
- 111 -

Foundations of Cryptography
Notes of lecture No. 10B & 11 (given on June 11 & 18, 1989)

taken by Sergio Rajsbaum

Summary

In this lecture we define unforgeable digital signatures and present such a signature scheme based on the

assumption that one-way permutations with trapdoor exist.

1. Introduction.

The idea of a "digital signature" first appeared in Diffie and Hellman’s seminal paper, "New Directions

in Cryptography" [DH76]. They propose that each userU publishes a "public key", while keeping secret a

"secret key". UserU’s signature for a messagem is a valueσ depending onm and his public and secret keys

such thatU can generateσ and anyone can verify the validity ofσ using U’s public key. However, while

knowing U’s public key is sufficient to allow one to validateU’s signatures, it does not allow one to

efficiently forgeU’s signatures.

The most severe natural attack an enemy can mount on a signature scheme is calledadaptive chosen

message attack, or simply chosen message attack, denotedCMA. In this type of attack the enemy is allowed

to useU as an "oracle"; he tries to forge a signature after getting fromU signatures to messages of his own

choice. If there exists no probabilistic polynomial time algorithm that can forge a message in this way, we

say that the signature scheme is secure againstCMA.

There exist several, weaker types of attacks. Indirected chosen message attack, the enemy is allowed to

obtain fromU valid signatures for messagesm1, . . . , mt, chosen based only onU’s public key. This attack is

nonadaptive: the entire message list is constructed before any signatures are seen. An even weaker type of

attack is calledknown message attack. In this type of attack an adversary is only given signatures for mes-

sages selected at random.

The reason for requiring security againstCMA, is that we do not want to askU to be careful about what

he signs, or to sign only meaningful messages of his own choice. We are not to decide what a "meaningful"

message is. The user should be able to use the signature scheme freely, and decide which documents he

wishes to sign without woring about technicallimitationsof the scheme itself.

With respect to "breaking" a signature scheme there are also several definitions, we shall consider the

strongest: We say that an enemy is able to break the system, orforge a signature if he can create in polyno-

mial time and with non-negligible probability, a pair of strings which he has not seen before, consisting of a

- 112 -

message and its signature (even if the message has no "meaning" at all).

What we prove to be difficult isforgery, and not merely obtaining the secret keys used by the signing

algorithm. A signature scheme in which nobody can obtain in reasonable time the signing key, does not

necessary prevent an attacker from forging signatures. It could be possible to forge signatures without know-

ing s, or even to obtain only a crucial part ofs, which enables to forge signatures.

The signature scheme presented here is based on the work of Bellare and Micali [BM88]. It has the fol-

lowing important characteristics:

g Forgery is proven to be difficult for a "most general" enemy who can mount aCMA.

g The properties we prove about the new signature scheme do not depend in any way on the set of mes-

sages which can be signed or on any assumptions about a probability distribution on the message set.

g The scheme is general in the sense that it can be based on generic "hard" problems (other than factor-

ing), yielding a signature scheme that is invulnerable to aCMA even if the "hard" problem usedis

vulnerable to aCMA.

The way of proving that the signature scheme is secure againstCMA, will be to show that an enemy

cannot break the system unless he can perform some other task, which is assumed to be infeasible. In our case

we shall assume the existence of one-way permutations with trapdoor.

In the paper [NY89], Naor and Yung show a stronger result. They prove the existence of signature

schemes secure againstCMA, based on the existence of one-way permutations (without trapdoor).

2. Signature Schemes.

We recall now the basic notions and formal definitions of signature schemes given in the previous lec-

ture.

A signature schemeis a triple of algorithms

(G, S, V)

with a security parameter, n. The key generatingalgorithm G is a probabilistic-polynomialtime algorithm

that generates ordered pairs (s, v) of asigning key, s, and averification key, v:

G(1n) = (s, v).

S is asigningprobabilistic polynomial time algorithm1 which produces signaturesσ, with respect to a given

keysproduced byG(1n), for every messagemof lengthn, taken from some setM:
hhhhhhhhhhhhhhhh

1 The algorithmS does not have to be probabilistic. Even if it is, it can be transformed into a
deterministic one by thinking ofs ass′s′′, and including the coin tosses thatSneeds ins′′, while leavings′ as
the secret key.

- 113 -

S(s, m) = σ.

And V, a verifying polynomial time algorithm (possibly probabilistic), which serves to check whetherσ is a

valid signature form, with respect to the keyv. For every (s, v) in the range ofG(1n), and everym∈M of

lengthn, if σ is in the range ofS(s, m), then

V (v, m, σ) = 1 ,

otherwiseV (v, m, σ) = 0.

The last definition for the verifier can be replaced by a probabilistic definition that would allow for a

small probability of error: For (s, v) in the range ofG(1n), and everym∈M of lengthn, for everyc > 0, and

sufficiently largen

Pr ILV (v, m, S(s, m)) ≠ 1 M
O <

nc

1hhh ,

where the probability is taken over the coin tosses of algorithmsG, SandV (if any).

To utilize the signature scheme,U creates a pair (s, v) using the algorithmG. He then storesv in the

public file (v appears in the public file underU’s name), and keepss secret. WhenU wants to sign a message

m he executesS(s, m) and obtains the stringσ which is the signature form. Everybody can verify thatσ is a

valid signature formby checking that the result ofV (v, m, σ) is actually 1.

Security AgainstCMA.

In the scenario ofCMA, an algorithmF that tries toforgea signature has access to the signing algorithm

Swith key s, denotedSs (but F has no knowledge of the keys); it can obtain the signatures with respect tos,

of any messages it chooses, and use them to try toforgea another signature; we denote byFSs such an execu-

tion of algorithmF. By forging we mean the ability ofF, on inputv, to produce a pairm, σ (which it has not

seen before), such thatV (v, m, σ) = 1. A signature scheme issecure against CMAif for all probabilistic,

polynomial-timeforgering algorithmsF, for all c > 0, and for alln sufficiently large,

Pr ILF
Ss(v) forgesM

O <
nc

1hhh

where the probability is taken over the coin tosses of the algorithmsF, G, S, V, and the pairs (s,v) as gen-

erated byG(1n).

3. The Signature Scheme.

Our aim is to prove that under the assumption that there exist one-way permutations with trapdoor, there

exist signature schemes secure againstCMA. The scheme that we shall present is based on the work of Bellare

and Micali [BM88] and we shall refer to it asBM scheme. However, the underlying ideas of this scheme

- 114 -

appear already in the work by Goldwasser, Micali and Rivest [GMR], where a stronger complexity assump-

tion is used.

3.1 General Description.

We saw in the previous lecture, that a scheme of the type of Rabin’s [Ra78] signature scheme is not

secure againstCMA. An attacker could obtain enough information from several signatures of properly chosen

messages to be able to break the system. TheBM scheme solves this problem using two simple and ingenious

ideas. We can state them informally as follows.

(i) Do not sign twice with the "same key".

(ii) Do not sign "directly" the documentmchosen by the signee; sign only messages created by yourself.

Consider for example, Rabin’s scheme whereU publishes composite numbersn, product of two primes,

as his public key, and keepsn’s prime factorization as his secret key. The signature of a messagem (a qua-

dratic residue modulon) is its square root modulon. Verification is done by squaring modulon. It is well

known that this scheme is not secure againstCMA: an enemy could ask for the signature of the square of a

random numberr 2 generated by himself, with the hope that this signature will correspond to a root ofr 2

modulon, different from the only roots that he knows, namelyr and−r; this information would enable him to

break the system. Therefore, it seems that if we could combine the two ideas above with Rabin’s scheme, a

secure system could be obtained.

Let us be more specific. Suppose that we had a signature systemS0, with the property that it is secure,

provided it is used only once. We would like to use it to sign a messagem1. What we do, is to generate a new

systemS1, and then, use the old systemS0 to sign bothm1 andS1. By systemwe mean an instance of the sig-

nature scheme with specific keyss, v. Hence, by signing a system we mean signing these parameters (or parts

of them while keeping the other parts as in the old system). When we want to sign another message, saym2,

we do it with the systemS1, and we prepare another systemS2, which will be signed withS1, etc. In this way

we areimplementingprinciple (i), that is, signing messages created by others only once with the same system

(i.e. the same pair of keys).

In terms of Rabin’s scheme, the signature ofm1 is a square root ofm1 modulon0, wheren0 is the com-

posite stored in the public file. Then, whenU wants to sign a new messagem2, he randomly generates another

compositen1 (to generate the new system). The signature ofm2, is the square root ofn1 modulon0 (the sig-

nature of the new system with respect to the old one),togetherwith the square root ofm2 modulon1. In gen-

eral, the signature ofmt, consists of the whole sequence of square roots ofni +1 modulo ni , 0 ≤ i < t −1,

together with the square root ofmt modulont −1.

With this scheme, the length of a signature grows linearly with the number of messages signed so far,

because in order to validate the signature of a messagemi +1, the whole pathS0, S1, . . . , Si is needed; one

- 115 -

needs to check thatSj was properly signed withSj −1, for all 1 ≤ j ≤ i, and then check thatmi +1 was properly

signed withSi . Suppose that instead of creating one systemSj at thej −th step, we create two systemsSj, 0 and

Sj, 1. As before, each one of these systems is used twice, once to sign a documentm, and once to signtwo new

systems. In fact we are now using a binary tree, and thus, although the signature still includes the whole path

from the root, the length of this path (and of the signature) is only logarithmic in the number of messages

signed so far.

Another difficulty with the scheme as described above, is thatU has to keep in memory the whole path

(or tree in the case of the last improvement), in order to produce the next signature. One solution is to use a

pseudo-random generator to produce the new systems (actually, to produce the coins tosses for the algorithm

that generates the new systems), and remember the seed usedinitially. Then, whenU wants to sign a new

message, he can reproduce the sequence of systems used so far using the pseudo-random generator with the

same seed, or alternatively remember the state of the pseudo-random generator.

Implementing idea (i) is not enough: consider Rabin’s scheme in which giving to the enemy a single

signature could be enough for an enemy to break the system. We need to implement idea (ii), also.

Denote the bits ofm by σ1, σ2, . . . , σn. The userU stores in a public file a vector consisting of 2n ran-

domly chosen stringsα
hh

= α1
(0), α1

(1), α2
(0), α2

(1), . . . , αn
(0), αn

(1), and a stringy. If we had a one way permuta-

tion fy, with trapdoort (y), then a signature as required by (ii) would be:

fy
−1(α1

(σ1)), fy
−1(α2

(σ2)), . . . , fy
−1(αn

(σn)). (*)

These strings are the "signature" ofmwith respect toy andα, and will be denoted byS̃y,α
hh (m).

Anybody can verifyS̃y,α
hh (m) is valid for m, by computingfy (using the keyy, stored in the public file) of

the corresponding components of the vectorα
hh

, and hence that it is indeed a signature ofm, and not of some-

thing else. Moreover, nobody can forge a signature, since nobody can computefy
−1 without having the trap-

doort (y) (which is difficult to compute fromy), and hence that it wasU who signed and not somebody else.

Note that it is important to avoid signing more than once with the samey andα
hh

. For example, after see-

ing signatures for 0n, and 1n, with respect toy andα
hh

, one can sign any message w.r.t.y andα
hh

.

If for example, we implementf with Rabin’s new system, we would be computing square roots of

numbers generated by ourselves (theα’s); an enemy can only decide of which of these numbers he wishes to

obtain the square root: either of the first element, or of the second element of the pairsα i
(0), α i

(1), 1 ≤ i ≤ n.

With these ideas in mind, let us proceed to describe formally theBM signature scheme, which together

with its proof of security againstCMA establishes the following theorem.

- 116 -

Theorem.

If there exist one-way permutations with trapdoor, then there exist signature schemes secure against

CMA.

3.2 Definition of theBM Signature Scheme.

In this subsection we formally define theBM Signature scheme (G, S, V). First we define the tools

which we assume are available to build the signature scheme: a collection of one-way permutations with

trapdoor, with non-negligible domains. The following definition of a collection of one-way permutations with

trapdoor appears in Lecture No. 3, without condition 0).

(a) Complexity Assumptions.

Assume there exists a collection of one-way permutations with trapdoor, with non-negligible domains,

{ fy : Dy → Dy} y∈Y

whereY is an infinite set (of indices), andDy, for y ∈ Y is a finite set. And the following conditions are

satisfied:

0) The domainsDy have non-negligible size. Namely, there exists a constantd such that for everyn and

y ∈ Y∩{0,1} n: | Dy | ≥ 2n.n−d.

1) There exists a probabilisticpolynomial-timealgorithmA1 which on input 1n samples a pair (y, t (y)),

wherey ∈ Y, andt (y) is thetrapdoorfor y.

2) There exists a probabilisticpolynomial-timealgorithmA2 which for all y ∈ Y samples elements out of

Dy.

3) There exist apolynomial-timealgorithmA3 such that

∀y, ∀x, A3(y, x) = fy(x)

4) There exist apolynomial-timealgorithmA4 such that

A4(t (y), y, z) = fy
−1(z)

5) For any probabilisticpolynomial-timealgorithmA* , for anyc > 0, and sufficiently largen,

Pr ILA
* (fy(x), y) = x M

O <
nc

1hhh

where the probability is taken over the coin tosses ofA* , y chosen according toA1(1n), andx chosen

from Dy by A2.

- 117 -

In the sequakl, we shall assume that the domainsDy are equal to { 0,1 }n, for | y | = n. As we shall now

see, there is no loss of generality as long as the domains are of non-negligible size.

Lemma: If there exists a collection of one-way permutations with trapdoor, with non-negligible domainsDy,

then there there exists a collection of one-way permutations with trapdoor, such that for everyy of lengthn,

the setDy = { 0,1 } n.

Proof: Given a (collection of) one-way trapdoor permutationfy on a subsetDy of { 0, 1 } n, such that

| Dy | ≥ 2n.n−d, (for somed) extendfy to { 0, 1 }n, by defining it to be the identity function on { 0, 1 }n − D.

This yields a weak one-way permutationf
h
y on { 0, 1 }n.

One can use the cross product construction of [Y], described in Lecture #2, to obtain a strong one-way

trapdoor permutation which fits our definition. In a few words, what one would do is to define a permutation

Fy on

{ 0, 1 } n × . . . × { 0, 1 } n

by Fy(x1, ..., xnd+2) = (f
h
y(x1),..., f

h
y(xnd+2)). This will be hard to invert on all but a negligible fraction of its

domain. a

(b) The Key GeneratorG.

The algorithmG(1n) produces the following strings:

(y, t (y)), α
hh

, β
h

whereG(1n) produces (y, t (y)) usingA1(1n), and

α
hh

= α1
(0), α1

(1), α2
(0), α2

(1), . . . , αn
(0), αn

(1),

β
h

= β1
(0), β1

(1), β2
(0), β2

(1), . . . , βn
(0), βn

(1)

and theα i
(j) ’s andβ i

(j) ’s are chosen fromD | y | , usingA2(| y |).

Thepublic key vstored in the public file consists ofy, α
hh

andβ
h
. Thesecret key scontains the strings ofv,

together with t (y).

Conventions for Signing and Verification

The message space Mis the set of all binary strings ofn bits. The signerU receives requests for

signatures of a sequence of messages, theith, i ≥ 1, message of the sequence is denoted bymi .

- 118 -

The vectorα
hh

will be used to "sign" the messagesm (as in (*)), while the vectorβ
h

will be used to "sign"

new systems, that is, newy’s that allow the use of new permutationsfy’s. The same vectorsα
hh

andβ
h

will be

used in all the new systems created byU, thus onlyy’s will be signed.

Let y0 = y. Denote the bits ofyi by τi, 1, . . . , τi,n, and the bits of the messagemi by σi, 1, . . . , σi,n.

(c) The Signing Algorithm S.

The algorithmS uses as a building block an algorithmS̃, which has the role of "signing" a string

x = σ1σ2
. . . σn with respect to a keyy and a vectorγ

h
, as in (*) :

S̃y, γ
h(x) = fy

−1(γ1
(σ1)), fy

−1(γ2
(σ2)), . . . , fy

−1(γn
(σn)).

AssumeU has already signedt messages. To sign the messagemt +1, userU generates a numberyt

using algorithmA1 with input 1n. Thesignaturefor mt +1 with respect tosconsists of:

g The sequence of strings

y1, y2, . . . , yt −1

which were generated for the signatures of the previous messages, together with

g the new string

yt

g For 0≤ i ≤ t − 1, a "signature" ofyi +1 with respect toyi andβ
h
. Namely

S̃yi ,β
h(yi +1) = fyi

−1 (β1
(τi +1,1)), fyi

−1 (β2
(τi +1,2)), . . . , fyi

−1 (βn
(τi +1,n))

g A "signature" ofmt +1 with respect toyt, andα
hh

.

S̃yt,α
hh (mt +1) = fyt

−1 (α1
(σt +1,1)), fyt

−1 (α2
(σt +1,2)), . . . , fyt

−1 (αn
(σt +1,n)).

Note that eachyi is used twice, one to "sign"yi +1 (w.r.t. β
h
), and one to signmi +1 (w.r.t. α

hh
).

(d) The Verifying Algorithm V.

The procedure for verifying that a given signature is valid should be clear: Anybody can read the values

α
hh

, β
h

andy0 stored in the public file, and check that for every 0≤ i ≤ t −1, the stringyi +1 has been "signed"

with respect toyi andβ
h
, and then thatmt +1 has been "signed" with respect toyt andα

hh
.

- 119 -

3.3 Security of theBM Signature Scheme.

In this subsection we shall complete the proof of the Theorem. Namely, we shall prove that theBM sig-

nature scheme is secure againstCMA. The proof is by contradiction; we assume that there exists an efficient

forgerF that has access to the signing algorithmS, and forges with respect tos. We show that this implies

that by usingF one can invert a one-way permutationfy, a task assumed to be impossible forpolynomial-time

algorithms.

Specification of a Forger.

Assume for contradiction thatF is a probabilisticpolynomial-timealgorithm that can forge signatures,

that is, there existsc > 0, and an infinite sequence ofn’s such that

Pr ILF
Ss(v) forgesM

O >
nc

1hhh .

We start by introducing some notation, and describing how does a forged signature looks like.

Suppose thatF forges a signature for some message, saym. We know what the format of a signature for

any messagem looks like. It consists of a sequence of stringsy0, y1, . . . , yt −1, together with their "signa-

tures" S̃yi ,β
h(yi +1), for 0 ≤ i < t − 1, and a "signature" ofm, S̃yt −1,α

hh (m), wherey0, α
hh

andβ
h

appear underU’s

name in the public file.

Therefore, whatever stringF claims is a signature should have this structure. So denote by

ỹ0, ỹ1, . . . , ỹt (= m̃t)

the strings appearing inF’s forged signature tom= m̃t. whereỹt = m̃t (we take the liberty of identifyingỹt

with m̃t). Thus,F should be able to present appropriate "signatures" ofỹj +1 with respect toỹj , for 0 ≤ j < t .

Also note thatỹ0 = y0.

Moreover,F forged the signature, which means that it is different from the signaturesF has obtained via

the chosen message attack. Lety0, y1, . . . , yt, whereyt = mt be the sequence used in thet-th signature

obtained by the chosen message attack. (Note thaty0 is in U’s public file, the otheryi ’s, 1≤ i < t , are chosen

by the signer while onlymt is chosen byF). Recall,ỹt≠yt. Hence, there is a location in the sequence whereF

"forges" for the first time, i.e. there is aq, 1 ≤ q ≤ t, such thatyi = ỹi for i < q , andyq ≠ ỹq. Therefore,F was

able to create the "signature" ofỹq with respect toyq−1.

Now, before presenting the algorithm which inverts a one-way permutation, some explanations about

the random choices that are going to be made.

Assume, without loss of generality, that algorithmF always asks for the signatures ofl messages, and

forges a signature for some messagem̃t, t ≤ l. The algorithm which we shall describe guesses the "place"

whereF forges; namely, it guesses three numbersq, j, andk specified in the sequal.

- 120 -

If F is able to forge with non-negligible probability, it is able to forge for the first time, with non-

negligible probability, at a certain stepq. This is becausel is polynomial inn, and a non-negligible probabil-

ity divided by a polynomial remains non-negligible. Therefore, we can choose at randomq.

There are two possibilities forF, either

q = t : forge directly a message, i.e. "sign"m̃q w.r.t. yq−1.

or

q < t : forge a "signature" of a systemỹq w.r.t. yq−1.

We assumeq < l ; the proof for the other case is similar.

We have then,

ỹq−1 = yq−1

ỹq ≠ yq

and thus, instead of the "signature"

S̃yq−1,β
h(yq)

given by algorithmS, there is the forged "signature" whichF managed to produce with non-negligible proba-

bility

S̃yq−1,β
h(ỹq).

Since the stringsyq andỹq are different, they are different at some bitj. Again, if we choose a random

j, then there is a non-negligible probability that the stringsyq andỹq differ at the jth bit. This is because they

differ at somebit with non-negligible probability, and because there are onlyn possible values forj.

Finally, we choosek randomly from { 0,1 }. If k = 0, we assume thatτq, j = 0 while in the stringỹq, the

bit τ̃q, j = 1; otherwise we assume thatτq, j = 1, and τ̃q, j = 0. One of these possibilities holds with non-

negligible probability, hence, we may assume that the first one holds.

An Algorithm to Invert the One-way Permutation.

We now present an algorithmF * , which usingF is able to invert the one-way permutationfy (a

contradiction to property 5) in section 3.2); namely, its input and output are :

Input: y, fy(x)

Output: x (with non-negligible probability)

Namely, there exist a constantc > 0, and an infinite sequencen1, n2,... and for everyi

Pr ILF
* (fy(x)) = x M

O ≥
ni

c

1hhh,

- 121 -

where the probability space is defined over the inputsx of lengthni with uniform distribution, the stringsy as

produced byA1(1ni), the vectorsα
hh

andβ
h

as produced byA2, the sequences of inner coin tosses ofF * for

inputs of lengthni , with uniform distribution.

Algorithm F * (input: y, fy(x). Output:x.)

(0) Randomly chooseq, j andk, 1 ≤ q ≤ l, 1 ≤ j ≤ n, 0 ≤ k ≤ 1. /* ExpectF to forge at stepq, and bit j. */

(1) Choose two vectorsγ
h

1 and γ
h

2 each with 2n entries randomly chosen fromDn. Let α
hh

= fy(γ
h

1) and

β
h

= fy(γ
h

2).

(2) Replaceβ j
(1) by fy(x). /* replaceβ j

(k) by fy(x), w.l.o.g. letk = 1 */

(3) Choosel pairs (y0, t (y0)), (y1, t (y1)),..., (yl −1, (t (yl −1)) , using algorithmA1(1n). Replaceyq−1 by y;

assume that thejth bit of yq is 0, otherwise start all over.

(4) Let F ask for signatures ofl messagesm1, . . . , ml , reply toF the corresponding signatures.

/* this can be done as shown in Claim 1 */

(5) Take the output ofF, for stepq : S̃yq−1, β
h(ỹq),

Output the jth component ofS̃yq−1, β
h(ỹq) /* which is equal to fyq−1

−1 (β j
(1)) with non-negligible proba-

bility */.

end

To complete the proof of the Theorem, we shall prove the following two claims.

Claim 1: Algorithm F * is able to compute the signatures at step (4).

Proof: We show thatF * is able to compute the signatures required byF. For i ≠ q − 1, it can compute both,

S̃yi , α
hh (mi +1)

and

S̃yi , β
h(yi +1)

because in step (3) the algorithmF * generatedyi together with the trapdoorst(yi), for i ≠ q − 1.

For i = q − 1, algorithmF * has usesy in role of yi . AlthoughF * does not "know"t (y) it "knows" the

value of fy
−1 all all α’s and allβ’s (except the input string replacingβ j

(1)), sinceF * has produced theseα’s and

β’s by selecting someγ’s and applyingfy to them! It follows thatF * can compute

S̃y, α
hh (mq)

since it is not more than a subset (defined bymq) of the components ofγ
h

1. Algorithm F * can also compute

- 122 -

S̃y, β
h(yq)

because what it has to compute is a subset (defined byyq) of the components ofγ
h

2. Note that this subset does

not include the component corresponding toβ j
(1), which is the only place whereF * would have trouble. That

is, F * is not asked to computefy
−1 fy(x). a

Claim 2: The output ofF * is x, with non-negligible probability.

Proof: Provided thatq, j and k were guessed correctly, with non-negligible probability, the output of the

algorithm is indeedx : The jth component ofS̃yq−1, β
h(ỹq) is fyq−1

−1 (β j
(1)) since we are assuming thatτ̃q, j = 1.

Also, β j
(1) = fy(x), andyq−1 = y, and therefore

fyq−1
−1 (β j

(1)) = fy
−1(fy(x)).

Namely, the output is correct provided that thejth bit of yq is 0, andF forges the "signature" forỹq, s.t. thejth

bit of ỹq is 1. Our assumption is that these conditions hold with non-negligible probability, when the public-

key is chosen by the key generator and the otheryi ’s are selected by the signing algorithm. We stress that the

α’s, β’s, andyi ’s chosen byF * together with the inputy have the same probability distribution! It follows

thatF * inverts fy with non-negligible probability, a contradiction.a

