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Abstract

In this thesis we study two remotely related cryptographic primitives: homomorphic
encryption and enhanced trapdoor permutations.

Our main result regarding homomorphic encryption shows that any private-key en-
cryption scheme that is weakly homomorphic with respect to addition modulo 2, can be
transformed into a public-key encryption scheme. The homomorphic feature referred to is
a minimalistic one; that is, the length of a homomorphically generated encryption should
be independent of the number of ciphertexts from which it was created. Our resulting
public-key scheme is homomorphic in the following sense. If i + 1 repeated applications
of homomorphic operations can be applied to the private-key scheme, then i repeated
applications can be applied to the public-key scheme.

In an independent part of the thesis, we study (enhanced) trapdoor permutations
(TDPs). We note that in many setting and applications trapdoor permutations behave
unexpectedly. In particular, a TDP may become easy to invert when the inverter is
given auxiliary information about the element to be inverted (e.g., the random coins that
sampled the element). Enhanced TDPs were defined in order to address the latter special
case, but there are settings in which they apparently do not suffice (as demonstrated by
the introduction of doubly-enhanced TDPs). We study the hardness of inverting TDP
in natural settings, which reflect the security concerns that arise in various applications
of TDPs to the construction of complex primitives (e.g., Oblivious Transfer and NIZK).
For each such setting, we define a corresponding variant of the notion of an enhanced
TDP such that this variant is hard to invert in that setting. This yields a taxonomy of
variants, which lie between enhanced TDPs and doubly-enhanced TDPs. We explore this
taxonomy and its relation to various applications.
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Chapter 1

Introduction

In this thesis we explore two important cryptographic primitives: homomorphic encryp-
tion and (enhanced) trapdoor permutations. The thesis is divided into two main chapters,
one for each primitive.

In Chapter 2 we study the notion of homomorphic encryption. A more extensive
introduction to homomorphic encryption is provided in Chapter 2 but loosely speaking,
homomorphic encryption refers to the ability, given encryptions Ee(m1), . . . , Ee(mk), to
generate an encryption Ee(m

∗) of a related message m∗ = f(m1, . . . ,mk) for some (effi-
ciently computable) function f . Homomorphic encryption can be defined for both private
and public-key encryption. The main result presented in Chapter 2 relates the notions
of private and public-key homomorphic encryption by constructing a public-key scheme
based on any private-key scheme that is homomorphic w.r.t addition modulo 2 while
(partially) retaining the homomorphic properties of the underlying private-key scheme.

In Chapter 3, we study (enhanced) trapdoor permutations. Informally, a trapdoor
permutation is an efficiently computable permutation that is hard to invert in general but
becomes easy to invert given a secret trapdoor. A more detailed exposition is presented
in Chapter 3, which studies the hardness of inverting trapdoor permutations in natural
settings. These settings reflect some additional information that is given to the inverting
algorithm that may make inverting the permutation an easy task. For each such setting
we define a corresponding variant of an enhanced trapdoor permutation that is hard to
invert in that setting. We explore connections between these variants and their relation
to applications such as oblivious transfer and non-interactive zero-knowledge proofs.
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Chapter 2

Homomorphic Encryption: from
Private-Key to Public-Key

2.1 Introduction

Homomorphic encryption is a paradigm that refers to the ability, given encryptions of
some messages, to generate an encryption of a value that is related to the original mes-
sages. Specifically, this ability means that from encryptions of k messages m1, . . . ,mk it
is possible to generate an encryption of m∗ = f(m1, . . . ,mk) for some (efficiently com-
putable) function f . Ideally, one may want the homomorphically generated encryption
of m∗ to be distributed identically (or statistically close) to a standard encryption of m∗.
We call schemes that have this property strongly homomorphic. Indeed, some proposed
encryption schemes are strongly homomorphic w.r.t some algebraic operations such as
addition or multiplication (e.g. Goldwasser-Micali [GM84], El-Gamal [Gam84]).

For some applications, it seems as though strongly homomorphic encryption is an
overkill. There are weaker notions of homomorphic encryption that might be easier to
construct and still suffice for these applications. The very minimal requirement is that a
homomorphically generated encryption decrypts correctly to the corresponding message.
Alas, this weak requirement does not seem to be useful as is, because it captures schemes
that we do not really consider to be homomorphic: Actually, any encryption scheme
can be slightly modified to satisfy this weak requirement w.r.t any efficient operation1.
A more meaningful notion is obtained by restricting the length of the homomorphically
generated encryption. Specifically, we call an encryption scheme weakly homomorphic
if homomorphically generated encryptions properly decrypt to the correct message and
their lengths depend only on the security parameter and the message length (and not on
the number of input ciphertexts).

1Consider implementing the homomorphic evaluation algorithm as the identity function. That is,
given ciphertexts and a description of an operation, just output both. Then, modify the decryption
algorithm to first decrypt all the ciphertexts and then apply the operation to the decrypted messages.
Thus, homomorphic evaluation is delegated to the decryption algorithm that, using the decryption key,
can trivially evaluate the required operation.

3



2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

2.1.1 Private-Key vs. Public-Key

When presenting homomorphic encryption, we did not specify whether we consider
private-key or public-key encryption schemes. Indeed, one can define strong/weak homo-
morphic encryption in both settings (with only minor differences). The focus of this paper
is showing the connection between public-key and private-key homomorphic encryption.

The easy direction is showing that a public-key homomorphic encryption scheme can
be transformed into a private-key homomorphic scheme. This transformation is quite
simple and involves only a minor issue. Intuitively, it seems as though any public-key
homomorphic scheme is a private-key homomorphic scheme. The only problem is that in
the public-key setting (in contrast to the private-key one), the homomorphic evaluation
algorithm is also given the encryption-key. A simple transformation that addresses this
issue is to append the encryption-key to each ciphertext. The resulting private-key scheme
clearly retains the homomorphic properties of the public-key scheme (this holds for both
strongly and weakly homomorphic schemes).

The harder direction is showing that a private-key homomorphic encryption scheme
implies a public-key one. This direction will be addressed by our main result, Theo-
rem 2.3, which shows how to construct a public-key encryption scheme from any private-
key scheme that is weakly homomorphic w.r.t addition modulo 2. The resulting public-
key scheme partially retains the homomorphic properties of the private-key scheme (see
Section 2.1.2).

We note that it is quite easy to transform a strongly homomorphic private-key scheme
into a strongly homomorphic public-key one. In fact, this transformation was used by
Barak [Bar10] in his exposition of the work of van Dijk et al. [vDGHV10]. For further
discussion, see Section 2.1.3.

2.1.2 Homomorphic Properties of the Public-Key Scheme

So far we have described homomorphic evaluation as a one-shot process, however one
can consider repeated application of the homomorphic evaluation algorithm. For strongly
homomorphic encryption it is possible to do this because homomorphically generated
values are identical (or statistically close) to real ciphertexts. For weakly homomorphic
encryption, the homomorphically generated values can completely differ from real cipher-
texts, hence it is unclear that it is possible to keep computing on such homomorphically
generated data. Gentry et al. [GHV10] called a scheme that supports i such repeated
applications an i-hop homomorphic encryption scheme.

The public-key scheme that we construct is homomorphic in the following sense. If the
original private-key scheme is (i+1)-hop homomorphic w.r.t some set of operations (which
must include addition modulo 2), then the public-key scheme is i-hop homomorphic w.r.t
the same set of operations. That is, we lose one application of the homomorphic operation
in the construction.

4



2.1 Introduction

2.1.3 Technique

The intuition for how to move from private to public key can be seen in a more straight-
forward manner in the case of strongly homomorphic schemes. The following construction
was suggested implicitly in [Bar10].

Let E and D be the respective encryption and decryption algorithm of a private-
key encryption scheme. Suppose that this encryption scheme is strongly homomorphic
w.r.t the identity function. That is, it is possible to “re-randomize”2 ciphertexts. Such
a scheme can be used to construct a public-key bit-encryption scheme3 as follows. The
(private) decryption-key is a key k of the private-key scheme and the (public) encryption-
key consists of an encryption of 0 and an encryption of 1 (i.e. Ek(0) and Ek(1)). To
encrypt a bit σ just re-randomize the ciphertext corresponding to σ. To decrypt, apply
the private-key decryption algorithm using k (i.e. Dk).

The security of this construction follows from the fact that after re-randomization, all
information on the original ciphertext, which was re-randomized, is completely lost. Since
weakly homomorphic encryption does not guarantee this property, this transformation
does not work and we use a more complicated construction, outlined next.

We construct a public-key bit-encryption scheme based on any private-key scheme
that is weakly homomorphic w.r.t addition modulo 2. Our decryption key is also a key k
of the private-key scheme but the public-key is no longer a single encryption of 0 and 1,
but rather a sequence of many encryptions of each. Specifically, the public-key consists
of two lists of ciphertexts; the first is a list of ` encryptions of 0 and the second is a list
of ` encryptions of 1. To encrypt a bit σ we choose a random subset S ⊆ [`] that has
parity σ (i.e. |S| ≡ σ mod 2). We use S to select ` ciphertexts from the public key by
selecting the i-th ciphertext from the first list if i /∈ S (and from the second if i ∈ S). By
homomorphically adding the selected ciphertexts modulo 2, we obtain a ciphertext that
correctly decrypts to σ.

Most of this work deals with showing that the construction is indeed semantically-
secure. To prove security we consider, as a mental experiment, setting both lists in the
public-key to be encryptions of 0. Because the mental experiment is computationally in-
distinguishable from the actual scheme, proving that the original scheme is secure reduces
to showing that when both lists consist of encryptions of 0, it is essentially impossible to
find the parity of the random subset used in the homomorphic encryption process.

We prove the latter via an information-theoretic theorem that may be of independent
interest: Let X1, . . . , X` and Y1, . . . , Y` be independent and identically distributed over a
finite set Ω and let S be a random subset of [`]. We consider the list Z, defined as Zi = Xi

for i /∈ S and Zi = Yi for i ∈ S. The theorem states that it is essentially impossible to
guess the parity of S based on X, Y and m bits of information on Z. That is, any such
guess will be correct with probability that is bounded by (roughly) 1

2
+ 2`−m. The proof

2This means that there exists an algorithm RR such that for any encryption c of a bit b, the output
of RR(c) is distributed identically to Ee(b).

3A bit-encryption scheme is a public-key encryption scheme that only handles single-bit messages.
Such schemes suffice to construct full-fledged public-key encryption schemes (see [Gol04]).
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2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

of the information-theoretic theorem makes use of the Efron-Stein decomposition [ES81],
an extension of Fourier analysis for product distributions.

We mention that our construction is secure even if we use a slightly weaker defini-
tion of homomorphic encryption. Specifically, the length of homomorphically generated
encryptions can be a mildly increasing function of the number of input ciphertexts.

2.1.4 Application of our Construction to Fully-Homomorphic
Encryption

Our generic transformation from private-key to public-key encryption can be used as a
general methodology for constructing (weakly) homomorphic public-key encryption. One
application of this methodology, which actually motivated this work, is to simplify the
presentation of the [vDGHV10] fully-homomorphic encryption scheme.

A fully-homomorphic encryption scheme is an encryption scheme that is homomorphic
w.r.t any (efficiently computable) function. The concept of fully-homomorphic encryption
was first proposed by Rivest et al. [RAD78] in the 70’s, but the first concrete proposal
was only made recently in the breakthrough work of Gentry [Gen09].

Building on the work of Gentry [Gen09], van Dijk et al. [vDGHV10], proposed a
simpler fully-homomorphic public-key scheme. Actually, they propose several variants
of the same scheme. Barak [Bar10] noted that one of these variants is in fact fully-
homomorphic in the strong sense, that is, homomorphically evaluated encryptions are
distributed statistically close to actual encryptions. However, this variant requires a
stronger assumption than the other variants that are only weakly homomorphic.

From a high-level point of view, both the weak and strong variants of the fully ho-
momorphic scheme are constructed by first proposing a simple private-key homomor-
phic scheme that is only “somewhat” homomorphic (that is, homomorphic w.r.t some
restricted functions) and then showing how to modify this scheme into a somewhat ho-
momorphic public-key one. The last step uses the bootstrapping technique of [Gen09] to
transform the somewhat homomorphic scheme into a fully-homomorphic one.

The aforementioned modification, from private-key to public-key, uses specific prop-
erties of the [vDGHV10] scheme. We suggest to use our transformation as an alternative,
where the advantage is that our transformation is generic and does not use specific prop-
erties of their scheme. Our transformation can be applied to both the strong and weak
variants of the somewhat homomorphic private-key scheme to obtain a correspondingly
strong/weak somewhat homomorphic public-key scheme. Note that although the some-
what homomorphic public-key scheme produced by our transformation is slightly different
from the one of [vDGHV10], the last step of bootstrapping (see [Gen09]) and reducing the
(multiplicative) depth of the decryption circuit can still be applied to our construction.

An alternative, and perhaps more intuitive way to present the [vDGHV10] scheme
was taken by Barak [Bar10] for the strongly homomorphic variant of [vDGHV10]. Barak
focuses only on presenting the simpler fully-homomorphic private-key scheme, since the
transformation to a public-key one is easy (as described in Section 2.1.3). Using our
result, it is possible to extend Barak’s approach to the weakly homomorphiv variant of

6



2.2 Preliminaries

Somewhat Homomorphic
Private-Key Scheme

Somewhat Homomorphic
Public-Key Scheme

Fully Homomorphic
Private-Key Scheme

Fully Homomorphic
Public-Key Scheme

[vDGHV10] or
Theorem 2.3

[Gen09] +
[vDGHV10]

[Gen09] +
[vDGHV10]

Theorem 2.3

Figure 2.1: Constructing the weakly homomorphic variant of the [vDGHV10] fully-
homomorphic public-key scheme.

the [vDGHV10] scheme. Thus, we suggest to simplify the presentation of the [vDGHV10]
scheme by focusing only on showing a (weakly) fully-homomorphic private-key scheme
and then, using our generic transformation, to obtain a (weak) fully-homomorphic public-
key one. The two approaches to presenting the weakly homomorphic variant of the
[vDGHV10] scheme, that were outlined in this section, are depicted in Figure 2.1.

2.2 Preliminaries

For a set S, we denote by x ∈R S a uniformly distributed element x ∈ S. Similarly we
denote by X ⊆R S a uniformly distributed random subset of S.

Non-Standard Notation For every ` ∈ N, random variables X = X1, . . . , X` and
Y = Y1, . . . , Y` and set S ⊆ [`], we denote by XSYS, the random variable Z = Z1, . . . , Z`
where Zi = Xi for i /∈ S and Zi = Yi for i ∈ S.

2.2.1 Encryption Schemes

We follow notations and definitions of [Gol01, Gol04]. In particular we use their definition
of semantically secure encryption schemes, both in the private-key and public-key settings.
Throughout this paper we restrict our attention to bit-encryption schemes, i.e., schemes
that encrypt a single bit. For simplicity, we say public-key (resp. private-key) encryption
when we actually mean public-key (resp. private-key) bit-encryption.

7



2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

2.2.2 Homomorphic Encryption

Since we only consider weakly homomorphic encryption, from here on, when we say
homomorphic we always mean in the weak sense as defined next.

Definition 2.1. (G,E,D,H) is a homomorphic private-key encryption scheme with re-
spect to a set of families of polynomial-sized circuits C if (G,E,D) are a private-key
encryption scheme, H is a probabilistic polynomial-time algorithm and there exists a
polynomial m(·) such that for every circuit family {Ck}k∈N ∈ C, n ∈ N, polynomial `(·),
keys (e, d) ← G(1n), and ` = `(n) single bit messages b1, . . . , b` ∈ {0, 1} the following
holds:

• Correct decryption of homomorphically generated encryptions:

Dd (H (C`, Ee(b1), . . . , Ee(b`))) = C` (b1, . . . , b`) .

• The length of homomorphically generated encryptions is independent of `:

|H (C`, Ee(b1), . . . , Ee(b`))| ≤ m(n).

Homomorphic public-key encryption is defined analogously (with the modification
that H gets the public encryption-key as an additional input).

2.2.3 i-Hop Homomorphic Encryption

The homomorphic evaluation algorithm in Definition 2.1 is only required to operate on
ciphertexts that were output by the encryption algorithm. The definition does not specify
what happens if the homomorphic evaluation algorithm is applied to its own output.
Gentry et al. [GHV10] defined an i-hop homomorphic encryption scheme as a scheme for
which it is possible to apply the homomorphic evaluation algorithm consecutively i times.

Let G,E,D,H be a homomorphic encryption scheme w.r.t to a set of circuit families
C. For a given encryption key e, we denote by W0(e) the set of all valid ciphertexts of
the encryption scheme, i.e., all possible outputs of the encryption algorithm Ee applied
to a single bit message. For j ≥ 1, we define Wj(e) to be the set of all possible outputs
of the homomorphic evaluation algorithm H when applied to elements in Wj−1(e) and a
circuit C ∈ C. We say that elements in Wj(e) are j-th level ciphertexts.

Definition 2.2. (G,E,D,H) is an i-hop homomorphic private-key encryption scheme
with respect to a set of families of polynomial-sized circuits C if (G,E,D) are a private-
key encryption scheme, H is a probabilistic polynomial-time algorithm and there exists a
polynomial m(·) such that for every circuit family {Ck}k∈N ∈ C, n ∈ N, polynomial `(·),
keys (e, d) ← G(1n), 0 ≤ j ≤ i, and ` = `(n), ciphertexts w1, . . . , w` ∈ Wj(e) of level j
the following holds:

• Correct decryption of homomorphically generated encryptions:

Dd (H (C`, w1, . . . , w`)) = C` (Dd(w1), . . . , Dd(w`)) . (2.1)

8



2.3 Constructing a Public-Key Scheme from a Homomorphic Private-Key
Scheme

• The length of homomorphically generated encryptions is independent of `:

|H (C`, w1, . . . , w`))| ≤ m(n). (2.2)

Homomorphic public-key encryption is defined analogously, with the modification that
H receives the encryption-key as an additional input.

2.3 Constructing a Public-Key Scheme from a Ho-

momorphic Private-Key Scheme

In this section we show how to construct a public-key scheme based on any private-key
scheme that is homomorphic w.r.t addition modulo 2.

Theorem 2.3. Any multiple-message semantically secure private-key encryption scheme
that is homomorphic with respect to addition modulo 2 can be transformed into a seman-
tically secure public-key encryption scheme. Furthermore, if the private-key scheme is
(i+ 1)-hop homomorphic w.r.t to a set of circuit families, then the constructed public-key
scheme is i-hop homomorphic w.r.t to the same set.

The discussion on the homomorphic properties of the scheme (i.e. the furthermore
part) is presented in Section 2.5. To prove Theorem 2.3, we assume the existence of a
homomorphic private-key scheme and use it to construct a public-key scheme (Construc-
tion 2.4). The main part of the proof is showing that this public-key scheme is indeed
semantically secure.

Construction 2.4. Let (G,E,D,H) be a homomorphic private-key scheme with respect
to addition modulo 2 and let m(·) be the polynomial as in Definition 2.1. We denote by
H⊕ the algorithm H when applied to the circuit family that computes addition modulo 2.
The encryption scheme (G′, E ′, D′, H ′) is defined as follows:

Key Generation - G′(1n) : Set ` = 10m(n). Select k ← G(1n), X = (X1, . . . , X`) and
Y = (Y1, . . . , Y`) such that Xi ← Ek(0) and Yi ← Ek(1) (with fresh random coins
for each i). Output X, Y as the public-key and k as the private-key.

Encryption - E ′X,Y (σ) : Select a random subset S ⊆R [`] that has size of parity σ (i.e.
|S| ≡ σ mod 2) and output H⊕(XSYS) (recall that XSYS is a list of ` ciphertexts
that are encryptions of 1 for coordinates in S and encryptions of 0 elsewhere).

Decryption - D′k(c) : Output Dk(c).

Homomorphic Evalutation - H ′(C, (X, Y ), c0, . . . , c`): Output H(C, c0, . . . , c`).

We start by showing that the decryption algorithm correctly decrypts proper cipher-
texts. We then proceed to the main part of the proof, showing that Construction 2.4 is
indeed semantically secure. In Section 2.5 we discuss the homomorphic properties of the
scheme.

9



2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

Proposition 2.5. For every n ∈ N, σ ∈ {0, 1} and ((X, Y ) , k)← G′(1n):

D′k
(
E ′X,Y (σ)

)
= σ.

Proof. Based on the first property of homomorphic encryption (Definition 2.1),

D′k
(
E ′X,Y (σ)

)
= Dk (H⊕ (XSYS)) =

`
⊕
i=1

Dk(Ci)

where ⊕ denotes addition modulo 2, Ci = Yi for i ∈ S and Ci = Xi otherwise. Since D
decrypts correctly, Dk(Xi) = 0 and Dk(Yi) = 1. Therefore, D′k

(
E ′X,Y (σ)

)
= ⊕i∈S 1 =

|S| mod 2 = σ.

We proceed to the main part of the proof, showing that Construction 2.4 is semantically
secure.

Proposition 2.6. If (G,E,D) is a multiple-message semantically secure private-key
scheme then (G′, E ′, D′) is a semantically secure public-key scheme.

Proof. Assume toward a contradiction that (G′, E ′, D′) is not semantically secure. This
means that there exists a probabilistic polynomial-time adversary A′ and a polynomial
p(·) such that for infinitely many n ∈ N:

Pr
(X,Y ),k←G′(1n)

σ∈R{0,1}

[
A′
(
X, Y,E ′X,Y (σ)

)
= σ

]
>

1

2
+

1

p(n)
. (2.3)

To derive a contradiction, we consider n from this infinite set and construct a probabilis-
tic polynomial-time adversary A for the underlying private-key scheme. A receives 2`
ciphertexts (α1, . . . , α`, β1, . . . , β`) and will be shown to distinguish between the following
two cases:

• α1, . . . , α` are encryptions of 0 and β1, . . . , β` are encryptions of 1.

• α1, . . . , α`, β1, . . . , β` are encryptions of 0.

A operates as follows:

1. Set X = (α1, . . . , α`) and Y = (β1, . . . , β`).

2. Select S ⊆R [`].

3. Output 1 if A′(X, Y,H⊕(XSYS)) = |S| mod 2 and 0 otherwise.

Accordingly,

Pr
k←G(1n)
αj ,βj

[A (α1, . . . , α`, β1, . . . , β`) = 1] = Pr
k←G(1n)
X,Y,S

[A′ (X, Y,H⊕ (XSYS)) = |S| mod 2] .

10



2.3 Constructing a Public-Key Scheme from a Homomorphic Private-Key
Scheme

We proceed by analyzing A’s behavior in the two different cases. In the first case,
αi = Ek(0) and βi = Ek(1). Consequently, H⊕(XSYS) is distributed identically to an
encryption of a random bit under E ′ and so, by Eq. (2.3), it holds that

Pr
k←G(1n)
X,Y,S

[A′ (X, Y,H⊕ (XSYS)) = |S| mod 2] = Pr
(X,Y ),k←G′(1n)

σ∈R{0,1}

[
A′
(
X, Y,E ′X,Y (σ)

)
= σ

]
>

1

2
+

1

p(n)
.

In the second case, αi = βi = Ek(0). We argue that in this case for every n ∈ N and even
for an unbounded adversary A′,

Pr
k←G(1n)
X,Y,S

[A′ (X, Y,H⊕ (XS, YS)) = |S| mod 2] <
1

2
+ 2−0.2`+m(n)+1. (2.4)

Equation (2.4) follows from an information-theoretic theorem (Theorem 2.7) that will be
stated next and proved in Section 2.4.

Using Theorem 2.7, we conclude that A distinguishes between the two cases with non-
negligible probability, in contradiction to the multiple-message security of (G,E,D),

Information-Theoretic Theorem. Let Ω be a finite non-empty set and ` ∈ N. Let
µ1, . . . , µ` be distributions over Ω and µ = µ1 × · · · × µ` be a product distribution over
Ω`. Let X and Y be independent random variables identically distributed according to
µ over Ω`.

Theorem 2.7. For any `,m ∈ N and any functions h : Ω` → {0, 1}m and g : Ω` × Ω` ×
{0, 1}m → {0, 1}, it holds that

Pr
X,Y,S⊆R[`]

[g (X, Y, h(XSYS)) = |S| mod 2] <
1

2
+ 2−0.2`+m+1.

Equation (2.4) seems to follow immediately from Theorem 2.7 by setting A′ as g, H⊕
as h and having X and Y distributed as ` independent encryptions of 0 each. However,
there is a small subtlety - Theorem 2.7 addresses g and h that are deterministic functions,
in contrast to A′ and H that are probabilistic algorithms. Additionally, since X and Y
are distributed w.r.t to the same randomly chosen key, they are not product distributions
as required by Theorem 2.7.

Both issues are resolved by an averaging argument. If Eq. (2.4) does not hold for
some n ∈ N, then there exist random coins for A′, H and a fixed private key k for which
it does not hold. Once we fix these coins, A′ and H become deterministic functions.
Additionally, we set X and Y to each be distributed as ` encryptions of 0 under the fixed
key k, which is in particular a product distribution. Thus, the hypothesis that Eq. (2.4)
does not hold contradicts Theorem 2.7.

11



2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

2.4 Proof of Theorem 2.7

Theorem 2.7 considers a game in which a computationally unbounded adversary sees X,
Y and m bits of information on XSYS and needs to decide whether S is of even or odd
cardinality. In other words, the adversary specifies a function h : Ω` → {0, 1}m and based
on X, Y, h(XSYS) needs to find |S| mod 2. Theorem 2.7 states that winning this game
with probability noticeably better than 1

2
is impossible as long as m is sufficiently smaller

than `. Note that winning the game becomes easy if m is very large w.r.t `4 (as long as
the probability of a collision in each coordinate, i.e. Pr[Xi = Yi], is sufficiently small).
Thus, we are interested in the case m� `.

Organization. The proof of Theorem 2.7 uses the Efron-Stein decomposition, an ex-
tension of Fourier analysis for general product distributions. We begin by presenting this
decomposition, together with the relevant facts. We then turn to the actual proof of
Theorem 2.7.

2.4.1 Efron-Stein Decomposition

Recall that X and Y are independent random variables identically distributed by µ, a
product distribution over Ω`. We consider the inner-product space of functions from Ω`

to R, where the inner product of f and g is 〈f, g〉 def
= EX [f(X)g(X)]. We stress that the

expectation is over X (which is distributed according to µ). We use the convention that
lowercase x and y refer to elements in Ω` (in contrast to uppercase X and Y which are
random variables over Ω`).

Theorem 2.8 (Efron-Stein Decomposition [ES81]). Any function f : Ω` → R can be
decomposed to f =

∑
S⊆[`] f

S, where fS : Ω` → R satisfy:

1. fS only depends on the coordinates of x that reside in S (i.e. xS).

2. For any x ∈ Ω` and S + U it holds that EY [fU(xSYS)] = 0.

Note that if Ω = {±1} it is easy to verify that the Fourier representation of the func-
tion is also its Efron-Stein decomposition (taking fS = f̂(S)χS where χS(x) =

∏
i∈S xi).

In our general setting we denote f̂(S)2 def
= 〈fS, fS〉 (indeed, when Ω = {±1} this notation

agrees with the standard interpretation of f̂(S) in Fourier analysis of Boolean functions).

One of the important properties of this decomposition is that it is orthogonal and
therefore Parseval’s Equality holds.

Fact 2.9 (Orthogonality). For any S 6= U , fS and fU are orthogonal.

4If m ≥ ` log(|Ω|) just take h to be the identity function.

12



2.4 Proof of Theorem 2.7

Proof. Assume without loss of generality that S + U . Since XSYS is identically dis-
tributed to X,

〈fS, fU〉 = E
X

[fS(X)fU(X)] = E
X,Y

[
fS(XSYS)fU(XSYS)

]
.

Based on the fact that fS only depends on coordinates in S, we can replace fS(XSYS)
with fS(XSXS) = fS(X). Thus,

〈fS, fU〉 = E
X,Y

[
fS(X)fU(XSYS)

]
= E

X

[
fS(X) E

Y

[
fU(XSYS)

]]
.

But by the second property of the decomposition (Theorem 2.8), for every x ∈ Ω`,
EY [fU(xSYS)] = 0 and so we have 〈fS, fU〉 = 0.

Theorem 2.10 (Parseval’s Equality).∑
S⊆[`]

f̂(S)2 = E
X

[f(X)2].

Proof. ∑
S⊆[`]

f̂(S)2 =
∑
S⊆[`]

〈fS, fS〉 =
∑
S,T⊆[`]

〈fS, fT 〉 = 〈
∑
S⊆[`]

fS,
∑
T⊆[`]

fT 〉 = 〈f, f〉,

where the second equality follows from orthogonality.

The Efron-Stein decomposition has proved to be extremely useful in giving explicit
expressions for the noise sensitivity of a function or the influence of a subset of its coor-
dinates. We will use it to express the “stability” of a subset of coordinates, which is in a
sense the complement of the influence for this set. The fact that we use is summarized
in Proposition 2.11 (a similar analysis has been applied previously to give an explicit
expression for influence, e.g., in [Bla09]).

Proposition 2.11. If f is Boolean valued (i.e. f : Ω` → {0, 1}), then for every S ⊆ [`]
it holds that:

Pr
X,Y

[f(X) = f(XSYS) = 1] =
∑
T⊆S

f̂(T )2.

Proof. Using the fact that f is Boolean, the Efron-Stein decomposition, and linearity of
expectation we have:

Pr
X,Y

[f(X) = f(XSYS) = 1] = E
X,Y

[f(X)f(XSYS)]

= E
X,Y

∑
T⊆[`]

fT (X)
∑
U⊆[`]

fU(XSYS)


=
∑

U,T⊆[`]

E
X

[
fT (X) E

Y

[
fU(XSYS)

]]
. (2.5)

13



2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

From the Efron-Stein decomposition we have that if U * S then EY [fU(XSYS)] = 0,
whereas if U ⊆ S then EY [fU(XSYS)] = fU(X). Thus, Eq. (2.5) yields that:

Pr
X,Y

[f(X) = f(XSYS) = 1] =
∑
T⊆[`]

∑
U⊆S

E
X

[fT (X)fU(X)] =
∑
T⊆[`]

∑
U⊆S

〈fT , fU〉 =
∑
T⊆S

〈fT , fT 〉

where the last equality follows from orthogonality.

2.4.2 Proof of Theorem 2.7

We would like to show that for a typical γ ∈ {0, 1}m, the number of odd S that map
to γ (that is h(XSYS) = γ) and the number of even such S are roughly the same. This
would imply that any adversary, which sees only X, Y and γ, cannot guess whether γ
was produced from an odd or even S, which is exactly what we are looking to prove. To
formalize this, we introduce the following notation; for γ ∈ {0, 1}m, we define:

Iodd(X, Y, γ)
def
= |{T ⊆ [`] : h(XTYT ) = γ and |T | is odd }| (2.6)

Ieven(X, Y, γ)
def
= |{T ⊆ [`] : h(XTYT ) = γ and |T | is even }| (2.7)

Organization. We begin by presenting some basic facts. The proof will be composed
of two lemmas, Lemma 2.14 (which is the main lemma) states that for every γ ∈ {0, 1}m,
w.h.p, the number of odd T that map to γ is fairly close to the number of even T (in
absolute terms). Lemma 2.18 states that for a typical γ the total number of T that map
to it is very large. Combining these two lemmas we prove Theorem 2.7.

2.4.2.1 Basic Facts

We first present two basic facts that follow immediately from the structure of XSYS.

Fact 2.12. For every γ ∈ {0, 1}m, there exists a constant µγ ∈ [0, 1] such that for every
S ⊆ [`]:

Pr
X,Y

[h(XSYS) = γ] = µγ.

Proof. Define µγ
def
= Pr [h(X) = γ] and note that Pr [h(XSYS) = γ] = Pr [h(X) = γ] (be-

cause XSYS and X are identically distributed).

Fact 2.13. For every S, T ⊆ [`] and γ ∈ {0, 1}m,

Pr
X,Y

[h(XSYS) = h(XTYT ) = γ] = Pr
X,Y

[
h(X) = h(XS⊕TYS⊕T ) = γ

]
where S⊕T denotes the symmetric difference of two sets, i.e., S⊕T def

= (S\T ) ∪ (T\S).

Proof. Using the fact that XSYS is identically distributed to X, we can swap YS and XS

in the expression Pr [h(XSYS) = h(XTYT )]. Hence, XSYS becomes X. For XTYT we use
X for coordinates that are in T\S or in T ∩S and use Y for coordinates that are in T ∩S
or in T\S. Therefore, XTYT becomes XS⊕TYS⊕T .
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2.4 Proof of Theorem 2.7

2.4.2.2 The Main Lemma

Lemma 2.14. For every γ ∈ {0, 1}m, it holds that:

Pr
X,Y

[
|Iodd(X, Y, γ)− Ieven(X, Y, γ)| ≥ 20.6`

]
≤ 2−0.2`.

Throughout the proof of this lemma, in all probabilistic statements, the probability
is always over X and Y . Additionally, since X and Y are clear from the context, we use
the shorthand Iodd(γ) (resp. Ieven(γ)) for Iodd(X, Y, γ) (resp. Ieven(X, Y, γ)).

Foreseeing that we will prove Lemma 2.14 by an application of Chebyshev’s inequality,
we proceed by bounding the expectation and variance of Iodd(γ)− Ieven(γ).

Proposition 2.15. For every γ ∈ {0, 1}m, it holds that:

E[Iodd(γ)− Ieven(γ)] = 0.

Proof. Iodd(γ) can be expressed as a sum of indicator variables: Iodd(γ) =
∑

odd T IT (γ),
where IT (γ) is an indicator for the event h(XTYT ) = γ. Thus,

E [Iodd(γ)] = E

[∑
odd T

IT (γ)

]
=
∑
odd T

E [IT (γ)] =
∑
odd T

Pr [h(XTYT ) = γ] = 2`−1µγ

where the last equality follows from Fact 2.12. Similarly, it is easy to see that E [Ieven(γ)] =
2`−1µγ and thus E [Iodd(γ)− Ieven(γ)] = 0.

Proposition 2.16. For every γ ∈ {0, 1}m, it holds that

Var[Iodd(γ)− Ieven(γ)] ≤ 2`.

Proof. Recall that Iodd and Ieven can be expressed as the sum of the indicator variables
IT (as defined in the proof of Proposition 2.15). Thus, using Proposition 2.15 and some
manipulations we have:

Var [Iodd(γ)− Ieven(γ)] = E
[
(Iodd(γ)− Ieven(γ))2]

= E
[
Iodd(γ)2

]
+ E

[
Ieven(γ)2

]
− 2 E [Iodd(γ)Ieven(γ)]

= E

(∑
odd T

IT (γ)

)2
+ E

( ∑
even T

IT (γ)

)2


− 2 E

[(∑
odd T

IT (γ)

)( ∑
even T

IT (γ)

)]
=

∑
T,U⊆[`] s.t.
|T |=|U | mod 2

E [IT (γ)IU(γ)]−
∑

T,U⊆[`] s.t.
|T |6=|U | mod 2

E [IT (γ)IU(γ)]

=
∑
T,U

(−1)|T ⊕U |E [IT (γ)IU(γ)]

=
∑
T,U

(−1)|T ⊕U | Pr [h(XTYT ) = h(XUYU) = γ] .
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Now using Fact 2.13 we have:

Var[Iodd(γ)− Ieven(γ)] =
∑
T,U

(−1)|T ⊕U | Pr
[
h(X) = h(XT ⊕UYT ⊕U) = γ

]
=
∑
T,U

(−1)|T | Pr [h(X) = h(XTYT ) = γ]

= 2`
∑̀
i=0

(−1)i
∑

T : |T |=i

Pr [h(X) = h(XTYT ) = γ] .

Let f : Ω` → {0, 1} be the indicator function for h(X) = γ. Clearly, for every T , it holds
that Pr [h(X) = h(XTYT ) = γ] = Pr [f(X) = f(XTYT ) = 1] and so by using Proposition
2.11 we derive:

Var[Iodd(γ)− Ieven(γ)] = 2`
∑̀
i=0

(−1)i
∑

T : |T |=i

Pr [f(X) = f(XTYT ) = 1]

= 2`
∑̀
i=0

(−1)i
∑

T : |T |=i

∑
U⊆T

f̂(U)2


= 2`

∑̀
i=0

(−1)i
∑

R : |R|=`−i

(∑
U⊆R

f̂(U)2

)
.

Note that each f̂(U)2 in the sum appears
(
`−|U |
i

)
times with respect to each i (and this

holds even when i > `− |U |). Thus:

Var[Iodd(γ)− Ieven(γ)] = 2`
∑̀
i=0

(−1)i
∑
U⊆[`]

(
`− |U |

i

)
f̂(U)2

= 2`
∑
U⊆[`]

f̂(U)2
∑̀
i=0

(−1)i
(
`− |U |

i

)
= 2`

∑
U⊆[`]

f̂(U)2(1− 1)`−|U |

= 2`f̂([`])2.

Finally, using Parseval’s Equality (Theorem 2.10) and the fact that range of f is {0, 1}:

Var[Iodd(γ)− Ieven(γ)] = 2`f̂([`])2 ≤ 2`
∑
S⊆[`]

f̂(S)2 = 2` E
X

[f(X)2] ≤ 2`.
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2.4 Proof of Theorem 2.7

Deriving Lemma 2.14. Applying Chebyshev’s inequality, while using Propositions 2.15
and 2.16, we get that

Pr
[
|Iodd(γ)− Ieven(γ)| ≥ 20.6`

]
≤ Var[Iodd(γ)− Ieven(γ)]

21.2`
≤ 2`

21.2`
= 2−0.2`.

2.4.2.3 Completing the Proof

Lemma 2.14 addresses the case where γ is fixed. However, we need to handle γ that are
chosen according to a specific distribution (γ ∼ h(XSYS)). Since we consider such γ, it
is convenient to define:

Ĩeven(X, Y, S) = Ieven (X, Y, h(XSYS)) (2.8)

Ĩodd(X, Y, S) = Iodd (X, Y, h(XSYS)) (2.9)

∆X,Y (S) =
∣∣∣Ĩeven(X, Y, S)− Ĩodd(X, Y, S)

∣∣∣ (2.10)

Corollary 2.17.

Pr
X,Y,S⊆R[`]

[
∆X,Y (S) ≥ 20.6`

]
≤ 2−0.2`+m.

Proof. If ∆X,Y (S) ≥ 20.6` then for γ = h(XSYS) it holds that |Iodd(X, Y, γ)− Ieven(X, Y, γ)| ≥
20.6`. Thus:

Pr
X,Y,S

[
∆X,Y (S) ≥ 20.6`

]
≤ Pr

X,Y

[
∃ γ ∈ {0, 1}m s.t. |Iodd(X, Y, γ)− Ieven(X, Y, γ)| ≥ 20.6`

]
.

The corollary follows by applying a union bound and Lemma 2.14.

Consider all T ⊆ [`] that map (via h) to the same value as S. Corollary 2.17 bounds
the difference between the number of even and odd such T . However, since it does so
only in absolute terms, it is meaningless if the number of such T is small. Lemma 2.18
shows that for a typical γ, w.h.p, this is not the case.

Notation. Recall our convention that lowercase x and y refer to elements in Ω`. For
fixed x and y, we define Ix,y(γ) to be the total number of T ⊆ [`] that h maps to γ, i.e.,

Ix,y(γ)
def
= Iodd(x, y, γ) + Ieven(x, y, γ) = |{T ⊆ [`] : h(xTyT ) = γ }| . (2.11)

Since we are sometimes interested in typical γ’s, we also define

Ĩx,y(S)
def
= Ix,y (h(xS, yS)) . (2.12)

Lemma 2.18. For every x, y ∈ Ω`,

Pr
S

[
Ĩx,y(S) ≤ 20.8`

]
≤ 2−0.2`+m.
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Proof.

Pr
S

[
Ĩx,y(S) ≤ 20.8`

]
=

∑
γ∈{0,1}m

Pr
S

[
Ĩx,y(S) ≤ 20.8`

∧
h(xSyS) = γ

]
=

∑
γ∈{0,1}m

Pr
S

[
Ix,y(γ) ≤ 20.8`

∧
h(xSyS) = γ

]
=

∑
γ: Ix,y(γ) ≤ 20.8`

Pr
S

[h(xSyS) = γ]

≤ 2m · 20.8`

2`
.

Lemma 2.18 together with Corollary 2.17 imply, that w.h.p, Ĩodd(X, Y, S) and Ĩeven(X, Y, S)
are very close (since their sum is big and their difference is small). Intuitively, this implies
that an adversary that tries to find |S| mod 2 from X, Y and h(XSYS) can not do much
better than a fair coin toss. Proposition 2.19 formalizes this intuitive connection.

Proposition 2.19. For every x, y ∈ Ω`:

Pr
S

[g (x, y, h(xSyS)) = |S| mod 2] ≤ 1

2
+

1

2
· E

[
∆x,y(S)

Ĩx,y(S)

]

where ∆x,y(S) and Ĩx,y(S) are as defined in Eq. (2.10) and Eq. (2.12) respectively.

Proof. Since x and y are fixed, and we quantify over all g and h, we can just consider

functions that depend on x and y. Thus, we denote gx,y(γ)
def
= g(x, y, γ) and hx,y(S)

def
=

h(xSyS).
Choosing a random subset S ⊆ [`] is equivalent to first choosing γ = hx,y(S) and then

choosing uniformly over all T ⊆ [`] that h maps to γ. Formally, let S be a uniformly
distributed subset of [`] and let TS be distributed uniformly over {T ⊆ [`] : hx,y(T ) =
hx,y(S) }. Since S and TS are identically distributed (by the uniform distribution) it holds
that

Pr
S

[gx,y (hx,y(S)) = |S| mod 2] = Pr
S,TS

[gx,y (hx,y(S)) = |TS| mod 2]

= E
S

[
Pr
TS

[gx,y (hx,y(S)) = |TS| mod 2]

]
.

For fixed S, by definition, PrTS [gx,y(hx,y(S)) = |TS| mod 2] is just

|{T : (|T | mod 2) = gx,y(hx,y(S)) and hx,y(T ) = hx,y(S) }|
|{T : hx,y(T ) = hx,y(S) }|

.

The numerator of this expression equals the number of T ’s that map to the same value
as S whose size is of some fixed parity (note that gx,y(hx,y(S)) is fixed) and thus is at
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most max
(
Ĩodd(x, y, S), Ĩeven(x, y, S)

)
. Likewise, the denominator is exactly Ĩx,y(S) and

so we have:

Pr
S

[gx,y (hx,y(S)) = |S| mod 2] ≤ E
S

max
(
Ĩodd(x, y, S), Ĩeven(x, y, S)

)
Ĩx,y(S)


=

1

2
+

1

2
· E
S

[
∆x,y(S)

Ĩx,y(S)

]
.

Deriving Theorem 2.7. Corollary 2.17 and Lemma 2.18 imply that:

Pr
X,Y,S⊆R[`]

[
∆X,Y (S)

ĨX,Y (S)
< 2−0.2`

]
> 1− 2 · 2−0.2`+m.

Therefore,

E
X,Y,S⊆R[`]

[
∆X,Y (S)

ĨX,Y (S)

]
<
(
1− 2−0.2`+m+1

)
· 2−0.2` + 20.2`+m+1 · 1 < 2−0.2`+m+2.

And so, by Proposition 2.19,

Pr
X,Y,S⊆R[`]

[g (X, Y, h(XSYS)) = |S| mod 2] <
1

2
+ 2−0.2`+m+1.

2.5 Homomorphic Properties of the Public-Key Scheme

In this section, we discuss the homomorphic properties of the public-key scheme presented
in Construction 2.4. Specifically, we shall show that if the private-key scheme supports
i + 1 repeated homomorphic operations then the public-key scheme supports i such op-
erations. Intuitively, this follows by the fact that the public-key encryption algorithm
applies a single homomorphic operation (see Fact 2.21).

Proposition 2.20. Suppose G,E,D,H are an (i + 1)-hop homomorphic private-key
scheme w.r.t to a set of circuit families C that includes addition modulo 2. Then G′, E ′, D′, H ′

as defined in Construction 2.4 are an i-hop homomorphic public-key scheme w.r.t the set
C.

Theorem 2.3 shows that (G′, E ′, D′, H ′) is indeed a public-key encryption scheme and
so, we only need to show that the scheme supports i repeated evaluations of circuits from
C.

Let (X, Y ), k be a pair of encryption/decryption keys of the public scheme (w.r.t to
the security parameter n). We denote the j-th level ciphertexts of the private-key scheme
by Wj(k) and the j-th level ciphertexts of the public-key scheme by W ′

j(X, Y ).
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2. HOMOMORPHIC ENCRYPTION: FROM PRIVATE-KEY TO
PUBLIC-KEY

Fact 2.21. For every j ∈ N, W ′
j(X, Y ) ⊆ Wj+1(k).

Proof. By induction on j.

Let {Ck}k ∈ C, 0 ≤ j ≤ i, ` = `(n) and w1, . . . , w` be j-th level ciphertexts of the
public-key scheme (i.e., in W ′

j(X, Y )). We proceed by showing that the first property of
Definition 2.2 (Eq. 2.1) holds. By Fact 2.21, it holds that w1, . . . , w` ∈ Wj+1(k) and thus,

H ′(C`, (X, Y ), w1, . . . , w`) = H(C`, w1, . . . , w`)

= C`(Dd(w1), . . . , Dd(w`)) = C`(D
′
d(w1), . . . , D

′
d(w`)).

where the first and third equalities follow from the definition of H ′ and D′ respectively
and the second equality follows from the first requirement of Definition 2.2, noting that
w1, . . . , w` are ciphertexts of level j + 1 ≤ i+ 1 of the private-key scheme.

A similar argument shows that the second property of Definition 2.2 (Eq. 2.2) holds.
Indeed, since w1, . . . , w` ∈ W ′

j(X, Y ) ⊆ Wj+1(k) it holds that,

|H ′(C`, (X, Y ), w1, . . . , w`)| = |H(C`, w1, . . . , w`)| ≤ m(n)

for every 0 ≤ j ≤ i.
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Chapter 3

A Taxonomy of Enhanced Trapdoor
Permutations

3.1 Introduction

A collection of trapdoor permutations is a collection of efficiently computable permu-
tations that are hard to invert on the average, with the additional property, that each
permutation has a trapdoor that makes the permutation easy to invert. Trapdoor per-
mutations are among the most fundamental primitives of cryptography and have been
used to construct a variety of schemes and protocols, most notably, public-key encryption
[Yao82] and signature schemes [BM92].

Trapdoor permutations were also believed to imply oblivious transfer and (efficient
prover) non-interactive zero-knowledge proofs for NP but it seems that some additional
structure is required for these applications (see, e.g. [Gol04, Gol09]). The point is that in
these applications, the adversary may get auxiliary information such as the randomness
used to sample an image of the permutation, and this auxiliary information may allow
inverting the permutation or approximating its hardcore predicate. The phenomenon
was first observed in the context of constructing oblivious transfer (see [Gol04]) and later
in the context of non-interactive zero-knowledge proofs (see [Gol09]). This led to the
introduction of enhanced and doubly-enhanced trapdoor permutations, which suffice for
the construction of oblivious transfer and non-interactive zero-knowledge proofs for NP ,
respectively. These phenomena motivate further study of the hardness requirements from
enhanced trapdoor permutations, and on closer examination still more issues arise. For
example, while enhanced trapdoor permutations do suffice for one-out-of-two oblivious
transfer, we show that the standard construction (as in [Gol04]) needs to be adapted in
order to obtain one-out-of-k oblivious transfer, for k ≥ 3. The motivating question behind
this work is asking what added features are necessary and sufficient for applications such
as oblivious transfer and non-interactive zero-knowledge proofs for NP .

Our approach is to define a number of abstract scenarios, where each scenario captures
the type of information available to the adversary and the information that we wish to
keep secret. Each scenario leads to a corresponding notion of an enhanced trapdoor per-
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3. A TAXONOMY OF ENHANCED TRAPDOOR PERMUTATIONS

mutations which is hard to invert in that scenario. We study the relations between these
variants of enhanced trapdoor permutations as well as the relation to the aforementioned
applications, while noting that all these variants of enhanced trapdoor permutations are
implied by the doubly-enhanced property.

3.1.1 Trapdoor Permutations

Loosely speaking, a collection of one-way permutations is a collection of efficiently com-
putable permutations that are hard to invert on the average, i.e., given a random per-
mutation f from the collection and a random element x from its domain, it is infeasible
to find f−1(x). Each permutation is represented by an index α and has an associated
domain Dα over which it is defined. A natural domain to consider is {0, 1}|α|; however,
this is not necessarily the case in general, and our only requirement is that it is possible to
efficiently sample elements (uniformly) from this domain. We denote the domain sampler
by S, and use the convention that S(α; r) refers to the (deterministic) output of S on
input α and the random string r.

A collection of trapdoor permutations (TDP) is a collection of one-way permutations
{fα : Dα → Dα}α for which, each permutation has an associated trapdoor that makes
the permutation easy to invert. We require an efficient way to generate an index together
with the corresponding trapdoor.

Enhanced TDP. Consider an adversary for inverting a TDP that is given not only an
element x but also the random coins that were used to sample x. Goldreich [Gol04] noted
that there are TDPs that can be inverted in such a setting (assuming that TDPs exist)1

and showed that this issue captures a real security concern in the standard protocol for
oblivious transfer (which was believed to work based on any TDP). He therefore defined
the notion of an enhanced TDP which is a TDP that is infeasible to invert even given
the random coins that sampled the element to be inverted. That is, given an index of a

permutation α and a random string r it is infeasible to compute x
def
= f−1

α (S(α; r)).

Hardcore Predicates. A hardcore predicate of a TDP is an efficiently computable
predicate, defined over the domain of the permutation that is infeasible to approximate,
given only the image of the element. In other words, given α and x it is easy to compute
h(x) but given only α and fα(x) it is infeasible to approximate h(x). Note that since fα is a
permutation, h(x) is information theoretically determined by α, fα(x) and therefore, h(x)
is only hard to approximate in a computational sense. An enhanced hardcore predicate
of an enhanced TDP is naturally defined w.r.t the enhanced security property. That is,
based on α and r, it is infeasible to approximate h(x) where x = f−1

α (S(α; r)). Goldreich
and Levin [GL89] showed a hardcore predicate that holds for (a minor modification of)

1Given any TDP, consider changing its sampling algorithm S to S′(α; r) def= fα(S(α; r)). The random
coins of S′ always give away the preimage under fα of sampled elements.
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3.1 Introduction

any TDP. If the TDP is enhanced then the Goldreich-Levin predicate is an enhanced
hardcore predicate.

3.1.2 Are Enhanced Hardcore Bits Pseudorandom?

Let {fα : Dα → Dα}α be a standard TDP with a hardcore predicate h. Suppose that
we are given a randomly selected index of a permutation α and two random elements
from its domain y1, y2 ∈ Dα. By definition, it is infeasible to compute the hardcore bit
of the inverse of any single element (i.e. h(f−1

α (yj)). Moreover, intuitively it seems as
though these two bits are pseudorandom, and in particular it is infeasible to compute
any relationship between these two bits.

A simple argument shows that this is indeed the case. To prove this, assume to-
ward a contradiction that there exists an algorithm A that given α, y1 and y2 computes
h(f−1

α (y1))⊕h(f−1
α (y2)), where ⊕ denotes exclusive-or. We use A to construct an ad-

versary A′ for the hardcore predicate h. Recall that A′ is given α and y1 and needs
to compute h(f−1

α (y1)). The key point is that A′ can generate h(f−1
α (y2)), y2 by itself2

and then invoke A on α, y1, y2 to obtain b = h(f−1
α (y1))⊕h(f−1

α (y2)). Finally, using
h(f−1

α (y2)), the adversary A′ outputs b⊕h(f−1
α (y2)) which indeed equals h(f−1

α (y1)).
Surprisingly perhaps, this argument does not extend to the enhanced setting. Sup-

pose that {fα} is an enhanced TDP with a domain sampler S and an enhanced hard-
core predicate h. Given α, r1 and r2, is it feasible to compute h(x1)⊕h(x2) where
xj = f−1

α (S(α; rj))? In fact, this may indeed be feasible. The key point, which causes
the extension of the proof from the standard setting to the enhanced setting to fail, is
that it may not be feasible to generate a sample of the form (h(x2), r2) without using
the trapdoor. In Appendix A we present an enhanced trapdoor permutation based on
quadratic residuosity for which this is the case. In Section 3.3 we use this property to
show that the standard one-out-of-k oblivious transfer protocol is insecure for k ≥ 3.

Using the equivalence of pseudorandomness and unpredictability, enhanced hardcore
bits may also be predictable in the following sense. Given α, (r1, h(x1)) and r2 it may
be feasible to predict h(x2). The types of scenarios that we consider in this work are
generalizations of this attack. That is, scenarios in which the adversary is given samples
(e.g. r1 together with h(x1)) that it may not be able to generate by itself and is required to
execute a task that is infeasible without the samples (e.g. compute h(x2) based on r2). For
each scenario we consider a corresponding variant of an enhanced trapdoor permutation
that is hard in that scenario. We consider connections between these variants while
distinguishing between hardness that holds w.r.t a fixed number of samples and hardness
that holds w.r.t any (polynomial) number of samples.

3.1.3 Organization

We start in Section 3.2 by presenting the formal definitions of trapdoor permutations,
hardcore predicates and oblivious transfer. In Section 3.3, we demonstrate the type

2By selecting x← S(α) and outputting h(x), fα(x).
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of problem encountered when using enhanced trapdoor permutations by analyzing the
standard OT protocol. In Section 3.4, we discuss the aforementioned scenarios in which
enhanced trapdoor permutations are not hard to invert or have hardcore predicates that
are not hard to predict.

3.2 Definitions

A function ε : N→ [0, 1] is negligible if for every polynomial p(·) and all sufficiently large
n ∈ N it holds that, ε(n) < 1

p(n)
. We use neg(n) and poly(n) to respectively denote

some unspecified negligible function and polynomial. Throughout this manuscript all
polynomials are assumed to be positive.

3.2.1 Collections of Trapdoor Permutations

Formally, we define a collection of trapdoor permutations (TDP) as follows:

Definition 3.1. A TDP is a collection of permutations {fα : Dα → Dα}α together with
the following associated probabilistic polynomial-time algorithms:

1. An index sampler I that given the security parameter 1n, outputs an index of a
permutation, denoted α and a corresponding trapdoor, denoted τ .

2. A domain sampler S that on input α (the index of a permutation), outputs a uni-
formly distributed element x ∈ Dα.

3. An evaluation algorithm F (for Forward) that, given α and x, computes the value
of the permutation fα on x, i.e., outputs fα(x).

4. An inverting algorithm B (for Backward) that, given the trapdoor of the permutation
τ and an element x, inverts the permutation on x, i.e., outputs f−1

α (x).

The security requirement is that for every probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)
x←S(α)

[
A(α, x) = f−1

α (x)
]

= neg(n) (3.1)

where the probability is also over the coin tosses of A.

An enhanced TDP is one for which it is infeasible to invert elements even given the
random coins that sampled them:

Definition 3.2. A TDP {fα : Dα → Dα} with domain sampler S, is enhanced if it for
every probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)

r←{0,1}poly(n)

[
A(α, r) = f−1

α (S(α; r))
]

= neg(n) (3.2)

where once again, the probability is also over the coin tosses of A.
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A hardcore predicate is an efficiently computable predicate defined over the domain
of a TDP, that is infeasible to compute based only on an image of an element:

Definition 3.3. Let {fα : Dα → Dα}α be a TDP. The predicate h, defined over the
domain of the permutations, is a hardcore predicate if it can be computed efficiently and
for every probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)
x←S(α)

[
A(x) = h(f−1

α (x))
]

=
1

2
+ neg(n) (3.3)

An enhanced hardcore predicate is defined analogously, allowing the adversary access
to the random string that sampled the element:

Definition 3.4. Let {fα : Dα → Dα}α be a TDP with domain sampler S. The hardcore
predicate h is enhanced if for every probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)

r←{0,1}poly(n)

[
A(r) = h(f−1

α (S(α; r)))
]

=
1

2
+ neg(n) (3.4)

Goldreich and Levin [GL89] showed that if {fα}α is a trapdoor permutation then
the trapdoor permutation gα(x, s) = (fα(x), s) where |x| = |s|, has a hardcore predicate
h(x, s) = 〈x, s〉 =

∑
xisi mod 2. If {fα}α is an enhanced TDP then h is an enhanced

hardcore predicate of {gα}α.

3.2.2 Oblivious Transfer

One-out-of-k oblivious transfer (OT) is an interactive protocol consisting of two parties,
a sender S and a receiver R. The input of S is composed of k-bits σ1, . . . , σk and the
input of R is an index i ∈ [k]. At the end of the protocol, the receiver, R, should output
σi but learn nothing about the sender’s input other than σi and the sender, S, should
learn nothing about the receiver’s input (i.e., i). These privacy requirements should hold
in a computational sense, with respect to a security parameter n, (which is given to both
parties in unary). We restrict our attention to the “semi-honest” model. In this model,
each party acts according to the protocol but may write down anything it sees. We
mention that a protocol in the “semi-honest” model can be compiled to a protocol that
is secure against malicious adversaries by using zero-knowledge proofs (see [Gol04]).

This formulation of OT was introduced by Even et-al [EGL85]. A three-message pro-
tocol for OT based on enhanced trapdoor permutations was given by [EGL85, GMW87].
We refer to this protocol (or actually to its description in [Gol04]) as the standard OT
protocol. The standard OT protocol uses an enhanced TDP {fα : Dα → Dα}α with cor-
responding algorithms I, S, F,B (recall that I is the index/trapdoor sampler, S is the
domain sampler, F computes the permutation and B inverts it using the trapdoor) and
an enhanced hardcore predicate h (e.g. the Goldreich-Levin hardcore predicate [GL89]).
The protocol is depicted in Figure 3.1.
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S(1n, σ1, . . . , σk) R(1n, i)

α, τ ← I(1n)

xj ← S(α) for all j ∈ [k]

yi = F (α, xi) and yj = xj for j ∈ [k]\{i}

zj = B(τ, yj) for all j ∈ [k]

cj = h(zj)⊕σj

Output ci⊕h(xi)

α

y1, . . . , yk

c1, . . . , ck

Figure 3.1: One-out-of-k Oblivious Transfer.

To formalize the semi-honest model, we use the notion of the view of each player. The
view of player P with respect to security parameter n is a random variable V iewP (i, (σ1, . . . , σk))
which consists of everything player P sees in the interaction between R on input i and
S on input σ1, . . . , σk, including its own random coin tosses and the received messages.
Using this notion we define an OT protocol as follows:

Definition 3.5. Let k ≥ 2 be a natural number. (S,R) are a one-out-of-k oblivious
transfer (OT) protocol if S and R are interactive probabilistic polynomial-time algorithms
and it holds that:

1. (Correctness) For every σ1, . . . , σk ∈ {0, 1} and i ∈ [k], when R(1n, i) interacts with
S(1n, σ1, . . . , σk), it holds that R outputs σi and S outputs nothing.

2. (Sender Privacy) There exists a probabilistic polynomial-time simulator SimR such
that for every σ1, . . . , σk ∈ {0, 1} and i ∈ [k], the ensembles {SimR(i, σi)}n∈N and
{V iewR(i, (σ1, . . . , σk))}n∈N are computationally indistinguishable.

3. (Receiver Privacy) There exists a probabilistic polynomial-time simulator SimS such
that for every σ1, . . . , σk ∈ {0, 1} and i ∈ [k], the ensembles {SimS(σ1, . . . , σk)}n∈N
and {V iewS(i, (σ1, . . . , σk))}n∈N are computationally indistinguishable.

If the output of SimS (resp. SimR) is identically distributed to the actual view of the
sender (resp. receiver) then we say that the receiver (resp. sender) has perfect privacy.

3.3 Failure of the one-out-of-k OT Protocol for k ≥ 3

In this section we show that the standard OT protocol fails for k ≥ 3. We start of by
proving that it is indeed correct for k = 2. We then proceed to show the problem that
arises when trying to extend this proof to k = 3, or larger k.
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3.3.1 The Case k = 2

Recall that the standard protocol (Figure 3.1) is based on an enhanced TDP {fα}α with
corresponding algorithms I, S, F,B and an enhanced hardcore predicate h.

When both parties follow the standard protocol the receiver outputs σi, thus the
protocol is indeed correct. The (prefect) privacy of the receiver (in the semi-honest
model) is also immediate and follows from the fact that fα is a permutation. We note
that correctness and the privacy of the receiver hold for any k ≥ 2.

The privacy of the sender is less trivial. For sake of simplicity we assume that i = 1
and consider an interaction between the receiver, R, and the sender, S given the input
σ1, σ2. The view of the receiver is:

(i = 1, σ1) , (r1, r2) ,
(
α, h(S(α; r1))⊕σ1, h(f−1

α (S(α; r2)))⊕σ2

)
.

To prove that privacy of the sender holds, we need to present a simulator for this view.
The simulator SimR(i = 1, σ1) chooses (α, τ)← I(1n), samples r1, r2 ← {0, 1}poly(n) and
outputs:

(i = 1, σ1) , (r1, r2) ,
(
α, h(S(α; r1))⊕σ1, h(f−1

α (S(α; r2)))
)
.

Note that the only difference between the actual view and the output of the simulator is
in the last element. However, using the fact that h is an enhanced hardcore predicate,
r2, h(f−1

α (S(α; r2))) and r2, h(f−1
α (S(α; r2)))⊕σ2 are computationally indistinguishable,

which in turn implies that the actual view is computationally indistinguishable from the
output of the simulator.

3.3.2 The Case k = 3

Consider an attempt to extend the proof for the case k = 2 to the case k = 3. Once
again, for simplicity, we assume i = 1. The natural extension of the proof is to have
the simulator output h(f−1

α (S(α; r2))) and h(f−1
α (S(α; r3))) instead of the actual received

message h(f−1
α (S(α; r2)))⊕σ2 and h(f−1

α (S(α; r3)))⊕σ3. The problem is that it may be
easy to distinguish the output of the simulator from the actual received message, using
the property described in Section 3.1.2.

We stress that it is not only the natural extension of the proof to the case k = 3
that fails, and the protocol is indeed insecure. To see this (again assuming i = 1) recall
that R should learn σ1 but nothing about σ2 and σ3. However, based on the protocol R
learns (r2, b2⊕σ2) and (r3, b3⊕σ3) (where bi = h(f−1

α (S(α; ri)))). Given that R can also
compute b2⊕ b3 from r1 and r2, it can easily compute σ1⊕σ2, contradicting the supposed
privacy of the sender.

3.3.3 Fixing the Protocol

One way to fix the standard OT protocol is by using the well known (simple) reduction
from general k to k = 2. As shown in Section 3.3.1, one-out-of-two OT can be based on
any enhanced TDP, hence, the following holds:
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Theorem 3.6. If there exists an enhanced TDP then for any k ≥ 2, there exists a protocol
for one-out-of-k OT.

An alternate approach, that considers the original protocol, is shown in Section 3.4.2.2.

3.4 Problematic Scenarios for Enhanced Trapdoor

Permutations

In this section, we discuss different scenarios in which it may be insecure to use enhanced
TDPs. We start by presenting these scenarios and the corresponding TDPs and proceed
to show connections between these variants of enhanced TDPs.

Throughout this section, we consider an enhanced TDP {fα : Dα → Dα}α with cor-
responding algorithms I, S, F,B and a hardcore predicate h. By α we denote a random
index from this collection (with respect to a security parameter n). For j ∈ N, we use
rj to denote uniformly distributed random coins for the sampling algorithm S and xj to

denote the inverse of the corresponding sampled element, i.e., xj
def
= f−1

α (S (α, rj)). bj

denotes the corresponding hardcore bit, i.e., bj
def
= h(xj).

3.4.1 The Scenarios

The attack we presented on the OT protocol in Section 3.3 was based on the existence
of an enhanced TDP with the property that given α, r1 and r2, it is feasible to compute
b1⊕ b2. This means that an adversary that is given a sample of the form (r1, b1), can
compute the hardcore predicate, i.e., given r2 (in addition to α and (r1, b1)) the adversary
can compute b2 = h(f−1

α (S(α; r2))). We generalize this type of attack and consider the
following scenarios:

1. Scenario BX: Based on α and i samples of the form (r1, b1), . . . , (ri, bi) it is feasible
to invert the permutation, i.e., from ri+1 compute xi+1 = f−1

α (S(α; ri+1).

2. Scenario BB: Based on α and i samples of the form (r1, b1), . . . , (ri, bi) it is feasible
to break the hardcore predicate, i.e., from ri+1, compute bi+1 = h(xi+1).

3. Scenario XX: Based on α and i samples of the form (r1, x1), . . . , (ri, xi) it is
feasible to invert the permutation, i.e., compute xi+1 as in Scenario 1.

4. Scenario XB: Based on α and i samples of the form (r1, x1), . . . , (ri, xi) it is feasible
to break the hardcore predicate, i.e., compute bi+1 as in Scenario 2.

Scenarios 1-4 are respectively referred to as Scenarios BX, BB, XX, XB, where the con-
vention is that the first letter represents what the adversary is given (B for hardcore bits
and X for preimages) and the second letter represents the goal of the adversary (B to
approximate the hardcore bit and X to invert the permutation).
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A few immediate relations between the scenarios are depicted in Figure 3.2, where an
arrow from Scenario x to Scenario y means that an adversary in the setting of Scenario x
implies an adversary in Scenario y. These relations follow from the fact that bj can be
efficiently computed from xj. Hardness holds in the opposite direction, that is, an arrow
from scenario x to scenario y means that a TDP that is hard in the setting of scenario y
is also hard in the setting of scenario x.

Scenario BX
α, (r1, b1), . . . , (ri, bi), ri+1 → xi+1

Scenario XX
α, (r1, x1), . . . , (ri, xi), ri+1 →

xi+1

Scenario BB
α, (r1, b1), . . . , (ri, bi), ri+1 → bi+1

Scenario XB
α, (r1, x1), . . . , (ri, xi), ri+1 →

bi+1

Figure 3.2: Attacks on Enhanced Trapdoor Permutations.

Connection to Doubly-Enhanced TDP Scenario XB is actually the setting of the
protocol for non-interactive zero-knowledge proofs for NP . In this protocol, the verifier is
presented with samples of the form (rj, xj). To prove that the protocol is zero-knowledge,
we need to argue that the verifier cannot compute the hardcore predicate, however, if
the TDP is vulnerable to an attack in the setting of Scenario XB then the hardcore
predicate becomes easy to compute. Goldreich [Gol09], addressed the problem raised
there by defining doubly-enhanced TDPs and showing that they are sufficient. Recall
that a doubly-enhanced TDP is defined as follows:

Definition 3.7. Let {fα : Dα → Dα}α be an enhanced TDP with domain sampling algo-
rithm S. This collection is doubly-enhanced if there exists a probabilistic polynomial-time
algorithm that on input α outputs a pair (r, x) such that r is uniformly distributed as ran-
dom coins of S and fα(x) = S(α; r).

Thus, the “doubly-enhanced” property guarantees the ability to generate samples of
the form (rj, xj) (from which can be derived also samples of the form (rj, bj)). This
implies, in particular, that a doubly-enhanced TDP is hard in all the above scenarios
w.r.t to polynomially many samples. This follows from the fact that any adversary
that requires samples (rj, xj) or (rj, bj) can be converted to an adversary that does not,
by simply generating the necessary samples itself (using the algorithm guaranteed by
Definition 3.7).
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3.4.2 Hardness of Enhanced TDP w.r.t a Fixed Number of Sam-
ples

In this section, and the following one, we show connections between the variants of
enhanced TDP that correspond to the scenarios discussed above. We distinguish between
hardness that holds for a fixed number of samples (discussed in this section) and hardness
that holds for polynomially may samples, for any polynomial (discussed in Section 3.4.3).

The results presented in this section are depicted in Figure 3.3. Each box represents
a TDP that is hard in one of the scenarios. Arrows represent connections between these
primitives. A solid arrow between from primitive X to Y means that “X is Y ”3 whereas
a dotted arrow means that a transformation is required, that is, if there exists X then
there exists Y . Some of the arrows are labeled with further restrictions, e.g., “GL”,
which means that the result holds when using the GL hardcore predicate. Note that all
downward pointing arrows follow from the fact that the hardcore bit of an element is
efficiently computable.

3.4.2.1 Scenario BX

Recall that in Scenario BX, the adversary needs to invert the permutation based on
samples of the form (rj, bj). We first show that any enhanced TDP with any enhanced
hardcore predicate is hard to invert in Scenario BX if at most logarithmically many
samples (rj, bj) are revealed to the adversary. We proceed by showing that by modifying
an enhanced TDP, we can actually obtain an enhanced TDP that is hard to invert even
given polynomially many samples.

Theorem 3.8. Let {fα}α be an enhanced TDP with an enhanced hardcore predicate h.
Then, {fα} is hard to invert in the setting of Scenario BX for i = O(log n) samples.

Proof. We use an adversary A for Scenario BX to construct an adversary A′ that inverts
the permutation in the enhanced setting (i.e. an adversary that inverts based on the
random string of the sampling algorithm). The first observation is that A′ can enumerate
all possible values for logarithmically many hardcore bits. For each sequence of values
of hardcore bits, A′ runs A to produce a candidate preimage. The second observation is
that it is possible to verify the result; that is, A′ can check whether a candidate element
is indeed the preimage. Details follow.

Assume toward a contradiction that there exists a probabilistic polynomial-time algo-
rithm A that given α, (r1, b1), . . . , (ri(n), bi(n)), ri(n)+1 outputs xi(n)+1 with non-negligible
probability. We use A to invert the permutation in the enhanced setting, contradicting
the assumption that it is an enhanced trapdoor permutation.

Given α and r we want to find x = f−1
α (S(α; r)) where S is the domain sampling

algorithm of {fα}. To do this, we select r1, . . . , ri(n) as i(n) uniformly distributed random
strings of the sampling algorithm S. We then enumerate over all possible values of

3We assume that all TDP are by default in the form required for GL. Thus, we do not view the
(minor) modification required for the GL hardcore predicate as a transformation.
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Doubly-Enhanced TDP
α, r 9 x and
α → (r, x)

Scenario XB
α, (r1, x1), . . . , (ri, xi), ri+1 9

bi+1

Scenario BB
α, (r1, b1), . . . , (ri, bi), ri+1 9 bi+1

Scenario XX
α, (r1, x1), . . . , (ri, xi), ri+1 9

xi+1

Scenario BX
α, (r1, b1), . . . , (ri, bi), ri+1 9 xi+1

Enhanced TDP
α, r 9 x

∀ poly. i
(Thm. 3.9)

i = O(log n)
(Thm. 3.8)

GL, i = O(log n)
(Thm. 3.10)

∀ fixed poly. i
(Thm. 3.12)

Figure 3.3: Hardness of Enhanced TDP w.r.t a fixed number of samples.

hardcore bits of r1, . . . , ri(n) by going over all c1, . . . , ci(n) ∈ {0, 1}. For each choice of
c1, . . . , ci(n) we run A(α, (r1, c1), . . . , (ri(n), ci(n)), r) and obtain a candidate x′. For each
candidate x′, we check whether fα(x′) = S(α; r) and output x′ if this is the case. Note
that after a polynomial number of iterations we will reach the correct choice of hardcore
bits and then A inverts S(α; r) with non-negligible probability.

Theorem 3.8 states that any enhanced TDP is hard to invert based on logarithmically
many samples in Scenario BX. Indeed, this holds for any enhanced TDP and no modi-
fication is required. If we allow modifications, then as shown by the following theorem,
we can actually obtain an enhanced TDP that is hard to invert even given polynomially
many samples.

Theorem 3.9. Let {fα : Dα → Dα}α be an enhanced TDP with a hardcore predicate hf .
The direct product of {fα} with itself, denoted {gα,β : Dα ×Dβ → Dα ×Dβ} and defined
as gα,β(x, y) = (fα(x), fβ(y)), is an enhanced TDP with an enhanced hardcore predicate
hg(x, y) = hf (y) that is hard to invert in Scenario BX w.r.t any polynomial i(·).
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Proof. We denote the domain sampling algorithm of {fα} (resp. {gα,β}) by Sf (resp. Sg).

Note that Sg((α, β); (r, r′))
def
= (Sf (α; r), Sf (β, r

′)). We denote the random string of Sg by
r′′ = (r, r′) where r is used to sample the first element (from Dα) and r′ is used for the
second one (from Dβ).

Suppose there exists an adversary A that inverts {gα,β} based on a polynomial number
of samples (r′′j , b

′′
j ), where r′′j = (rj, r

′
j) and b′′j = hg

(
g−1
α,β

(
Sg
(
(α, β) ; r′′j

)))
= hf

(
f−1
β (Sf (β; r′))

)
=

b′j. We use A to construct an adversary A′ that inverts {fα}. The key point is that it is
possible to generate the necessary samples for A using only the trapdoor of β. Thus, to
invert fα, we generate β together with the corresponding trapdoor. We use this trapdoor
to generate samples (r′′j , b

′′
j ) where b′′j = b′j = hf

(
f−1
β (Sf (β; r′))

)
and invoke A to invert

gα,β and in particular fα. Details follow.
Given α and r, the adversary A′ needs to find x = f−1

α (Sf (α; r)). This is done
by first sampling an index β together with the corresponding trapdoor. Consider the
permutation gα,β. For this permutation, it is easy to generate samples (r′′j , b

′′
j ), where

r′′j = (rj, r
′
j) and b′′j = hf

(
f−1
β

(
Sf
(
β; r′j

)))
since the hardcore predicate depends only β,

which we can invert. Thus, to invert fα, we invoke A on the index (α, β), i(n) samples
(r′′j , bj) and the random coins r′′ = (r, r′) (where r is the random string given as input and
r′ is an independent random string). By our assumption, with non-negligible probability,
the adversary outputs a preimage x′′ = (x, x′) of Sg ((α, β) ; (r, r′)) = Sf (α; r) , Sf (β; r′).
In particular we have x = f−1

α (Sf (α; r)) and so A′ outputs x.

3.4.2.2 Scenario BB

Recall that Scenario BB is the setting that causes the standard OT protocol to fail for
k ≥ 3 (see Section 3.3). We show that the Goldreich-Levin (GL) hardcore predicate
[GL89], is unpredictable in this setting as long as at most i = O(log n) samples (rj, bj)
are revealed to the adversary. Thus, when implemented using the GL hardcore predicate,
the standard OT protocol is secure for k = O(log n).

Theorem 3.10. Let {fα : Dα → Dα}α be an enhanced TDP and assume for simplicity
that all elements in Dα are of length n. Let {gα : Dα × {0, 1}n → Dα × {0, 1}n}α be

the enhanced TDP defined as gα(x, s) = fα(x), s where |x| = |s| = n and let h(x, s)
def
=

〈x, s〉 =
∑n

i=1 xisi mod 2 be the GL hardcore predicate of g. Then h is unpredictable in
the setting of Scenario BB for i = O(log n) samples.

We denote the domain sampling algorithm of {fα} (resp. {gα}) by Sf (resp. Sg).

Note that Sg(α); (r, s))
def
= (Sf (α; r), s).

To proof Theorem 3.10, we show that given α and i random strings (r1, s1), . . . , (ri, si)
of Sg, the sampling algorithm of {gα}α, it is infeasible to approximate

⊕
j∈U bj, for any

non-empty set U ⊆ [i] (where bj = h(xj, sj) and xj = f−1
α (S(α; rj))). The theorem fol-

lows by applying the computational XOR lemma4 for hardcore functions [Gol01, Lemma

4This lemma shows that if it is infeasible to compute the parity of a random subset of logarithmically
many hardcore bits, then they are pseudorandom.
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2.5.8], which holds for i = O(log n), and the equivalence of pseudorandomness and un-
predictability. Thus it suffices to prove the following:

Proposition 3.11. Let i
def
= i(n) be a polynomial. For any adversary A, any polynomial

p(·), all sufficiently large n and any non-empty set U ⊆ [i(n)]:

Pr
α,τ←I(1n)

(r1,s1),...,(ri,si)←{0,1}poly(n)×{0,1}poly(n)

[
A (α, (r1, s1), . . . , (ri, si)) =

⊕
j∈U

bj

]
=

1

2
+

1

p(n)
(3.5)

where bj
def
= h(xj, sj) = 〈xj, sj〉 and xj

def
= f−1

α (S(α; rj)).

Proof. Assume toward a contradiction that this is not the case. That is, there exists an in-
finite set of n, a set U = {j1, . . . , j`(n)}, and an adversary A that computes

⊕
j∈U bj based

on α and (r1, s1), . . . , (ri, si). The main observation is that
⊕

j∈U bj =
⊕

j∈U〈xj, sj〉 =
〈xj1 ◦ · · · ◦ xj`(n)

, sj1 ◦ · · · ◦ sj`(n)
〉 where ◦ denotes concatenation.

As a mental experiment, consider the trapdoor permutation {f ′α : D`
α → D`

α} defined
as f ′α(x1, . . . , x`(n)) = (fα(x1), . . . , fα(x`(n))). Using the sampling algorithm Sf ′(α; r1, . . . , r`(n)) =
S(α; r1), . . . , S(α, r`(n)), the collection {f ′α} is in fact an enhanced trapdoor permutation5.
If we apply the GL modification to {f ′α} we obtain the enhanced trapdoor permutation
g′α(x1, . . . , x`(n), s1, . . . , s`(n)) = fα(x1), . . . , fα(x`(n)), s1, . . . , s`(n) with the enhanced hard-
core predicate 〈x1 ◦ · · · ◦ x`(n), s1 ◦ · · · ◦ s`(n)〉. By definition of an enhanced hardcore
predicate, this means that given α, r1, . . . , r`(n), s1, . . . , s`(n) it is infeasible to approxi-
mate 〈x1 ◦ · · · ◦ x`(n), s1 ◦ · · · ◦ s`(n)〉 in contradiction to our assumption.

3.4.2.3 Scenario XX

In this scenario, the adversary is given an index α of a permutation, i samples of the
form (rj, xj), and an additional random string ri+1 and needs to invert the permutation
on S(α; ri+1), i.e., compute xi+1. We show how to transform any enhanced TDP to one
that is hard to invert in the setting of Scenario XX as long as the number of revealed
samples is known ahead of time, that is, first the number of revealed samples is fixed
and then we construct a TDP that is hard to invert w.r.t this number of samples. A
disadvantage of our technique is that the length of the index increases linearly with the
number of samples. In fact, we can only construct an enhanced TDP that is hard to invert
given m1−ε samples where m is the length of the new index (for any constant ε > 0).

Theorem 3.12. If there exists an enhanced TDP, then for every polynomial q(·), there
exists an enhanced TDP that is hard to invert in the setting of Scenario XX with respect
to q(n) samples.

Proof. Let {fα}α be an enhanced TDP with corresponding algorithm I, S, F,B.

5If from α, r1, . . . , r`(n) it is feasible to compute x1, . . . , x`(n) then it particular it is feasible to compute
x1 from α, r1.
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Construction 3.13. We construct an enhanced TDP f ′ with algorithms I ′, S ′, F ′, B′

that is hard to invert in Scenario XX with q(n) samples:

I ′(1n): Invoke I(1n), the original index sampler, 2q(n) · n times to obtain a (2q(n)× n)-

sized matrix of indexes α
def
= {αi,j}i∈[2q(n)],j∈[n] and a corresponding (2q(n)×n)-sized

matrix of trapdoors τ = {τi,j}i∈[2q(n)],j∈[n]. Output α as the index and τ as the
trapdoor.

S ′(α): From each column j ∈ [n] of the matrix α, select at random an entry sj ∈R
[2q(n)] and sample an element from the corresponding permutation’s domain, xj ←
S(αsj ,j). Output (s1, . . . , sn, x1, . . . , xn).

F ′ (α, (s1, . . . , sn, x1, . . . , xn)): For every j ∈ [n], compute the permutation αsj ,j on xj by
invoking yj = F (αsj ,j, xj). Output (s1, . . . , sn, y1, . . . , yn).

B′ (τ , (s1, . . . , sn, y1, . . . , yn)): For every j ∈ [n], invert the permutation αsj ,j on yj by
invoking xj = B(τsj ,j, yj). Output (s1, . . . , sn, x1, . . . , xn).

Using the fact that {fα} is a TDP, {f ′α} forms a collection of permutations and
S ′ samples elements uniformly from the domain, as required. Furthermore, using the
trapdoor τ , it is easy to invert f ′α.

We show that an A′ adversary that inverts {f ′α} in the setting of Scenario XX can be
used to construct an adversary A that inverts {fα} in the enhanced setting. Recall that
A is given an index α and a random string r and needs to find x s.t. x = f−1

α (S(α; r)).
We first sketch the high-level idea of the proof and then go into details.

First, A generates an index matrix α together with the corresponding trapdoor matrix
τ . Then, A selects q(n) + 1 random strings for the sampling algorithm S ′. Note that
each random string specifies a single permutation from each column of α. The first q(n)
random strings will be used to construct samples for A′, and the last random string will
be used (after a modification) as the challenge for A′.

The key point is that for each column of α, with probability q(n)
2q(n)

= 1
2
, there exists

an entry that is not used by any of the first q(n) random strings. Thus, with probability
1 − 2−n, one of the n indexes specified by the last random string was not specified by
any of the first q(n) samples. After finding the coordinate (i, j) of such an index in the
matrix α (or halting if it does not exist), A replaces the j-th block of the last random
string by r and the (i, j)-th entry of α by α. Since none of the first q(n) random strings
use α, the adversary A can invert them to obtain the required q(n) samples for A′. If A′

is successful then in particular it inverts S(α; r), hence obtaining the required preimage.
We proceed to describe the proof in detail. Assume toward a contradiction that there

exists a probabilistic polynomial-time adversary A′ that inverts {f ′α} with non-negligible
probability based on q(n) samples. Thus, A′ inverts fα based on α and q(n) samples of

the form
(
s
(k)
1 , . . . , s

(k)
n , x

(k)
1 , . . . , x

(k)
n

)
,
(
r
(k)
1 , . . . , r

(k)
n

)
(for all k ∈ [q(n)]) where x

(k)
j is the

inverse of the element sampled by r
(k)
j w.r.t the permutation α

s
(k)
j ,j

. To simplify notation,
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we denote α(k, j)
def
= α

s
(k)
j ,j

. We use A′ to construct an adversary A that on input α and

r computes f−1
α (S(α; r)) and operates as follows:

1. For every k ∈ [q(n)], select s
(k)
1 , . . . , s

(k)
n ∈R [2q(n)].

2. Select s′1, . . . , s
′
n ∈R [2q(n)].

3. Find t ∈ [n] such that s′t /∈ {s
(1)
t , . . . , s

(q(n))
t }. If no such t exists, halt.

4. Sample an index matrix α = {αi,j}i∈[2q(n)],j∈[n] together with the corresponding
trapdoor τ by invoking I ′(1n). Replace αs′t,t with α (τs′t,t is irrelevant and can be
erased).

5. For k ∈ [q(n)]:

(a) Select r
(k)
1 , . . . , r

(k)
q(n) as uniformly distributed random coins for S.

(b) For j ∈ [n], set x
(k)
j = f−1

α(k,j)(S(α(k, j); rkj )).

6. Select n uniformly distributed random strings r′1, . . . , r
′
n for S. Replace r′t with r.

7. Invoke A′ on index α, the samples
(
s
(k)
1 , . . . , s

(k)
n , x

(k)
1 , . . . , x

(k)
n

)
,
(
rk1 , . . . , r

(k)
n

)
(for

all k ∈ [q(n)]) and the challenge (s′1, . . . , s
′
n, r
′
1, . . . , r

′
n). The output of A should be

(s′1, . . . , s
′
n, x

′
1, . . . , x

′
n), halt if this is not the case.

8. Output x′t.

We first argue that A is indeed efficient. The only step that appears problematic is
inverting in step 5b however this can be done efficiently since we only invert permutations
for which we have the corresponding trapdoor.

Next, note that A halts in step 3 with probability at most 2−n. This is because the

probability that s′t ∈
{
s
(1)
1 , . . . , s

(q(n))
t

}
is at most q(n)

2q(n)
= 1

2
for each t ∈ [n] and therefore

the probability this happens for all t is at most 2−n. This also means that although the
distribution of samples that A is invoked on is not precisely the same distribution on
which A is guaranteed to operate, the two distributions are statistically close. Thus, with
non-negligible probability, A outputs x′1, . . . , x

′
n such that fαs′

j
,j

(x′j) = S(αs′j ,j, r
′
j) for all

j ∈ [n]. In particular, fαs′t,t
(x′t) = S(αs′t,t, r

′
t). Since α = αs′t,t and r = r′t we have that

fα(x′t) = S(α, r), i.e., x′t is a preimage as required.

3.4.3 Hardness of Enhanced TDP w.r.t Polynomially Many Sam-
ples

In this section we continue to establish connections between enhanced TDP that are hard
to invert in the different scenarios introduced in Section 3.4.1. In this section we focus
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on TDPs that are hard w.r.t any polynomial number of samples. This is in contrast to
Section 3.4.2 in which we focused on hardness w.r.t a fixed number of samples.

The results presented in this section are depicted in Figure 3.4 using the same conven-
tions as in Figure 3.3. We re-emphasize that throughout this section (and in particular
in Figure 3.4) we consider TDP for which hardness (of inverting the permutation or of
computing the hardcore predicate) holds w.r.t any (polynomial) number of samples.

Doubly-Enhanced TDP
α, r 9 x and
α → (r, x)

Scenario XB
α, (r1, x1), . . . , (ri, xi), ri+1 9

bi+1

Scenario BB
α, (r1, b1), . . . , (ri, bi), ri+1 9 bi+1

Scenario XX
α, (r1, x1), . . . , (ri, xi), ri+1 9

xi+1

Scenario BX
α, (r1, b1), . . . , (ri, bi), ri+1 9 xi+1

Enhanced TDP
α, r 9 x

GL (Thm.
3.14)

GL (Thm.
3.15)

Specific HC pred.,
not GL (Sec. 3.4.3.3)

Figure 3.4: Hardness of Enhanced TDP w.r.t any (polynomial) number of samples.

3.4.3.1 Scenario XX vs. Scenario XB

Recall that in scenarios XX and XB, the adversary is required to invert the permutation
or compute the hardcore predicate based on samples (rj, xj). An appealing aspect of
Scenario XX is that it does not involve a hardcore predicate at all. In Appendix B, we
show that a TDP that is hard to invert in the setting of Scenario XB suffices for the
efficient prover non-interactive zero-knowledge protocol described in [Gol09]. In fact, we
show that the only property of the TDP that is used in [Gol09] is hardness to invert
in Scenario XB, which is seemingly a weaker assumption than the existence of doubly-
enhanced TDP.
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We proceed to show that the GL hardcore predicate of a TDP that is hard to invert
in Scenario XX is unpredictable in Scenario XB. Thus, the GL hardcore predicate is hard
to approximate even if the adversary is given polynomially many samples of the form
(rj, xj).

Theorem 3.14. Let {fα}α be a TDP that is hard to invert in the setting Scenario XX.
Then, the GL hardcore predicate, h(x, s) = 〈x, s〉, w.r.t the enhanced TDP gα(x, s) =
(fα(x), s) (where |x| = |s|), is hard to approximate in the setting of Scenario XB.

Proof. The proof that h is an (enhanced) hardcore predicate of {gα} (see [Gol01]), reduces
the problem of inverting {gα} to approximating h. We adapt the proof to show that
inverting {gα} given i samples of the form (rj, xj) reduces to approximating h given i′

samples of the same form, where i′ is related to i (via the advantage of the approximation).
We denote the domain sampling algorithm of {fα} (resp. {gα}) by Sf (resp. Sg). We

use the convention that random strings of Sf are denoted by r or rj and those of Sg by

(r, s) or (rj, sj) such that Sg(α); (r, s))
def
= (Sf (α; r), s).

Let α be an index of a random permutation (w.r.t security parameter n), r a random
string for Sf and x the corresponding preimage, i.e., x = f−1

α (Sf (α; r)). We denote by
O(s) a machine that on input s returns 〈x, s〉 with probability 1

2
+ ε. The GL proof,

describes an algorithm H that on input α, r and oracle access to O outputs x with
probability 1

poly(n, 1
ε
)
. The number of oracle queries made by H is q(n, 1

ε
), a polynomial in

both n and 1
ε
.

Assume toward a contradiction that there exists an adversaryA that given α, (r1, x1), . . . , (ri, xi), ri+1, s
computes bi+1 = 〈xi+1, s〉 with advantage ε. We use A to construct an adversary A′ that
inverts {fα} in the setting of Scenario XX using i(n) blocks of q(n, 1

ε
) samples. Thus,

A′ gets as input a permutation α, samples (r1, x1), . . . , (ri·q(n, 1
ε
), xi·q(n, 1

ε
) and r′ and find

x′ = f−1
α (S(α; r′)). This is done by invoking H(α, r′). The major issue is how to answer

the oracle calls made by H. To answer the j-th oracle query, O(s(j)), A′ invokes A on
α, the j-th block of samples that it is given as input and (r′, s(j)) and with probability
1
2

+ 1
poly(n, 1

ε
)

obtains 〈xi+1, si+1〉.

Note that the proof of Theorem 3.14 uses, in an essential way, the fact that {fα}α is
hard to invert given any polynomial number of samples because the number of samples
is related to the advantage of the approximator.

3.4.3.2 Scenario BX vs. Scenario BB

The proof of Theorem 3.14 can be modified by replacing the (rj, xj) samples with (rj, bj)
to prove the following theorem:

Theorem 3.15. Let {fα}α be a TDP that is hard to invert in the setting of Scenarion BX
for any polynomial i(·). The GL hardcore predicate, h(x, s) = 〈x, s〉, w.r.t the enhanced
TDP gα(x, s) = (fα(x), s) (where |x| = |s|), is unpredictable in the setting of Scenario BB.
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3.4.3.3 Scenario BX

Theorem 3.9 constructs an enhanced TDP that is hard to invert in Scenario BX given any
polynomial number of samples, based on any enhanced TDP. Therefore, it is relevant also
in this section, when discussing scenarios in which the adversary is given polynomially
many samples.

We stress that Theorem 3.9 constructs an enhanced TDP with a specific hardcore
predicate (that is not the GL hardcore predicate). Therefore, Theorem 3.15 (that holds
only for GL) cannot be applied to the constructed enhanced TDP to produce a TDP that
is hard in Scenario BB.
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Appendix A

An Enhanced TDP vulnerable in
Scenario BB

In this section, we present a variant of the enhanced TDP suggested by Goldreich in
[Gol04, Appendix C.1.]. Our TDP has the interesting property that it is completely
vulnerable to an attack in Scenario BB. For this section we assume familiarity with basic
number theory. Sufficient background is provided in [Gol01, Gol04].

Let N be a Blum integer, QN the set of quadratic residues modulo N and MN the set
of all integers in {1, . . . , bN

2
c} with Jacobi symbol 1 modulo N . We define the predicate

QRN : Z∗N → {0, 1} to equal 1 if x is a quadratic residue modulo N and 0 otherwise.

Construction A.1. (A factoring-based enhanced TDP)

I(1n) : Uniformly at random select primes P and Q such that 2n−1 ≤ P,Q ≤ 2n and set
N = PQ. Select a random element y ∈R MN . The index is (N, y) and the trapdoor
is (P,Q).

S(N, y) : Select r ∈R Z∗N . Set z = y · r2 mod N . If z ≤ bN
2
c output z and otherwise

output N − z.

F ((N, y), x) : Set z = x2 mod N . If z ≤ bN
2
c output z and otherwise output N − z.

B((N, y), x) : Given the factorization of N it is possible to invert this permutation (for
details see [Gol01, Gol04]).

Note that Construction A.1 differs from one suggested in [Gol04] only in that the
index includes an additional element y and the sampler that now multiplies by y. Indeed,
as shown in [Gol04], FN defines a permutation over MN . The same argument can be
applied to show that each element in MN has exactly four preimages under FN,y, therefore
S samples uniformly from MN .

We proceed by showing an enhanced hardcore predicate for the permutation. In par-
ticular this implies that this is an enhanced trapdoor permutation. Consider the predicate
hN,y(x) = QRN(F ((N, y), x)) (i.e., hN,y(x) = 1 if and only if the image of x under FN,y is
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a quadratic residue). Given x this predicate is easy to compute1. However, assuming the
quadratic residuosity assumption, we show that this predicate is an enhanced hardcore
predicate by showing that given (N, y), r, it is infeasible to approximate QRN(S(N, y; r)).

The key observation is that multiplying by r2 preserves the quadratic residuosity
property whereas multiplying by −r2 complements it (i.e., y · r2 is a quadratic residue if
and only if y is a quadratic residue and −y ·r2 is a residue if and only if y is a non-residue).
Thus, given N, y and r it is easy to check whether y and S(N, y; r) have the same QRN

value, i.e. compute QRN(y)⊕QRN(S(N, y; r)), by checking whether S multiplies y by
r2 or by −r2..

The above implies a reduction to the quadratic residuosity problem. Consider an
adversary A that on input (N, y), r, computes QRN(S(N, y; r)) with probability 1

2
+ ε.

We use A to construct an adversary A′ to the quadratic residuosity problem as fol-
lows. Given N and y, the adversary A′ need to find QRN(y). This is done by se-
lecting r ∈R Z∗N , computing b = QRN(y)⊕QRN(S(N, y; r)) (as described in the pre-
vious paragraph) and outputting A((N, y), r)⊕ b. With probability 1

2
+ ε this equals

QRN(S(N, y; r))⊕
(
QRN(y)⊕QRN(S(N, y; r))

)
which in turn equals QRN(y).

Thus, based on the quadratic residuosity assumption, Construction A.1 is an enhanced
TDP. However, we argue that the enhanced hardcore bits are not pseudorandom. Indeed,
the TDP is completely vulnerable to the attack as in Scenario BB. This follows from the
fact that given N, r1, r2, it is easy to compute:(

QRN(y)⊕QRN(S(N, y; r1))

)
⊕
(
QRN(y)⊕QRN(S(N, y; r2))

)
which equals QRN(S(N, y; r1))⊕QRN(S(N, y; r2)).

1If F ((N, y), x) = x2 mod N , then hN,y(x) = 1. Otherwise it must be that F ((N, y), x) = N −
x2 mod N which implies that hN,y(x) = 0.
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Appendix B

Non-Interactive Zero-Knowledge
Proofs

Non-interactive zero-knowledge proofs are zero-knowledge proofs that consist of a single
message sent from the prover to the verifier in the common reference string model. In
this model, both the prover and verifier have access to a common reference string that
is chosen uniformly at random by a trusted party. Feige et al. [FLS90] showed a non-
interactive zero-knowledge proof for every language in NP based on the assumption that
one-way functions exist. However, the prover of [FLS90] is inherently non-efficient, since
it needs to invert the one-way function. As pointed out by Goldreich [Gol04, Gol09], the
obvious solution of using trapdoor permutations fails and additional structure seems to
be required. Thus, Goldreich [Gol09] introduced doubly-enhanced trapdoor permutations
and showed that they suffice to construct such proofs with efficient provers. We mention
that efficient prover non-interactive zero-knowledge proofs have proved to be extremely
useful, especially for constructing encryption schemes that are secure against chosen
ciphertexts attacks, as shown by Naor and Yung [NY90].

In this appendix we show that the additional structure that is actually used by [Gol09]
is that the trapdoor permutation has a hardcore predicate that is hard to predict in the
setting of Scenario XB, that is, given polynomially many samples of the form (rj, xj). Us-
ing Theorem 3.14 (that shows that the GL hardcore predicate of a trapdoor permutation,
that is hard to invert in Scenario XX, is hard to predict in Scenario XB), we show how
to construct efficient prover non-interactive zero-knowledge proofs for any NP language
based on a trapdoor permutation that is hard to invert in Scenario XX, w.r.t polyno-
mially many samples (seemingly a weaker assumption than doubly enhanced trapdoor
permutations).

B.1 Efficient Prover Non-Interactive Zero-Knowledge

Proofs

We start by defining non-interactive zero-knowledge proof systems with efficient provers.
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B. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Definition B.1. A pair of probabilistic polynomial-time algorithms (P, V ) are an efficient
prover non-interactive proof system for an NP language L with the witness relation RL

if:

• Completeness: For every z ∈ L1 and every witness w such that (z, w) ∈ RL,

Pr
r∈{0,1}poly(|z|)

[V (z, r, P (z, w, r)) = 1] ≥ 2

3
.

• Soundness: For every z /∈ L and every algorithm P ∗,

Pr
r∈{0,1}poly(|z|)

[V (z, r, P ∗(z, r)) = 1] ≤ 1

3
.

As usual, the error probability in both conditions can be made exponentially small by
repetition (using independent random coins and reference strings). If completeness holds
with probability 1, then the proof system is said to have perfect completeness.

Definition B.2. An efficient prover non-interactive proof system (P, V ) for a language
L is zero-knowledge if there exists a probabilistic polynomial-time simulator M such that
the ensembles:

• {z, r, P (z, w, r)}z∈L and

• {M(z)}z∈L

are computationally indistinguishable, where w is a witness for z ∈ L (i.e., (z, w) ∈ RL)
and r is the common reference string (chosen uniformly at random).

B.2 Hidden Bits Model

As in [Gol09], we show a reduction to a restricted model in which the prover decides
which bits on the reference string are available to the verifier. We remark that Feige et
al. [FLS90] showed how to construct non-interactive zero-knowledge proofs for NP in
this model.

Definition B.3. A pair of probabilistic polynomial-time algorithms (P, V ) are an efficient
prover non-interactive proof system in the hidden bits model for an NP language L if:

• Completeness: For every z ∈ L and every witness w such that (z, w) ∈ RL

Pr
r∈{0,1}poly(|z|)

[V (z, rJ , (J, π)) = 1] ≥ 2

3

where (J, π)← P (z, w, r) and rJ is the substring of the common reference string r
at positions J ⊆ {1, 2, . . . , poly(|z|)}.

1We use the non-standard z since x is reserved to denote domain elements of a trapdoor permutation.
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B.3 Construction

• Soundness: For every z /∈ L and every algorithm P ∗,

Pr
r∈{0,1}poly(|z|)

[V (z, rJ , (J, π)) = 1] ≤ 1

3

where (J, π)← P ∗(z, r) and rJ is the substring of the common reference string r at
positions J ⊆ {1, 2, . . . , poly(|z|)}.

Zero-knowledge is defined as above, with the exception that we need to simulate
(z, rJ , P (z, w, r)) (which equals (z, rJ , J, π)) rather than (z, r, P (z, w, r)).

B.3 Construction

Let L be a language and suppose (P, V ) are an efficient prover non-interactive zero-
knowledge proof system for L in the hidden-bits model, with soundness error 2−n−2. We
denote by m(n) the length of the common reference string required by (P, V ) for an input
z of length n.

Our construction uses a TDP {fα : Dα → Dα}α with corresponding algorithms
I, S, F,B and a hardcore predicate h that is non-uniformly hard to predict2 in Scenario XB
for polynomially many samples. We assume that on input 1n, the index sampler I outputs
an n-bit long index α and we denote by `(n) the number of coins used by the domain
sampler S when given such an index α of length n.

Construction B.4. We construct a proof system (P ′, V ′) that for an input z of length
n, uses a common reference of length m(n) · `(n) which is interpreted as m = m(n) blocks
of length ` = `(n) i.e., r = (r1, . . . , rm) where |ri| = `.

• Common Input: z ∈ {0, 1}n

• Prover’s Auxiliary Input: w.

• Common Reference String: r = (r1, . . . , rm), with ri ∈R {0, 1}`

• Prover (denoted P ′):

1. Select (α, τ)← I(1n) (where n = |z|).

2. Using the trapdoor τ , compute xi = f−1
α (S(α, ri)) and bi = h(xi).

3. Invoke P to obtain (J, π) = P (z, w, b1 · · · bm).

4. Output (α, J, π, (x1, . . . , xt)), where J = (j1, . . . , jt).

• Verifier (denoted V ′) Given the proof (α, J, π, (x1, · · · , xt)):

1. Verify that α is an index of a permutation, otherwise halt and reject.

2That is, hard to predict even for a family of polynomial-sized circuits.
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B. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

2. Verify that S(α, rji) = fα(xi), for each ji ∈ J . In case a mismatch is found
halt and reject.

3. Compute bi = h(xi), for i = 1, ..., t.

4. Invoke V on (x, b1 · · · bt, J, π), and accept if and only if V accepts.

Note that in general, it is not clear that there is an efficient way to verify that α is an
index of a permutation. Bellare and Yung [BY96] showed how to overcome this difficulty
(by appending a proof that α is “almost a permutation”), however, they only considered
the case Dα = {0, 1}|α|. In Section B.4 we discuss their solution and show that it extends
to the general case.

Proposition B.5. If {fα}α is a TDP and h is a hardcore predicate of the collection, then
Construction B.4 is an efficient prover non-interactive proof system.

Proof. Let z ∈ L. We assume without loss of generality that h is completely unbiased (i.e.,
Pr [h (S (α; r)) = 0] = 1

2
)3 and therefore the reference string seen by (P, V ) is uniformly

distributed. Thus, by completeness of (P, V ), the prover P ′ accepts with probability ≥ 2
3
.

To show that the proof is sound, assume that z /∈ L. The key point is that each
α ∈ {0, 1}n, that the malicious prover might send, must be an index of a permutation
or the verifier rejects. Thus, if we fix some α ∈ {0, 1}n, the predicate h is completely
unbiased and so, by soundness of (P, V ), the verifier V ′ accepts with probability that is
at most 2−n−2. This holds for any fixed α, but if we take a union bound over all possible
α ∈ {0, 1}n, we obtain soundness error that is at most 1

4
.

Proposition B.6. If the hardcore predicate h is (non-uniformly) hard to predict in Sce-
nario XB for polynomially many samples, then Construction B.4 is zero-knowledge.

Proof. We start off with a simplifying assumption - that the number of bits revealed
by P is a fixed function of m (instead of a distribution over {0, . . . ,m}). To justify
this assumption, note that any prover in the standard version can be converted to this
restricted version by doubling the length of the common reference string. The standard
version prover is applied to the first half of the reference string and then we reveal a
sufficient number of totally irrelevant bits of the second half.

To show that P ′ is zero-knowledge we convert any (efficient) simulator M for P into
an (efficient) simulator M ′ for P ′. The simulator M ′ operates as follows:

• Input: z ∈ {0, 1}n.

• Select (α, τ)← I(1n).

• Compute ((σ1, . . . , σt), (j1, . . . , jt), π)←M(z).

3To justify this assumption, note that given a TDP {fα}α with a hardcore predicate h, one can
construct a TDP {gα}α defined as g(xσ) = f(x) ◦ (σ⊕h(x)) whose last bit is a completely unbiased
hardcore predicate.
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B.3 Construction

• For each i = 1, . . . , t, select at random a string rji ∈ {0, 1}` uniformly over all `-bit
strings r such that σi = h(f−1

α (S(α; r))). Note that this can be implemented using
the trapdoor τ .

• For i ∈ [m]\ {jk : k = 1, . . . , t}, select ri ∈R {0, 1}`.

• Output (x, (r1, . . . , rm) , (α, (j1, . . . , jt) , π, (x1, . . . , xt))).

We proceed to show that the output of M ′ is computationally indistinguishable from the
output of P ′. The point is that the only difference between the simulation and the real
view is that in the former the values on the common reference string do not necessarily
match the values of the corresponding hidden bits seen by P (and that potentially ap-
pear in π). However, noticing this difference implies the ability to distinguish between
a sequence of random bits and a sequence of hardcore bits. It is crucial to note that
this distinguishing occurs in a context in which the distinguisher sees in addition random
strings together with the preimages of the elements they sample. As discussed throughout
this work, in this context, it may indeed by possible to distinguish between a sequence of
random bits and a sequence of hardcore bits, when using a standard trapdoor permuta-
tion. This issue is addressed by using a TDP with a hardcore predicate that cannot be
predicated even given this additional information, in other words, a hardcore predicate
that cannot be predicting in the setting of Scenario XB. The straightforward argument
follows.

Assume toward a contradiction that there exists a probabilistic polynomial-time algo-
rithm A that distinguishes the output of P ′(z, w, r) from the output of M ′(z). Formally,
this means that there exists a polynomial p and infinitely many (z, w) ∈ RL:

|Pr[A(P ′(z, w, r)) = 1]− Pr[A(M ′(z)) = 1]| > 1

p(|z|)
(B.1)

or actually without loss of generality4:

Pr[A(P ′(z, w, r)) = 1]− Pr[A(M ′(z)) = 1] >
1

p(|z|)
. (B.2)

Fix (z, w) from the infinite set for which Eq. (B.1) holds. Based on the equivalence of
unpredictability and pseudo-randomness, we use A to construct a probabilistic a family of
polynomial-sized circuitsB that have (z, w) hardwired and that given α, (r1, x1), . . . , (rm, xm), r

(where xi
def
= f−1

α (S(α; ri))) outputs h(f−1
α (S(α; r))). The circuit family B operates as

follows:

• Input: α, (x1, r1), . . . , (xm, rm), r.

4Dropping the absolute value is justified by noting that if Eq. (B.1) holds for infinitely many z ∈ L
than there exists an infinite subset for which the distinguishing gap is greater than 1

p(|z|) or a infinite
subset for which it is smaller than − 1

p(|z|) . If the latter holds, we merely flip A’s output).
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B. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

• Hardwired: (z, w).

• Invoke P (z, w, h(x1), . . . , h(xm)) to obtain (J, π). We denote by t the size of J (i.e.
t = |J |) and by {j1, . . . , jm−t}, the set [m]\J .

• Select at random k ∈R {0, 1, 2, . . . ,m− t}

• For j ∈ J , sj = rj. These correspond to the revealed bits.

• For j = j1, . . . , jk, set sj = rj. Corresponding to the k first hidden bits.

• Set sjk+1
= r, i.e. the challenge random string.

• For j = jk+2, . . . , jm−t, select sj ∈R {0, 1}`.

• If A(x, (s1, . . . , sm), (α, J, π, {xj}j∈J)) = 1, return h(xjk+1
) otherwise, return the

complement.

We denote by A(β1, . . . , βm−t) the output of A(x, (s1, . . . , sm), (α, J, π, {xj}j∈J)) = 1 con-
ditioned on the event that the values of the hidden bits (h(f−1

α (S(α; sj)) are β1, . . . , βm−t.

Additionally, we denote bi
def
= h(f−1

α (S(α; sji))) and σi ∈R {0, 1}. Note that using
our notations and by the definition of B, it holds that bk+1 = h(f−1

α (S(α; sjk+1
))) =

h(f−1
α (S(α; r))) which is the desired output of the algorithm. Using the definition of B

and the fact that Prσ∈R{0,1}[h(f−1
α (S(α; r))) = σ] = 1

2
we have:

Pr[B succeeds] =
1

m− t+ 1

m−t∑
k=0

(
Pr[A(b1, . . . , bk, σk+1, . . . , σm−t) = 1 ∧ bk+1 = σk+1]

+ Pr[A(b1, . . . , bk, σk+1, . . . , σm−t) = 0 ∧ bk+1 = σk+1]
)

=
1

2(m− t+ 1)

m−t∑
k=0

(
Pr[A(b1, . . . , bk, bk+1, σk+2, . . . , σm−t) = 1]

+ 1− Pr[B(b1, . . . , bk, bk+1, σk+2, . . . , σm−t) = 1]
)
.

Now we note that:

Pr[A(b1, . . . , bk, σk+1, . . . , σm−t) = 1] =
1

2
Pr[A(b1, . . . , bk, bk+1, σk+2, . . . , σm−t) = 1]

+
1

2
Pr[A(b1, . . . , bk, bk+1, σk+2, . . . , σm−t) = 1]

and therefore the probability that B succeeds is:

1

2
+

1

m− t+ 1

m−t∑
k=0

(
Pr[A(b1, . . . , bk, bk+1, σk+2, . . . , σm−t) = 1]

−Pr[A(b1, . . . , bk, σk+1, . . . , σm−t) = 1]
)
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which equals:

1

2
+

1

m− t+ 1

(
Pr[A(b1, . . . , bm−t) = 1]− Pr[A(σ1, . . . , σm−t) = 1]

)
.

Conditioned on the event that the hidden bits equal b1, . . . , bm−t, the output of B is
identically distributed to the output of A when given P (z, w, r). On the other hand,
conditioned on the hidden bits being totally random (i.e. σ1, . . . , σm−t), the output
of B is computationally indistinguishable from the output of A when given M ′(z) (the
distinction stems from the fact that B uses P to generate a “real” proof whereas M ′

uses M to generate a simulated proof). Thus, by Eq. (B.2), B computes the hardcore
predicate in Scenario XB, with non-negligible advantage.

B.4 Certifying Permutations

In Construction B.4 we explicitly assumed that it is possible to check whether an index
α specifies a permutation. This assumption was used when proving that the protocol is
sound. Note that if the prover provides an index that does not specify a permutation
then the hardcore predicate might be heavily biased and used to break the soundness of
the protocol. Alas, it seems as though certifying that an index is indeed a permutation
is not always feasible. Bellare and Yung [BY96] addressed this issue by having the
prover append to the proof, a non-interactive zero-knowledge proof that α is “almost a
permutation”, that is, that the fraction of domain elements that have more than one
preimage via fα is small. They showed that an “almost permutation” suffices to prove
that soundness holds. Basically, their idea is for the prover to provide, as part of the
proof, preimages of random elements specified by the common reference string. They
proved that if the prover manages to provide sufficiently many preimages, then (with
high probability) the index α describes a function that is almost a permutation, which in
turn suffices to show that soundness of Construction B.4 holds.

Bellare and Yung considered permutations over Dα = {0, 1}|α|. In this case, it is
easy to argue that the protocol is zero-knowledge, since the view of the verifier is easy
to simulate by selecting random elements and computing their images. However, as is
the case throughout this work, Dα is not necessarily {0, 1}|α| and is only required to
be efficiently sampleable. The natural extension of the BY protocol to general Dα is
to use the common reference string to specify sufficiently many random strings for the
sampling algorithm and to give as a proof, the preimages of the corresponding sampled
elements. Completeness and soundness hold as before. Zero-knowledge on the other hand
follows from the fact that the permutation remains hard to invert (and the hardcore
predicate hard to predict) even if the adversary is given random strings together with
their corresponding preimages via fα, that is, that {fα}α is hard to invert in Scenario XX.
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