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Foundations of Cryptography
Notes of lecture No. 14 & 15

Notes taken by Ran Canetti and Benny Pinkas

Summary

In this lecture we discuss the problem of constructing a protocol for computing a function whose input

is divided among a number of parties. This protocol must retain the privacy of data of each of the participants,

even when some of the other parties try to get this data. We define the notion of a protocol thatprivately com-

putesa function. We show a protocol thatprivately computesany function, according to the given definition,

when more than half of the parties arehonest. The time complexity of the protocol is polynomial in the com-

plexity of the function.

1 Introduction

The general goal of distributed computing is to develop protocols for (distributively) computing func-

tions whose input is scattered among the processors. If all processors follow their predetermined programs

then the existence of such protocols followsimmediatelyfrom the specification of the corresponding func-

tion, and the only challenge is in improving the (message and time) complexities of these protocols. How-

ever, the situation is much more complex if some of the parties may deviate from their predetermined pro-

gram in certain ways, either because of a fault or trying to get some secret information from the other parties.

A natural model of such misbehavior allowsfaulty parties to deviate from their predetermined program in an

arbitrary, but (probabilistic)polynomial-timemanner. When such faults are present, it is no longer clear if

there exist protocols that arecorrect in the sense that they terminate with each of the non-faulty parties having

the value of the function. Furthermore, it is not clear whether correct protocols can offer the maximum possi-

ble privacyof local inputs allowed by the function. (Namely, whether it is possible to restrict what the faulty

parties can learn from an execution of the protocol to the value of the function. In particular, the faulty parties

cannot learn about the input of the non-faulty parties more than the function value.)

The main result presented here is an affirmative resolution of the above problem. If secure trapdoor

encryption functions exist and as long as more than half of the parties remain non-faulty,everyfunction has a

correct fault-tolerant protocol that offers the maximum degree ofprivacy. The complexity of the protocol is

polynomial in thetime-complexityof the function. Furthermore, there exists apolynomial-timealgorithm

that on input a Turing-Machine specification of the function outputs such a protocol.
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A protocol problem is a specification of the input and expected output (function value) of each party.

Following is an example to such a problem:

Elections (in the participation ofn parties, denotedP1,P2, . . . ,Pn).

Local input for eachPi : A vote vi .

Local output for eachPi : vmax, which is the vote that had the maximal support (appeared more than

any other vote in the sequencev1...vn.)

A solution for a protocol problem is a protocol which satisfies the following conditions:

1. Correctness:Even in the presence of faulty parties, all the non-faulty parties get an identical output

which corresponds to the inputs for which the parties committed themselves, or else they receive a mes-

sage that the protocol was interrupted.

2. Privacy: Even for a collaboration of all the faulty parties, whatever they can efficiently compute after

participating in the protocol, they can also efficiently compute from their local inputs and local outputs

(function value).

In order to illustrate the meaning of the above requirements, consider an environment in which in addition to

the participating parties there is atrusted party. In the ‘‘trusted party environment’’, each party sends its

input to the trusted party using asecurechannel; then the trusted party computes the output and sends it to all

the parties. Since the trusted party is non-faulty, the computed value of the function is the correct one. It is

also clear that no collaboration of faulty parties can learn more than what can be computed from the final out-

put and their local inputs. A solution to a protocol problem should have the same effect as a computation in

the ‘‘trusted party environment’’. We will see that such a solution can be achieved even if none of the parties

is trusted by all the others.

2 The Formal Setting

There aren parties,P1,P2,...,Pn. Each partyPi has a local inputxi , and all other parties have acommitment

c (xi ) of Pi to the value ofxi . At the end of the protocol each party should have an outputfi (x1,...,xn).

Remarks

g The requirement for acommitmenton the input values is important in order to commit each party to a

single input during the execution of the protocol. This greatly simplifies the definition since without it,

it is not clear to which input values (of the faulty parties) should the computed function value

correspond. Additionally, there are situations where this is a natural requirement, and in any case such a

commitmentcan be enforced by a preliminary protocol.

g Without loss of generality we can assume that all parties compute the same output functionf. We can

create such a function from the local output functionsf1 through fn, by letting
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f (x1, . . . ,xn) ≡∧ E1(f1(x1, . . . ,xn))° . . . °En(fn(x1, . . . ,xn)) whereEi is a secure public-key encryption

for which onlyPi has the decryption key.

g For simplicity of exposition, we will consider the domain off as being then-fold Cartesian product of

{0,1} n, namely ({0,1}n)n. That is, each of then parties has an inputn bits long. Therefore the notion of

‘‘polynomial’’ is in regard only to a single parameter,n. The results presented hold also if this is not the

case. That is, the protocol is polynomial in regard both to the number of parties and the length of each

input .

g Furthermore, without loss of generality, in the rest of the paper we consider only binary functions (func-

tions into {0,1}).

g We will assume thatf is polynomially computable. If this is not the case then we can use cryptographic

systems whose security parameter is the complexity of computingf (e.g. if f is exponential, then the

keys of the cryptographic system will have a length exponential in the length of the input). In any case,

the complexity of the protocol will be polynomial in the complexity of the function, and so is the com-

plexity of the adversary.

g We assume the existence of abroadcast channel, and that all the processors are synchronized. If either

feature is not available, it can be simulated using Byzantine Agreement methods, as long as less than a

third of the parties are faulty.

An honestparty is a party which runs the original program. Afaulty party is one which may deviate from the

original protocol in an arbitrary but (probabilistic)polynomial-timemanner. Faulty protocols may also colla-

borate with each other. The results presented here hold if the faulty parties are assignedbeforethe execution

of the protocol starts.

Notations:

g exS(A,B, (x1, . . . ,xn)) ≡∧ (α1, . . . ,αn),

whereA,B are local programs,S⊆{1,...,n}, and αi is the output ofPi in an execution where forj ∈S

processorPj executes protocol A (with local inputxj ), and for j ∉S processorPj executes protocol B

(with local inputxj ). Note that when A or B are probabilistic ,exS is a random variable.

g (α1, . . . ,αn)i ≡∧ αi

g (α1, . . . ,αn)S ≡∧ (αi 1
, . . . ,αi S

), i j ∈S

We now define the notion of correct fault-tolerant protocols that retain the maximum degree of privacy given

by a function. A method for constructing such protocols is introduced later on, and is the main result

presented in this lecture.

Definition1: Let f :({0,1} n)n→{0,1} be a polynomially computable function. A protocolπ privately

computes f in the presence of t faulty partiesif the following conditions hold:
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1. ex{1,...,n} (π,π,(x1, . . . ,xn))=(f (x1, . . . ,xn), . . . , f (x1, . . . ,xn)).

(Namely in the absence of faulty parties the output of the protocol is the correct function value.)

2. Correctness:For every setSof n−t honest parties:

2.1 For every efficient (polynomial and non-uniform) algorithm A (of the faulty parties)

exS(π,A, (x1, . . . ,xn))S =
I
K
L ⊥, . . . ,⊥

f (x1, . . . ,xn), . . . , f (x1, . . . ,xn)

(That is, all honest parties have the same output which is either the correct function value or a special

symbol (⊥), denoting that the execution of the protocol was interrupted.)

2.2 For every such algorithm A, there is an efficient algorithm M, such that if

exS(π,A, (x1, . . . ,xn))S=⊥, . . . ,⊥ then M ((x1, . . . ,xn)S
h) (exS(π,A, (x1, . . . ,xn)))S

h, where S
h

denotes

{1,...,n} \S, and

means ‘‘polynomially indistinguishable’’.

(Namely, when the protocol is prematurely terminated, whatever the faulty parties can efficiently com-

pute at this stage can also be efficiently computed from their local inputs; the faulty parties did not

learn anything about the inputs of the honest parties. Therefore the termination of the protocol does not

depend on the input of the honest parties!)

3 Privacy: For every set ofn−t honest partiesS, and for every efficient algorithm A, there is an efficient

algorithm M, such that if exS(π,A, (x1, . . . ,xn))S=f (x1, . . . ,xn), . . . , f (x1, . . . ,xn) then

M ((x1, . . . ,xn)S
h, f (x1, . . . ,xn))(exS(π,A, (x1, . . . ,xn)))S

h.

(That is, whatever the faulty parties can efficiently compute after the protocol has successfully

terminated, can be efficiently computed from their local inputs and the function value.)

Parts 2.2 and 3 can be combined by stating that

M ((x1, . . . ,xn)S
h,exS(π,A, (x1, . . . ,xn)))S)(exS(π,A, (x1, . . . ,xn)))S

h. That is, whatever the faulty parties can

efficiently compute after any execution of the protocol, can be efficiently computed from their local inputs

and the their local outputs (at this run).

For the sequel we also need the notion ofsemi-honestparties.

Definition2: A Semi-honestparty is a party that

g Uses for its random tape the output of independent unbiased coin tosses.

g In each communication round sends exactly the same message as instructed in the protocol. (The proto-

col defines a unique message to be sent, as a function of the initial input, the random tape, and the com-

munication received so far. The work tape need not be considered since it is also uniquely defined by

those three parameters.)
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g Does not listen to any communication other than those sent to him.

In other words, semi-honest parties may deviate in theirinternal computation from the protocol, but the mes-

sages they send are in accordance with the protocol. A semi-honest party may also be regarded as one that

executes the original protocol but tries to compute as much additional information as possible; this may be

the case in some realistic situations and therefore is an important notion by itself. Note that there is no way

for an outside observer to distinguish between an honest and a semi-honest party.

Although the last requirement may seem unnatural, it can be easily enforced using a public-key encryp-

tion system: whenever a party wants to send messagem to partyPi , it will send Ei (m), thus enabling onlyPi

to read it (section 5 has the details). An alternative definition of asemi-honestparty does not include the last

requirement, allowing thesemi-honestparty to listen to conversations of other parties; in this case the above

use of a public-key encryption system would have to appear in almost1 any protocol forsemi-honestparties.

Semi-honest parties will be used in the following construction as an intermediate stage between honest

and faulty parties.

3 The Main Result

Theorem 1. Let f :({0,1} n)n→{0,1} be a polynomially computable function, and lett<
2
nhh . If there

exists a one-way permutation with a trapdoor then there exists an efficient protocol forn parties,P1...Pn, that

privately computes fin the presence oft faulty parties.

Proof. The theorem is proved using two propositions, which are also interesting by themselves. In pro-

position 1 (see section 4), we show a protocol thatprivately computes faccording to the definition, if all the

parties are honest or semi-honest (note that there is no limit on the number of semi-honest parties). In propo-

sition 2 (see section 5) we show a method of ‘‘compiling’’ such a protocol,π, into another protocol,C (π),

thatprivately computes fin the presence oft<
2
nhh faulty parties. The theorem follows.a

4 A Protocol For Semi-honest Parties

Proposition 1. Let f :({0,1} n)n→{0,1} be a polynomially computable function. Then there exists an

efficient protocol forn parties,P1...Pn, thatprivately computes fif all the parties are honest or semi-honest.

Proof outline. We will first show a protocol thatprivately computes fusing as a ‘‘subroutine’’ a two-

party protocol for a simpler problem. We then implement this two-party protocol using the Oblivious Transfer

(OT) scheme, and finally we show an OT protocol, assuming the existence of one-way permutations with a
hhhhhhhhhhhhhhhh

1 It would be unnecessary to use this ‘‘precaution’’ if the messages sent do not reveal any additional
information to what can be efficiently computed from the input and output of any coalition of parties. For
instance, iff (x1,...,xn) = x1°...°xn.
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trapdoor.

4.1 The general protocol

Since f is polynomially computable there exists a boolean circuit of polynomial-size that computesf.

The input tof is of sizen2 (n bits to each party), thus the circuit is polynomial also inn. Assume, without

loss of generality, that the circuit consists only of¬ and∧ gates (a∨b = ¬ (¬a∧¬b )) and that the maximum

fan-in of a gate is two. We consider these operators as inZ2 algebra: the¬ operator is replaced by+1, and

the∧ by aZ2 multiplication. Each party has this circuit, and hisn private input bits (out of then2 input bits

to the circuit). Consider a partial order of the gates in the circuit, so that a gateg1 precedes gateg2 if an

input line ofg2 collides with an output line ofg1. Let gmax be the gate whose output value is the value off.

We show a protocol that, assuming the existence of a specific two-party protocol (described in section 4.2),

allows each party to compute the output of the circuit without ‘‘revealing its private input’’. That is, for each

coalition C of a subset of the parties, whateverC can efficiently compute after the termination of the proto-

col, can be efficiently computed from{xi } i ∈C and f (x1,x2, . . . ,xn). Note that here we do not require that

| C | <n /2.

The protocol starts by each party sharing each of his input bits with all other parties, in a way that

exactlyn parties are needed in order to reconstruct the input bit. More specifically, to share each of his bits,

denotedb, the ‘‘owner’’ chooses at randomn bits b1,b2, . . . ,bn satisfyingb=
i =1
Σ
n

bi . Next, the ‘‘owner’’ uses

the public-key of each partyPi to secretly send toPi the corresponding piece ofb (i.e. partyPi getsEi (bi ),

whereEi is Pi ’s public encryption function).

At this point, the parties hold pieces allowing them to obtain the values of all the input lines to the

boolean circuit. Our purpose is to allow the parties to hold pieces allowing to obtain the value of the output

line of the circuit. To this end, the parties will scan the circuit sequentially in the predefined order, generating

pieces for the output value of a gate from the pieces of the input lines values. We distinguish between two

cases in computing the output value of a gate:

1) The next output line is obtained by adding the constant 1 to the value of some previous line (say lineL).

In this case, one of the parties (say the first party) adds the constant 1 to his piece of lineL, resulting in

his piece of the current line. All other parties let their piece of lineL be their piece of the current line.

2) The next output line is obtained bymultiplying the values of two lines, denotedL1 andL2. Let ci be

the ith piece of lineL1 (held byPi ), anddi be theith piece of lineL2. We need to computen pieces of

the output line, namelyn bits {bi } i =1
n , such thatb ≡∧

i =1
Σ
n

bi = (
i =1
Σ
n

ci ).(
j =1
Σ
n

dj ), and eachPi knowsonly bi .

Definebi, j so that for eachi, bi,i = ci
.di and for everyi ≠ j, bi, j + bj,i = ci

.dj + cj
.di , and letbi =

j =1
Σ
n

bi, j .

Note that
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c.d = (
i =1
Σ
n

ci ).(
j =1
Σ
n

dj ) = (
i =1
Σ
n

ci
.di ) +

1≤ i<j ≤ n
Σ (ci

.dj +cj
.di ) =

i =1
Σ
n

bi,i +
1≤ i<j ≤ n

Σ (bi, j +bj,i ) =
i =1
Σ
n

j =1
Σ
n

bi, j =
i =1
Σ
n

bi = b.

The idea is to let each partyPi computebi,i =ci
.di by himself, and each pairi ≠ j of parties execute a

two-party protocol forprivately computing bi, j andbj,i . This means that:

(1) PartyPi ends withbi, j and partyPj ends withbj,i , so thatbi, j +bj,i =ci
.dj +cj

.di .

(2) The protocol does not leak any further knowledge neither to the participants not to an outside

listener.

This protocol, denoted TPIP (Two Party Inner Product), is defined and discussed in section 4.2. Once

this two party protocol is executed between each pair of parties, each party,Pi , knows exactly {bi, j } j =1
n

and can thus letbi =
j =1
Σ
n

bi, j be his piece of the current line.

When the output value ofgmax is computed, each party sends its piece of the output value to each of the other

parties and the output of the function is computed by each party.

The correctness of the output of the protocol is due to the correctness of the output value of each gate.

(recall that the parties are semi-honest). The privacy stems from the fact that for any line valueb, any proper

subset of then pieces ofb does not add any knowledge about the value ofb. Thus (assuming the correctness

of such a protocol for two parties) the above protocolprivately computes f. (In other words, we reduced the

semi-honest protocol problem to a problem of privately computing a specific function between two parties.)

`

4.2 The Two Party Protocol and Oblivious Transfer

The formal specification for the Two Party Inner Product modulo 2 (TPIP) protocol is:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table1: TPIP protocol specificationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

party A party B
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

input a1,a2 b1,b2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

c1 c2

c
c
c
c
c
c
c
c

output iiiiiiiiiiiiiiiiiiiiiiiiii

s.t. c1+c2=a1
.b1+a2

.b2.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

Namely, given the inputs, the protocol will allow parties A and B to compute their specified outputs,

without revealing any other information (e.g., the other party’s output). In other words, whatever a party can

efficiently compute after the protocol has terminated, aside from its output, can be efficiently computed from

its initial input alone. (Recall that all the parties are at least semi-honest).
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The protocol will use an Oblivious Transfer scheme between two parties. In theOT1
k scheme, party S

has k secret bits, revealing one of them to R, in a way that R knows only one secret and S does not know

which secret R knows. Formally, the specification is:
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table2: OT1
k protocol specificationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

party S party R
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

input s1...sk i ∈{1 ..k}
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

output - si
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

We show a TPIP protocol, using anOT1
4 (1-out-of-4 Oblivious Transfer) scheme:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table3: TPIP protocol using OT1
4

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

party A party B
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

input a1,a2 b1,b2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

The ‘‘reduction’’ part choosesc1∈R{0,1} .

computes

s00←c1

s01←c1+a2

s10←c1+a1

s11←c1+a1+a2.

computes

i ←b1°b2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Applying OT1
4 - siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

output c1 c2 ← si
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Note that in each of the four cases (s00 , s01 , s10 , s11) the value sb1°b2
satisfiesc1+sb1°b2

= a1
.b1+a2

.b2,

thus the outputc2 = si is correct.

It remains to be shown that the TPIP protocol is private. This is formally stated and proven in Appendix 2.

We now show anOT1
k protocol, using a one-way permutation with a trapdoor (assuming its existence),

along with its hard-core bit. Namely, letG be a generator that on input 1n generates a pair (v,t (v)). For each

such pair, letfv:Dv→Dv andbv:Dv→{0,1}. Informally, fv andbv satisfy:

1. Givenv andx∈Dv, both fv(x) andbv(x) are efficiently computable.

2. Givent (v) andx∈Dv, both fv
−1(x) andbv(fv

−1(x)) are efficiently computable.

3. No algorithm can, given onlyv andx∈Dv, efficiently computefv
−1(x), nor predictbv(fv

−1(x)).
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The protocol is the following:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table4: OT1
k protocoliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

party S party R
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

input s1...sk i ∈{1 ..k}
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

computes

(v,t (v))←G(1n)

sends v→

choosesx1...xk∈RDv

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

computesy→= y1...yk

where

yj ←
I
K
Lfv(xi ) j =i

xj j ≠i

sends

← y→
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

computes

z→= z1...zk

where

zj = sj ⊕bv(fv
−1(yj )) .

sends z→→
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

output - si ←zi ⊕bv(xi )
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Note that

zi = si ⊕bv(fv
−1(yi )) = si ⊕bv(fv

−1(fv(xi ))) = si ⊕bv(xi )

thus

zi ⊕bv(xi ) = si ⊕bv(xi )⊕bv(xi ) = si

and the output of party R is correct.

It remains to be shown that the protocol is private, assuming thatf is one-way. Informally, it is to be

shown that S cannot efficiently compute which secret,si , R knows, and R cannot efficiently predict anysj ,

j ≠i.

The formal statement and proof of these claims can be found in Appendix 1.
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5 From Semi Honest to Faulty Parties

Proposition 2. There exists an (explicitly given) transformation from a protocol thatprivately com-

putes fin the presence of semi-honest parties, to a protocol thatprivately computesin the presence of less

than
2
nhh faulty parties.

Proof. We use the notion ofverifiable secret sharing(VSS). This is a protocol which allows adealer

to distribute ton receivers npieces of a secrets such that the following three conditions are satisfied (where

1≤l<u ≤n):

1. It is infeasible to obtain any knowledge about the secret from anyl pieces.

2. Given anyu pieces the entire secret can be easily computed.

3. Given a piece it is easy to verify that it belongs to a set satisfying condition 2. In other words, the secret

is recognizable, and the pieces should be verifiable as authentic.

A solution for this problem in whichu=l +1 is presented in Appendix 3. We will use VSS withl =R
2
nhh−1 H and

u=Q
2
nhh+1 P, and as there are less than

2
nhh faulty parties and more than

2
nhh honest parties, only the honest parties

will be able to retrieve a secret (which they will do when they discover a faulty party).

The transformation gives a protocol which consists of two stages. In the first stage each party commits

itself to its input value, and generates a ‘‘certified random input’’. In the second stage a ‘‘certified execu-

tion’’ of the protocol takes place.

The first stage is done in the following method: First, each party uses VSS to share its private input

with all other parties. Then, each partyPi chooses a random stringr i j for each 1≤ j ≤n. It then sharesr i j with

all other parties using VSS. If some partyPi fails to do so, then for everyj, the stringr i j is assigned 0
→

. Now,

eachPi broadcastsr i j for eachj ≠i, and proves thatr i j indeed corresponds to the value committed in the VSS.

(Pi may prove it by revealing its random choices for the VSS). If it fails to do so this value can be obtained

from the VSS messages ofPi . Finally, Pi computes the value
k=1
⊕
n

r ik, to be used as its random tape.

Note that:

g PartyPi is committed to
k=1
⊕
n

r ik as its random input: At any time after this stage the random input ofPi

can be reconstructed by the majority of the honest parties by reconstructing {r ik} k=1
n , since they were

shared using the VSS method.

g In order to continue on behalf of a faulty party that decides to quit, it is sufficient for the majority of the

honest parties to reconstruct his random tape and his local input.

g In this order of commitments (namely first the local input and then the random tape), in any stage a

party decides to quit, either he has not learned any additional information, or the honest parties can



- 156 -

already continue on his behalf. However, if the commitments were done in the reverse order (namely

first the random tape and then the local input), then a faulty party could decide to quitafter he has seen

his certified random tape (thus gaining additional information to his local input and output), butbefore

the honest parties can reconstruct his local input. Then, we might not be able to show that the honest

parties can continue on his behalf.

The second stage consists of a ‘‘certified execution’’ of the original protocol: assumePi is to send mes-

sagem to Pj . The first step is thatPi sendsEj (m) for a public-key encryption functionEj , in order to prevent

any other (faulty) party from listening to that message. Then, it is to be proved (in zero-knowledge) thatm is

indeed a message thatPi is supposed to send at this stage. However, recall that the messages sent in the origi-

nal protocol (and hence their encryptions) are computed inpolynomial-timewhen given the private and ran-

dom input of their sender and all the messages it has received so far. Therefore the following statement is in

NP:

‘‘ There exist a string ri which was certified (according the aforementioned scheme) using the commun-

ication done with party Pi in the first stage of the transformation, and an input si which was shared

(using VSS) by the communication done earlier with Pi , and a series of coin tosses q; such that the mes-

sage that party Pi is sending now to Pj is a legitimate encryption Ej,q(m) of the proper message m

(according to the protocol) for these input, random tape, and the encrypted messages received so far,

and that message is indeed to be sent to Pj ’’.

As an NP predicate, its validity can be proven in zero-knowledge. IfPi fails to do so, the majority of non-

faulty parties can detect this, reconstruct his private input, and continue on his behalf.

Thus, faulty parties can suspend the execution of the protocol only in the first stage, but then they do so

obliviously of the private inputs of the non-faulty parties and their random input, and furthermore they will be

detected. On the other hand, the faulty parties cannot gain any knowledge of the input of some non-faulty

party, as only a majority of the parties can compute it given the pieces of the secret that it shares.`

Appendix 1: Implementation of OT1
k.

Theorem 2. The protocol specified in Table 4privately computesthe 1-out-of-k Oblivious Transfer,

as defined by Table 2.

Proof. It is to be shown that the three conditions in Definition 1 hold. Condition 1, namely the correct-

ness of the output if all the parties are honest, was shown in section 4.2. Condition 2 is trivially satisfied since
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both parties are semi-honest, thus the⊥ output never occurs.

In order to show condition 3, we have to consider every setT of honest parties. We have two interesting

cases:T = { R} and T = { S}. They are shown in Claims 1 and 2, correspondingly.a

Claim 1. Let π be the presented protocol, lets→be thek-ary vector of secret bits that is the input to

party S, and leti ∈{1 ...k} be the input to party R. Then, for every efficient algorithmS′ there exists an

efficient algorithm M such that

M (s→) = (ex{ R} (π,S′,(s→,i ))){ S} .

Recall that the right side of the equation denotes the output ofS′ on inputs→, after running the protocol with an

honest party R whose input isi. Note that the above is an equation between random variables.

Proof. It suffices to show that it is possible to (efficiently) produce the read-only tapes ofS′ (namely,

the private input, the random input and the received communication) in a distribution identical to that in the

above execution of the protocol (i.e.,ex{ R} (π,S′,(s→,i )) ). Algorithm M will thus runS′ with those ‘‘produced’’

tapes as its read-only tapes and output the output ofS′.

We show how the read-only tapes are produced: the local input ofS′ (i.e. s→) is the input to M, and the random

tape ofS′ can also be generated by M since it is a sequence of independent, unbiased coin tosses. The only

communication received by S during the protocol is the vectory→that party R sends in the second stage of the

protocol. However, since R choosesxi ∈RDv for every i ∈{1 ...k} (for v generated by S), and sincef :Dv→Dv

is a permutation for every v, then fv(x) is also distributed uniformly inDv. Therefore, the vector

y→= (x1,...,xi −1, fv(xi ),xi +1,...xk) that party S receives in the second stage of the protocol, is a vector ofk ran-

dom variables distributed uniformly over the domain. Thus, algorithm M will generate the ‘‘permutation-

index’’ v (in the same way that S does) and then choosey→′∈R(Dv)
k. Thusy→′ is distributed exactly asy→, for

every pair (i,s→). `

Claim 2. Let π be the presented protocol, lets→be thek-ary vector of secret bits that is the input to

party S, and leti ∈{1 ...k} be the input to party R. Then, for every efficient algorithmR′ there exists an

efficient algorithm M such that

M (i,si ) (ex{ S} (π,R′,(s→,i, ))){ R} .

Recall that the right side of the approximated equation denotes the output ofR′ on input i, after running the

protocol with an honest party S whose input iss→, and that the sign is a relation between two random vari-

ables, meaning ‘‘polynomially indistinguishable’’.

Proof. As in Claim 1, it suffices to show that it is possible to (efficiently) produce the read-only tapes

of R′ (namely, the private input, the random input and the received messages) in a distribution indistinguish-

able from that in the above execution of the protocol (i.e.,ex{ S} (π,R′,(s→,i )) ).

We show how the read-only tapes are produced: again, the local input ofR′ (i.e., the indexi) is an input to M,

and the random tape ofR′ can also be generated by M. The messages received by party R during the
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execution of the protocol arev andz→, wherev is the ‘‘index’’ of the one-way permutation, andz→is the vector

sent in the third stage of the protocol. Thus, M will compute (v,t (v)) ← G(1n) and givev to R′. Then, upon

receivingy→∈(Dv)
k from R′, algorithm M will compute z→′ = (σ1,...σi −1,si ⊕bv(fv

−1(yi )),σi +1,...,σk) where each

σ j ∈R{0,1}, and setz→′ as the message received byR′. (Namely, theith bit of z→′ is identical to that ofz→and all

the other bits are chosen at random in uniform distribution. Note thatfv can be efficiently inverted by M since

it hast (v).)

It remains to be shown thatz→′ z→, given x→= (x1...xk)∈R(Dv)
k, andy→= (x1,...,xi −1, fv(xi ),xi +1,...xk) and v (as

this is what is known toR′).

This can be shown using a result that was shown in the discussion of hard-core bits, namely thatσ bv(fv
−1(y)),

given onlyy andv, whereσ∈R{0,1}, and y∈RDv. Details follow: letzj denote thejth bit of z→andz′ j denote

the jth bit of z→′. Thus,zi =z′i , and for j ≠i, we havezj = sj ⊕bv(fv
−1(yj )) andz′ j = σ∈R{0,1}. Therefore, ifz→and

z→′ are polynomially distinguishable, it is then possible, using the hybrids method, to show that there exists an

algorithm that efficiently distinguishes betweenσ∈R{0,1} and bv(fv
−1(y)), thus contradicting the above result.

Thus, we have produced an environment forR′ that is indistinguishable from an execution ofπ with an

honest party S whose input iss→. `

Appendix 2: Implementation of TPIP using OT1
4.

Theorem3. The TPIP protocol presented in Table 3privately computesthe TPIP function as defined in

Table 1.

Proof. As in Theorem 1, it is to be shown that the three conditions in definition 1 hold. Due to similar

arguments, conditions 1 and 2 are clearly satisfied. In order to show condition 3, we again have to consider

every setT of honest parties. In each case, it is enough to show an algorithm that produces an environment

indistinguishable from the expected one. The two interesting cases are:

1. T = { B}. It is to be shown that for every efficient algorithmA′ there exists an efficient algorithmMA

such that

MA(a1,a2,c1) (ex{ B} (TPIP,A′,(a1,a2;b1,b2))){ A} , where c1∈R{0,1} .

Algorithm MA will use algorithm M guaranteed by Claim 1 (M receives as input a vector of secret bits and

produces an output with the same distribution as that of the output of party S). Namely,MA will, given

a1,a2,c1 produce the four secretss00...s11 exactly as done in table 3, and run M on that input. Since no

conversation is made other than in theOT1
4 part, the output ofMA and that ofA′ are of the same distribution,

and the claim holds for this case.

2. T = { A}. It is to be shown that for every efficient algorithmB′ there exists an efficient algorithmMB

such that

MB(b1,b2,c2) (ex{ A} (TPIP,B′,(a1,a2,b1,b2))){ B} , where c2∈R{0,1} .
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Algorithm MB will use algorithm M guaranteed by Claim 2 (M receives as input an indexi and a secretsi ,

and produces an output whose distribution is indistinguishable from that of the output of party R). Namely,

MB will, given b1,b2,c2 producei ←b1°b2 and si ←c2 and run M on that input. Since no conversation is

made other than in theOT1
4 part, the distributions of the output ofMA and that ofA′ are indistinguishable, and

the claim holds for this case as well. a

Appendix 3: Implementing VSS.

Verifiable Secret Sharing:

We now present a protocol solving the problem of Verifiable Secret Sharing.

Problem definition:

VSS is a protocol which allows adealerto distribute ton receivers npieces of a secrets such that the follow-

ing three conditions are satisfied, for some 1≤ t < n:

1. It is infeasible to obtain any knowledge about the secret from anyt pieces.

2. Given anyt +1 pieces the secret can be easily computed.

3. Given a piece it is easy to verify that it belongs to a set satisfying condition (2). In other words, the

secret is recognizable, and the pieces should be verifiable as authentic.

The protocol:

1. The dealer sends (on a broadcast channel) acommitment,c (s), to the secrets it wants to share.

2. The dealer chooses at random a polynomialp (x) of degreet over the field GF(q) (for someq>n), whose

free element is s. Namely, p (x)=
i =1
Σ
t

ai x
i +s, where ai ∈RGF (q). The dealer then broadcasts

E1(p (1)),E2(p (2)), . . . ,En(p (n)), whereEi is a public encryption whose decryption key is known to

partyPi .

3. Define the following predicate:

∃p, a polynomial, such that deg(p) ≤ t.

and

∃s, such thatc (s) is acommitmentons (i.e. there exists a sequencer of coin tosses s.t.c (s)=c (r,s)).

and

∀i, the i th component of the message sent in stage 2 isEi (p (i )) (i.e. there is a sequencer of coin tosses

such that the component sent isEi (r,p (i ))).

Note that this is an NP predicate, and since all NP languages have zero-knowledge proofs the dealer

now proves the correctness of the predicate in zero-knowledge.
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Correctness of the protocol:

Recall that any polynomial of degreet can be interpolated if, and only if, at leastt +1 of its values are

given. Thus, anyt pieces yield onlyt values ofp (x), giving no information about its free element,s. (For

every possible value ofs there exists a (unique) polynomial that passes through the givent points and whose

free variable iss). Thus, condition 1 is satisfied. On the other hand, givent +1 values, a unique polynomial of

degreet +1 is fixed: the polynomial whose values at thet +1 points are the given ones. Thus, the secret is the

free variable of that polynomial, satisfying condition 2.

The zero-knowledge proof in stage 3 of the protocol allows each party to ensure that it gets a certified

piece of the secret, and so satisfies condition 3. As this is azero-knowledgeproof, no party can efficiently

compute from it anything that is not efficiently computable from the initial information it has.


