that either of the first two steps fails can be upper
bounded by 0.02. Otherwise, we have |p̃C − pC | > 0.01 and Pri∈[4][C(si)=
1] = iC/4. Recalling that |iC − p̃C | ≤ 1/8, it follows that (in this case) it
holds that |Pri∈[4][C(si)=1]− pC | ≤ 0.125 + 0.01 = 0.135. Hence (overall),
we have |Pri∈[4][C(si)=1]− pC | ≤ 0.135 + 0.02 < 0.16, as desired.

Next we reduce the foregoing BPP-search problem to a BPP decisional
problem, by just invoking the following result of [4].

Reducing search to decision – [4, Thm. 3.5]: For every BPP-search prob-

lem (Ryes, Rno), there exists a binary relation R such that Ryes ⊆ R ⊆
({0, 1}∗ × {0, 1}∗) \Rno and solving the search problem of R is determinis-

tically reducible to some decisional problem in BPP, denoted Π.

Applying [4, Thm. 3.5] to a BPP-search problem (Ryes, Rno), we obtain
a deterministic reduction of the construction of the desired pseudorandom
generator to some promise problem in BPP ; indeed, the key observation is
that whenever C has a solution (i.e., there exists s such that (〈C〉, s) ∈ Ryes)
the reduction yields a sequence s = (s1, ..., s4) such that (〈C〉, s) 6∈ Rno,
which implies that |Pri∈[4][C(si)=1]− pC | < 1/6.

Next, using the hypothesis BPP = P, we obtain a deterministic polynomial-
time algorithm for finding such a sequence s = (s1, ..., s4), and the generator

10

is defined by letting G(i) = si (for every i ∈ [4] ≡ {0, 1}2). The theorem
follows.

Remark 4.2 (on the distribution produced by the foregoing targeted canon-
ical generator): We observe that the targeted canonical generator constructed

in the proof of Theorem 4.1 produces a distribution with at most two elements

in its support, which can be shown to be the very minimum support size for

any targeted canonical generator. Furthermore, this generator uses a seed

of length k = 2, which is an artifact of k = ⌈log2(3)⌉, where 1/3 is twice the

desired distinguishing gap. In general, when dealing with a distinguishing

gap of δ < 1/2, it suffices to use a seed of length k = ⌈log2(1/2δ)⌉, and

such a generator suffices for derandomizing algorithms of error probability

0.5−δ. Thus, we may use δ = 0.3, and obtain a generator that uses a single

bit seed (and suffices for derandomizing algorithms of error probability 0.2).

5 Targeted Hitters

In this section we merely detail the last paragraph of the introduction. We
first adapt Definition 3.3 to the notion of hitting set generators, while ob-
serving that when targeting a single circuit there is no need to output a
set of possible strings (since we may test these strings and just output one
string that satisfies the circuit).

Definition 5.1 (targeted hitters): A targeted hitter is a deterministic algo-

rithm H that satisfies the following two conditions.

(generation time): On input a circuit C with ℓ input bits, algorithm H makes

at most poly(|〈C〉|) steps and outputs a string of length ℓ.

(hitting (targeted)): If Pr[C(Uℓ) = 1] > 1/2, then x ← H(〈C〉) satisfies C
(i.e., C(x) = 1).

Indeed, any targeted canonical derandomizer (as per Definition 3.3) yields
a targeted hitter. While the converse is less clear, it can be shown to hold
by combining Theorem 4.1 with the fact that any targeted hitter implies
RP = P, which in turn implies BPP = P (e.g., since BPP = RPRP , see,
e.g., [3, §6.1.3.2]). Thus we get:

Theorem 5.2 (summary): The following four conditions are equivalent:

1. There exist targeted canonical derandomizers (as per Definition 3.3).

2. There exist targeted hitters.

11

3. BPP = P.

4. RP = P.

Indeed, the proof outlined above takes the route (2) ⇒ (4) ⇒ (3) ⇒ (1) ⇒
(2). We comment that we do not see a direct proof of (4)⇒ (2) (i.e., a proof
that does not pass via (4)⇒ (3)).

6 Reflections (or de-construction)

The new definition of a targeted canonical derandomizer (i.e., Definition 3.3)
implicitly combines two tasks that need to be performed in deterministic
polynomial-time:

1. Approximating the acceptance probability of circuits; that is, given a
circuit C with ℓ input bits, the task is to (deterministically) approxi-
mate Pr[C(Uℓ)=1] up to ±1/6.

2. Finding an input that evaluates to the majority value; that is, given
a circuit C with ℓ input bits, the task is to (deterministically) find an
ℓ-bit string x such that C(x) = σ, where Pr[C(Uℓ)=σ] > 1/2.

Indeed, the second task coincides with the task underlying the definition of
a targeted hitter, whereas the first task is directly implied (only) by a tar-
geted canonical derandomizer. Furthermore, deterministic polynomial-time
algorithms for performing both tasks yield a targeted canonical derandom-
izer.8 Interestingly, our construction of a targeted canonical derandomizer
(based on BPP = P) implicitly uses a deterministic reduction of the second
task to the first task, which is in turn reduced to BPP .

The foregoing reductions are actually implicit in the proof of [4, Thm. 3.5].
Specifically, using a sufficiently good approximation of the acceptance proba-
bility of a circuit, we may find an input that satisfies the circuit by extending
a prefix of such an input bit-by-bit (while making sure that the fraction of
satisfying continuations is sufficiently large). Indeed, note that each of the
aforementioned tasks can be used to solve a generalized version of this task
that refers to an arbitrary threshold ǫ > 0, provided that the running-time
is allowed to depend (polynomially) on 1/ǫ. (In the case of the second task,
the generalization is states as given a circuit C with ℓ input bits such that

Pr[C(Uℓ)=1] > ǫ, find an ℓ-bit string x such that C(x) = σ.)

8This requires an auxiliary construction; specifically, if maxσ{Pr[C(Uℓ) = σ]} < 5/6,
then we should also find an ℓ-bit string x′ such that C(x′) = 1 − σ. Assuming (w.l.o.g.)
that σ = 1, this can be done by using the circuit C′(x1, x2, x3, x4) =

∧
i∈[4]

C(xi), since

(5/6)4 < 1/2.

12

Acknowledgments

The current note arised from questions posed to me during my presentation
of [4] at the Institut Henri Poincare (Paris).

References

[1] M. Blum and S. Micali. How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits. SICOMP, Vol. 13, pages 850–
864, 1984. Preliminary version in 23rd FOCS, pages 80–91, 1982.

[2] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise
Problems with Applications to Public-Key Cryptography. Inform.

and Control, Vol. 61, pages 159–173, 1984.

[3] O. Goldreich. Computational Complexity: A Conceptual Perspec-

tive. Cambridge University Press, 2008.

[4] O. Goldreich. In a World of P=BPP. ECCC, TR10-135, 2010. See
also in Studies in Complexity and Cryptography, Lecture Notes in
Computer Science Vol. 6650, Springer, 2011.

[5] R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-
randomization under a uniform assumption. JCSS, Vol. 63 (4),
pages 672–688, 2001. Preliminary version in 39th FOCS, 1998.

[6] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS,
Vol. 49, No. 2, pages 149–167, 1994. Preliminary version in 29th

FOCS, 1988.

[7] R. Ostrovsky and A. Wigderson. One-Way Functions are Essential
for Non-Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory

of Computing and Systems, IEEE Comp. Soc. Press, pages 3–17,
1993.

[8] S. Vadhan. An Unconditional Study of Computational Zero Knowl-
edge. SICOMP, Vol. 36 (4), pages 1160–1214, 2006. Preliminary
version in 45th FOCS, 2004.

[9] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd

FOCS, pages 80–91, 1982.

13

