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Abstract

In this thesis, we present two sub-linear time algorithms for finding paths of length k
in bounded-degree cycle-free graphs. The complexity of our algorithms is polynomially
related to k, the degree bound, and the distance of the graph from being k-path free (i.e.
having no simple paths of length k), denoted ε. This improves over the known upper

bound of O(k·d
k

ε
) for the cycle-free special case.



1 Introduction

In this thesis, we study algorithms for finding paths of length k, in a graph with degree
bound d, by only looking at a small portion of the graph. Indeed, this task may not
be feasible in the general case. Consider the case in which the given graph has only a
single k-path. In this case, it is nearly impossible to spot this path without practically
inspecting the entire graph. Therefore, we study the relaxed notion in which the size of
the view is related to the fraction of edges that must be removed in order to make the
given graph k-path free. Such sub-linear time algorithms are related to property testing
(for the exact relationship to property testing, see section 1.3), which is a field that had
been studied extensively (see [2], [3]).

This thesis was initiated by trying to improve a result of Czumaj et al. [1], who
studied sub-linear time algorithms for finding cycles and trees in bounded-degree graphs.
One of their major results was that finding cycles is much harder than finding trees or
other tree like constructs. In particular, they showed that a tree T can be found within
the graph in time that is independent of the size of the graph (and depends on the
fraction of edges that has to be removed in order to clear all appearances of T , as well as
other constants). In contrast, searching for cycles must depend on the size of the graph.
Regarding trees, an interesting special case that was addressed is when the tree being
searched is a simple path of length k. Although searching for such k-paths can be done
in constant query complexity (i.e. independent of the size of the graph), the constant
presented in [1] depends exponentially on k. We ask the following natural question: is it
possible to have an algorithm that is polynomial in k? We conjecture that indeed this
is the case. But before we formally define our conjecture, let us first review the known
exponential time algorithms.

1.1 Finding k-Paths - The Naive Approach

As mentioned earlier, we consider a graph with degree bound d, that is ε-far from being
k-path free, where ε-far from being k-path free means that at least εdn

2
edges must be

removed in order for the graph to have no k-paths. The naive approach presented in [1]

states that paths of length k can be found in query complexity O(k·d
k

ε
), by simply looking

for k-paths at random. Details follow.
If we choose a vertex uniformly at random, and denote it v, the probability of having

a k-path starting at v is at least ε
2
, since otherwise we have less than εn

2
such vertices,

and by removing all their edges (that account for less than εdn
2

edges) we clear the graph
of k-paths. If indeed we got lucky and there is a k-path starting at v, we can look for it
by taking a k-step random walk. We will follow this path with probability at least 1

dk
.

Thus, the probability of finding a k-path is ε
dk

. If we repeat this attempt for O(d
k

ε
) times,

we would find a k-path with probability at least 2
3
. Each attempt only uses O(k) queries,

thus the query complexity of O(k·d
k

ε
) follows.

A small improvement can be made by trying to hit the middle of the path instead
of its end. Similarly to the previous case, the chance we choose a vertex v that is in
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the middle of some k-path is at least ε
2
. Then, we can scan the k

2
environment of v. If

indeed we got lucky and v is in the middle of some k-path, we will find the path within
this environment. The size of the k

2
environment of v is at most d

k
2 , thus our improved

query complexity is O(d
k
2

ε
). This is an improvement over the naive approach, but is still

exponential.

1.2 Main Theorem

As discussed earlier, we conjecture that indeed there exists a randomized algorithm for
finding k-paths with running time that is polynomially dependent on k. More formally,
we conjecture the following:

conjecture 1. There exists a randomized algorithm that given any graph G with degree-
bound d, finds a path of length k in O(poly(d, 1

ε
, k)) queries, where G is ε-far from being

k-path free1.

While we failed to prove or refute this conjecture, we were able to prove it in the special
case where the given graph G is cycle free. That is, we prove the following theorem:

theorem 1. There exists a randomized algorithm that given any cycle-free graph G with
degree-bound d, finds a path of length k in O(poly(d, 1

ε
, k)) queries, where G is ε-far from

being k-path free.

Moreover, we present two algorithms for this task, which are based on two different
traversal techniques. Hopefully these algorithms may lead to establishing Conjecture 1.

The following subsection reproduces some of the text of [1].

1.3 The property testing connection

Loosely speaking, property testing refers to sublinear time probabilistic algorithms for
deciding whether a given object has a predetermined property or is far from any object
having this property (see the surveys [6, 4, 5]). Such algorithms, called testers, obtain
local views of the object by making suitable queries; that is, the object is seen as a
function and the tester gets oracle access to this function (and thus may be expected to
work in time that is sublinear in the size of the object).

Randomization is essential to natural testers (i.e., testers of natural properties that
have sublinear query-complexity) [7]. The same holds also for error probability, at least
on some instances, but the question is whether a (small) error probability must appear
on all instances. In particular, should we allow (small) error probability both on instances
that have the property and on instances that are far from having it?2

1Recall that being ε-far means that at least εdn
2 edges must be removed in order to for G to have no

simple paths of length k
2In any case, the basic paradigm of property testing allows arbitrary error in case the instance neither

has the property nor is far from having it.
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Indeed, testers come in two basic flavors referring to the foregoing question: two-sided
error testers allow (small) error probability both on instances that have the property
and on instances that are far from having it, whereas one-sided error testers only allow
(small) error probability on instances that are far from having the property. That is, in
one-sided error testers, any instance that has the property is accepted with probability 1.

An important observation regarding one-sided error testers is that whenever such a
tester rejects some instance, it always has a certificate that this instance does not have
the property, where this certificate is the partial view of the instance as obtained by the
tester. Indeed, in the case of one-sided error, rejecting an instance based on a specific
partial view means that there exists no instance that has the property and is consistent
with this partial view. Furthermore, in some cases (as the one addressed in the current
work), this partial view contains some natural structure.

Consider the task of testing k-path freeness (with one-sided error). In this case,
whenever the tester rejects, its partial view must contain a k-path. Thus, any one-sided
tester of k-path-freeness may be used for finding k-paths in graphs that are far from being
k-path-free, and vice versa. Thus, the two notions will be used interchangeably.

1.4 Organization

The thesis is organized as follows: Section 2 contains a formal statement of the relevant
definitions and terminology. Section 3 proves the existence of a special subgraph in any
cycle-free graph that is ε-far from being k-path free. The subgraph presented in Section
3 will serve as the pivot of our analysis, and might be of independent interest. The two
algorithms are presented in Sections 4 and 5, respectively. Section 6 suggests possible
approaches for proving Conjecture 1, and discusses possible difficulties.

2 Preliminaries

This work refers to the bounded-degree model (introduced in [8]). This model refers to
a fixed degree bound, denoted d. An n-vertex graph
G = ([n], E) (of maximum degree d) is represented in this model by a function g :
[n] × [d] → {0, 1, . . . , n} such that g(v, i) = u ∈ [n] if u is the i’th neighbor of v and
g(v, i) = 0 if v has less than i neighbors. Testing in this model is captured by the general
definition of property testing of functions, when applied to functions of the forgoing
type and considering only graph properties (i.e. properties that are preserved under
isomorphism). That is, saying that a tester has oracle access to a graph G means that it
is given oracle access to the corresponding function g.

definition 2 (testers in the bounded-degree model). Let d ∈ N be fixed and Π be a
property of graphs with maximum degree at most d. We denote the restriction of Π to
n-vertex graphs by Πn. A randomized oracle machine T is called a tester for Π if the
following two conditions hold:
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1. For every n ∈ N and ε ∈ [0, 1], on input (n, ε) and when given oracle access to any
G ∈ Πn the machine T accepts with probability at least 2/3; that is, Pr [TG(n, ε) = 1] ≥ 2/3.

2. For every n ∈ N and ε ∈ [0, 1], and every n-vertex graph G that is ε-far from Πn, it
holds that Pr [TG(n, ε) = 1] ≤ 1/3, where G = ([n], E) is ε-far from Πn if for every
G′ = ([n], E ′) ∈ Πn it holds that the symmetric difference of E and E ′ contains
more than ε · dn/2 elements3.

In case the first condition holds with probability 1, we say that T has one-sided error.
Otherwise, we say that T has two-sided error.

Throughout this thesis we will solely focus on one-sided testing of the property k-
path freeness. Also as mentioned in the introduction, this is equivalent to finding paths
of length k in graphs that are ε-far from being k-path free.

Throughout the thesis, we will assume the given graph G is connected. The analysis
can be modified to deal with the case in which G is not connected, simply by treating
separately each of its connected components.

2.1 DFS scans

Throughout this thesis we will use variations of the standard DFS (Depth-First Search)
scan extensively, and thus we wish to review these variations.

In standard DFS scans, the neighbors of a vertex are scanned in some predetermined
arbitrary order (usually, the scan order simply follows the order of the adjacency list).
Therefore, the order of the vertices revealed by some DFS scan is fully determined by the
initial vertex. However, we would like to consider DFS scans in which the scan order of
the neighbors is not arbitrary, but is neither fixed. I.e. for each vertex there is a certain
order by which its neighbors must be scanned.

A DFS scan D = e1, . . . , em is represented by the sequence of edges that were traversed
(in the order in which they were traversed) when starting a DFS scan from some vertex
with a certain scan order (indeed, not every sequence of edges is a valid DFS scan).

In addition, we will also consider DFS scans that stop as soon as the subgraph revealed
by the scan contains a path of length k. Such DFS scans will be called truncated DFS
scans, and the truncated version of the DFS scan D is denoted by Dtrunc. Note that in the
truncated DFS scenario, it is relevant to talk about the length of the truncated DFS scan
Dtrunc, which will be the number of edges we traversed (or the size of the sequence Dtrunc).
This is in contrast to non-truncated DFS scans that always scan the entire graph, and
thus always have size m, where m is the number of edges in the graph. Another difference
between the truncated DFS scan and the non-truncated one is that in the truncated DFS
case, it is relevant to talk about the induced graph of a truncated DFS. The induced graph
of a the truncated DFS scan Dtrunc, denoted GDtrunc = (VDtrunc , EDtrunc), is the subgraph

3Alternatively, representing G by g : [n]× [d]→ {0, 1, . . . , n} (resp., G′ by g′ : [n]× [d]→ {0, 1, . . . , n})
we may require that Prx∈[n]×[d] [g(x) 6= g′(x)] > ε. Note that in this case, for each G we should consider
all legitimate representations of G′ as a function g′.
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that was ‘seen‘ by the DFS scan until it stopped (since it found a path of length k). That
is, VDtrunc and EDtrunc are the vertices and edges encountered by the DFS scan D until it
stopped (respectively).

3 Existence of the DFS-friendly subgraph G′

As mentioned earlier, the analysis of both algorithms (to be presented in Sections 4 and 5)
relies on the existence of a special connected sub-graph for any cycle-free connected graph
G that is ε-far from being k-path free4. The subgraph, which we call ‘DFS-friendly‘, and
denote G′, has the feature that for every scan order (of the vertices), and every vertex v
(of G′), the length of a truncated DFS Dtrunc, starting from v is O(k

ε
). In other words,

on G′, any DFS scan starting from any vertex and using any scan order will find a path
of length k after O(k

ε
) steps5. In addition to being ‘DFS-friendly‘, we will require G′ to

be quite big - it will have Ω(εn) vertices. Formally, we will prove the following lemma:

lemma 3. If G = (V,E) is a cycle-free connected graph that is ε-far from being k-path
free, then there exists a graph G′ = (V ′, E ′) that is a subgraph of G such that the following
conditions hold:

1. For every v ∈ V ′ and every scan order the size of a truncated DFS scan Dtrunc

starting at v is at most O(k
ε
).

2. G′ is connected

3. |V ′| ≥ Ω(εn)

3.1 Proof Overview

The proof will be constructive: For every graph G = (V,E), we will show how to find
a corresponding G′ with all the above mentioned features. The construction of G′ will
be via an iterative process in which we sequentially prune several subgraphs at each
iteration, initially starting from G. Let us first describe the intuition behind the process
itself. Suppose that D is a DFS scan starting from v that first finds a path of length k
after ` steps such that ` > 3k

ε
. We claim that this is an anomaly in graphs that are ε-far

from being k-path free, since in this case we can turn a large portion of the graph to be
k-path free (despite the fact that G is ε-far from being k-path free). Details follow.

Let D be a DFS scan as described above, and let us consider the truncated version
Dtrunc. We know GDtrunc has a path of length k. It might have more than one k-path
(all discovered at the last step), but let us fix one of them and denote it P (D). Now we
have two options: either P (D) has v (our initial vertex) as one of its endpoints, or not.
For simplicity, suppose that indeed P (D) has v as one of its endpoints. Denote the other

4In fact, such a subgraph exists for all connected graphs that are ε-far from being k-path free, and
not just for cycle-free ones, but the proof is a bit more involved. See Section 6.

5Recall that G is ε-far from being k-path free, and thus it contains such paths.
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Figure 1: A schematic DFS scan from v ending at u. The (single) path from v to u is
S(D) and the excursions outside the path T1, . . . , Tm (subtrees connected to S(D) by e1, . . . , em
respectively).

endpoint of this path as u (which was also the last vertex to be discovered by Dtrunc).
Recalling that G is cycle free, we can split the scan into two major parts: The path
from v to u and the occasional ‘excursions‘ outside that path. By ‘excursions‘ we mean
the steps performed outside of P (D). Each time Dtrunc steps outside of P (D), it must
eventually get back, and since G is a tree, we know we don’t have any backward edges
throughout the scan. Thus, each such step outside the k-path, using the edge e, leads to
an isolated subtree, connected to the rest of G by e alone. Denote the subtrees discovered
when we strayed away from P (D) by T1, . . . , Tm and the edges connecting them to P (D)
by e1, . . . , em respectively (see Figure 1).

Since the path from v to u was the first k-path to be discovered, we know that each
Ti (1 ≤ i ≤ m) does not contain a path of length k (otherwise, that path would have
been found first). Thus, if we remove the edges e1, . . . , em (thus pruning the subtrees
T1, . . . , Tm) we know T1, . . . , Tm are now isolated and contain no path of length k.

Recall that G is ε-far from being k-path free. Therefore, if we manage to show that all
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k-paths of G can be cleared, by using less than εdn
2

edges, we would reach a contradiction.
Let us analyze what happened in our case: The path from v to u is merely of size k,
whereas the number of vertices outside P (D) is at least (`+1)−k ≥ 2k

ε
(since G is a tree,

a DFS scan of length ` has encountered ` + 1 vertices). And so, we ‘clear‘ T1, . . . , Tm of
k-paths (in the sense that no path of length k can pass through them), while removing
at most dk edges. Thus, the number of edges removed as a fraction of the number of
vertices that were cleared is less than:

dk

2k/ε
=
dε

2
.

Thus if all k-paths are cleared from G by such long scans, then G must be ε close to
being k-path free, in contradiction to the hypothesis.

Following this intuition, such long truncated DFS scans are local anomalities in G,
that is, there shouldn’t be too many of them, and the process of cleaning such scans
should not remove ‘too much‘ of G (thus the remaining graph is quite big). The process
defined in the proof will clear the graph of these long scans and when it ends we will
denote the resulting graph G′, which will be a connected subgraph of G and possess all
features mentioned earlier (as we shall rigorously show in the proof).

3.2 Actual proof of Lemma 3

As mentioned in the proof overview, we shall now define an iterative process. The iterative
process will prune a set of subgraphs at each step, thus generating a sequence of graphs:

G = G0, G1, . . . , Gt = G′

such that for every 1 ≤ i ≤ t we have that Gi is a subgraph of Gi−1 (with strictly
less vertices). The process continues as long as there exists a truncated DFS scan that
performs more than 10k

ε
steps. In other words, the process will not stop at Gi = (Vi, Ei)

as long as there exists a DFS scan D starting from v ∈ Vi such that GDtrunc has more
than 10k

ε
vertices. For every step i we define the process of turning Gi to Gi+1 in detail

next.
Let Gi be the graph generated at the i’th step and suppose that the process should

not stop yet (i.e. there exists a truncated DFS scan Dtrunc such that the size of Dtrunc

is ` where ` is at least 10k
ε

). As in the overview, denote the first k-path found by D as
P (D) (and arbitrarily fix one if more than one k-path was found). In the general case
(unlike the overview), P (D) does not have to start from v (the initial vertex). However,
since we started our DFS scan from v, there must be a path of forward edges within
the scan connecting v to P (D) (and this path is unique, since Gi is cycle-free)6. Denote
this auxiliary path by A(D). Note that A(D) cannot be too long. In particular, A(D)
must have less than k vertices, otherwise we should have stopped sooner. For a schematic
drawing, see figure 2.

6In the simplified case, the path connecting v to P (D) was of length 0, and v was at one of the
endpoints of the path.
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uiu1

v

uk

P (D)

A(D) - the path from v to P (D)

Figure 2: The schematic drawing of a core. P (D) is u1, . . . , uk while A(D) is the path from
v to ui which must be smaller than k (otherwise the truncated DFS scan should have stopped
sooner).

We shall denote the set of all vertices of P (D) (the k-path found) and A(D) (the
path leading v to P (D)) by Core(D), and refer to it as the core of D. Intuitively, we can
think of the core of some DFS scan D as the vertices of the minimal traversal we must
do in order to find P (D) when starting from v. Given such intuition, it makes sense that
the rest of the vertices of GDtrunc are ‘redundant‘ for finding that k-path, and without
them we would have found it a lot faster. Thus, we would like to keep the core of D
(to find k-paths quickly), but prune all other vertices of GDtrunc . Hence, we remove all
edges in the cut between Core(D) and the rest of GDtrunc , and the connected component
of Core(D) will be Gi+1 (i.e. Gi+1 is obtained from Gi by pruning all vertices of GDtrunc

that are connected to the core, but are not in the core). Note that this is very different
from removing the edges in the cut of Core(D) and Gi (instead of GDtrunc), since in the
latter (removing the cut of the core and Gi), the connected component of the core will
be just the core itself.

By the way the process is defined, we know that in Gt (the final graph in which
the process stops) every truncated DFS scan Dtrunc has size at most 10k

ε
(otherwise, the

process should not have stopped). Also, since we performed pruning, and G was originally
connected, we know that Gt is also connected.

The only thing left to argue is that Gt is big enough - in particular Ω(εn). This will
follow from the fact that G was ε-far from being k-path free (a fact we haven’t used yet).
We shall prove the following claim:

claim 4. |Gt| ≥ εn
4

Proof. For the sake of contradiction, suppose that |Gt| < εn
4

. If this is the case, consider
the subgraph of G, denoted H, obtained by removing the following edges:

1. All edges of Gt

2. All edges removed by the pruning process of turning G into Gt.

We would like to claim two facts:
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1. H is k-path free

2. The number of removed edges is not too big. In particular, less than εdn
2

.

This will imply a contradiction to the hypothesis that G is ε-far from being k-path free
and so the claim follows.

Let us start with Fact 1. Clearly no path of length k can pass through the vertices of
Gt since they are isolated vertices in H. In addition, recalling the way the process was
defined, the subtrees that are pruned at each step never have paths of length k within
them (otherwise, the DFS scan by which we pruned these subtrees should have stopped
sooner). So altogether, a path of length k cannot exist in H.

Let us move on to showing Fact 2. The number of edges in Gt is less than εdn
4

by
our hypothesis. All that is left is to bound the number of edges removed throughout the
process. We know that in each step, we remove at most 2dk edges. If we bound the
number of steps, we can have a bound on the total number of edges removed. We know
that at each step, we had a truncated DFS scan Dtrunc such that GDtrunc had at least 10k

ε

vertices. However, except for the core of D, which is at most 2k vertices, all other vertices
were pruned. Therefore, at each step we pruned at least 8k

ε
vertices. Since our graph is

finite and of size n it means we cannot have more than εn
8k

steps. As mentioned earlier, we
remove at most 2dk edges at each step, so we removed at most εdn

4
edges throughout the

process. Altogether, we remove less than εdn
2

edges when turning G into H, as promised.
Combining Facts 1 and 2 we get that G can be made k-path free with removing less

than εdn
2

edges, contradicting the fact that G is ε-far from being k-path free. Thus the
claim follows.

This completes the proof of Lemma 3.

4 Finding k-paths using random DFS scans

Let G = ([N ], E) be a connected cycle-free graph which is ε-far from being k-path free.
By Lemma 3, we know there exists a connected subgraph of G, denoted G′ = (V ′, E ′),
which has the following properties:

1. Any DFS scan on G′ starting from any vertex v, using any scan order, finds a path
of length k within O(k

ε
) steps.

2. G′ is connected

3. |G′| ≥ Ω(εn)

Therefore, it is only natural to consider DFS scans as an algorithm for finding k-paths.
Ideally, we would like to be able to walk on G′ only, in which case we would find a path
of length k within O(k

ε
) steps by using any DFS (even a standard one). Since this is not
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possible7, what would happen if we perform some arbitrary DFS scan on G instead of
G′?

Let us make it easier by assuming that our start vertex v is in G′ (although the DFS
scan is done on G). In this case, the scan may ‘stray‘ from G′ occasionally, but if we
ignore these bad moves we will have an induced DFS scan on G′. This is due to the fact
that G is cycle-free, so whenever we stray from G′ we must get back to G′ and continue
from the spot we left8. Since we know that on G′ any DFS finds a k-path quickly (after
O(k

ε
) steps), the number of steps it would take for any DFS scan on G to find a k-path

is determined by the number of vertices outside of G′ we walked on during these strays.
For a particular DFS scan the number of such vertices can be quite big (i.e. exponential
in k). However, if we add randomness to our DFS scan (which will be defined shortly),
we would be able to bound the expectation of the number of vertices outside of G′ we
will visit, and thus have a fast (i.e. polynomial) algorithm for finding k-paths.

4.1 The Random-DFS Algorithm

In this section, we shall abuse notation and treat a DFS scan D as a sequence of vertices
(instead of edges) in the order they were visited. Moreover, we visit a vertex both when
we first encounter it (i.e. performed a forward step) and when we finish scanning one of
its children (i.e. when we backtracked into it)9. From this point on, an i-step DFS scan
would be a DFS scan that performs i steps in vertices (not edges) and include both
forward and backward steps. Note that with this definition of a step, it takes more than i
steps to fully scan a connected graph with i vertices. However, since we are only dealing
with cycle-free graphs, the number of steps is bounded by 2i.

As mentioned earlier, we would like to perform a random DFS scan on G. A ran-
dom DFS scan is defined in the following (natural) way: for every vertex we visit, the
order in which we visit its neighbors is chosen uniformly at random (out of all possible
permutations of its neighbors).

The algorithm would simply be the following (intuitive) one: Perform a random DFS
scan for a polynomial (p1(d, k,

1
ε
) = Θ(d·k

2

ε3
)) number of steps and look for a k-path

within the observed graph. While not found repeat for a polynomial number of times
(p2(

1
ε
) = Θ(1

ε
)) and fail if not found in any iteration.

7Indeed, G′ is not known and does not seem to be locally calculatable in sub-linear time which is a
polynomial in k, d, and 1

ε .
8This is not true for general graphs, where we may get to a totally different vertex of G′ than the one

we left. See Section 6 for a detailed discussion.
9Indeed, a more natural definition would be to only consider forward steps, in which case every vertex

is encountered at most once (when it is first discovered), and it also aligns well with how steps in edges
are defined (an edge is visited only on forward steps). However, the main idea behind Claim 6 (later
presented) does not hold for this definition of a step.
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4.2 Analysis

The analysis will be based on the intuitive concept presented earlier: although the DFS
scan is performed on G, we can treat it as a DFS scan on G′ that occasionally strays
outside of G′. Since we perform random DFS scans we would then need to account for
the expected number of steps outside of G′ we performed until we found a path of length
k.

First, although we start from a random vertex of G (and not G′), the probability to
start from G′ is quite big due to its size. Thus, from this point we will assume we start
from a uniformly chosen vertex of G′, while reducing our success probability by a (small)
factor of ε

4
.

Given that we start from within G′, our next goal is to bound the expected number
of steps performed outside of G′ in the aforementioned strays. Since G′ is connected, and
G is cycle-free, each edge e leading out of G′ (into the rest of G) leads to an isolated
subtree that is completely outside of G′, and is connected to G′ by e alone (otherwise, G
must have a cycle). Let {e1, . . . , er} be the edges of G that have one endpoint in G′ and
one endpoint outside of G′. Denote the isolated subtrees these edges lead to (outside of
G′) by T1, . . . , Tr respectively. For a schematic drawing see figure 3.

Each such subtree represent a ‘bad move‘ we can take outside of G′, since whenever
a DFS scan (starting from within G′) chooses the edge ei, it is forced to scan Ti entirely
before getting back to G′. This means that loosely speaking, T1, . . . , Tr are ‘penalties‘
(in steps) for straying outside of G′, and the bigger the subtree is (in vertex count), the
bigger the penalty. For every vertex v′ ∈ V ′ we can consider the joint penalty of all
possible ‘bad moves‘ out of v′, and denote it w(v′). Namely, for every vertex v′ ∈ V ′,
denote by w(v′) the joint size of all subtrees (outside of G′) connected to v′, multiplied
by 2 (since the number of steps required to scan a subtree of size s is at most 2s). w(v′)
can therefore be seen as a weight function that bounds the size (in steps) of the possible
excursions outside of G′ that can be performed from the vertex v′. By summing the
weights of all vertices of G′ that we have visited during the DFS scan, we can in fact
bound the number of steps performed outside of G′. Moreover, a crucial observation is
that the steps performed on G′ during a random DFS scan on G constitute a random
DFS scan on G′ (I.e. the edges taken on G′ only are distributed exactly like the edge
sequence of random DFS scan on G′). Therefore, we have reduced our problem to the
following one: Let D be a random DFS scan on G′, what is the expected sum of weights
of the visited vertices?

We will answer this question by combining two claims. First, we will show that by
choosing a uniformly distributed vertex of G′, the expected weight is not too big.
However, this will not suffice since the visited vertices are distributed according to a
random DFS scan (and are not uniformly distributed). Then we will show that at each
step of a random DFS scan that starts from a uniformly chosen vertex (on any connected
cycle-free graph with degree bound d), the distribution over the vertices is very close to
the uniform distribution (up to a factor of d). which will finally enable us to bound the
expected weight of the visited vertices of G′. The two claims are the following Claim 5
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T2

T1

. . .

. . .

. . .

Tr

e3

e2
e1

er

Figure 3: A schematic draw of G. G is composed of the connected subgraph G′ and r subtrees
(completely outside of G′) T1, . . . , Tr that are connected to the vertices of G′ (by e1, . . . , er).
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and Claim 6 (respectively).

claim 5 (The expected weight of a uniformly chosen vertex of G′ is not too big). Let v′

be chosen uniformly at random from V ′ and let X = w(v′). Then E[X] ≤ O(1
ε
).

Proof. Since the subtrees T1, . . . , Tr are disjoint, their total vertex count is at most n.
However, by Lemma 3, we know G′ is of size Ω(εn). Therefore:

E[X] =
1

|V ′|
∑
v′∈V ′

w(v′) ≤ 2

Ω(εn)
· n = O(

1

ε
).

claim 6 (The vertices encountered by a random DFS scan are almost uniformly dis-
tributed). Let H = (VH , EH) be a bounded degree connected cycle-free graph with degree
bound d, nH vertices, and mH edges. Denote by Xi the vertex encountered at the i’th step
of a random DFS scan D on H starting from a uniformly chosen vertex of H. Then for
every 1 ≤ i ≤ 2mH and for every v′ ∈ VH :

1

d · nH
≤ Pr [Xi = v′] ≤ d

nH
.

Proof. The main idea behind this proof is the symmetry of DFS scans on cycle-free
graphs: For every i-step DFS scan from v to u, we can find a ‘mirror‘ i-step DFS scan
from u to v where both DFS scans have almost the same probability of occurring (up to a
factor of d) when the scan is chosen at random. We will use this symmetry to show that
the probability in which an i-step DFS scan reaches some vertex vH ∈ VH (meaning vH
was the vertex encountered at the i’th step), is almost the same as the probability that
an i-step DFS scan starts from vH . Since we start the scan from a uniformly chosen
vertex, this is exactly 1

nH
, and the claim would follow.

Let D be the i-step DFS scan starting from v and ending at u. Since H is cycle free,
there is only one unique path connecting v to u. Denote this path P = {v = w1, . . . , wq =
u}. Since H is cycle free, any DFS scan from v reaching u must go through the edges
of P while occasionally straying from the path. Each such ‘stray‘ or ‘excursion‘ must
eventually get back to P , and the vertices discovered on such an excursion out of P form
a subtree that is connected to P by one edge only - the same edge leaving P into that
excursion. We will refer to this edge as a leaving edge. This is the same idea presented in
Section 3, and shown schematically in Figure 1. Note that leaving edges are determined
by D (depending on the excursions taken) and are not necessarily all edges leading out of
P . For each wj in P (1 ≤ j ≤ q) denote by α(wj) = ej1, . . . , e

j
`(j) the sequence of leaving

edges that are connected to wj in the order in which they were taken by D. Note
that α(wj) may be an empty sequence. If we only consider edges that have at least one
endpoint in P (i.e. ignore all edges taken inside the excursions) then the sequence of
edges taken (which determined the vertex sequence) is:

α(w1), (w1, w2), α(w2), (w2, w3), . . . , (wq−1, wq), α(wq).
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Let us now construct a new i-step DFS scan D′, such that D′ will visit the same vertices
visited by D but in a different order, and denote the new DFS scan M(D) or the mirror of
D. D′ will start from u and will end at v. If we omit the steps taken inside the excursions
of D′ (that will be the same as the excursions of D) then the sequence of edges taken by
D′ will be the following:

α(wq), (wq, wq−1), . . . , (w3, w2), α(w2), (w2, w1), α(w1).

Inside the excursions, D′ will use the same scan order as D for every vertex.
Given this definition of the mirror of a DFS scan D, let us analyze the properties of

the mirror function. For every v1, v2 ∈ VH and every 1 ≤ i ≤ 2mH denote by D(v1, v2, i)
the set of all possible i-step DFS scans starting from v1 and ending at v2. We can now
show the following claim:

claim 6.1. For every v′, v′′ ∈ VH , and every 1 ≤ i ≤ 2mH , the mirror function M is a
bijection between S1 = D(v′, v′′, i) and S2 = D(v′′, v′, i).

Proof. It can easily be seen that for every i-step DFS scan D it holds that D = M(M(D)).
This means that for every pair of i-step DFS scans D1 6= D2 we have that M(D1) 6=
M(D2). Therefore, the mirror function is injective. In addition, applying M on an element
of S2 results in an element of S1, which means we can always find the source for every
element of S2 by applying mirror on it. Thus the mirror function is also surjective.

Next, for every u, v ∈ VH and 1 ≤ i ≤ 2mH , we wish to analyze the probability of
occurrence of the DFS scans of D(v, u, i) compared to those of D(u, v, i) (their mirrors
by Claim 6.1). In particular, if we denote by p(D) the probability of occurrence of the
DFS scan D, we shall claim the following:

claim 6.2. Let u, v ∈ VH , 1 ≤ i ≤ 2mH , and let D ∈ D(v, u, i) (and M(D) ∈ D(u, v, i)),
then 1

d
· p(M(D)) ≤ p(D) ≤ d · p(M(D)).

Proof. We shall use the same notations for D as when we defined a mirror scans. Thus,
P = {v = w1, . . . , wq = u} is the (single) path between the initial vertex v and the
final vertex u, the ‘excursions‘ are the isolated subtrees connected to P , and α(wj) is the
sequence of leaving edges (edges leading from P into the excursions that were taken by
the scan) that are connected to wj in the order they were taken by the scan.

In order to compare the occurrence probability of the two scans, We will split the
probability of occurrence of either D or M(D) into four independent events:

1. The probability we start from the initial vertex.

2. The probability we follow the right scan order within the excursions.

3. The probability we follow the right scan order on the inner vertices of P , i.e. all
vertices of P except for v and u.

4. The probability we follow the right scan order on v and u.
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The probability of starting from any vertex (whether v or u) is 1/n, therefore Event 1
has the same probability for D and M(D). By the definition of the mirror function, all
the vertices inside the excursions have the same scan order for both D and M(D), thus
Event 2 also has the same probability. For every vertex wj in P other than v or u, we
need the scan sequence to start with α(wj) followed by choosing either wj+1 or wj−1
(whether it is D or D′ respectively). Thus, Event 3 has the same probability as well. The
only difference in the occurrence probability of D and M(D) may arise in Event 4, i.e.
when choosing the scan order of v and u. For D, we must first scan α(w1), (w1, w2) for
v = w1 and α(wq) for u = wq, while for M(D) we must first scan α(w1) for v = w1 and
α(wq), (wq, wq−1) for u = wq. We claim that while the probability of Event 4 may differ
between D and M(D) the ratio between these probabilities is at most d, and at least
1/d. To see why, let us precisely calculate these probabilities. For every vertex vH with
degree dvH , the probability that some sequence of j edges of vH is traversed first (before
all other edges of vH) is:

1

dvH
· 1

dvH − 1
· . . . · 1

dvH − (j − 1)
=

(dvH − j)!
dvH !

.

For D, we require that a sequence of |α(v)|+ 1 edges be traversed first for v = w1 and a
sequence of |α(u)| edges be traversed first for u = wq, while for M(D), we require that a
sequence of |α(v)| for v and |α(u)|+ 1 for u. If we denote the degree of v by dv and the
degree of u by du we get that the ratio between the probabilities is:

Pr [Event 4 for D]

Pr [Event 4 for M(D)]
=

(dv−(|α(v)|+1))!
dv !

· (du−|α(u)|)!
du!

(dv−|α(v)|)!
dv !

· (du−(|α(u)|+1))!
du!

=
du − |α(u)|
dv − |α(v)|

.

Since 0 ≤ |α(v)| ≤ dv − 1 and 0 ≤ |α(u)| ≤ du− 1, and all degrees are bounded by d, the
ratio is at most d and at least 1/d.

Since the first three events have the same probability for D and M(D) (and indepen-
dent of Event 4), this event fully determines the ratio in the occurrence probability of D
and M(D). Thus, we have just established that

1

d
· p(M(D)) ≤ p(D) ≤ d · p(M(D))

Given these properties of mirror scans, let us get back to our original point of interest:
we wish to prove that for every (1 ≤ i ≤ 2mH), the vertex distribution of the i’th step
of a random DFS scan (starting from a uniformly chosen vertex) is close to the uniform
distribution up to a factor of d. Let v′ ∈ VH , what is the probability that at the i’th step
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we will visit v′?

Pr [Xi = v′] = Pr [an i-step random DFS scan ends at v′]

=
∑
v′′∈VH

∑
D∈D(v′′,v′,i)

Pr [D is the performed DFS scan]

Claim6.2

≤ d ·
∑
v′′∈VH

∑
D∈D(v′′,v′,i)

Pr [M(D) is the performed DFS scan]

Claim6.1
= d ·

∑
v′′∈VH

∑
D∈D(v′,v′′,i)

Pr [D is the performed DFS scan]

= d · Pr [an i-step random DFS scan starts from v′]

= d · 1

nH

In the same way we can show that:

Pr [Xi = v′] ≥ 1

d · nH
.

This concludes the proof of the lemma.

Recall that we required Claim 5 and Claim 6 in order to deal with the following
problem: Let D be a random DFS scan on G′, what is the expected sum of weights
of the visited vertices? Given this claim and lemma, we can finally address it with the
following claim:

claim 7. Let X0, X1, . . . , Xi be the vertices encountered in an i-step random DFS scan
on G′. Then

E

[
i∑

j=0

w(Xj)

]
≤ O(

d · i
ε

).

Proof.

E

[
i∑

j=0

w(Xj)

]
=

i∑
j=0

E [w(Xj)] ≤ d ·
i∑

j=0

O(
1

ε
) = O(

d · i
ε

).

where the non-trivial inequality is due to Claim 5 and Claim 6 (with H = G′).

All that is left is to show that indeed it follows from Claim 7 that a long enough
DFS scan on G has (with high probability) a long enough DFS scan on G′, which in turn
would mean we must have found a simple path of length k.

Let ` be the number of steps performed by a random DFS scan on G and let X(`)
be a random variable taking the number of steps performed by the induced random DFS
scan on G′ (i.e. the vertex sequence of the DFS scan that ignores all strays to the rest

18



of G). We consider a bad event if we walked for `1
def
= p1(d, k,

1
ε
) steps on G, yet we have

less than 20k
ε

induced steps on G′. Let us bound this bad event:

Pr [X(`1) <
20k

ε
]

=

20k
ε
−1∑

i=0

Pr [X(`1) = i]

≤
20k
ε
−1∑

i=0

Pr [∃` > `1 such that X(`) = i]

But for every i, we can use Claim 7 to bound the expected joint weight which in turn
bounds the number of steps performed outside of G′ (while we know that the steps
performed on G′ are merely of size i). By using Markov’s inequality, we can show that
indeed, there exists a p1(d, k,

1
ε
) = Θ(d·k

2

ε3
) such that the sum of probabilities is bounded

by 1
3

(or any other fraction for that matter). This means that the complementary event
- performing at least 20k

ε
steps on G′ (when performing p1(d, k,

1
ε
) steps on G) - occurs

with constant probability. Among these 20k
ε

steps, at least 10k
ε

of them are forward steps,
and by the properties of G′ we must have found a simple path of length k. Recall that
we assumed our initial vertex is in G′, which is why we require Θ(1

ε
) repetitions to have

more than 2
3

probability of finding a k-path.

5 Finding k-paths using random walks

Let G = ([N ], E) be a connected cycle-free graph which is ε-far from being k-path free.
In Section 4 we have used Lemma 3 (of Section 3), which asserts the existence of a ‘DFS
friendly‘ subgraph G′, and showed that a random DFS scan on G does not stray ‘too
much‘ (in expectation) from G′. These strays were shown to be small (in expectation),
because the joint size of the possible strays from a uniformly chosen vertex of G′ is small,
while the vertices visited by a random DFS scan (starting from a uniformly chosen vertex)
are distributed very close to the uniform distribution. Recall that the part that required
most work, was to show that a random DFS is almost uniformly distributed.

An alternative approach is to use a traversal technique that trivially retains a uni-
form distribution at each step (when starting from a uniformly chosen vertex). A good
example for such a traversal technique is a random walk on a graph, in which we move
to each neighbor with probability 1

d
, and remain at the same vertex with the remaining

probability. We can therefore try to apply a similar analysis to the one in Section 4 with
this new traversal technique. However, this would require us to show many things that
were previously trivial (when using random DFS scans). For instance, suppose that in-
deed we can show that a ‘long enough‘ random walk on G results (with high probability)
in a ‘long‘ induced random walk on G′. What does it mean? Recall that G′ is known to
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be DFS friendly, yet it is not known to be ‘random walk friendly‘. Thus, one of the things
we would have to show is that being ‘DFS friendly‘ implies being (somewhat) ‘random
walk friendly‘. Moreover, while we have just assumed that a ‘long enough‘ random walk
on G results (with high probability) in a ‘long‘ induced random walk on G′, this is not
trivial, due to the fact that whenever we leave G′ (into the rest of G) the number of steps
performed outside before coming back is random now.

5.1 The Random Walk Algorithm

A random walk on a graph G = (V,E) starting from v ∈ V is a random traversal, starting
from v, in which at each step we move to each neighbor with probability 1

d
and stay in the

same vertex with the remaining probability (which could be zero). Indeed, one can easily
check that if the random walk starts from a uniformly chosen vertex (from the vertices
of G), then at each step the visited vertex is also uniformly distributed.

The resulting algorithm would be the following (simple) one: Perform a random walk
on G for a polynomial number of steps (p3(d, k,

1
ε
) = Θ(d

13k4

ε3
)) and look for a k-path

within the observed graph. While not found repeat for p4(d, k,
1
ε
) = Θ(d

2k3

ε
) times. If no

k-path was found in any iteration, then fail.

5.2 Analysis

The analysis is broken down into two parts. In the first part, we will use the same idea
as in Section 4: Although the random walk is performed on G, we would treat it as a
random walk on G′ that occasionally ‘strays‘ outside of G′, and account for these ‘strays‘
to show that their expected size is not too big. This will lead to the conclusion that a
‘long enough‘ random walk on G induces a ‘long‘ random walk on G′. In the second part,
we will show that a ‘long enough‘ random walk on G′ indeed finds a k-path, by only
using the fact that G′ is DFS friendly. These two parts are presented in Section 5.2.1 and
5.2.2, respectively.

5.2.1 A random walk on G′ does not stray much

This part of the analysis will be very similar in nature to the analysis of Section 4. We
can assume we start from a uniformly chosen vertex of G′ (instead of G), hence losing
a factor of ε

4
in the final success probability. Next, we use the same decomposition of G

presented in Section 4 (and depicted in Figure 3) in which G is composed of the connected
subgraph G′ and T1, . . . , Tr subtrees completely outside of G′ that are connected to G′ by
the edges e1, . . . , er (respectively). As in Section 4, these subtrees represent ‘penalties‘
for straying out of G′. However, while it is clear what the penalty is for a random DFS
scan (the number of steps on a subtree is proportional to its size), it is less clear what the
penalty is for a random walk, since the number of steps on a subtree is random. Thus,
in the random walk case, we would have to address the following problem: suppose that
we ‘stray‘ from G′ into the subtree Ti - what is the expected number of steps before we
come back to G′?
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The problem is equivalent to the following one: Let T be a bounded-degree rooted
tree with root vr and degree bound d, where the root vr also has a parent (i.e., T is a
subtree of some larger tree), and suppose that we are starting a random walk from vr
(the root). How many steps are we expected to perform until we leave the tree (into the
parent of vr)? Interestingly, the expected number of steps is independent of the structure
of T and depends only on its size (in vertex count), as shown by the following lemma.

lemma 8. Let T = (VT , ET ) be a rooted bounded degree tree with degree bound d.10 Let
vr be the root of T and suppose that vr also has a parent, denoted u (which is not a part
of T ). Then, a random walk starting from vr (the root) will reach u after an expected
d · |VT | number of steps.

Proof. The proof will be based on expressing the expected number of steps until we reach
u (from vr) by a recursive formula, which refers to the expected number of steps to reach
vr from its children. By unfolding the recursion we get the desired result.

For every vertex w′ in T , denote by S(w′) the expected number of steps until we reach
the parent of w′ when starting a random walk from w′. Let w be some vertex in T , with
children w1, . . . , wt (where t could be 0 in case w is a leaf). We have three options for
proceeding from w by a random walk: We can either move to the parent of w (in which
case we have managed to reach the parent of w within a single step), stay in w (if the
degree of w is smaller than d) or move to a child of w (if w is not a leaf).

Since the next steps of the random walk are independent of the previous ones, if we
stay in w we are actually ‘back to square one‘, and the expected number of steps it would
additionally take us to reach the parent of w is exactly S(w). Thus, in case we stay in
w, which happens with probability d−t−1

d
(which could be zero), the expected number of

steps it would take us to reach the parent of w is 1 + S(w). On the other hand, if we
move to wi, which is some child of w, then the expected number of steps it would take us
to get back to w is exactly S(wi). Once we get back to w, we are again ‘back to square
one‘ and would require additional S(w) steps to get to the parent of w (in expectation).
So whenever we move to wi, which happens with probability 1

d
, the expected number of

steps it would take us to reach the parent of w is 1 + S(wi) + S(w). Therefore, S(w) can
be written as follows:

S(w) =
1

d
· 1︸︷︷︸

reach parent

+
d− t− 1

d
· (1 + S(w))︸ ︷︷ ︸

stay in w

+
t∑
i=1

1

d
· (1 + S(wi) + S(w))︸ ︷︷ ︸

move to child

and can be rearranged to the following recursive formula:

S(w) = d+
t∑
i=1

S(wi).

10In case it is not clear - the degree bound includes the parent edge as well. I.e., each vertex has at
most d− 1 children.
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This solves to S(w) = d · nw, where nw is the number of vertices in the tree rooted at w.
It follows that S(vr), which is the expected number of steps it would take for a random
walk starting from vr to reach u, equals d · |VT |.

Given Lemma 8, we know that the expected penalty of a subtree Ti is proportional
to its size (with a factor of d), and we can slightly adjust the weight function defined in
Section 4 such that it will match the penalty of a random walk. Thus, for every v′ ∈ V ′,
let w(v′) be the joint size of all the subtrees rooted at v′, multiplied by d. In fact, we can
now repeat the same proof of Claim 5 with the adjusted weight function and get that
the expected weight of a uniformly chosen vertex of G′ is bounded by O(d

ε
). Denote this

adjusted claim by Claim 5’.
Similarly to the Random DFS case, if we ignore all steps performed outside of G′

when performing a random walk on G, we get an ‘induced‘ random walk on G′ (i.e. the
sequence of vertices visited on G′ only are distributed exactly like the sequence of vertices
of a random walk on G′). There is a subtle difference to note regarding penalties however:
When performing a random DFS, the worst possible thing that could happen when we
reach u′ ∈ V ′ is that we visit all subtrees outside of G′ connected to u′, but we can never
visit more than that. In a random walk on the other hand, it is possible that we stray to
the same subtree over and over again. This is not a problem however, since whenever we
step outside of u′, we must step on u′ again on our way back. Thus, the induced random
walk will have an additional step for every such stray (and in fact, in the induced random
walk, it is as if we stayed in u′). This means that the same approach as in Section 4 -
summing the penalties of the vertices of G′ we have visited - will work in this context as
well11.

We shall now prove a claim which is similar in nature to Claim 7 of Section 4. Yet
this time, since a random walk retains a uniform distribution at each step, Claim 5’ can
be trivially used:

claim 9. Let X0, X1, . . . , Xi be the vertices encountered in an i-step random walk on G′.
Then

E[
i∑

j=0

w(Xj)] ≤ O(
d · i
ε

).

Proof.

E[
i∑

j=0

w(Xj)] =
i∑

j=0

E[w(Xj)] ≤
i∑

j=0

O(
d

ε
) = O(

d · i
ε

).

where the non-trivial inequality is due to Claim 5’.

11Another interesting thing to note is that the penalty function w is defined by the joint size of all
subtrees, while in the random walk case, we know that at each step we might have strayed into a single
subtree only. However, the way we proved Claim 5 (in which we bound the joint size) we cannot obtain
a better bound on a single subtree.
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With Claim 9, we can finish the first part of the analysis (showing that a ‘long enough‘
random walk on G implies (with high probability) a ‘long‘ random walk on G′) with the
following Lemma (which is similar in nature to the end of the analysis of Section 4):

lemma 10. A j-step random walk on G has an induced random walk on G′ of length at

least q(j) = Θ(
√

ε·j
d

) with probability at least Ω(ε).

Proof. Let ` be the number of steps performed by a random walk on G and let X(`) be
a random variable representing the number of steps performed by the induced random
walk on G′ (i.e., the vertex sequence of the random walk that ignores all strays to the
rest of G). We consider a bad event if we walked for j steps on G, yet we have less than
q(j) induced steps on G′. Let us bound the probability of this bad event:

Pr [X(j) < q(j)]

=

q(j)−1∑
i=0

Pr [X(j) = i]

≤
q(j)−1∑
i=0

Pr [∃` ≥ j such that X(`) = i]

For every i, we can use Claim 9 to bound the expected joint weight, which in turn
bounds the expected number of steps performed outside of G′ (while we know that the
steps performed on G′ are merely of size i). By using Markov’s inequality, we can show

that indeed, there exists a q(j) = Θ(
√

ε·j
d

) such that the sum of probabilities is bounded

by a constant fraction. This means that the complementary event - performing at least
q(j) steps on G′ (when performing j steps on G) - occurs with at least some constant
probability. Since we assumed our initial vertex is in G′, we incur an additional ε

4
factor,

thus the probability that we perform an induced random walk on G′ of length at least
q(j) is at least Ω(ε).

Lemma 10 indeed finishes the first part of the analysis.

5.2.2 A long enough random walk on G′ finds a k-path

We know that we can induce a polynomial random walk on G′ by performing a (slightly
longer) polynomial random walk on G. What is left is to show that a polynomial random
walk on G′ can find k-paths. Yet recall that we know very little about G′ - we only know
it is quite big, connected, and ‘DFS friendly‘. Luckily, for connected cycle-free graphs,
the ‘DFS friendly‘ property imposes a unique structure that ensures a random walk will
‘bump‘ into a k-path quickly (within a polynomial number of steps).

The idea behind the rest of the analysis is the following: For every vertex v′ ∈ V ′

(that we may start the random walk from) there exists a subtree of G′ rooted at v′ and
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denoted T (v′) that has the following property: If we have started a random walk from
v′ and reached any leaf of T (v′), we have either found a k-path, or we will find a k-path
(with high probability) within an additional small number of steps. In other words, every
vertex of G′ is in the root of a subtree that all of its leaves are considered ‘good‘, and
when we reach some leaf we have ‘made progress‘ in finding a k-path.

The existence of such a subtree (for every vertex of G′) is good news, since a random
walk from the root of a tree drifts towards the leaves with high probability (as we shall
rigorously show later). Yet this will not suffice, since we are not performing a random
walk on T (v′) - we are performing a random walk on G′. This is a very familiar scenario -
in the first part of the analysis we have performed a random walk on G, yet showed that
it has a long induced random walk on G′. We would like to use the same idea here, but
in order to do that we must know that the possible ‘excursions‘ outside of T (v′) (until we
reach a leaf) are not too big. Thus we will require an additional property from T (v′): For
any non-leaf vertex u of T (v′), the size of any subtree connected to u that is outside
of T (v′) (hence in the rest of G′) is small12. The existence of T (v′) (for every v′ ∈ V ′) is
shown by the following lemma:

lemma 11. Let G′ = (V ′, E ′) be a connected cycle-free graph, such that every DFS scan
on G′, using any scan order, finds a k-path within at most 10k

ε
steps (also known as being

DFS friendly). Then, for every v′ ∈ V ′, there exists a rooted subtree of G′, denoted T (v′)
with v′ as its root, with the following properties:

1. For any non-leaf vertex u of T (v′), the size of any subtree connected to u that is
outside of T (v′) (hence in the rest of G′) is at most 10k

ε
.

2. If we have started a random walk from v′ and reached any leaf of T (v′), then we
have either found a k-path, or we will find a k-path with probability at least Θ( 1

d2k2
)

within the next Θ(dk
ε

) steps.

Proof. Let v′ ∈ V ′ be the vertex for which we need to construct T (v′). Throughout
this proof we will think of G′ as being rooted at v′. Hence, for every vertex u′ ∈ V ′

we will refer to the subtree of u′ as the subtree of G′ that is rooted at u′ (u′ and all its
descendents).

We consider a vertex u′ ∈ V ′ to be successful if there exists a truncated DFS scan
Dtrunc on G′ that first takes the (single and unique) path from v′ to u′ directly, and then
finds a k-path before backtracking from u′ (i.e. while additionally traversing the subtree
of u′). Due to the way a truncated DFS scan is defined, we can see that a successful vertex
must be within the k-environment of v′ - simply because any vertex that is farther than
k-steps away from v′ will never get discovered by a truncated DFS starting from v′ since
it would definitely stop before reaching it (thus, there does not exist a truncated DFS
as in the definition). In addition, all successful vertices are connected, since whenever

12An interesting thing to note is that in this case, every subtree will be small, while in the first part
of the analysis we have showed that the expected subtree is small. This is crucial, since this time we
do not have a uniform distribution over the vertices of T (v′) - we always start the random walk from v′.
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v′

u′Tu′
eu′

w′

T (v′)

Figure 4: A schematic drawing of T (v′) with u′ as some non-leaf (with w′ as its child) that
has an edge (denoted eu′) leading out of T (v′) into the subtree Tu′ .

a vertex u′ 6= v′ is successful, its parent is successful as well (and in particular v′ is
successful). Given this definition of being successful, we define T (v′) to simply be the
induced subgraph of G′ on all the successful vertices of G′. We must show that indeed,
T (v′) possesses both of the required properties.

Let us start with Property 1. Let u′ ∈ V ′ be a non-leaf of T (v′), and suppose there is
an edge, denoted eu′ , that leads from u′ outside of T (v′), into an isolated subtree that is
completely outside of T (v′) denoted Tu′ . What can we say about the size of Tu′? Since u′

is not a leaf in T (v′) there exists a successful child of u′ that is in T (v′). Let us denote this
child as w′. See figure 4 for a schematic drawing. By the definition of being successful,
there exists a truncated DFS scan Dtrunc that first takes the path from v′ to w′ (and
in particular, passes through u′), and then finds a k-path before backtracking from w′.
We shall now design a new truncated DFS scan, denoted D′trunc that will use the same
scan order as Dtrunc except that when D′trunc scans the neighbors of u′, it first takes the
edge eu′ (and uses some arbitrary scan order while scanning Tu′) and only then (after
backtracking into u′) takes the edge (u′, w′). Is it possible that D′trunc finds a k-path
before it gets to take the edge (u′, w′)? If indeed this is the case, then the edge eu′ must
have lead to a successful vertex by definition and should not have lead outside of T (v′).
Therefore, Dtrunc must scan Tu′ entirely before proceeding with the scan. But recall that
D′trunc is a truncated DFS scan on G′, and we know G′ is DFS friendly. this means that
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the total steps D′trunc performs (before finding a k-path) must be smaller than 10k
ε

, and
in particular Tu′ (which is part of the scan) must have less than 10k

ε
vertices13. Therefore,

we have shown that any non-leaf vertex of T (v′) cannot have a subtree outside of T (v′)
connected to it with more than 10k

ε
vertices, which proves Property 1.

Let us move on to showing Property 2. Let u′ be a leaf of T (v′). Our goal is to show
that whenever we reach u′ when performing a random walk from v′, we have either found
a k-path or will find a k-path soon with high probability. If u′ is exactly k steps away
from v′, it means that whenever we reach u′ (when performing a random walk from v′)
we must have found a k-path. Therefore, suppose that this isn’t the case (i.e. u′ is less
than k steps away from v′ since the height of T (v′) is at most k). Since u′ is in T (v′), it
is successful, which means that there exists a truncated DFS scan, denoted Dtrunc, that
takes the direct path from v′ to u′ and then finds a k-path before backtracking from u′.
Since we assumed u′ is less than k steps away from v′, it cannot be that Dtrunc found
a k-path upon reaching u′ (i.e. before scanning the subtree of u′). Thus, u′ must have
children, yet they are all outside of T (v′) since u′ is a leaf in T (v′). Denote these children
by u′1, . . . , u

′
t. Each u′i is not successful, so a DFS scan will not find a k-path by going

directly to u′i and scanning its subtree. However, when scanning the subtrees of all
children u′1, . . . , u

′′
t we must find a k-path since u′ is successful! This must lead to the

following fact (depicted in Figure 5):

fact 11.1. The k-path found by Dtrunc must exist entirely within the subtree of u′, and
pass through exactly two of the children of u′.

Proof. The k-path found cannot be entirely above u′ (in the path between v′ and u′) since
we assumed u′ is less than k steps from v′. It also cannot be entirely below u′ (within
the subtree of some child of u′ or starting from u′ into some child of u′) since that would
mean some child of u′ is successful. Thus, the only option left for the k-path is to pass
through u′ while going from one child of u′ to another.

The picture coming out of Fact 11.1 (also depicted in Figure 5) is that the k-path
found must partially be inside the subtree of one child of u′, which we shall denote u′i,
and partially inside the subtree of another child, which we shall denote u′j, while passing
through u′ as a ‘bridge‘.

Denote the subtrees of u′i and u′j by T ′i and T ′j respectively. What do we know
about the sizes of T ′i and T ′j? We claim that they must be small. We will use the same
approach as when we showed Property 1 holds - we will design truncated DFS scans that
must scan the entire subtree (T ′i or T ′j) and by the properties of G′ such a subtree must
be small. Without loss of generality, let us show that T ′i is small (and in the same way
we can show T ′j is also small). Let Dtrunc be the truncated DFS that directly takes the
path from v′ to u′, then it first takes the edge to u′i, and later the edge to u′j. Within
the subtrees T ′i and T ′j it can use an arbitrary scan order. Since u′i is not successful,

13It is a minor technicality, yet it should be mentioned - we consider the step of taking eu′ (into the
subtree Tu′) as a step on Tu′ as well. With this definition, the number of steps on Tu′ equals its size in
vertices.
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v′

u′

u′i u′j

T ′i T ′j

T (v′)

Figure 5: A schematic drawing of T (v′) with u′ as some leaf that is less than k steps away
from v′. In such a case, the k-path found by a truncated DFS scan from v′ that first takes the
direct path to u′ ‘spans‘ two subtrees of u′, denoted T ′i and T ′j (with roots u′i and u′j). The
vertices of that k-path are marked in red.
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Dtrunc will definitely scan T ′i without finding any k-path, which means, just like before,
that the size of T ′i is bounded by the total number of steps performed by Dtrunc, which
is at most 10k

ε
.

Given that both T ′i and T ′j are small, and there is a k-path passing through both of
them, what is the probability that we will find this k-path when starting a random walk
from u′? A naive approach would be to wonder what is the probability that a random
walk would scan T ′i and T ′j entirely, since that guarantees we find the aforementioned
k-path. Yet, with a closer look we can see that it is enough only to reach the deepest
leaf of T ′i and the deepest leaf of T ′j to ensure that we have spotted a k-path (though it
might be a different one than the one spotted by the truncated DFS scan)14. And indeed,
the probability to reach the deepest leaf when performing a random walk on a tree is
quite high. as can be seen by the following claim:

claim 11.2. Let T be a bounded degree rooted tree, with degree bound d and root v, and
suppose v also has a parent (i.e. T is a subtree of a larger tree) denoted u. Let w be the
deepest leaf (i.e. farthest away from v), and if there is more than one, fix one arbitrarily.
Suppose that the distance of v from w is h (which is also the height of T ). A random walk
starting from v will reach w before reaching u (i.e., before leaving T ) with probability at
least 1

h+1
.

Proof. The claim follows by a reduction to the unbiased one-dimensional random walk
on Z, in which at each step we increment or decrement the current location depending
on the outcome of a fair coin.

Since T is a tree, there exist a single and unique path connecting u (the parent of the
root) and w (the deepest leaf). We can think of a random walk on T , as a random walk
along that path, denoted P (u,w), while we ignore occasional strays outside of this path.
Whenever we leave P (u,w), we must come back to it through the spot we left (since T
is a tree), thus we can simply ignore these strays. Moreover, we can also ignore steps in
which we stay at the same vertex. If indeed we do that (only consider steps in which we
move on P (u,w)), and denote by Xi the ‘depth‘ within T of the vertex we visit at the
i’th step (where the depth of u is considered to be −1), then the sequence X0, X1, . . . is
distributed exactly as the aforementioned walk starting from 0 (until we reach −1 or h).
This means that we have reduced our problem to the following standard problem: Let
X0, X1, . . . be an unbiased one-dimensional random walk on Z starting from 0, what is
the probability that we reach h before we reach −1?

Using Claim 14 (see Appendix) with x = h, we get that the probability we reach w
before leaving T is indeed 1

h+1
.

We will find a k-path when starting a random walk from u′ if the following (sufficient)
event occurs: First we move from u′ to u′i, then we reach the deepest leaf of T ′i before
coming back to u′, then we similarly move to u′j and reach the deepest leaf of T ′j. Since

14In addition to being easier to analyze, the probability we spot the deepest leaf is greater of equal to
that of scanning the entire subtree - simply because whenever we scan the entire subtree, we have also
reached the deepest leaf.
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the height of both T ′i and T ′j can be at most k − 1 (as they cannot contain a k-path),
we can use Claim 11.2 to show that the probability for such a sufficient event is at least:

1

d︸︷︷︸
move to u′i

· 1

k︸︷︷︸
reach deepest leaf of T ′

i

· 1

d︸︷︷︸
move to u′j

· 1

k︸︷︷︸
reach deepest leaf of T ′

j

=
1

d2k2

Calculating the probability of the event is one thing, yet we must also calculate the
number of steps that will be performed when following such a traversal pattern. Luckily,
we can simply use Lemma 8 to show that the expected number of steps performed on T ′i
and T ′j is not too big (since we know each tree is at most of size 10k

ε
), and together with

Markov’s inequality conclude that when performing Θ(dk
ε

) steps we have at least Θ( 1
d2k2

)
probability of finding a k-path.

With this we have finally showed Property 2 as well. This concludes the proof of the
lemma.

Indeed, having proved Lemma 11, we are almost done. We shall now use the existence
of T (v′) for any v′ ∈ V ′ to finish the analysis. First, we must show that a random walk
starting from the root of any tree (and in particular T (v′)) drifts towards the leaves with
high probability (that depends on the height of the tree). Given that, we shall prove the
final claim that a long enough random walk on G′ starting from v′ ∈ V ′ will reach the
leaves of T (v′) with high probability. Since reaching the leaves of T (v′) means we will
soon find a k-path with high probability (if we haven’t found one already), this would
finish the analysis.

claim 12 (A random walk from the root of a tree drifts towards the leaves). Let T be
a bounded-degree rooted tree, with degree bound d, root v and height h (the farthest leaf
from v is h steps away). A random walk from v will reach a leaf of T within 4h2d steps
with probability at least 1

4h
.

Proof. The proof will be based on relating the distance from v (the root) during a random
walk on T to the unbiased one-dimensional random walk on Z, in which at each step we
increment or decrement the current location depending on the outcome of a fair coin.

The first step towards such a relation is to ‘get rid‘ of the probability to stay at the
same vertex during a random walk on T . Recall that the random walk on T may stay at
the current vertex (if the degree of the vertex is smaller than d), while the aforementioned
one-dimensional random walk never keeps the same value between steps. This could be
easily addressed by considering only steps that do not stay at the current vertex, and
denote this series of steps by the excited random walk on T . It is easy to see that the
excited random walk on T simply chooses a neighbor uniformly at random at each step
(and never stays at the same vertex). Moreover, it is easily seen that an i-step standard
random walk on T (that is used in this section) admits (at least) an i

2d
-step excited

random walk with probability at least 1
2
. This is because at each step we have at least

a 1/d probability not to stay at the same vertex, thus the expected number of steps
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that did not stay in place is i
d

(and we can use Markov’s inequality to get the bound).
Therefore, from now on we can relate to the excited random walk on T , while incurring
a small penalty to the number of actual steps we must take and to the final success
probability.

Let Xi be the distance from v of the vertex encountered at the i’th step of the excited
random walk on T . Before we can relate the sequence X0, X1, . . . to the one-dimensional
random walk mentioned earlier, we would need the walk to be unbounded from above.
I.e., allow the walk to reach values larger than h (which is the height of T ). To do that, We
can slightly alter T , such that it will have infinite ‘extensions‘ to its leaves (i.e. each leaf
is now connected to an infinite sequence of vertices, where each one is connected to the
previous and the next) and denote the resulted tree T ′. Let X ′0, X

′
1 be the ‘equivalent‘

excited random walk on T ′. By ‘equivalent‘ we mean that as long as the original sequence
X0, X1, , . . . has not reached a leaf, both sequences are identical. Once we have reached
a leaf, the sequence on T ′ has no more constraints (other than retaining a distribution of
an excited random walk on T ′).

Now, we shall construct a new series of random variables Y1, . . . that will be will
be based on X ′1, . . . such that Y1, . . . is an unbiased random walk on Z. First, we set
Y1 = X ′1 = 1 (We know that X ′1 = 1 for sure, since we start from the root (X ′0 = 0)
and perform an excited random walk15). Then we require that whenever Yi+1 = Yi + 1
we always have that X ′i+1 = X ′i + 1. Since Pr [X ′i+1 = X ′i + 1] ≥ 1

2
we can always

construct such a sequence that will increment at each step with probability exactly 1
2

(and decrement with probability exactly 1
2
). Since the sequence Y1, . . . is precisely an

unbiased one-dimensional random walk on Z starting from 1, we can apply known claims
on it.

By Claim 14 (see Appendix) we know that the probability that the sequence Y1, . . .
reaches h before 0 is 1

h
(since it is equivalent to a walk starting from 0 and trying to reach

−1 or h − 1). In addition, by Claim 15 (also found in the appendix) we know that the
expected number of steps performed by the sequence Y1, . . . until either 0 or h is reached
is h−1. Denote by S the step in which the sequence has reached either 0 or h. By joining
these two claims together, we could reach the following fact:

fact 12.1. E[S|YS = h] ≤ h2

Proof. By the two aforementioned claims, we know that E[S] = h−1 and Pr [YS = h] = 1
h
.

Therefore:

E[S] = E[S|YS = h] · Pr [YS = h] + E[S|YS = 0] · Pr [YS = 0]⇒

h− 1 = E[S|YS = h] · 1

h
+ E[S|YS = 0] · h− 1

h

Since S is strictly positive, this implies E[S|YS = h] · 1
h
≤ h− 1, which implies E[S|YS =

h] ≤ h2.

15Clearly, we ignore the case in which v is a leaf otherwise we’ve already reached a leaf.
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By using Markov’s inequality, we can easily show that by performing 2h2 steps, the
sequence Y1, . . . will reach h (and before it reaches 0) with probability at least 1

2h
.

We shall now use this result shown on the sequence Y1, . . . to prove a similar result on
the sequence X1, . . . thus proving the claim. By the way the sequence Y1, . . . is defined,
we know that for every i ≥ 1, X ′i ≥ Yi. Thus, if the sequence Y1, . . . reached h before it
has reached 0 within 2h2 steps, so did the sequence X ′1, . . .. A random walk on T ′ that
reached depth h within T ′ must have passed through (or is currently at) an original leaf
of T . By the way the sequences X0, X1, . . . and X ′0, X

′
1, . . . are linked, it means that the

corresponding excited random walk on T has reached a leaf before coming back to the
root. Last but not least, we must account for the fact that we considered the excited
random walk on T , which finally leads us to conclusion that a standard random walk
(as defined in this section) of length 4h2d reaches a leaf with probability at least 1

4h
which

finishes the proof.

The following claim shall conclude the second part of the analysis:

claim 13 (A long enough random walk on G′ from v′ ∈ V ′ reaches the leaves of T (v′)).
Let v′ ∈ V ′ and let v′ = X0, X1, . . . , Xp′3 be the vertices encountered by a p′3-step random

walk on G′ from v′, where p′3 = Θ(k
6d2

ε
). Then, the probability we reach the leaves of

T (v′) is at least 1
8k

.

Proof. Let ` be the number of steps performed by a random walk on G′ when starting
from v′ and let X(`) be the number of steps in the induced random walk on T (v′) (i.e.,
only considering steps performed on the vertices of T (v′)). As usual we shall bound the
bad event. The bad event in our case is performing an `1-step random walk on G′ while

not reaching the leaves of T (v′), where `1
def
= p′3. Thus we wish to bound the following

expression:

Pr [not reaching a leaf of T (v′) in an `1-step walk]

Due to Claim 12, we know that if we perform 4k2d (or more) induced steps on T (v′)
we shall reach the leaves with probability at least 1

4k
. Yet, we have no guarantee on

less than 4k2d steps. However, performing less than 4k2d induced steps on T (v′) is very
unlikely due to the long random walk we perform on G′. Thus, we can split the above
event into two disjoint events based on the length of the induced random walk and bound
each of them separately. The above expression can be written as:

Pr [X(`1) < 4k2d ∧ not reaching a leaf of T (v′) in an `1-step walk]+

Pr [X(`1) ≥ 4k2d ∧ not reaching a leaf of T (v′) in an `1-step walk]
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The first expression can be bounded by Markov’s inequality similarly to what we have
done previously in this thesis:

Pr [(X(`1) < 4k2d) ∧ not reaching a leaf of T (v′) in an `1-step walk]

=
4k2d−1∑
i=0

Pr [(X(`1) = i) ∧ not reaching a leaf of T (v′) in an `1-step walk]

≤
4k2d−1∑
i=0

Pr [∃` ≥ `1 such that X(`) = i ∧ not reaching a leaf of T (v′) in an `-step walk]

≤
4k2d−1∑
i=0

Pr [∃` ≥ `1 such that X(`) = i|the `-step walk has not reached a leaf of T (v′)]

We know the expected number of steps outside T (v′) when we have walked for i steps
(given that we have not reached a leaf) is at most i · 10k

ε
. This is due to the property of

T (v′) that for any non-leaf vertex of T (v′), the size of any subtree outside T (v′) connected
to it is at most 10k

ε
, together with Lemma 8. By using Markov’s inequality, there exists

such a p′3 = Θ(k
6d2

ε
) such that the entire expression can be bounded by 1

8k
.

The second expression can be bounded in the following way:

Pr [X(`1) ≥ 4k2d ∧ not reaching a leaf of T (v′) in an `1-step walk]

≤ Pr [not reaching a leaf of T (v′) by walking at least 4k2d steps on T (v′)]

and by Claim 12 we know it is at most 1− 1
4k

.
Thus, altogether, the probability of the bad event is less than 1 − 1

8k
. Thus, the

complementary event (reaching a leaf by walking at least p′3 steps) occurs with probability
at least 1

8k
, which proves the claim.

5.2.3 Combining both parts to finish the analysis

With the last claim in place, we can finish the analysis. By the first part of the analysis (in
particular, Lemma 10), if we perform a random walk on G for p3 = Θ(d

13k4

ε3
) steps, we have

an induced random walk on G′ of Θ(d
6k4

ε
) steps with probability at least Ω(ε). Suppose

the induced random walk on G′ starts with v′ ∈ V ′, then there exists a p3 = Θ(d
13k4

ε3
)

(with the proper constants) such that the induced Θ(d
6k4

ε
) steps on G′ are enough both

for reaching the leaves of T (v′) (by Claim 13 with probability at least 1
8k

) and finding a

k-path (Within an additional Θ(dk
ε

) = O(d
6k4

ε
) with probability 1

d2k2
). All in all, we will

find a k-path with probability at least Θ( ε
d2k3

). The Θ(d
2k3

ε
) repetitions ensure we have

at least a 2/3 probability to spot a k-path, which concludes the analysis.
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6 Beyond cycle free graphs

Indeed, our original goal was to show Conjecture 1 holds, yet instead, we have only
managed to show it holds for cycle-free graphs. In this section we wish to discuss possible
approaches and difficulties for proving Conjecture 1 (i.e., extend the results to the general
case).

6.1 NP-Completeness barrier

One case to always keep in mind is when k = n, d = n and ε = 1
n2 (where n is the

number of vertices in the given graph)16. In this case, the testing problem is equivalent
to the Hamiltonian Path NP-Complete problem. On cycle-free graphs, this problem is
easy. Yet in the general case, unless P = NP , no polynomial time algorithm exists for
this problem. Recall that Conjecture 1 only referred to the query complexity (or the
size of the view) and says nothing about the running time. Indeed, even if Conjecture
1 is correct, the running time of such a tester is likely to be exponential, and any tester
presented as an optional candidate to resolve Conjecture 1 must pass this criterion (unless
NP has subexponential time algorithms).

Note that the general approach presented in this thesis - use some traversal technique
and look for a k-path within the revealed subgraph - passes this criterion, since identifying
whether a given subgraph contains a k-path is NP-complete when k is part of the input.

6.2 Approaches to proving Conjecture 1

Naturally, we would like to extend the analysis of the algorithms presented in this thesis
to work for the general case as well. This gives us two options: We can either try to
extend the random DFS algorithm (presented in Section 4) or try to extend the random
walk algorithm (presented in Section 5). Either way, the analysis of both algorithms
relies on the existence of a ‘DFS Friendly‘ subgraph (shown to exist in Section 3). This
means that any attempt to extend the analysis of an algorithm presented in this thesis
must also extend the result of Section 3 for the general case.

Fortunately, the result of Section 3 can be extended to the general case, as shown
in Section 6.3. Unfortunately, we were unable to extend either Section 4 or Section 5.
The difficulty in extending Sections 4 and 5 is discussed in detail in Sections 6.4 and 6.5,
respectively.

6.3 The DFS friendly subgraph exists for all ε-far graphs

Lemma 3 (in Section 3) asserts that for connected cycle-free graphs that are ε-far from
being k-path free, there exist a special subgraph that is ‘DFS friendly‘. I.e., any DFS
scan (using any scan order) on this subgraph finds a k-path quickly. Lemma 3 was proved
for the case of cycle-free graphs only for simplicity (as we do not need a stronger claim

16Indeed, we abuse the setting of the problem a bit, as it was assumed that k, d and ε are constants.
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for the main result of this thesis). However, we can extend the idea of the proof to work
for general graphs as well.

Recall that in the proof of Lemma 3 we had an iterative process, in which at each step
we pruned parts of the remaining graph as long as there exists a truncated DFS scan,
denoted Dtrunc, that is too big (more than 10k

ε
steps long). Recall that the pruned parts at

each step were parts of the subgraph revealed by Dtrunc. In particular, we always pruned
the parts of the scan that were outside the core, where the core was defined to be the
k-path found (and if more than one was found we fixed one arbitrarily) together with the
(single and unique) path from the initial vertex to this k-path. In the general case (i.e.,
when the graph is not necessarily cycle free), we will simply generalize the definition of
a core (which will be defined shortly) and continue to apply such pruning, while keeping
the rest of the proof more or less the same. This would lead to the same result (having
a ‘DFS friendly‘ subgraph) only with slightly weaker bounds than in the cycle-free case.
Details follow.

Given a truncated DFS scan Dtrunc, we shall now generalize the definition of its core.
As in Lemma 3, denote by P (Dtrunc) the k-path found by Dtrunc, and by v the start
vertex of Dtrunc. Since we are dealing with general graphs, the DFS scan may contain
backward edges as well as forward edges, since the revealed subgraph may contain cycles.
However, the forward edges form a tree, that we shall denote the forward edges tree17,
which spans the revealed subgraph. Within this tree, every two vertices have a single
and unique path connecting them. For every vertex u within the revealed subgraph (and
in particular within the forward edges tree) denote by the forward tree path to u, the
(single and unique) path from v (the initial vertex of the scan) to u within the tree of
forward edges. By uniting the vertices and edges of all the forward tree paths to each
of the vertices of P (Dtrunc) (the k-path found by Dtrunc) we will get the new (generalized)
definition of the core of Dtrunc. It is easily seen that this is a generalization, since in the
cycle-free case, the core (by this new definition) is the k-path found together with the
path from v to it (which is precisely how the core was defined for the cycle-free case).

Recall that the intuition behind the core of a scan was to separate the k-path found
(and the path to it) from the ‘redundant‘ excursions that did not help in finding this
k-path. Since the core is very small (in the cycle-free case), whenever we had a large
truncated DFS scan, most of the scan consisted of these large ‘redundant‘ parts. By
removing the edges between the core and the rest of the revealed subgreaph, we had
isolated these ‘redundant‘ parts, that do not contain a k-path within them, thus clearing
their vertices of k-paths (in the sense that no k-path can now pass through any of their
vertices). Since the core is small and the degree is bounded, we removed few edges to
clear large parts from having k-paths, which is an anomaly in graphs that are ε-far from
being k-path free. This then lead to the conclusion that we cannot prune much of the
original graph in such a way, otherwise, we get a contradiction.

We shall show that we can follow the same proof with the generalized core as well.
First, the generalized core is still very small. It must be smaller than k2 vertices since
P (Dtrunc) has k vertices and the path from v to each of them (within the forward edges

17Is known in the literature as the DFS tree
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tree) cannot be more than k vertices long (since Dtrunc stops once it finds a k-path). In
addition, as in the cycle-free case, we consider all vertices in the revealed subgraph that
are outside the core to be ‘redundant‘ and claim that by removing all the edges in the
cut between the core and the rest of the revealed subgraph we would completely prune
these ‘redundant‘ parts from the graph. By ”pruning them from the graph” we mean
that after the removal of the aforementioned edges, these redundant parts are completely
disconnected from the graph (the entire graph - not just the revealed subgraph) thus
form isolated connected components with no k-paths within them (that might have been
connected by more than one edge to the graph, yet all of these edges were just removed).
Unlike the cycle-free case, this claim requires justification, as it might be that the redun-
dant vertices are connected to other parts of the graph by additional edges (that were
not removed by the process). To establish that this is not the case, we shall show that
any vertex in the redundant part must have been fully scanned (I.e., all of its edges were
traversed and therefore are in the revealed subgraph), thus pruning the redundant parts
from the revealed subgraph (which is what we do by clearing the aforementioned cut) is
equivalent to pruning it from the entire graph. To show that all vertices of the redundant
parts are fully scanned we shall show that whenever we take a forward edge e outside of
the core (into a redundant part) we always backtrack (via e) back into the core before
finding a k-path, hence all vertices encountered during that ‘excursion‘ (outside the core)
are fully scanned. For the sake of contradiction, suppose that the truncated DFS scan
Dtrunc reaches the vertex u1, which is in the core, then steps (via a forward edge) into
the vertex u2, which is outside the core, and a k-path is found before the edge (u1, u2)
is backtracked. Suppose that the last edge traversed (after which we have spotted the
k-path) was (w1, w2) and that w1 was the vertex we were at prior to taking this edge.
Then it must be that w1 is part of the core (since (w1, w2) must be a part of the k-path
found). However, w1 was discovered after taking the forward edge (u1, u2), which means
that the path within the forward edges tree from v to w1 includes the edge (u1, u2). This
means that u2 is part of the core and we get a contradiction.

Given that we can perform the same pruning procedure (turn the ‘redundant‘ parts
into isolated connected components with no k-paths within them by removing the edges
in the aforementioned cut) we can proceed with the rest of the proof as it is, with only
slight changes to the bounds. Since the generalized core is slightly bigger (k2 vertices
compared to 2k in the cycle-free case), our definition of a ‘big‘ truncated DFS scan,
which should be big enough so that the core is only an Θ(ε) fraction of it, is now Ω(k

2

ε
)

(compared to Ω(k
ε
) in the cycle-free case). It follows that on the resulting subgraph G′

(that has no ‘big‘ truncated DFS scans) any DFS scan finds a k-path within O(k
2

ε
) steps,

which only differs by a factor of k from the result for the cycle-free private case.

6.4 Analyzing random DFS scans on general graphs

As was mentioned earlier, one way to show Conjecture 1 holds is to extend the analysis
of the random DFS algorithm (presented in Section 4) to the general case. As seen in
Subsection 6.3 we know that a DFS friendly subgraph G′ exists in the general case as
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well (for any graph that is ε-far from being k-path free).
Recall that the approach used in Section 4 was to treat the random DFS scan on

G (the given graph) as a random DFS scan on G′ (the DFS friendly subgraph) that
occasionally strays outside of G′ (into the rest of G). Then, we accounted for these strays
and showed that in expectation their size is not too big, and since G′ is known to be DFS
friendly, the induced DFS scan on G′ (when we only consider edges traversed on G′) will
bump into a k-path quickly. If we wish to use the same approach on general graphs, we
must first tackle new problems that arise when leaving the cycle-free special case.

First, in the cycle-free case we have shown (by Claim 5) that if we pick a random
vertex of G′, the expected size of all subtrees (outside of G′) connected to it is small.
However, this may not be true in the general case. The proof of the claim relies on the
fact that each isolated component (outside of G′) is only connected to a single vertex of
G′. However, in the general case, each such component may be connected to more than
one vertex of G′18. Indeed, we have not managed to show a similar claim for the general
case.

Even if we could show a claim similar to Claim 5 for the general case, we still need to
show that the vertices visited by a random DFS scan on general graphs are distributed
close to the uniform distribution (when starting from a uniformly chosen vertex). The
main idea behind Claim 6 (showing that on cycle-free graphs, the vertices visited by a
random DFS scan are almost uniformly distributed) was to use the symmetry of DFS
scans on cycle-free graphs. Yet the symmetry defined (in Claim 6) strongly depends on the
graph being cycle-free (by assuming single paths between vertices, and no backward edges
within the DFS scan), and despite different attempts, we have not managed to generalize
the definition of a ‘mirror DFS scan‘ for the general case. However, we have not managed
to give a counter-example either (in which there is no polynomial p = poly(d, k, 1

ε
) such

that the distribution is at most p times the uniform distribution).
Even if we assume that we have a close-to-uniform distribution over the vertices at

each step, we must now deal with an additional problem: As was mentioned earlier, the
decomposition of G into G′ and T1, . . . , Tr isolated components (depicted in Figure 3) is
not accurate, since now, these isolated components may be connected to G′ by more than
one edge. The implication of this structure is that whenever we ‘stray‘ into the isolated
component Ti that is connected to more than one vertex, the vertex of G′ we come back
to is different than the one we left. This means that the concept of an ‘induced DFS

18In fact, it would have been sufficient to know that the number of edges from each component to G′

is bounded by some polynomial in d, k and 1
ε to show a claim similar to Claim 5, however, even that

is not known. One may speculate that because the pruning process (presented in Section 6.3) generates
isolated connected components that previously had at most k2 edges connected to the rest of the graph
would imply that each connected component in G − G′ (The given graph without G′) has at most k2

edges connected to G′. This speculation is false because the connected components generated by the
pruning process are not necessarily the same connected components present in G−G′. In particular, it is
possible that in G−G′ we will have a connected component that is comprised of several pruning-process
connected components (I.e., connected components as generated by the pruning process). This is because
we gradually move components out of the current G′, and so we can first move a component C1, and
then a component C2 that has a single edge to C1 but several edges to the current G′, and so forth.
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scan‘ (in which by ignoring ‘strays‘ outside of G′ we get a legal DFS scan on G′ that is
also distributed properly) does not exist in the general case. Indeed, it is not clear what
is the best approach to overcome this issue.

6.5 Analyzing random walks on general graphs

Similarly to the previous section, we will discuss extending the analysis of the random
walk algorithm (presented in Section 5) to general graphs.

Recall that we do not know if a claim similar to Claim 5 exist for the general case,
thus we do not know if the expected size of all components connected to a uniformly
chosen vertex of G′ (the ‘DFS friendly‘ subgraph) is small. However, unlike the random
DFS algorithm, we do not need to ensure we have a uniform distribution over the vertices,
since a random walk retains perfect uniform distribution at each step (provided that we
started from a uniformly chosen vertex). We do, however, need to account for the fact
that whenever we stray outside of G′, we stray into a component that might contain
cycles. Recall that we have shown (by Lemma 8) that whenever we ‘stray‘ out of G′ (the
‘DFS friendly‘ subgraph), the expected number of steps it takes for a random walk to
come back is linearly proportional to the size of the subtree (outside of G′) we moved
to. However, in the general case, we do not have isolated subtrees - we have isolated
components that may contain cycles. In this case, the expected number of steps it takes
to leave the component may not be linear in its size, although it is still polynomial. The
problem with non-linearity in this case, is that even if we know that the expected size
of the components is small (by assuming we have a claim similar to Claim 5), we do not
know if the expectation of some non-linear function of the size is small as well. Yet
this issue can be resolved quite easily. We can set some size s to be considered ‘big‘ and
split the vertices of G′ into those that the joint size of the components (completely outside
of G′) connected to them is larger than s, denoted bad, and the rest. By polynomially
increasing s and using Markov’s inequality, we can make the fraction of bad vertices
smaller than any reciprocal of a polynomial we wish. Since the total random walk on G′

should be some polynomial, we can increase s enough and use union bound to show that
we have not reached any bad vertex during our random walk (with high probability). This
means that the possible size of the components connected to each of the visited vertices
(given that we have a claim similar to Claim 5) is bounded by some polynomial, in
which case, the non-linearity is not a problem anymore.

Despite the positive result shown above, we can only use it if whenever we perform
a random walk on G we have an induced random walk on G′ (since the analysis above
discusses a random walk on G′). Yet we still have the same problem as when we tried to
extend the random DFS analysis - whenever we stray outside of G′, we may come back
to a totally different vertex of G′ than the one we left. Thus again, the notion of an
‘induced random walk‘ is not valid in the general case.

However, even if we somehow knew that we always come back to the same vertex of
G′ that we left (which is not true, but let us assume so for the sake of the argument),
we still need to show that a polynomial random walk on G′ finds a k-path with high
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probability. However, the second part of the analysis of Section 5 (showing that being
‘DFS Friendly‘ implies (somewhat) being ‘random walk friendly‘) counts heavily on the
fact that G′ is cycle-free. Thus, showing that a polynomial random walk on G′ would
find k-paths with high probability should probably require a new approach.

Yet with all the difficulties described above, we still believe that Conjecture 1 can be
shown for the general case. As Christopher Reeve once said: ”Once you choose hope,
anything is possible”.
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A Appendix

A.1 Claims on unbiased one-dimensional random walks

The unbiased one-dimensional random walk on Z, is a stochastic process in which at each
step we increment or decrement the current value depending on the outcome of a fair
coin. The following are claims related to such random walks.
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claim 14. Let X0, X1, . . . be an unbiased one-dimensional random walk on Z starting
from 0 and let x ∈ Z such that x > 0. The probability that the random walk reaches x
before it reaches −1 is 1

x+1
.

Proof. The key observation is that the process is a Martingale. I.e. we know that for
every i ≥ 0, E[Xi+1|X1, . . . , Xi] = Xi. Therefore, we may use Doob’s Optional Stopping
Theorem which states the following: Let X0, X1, . . . be a Martingale and let T be a
random variable such that the event T = t depends only on the values of X0, X1, . . . , Xt.
If the expectation of T is bounded and there exists a constant c such that E

[
|Xi+1 −

Xi|
∣∣Xi

]
< c, then E[XT ] = E[X0].

In our case, we can define the random variable T to be the first index in which either
XT = −1 or XT = x. It is clear that E[T ] < ∞. In addition, we always move by 1 at
each step, hence the difference between the old and new location is bounded. This means
we have all the required preconditions to use the theorem. Thus we know that:

E[XT ] = E[X0],

whereas in our case E[X0] = 0. Since XT can only take the values −1 or x, denoting by
p the probability we reach x, we get

(1− p) · −1 + p · x = 0,

which implies that p = 1
x+1

.

claim 15. Let X0, X1, . . . be an unbiased one-dimensional random walk on Z starting
from 0, and let x ∈ Z such that x > 0. The expected number of steps until we either reach
−1 or x is x.

Proof. We shall construct a recursive formula such that the expected number of steps
until we reach either −1 or x is expressed in terms of the expected number of steps until
we reach either −1 or x−1. Then, we will unfold the recursion and get the desired result.

Denote by f(x) the expected number of steps until we reach either −1 or x when
starting an unbiased random walk from 0. A key observation is that before we hit either
−1 or x we must first hit either −1 or x − 1. Therefore, let us separate the walk (until
we reach either −1 or x) into two parts: The first part is reaching either −1 or x−1, and
the second part is reaching either −1 or x from the spot we reached in the first part. The
expected number of steps performed by the first part is f(x − 1). Then, the additional
steps required by the second part depend on the value we have reached. Clearly, if we
have reached −1, no more steps are needed by the second part. How many more steps
are expected if we have reached x − 1? Since the random walk is unbiased, it is easily
seen that this is a state which is equivalent to the initial state, only ‘mirrored‘. We are
1 step away from reaching one of the ends (only this time, it is x and not −1), and x
steps away from reaching the other. Thus, the expected number of steps til we reach −1
or x given that we start from x− 1 is exactly f(x). We can use Claim 14 to get that the
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probability that we have reached x− 1 (and not −1) by the first part is 1/x. Therefore,
we get the following expression:

f(x) = f(x− 1) +
1

x
f(x)

and by rearranging it, we get f(x) = x
x−1 · f(x − 1). It is easy to see that f(1) = 1.

Therefore, by induction, we get f(x) = x.
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