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Abstract

In this thesis, we continue the work of Goldreich and Ron in (ECCC 2008) by presenting

an in�nite family of natural properties of dense graphs having non-adaptive testers of query

complexity of Õ(1/ε) , where ε is the proximity parameter. Speci�cally, for every �xed graph

H , we show a non-adaptive tester of query complexity Õ(ε−1) for the property of being a

blow-up H . This considerably extends the result of Goldreich and Ron that corresponds to

the special case in which H consists of a complete graph.

Our techniques signi�cantly extend those of Goldreich and Ron, while coping with di�cul-

ties that emerge from the "non forcing" structure of a blow-up of a non-clique.
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1 Introduction
Property testing of graphs is the task of determining whether a given graph G = ([N ], E)

has a predetermined property Π (yes instance), or is ε -far from any other N -vertex graph

having the property (no instance) where distance between graphs are de�ned according to

their representation. The parameter ε ∈ (0, 1] , called the proximity parameter, determines

the minimal distance that a �no� instance has from the property. Therefore, property testing

can be considered as a relaxation of the exact (decision) problem, where there the task is to

determine whether a graph G has or does not have property Π .

When graphs are represented by functions, the distance between them is measured as the

fraction of domain on which the functions di�er. Speci�cally, there are two important rep-

resentation functions for graphs; the adjacency matrix representation (see [GGR98]) and the

bounded degree representation (see [GR97]). In this work we refer to the adjacency matrix

representation.

Distinguishing between yes and no instance graphs is done by a randomized algorithm,

called a tester, that has an oracle access to a representation function. The tester queries the

oracle, that is, the representation function of G . The query complexity of a tester is de�ned as

the number of queries made by it, and usually measured as a function of the size of the graph

and ε . Usually, the tester is required to err with probability at most 1/3 (on both yes and

no instances).

If a tester accepts any yes instance with probability 1, and rejects no instances with

constant probability, say 1
3 , then it said to have one-sided error. It is is called non-adaptive

if it determines all its queries regardless the result of previous queries; otherwise it is called

adaptive.

1.1 General perspective and related work
The notion of property testing was �rst formulated in [RS96] , in the context of "program

testing" of algebraic functions. Since then property testing appeared in many contexts such as

linear functions, low-degree polynomials, clustering and much more. Property testing in the

context of combinational properties of graphs was rediscovered and initiated by Goldreich, Ron

and Goldwasser in [GGR98]. For further details see surveys [Ron08, Ron].

There is non-abounded amount of the work devoted to the study of testing graph properties
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in the adjacency matrix model (see e.g. [GGR98, AFKS99, AFNS06]). In [GGR98] there

are many natural graph properties which can be tested within query complexity that is a

polynomial in the reciprocal of the proximity parameter, e.g. k -Colorability, for any �xed

k ≥ 2 . A characterization of graph properties that can be tested in query complexity that only

depends on the the proximity parameter was given in [AFNS06].

Goldreich and Ron in [GR08] initiated a study of graph properties that can be tested in the

lowest possible non-adaptive query complexity, that is, linear in the reciprocal of the proximity

parameter. They provided non-adaptive testers for classes of graphs that each is a collection

of at most constant number of isolated cliques. Indeed, the query complexity was Õ(ε−1) .

1.2 Our work
A graph G = ([N ], E) is a blow-up of graph H = ([t], EH) , if there is a mapping µ : [N ] → [t]

such that (u, v) ∈ E if and only if (µ(u), µ(v)) ∈ EH . Pictorially, we can think of G as

being constructed in the following way. Start with graph H and replace each vertex by an

independent set, called a cloud, of vertices of arbitrary size (possibly empty). Then replace

each edge of H by a corresponding complete bipartite graph between the corresponding clouds.

Focusing on the adjacency matrix representation, we demonstrate e�cient one-sided error

adaptive and non-adaptive testers with query complexity O(ε−1) and Õ(ε−1) , respectively, for

the property of being a blow-up of �xed graph H = ([t], EH) . That is, the testing problem

when given a graph G = ([N ], E) , is to decide whether it is a blow-up of H or ε -far from any

blow-up of H .

Our testers are suitable for a rich family of natural graph properties. In particular, they

generalize the tester for the property of being a constant number of isolated cliques given in

[GR08], which in our case is essentially equivalent to testing whether the complement of G is

a blow up of H
def= Kt where Kt is the complete graph with t vertices.

Note that as proven in [GR08] , the minimal query complexity for any non-trivial tester

is Ω(ε−1) , see Proposition A.1. Thus, we hit the lower bound up to soft (poly-logarithmic)

factor, while demonstrating that there is a rich family of graph properties that can be tested

using the (almost) lowest query complexity.

We use asymptotic analysis to describe the behavior of the algorithms. Concretely, we think

of t and ε as being constants, where the size of graph G is increasing (N increases).
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1.3 Organization of this thesis
Our main goal is the non-adaptive tester. However, we do it in the following steps. First

we start with algorithm for the exact decision problem for the property of being a blow-up,

while highlighting our general approach. Next, we present an adaptive tester, and discuss the

di�erences between these algorithms. Lastly, we construct the non-adaptive algorithm. We

stress that the main di�culty is in the analysis of the correctness of the non-adaptive tester.

Speci�cally, in Section 2 we give the necessary de�nitions and notations. In Section 3 we

give an algorithm for the exact problem. In Section 4 we represent an adaptive tester. In

Section 5 we represent a non-adaptive tester.
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2 Preliminaries
Throughout this thesis we consider simple (no self-loops), undirected graphs. For N ∈ N , we

denote [N ] def= {1, 2, . . . , N} , and [[N ]] def= {0, 1, 2, . . . , N} (including zero). Let H = ([t], EH)

and G = ([N ], E) be graphs, and let G = [gu,v]u,v∈[N ] be the adjacency matrix of G .

For S ⊆ [N ] , the subgraph induced by S , denoted G|S
def= (S, E(S)) , consists of the vertex

set S and the set of edges between pairs of vertices in S ; that is, E(S) def= E ∩ S2 .

Signatures For a graph G′ = ([N ′], E′) , denote its adjacency matrix as [g′u,v]u,v∈[N ] (low-

ercase). A signature of a vertex u ∈ [N ′] , denoted χG′(u) , is the u th row in the adjacency

matrix G′ , that is, χG′(u) = (g′u,v)v∈[N ] . For S ⊆ [N ′] , the signature restricted to S of a vertex

v ∈ [N ′] , denoted χG′
S (v) , is de�ned as the signature of v restricted to columns speci�ed in

S , that is, χG′
S (u) = (g′u,v)v∈S . For shorthand, whenever G′ is clear from the context we omit

it.

2.1 Distance between graphs
Distance between graphs A generic way of de�ning distance between arbitrary functions

that share the same domain refers to the fraction of domain on which the functions di�er. For

functions that have di�erent domains, we de�ne the distance to be in�nity.

In this work, we represent graphs by the adjacency matrix representation. As a consequence,

the distance between graphs G = ([N ], E) and G′ = ([N ], E′) is

δ(G, G′) def=

∣∣{ (u, v) ∈ [N ]2 : gu,v 6= g′u,v

}∣∣
N2

.

Note that each pair {u, v} is counted twice since it corresponds to two ordered pairs of vertices.

Distance between graph and set of graphs Let G be a set of graphs. Then, the

distance between G and G , denoted ∆(G,G) , is de�ned to be the minimal distance between

G and any graph in G , that is,

∆(G,G) def= min
G′∈G

{
δ(G,G′)

}

When we say that G is ε -far from G , we mean that G has distance of at least ε from any

graph in G .
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2.2 Blow-up graph of H

The graph G = ([N ], E) is a blow-up of graph H = ([t], EH) , if there is a mapping µ : [N ] →
[t] , called a graph blow-up mapping, such that (u, v) ∈ E if and only if (µ(u), µ(v)) ∈ EH , or

equivalently, using our notation, gu,v = hµ(u),µ(v) for any u, v ∈ [N ] .

Denote by BN (H) the set of N -vertex graphs that are blow-ups of H , and by B(H) the

set of all blow-ups of H (with any number of vertices); that is, B(H) def= ∪N∈NBN (H) .

We remark that any blow-up of any induced subgraph of H is also a member of B(H) .

Clearly, if G ∈ BN (H) then any graph that is isomorphic to G is also a member of BN (H) .

Also note that any graph G is a blow-up of some graph, because G in particular is a blow-up

of itself.

The following fact is a simple consequence of a blow-up mapping. It asserts that, in any

blow-up mapping, vertices of G that are mapped to the same vertex in H must have identical

signatures in G .

Fact 2.1. Let H ′ = ([t′], EH′) be an arbitrary graph, and let π′ : [N ] → [t′] be a graph blow-up

mapping from G to H ′ . If u and v are vertices of G such that π′(u) = π′(v) , then their

signatures in G are identical, that is, χ(u) = χ(v) .

Proof. Let w ∈ [N ] be an arbitrary vertex of G . Then,

gu,w = h′π′(u),π′(w) π′ is a blow-up mapping

= h′π′(v),π′(w) π′(u) = π′(v) by hypothesis

= gv,w π′ is a blow-up mapping.

Hence, gu,w = gv,w for any w , which implies χ(u) = χ(v) . ¥

Violating pairs Let µ : [N ] → [t] be a mapping. Then, a violating pair of G with respect

to H and µ is a pair that demonstrates that µ is not a blow-up mapping from G to H ; that

is

De�nition 2.2. A violating pair of G with respect to H and µ is a pair (u, v) ∈ [N ]2 such

that gu,v 6= hµ(u),µ(v) .

Observe that being a violating pair is a feature of G , H and a mapping µ . We denote by

V iolG,H
µ the set of violating pairs of G with respect to H and µ . Since we think of H as
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being a �xed graph and G is clear from the context, we use the shorthand, V iolµ = V iolG,H
µ .

For A,B ⊆ [N ] , we denote by V iolµ(A,B) the set of violating pairs restricted to A×B , that

is, V iolµ(A,B) def= V iolµ ∩ (A×B) .

Being far from B(H) Let µ : [N ] → [t] be an arbitrary mapping, and let G′ = ([N ], E′)

be a graph such that for each pair (u, v) ∈ [N ]2 it holds that g′u,v
def= hµ(u),µ(v) , then it

follows that G′ ∈ BN (H) . By de�nition of distance, the statement � G is ε -far from BN (H) �

implies that δ(G,G′) ≥ ε , where δ is de�ned in Section 2.1. Let (u, v) ∈ [N ]2 be a pair that

contributes the distance between G and G′ . Then,

gu,v 6= g′u,v by hypothesis

= hµ(u),µ(v) µ is a blow-up mapping

⇓

gu,v 6= hµ(u),µ(v)

⇓

(u, v) ∈ V iolµ by de�nition of a violating pair

Therefore, the pair (u, v) is a violating pair of G with respect to H and µ . Thus, we reach

the following conclusion.

Fact 2.3. Suppose that G is ε -far from BN (H) , and let µ : [N ] → [t] be an arbitrary mapping.

Then, the number of violating pairs of G with respect to H and µ , is at least εN2 ; that is,

V iolG,H
µ ≥ εN2 .

Testing the property of being a blow-up is non-trivial A graph property Π is non-

trivial for testing if there exists ε0 ∈ (0, 1] such that for in�nite N ∈ N there exists N -vertex

graphs G1 and G2 such that G1 ∈ Π and G2 is ε0 -far from Π . Then,

Proposition 2.4. The property of being a blow-up of H = ([t], EH) is non-trivial.

Proof. Fix ε0 ∈ (0, 1] . Let G1 be the graph constructed by selecting an arbitrary mapping

π : [N ] → [t] , and then de�ne its set of edges such that π will be a blow-up mapping.

Clearly, G1 ∈ BN (H) . Next, let G2 = ([N ], E2) be the complete graph, that is, E2
def=

{ {i, j} : i 6= j ∈ [N ] } . Since there are no self-loops, each vertex has a unique signature in

G2 . By Fact 2.1, it follows that for any graph G′ ∈ BN (H) the number of unique signature
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of vertices of G′ is at most t . Thus, the number of edges needed to be modi�ed in G2 it at

least M(N) def= t · N
t · (N

t − 1) . Therefore, for every N such that M(N) ≥ ε0 , it follows that

G2 is ε0 -far from BN (H) . ¥

2.3 Tester for being a blow-up
We are now ready to de�ne formally (one-sided error) testers for the property of being a blow-up

of graph H = ([t], EH) .

De�nition 2.5. A tester for the graph property of being a blow-up of graph H is a probabilistic

oracle machine that, on input parameters N , proximity parameter ε , and oracle access to the

adjacency matrix of G , output a binary verdict that satis�es the following two conditions.

1. If G ∈ BN (H) , then the tester always accepts (that is, accepts with probability 1).

2. If G is ε -far from BN (H) , then the tester accepts with probability at most 1/3.

A tester is called non-adaptive if it determines all its queries regardless the result of previous

queries; otherwise it is called adaptive.

2.4 Knowledge matrix
Loosely speaking, a knowledge matrix, denoted K , is the adjacency matrix of G , denoted

G , with small modi�cation; each entry ku,v is allowed to take a special symbol, denoted ∗ ,
that �masks� the actual value of the adjacency matrix (that is, it masks gu,v ). The knowledge

matrix models, in a natural way, the information a tester has on the tested graph.

It is instructive to think about K in the folowing way. At the beginning of a test, K has all

∗ entries except the main diagonal that has only 0 entries, because G is simple. Each query

(u, v) ∈ [N ]2 sets entry ku,v
def= gu,v ; that is, the value gu,v is revealed. Formal de�nition

follows.

De�nition 2.6 (Knowledge matrix). A knowledge matrix of G is a matrix K ∈ {0, 1, ∗}N×N

such that if ku,v 6= ∗ , then ku,v = gu,v .

Knowledge submatrices Since the number of queries allowed for our testers is much

smaller than the number of entries in G , the matrix K is very sparse with respect to Boolean
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entries. Thus, for clearer proofs, we focus our attentions on the informative portion of K . The

formal way we do it is by using the notion of submatrices.

Notation 2.7. Let R,C ⊆ [N ] , where R = {r1, . . . , rn} . Then, denote by K[R, C] the

submatrix de�ned by taking the R rows and C columns of the knowledge matrix K . We often

let K
def
= K[R, C] be an arbitrary submatrix.

Inconsistency As we show next, it is of our interest to identify vertices in [N ] having

distinct signatures in G ; that is, distinct rows in G . However, all that a tester has is a

knowledge matrix K containing partial information of G . By the interpretation of the ∗
symbol, two rows, r, r′ ∈ [N ] in K have distinct signatures in G if there is a common column

c ∈ [N ] such that kr,c, kr′,c 6= ∗ , and kr,c 6= kr′,c . This is the motivation for the following

de�nitions.

Let a, b ∈ {0, 1, ∗} , then a and b are inconsistent, denoted a 6≈ b , if a, b ∈ {0, 1} and

a 6= b . Loosely speaking, inconsistency is a generalization of the equivalence relation taking

into considerations of the ∗ symbol; if two elements in {0, 1} are inconsistent, then they

are distinct. However, we require nothing if they are consistent, spelling it out, they might

be distinct or not. The elements a and b are consistent, denoted a ≈ b , if they are not

inconsistent; that is, either a = ∗ or b = ∗ , or a = b .

We generalize naturally the notion of inconsistent elements into inconsistent vectors. Let

m ∈ N , a = ( a1, . . . , am ) , and b = ( b1, . . . , bm ) such that ai, bi ∈ {0, 1, ∗} for i ∈ [m] .

Then, we say that vectors a and b are inconsistent, denoted a 6≈ b , if there exists a common

entry i∗ ∈ [m] on which the vectors are inconsistent, that is, ai∗ 6≈ bi∗ . The vectors a and b

are consistent, denoted a ≈ b , if for each entry i ∈ [m] we have that ai ≈ bi .

Since signatures in the knowledge matrix K are vectors, we say that two rows in K are

inconsistent (consistent) if they are inconsistent (consistent) as vectors. We say that two

knowledge matrices, having the same sets of rows and columns, are inconsistent (consistent)

matrices, if their canonical representations as �long� vectors are inconsistent (consistent).

Next, we de�ne formally the notion of a knowledge matrix K having pairwise inconsistent

rows.

De�nition 2.8. The matrix K = K[R, C] , has pairwise inconsistent rows if for any two rows

r, r′ ∈ R the corresponding vectors are inconsistent, that is, K[{r} , C] 6≈ K[{r′} , C]
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Conclusion Let K = K[R, C] be a knowledge submatrix such that R consists of rows

that are pairwise inconsistent in K . Then, R consists of vertices with distinct signatures in

G . Having such knowledge submatrix is important, because following Fact 2.1, in any blow-up

mapping µ (from G to H ), each row in R must be mapped to distinct value; that is, µ

restricted to R is an injection into [t] .

2.5 Candidate blow-up mapping
In this subsection, unless stated otherwise, the knowledge submatrix K = K[R, C] has pairwise

inconsistent rows. Thus, by Fact 2.1, any blow-up mapping of K to H must be injective.

Consider the submatrix K . If there does not exist a mapping ρ : R → [t] such that the

matrix K ′ ∈ {0, 1}|R|×|R| where k′r,r′
def= hρ(r),ρ(r′) is consistent with K[R,R] , then clearly

G /∈ B(H) . But if there is such ρ , we say that K is H -mappable. In such case K might be

extended into an adjacency matrix of a blow-up of H , that is, we can construct a full-�edge

candidate blow-up mapping µ : [N ] → [t] that might be a blow-up mapping. This is useful when

G is ε -far from B(H) , because by Fact 2.3 in particular V iolµ ≥ εN2 .

Construction of the candidate blow-up mapping µ is based on two elements. First, we

partition [N ] according to the knowledge submatrix K such that each row r ∈ R de�nes a

unique set Vr in the partition. Second, we assume that K is H -mappable; that is, there is

ρ : R → [t] such that K[R,R] is consistent with H[ρ(R), ρ(R)] . Then, we de�ne µ : [N ] → [t]

by assigning elements of Vr to ρ(r) . Vertices that do not belong to ∪r∈RVr are mapped to

an arbitrary value in [t] . De�nitions and details follow.

H-mappable Let K be a knowledge matrix with pairwise inconsistent rows. Then, we say

that K (or rather its rows) is H-mappable if there exists a mapping ρ : R → [t] , called an

H-mapping, such that

• ρ is an injection.

• For every r, r′ ∈ R we have that kr,r′ ≈ hρ(r),ρ(r′) .

The �rst condition stems from the fact that the rows of K are pairwise inconsistent; thus, each

vertex r ∈ R must be mapped to distinct values in [t] . The second condition stems from the

fact that we require that ρ will be a blow-up mapping of the graph that is represented by the

matrix K . The following fact clearly holds.
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Fact 2.9. If G is a blow-up of H , then (any) knowledge submatrix K = K[R,C] of G is

H-mappable.

Proof. If G is a blow-up of H , then there exists a blow-up mapping µ : [N ] → [t] such that

for each u, v ∈ [N ] , gu,v = hµ(u),µ(v) . Let ρ : R → [t] such that ρ(r) def= µ(r) . Now, since R

contains vertices with distinct signatures in G , by Fact 2.1, we have that µ restricted to R is

an injection, thus, ρ is an injection.

Next, let r, r′ ∈ R . If kr,r′ = ∗ , then by de�nition of ∗ symbol, kr,r′ ≈ hρ(r),ρ(r′) . On

other hand, if kr,r′ = gr,r′ (as must be the case when kr,r′ 6= ∗ ), then

kr,r′ = gr,r′

= hµ(r),µ(r′) µ is a blow-up mapping

= hρ(r),ρ(r′) de�nition of ρ

⇓

kr,r′ ≈ hρ(r),ρ(r′).

So the fact follows. ¥

The partition of [N] induced by K For r ∈ R , the set Vr(K) consists of any vertex

v ∈ [N ] that has signature consistent with row r in matrix K ; that is,

Vr(K) def= { v ∈ [N ] : χC(v) ≈ K[{r} , C] } . (2.1)

The set L(K) consists of vertex v ∈ [N ] with signature that is inconsistent with any row in

K ; that is,

L(K) def= { v ∈ [N ] : ∀r ∈ R, χC(v) 6≈ K[{r} , C] } . (2.2)

Equivalently, L(K) def= [N ]\(∪i∈[n]Vri(K)) .

Consider (Vr1(K), . . . , Vrn , L(K)) . Since K has pairwise inconsistent rows, this tuple de-

�nes a unique partition of [N ] . This is true because a vertex v ∈ [N ] belongs to exactly

one of these sets. Thus, the partition of [N ] induced by K , denoted P (K) , is de�ned as

P (K) def= (V1, . . . , Vn, L) where Vi
def= Vri(K) for i ∈ [n] , and L

def= L(K) .

The candidate blow-up mapping µ Next, in case K is H -mappable, we de�ne the

candidate blow-up mapping µ .
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De�nition 2.10. Let K = K[R, C] be a knowledge submatrix with pairwise inconsistent rows.

Let ρ : R → [t] be an H -mapping, and let P (K) = (V1, . . . , Vn, L) be the partition of [N ]

induced by K . Then, the candidate blow-up mapping µ : [N ] → [t] is de�ned as

µ(v) def=





ρ(r1) v ∈ V1

... ...

ρ(rn) v ∈ Vn

ρ(r1) v ∈ L

.

Observe, vertices in L are mapped to arbitrary value ρ(r1) . We stress that we could have

other possible mapping of vertices from L to the Vi 's, for example, map each vertex u ∈ L

into j ∈ [n] such that the number of violating pairs in V iolµ({u} , V ) is minimum, where

V
def= ∪i∈[n]Vi (note that there is no circular reference, as this depends only on the initial

mapping of V ). However, as we see, our arguments do not relay on the mapping of L but on

the facts that the either L is large or the number of violating pairs inside V is large.

3 E�cient algorithm for the exact decision problem
We start by providing an e�cient decision algorithm for deciding whether a given graph G is

a blow-up of a �xed graph H . We show that this problem decidable in polynomial time (that

is, it is in P ). Instead of providing the algorithm and then analyze it, we develop it step by

step. This way we highlight our main approach used repeatedly.

3.1 The basic idea
A naive approach for this decision algorithm is to check whether there exists a blow-up mapping,

by exhaustively trying each mapping from [N ] to [t] . Clearly, this approach is wasteful and

costs Ω(tN ) time to implement.

The improvement Assume, there is an e�cient �compression� operation, denoted Comp ,

that possibly shrinks G into a graph Comp(G) such that G ∈ B(H) if and only if Comp(G) ∈
Bt(H) . In particular whenever G ∈ B(H) the graph Comp(G) has at most t vertices. Then,

we suggest a better algorithm; �rst apply the compression operation on G to produce a graph
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Comp(G) = ([m], Em) . If m > t , then rejects, because Comp(G) /∈ Bt(H) , and G /∈ B(H) ,

follows. Otherwise, m ≤ t and we proceed as in the naive case; that is, check whether

there exists a blow-up mapping, by trying each mapping from [m] to [t] . Assuming that the

e�cient compression has time complexity C(N) , the total running time of the algorithm is

C(N) + O(tt) . All that is left is to represent such an e�cient compression operation.

Compression operation Consider the following operation.

De�nition 3.1 (Compression operation). De�ne the equivalence relation ∼ such that for

vertices u, v ∈ [N ] , u ∼ v if and only if χ(u) = χ(v) . The relation ∼ partition [N ] into

equivalence classes such that each one holds vertices with identical signature. Let R ⊆ [N ] be

a set of representatives of these equivalence sets. Then, we de�ne the compressed graph of G ,

denoted Comp(G) , as Comp(G) def= G|R .

Now, we have to prove that Comp(G) is well de�ned and that G ∈ B(H) if and only if

Comp(G) ∈ Bt(H) . The following proposition states that Comp(G) is de�ned up to isomor-

phism; thus, it is well de�ned.

Proposition 3.2. Let R, R′ ⊆ [N ] be sets of representatives of the equivalence classes induced

by ∼ such that R′ 6= R . Then, the graph G|R′ is isomorphic to G|R .

Proof. Let A1, . . . , An be the equivalence classes induced by ∼ . Assume R = {r1, . . . , rn} ,
and R′ = {r′1, . . . , r′n} such that ri, r

′
i ∈ Ai for every i ∈ [n] . Let i, j ∈ [n] , then

gri,rj = gri,r′j χ(rj) = χ(r′j)

= gr′i,r
′
j

χ(ri) = χ(r′i)

⇓

gri,rj = gr′i,r
′
j
.

Thus, the mapping ρ : R → R′ such that ρ(ri) = r′i for ri ∈ R , is an isomorphism between

G|R and G|R′ . ¥

And lastly,

Proposition 3.3. G ∈ B(H) if and only if Comp(G) ∈ Bt(H) .
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Proof. Let Comp(G) = G|R for some R ⊆ [N ] . On the one hand, suppose G ∈ B(H) . Recall

that in this case there exists a blow-up mapping µ : [N ] → [t] . Clearly, there exists a blow-up

mapping from any induced subgraph of G to H , because µ restricted to these vertices is a

blow-up mapping. Thus, in particular since Comp(G) is an induced subgraph of G , then

µ′ = µ|R is a blow-up mapping from Comp(H) to H . Moreover, by Fact 2.1 the number of

equivalence relation induced by ∼ is at most t . Thus, it follows that Comp(G) is a blow-up

of H |µ′(R)
which is in Bt(H) .

On the other hand, suppose Comp(G) ∈ Bt(H) . Since R is a set of representatives of

the equivalence classes induced by ∼ , any vertex v ∈ [N ] has a representative r ∈ R such

that χ(v) = χ(r) . Let Vr
def= { v ∈ [N ] : χ(v) = χ(r) } , then {Vr}r∈R is a partition of [N ] .

By hypothesis there exists a blow-up mapping π : R → [t] . Next, extend π to the mapping

µ : [N ] → [t] by letting for each vertex v ∈ Vr , µ(v) def= π(r) . Clearly µ is a blow-up mapping,

showing that G ∈ B(H) . ¥

Running time The compression operation can be implemented by sorting the vertices by

their signatures, identifying distinct signatures, and constructing the induced subgraph. Thus,

compression can be implemented in time O(NlogN + m2) , where m is the number of vertices

in Comp(G) . Assuming the algorithm did not reject, that is m ≤ t , �nding a blow-up mapping

from Comp(G) to H can be done as in the naive case by checking each possible mapping from

[m] to [t] . However, since each vertex in [m] has a distinct signature by Fact 2.1 we only have

to check for injections. Implementing this costs time O
((

t
m

) ·m!
)

= O(t!) . Thus, the total

running time for the suggested algorithm is O(N log N + t2) + O(t!) , implying that deciding

whether G ∈ B(H) is in P .

3.2 The algorithm
For the sake of future reference, we present the algorithm explicitly.

Algorithm 3.4. (E�cient algorithm for deciding whether G ∈ B(H) ) Input: a graph G =

([N ], E) .

1. Construct Comp(G) = ([m], Em) . If m > t then halt with answer �no�.

2. Otherwise, exhaustively search for a injective blow-up mapping µ : [m] → [t] . Halt with

answer �yes� if and only if such mapping exists.
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4 Adaptive tester
Now we move to the testing model. Recall, in this model, accessing G is by an oracle of the

representation function eG , where each query for eG is charged. Since our adaptive tester is

allowed to have a total number of O(ε−1) queries, the number of queries allowed is signi�cantly

less than
(
N
2

)
. Therefore, Comp(G) cannot be constructed (where Comp(G) is as in De�nition

3.1).

Assume that the tester sample the set S ⊆ [N ] . Then, if it happens that the knowledge

matrix K contains the adjacency matrix G[S, S] , that is, the adjacency matrix of the subgraph

G|S , then Comp(G|S ) can be constructed (as done previously but now we consider the graph

G|S instead of G ). Thus, it is still possible to construct compressed subgraphs of G . But

what is the relation between Comp(G) and Comp(G|S )? This is answered next.

Proposition 4.1. Let S ⊆ [N ] , then Comp(G|S ) is a subgraph of Comp(G) .

Proof. Let R be the set of representatives of vertices in Comp(G) , that is, Comp(G) =

(R,E(R)) , and let A def= {Ar}r∈R be the equivalence classes induces by the ∼ relation on

G . Let R′ be the set of representatives of vertices in Comp(G|S ) , that is, Comp(G|S ) =

G|R′ = (R′, E(R′)) , and let A′ def=
{
A′r′

}
r′∈R′ be the equivalence classes induces by the ∼

relation on G|S . Since A is a partition of [N ] , the function θ : R′ → R such that θ(r′) is the

representative of the equivalence class in A that r′ belongs to is well de�ned. Observe that

for r′ ∈ R′ we have that Aθ(r′) ⊆ A′r′ , because the signature of r′ in G|S is equivalent to the

signature of θ(r′) restricted to S . Note that by de�nition of the ∼ relation, it follows that for

any r′1, r
′
2 ∈ R′ we have that E ∩ (A′r′1 × A′r′2) is either A′r′1 × A′r′2 or the empty set. Putting

it all together, we have that for any r′1, r
′
2 ∈ R′ , it follows that (r′1, r

′
2) ∈ E(R′) if and only if

(θ(r′1), θ(r
′
2)) ∈ E(R) , thus, Comp(G|S ) is a subgraph of Comp(G) . ¥

4.1 The actual tester
Consider the following algorithm, denoted, Adap .

Algorithm 4.2. (Adaptive tester for being a blow-up of H )

Inputs: a natural number N ∈ N , a proximity parameter ε ∈ (0, 1] , and oracle access to a

graph G = ([N ], E) .
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Initialize R
def
= {1} . Select uniformly at random Θ(t/ε) pairs of vertices from [N ]2 , denoted

T. For each pair (u, v) ∈ T do the following:

1. Construct G|R∪{v,u} by querying the oracle for (u, v) as well as all pairs of vertices in

R× {u, v} .

2. Construct the compressed graph Comp(G|R∪{v,u}) = G|R′ where R′ ⊆ R∪{v, u} . Consider
the knowledge submatrix K ′ def= G|R′ .

(a) If |R′| > t , then halt with output �no�.

(b) Otherwise, check whether K ′ is H -mappable. If the answer is negative, then halt

with output �no�. Otherwise, let R ← R′ , and continue to the next pair.

If the algorithm has not halted so far, then halt with output �yes�.

4.2 Query complexity and running time
Query complexity The algorithm only queries the oracle in Step 1. Note that an invariant

that always holds in this step is that |R| ≤ t . Therefore, the total query complexity is

(2t + 1) ·Θ(t/ε) = O(t2/ε) , which is O(1/ε) , because t is a constant.

Running time There are two major time-consuming operations the tester performs for

every pair (v, u) , constructing the compressed graph Comp(G|R∪{u,v}) , and checking whether

K ′ is H -mappable. The construction of the compressed graph Comp(G|R∪{u,v}) = (R′, E′)

costs time O(t log t) , because |R| ≤ t . The second operation, namely checking whether K ′

is H -mappable, can be done as in the decision algorithm, �rst check that |R′| ≤ t , otherwise

reject. Then, try to �nd an H -mapping by exhaustive search, this takes time O (t!) . Therefore,

the running time of the tester is O(t/ε) · (O(t!) + O(t2)
)
, which is O(1/ε) .

4.3 Correctness of algorithm
Next, we prove that the algorithm always accepts graphs that are blow-up of H and rejects

(with high probability) graphs that are ε -far.

We start with the case that G ∈ B(H) . Suppose Comp(G|S ) = (R′, E′) for S ⊆ [N ] .

Then, by Fact 2.9, K ′ = K[R′, R′] (= G[R′, R′]) is H -mappable. Therefore, Algorithm 4.2

accepts G with probability 1.
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We thus focus on analyzing the behavior of Algorithm 4.2 on graphs that are ε -far from

B(H) ; that is, assume that G is ε -far from BN (H) . Consider the set of representatives R ,

and let P(R) be the set of pairs in [N ]2 such that if (u, v) ∈ P(R) , then the number of vertices

of Comp(G|R∪{u,v}) is strictly bigger than |R| . Recall that the de�nition of an H -mappable

knowledge matrix applicable only on matrices having pairwise inconsistent rows. Observe that

following the compression operation the matrix K
def= G[R, R] = G|R has pairwise inconsistent

rows. Assume, for now, that if K is H -mappable, then the density of P(R) is at least ε
2N2 .

We prove this claim latter in Lemma 4.3. Note that Algorithm 5.2, performs Step 1 only if for

the current R it holds that K is H -mappable. Thus, in each iteration of Step 1 we choose

(u, v) ∈ P(R) with probability at least ε/2 , which causes R′ in Step 2 to be larger than R .

Thus, with probability at least 2/3 , Algorithm 5.2 rejects G , because in O(t/ε) steps we

obtain a set R that is not H -mappable. All that is left to show is the following.

Lemma 4.3. Let K = G[R, R] for R ⊆ [N ] such that K has pairwise inconsistent rows and

is H -mappable. Let P(R) ⊆ [N ]2 such that P(R)
def
= { (u, v) : |R| < |R′| } where R′ is the

set of vertices of Comp(G|R∪{u,v}) . Then |P(R)| ≥ ε
2N2 .

Proof. By our hypothesis K is H -mappable. Thus, we can construct a candidate blow-

up mapping µ : [N ] → [t] . Since G is ε -far from B(H) , V iolµ ≥ εN2 . Assume that

R = {r1, . . . , rn} , and let P (K) = (V1, . . . , Vn, L) be the partition induced by K , and let

V
def= ∪i∈[n]Vi . Then, there are two cases.

1. |L| ≥ ε
2N . De�ne, D(R) def= L× [N ] . For any (u, v) ∈ D(R) it follows that |R′| > |R| ,

because χR(v) 6= χR(ri) for i ∈ [n] . Therefore, D(R) ⊆ P(R) , so |P(R)| ≥ |D(R)| ≥
ε
2N2 .

2. |L| < ε
2N . De�ne, E(R) def= V iolµ(V, V ) . Since |L× [N ]| < ε

2N2 , it follows that

E(R) = V iolµ(V, V ) > ε
2N2 . Let (u, v) ∈ E(R) , then (u, v) ∈ Vi×Vj for some i, j ∈ [n] .

On one hand, u ∈ Vi , thus, χR(u) = χR(ri) , so

gu,rj = gri,rj χR(u) = χR(ri)

= kri,rj K is the adjacency matrix of G|R

= hµ(ri),µ(rj) R is H-mappable, kri,rj ≈ hµ(ri),µ(rj)

= hµ(u),µ(v) By de�nition of µ, µ(u) = µ(rj), and µ(v) = µ(rj)

6= gu,v (u, v) ∈ E(R)
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On the other hand, for i 6= j , we have that

χR(v) 6= χR(ri) v ∈ Vj

⇓

χR∪{u}(v) 6= χR∪{u}(ri) for i ∈ [n]\ {j}

Also, if i = j , then χR∪{u}(v) 6= χR∪{u}(ri) , because gu,rj 6= gu,v . Therefore, we

conclude that χR∪{u}(v) 6= χR∪{u}(ri) for every for i ∈ [n] . Hence the signature of v in

the adjacency matrix G[R ∪ {u} , R ∪ {u}] = G|R∪{u} is di�erent from all signatures of

vertices in R (which are distinct because the rows in K are pairwise inconsistent), and

so R∪{v} ⊆ R′ . It follows, as in the previous case, |R′| > |R| , and E(R) ⊆ P(R) , thus,

|P(R)| ≥ |E(R)| ≥ ε
2N2 .

This completes the proof of this lemma. ¥

5 Non-adaptive tester
In this section we construct a non-adaptive tester for the property of being a blow-up with

query complexity Õ(ε−1) , and running time is polynomial in ε−1 . Considering Algorithm

3.4, note that this algorithm inherently uses the adaptiveness; it uses it to construct certain

induced subgraphs of G and then check them. However, a non-adaptive tester cannot do so; it

must choose the set of quires in advance. Restricting the non-adaptive tester to consider only

induced subgraphs is of no use, as such it is equivalent to a canonical tester that samples at

most Õ(ε−1/2) vertices. But as Proposition 6.2 in [GR08] states this is not enough (see also

Proposition 2.4), because any canonical tester must sample at least Ω(ε−1) vertices. Therefore,

during non-adaptive testing, the knowledge matrix that represents the queries made does not

necessarily have a rectangular structure, speci�cally, the boolean entries in it might be very

'scattered'. We next try to �nd out if the notion of compressed graph can be extended such

that it will be applicable to arbitrary knowledge matrices, as we face in this case, as well.

Extending the de�nition of Comp() operation Recall that in previous cases the

graph Comp(G|S ) , for some S ⊆ [N ] , was de�ned as the subgraph induced by an arbitrary

selection of representatives in the equivalence classes induced by ∼ (see De�nition 3.1). Thus,

the relation ∼ is the heart of the compression operation.
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Naive attempt Let KT def= K[T, T ] , for some T ⊆ [N ] , be an arbitrary knowledge

matrix. Then, a naive attempt is to extend naturally the relation ∼ as follows. For u, v ∈ T ,

u ∼ v if and only if rows u and v in the knowledge submatrix KT are consistent, that

is, K[{u} , T ] ≈ K[{v} , T ] . However, this de�nition fails, because while ∼ is as equivalence

relation if KT is a boolean matrix (i.e., representation of a subgraph of G ), it is not necessar-

ily an equivalent relation for arbitrary knowledge matrix, as the following example shows.

Consider the knowledge submatrix having the following rows K[{1} , {1, 2, 3}] = (0, 0, ∗) ,
K[{2} , {1, 2, 3}] = (∗, 0, ∗) , and K[{3} , {1, 2, 3}] = (1, ∗, 0) . Clearly, ∼ is not an equiva-

lence relation on this matrix, thus, we do not have equivalence classes.

Corrected approach Looking deeper in previous proofs, is it evident that all we need

is to �nd a (new) matrix with pairwise inconsistent rows. This matrix allowed us to reject G

in case it was not H -mappable, otherwise we could build a candidate blow-up mapping and

to proceed along. Recall that K is the knowledge matrix during the test. Then following this

intuition we suggest the following extension of de�nition; Comp(KT ) will be the set consisting

of all knowledge submatrices of K that have pairwise inconsistent rows. Formally,

De�nition 5.1 (Compression operation). Let KT = K[T, T ] , for some T ⊆ [N ] , be an

arbitrary knowledge submatrix of K . Then,

• Let I(KT ) denote the set of all subsets of pairwise inconsistent rows of KT ; that is

R ⊆ T is in I(KT ) if and only if R is a set of pairwise inconsistent rows of K[R, T ] (i.e.,

for any r1, r2 ∈ R it holds that K[{r1} , T ] 6≈ K[{r2} , T ] ).

• De�ne Comp(KT ) def=
{K[R, T ] : R ∈ I(KT )

}
.

Note that in this case the result of Comp(KT ) is a set of knowledge matrices. Observe that

in De�nition 3.1 we considered only the maximal element in the set of all subgraphs having

pairwise inconsistent rows.

5.1 The actual tester
We start by presenting the algorithm.

Algorithm 5.2. (Non-adaptive tester for being a blow-up of H )

Inputs: a natural number N ∈ N , a proximity parameter ε ∈ (0, 1] , and oracle access to a

graph G = ([N ], E) . The tester proceeds as follows.
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1. Set ` = log(1/ε) + O(log log(1/ε)) .

2. For each i ∈ [[`]] select, uniformly at random, poly(`) ·2i vertices from [N ] , denoted Ti .

Let T
def
= ∪i∈[[`]]Ti .

3. For each i, j ∈ [[`]] such that i + j ≤ ` , query each pair in Ti × Tj .

4. Accept if and only if the knowledge submatrix KT def
= K[T, T ] is H -mappable.

Recall that ku,v = gu,v if the pair (u, v) was queried, otherwise, k′u,v = ∗ . Step 4 is

implemented by �rst computing the set Comp(KT ) , which in this case is the set consisting

of all knowledge submatrices having pairwise inconsistent rows. Then, accepts if and only if

every such matrix, i.e., element of Comp(KT ) ), is H -mappable.

5.2 Query complexity and running time
Query complexity The total amount of queries made is

∑

i+j≤`

|Ti × Tj | ≤
∑

`′≤`

∑

i+j=`′
|Ti × Tj |

=
∑

`′≤`

poly(`)2`′

= poly(`) · 2`

= Õ(ε−1).

Running time Note that the dominant computation is done in Step 4; that is, constructing

Comp(KT ) and checking whether each member of it (knowledge matrix) is H -mappable. The

�rst step, namely construction Comp(KT ) , can be done as follows. First try to �nd knowledge

matrices having exactly t + 1 pairwise inconsistent rows. If such matrix exists then the tester

rejects because it is not H -mappable. Otherwise, �nd all knowledge matrix having at most t

pairwise inconsistent row, and for each one check whether it is H -mappable. Note that �nding

k ∈ [|T |] pairwise inconsistent rows in KT can be done in the following way. Construct an

auxiliary graph denoted as Q(KT ) = (T, ET ) such that (u, v) ∈ T if and only if the rows u

and v are pairwise inconsistent in KT . Then, �nding all k pairwise inconsistent rows in KT

is equivalent to tracking all the cliques of size k in Q(KT ) . Constructing Q(KT ) costs |T |2 ,
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while tracking each clique of size k costs
(|T |

k

)
. Therefore the running time of the tester is

|T |2 +
( |T |

t + 1

)
+

t∑

i=1

(|T |
i

)
· t! ≤ |T |t+1 · (t + 1)!,

assuming t ≥ 1 . Since |T | = Õ(ε−1) and t is a constant, the tester has running time

polynomial in the reciprocal of ε .

5.3 Correctness of algorithm
If G ∈ B(H) , then clearly each knowledge submatrix of G is H -mappable. Therefore, each

element in Comp(KT ) is H -mappable as well. Hence, Algorithm 5.2 accepts G with proba-

bility 1. The rest of the analysis refers to the case of graphs that are ε -far from B(H) . We �x

such a graph G for the rest of the analysis.

5.3.1 Preliminaries

Sampling T For the rest of this section we think of sampling the sets T0, T1, . . . , T` as

being done in the following way. Let p(`) def= 2 · (` + 1)t + 1 , then each set Ti is sampled in

p(`) blocks, denoted T 1
i , . . . , T

p(`)
i , each of size p′(`) · 2i where p′(`) is a polynomial in ` .

Then, de�ne the sets T 1, . . . , T p(`) such that T j def= ∪i∈[[`]]T
j
i for j ∈ [p(`)] . Clearly, sampling

T0, T1, . . . , T` is equivalent to sampling the sets T 1, . . . , T p(`) . Thus, from now on we think

of sampling sets T1, . . . , T` as sampling T 1, . . . , T p(`) instead. For the rest of this section let

j ∈ [p(`)] , and let T [j] def= ∪i∈[j]T i .

Basic pair Let C ⊆ T [j] , and R ⊆ C , then the pair (R, C) is called a j -basic pair. For
the rest of the section assume that (R, C) is a j -basic pair, and R = {r1, . . . , rn} .

Remark 5.3. Whenever we consider a j -basic pair we assume that the sets T 1, . . . , T j are

�xed, that is, they have been sampled already, but the remaining sets T j+1, . . . , T p(`) haven't

been sampled yet.

Index function The j-index function, denoted I [j] , is the function from T [j] to the natural

numbers (including zero) in [[`]] , that is, I [j] : T [j] → [[`]] such that I [j](u) is the (subscript)

index of the set in
{

T j
i

}
j∈[p(`)],i∈[[`]]

that contains u . We stress that for large N the proba-

bility that we hit a vertex u twice or more, is negligible, so we disregard this event. By this
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assumption it follows that I [j+1](u) = I [j](u) for every u ∈ T [j] . For shorthand, we call the

value I [j](u) the index of u .

We �abuse� this notation and denote by I [j](R) the sequence of length |R| de�ned by order-

ing in non-increasing order the index value of r ∈ R , that is, I [j](R) def= (I [j](rσ(1)), . . . , I [j](rσ(n)))

where σ ∈ Sn , and I [j](rσ(1)) ≥ · · · ≥ I [j](rσ(n)) .

Remark 5.4. For the rest of this section let Â be the lexicographic order on varied length

sequences of integers de�ned as follows. Let a = (a1, . . . , am) and b = (b1, . . . , bm) where

m ∈ N be sequences of integer numbers. Then, we say that a Â b if and only if the �rst

element ai that di�ers from the corresponding bi is greater than bi (for some i ∈ [m] ). For

two sequences with di�erent length, pad the shorter one with −1 's, and then use the previous

de�nition. For example, (a1, . . . , am−1) Â (b1, . . . , bm) if and only if (a1, . . . , am−1,−1) Â
(b1, . . . , bm) .

Generated knowledge submatrix We de�ne the j -generated knowledge submatrix, de-

noted K[j][R, C] to be the |R| × |C| knowledge submatrix such that

kr,c
def=





gr,c I [j](r) + I [j](c) ≤ `

∗ otherwise
.

Observe that the index value of the vertices determines the structure of the generated knowledge

submatrix. From now on, we think about the rows R and columns C of K as being ordered

by their index value in increasing order. Therefore, for r ∈ R we have that K[{r} , C] ∈
∪k∈[|C|] {0, 1}k × {∗}|C|−k .

Remark 5.5. Whenever we say that a function e(`) is negligible in ` we mean that e(`) =

O(exp(−poly(`))) ; that is, e(`) decreases exponentially in ` .

It will be convenient to use the logarithm of the reciprocal of the density of sets rather than

the density itself.

De�nition 5.6 (Logarithm of the reciprocal of density). De�ne ϕ : 2[N ] → N such that

ϕ(U) def= dlog N
|U |e .

Note that for W ⊆ U ⊆ [N ] , we have that ϕ(W ) ≥ ϕ(U) . The following proposition is a

simple consequence of the de�nition of ϕ . The following proposition is a trivial fact.
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Proposition 5.7. Let U ⊆ [N ] , and let T ′ be a uniformly selected subset of [N ] such that

|T ′| = poly(`) · 2ϕ(U) . Then, with probability 1− e(`) such that e(`) is negligible in ` , there is

a vertex u ∈ T ′ ∩ U .

Proof. First note that,

|U |
N

= 2− log N
|U| ≥ 2−dlog N

|U| e = 2−ϕ(U).

Thus, the probability that the sample T ′ of size poly(`) · 2−ϕ(U) misses U is exponentially

decreasing in poly(`) . ¥

Nice pair During this work we will consider a special kind of j -basic pair called j -nice

pair.

De�nition 5.8 (Nice pair). Let (R,C) be a j -basic pair, and let K
def= K[j][C,R] be the

generated matrix. We say that the pair (R, C) is a j -nice pair if the following hold:

1. For r ∈ R , we have that I [j](r) ≤ ϕ(Vr(K)) , where Vr as in Eq. (2.1).

2. R are pairwise inconsistent rows in K (see De�nition 2.8).

5.3.2 The Increasing Lemma

The analysis of Algorithm 5.2 (when applied to G that is ε -far from B(H) ) is based on the

following �Increasing Lemma�.

Lemma 5.9 (Increasing Lemma). Let (R, C) be a j -nice pair. If K[R, C] is H-mappable,

then with probability at least 1 − e(`) where e(`) is negligible in ` , over the choice of T j+1 ,

there is a (j + 1) -nice pair (R′, C ′) such that I [j+1](R′) Â I [j](R) .

Recall that R′ ⊆ C ′ ⊆ T [j+1] , which explains the role of T j+1 in the statement. We will

�rst show that the correctness of Algorithm 5.2 follows from Lemma 5.9, and later prove this

lemma.

Algorithm 5.2 rejects G with constant probability Suppose that T 1 was sampled.

Then, it contains a (trivial) 1 -nice pair; speci�cally, consider any u ∈ T 1
0 , and the pair

(R1, C1)
def= ({u} , {u}) . The 1-by-1 matrix K = K[R1, C1] , has pairwise inconsistent rows.

Moreover, ϕ(Vu(K)) ≥ 0 and I [1](u) = 0 , so, I [1](u) ≤ ϕ(Vu(K)) . Thus, the pair (R1, C1) is
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1 -nice pair. Assume, for now, that any application of Lemma 5.9 produces a nice pair. Next,

for any j > 1 , let (Rj−1, Cj−1) be a (j − 1) -nice pair. If this pair is not H -mappable, then

the algorithm rejects and we are done. Otherwise, let (Rj , Cj) be the result of applying the

�Increasing Lemma� on (Rj−1, Cj−1) . By this lemma we have that I [1](R1) ≺ I [2](R2) ≺ . . . .

Observe that the numbers of sequences containing elements in [[`]] of length at most t is
∑

k∈[t](` + 1)k ≤ 2 · (` + 1)t < p(`) . Therefore, after applying Lemma 5.9 for p(`) times

(assuming the algorithm had not rejected already), it hods that I [p(`)](Rp(`)) /∈ ∪k∈[t][[`]]k so

K[Rp(`), Cp(`)] is not H -mappable, because
∣∣Rp(`)

∣∣ > t , so the algorithm rejects. Since we

apply Lemma 5.9 at most p(`) times, the probability that some application will not result a

nice pair is negligible in ` (by a union bound).

5.3.3 Proof of Increasing Lemma

We start by de�ning three operations on basic pairs. Then, we discuss under which conditions

each of these operations preserves the niceness property. Then, we prove Lemma 5.11 and

Lemma 5.13, which are the main ingredients of proof of the Increasing lemma. Lastly, we

prove the Increasing lemma.

Operation on basic pairs For the rest of this section let (R,C) be a j -basic pair,

K
def= K[j][R, C] be the corresponding generated matrix, r ∈ R , and u ∈ T j+1 , that is,

I [j+1](u) is well de�ned. Then, we de�ne three operations on (R, C) . Their names are given

based on the e�ect each one has on the corresponding generated knowledge submatrix.

• Adding column This operation simply adds u to the set C . Consider the matrix

K ′ def= K[j+1][R, C ∪ {u}] . E�ectively, K ′ is K with added column u where entries in

column u are determined by the value of I [j+1](u) and the index values of vertices in R .

• Adding row and column This operation adds u to both sets R and C . Consider

the matrix K ′ def= K[j+1][R ∪ {u} , C ∪ {u}] . E�ectively K ′ is K with added row u and

column u , where the values in row u and column u are determined by the value of

I [j](u) and the index values of vertices in R and C .

• Truncating rows The truncating rows operator, ϑr , takes the elements in R with

index value greater or equal to I [j](r) and omits the rest. Formally, let ϑr(R, C) def=

(R′, C ′) such that R′ def=
{

v ∈ R : I [j](v) ≥ I [j](r)
}

and C ′ def= C ; that is, R′ consists
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of vertices with index value greater equal to the index value of r . If we think of rows of

K (the set R ) as being ordered in increasing order by their index value, then, e�ectively,

this operator removes the rows before row r .

Next, we prove that the �adding column� operator preserves the niceness of a pair, that is,

if we add column to a j -nice pair, then the result is a (j + 1) -nice pair.

Proposition 5.10 (adding a column). (R, C ∪ {u}) is a (j + 1) -nice pair.

Proof. Let (R′, C ′) def= (R,C ∪{u}) , and K ′ def= K[j+1][R′, C ′] . Since K ′ is the matrix K with

added column u , the matrix K ′ has pairwise inconsistent rows (recall R′ = R ). Next we turn

to condition 2 in De�nition 5.8. Let r ∈ R (⊆ T [j]) . Then it follows that Vr(K ′) ⊆ Vr(K) ,

because C ⊆ C ′ . So,

I [j+1](r) = I [j](r) De�nition of I

≤ ϕ(Vr(K)) (R, C) is a j-nice pair

≤ ϕ(Vr(K ′)) Vr(K ′) ⊆ Vr(K).

Therefore, I [j+1](r) ≤ ϕ(Vr(K ′)) , and (R′, C ′) is a (j + 1) -nice pair. ¥

Clearly, the �truncating rows� operator preserves the niceness property; that is, if we apply

it on a j -nice pair, then the result is a j -nice pair as well.

The following lemma states that if it happens that L(K) (see Eq. 2.2) is big enough, then

with high probability, over sampling T j+1 , there exists a vertex u ∈ T j+1 ∪L(K) . Moreover,

if we add u into the rows and columns and then apply the corresponding �truncating row�

operator (that is ϑu ), the result is a (j + 1) -nice pair.

Lemma 5.11 (truncating a row). Suppose that ϕ(L(K)) ≤ ` . Then, with probability 1− e(`)

where e(`) is negligible in ` , over sampling T j+1 , there exists u ∈ T j+1 ∩ L(K) such that

ϑu(R ∪ {u} , C ∪ {u}) is a (j + 1) -nice pair.

Proof. Let s
def= ϕ(L(K)) , then s ≤ ` and |L(K)| ≥ εN . Using Proposition 5.7 it follows that

Pr
T j+1

[T j+1 ∩ L(K) 6= ∅] ≥ Pr
T j+1

s

[T j+1
s ∩ L(K) 6= ∅] > 1− e(`).

Assume that this is indeed that case, and let u ∈ T j+1 ∩ L(K) . Let (R′, C ′) def= ϑu(R ∪
{u} , C ∪ {u}) and K ′ def= K[j+1][C ′, R′] . By Proposition 5.10, (R, C ∪ {u}) is a (j + 1) -nice
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pair. Moreover,

I [j+1](u) = ϕ(L(K)) u ∈ T j+1
s , and s = ϕ(L(K))

≤ ϕ(Vu(K ′)) Vu(K ′) ⊆ L(K)

Therefore, we conclude that for r ∈ R ∪ {u} , it holds that I [j+1](r) ≤ ϕ(Vr(K ′)) . So,

Requirement 1 in De�nition 5.8 follows, since R′ ⊆ R∪{u} . Next, it is left to show that row u

in the matrix K ′ is inconsistent with each row r ∈ R∩R′ ; that is, K ′[{r} , C ′] 6≈ K ′[{u} , C ′] .

Let r ∈ R ∩R′

χC(u) 6≈ K[{r} , C] for r ∈ R, because u ∈ L(K)

⇓

kr,c 6≈ χ{c}(u) for some c ∈ C

= gu,c by de�nition of a signature

⇓

kr,c 6= ∗ by de�nition of ≈

⇓

I [j](c) + I [j](r) ≤ ` by de�nition of K

⇓

I [j+1](c) + I [j+1](r) ≤ ` by de�nition of I

Recall that for every r ∈ R′ it follows that I [j](u) ≤ I [j](r) , so

I [j+1](c) + I [j+1](u) ≤ ` for r ∈ R ∩R′

⇓

k′u,c = gu,c by de�nition of K ′

6≈ kr,c see above

= k′r,c K is a submatrix of K ′

Therefore, k′u,c 6≈ k′r,c , so K ′[{r} , C ′] 6≈ K ′[{u} , C ′] . ¥
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Proposition 5.12 (truncating a row �increases order�). For u ∈ T j+1 ∩ L(K) , it holds that

(R′, C ′) def
= ϑu(R ∪ {u} , C ∪ {u}) satis�es I [j+1](R′) Â I [j+1](R) .

Proof. Suppose that m
def= |R| , and let I [j+1](R) = (n1, . . . , nm) . Let n′ def= I [j+1](u) and

I [j+1](R′) = (n1, . . . , nk, n
′) , for some k ∈ [m] (recall n1 ≤ · · · ≤ nk ≤ n′ ). Now, if k = m

the proposition follows by the de�nition of Â . Otherwise, 1 ≤ k < m , but in this case (by

de�nition of ϑu ) we have that nk+1 < n′ , so the proposition follows. ¥

The following lemma is the �nal ingredient in the proof of the Increasing Lemma. Suppose

that (R, C) is a j -nice pair and that K = K[j][R, C] is H -mappable. Then, the lemma states

that if the size of L(K) is small, then with high probability the sample T j+1 contains a vertex

w such that L(K ′) is large, where K ′ def= K[j+1][R, C ∪ {w}] . Recall that C ⊆ T [j] , R ⊆ R

and R
def= {r1, . . . , rn} . For shorthand let Vi

def= Vri(K) for i ∈ [n] , and L
def= L(K) .

Lemma 5.13. Suppose that ϕ(L) > ` , and R is H -mappable. Then, there exists index

m ∈ [[`]] and with probability 1− e(`) , where e(`) is negligible in ` , there is w ∈ T j+1
`−m such

that ϕ(L(Kw)) ≤ m , where Kw def
= K[j+1][(R, C ∪ {w})] .

Proof. Using the fact that K is H -mappable and that (R, C) is a j -nice pair, there exists a

candidate blow-up mapping µ . Since G is ε -far from any B(H) , the number of violating pairs

in V iolµ is at least εN2 . De�ne V
def= ∪i∈[n]Vi , and note that (V, L) is a partition of [N ] .

Because ϕ(L) > ` , thus |L| ≤ ε
2N . Thus, the number of violating pairs in V iolµ([N ], L) ≤

ε
2N2 , so the number of violating pairs in V iolµ(V, V ) ≥ ε

2N2 . One can readily show that there

exist indices i, j ∈ [n] and m ∈ [[`]] , a set W ⊆ Vj with ϕ(W ) ≤ ` −m such that for each

w ∈ W there exists a set Uw ⊆ Vi with ϕ(Uw) ≤ m , and {w} × Uw ⊆ V iolµ . A proof of the

latter assertion appears in appendix B.1.

Let s
def= ϕ(W ) , then with probability 1 − e(`) such that e(`) is negligible in ` , there is

w ∈ W ∩ T j+1
s , hence, I [j+1](w) ≤ ` −m . By Proposition 5.10, it follows that (R, C ∪ {w})

is a (j + 1) -nice pair. For shorthand let V w
i

def= Vri(K
w) for i ∈ [n] , and Lw def= L(Kw) where

Kw def= K[j+1][R, C ∪{w}] . Thus, (V w
1 , . . . , V w

n , Lw) is a partition of [N ] . Our goal is to prove

that ϕ(Lw) ≤ m . We shall achieve this by proving that Uw ⊆ Lw . We start by considering
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ri and rj .

I [j](rj) ≤ ϕ(Vj) (R,C) is a j-nice pair

≤ ϕ(W ) W ⊆ Vj

≤ `−m Proposition B.1

I [j](ri) ≤ ϕ(Vi) (R,C) is a j-nice pair

≤ ϕ(Uw) Uw ⊆ Vi

≤ m Proposition B.1

Combining both bounds we get I [j](ri) + I [j](rj) ≤ ` , which implies, kri,rj = gri,rj (by

de�nition of K ). Turning to w itself, we have

χC(w) ≈ K[{rj} , C] w ∈ Vj

⇓

gw,ri ≈ krj ,ri

⇓

gw,ri = grj ,ri ri ∈ R (⊆ C), K is a symmetric, and kri,rj = gri,rj (5.1)

Therefore, gw,ri = grj ,ri . Recalling that µ is a candidate blow-up mapping (based on the fact

that K is H -mappable), for each r, r′ ∈ R it holds that kr,r′ ≈ hµ(r),µ(r′) (in the adjacency

matrix representing H ). Note that a key point is that for all v′ ∈ V the value of µ(v′) is not

e�ected by the arbitrary assignment of L . Thus,

gw,ri = grj ,ri Eq. (5.1)

= krj ,ri see above

≈ hµ(rj),µ(ri) µ restricted to R is an H-mapping

= hµ(w),µ(ri) w ∈ Vj , so µ(w) = µ(rj) (by de�nition of µ)

⇓

gw,ri = hµ(w),µ(ri) (5.2)
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Now, consider an arbitrary u ∈ Uw . Then,

gw,u 6= hµ(w),µ(u) {w} × Uw ⊆ V iolµ

= hµ(w),µ(ri) u ∈ Vi, so µ(u) = µ(ri) (by de�nition of µ)

= gw,ri by Eq. (5.2)

= kw
w,ri

I [j+1](w) + I [j+1](ri) ≤ `

⇓

gw,u 6≈ kw
w,ri

(5.3)

Next, we prove that u ∈ L(Kw) .

χC(u) 6≈ K[{r} , C] for every r ∈ R\ {ri}, becuase u ∈ Vi

⇓

χC∪{w}(u) 6≈ K[{r} , C ∪ {w}] (5.4)

Combining Eq. (5.3) and Eq. (5.4) we get that χC∪{w}(u) 6≈ K[{r} , C∪{w}] , for every r ∈ R

which means that u ∈ Lw . Thus, Uw ⊆ Lw , and the lemma follows. ¥

We are now ready to state and proof the Increasing lemma.

Proof of Increasing Lemma. Consider the following possible two cases regarding K =

K[j][R,C] .

• ϕ(L(K)) ≤ ` . Applying Lemma 5.11, with probability 1− e(`) where e(`) is negligible

in ` , over the choice of T j+1 , there is u ∈ T j+1 ∩ L(K) such that (R′, C ′) def= ϑu(R ∪
{u} , C ∪ {u}) is a (j + 1) -nice pair.

• ϕ(L(K)) > ` . Applying Lemma 5.13, there exists index m ∈ [[`]] such that with prob-

ability 1 − e(`) (again e(`) is negligible), over the choice of T j+1 , there is w ∈ T j+1

such that ϕ(L(Kw)) ≤ m where Kw def= K[j+1][R, C ∪ {w}] . By Proposition 5.10 the

pair (R, C ∪ {w}) is a (j + 1) -nice pair and ϕ(L(Kw)) ≤ ` . Now, in a situation similar

to the �rst case with respect to (R, C ∪ {w}) . By thinking of T j+1 as being sam-

pled it two blocks T j+1
1 and T j+1

2 each of size of the original T j+1 . We conclude

that with probability (1 − e(`))2 ≥ 1 − 2 · e(`) , there is u ∈ T j+1 ∩ L(Kw) such that

(R′, C ′) def= ϑu(R ∪ {u} , C ∪ {u,w}) is a (j + 1) -nice pair.
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Observe, in each case, the last operator is the truncating operator. By Proposition 5.12 it

follows that I [j+1](R′) Â I [j](R) . ¥
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APPENDIX

A Lower bound of queries complexity
We reproduce the proof of [GR08] showing that Ω(1/ε) queries are required for testing any

graph property that is non-trivial for testing regardless the strategy of selecting queries, that

is, adaptively and non-adaptively. Recall that a graph property Π is non-trivial for testing if

there exists ε0 > 0 such that for in�nitely many N ∈ N there exist N -vertex graphs G1 and

G2 such that G1 ∈ Π and G2 is ε0 -far from Π . Thus,

Proposition A.1. Let Π be a property that is non-trivial for testing. Then, any tester for Π

has query complexity Ω(1/ε) .

Note that the claim holds also for general properties (i.e., arbitrary sets of functions).

Proof. Let ε0 > 0 be as in the de�nition, and consider any N ∈ N such that Π contains some

N -vertex graphs as well as some N -vertex graphs that are ε -far from Π . Let G0 be any

N -vertex graph that is ε -far from Π , let G1 ∈ Π be an N -vertex graph closest to G0 , and let

δ > ε denote the relative distance between G0 and G1 . Let D denote the set of vertex pairs

on which G0 and G1 di�er; indeed, |D| = δ ·N2 . Now, for every ε ≤ ε0 , consider a graph, G ,

obtained at random from G0 and G1 by uniformly selecting a random R ⊆ D of cardinality

ε ·N2 and letting G agree with G0 on all pairs in R and agree with G1 otherwise. Clearly,

any tester that makes o(ε0/ε) queries cannot distinguish G from G1 (because regardless of is

query selection strategy, its next query resides in R with probability at most |R|/|D| ≤ ε/ε0 ).

Thus, such a tester cannot decide correctly on both G and G1 (because G is ε -far from Π

whereas G1 ∈ Π ). Recalling that ε0 is a �xed constant, the proposition follows. ¥

We stress that by Proposition 2.4 it follows that being a blow-up of a �xed graph is non-

trivial. Hence, the lower bound of the query complexity applicable in our case.

B Trivial combinatorial fact
Proposition B.1. Assume that the conditions are as in Lemma 5.13, and that V iolµ(V, V ) >

ε
2N2 . Then, there exist indices i, j ∈ [n] and m ∈ [[`]] , a set W ⊆ Vj with ϕ(W ) ≤ `−m such

that for each w ∈ W there exists a set Uw ⊆ Vi with ϕ(Uw) ≤ m , and {w} × Uw ⊆ V iolµ .
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Proof. By assumption |V iolµ(V, V )| ≥ ε
2N2 . Because V1, . . . , Vn partition V , it follows that

there exists sets Vi and Vj such that

|V iolµ(Vi, Vj)| ≥ ε

2n2
N2 ≥ ε

2t2
N2.

For each m ∈ [[`]] let Wm be the following set

Wm
def=

{
v ∈ Vj : |V iolµ({v} , Vi)| ≥ N

2m

}
.

Since Wm−1 ⊆ Wm for 1 < m ≤ ` , each w ∈ Wm\Wm−1 satis�es

N

2m
≤ |V iolµ({w} , Vi)| < N

2m−1
.

Therefore,

∑̀

m=1

|Wm\Wm−1| · N

2m−1
+ |Vj | · N

2`
≥ ε

2t2
N2

and for ` ≥ log 1/ε + log 4t2 we have that,

∑̀

m=1

|Wm\Wm−1| N

2m−1
≥ (

ε

3t2
− 1/2`)N2 ≥ ε

4t2
N2.

Thus, there exists m∗ ∈ [[`]] such that

|Wm∗\Wm∗−1| N

2m∗−1
≥ ε

4t2`
N2,

hence,

|Wm∗\Wm∗−1| ≥ ε′

`
2m∗

N,

where ε′ def= 1
8t2

ε . Let W
def= Wm∗ , then |W | = |Wm∗ | ≥ ε′

` 2m∗
N , and ϕ(W ) ≤ ` − m∗ .

Moreover, by the de�nition of W for each w ∈ W , it follows that |V iolµ({w} , Vi)| ≥ N/2m∗ .

Let Uw def= { v ∈ Vi : (w, v) ∈ V iolµ } , thus, |Uw| ≥ N/2m∗ , and ϕ(U) ≤ m∗ . Lastly, by

de�nition of Uw , it follows that {w} × Uw ⊆ V iolµ . This completes the proof. ¥
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