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Foundations of Cryptography
Notes of lecture No. 6 (given on Apr. 9th)

Notes taken by Michal Seidmann and Nir Dvir

Summary

In this lecture we recall the definition of semantic security, and introduce the central notiordisf
tinguishability. We will use this concept in another definition of secure encryption sch&eeurity in the
sense oindistinguishabilityof encryptions.We claim that an encryption scheme which is secure according to
the last definition, is also secure according to the first one.

1. Semantic Security

Semantic security was defined in the previous lecture using probability distributions. In the sequel, we
state this definition in terms of random variables.

Polynomial Random Variable
Let X, be a random variable ranging over {0M{i.e. X, maps elements of some sample sp&zeto
{0,1}"). Actually, we shall speak of sequences of random variabksg &+ such that for alln, the ran-

dom variableX,, is distributed over {0,17 .
The sequence X}, is said to be asequence of polynomial random variableff,there exists a proba-

bilistic polynomial algorithm S, such thaxX,=S(1") ( We would like S to bepolynomial-timein n, and
therefore it is given the inpub in unary). We callS a sampling algorithm for {X,}non -
We will sometimes say: X, is a polynomial random variable" as a short way of saying:Xy X ,,, is a

sequence of polynomial random variables".
Examples:

I.  Given the unary input™, algorithm S; tossesn coins, and outputs the outcome. In this case:
X, =S1(1") is uniformly distributed over the sample space {0} li}e.

Oa 0{0,1}" Prob ,=a)=2"

Il.  Given the unary input, algorithm S, always outputsL. Here:X,, = S,(1") is identically I'. Thus,
Prob (X,=1" =1 ,and: Oa{0,1}", a#1" O Prob(X,=a)=0

lll. Given 1", algorithm S; tossesg coins. Letr be the outcome. The output 8 is ror. One can
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easily see that

azb 0O Prob(X,=a-b)=0
n

a=b O Prob(X,=ach)=2 2

where \a\z\b\zg.

It is important to note that not all sequences of random variables can be efficiently sampled (i.e. by a
polynomial algorithm). In order to see this, note that the cardinality of the set of all sequences of random vari-
ables is (note that this is a set of infinite sequences), while the cardinality of the setdlgthomial-time
sampling algorithms iy . It follows that most of the sequences of random variables cannot be polynomi-
ally sampled.

Definition:

An encryption schemeGE,D) is said to beSemantically Securéf for every sequence X,} -

of [polynomial] random variables, for every [polynomial] functiom, for every function f and for every
probabilistic polynomial algorithmA , there exists a probabilistic polynomial algorithé such that for
every constantc > 0 and for every sufficiently larga , the following inequality holds:

Prob| A(Eg(r)(Xn): hXn), 17 =1 (%) < Prob| Ar(h(0). 1= f (o) +

while the probability is taken ovekK s distribution and the coin tosses #f or Ar, G andE .

Remarks:

(1) The intuition, as in the last lecture, is that the encryption does not add any further information to what
was known a-priori about the message.

(2) This definition is actually two different definitions: The one including the brackets ([ ]) is the definition
for Uniform Semantic Security, and the one excluding the brackets isNon-Uniform Semantic
Security. In the non-uniform case, wherever we mention the wdpd$ynomial algorithm’ we mean
'a non-uniform polynomial algorithm. Obviously, probabilism can be removed in these non-uniform
algorithms.

Clearly, if an encryption scheme is semantically secure in the non-uniform sense, then it is also secure
in the uniform sense. But, we still give both definitions, because it is "easier" to prove the existence of
uniform semantically secure encryption schemes than the existence of non-uniform onésasiy’

we mean that the required assumptions seem less strong in the uniform case. In this case we will assume
existence of uniform one-way permutation, while in the second case we will have to assume that these
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one-way permutations cannot be reversed by non-uniform polynomial algorithms.

We would like to introduce another definition for secure encryption schemes, perhaps less natural (more
technical), but showing the existence of secure encryption schemes will be simpler using this new definition.
Also, this definition will be more convenient to deal with, when the encryption scheme is used in a crypto-
graphic protocol.

Before giving this definition we introduce and give examples of a notion central to this course: "Polynomial
indistinguishability".

2. Polynomial Indistinguishability.

We introduce and motivate the notion of polynomiaddistinguishability in the context of secure
encryption, but this notion is of general importance to complexity theory and will be used throughout the
course in other context as well. In particular, many of the central cryptographic notions refer to the concept of
indistinguishability. Intuitively, while dealing with encryption schemes, polynomiadlistinguishability
means the lack of the ability to decide efficiently, given two messddesM, and an encryptiof (M;) of
one of them, to which message the encryption corresponds. In a general sense, one can look at indistingui-
shability this way: Given an object, which was chosen with equal probability from one of two baskets, it can-
not be guessed successfully (with a probability significantly greaterithgrirom which of the baskets it was
taken.

If the sampling algorithms are deterministic, then it can be guessed successfully (with probability 1), which
one of the two random variables was sampled, therefore the notiondidtinguishability is meaningless in
this case.

Definition : Two sequencesX,}non » {Ya}non Of random variables (not necessarily polynomial), are
polynomially indistinguishableiff for every polynomial algorithm A, for every ¢c>0 and for every
sufficiently largen:

Prob[A(%) =1 ~Prob[A(Y) =1 <

Intuitively, we can interpret this definition by considering thaf\(a)=1 indicates that

a is from the X sample while A(a) =0, indicates thati is from the Y, sample. Thus, the meaning is that

there is no efficient way to distinguish from which one of the spaces the sample was taken. In other words, the
"indication” is oblivious of the truth, as it has essentially the same probability on both samples.
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Remarks:
1) This definition is the uniform one. The non-uniform definition will be the same, but the word

"algorithm’ will stand for 'non-uniform algorithm’.
2) If we replace the inequality at the end of the definition with:

\Prob[A(xn) =J} - Prob[A(Yn) =iq < ni ©

c

the resultant definition is equivalent.

proof:

I. Itis obvious that the condition*{) implies the condition in the original definition.
Il. If the condition () fails, then there exist a polynomial algorithé , a constantc > 0 and

an infinite sequenc® [ N, such that
1
iC

0ioB \Prob{A(Xi)zj} —Prob{A(Yi)zjl |2 |

This sequence has an infinite subsequeBeé! B , such that
1
iC

0l OB Prob[A(xi)zj} —Prob[A(Yi)zj} > -

or an infinite subsequencB: 0 B , such that
1
iC

OidBm - {Prob{A(Xi):]} —Prob{A(Yi):]ﬂ p-] :

In the first case the original definition’s condition immediately contradicted, while in the
second case we can present an algoritAmsuch thatA(a) =1 - A(a) and thus

i OB —Prob[A(Xi) =]} +Prob[A(Yi) =1 = i

i Cc
1

c
|

- Oi0Bn - [1—Prob[A,(xi)=JH +1—ProbiA,(Yi)=J} >

1

i c

- O OBn Prob[Ar(Xi)=]} -Pl'Ob[A'(Yi):l 2

and again, the original definition’s condition failsll

3) Aswas said before, the intuition ahdistinguishability is that for every algorithmA, given a - taken
at random from one of the two distributiongy cannot successfuly guess from which one of the two
random variablesa was sampled. i.e. The probability of having a successful guess is not significantly
greater than’z . The definition given here is consistent with this intuition. Namely:
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Let {X,},{Y,} be two sequences of random variables. LBt be a random variable which is uni-
formly distibuted over {0,1} and independent &, and Y, . Let Z, be the random variable:

n Th=0
2 =1%, Ta=1

Let A be a probabilistic polynomial algorithm that givem as input, outputs 1 or 0 (which may be
interpreted asa isa X, or Y, sampling, respectively).

Note thatintuitively, Prob @A(a) =T,)) means thatA decides successfully ifx is from the X, or Y,
samples.

Then, the two following conditions are equivalent :

N, On > N : ‘Prob[A(Xn):]} -Prob[A(Yn)zq < ,Tlc 1)
[N, On > N : Prob{A(a):Tn} < %+ 2-110 2)

i.e. it is equivalent to say : "The probability & outputing a correct answer is not significantly greater
than 2" or " A cannot distinguish betweenX{} and {Y,}".

Proof:

N, On > N : ‘Prob[A(Xn)=]} —Prob[A(Yn)zj} < nklc

= N, On > N: Prob:A(xn)zlj —Prob[A(Yn)=J} < nklc

- [N, On >N: ProbiA(Xn)zlj - [1‘Pr0b[A(Yn)=q < nilc

- [N, On > N: Prob:A(Xn):lj +Prob[A(Yn):@ < 1+nklc

~ [N,On >N:

Pmb{A(Zn):l‘Tn :J} +Pr0b£A(Zn):0\Tn =q <1+ nklc
< [N, On > N:
l[Prob{A(ZnFl\Tn:q +Prob£A(Zn):0\Tn:(ﬂ R

2 2 2n°
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= [N, 0On > N:
Prob{A(Zn):l\Tn:]}-Prob (rn:1)+Prob£A(Zn:O\Tn:(i-Prob(l'n:O) < %+ Zlc
n
. 1 1
= [N,On > N: ProbA(Z,) =T, < =+ |
2 2n°

Examples:

n
1) X, is uniformly distributed over {0,1} , Y, is uniformly distributed over ;-0 | _Dl 0;=0}.
=

{X,},{Y,} arepolynomially distinguishable.
Proof: Let A be the following algorithm:

n
Given a=dajo0ot, , A(a)= _Dlo(i .
1=
n
Prob {A(Xn) = ]} =Y, since exactly half of the stringsx(1{0,1}" satisfy .Dlo(i =1.
|:
n
Prob[A(Yn) =]} =0, sinceY, ranges over stringst with .Dlo(i =0.
1=

0 Prob[A(X) =1 ~Prob[A(Y) =1 =

and this is significantly greater than zerdll

2) X, is uniformly distributed over {0,1}, Y, is uniformly distributed over {0,1}\S,,

n n
S, ={1} 2 {0,1} ? .
{Xn},{Yn} are polynomially indistinguishable.

Proof: Intuitively, there are "few"a such thata is from the X, sample and not from thé,, sample
n

(the fraction is 22 ) and thus, given a stringt :
Prob X, = o) BProb (¥, = a)

More precisely, we will see thaX,, and Y, arestatisticallyclose (This notion will be defined later).
namely : Forany function f , we will prove that

Oc > 0 [N, On > N: Prob{f (xn)zj} —Prob{f (Yn)zj} <L
n

Let S £ f1(1). Then

Prob [f (X)) = :q = 5 Prob &, = a) *)

alds

12/27/95



-60 -
since the events are disjoint. and similarly fgy :

Prob {f (Yy) = ]} = > Prob (v, =a)

ads

Thus,

\Prob[f (Xn)=]} —Prob[f (Yn)=]} =] S ProbX,=a)- 3 Prob(f,=a)|<

oS als
< ¥ |Prob X, =a)—Prob {f, =a)| <
alS
< Y |ProbX,=a)-Prob(,=a)|=
a{0,1}"
= > |Prob X, =a) -Prob (f, =a) |+ ¥ |Prob X, =a) = Prob (Y, = a) |
adS;n{0,1}" al{o, 13MS,
Now,

a0S;n{0,1}" O Prob()(nza):zkln and ProbY{,=0a)=0

a0{0,1}"\S; O Prob()(n:a):in and Proan=0()=;n
2 2”_2?

n
In the first summation not more thafs; |=22 elements are summed. In the second summation
n

{0,1}"\ S |=2" - 22 elements are summed. Therefore, the total result is not greater than :

n

n
1 .5 1 1l on_52y_
P2 T w2
2N -22 22
which is a negligible fraction, i.e.
Oc >0 [N, On >N: 2n <iC |
n

2?
As was mentioned before, the random variables in this exampletatisticallyclose.

In general, two sequences of random variable$,}{ { Y,} ranging over {0,1})" are said to be

statistically close iff for any constantc > 0 and for any sufficiently largen :
S |Prob X, =a) - Prob (f =) | < —
a0{o, 13" n

The above proof shows thatatisticallyclose random variables are polynomially indistinguishable. In
fact, statisticallyclose random variables are indistinguishable by any algorithm (even non-uniform one
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with no restriction on time bounds).
This case ofindistinguishability is not so interesting since the sample spaces are almost identical.
In the next example the random variables range over disjoint sets, and are yet indistinguishable.

Let b(a) denote a hard core predicate for a one-way permutation

Let X, be uniformly distributed over the s{tf (o) |a{0,1}" Ob(a) = O} and letY,, be uniformly

distributed over the se{ f (o) |a{0,1}" Ob(a) = 1} . Clearly, X, and Y, are notstatisticallyclose :

Infact, 3 [Prob X,=p)-Prob(,=p)|=1.
pO{o, 13"

Claim: If bis a hard core predicate with regard fo, then {X,} and {Y,} are polynomially indis-
tinguishable.

Proof: Assume by contradiction thatX{}, { Y,,} are polynomially distinguishable.

Therefore, there exists a probabilistic polynomial algoritdm such that:

Oc > 0,0N, Th > N : Prob{A(xn):]} —Prob{A(Yn):]} > L *)

nC

Let Z, be arandom variable uniformly distributed over {071}

=3

p 2 Prob [A(Yn) = ]} = Prob[A(f (Zo)) =b(Z0)|b(Zy) = ]}

=

1-q = Prob [A(xn) = 1} =Prob [A(f (Z) £b(Z,) |b(Z,) = @ =
= 1-Prob [A(f () =b(Z) |b(Zy) = @

Now, Prob[b(Zn) =(i @Prob[b(zn) =JJ HY- , since b is a hard core predicate (bjf we mean

"equal up to a negligible additive fraction").
Thus,

Prob|A(f (Z,)) = b (Z,) =
= Prob[A(f (Z) =b(Z,))|b(Z,) = 1} ‘Prob [b (Zn) = 1} +
+ Prob[A(f (Zn)) =b(Z,)|b(Z,) = (j Prob [b (Zn) = @ B
HBp¥2+q¥2=%2(p +0)

By (). p—(l—q)>n%
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U p+q >1+i
nC

_ 1 1
O Prob{A(f (Zy) = b(Zn)J > > + P
That is, there exists a probabilistic polynomial algoritiinand a constant: > 0, such that

Prob[A(f Z.)) = b(Zn)} > % P

n®

contradiction tob being a hard core predicate of functidn
We conclude that X,} and {Y,} are polynomially indistinguishable. &

One may consider a stronger notion of polynomielistinguishability. Namely, consider pairs of poly-
nomial random variables, which cannot be distinguished even by an algorithm that is given as input a polyno-
mial number of samplings of one of the random variables, instead of just one sampling. More precisely: for
every polynomial algorithmA , for every polynomial q(n), for every constantc > 0 and for every
sufficiently largen :

Prok{AO_(n) :J} - Prob[A(\?n) =]} < rTlc

where X, denotes a vector of{(n) independentX,, samplings, and similarly foiY,,

We will see in the future that both notions are equivalent.

3. Security in the sense of Indistinguishability

Now that the concept ofindistinguishability is clarified, we shall use it for defining an encryption
scheme which is secure in the sensdrmdistinguishability of encryptions.

Definition: An encryption schemeQG,E,D) is said to besecure in the sense widistinguishability
iff for every [polynomial] sequence of random variableX,{= Xt X} , for every polynomial algorithm

A, for every constant > 0 and for every sufficiently large :

1
> Prob X, =aoB)-\Prob[A(ao[3, Ecam(0)) =]} - Prob[A(aoB, Ecam(B)) :]} < =
a,po{o,1}" n

while the probability is taken oveK{? and X s distributions and the coin tosses 8f, G and E .

This definition states that on the avarage, the encryption spack§ofand X{2) are indistinguishable.
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An alternative formalization: An encryption scheme G,E,D) is said to be secure in the sense of
indistinguishability iff for every probabilistic polynomial-timealgorithm F (F for Find), for every
probabilisticpolynomial-timealgorithm A , for every constant > 0 and for every sufficiently large :

Prob|F(1") = aoP s.t.‘Prob[A((xoB, EG(ln)(a))zl} - Prob{A(aoB, EG(ln)(B))sz ‘> ﬂ < nklc

Again, the probability is taken over the coin tossesof A,E and G .
The intuition is much the same : The probability of efficiently finding a paif such that their encryptions
are polynomially distinguishable, is negligible.

As before , the formalizations including the brackets are uniform. In the non-uniform definition brackets
are omitted, and'algorithms means'non-uniform algorithms. In the non-uniform case both formaliza-
tions are equivalent to the simple following one:

(G,E,D) is said to be secure in the senseinflistinguishability iff for every probabilisticpolynomial-time
algorithm A , for every constant > 0, for every sufficiently largen and for every pair a, B 0 {0,1}"

\Prob[A(aoB, EG(ln)(a))zj} - Prob[A(aoB, EG(ln)(B)):]} < nklc

This stronger formulation is possible because the sampling algorithm in the first definition and the algorithm
F in the second one , can now be non-uniform. Thus, if there exists acp@irthat violates the condition,
the algorithms & and A ) can incorporate it in them, and thus the probability of sampling / finding this pair
is 1.
Of course, since the algorithri is not used any more in the second definition, it can be omitted.

In the next lecture we shall prove the following Theorem:
If an encryption schemeQE,D) is secure in the sense afdistinguishability then it is semantically secure.

Actually, the two definitions are equivalent, but the abawelicationis the interesting one, since the
existence of encryption schemes secure in the sensaditinguishability will be proved, and this fact,
together with the theorem, implies the existence of semantically secure encryption schemes.
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