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Foundations of Cryptography
Notes of lecture No. 8A (given on Apr. 30th by Oded GOLDREICH)

Notes taken by Yaron Kretchmer and Itzhak Parnafes

Summary

In this lecture we present a public-key encryption system based on the existence of one way permuta-
tions with trapdoor. We prove that it is semantically secure.

1. One - Way Permutations with Trapdoor

We recall the definition of a one-way functions with trapdoor as introduced in lecture 3. We consider a
set of one-way permutations

{f:D; -~D;}, iOI0{0,1}"

where theD; are finite domains, anldis some index set.

example: in RSA scheme the functions aré({\,,e):zf\l ~ Zn}, whereN=p-q for primesp,q ande is relatively
prime with@(N).

The functionsf; satisfy the following requirements: (all algorithms mentioned hereaftgpaggmomial-time)

(1) There exists a sampling algorith® such that,
S:(1") ranges ovetl n{0, 1}ﬂ x{0,1}"

Namely, in addition to the indeixin I, the algorithmS; gives a valué (i), called thetrapdoor.
The lengthn is called thé'security parameter”.

example: in theRSA, S;(1") = [(N,e)@, whereN is a product of two primep andq of Iength%, andeis

relatively prime tog(N), the trapdoott (N,e) is (N,d) such thatd=(e™* mod@(N)). Alternatively, one can
consider as thé&rapdoorthe pair of primesg,q), from which the value ofl can be computed in polynomial
time.

There are several probabilistic polynomial algorithms that can oygtpyande as requested.

(2) There exists a sampling algorith83, such that
S,(i) ranges oveb;

example:in theRSA the output 0fS,(N,e) is a random element frody.
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(3) The functionsf; are polynomial time computable, that is there exists an algor&hrauch that
Aq1(i,x) = fi(x)
example:in theRSA, A1((N, e), x) = (x® modN)

(4) The functionsf; are easy to invert given the trapdddi), i.e. there exists an algorithA,, such that

Aa(t(i)y) = fi(y)
example: In theRSA A,((N,d),y) = (y¢ modN) = (x modN), wherey = (x modN).

(5) The functionsf; are hard to invert (without the trapdoor information) i.e. for all probabilistic poly-
nomial algorithmA’, Oc>0 [N>0 On>N

Prob(A'(i, f;(x)) =x) < nklc

Wherei is from the distribution induced b$,(1"), andx is taken from the distribution d,(i).

From requirements (4) and (5) it follows that the valug @} is hard to obtain from, otherwise an algorithm
A’ computingt (i) and applyingA, would invert the functions;.

Remark: If in the above requirement (5), we replace "for all probabilistic polynomial time algoriththby
"for all non-uniform polynomial algorithm&\', we get a family of permutations which are one-way in a
"non-uniform sense" (see lecture 2).

Reminder: We will later use the definition diard-core (see lecture 4)

A predicateb: {0,1}" - {0,1} is called ahard-coreof a one-way functionf, if it is polynomial time com-
putable but for alpolynomial-timeprobabilistic algorithmA’ [Ic>0 [N>0 [On>N

1

nC

Prob@'(f (x)) = b(x)) < % 4

2. Construction of a secure encryption system

Following we describe a secure public-key encryption system. It is based on a family of one-way per-
mutations as defined above and on a hard-core predi¢gtéor this family. (As was shown in lecture 4, any
such family has a hard-core predicate.)

The encryption system is a triplet (G,E,D) of probabiligitdynomial-timealgorithms:

Key Generation : G(1") - (i,t(i))

Wheree=i is the (public) encryption key, artFt (i) is the decryption key.

Encryption: Leta be anm-bit messageq = 010
DefineEg(a) = ((C1,Y1), " (Cm,Ym)), Wherec; andy; are computed as follows:

forj=1tom

Xj — Sy(e) (*i.e. selectx; at random inD¢*)
i< Arlex)  (*ie. y=fe(x)*)
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Cj <—O'J|jb(XJ)

end.

Note that the coin tosses 8§ during its repetitive activations aprobabilisticallyindependent.

Decryption: Let C=((cq,Y1),(CmYm)) be an encrypted message. The decryption algorithm
Dy4(C) =010, is:

forj=1tom
X Ax(dy)  (*x=fHy) %)
bj — b(x;)
0j — b;0c;

end.

Theorem 1:if { fi},, is a collection of one-way permutations with a trapdoor, then the system

described above is a secure public-key encryption system. (The encryption system in uniformly / non-
uniformly secure according to the uniform / non-uniform one-wayness of the farfily {

Proof: First, note thatD4E<(m) = m, namely that the above system constitutes an encryption system.
Next we will show that the encryption system is secure in the sensmdi$tinguishability. By the
equivalence theorem proved in lecture No. 7, it follows that the encryption system is semantically secure.

The theorem follows from the following two lemmas:

Lemma 1: The above encryption system is secure in the sengedigtinguishability,when encrypting one-

bit messages.

Lemma 2: If the above encryption system is secure for one-bit messages, then it is secure for encrypting mes-
sages with length polynomial in the key length.

Proof of Lemma 1: Let us assume, on the contrary, that there is a polynomial probabilistic algomithm,
which distinguishes between the encryptions of the bits 0 and 1. That is, there exists a distinguishing algo-
rithm A, a constantq and infinitely manyn’s for which

\PfOt{A(Ee(O)) = ]} - Prob{A(Ee(l)) = ]}‘ > nio

where the probabilities are taken over the key sga¢t') and over the coin tosses Af Without loss of gen-
erality we may assume that the above inequality holds for infinitely nmgven without the absolute value.
Otherwise, we may uskinstead ofA, and it will satisfy the inequality. So, we have

Prot{A(Ee(O)) - ]} - Prot{A(Ee(l)) :]} > nio (1)

SinceEg(0) = (alb (x), fe(x)), for a randomly sampler, we get from (1)

1

Co

Prot{A(b (%), Fo(x)) = ]} - Prot{A (B, fu(x)) = J} > )

n
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(we useb (x) for 10b(X)).
Because of this bias iA’s output, we can considé as a "judge"” which on inputy fe(x)) for a}{0, 1}, out-
puts a vote ('1’) indicatindy (x)=0, or a vote ('0") forb(x)=c_5. For infinitely manyn’s this judge is correct in
a significant majority of cases. Based on this observation, we construct the following algdyittuimich
"guessesh (x) from fg(x) with probability significantly better tha¥t.
Algorithm A’ on inputfe(x):

chooseoslg{0, 1}

if A(o,fe(x)) =1 then output

else output

The success probability fa¥ is
Prob A'(fo(x)) =b () =
Probl A (0,fs())=1 D 0=b (x) + ProbA(,(x))=0 o=b(x)
- Prot{A (©.5.(0)) =1 | o=b (x)} Probe=b(x)) + Prot{A (0,5.(x)) = 0 | 0=b ()| -Prob@=b (x))

Since both Prolgf=b (x)] and Probf=b (x)] differ from ¥ by a negligible amount, (otherwisg-) cannot be a
hard-core at all), we get that (up to a negligible difference)

Pro{A’(fe(x)) = b(x)} =
- Prot{A(b %), £(2) = ]} % ¥ Prot{A(W, F(x) = @ %

= %[Prol{A(b (%), fe(x)) = J} +1- Prob{A (b().fe(x)) = ]ﬂ

From (2) we get

Prot{A’(fe(x)) - b(x)} > % st

in contradiction with the security of the hard-coré.

We prove Lemma 2 in both non-uniform and uniform cases. We use the following definition:

Definition (hybrid): Leta =a;:ay andp =b; by, be twom-bit strings. Thd —hybrid of a andf is them-

bit stringy") = a;-a;bj 1" b

We will use the notion of hybrids several times during the course, so we will devote a few words for it.

The procedure is as follows: suppose we are given two elements (or distributions), and their "distance" is
greater than somd. Now, we build a sequence afintermediate elements, hybrids, that serve as a "bridge"
between the two given elements. Using the following simple claim, we see that there must be a successive
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pair of hybrids with a distance of at Iea%c.

Claim: Given a series of number®gy--P,, such thatP,-Py>d, there existsi, 0<i<n, such that
d

Pi +1_Pi > F

The way we shall typically use the hybrids technique is by first showing that the difference between succes-
sive pairs is negligible, and then concluding that the difference between the given elements, which are the
extreme hybrids, must be also negligible.

Proof of Lemma 2 (Non - Uniform case)

Assume the Lemma does not hold. That is, there exists a fandijy} 6f polynomial-size circuits and a
sequence of paims, B, (on=B,/=m), such that for a positive constary and infinitely manyn’s,

| ProbCa(Ee(ctn) €)=1) ~ ProbCo(Ee(Br). €)1 > —
n 0

As before, we may omit the absolute value. For such aggif,, consider the corresponding hybrig¥,
0<i <n. Obviouslya, =y | B, =y, Thus,

ProbCy(Ex(™).) = 1) - ProbCa(Ee(yi?).) = 1) > —
n 0

By the above claim, there existg1{1---m} and infinitely manyn’s such that

1 1

mn%  nc

ProbCy(Ex(yA™).€) = 1) ~ ProbCa(Eo(yi” ).) = 1) > )

That is, there are two successive hybrids whose encryptions can be distinguished by the above circuit. We
will now construct a second family of circuit§;,, which will decrypt one-bit messages. The ciro@if, takes
advantage of the bias in (3) in the following way.

The circuitC',, hasig, ap=aa, ay andp,=b b, by, wired in. On input E¢(0),e) the circuitC',, first com-

putes the encryptions of the firigg—1 bits ofa,, and of the lastm—i o—1 bits of 3, by the keye, and then con-
catenates the encryptions of the firgt1 bits of a,,, the encryption oo (the input), and encryptions of the
lastm—i g—1 bits of 3, and feeds it to the circuff,,. The output ofC',, is the output ofC,,.

Assume, without loss of generality, that =1 andb; =0. It is clear thata #b; , since otherwise

yg °)=yﬂ°_1), andno algorithm can distinguish between identical objects! We show nowGhatistinguishes

o)
between the encryptions of 0 and 1, in contradiction to the hypothesis of the Lemma.
Wheno=b; =0, the concatenated stringygo_l). Therefore

ProbC'n(Ee(0).€) = 1) = ProbCn(Ee(vn” €)= 1)
Similarly,

ProbC'n(Ee(1).€) = 1) = ProbCn(Ee(y” €) = 1)

From (3) the contradiction to the security of one-bit encryption arises.
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Proof of Lemma 2 - (Uniform case)

The proof follows the same outline as in the non-uniform case. The difference is that we cannot "wire" the
sequenced,,,} in the algorithm, but have to sample it by polynomial uniform means.

Let {X,} and {Y,,} be two sequences of random variables, and let us assume that there is a distinguishing pro-
babilistic polynomial algorithnA, such that there existgy and infinitely manyn’s,

1

n®°

S ProbX,=a,Y,=PB) - |Prob@A(a,B,Ec(a),e) = 1) — Prob@(a,B,Ec(B).€)=1) >
a,p

(4)

We will call "good" the pairs, ) for which
1

2:n°

|Prob@(a,B,Ee(a),e) =1) - Prob@(a,B,Ee(B).€) = 1)| 2

and we get from (4)

2 Prob,=a,Yy=p) > 10
good €1,B) 2n™°

namely, that the probability to sample from the "good" set is non-negligible.

Again, we will construct an algorithrA’ that will decrypt one-bit messages with significant probability:

A' is given as inputk.(o),e) and performs the following steps :

(1) samplea, 3 from (X, Y,)

(2) Check whetherd, ) is a good pair. This is done by testiigon E.(0) andE¢(B) sufficiently many times

in order to get a good approximation of the difference PAdbl,3,E.(a),e) = 1] — ProbjA(a,3,Ec(B),€) = 1].

If (a,B) are seen to be "bad" - return to step (1).

As in the uniform case, we are allowed to remove the absolute value because we may choogecgither
inverse algorithmA, according to our needs. To ensure recognizing with high probability pairs with probabil-

ity difference of , We may accept as "good" those that were measured to have a difference of more then

2:n°°

o The algorithm, after finding the desired "almost good" samples, continues the same as in the non-
4n

uniform case, novat and} serve asi, andf3, in the non-uniform algorithm. Instead of having wired in,

the algorithm can choose it at random. The probability calculation of the non-uniform case applies here too,
with differences emerging due to the "guessing'l,cind the fact that we are not sure that the pair found is
actually good.

The modification is as follows: if we choosat random with uniform distribution, the average of the differ-
ences of the probabilities, assuming the algorithm actually found a "good" pair, is

Tz_ol {Prob{A (a,B, Ee(yinﬂ),e):]} - Prot{A (a,B, Ee(yin),e)zlﬂ ‘Prob{=i)

1 m-1

-1 go {Prot{A(a,B, Ee(v‘n”),e)ﬂ} - Prot{A(Ol,B, Ee(yi”)’e):]ﬂ

_mi
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1
m-4-n°°

:%[Prol{A(O(,B,Ee(O‘)ie):]J - Proh{A(a,B,Ee(B),eF]ﬂ >

Namely, the lower bound of probability of distinguishment betweaesnd 3 decreased with a factor 4 from

the non-uniform case.

Remarks:

(1) There is a negligible probability that the sampling algorithm, even after running for a long time, will not
find a "good" pair. We may set a pre-defined limit for the run time, and if the algorithm fails to find a "good"
pair in that limit, it will halt. Of course, in this case the distinguishing algorithm will fail, but it will happen
only with exponentially small probability.

(2) There is a exponentially small probability that the sampling algorithm will declare a pair as "good" even if
it is not. Then again, the distinguishing algorithm may fail.

Those remarks cause a certain decrease of the distinguishing probability but not one that is significant.

Again, we have built a system which decrypts a one-bit messages with a non-negligible probability of success

in contradiction with Lemma 1]

From Lemma 1 and Lemma 2 it follows that the proposed encryption system is secure, proving Thelirem 1
Note: A drawback of the proposed encryption system is that the encryption expabidgnessages to cryp-
tograms of lengttm-n, wheren is the security parameter In the next lecture we will present a encryption

system which, while maintaining the security conditions, exparit messages inton+n bit cryptograms,

which is reasonable for practical use.
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