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Preface. Probability theory plays a central role in many areas of computer science, and specifi-
cally in cryptography and complexity theory. In this text, we present the basic probabilistic notions
and notations that are used in various courses in the theory of computation. Specifically, we refer
to the notions of discrete probability space and random variables, and to corresponding notations.
Also included are overviews of three useful probabilistic inequalities: Markov’s Inequality, Cheby-
shev’s Inequality, and Chernoff Bound.

1 The Very Basics

Formally speaking, probability theory is merely a quantitative study of the relation between the
sizes of various sets. In the simple case, which underlies our applications, these sets are finite
and the “probability of an event” is merely a shorthand for the density of a corresponding set
with respect to an underlying (finite) universe. For example, when we talk of the probability that
a coin flip yields the outcome heads, the universe is the set of the two possible outcomes (i.e.,
heads and tails) and the event we refer to is a subset of this universe (i.e., the singleton set
heads). In general, the universe corresponds to all possible “basic” situations (which are assumed
or postulated to be equally likely), and events correspond to specific sets of some of these situations.
Thus, one may claim that probability theory is just combinatorics; however, as is often the case,
good notations (let alone notions) are instrumental to more complex studies.

Throughout the entire text we refer only to discrete probability distributions. Such probability
distributions refer to a finite universe, called the probability space (or the sample space), and to
subsets of this universe. Specifically, the underlying probability (or sample) space consists of a finite
set, denoted Ω, and events correspond to subsets of Ω. The probability of an event A ⊆ Ω is defined
as |A|/|Ω|. Indeed, one should think of probabilities by referring to a (mental) experiment in which
an element in the space Ω is selected with uniform probability distribution (i.e., each element is
selected with equal probability, 1/|Ω|).

Random variables. Traditionally, random variables are defined as functions from the sample
space to the reals. (For example, for any A ⊆ Ω, we may consider a random variable X : Ω → R
such that X(e) = 1 of e ∈ A and X(e) = 0 otherwise.) The probability that X is assigned a
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particular value v is denoted Pr[X = v] and is defined as the probability of the event {e ∈ Ω : X(e)};
that is, Pr[X =v] = |{e ∈ Ω : X(e)=v}|/|Ω|. The support of a random variable is the (finite) set of
values that are assigned positive probability; that is, the support of X is the set {X(e) : e ∈ Ω}.

The expectation of a random variable X, defined over Ω, is defined as the average value of X
when the underlying sample is selected uniformly in Ω (i.e., Ω|−1 · ∑e∈Ω X(e)). We denote this
expectation by E[X]. A key observation, referred to as linearity of expectation, is that for any two
random variables X, Y : Ω → R it holds that E[X + Y ] = E[X] + E[Y ]. In particular, for any
constants a and b, it holds that E[aX + b] = aE[X] + b.

The variance of a random variable X, denoted Var[X], is defined as E[(X − E[X])2]. Note that
µ

def= E[X] is a constant, and thus

Var[X] = E[(X − µ)2]
= E[X2 − 2µ ·X + µ2]
= E[X2]− 2µ · E[X] + µ2

= E[X2]− E[X]2

which is upper bounded by E[X2]. Note that a random variable has positive variance if and only if
it is not a constant (i.e., Var[X] > 0 if and only if X assumes at least two different values).

It is common practice to talk about random variables without specifying the underlying prob-
ability space. In these cases a random varibale is viewed as a discrete probability distribution over
the reals; that is, we fix the probability that this random variable is assigned any value. Assum-
ing that this probabilities are all rationales, a corresponding probability space always exists. For
example, when we consider a random variable X such that Pr[X =1] = 1/3 and Pr[X =2] = 2/3,
a possible corresponding probability space is {1, 2, 3} such that X(1) = 1 and X(2) = X(3) = 2.

Statistical difference. The statistical distance (a.k.a variation distance) between the random
variables X and Y is defined as

1
2
·
∑
v

|Pr[X = v]− Pr[Y = v]| = max
S
{Pr[X ∈ S]− Pr[Y ∈ S]}. (1)

We say that X is δ-close (resp., δ-far) to Y if the statistical distance between them is at most (resp.,
at least) δ.

Our Notational Conventions

Typically, in our courses, the underlying probability space will consist of the set of all strings of a
certain length `. That is, the sample space is the set of all `-bit long strings, and each such string
is assigned probability measure 2−`.

Abusing the traditional terminology, we use the term random variable also when referring to
functions mapping the sample space into the set of binary strings. We often do not specify the
probability space, but rather talk directly about random variables. For example, we may say that
X is a random variable assigned values in the set of all strings such that Pr[X = 00] = 1

4 and
Pr[X =111] = 3

4 . (Such a random variable may be defined over the sample space {0, 1}2, so that
X(11) = 00 and X(00) = X(01) = X(10) = 111.) One important case of a random variable is the
output of a randomized process (e.g., a probabilistic polynomial-time algorithm).

All our probabilistic statements refer to random variables that are defined beforehand. Typ-
ically, we may write Pr[f(X) = 1], where X is a random variable defined beforehand (and f is a
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function). An important convention is that all occurrences of the same symbol in a probabilistic
statement refer to the same (unique) random variable. Hence, if B(·, ·) is a Boolean expression
depending on two variables, and X is a random variable then Pr[B(X, X)] denotes the probability
that B(x, x) holds when x is chosen with probability Pr[X = x]. For example, for every random
variable X, we have Pr[X =X] = 1. We stress that if we wish to discuss the probability that B(x, y)
holds when x and y are chosen independently with identical probability distribution, then we will
define two independent random variables each with the same probability distribution.1 Hence, if
X and Y are two independent random variables, then Pr[B(X, Y )] denotes the probability that
B(x, y) holds when the pair (x, y) is chosen with probability Pr[X =x] ·Pr[Y =y]. For example, for
every two independent random variables, X and Y , we have Pr[X =Y ] = 1 only if both X and Y
are trivial (i.e., assign the entire probability mass to a single string).

We will often use Un to denote a random variable uniformly distributed over the set of all strings
of length n. Namely, Pr[Un =α] equals 2−n if α ∈ {0, 1}n and equals 0 otherwise. We often refer
to the distribution of Un as the uniform distribution (neglecting to qualify that it is uniform over
{0, 1}n). In addition, we occasionally use random variables (arbitrarily) distributed over {0, 1}n

or {0, 1}`(n), for some function ` :N→N. Such random variables are typically denoted by Xn, Yn,
Zn, etc. We stress that in some cases Xn is distributed over {0, 1}n, whereas in other cases it is
distributed over {0, 1}`(n), for some function ` (which is typically a polynomial). We often talk
about probability ensembles, which are infinite sequence of random variables {Xn}n∈N such that
each Xn ranges over strings of length bounded by a polynomial in n.

2 Three Inequalities

The following probabilistic inequalities are very useful. These inequalities refer to random variables
that are assigned real values and provide upper-bounds on the probability that the random variable
deviates from its expectation.

2.1 Markov’s Inequality

The most basic inequality is Markov’s Inequality that applies to any random variable with bounded
maximum or minimum value. For simplicity, this inequality is stated for random variables that are
lower-bounded by zero, and reads as follows: Let X be a non-negative random variable and v be a
non-negative real number. Then

Pr [X≥v] ≤ E(X)
v

(2)

Equivalently, Pr[X ≥ r · E(X)] ≤ 1
r . The proof amounts to the following sequence:

E(X) =
∑
x

Pr[X =x] · x

≥
∑
x<v

Pr[X =x] · 0 +
∑

x≥v

Pr[X =x] · v

= Pr[X≥v] · v

1Two random variables, X and Y , are called independent if for every pair of possible values (x, y) it holds that
Pr[(X, Y )=(x, y)] = Pr[X =x] · Pr[Y =y].
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2.2 Chebyshev’s Inequality

Using Markov’s inequality, one gets a potentially stronger bound on the deviation of a random
variable from its expectation. This bound, called Chebyshev’s inequality, is useful when having
additional information concerning the random variable (specifically, a good upper bound on its
variance). For a random variable X of finite expectation, we denote by Var(X) def= E[(X − E(X))2]
the variance of X, and observe that Var(X) = E(X2)−E(X)2. Chebyshev’s Inequality then reads as
follows: Let X be a random variable, and δ > 0. Then

Pr [|X − E(X)|≥δ] ≤ Var(X)
δ2 .

(3)

Proof: We define a random variable Y
def= (X − E(X))2, and apply Markov’s inequality. We get

Pr [|X − E(X)|≥δ] = Pr
[
(X − E(X))2 ≥ δ2

]

≤ E[(X − E(X))2]
δ2

and the claim follows.

Corollary (Pairwise Independent Sampling): Chebyshev’s inequality is particularly useful in the
analysis of the error probability of approximation via repeated sampling. It suffices to assume
that the samples are picked in a pairwise independent manner, where X1, X2, ..., Xn are pairwise
independent if for every i 6= j and every α, β it holds that Pr[Xi =α∧Xj =β] = Pr[Xi =α]·Pr[Xj =β].
The corollary reads as follows: Let X1, X2, ..., Xn be pairwise independent random variables with
identical expectation, denoted µ, and identical variance, denoted σ2. Then, for every ε > 0, it holds
that

Pr
[∣∣∣∣

∑n
i=1 Xi

n
− µ

∣∣∣∣ ≥ ε

]
≤ σ2

ε2n .
(4)

Proof: Define the random variables Xi
def= Xi−E(Xi). Note that the Xi’s are pairwise independent,

and each has zero expectation. Applying Chebyshev’s inequality to the random variable
∑n

i=1
Xi
n ,

and using the linearity of the expectation operator, we get

Pr

[∣∣∣∣∣
n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ ε

]
≤

Var
[∑n

i=1
Xi
n

]

ε2

=
E

[(∑n
i=1 Xi

)2
]

ε2 · n2

Now (again using the linearity of expectation)

E




(
n∑

i=1

Xi

)2

 =

n∑

i=1

E
[
X

2
i

]
+

∑

1≤i6=j≤n

E
[
XiXj

]

By the pairwise independence of the Xi’s, we get E[XiXj ] = E[Xi] ·E[Xj ], and using E[Xi] = 0, we
get

E




(
n∑

i=1

Xi

)2

 = n · σ2

The corollary follows.
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2.3 Chernoff Bound

When using pairwise independent sample points, the error probability in the approximation de-
creases linearly with the number of sample points (see Eq. (4)). When using totally independent
sample points, the error probability in the approximation can be shown to decrease exponentially
with the number of sample points. (Recall that the random variables X1, X2, ..., Xn are said to be to-
tally independent if for every sequence a1, a2, ..., an it holds that Pr[∧n

i=1Xi =ai] =
∏n

i=1 Pr[Xi =ai].)
Probability bounds supporting the foregoing statement are given next. The first bound, commonly
referred to as Chernoff Bound, concerns 0-1 random variables (i.e., random variables that are as-
signed as values either 0 or 1), and asserts the following. Let p ≤ 1

2 , and X1, X2, ..., Xn be indepen-
dent 0-1 random variables such that Pr[Xi =1] = p, for each i. Then, for every ε ∈ (0, p], it holds
that

Pr
[∣∣∣∣

∑n
i=1 Xi

n
− p

∣∣∣∣ > ε

]
< 2 · e−c·ε2·n , where c = max(2, 1

3p). (5)

The more common formulation sets c = 2, but the case c = 1/3p is very useful when p is small and
one cares about a multiplicative deviation (e.g., ε = p/2).

Proof Sketch: We upper-bound Pr[
∑n

i=1 Xi − pn > εn], and Pr[pn −∑n
i=1 Xi > εn] is bounded

similarly. Letting Xi
def= Xi−E(Xi), we apply Markov’s inequality to the random variable eλ

∑n

i=1
Xi ,

where λ ∈ (0, 1] will be determined to optimize the expressions that we derive. Thus, Pr[
∑n

i=1 Xi >
εn] is upper-bounded by

E[eλ
∑n

i=1
Xi ]

eλεn
= e−λεn ·

n∏

i=1

E[eλXi ]

where the equality is due to the independence of the random variables. To simplify the rest of
the proof, we establish a sub-optimal bound as follows. Using a Taylor expansion of ex (e.g.,
ex < 1 + x + x2 for |x| ≤ 1) and observing that E[Xi] = 0, we get E[eλXi ] < 1 + λ2E[X2

i ], which
equals 1+λ2p(1−p). Thus, Pr[

∑n
i=1 Xi−pn > εn] is upper-bounded by e−λεn · (1+λ2p(1−p))n <

exp(−λεn + λ2p(1 − p)n), which is optimized at λ = ε/(2p(1 − p)) yielding exp(− ε2

4p(1−p) · n) ≤
exp(−ε2 · n). 2

The foregoing proof strategy can be applied in more general settings.2 A more general bound, which
refers to independent random variables that are each bounded but are not necessarily identical, is
given next (and is commonly referred to as Hoefding Inequality). Let X1, X2, ..., Xn be n independent
random variables, each ranging in the (real) interval [a, b], and let µ

def= 1
n

∑n
i=1 E(Xi) denote the

average expected value of these variables. Then, for every ε > 0,

Pr
[∣∣∣∣

∑n
i=1 Xi

n
− µ

∣∣∣∣ > ε

]
< 2 · e−

2ε2

(b−a)2
·n

(6)

The special case (of Eq. (6)) that refers to identically distributed random variables is easy to derive
from the foregoing Chernoff Bound (by recalling Footnote 2 and using a linear mapping of the
interval [a, b] to the interval [0, 1]). This special case is useful in estimating the average value of
a (bounded) function defined over a large domain, especially when the desired error probability
needs to be negligible (i.e., decrease faster than any polynomial in the number of samples). Such
an estimate can be obtained provided that we can sample the function’s domain (and evaluate the
function).

2For example, verify that the current proof actually applies to the case that Xi ∈ [0, 1] rather than Xi ∈ {0, 1},
by noting that Var[Xi] ≤ p(1− p) still holds.
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2.4 Pairwise independent versus totally independent sampling

In Sections 2.2 and 2.3 we considered two “Laws of Large Numbers” that assert that, when suffi-
ciently many trials are made, the average value obtained in these actual trials typically approaches
the expected value of a trial. In Section 2.2 these trials were performed based on pairwise inde-
pendent samples, whereas in Section 2.3 these trials were performed based on totally independent
samples. In this section we shall see that the amount of deviation (of the average from the expec-
tation) is approximately the same in both cases, but the probability of deviation is much smaller in
the latter case.

To demonstrate the difference between the sampling bounds provided in Sections 2.2 and 2.3,
we consider the problem of estimating the average value of a function f : Ω → [0, 1]. In general, we
say that a random variable Z provides an (ε, δ)-approximation of a value v if Pr[|Z − v| > ε] ≤ δ.

• By Eq. (6), the average value of f evaluated at n = O((ε−2 · log(1/δ)) independent samples
(selected uniformly in Ω) yield an (ε, δ)-approximation of µ =

∑
x∈Ω f(x)/|Ω|. Thus, the

number of sample points is polynomially related to ε−1 and logarithmically related to δ−1.

• In contrast, by Eq. (4), an (ε, δ)-approximation by n pairwise independent samples calls for
setting n = O(ε−2 · δ−1).

We stress that, in both cases the number of samples is polynomially related to the desired accuracy of
the estimation (i.e., ε). The only advantage of totally independent samples over pairwise independent
ones is in the dependency of the number of samples on the error probability (i.e., δ).

6


