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Abstract

In recent years,randomness has become a central notion in diverse fields of computer sci-

ence. Randomnessis used in the design of algorithms in fields as computational number theory,

computational geometry, parallel and distributed computing, and it is crucial for cryptography.

Since in most cases the interest is in the behavior of efficient algorithms (modeled by polyno-

mial-time computations), the fundamental notion ofpseudorandomness arises. Pseudorandom

distributions are probability distributions on sets of strings that cannot be efficiently distin-

guished from the uniform distribution on the same sets. In other words, any efficient probabilis-

tic algorithm performs essentially as well when substituting its source of unbiased coins by a

sequence sampled from a pseudorandom distribution. In this thesis we investigate the existence

of pseudorandom distributions and the computational difficulty of generating them.

Pseudorandomness is practically beneficial if pseudorandom sequences can be generated

more easily than "truly random" ones.This gives rise to the notion of apseudorandom generator

- an efficient deterministic algorithm whichexpands truly random strings into longer pseudoran-

dom sequences. The existence of pseudorandom generators is not yet proven. Sucha proof of

existence would imply the solution of the most important open problem in theoretical computer

science. Itwould imply the existence of one-way functions and, in particular, that P ≠ NP.

Thus, as long as we cannot settle these questions, the existence of (polynomial-time) pseudoran-

dom generators can be proven only under intractability assumptions.In this thesis, we present a

new sufficient condition for the existence of such generators.We show that pseudorandom gen-

erators can be constructed usingregular one-way functions. Regular functions are functions that

map the same number of elements to every element in the range of the function (the actual condi-

tion is more general).The novelty of our work is both in weakening previous sufficient condi-

tions for constructing pseudorandom generators, and in presenting a new technique for iterating a

(regular) one-way function while preserving its one-wayness during the repeated iterations.In

particular, this result allows the construction of pseudorandom generators based on specific

intractability assumptions that were not known to be sufficient for this task. Examples are the

(conjectured) intractability of general factoring, the (conjectured) intractability of decoding ran-

dom linear codes, and the (conjectured) average-case difficulty of some combinatorial problems

(e.g. subset-sum).

We also investigate the existence of pseudorandom distributions when decoupled from the

notion of efficient generation.We prove, without relying on any unproven assumption, the exis-

tence and samplability ofsparse pseudorandom distributions, which are substantially different

from the uniform distribution. We demonstrate the existence of non-polynomial generators of
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pseudorandomness achieving optimal expansion rate. These algorithms have also "optimal"

complexity measures (as running time or circuit size), in the sense that improving these measures

would lead to major breakthroughs in Complexity Theory.

We prove the existence of pseudorandom distributions which areevasive, that is, any effi-

cient algorithm trying to find an element in the support of the distribution (i.e. elements assigned

with non-zero probability), will succeed to do so with only negligible probability. This result

allowed us to resolve two open problems concerning the composition of zero-knowledge proof

systems. We prove that the original definition of zero-knowledge (involving uniform verifiers

without no auxiliary input) is not robust under sequential composition, and that even the strong

formulations of zero-knowledge are not closed under parallel composition. Other results on the

round complexity of zero-knowledge interactive proofs, with significant implications to the par-

allelization of zero-knowledge protocols, are also presented.

Finally, we inv estigate whether some classical number generators, calledcongruential

number generators, are pseudorandom generators. These algorithms are extensions of the well-

known linear congruential generator, and are of interest because of their simplicity and effi-

ciency. We prove that these number generators are not pseudorandom since they can be effi-

ciently predicted. We present an efficient algorithm which, on input a prefix of the generated

sequence, guesses the next element in the sequence with a good probability of success.This

extends previous results on the predictability of congruential generators and, in particular, it

implies an affirmative answer to the open question of whether multivariate polynomial recur-

rences are efficiently predictable.
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Chapter 1:

Introduction

In recent yearsrandomnesshas become a central notion in the theory of computation.The

ability of algorithms to "toss coins" enables them to break the limitations of determinism and

allows finding more efficient solutions to many problems. For some applications, randomness is

ev en more essential.A traditional example is the field of computer based simulations. Another

such a field, central to this thesis, is cryptography.

The amount of randomness consumed by an algorithm is measured in terms of the number

of coins tossed by the algorithm. These coin flips are represented by a string of random bits fed

into the algorithm. Generating such bits is in many cases an expensive process, and thus ran-

domness becomes a new resource, in addition to classical resources as time and space.Econo-

mizing on the amount of random bits required by an application becomes a natural concern.

It is in this light that the notion ofpseudorandomnessand, in particular, of a pseudoran-

dom generator arises. Pseudorandomgenerators are deterministic algorithms which expand

short random strings into much longer "pseudorandom" sequences.Informally, the concept of a

pseudorandom sequence means that such a sequence, which is clearly not really random, is "as

good" as truly random bits for computational purposes.For many years the concept of pseudo-

randomness was treated as a vague notion lacking clear definitions.In that approach, most of the

effort was concentrated on showing that for specific families of sequences, some statistical prop-

erties of random sequences do hold.A drawback of this approach is that in practice one must

analyze these sequences for each new application according to the characteristics and needs of

that application.From the theoretical point of view this approach is unsatisfactory as it does not

suggests a uniform definition of pseudorandomness.

A breakthrough in the study of pseudorandomness was achieved in the works by Blum and

Micali [BM] and Yao [Y]. These works present a uniform treatment of the concept of pseudoran-

domness, suitable forany efficient (i.e. polynomial-time) application. In this approach a proba-

bility distribution is associated to the set of binary strings of a given length. Looselyspeaking,

this distribution is calledpseudorandomif it cannot be efficiently distinguished from the uniform

distribution on strings of the same length. In other words, efficient probabilistic algorithms per-

form essentially as well when substituting its source of unbiased coins by a pseudorandom

sequence. Thus,for any practical purposes there is no difference between an ideal source of ran-

domness and the pseudorandom source.Moreover, algorithms can be analyzed assuming they
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use unbiased coin tosses, and later implemented using pseudorandom sequences. In this

approach a pseudorandom generator is an efficient deterministic algorithm which expands ran-

dom strings into longer ones and which induces on its output a pseudorandom distribution.

The above definition of pseudorandomness is the strongest possible as long as efficient

computations are concerned. But, do such sources of pseudorandomness exist. Canthey be

effectively generated?In this thesis we investigate the existence of pseudorandom distributions

and the computational difficulty of generating them.An application of our results on pseudoran-

domness to the theory of zero-knowledge interactive proofs is also presented. The following sec-

tions overview our results.

1.1 Sufficient conditions for the existence of pseudorandom generators.

The existence of (efficient) pseudorandom generators is not yet proven. A limitation in our

actual capability to prove such a claim follows from the fact that the existence of pseudorandom

generators implies the existence ofone-way functions(functions which are easy to evaluate but

infeasible to invert). Whethersuch functions do exist is an outstanding open problem in Com-

plexity Theory. In particular, it implies that P≠ NP. Thus, as long as we cannot settle these ques-

tions we also cannot prove the existence of pseudorandom generators without relying on some

intactability assumptions.

A basic question is what are the minimal assumptions we need in order to prove the exis-

tence of pseudorandom generators, as well as to be able to construct these generators. The study

of this question was initiated in the works by Blum and Micali [BM] and Yao [Y]. They showed

that the existence of one-way permutations is a sufficient condition. (A permutation is a length-

preserving bijective function). Moreover, giv en a one-way permutation one can use it for explic-

itly constructing a pseudorandom generator. The basic scheme for this construction, proposed in

[BM], repetitively applies the one-way permutation, outputting one pseudorandom bit per each

application. Thebasic property of permutations in this context is that they preserve the uniform

distribution on the domain of application of the function. This property guarantees the difficulty

of inverting the permutation even after repeated iterations.

Levin [L] proposed a weaker sufficient condition, namely the existence of functions which

are "one-way on the iterates" (i.e., functions that remain one-way after repeated applications).

Although this condition (for the existence of pseudorandom generators) is also a necessary one,

it is somewhat cumbersome and difficult to check for specific functions (not being permutations).

Furthermore, it did not lead to finding new natural functions on which one can base the construc-

tion of pseudorandom generators.
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In this thesis we present new sufficient conditions for the existence of pseudorandom gen-

erators. We present a construction of pseudorandom generators based on the existence of any

one-way function which is one-to-one.Moreover, a wider family of one-way functions called

regular functions do suffice. These are functions in which every image of ann-bit string has the

same number of preimages of lengthn. (Actually, an even weaker condition suffices).

Our condition has several significant implications regarding the construction of pseudoran-

dom generators.First, it constitutes a new sufficient condition for the existence of pseudorandom

generators, which is weaker than the one-way permutations condition. In particular, it gets rid of

the length-preservation property. Second, it is the first construction that successfuly deals with

functions that are not necessarily one-way on the iterates (recall that one-way permutations

always have this property). Our construction transforms any regular one-way function into a

function which is one-way on the iterates.Third, the new condition allows basing the construc-

tion of pseudorandom generators on specific functions which were not known before to be suit-

able for this task.We show how to construct pseudorandom generators based on different

intractability assumptions. Examples are the intractability of general factoring, the conjectured

intractability of decoding random linear codes, and the assumed average-case difficulty of some

combinatorial problems (e.g. subset-sum).Finally, our results and techniques inspired the works

by Impagliazzo, Levin and Luby [ILL] and Hastad [Ha] (which proved the sufficiency of any

one-way function for constructing pseudorandom generators), and the work by Naor and Yung

(which based digital signatures on one-way permutations [NY]).

1.2 The existence of sparse pseudorandom distributions.

As long as we cannot prove the conjectures on which the construction of pseudorandom

generators has to be based, we cannot give a definite proof of existence of such generators.A

natural question is what can be proved if we renounce to the requirement ofefficientgeneration.

A prime concern is whether the existence of pseudorandom distributions can be proved without

relying on unproven assumptions.

The above question must be carefully formulated since trivial examples of pseudorandom

distributions do exist. Uniformdistributions (i.e., truly random sources) are such a case. On the

other hand, distributions produced by pseudorandom generators are much more "interesting".

These distributions aresparseas they concentrate their mass on a very small subset of strings.

For example, consider a generator which expandsn-bit strings into2n-bit sequences. The support

(i.e. the set of elements assigned non-zero probability) of the induced distribution contains at

most2n strings, which is a negligible fraction of the22n possible strings of length2n. Clearly,

these distributions are essentially different from the uniform distribution.
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In this thesis we prove the existence ofsparsepseudorandom distributions, independently

of any intractability assumption.Moreover, we show that sparse pseudorandom distributions can

be uniformly generated by probabilistic algorithms (that run in non-polynomial time).These

generating algorithms use less random coins than the number of pseudorandom bits they pro-

duce. Viewing these algorithms as generators which expand randomly selected short strings into

much longer pseudorandom sequences, we can exhibit (non-polynomial) generators achieving

subexponential expansion rate. This expansion is optimal as we show that no generator expand-

ing strings into exponential longer ones can induce a pseudorandom distribution (which passes

non-uniform tests). On the other hand, we use the subexponential expansion property in order to

construct non-uniform generators of size slightly super-polynomial. An improvement to this

result, namely, a proof of existence of non-uniform polynomial-size generators would separate

non-uniform-P (P/poly) from non-uniform-NP (NP/poly), which would be a major breakthrough

in Complexity Theory.

We also prove the existence of sparse pseudorandom distributions that cannot be generated

or even approximated by efficient algorithms. Namely, there exist pseudorandom distributions

that are statistically far from any distribution which is induced by any probabilistic polynomial-

time algorithm. In other words, even if efficiently generable pseudorandom distributions exist,

they do not exhaust (nor even in an approximative sense) all the pseudorandom distributions.

Finally, we introduce the notion ofevasiveprobability distributions. Theseprobability dis-

tributions have the property that any efficient algorithm will fail to find strings in their support

(except with a negligible probability).Certainly, evasive probability distributions are sparse, and

cannot be efficiently approximated by probabilistic algorithms.We show the existence ofevasive

pseudorandomdistributions.

Interestingly, we hav eapplied the above "abstract-flavored" results in order to resolve two

open questions concerning the sequential and parallel composition of zero-knowledge interactive

proofs. This application is described in section 1.4.

1.3 The predictability of congruential generators.

In section 1.1 we have seen that the construction of pseudorandom generators running in

polynomial-time is possible under some intractability assumptions. As pointed out, these

assumptions are not a weakness of the specific known constructions but are unavoidable for

achieving the requirements of pseudorandomness. On the other hand, for many practical applica-

tions the proposed generators work too slowly. This fact calls for finding more efficient pseudo-

random generators. Natural candidates to be considered are some well-known and simple gener-

ators as the linear congruential generator (see bellow) and its generalizations.Our prime concern
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is whether these generators produce pseudorandom sequences.

A natural requirement from a pseudorandom sequence is to pass thepredictability test.

This means that seeing a prefix of the generated sequence should not help guessing its continua-

tion. More precisely, no efficient algorithm should predict the next bit in the sequence with a

probability which is significantly better than 1/2.Interestingly, Yao [Y] has shown that this prop-

erty, which is crucial for cryptographic applications, is not only a natural requirement from pseu-

dorandom sequences but it is equivalent to the indistinguishability condition in the definition of

pseudorandomness. Inother words, a distribution of strings is pseudorandom if and only if it

passes the predictability test.

In this part of the thesis we deal withnumbergenerators which produce, from an initial

input, a sequence of integer numbers. In this setting, we consider predicting algorithms which

interact with the generator. For every element in the sequence, the predictor outputs its guess of

the next number before it gets the correct value from the generator. The efficiency of the predict-

ing algorithm is measured both by the number of prediction mistakes and the time it takes to

compute each prediction.Clearly, an efficient predicting algorithm in this sense implies a next-

bit predictor as referred above.

An example of a number generator is thelinear congruential generatorwhich on input

integersa, b, m, s0 outputs a sequences1, s2,. . . where si ≡ a si−1 + b (mod m) . Boyar [B] proved

that this generator is efficiently predictable, even whena, b andm are unknown. Shepresented a

predicting algorithm which errs on at mostO(log m) elements and computes each guess in poly-

nomial-time. Hermethod was extended to deal with more general cases. In particular, Boyar

proved the predictability of the multilinear congruential generator

(si ≡ α1 si−k + . . .+ α k si−1 (mod m)) and Lagarias and Reeds [LR] proved a similar result for poly-

nomial recurrences (si ≡ p(si−1) (mod m) for an unknown polynomialp of fixed degree). Anatu-

ral generalization of the above examples aremultivariate polynomial recurrences, that is, genera-

tors for whichsi ≡ P(si−n, . . .  ,si−1) (mod m) for a polynomialP in n variables. Findingefficient

predictors for these generators remained an open problem.

In this thesis we study a wide family of number generators calledgeneral congruential

generators. This family, introduced by Boyar, includes as special cases all the above examples.

These generators are defined by modular recurrences consisting of a linear combination of arbi-

trary functions working on the past sequence elements (e.g., in the case of multivariate polyno-

mial recurrences the functions are the corresponding monomials). The predictor knows these

basis functions but not the coefficients of the linear combination or the modulus of the recur-

rence. Boyar’s predicting method applies to a subclass of these generators. Here, we extend

these results showing how to predict any efficient congruential generator. We require that the



-8-

basis functions are computable in polynomial time when working over the integers. Inparticular,

we show that multivariate polynomial recurrence generators are efficiently predictable.

Our predicting technique is based on ideas from Boyar’s method, but our approach to the

prediction problem is somewhat different. Boyar’s method tries to simulate the generator by

"discovering" its secrets, that is, the modulus and the coefficients that the generator works with.

Instead, our algorithm uses only the knowledge that these coefficients exist, but does not try to

explicitly find them.

1.4 The composition of zero-knowledge interactive-proofs.

We present an application of our results on the existence of sparse and evasive pseudoran-

dom distributions (see section 1.2) to the theory of zero-knowledge proof systems.In particular,

we resolve two open problems concerning the sequential and parallel composition of zero-knowl-

edge interactive proofs.

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rackoff [GMR1],

are efficient interactive proofs which have the remarkable property of yielding nothing but the

validity of the assertion.Namely, whatever can be efficiently computed after interacting with a

zero-knowledge prover, can be efficiently computed on input a valid assertion. Thus, a zero-

knowledge proof is computationally equivalent to an answer by a trusted oracle.

A natural requirement from the notion of zero-knowledge proofs is that the information

obtained by the verifier during the execution of a zero-knowledge protocol will not enable him to

extract any additional knowledge from subsequent executions of the same protocol. That is, it is

desirable that thesequential compositionof zero-knowledge protocols would yield a protocol

which is itself zero-knowledge. Such a property is crucial for the utilization of zero-knowledge

proof systems as subprotocols inside cryptographic protocols (otherwise, the security of the

entire protocol would be compromised by the serial execution of these subprotocols).

Soon after the introduction of the notion of zero-knowledge, several researchers noticed

the importance of the preservation of zero-knowledge under sequential composition. It was con-

jectured that the original formulation of zero-knowledge is probably not closed under sequential

composition. Consequently, stronger formulations of zero-knowledge were proposed for which

the preservation property was proved to hold (see [F, GMR2, O, TW]). Feige and Shamir [F]

suggested a protocol which supports the above conjecture. Here,we use ideas from this protocol

and our results on evasive pseudorandom distributions, to prove that indeed the original formula-

tion of zero-knowledge is not closed under sequential composition.

The parallel compositionof two (or more) interactive proofs is a protocol resultant from

the concurrent execution of these proofs.Parallel composition of interactive proofs is widely
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used as means for decreasing the error probability of proof systems, while maintaining the num-

ber of iterations they inv olve. Of course one would be interested to apply these advantages of

parallelism also to zero-knowledge protocols. This would be possible if the parallel composition

of interactive proofs preserves zero-knowledge. Unfortunately, we show that this is not the case.

We present two protocols which are (computational) zero-knowledge with respect to the

strongest known definitions, yet their parallel composition is not zero-knowledge (not even in the

"weak" sense of the original [GMR1] formulation).These protocols use pseudorandom collec-

tions which are evasive against non-uniform polynomial-time machines, and whose existence is

proven in this thesis.

The above result rules out the possibility of proving that particular interactive proofs are

zero-knowledge by merely arguing that they are the result of parallel composition of various

zero-knowledge protocols. But this does not resolve the question whether concrete cases of com-

posed interactive proofs are zero-knowledge. Inparticular, since the early works on zero-knowl-

edge it was repeatedly asked whether the "parallel versions" of the zero-knowledge proofs pre-

sented for Quadratic Residuosity [GMR1], Graph Isomorphism and for any language in NP

[GMW1] are also zero-knowledge.

Our results concerning this question are reported in chapter 6 of this thesis.We prove that

these "parallel" interactive proofs cannot be proven zero-knowledge usingblack-box simulation,

unless the corresponding languages are in BPP. We say that an interactive proof is proven zero-

knowledge using black-box simulationif there exists a universal simulator which using any veri-

fier V* as a black box, successfully simulates the conversations of (the same)V* with the prover.

Not only thatall knownzero-knowledge interactive proofs are proven zero-knowledge using a

black-box simulation, but it is hard to conceive an alternative way of proving the zero-knowledge

property of such an interactive proof.

The "parallel versions" of the above examples constitute interactive proofs of 3 rounds.

The impossibility to prove them black-box zero-knowledge follows from our general result stat-

ing that only BPP languages have 3-round interactive proofs which are black-box simulation

zero-knowledge. Moreover, we prove that languages having constant-round Arthur-Merlin

proofs which are black-box simulation zero-knowledge are in BPP. (Arthur-Merlin proofs [Ba]

are interactive proofs with "public coins", i.e. in which all the messages sent by the verifier are

the outcome of his coin tosses).

Other consequences of these results are a proof of optimality for the round complexity of

various known zero-knowledge protocols, and a structure theorem for the hierarchy of Arthur-

Merlin zero-knowledge languages. In particular, these results can be viewed as a support to the

conjecture that "secret coins" help in the zero-knowledge setting.
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Chapter 2:

On the Existence of Pseudorandom Generators

2.1. INTRODUCTION

In this chapter we present our results concerning the sufficiency of regular one-way func-

tions in order to construct pseudorandom generators.

Pseudorandom generators are efficient deterministic algorithms which expand short seeds

into longer bit sequences which are polynomially-indistinguishable from the uniform probability

distribution. Formally, we hav ethe following definition.

Definition 2.1.1: A pseudorandom generator G is a deterministic polynomial time algorithm

which on input a string of lengthk outputs a string of lengthk′ > k such that for every polynomial

time algorithm (distinguishing test)T , any constantc > 0, and sufficiently largek

|Prob(T (G(Uk)) =1) − Prob(T (Uk′) =1)| ≤ k−c,

whereUm is a random variable assuming as values strings of lengthm, with uniform probability

distribution.

It follows that the strings output by a pseudorandom generatorG can substitute the unbiased coin

tosses used by any polynomial time algorithmA, without changing the behavior of algorithmA

in any noticeable fashion. Thisyields an equivalent polynomial time algorithm,A′, which ran-

domly selects a seed, usesG to expand it to the desired amount, and then runsA using the output

of the generator as the random source required byA.

The notion of a pseudorandom generator was first suggested and developed by Blum and

Micali [BM] and Yao [Y]. The theory of pseudorandomness was further developed to deal with

function generators and permutation generators and additional important applications to cryptog-

raphy hav eemerged [GGM, LuR, N]. The existence of such seemingly stronger generators was

reduced to the existence of pseudorandom (string) generators.

In light of their practical and theoretical value, constructing pseudorandom generators and

investigating the possibility of such constructions is of major importance.A necessary condition

for the existence of pseudorandom generators is the existence of one-way functions (since the

generator itself constitutes a one-way function).On the other hand, stronger versions of the one-

wayness condition were shown to be sufficient. Before reviewing these results, let us recall the

definition of a one-way function.
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Definition 2.1.2: A function f : {0, 1} * → {0,1} * is calledone-way if it is polynomial time com-

putable, but not "polynomial time invertible". Namely, there exists a constantc > 0 such that for

any probabilistic polynomial time algorithmA, and sufficiently largek

Prob


A( f (x), 1k) ∈| f −1( f (x))


> k−c, (2.1.1)

where the probability is taken over all x’s of lengthk and the internal coin tosses ofA, with uni-

form probability distribution.

(Remark: The role of1k in the above definition is to allow algorithm A to run for time polynomial

in the length of the preimage it is supposed to find. Otherwise, any function which shrinks the

input by more than a polynomial amount would be considered one-way.)

2.1.1. Previous Results

The first pseudorandom generator was constructed and proved valid, by Blum and Micali,

under the assumption that the discrete logarithm problem is intractable on a non-negligible frac-

tion of the instances [BM]. In other words, it was assumed that exponentiation modulo a prime

(i.e. the 1-1 mapping of the triple(p, g, x) to the triple(p, g, gx modp), wherep is prime andg is a

primitive element inZ*
p) is one-way. Assuming the intractability of factoring integers of the form

N = p ⋅ q, where p and q are primes andp ≡ q ≡3 mod 4, a simple pseudorandom generator exists

[BBS, ACGS]. 1 Under this assumption the permutation, defined over the quadratic residues by

modular squaring, is one-way.

Yao has presented a much more general condition which suffices for the existence of pseu-

dorandom generators; namely, the existence of one-way permutations [Y].2

Levin has weakened Yao’s condition, presenting a necessary and sufficient condition for

the existence of pseudorandom generators [L].Levin’s condition, hereafter referred to asone-

way on iterates, can be derived from Definition 2.1.2 by substituting the following line instead of

line (2.1.1)

( ∀i,1≤ i < kc+2 ) Prob


A( f (i)(x), 1k) ∈| f −1( f (i)(x))


> k−c,

where f (i)(x) denotesf iteratively appliedi times onx. (As before the probability is taken uni-

formly over all x’s of lengthk.) Clearly, any one-way permutation is one-way on its iterates.It
1 A slightly more general result, concerning integers with all prime divisors congruent to 3

mod 4, also holds [CGG].
2 In fact, Yao’s condition is slightly more general. He requires thatf is 1-1 and that there

exists a probability ensembleΠ which is invariant under the application off and that inverting
f is "hard on the average" when the input is chosen according toΠ.
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is also easy to use any pseudorandom generator in order to construct a function which satisfies

Levin’s condition. Unfortunately, this condition is somewhat cumbersome.In particular, it

seems hard to test the plausibility of the assumption that a particular function is one-way on its

iterates.

2.1.2. Our Results

In this thesis we consider "regular" functions, in which every element in the range has the

same number of preimages. More formally, we use the following definition.

Definition 2.1.3: A function f is calledregular if there is a functionm(⋅) such that for every n

and for every x ∈{0,1} n the cardinality off −1( f (x)) ∩ {0,1} n is m(n).

Clearly,every 1-1 function is regular (withm(n) =1, ∀n). Ourmain result is

Theorem 2.1.1:If there exists a regular one-way function then there exists a pseudorandom gen-

erator.

A special case of interest is of 1-1 one-way functions. The sufficiency of these functions

for constructing pseudorandom generators does not follow from previous works. In particular,

Yao’s result concerning one-way permutations does not extend to 1-1 one-way functions.

Regularity appears to be a simpler condition than the intractability of inverting on the func-

tion’s iterates. Furthermore,many natural functions (e.g. squaring modulo an integer) are regular

and thus, using our result, a pseudorandom generator can be constructed assuming that any of

these functions is one-way. In particular, if f actoring is weakly intractable (i.e. every polynomial

time factoring algorithm fails on a non-negligible fraction of the integers) then pseudorandom

generators do exist. Thisresult was not known before. (It was only known that the intractability

of factoring a special subset of the integers implies the existence of a pseudorandom generator.)

Using our results, we can construct pseudorandom generators based on the (widely believed)

conjecture that decoding random linear codes is intractable, and on the assumed average case dif-

ficulty of combinatorial problems as subset-sum.

Theorem 2.1.1 is proved essentially by transforming any giv en regular one-way function

into a function that is one-way on its iterates (and then applying Levin’s result [L]).

It is interesting to note that not every (regular) one-way function is "one-way on its iter-

ates". To emphasize this point, consider the following example of a one-way function (f ) which

is trivially invertible on the distribution obtained by iterating the functiontwice: Let f be any

one-way function and assume for simplicity thatf is length preserving (i.e.| f (x)|= |x|). Let
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|x|= |y| and define f (xy) = 0|y| f (x) . Clearly, f is one-way. On the other hand, for every

xy ∈{0,1} 2n, f ( f (xy)) = 0n f (0n) and0n f (0n) ∈ f
−1(0n f (0n)). Also notice that iff is regular then so

is f .

The novelty of our work is in presentinga direct way to construct a function which is one-

way on its iterates from any regular one-way function (which is not necessarily one-way on its

iterates).

2.1.3. Subsequent Results

Recent results of Impagliazzo, Levin and Luby [ILL] and Hastad [Ha] extend our results

showing the sufficiency, for constructing pseudorandom generators, of any one-way function.

Thus, the equivalence of pseudorandom generators and one-way functions is stated.

2.2. THE CONSTRUCTION OF PSEUDORANDOM GENERATORS

2.2.1. Preliminaries

In the sequel we make use of the following definition ofstrongly one-way function.

(When referring to Definition 2.1.2, we shall call the functionweak one-way or simply one-way).

Definition 2.2.1: A polynomial time computable functionf : {0, 1} * → {0,1} * is calledstrongly

one-way if for any probabilistic polynomial time algorithmA, any positive constantc, and suffi-

ciently largek,

Prob


A( f (x), 1k) ∈ f −1( f (x))


< k−c,

where the probability is taken over all x’s of lengthk and the internal coin tosses ofA, with uni-

form probability distribution.

Theorem (Yao [Y]): There exists a strong one-way function if and only if there exists a (weak)

one-way function. Furthermore, given a one-way function, a strong one can be constructed.

It is important to note that Yao’s construction preserves the regularity of the function.

Thus, we may assume without loss of generality, that we are given a function f which is strongly

one-way and regular.

For the sake of simplicity, we assume f is length preserving (i.e. ∀ x , | f (x)| = |x|). Our

results hold also without this assumption (see subsection 2.2.7).
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Notation: For a finite setS, the notations ∈R S means that the elements is randomly selected

from the setS with uniform probability distribution.

2.2.2. Levin’s Criterion: A Modified Version

The proof of Theorem 2.1.1 relies on the transformation of a function which is one-way

and regular into a function which satisfies a variant of Levin’s one-way on iterates condition.

The modified condition relates to functions which leave the first part of their argument

unchanged. Itrequires that the function is one-way on a number of iterates which exceeds the

length of the second part of its argument. (Levin requires that the function is one-way on a num-

ber of iterations exceeding the length of theentire argument.)

More precisely, we consider functionsF(⋅,⋅) defined as

F(h, x) = (h , F0(h, x))

That is,F applies a functionF0 on its arguments and concatenates the first argumenth to this

result. We prove the following condition.

Lemma 2.2.1:A sufficient condition for the existence of a pseudorandom generator is the exis-

tence of a functionF of the form

F(h, x) = (h , F0(h, x))

such thatF is strongly one-way for|x|+1 iterations.

Before proving Lemma 2.2.1, let us recall Blum-Micali scheme for the construction of

pseudorandom generators [BM].This scheme uses two basic elements. The first is a (strongly)

one-way function f , and the second is a boolean predicateb(⋅) called a "hard-core" of the func-

tion f . (Roughly speaking, a Boolean functionb(⋅) is ahard-core predicate of f , if it is polyno-

mial time computable, but no polynomial time probabilistic algorithm given f (x), for randomly

selectedx, can compute the value ofb(x) with a probability significantly better than1/2). A

pseudorandom generatorG is constructed in the following way. On input x (the seed), the gener-

ator G applies iteratively the one-way function f (⋅) on x for t (= poly(|x|)) times (i.e.

f (x), f (2 )(x), . . ., f (t)(x)). In each application off , the predicateb( f (i)(x)) is computed and the

resultant bit is output by the generator. That is,G outputs a string of lengtht. Blum and Micali

show that the above sequence of bits is unpredictable when presented in reverse order (i.e.

b( f (t)(x)) first andb( f (1 )(x)) last), provided that the boolean functionb(⋅) is a hard-core predicate

on the distribution induced by the iteratesf (i) , 0≤ i ≤ t. The unpredictability of the sequence is

proved by showing that an algorithm which succeeds to predict the next bit of the sequence with

probability better than one half can be transformed into an algorithm for "breaking" the hard-core
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of the functionf . Finally applying Yao’s result [Y] that unpredictable sequences are pseudoran-

dom we get that the above G is indeed a pseudorandom generator.

The crucial ingredient in the proof of Levin’s condition, as well as of our modified version,

is the existence of a hard-core predicate for any (slightly modified) one-way function.A recent

result of Goldreich and Levin [GL] greatly simplifies the original proof in [L]. This result states

that any function f ′(x, r) = ( f (x), r), where|x| = |r|, has a hard-core predicate for the uniform distri-

bution onr and any distribution onx for which f is strongly one-way. This hard-core predicate

is the inner product modulo 2 ofr andx (viewed as vectors over Z2).

Finally, we recall the following notable property of pseudorandom generators: in order to

have a generator which expands strings to any polynomial length, it suffices to construct a gener-

ator which expands strings of lengthk into strings of lengthk +1. This generator can be itera-

tively applied for polynomially many times without harming the pseudorandomness of its output

[GrM]. We now prove Lemma 2.2.1.

Proof of Lemma 2.2.1:Note thatF(i)(h, x) = (h , F(i)
0 (h, x)). Thus, the condition in the Lemma

implies thatF0(h, x) is hard to invert for |x|+1 iterations even whenh is given to the inverter. We

construct the following generator, G, which expands its input by one bit.Let s be the seed forG,

so thats = (r , h , x), where|x|= n, |r|= n. Then, we define

G (s) = G(r , h , x) = (r , h , b0 ,⋅ ⋅ ⋅ , bn)

where fori = 0, . . ., n, bi is the inner product modulo 2 ofr andF(i)
0 (h, x). (We denoteF(0)

0 (h, x) = x).

We claim that this generator is pseudorandom. This is proved by noting that the output string is

unpredictable. Thisis true for ther andh part as they were chosen as truly random strings.For

the other bits this is guaranteed by Goldreich-Levin result and the fact thatF0 is hard to invert for

n +1 iterations (even whenh is given to the inverter).

2.2.3. Main Ideas

We prove Theorem 2.1.1 by transforming any regular and (strongly) one-way functionf

into a new strongly one-way functionF for which the conditions of Lemma 2.2.1 hold.

The following are the main ideas behind this construction.Since the functionf is strongly

one-way, any algorithm trying to invert f can succeed with only negligible probability. Here the

probability distribution on the range off is induced by choosing a random element from the

domain and applyingf . Howev er, this condition says nothing about the capability of an algo-

rithm to invert f when the distribution on the range is substantially different. For example, there

may be an algorithm which is able to invert f if we consider the distribution on the range ele-

ments induced by choosing a random element from the domain and applyingf twice or more



-16-

(see example in section 2.1.2).To prevent this possibility, we "randomly" redistribute, after each

application of f , the elements in the range to locations in the domain.We prove the validity of

our construction by showing that the probability distribution induced on the range off by our

"random" transformations (and the application off ) is close to the distribution induced by the

first application off .

The functionF we construct must be deterministic, and therefore the "random" redistribu-

tion must be deterministic (i.e.uniquely defined by the input toF). To achieve this, we use high

quality hash functions. More specifically, we use hash functions which mapn-bit strings ton-bit

strings, such that the locations assigned to the strings by a randomly selected hash function are

uniformly distributed andn-wise independent.For properties and implementations of such func-

tions see [CW, J, CG, Lu]. We denote this set of hash functions byH(n). Elements ofH(n) can

be described by bit strings of lengthn2. In the sequelh( ∈ H(n)) refers to both the hash function

and to its representation.

2.2.4. The Construction ofF

We view the input string toF as containing two types of information. The first part of the

input is the description of hash functions that implement the "random" redistributions and the

other part is interpreted as the input for the original functionf .

The following is the definition of the functionF:

F(h0 ,. . ., ht(n)−1 , i , x ) = ( h0 ,. . ., ht(n)−1 , i+ , hi( f (x)) )

where x ∈{0,1} n, h j ∈ H(n), 0≤ i ≤ t(n) −1. The function t(n) is a polynomial inn, and i+ is

defined as(i +1) modt(n).

The rest of this section is devoted to the proof of the following theorem.

Theorem 2.2.2:Let f be a regular and strongly one-way function and lett(n) be any polynomial.

Then the functionF defined above is strongly one-way fort(n) iterations on stringsx of lengthn.

Theorem 2.1.1 follows from Theorem 2.2.2 and Lemma 2.2.1 by choosingt(n) > n.

Let h0 , h1 ,. . ., ht(n)−1 be t(n) functions from the setH(n). For r =1,. . ., t(n), let gr be the

function gr = f hr−1 f hr−2 f . . .h0 f acting on strings of lengthn, let Gr(n) be the set of all such

functionsgr , let g be gt(n) and letG(n) be the set of such functionsg. From the above descrip-

tion of the functionF it is apparent that the inversion of an iterate ofF boils down to the problem

of inverting f when the probability distribution on the range off is gr(x) wherex ∈R {0,1} n. We

show that, for mostg ∈G(n), the number of preimages underg for each element in its range is

close (up to a polynomial factor) to the number of preimages for the same range element under
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f . This implies that the same statement is true for mostgr ∈Gr(n) for all r =1,. . ., t(n). The proof

of this result reduces to the analysis of the combinatorial game that we present in the next sub-

section.

2.2.5. The game

Consider the following game played withM balls andM cells wheret(n) << M ≤ 2n . Ini-

tially each cell contains a single ball. The game hast(n) iterations. Ineach iteration, cells are

mapped randomly to cells by means of an independently and randomly selected hash function

h ∈R H(n). This mapping induces a transfer of balls so that the balls residing (before an iteration)

in cell σ are transferred to cellh(σ ). We are interested in bounding the probability that some

cells contain "too many" balls when the process is finished.We show that aftert(n) iterations,

for t(n) a polynomial, the probability that there is any cell containing more than some polynomial

in n balls is negligibly small (i.e. less than any polynomial inn fraction).

We first proceed to determine a bound on the probability that a specific set ofn balls is

mapped aftert(n) iterations to a single cell.

Lemma 2.2.3: The probability that a specific set ofn balls is mapped aftert(n) iterations to the

same cell is bounded above by p(n) = 


n ⋅ t(n)

M



n−1

.

Proof: Let B = { b1 , b2 ,. . ., bn} be a set ofn balls. Noticethat each execution of the game defines

for every ball bi a path throught(n) cells. Inparticular, fixing t(n) hash functionsh0 , h1 ,. . ., ht(n)−1,

a path corresponding to eachbi is determined.Clearly, if two such paths intersect at some point

then they coincide beyond this point.We modify these paths in the following way. The initial

portion of the path forbi that does not intersect the path of any smaller indexed ball is left

unchanged. Ifthe path forbi intersects the path forb j for some j < i then the remainder of the

path forbi is chosen randomly and independently of the other paths from the point of the first

such intersection.

Because the functionshi are chosen totally independently of each other and because each of

them has the property of mapping cells in ann-independent manner, it follows that the modified

process just described is equivalent to a process in which a totally random path is selected for

each ball inB. Consider the modified paths.We say that two balls bi andb j join if and only if

their corresponding paths intersect.Definemerge to be the reflexive and transitive closure of the

relation join (over B). Themain observation is that ifh0 , h1 ,. . ., ht(n)−1 map the balls ofB to the

same cell, thenb1 , b2 ,. . ., bn are all in the same equivalence class with respect to the relation

merge. Inother words, the probability that the balls inB end up in the same cell in the original

game is bounded above by the probability that the merge relation has a single equivalence class
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(containing all ofB). Letus now consider the probability of the latter event.

If the merge relation has a single equivalence class then the join relation defines a connected

graph with then balls as vertices and the join relation as the set of edges. The "join graph" is

connected if and only if it contains a spanning tree.Thus, an upper bound on the probability that

the "join graph" is connected is obtained by the sum of the probabilities of each of the possible

spanning trees which can be embedded in the graph. Each particular tree has probability at most

(t(n)/M)n−1 to be embedded in the graph (t(n)/M is an upper bound on the probability of each

edge to appear in the graph). Multiplying this probability by the (Cayley) number of different

spanning trees (nn−2 cf. [E, Sec. 2.3]), the lemma follows.

A straightforward upper bound on the probability that there is some set ofn balls which

are merged is the probability thatn specific balls are merged multiplied by the number of possi-

ble distinct subsets ofn balls. Unfortunately, this bound is worthless (as( M

n
) ⋅ p(n) > 1 (This

phenomena is independent of the choice of the parametern.). Instead we use the following tech-

nical lemma.

Lemma 2.2.4:Let S be a finite set, and letΠ denote a partition ofS. Assume we have a proba-

bility distribution on partitions ofS. For every A ⊆ S, we define χ A(Π) =1 if A is contained in a

single class of the partitionΠ and χ A(Π) = 0 otherwise. Letn andn′ be integers such thatn < n′.

Let p(n) be an upper bound on the maximum over all A ⊆ S such that|A|= n of the probability that

χ A =1. Let q(n′) be an upper bound on the probability that there exists someB ⊆ S such that

|B|≥ n′ andχ B =1. Then

q(n′) ≤
( |S|

n
) ⋅ p(n)

( n′
n

)

Proof: For B ⊆ S we defineξ B(Π) =1 if B is exactly a single class of the partitionΠ andξ B(Π) = 0

otherwise. Fixa partition Π. Observe that every B , |B|≥ n′, for which ξ B(Π) =1, contributes at

least( n′
n

) different subsetsA of sizen for which χ A =1. Thus we get that

( n′
n

) ⋅
B ⊆ S,|B|≥ n′

Σ ξ B(Π) ≤
A ⊆ S,|A|= n

Σ χ A(Π)

Dividing both sides of this inequality by( n′
n

), and averaging according to the probability distri-

bution on the partitionsΠ, the left hand side is an upper bound forq(n′), while the right hand side

is bounded above by
( |S|

n
) ⋅ p(n)

( n′
n

)
.
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Remark 2.2.1:Lemma 2.2.4 is useful in situations when the ratio
p(n)

p(n′)
is smaller than( |S| − n

n′ − n
).

Assuming thatn′ << |S|, this happens whenp(n) is greater than|S|−n. Lemma 2.2.3 is such a case,

and thus the application of Lemma 2.2.4 is useful.

Combining Lemmas 2.2.3 and 2.2.4, we get

Theorem 2.2.5:Consider the game played fort(n) iterations. Then,the probability that there is

4t(n) ⋅ n2 + n balls which end up in the same cell is bounded above by 2−n.

Proof: Let S be the set ofM balls in the above game. Eachgame defines a partition of the balls

according to their position aftert(n) iterations. The probability distribution on these partitions is

induced by the uniform choice of the mappingsh. Theorem 2.2.5 follows by using Lemma 2.2.4

with n′ = 4t(n) ⋅ n2 + n, and the boundp(n) of Lemma 2.2.3.

2.2.6. Proof of Theorem 2.2.2

We now apply Theorem 2.2.5 to the analysis of the functionF. As before, letG(n) be the

set of functions of the formg = f ht(n)−1 f . . .h0 f . The functionsh = h j are hash functions used to

map the range off to the domain off . We let h0 ,. . ., ht(n)−1 be randomly chosen uniformly and

independently fromH(n), and this induces a probability distribution onG(n). Denote the range

of f (on strings of lengthn) by R(n) = { z1, z2, . . .  ,zM } . Let eachzi represent a cell. Consider the

function h as mapping cells to cells. We say thath maps the cellzi to the cellz j if h(zi) ∈ f −1(z j),

or in other words f (h(zi)) = z j. By the regularity of the functionf , we hav ethat the size off −1(zi)

(which we have denoted bym(n)) is equal for allzi ∈ R(n), and therefore the mapping induced on

the cells is uniform. It is now apparent thatg ∈R G(n) behaves exactly as the random mappings

in the game described in Section 2.2.5, and thus Theorem 2.2.5 can be applied.We get

Lemma 2.2.6:There is a constantc0, such that for any constantc > 0 and sufficiently largen

Prob


∃ z with |g−1(z)|≥ nc0 ⋅ m(n)


≤

1

nc
,

whereg ∈R G(n).

Let us denote byG′(n) the set of functionsg ∈G(n) such that for allz in the range off ,

|g−1(z)| <nc0 ⋅ m(n). By the above lemma,G′(n) contains almost all ofG(n). It is clear that if

g ∈G′(n) then for allz in the range off and for allr =1,. . ., t(n) the functiongr defined by the first

r iterations ofg satisfies|g−1
r (z)| <nc0 ⋅ m(n).

Lemma 2.2.7:For any probabilistic polynomial time algorithmA, for any positive constantc and

sufficiently largen and for allr =1,. . ., t(n),

Prob(A(gr , z) ∈ f −1(z)) < n−c



-20-

wheregr ∈R Gr(n) andz = gr(x), x ∈R {0,1} n.

Proof: We prove the claim forr = t(n) and the claim forr =1,. . ., t(n) follows in an analogous way.

Assume to the contrary that there is a probabilistic polynomial time algorithmA and a constant

cA such thatProb(A(g, z) ∈ f −1(z)) > n−cA, whereg ∈R G(n) andz = g(x), x ∈R {0,1} n.

By usingA, we can demonstrate an algorithmA′ that inverts f , contradicting the one-wayness of

f . The input toA′ is z = f (x) where x ∈R {0,1} n. A′ choosesg ∈R G(n) and outputsA(g, z). We

show that A′ inverts f with non-negligible probability. By assumption there is a non-negligible

subsetG′′(n) of G′(n) such that, for eachg ∈G′′(n), A succeeds with significant probability to

compute ay ∈ f −1(z) wherez = g(x) andx ∈R {0,1} n. Sinceg ∈G′(n), for all z in the range off the

probability induced byg on z differs by at most a polynomial factor inn from the probability

induced by f . Thus, for g ∈G′′(n), A succeeds with significant probability to compute a

y ∈ f −1(z) wherez = f (x) andx ∈R {0,1} n. This is exactly the distribution of inputs toA′, and thus

A′ succeeds to invert f with non-negligible probability, contradicting the strong one-wayness of

f .

The meaning of Lemma 2.2.7 is that the functionf is hard to invert on the distribution

induced by the functionsgr , r =1, . . ., t(n), thus proving the strong one-wayness of the functionF

for t(n) iterations. Theorem 2.2.2 follows.

2.2.7. Extensions

In the above exposition we assumed for simplicity that the functionf is length preserving,

i.e. x ∈{0,1} n implies that the length off (x) is n. This condition is not essential to our proof and

can be dispensed with in the following way. If f is not length preserving then it can be modified

to have the following property:For every n, there is ann′ such thatx ∈{0,1} n implies that the

length of f (x) is n′. This modification can be carried out using a padding technique that pre-

serves the regularity off . We can then modify our description ofF to use hash functions map-

ping n′-bit strings ton-bit strings. Alternatively, we can transform the above f into a length pre-

serving and regular function̂f by defining f̂ (xy) = f (x), where|x| = n , |y| = n′ − n.

For the applications in Section 2.3, and possibly for other cases, the following extension

(referred to assemi-regular) is useful. Let{ f x} x ∈{0,1} * be a family of regular functions, then our

construction can be still applied to the functionf defined asf (x, y) = (x, f x(y)). The idea is to

use the construction for the application of the functionf x, while keepingx unchanged.

Another extension is a relaxation of the regularity condition.A useful notion in this con-

text is the histogram of a function.
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Definition 2.2.2: The histogram of the function f : {0, 1} * → {0,1} * is a functionhist f : N × N → N

such thathist f (n, k) is the cardinality of the set

{ x ∈{0,1} n : 

log2 | f −1( f (x))|


= k}

Regular functions have trivial histograms.Let f be a regular function such that for allx ∈{0,1} n,

| f −1( f (x))|= m(n). The histogram satisfieshist f (n, k) = 2n for k = log2(m(n)) andhist f (n, k) = 0 oth-

erwise. Weakly regular functions have slightly less dramatic histograms.

Definition 2.2.3:The function f is weakly regular if there is a polynomialp(⋅) and a functionb(⋅)

such that the histogram off satisfies (for alln)

i) hist f (n, b(n)) ≥
2n

p(n)

ii)
n

k=b(n)+1
Σ hist f (n, k) <

2n

(n ⋅ p(n))2

Clearly, this definition extends the original definition of regularity. Using our techniques one can

show that the existence of weakly regular strongly one-way functions implies the existence of

pseudorandom generators.

Observe that if theb(n)-th level of the histogram contains all of the2n strings of lengthn

then we can apply a similar analysis as done for the regular case. The only difference is that we

have to analyze the game of subsection 2.2.5 not for cells of equal size, but for cells that differ in

their size by a multiplicative factor of at most two. Similar arguments hold when considering the

case where theb(n)-th level of the histogram contains at least1/p(n) of the strings and the rest of

strings lie below this level (i.e. hist f (n, k) = 0, for k > b(n)). Notethat the "small" balls of low lev-

els cannot cause the cells of theb(n)-th level to grow significantly. On the other hand, for balls

bellow lev el b(n) nothing is guaranteed.Thus, we get that in this case the functionF we con-

struct is weakly one-way on its iterates. More precisely, it is hard to invert on its iterates for at

least a1/p(n) fraction of the input strings.In order to use this function for generating pseudoran-

dom bits, we have to transform it into a strongly one-way function. This is achieved following

Yao’s construction [Y] by applyingF in parallel on many copies. For the present case the num-

ber of copies could be any function ofn which grows faster thanc ⋅ p(n) ⋅ log n, for any constant

c. This increases the number of iterations for whichF has to remain one-way by a factor equal

to the number of copies used in the above transformation. Thatis, the numbert(n) of necessary

iterates increases from the original requirement ofn +1 (see section 2.2.2) to a quantity which is

greater thanc ⋅ p(n) ⋅ n ⋅ log n, for any constantc. Choosing this way the functiont(n) in the defi-

nition of F in section 2.2.4, we getF which is one-way for the right number of iterations.
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Finally, consider the case in which there exist strings above the b(n)-th level. Whencon-

sidering the game of subsection 2.2.5 we want to show that, also in this case, most of the cells of

the b(n)-th level do not grow considerably. This is guaranteed by condition (ii) in Definition

2.2.3. Considerthe worst case possibility in which in every iteration the total weight of the "big"

balls (those above lev el b(n)) is transferred to cells of theb(n)-th level. After t(n) iterations this

causes a concentration of "big" balls in theb(n)-th level having a total weight of at most

t(n) ⋅
2n

(n ⋅ p(n))2
. Choosingt(n) = ½ p(n) n2 this weight will be at most

2n

2 p(n)
. But then one half of

the weight in theb(n)-th level remains concentrated in balls that were not effected by the "big"

balls. In other words we get that the functionF so constructed is one-way fort(n) iterations on
1

2 p(n)
of the input strings. Applying Yao’s construction , as explained above, we get a functionF

which satisfies the criterion of Lemma 2.2.1 and then suitable for the construction of pseudoran-

dom generators.

Further Remarks:

1) Thedenominator in condition (ii) of Definition 2.2.3 can be substituted by any function

growing faster thanc ⋅ p2(n) ⋅ n, for any constantc. This follows from the above analysis

and the fact that the construction of a hard-core predicate in [GL] allows extracting log n

secure bits with each application of the one-way function.

2) Theentire analysis holds when defining histograms with polynomial base (instead of base

2). Namely,hist f (n, k) is the cardinality of the set

{ x ∈{0,1} n : 

logQ(n) | f −1( f (x))|


= k}

whereQ(n) is a polynomial.

2.3. APPLICATIONS : Pseudorandom Generators Based on Particular Intractability

Assumptions

In this section we apply our results in order to construct pseudorandom generators (PRGs)

based on the assumption that one of the following computational problems is "hard on a non-

negligible fraction of the instances".
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2.3.1. PRGBased on the Intractability of the General Factoring Problem

It is known that pseudorandom generators can be constructed assuming the intractability of

factoring integers of a special form [Y]. More specifically, in [Y] it is assumed that any polyno-

mial time algorithm fails to factor a non-negligible fraction of integers that are the product of

primes congruent to 3 modulo 4.With respect to such an integer N , squaring moduloN defines a

permutation over the set of quadratic residues modN , and therefore the intractability of factoring

(suchN ’s) yields the existence of a one-way permutation [R]. It was not known how to construct

a one-way permutation or a pseudorandom generator assuming that factoring a non-negligible

fraction ofall the integers is intractable. In such a case modular squaring is a one-way function,

but this function does not necessarily induce a permutation.Fortunately, modular squaring is a

semi-regular function (see subsection 2.2.7), so we can apply our results.

Assumption IGF (Intractability of the General Factoring Problem): There exists a constantc > 0

such that for any probabilistic polynomial time algorithmA, and sufficiently largek

Prob


A(N ) does not splitN 


> k−c,

whereN ∈ R{0,1} k .

Corollary 2.3.1: The IGF assumption implies the existence of pseudorandom generators.

Proof: Define the following functionf (N , x) = (N , x2 modN ). Clearly, this function is semi-regu-

lar. The one-wayness of the function follows from IGF (using Rabin’s argument [R]). Using an

extension of Theorem 2.2.2 (see subsection 2.2.7) the corollary follows.

Subsequently, J. (Cohen) Benaloh has found a way to construct a one-way permutation

based on the IGF assumption. This yields an alternative proof of Corollary 2.3.1.

2.3.2. PRGBased on the Intractability of Decoding Random Linear Codes

One of the most outstanding open problems in coding theory is that of decoding random

linear codes. Of particular interest are random linear codes with constant information rate which

can correct a constant fraction of errors.An (n, k, d)-linear code is ank-by- n binary matrix in

which the bit-by-bit XOR of any subset of the rows has at leastd ones. TheGilbert-Varshamov

bound for linear codes guarantees the existence of such a code provided thatk/n < 1− H2(d/n),

whereH2 is the binary entropy function [McS, ch. 1, p. 34]. The same argument can be used to

show (for every ε > 0) that if k/n < 1− H2((1 + ε) ⋅ d/n), then almost allk-by- n binary matrices con-

stitute(n, k, d)-linear codes.
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We suggest the following function f : {0, 1} * → {0,1} * . Let C be ank-by- n binary matrix,

x ∈{0,1} k , and e ∈ En
t ⊆ {0,1} n be a binary string with at mostt = (d −1) /2 ones, whered satisfies

the condition of the Gilbert-Varshamov bound (see above). ClearlyEn
t can be uniformly sampled

by an algorithmS running in time polynomial inn (i.e. S: {0, 1} poly(n) → En
t ). Let r ∈{0,1} poly(n)

be a string such thatS(r) ∈ En
t . Then,

f (C, x, r) = (C,C(x) + S(r)),

whereC(x) is the codeword of x (i.e. C(x) is the vector resulting by the matrix productxC). One

can easily verify thatf just defined is semi-regular (i.e.fC(x, r) = C(x) + S(r) is regular for all but

a negligible fraction of theC’s). Thevector xC + e ( e = S(r)) represents a codeword perturbed by

the error vectore.

Assumption IDLC (Intractability of Decoding Random Linear Codes): There exists a constant

c > 0 such that for any probabilistic polynomial time algorithmA, and sufficiently largek

Prob( A(C,C(x) + e) ≠ x ) > k−c,

whereC is a randomly selectedk-by- n matrix, x ∈ R{0,1} k ande ∈ R En
t .

Now, either assumption IDLC is false which would be an earth-shaking result in coding

theory or pseudorandom generators do exist.

Corollary 2.3.2: The IDLC assumption implies the existence of pseudorandom generators.

Proof: The one-wayness of the functionf follows from IDLC. Using an extension of Theorem

2.2.2 (see subsection 2.2.7) the corollary follows.

2.3.3. PRGBased on the Average Difficulty of Combinatorial Problems

Some combinatorial problems which are believed to be hard on the average can be used to con-

struct a regular one-way function and hence be a basis for a pseudorandom generator. Consider,

for example, theSubset-Sum Problem.

Input: Modulo M, |M |= n, and n +1 integersa0, a1,. . ., an of lengthn-bit each.

Question: Is there a subsetI ⊆ {1 , . . .  ,n} such that
i ∈ I
Σ ai ≡ a0 ( modM)

Conjecture: The above problem is hard on the average, when theai ’s and M are chosen uni-

formly in [2n−1 , 2n −1].

Under the above conjecture, the function

fS(a1, a2,. . ., an , M , I ) = (a1, a2,. . ., an , M , (
i ∈ I
Σ ai modM ) )

is both weakly-regular and one-way.
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Chapter 3:

Sparse Pseudorandom Distributions

3.1. INTRODUCTION

Most of the previous work on pseudorandomness, as well as the results presented in chap-

ter 2 of this thesis, have focused on the construction of (efficient) pseudorandom generators.The

natural requirement that these generators work in polynomial time enforces this investigation to

be based on some intractability assumptions.

In this chapter we study the notion of pseudorandomness when decoupled from the notion

of efficient generation. This investigation is carried out using no unproven assumptions. The

first question we address is the existence of non-trivial pseudorandom distributions. Thatis,

pseudorandom distributions that are neither the uniform distribution nor statistically close to it

(see Definition 3.2.5 bellow). Yao [Y] presents a particular example of such a distribution. Fur-

ther properties of such distributions are developed here.

We prove the existence ofsparse pseudorandom distributions. A distribution is called

sparse if it is concentrated on a negligible part of the set of all strings of the same length.For

example, given a positive constantδ <1 we construct a probability distribution concentrated on

2δ k of the strings of lengthk which cannot be distinguished from the uniform distribution on the

set of allk-bit strings (and hence is pseudorandom).

We show that sparse pseudorandom distributions can be uniformly generated by proba-

bilistic algorithms (that run in non-polynomial time).On the other hand, we prove the existence

of effectively generable pseudorandom distributions which cannot even be approximated by

probabilistic polynomial-time algorithms.Moreover, we show the existence ofevasive pseudo-

random distributions which are not only sparse but also have the property that no polynomial-

time algorithm may find an element in their support, except for a negligible probability.

An application of these results to the field of zero-knowledge interactive proofs is pre-

sented in chapter 5.

3.2. PRELIMINARIES

In chapter 2 we have defined the concept of a pseudorandom generator (definition 2.1.1).

Here we define the general concept of a pseudorandom distribution. Thisdefinition is stated in

asymptotical terms, so we shall not discuss single distributions but rather collections of
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probability distributions called probability ensembles.

Definition 3.2.1: A probability ensemble Π is a collection of probability distributions { π k} k ∈ K ,

such thatK is an infinite set of indices (nonnegative integers) and for every k ∈ K , π k is a proba-

bility distribution on the set of (binary) strings of lengthk.

In particular, an ensemble{ π k} k ∈ K in which π k is a uniform distribution on{0,1} k is called a

uniform ensemble.

Next, we give a formal definition of a pseudorandom ensemble.This is done in terms of polyno-

mial indistinguishability between ensembles.

Definition 3.2.2: Let Π = { π k} andΠ′ = { π k′} be two probability ensembles.Let T be a proba-

bilistic polynomial time algorithm outputting0 or 1 ( T is called astatistical test). Denoteby

pT(k) the probability thatT outputs1 when fed with an input selected according to the distribu-

tion π k . Similarly, pT′(k) is defined with respect toπ k′. The testT distinguishes betweenΠ andΠ′

if and only if there exists a constantc > 0 and infinitely many k’s such that|pT(k) − pT′(k)| > k−c.

The ensemblesΠ andΠ′ are calledpolynomially indistinguishable if there exists no polynomial-

time statistical test that distinguish between them.

Definition 3.2.3: A probabilistic ensemble is calledpseudorandom if it is polynomially indis-

tinguishable from a uniform ensemble.

Remark 3.2.1:Some authors define pseudorandomness by requiring that pseudorandom ensem-

bles be indistinguishable from uniform distributions even by non-uniform (polynomial) tests.We

stress that the results (and proofs) in this chapter also hold for these stronger definitions.

We are interested in the question of whether non-trivial pseudorandom ensembles can be effec-

tively sampled by means of probabilistic algorithms. The following definition capture the notion

of ’samplability’.

Definition 3.2.4:A sampling algorithm is a probabilistic algorithmA that on input a string of the

form 1n, outputs a string of lengthn. The probabilistic ensemble ΠA = { π A
n } n induced by a sam-

pling algorithm A is defined byπ A
n (y) = Prob(A(1n) = y), where the probability is taken over the

coin tosses of algorithmA. A samplable ensemble is a probabilistic ensemble induced by a sam-

pling algorithm. If the sampling algorithm uses, on input1n, less thann random bits then we call

the ensemblestrongly-samplable.

Note that using the above terminology one can view pseudorandom generators as efficient

strong-sampling algorithms (the seed is viewed as the random coins for the sampling algorithm).

We consider as trivial, pseudorandom ensembles that are "close" to a uniform ensemble. The

meaning of "close" is formalized in the next definition.
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Definition 3.2.5:Tw o probabilistic ensemblesΠ andΠ′ arestatistically close if for any positive c

and any sufficiently largen,
x ∈{0,1} n

Σ |π n(x) − π n′(x)| < n−c.

A special case of non-trivial pseudorandom ensembles are those ensembles we call "sparse".

Definition 3.2.6: A probabilistic ensemble is calledsparse if (for sufficiently large n’s) the sup-

port of π n is a set ofnegligible size relative to the set{0,1} n (i.e for every c > 0 and sufficiently

largen, | { x ∈{0,1} n : π n(x) >  0} |  < n−c 2n).

Clearly, a sparse pseudorandom ensemble cannot be statistically close to a uniform ensemble.

Our proof of the existence of sparse pseudorandom distributions applies counting argu-

ments. A central ingredient is the following inequality from Probability Theory due to W.

Hoeffding [H].

Hoeffding Inequality: Suppose a urn containsu balls of whichw are white andu − w are black.

Consider a random sample ofs balls from the urn (without replacing any balls in the urn at any

stage). Hoeffding inequality states that the proportion of white balls in the sample is close, with

high probability, to its expected value, i.e. to the proportion of white balls in the urn. More pre-

cisely, let x be a random variable assuming the number of white balls in a random sample of size

s. Then, for anyε, 0≤ ε ≤1

Prob

| x

s
−

w

u
|≥ ε 


< 2 e−2 s ε 2

(3.2.1)

This bound is oftenly used for the case of binomial distributions (i.e when drawn balls are

replaced in the urn).The inequality for that case is due to H. Chernoff [C]. More general

inequalities appear in Hoeffding’s paper [H], as well as a proof that these bounds apply also for

the case of samples without replacement.

3.3. THE EXISTENCE OF SPARSE PSEUDORANDOM ENSEMBLES

The main result in this section is the following Theorem.

Theorem 3.3.1:There exist strongly-samplable sparse pseudorandom ensembles.

In order to prove this theorem we present an ensemble of sparse distributions which are pseudo-

random even against non-uniform distinguishers. These distributions assign equal probability to

the elements in their support. We use the following definitions.

Definition 3.3.1:Let C be a (probabilistic) circuit withk inputs and a single output.We say that

a set S ⊆ {0,1} k is ε(k) − distinguished by the circuitC if
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| pC(S) − pC({0, 1} k) | ≤ ε(k)

wherepC(S) (resp. pC({0, 1} k)) denotes the probability thatC outputs1 when given elements ofS

(resp. {0,1} k), chosen with uniform probability.

Definition 3.3.2: A set S ⊆ {0,1} k is called( τ (k) , ε(k) )-pseudorandom if it is not ε(k) )-distin-

guished by any circuit of sizeτ (k).

Note that a collection of uniform distributions on a sequence of setsS1 , S2 , . . . where eachSk is a

( τ (k) , ε(k) )-pseudorandom set, constitutes a pseudorandom ensemble, provided that both func-

tionsτ (k) andε −1(k) are super-polynomial (i.e. grow faster than any polynomial). Ourgoal is to

prove the existence of such a collection in which the ratio|Sk|/2
k is negligibly small.

Remark 3.3.1: In the following we consider only deterministic circuits (tests). The ability to

toss coins does not add power to non-uniform tests.Using a standard averaging argument one

can show that whatever a probabilistic non-uniform distinguisherC can do, may be achieved by a

deterministic circuit in which the "best coins" ofC are incorporated.

The next Lemma measures the number of sets which areε(k)-distinguished by a given circuit.

Notice that this result does not depend on the circuit size.

Lemma 3.3.2:For any k-input Boolean circuitC, the probability that a random setS ⊆ {0,1} k of

sizeN is ε(k)-distinguished byC is at most2 e−2 Nε 2(k).

Proof: Let LC(k) be the set { x ∈{0,1} k : C(x) =1}. Thus, pC({0, 1} k) =
|LC(k)|

2k
and

pC(S) =
|S ∩ LC(k)|

|S|
.

Consider the set of strings of lengthk as a urn containing2k balls. Letthose balls inLC(k) be

painted white and the others black. The proportion of white balls in the urn is clearlypC({0, 1} k),

and the proportion of white balls in a sampleS of N balls from the urn ispC(S). (We consider

here a samplewithout replacement, i.e. sampled balls are not replaced in the urn).

Lemma 3.3.2 follows by using Hoeffding inequality ( 3.2.1)

Prob

|pC(S) − pC({0, 1} k)| ≥ ε(k) 


< 2 e−2 Nε 2(k).

where the probability is taken over all the subsetsS ⊆ {0,1} k of sizeN , with uniform probability.

Corollary 3.3.3: For any positive integersk and N , and functionsτ (⋅) andε(⋅), the proportion of

subsets of{0,1} k of sizeN which are( τ (k) , ε(k) )-pseudorandom is at least1 − 2τ 2(k) − 2Nε 2(k) .
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Proof: The number of Boolean circuits of sizeτ (k) is at most2τ 2(k). Therefore, using Lemma

3.3.2 we get that the proportion of setsS ⊆ {0,1} k of sizeN which areε(k)-distinguished by any

k-input Boolean circuit of sizeτ (k) is at most

2τ 2(k) ⋅ 2 e−2Nε 2(k) < 2τ 2(k) − 2Nε 2(k) .

The following Corollary states the existence of pseudorandom ensembles composed of uniform

distributions with very sparse support.

Corollary 3.3.4: Let k(n) be any subexponential function ofn (i.e. k(n) = 2o(n) ). 1 There exist

super-polynomial functionsτ (⋅) and ε −1(⋅), and a sequence of setsS1 , S2 , . . . such thatSn is a

( τ (k(n)) ,ε(k(n)) )-pseudorandom subset of{0,1} k(n) and|Sn|= 2n.

Proof: Using Corollary 3.3.3 we get that a( τ (k(n)) ,ε(k(n)) )-pseudorandom setS ⊆ {0,1} k(n) of

size2n exists provided that

2nε 2(k(n)) > τ 2(k(n)) (3.3.1)

It is easy to see that for any subexponential functionk(n) we can find super-polynomial functions

ε −1(⋅) andτ (⋅) such that inequality(3.3.1) holds for each value ofn.

The following Lemma states that the sparse pseudorandom ensembles presented above are

strongly-samplable. Thisproves Theorem 3.3.1.

Lemma 3.3.5:Let k(n) be any subexponential function ofn. There exist (non-polynomial) gen-

erators which expand random strings of lengthn into pseudorandom strings of lengthk(n).

Proof: Let τ (⋅) andε(⋅) be as in Corollary 3.3.4.We construct a generator which on input a seed

of lengthn finds the( τ (k(n)) ,ε(k(n)) )-pseudorandom setSn ⊆ {0,1} k(n) whose existence is guaran-

teed by Corollary 3.3.4, and uses then input bits in order to choose a random element fromSn.

Clearly, the output of the generator is pseudorandom.

To see that the setSn can be effectively found, note that it is effectively testable whether a given

setS of size2n is ( τ (k) , ε(k) )-pseudorandom. Thiscan be done by enumerating all the circuits of

sizeτ (k) and computing for each circuitC the quantitiespC(S) and pC({0, 1} k). Thus, our genera-

tor will test all the possible setsS ⊆ {0,1} k of size2n until Sn is found.

Remark 3.3.2:Inequality(3.3.1) implies a trade-off between the expansion functionk(n) and the

size of the tests (circuits) resisted by the generated ensemble.The pseudorandom ensembles we

construct may be "very" sparse, in the sense that the expansion functionk(n) can be chosen to be
1 o(n) denotes any function f (n) such that

n→∞
lim f (n)/n = 0
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very large (e.g.2√ n). On the other hand if we consider "moderate" expansion functions such as

k(n) = 2n, we can resist rather powerful tests, e.g. circuits of size2n/4.

Remark 3.3.3:The subexponential expansion, as allowed by our construction, is optimal since

no generator exists which expands strings of lengthn into strings of lengthk(n) = 2O(n). To see

this, consider a circuitC of sizek(n)O(1 ) ( = (2n)O(1 )) which incorporates the (at most)2n strings of

length k(n) output by the generator. On input a string of lengthk(n) the circuit C looks up

whether this input appears in the incorporated list of strings output by the generator. Clearly, this

circuit C constitutes a (non-uniform) test (of size polynomial ink(n)) which distinguishes the

output of this generator from the uniform distribution on{0,1} k(n).

Remark 3.3.4:The subexponential expansion implies that the supports of the resultant pseudo-

random distributions are very sparse. More precisely, our construction implies the existence of

generators which induce on strings of lengthk a support of sizeslightly super-polynomial (i.e. of

sizekω(k) for an arbitrary non-decreasing unbounded functionω(k)). Thus,by wiring this support

into a Boolean circuit, we are able to constructnon-uniform generators of size slightly super-

polynomial. (Oninput a seeds the circuit (generator) outputs thes-th element in this "pseudo-

random" support).Let us point out that an improvement of this result, i.e. a proof of the exis-

tence of non-uniform pseudorandom generators of polynomial size, will imply that non-uniform-

P ≠ non-uniform-NP !. This follows by considering the language

{ x ∈{0,1} k : x is in the image of G } , where G is a pseudorandom generator in non-uniform-P.

Clearly, this language is in non-uniform-NP, but not in non-uniform-P, otherwise a decision pro-

cedure for it can be transformed into a test distinguishing the output ofG from the uniform distri-

bution on{0,1} k .

Remark 3.3.5: The (uniform) complexity of the generators constructed in Lemma 3.3.5 is

slightly super-exponential, i.e.2kω(k)
, for unboundedω(⋅). (The complexity is, up to a polynomial

factor, 2τ 2(k) ⋅ (2n + 2k) ⋅ ( 2k

2n ), and 2n is, as in Remark 3.3.4, slightly super-polynomial ink). We

stress that the existence of pseudorandom generators running in exponential time, and with arbi-

trary polynomial expansion function, would have interesting consequences in Complexity The-

ory as BPP⊆ ∩
ε>0

DTIME(2nε
) [Y, NW].

3.4. THE COMPLEXITY OF APPR OXIMATING PSEUDORANDOM ENSEMBLES

In the previous section we have shown sparse pseudorandom ensembles which can be sam-

pled by probabilistic algorithms running in super-exponential time. Whether is it possible to sam-

ple pseudorandom ensembles by polynomial-time algorithms or even exponential ones, cannot be

proven today without using complexity assumptions. On the other hand, do such assumptions
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guarantee that each samplable pseudorandom ensemble can be sampled by polynomial, or even

exponential means?We giv e here a negative answer to this question, proving that for any com-

plexity function φ(⋅) there exists a samplable pseudorandom ensemble which cannot be sampled

nor even "approximated" by algorithms in RTIME( φ). Thenotion of approximation is defined

next.

Definition 3.4.1: A probabilistic ensembleΠ is approximated by a sampling algorithmA if the

ensembleΠA induced byA is statistically close toΠ.

The main result of this section is stated in the following theorem.

Theorem 3.4.1:For any complexity (constructive) function φ(⋅), there is a strongly samplable

pseudorandom ensemble that cannot be approximated by any algorithm whose running time is

bounded byφ .

Proof: We say that two probability distributionsπ andπ ′ on a setX are1
2 − close if

x ∈ X
Σ |π (x) − π ′(x)| < 1

2 .

We say that a sampling algorithmM 1
2-approximates a setS ⊆ {0,1} k if the probability distribu-

tion π M
k induced byM on {0,1} k and the uniform distributionUS on S are1

2-close.

We show that for any sampling algorithmM most subsets of{0,1} k of size2n are not12-approxi-

mated byM (for k sufficiently large with respect ton). This follows from the next Lemma.

Lemma 3.4.2:Let π be a probability distribution on{0,1} k . The probability thatπ andUS are
1
2-close, forS randomly chosen over the subsets of{0,1} k of size2n, is less than(1 /2)k−n−1.

Proof: Notice that if two different setsS andT are1
2-close toπ , then the two sets are close them-

selves. Moreprecisely, we hav ethat
x ∈{0,1} k

Σ |US(x) − π (x)| <
1

2
and

x ∈{0,1} k
Σ |UT(x) − π (x)| <

1

2
. Using

the triangle inequality we conclude that
x ∈{0,1} k

Σ |US(x) −UT(x)| <1. Denoting the last sum byσ and

the symmetric difference ofS andT by D, we hav ethat|D| ⋅
1

2n
< σ < 1 (this follows from the fact

thatUS andUT assign uniform probability to the2n elements ofS andT , respectively). But this

implies that|D| <2n, and then (using|S|+ |T |= |D|+ 2 ⋅ |S ∩ T |) we get |S ∩ T | >2n/2.

Let T be a particular subset of{0,1} k of size2n which is 1
2-close toπ . From the above argument

it follows that the collection of subsets of size2n which are1
2-close toπ is included in the collec-

tion { S ⊆ {0,1} k : |S|= 2n , |S ∩ T | >2n/2} . Thus, we are able to bound the probability thatπ is
1
2-close to a random setS of size2n, by the probability of the following experiment. Fixa set

T ⊆ {0,1} k of size2n, and take at random a setS of 2n elements among all the strings in{0,1} k .

We are interested in the probability that|S ∩ T | >2n/2. Clearly, the expectation of|S ∩ T | is
|S| ⋅ |T |

2k
.
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Using Markov inequality for nonnegative random variables we have

Prob 

|S ∩ T | >

2n

2



⋅
2n

2
<

|S| ⋅ |T |

2k

and then

Prob (|S ∩ T | >2n/2) < 2/2k−n (3.4.1)

The lemma follows.◊

We now extend the pseudorandom generator constructed in Lemma 3.3.5, in order to obtain a

generator for a pseudorandom ensemble which is not approximated by any φ-time sampling algo-

rithm. On input a string of lengthn, the generator proceeds as in Lemma 3.3.5. Once a

( τ (k(n)) ,ε (k(n)) )-pseudorandom subsetSn is found, the generator checks whetherSn is 1
2-approx-

imated by some of the firstn Turing machines, in some canonical enumeration, by running each

of them as a sampling algorithm forφ(k(n)) steps. Clearly, it is effectively testable whether a

given machineM 1
2-approximates a given set S. If the setSn is 1

2-approximated by some of these

machines, it is discarded and the next S ⊆ {0,1} k , |S|= 2n is checked (first for pseudorandomness

and then for approximation).

By Corollary 3.3.3 we have that for a suitable choice of the functions(τ (⋅) andε(⋅) the probability

that a setS is ( τ (k(n)) ,ε(k(n)) )-pseudorandom is almost 1. On the other hand, the probability that

a set S is 1
2-approximated byn sampling machines is, using Lemma 3.4.2, less thann/2k(n)−n−1. For

suitablek(⋅), e.g. k(n) ≥ 2n, this probability is negligible. Thus, we are guaranteed to find a setSn

which is ( τ (k(n)) ,ε(k(n)) )-pseudorandom as well as not1
2-approximated by the firstn sampling

algorithms runningφ-time. The resultant ensemble is as stated in the theorem.

Remark 3.4.1: The result in Theorem 3.4.1 relies on the fact that the sampling algorithms we

have run are uniform ones.Nevertheless, if we use Hoeffding inequality ( 3.2.1) to bound the

left side in(3. 4.1), we derive a much better bound, which implies that for any constantα <1, there

exist strongly-samplable pseudorandom ensembles that cannot be approximated by Boolean cir-

cuits of size2α n.

3.5. EVASIVE PSEUDORANDOM ENSEMBLES

In this section we prove the existence of pseudorandom ensembles which have the property

that no polynomial-time sampling algorithm will output an element in their support, except for a

negligible probability.
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Definition 3.5.1: A probability ensembleΠ = { π k} k ∈ K is calledpolynomial-time evasive if for

any polynomial-time sampling algorithmA, any constantc and sufficiently largek,

Prob


A(1k) ∈ support(π k)



< k−c

( support(π k) denotes the set{ x ∈{0,1} k: π k(x) >  0} ).

Notice that evasiveness does not imply pseudorandomness. For example, any evasive ensemble

remains evasive if we add to each string in the support a leading ’0’, while the resultant distribu-

tions are obviously not pseudorandom.On the other hand, an evasive pseudorandom ensemble is

clearly sparse.

Following is the main result of this section. An interesting application of this result appears in

chapter 5.

Theorem 3.5.1: There exist (strongly-samplable) polynomial-time evasive pseudorandom

ensembles.

Proof: The proof outline is similar to the proof of Theorem 3.4.1.We again extend the generator

of Lemma 3.3.5 by testing whether the( τ (k(n)) ,ε(k(n)) )-pseudorandom setSn, found by that gen-

erator on input of lengthn, evades the firstn Turing machines (run as polynomial-time sampling

algorithms). We hav eto show that for each sampling algorithmM there is a small number of

setsS ⊆ {0,1} k of size2n for which machineM outputs an element ofS with significant probabil-

ity. Throughout this proof we shall consider as "significant" a probability that is greater than

23n/2k . (This choice is motivated by an application of this Theorem in chapter 5.Any negligible

portion suffices here. Thus, we are assumingk ≥ 4n). We need the following technical Lemma.

Lemma 3.5.2: Let π be a fixed probability distribution on a setU of size K . For any S ⊆U

denoteπ (S) =
s ∈S
Σ π (s). Then

Prob(π (S) > ε ) <
N

ε K

where the probability is taken over all the setsS ⊆U of sizeN with uniform probability.

Proof: Consider a random sample ofN distinct elements from the setU . Let Xi ,1 ≤ i ≤ N , be

random variables so thatXi assumes the valueπ (u) if the i-th element chosen in the sample isu.

Define the random variableX to be the sum of theXi ’s (i.e. X =
N

i=1
Σ Xi).

Clearly, each Xi has expectation1/K and then the expectation ofX is N /K . Using Markov

inequality for nonnegative random variables we get
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Prob( X > ε ) <
E(X)

ε
=

N

ε K

proving the Lemma.◊

Let π M
k be the probability distribution induced by the sampling algorithmM on {0,1} k . Consider

a randomly chosenS ⊆ {0,1} k of size2n. Lemma 3.5.2 states that

Prob

π M

k (S) >
23n

2k




<
1

22n
(3.5.1)

Thus, we get that only1/22n of the subsetsS fail the evasivity test for a single machine. Runningn

such tests the portion of failing sets is at mostn/22n. Therefore, there exists a set passing all the

distinguishing and evasivity tests. (Actually, using Corollary 3.3.3, we get that most of the sets of

size2n pass these tests). This completes the proof of the Theorem.

Remark 3.5.1: Actually, we hav eproven that for any uniform time-complexity classC, there

exist pseudorandom ensembles which evades any sampling algorithm of the classC. Notice that

no restriction on the running time of the sampling machines is required. It is interesting to note

that we cannot find ensembles evading the output of non-uniform circuits of polynomial-size,

since for each setS there exists a circuit which outputs an element ofS with probability 1. Thus,

the results in this section imply the results of section 3.4 on unapproximability by uniform algo-

rithms, but not the unapproximability by non-uniform circuits (see Remark 3.4.1).

Remark 3.5.2: In the previous remark we stressed the impossibility of the existence of ensem-

bles evading the output of non-uniform machines with a polynomially long advice.Nevertheless,

if we restrict the length of the advice our construction of Theorem 3.5.1 still works. Indeed,for

the results in chapter 5, we need a slightly stronger result than the one stated in the above theo-

rem. Thisapplication requires a pseudorandom ensemble that evades not only sampling algo-

rithm receiving 1k as the only input, but also algorithms having an additional input of lengthn

(the parametersk andn are as defined above). Theproof of Theorem 3.5.1 remains valid also in

this case. This follows by observing that each such algorithm defines2n distributions, one for

each possible input of lengthn. Thus, then algorithms we run in the above proof contribute

n ⋅ 2n distributions. Usingthe above bound(3. 5.1) we can guarantee the existence of setsS that

evade any of these distributions.

3.6. NON-UNIFORM EVASIVE COLLECTIONS

In Remark 3.5.1 we have pointed out that evasive ensembles (in the sense of Definition

3.5.1) cannot evade non-uniform machines, since such a machine can always be supplied with an

element in the ensemble support.For the application of pseudorandom and evasive distributions

presented in chapter 5, we need a notion of "evasiveness" which also resists non-uniform
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adversaries. Inorder to formalize this notion we use a collection of sets (or distributions) for

each input length, rather than a single probability ensemble as in the uniform case.

Definition 3.6.1: A collection S = { S1 , S2 , . . .  ,Sm} of subsets of{0,1} k is called( τ (k) , ε(k) ) − eva-

sive if for every (probabilistic) circuitC of sizeτ (k) with log m inputs andk outputs

Prob(C(i) ∈Si) < ε(k)

where the probability is taken over the random coins ofC and i uniformly distributed over

{1 , . . .  ,m} .

(The setsSi can be viewed as supports of distributions on the set{0,1} k).

Remark 3.6.1: In the above definition it is equivalent to consider deterministic circuits. Such a

circuit may have wired in a sequence of "random coins" which maximizes the probability

Prob(C(i) ∈Si).

Definition 3.6.2: For n =1, 2,. . . let S(n) be a( τ (n) , ε(n) )-evasive collection of subsets of{0,1} Q(n),

for a fixed polynomialQ. The sequenceS(1 ) , S(2 ) , . . . is callednon-uniform polynomial-time eva-

sive (denotedP/poly-evasive) if τ (n) and ε −1(n) are both functions which grow faster than any

polynomial.

That is, a sequenceS(1 ) , S(2 ) , . . . is P/poly-evasive if any circuit of size polynomial inn, which gets

a randomly selected index of one of the sets inS(n), cannot succeed to output an element in that

set, except for a negligible probability.

In this section we show the existence (and samplability) of P/poly-evasive sequences. Fur-

thermore, we prove the existence of such families composed of "pseudorandom" sets.We use

the notion of a( τ (k) , ε(k) )-pseudorandom set as defined in Definition 3.3.2.Recall that a collec-

tion of uniform distributions on the setsS1 , S2 , . . ., where eachSk is a( τ (k) , ε(k) )-pseudorandom

set, constitutes a pseudorandom ensemble, provided that both functionsτ (n) and ε −1(n) grow

faster than any polynomial.

Following is the main result concerning P/poly-evasive and pseudorandom collections.

Theorem 3.6.1:There exists a P/poly-evasive collection S(1 ) , S(2 ) , . . . with parametersQ(n) = 4n,

τ (n) = ε −1(n) = 2n/4, such that for every n, S(n) = { S(n)
1 , . . .  ,S(n)

2n } , where eachS(n)
i is a(2n/4 , 2−n/4)-pseu-

dorandom set of cardinality2n. Furthermore, there exists a Turing machine which on input1n

outputs the collectionS(n).

Proof: Denote by R(n) the collection of setsS ⊆ {0,1} 4n of cardinality 2n which are

(2n/4 , 2−n/4)-pseudorandom. We will show that there exists a positive probability to choose at ran-

dom2n sets fromR(n) which form a(2n/4 , 2−n/4)-evasive collection. Thisimplies the existence of
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such a collection.

Let C(n) denote the set of (deterministic) circuits of size2n/4 having n inputs and4n out-

puts. For a fixed C ∈C(n) and a fixed i ,1 ≤ i ≤ 2n consider the probabilityProb ( C(i) ∈S ) , for S

uniformly chosen over all subsets of{0,1} 4n of size2n. Clearly,

Prob ( C(i) ∈S ) = 1−
( 24n −1

2n )

( 24n

2n
)

=
2n

24n
<

1

22n

We shall call a setS ⊆ {0,1} 4n, |S|= 2n, C-bad if there exists somei ,1 ≤ i ≤ 2n such thatC(i) ∈S.

Fixing a circuitC, we hav ethat forS uniformly chosen over all subsets of{0,1} 4n of size2n,

Prob( S is C − bad ) ≤
2n

i=1
Σ Prob ( C(i) ∈S ) < 2n2−2n = 2−n.

On the other hand, using Corollary 3.3.3 we get that the proportion of setsS which are

(2n/4 , 2−n/4)-pseudorandom is at least1− 2−2n/4
. Therefore, for each circuitC ∈C(n) the probability,

hereafter denoted asρC , to choose fromR(n) a set S which isC-bad is

ρC = Prob( S is C − bad | S ∈ R(n)
) ≤

2−n

1− 2−2n/4

We now proceed to compute the probability that for a fixed circuitC ∈C(n), a collection of

2n randomly chosen sets fromR(n) contain a significant portion ofC-bad sets.We define as "sig-

nificant" a fractionρC + δ n. (The quantityδ n will be determined later). Let us introduce a random

variable ρ assuming as its value the fraction ofC-bad sets on a random sample of2n sets from

R(n). Clearly, the expected value ofρ is ρC . Using Hoeffding inequality (see 3.2.1) we get

Prob ( ρ ≥ ρC + δ n ) ≤ e−2 2n δ 2
n

Recall that we are interested to choose2n sets which are good forall the circuitsC ∈C(n).

That is, we require that for any C the number ofC-bad sets among the2n sets we choose is negli-

gible. Inorder to bound the probability that2n randomly selected sets do not satisfy this condi-

tion, we multiply the above probability, computed for a single circuit, by the total number of cir-

cuits inC(n) which is2τ 2(n) = 22n/2
. Puttingδ n =

2−n/4

√2
we get

2τ 2(n) ⋅ e−2 2n δ 2
n = 22n/2

⋅ e−2 2n 2
−

n

2
−1

= 22n/2
⋅ e−2n/2

< 1

We conclude that there exists a positive probability that2n setsS1, . . .  ,S2n chosen at random from

R(n) have the condition that for any circuit C ∈C(n) the fraction ofC-bad sets amongS1, . . .  ,S2n is
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less thanρC + δ n. Therefore, such a collection of sets does exist.

It remains to show that the collectionS1, . . .  ,S2n satisfies the conditions stated in the Theo-

rem. Clearlyeach set in the collection is(2n/4 , 2−n/4)-pseudorandom as it was selected fromR(n).

In order to show the evasiveness condition we bound, for any circuit C ∈C(n), the probability

Prob(C(i) ∈Si), for i randomly chosen from{1 , . . .  ,m} . We hav e

Prob(C(i) ∈Si) = Prob(C(i) ∈Si|Si is C − bad ) ⋅ Prob(Si is C − bad )

+ Prob(C(i) ∈Si|Si is not C − bad ) ⋅ Prob(Si is not C − bad )

≤ 1⋅ (ρC + δ n) + 0 ≤
2−n

1− 2−2n/4 +
2−n/4

√2
< 2−n/4

Thus, we have shown for every circuit C of size 2−n/4 that Prob(C(i) ∈Si) < 2−n/4, and then

S1, . . .  ,S2n is a(2n/4 , 2−n/4)-evasive collection.

Such a collection can be generated by a Turing machine by considering all possible collec-

tions{ S1, . . .  ,S2n} and checking whether they evade all the circuits in the setC(n).
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Chapter 4:

How to Predict Congruential Generators

4.1. INTRODUCTION

In this chapter we present our proof that congruential number generators are efficiently

predictable.

A number generator is a deterministic algorithm that given a sequence of initial values,

outputs an (infinite) sequence of numbers.For cryptographic applications a crucial property for

the sequences generated is theirunpredictability. That is, the next element generated should not

be efficiently predictable, even giv en the entire past sequence. The efficiency of the predicting

algorithm is measured both by the number of prediction mistakes and the time taken to compute

each prediction. (A formal definition of anefficient predictoris given in section 4.2).

A pseudorandom number generator that has received much attention is the so calledlinear

congruential generator, an algorithm that on input integers a, b, m, s0 outputs a sequences1, s2,. . .

where

si ≡ a si−1 + b (mod m) .

Knuth [K1] extensively studied some statistical properties of these generators.

Boyar [P] proved that linear congruential generators are efficiently predictable even when

the coefficients and the modulus are unknown to the predictor. Later, Boyar [B] extended her

own method, proving the predictability of a large family of number generators. She considered

general congruential generatorswhere the elementsi is computed as

si ≡
k

j=1
Σ α j Φ j(s0, s1,. . ., si−1) (mod m) (4.1.1)

for integers m and α j , and computable integer functionsΦ j , j = 1, . . ., k. She showed that these

sequences can be predicted, for some class of functionsΦ j , by a predictor knowing these func-

tions and able to compute them, but not given the coefficients α j or the modulusm. Boyar’s

method requires that the functionsΦ j have the unique extrapolation property. The functions

Φ1,Φ2,. . .,Φk have theunique extrapolation property with length r, if f or every pair of generators

working with the above set of functions, the same modulusm and the same initial values, if both

generators coincide in the firstr values generated, then they output the same infinite sequence.

Note that these generators need not be identical (i.e. they may have different coefficients).
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The number of mistakes made by Boyar’s predictors depends on the extrapolation length.

Therefore, her method yields efficient predictors provided that the functionsΦ j have a small

extrapolation length.The linear congruential generator is an example of a generator having the

extrapolation property (with length 2).Boyar proved this property also for two extensions of the

linear congruential generator. Namely, the generators in which the elementsi satisfies the recur-

rence

si ≡ α1 si−k + . . .+ α k si−1 (mod m)

and those for which

si ≡ α1 s2
i−1 + α2 si−1 + α3 (mod m)

The first case with lengthk +1, the second with length3. She also conjectured the predictability

of generators having a polynomial recurrence:

si ≡ p(si−1) (mod m)

for an unknown polynomialp of fixed (and known) degree.

A natural generalization of the above examples is a generator having amultivariate poly-

nomial recurrence, that is a generator outputting a sequences0, s1, . . . where

si ≡ P(si−n, . . .  ,si−1) (mod m)

for a polynomialP in n variables. Notethat for polynomialsP of fixed degree and fixed n, the

recurrence is a special case of the general congruential generators.Lagarias and Reeds [LR]

showed that multivariate polynomial recurrences have the unique extrapolation property. Fur-

thermore, for the case of a one-variable polynomial of degreed, they proved this property with

lengthd +1, thus settling Boyar’s conjecture concerning the efficient predictability of such gener-

ators. However, for the general case they did not give a bound on the length for which these

recurrences are extrapolatable (neither a way to compute this length). Thus, unfortunately,

Boyar’s method does not seem to yield an efficient predicting algorithm for general multivariate

polynomial recurrences (since it is not guaranteed to make asmallnumber of mistakes but only a

finitenumber, depending on the length of the extrapolation).

In this thesis we show how to predict any general congruential generator, i.e. any generator

of the form(4.1.1). The only restriction on the functionsΦ j is that they are computable in poly-

nomial time when working over the integers. Thiscondition is necessary to guarantee the effi-

ciency of our method.(The same is required in Boyar’s method). Thus,we remove the necessity

of the unique extrapolation property, and extend the predictability results to a very large class of

number generators. In particular, we show that multivariate polynomial recurrence generators

are efficiently predictable.

Our predicting technique is based on ideas from Boyar’s method, but our approach to the

prediction problem is somewhat different. Boyar’s method tries to simulate the generator by

"discovering" its secrets: the modulusm and the coefficientsα j that the generator works with.
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Instead, our algorithm uses only the knowledge that these coefficients exist, but does not try to

find them. Some algebraic techniques introduced by Boyar when computing over the integers,

are extended by us to work also when computing over the ring of integers modulom.

Our prediction results concern number generators outputting all the bits of the generated

numbers, and does not apply to generators that output only parts of the numbers generated.

Recent works treat the problem of predicting linear congruential generators which output only

parts of the numbers generated [FHKLS, K2, S].

4.2. DEFINITIONS AND NOTATION

Definition 4.2.1: A number generator is an algorithm that given n0 integer numbers, called the

initial valuesand denoteds−n0
,. . ., s−1, outputs an infinite sequence of integerss0, s1, . . . where each

elementsi is computed deterministicly from the previous elements, including the initial values.

For example, a generator of the formsi ≡ α1 si−k + . . .+ α k si−1 (mod m) requires a set ofk

initial values to begin computing the first elementss0, s1,. . . of the sequence. Thus, for this exam-

ple n0 = k.

Definition 4.2.2: A (general) congruential generator is a number generator for which thei-th

element of the sequence is a{0, . . .  ,m−1}-valued number computed by the congruence

si ≡
k

j=1
Σ α j Φ j(s−n0

,. . ., s−1, s0,. . ., si−1) (mod m)

whereα j and m are arbitrary integers andΦ j,1≤ j ≤ k , is a computable integer function.For a

given set of k functionsΦ = {Φ1,Φ2, . . .  ,Φk} a congruential generator working with these func-

tions (and arbitrary coefficients and modulus) will be called aΦ-generator.

Example: Consider a number generator which outputs a sequence defined by a multivariate

polynomial recurrence, i.e.si ≡ P(si−n, . . .  ,si−1) (mod m), whereP is a polynomial inn variables

and fixed degreed. Such a generator is aΦ-generator in which each functionΦ j represents a

monomial inP andα j are the corresponding coefficients. In this case we have k =( n + d

d
), and the

functions (monomials)Φ j are applied to the lastn elements in the sequence.

Note that in the above general definition, the functionsΦ j work on sequences of elements,

so the number of arguments for these functions may be variable. Somematrix notation will be

more convenient.
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Notation: s(i) will denote thevectorof elements (including the initial values) until the element

si , i.e.

s(i) = (s−n0
,. . ., s−1, s0,. . ., si) i = −1, 0,1, 2. . .

Thus,Φ j(s−n0
,. . ., s−1, s0,. . ., si−1) will be written asΦ j(s(i −1)).

Let α denote the vector(α1,α2,. . .,α k) and Bi, i ≥ 0, denote the column vector

Bi =







Φ1(s(i −1))

Φ2(s(i −1))

:

Φk(s(i −1))







Then we can rewrite theΦ-generator’s recurrence as

si ≡ α ⋅ Bi (mod m) (4.2.1)

Here, and in the sequel,⋅ denotes matrix multiplication.

Finally, B(i) will denote the matrix

B(i) = 

B0 B1

. . . Bi



For complexity considerations we refer to the size of the prediction problem as given by

the size of the modulusm and the numberk of coefficients the generator actually works with.

(Note that the coefficients as well as the elements output by the generator have size at most

log m). We consider asefficient, congruential generators for which the functionsΦ j,1≤ j ≤ k, are

computable in time polynomial inlog m and k. Also the efficiency of a predictor will be mea-

sured in terms of these parameters, which can be seen as measuring the amount of information

hidden from the predictor.

We shall be concerned with the complexity of the functionsΦ j when acting on the vectors

s(i), but computed over the integers (and not reduced modulom). This will be referred to as the

non-reduced complexity of the functionsΦ j . The performance of our predicting algorithm will

depend on this complexity.

Definition 4.2.3: Φ-generators having non-reduced time-complexity polynomial inlog m and k

are callednon-reduced polynomial-timeΦ-generators.

Next we define the basic concept, throughout this chapter, of apredictor:

Definition 4.2.4: A predictorfor aΦ-generator is an algorithm that interacts with theΦ-generator

in the following way. The predictor gets as input the initial values that the generator is working
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with. For i = 0, 1,2, . . . the predictor outputs its prediction for the elementsi and the generator

responds with the true value ofsi .

An efficient predictor for a family of congruential generatorsis an algorithm which given a set of

k functionsΦ = {Φ1,Φ2, . . .  ,Φk} corresponding to aΦ-generator in the family, behaves as a predic-

tor for thisΦ-generator, and there exist polynomialsP andQ for which

1) the computation time of every prediction is bounded byP( k, log m)

2) the number of prediction mistakes is bounded byQ( k, log m)

In the above definition we may consider the functionsΦ j as given to the algorithm by

means of "black-boxs" or oracles to these functions. In this case the output of such an oracle is

the integer value of the function before it is reduced according to the secret modulus.

Observe that when computing its prediction forsi the predictor has seen the entire segment of

the sequence beforesi , and the initial values. Theonly secret information kept by the generator

is the coefficients and the modulus.If the predictor is not given the initial values then our

method cannot be applied toarbitrary Φ-generators. However, in typical cases (including the

multivariate polynomial recurrence) generators have recurrences depending only on the lastn0

elements, for some constantn0. In this case the predictor may consider the firstn0 elements gen-

erated as initial values, and begin predicting after the generator outputs them.

4.3. THE PREDICTING ALGORITHM

The predictor tries to infer the elementsi from knowledge of all the previous elements of

the sequence, including the initial values. Itdoes not know the modulusm the generator is

working with, so it uses different estimates for thism. Its first estimate iŝm= ∞, i.e. the predictor

begins by computing over the integers. Aftersome portion of the sequence is revealed, and tak-

ing advantage of possible prediction mistakes, a new (finite) estimatem̂0 for m is computed.

Later on, new values form̂ are computed in such a way that eachm̂ is a (non-trivial) divisor of

the former estimate, and all are multiples of the actualm. Eventually m̂ may reach the true value

of m . (For degenerate cases, like a generator producing a constant sequence, it may happen that

m will never be reached but this will not effect the prediction capabilities of the algorithm).

We shall divide the predicting algorithm into two stages . The first stage is when working

over the integers, i.e.m̂= ∞. The second one is after the first finite estimatem̂0 was computed.

The distinction between these two stages is not essential, but some technical reasons make it con-

venient. Infact, the algorithm is very similar for both stages.
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The idea behind the algorithm is to find linear dependencies among the columns of the

matrix B(i) and to use these dependencies in making the prediction of the next elementsi . More

specificly, we try to find a representation ofBi as a linear combination (modulo the currentm̂) of

the previous B j ’s (that are known to the predictor at this time). If such a combination exists, we

apply it to the previous elements in the sequence (i.e. previous sj ’s) to obtain ourprediction for

si . If not correct, we made a mistake but gain information that allows us to refine the modulus

m̂ . A combination as above will not exist if Bi is independent of the previous columns. We show

that under asuitable definition of independence, the number of possibleindependentBi ’s cannot

be too large. Therefore only asmall number of mistakes is possible, allowing us to prove the

efficiency of the predictor.

The number of mistakes made by the predictor, until it is able to refine the current̂m , will

be bounded by a polynomial in the size of thism̂. Also the total number of distinct modulîm

computed during the algorithm is bounded by the size of the first (finite)m̂0. Thus, the total

number of possible mistakes is polynomial in this size, which in turn is determined by the length

of the output of the non-reduced functionsΦ j . This is the reason for which the non-reduced com-

plexity of these functions is required to be polynomial in the size of the truem and k . In this

case the total number of mistakes made by the predictor will also be polynomial in these parame-

ters. Thesame is true for the computation time of every prediction.

The algorithm presented here is closely related to Boyar’s [B]. Our first stage is exactly the

same as the first stage there. That is, the two algorithms begin by computing a multiple of the

modulusm. Once this is accomplished, Boyar’s strategy is to find a set of coefficients {α j′} k
j=1

and a sequence of modulim̂ which are refined during the algorithm until no more mistakes are

made. For proving the correctness and efficiency of her predictor, it is required that the generator

satisfies theunique extrapolation property(mentioned in the Introduction). In our work, we do

not try to find the coefficients. Instead, we extend the ideas of the first stage, and apply them also

in the second stage. In this way the need for an extrapolation property is avoided, allowing the

extensions of the predictability results.

4.3.1 First Stage

Let us describe how the predictor computes its prediction forsi . At this point the predictor

knows the whole sequence beforesi , i.e. s(i −1) , and so far it has failed to compute a finite mul-

tiple of the modulusm, so it is still working over the integers. In fact, the predictor is able at this

point to compute all the vectors B0, B1,. . ., Bi , since they depend only ons(i −1) . Moreover, our

predictor keeps at this point, a submatrix ofB(i −1) , denoted byB(i −1) , of linearly independent

(over the rationals) columns.(For every i , when predicting the elementsi , the predictor checks

if the column Bi is independent of the previous ones. If this is the case thenBi is added to
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B(i −1) to form B(i) ). Finally, let us denote bys(i −1) the correspondingsubvectorof s(i −1) ,

having the entries indexed with the same indices appearing inB(i −1) .

Prediction of si in the first stage:

The predictor begins by computing the (column) vector Bi . Then, it solves, over t he

rationals, the system of equations

B(i −1) ⋅ x = Bi

If no solution exists,Bi is independent of the columns inB(i −1) so it sets

B(i) = 

B(i −1) Bi




and it fails to predictsi .

If a solution exists, letc denote the solution (vector) computed by the predictor. The prediction

for si , denotedŝi , will be

ŝi = s(i −1) ⋅ c

The predictor, once having received the true value forsi , checks whether this prediction is cor-

rect or not (observe that the prediction̂si as computed above may not even be an integer). If cor-

rect, it has succeeded and goes on predictingsi+1. If not, i.e. ŝi ≠ si , the predictor has made a

mistake, but now it is able to computem̂0 ≠ ∞, the first multiple of the modulusm , as follows.

Let l be the number of columns in matrixB(i −1) and let the solutionc be

c =







c1/d1

c2/d2

:

cl /dl







Now, let d denote the least common multiple of the dominators in these fractions, i.e.

d = lcm(d1,. . ., dl) . The value ofm̂0 is computed as follows

m̂0 =|dŝi − dsi | .

Observe that m̂0 is an integer, even if ŝi is not. Moreover this integer is a multiple of the true

modulusm the generator is working with (see Lemma 4.3.1 below).

Once m̂0 is computed, the predictor can begin working modulo thism̂0. So the first stage

of the algorithm is terminated and it goes on into the second one.
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The main facts concerning the performance of the predicting algorithm during the first

stage are summarized in the next Lemma.

Lemma 4.3.1:

a) Thenumber m̂0 computed at the end of the first stage is a nonzero multiple of the modulus

m .

b) Thenumber of mistakes made by the predictor in the first stage is at mostk +1 .

c) For non-reduced polynomial timeΦ-generators, the prediction time for eachsi during the

first stage is polynomial in logm and k .

d) For non-reduced polynomial timeΦ-generators, the size of̂m0 is polynomial in logm and

k . More precisely, let M be an upper bound on the output of each of the functions

Φ j , j =1, . . ., k, working on{0, . . .  ,m−1}-valued integers. Then,̂m0 ≤ (k +1) kk/2 m Mk .

Proof:

a) From the definition of the generator we have the congruencesj ≡ α ⋅ B j (mod m) for all j ≥ 0 ,

therefore

s(i −1) ≡ α ⋅ B(i −1) (mod m) (4.3.1)

Thus,

dŝi = d s(i −1) ⋅ c (by definitionof ŝi)

≡ dα ⋅ B(i −1) ⋅ c (mod m) (by (4. 3.1))

= dα ⋅ Bi (c is asolution to B(i −1) ⋅ x = Bi)

≡ d si (mod m) (By definitionof si (4. 2.1))

So we have shown that dŝi ≡ dsi (mod m). Observe that it cannot be the case thatdŝi = dsi ,

because this implieŝsi = si , contradicting the incorrectness of the prediction. Thus, we have

proved that m̂0 =|dŝi − dsi | is indeed a nonzero multiple ofm .

b) The possible mistakes in the first stage are when a rational solution to the system of equations

B(i −1) ⋅ x = Bi does not exist, or when such a solution exists but our prediction is incorrect. The

last case will happen only once because after that occurs the predictor goes into the second stage.

The first case cannot occur "too much". Observe that the matricesB( j ) have k rows, thus the

maximal number of independent columns (over the rationals) is at mostk . So the maximal

number of mistakes made by the predictor in the first stage isk +1 .
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c) The computation time for the prediction ofsi is essentially given by the time spent computing

Bi and solving the above equations. The functionsΦ j are computable in time polynomial in log

m and k, so the computation of the vector Bi is also polynomial in logm and k. The complex-

ity of solving the system of equations, over the rationals, is polynomial ink and in the size of the

entries ofB(i −1) andBi (see [Ed], [Sch, Ch. 3]). These entries are determined by the output of

the (non-reduced) functionsΦ j , and therefore their size is bounded by a polynomial inlog m and

k. Thus, the total complexity of the prediction step is polynomial inlog m and k, as required.

d) As pointed out in the proof of claim c), a solution to the system of equations in the algorithm,

can be found in time bounded polynomially inlog m andk. In particular this guarantees that the

sizeof the solution will be polynomial inlog m andk. (By size we mean the size of the denomi-

nators and numerators in the entries of the solution vector.) Clearly, by the definition ofm̂0, the

polynomiality of the size of the solutionc implies that the size of̂m0 is itself polynomial inlog m

andk.

The explicit bound on̂m0 can be derived as follows. UsingCramer’s rule we get that the solution

c to the systemB(i −1) ⋅ x = Bi , can be represented asc = (c1/d, . . .  ,cl /d) where eachc j andd are

determinants ofl by l submatrices in the above system of equations.Let D be the maximal pos-

sible value of a determinant of such a matrix.We hav ethat d ŝi = d s(i −1)c ≤ l m  D (herem is a

bound ons(i −1) entries) andd si ≤ m D, thenm̂0 = |dŝi − dsi | ≤ (l +1) m D. In order to boundD we

use Haddamard’s inequality which states that eachn by n matrix A= (aij ) satisfies

det(A) ≤
n

i=1
Π (

n

j=1
Σ a2

ij )
1/2. In our case the matrices are of orderl by l , and the entries to the system are

bounded byM (the bound onΦ j output). Thus,D ≤
l

i=1
Π (

l

j=1
Σ M2)1/2 = (l M 2)l /2, and we get

m̂0 ≤ (l +1) m D ≤ (l +1) m(l M 2)l /2 ≤ (k +1) kk/2 m Mk

The last inequality follows sincel ≤ k.

4.3.2 Second Stage

After having computedm̂0, the first multiple of m , we proceed to predict the next ele-

ments of the sequence, but now working modulo a finitem̂ . The prediction step is very similar

to the one described for the first stage. The differences are those that arise from the fact that the

computations are modulo an integer. In particular the equations to be solved will not be over a

field (in the first stage it was over the rationals), but rather over the ring of residues modulôm .

Let us denote the ring of residues modulon by Zn. In the following definition we extend the

concept of linear dependence to these rings.
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Definition 4.3.1:Let v1, v2, . . .  ,vl be a sequence ofl vectors with k entries fromZn. We say that

this sequence isweakly linearly dependent mod nif v1 = 0 or there exists an index i , 2≤ i ≤ l , and

elementsc1, c2, . . .  ,ci−1 ∈ Zn, such thatvi ≡ c1v1 + c2v2 + . . .+ ci−1vi−1 (mod n). Otherwise, we say

that the sequence isweakly linearly independent.

Note that the order here is important. Unlike the case in the traditional definition over a

field, in the above definition it isnot equivalent to say thatsomevector in the set can be written

as a linear combination of theothers. Another important difference is that it is not true in general,

that k +1 vectors of k components over Zn must contain a dependent vector. Fortunately, a

slightly weaker statement does hold.

Theorem 4.3.2: Let v1, v2, . . .  ,vl be a sequence ofk-dimensional vectors over Zn. If the

sequence is weakly linearly independent modn , then l ≤ k logq n , where q is the smallest prime

dividing n.

Proof: Let v1, v2, . . .  ,vl be a sequence ofl vectors from Zk
n, and suppose this sequence is weakly

linearly independent modn. Consider the set

V = {
l

i=1
Σ ci vi (mod n): ci ∈{0,1,. . ., q −1}}

We shall show that this set containsql different vectors. Equivalently, we show that no two (dif-

ferent) combinations inV yield the same vector.

Claim: For every ci, ci′ ∈{0,1,. . ., q −1},1≤ i ≤ l , if
l

i=1
Σ ci vi ≡

l

i=1
Σ ci′vi (mod m) then ci = ci′ for

i =1, 2,. . .  ,l .

Suppose this is not true. Then we have
l

i=1
Σ(ci − ci′) vi ≡ 0 (mod n). Denote ci − ci′ by di . Let t be

the maximal index for which dt ≠ 0. This numberdt satisfies−q < dt < q , so it has an inverse

modulo n (recall that q is the least prime divisor ofn), denoted d−1
t . It follows that

vt ≡
t−1

i=1
Σ − d−1

t di vi(mod n) contradicting the independence ofvt , and thus proving the claim.

Hence,|V|= ql and therefore

ql = |V|≤ |Zk
n|= nk

which implies l ≤ k logq n , proving the Theorem.

With the above definition of independence in mind, we can define the matrixB(i) as a sub-

matrix of B(i) , in which the (sequence of) columns are weakly linearly independentmod m̂ .
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Note that m̂ will have distinct values during the algorithm, so when writingB(i) we shall refer

to its value modulo the current̂m .

Prediction of si in the second stage:

Let us describe the prediction step forsi when working modulom̂ . In fact, all we need is

to point out the differences with the process described for the first stage.

As before, we begin by computing the vector Bi (now reduced modulom̂), and solving

the system of equations

B(i −1) ⋅ x ≡ Bi (mod m̂)

We stress that this time we are looking for a solution over Zm̂. In case a solution does not exist,

we fail to predict, exactly as in the previous case. As before, the vector Bi(mod m̂) is added to

B(i −1) to form the matrixB(i). If a solution does exist, we output our prediction, computed as

before, but the result is reduced modm̂ . Namely, we set ŝi = s(i −1) ⋅ c (mod m̂), where c is a

solution to the above system of modular equations.If the prediction is correct, we proceed to

predict the next elementsi+1. If not, we take advantage of this error to updatêm . This is done by

computing

m′ = gcd(m̂, ŝi − si)

This m′ will be the newm̂ we shall work with in the coming predictions.

To see that the prediction algorithm as described here, is indeed anefficient predictor, we

have to prove the following facts summarized in Lemma 4.3.3. (Lemma 4.3.3 is analogous to

Lemma 4.3.1 for the second stage).

Lemma 4.3.3:The following claims hold for the above predictor when predicting a non-reduced

polynomial timeΦ-generator.

a) Thenumberm′ computed above is a nontrivial divisor of m̂ and a multiple of the modulus

m .

b) Let m̂0 be the modulus computed at the end of the first stage. The total number of mistakes

made by the predictor during the second stage is bounded by(k +1) log m̂0 , and then poly-

nomial in log m and k.

c) Theprediction time for eachsi during the second stage is polynomial inlog m and k.

Proof:

a) Recall thatm′ = gcd(m̂, ŝi − si), so it is a divisor of m̂. It is a nontrivial divisor becausêsi andsi

are reduced mod̂m and m respectively, and then their difference is strictly less thanm̂. It cannot

be zero becausêsi ≠ si , as follows from the incorrectness of the prediction.The proof thatm′ is a
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multiple of m is similar to that of claim a) of Lemma 4.3.1. It is sufficient to show that ŝi − si is a

multiple of m, since m̂ is itself a multiple ofm. We show this by provingŝi ≡ si (mod m) :

ŝi ≡ s(i −1) ⋅ c(mod m̂) (by definitionof ŝi)

≡ α ⋅ B(i −1) ⋅ c (mod m) (by (4. 3.1))

≡ α ⋅ Bi (mod m̂) (c is asolution to B(i −1) ⋅ x ≡ Bi (mod m̂))

≡ si (mod m) (By definitionof si (4. 2.1))

As m dividesm̂, claim a) follows.

b) The possible mistakes during the second stage are of two types. Mistakes of the first type hap-

pen when a solution to the above congruential equations does not exist. This implies the inde-

pendence modulo the currentm̂ of the correspondingBi . In fact, thisBi is also independent

mod m̂0. This follows from the property that every m̂ is a divisor ofm̂0. By Theorem 4.3.2, we

have that the number of weakly linearly independent vectorsmod m̂0 is at mostk log m̂0 . There-

fore the number of mistakes by lack of a solution is bounded by this quantity too. The second

type of mistake is when a solution exists but the computed prediction is incorrect. Such a mis-

take can occur only once per̂m. After it occurs, a new m̂ is computed. Thus, the total number of

such mistakes is as the number of differentm̂’s computed during the algorithm. Thesem̂’s form a

decreasing sequence of positive integers in which every element is a divisor of the previous one.

The first (i.e. largest) element iŝm0 and then the length of this sequence is at mostlog m̂0. Con-

sequently, the total number of mistakes during the second stage is at most(k +1) log m̂0, and by

Lemma 4.3.1 claim d) this number is polynomial inlog m andk.

c) By our assumption of the polynomiality of the functionsΦ j when working on the vectorss(i),

it is clear that the computation of eachBi (mod m̂), takes time that is polynomial inlog m and k.

We only need to show that a solution toB(i −1) ⋅ x ≡ Bi (mod m̂) can be computed in time poly-

nomial in log m and k. A simple method for the solution of a system of linear congruences like

the above, is described in [BS] (and [B]). This method is based on the computation of theSmith

Normal Form of the coefficients matrix in the system.This special matrix and the related trans-

formation matrices, can be computed in polynomial time, using an algorithm of [KB].Thus,

finding a solution to the above system (or deciding that none exists) can be accomplished in time

polynomial inlog m and k. Therefore the whole prediction step is polynomial in these parame-

ters.
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Combining Lemmas 4.3.1 and 4.3.3 we get

Theorem 4.3.4: The predicting algorithm described above is an efficient predictor for non-

reduced polynomial-timeΦ-generators. Thenumber of prediction mistakes is at most

(k +1) (log m̂0 +1) = O( k2 log (k mM) ), wherem̂0 is the first finite modulus computed by the algo-

rithm, andM is an upper bound on the output of each of the functionsΦ j , j =1, . . ., k, working

over integers in the set{0, . . .  ,m−1}.

As a special case we get

Corollary 4.3.5: Every multivariate polynomial recurrence generator is efficiently predictable.

The number of prediction mistakes for a polynomial recurrence inn variables and degreed is

bounded byO( k2 log(k md) ), wherek =( n + d

d
).

Proof: A multivariate polynomial recurrence is a special case of aΦ-generator withM < md, as

each monomial is of degree at mostd and it is computed on integers less thanm. Therefore, by

Lemma 4.3.1 d) we get̂m0 < (k +1) kk/2 mdk+1. The numberk of coefficients is as the number of

possible monomials in such a polynomial recurrence which is( n + d

d
). The bound on the number

of mistakes follows by substituting these parameters in the general bound of Theorem 4.3.4.

Remark 4.3.1:Notice that the numberk of coefficients equals the number of possible monomi-

als in the polynomial. For general polynomials inn variables and of degreed, this number is

( n + d

d
). Nev ertheless, if we consider special recurrences in which not every monomial is possi-

ble, e.g. si ≡ α1 s2
i−n + . . .+ α n s2

i−1 (mod m), then the numberk may be much smaller, and then a

better bound on the number of mistakes for such cases is derived.

4.4. VECTOR-VALUED RECURRENCES

The most interesting subclass ofΦ-generators is the class of multivariate polynomial recur-

rence generators mentioned in previous sections.Lagarias and Reeds [LR] studied a more gen-

eral case of polynomial recurrences in which a sequence ofn-dimensional vectors over Zm is

generated, rather than a sequence ofZm elements as in our case.These vector-valued polynomial

recurrences have the form

si ≡ ( P1(si−1,1, . . .  ,si−1,n) (mod m) ,. . .  , Pn(si−1,1, . . .  ,si−1,n) (mod m) )



-51-

where eachPl ,1≤ l ≤ n, is a polynomial in n variables and of maximal degreed. Clearly, these

recurrences extend the single-valued case, since for any multivariate polynomialP which gener-

ates a sequence{ si }
∞
i=0 of Zm elements, one can consider the sequence of vectors

si = (si, si−1, . . .  ,si−n+1) wheresi = (P(si−1, . . .  ,si−n) (mod m) , si−1, . . .  ,si−n+1).

The vector-valued polynomial recurrences can be generalized in terms ofΦ-generators as

follows. Considern congruential generatorsΦ(1 ), . . .  ,Φ(n), where Φ(l ) = {Φ(l )
j } k

j=1, and for each

j , l ,Φ(l )
j is a function inn variables. For any set {α (l )

j : 1≤ j ≤ k ,1≤ l ≤ n} of coefficients and modu-

lus m, we define a vector-valued generator which outputs a sequence of vectorss0 , s1 , . . ., where

eachsi = (si ,1, . . .  ,si ,n) ∈ Zn
m is generated by the recurrence

si ≡ (
k

j=1
Σ α (1 )

j Φ(1 )
j (si−1,1, . . .  ,si−1,n) (mod m) ,. . .  ,

k

j=1
Σ α (n)

j Φ(n)
j (si−1,1, . . .  ,si−1,n) (mod m) ) (4.4.1)

It is easy to see that vector-valued recurrences of the form(4. 4.1) can be predicted in a sim-

ilar way to the single-valued recurrences studied in the previous section. One can apply the pre-

diction method of Section 4.3 to each of the "sub-generators"Φ(l )
j , l =1, . . ., n. Notice thatsi is

computed by applying the functionsΦ(l )
j to the vectorsi−1, and that thissi−1 is knownto the predic-

tor at the time of computing its prediction forsi . Thus, each of the sequences{ si ,l }
∞
i=0 , l =1, . . ., n

are efficiently predictable and so is the whole vector sequence. The number of possible predic-

tion errors is as the sum of possible errors in each of the sub-generatorsΦ(l ). That is, at mostn

times the bound of Theorem 4.3.4.

One can take advantage of the fact that the different sub-generators work with the same

modulusm in order to accelerate the convergence to the true value ofm. At the end of each pre-

diction step, we have n (not necessarily different) estimatesm̂(1 ) , . . .  ,m̂(n) computed by the predic-

tors forΦ(1 ) , . . .  ,Φ(n), respectively. In the next prediction we put all the predictors to work with

the same estimatêm computed asm̂ = gcd(m̂(1 ) , . . .  ,m̂(n)). This works since each of thêm(l ) is

guaranteed to be a multiple ofm (claim (a) in Lemmas 4.3.1 and 4.3.3).In this way we get that

the total number of mistakes is bounded by(nk +1)(log m̂0 +1). Notice that the dimension of the

whole system of equations corresponding to then Φ(l )-generators isnk (as is the total number of

coefficients hidden from the predictor). On the other hand, the bound onm̂0 from Lemma 4.3.1

is still valid. It does not depend on the number of sub-generators since we predict eachΦ(l )-gen-

erator (i.e. solve the corresponding system of equations) separately. Thus, we can restate Theo-

rem 4.3.4 for the vector-valued case.

Theorem 4.4.1:Vector-valued recurrences of the form(4. 4.1) are efficiently predictable provided

that eachΦ(l )-generator,l =1, . . ., n, has polynomial-time non-reduced complexity. The number of

mistakes made by the above predictor isO( n k2 log (k mM) ), whereM is an upper bound on the
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output of each of the functionsΦ(l )
j , j =1, . . ., k , l =1, . . ., n, working over integers in the set

{0, . . .  ,m−1}. In particular, for vector-valued polynomial recurrences inn variables and degree at

mostd the number of mistakes isO( n k2 log (k md) ), wherek = ( n + d

d
).

Remark 4.4.1:For simplicity we have restricted ourselves to the case(4. 4.1) in which the sub-

generatorsΦ(l ) work on the last vectorsi−1. Clearly, our results hold for the more general case in

which each of these sub-generators may depend on the whole vector sequences−n0
, . . .  ,si−1 output

so far. In this case the numbern of sub-generators does not depend on the number of arguments

the sub-generators work on, and the number of arguments does not effect the number of mis-

takes.
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Chapter 5:

The Composition of Zero-Knowledge Interactive Proofs

5.1. INTRODUCTION

In this chapter we apply the results on evasive pseudorandom distributions, presented in

chapter 3, to the investigation of zero-knowledge interactive proof systems.We address the

question of whether the (sequential and/or parallel) composition of interactive proofs preserves

the zero-knowledge property.

The notions of interactive proofs and zero-knowledge were introduced by Goldwasser,

Micali and Rackoff [GMR1]. Here,we give an informal outline of these notions.For formal and

complete definitions, as well as the basic results concerning these concepts, the reader is referred

to [GMR1, GMW1, GMR2].

An interactive proof for a languageL is a two-party protocol in which a computationally

powerfulProver proves to a probabilistic polynomial-timeVerifier whether their common inputx

belongs to the languageL. The computation is carried out by exchanging messages between the

two parties. The acceptance or rejection of the inputx (as belonging toL) is decided by the veri-

fier depending on the whole conversation. Ifthe assertion is true, i.e.x ∈ L, then the verifier will

accept with very high probability. (This is referred to as thecompletenesscondition). If the

assertion is false then the probability to convince the verifier to accept is negligibly small, no

matter how the prover behaves during the execution of the protocol.(This is thesoundnesscon-

dition).

An interactive proof is calledzero-knowledgeif on input x ∈ L no polynomial-time verifier

(even one that arbitrarily deviates from the predetermined program) gains information from the

execution of the protocol, except the knowledge thatx belongs toL. This means that any poly-

nomial-time computation based on the conversation with the prover can be simulated, without

interacting with the real prover, by a probabilistic polynomial-time machine ("the simulator")

that getsx as its only input. More precisely, let < P,V* > (x) denote the probability distribution

generated by the interactive machine (verifier) V* which interacts with the prover P on input

x ∈ L. We say that an interactive proof iszero-knowledgeif for all probabilistic polynomial-time

machinesV* , there exists a probabilistic polynomial-time algorithmMV* (called asimulator) that

on input x ∈ L produces a probability distribution MV*(x) that is polynomially indistinguishable

(see definition 3.2.2) from the distribution < P,V* > (x). (This notion of zero-knowledge is also
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calledcomputational zero-knowledge. The results in this chapter concern only this notion1 ).

The above description of the notion of zero-knowledge corresponds to the original defini-

tion of zero-knowledge in [GMR1]. This definition requires that the simulator is able to simulate

the conversations between the prover and any probabilistic polynomial-time verifier on the com-

mon input. Later, stronger formulations of zero-knowledge were introduced in which the simula-

tion requirement is extended to deal with stronger verifiers [F, GMR2, O, TW]. Namely, verifiers

with non-uniform properties, e.g. probabilistic polynomial-time verifiers which get an additional

auxiliary-input tape. Onecentral reason for these extensions is that in these stronger models one

can prove that repeated executions of zero-knowledge protocols preserve the zero-knowledge

condition. Thatis, thesequential compositionof zero-knowledge protocols results in a new pro-

tocol which is still zero-knowledge (see [O]). This preservation property is crucial for the the

utilization of zero-knowledge interactive proofs in cryptographic applications and in particular to

the construction of cryptographic protocols for playing any computable game [Y2,GMW2].

Whether the original ("uniform") formulation of zero-knowledge is closed under sequen-

tial composition was an open problem. It was conjectured that this is not the case, what implies

the necessity of the stronger models for guaranteeing the preservation property. In section 5.2 we

prove this conjecture.

Another way to compose interactive proofs is byparallel composition, i.e. by concurrent

execution of the corresponding protocols.This kind of composition is used in order to decrease

the error probability of an interactive proof without increasing the number of messages

exchanged. Parallelism is also used in multy-party protocols in which parties wish to prove (the

same and/or different) statements to various parties concurrently. We prove that parallel compo-

sition of interactive proofs does not necessarily preserve zero-knowledge, not even under the

strong models of zero-knowledge. We present two protocols, both being zero-knowledge in a

strong sense yet their parallel composition is not zero-knowledge (not even in the weak sense of

[GMR1] formulation).

Further results concerning the parallel composition of zero-knowledge interactive proofs

are presented in chapter 6.

5.2. SEQUENTIAL COMPOSITION OF ZERO-KNOWLEDGE PR OT OCOLS

Here we prove that the original definition of zero-knowledge (with uniform verifiers) intro-

duced in [GMR1]is not closedunder sequential composition.
1 Other definitions were proposed in which it is required that the distribution generated by the

simulator isidentical to the distribution of conversations between the verifier and the prover (per-
fectzero-knowledge), or at least statistically close (statisticalzero-knowledge). See[GMR2] for
further details.
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We begin by giving a formal definition of "sequential composition" of interactive proof

systems.

Definition 5.2.1: Let < P1,V1 >, ... , < Pk,Vk > be interactive proof systems for languagesL1, L2,

..., Lk, respectively. A sequential compositionof the k protocols,< P,V >, is defined as follows.

The common input,x, to < P,V > will be a string of the formx1%x2%. . .%xk%, where ’%’ is a

delimiter. The execution of< P,V > consists ofk stages. Atstagei , P andV activate Pi andVi ,

respectively, as subroutines onxi . The verifierV accepts if allVi ’s hav eaccepted.

Intuitively, the reason that a zero-knowledge protocol could not be closed under sequential

composition is that the definition of zero-knowledge requires that the information transmitted in

the execution of the protocol is "useless" for any polynomial-time computation; it does not rule

out the possibility that a cheating verifier could take advantage of this "knowledge" in a subse-

quent interaction with the (non-polynomial) prover for obtaining valuable information.This

intuition (presented in [F]) is the basis of our example of a protocol which is zero-knowledge in a

single execution but reveals significant information when composed twice in a sequence.This

protocol uses a polynomial-time evasive ensemble as defined in section 3.5.We essentially use

the result of Theorem 3.5.1.For the application here we need the following technical formula-

tion of the claim proved in that theorem.

Theorem 5.2.1:There exists an infinite sequence of setsS1 , S2 ,. . ., such that for eachn, Sn is a

subset of{0,1} 4n of size2n, and the collection of uniform distributions on each of these sets con-

stitutes an evasive and pseudorandom ensemble.

As stressed in Remark 3.5.2 the above ensemble is evasive even against algorithms which get an

additional input of lengthn (in our application the algorithms are probabilistic polynomial-time

verifiers and the additional input is the inputx to the protocol). Since the proof of existence (and

samplability) of such an ensemble does not rely on any unproven assumption, so does the proof

of the next theorem.

Theorem 5.2.2: Computational Zero-Knowledge ([GMR1] formulation) is not closed under

sequential composition.

Proof: Let S1 , S2 , . . . be an "evasive and pseudorandom" sequence as described in Theorem 5.2.1.

Also, let K be a hard Boolean function, in the sense that the languageLK = { x: K (x) =1} is not in

BPP (we use this function as a "knowledge" function).

We present the following interactive-proof protocol< P,V > for the languageL = {0,1} * .

(Obviously, this language has a trivial zero-knowledge proof in which the verifier accepts every

input, without carrying out any interaction. We intentionally modify this trivial protocol in order

to demonstrate a zero-knowledge protocol which fails sequential composition).
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Let x be the common input forP andV, and let n denote the length ofx. The verifier V

begins by sending to the prover a random strings of length4n. The prover P checks whether

s ∈ Sn (the n-th set in the above sequence). Ifthis is the case (i.e.s ∈ Sn) then P sends toV the

value of K (x). Otherwise (i.e. s ∈| Sn), P sends toV a string s0 randomly selected fromSn. In

any case the verifier accepts the inputx (as belonging toL).

We stress that the same sequence of sets is used in all the executions of the protocol.Thus,

the setSn does not depend on the specific input to the protocol, but only on its length.Therefore,

the strings0, obtained by the verifier in the first execution of the protocol, enables him to deviate

from the protocol during a second execution in order to obtain the value ofK (x′), for any x′ of

length n (and in particular forx′ = x). Indeed,consider a second execution of the protocol, this

time on inputx′. A "cheating" verifier which sends the strings= s0 instead of choosing it at ran-

dom, will get the value ofK (x′) from the prover. Observe that this cheating verifier obtain infor-

mation that cannot be computed by itself. There is no way to simulate in probabilistic polyno-

mial-time the interaction in which the prover sends the value ofK (x′) (otherwise the languageLK

is in BPP).

Thus, it is clear that the protocol is not zero-knowledge when composed twice. On the

other hand, the protocol is zero-knowledge (when executed the first time).To show this, we

present for any verifier V* , a polynomial-time simulatorMV* that can simulate the conversations

betweenV* and the prover P. There is only one message sent by the prover during the protocol.

It sends the value ofK (x), in case that the strings sent by the verifier belongs to the setSn, and a

randomly selected element ofSn, otherwise. Bythe evasivity condition of the setSn, there is

only a negligible probability that the first case holds. Indeed, no probabilistic polynomial-time

machine (in our case, the verifier) can find such a strings ∈ Sn, except with insignificant proba-

bility (no matter what the inputx to the protocol is). Thus, the simulator can succeed by always

simulating the second possibility, i.e. the sending of a random elements0 from Sn. This step is

simulated by randomly choosings0 from {0,1} 4n rather than fromSn. The indistinguishability of

this choice from the original one follows from the indistinguishability between the uniform dis-

tribution onSn and the uniform distribution on{0,1} 4n.

Remark 5.2.1: The argument presented in the proof generalizes to any languageL having a

zero-knowledge interactive proof. Simply, modify the zero-knowledge proof forL as in the

above proof of Theorem 5.2.2.

Remark 5.2.2: Another example of a zero-knowledge protocol which is not closed under

sequential composition was independently found by D. Simon [Si]. His construction assumes

the existence of secure encryption systems.
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5.3. PARALLEL COMPOSITION OF ZERO-KNOWLEDGE PR OT OCOLS

In this section we address the question of whether zero-knowledge interactive proofs are

robust under parallel composition.

First we present a definition of "parallel composition" of interactive proof systems.

Definition 5.3.1: Let < P1,V1 >, ... , < Pk,Vk > be interactive proof systems for languagesL1, L2,

..., Lk, respectively. Without loss of generality, assume that all protocols arem-step protocols. A

parallel compositionof thek protocols,< P,V >, is defined as follows. < P,V > will also be anm-

step protocol. The common input,x, to < P,V > will be a string of the formx1%x2%. . .%xk%,

where ’%’ i s a delimiter. The i-th message in< P,V > will consist of the concatenation of thei-th

messages of< P1,V1 >, ... , < Pk,Vk > respectively. The verifier V accepts if allVi ’s hav e

accepted.

Clearly, we cannot expect the [GMR1] definition of zero-knowledge to be closed under

parallel composition: it is easy to see that a zero-knowledge protocol which is not closed under

sequential composition can be transformed into another zero-knowledge protocol which fails par-

allel composition. Thus, our result of the previous section implies that zero-knowledge with uni-

form verifiers is not closed under parallel execution.

In light of the fact thatauxiliary-inputzero-knowledge is robust under sequential composi-

tion [O], it is an interesting open question whether this formulation of zero-knowledge is also

robust under parallel composition.The main result of this section is that this isnot the case.We

prove the existence of protocols which are zero-knowledge even against non-uniform verifiers

(e.g. auxiliary-input zero-knowledge), but which do not remain zero-knowledge when executed

twice in parallel. As in the case of sequential composition our result concerns only computational

zero-knowledge.

The ideas used for the design of a protocol which fails parallel composition are similar to

those used for the sequential case.There, we have used a pseudorandom and evasive ensemble

to construct the intended protocol. We use this method also here. The main difference is that now

we need an evasive collection which resists also non-uniform verifiers. Thus,we use the stronger

notion of non-uniform evasiveness introduced in section 3.6.

Theorem 5.3.1:Computational Zero-Knowledge (even with non-uniform verifiers) is not closed

under parallel composition.

Proof: We present a pair of protocols< P1 ,V1 > and< P2 ,V2 > which are zero-knowledge when

executed independently, but whose parallel composition is provable not zero-knowledge.

We use some dummy steps in the protocols in order to achieve synchronization between

them. Ofcourse one can modify the protocol substituting these extra steps by significant ones.
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The version we give here prefers simplicity rather than "naturality". Both protocols consist of

five steps and are described next. An alternative description is presented in Figure 5.3.1.The

notations ∈ R S means the elements is chosen at random (i.e. with uniform probability) from the

setS.

P1 V1 step P2 V2

i ∈ R {1 , . . ., 2n} − −> 1 dummy step

dummy step 2 <− − j ∈ R {1 , . . ., 2n}

dummy step 3 r ∈ R S(n)
j − −>

<− −s ∈ R {0,1} 4n 4 dummy step

if s ∈ S(n)
i : K (x) − −> 5 dummy step

Figure 5.3.1: protocols< P1,V1 > and< P2,V2 > with input x.

The first protocol is denoted< P1 ,V1 >. Let x be the input to the protocol and letn denote

its length. The protocol uses (for all its executions) a P/poly-evasive sequenceS(1 ) , S(2 ) , . . . with

the properties described in Theorem 3.6.1. It also involves an (arbitrary) hard Boolean function

K as in the proof of Theorem 5.2.2. The prover P1 begins by sending toV1 an index

i ∈ R {1 , . . .  ,2n} . After two dummy steps the verifier V1 sends toP1 a string s ∈ R {0,1} 4n. The

prover P1 checks whethers ∈ S(n)
i . If this is the case then it sends toV1 the value ofK (x). This

concludes the protocol.

The second protocol< P2,V2 > uses thesameP/poly-evasive sequenceS(1 ) , S(2 ) , . . . as proto-

col < P1,V1 > does. Thefirst step of the protocol is a dummy one. In the second step the verifier

V2 sends toP2 an index j ∈ R {1 , . . .  ,2n} . The prover P2 responds with a stringr ∈ R S(n)
j . After two

more dummy steps the protocol stops.

We show that the above protocols are indeed zero-knowledge (even for non-uniform veri-

fiers). For the first protocol, there are two steps of the prover to be simulated. Inthe first stepP1

sends an index i ∈ R {1 , . . .  ,2n} . The simulator does the same. In the second step, the prover sends

the value ofK (x) only if the verifier succeeds to present him a string which belongs to the set

S(n)
i . By the evasivity condition of the sequenceS(1 ) , S(2 ) , . . ., this will happen with negligible

probability and therefore the simulator can always simulate this step as for the case where the

verifier sends a strings ∈| S(n)
i . Observe that the circuits in the definition of P/poly-evasive

sequences only get as input the index of the set to be hit.Nevertheless, in our case the circuits

also get an additional inputx. This cannot help them finding an element inS(n)
i . Otherwise,
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circuits which have such a string incorporated will contradict the evasiveness condition.

In the second protocol,< P2,V2 >, the only significant step of the prover P2 is when it sends

an elementr ∈ R S(n)
j in response to the index j sent by the verifier. In this case the simulator will

send a stringr ′ ∈ R {0,1} 4n. Using the pseudorandomness property of the setS(n)
j we get that the

simulator’s choice is polynomially indistinguishable from the prover’s one.

Finally we show that the parallel composition of the above protocols into a single protocol

< P,V > is not zero-knowledge. LetV* be a "cheating" verifier which behaves as follows.

Instead of sending a randomly selected index j (corresponding to the second step of the subpro-

tocol < P2,V2 >) it sends the index i received from P as part ofP1’s first step.Thus, j = i , and the

prover P will respond with a stringr ∈ S(n)
i . In the next step this stringr will be sent byV to P as

the "random" strings that V1 should send toP1. The prover P will verify that r ∈ S(n)
i and then

will send the informationK (x). By the hardness of the functionK this step cannot be simulated

by a probabilistic polynomial-time machine.Therefore, the composed protocol< P,V > is not

zero-knowledge.

Remark 5.3.1: The two protocols< P1,V1 > and < P2,V2 > can be merged into a single zero-

knowledge protocol which is not robust under parallel composition.For example, let the prover

in the merged protocol choose at random an index i ∈ {1 , 2}, send it toV, and then both parties

execute the protocol< Pi,Vi >. This protocol, when executed twice in parallel, has probability

one-half to become a parallel execution of < P1,V1 > and < P2,V2 >. Therefore, it is not zero-

knowledge.
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Chapter 6:

On the Round Complexity of Zero-Knowledge Interactive Proofs

6.1. INTRODUCTION

In chapter 5 we have shown that the definition of zero-knowledge does not guarantee the

preservation of the zero-knowledge property when composing protocols in parallel. This was

shown even for the strong formulations of zero-knowledge which allow non-uniform "cheating"

verifiers. Thisresult leaves open the question of whether particular protocols have the composi-

tion property or not. That is, whenever we are interested to compose concrete protocols we must

investigate whether the resultant composed protocol remains zero-knowledge or not.

Such a question arises in many cases. In particular, since the first works on zero-knowl-

edge [GMR1, GMW1] it was repeatedly asked whether the parallel versions of the protocols for

Quadratic Residuosity, Graph Isomorphism and for any language in NP, presented in these

papers, are zero-knowledge. Themain motivation for this question is that these "parallel ver-

sions" use only a constant number of rounds (in this case, 3 rounds), while the "sequential ver-

sions" (proved zero-knowledge in the above works) use an unbounded number of rounds.

In this chapter we report a general result concerning the round complexity of zero-knowl-

edge interactive proofs which, in particular, resolves the question of parallelization of the men-

tioned protocols. This general result states thatonly BPP languages have 3-round interactive

proofs which are black-box simulation zero-knowledge.

Since the parallel versions of the above examples are 3-round interactive proofs it follows

that these interactive proofs cannot be proven zero-knowledge using black-box simulation zero-

knowledge, unless the corresponding languages are in BPP. We say that an interactive proof is

black-box simulation zero-knowledgeif there exists a universal simulator which using any (ev en

non-uniform) verifier V* as a black box, produces a probability distribution which is polynomi-

ally indistinguishable from the distribution of conversations of (the same)V* with the prover.

This definition of zero-knowledge is more restrictive than the original one which allows to have a

specific simulator for each verifier V* . Nev ertheless, all known zero-knowledge protocols (with

non-uniform verifiers) are also black-box simulation zero-knowledge. Thisfact cannot come as a

surprise since it is hard to conceive a way to take advantage of the full power of the more liberal

definition.
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It is not plausible that our result could be extended to 4-round interactive proofs since such

proofs are known for languages believed to be outside BPP. The protocols for Quadratic Non-

Residuosity [GMR1] and Graph Non-Isomorphism [GMW1] are such examples. Inaddition,

zero-knowledge interactive proofs of 5 rounds are known for Quadratic Residuosity and Graph

Isomorphism [BMO], and assuming the existence of claw-free permutations there exist 5-round

zero-knowledge interactive proofs for any language in NP [GKa].Moreover, our results extend

to zero-knowledgearguments1, for which Feige and Shamir [FS] presented (assuming the exis-

tence of one-way functions) a 4-round protocol for any language in NP. Our result implies that

the round complexity of this protocol is optimal (as long as BPP≠ NP).

When restricting ourselves to Arthur-Merlin interactive proofs, we can extend the above

result to any constant number of rounds.We show thatonly BPP languages have constant-round

Arthur-Merlin proofs which are also black-box simulation zero-knowledge.

Arthur-Merlin interactive proofs, introduced by Babai [Ba], are interactive proofs in which

all the messages sent by the verifier are the outcome of his coin tosses. In other words, the veri-

fier "keeps no secrets from the prover". This result is a good reason to believe that the only feasi-

ble way of constructing constant-round zero-knowledge interactive proofs is to let the verifier use

"secret coins". (Indeed, the above mentioned constant-round zero-knowledge proofs use secret

coins). Thus,"secret coins" help in the (black-box simulation) zero-knowledge setting.This

should be contrasted with the result of Goldwasser and Sipser [GS] which states that Arthur-Mer-

lin interactive proofs areequivalentto general interactive proofs (as far as language recognition

is concerned).They show that any language having a general interactive proof of k rounds, has

also an Arthur-Merlin proof ofk rounds. Usingour result we see that in the zero-knowledge set-

ting such a preservation of rounds is not plausible (e.g., Graph Non-Isomorphism).

Our result is tight in the sense that, the languages considered above (e.g. Graph Non-Iso-

morphism, NP) have unbounded (i.e.ω(n)-round, for every unbounded functionω: N → N)

Arthur-Merlin proof systems which are black-box simulation zero-knowledge. Inparticular, we

get that bounded round Arthur-Merlin proofs which are black-box zero-knowledge exist only for

BPP, while unbounded round proofs of the same type exist for all NP (if one-way functions

exist). Thatis, while thefinite hierarchy of languages having black-box zero-knowledge Arthur-

Merlin proofs collapses to BPP (= AM(0)), the correspondinginfinite hierarchy contains all NP.

This implies (assuming the existence of one-way functions) a separation between the two hierar-

chies.

1 Interactive argumentsdiffer from an interactive proof system in that the soundness condition
of the system is formulated with respect toprobabilistic polynomial-timeprovers, possibly with
auxiliary input (see [BCC]).
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6.2. SECRET COINS HELP ZERO-KNOWLEDGE

In this section we present our result concerning zero-knowledge proofs systems in which

the interaction is of Arthur-Merlin type. In such systems the (honest) verifier chooses its mes-

sages at random, while the only real computation it carries out is the evaluation of a polynomial-

time predicate at the end of the interaction, in order to decide the acceptance or rejection of the

input to the protocol.

We show that only languages in BPP have constant-round Arthur-Merlin interactive proofs

which areblack-box simulation zero-knowledge. A zero-knowledge interactive proof < P,V > is

calledblack-box simulationzero-knowledge if it is proved zero-knowledge by presenting a uni-

versal simulator, which using any verifier V* as a black-box, succeeds in simulating the< P,V* >

interaction [O]. In this definition of zero-knowledge we allow the verifierV* to be non-uniform.

The main Theorem of this section is

Theorem 6.2.1:A languageL has a constant-round Arthur-Merlin interactive proof which is

black-box simulation zero-knowledge if and only ifL ∈BPP.

We present a proof for a special case of this Theorem. Namely, for the case of a three-round

Arthur-Merlin protocol. The general case is proved using careful extensions of the ideas pre-

sented here.The three-round case can also be extended for general interactive proof systems.

That is, we also have the following Theorem.

Theorem 6.2.2:A languageL has a three-round interactive proof which is black-box simulation

zero-knowledge if and only ifL ∈BPP.

6.2.1 The case AM(3)

Consider an Arthur-Merlin protocol< P ,V > for a languageL, consisting of three rounds.

We use the following notation. Denote byx the input for the protocol, and byn the length of this

input. Thefirst message in the interaction is sent by the prover. We denote it byα . The second

round is forV which sends a stringβ . The third (and last) message is fromP and we denote it by

γ . The predicate computed by the verifier V in order to accept or reject the inputx is denoted by

ρV , and we consider it, for convenience, as a deterministic functionρV(x,α , β,γ ). (Our results

hold also for the case in which the predicateρV also depends on an additional random stringr ).

We will also assume, w.l.o.g., the existence of a polynomiall (n) such that|α |= |β|= l (n).

Let this three-round Arthur-Merlin protocol< P ,V > be black-box simulation zero-knowl-

edge. Denoteby M the guaranteed black-box simulator which given access to the black-boxV*

can simulate< P,V* >. The process of simulation consists of several "tries" or calls to the inter-

acting verifierV* ("the black-box"). In each such call the simulatorM feeds the arguments forV* .
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These arguments are the inputy (which may be different from the "true" inputx), the random

coins forV* , denotedr , and a stringα representing the message sent by the prover P. Finally,

after completing its tries the simulator outputs a conversation(y, r ,α , β,γ ). Notice that the simu-

lator runs polynomial-time and therefore there exists a polynomialt(n) which bounds the number

of calls tried before outputting a conversation.

We shall make some simplifying assumptions on the behavior of the simulatorM, which

will not restrict the generality. In particular, we assume that some cases, which may arise with

only negligible 2 probability, do not happen at all. This cannot significantly affect the success

probability of the simulator. We assume that the conversations output byM have always the

form (x, r ,α , β,γ ), i.e. y = x, and that the stringβ equals the message output byV* when given the

inputsx, r andα . Note that these conditions always hold for the real conversations generated by

the prover P and the verifierV* . Therefore, the simulator must almost always do the same.(Oth-

erwise, a distinguisher which has access toV* , would distinguish between the simulator’s output

and the original conversations). We also assume that the simulatorM explicitly tries, in one of

its calls toV* , the parametersx , r andα appearing in the output conversation.

We observe that the behavior of the simulatorM, interacting with a verifier V* , is com-

pletely determinedby the inputx, the random tapeRM used byM and the strings output byV* in

response to the arguments fed by the simulator during its tries. Based on this observation we

define the following process in which the simulatorM itself is used as a subroutine.

Fix an inputx of lengthn, a string RM and t = t(n) stringsβ (1 ), β (2 ), . . .  ,β (t). Activate M on

input x with its random tape containingRM . For eachy , r andα presented byM, respond in the

following way. The responses will depend only on the stringsα (and not iny and r ). If α was

previously presented byM, respond with the sameβ as before. Ifα is thei-th differentstring pre-

sented byM then respond withβ (i). We denote thei-th different α by α (i). Clearly, α (i) is

uniquely determined byx , RM and thei −1 strings β (1 ), . . .  ,β (i−1). That is, there exists a determin-

istic function α M such that α (i) = α M( x, RM, β (1 ), . . .  ,β (i−1) ). We denote by

convM( x, RM, β (1 ), . . .  ,β (t) ) = (x, r ,α , β,γ ), the conversation output by the simulatorM when acti-

vated with these parameters. Byour convention on the simulatorM, there exists i ,1≤ i ≤ t such

thatα = α (i) and β = β (i).

Definition: We say that a vector( x, RM, β (1 ), . . .  ,β (t) ) is M-goodif convM( x, RM, β (1 ), . . .  ,β (t) ) is an

accepting conversation for the (honest) verifier V. Namely, if ρV(x,α , β,γ ) =1, where

convM( x, RM , β (1 ), . . .  ,β (t) ) = (x, r ,α , β,γ ). We say that ( x, RM, β (1 ), . . .  ,β (t) ) is i-good if it is M-

good andα = α (i) andβ = β (i).
2 We use the term "negligible" for denoting functions which are (asymptoticly) smaller than

1/Q, for any polynomialQ.
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The main property ofM-good strings is stated in the following Lemma. We get as a corol-

lary the proof of Theorem 6.2.1 for the case AM(3).

Lemma 6.2.3: Let < P,V > be a 3-rounds Arthur-Merlin protocol for a languageL. Suppose

< P, V > is black-box simulation zero-knowledge, and letM be a black-box simulator as above.

Then, x ∈ L if and only if all but a negligible portion of the vectors( x, RM, β (1 ), . . .  ,β (t) ) are M-

good.

Before proving this key lemma, we use it to prove Theorem 6.2.1 for the case of three-round

Arthur-Merlin interactive proof.

Proof of Theorem 6.2.1 (for case AM(3)):By Lemma 6.2.3 we get that the following is a BPP

algorithm for the languageL.

* select at random a vector(RM, β (1 ), . . .  ,β (t) ).

* accept the inputx if and only if( x, RM, β (1 ), . . .  ,β (t) ) is M-good.

Proof of Lemma 6.2.3:

IF direction: Let R0 be a string for which there exist a non-negligible number of vectors

( β (1 ), . . .  ,β (t) ) such that( x, R0, β (1 ), . . .  ,β (t) ) are M-good. Thereexists an index i0 ,1≤ i0 ≤ t, for

which a non-negligible fraction of the above ( x, R0, β (1 ), . . .  ,β (t) ) are i0-good. Thus,there exists a

non-negligible number of prefixes( β (1 ), . . .  ,β (i0−1) ), each with a non-negligible number ofi0-good

continuations( β (i0), . . .  ,β (t) ) (i.e., such that( x, R0, β (1 ), . . .  ,β (i0−1), β (i0), . . .  ,β (t) ) are i0-good). Let

( β (1 ), . . .  ,β (i0−1) ) be such a prefix, and letα (i0) = α M( x, R0, β (1 ), . . .  ,β (i0−1) ).

For eachi0-good continuation( β (i0), . . .  ,β (t) ) machineM outputs a conversation( x , r ,α (i0) , β (i0) ,γ )

for which ρV ( x ,α (i0) , β (i0) ,γ ) = 1. In particular, there exists a non-negligible number ofβ (i0) for

which this happens.

In other words, we have shown the existence of a stringα (= α (i0)) for which the set

B(x,α ) = { β : ∃ γ , ρV ( x ,α , β ,γ ) = 1 } is of non-negligible size among all possible stringsβ . By

the soundness property of the AM protocol forL, we get x ∈ L. (For x ∈| L, the prover may con-

vinceV that x ∈ L with only negligible probability. Since the honestV selects its responsesβ at

random, then we have that forx ∈| L and for allα , the setB(x,α ) is of negligible size).

ONLY IF direction: We show that for x ∈ L most (i.e. all but a negligible portion) of the vectors

( x, RM, β (1 ), . . .  ,β (t) ) are M-good. We do it by considering the behavior of the simulatorM when

simulating the conversations of the prover P with a particular family of verifiers which we intro-

duce shortly.

Let x ∈ L and let n denote its length. Consider a family of hash functionsH(n) which map

l (n)-bit strings tol (n)-bit strings, such that the locations assigned to the strings by a randomly
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selected hash function are uniformly distributed andt(n)-wise independent. (Recall thatl (n) is

the length of messagesα and β in the Arthur-Merlin protocol< P ,V > for L, while t(n) is the

bound on the number ofM ’s tries). For properties and implementation of such functions see [J].

We denote this set of hash functions byH(n).

For each hash functionh ∈ H(n) we associate a (deterministic) verifier V*
h, which responds to the

prover’s messageα with the stringβ = h(α ). Consider the simulation of< P ,V*
h > conversations

by the simulatorM. Fixing a random tapeRM for M and a functionh ∈ H(n), the whole simula-

tion is determined. In particular, this defines a sequence ofα ’s tried by the simulator, and the

corresponding responsesβ of V*
h. Denote byα (1 ) ,α (2 ), . . .  ,α (s), the differentvalues ofα in these

tries. In case thats< t, we complete this sequence toα (1 ), . . .  ,α (s) ,α (s+1), . . .  ,α (t), by adding t − s

strings α in some canonical way, such that the resultantα (1 ), . . .  ,α (t) are all different. Let

β (i) = h(α (i)) ,1≤ i ≤ t, and definev(x , RM , h) = (x , RM , β (1 ), . . .  ,β (t)). The only-if direction of the

Lemma follows from the following two Claims.

Claim 1: For any x ∈ L and for all but a negligible portion of the pairs(RM , h) the vector

v(x , RM , h) is M-good.

Proof:By the completeness property of the protocol< P,V >, most of the conversations between

P andV on inputx ∈ L are accepting. That is, for most coin sequencesRP of the prover P, and

most choicesβ of V, the resultant conversation( x ,α(x, RP) , β ,γ (x, RP, β )) is accepting.

Consider now the interaction between the prover P and the verifiersV*
h on x ∈ L. By the unifor-

mity property of the family H(n) we get that for every α , all β ’s are equi-probable as the result of

h(α ). This, together with the above remark on the conversations betweenP andV, implies that

for most stringsRP, and for most hash functionsh, the interaction ofP with V*
h leads to an

accepting conversation.

Since the simulatorM succeeds in simulating< P ,V*
h > conversations for all functionsh ∈ H(n),

we get that for mosth’s the simulatorM outputs with very high probability an accepting conver-

sation. TheClaim follows. ◊

Claim 2: For all stringsx and RM , the vector v(x , RM , h) is uniformly distributed over the set

{ ( x , RM , β (1 ), . . .  ,β (t) ): β (i) ∈{0,1} l (n) }

Proof:Observe that

v(x , RM , h) = (x , RM , β (1 ), . . .  ,β (t)) )

if and only if for every i ,1≤ i ≤ t,

h( α M( x, RM, β (1 ), . . .  ,β (i−1) ) ) = β (i) .
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On the other hand, by the uniformity andt(n)-independence property of the family H(n), we hav e

that for any t differentelementsa1, . . .  ,at in the domain of the functionsh ∈ H(n), the sequence

h(a1) ,. . .  ,h(at) is uniformly distributed over all possible sequencesb1, . . .  ,bt for bi in the range of

the functionsH(n).

Putting ai = α M( x, RM, β (1 ), . . .  ,β (i−1) ), and bi = β (i), and using the above observation the claim fol-

lows. ◊

Claim 2 states that for any RM , the value ofv(x , RM , h) is uniformly distributed over all possible

vectors( x , RM , β (1 ), . . .  ,β (t) ). On the other hand, by Claim 1, mostv(x , RM , h) are M-good, and

then we get that most( x , RM , β (1 ), . . .  ,β (t) ) areM-good.

The Lemma follows.
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