
Algorithmica (1990) 5 :1-10 Algorithmica
�9 1990 Springer-Verlag New York Inc.

An Improved Parallel Algorithm for Integer GCD

Benny Chor 1"2 and Oded Goldreich 1"3

Abstract. We present a simple parallel algorithm for computing the greatest common divisor (gcd)
of two n-bit integers in the Common version of the CRCW model of computation. The run-time
of the algorithm in terms of bit operations is O(n/log n), using n ~+~ processors, where e is any
positive constant. This improves on the algorithm of Kannan, Miller, and Rudolph, the only
sublinear algorithm known previously, both in run time and in number of processors; they require
O(n log log n / log n), n 2 log 2 n, respectively, in the same CRCW model.

We give an alternative implementation of our algorithm in the CREW model. Its run-time is
O(n log log n / log n), using n ~+~ processors. Both implementations can be modified to yield the
extended gcd, within the same complexity bounds.

Key Words. Greatest common divisor, Parallel algorithms.

1. Introduction. The problem of computing the greatest common divisor (gcd)
of two integers efficiently in parallel is one of the outstanding open problems in
the theory of parallel computation. While a serial solution to the problem has
been known for thousands of years (Euclid's algorithm), no significantly more
efficient parallel algorithm has been found.

Euclid's algorithm is based on magnitude tests ("is a > b ? ") and on gcd
preserving transformations (gcd(a, b)= gcd(a, b - a)). These are performed in a
O(n) long sequence of iterations (where n denotes the number of bits in the two
inputs). The next iteration cannot start before the previous iteration has termi-
nated. Thus it is not obvious whether any attempt to parallelize Euclid's algorithm
could achieve o(n) parallel time.

Kannan et al. [5] presented the first sublinear-time parallel algorithm for integer
gcd. They came up with a method to "pack" O(log n) iterations 4 of Euclid's
algorithm into one parallel phase. The transformations applied in this packing
are "almost" gcd preserving. After O(n/log n) phases, the process terminates
with an answer which is "close enough" to the correct gcd to actually find it.
Each phase is implemented in O(log log n) parallel time, and thus the overall

t Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square,
Cambridge, MA 02139, USA.
2 Supported in part by an IBM Graduate Fellowship and a Bantrell Postdoctoral Fellowship. Present
address: Department of Computer Science, Technion, Haifa 32000, Israel.
3 Supported in part by a Weizmann Postdoctoral Fellowship. Present address: Department of Com-
puter Science, Technion, Haifa 32000, Israel.
4 All logarithms are to base 2.

Received January, 1986; revised February, 1987, and December, 1987. Communicated by F. Thomson
Leighton.

2 B. Chor and O. Goldreich

time is O(n log log n/log n). This is achieved using n 2 log 2 n processors in the
concurrent read concurrent write (CRCW) model of bit processors, assuming
unit cost for each elementary bit operation. The specific variant of resolving write
conflicts in the Kannan-Miller-Rudolph algorithm is the Common CRCW model.
In this variant, processors who concurrently write to the same memory location
are required to write the same value. In general, this conflict resolution variant
can be simulated without any loss of efficiency by the more powerful Arbitrary
or Priority variants [4], [7], [10]. It should be noted that when the values written
are bit values, the Arbitrary variant can be simulated on the Common variant
while increasing the run-time by at most a factor of 2 (this is done by alternating
writes of "1" and of "0").

The algorithm we present here exibits a tradeoff between parallel time and
number of processors. For any k in the range 1 -< k - < n/log n, it achieves O(n/k)
parallel time, using n22k+l+ k323k processors (in the same Common variant of
the CRCW model). For the value k = e log n/2, the parallel time is O(n/log n),
using nl+~ processors. In addition to the improved complexity, the algorithm is
much simpler than the Kannan-Miller-Rudolph algorithm. While they modify
Euclid's algorithm, we have as our starting point a different sequential algorithm--
the Brent-Kung plus-minus gcd algorithm [1]. In contrast to Euclid's algorithm,
which operates on the most-significant bits first, the Brent-Kung algorithm
operates on the least-significant bits first. Unlike the classical gcd algorithm, the
tests used in the Brent-Kung algorithm are parity tests ("is b even?"), and the
gcd preserving transformations are different (gcd(a, b)= gcd(a, (a • b)/2) for a,
b odd, and gcd(a, b)=gcd(a , b/2) for a odd, b even). While the number of
iterations is still O(n), the advantage of this approach is that the next iteration
can start as soon as the least-significant bits from the previous iteration are known.
In particular, this gives a linear-time implementation on a systolic array [1].

The basic idea in our algorithm is to pack k consecutive transformations of
the Brent-Kung algorithm into one parallel phase. The number of phases is thus
O(n/k). It should be noted that a naive implementation of a phase might cost
k time units per phase, thus rendering the whole procedure useless. Fortunately,
more efficient implementations can be found. By preparing multiplication tables
for k-bit integers in advance, and using them to multiply n-bit integers by k-bit
integers, a phase can be implemented in O(1) time.

We give two alternative implementations of our gcd algorithm in the CRCW-
and CREW-PRAM models. The complexity of these implementations (including
the preprocessing stage) is summarized in Table 1.

Table 1

Number of
Time processors

Model Time Number of Processors (k = e log n/2) (k = e log n/2)

CRCW O(n/k+log k) n22k+1 +k323~+6 O(n/log n) n I+~"
CREW O(nlogk /k+log2k) n22t'+t + k323~+6 O(nloglogn/ logn) n 1+~

An Improved Parallel Algorithm for Integer GCD 3

We remark that an alternative way of getting an improved parallel gcd algorithm
is to simulate the Brent-Kung systolic array algorithm by a PRAM. (We would
like to stress that this alternative improvement was not previously known.) To
do this, we first apply a general simulation of systolic arrays with bit processors
by systolic arrays with k-bit processors (such simulation is implicit in [3] and
[9]). Starting with O(n) systolic arrays with bit processors, we get O(n/k) systolic
arrays with k-bit processors. Next, we simulate each k-bit systolic processor by
k. 2 3k processors which implement a table look-up for each step of the k-bit
processor (recall that each bit operation is unit cost on such processors, and see
Section 3 for the number of processors required to perform a table look-up). The
look-up table can be constructed in O(k) time using k. 2 3k processors by a
straightforward simulation. This way we can achieve O(n/k + k) run-time using
O(n" 2 3k) processors in CRCW. We prefer not to use this approach since it is
not as efficient as our first suggestion, and does not use any insights gained from
the special structure of the Brent-Kung algorithm.

The rest of this paper is organized as follows. In Section 2 we describe the
Brent-Kung algorithm and its run-time analysis. In Section 3 we give an overview
of our parallel algorithm. Section 4 describes the preprocessing stage. Section 5
contains the modifications needed in the extended gcd. In Section 6 we present
the CREW implementation, and Section 7 contains some concluding remarks.

2. The Brent-Kung GCD Algorithm. Euclid's algorithm finds the gcd of two
n-bit integers in O(n) iterations. In every iteration, both arguments are reduced,
using gcd preserving operations. To find the gcd, tests of the form "is b < c" are
required. In contrast, the plus-minus algorithm of Brent and Kung tests only the
two least-significant bits of each argument. The transformations applied are
addit ion/subtraction and division by 2. The code for the Brent-Kung gcd
algorithm is as follows:

1. procedure PLUS MINUS gcd:
INPUT: A, B

2. a ,b~-A ,B
{ a is odd, b~O, tal, Ibl-<2 ~ }

3. a~-n
4. f l ~ n
5. 3*-0
6. repeat
7. while par i ty (b)= 0 do

{ apply transformation 1--divide by 2 }
8. b ~ b/2
9. f l ~ f l - I

10. t ~ t~+ 1
11. od

{a and b are odd, IbP<-2 ~, ,~-- ~ - / 3)
12. if 6 > 0 then

4 B. Chor and O. Goldreich

{ apply transformation H--swap }
13. swap(a, b), swap(a, /3) , 8 ~ - 8

{ 8 = a - / 3 , a -<f l , la[-<2 ~, [b[-<2~; a and b are odd }
14. if pari ty((a + b)/2) = 0
15. then { apply transformation I l l - -add and divide by 2 }

b ~ (a + b) / 2
16. else { apply transformation IV--subtract and divide by 2 }

b ~ - (a - b) / 2
{ b is even, Ib]-<2 t~ }

17. unt i l b = 0

18. return g c d = a

This algorithm returns the gcd of A and B, provided that A is odd. Its correctness
follows from the fact that if b is even and a is odd, then gcd(a, b) = gcd(a, b/2) ,
while if both b and a are odd then gcd(a ,b)=gcd(a , (a+b) /2)=
gcd(a, (a - b) / 2) . The assertions in braces simplify the run-time analysis: the
variable a (resp. fl) is an upper bound on the number of bits in [a[(resp. [b[),
and 8 is their difference. In every repeat loop (lines 7-16) except possibly the
first one, the sum a + fl decreases by at least 1. Therefore the number of loops
is at most 2n = O(n). In fact, a and fl are not necessary for the actual execution
of the algorithm (they only simplify the analysis). Instead, it suffices to keep 8
around, and remember that 8 -- a - /3 holds throughout the execution.

3. The Parallel GCD Algorithm. The main observation we use is that at any
point during the execution of the Brent-Kung algorithm, the next k transforma-
tions applied to a, b, and 8 are totally determined by 8 and the k + 1 least-
significant bits of a and b. In fact, not the entire 8 is needed, but only the signs
of 8 during the next k transformations. For these, in turn, it suffices to keep the
information of the sign of 8, a bit specifying whether 6 c [- k , k], and, in case 8
is in this interval, its value. Each such k-transformation can be described by

(a, b)<- 1

8 ~ c r . 6 + g ,

where c, d, e, f are all integers in the range [- 2 k, 2 k], - - k ~< g ~ k, and cr c { - 1, 1 }.
We can precompute a 2k+l-by-2k+L-by-4k+4 t ransformation table T which

specifies, for every possible configuration of the k + 1 least-significant bits in a
and b and the value of 8, the four entries of the matrix together with the 8
modification. Let a denote the k + 1 least-significant bits of a, and b denote the
k + 1 least-significant bits of b. The string 8 is the concatenation of the sign bit
of 8, a bit specifying whether 8 c I - k , k], and, in case 8 is in this interval, its
absolute value. (Overall, there are 4k + 4 possibilities for 8.) The entry T[a, b, 8]
contains the k-transformation which should be applied to a, b, and 8.

An Improved Parallel Algorithm for Integer GCD 5

After the preprocessing stage is completed, the algorithm proceeds in phases,
each phase performing the task of k consecutive transformations in the Brent-
Kung algorithm. Given a, b, and 8, the value of 8 is computed, and the entry
T[a, b, 8] corresponding to them is found. The pair (a, b) is multiplied by the
corresponding matrix, and the modification to 6 is performed. From the analysis
in Section 2, it follows that the overall number of phases is at most 2n/k.

The transformation table used by the algorithm is a look-up table with
(4 k + 4) . 2 2k§ entries, each storing no more than 5k bits (for k - 5) . We use
implicitly the fact that an L-bit entry from a table with S entries can be fetched
in four parallel time units by S. max(L, log S) bit processors in the CRCW model.
(For each of the S entries, log S processors are needed to identify the
address of the desired entry, and L processors are needed to fetch the L bits.)
Thus accessing an entry in the transformation table requires fewer than
5k. (4k + 4)2 2k§ < k 2 �9 2 2 k + 7 bit processors.

The code for the parallel gcd algorithm is as follows:

1. procedure PARALLEL gcd (with parameter k):
INPUT: A, B

Preprocessing
2. compute multiplication table for all pairs of k bit integers
3. compute transformation table T

Execution
a,b<-A,B

repeat
a ~- k + 1 least-significant bits of a
b ~- k + 1 least-significant bits of b
8 ~-sign-bit, interval-bit, and log k least-significant bits of
3-<- T[a, b, 8]
apply transformation 3 - to a, b, 6

unt i l b = 0

return gcd = a

4.

5.
6.
7.
8.
9.

10.
11.
12.

We now specify how a transformation J- is applied to the triple a, b, & The
new value assigned to ~ is obtained by adding a log k-bit integer to either 6 or
-8 . Of more concern is the (a, b) transformation. Since division by 2 k just means
a shift by k, it causes no problems. Thus we should just worry about the
multiplications (of k-bit integers by n-bit integers), and the addition/subtraction
of two n-bit integers. A naive implementation of these operations might cost k
time units, thus rendering the whole procedure useless. As we show below, both
operations can be implemented in O(1) parallel time, so the overall run-time for
2n/k phases will be O(n/k).

To multiply an n-bit integer a by a k-bit integer c, a is partitioned into n/k
disjoint blocks of k-bits each. We then represent a as the sum of two n-bit
integers, a~ and a2. The "odd" blocks of a are the only nonzero blocks of a~,
while the "even" blocks of a are the only nonzero blocks of a2 (see Figure 1).
When multiplying ai (i = 1, 2) by c (a k-bit integer), each block expands to a

a i i

a (3)

i i [

B. Chor and O. Goldreich

at2)L a (l) a (O)

I I I I I ! 1 I I I I I I I I 1 I

a I I I I

a (3)

i t

a (I)

OI 0 I 0 t 0 I 0 I , L L i ~ j t 0 1 0~ 0 ~ 0 i 0 j K = 5

a2 i O i O ~ O l O l O
~l (2) a (0)

L L i i i t O i O i O L O ~ O , i L J L

Fig. l. Partition of a to odd and even blocks.

I I

block of length 2k. These 2k-long blocks do not overlap. By precomputing all
possible products of two k-bit integers, both a~ �9 c and a2 �9 c are computed in
O(1) parallel time by a table look-up. The number of processors required is
22k. 2k per block. There are n/k blocks altogether, and thus 2n. 22k processors
are needed. (For k <~/-~, this is the bottleneck of our algorithm in terms of the
number of processors, as we will shortly see.)

Finally, four (n + k)-bit integers should be added/subtracted (e.g., alc+ a2c+
b]e + b2e). By combining a result of Chandra et al. [2] with the inequality k - n,
such addition can be done in O(1) parallel time using n �9 2 k processors, assuming
that k grows at least as the inverse of some primitive recursive func t ion f satisfying
limn_,~f(n) =o0.

The code for the application of a transformation 3- is as follows:

1. procedure APPLY TRANSFORMATION:
2. INPUT: a, b, J
3. c, d, e, f, g, o-<-corresponding elements of 3-
4. 3~o'3+g
5. a l ~ o d d (a) , a2<-even(a), b l ~ o d d (b) , bR<-even(b)
6. using the multiplication table, compute alc, a2c, aid, a2d, b]e, b2e, bif b2f
7. (a, b)<-(alc+a2c+b]e+b2e, ald+a2d+blf+b2f)
8 . r e t u r n a , b , 3

The overall time of a phase is essentially that of applying the transformation,
which is O(1). Hence running the whole algorithm (after the preprocessing stage)
requires O(n/k) parallel time, using max(2n2 2k, k222k+7) bit processors. To have
poly(n) processors, k can be at most O(log n). For k = | n), the resulting
parallel time is O(n/log n).

4. T h e P r e p r o c e s s i n g Stage. The preprocessing stage prepares the tables neces-
sary for the algorithm. It does not depend on the actual inputs A, B but only on
their size. Except for large values of k (k> n/log n), the complexity of the
preprocessing is dominated by the complexity of the main procedure.

An Improved Parallel Algorithm for Integer GCD 7

The preprocessing stage has two parts. The first part is to compute in parallel
all pairwise products of (k/2)-bit integers. The second part is to compute in
parallel the tables corresponding to k consecutive iterations of the Brent-Kung
gcd algorithm.

It is well known that the product to two m-bit integers can be computed in
O(log m) parallel time using m 2 processors, even in the CREW model [8], [11].
This can be done by representing the product as the sum of m integers, each
with at most 2m bits. In one time step, the sum of three integers is transformed
into the sum of two integers--one representing the bitwise sum (with no carry)
and the other representing the carries generated locally. By iterating such reduc-
tions O(log m) times, the original product is reduced into the sum of two 2m-bit
integers. Finally, these two integers are added in log m steps. Overall, with 22ram 2
processors, the products of all pairs are computed in O(log m) parallel time.
For m = k/2 , we construct multiplication tables for m-bit integers using k22 k
processors.

To compute the k-transformation table, we use recursion. Suppose that the
/-transformation table was already computed. Namely, for each of the possible
values for ~ and every pair of (l+ l) -b i t integers (least-significant bits), the

corresponding matrix (c d) e f a n d t h e v a l u e s g ' ~ 1 7 6

determine the 8 transformation, are known. We now compute in parallel all
entries in the 2/-transformation table. Given ~ and a pair of (2l+ 1)-bit integers
a, b, we first find the /-transformation corresponding to 8 and the l+ 1 least-
significant bits of a, b. We then apply this/-transformation to ~, a, and b, getting
the transformed values t3', a', and b'. These a', b' are (l + 1) -bit integer themselves.

Let and o-' ' e' f ' g', be the /-transformation corresponding to a , b', and ~'.

The matrix product

e" f " / f e' f ' '

whose entries are integers in the range [-22t, 221], is the matrix of the 2l-transfor-
mation corresponding to a, b, and & Similarly, o-" = o-'o- and g" = o-'g + g' deter-
mine the new value of ~" (~"= o-'o-~+ o- 'g+g'). Both the matrix product and
or", g" can be computed in O(1) parallel time (using the multiplication table for
the matrix product). We notice that, throughout the recursion, it suffices to index
the table by the string 8, rather than by the complete value of 8. (As before, g
is the concatenation of the sign bit of ~, a bit specifying whether 8 ~ [-k , k], and,
in case ~ is in this interval, its absolute value.) The size of the table at the/-level
(the /-transformation) is thus (4 k + 4) . 22/. To compute each entry in the 21-
transformation table, 51. (4k+4)22/ processors are required in order to fetch
5/-bit values from the /-transformation tables (l> log k), and k. 2 k processors
are required in order to fetch values from the multiplication tables. Thus, to
compute all entries in the 2/-transformation table, we need (4k+4)241.
max(5/-(4k+4)221, k2 k) processors. This term is maximized at the top level,

8 B. Chor and O. Goldreich

where k=21 . This results in 40 (k+ 1)323k<k323k+6 CRCW bit-processors that
are needed to compute the k-transformation table in O(log k) steps.

5. Extended GCD. The algorithm described so far outputs the gcd G of its two
inputs A, B. In fact, it is possible to recover from it two integers s and t such
that G = (1 / 2 n) (s A + t B) . However, certain applications (such as computing
inverses modulo prime integers) requires a representation of the form G = x A + y B
where x and y are integers (and not just rationals). Such representation for the
gcd is known as the extended gcd [6, p. 325]. We use the extended version of
the binary gcd which Knuth attributes to Penk and Pratt [6, problem 35, pp. 339
and 599]. Essentially, the goal is to maintain representations of the current a and
b as integer combinations of the original A and B:

a = IA + rB,

b = m A + s B .

It is easy to maintain such representation when the current a and b are either
added, subtracted, or switched. The problem lies in division by 2, b ~ -b /2 , and
is solved by a case analysis. The easy case is when m and s are both even.
Otherwise it turns out that both m + B and s - A are even (recall that A is odd).
Thus we get

b m + B s - A
�9 A + .B .

2 2 2

We observe that the next k transformations depend only on the k + 1 least-
significant bits of a, b, A, B, I, r, m, and s and on t;. Using the above ideas, we
get a simple modification of our parallel gcd algorithm, which computes the
extended gcd within the same time and processor bounds (replacing k by k / 8
will result in the same processor bound, while only increasing the run-time by a
factor of 8).

6. Implementation in the CREW Model. In this section we briefly sketch the
changes necessary to implement the algorithm in a model which forbids concurrent
writes but allows concurrent reads (the CREW model). In general, transforming
an algorithm from CRCW to CREW might require an extra multiplicative factor
in the run-time [10]. This factor is the logarithm of the number of possible
concurrent writes to the same memory location. We have used concurrent writes
in two places: accessing the look-up tables, and performing addition.

All look-up tables in our algorithm are indexed by O (k) bits. Avoiding concur-
rent writes for this size table results in a factor of O(log k). The main difficulty
lies in adding two n-bit integers. Unfortunately, the fan-in in the Chandra,
Fortune, and Lipton addition algorithm is n C (for c > 0). Thus, a direct simulation

An Improved Parallel Algorithm for Integer GCD

a I I I i I I I I I t I I I I I i I i t i J , I i

I
a ' l t O , 0 0 , 0 ! i , l I I i i i l

I

I
I
I
I
I

a ~ I J I I I] a , 0 , O , 0 I 0 , , I
I I

!
I n n n n

I
I
I
l
I

i 0 0 0 0 0 , l I I i l l t I I I l I
I

K=5

Fig. 2. Partition of a to slightly overlapping blocks.

would require O(log n) time per addition. We circumvent this by keeping a and
b in the redundant representation a = +a~ + a~, where

n/2k
a~= ~ (2k)ZJ.a2j,

j=o

n/2k
, _ (2k)2j+1

a 2 - ~ �9 O / 2 j + l
j = 0

and 0 - < ai <- 2 g, for every 0 <- i <- n / k (and similarly for b = • i b~). That is, a
is represented as the sum of two integers with "almost disjoint block structure"
(see Figure 2), with possible overlaps at locations ik (i = 1, 2 , . . . , [n / kJ), which
correspond to powers of 2 g.

We now show how to maintain this representation under the k-transformation
(a, b) (-- (ac + be, ad + b f) / 2 k using O(1) table look-ups. When multiplying
a l (i = l , 2) by c (a k-bit integer), each block expands to length at most
2k (a'~c <-2 k. (2 k - 1)< 22k). These 2k-long blocks do not overlap. So ac+ be is
now represented as the sum of four "ordinary" n-bit integers. We partition each
of these integers into k-bit blocks. First, corresponding blocks are added using
a table look-up. Each sum, si, is written as a (k+2) -b i t integer. Next, the two
most-significant bits of si are added to the k least-significant bits of S~+x, yielding
sl+l. Each sl is now at most (k + 1)-bits long. Finally, the most-significant bit of
each sl is added to the k least-significant bits of sl+l, resulting in a final oli+ 1
which is at most 2 k, and is "almost disjoint" from a~.

From the above discussion it follows that our parallel gcd algorithm can
be implemented in O (n . l o g k / k + l o g 2 k) time on a C R E W P R A M with
0(k323k + n22k) bit processors.

7. Concluding Remarks. We did not explicitly specify which processor is
assigned to what task at every step of the algorithm. The reader could easily
check that this processor allocation can be handled uniformly (with a scheme
that works for every n), and thus our results hold for the "uniform PRAM" model.

In all steps of the algorithm, each processor reads and possibly writes to a
fixed memory location. Thus, by "hardwiring" the CRCW-PRAM algorithm, we
get a Boolean circuit whose depth is the parallel time of the algorithm, and whose

10 B. Chor and O. Goldreich

fan- in is b o u n d e d by the n u m b e r of processors that can potent ia l ly access the
same memory cell at the same step of the computa t ion . In our case, this gives
an u n b o u n d e d fan- in circuit of depth O (n / k) , size n2 ~ and fan- in n2 ~

For k = O(log n), the resul t ing u n b o u n d e d fan- in circuit can be easily t ransformed
into a bounded fan- in circuit of linear depth and po lynomia l size. The quest ion

of f inding a subl inear depth, po lynomia l size, b o u n d e d fan- in circuit for integer

gcd, remains open. In part icular , such a result would follow from any CRCW-

PRAM algori thm with parallel time o (n / l o g n) and a po lynomia l n u m b e r of

processors.

Acknowledgments. We would like to thank Ming-Deh Huang , Erich Kaltofen,
and Charles Leiserson for helpful suggestions.

References

[1] Brent, R. P., and H. T. Kung, Systolic VLSI arrays for linear time gcd computation, in VLS183,
IFIP, F. Anceau and E. J. Aas (eds.), pp. 145-154, Elsevier, Amsterdam, 1983.

[2] Chandra, A. K., S. Fortune, and R. Lipton, Unbounded fan-in circuits and associative functions,
Proceedings of the Fifteenth Annual Symposium on Theory of Computing, ACM, pp. 52-60, 1983.

[3] Cole, S. N., Real-time computation by n-dimensional iterative arrays of finite-state machines,
IEEE Transactions on Computers, Vol. 18 (1969), pp. 349-365.

[4] Goldschlager, L., A unified approach to models of synchronous parallel machines, Journal of
the Association for Computing Machinery, Vol. 29, No. 4 (1982), pp. 1073-1086.

I-5] Kannan, R., G. Miller, and L. Rudolph, Sublinear parallel algorithm for computing the greatest
common divisor of two integers, SlAM Journal on Computing, Vol. 16, No. 1 (1987), pp. 7-16.

[6] Knuth, D., The Art of Computer Programming, Vol. 2, second edition, Addison-Wesley, Reading,
MA, 1981.

[7] Kucera, L., Parallel computation and conflicts in memory access, Information Processing Letters,
Vol. 14, No. 2 (1982), pp. 93-96.

[8] Ofman, Y., On the algorithmic complexity of discrete functions, Soviet Physics. Doklady, Vol. 7,
No. 7 (1963), pp. 589-591.

[9] Smith 111, A. R., Cellular automata complexity trade-offs, Information and Control, Vol. 18
(1971), pp. 466-482.

[10] Vishkin, U., Implementation of simultaneous memory access in models that forbid it, Technical
Report No. 210, Department of Computer Science, Technion, Haifa, 1981.

[11] Wallace, C. S., A suggestion for a fast multiplier, 1EEE Transactions on Electronic Computers,
(1964), pp. 14-17.

