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Abstract

The current proof of the PCP Theorem (i.e., NP = PCP(log, O(1))) is very complicated.
One source of difficulty is the technically involved analysis of low-degree tests. Here, we refer to
the difficulty of obtaining strong results regarding low-degree tests; namely, results of the type
obtained and used by Arora and Safra and Arora et. al.

In this paper, we eliminate the need to obtain such strong results on low-degree tests when
proving the PCP Theorem. Although we do not remove the need for low-degree tests altogether,
using our results it is now possible to prove the PCP Theorem using a simpler analysis of low-
degree tests (which yields weaker bounds). In other words, we replace the strong algebraic
analysis of low-degree tests presented by Arora and Safra and Arora et. al. by a combinatorial
lemma (which does not refer to low-degree tests or polynomials).
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1 Introduction

The characterization of NP in terms of Probabilistically Checkable Proofs (PCP systems) [AS,
ALMSS], hereafter referred to as the PCP Characterization Theorem, is one of the more fundamental
achievements of complexity theory. Loosely speaking, this theorem states that membership in
any NP-language can be verified probabilistically by a polynomial-time machine which inspects a
constant number of bits (in random locations) in a “redundant” NP-witness. Unfortunately, the
current proof of the PCP Characterization Theorem is very complicated and, consequently, it has
not been fully assimilated into complexity theory. Clearly, changing this state of affairs is highly
desirable.

There are two aspects of the current proof (of the PCP Characterization Theorem) which are
difficult. One difficult aspect is the complicated conceptual structure of the proof (most notably the
acclaimed ‘proof composition’ paradigm). Yet, with time, this part seems easier to understand and
explain than when it was first introduced. Furthermore, the Proof Composition Paradigm turned
out to be very useful and played a central role in subsequent works in this area (cf., [BGLR, BS,
BGS, H96]). The other difficult aspect is the technically involved analysis of low-degree tests. Here
we refer to the difficulty of obtaining strong results regarding low-degree tests; namely, results of
the type obtained and used in [AS] and [ALMSS].

In this paper, we eliminate the latter difficulty. Although we do not get rid of low-degree
tests altogether, using our results it is now possible to prove the PCP Characterization Theorem
using only the weaker and simpler analysis of low-degree tests presented in [GLRSW, RS92, RS96].
In other words, we replace the complicated algebraic analysis of low-degree tests presented in
[AS, ALMSS] by a combinatorial lemma (which does not refer to low-degree tests or even to
polynomials). We believe that this combinatorial lemma is very intuitive and find its proof much
simpler than the algebraic analysis of [AS, ALMSS]. (However, simplicity may be a matter of
taste.)

Loosely speaking, our combinatorial lemma provides a method of generating sequences of pair-
wise independent random points so that any assignment of values to the sequences either induces
essentially consistent values on the individual elements or is detected as inconsistent. This is
achieved by a “consistency test” which samples a constant number of sequences (and obtains the
values assigned to these sequences). We stress that the length of the sequences as well as the
domain from which the elements are chosen are parameters, which may grow while the number of
samples remains fixed.

1.1 Two Combinatorial Consistency Lemmas

The following problem arises frequently when trying to design PCP systems, and in particular when
proving the PCP Characterization Theorem. For some sets S and V , one has a procedure, which
given (bounded) oracle access to any function f : S 7→V , tests if f has some desired property. The
procedure should always accept a function having the property, and should reject with “noticeable”
probability any function which is far from having the property (i.e., differs from any function having
the property on a significant fraction of the domain). For example, the propery may be that of being
a proof-oracle in a basic PCP system which we want to utilize (as an ingredient in the composition
of PCP systems). Our goal is to increase the detection probability (equivalently, reduce the error
probability) without increasing the number of queries, but rather allowing more informative queries.
For example, we are willing to allow queries in which one supplies a sequence of elements in S and
expects to obtain the corresponding sequence of values of f applied to these elements. The problem
is that the sequences of values obtained may not be consistent with any function f : S 7→V .
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We can now phrase a simple problem of testing consistency. One is given access to a function
F : S` 7→ V ` and is asked whether there exists a function f : S 7→ V so that for most sequences
(x1, ..., x`) ∈S`,

F (x1, ..., x`) = (f(x1), ..., f(x`)) .

Loosely speaking, we prove that querying F on a constant number of related random sequences
suffices for testing a relaxation of the above. That is,

Lemma 1.1 (combinatorial consistency – simple case): For every δ > 0, there exist a constant
c = poly(1/δ) and a probabilistic oracle machine, T , which on input (`, |S|) runs for poly(`·log |S|)-
time and makes at most c queries to an oracle F : S` 7→V `, such that

• If there exists a function f : S 7→ V such that F (x1, ..., x`) = (f(x1), ..., f(x`)), for all
(x1, ..., x`) ∈ S`, then T always accepts when given access to oracle F .

• If T accepts with probability at least 1
2 , when given access to oracle F , then there exists a

function f : S 7→ V such that the sequences F (x1, ..., x`) and (f(x1), ..., f(x`)) agree on at
least `−√` positions, for at least a 1− δ fraction of all possible (x1, ..., x`) ∈ S`.

Specifically, the test examines the value of the function F on random pairs of sequences ((r1, ..., r`), (s1, ..., s`)),
where ri = si for

√
` of the i’s, and checks that the corresponding values (on these ri’s and si’s)

are indeed equal. For details see Section 4.
Unfortunately, this relatively simple consistency lemma does not suffice for the PCP appli-

cations. The reason being that, in that application, error reduction (see above) is done via
randomness-efficient procedures such as pairwise-independent sequences (since we cannot afford
to utilize ` · log2 |S| random bits as above). Consequently, the function F is not defined on the
entire set S` but rather on a very sparse subset, denoted S. Thus, one is given access to a function
F : S 7→ V ` and is asked whether there exists a function f : S 7→ V so that for most sequences
(x1, ..., x`) ∈S, the sequences F (x1, ..., x`) and (f(x1), ..., f(x`)) agree on most (contiguous) subse-
quences of length

√
`. The main result of this paper is

Lemma 1.2 (combinatorial consistency – sparse case): For every two of integers s, ` > 1, there
exists a set Ss,` ⊂ [s]`, where [s] def= {1, ..., s}, so that the following holds:

1. For every δ > 0, there exist a constant c = poly(1/δ) and a probabilistic oracle machine, T ,
which on input (`, s) runs for poly(` · log s)-time and makes at most c queries to an oracle
F : Ss,` 7→V `, such that

• If there exists a function f : [s] 7→ V such that F (x1, ..., x`) = (f(x1), ..., f(x`)), for all
(x1, ..., x`) ∈ Ss,`, then T always accepts when given access to oracle F .

• If T accepts with probability at least 1
2 , when given access to oracle F , then there exists a

function f : [s] 7→V such that for at least a 1− δ fraction of all possible (x1, ..., x`) ∈ Ss,`

the sequences F (x1, ..., x`) and (f(x1), ..., f(x`)) agree on at least a 1− δ fraction of the
(contiguous) subsequences of length

√
`.

2. The individual elements in a uniformly selected sequence in Ss,` are uniformly distributed in
[s] and are pairwise independent. Furthermore, the set Ss,` has cardinality poly(s) and can
be constructed in poly(s, `)-time.
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Specifically, the test examines the value of the function F on related random pairs of sequences
((r1, ..., r`), (s1, ..., s`)) ∈ Ss,`. These sequences are viewed as

√
` × √

` matrices, and, loosely
speaking, they are chosen to be random extensions of the same random row (or column). For
details see Section 2.

In particular, the presentation in Section 2 axiomatizes properties of the set of sequences, Ss,`,
for which the above tester works. Thus, we provide a “parallel repetition theorem” which holds for
random but non-independent instances (rather than for independent random instances as in other
such results). However, our “parallel repetition theorem” applies only to the case where a single
query is asked in the basic system (rather than a pair of related queries as in other results). Due to
this limitation, we could not apply our “parallel repetition theorem” directly to the error-reduction
of generic proof systems. Instead, as explained below, we applied our “parallel repetition theorem”
to derive a relatively strong low-degree test from a weaker low-degree test.

We believe that the combinatorial consistency lemma of Section 2 may play a role in subsequent
developments in the area.

1.2 Application to the PCP Characterization Theorem

The currently known proof of the PCP Characterization Theorem [ALMSS] composes proof systems
in which the verifier makes a constant number of multi-valued queries. Such verifiers are constructed
by “parallelization” of simpler verifiers, and thus the problem of “consistency” arises. This problem
is solved by use of low-degree multivariant polynomials, which in turn requires “high-quality” low-
degree testers. Specifically, given a function f : GF(p)n 7→ GF(p), where p is prime, one needs to
test whether f is close to some low-degree polynomial (in n variables over the finite field GF(p)).
It is required that any function f which disagrees with every d-degree polynomial on at least (say)
1% of the inputs be rejected with (say) probability 99%. The test is allowed to use auxiliary proof
oracles (in addition to f) but it may only make a constant number of queries and the answers must
have length bounded by poly(n, d, log p). Using a technical lemma due to Arora and Safra [AS],
Arora et. al. [ALMSS] proved such a result.1 The full proof is quite complex and is algebraic in
nature. A weaker result due to Gemmel et. al. [GLRSW] (see [RS96]) asserts the existence of a
d-degree test which, using d+2 queries, rejects such bad functions with probability at least Ω(1/d2).
Their proof is much simpler. Combining the result of Gemmel et. al. [GLRSW, RS96] with our
combinatorial consistency lemma (i.e., Lemma 1.2), we obtain an alternative proof of the following
result

Lemma 1.3 (low-degree tester): For every δ > 0, there exist a constant c and a probabilistic oracle
machine, T , which on input n, p, d runs for poly(n, d, log p)-time and makes at most c queries to
both f and to an auxiliary oracle F , such that

• If f is a degree-d polynomial, then there exists a function F so that T always accepts.

• If T accepts with probability at least 1
2 , when given access to the oracles f and F , then f

agrees with some degree-d polynomial on at least a 1−O(1/d2) fraction of the domain.2

Furthermore, the test uses O(n log p) coin tosses, and makes queries of length O(n log p).

We stress that in contrast to [ALMSS] our proof of the above lemma is mainly combinatorial. Our
only reference to algebra is in relying on the result of Gemmel et. al. [GLRSW, RS96] (which is

1 An improved analysis was later obtained by Friedl and Sudan [FS].
2 Actually, [ALMSS] only prove agreement on an (arbitrarily large) constant fraction of the domain.

3



weaker and has a simpler proof than that of [ALMSS]). Our tester works by performing many (pair-
wise independent) instances of the [GLRSW] test in parallel, and by guaranteeing the consistency
of the answers obtained in these tests via our combinatorial consistency test (i.e., of Lemma 1.2).
In contrast, prior to our work, the only way to guarantee the consistency of these answers resulted
in the need to perform a low-degree test of the type asserted in Lemma 1.3 (and using [ALMSS],
which was the only alternative known, this meant losing the advantage of utilizing a low-degree
tests with a simpler algebraic analysis).

1.3 Related work

We refrain from an attempt to provide an account of the developments which have culminated in
the PCP Characterization Theorem. Works which should certainly be mentioned include [GMR,
BGKW, FRS, LFKN, Sha, BFL, BFLS, FGLSS, AS, ALMSS] as well as [BF, BLR, LS, RS92]. For
detailed accounts see surveys by Babai [B94] and Goldreich [G97].

This paper reports work completed in the Spring of 1994, and announced at the Weizmann
Institute Workshop on Randomness and Computation (January 1995). Hastad’s recent work [H96]
contains a combinatorial consistency lemma which is related to our Lemma 1.1 (i.e., the “simple
case” lemma). However, Hastad’s lemma (which is harder to establish) refers to the case where the
test accepts with very low probability (i.e., a weaker hypothesis) and guarantees the existence of a
small set of “piece-wise consistent” assignments (i.e., a weaker conclusion). Raz and Safra [RaSa]
claim to have been inspired by our Lemma 1.2 (i.e., the “sparse case” lemma).

1.4 Organization

The (basic) “sparse case” consistency lemma is presented in Section 2. The application to the
PCP Characterization Theorem is presented in Section 3. Section 4 contains a proof of Lemma 1.1
(which refers to sequences of totally independent random points).

2 The Consistency Lemma (for the sparse case)

In this section we present our main result – a combinatorial consistency lemma which refers to
sequences of bounded independence. Specifically, we considered k2-long sequences viewed as k-
by-k matrices. To emphasize the combinatorial nature of our lemma and its proof, we adopt an
abstract presentation in which the properties required from the set of matrices are explicitly stated
(as axioms). We comment that the set of all k-by-k matrices over S satisfies these axioms. A more
important case is given in Construction 2.3: It is based on a standard construction of pairwise-
independent sequences (i.e., the matrix is a pairwise-independent sequence of rows, where each row
is a pairwise-independent sequence of elements).

General Notation. For a positive integer k, let [k] def= {1, ..., k}. For a finite set A, the notation
a ∈R A means that a is uniformly selected in A. In case A is a multiset, each element is selected
with probability proportional to its multiplicity.

2.1 The Setting

Let S be some finite set, and let k be an integer. Though both S and k are parameters, they will
be implicit in all subsequent notations.
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Rows and Columns. Let R be a multi-set of sequences of length k over S so that every e ∈ S
appears in some sequence of R. For sake of simplicity, think of R as being a set (i.e., each sequence
appears with multiplicity 1). Similarly, let C be another set of sequences (of length k over S). We
neither assume R = C nor R 6= C. We consider matrices having rows in R and columns in C
(thus, we call the members of R row-sequences, and those in C column-sequences). We denote by
M a multi-set of k-by-k matrices with rows in R and columns in C. Namely,

Axiom 1 For every m ∈ M and i ∈ [k], the ith row of m is an element of R and the ith column
of m is an element of C.

For every i ∈ [k] and r̄ ∈ R, we denote by Mi(r̄) the set of matrices (in M) having r̄ as the ith

row. Similarly, for j ∈ [k] and c̄ ∈ C, we denote by Mj(c̄) the set of matrices (in M) having c̄
as the jth column. For every r̄ = (r1, ..., rk) ∈ R and every c̄ = (c1, ..., ck) ∈ C, so that rj = ci,
we denote by Mj

i (r̄, c̄) the set of matrices having r̄ as the ith row and c̄ as the jth column (i.e.,
Mj

i (r̄, c̄) = Mi(r̄) ∩Mj(c̄)).

Shifts. We assume that R is “closed” under the shift operator. Namely,

Axiom 2 For every r̄ = (r1, ..., rk) ∈ R there exists a unique s̄ = (s1, ..., sk) ∈ R satisfying
si = ri−1, for every 2≤ i≤k. We denote this right-shifted sequence by σ(r̄). Similarly, we assume
that there exists a unique s̄ = (s1, ..., sk) ∈ R satisfying si = ri+1, for every 1 ≤ i ≤ k − 1. We
denote this left-shifted sequence by σ−1(r̄). Furthermore3, we assume that shifting each of the rows
of a matrix m ∈ M, to the same direction, yields a matrix m′ that is also in M.

Axiom 2 implies that if r̄ is uniformly distributed in R then so is σ(r̄) (resp., σ−1(r̄)). For every
(non-negative) integer i, the notations σi(r̄) and σ−i(r̄) are defined in the natural way (e.g., σi(r̄) =
σi−1(σ(r̄)) and σ0(r̄) = r̄). Note that we do not assume that C is “closed” under shifts (in an
analogous manner).

Distribution. We now turn to axioms concerning the distribution of rows and columns in a
uniformly chosen matrix. We assume that the rows (and columns) of a uniformly chosen matrix
are uniformly distributed in R (and C, respectively).4 In addition, we assume that the rows (but
not necessarily the columns) are also pairwise independent. Specifically,

Axiom 3 Let m be uniformly selected in M. Then,

1. For every i ∈ [k], the ith column of m is uniformly distributed in C.

2. For every i ∈ [k], the ith row of m is uniformly distributed in R.

3. Furthermore, for every j 6= i and r̄ ∈ R, conditioned that the ith row of m equals r̄, the jth

row of m is uniformly distributed over R.

Finally, we assume that the columns in a uniformly chosen matrix containing a specific row-sequence
are distributed identically to uniformly selected columns with the corresponding entry. That is,

3 The extra axiom is not really necessary; see remark following the definition of the consistency test.
4 This, in fact, implies Axiom 1.

5



Axiom 4 For every i, j ∈ [k] and r̄ = (r1, ..., rk) ∈ R, the jth column in a matrix that is uniformly
selected among those having r̄ as its ith row (i.e., m ∈R Mi(r̄)), is uniformly distributed among the
column-sequences that have rj as their ith element.

Clearly, if the jth element of r̄ = (r1, ..., rk) differs from the ith element of c̄ = (c1, ..., ck) then
Mj

i (r̄, c̄) is empty. Otherwise (i.e., rj = ci), by the above axiom, Mj
i (r̄, c̄) is not empty. Further-

more, the above axiom implies that (in case rj = ci) for a uniformly chosen m ∈ M

Prob(m ∈ Mj
i (r̄, c̄)) = Prob(m ∈ Mi(r̄)) · Prob(m ∈ Mj(c̄) |m ∈ Mi(r̄))

=
1
|R| ·

1
|Ci(rj)|

> 0

where Ci(e) denotes the set of column-sequences having e as their ith element, and the second
equality is obtained by Axiom 4.

2.2 The Test

Let Γ be a function assigning matrices in M (which may be a proper subset of all possible k-by-k
matrices over S) values which are k-by-k matrices over some set of values V (i.e., Γ : M 7→ V k×k).
The function Γ is supposed to be “consistent” (i.e., assign each element, e, of S the same value,
independently of the matrix in which e appears). The purpose of the following test is to check that
this property holds in some approximate sense.

Construction 2.1 (Consistency Test):

1. column test: Select a column-sequence c̄ uniformly in C, and i, j ∈R [k]. Select two random
extensions of this column, namely m1 ∈R Mi(c̄) and m2 ∈R Mj(c̄), and test if the ith column
of Γ(m1) equals the jth column of Γ(m2).

2. row test (analogous to the column test): Select a row-sequence r̄ uniformly in R, and i, j ∈R

[k]. Select two random extensions of this row, namely m1 ∈R Mi(r̄) and m2 ∈R Mj(r̄), and
test if the ith row of Γ(m1) equals the jth row of Γ(m2).

3. shift test: Select a matrix m uniformly in M and an integer t ∈ [k− 1]. Let m′ be the matrix
obtained from m by shifting each row by t; namely, the ith row of m′ is σt(r̄), where r̄ denotes
the ith row of m. We test if the k − t first columns of Γ(m) match the k − t last columns of
Γ(m′).

The test accepts if all three (sub-)tests succeed.

Remark: Actually, it suffices to use a seemingly weaker test in which the row-test and shift-test
are combined into the following generalized row-test:

Select a row-sequence r̄ uniformly in R, integers i, j ∈R [k] and t ∈R {0, 1, ..., k − 1}.
Select a random extension of this row and its shift, namely m1 ∈R Mi(r̄) and m2 ∈R

Mj(σt(r̄)), and test if the (k−t)-long suffix of the ith row of Γ(m1) equals the (k−t)-long
prefix of the jth row of Γ(m2).
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Our main result asserts that Construction 2.1 is a “good consistency test”: If it accepts Γ with
high probability then not only that almost all entries in almost all matrices are assigned in
a consistent manner (which is obvious), but all entries in almost all rows of almost all
matrices are assigned in a consistent manner.

Lemma 2.2 Suppose M satisfies Axioms 1–4. Then, for every constant δ > 0, there exists a
constant ε > 0 so that if a function Γ : M 7→ V k×k passes the consistency test with probability at
least 1− ε then there exists a function τ : S 7→ V so that, with probability at least 1− δ, the value
assigned by Γ to a uniformly chosen matrix matches the values assigned by τ to the elements of a
uniformly chosen row in this matrix. Namely,

Probi,m(∀j : Γ(m)i,j = τ(mi,j)) ≥ 1− δ

where m ∈R M and i ∈R [k]. The constant ε does not depend on k and S. Furthermore, it is
polynomially related to δ.

As a corollary, we get Part (1) of Lemma 1.2. Part (2) follows from Proposition 2.4 (below).

2.3 Proof of Lemma 2.2

As a motivation towards the proof of Lemma 2.2, consider the following mental experiment. Let
m ∈ M be an arbitrary matrix and e be its (i, j)th entry. First, uniformly select a random matrix,
denoted m1, containing the ith row of m. Next, uniformly select a random matrix, denoted m2,
containing the jth column of m1. One can show that m2 is uniformly distributed among the
matrices containing the element e. Thus, if Γ passes Steps (1) and (2) in the consistency test then
it must assign consistent values to almost all elements in almost all matrices. Yet, this falls short
of even proving that there exists an assignment which matches all values assigned to the elements
of some row in some matrix. Indeed, consider a function Γ which assigns 0 to all elements in the
first εk columns of each matrix and 1’s to all other elements. Clearly, Γ passes the row-test with
probability 1 and the column-test with probability greater than 1− ε; yet, there is no τ : S 7→ V
so that for a random matrix the values assigned by Γ to some row match τ . It is easy to see that
the shift-test takes care of this special counter-example. Furthermore, it may be telling to see what
is wrong with some naive arguments. A main issue these arguments tend to ignore is that for an
“adversarial” choice of Γ and a candidate choice of τ : S 7→ V , we have no handle on the (column)
location of the elements in a random matrix on which τ disagrees with Γ. The shift-test plays a
central role in circumventing this problem; see Subsection 2.3.2 and Claim 2.2.14 (below).

Recommendation: The reader may want to skip the proofs of all claims in first reading. We
believe that all the claims are quite believable, and that their proofs (though slightly tedious in
some cases) are quite straightforward. In contrast, we believe that the ideas underlying the proof of
the lemma are to be found in its high level structure; namely, the definitions and the claims made.

Notation: The following notation will be used extensively throughout the proof. For a k-by-k
matrix, m, we denote by rowi(m) the ith row of m and by colj(m) the jth column of m. Restating
the conditions of the lemma, we have (from the hypothesis that Γ passes the column test)

Probc̄,i,j,m1,m2(coli(Γ(m1))=colj(Γ(m2))) ≥ 1− ε (1)
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where c̄, i, j,m1,m2 are uniformly selected in the corresponding sets (i.e., c̄∈C, i, j∈ [k], m1 ∈ Mi(c̄)
and m2 ∈ Mj(c̄)). Similarly, from the hypothesis that Γ passes the row test, we have

Probr̄,i,j,m1,m2(rowi(Γ(m1)) = rowj(Γ(m2))) ≥ 1− ε (2)

where r̄ ∈R R, i, j ∈R [k], m1 ∈R Mi(r̄) and m2 ∈R Mj(r̄). It will be convenient to extend the shift
notation to matrices in the obvious manner; namely, σt(m) is defined as the matrix m′ satisfying
rowi(m′) = σt(rowi(m)) for every i ∈ [k]. From the hypothesis that Γ passes the shift-test, we
obtain

Probm,t(∀j≤k − t colj(Γ(m)) = colj+t(Γ(σt(m)))) ≥ 1− ε (3)

where m ∈R M and t ∈R [k − 1]. Finally, denoting by entryi,j(m) the (i, j)th entry in the matrix
m, we restate the conclusion of the lemma as follows

Probi,m(∃j so that entryi,j(Γ(m)) 6= τ(entryi,j(m))) ≤ δ (4)

where m ∈R M and i ∈R [k].

2.3.1 Stable Rows and Columns – Part 1

For each r̄ ∈ R and ᾱ ∈ V k, we denote by pr̄(ᾱ) the probability that Γ assigns to the row-sequence
r̄ the value-sequence ᾱ; namely,

pr̄(ᾱ) def= Probi,m(rowi(Γ(m)) = ᾱ)

where i ∈R [k] and m ∈R Mi(r̄). Eq. (2) implies that for almost all row-sequences there is a
“typical” sequence of values; see Claim 2.2.3 (below).

Definition 2.2.1 (consensus): The consensus of a row-sequence r̄ ∈ R, denoted con(r̄), is defined
as the value ᾱ for which pr̄(ᾱ) is maximum. Namely, con(r̄) = ᾱ if ᾱ is the (lexicographically first)
value-sequence for which pr̄(ᾱ) = maxβ̄{pr̄(β̄)}.

Definition 2.2.2 (stable sequences): Let ε2
def=

√
ε. We say that the row-sequence r̄ is stable if

pr̄(con(r̄)) ≥ 1− ε2. Otherwise, we say that r̄ is unstable.

Clearly, almost all row-sequences are stable. That is,

Claim 2.2.3 All but at most an ε2 fraction of the row-sequence are stable.

proof: For each fixed r̄ we have

Probi,j,m1,m2(rowi(Γ(m1))=rowj(Γ(m2))) =
∑

ᾱ

pr̄(ᾱ)2

where i, j ∈R [k], m1 ∈R Mi(r̄) and m2 ∈R Mj(r̄). Taking the expectation over r̄ ∈R R, and using
Eq. (2), we get

1− ε ≤ Probr̄,i,j,m1,m2(rowi(Γ(m1))=rowj(Γ(m2)))

= Expr̄(
∑

ᾱ

pr̄(ᾱ)2)

≤ Expr̄(p
max
r̄ )
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where pmax
r̄

def= maxᾱ{pr̄(ᾱ)}. Using Markov Inequality, we get

Probr̄(pmax
r̄ ≤1−√ε) <

√
ε

and the claim follows. 2

By definition, almost all matrices containing a particular stable row-sequence assign this row-
sequence the same sequence of values (i.e., its consensus value). We say that such matrices are
conforming for this row-sequence.

Definition 2.2.4 (conforming matrix): Let i ∈ [k]. A matrix m ∈ M is called i-conforming
(or conforming for row-position i) if Γ assigns the ith row of m its consensus value; namely, if
rowi(Γ(m)) = con(rowi(m)). Otherwise, the matrix is called i-non-conforming (or non-conforming
for row-position i).

Claim 2.2.5 The probability that for a uniformly chosen i ∈ [k] and m ∈ M, the matrix m is
i-non-conforming is at most ε3

def= 2ε2. Furthermore, the bound holds also if we require that the ith

row of m is stable.

proof: The stronger bound (on probability) equals the sum of the probabilities of the following
two events. The first event is that the ith row of the matrix is unstable; whereas the second event
is that the ith row of the matrix is stable and yet the matrix is i-non-conforming. To bound the
probability of the first event (by ε2), we fix any i ∈ [k] and combine Axiom 3 with Claim 2.2.3. To
bound the probability of the second event, we fix any stable r̄ and use the definition of a stable
row. 2

Remark: Clearly, an analogous treatment can be applied to column-sequences. In the sequel, we
freely refer to the above notions and to the above claims also when discussing column-sequences.

2.3.2 Stable Rows – Part 2 (Shifts)

Now we consider the relation between the consensus of row-sequences and the consensus of their
(short) shifts. By a short shift of the row-sequence r̄, we mean any row-sequence s̄ = σd(r̄) obtained
with d ∈ {−(k − 1), ...,+(k − 1)}. Our aim is to show that the consensus (as well as stability) is
usually preserved under short shifts.

Definition 2.2.6 (very-stable row): Let ε4 =
√

ε2. We say that a row-sequence r̄ is very-stable if

it is stable, and for all but an ε4 fraction of d ∈ {−(k−1), ...,+(k−1)}, the row-sequence s̄
def= σd(r̄)

is also stable.

Clearly,

Claim 2.2.7 All but at most an ε4 fraction of the row-sequence are very-stable.

proof: By a simple counting argument (using the fact that the uniform distribution over R is
preserved under shifts). 2

Definition 2.2.8 (super-stable row): Let ε5 = 3
√

ε and ε6 = 2(ε4+ε5). We say that a row-sequence
r̄ is super-stable if it is very-stable, and, for every j ∈ [k], the following holds

9



for all but an ε6 fraction of the t ∈ [k], the row-sequence s̄
def= σt−j(r̄) is stable and

conj(r̄) = cont(s̄), where coni(r̄) is the ith element of con(r̄).

Note that the tth element of σt−j(r̄) is rt−(t−j) = rj . Thus, a row-sequence is super-stable if the
consensus value of each of its elements is preserved under almost all (short) shifts.

Claim 2.2.9 All but at most an ε6 fraction of the row-sequence are super-stable.

proof: We start by proving that almost all row-sequences and almost all their shifts have approx-
imately matching statistics, where the statistics vector of r̄ ∈ R is defined as the k-long sequence
(of functions), p1

r̄(·), ..., pk
r̄ (·), so that pj

r̄(v) is the probability that Γ assigns the value v to the jth

element of the row r̄. Namely,

pj
r̄(v) def= Probi,m(entryi,j(Γ(m)) = v)

where i ∈R [k] and m ∈R Mi(r̄). By the definition of consensus, we know that for every stable
row-sequence r̄ ∈ R, we have pj

r̄(conj(r̄)) ≥ 1 − ε2, for every j ∈ [k]. Thus if both r̄ and its shift
s̄ = σt(r̄) are stable and have approximately matching statistics (i.e., the corresponding (k−t)-long
statistics sub-vectors are close) then their consensus must match (i.e., the corresponding (k−t)-long
subsequences of the consensus are equal).
subclaim 2.2.9.1: For all but an ε5 fraction of the row-sequences r̄, all but an ε5 fraction of the
values d ∈ [k − 1] satisfy

∑
v

|pj
r̄(v)− pj+d

σd(r̄)
(v)| < 2ε5 for every j ≤k − d.

proof of subclaim: Let pref rowi,j(m) denote the j-long prefix of rowi(m) and suff rowi,j(m) its
j-long suffix. By the shift-test (see Eq. (3) and recall ε = ε35)

Probm,i,d(pref rowi,k−d(Γ(m))=suff rowi,k−d(Γ(m′))) ≥ 1− ε35

where i ∈R [k], m ∈R M, d ∈R [k − 1] and m′ = σd(m). Using Axiom 3 (Part 2) and an averaging
argument, we get that for all but an ε5 fraction of the r̄ ∈ R, and for all but an ε5 fraction of
d ∈ [k − 1],

Probi,m(pref rowi,k−d(Γ(m))=suff rowi,k−d(Γ(m′))) ≥ 1− ε5 (5)

where i ∈R [k], m ∈R Mi(r̄) and m′ = σd(m). We fix a pair r̄ and d satisfying Eq. (5),
thus fixing also s̄ = σd(r̄). A matrix pair (m,m′) for which the equality pref rowi,k−d(Γ(m)) =
suff rowi,k−d(Γ(m′)) holds contributes equally to the (appropriate (k − d)-long portion of the) the
statistic vectors of the row-sequences r̄ and s̄. The contribution of a matrix pair, for which the
equality does not hold, to the difference

∑
v |pj

r̄(v)− pj+d
s̄ (v)| is at most 2

k·|Mi(r̄)| per each relevant
j. Thus, the total difference for such r̄ and s̄ (i.e., satisfying Eq. (5)) is at most 2ε5. The subclaim
follows. 3

As a corollary we get
subclaim 2.2.9.2: Let us call a row-sequence, r̄, infective if for every j ∈ [k] all but an 2ε5 fraction
of the t ∈ [k] satisfy

∑
v |pj

r̄(v) − pt
s̄(v)| ≤ 2ε5, where s̄ = σt−j(r̄). Then, all but a 2ε5 fraction of

the row-sequences are infective.

10



proof of subclaim: We say that r̄ is rightwards-fine if for all but an ε5 fraction of the d ∈ [k] and
for every j ≤ k − d, we have

∑
v |pj

r̄(v) − pj+d
σd(r̄)

(v)| ≤ 2ε5. (Indeed, subclaim 2.2.9.1 asserts that
all but an ε5 fraction of the row-sequences are rightwards-fine.) If r̄ is rightwards-fine then for
every j there are at most ε5k positions t ∈ {j + 1, ..., k} so that

∑
v |pj

r̄(v) − pt
σt−j(r̄)(v)| > 2ε5.

Similarly, r̄ is leftwards-fine if for all but an ε5 fraction of the d ∈ [k] and for every j > d we have∑
v |pj

r̄(v) − pj−d
σ−d(r̄)

(v)| ≤ 2ε5, and whenever r̄ is leftwards-fine then for every j there are at most

ε5k positions t ∈ {1, ..., j − 1} so that
∑

v |pj
r̄(v) − pt

σt−j(r̄)(v)| > 2ε5. Thus, if a row-sequence r̄ is
both rightwards-fine and leftwards-fine then for every j ∈ [k] all but a 2ε1 fraction of the positions
t ∈ [k] satisfy

∑
v |pj

r̄(v)− pt
σt−j(r̄)(v)| ≤ 2ε5. Now, by subclaim 2.2.9.1, all but an ε5 fraction of the

row-sequences are rightwards-fine. A similar statement holds for leftwards-fine (since the shift-test
can be rewritten as selecting m′ ∈R M and d ∈R [k − 1] and setting m = σ−d(m′)). Combining all
these trivialities, the subclaim follows. 3

Clearly, a row-sequence r̄ that is both very-stable and infective satisfies, for every j ∈ [k] and all
but at most ε4 · (2k − 1) + 2ε5 · k of the t ∈ [k], both

• s̄
def= σt−j(r̄) is stable; it follows that pt

s̄(cont(s̄)) ≥ 1− ε2 and pt
s̄(u) ≤ ε2 for all u 6= cont(s̄).

• pt
s̄(v) ≥ pj

r̄(v)− 2ε5, for every v and in particular for v = conj(r̄).

It follows that pt
s̄(conj(r̄)) ≥ pj

r̄(conj(r̄)) − 2ε5 ≥ 1 − ε2 − 2ε5 which (for sufficiently small ε) is
strictly greater than ε2, and therefore conj(r̄) = cont(s̄) must hold. Thus, such an r̄ is super-stable.
Combining the lower bounds on the fractions of very-stable and infective row-sequences (given by
Claim 2.2.7 and subclaim 2.2.9.2, respectively), the current claim follows. (Actually, we get a better
bound; i.e., ε4 + 2ε5.) 2

Summary. Before proceeding let us summarize our state of knowledge. The key definitions
regarding row-sequences are of stable, very-stable and super-stable row-sequences (i.e., Defs 2.2.2,
2.2.6, and 2.2.8, respectively). Recall that a stable row-sequence is assigned the same value in
almost all matrices in which it appear. Furthermore, most prefixes (resp., suffices) of a super-stable
row-sequence are assigned the same values in almost all matrices containing these portions (as part
of some row). Regarding matrices, we defined a matrix to be i-conforming if it assigns its ith row
the corresponding consensus value (i.e., it conforms with the consensus of that row-sequence); cf.,
Definitions 2.2.4 and 2.2.1. We have seen that almost all row-sequences are super-stable and that
almost all matrices are conforming for most of their rows. Actually, we will use the latter fact with
respect to columns; that is, almost all matrices are conforming for most columns (cf., Claim 2.2.5
and the remark following it).

2.3.3 Deriving the Conclusion of the Lemma

We are now ready to derive the conclusion of the Lemma. Loosely speaking, we claim that the
function τ , defined so that τ(e) is the value most frequently assigned (by Γ) to e, satisfies Eq. (4).
Actually, we use a slightly different definition for the function τ .

Definition 2.2.10 (the function τ): For a column-sequence c̄, we denote by coni(c̄) the values that
con(c̄) assigns to the ith element in c̄. We denote by Ci(e) the set of column-sequences having e
as the ith component. Let qe(v) denote the probability that the consensus of a uniformly chosen
column-sequence, containing e, assigns to e the value v. Namely,

qe(v) def= Probi,c̄(coni(c̄)=v)
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where i ∈R [k] and c̄ ∈R Ci(e). We consider τ : S 7→ V so that τ(e) def= v if qe(v) = maxu{qe(u)},
with ties broken arbitrarily.

Assume, contrary to our claim, that Eq. (4) does not hold (for this τ). Namely, for a uniformly
chosen m ∈ M and i ∈ [k], the following holds with probability greater that δ

∃j so that entryi,j(Γ(m)) 6= τ(entryi,j(m)) (6)

The notion of a annoying row-sequence, defined below, plays a central role in our argument. Using
the above (contradiction) hypothesis, we first show that many row-sequences are annoying. Next,
we show that lower bounds on the number of annoying row-sequences translate to lower bounds on
the probability that a uniformly chosen matrix is non-conforming for a uniformly chosen column
position. This yields a contradiction to Claim 2.2.5.

Definition 2.2.11 (row-annoying elements): An element rj in r̄ = (r1, ..., rk) ∈ R, is said to be
annoying for the row-sequence r̄ if the jth element in con(r̄) differs from τ(rj). A row-sequence r̄ is
said to be annoying if r̄ contains an element that is annoying for it.

Using Claim 2.2.9, we get

Claim 2.2.12 Suppose that Eq. (4) does not hold (for τ). Then, at least a δ1
def= δ−ε6−ε2 fraction

of the row-sequences are both super-stable and annoying.

proof: Axiom 3 (part 2) is extensively used throughout this proof (with no explicit reference).
Combining Eq. (6) and Claim 2.2.9, with probability at least δ − ε6 − ε2 = δ1, a uniformly chosen
pair (m, i) ∈ M× [k] satisfies the following

1. there exists a j so that τ(entryi,j(m)) is different from entryi,j(Γ(m));

2. rowi(m) is super-stable;

3. matrix m is i-conforming; i.e., entryi,j(Γ(m)) equals conj(rowi(m)), for every j ∈ [k].

Combining conditions (1) and (3), we get that e = entryi,j(m) is annoying for the ith row of m.
The current claim follows. 2

A key observation is that each stable row-sequence which is annoying yields many matrices which
are non-conforming for the “annoying column position” (i.e., for the column position containing
the element which annoys this row-sequence). Namely,

Claim 2.2.13 Suppose that a row-sequence r̄ = (r1, ..., rk) is stable and that rj is annoying for r̄.
Then, at least a 1

2 − ε2 fraction of the matrices, containing the row-sequence r̄, are non-conforming
for column-position j.

We stress that the row-sequence r̄ in the above claim is not necessarily very-stable (let alone super-
stable).

proof: Let us denote by v the value assigned to rj by the consensus of r̄ (i.e., v
def= conj(r̄)).

Since rj annoys r̄ it follows that v is different from τ(rj). Consider the probability space defined
by uniformly selecting i ∈ [k] and m ∈ Mi(r̄). Since r̄ is stable it follows that in almost all of these
matrices the value assigned to rj by the matrix equals v. Namely,

Probi,m(entryi,j(Γ(m))=v)) ≥ 1− ε2 (7)
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where i ∈R [k] and m ∈R Mi(r̄). By Axiom 4, the jth column of m is uniformly distributed in
Ci(rj), and thus we may replace c̄ ∈R Ci(rj) by the jth column of m ∈R Mi(r̄). Now, using the
definition of the function τ and the accompanying notations, we get

Probi,m(coni(colj(m))=v) = qrj (v) ≤ 1
2

(8)

where, again, i ∈R [k] and m ∈R Mi(r̄). The inequality holds since v 6= τ(rj) and by τ ’s definition
qrj (v) ≤ qrj (τ(rj)).
Combining Eq. (7) and (8), we get

Probi,m(entryi,j(Γ(m)) 6=coni(colj(m))) ≥ Probi,m(entryi,j(Γ(m))=v & coni(colj(m)) 6=v)

≥ 1− ε2 − 1
2

=
1
2
− ε2

and the claim follows. 2

Another key observation is that super-stable row-sequences which are annoying have the property
of “infecting” almost all their shifts with their annoying positions, thus spreading the “annoyance”
over all column positions. Namely,

Claim 2.2.14 Suppose that a row-sequence r̄ is both super-stable and annoying. In particular,
suppose that the jth element of r̄ = (r1, ..., rk) is annoying for r̄. Then, for all but at most an
ε6 fraction of the t ∈ [k], the the row-sequence s̄ = σt−j(r̄) is stable and its tth element (which is
indeed rj) is annoying for s̄.

proof: Since r̄ is super-stable, we know that for all but an ε6 fraction of the t’s, conj(r̄) = cont(s̄)
and s̄ is stable (as well), where s̄ = (s1, ..., sk) = σt−j(r̄). Since rj is annoying for r̄, we have
conj(r̄) 6= τ(rj) and cont(s̄) 6= τ(rj) = τ(st) follows (recall rj = st). 2

Combining Claims 2.2.12 and 2.2.14, we derive, for almost all positions t ∈ [k], a lower bound for
the number of stable row-sequences that are annoyed by their tth element.

Claim 2.2.15 Suppose that Eq. (4) does not hold (for τ). Then, there exists a set T ⊆ [k] so that
|T | ≥ (1− 2ε6) · k and for every t ∈ T there is a set of at least δ1

2k · |R| stable row-sequences so that
the tth position is annoying for each of these sequences.

proof: Combining Claims 2.2.12 and 2.2.14, we get that there is a set of super-stable row-
sequences A ⊆ R so that

1. A contains at least a δ1 fraction of R; and

2. for every r̄ ∈ A there exists a jr̄ ∈ [k] so that for all but an ε6 of the t ∈ [k], the row-sequence
s̄

def= σt−jr̄(r̄) is stable and the tth position is annoying for it (i.e., for s̄).

By a counting argument it follows that there is a set T so that |T | ≥ (1 − 2ε6) · k, and for every
t ∈ T at least half of the r̄’s in A satisfy Item (2) above for this t (i.e., s̄

def= σt−jr̄(r̄) is stable
and the tth position is annoying for s̄). Fixing such a t ∈ T , we consider the set, denoted At,
containing these r̄’s; namely, for every r̄ ∈ At the row-sequence s̄

def= σt−jr̄(r̄) is stable and the tth

position is annoying for it (i.e., for s̄). Thus, we have established a mapping from At to a set of
stable row-sequences which are annoyed by their tth position; specifically, r̄ is mapped to σt−jr̄(r̄).
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Each row-sequence in the range of this mapping has at most k preimages (corresponding to the k

possible shifts which maintain its tth element). Recalling that At contains at least |A|
2 ≥ δ1

2 · |R|
sequences, we conclude that the mapping’s range must contain at least δ1

2k · |R| sequences, and the
claim follows. 2

Combining Claims 2.2.15 and 2.2.13, we get a lower bound on the number of matrices which are
non-conforming for the jth column, ∀j ∈ T (where T is as in Claim 2.2.15). Namely,

Claim 2.2.16 Let T be as guaranteed by Claim 2.2.15 and suppose that j ∈ T . Then, at least a
δ1
6 fraction of the matrices are non-conforming for column-position j.

proof: By Claim 2.2.15, there are at least δ1
2k · |R| stable row-sequences that are annoyed by

their jth position. Out of these row-sequences, we consider a subset, denoted A, containing exactly
δ1
2k · |R| row-sequences. By Claim 2.2.13, for each r̄ ∈ A, at least a 1

2 − ε2 fraction of the matrices
containing the row-sequence r̄ are non-conforming for column-position j. We claim that almost all
of these matrices do not contain another row-sequence in A (here we use the fact that A isn’t too
large); this will allow us to add-up the matrices guaranteed by each r̄ ∈ A without worrying about
multiple counting. Namely,
subclaim 2.2.16.1: For every r̄ ∈ R

Probi,m(∃i′ 6= i s.t. rowi′(m)∈A) <
δ1

2

where i ∈R [k] and m ∈R Mi(r̄).
proof of subclaim: By Axiom 3 (part 3), we get that for every i′ 6= i the i′-th row of m ∈R Mi(r̄) is
uniformly distributed in R. Thus, for every i′ 6= i

Probm(rowi′(m)∈A) =
δ1

2k

where m ∈R Mi(r̄). The subclaim follows. 3

Using the subclaim, we conclude that for each r̄ ∈ A, at least a 1
2 − ε2 − δ1

2 > 1
3 fraction of

the matrices containing the row-sequence r̄ are non-conforming for column-position j and do not
contain any other row-sequence in A. The desired lower bound now follows. Namely, let B denote
the set of matrices which are non-conforming for column-position j, let Bi(r̄)

def= B ∩Mi(r̄) and
B′

i(r̄) denote the set of matrices in Bi(r̄) which do not contain any row in A except for the ith row;
then

|B| ≥ | ∪r̄∈A ∪k
i=1B

′
i(r̄)|

=
∑

r̄∈A

k∑

i=1

|B′
i(r̄)|

>
∑

r̄∈A

k∑

i=1

|Mi(r̄)|
3

= |A| ·
(

1
3
· k · |M|
|R|

)

=
δ1

6
· |M|
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The claim follows. 2

The combination of Claims 2.2.15 and 2.2.16, yields that a uniformly chosen matrix is non-
conforming for a uniformly chosen column position with probability at least (1 − 2ε6) · δ1

6 . For
a suitable choice of constants (e.g., ε = (δ/30)4), this yields a contradiction to Claim 2.2.5 (which
asserts that this probability is at most ε3).5 Thus, Eq. (4) must hold for τ as defined in Def. 2.2.10,
and the lemma follows.

2.4 A Construction that Satisfies the Axioms

Clearly, the set of all k-by-k matrices over S satisfies Axioms 1–4.6 A more interesting and useful
set of matrices is defined as follows.

Construction 2.3 (basic construction): We associate the set S with a finite field of characteristic
at least k. Furthermore, [k] is associated with k elements of the field so that 1 is the multiplicative
unit and i ∈ [k] is the sum of i such units. Let M be the set of matrices defined by four field
elements as follows. The matrix associated with the quadruple (x, y, x′, y′) has the (i, j)th entry
equal to (x + jy) + i(x′ + jy′).

Remark: The column-sequences correspond to the standard pairwise-independent sequences {r +
is : i ∈ [k]}, where r, s ∈ S. Similarly, the row-sequences are expressed as {r + js : j ∈ [k]}, where
r, s ∈ S.

Proposition 2.4 The Basic Construction satisfies Axioms 1–4.

proof: Axiom 1 as well as the first two items of Axiom 3 are obvious from the above remark. The
right-shift of the sequence {r + js : j ∈ [k]} is {(r + s) + js : j ∈ [k]} and Axiom 2 follows. To
prove that the third item of Axiom 3 holds, we rewrite the ith row as {si + j · ri : j ∈ [k]}, where
si = x + ix′ and ri = y + iy′. Now, for every i 6= i′ ∈ [k], when x, y, x′, y′ ∈R S, the pairs (si, ri)
and (si′ , ri′) are pairwise independent and uniformly distributed in S×S which corresponds to the
set of row-sequences. It remains to prove that Axiom 4 holds. We start by proving the following.
Fact 2.4.1: Consider any i, j ∈ [k] and two sequences r̄ = (r1, ..., rk) ∈ R and c̄ = (c1, ..., ck) ∈ C so
that rj = ci. Then, |Mj

i (r̄, c̄)| equals |S|.
proof of fact: By the construction, there exists a unique pair (a, b) ∈ S × S so that a + j′b = rj′ for
every j′ ∈ [k] (existence is obvious and uniqueness follows by considering any two equations; e.g.,
a + b = r1 and a + 2b = r2). Similarly, there exists a unique pair (α, β) so that α + i′β = ci′ for
every i′ ∈ [k]. We get a system of four linear equations in x, x′, y, y′ (i.e., x + ix′ = a, y + iy′ = b,
x+ jy = α and x′+ jy′ = β). This system has rank 3 and thus |S| solutions, each defining a matrix
in Mj

i (r̄, c̄). 3

Using Fact 2.4.1, Axiom 4 follows since

|Mj
i (r̄, c̄)|

|Mi(r̄)| =
|S|

|S × S|
5 Specifically, contradiction follows when (1 − 2ε6) · δ1

6
> δ1

12
> ε3 = 2ε2. Using δ1 = δ − ε6 − ε2, we need to have

ε6 ≤ 1/4 and δ > 25ε2 + ε6. Using ε2 =
√

ε and ε6 = 2( 4
√

ε + 3
√

ε) < 4 4
√

ε, it suffices to have ε ≤ 2−16 and δ > 29 4
√

ε,
which holds for ε = min{2−16, (δ/30)4} (= (δ/30)4 as δ ≤ 1).

6 To see that Axiom 2 holds, one should specify the right shift of r̄ = (r1, ..., rk). A natural choice is to have
σ(r̄) = (rk, r1, ..., rk−1).
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=
1
|S|

=
1

|Ci(rj)|
and so does the proposition.

3 A Stronger Consistency Test and the PCP Application

To prove Lemma 1.3, we need a slightly stronger consistency test than the one analyzed in
Lemma 2.2. This new test is given access to three related oracles, each supplying assignments
to certain classes of sequences over S, and is supposed to establish the consistency of these oracles
with one function τ : S 7→ V . Specifically, one oracle assigns values to k2-long sequences viewed as
two-dimensional arrays (as before). The other two oracles assign values to k3-long sequences viewed
as 3-dimensional arrays, whose slices (along a specific coordinate) correspond to the 2-dimensional
arrays of the first oracle. Using Lemma 2.2 (and the auxiliary oracles) we will present a test which
verifies that the first oracle is consistent in an even stronger sense than established in Lemma 2.2.
Namely, not only that all entries in almost all rows of almost all 2-dimensional arrays are
assigned in a consistent manner, but all entries in almost all 2-dimensional arrays are assigned
in a consistent manner.

3.1 The Setting

Let S, k, R, C and M be as in the previous section. We now consider a family, Mc, of k-by-k
matrices with entries in C. The family Mc will satisfy Axioms 1–4 of the previous section. In
addition, its induced multi-set of row-sequences, denoted R, will correspond to the multi-set M;
namely, each row of a matrix in Mc will form a matrix in M (i.e., the sequence of elements of C
corresponding to a row in a Mc-matrix will correspond to a M-matrix). Put formally,

Axiom 5 For every m ∈ Mc and every i ∈ [k], there exists m ∈ M so that for every j ∈ [k],
the (i, j)th entry of m equals the jth column of m (i.e., entryi,j(m) = colj(m), or, equivalently,
rowi(m) ∼= m). Furthermore, this matrix m is unique.7

Analogously, we consider also a family, Mr, of k-by-k matrices the entries of which are elements
in R so that the rows8 of each m ∈Mr correspond to matrices in M.

3.2 The Test

As before, Γ is a function assigning (k-by-k) matrices in M values which are k-by-k matrices over
some set of values V (i.e., Γ : M 7→ V k×k). Let Γc (resp., Γr) be (the supossedly corresponding)
function assigning k-by-k matrices over C (resp., R) values which are k-by-k matrices over V

def= V k

(i.e., Γc : Mc 7→ V
k×k).

Construction 3.1 (Extended Consistency Test):
7 Uniqueness is an issue only in case M is a multiset. In such a case, Mc will be a multiset too, and the

furthermore-clause establishes a 1-1 correspondance betwen the rows of Mc and M.
8 Alternatively, one can consider a family, Mr, of k-by-k matrices the entries of which are elements in R so

that the columns of each m ∈ Mr correspond to matrices in M. However, this would require to modify the basic
consistency test (of Construction 2.1), for these matrices, so that it shifts columns instead of rows.
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1. consistency for sequences: Apply the consistency test of Construction 2.1 to Γc. Same for Γr.

2. correspondence test: Uniformly select a matrix m ∈ Mc and a row i ∈ [k], and compare the
ith row in Γc(m) to Γ(m), where m ∈ M is the matrix formed by the C-elements in the ith

row of m. Same for Γr.

The test accepts if both (sub-)tests succeed.

Lemma 3.2 Suppose M,Mc,Mr satisfy Axioms 1–5. Then, for every constant γ > 0, there exists
a constant ε so that if a function Γ : M 7→ V k×k (together with some functions Γc : Mc 7→ V

k×k

and Γr : Mr 7→ V
k×k) passes the extended consistency test with probability at least 1− ε then there

exists a function τ : S 7→ V so that, with probability at least 1 − γ, the value assigned by Γ to a
uniformly chosen matrix m ∈ M matches the values assigned by τ to each of the elements of m.
Namely,

Probm

(
∀i, j entryi,j(Γ(m)) = τ(entryi,j(m))

)
≥ 1− γ

where m ∈R M. The constant ε does not depend on k and S. Furthermore, it is polynomially
related to γ.

The proof of the lemma starts by applying Lemma 2.2 to derive assignments to C (resp., R) which
are consistent with Γc (resp., Γr) on almost all rows of almost all k3-dimensional arrays (ie., Mc

and Mr, respectively). It proceeds by applying a degenerate argument of the kind applied in the
proof of Lemma 2.2. Again, the reader may want to skip the proofs of all claims in first reading.

3.3 Proof of Lemma 3.2

We start by considering Step (1) in the Extended Consistency Test. By Lemma 2.2, there exists
a function τc : C 7→ V k (resp., τr : R 7→ V k) so that the value assigned by Γc (resp., Γr), to a
uniformly chosen row in a uniformly chosen matrix Mc (resp., Mr), matches with high probability
the values assigned by τc (resp., τr) to each of the C-elements (resp., R-elements) appearing in this
row. Here “with high probability” means with probability at least 1− δ, where δ > 0 is a constant,
related to ε as specified by Lemma 2.2. Namely,

Probi,m(∀j entryi,j(Γc(m)) = τc(entryi,j(m))) ≥ 1− δ (9)

where i ∈R [k] and m ∈R Mc.

3.3.1 Perfect Matrices and Typical Sequences

Eq. (9) relates τc to Γc (resp., τc to Γc). Our next step is to relate τc (resp., τr) to Γ. This is
done easily by referring to Step (2) in the Extended Consistency Test. Specifically, it follows that
the value assigned by Γ, to a uniformly chosen matrix m ∈ M, matches, with high probability, the
values assigned by τc (resp., τr) to each of the columns (resp., rows) of m. That is

Definition 3.2.1 (perfect matrices): A matrix m ∈ M is called perfect (for columns) if for
every j ∈ [k], the jth column of Γ(m) equals the value assigned by τc to the jth column of m
(i.e., colj(Γ(m)) = τc(colj(m))). Similarly, m ∈ M is called perfect (for rows) if rowi(Γ(m)) =
τr(rowi(m)), for every i ∈ [k].

Claim 3.2.2 (perfect matrices): Let δ1
def= δ + ε.
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(c) All but a δ1 fraction of the matrices in M are perfect for columns.

(r) All but a δ1 fraction of the matrices in M are perfect for rows.

proof: It will be convinient to view the rows of m ∈ Mc as elements of M (although, formally
we only have a correspondance between the ith row of m ∈ Mc and a matrix m ∈ M so that
entryi,j(m) = colj(m), for all j’s). By the Correspondence (sub)Test, with probability at least 1− ε,
a uniformly chosen row in a uniformly chosen m ∈ Mc is given the same values by Γc and by Γ
(i.e., rowi(Γc(m)) = Γ(rowi(m)), for i ∈R [k]). In other words, for uniformly chosen m ∈ Mc and
i ∈R [k]

entryi,j(Γc(m)) = colj(Γ(rowi(m))) for every j ∈ [k]

On the other hand, by Eq. (9), with probability at least 1−δ, a uniformly chosen row in a uniformly
chosen m ∈ Mc is given the same values by Γc and by τc (i.e., entryi,j(Γc(m)) = τc(entryi,j(m)),
for i ∈R [k] and all j ∈ [k]). Thus, with probability at least 1 − (ε + δ), a uniformly chosen row
in a uniformly chosen m ∈ Mc is given the same values by Γ and by τc (i.e., colj(Γ(rowi(m))) =
τc(entryi,j(m)), for i ∈R [k] and all j ∈ [k]). Using Axiom 3 (part 2 – regarding Mc) and the
“furthermore” part of Axiom 5, rowi(m) is uniformly distributed in M (for any i ∈ [k] when
m ∈R Mc). Part (c) of the claim follows (i.e., colj(Γ(m)) = τc(colj(m)), with high probability for
m ∈R M and all j ∈ [k]). A similar argument holds for Part (r). 2

A perfect (for columns) matrix “forces” all its columns to satisfy some property Π (specifically, the
value assigned by τc to its column-sequences must match the value Γ of the matrix). Recall that
we have just shown that almost all matrices are perfect and thus force all their columns to satisfy
some property Π. Using a counting argument, one can show that all but at most a 1

k fraction of
the column-sequences must satisfy Π in almost all matrices in which they appear. Namely,

Definition 3.2.3 (typical sequences): Let δ2
def= 2

√
δ1. We say that the column-sequence c̄ is

typical if
Probj,m(colj(Γ(m))=τc(c̄)) ≥ 1− δ2

where j ∈R [k] and m ∈R Mj(c̄). Otherwise, we say that c̄ is non-typical. Similarly, we say that the
row-sequence r̄ is typical if Probi,m(rowi(Γ(m))=τr(r̄)) ≥ 1− δ2, where i ∈R [k] and m ∈R Mi(r̄).

Claim 3.2.4 All but at most an δ2
2k fraction of the column-sequence (resp., row-sequences) are

typical.

We will only use the bound for the fraction of typical row-sequences.

proof: We mimic part of the counting argument of Claim 2.2.16. Let N be a set of non-typical
row-sequences, containing exactly δ2

2k ·|R| sequences. Fix any r̄ ∈ N and consider the set of matrices
containing r̄. By Axiom 3 (part 3 – regarding M), at most a δ2

2 fraction of these matrices contain
some other row in N . On the other hand, by definition (of non-typical row-sequence), at least a δ2

fraction of the matrices containing r̄, have Γ disagree with τr(r̄) on r̄, and thus are non-perfect (for
rows). It follows that at least a δ2

2 fraction of the matrices containing r̄ are non-perfect (for rows)
and contain no other row in N . Combining the bounds obtained for all r̄ ∈ N , we get that at least a
δ2
2k · k · δ2

2 = δ1 fraction of the matrices are not perfect (for rows).9 This contradicts Claim 3.2.2(r),
and so the current claim follows (for row-sequences and similarly for column-sequences). 2

9 For each r̄ ∈ N , let Mr̄ denote the number of non-perfect matrices containing r̄ but not any other row in N . Then,

Mr̄ ≥ δ2
2
·∑k

i=1
|Mi(r̄)| = δ2

2
·k · |M|

|R| and the number of non-perfect matrices is at least
∑

r̄∈N
Mr̄ ≥ δ2|R|

2k
· δ2k|M|

2|R| .
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3.3.2 Deriving the Conclusion of the Lemma

We are now ready to derive the conclusion of the Lemma. Loosely speaking, we claim that the
function τ , defined so that τ(e) is the value most frequently assigned by τc to e, satisfies the claim
of the lemma.

Definition 3.2.5 (the function τ): Let τc(c̄)i denote the value assigned by τc to the ith element of
c̄ ∈ C. Define

qe(v) def= Probi,c̄(τc(c̄)i =v)

where i ∈R [k] and c̄ ∈R Ci(e) (recall that Ci(e) denotes the set of column-sequences having e as
the ith component). We consider τ : S 7→ V so that τ(e) def= v if qe(v) = maxu{qe(u)}, with ties
broken arbitrarily.

The proof that τ satisfies the claim of Lemma 3.2 is a simplified version of the proof of Lemma 2.2.10

We assume, contrary to our claim, that, for a uniformly chosen m ∈ M

Probm

(
∃i, j so that entryi,j(Γ(m)) 6= τ(entryi,j(m))

)
> γ (10)

As in the proof of Lemma 2.2, we define a notion of an annoying row-sequence. Using the above
(contradiction) hypothesis, we first show that many row-sequences are annoying. Next, we show
that lower bounds on the number of annoying row-sequences translate to lower bounds on the
probability that a uniformly chosen matrix is non-perfect (for columns). This yields a contradiction
to Claim 3.2.2(c).

Definition 3.2.6 (a new definition of annoying rows): A row-sequence r̄ = (r1, ..., rk) is said to be
annoying if there exists a j ∈ [k] so that the jth element in τr(r̄) differs from τ(rj).

Using Claim 3.2.2(r), we get

Claim 3.2.7 Suppose that Eq. (10) hold and let γ1
def= γ − δ1. Then, at least a γ1

k fraction of the
row-sequences are annoying.

proof: Combining Eq. (10) and Claim 3.2.2(r), we get that with probability at least γ − δ1 = γ1,
a uniformly chosen matrix m ∈ M is perfect for rows and contains some entry, denoted (i, j), for
which the Γ value is different from the τ value (i.e., entryi,j(Γ(m)) 6= τ(entryi,j(m))). Since the
τr-value of each row of a perfect (for rows) matrix m matches the Γ values, it follows that the ith

row of m is annoying. Thus, at least a γ1 fraction of the matrices contain an annoying row-sequence.
Using Axiom 3 (part 2 – regarding M), we conclude that the fraction of annoying row-sequences
must be as claimed. 2

A key observation is that each row-sequence that is both typical and annoying yields many matrices
which are non-perfect for columns. Namely,

Claim 3.2.8 Suppose that a row-sequence r̄ is both typical and annoying. Then, at least a 1
2 − δ2

fraction of the matrices, containing the row-sequence r̄, are non-perfect for columns.
10 The reader may wonder how it is possible that a simpler proof yields a stronger result; as the claim concerning

the current τ is stronger. The answer is that the current τ is defined based on a more restricted function over C and
there are also stronger restrictions on Γ. Both restrictions are due to facts that we have inferred using Lemma 2.2
w.r.t Γc and Γr.
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proof: Since r̄ = (r1, ..., rk) is annoying, there exists a j ∈ [k] so that the the jth component of
τr(r̄) (which is the value assigned to rj) is different from τ(rj). Let us denote by v the value τr(r̄)
assigns to rj . Note that v 6= τ(rj). Consider the probability space defined by uniformly selecting
i ∈ [k] and m ∈ Mi(r̄). Since r̄ is typical it follows that in almost all of these matrices the value
assigned to rj by the Γ equals v; namely,

Probi,m(entryi,j(Γ(m))=v) ≥ 1− δ2 (11)

By Axiom 4 (regarding M), the jth column of m is uniformly distributed in Ci(rj). Now, using
the definition of the function τ and the accompanying notations, we get

Probi,m(τc(colj(m))i =v) = qrj (v) ≤ 1
2

(12)

The inequality holds since v 6= τ(rj) and by τ ’s definition qrj (v) ≤ qrj (τ(rj)). Combining Eq. (11)
and (12), we get

Probi,m(entryi,j(Γ(m)) 6=τc(colj(m))i) ≥ 1
2
− δ2

and the claim follows. 2

Combining Claims 3.2.7, 3.2.4 and 3.2.8, we get a lower bound on the number of matrices which
are non-perfect for columns. Namely,

Claim 3.2.9 Suppose that Eq. (10) hold and let γ2
def= γ1 − δ2

2 . Then, at least a γ2

3 fraction of the
matrices are non-perfect for columns.

proof: By Claims 3.2.7 and 3.2.4, at least a γ1

k − δ2
2k (= γ2

k ) fraction of the row-sequences are
both annoying and typical. Let us consider a set of exactly γ2

k · |R| such row-sequences, denoted
A. Mimicking again the counting argument part of Claim 2.2.16, we bound, for each r̄ ∈ A, the
fraction of non-perfect (for columns) matrices which contain r̄ but no other row-sequence in A.
Using an adequate setting of δ2 and γ2, this fraction is at least 1

3 . Summing the bounds achieved
for all r̄ ∈ A, the claim follows. 2

Using a suitable choice of γ (as a function of ε), Claim 3.2.9 contradicts Claim 3.2.2(c), and so
Eq. (10) can not hold. The lemma follows.

3.4 Application to Low-Degree Testing

Again, the set of all k-by-k-by-k arrays over S satisfies Axioms 1–5. A more useful set of 3-
dimensional arrays is defined as follows.

Construction 3.3 (main construction): Let M be as in the Basic Construction (i.e., Construc-
tion 2.3). We let Mc = Mr be the set of matrices defined by applying the Basic Construction
to the element-set C = R. Specifically, a matrix in Mc is defined by the quadruple (x, y, x′, y′),
where each of the four elements is a pair over S, so that the (i, j)th entry in the matrix equals
(x + jy) + i(x′ + jy′). Here x, y, x′, y′ are viewed as two-dimensional vectors over the finite field S
and i, j are scalars in S. The (i, j)th entry is a pair over S which represents a pairwise independent
sequence (which equals an element in C = R).

Clearly,
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Claim 3.4 Construction 3.3 satisfies Assuptions 1–5.

Combining all the above with the low-degree test of [GLRSW, RS96] and using the results proved
there11, we get a low-degree test which is sufficiently efficient to be used in the proof of the PCP-
Characterization of NP.

Construction 3.5 (Low-Degree Test): Let f : Fn 7→ F , where F is a field of prime cardinality,
and d be an integer so that |F | > 4(d + 2)2. Let M, Mc and Mr be as in Construction 3.3, with
S = Fn, V = F and k

def= 4(d + 2)2. Let Γ : M 7→ F k×k, Γr : Mr 7→ F k3
and Γc : Mc 7→ F k3

be
auxiliary tables (which should contain the corresponding f -values). The low-degree test consists of
the following three steps:

1. Apply the Extended Consistency Test (i.e., Construction 3.1) to the functions Γ : M 7→ F k×k,
Γr : Mr 7→ F k3

and Γc : Mc 7→ F k3
.

2. Select uniformly a matrix m ∈ M and test whether the Polynomial Interpolation Condition (cf.,
Membership Test of [GLRSW, P. 37]) holds for each row; namely, we test that

d+2∑

j=1

αj · entryi,j(Γ(m)) = 0

for all i ∈ [k], where αj = (−1)j · (d+1
j−1

)
.

3. Select uniformly a matrix in M and test whether Γ and f agree on a uniformly chosen el-
ement in the matrix. Namely, select uniformly m ∈ M, and i, j ∈ [k], and check whether
entryi,j(Γ(m)) = f(entryi,j(m)).

The test accepts if and only if all the above three sub-tests accept.

Proposition 3.6 Let f : Fn 7→F , where F is a field, and let `
def= n·log2 |F |. Then, the Low-Degree

Test of Construction 3.5 satisfies:

efficiency: The test runs in poly(`)-time, uses O(`) random bits, and makes a constant number
of queries each of length O(`). (The queries are answered by strings of length poly(`).)

completeness: If f is a degree-d polynomial, then there exist Γ : M 7→ F k×k, Γr : Mr 7→ F k3

and Γc : Mc 7→ F k3
so that the test always accepts.

soundness: For every δ > 3/(d + 2)2 there exists an ε > 0 so that for every f which is at distance
at least δ from any degree-d polynomial and for every Γ : M 7→ F k×k, Γr : Mr 7→ F k3

and
Γc : Mc 7→ F k3

, the test rejects with probability at least ε. Furthermore, the constant ε is a
polynomial in δ which does not depend on n, d and F .

As a corollary, we get Lemma 1.3.

proof: The efficiency requirement is immediate from the construction. Also, as usual, the complete-
ness requirement is easy to establish. We thus turn to the soundness requirement. By Claim 3.4,
we may apply Lemma 3.2 to the first sub-test and infer that either the first sub-test fails with some

11 Rather than using much stronger results obtained via a more complicated analysis, as in [ALMSS], which rely
on the Lemma of [AS].
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constant probability (say ε1) or there exists a function τ : Fn 7→ F so that with very high constant
probability (say 1− δ1)

entryi,j(Γ(m)) = τ(entryi,j(m)) (13)

holds for all i ∈ [k] and j ∈ [d + 2]. We assume from this point on that this is the case (or else the
Low-Degree Test rejects with probability at least ε1). Now, by [GLRSW] (see also [Sud, Thm 3.3]
and [RS96, Thm 5]), either

Probx,y∈F n




d+2∑

j=1

αj · τ(x + jy) 6= 0


 >

1
2(d + 2)2

(14)

or τ is very close (specifically at distance at most 1/(d + 2)2) to some degree-d polynomial. A key
observation is that the Main Construction (i.e., Construction 3.3) has the property that rows in
m ∈R M are distributed identically to the distribution in Eq. (14). Thus, for every i ∈ [k] either

Probm∈M




d+2∑

j=1

αj · τ(entryi,j(m)) 6= 0


 >

1
2(d + 2)2

(15)

or τ is at distance at most δ2
def= 1/(d + 2)2 from some degree-d polynomial. Now, we claim that

in case Eq. (15) holds, the second sub-test will reject with constant probability. The claim is
proven by considering k = 4(d + 2)2 pairwise independent copies of the GLRSW Test (i.e., the test
in Eq. (15)), and recalling that the rows in m ∈R M are distributed in a pairwise independent
manner. Using Chebyshev’s Inequality and the hypothesis that each copy rejects with probability
at least 1/2(d + 2)2, we conclude that the probability that none of these copies rejects is bounded
above by 2(d+2)2

4(d+2)2
= 1

2 . Thus, the second sub-test must reject with probability at least ε2
def= 1

2 − δ1,
where δ1 accounts for the substitution of the τ values by the entries in Γ(·). We conclude that τ
must be δ2-close to a degree-d polynomial or else the test rejects with probability at least ε2.
Next, we claim that if f disagrees with τ on a δ3 > δ1 fraction of the inputs then the third sub-test
rejects with probability at least ε3

def= δ3 − δ1 (since the disagreement of f and τ is upper bounded
by the sum of the disagreement of f and Γ and the disagreement of Γ and τ).
Thus, if the Low-Degree Test rejects with probability smaller than ε = min{ε1, ε2, ε3} then f disgrees
with τ on at most δ3 fraction of the inputs, where τ is δ2-close to a degree d-polynomial. (So f
is (δ2 + δ3)-close to a degree d-polynomial.) The proposition follows using arithmetic: Specifically,
we set δ1 = δ/3, δ3 = 2δ/3, ε1 = poly(δ1) (where the polynomial is as in Lemma 3.2), and verify
that δ3 + δ2 ≤ δ (since δ2 = (d + 2)−2 < δ/3). Furthermore, ε = min{ε1, ε2, ε3} = poly(δ) (since
ε2 = 0.5− δ1 ≥ 0.5− (1/3) = 1/6 and ε3 = δ3 − δ1 = δ/3).

4 Proof of Lemma 1.1

There should be an easier and direct way of proving Lemma 1.1. However, having proven Lemma 2.2,
we can apply it12 to derive a short proof of Lemma 1.1. To this end we view `-multisets over S
as k-by-k matrices, where k =

√
`. Recall that the resulting set of matrices satisfies Axioms 1–4.

12 This is indeed an overkill. For example, we can avoid all complications regarding shifts (in the proof of
Lemma 2.2).
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Thus, by Lemma 2.2 (applied to Γ = F ), in case the test accepts with probability at least 1 − ε,
there exists a function f : S 7→ V such that

ProbA∈RSk,B∈REk2(A)(∀e ∈ A, F (B)e = f(e)) ≥ 1− δ

where Sk is the set of all k-multisets over S and El(A) is the set of all l-multisets extending A (and
F (B)e denotes the value assigned by F to e ∈ B). We can think of this probability space as first
selecting B ∈R Sk2

and next selecting a k-subset A in B. Thus,

Prob
B∈RSk2 ,A∈RCk(B)

(∃e ∈ A s.t. F (B)e 6= f(e)) ≤ δ (16)

where Ck(B) denotes the set of all k-multisets contained in B. This implies

Prob
B∈RSk2 (|{e ∈ B : F (B)e 6= f(e)}| > k) ≤ 2δ

as otherwise Eq. (16) is violated. (The probability that a random k-subset hits a subset of density
1
k is at least 1

2 .) The lemma follows.

Comment: A previous version of this paper [GS96] has stated a stronger version of Lemma 1.1,
where the sequences F (x1, ..., x`) and (f(x1), ..., f(x`)) are claimed to be identical (rather than
different on at most k locations), for a 1− δ fraction of all possible (x1, ..., x`) ∈ S`. Unfortunately,
the proof given there was not correct – a mistake in the concluding lines of the proof of Claim 4.2.9
was found by Madhu Sudan. Still we conjecture that the stronger version holds as well, and that it
can be established by a test which examines two random (2k− 1)-extensions of a random k-subset.
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