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Foundations of Cryptography
Notes of lecture No. 8A (given on Apr. 30th by Oded GOLDREICH)

Notes taken by Yaron Kretchmer and Itzhak Parnafes

Summary

In this lecture we present a public-key encryption system based on the existence of one way permuta-

tions with trapdoor. We prove that it is semantically secure.

1. One - Way Permutations with Trapdoor

We recall the definition of a one-way functions with trapdoor as introduced in lecture 3. We consider a

set of one-way permutations

{ fi :Di →Di } , i ∈I⊆{0,1} *

where theDi are finite domains, andI is some index set.

example: in RSA scheme the functions are {f (N,e):ZN
* →ZN

* }, whereN=p.q for primesp,q ande is relatively

prime withφ(N).

The functionsfi satisfy the following requirements: (all algorithms mentioned hereafter arepolynomial-time)

(1) There exists a sampling algorithmS1 such that,

S1(1n) ranges overILI∩{0,1} nM
O×{0,1} *

Namely, in addition to the indexi in I, the algorithmS1 gives a valuet (i ), called thetrapdoor.

The lengthn is called the"security parameter".

example: in theRSA, S1(1n) = I
L(N,e),dMO, whereN is a product of two primesp andq of length

4
nhh , ande is

relatively prime toφ(N), the trapdoort (N,e) is (N,d) such thatd=(e−1 modφ(N)). Alternatively, one can

consider as thetrapdoor the pair of primes (p,q), from which the value ofd can be computed in polynomial

time.

There are several probabilistic polynomial algorithms that can outputp, q andeas requested.

(2) There exists a sampling algorithmS2, such that

S2(i ) ranges overDi

example: in theRSA the output ofS2(N,e) is a random element fromZN
* .
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(3) The functionsfi are polynomial time computable, that is there exists an algorithmA1 such that

A1(i,x) = fi (x)

example: in theRSA, A1((N, e), x) = (xe modN)

(4) The functionsfi are easy to invert given the trapdoort (i ), i.e. there exists an algorithmA2, such that

A2(t (i ),y) = f i
−1(y)

example: In theRSA, A2((N,d),y) = (yd modN) = (x modN), wherey = (xe modN).

(5) The functionsfi are hard to invert (without the trapdoor information) i.e. for all probabilistic poly-

nomial algorithmA′, ∀c>0 ∃N>0 ∀n >N

Prob(A′(i, fi (x)) = x) <
nc

1hhh

Wherei is from the distribution induced byS1(1n), andx is taken from the distribution ofS2(i ).

From requirements (4) and (5) it follows that the value oft (i ) is hard to obtain fromi, otherwise an algorithm

A′ computingt (i ) and applyingA2 would invert the functionsfi .

Remark: If in the above requirement (5), we replace "for all probabilistic polynomial time algorithmsA′" by

"for all non-uniform polynomial algorithmsA′", we get a family of permutations which are one-way in a

"non-uniform sense" (see lecture 2).

Reminder: We will later use the definition ofhard-core: (see lecture 4)

A predicateb : {0,1} * → {0,1} is called ahard-coreof a one-way function,f, if it is polynomial time com-

putable but for allpolynomial-timeprobabilistic algorithmA′ ∀c>0 ∃N>0 ∀n >N

Prob(A′(f (x)) = b (x)) <
2
1hh +

nc

1hhh

2. Construction of a secure encryption system

Following we describe a secure public-key encryption system. It is based on a family of one-way per-

mutations as defined above and on a hard-core predicateb (.) for this family. (As was shown in lecture 4, any

such family has a hard-core predicate.)

The encryption system is a triplet (G,E,D) of probabilisticpolynomial-timealgorithms:

Key Generation : G(1n) → (i,t (i ))

Wheree=i is the (public) encryption key, andd=t (i ) is the decryption key.

Encryption: Let α be anm-bit message,α = σ1
...σm

DefineEe(α) = ((c1,y1),...,(cm,ym)), wherecj andyj are computed as follows:

for j = 1 tom

xj ← S2(e) (* i.e. selectxj at random inDe*)

yj ← A1(e,xj ) (* i.e. yj =fe(xj )*)
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cj ←σ j ⊕b (xj )

end.

Note that the coin tosses ofS2 during its repetitive activations areprobabilisticallyindependent.

Decryption: Let C = ((c1,y1),...,(cm,ym)) be an encrypted message. The decryption algorithm

Dd(C) = σ1
...σm, is:

for j = 1 tom

xj ← A2(d,yj ) (* xj =fe
−1(yj ) *)

bj ← b(xj )

σ j ← bj ⊕cj

end.

Theorem 1: if { fi } i ∈I is a collection of one-way permutations with a trapdoor, then the system

described above is a secure public-key encryption system. (The encryption system in uniformly / non-

uniformly secure according to the uniform / non-uniform one-wayness of the family {fi }).

Proof: First, note thatDdEe(m) = m, namely that the above system constitutes an encryption system.

Next we will show that the encryption system is secure in the sense ofindistinguishability. By the

equivalence theorem proved in lecture No. 7, it follows that the encryption system is semantically secure.

The theorem follows from the following two lemmas:

Lemma 1: The above encryption system is secure in the sense ofindistinguishability,when encrypting one-

bit messages.

Lemma 2: If the above encryption system is secure for one-bit messages, then it is secure for encrypting mes-

sages with length polynomial in the key length.

Proof of Lemma 1: Let us assume, on the contrary, that there is a polynomial probabilistic algorithm,A,

which distinguishes between the encryptions of the bits 0 and 1. That is, there exists a distinguishing algo-

rithm A, a constantc0 and infinitely manyn’s for which

JProbRQA (Ee(0)) = 1HP − ProbRQA (Ee(1)) = 1HPJ >
nc0

1hhhh

where the probabilities are taken over the key spaceG(1n) and over the coin tosses ofA. Without loss of gen-

erality we may assume that the above inequality holds for infinitely manyn’s even without the absolute value.

Otherwise, we may useA
hh

instead ofA, and it will satisfy the inequality. So, we have

ProbRQA (Ee(0)) = 1HP − ProbRQA (Ee(1)) = 1HP >
nc0

1hhhh (1)

SinceEe(σ) = (σ⊕b (x), fe(x)), for a randomly sampledx, we get from (1)

ProbRQA (b (x), fe(x)) = 1HP − ProbRQA (b (x)
hhhh

, fe(x)) = 1HP >
nc0

1hhhh (2)
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(we useb (x)
hhhh

for 1⊕b (x)).

Because of this bias inA’s output, we can considerA as a "judge" which on input (σ, fe(x)) for σ∈{0,1}, out-

puts a vote (’1’) indicatingb (x)=σ, or a vote (’0’) forb (x)=σ
hh

. For infinitely manyn’s this judge is correct in

a significant majority of cases. Based on this observation, we construct the following algorithmA′ which

"guesses"b (x) from fe(x) with probability significantly better than1⁄2.

Algorithm A′ on input fe(x):

chooseσ∈R{0,1}

if A (σ, fe(x)) = 1 then outputσ

else outputσ
hh

The success probability forA′ is

ProbRQA′(fe(x)) = b (x)HP =

ProbRQA (σ, fe(x))=1 ∧ σ=b (x)HP + ProbRQA (σ, fe(x))=0 ∧ σ=b (x)
hhhhH

P

= ProbRQA (σ, fe(x)) = 1 | σ=b (x)HP
.Prob(σ=b (x)) + ProbRQA (σ, fe(x)) = 0 | σ=b (x)

hhhhH
P
.Prob(σ=b (x)

hhhh
)

Since both Prob[σ=b (x)] and Prob[σ=b (x)
hhhh

] differ from 1⁄2 by a negligible amount, (otherwiseb (.) cannot be a

hard-core at all), we get that (up to a negligible difference)

ProbRQA′(fe(x)) = b (x)HP =

= ProbRQA (b (x), fe(x)) = 1HP
.
2
1hh + ProbRQA (b (x)

hhhh
, fe(x)) = 0HP

.
2
1hh

=
2
1hh . R

QProbRQA (b (x), fe(x)) = 1HP + 1 − ProbRQA (b (x)
hhhh

, fe(x)) = 1HP
H
P

From (2) we get

ProbRQA′(fe(x)) = b (x)HP >
2
1hh +

2.nc0

1hhhhh

in contradiction with the security of the hard-core.`

We prove Lemma 2 in both non-uniform and uniform cases. We use the following definition:

Definition (hybrid): Let α = a1
...am andβ = b1

...bm be twom-bit strings. Thei −hybrid of α andβ is them-

bit stringγ(i ) = a1
...ai bi +1

...bm.

We will use the notion of hybrids several times during the course, so we will devote a few words for it.

The procedure is as follows: suppose we are given two elements (or distributions), and their "distance" is

greater than somed. Now, we build a sequence ofn intermediate elements, hybrids, that serve as a "bridge"

between the two given elements. Using the following simple claim, we see that there must be a successive

12/27/95



- 85 -

pair of hybrids with a distance of at least
n
dhh .

Claim: Given a series of numbersP0
...Pn, such that Pn−P0 > d, there existsi, 0≤ i < n , such that

Pi +1−Pi >
n
dhh .

The way we shall typically use the hybrids technique is by first showing that the difference between succes-

sive pairs is negligible, and then concluding that the difference between the given elements, which are the

extreme hybrids, must be also negligible.

Proof of Lemma 2 (Non - Uniform case)

Assume the Lemma does not hold. That is, there exists a family {Cn} of polynomial-size circuits and a

sequence of pairsαn, βn, (JαnJ=JβnJ=m), such that for a positive constantc0 and infinitely manyn’s,

J RQProb(Cn(Ee(αn),e)=1) − Prob(Cn(Ee(βn),e)=1)HPJ >
nc0

1hhhh

As before, we may omit the absolute value. For such a pairαn, βn, consider the corresponding hybridsγn
(i ),

0≤ i ≤ n. Obviouslyαn = γn
(m) , βn = γn

(0). Thus,

R
QProb(Cn(Ee(γn

(m)),e) = 1) − Prob(Cn(Ee(γn
(0)),e) = 1)HP >

nc0

1hhhh

By the above claim, there existsi 0∈{1...m} and infinitely manyn’s such that

R
QProb(Cn(Ee(γn

(i 0)),e) = 1) − Prob(Cn(Ee(γn
(i 0−1)),e) = 1)HP >

m.nc0

1hhhhhh =
nc1

1hhhh (3)

That is, there are two successive hybrids whose encryptions can be distinguished by the above circuit. We

will now construct a second family of circuits,C′n which will decrypt one-bit messages. The circuitC′n takes

advantage of the bias in (3) in the following way.

The circuitC′n hasi 0, αn=a1a2
...am andβn=b1b2

...bm wired in. On input (Ee(σ),e) the circuitC′n first com-

putes the encryptions of the firsti 0−1 bits ofαn and of the lastm−i 0−1 bits ofβn by the keye, and then con-

catenates the encryptions of the firsti 0−1 bits of αn, the encryption ofσ (the input), and encryptions of the

lastm−i 0−1 bits ofβn, and feeds it to the circuitCn. The output ofC′n is the output ofCn.

Assume, without loss of generality, thatai 0
=1 and bi 0

=0. It is clear thatai 0
≠bi 0

, since otherwise

γn
(i 0)=γn

(i 0−1), andno algorithm can distinguish between identical objects! We show now thatC′n distinguishes

between the encryptions of 0 and 1, in contradiction to the hypothesis of the Lemma.

Whenσ=bi 0
=0, the concatenated string isγn

(i 0−1). Therefore

Prob(C′n(Ee(0),e) = 1) = Prob(Cn(Ee(γn
(i 0−1),e) = 1)

Similarly,

Prob(C′n(Ee(1),e) = 1) = Prob(Cn(Ee(γn
(i 0),e) = 1)

From (3) the contradiction to the security of one-bit encryption arises.`
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Proof of Lemma 2 - (Uniform case)

The proof follows the same outline as in the non-uniform case. The difference is that we cannot "wire" the

sequence {αn,βn} in the algorithm, but have to sample it by polynomial uniform means.

Let {Xn} and {Yn} be two sequences of random variables, and let us assume that there is a distinguishing pro-

babilistic polynomial algorithmA, such that there existsc0 and infinitely manyn’s,

α,β
ΣProb(Xn=α,Yn=β) . JProb(A(α,β,Ee(α),e) = 1) − Prob(A(α,β,Ee(β),e)= 1 )J >

nc0

1hhhh (4)

We will call "good" the pairs (α,β) for which

| Prob(A (α,β,Ee(α),e) = 1) − Prob(A (α,β,Ee(β),e) = 1) | ≥
2.nc0

1hhhhh

and we get from (4)

good (α,β)
Σ Prob(Xn=α,Yn=β) >

2.nc0

1hhhhh

namely, that the probability to sample from the "good" set is non-negligible.

Again, we will construct an algorithmA′ that will decrypt one-bit messages with significant probability:

A′ is given as input (Ee(σ),e) and performs the following steps :

(1) sampleα,β from (Xn,Yn)

(2) Check whether (α,β) is a good pair. This is done by testingA on Ee(α) andEe(β) sufficiently many times

in order to get a good approximation of the difference Prob[A (α,β,Ee(α),e) = 1] − Prob[A (α,β,Ee(β),e) = 1].

If (α,β) are seen to be "bad" - return to step (1).

As in the uniform case, we are allowed to remove the absolute value because we may choose eitherA or the

inverse algorithmA
hh
, according to our needs. To ensure recognizing with high probability pairs with probabil-

ity difference of
2.nc0

1hhhhh, we may accept as "good" those that were measured to have a difference of more then

4.nc0

1hhhhh. The algorithm, after finding the desired "almost good" samples, continues the same as in the non-

uniform case, nowα andβ serve asαn andβn in the non-uniform algorithm. Instead of havingi 0 wired in,

the algorithm can choose it at random. The probability calculation of the non-uniform case applies here too,

with differences emerging due to the "guessing" ofi, and the fact that we are not sure that the pair found is

actually good.

The modification is as follows: if we choosei at random with uniform distribution, the average of the differ-

ences of the probabilities, assuming the algorithm actually found a "good" pair, is

i =0
Σ

m−1 R
QProbRQA (α,β,Ee(γn

i +1),e)=1HP − ProbRQA (α,β,Ee(γn
i ),e)=1HP

H
P
.Prob(i 0=i )

=
m
1hhh .

i =0
Σ

m−1 R
QProbRQA (α,β,Ee(γn

i +1),e)=1HP − ProbRQA (α,β,Ee(γn
i ),e)=1HP

H
P
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=
m
1hhh . R

QProbRQA (α,β,Ee(α),e)=1HP − ProbRQA (α,β,Ee(β),e)=1HP
H
P > m.4.nc0

1hhhhhhhh

Namely, the lower bound of probability of distinguishment betweenα andβ decreased with a factor 4 from

the non-uniform case.

Remarks:

(1) There is a negligible probability that the sampling algorithm, even after running for a long time, will not

find a "good" pair. We may set a pre-defined limit for the run time, and if the algorithm fails to find a "good"

pair in that limit, it will halt. Of course, in this case the distinguishing algorithm will fail, but it will happen

only with exponentially small probability.

(2) There is a exponentially small probability that the sampling algorithm will declare a pair as "good" even if

it is not. Then again, the distinguishing algorithm may fail.

Those remarks cause a certain decrease of the distinguishing probability but not one that is significant.

Again, we have built a system which decrypts a one-bit messages with a non-negligible probability of success

in contradiction with Lemma 1̀

From Lemma 1 and Lemma 2 it follows that the proposed encryption system is secure, proving Theorem 1a

Note: A drawback of the proposed encryption system is that the encryption expandsm-bit messages to cryp-

tograms of lengthm.n, wheren is thesecurity parameter. In the next lecture we will present a encryption

system which, while maintaining the security conditions, expandm-bit messages intom+n bit cryptograms,

which is reasonable for practical use.
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