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Foundations of Cryptography
Notes of lecture No. 6 (given on Apr. 9th)

Notes taken by Michal Seidmann and Nir Dvir

Summary

In this lecture we recall the definition of semantic security, and introduce the central notion ofindis-

tinguishability. We will use this concept in another definition of secure encryption scheme:Security in the

sense ofindistinguishabilityof encryptions.We claim that an encryption scheme which is secure according to

the last definition, is also secure according to the first one.

1. Semantic Security

Semantic security was defined in the previous lecture using probability distributions. In the sequel, we

state this definition in terms of random variables.

Polynomial Random Variable

Let Xn be a random variable ranging over {0,1}n (i.e. Xn maps elements of some sample spaceΩ to

{0,1} n ). Actually, we shall speak of sequences of random variables {Xn} n∈N , such that for alln, the ran-

dom variableXn is distributed over {0,1}n .

The sequence {Xn} n∈N is said to be asequence of polynomial random variables,iff there exists a proba-

bilistic polynomial algorithm S, such thatXn= S(1n) ( We would like S to bepolynomial-timein n , and

therefore it is given the inputn in unary). We callS a sampling algorithm for {Xn} n∈N .

We will sometimes say: "Xn is a polynomial random variable" as a short way of saying: " {Xn} n∈N is a

sequence of polynomial random variables".

Examples:

I. Given the unary input 1n , algorithm S1 tossesn coins, and outputs the outcome. In this case:

Xn = S1(1n) is uniformly distributed over the sample space {0,1}n. i.e.

∀ α ∈ {0,1} n Prob (Xn = α) = 2−n

II. Given the unary input 1n, algorithm S2 always outputs 1n. Here:Xn = S2(1n) is identically 1n . Thus,

Prob (Xn = 1n) = 1 , and: ∀α∈{0,1} n, α≠1n ⇒ Prob (Xn = α) = 0

III. Given 1n , algorithm S3 tosses
2
nhh coins. Letr be the outcome. The output ofS3 is r f r. One can
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easily see that

a≠b ⇒ Prob (Xn = a f b) = 0

a=b ⇒ Prob (Xn = a f b) = 2
−

2
nhh

where c a c = c b c =
2
nhh .

It is important to note that not all sequences of random variables can be efficiently sampled (i.e. by a

polynomial algorithm). In order to see this, note that the cardinality of the set of all sequences of random vari-

ables isℵ (note that this is a set of infinite sequences), while the cardinality of the set of allpolynomial-time

sampling algorithms isℵ0 . It follows that most of the sequences of random variables cannot be polynomi-

ally sampled.

Definition:

An encryption scheme (G,E,D) is said to beSemantically Secureiff for every sequence {Xn} n∈N

of [polynomial] random variables, for every [polynomial] functionh , for every function f and for every

probabilistic polynomial algorithmA , there exists a probabilistic polynomial algorithmA′ such that for

every constantc > 0 and for every sufficiently largen , the following inequality holds:

Prob I
L A (EG(1n)(Xn), h (Xn), 1n) = f (Xn)MO ≤ Prob I

L A′(h (Xn), 1n) = f (Xn)MO +
nc

1hhh

while the probability is taken overXn′s distribution and the coin tosses ofA or A′ , G andE .

Remarks:

(1) The intuition, as in the last lecture, is that the encryption does not add any further information to what

was known a-priori about the message.

(2) This definition is actually two different definitions: The one including the brackets ([ ]) is the definition

for Uniform Semantic Security, and the one excluding the brackets is forNon-Uniform Semantic

Security. In the non-uniform case, wherever we mention the words’polynomial algorithm’ we mean

’a non-uniform polynomial algorithm’. Obviously, probabilism can be removed in these non-uniform

algorithms.

Clearly, if an encryption scheme is semantically secure in the non-uniform sense, then it is also secure

in the uniform sense. But, we still give both definitions, because it is "easier" to prove the existence of

uniform semantically secure encryption schemes than the existence of non-uniform ones. By’easier’

we mean that the required assumptions seem less strong in the uniform case. In this case we will assume

existence of uniform one-way permutation, while in the second case we will have to assume that these
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one-way permutations cannot be reversed by non-uniform polynomial algorithms.

We would like to introduce another definition for secure encryption schemes, perhaps less natural (more

technical), but showing the existence of secure encryption schemes will be simpler using this new definition.

Also, this definition will be more convenient to deal with, when the encryption scheme is used in a crypto-

graphic protocol.

Before giving this definition we introduce and give examples of a notion central to this course: "Polynomial

indistinguishability".

2. Polynomial Indistinguishability.

We introduce and motivate the notion of polynomialindistinguishability in the context of secure

encryption, but this notion is of general importance to complexity theory and will be used throughout the

course in other context as well. In particular, many of the central cryptographic notions refer to the concept of

indistinguishability. Intuitively, while dealing with encryption schemes, polynomialindistinguishability

means the lack of the ability to decide efficiently, given two messagesM1, M2 and an encryptionE (Mi ) of

one of them, to which message the encryption corresponds. In a general sense, one can look at indistingui-

shability this way: Given an object, which was chosen with equal probability from one of two baskets, it can-

not be guessed successfully (with a probability significantly greater than1⁄2 ), from which of the baskets it was

taken.

If the sampling algorithms are deterministic, then it can be guessed successfully (with probability 1), which

one of the two random variables was sampled, therefore the notion ofindistinguishability is meaningless in

this case.

Definition : Two sequences {Xn} n∈N , {Yn} n∈N of random variables (not necessarily polynomial), are

polynomially indistinguishable iff for every polynomial algorithm A, for every c>0 and for every

sufficiently largen:

Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O <
nc

1hhh

Intuitively, we can interpret this definition by considering thatA (α) = 1 indicates that

α is from the Xn sample, while A(α) = 0, indicates thatα is from the Yn sample. Thus, the meaning is that

there is no efficient way to distinguish from which one of the spaces the sample was taken. In other words, the

"indication" is oblivious of the truth, as it has essentially the same probability on both samples.
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Remarks:

1) This definition is the uniform one. The non-uniform definition will be the same, but the word

’algorithm’ will stand for ’non-uniform algorithm’.

2) If we replace the inequality at the end of the definition with:

c Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O c <
nc

1hhh (*)

the resultant definition is equivalent.

proof:

I. It is obvious that the condition (* ) implies the condition in the original definition.

II. If the condition (* ) fails, then there exist a polynomial algorithmA , a constantc > 0 and

an infinite sequenceB ⊆ N , such that

∀i ∈ B c Prob I
LA (Xi ) = 1M

O − Prob I
LA (Yi ) = 1M

O c ≥
i c

1hhh

This sequence has an infinite subsequenceB′ ⊆ B , such that

∀i ∈ B′ Prob I
LA (Xi ) = 1M

O − Prob I
LA (Yi ) = 1M

O ≥
i c

1hhh

or an infinite subsequenceB′′ ⊆ B , such that

∀i ∈ B′′ − R
Q Prob I

LA (Xi ) = 1M
O − Prob I

LA (Yi ) = 1M
O
H
P ≥

i c

1hhh

In the first case the original definition’s condition isimmediatelycontradicted, while in the

second case we can present an algorithmA′ such thatA′(α) = 1 − A (α) and thus

∀i ∈ B′′ − Prob I
LA(Xi ) = 1M

O + Prob I
LA(Yi ) = 1M

O ≥
i c

1hhh

⇔ ∀i ∈ B′′ − I
L1 − Prob I

LA′(Xi ) = 1M
O
M
O + 1 − Prob I

LA′(Yi ) = 1M
O ≥

i c

1hhh

⇔ ∀i ∈ B′′ Prob I
LA′(Xi ) = 1M

O − Prob I
LA′(Yi ) = 1M

O ≥
i c

1hhh

and again, the original definition’s condition fails.a

3) As was said before, the intuition ofindistinguishability is that for every algorithmA, given α - taken

at random from one of the two distributions,A cannot successfuly guess from which one of the two

random variablesα was sampled. i.e. The probability of having a successful guess is not significantly

greater than1⁄2 . The definition given here is consistent with this intuition. Namely:
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Let {Xn} , { Yn} be two sequences of random variables. LetTn be a random variable which is uni-

formly distibuted over {0,1} and independent ofXn and Yn . Let Zn be the random variable:

Zn =
I
K
LXn

Yn

Tn = 1

Tn = 0

Let A be a probabilistic polynomial algorithm that givenα as input, outputs 1 or 0 (which may be

interpreted asα is a Xn or Yn sampling, respectively).

Note thatintuitively, Prob (A (α) = Tn) means thatA decides successfully ifα is from the Xn or Yn

samples.

Then, the two following conditions are equivalent :

∃N, ∀n > N : c Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O c < nc

1hhh (1)

∃N, ∀n > N : ProbI
LA (α) = Tn

M
O <

2
1hh +

2.nc

1hhhhh (2)

i.e. it is equivalent to say : "The probability ofA outputing a correct answer is not significantly greater

than 1⁄2 " or " A cannot distinguish between {Xn} and {Yn} ".

Proof:

∃N, ∀n > N : c Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O c < nc

1hhh

⇔ ∃N, ∀n > N : Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O <
nc

1hhh

⇔ ∃N, ∀n > N : Prob I
LA (Xn) = 1M

O − I
L1 − Prob I

LA (Yn) = 0M
O
M
O <

nc

1hhh

⇔ ∃N, ∀n > N : Prob I
LA (Xn) = 1M

O + Prob I
LA (Yn) = 0M

O < 1 +
nc

1hhh

⇔ ∃N, ∀n > N :

Prob I
LA (Zn) = 1 c Tn = 1M

O + Prob I
LA (Zn) = 0 c Tn = 0M

O < 1 +
nc

1hhh

⇔ ∃N, ∀n > N :

2
1hh . R

QProb I
LA (Zn) = 1 c Tn = 1M

O + Prob I
LA(Zn) = 0 c Tn = 0M

O
H
P <

2
1hh +

2.nc

1hhhhh
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⇔ ∃N, ∀n > N :

Prob I
LA (Zn) = 1 c Tn = 1M

O
.Prob (Tn = 1) + Prob I

LA(Zn = 0 c Tn = 0M
O
.Prob (Tn = 0) <

2
1hh +

2.nc

1hhhhh

⇔ ∃N, ∀n > N : ProbI
LA(Zn) = Tn

M
O <

2
1hh +

2.nc

1hhhhh a

Examples:

1) Xn is uniformly distributed over {0,1}n , Yn is uniformly distributed over {σ1
...σn c

i =1
⊕
n

σi = 0 } .

{ Xn} , { Yn} are polynomially distinguishable.

Proof: Let A be the following algorithm:

Given α = α1 f ...f αn , A(α) =
i =1
⊕
n

αi .

Prob I
LA (Xn) = 1M

O = 1⁄2 , since exactly half of the stringsα∈{0,1} n satisfy
i =1
⊕
n

αi = 1 .

Prob I
LA (Yn) = 1M

O = 0 , sinceYn ranges over stringsα with
i =1
⊕
n

αi = 0 .

⇒ Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O =
2
1hh

and this is significantly greater than zero.a

2) Xn is uniformly distributed over {0,1}n , Yn is uniformly distributed over {0,1}n \ S1 ,

S1 = {1} 2
nhh

f {0,1} 2
nhh

.

{ Xn} , { Yn} are polynomially indistinguishable.

Proof: Intuitively, there are "few"α such thatα is from the Xn sample and not from theYn sample

(the fraction is 2
−

2
nhh

) and thus, given a stringα :

Prob (Xn = α) ∼∼ Prob (Yn = α)

More precisely, we will see thatXn and Yn arestatisticallyclose (This notion will be defined later).

namely : Forany function f , we will prove that

∀c > 0 ∃N, ∀n > N : Prob I
Lf (Xn) = 1M

O − Prob I
Lf (Yn) = 1M

O <
nc

1hhh

Let S ≡∧ f −1(1) . Then

Prob I
Lf (Xn) = 1M

O =
α∈S
Σ Prob (Xn = α) (*)
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since the events are disjoint. and similarly forYn :

Prob I
Lf (Yn) = 1M

O =
α∈S
Σ Prob (Yn = α)

Thus,

c Prob I
Lf (Xn) = 1M

O − Prob I
Lf (Yn) = 1M

O c = c
α∈S
Σ Prob (Xn = α) −

α∈S
Σ Prob (Yn = α) c ≤

≤
α∈S
Σ c Prob (Xn = α) − Prob (Yn = α) c ≤

≤
α∈{0,1} n

Σ c Prob (Xn = α) − Prob (Yn = α) c =

=
α∈S1∩{0,1} n

Σ c Prob (Xn = α) − Prob (Yn = α) c +
α∈{0,1} n\S1

Σ c Prob (Xn = α) − Prob (Yn = α) c

Now,

α∈S1∩{0,1} n ⇒ Prob (Xn = α) =
2n

1hhh and Prob (Yn = α) = 0

α∈{0,1} n \ S1 ⇒ Prob (Xn = α) =
2n

1hhh and Prob (Yn = α) =

2n − 2 2
nhh

1hhhhhhhh

In the first summation not more thanc S1 c = 2 2
nhh

elements are summed. In the second summation

c {0,1} n \ S1 c = 2n − 2 2
nhh

elements are summed. Therefore, the total result is not greater than :

2n

1hhh .2 2
nhh

+
I
J
J
L 2n − 2 2

nhh

1hhhhhhhh −
2n

1hhh
M
J
J
O

.(2n − 2 2
nhh

) =

2 2
nhh

2hhhh

which is a negligible fraction, i.e.

∀c > 0 ∃N, ∀n > N :

2 2
nhh

2hhhh <
nc

1hhh a

As was mentioned before, the random variables in this example arestatisticallyclose.

In general, two sequences of random variables {Xn} , { Yn} ranging over {0,1}n are said to be

statisticallyclose iff for any constantc > 0 and for any sufficiently largen :

α∈{0,1} n
Σ c Prob (Xn = α) − Prob (Yn = α) c <

nc

1hhh

The above proof shows thatstatisticallyclose random variables are polynomially indistinguishable. In

fact, statisticallyclose random variables are indistinguishable by any algorithm (even non-uniform one
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with no restriction on time bounds).

This case ofindistinguishability is not so interesting since the sample spaces are almost identical.

In the next example the random variables range over disjoint sets, and are yet indistinguishable.

3) Let b (α) denote a hard core predicate for a one-way permutationf .

Let Xn be uniformly distributed over the set
I
K
L

f (α) c α∈{0,1} n ∧ b (α) = 0
M
N
O

and let Yn be uniformly

distributed over the set
I
K
L

f (α) c α∈{0,1} n ∧ b (α) = 1
M
N
O
. Clearly, Xn and Yn are notstatisticallyclose :

In fact,
β∈{0,1} n

Σ c Prob (Xn = β) − Prob (Yn = β) c = 1 .

Claim: If b is a hard core predicate with regard tof , then {Xn} and {Yn} are polynomially indis-

tinguishable.

Proof: Assume by contradiction that {Xn} , { Yn} are polynomially distinguishable.

Therefore, there exists a probabilistic polynomial algorithmA , such that:

∃ c > 0, ∀N, ∃n > N : Prob I
LA (Xn) = 1M

O − Prob I
LA (Yn) = 1M

O >
nc

1hhh (*)

Let Zn be a random variable uniformly distributed over {0,1}n .

p ≡∧ Prob I
LA (Yn) = 1M

O = Prob I
LA (f (Zn)) = b (Zn) c b (Zn) = 1M

O

1 − q ≡∧ Prob I
LA (Xn) = 1M

O = Prob I
LA (f (Zn)) ≠ b (Zn) c b (Zn) = 0M

O =

= 1 − Prob I
LA (f (Zn)) = b (Zn) c b (Zn) = 0M

O

Now, Prob I
Lb (Zn) = 0M

O
∼∼ Prob I

Lb (Zn) = 1M
O
∼∼ 1⁄2 , since b is a hard core predicate (by∼∼ we mean

"equal up to a negligible additive fraction").

Thus,

Prob I
LA (f (Zn)) = b (Zn)MO =

= Prob I
LA (f (Zn)) = b (Zn) c b (Zn) = 1M

O
.Prob I

Lb (Zn) = 1M
O +

+ Prob I
LA (f (Zn)) = b (Zn) c b (Zn) = 0M

O
.Prob I

Lb (Zn) = 0M
O
∼∼

∼∼ p.1⁄2 + q.1⁄2 = 1⁄2.(p + q)

By (* ) , p − (1 − q) >
nc

1hhh
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⇒ p + q > 1 +
nc

1hhh

⇒ Prob I
LA (f (Zn)) = b (Zn)MO >

2
1hh +

2.nc

1hhhhh

That is, there exists a probabilistic polynomial algorithmA and a constantc′ > 0 , such that

Prob I
LA (f (Zn)) = b (Zn)MO >

2
1hh +

nc′
1hhhh

contradiction tob being a hard core predicate of functionf .

We conclude that {Xn} and {Yn} are polynomially indistinguishable. a

One may consider a stronger notion of polynomialindistinguishability. Namely, consider pairs of poly-

nomial random variables, which cannot be distinguished even by an algorithm that is given as input a polyno-

mial number of samplings of one of the random variables, instead of just one sampling. More precisely: for

every polynomial algorithmA , for every polynomial q (n) , for every constantc > 0 and for every

sufficiently largen :

ProbI
LA (X

hh
n) = 1M

O − ProbI
LA (Y

h
n) = 1M

O <
nc

1hhh

where X
hh

n denotes a vector ofq (n) independentXn samplings, and similarly forYn

We will see in the future that both notions are equivalent.

3. Security in the sense of Indistinguishability

Now that the concept ofindistinguishability is clarified, we shall use it for defining an encryption

scheme which is secure in the sense ofindistinguishability of encryptions.

Definition: An encryption scheme (G,E,D) is said to besecure in the sense ofindistinguishability

iff for every [polynomial] sequence of random variables {Xn = Xn
(1) f Xn

(2)} , for every polynomial algorithm

A , for every constantc > 0 and for every sufficiently largen :

α,β∈{0,1} n
Σ Prob (Xn = α f β). c Prob I

LA (α f β , EG(1n)(α)) = 1M
O − Prob I

LA (α f β , EG(1n)(β)) = 1M
O c <

nc

1hhh

while the probability is taken overXn
(1) and Xn

(2) ’s distributions and the coin tosses ofA , G and E .

This definition states that on the avarage, the encryption spaces ofXn
(1) and Xn

(2) are indistinguishable.
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An alternative formalization: An encryption scheme (G,E,D) is said to be secure in the sense of

indistinguishability iff for every probabilistic polynomial-timealgorithm F ( F for Find ), for every

probabilisticpolynomial-timealgorithm A , for every constantc > 0 and for every sufficiently largen :

Prob
I
J
L
F (1n) = α f β s.t. c Prob I

LA (α f β , EG(1n)(α)) = 1M
O − Prob I

LA(α f β , EG(1n)(β)) = 1M
O c > nc

1hhh
M
J
O

<
nc

1hhh

Again, the probability is taken over the coin tosses ofF , A , E and G .

The intuition is much the same : The probability of efficiently finding a pairα,β such that their encryptions

are polynomially distinguishable, is negligible.

As before , the formalizations including the brackets are uniform. In the non-uniform definition brackets

are omitted, and′algorithms′ means ′non−uniform algorithms′ . In the non-uniform case both formaliza-

tions are equivalent to the simple following one:

(G,E,D) is said to be secure in the sense ofindistinguishability iff for every probabilisticpolynomial-time

algorithm A , for every constantc > 0 , for every sufficiently largen and for every pair α , β ∈ {0,1} n

c Prob I
LA (α f β , EG(1n)(α)) = 1M

O − Prob I
LA (α f β , EG(1n)(β)) = 1M

O c <
nc

1hhh

This stronger formulation is possible because the sampling algorithm in the first definition and the algorithm

F in the second one , can now be non-uniform. Thus, if there exists a pairα,β that violates the condition,

the algorithms (F and A ) can incorporate it in them, and thus the probability of sampling / finding this pair

is 1.

Of course, since the algorithmF is not used any more in the second definition, it can be omitted.

In the next lecture we shall prove the following Theorem:

If an encryption scheme (G,E,D) is secure in the sense ofindistinguishability,then it is semantically secure.

Actually, the two definitions are equivalent, but the aboveimplication is the interesting one, since the

existence of encryption schemes secure in the sense ofindistinguishability will be proved, and this fact,

together with the theorem, implies the existence of semantically secure encryption schemes.
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