- 145 -

Foundations of Cryptography
Notes of lecture No. 14 & 15

Notes taken by Ran Canetti and Benny Pinkas

Summary

In this lecture we discuss the problem of constructing a protocol for computing a function whose input
is divided among a number of parties. This protocol must retain the privacy of data of each of the participants,
even when some of the other parties try to get this data. We define the notion of a protopoivialy com-
putesa function. We show a protocol thptivately computeany function, according to the given definition,
when more than half of the parties drenest The time complexity of the protocol is polynomial in the com-
plexity of the function.

1 Introduction

The general goal of distributed computing is to develop protocols for (distributively) computing func-
tions whose input is scattered among the processors. If all processors follow their predetermined programs
then the existence of such protocols folloimemediatelyfrom the specification of the corresponding func-
tion, and the only challenge is in improving the (message and time) complexities of these protocols. How-
ever, the situation is much more complex if some of the parties may deviate from their predetermined pro-
gram in certain ways, either because of a fault or trying to get some secret information from the other parties.
A natural model of such misbehavior allovigaulty parties to deviate from their predetermined program in an
arbitrary, but (probabilisticpolynomial-timemanner. When such faults are present, it is no longer clear if
there exist protocols that aoerrectin the sense that they terminate with each of the non-faulty parties having
the value of the function. Furthermore, it is not clear whether correct protocols can offer the maximum possi-
ble privacy of local inputs allowed by the function. (Namely, whether it is possible to restrict what the faulty
parties can learn from an execution of the protocol to the value of the function. In particular, the faulty parties
cannot learn about the input of the non-faulty parties more than the function value.)

The main result presented here is an affirmative resolution of the above problem. If secure trapdoor
encryption functions exist and as long as more than half of the parties remain non-éaeltyfunction has a
correctfault-tolerant protocol that offers the maximum degregu¥acy. The complexity of the protocol is
polynomial in thetime-complexityof the function. Furthermore, there existgpalynomial-timealgorithm
that on input a Turing-Machine specification of the function outputs such a protocol.

- 146 -

A protocol problem is a specification of the input and expected output (function value) of each party.
Following is an example to such a problem:

Elections (in the participation ofn parties, denote@{,P,, - - - ,P;).
Localinput for eachP;: A votev;.

Local output for eachP;: vax Which is the vote that had the maximal support (appeared more than
any other vote in the sequenee...\;,.)

A solution for a protocol problem is a protocol which satisfies the following conditions:

1. CorrectnessiEven in the presence of faulty parties, all the non-faulty parties get an identical output
which corresponds to the inputs for which the parties committed themselves, or else they receive a mes-
sage that the protocol was interrupted.

2. Privacy: Even for a collaboration of all the faulty parties, whatever they can efficiently compute after
participating in the protocol, they can also efficiently compute from their local inputs and local outputs
(function value).

In order to illustrate the meaning of the above requirements, consider an environment in which in addition to
the participating parties there isteusted party In the “trusted party environment”, each party sends its
input to the trusted party usingsecurechannel; then the trusted party computes the output and sends it to all
the parties. Since the trusted party is non-faulty, the computed value of the function is the correct one. Itis
also clear that no collaboration of faulty parties can learn more than what can be computed from the final out-
put and their local inputs. A solution to a protocol problem should have the same effect as a computation in
the “trusted party environment”. We will see that such a solution can be achieved even if none of the parties
is trusted by all the others.

2 The Formal Setting

There aren parties,P{,P»,...,P,. Each partyP; has a local inpuk;, and all other parties havecmmmitment
c(x) of P; to the value of;. At the end of the protocol each party should have an outfxt,...,X,).

Remarks

° The requirement for aommitmenton the input values is important in order to commit each party to a
singleinput during the execution of the protocol. This greatly simplifies the definition since without it,
it is not clear to which input values (of the faulty parties) should the computed function value
correspond. Additionally, there are situations where this is a natural requirement, and in any case such a
commitmentcan be enforced by a preliminary protocol.

° Without loss of generality we can assume that all parties compute the same output fdndfiencan
create such a function from the local output functiong through f,, by letting

- 147 -

f (X1, " %) QEl(fl(xl, “ X))o o En(fa(X1, ¢ - -1 %q)) WhereE; is a secure public-key encryption
for which only P; has the decryption key.

For simplicity of exposition, we will consider the domain bfas being then-fold Cartesian product of
{0,1}", namely ({0,1")". That is, each of tha parties has an input bits long. Therefore the notion of
“polynomial” is in regard only to a single parameter, The results presented hold also if this is not the
case. That is, the protocol is polynomial in regard both to the number of parties and the length of each
input .

Furthermore, without loss of generality, in the rest of the paper we consider only binary functions (func-
tions into {0, 1}).

We will assume thaf is polynomially computable. If this is not the case then we can use cryptographic
systems whose security parameter is the complexity of comptit{iegg. if f is exponential, then the
keys of the cryptographic system will have a length exponential in the length of the input). In any case,
the complexity of the protocol will be polynomial in the complexity of the function, and so is the com-
plexity of the adversary.

We assume the existence obeadcast channelnd that all the processors are synchronized. If either
feature is not available, it can be simulated using Byzantine Agreement methods, as long as less than a
third of the parties are faulty.

An honestparty is a party which runs the original program.faulty party is one which may deviate from the

original protocol in an arbitrary but (probabilistipplynomial-timemanner. Faulty protocols may also colla-

borate with each other. The results presented here hold if the faulty parties are atmiprethe execution

of the protocol starts.

Notations:
eXS(A!Bi (X11 o "Xn)) g(ali t '1an):
whereA,B are local programs$S[{1,...,n}, and q; is the output ofP; in an execution where fordS

processolP; executes protocol A (with local inpwt), and for j S processoiP; executes protocol B
(with local inputx;). Note that when A or B are probabilistiexs is a random variable.

(@, o) Do

(O, 0n)s 2 (04, 0i), §0S

We now define the notion of correct fault-tolerant protocols that retain the maximum degree of privacy given

by a function. A method for constructing such protocols is introduced later on, and is the main result

presented in this lecture.

Definition1: Let f:({0,1}")" - {0,1} be a polynomially computable function. A protocal privately

computes f in the presence of t faulty partiethe following conditions hold:

-148 -

1. eX{l n} (T[1T[1(X11 e ,Xn)):(f (Xli t '1Xn)1 t '1f (X1! e 1Xn))
(Namely in the absence of faulty parties the output of the protocol is the correct function value.)
2. Correctness:For every seBof n—t honest parties:

2.1 For every efficient (polynomial and non-uniform) algorithm A (of the faulty parties)

Xy, %), - o F (X, - 7 %)
eXS(TLAI (Xl! t '1Xn))S: { D, . .’|:|

(That is, all honest parties have the same output which is either the correct function value or a special
symbol (), denoting that the execution of the protocol was interrupted.)

2.2 For every such algorithm A, there is an efficient algorithm M, such that if

exs(TLA, (X1, =+ %,))s=0, - - -,0 then M((X1, * - *,%)s) (€%(TLA, (X1, * - *,%y)))s, Where S denotes
{1,...,n}\S and
means “polynomially indistinguishable”.

(Namely, when the protocol is prematurely terminated, whatever the faulty parties can efficiently com-
pute at this stage can also be efficiently computed from their local inputs; the faulty parties did not
learn anything about the inputs of the honest parties. Therefore the termination of the protocol does not
depend on the input of the honest parties!)

3 Privacy: For every set oh—t honest partie§ and for every efficient algorithm A, there is an efficient
algorithm M, such that if ex(TLA, (X1, = Xa)s=Ff (X1, = . %a), = - -, F (X1, - - ,X,) then
M((X1, =+ Xa)s F (X, =+ X)) (@X%(TLA, (X1, * "+, %0)))s.

(That is, whatever the faulty parties can efficiently compute after the protocol has successfully
terminated, can be efficiently computed from their local inputs and the function value.)

Parts 2.2 and 3 can be combined by stating that
M((X1, - " " Xn)s:€%(TLA, (X1, -+ ", Xn)))s)(eX(TLA, (X1, - *,X%)))s. That is, whatever the faulty parties can
efficiently compute after any execution of the protocol, can be efficiently computed from their local inputs
and the their local outputs (at this run).

For the sequel we also need the notiorseii-honegparties.
Definition2: A Semi-honegparty is a party that
° Uses for its random tape the output of independent unbiased coin tosses.

. In each communication round sends exactly the same message as instructed in the protocol. (The proto-
col defines a unique message to be sent, as a function of the initial input, the random tape, and the com-
munication received so far. The work tape need not be considered since it is also uniquely defined by
those three parameters.)

- 149 -

° Does not listen to any communication other than those sent to him.

In other words, semi-honest parties may deviate in timé@rnal computation from the protocol, but the mes-

sages they send are in accordance with the protocol. A semi-honest party may also be regarded as one that
executes the original protocol but tries to compute as much additional information as possible; this may be
the case in some realistic situations and therefore is an important notion by itself. Note that there is no way
for an outside observer to distinguish between an honest and a semi-honest party.

Although the last requirement may seem unnatural, it can be easily enforced using a public-key encryp-
tion system: whenever a party wants to send messaigeparty P;, it will send E;(m), thus enabling only;
to read it (section 5 has the details). An alternative definition émi-honesparty does not include the last
requirement, allowing theemi-honesparty to listen to conversations of other parties; in this case the above
use of a public-key encryption system would have to appear in afarst protocol forsemi-honegparties.

Semi-honest parties will be used in the following construction as an intermediate stage between honest
and faulty parties.

3 The Main Result

Theorem 1. Letf:({0,1}")" -{0,1} be a polynomially computable function, and IE(%. If there

exists a one-way permutation with a trapdoor then there exists an efficient protoogbdoties,P,...P,, that
privately computesih the presence dffaulty parties.

Proof. The theorem is proved using two propositions, which are also interesting by themselves. In pro-
position 1 (see section 4), we show a protocol {véately computes &ccording to the definition, if all the
parties are honest or semi-honest (note that there is no limit on the number of semi-honest parties). In propo-
sition 2 (see section 5) we show a method of “compiling” such a protorolinto another protocolC (1),

thatprivately computesih the presence crkg faulty parties. The theorem followdl

4 A Protocol For Semi-honest Parties
Proposition 1. Letf :({0,1}")" ~{0,1} be a polynomially computable function. Then there exists an
efficient protocol fom parties,P,...P,, thatprivately computesif all the parties are honest or semi-honest.

Proof outline. We will first show a protocol thaprivately computes dising as a “subroutine” a two-
party protocol for a simpler problem. We then implement this two-party protocol using the Oblivious Transfer
(OT) scheme, and finally we show an OT protocol, assuming the existence of one-way permutations with a

1 1t would be unnecessary to use this “precaution” if the messages sent do not reveal any additional
information to what can be efficiently computed from the input and output of any coalition of parties. For
instance, iff (X1,...,.Xy) = Xq0...0X,.

- 150 -

trapdoor.

4.1 The general protocol

Sincef is polynomially computable there exists a boolean circuit of polynomial-size that computes
The input tof is of sizen? (n bits to each party), thus the circuit is polynomial alsminAssume, without
loss of generality, that the circuit consists only-ofand 0 gates &b = - (-a[1=b)) and that the maximum
fan-in of a gate is two. We consider these operators & ialgebra: the~ operator is replaced by1, and
the 0 by aZ, multiplication. Each party has this circuit, and hisprivate input bits (out of th@? input bits
to the circuit). Consider a partial order of the gates in the circuit, so that agyapgecedes gatg, if an
input line ofg, collides with an output line of ;. Letgmax be the gate whose output value is the valué. of
We show a protocol that, assuming the existence of a specific two-party protocol (described in section 4.2),
allows each party to compute the output of the circuit without “revealing its private input”. That is, for each
coalition C of a subset of the parties, whatev@ican efficiently compute after the termination of the proto-
col, can be efficiently computed frofix;}ioc and f (X1,X», ... ,X,). Note that here we do not require that
|C|<n/2.

The protocol starts by each party sharing each of his input bits with all other parties, in a way that
exactlyn parties are needed in order to reconstruct the input bit. More specifically, to share each of his bits,

n
denotedb, the “owner” chooses at randombits b4,b,, ... ,b, satisfyingbzlzlbi. Next, the “owner” uses
1=

the public-key of each partl; to secretly send t®; the corresponding piece bf(i.e. partyP; getsE;(b;),
whereE; is P;’s public encryption function).

At this point, the parties hold pieces allowing them to obtain the values of all the input lines to the
boolean circuit. Our purpose is to allow the parties to hold pieces allowing to obtain the value of the output
line of the circuit. To this end, the parties will scan the circuit sequentially in the predefined order, generating
pieces for the output value of a gate from the pieces of the input lines values. We distinguish between two
cases in computing the output value of a gate:

1) The next output line is obtained by adding the constant 1 to the value of some previous line (s line
In this case, one of the parties (say the first party) adds the constant 1 to his piecelofrésalting in
his piece of the current line. All other parties let their piece of linlge their piece of the current line.

2) The next output line is obtained yultiplying the values of two lines, denoted, andL,. Let ¢ be
theith piece of lineL ; (held byP;), andd; be theith piece of lineL,. We need to compute pieces of

n n n
the output line, namely bits {b;} -1, such thab | _Zlbi = (_Zlci)-(_zldj), and eaclhP; knowsonly by;.
i= i= j=

n
Defineb; ; so that for each, b;; =c-d; and for everyi#j, by; +Db;; =¢-d; +¢;-d;, and letb; = 'Zlbi’j'
J:

Note that

-151 -

n n n n n n n
cd= (Elci)'(jzldj) = (Elci'di) + lSEj Sn(<3i'dJ'+CJ"di) = Elbi.i + 1si<zj Sn(bi,j"'bj,i) = Eljzlbi,j = Elbi =b.
The idea is to let each parfy; computeb; ;=c;-d; by himself, and each pairzj of parties execute a
two-party protocol forprivately computing { andb; ;. This means that:
(1) PartyP; ends withb; ; and partyP; ends withb; ;, so thatb; ;+b; ;=c;-d;+c;-d;.
(2) The protocol does not leak any further knowledge neither to the participants not to an outside
listener.
This protocol, denoted TPIP (Two Party Inner Product), is defined and discussed in section 4.2. Once
this two party protocol is executed between each pair of parties, each Parkpnows exactly §; j} =1

n
and can thus ldh;, = 'Zlbi’j be his piece of the current line.
J:

When the output value @4y is computed, each party sends its piece of the output value to each of the other
parties and the output of the function is computed by each party.

The correctness of the output of the protocol is due to the correctness of the output value of each gate.
(recall that the parties are semi-honest). The privacy stems from the fact that for any lindovahyeproper
subset of then pieces ofb does not add any knowledge about the valub.ofhus (assuming the correctness
of such a protocol for two parties) the above protopgolately computes. f(In other words, we reduced the
semi-honest protocol problem to a problem of privately computing a specific function between two parties.)
L]

4.2 The Two Party Protocol and Oblivious Transfer

The formal specification for the Two Party Inner Product modulo 2 (TPIP) protocol is:

Table1: TPIP protocol specification

party A party B
input ap,a, bi,bs
C1 C2

output

s.t. ¢cq+cr=a;-bi+ayb,.

Namely, given the inputs, the protocol will allow parties A and B to compute their specified outputs,
without revealing any other information (e.g., the other party’s output). In other words, whatever a party can
efficiently compute after the protocol has terminated, aside from its output, can be efficiently computed from
its initial input alone. (Recall that all the parties are at least semi-honest).

- 152 -

The protocol will use an Oblivious Transfer scheme between two parties. I©Thescheme, party S
has k secret bits, revealing one of them to R, in a way that R knows only one secret and S does not know
which secret R knows. Formally, the specification is:

- 153 -

Table2: OTX protocol specifications

party S party R

input S1...% i0{1..k}

output - S

We show a TPIP protocol, using &7 (1-out-of-4 Oblivious Transfer) scheme:

Table3: TPIP protocol using OT}

party A party B
input aq,ar bl,b2
The “reduction” part | chooses;[0g{0,1}. | computes
computes i —bqoby
Soo<C1
Slo<—Cl+al
S11 < Ci+aq+as.
Applying OT? - S
Output Cq Cr « §

Note that in each of the four cases{, So1 , S10, S11) the value s, ., satisfiesc;+s,,.p, =aj-bi+as by,

thus the output, = 5 is correct.

It remains to be shown that the TPIP protocol is private. This is formally stated and proven in Appendix 2.
We now show arDT¥ protocol, using a one-way permutation with a trapdoor (assuming its existence),

along with its hard-core bit. Namely, |& be a generator that on inpuf fenerates a paiv(t (v)). For each
such pair, leff,:D, — D, andb,:D,, - {0, 1}. Informally, f, andb, satisfy:

1. Givenv andx[ID,, both f,(x) andb,(x) are efficiently computable.
2. Givent (v) andxOD,, both f;1(x) andb,(f,*(x)) are efficiently computable.
3. No algorithm can, given only andxD,, efficiently computef,1(x), nor predicto, (f,*(x)).

- 154 -

The protocol is the following:

Table4: OTX protocol

party S party R
input S1--K i{1..k}
computes choosex...%[rDy
(v,t(v) - G(1")
sends v

computes/ =yq...\k

where
Xj J¢|
Vi fx) j=
sends
<y
computes
Z2=21...%
where
z; =s,0b,(f;1(y))) -
sends Z-
output - § —z0by(x)
Note that
z =s0b,(f71(v)) = s Oby(fy(f,(x))) = s Oby(x)
thus

z0by(x) = s 0by(x)Uby (%) =
and the output of party R is correct.

It remains to be shown that the protocol is private, assumingftimbne-way. Informally, it is to be
shown that S cannot efficiently compute which secsgtR knows, and R cannot efficiently predict agy
j#i.

The formal statement and proof of these claims can be found in Appendix 1.

- 155 -

5 From Semi Honest to Faulty Parties

Proposition 2. There exists an (explicitly given) transformation from a protocol fvatately com-
putes fin the presence of semi-honest parties, to a protocolphaately computesn the presence of less

than% faulty parties.

Proof. We use the notion oferifiable secret sharingvSS). This is a protocol which allowsdealer
to distribute ton receivers mieces of a secretsuch that the following three conditions are satisfied (where
1<I<u<n):

1. ltisinfeasible to obtain any knowledge about the secret fromnl pigces.
2. Given anyu pieces the entire secret can be easily computed.

3. Given a piece it is easy to verify that it belongs to a set satisfying condition 2. In other words, the secret
is recognizable, and the pieces should be verifiable as authentic.

A solution for this problem in whiclu=l +1 is presented in Appendix 3. We will use VSS vvilﬂ%—ﬂ and

u:L%+lj, and as there are less thagnfaulty parties and more tha% honest parties, only the honest parties

will be able to retrieve a secret (which they will do when they discover a faulty party).

The transformation gives a protocol which consists of two stages. In the first stage each party commits
itself to its input value, and generates a “certified random input”. In the second stage a “certified execu-
tion” of the protocol takes place.

The first stage is done in the following method: First, each party uses VSS to share its private input
with all other parties. Then, each paRy chooses a random string for each kXj<n. It then shares;; with
all other parties using VSS. If some paRyfails to do so, then for every, the stringrj; is assigned 0 Now,
eachP; broadcasts;; for eachj#i, and proves that; indeed corresponds to the value committed in the VSS.
(P; may prove it by revealing its random choices for the VSS). If it fails to do so this value can be obtained

n
from the VSS messages Bf. Finally, P; computes the valuk@lrik, to be used as its random tape.

Note that:

n
° PartyP; is committed tokD rix as its random input: At any time after this stage the random inp& of
=1

can be reconstructed by the majority of the honest parties by reconstruciihfl-{, since they were
shared using the VSS method.

° In order to continue on behalf of a faulty party that decides to quit, it is sufficient for the majority of the
honest parties to reconstruct his random tape and his local input.

° In this order of commitments (namely first the local input and then the random tape), in any stage a
party decides to quit, either he has not learned any additional information, or the honest parties can

- 156 -

already continue on his behalf. However, if the commitments were done in the reverse order (namely
first the random tape and then the local input), then a faulty party could decide tafiguihe has seen

his certified random tape (thus gaining additional information to his local input and output)efure

the honest parties can reconstruct his local input. Then, we might not be able to show that the honest
parties can continue on his behalf.

The second stage consists of a “certified execution” of the original protocol: asBuimdo send mes-
sagemto P;. The first step is thal®; sendsE;(m) for a public-key encryption functiog;, in order to prevent
any other (faulty) party from listening to that message. Then, it is to be proved (in zero-knowledgm)ishat
indeed a message thRatis supposed to send at this stage. However, recall that the messages sent in the origi-
nal protocol (and hence their encryptions) are computegabignomial-timewhen given the private and ran-
dom input of their sender and all the messages it has received so far. Therefore the following statement is in
NP:

“ There exist a string;iwhich was certified (according the aforementioned scheme) using the commun-
ication done with party Pin the first stage of the transformation, and an inputich was shared

(using VSS) by the communication done earlier withelAd a series of coin tossesguch that the mes-

sage that party Pis sending now to Pis a legitimate encryption g (m) of the proper message m
(according to the protocol) for these input, random tape, and the encrypted messages received so far,
and that message is indeed to be sentjta P

As an NP predicate, its validity can be proven in zero-knowledge®; fails to do so, the majority of non-
faulty parties can detect this, reconstruct his private input, and continue on his behalf.

Thus, faulty parties can suspend the execution of the protocol only in the first stage, but then they do so
obliviously of the private inputs of the non-faulty parties and their random input, and furthermore they will be
detected. On the other hand, the faulty parties cannot gain any knowledge of the input of some non-faulty
party, as only a majority of the parties can compute it given the pieces of the secret that it Shares.

Appendix 1: Implementation of OT.

Theorem 2. The protocol specified in Table grivately computeshe 1-out-ofk Oblivious Transfer,
as defined by Table 2.

Proof. Itis to be shown that the three conditions in Definition 1 hold. Condition 1, namely the correct-
ness of the output if all the parties are honest, was shown in section 4.2. Condition 2 is trivially satisfied since

- 157 -

both parties are semi-honest, thus theutput never occurs.
In order to show condition 3, we have to consider everyTsef honest parties. We have two interesting
casesT ={R}and T ={S}. They are shown in Claims 1 and 2, correspondingly.l

Claim 1. Let tbe the presented protocol, [8tbe thek-ary vector of secret bits that is the input to
party S, and let [{1...k} be the input to party R. Then, for every efficient algorithgh there exists an
efficient algorithm M such that

M(S) = (exry (LS, (S81)))sy -

Recall that the right side of the equation denotes the outp8taf inputs, after running the protocol with an
honest party R whose inputiis Note that the above is an equation between random variables.

Proof. It suffices to show that it is possible to (efficiently) produce the read-only tap&s(oamely,
the private input, the random input and the received communication) in a distribution identical to that in the
above execution of the protocol (i.exr (1S, (S,1))). Algorithm M will thus runS with those “produced”
tapes as its read-only tapes and output the outp8t of

We show how the read-only tapes are produced: the local inp8t(QE. S) is the input to M, and the random

tape ofS can also be generated by M since it is a sequence of independent, unbiased coin tosses. The only
communication received by S during the protocol is the vegtihiat party R sends in the second stage of the
protocol. However, since R choosg§IgrD, for everyi[{1...k} (for v generated by S), and sin¢eD, - D,

is a permutation for every v, then f,(x) is also distributed uniformly inD,. Therefore, the vector

Y =(Xq,.-X% -1, fu(X), X +1,..-%) that party S receives in the second stage of the protocol, is a veckoraof

dom variables distributed uniformly over the domain. Thus, algorithm M will generate the “permutation-
index” v (in the same way that S does) and then choBgi(D,)¥. Thusy’ is distributed exactly ay, for

every pair (,;3). O

Claim 2. Let 1t be the presented protocol, [gtbe thek-ary vector of secret bits that is the input to
party S, and leti [({1...k} be the input to party R. Then, for every efficient algorithiR there exists an
efficient algorithm M such that

M(i.s) (exg(LR,G1))hr -

Recall that the right side of the approximated equation denotes the outpubafinputi, after running the
protocol with an honest party S whose inpujsand that the sign is a relation between two random vari-
ables, meaning “polynomially indistinguishable”.

Proof. As in Claim 1, it suffices to show that it is possible to (efficiently) produce the read-only tapes
of R (namely, the private input, the random input and the received messages) in a distribution indistinguish-
able from that in the above execution of the protocol (&g, (TR, (S,1))).

We show how the read-only tapes are produced: again, the local inRu{icé., the index) is an input to M,
and the random tape d® can also be generated by M. The messages received by party R during the

- 158 -

execution of the protocol aneandz, wherev is the “index” of the one-way permutation, arsis the vector
sent in the third stage of the protocol. Thus, M will computg)) — G(1") and givev to R. Then, upon
receivingyd(D,)¥ from R, algorithm M will compute?’ = (01,..0i-1,5 Oby,(f31(¥i)), 0 +1,-.,Ox) Where each
0;0r{0,1}, and setz' as the message receivedRy (Namely, theth bit of ' is identical to that oZ and all
the other bits are chosen at random in uniform distribution. Notefthean be efficiently inverted by M since
it hast (v).)

It remains to be shown tha Z, givenx = (X1...%)0r(Dy)%, andy = (X1,... % -1, f, (X)), X +1,...%) andv (as
this is what is known tdR').

This can be shown using a result that was shown in the discussion of hard-core bits, namely, {figh(y)),

given onlyy andv, wherecllz{0, 1}, and yUgrD,. Details follow: letz; denote thgth bit of Zandz; denote

the jth bit of 2'. Thus,z=2;, and forj#i, we havez; = s; Db\,(f\jl(yj)) andz; = or{0,1}. Therefore, ifZand

Z' are polynomially distinguishable, it is then possible, using the hybrids method, to show that there exists an
algorithm that efficiently distinguishes betweefiz{0, 1} and b, (f;%(y)), thus contradicting the above result.

Thus, we have produced an environment Rrthat is indistinguishable from an execution mfwith an
honest party S whose input3s [

Appendix 2: Implementation of TPIP using OT?.

Theorem 3. The TPIP protocol presented in TablgBvately computethe TPIP function as defined in
Table 1.

Proof. Asin Theorem 1, it is to be shown that the three conditions in definition 1 hold. Due to similar
arguments, conditions 1 and 2 are clearly satisfied. In order to show condition 3, we again have to consider
every setT of honest parties. In each case, it is enough to show an algorithm that produces an environment
indistinguishable from the expected one. The two interesting cases are:

1.T ={B}. Itisto be shown that for every efficient algorithAi there exists an efficient algorithivi,
such that

MA(al,az,Cl) (EX{ B} (TP'P,A’, (al,az;bl,bz))){A}) where C1DR{0, 1} .

Algorithm My, will use algorithm M guaranteed by Claim 1 (M receives as input a vector of secret bits and
produces an output with the same distribution as that of the output of party S). Navhelwill, given
a,a,,cq produce the four secretgy...sy1 exactly as done in table 3, and run M on that input. Since no
conversation is made other than in 1887 part, the output oM, and that ofA’ are of the same distribution,
and the claim holds for this case.

2. T ={A}. Itisto be shown that for every efficient algorithBi there exists an efficient algorithiig
such that

Mg(b1,b2,C2) (€Xa} (TPIP,B',(a1,a2,b1,b5)))gy, where c,0g{0,1}.

- 159 -

Algorithm Mg will use algorithm M guaranteed by Claim 2 (M receives as input an indeExd a secres;,

and produces an output whose distribution is indistinguishable from that of the output of party R). Namely,
Mg will, given bq,b,,c, producei —bob, ands —c, and run M on that input. Since no conversation is
made other than in th@T$ part, the distributions of the output M, and that ofA’ are indistinguishable, and

the claim holds for this case as well. B

Appendix 3: Implementing VSS.

Verifiable Secret Sharing

We now present a protocol solving the problem of Verifiable Secret Sharing.

Problem definition:

VSS is a protocol which allows dealerto distribute ton receivers rpieces of a secretsuch that the follow-

ing three conditions are satisfied, for som& 1 < n:

1. ltisinfeasible to obtain any knowledge about the secret front aigces.

2. Given anyt +1 pieces the secret can be easily computed.

3. Given a piece it is easy to verify that it belongs to a set satisfying condition (2). In other words, the
secret is recognizable, and the pieces should be verifiable as authentic.

The protocol:

1. The dealer sends (on a broadcast channebnamitmentgc(s), to the secres$ it wants to share.

2. The dealer chooses at random a polynompial) of degreet over the field GF§) (for someg>n), whose

t .
free element is s. Namely, p(x)=3 ax'+s, where gOrGF(q). The dealer then broadcasts
i=1

E1(p(1).E>(p(2), - - - ,En(p(n)), whereE; is a public encryption whose decryption key is known to
partyP;.
3. Define the following predicate:
[p, a polynomial, such that deg)<t.
and
[5, such that(s) is acommitmenns(i.e. there exists a sequencef coin tosses s.t(s)=c(r,s)).

and

Oi, thei™ component of the message sent in stageB (is(i)) (i.e. there is a sequencef coin tosses
such that the component senggr,p(i))).

Note that this is an NP predicate, and since all NP languages have zero-knowledge proofs the dealer
now proves the correctness of the predicate in zero-knowledge.

- 160 -

Correctness of the protocol:

Recall that any polynomial of degréecan be interpolated if, and only if, at ledastl of its values are
given. Thus, anyt pieces yield onlyt values ofp (x), giving no information about its free elemerst,(For
every possible value afthere exists a (unique) polynomial that passes through the gigemts and whose
free variable iss). Thus, condition 1 is satisfied. On the other hand, givehvalues, a unique polynomial of
degree +1 is fixed: the polynomial whose values at thel points are the given ones. Thus, the secret is the
free variable of that polynomial, satisfying condition 2.

The zero-knowledge proof in stage 3 of the protocol allows each party to ensure that it gets a certified

piece of the secret, and so satisfies condition 3. As thiszera-knowledg@roof, no party can efficiently
compute from it anything that is not efficiently computable from the initial information it has.

