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Summary: Following a general introduction to testing graph properties, this lecture
focuses on the dense graph model, where graphs are represented by their adjacency
matrix (predicate). The highlights of this lecture include:

1. A presentation of a natural class of graph properties that can each be tested within
query complexity that is polynomial in the reciprocal of the proximity parameter.
This class, called general graph partition problems, contains properties such as
k-Colorability (for any k ≥ 2) and properties that refer to the density of the
max-clique and to the density of the max-cut in a graph.

2. An exposition of the connection of testing (in this model) to Szemeŕedi’s Regu-
larity Lemma. The starting point and pivot of this exposition is the existence of
constant-query (one-sided error) proximity-oblivious testers for all subgraph free-
ness properties.

We conclude this lecture with a taxonomy of known testers, organized according to their
query complexity.

The current notes are based on many sources; see Section 6.1 for details. With the exception of
Section 4, the text was adapted from [24] (and extensively revised to fit its current use).

Organization. The current lecture is the first out of a series of three lectures that cover three
models for testing graph properties. In each model, we spell out the definition of property testing
(when specialized to that model), present some of the known results, and demonstrate some of the
ideas involved (by focusing on testing Bipartiteness, which seems a good benchmark).

We start the current lecture with a general introduction to testing graph properties, which
includes an overview of the three models (see Section 1.2). We then present and illustrate the
“dense graph model” (Section 2), which is the focus of the current lecture. The main two sections
(i.e., Sections 3 and 4) cover the two topics that are mentioned in the foregoing summary: Section 3
deals with testing arbitrary graph partition properties, as illustrated by the example of testing
Bipartitness. Section 4 deals with the connection between property testing in this model and
Szemeŕedi’s Regularity Lemma, as illustrated by testing subgraph-freeness. The last two sections
(i.e., Sections 5 and 6) are descriptive in nature: Section 5 presents a taxonomy of the known
results, whereas Section 6 presents final comments.

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
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1 The general context: Introduction to testing graph properties

Graph theory has long become recognized as one of the more useful mathematical

subjects for the computer science student to master. The approach which is

natural in computer science is the algorithmic one; our interest is not so much in

existence proofs or enumeration techniques, as it is in finding efficient algorithms

for solving relevant problems, or alternatively showing evidence that no such

algorithms exist. Although algorithmic graph theory was started by Euler, if not

earlier, its development in the last ten years has been dramatic and revolutionary.

Shimon Even, Graph Algorithms, 1979.

Meditating on these facts, one may ask what is the source of this ubiquitous use of graphs in
computer science. The most common answer is that graphs arise naturally as a model (or an
abstraction) of numerous natural and artificial objects. Another answer is that graphs help visualize
binary relations over finite sets. These two different answers correspond to two types of models of
testing graph properties that will be discussed below. But before doing so, let us recall some basic
background.

Teaching note: We believe that most readers can afford skipping Section 1.1, which

presents the basic notions and terminology regarding graphs. The vocabulary includes

terms such as vertex, edge, simple graph, incident, adjacent, degree, path, cycle, sub-

graph, induced graph, and isomorphism between graphs.

1.1 Basic background

A simple graph G=(V,E) consists of a finite set of vertices V and a finite set of edges E, where each

edge is an unordered pair of vertices; that is, E ⊆
(V

2

) def
= {{u, v} : u, v∈V ∧u 6=v}. This formalism

does not allow self-loops and parallel edges, which are allowed in general (i.e., non-simple) graphs,
where E is a multi-set that may contain (in addition to two-element subsets of V also) singletons
(i.e., self-loops). The vertex u is called an end-point of the edge {u, v}, and the edge {u, v} is said
to be incident at v. In such a case we say that u and v are adjacent in the graph, and that u is a
neighbor of v. The degree of a vertex in G is defined as the number of edges that are incident at
this vertex.

We will consider various sub-structures of graphs, the simplest one being paths. A path in a

graph G=(V,E) is a sequence of vertices (v0, ..., vℓ) such that for every i ∈ [ℓ]
def
= {1, ..., ℓ} it holds

that vi−1 and vi are adjacent in G. Such a path is said to have length ℓ. A simple path is a path in
which each vertex appears at most once, which implies that the longest possible simple path in G
has length |V |−1. The graph is called connected if there exists a path between each pair of vertices
in it.

A cycle is a path in which the last vertex equals the first one (i.e., vℓ = v0). The cycle (v0, ..., vℓ)
is called simple if ℓ > 2 and |{v0, ..., vℓ}| = ℓ (i.e., if vi = vj then i ≡ j (mod ℓ), and the cycle
(u, v, u) is not considered simple). A graph is called acyclic (or cycle-free or a forest) if it has no
simple cycles, and if it is also connected then it is called a tree. Note that G = (V,E) is a tree if
and only if it is connected and |E| = |V | − 1, and that there is a unique simple path between each
pair of vertices in a tree.
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A subgraph of the graph G= (V,E) is any graph G′ = (V ′, E′) satisfying V ′ ⊆ V and E′ ⊆ E.
Note that a simple cycle in G is a connected subgraph of G in which each vertex has degree exactly
two. An induced subgraph of the graph G = (V,E) is any subgraph G′ = (V ′, E′) that contains all
edges of E that have both endpoints in V ′. In such a case, we say that G′ is the subgraph induced

by V ′.
Two graphs, G1 =(V1, E1) and G1 =(V2, E2) are said to be isomorphic if there exists a bijection

φ : V1 → V2 such that E2 = {{φ(u), φ(v)} : {u, v}∈E1}; that is, φ(u) is adjacent to φ(v) in G2 if
and only if u is adjacent to v in G1.

1.2 Three Models of Testing Graph Properties

The fact that we call the objects of our study “graphs” is meaningless unless our study refers to
characteristics of these objects, which may not be shared by other objects. What distinguishes the
edge set E of a graph G=(V,E) from any other set of similar cardinality is that we can refer to it
via V ; that is, E is an adjacency relation over V , and so the existence of edges {u, v1} and {u, v2}
that share a common end-point is different from the existence of two other edges that do not share
an end-point. A cycle of length t is not an arbitrary sequence of t elements of E, but rather one
with a specific structure. Furthermore, we are interested in properties that are invariant under
renaming of the vertices. Such properties are called graph properties.

Definition 1 (graph properties): A graph property is a set of graphs that is closed under graph
isomorphism. That is, Π is a graph property if, for every graph G = (V,E) and every bijection
π : V → V ′, it holds that G ∈ Π if and only if π(G) ∈ Π, where π(G) is the graph obtained from G
by relabelling the vertices according to π; that is,

π(G)
def
= (V, {{π(u), π(v)} : {u, v}∈E}).

For sake of simplicity, we shall consider only graphs G = (V,E) with vertex set V = {1, ..., |V |}.
(Wishing to reserve n for the size of the representatioon of the tested object, we shall often denote
the number of vertices by k = |V |.)

In light of what we have seen so far, a tester for a graph property Π is a randomized algorithm
that is given oracle access to a graph, G=(V,E), and has to determine whether the graph is in Π
or is far from being in Π. But the foregoing falls short from constituting a sound definition. We
have to specify what does it mean to be given oracle access to a graph, and when are two graphs
considered to be far from one another. That is, we have to specify the meaning of “oracle access
to a graph” (i.e., the type of queries that are allowed to the graph) as well as the distance-measure
(between pairs of graphs). Recall that, as stated in the first lecture, these (pairs of) choices are
of key importance. There are at least three natural (pairs of) choices, and each of them yields a
different model. Three such models are reviewed next.

The dense graphs (a.k.a adjacency predicate) model. Here the graph G = (V,E) is
represented by the adjacency predicate g :

(V
2

)
→ {0, 1} such that {u, v} ∈ E if and only if

g({u, v}) = 1. Hence, oracle access to G means oracle access to g, and the distance between
graphs (with vertex set V ) is defined as the distance between their corresponding representations
(which have size

(
|V |
2

)
); that is, if the graphs G and G′ are represented by the functions g and

g′, then their relative distance is the fraction of pairs {u, v} such that g({u, v}) 6= g′({u, v}) (i.e.,
|{{u, v} : g({u, v}) 6= g′({u, v})}|/

(
|V |
2

)
).
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It will be more convenient to represent the graph G = (V,E) by the symmetric function g :
V × V → {0, 1} such that is g(u, v) = 1 if and only if {u, v} ∈ E. This representation is slightly
redundant, since g(u, v) = g(v, u) and g(v, v) = 0 always holds, but it is less cumbersome.1

Note that saying that G=(V,E) is ǫ-far from the graph property Π means that for every G′ ∈ Π
it holds that G is ǫ-far from G′. Since Π is closed under graph isomorphism, this means that G
is ǫ-far from any isomorphic copy of G′; that is, for every permutation π over V , it holds that
|{(u, v) : g(u, v) 6= g′(π(u), π(v))}| > ǫ · |V |2, where g : V 2 → {0, 1} and g′ : V 2 → {0, 1} are as
above.

Finally, note that this notion of distance between graphs is most meaningful in the case that
the graphs are dense (since in this case the fraction of the number of possible vertex pairs is closely
related to the fraction of the actual number of edges). Thus, this model is often called the dense
graph model.

The bounded-degree graph (a.k.a incidence function) model. Here, for some fixed upper
bound d (on the degrees of vertices in G), the graph G = (V,E) is represented by the incidence
function g : V × [d] → V ∪ {⊥} such that g(u, i) = v if v is the ith vertex incident at u and
g(u, i) = ⊥ if u has less than i neighbors. (Indeed, this representation assumes and/or induces an
order on the neighbors of each vertex in G, and this representation is redundant since each edge
is represented twice.)2 As before, oracle access to G means oracle access to g, but g is different
here. Likewise, the distance between graphs (with vertex set V ) is defined as the distance between
their corresponding representations (which have size |V | · d); that is, if the graphs G and G′ are
represented by the functions g and g′, then their relative distance is the fraction of pairs (u, i) such
that g(u, i) 6= g′(u, i).

Indeed, only graphs of degree at most d can be represented in this model, which is called the
bounded-degree graph model.

Again, saying that G=(V,E) is ǫ-far from the graph property Π means that for every G′ ∈ Π
it holds that G is ǫ-far from G′. Since Π is closed under graph isomorphism and the ordering of
the vertices incident at each vertex is arbitrary, this means that for every permutation π over V , it
holds that ∑

u∈V

|{v : ∃i g(u, i) = v}△{v : ∃i g′(π(u), i) = π(v)}| > ǫdN ,

where g and g′ are as above, and △ denotes the symmetric difference (i.e., A△B = (A∪B)\(A∩B)).
Note that, both in the dense graph model and in the bounded-degree graph model, the (relative)

distance between graphs is measured according to the representation of these graphs as functions,
but the representation is different in the two models, and so the (relative) distances are different
in the two models. In contrast to the foregoing two models in which the oracle queries and the
(relative) distances between graphs are linked to the representation of graphs as functions, in
the following model the representation is blurred and the query types and distance measure are
decoupled.

1Note that representing G and G′ by g : V × V → {0, 1} and g′ : V × V → {0, 1}, means that the relative distance
between g and g′ is |{(u, v) : g(u, v) 6= g′(π(u), π(v))}|/|V |2.

2That is, we always assume that g(u, i) = v if and only if there exists a j ∈ [d] such that g(v, j) = u. We stress
that j does not necessarily equal i.
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The general graph model. Here the graphs are redundantly represented by both their adja-
cency predicate and their incidence functions (while not assuming a degree bound (except for the
obvious bound of |V | − 1)), but this representation is implicit in the type of queries allowed (i.e.,
the algorithm can make queries of both types) and does not effect the distance measure. Instead,

the relative distance between the graphs G=(V,E) and G′=(V,E′) is defined as |E△E′|
max(|E|,|E′|) ; that

is, the absolute distance is normalized by the actual number of edges rather than by an absolute
upper bound (on the number of edges) such as

(|V |
2

)
or d|V |/2.

Needless to say, the general graph model is the most general one, and it is indeed closest to
actual algorithmic applications. In other words, this model is relevant for most applications, since
these seem to refer to general graphs (which model various natural and artificial objects). In
contrast, the dense graph model is relevant to applications that refer to (dense) binary relations
over finite sets, whereas the bounded-degree graph model is relevant only to applications in which
the vertex degree is bounded.

The fact that the general graph model has received relatively little attention (so far) merely
reflects the fact that its study is overly complex. Given that current studies of the other models
still face formidable difficulties (and that these models offer a host of interesting open problems),
it is natural that researchers shy away from yet another level of complication.

Teaching note: While the following comment applies to property testing at large, it

seems appropriate to make it (and stress it) in the context of testing graph properties,

since this context seems closest to standard algorithmic research.

The current focus on query complexity. Although property testing is motivated by referring
to super-fast algorithms, research in the area tends to focus on the query complexity of testing
various properties. This focus should be viewed as providing an initial estimate to the actual
complexity of the testing problems involved; certainly, query-complexity lower bounds imply cor-
responding bounds on the time complexity, whereas the latter is typically at most exponential in
the query complexity. Furthermore, in many cases, the time complexity is polynomial in the query
complexity and this fact is typically stated. Thus, we will follow the practice of focusing on the
query complexity of testing, but also mention time complexity upper bounds whenever they are of
interest.

Digest: The issue of representation in light of the three models. As stated in the first
lecture, the distinction between objects and their representation is typically blurred in computer
science; nevertheless, this distinction is important. Indeed, reasonable and/or natural represen-
tations are always assumed either explicitly or implicitly (see, e.g., [23, Sec. 1.2.1]). The specific
choice of a reasonable and/or natural representation becomes crucial when one considers the exact
complexity of algorithms (as is common in algorithmic research), rather than their general “ball
park” (e.g., being in the complexity class P or not).

The representation is even more crucial in our context (i.e., in the study of property testing).
This is the case for two reasons, which transcend the standard algorithmic concerns:

1. We are interested in sub-linear time algorithms, which means that these algorithms query bits
in the representation of the object. Needless to say, different representations mean different
types of queries, and this difference is crucial when one does not fully recover the object by
queries.
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2. We are interested in the distance between objects (or, actually, in the distance between objects
and sets of objects), whereas this distance may be measured in terms of the distance between
their representations. In such a case, different representations of objects may yield vastly
different distances between the same objects.

In light of the above, when considering property testing, we always detail the exact representa-
tion of the objects. The three foregoing models use different representations of the same objects,
which means that the algorithms in the different models have different query capacities and their
performance is evaluated with respect to different distance measures. We believe that the types of
queries allowed in each model constitute the natural choice for that model. In the first two models,
the underlying representation also provides a natural basis for the definition of a distance measure
between objects, whereas in the third model the definition of the distance measure is decoupled
from the representation of the objects (and refers to their “actual size”).

2 The Dense Graph Model: Some basics

In this section we spell out the actual definition of “testing graph properties in the dense graph
model” (Section 2.1) and outline a couple of simple testers, which in some sense are based on
artifacts of this specific model (Section 2.2). In contrast, in Section 2.3, we illustrate how the fact
that we deal with graphs complicates the analysis of a seemingly simple tester.

2.1 The actual definition

In the adjacency matrix model (a.k.a the dense graph model), an k-vertex graph G = ([k], E) is
represented by the Boolean function g : [k] × [k] → {0, 1} such that g(u, v) = 1 if and only if
u and v are adjacent in G (i.e., {u, v} ∈ E). Distance between graphs is measured in terms of
their aforementioned representation (i.e., as the fraction of (the number of) different matrix entries
(over k2)), but occasionally one uses the more intuitive notion of the fraction of (the number of)
unordered vertex pairs over

(k
2

)
.3

Recall that we are interested in graph properties, which are sets of graphs that are closed under
isomorphism; that is, Π is a graph property if for every graph G=([k], E) and every permutation π

of [k] it holds that G ∈ Π if and only if π(G) ∈ Π, where π(G)
def
= ([k], {{π(u), π(v)} : {u, v} ∈ E}).

We now spell out the meaning of property testing in this model.4

Definition 2 (testing graph properties in the adjacency matrix model): A tester for a graph prop-
erty Π is a probabilistic oracle machine that, on input parameters k and ǫ and access to (the
adjacency predicate of) an k-vertex graph G = ([k], E), outputs a binary verdict that satisfies the
following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

3Indeed, there is a tiny discrepancy between these two measures, but it is immaterial in all discussions. Note that,
for sake of technical convenience, we chose to use a redundant representation (i.e., g(u, v) = g(v, u) and g(v, v) = 0),
and that we denote the number of vertices by k in order to maintain with the convention that n denotes the size of
the representation (i.e., n = k2).

4Indeed, we slightly deviate from the conventions of the first lecture by providing the tester with k (which denotes
the number of vertices in G) rather than with n = k2 (which denotes the size of the domain of the function g).
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2. If G is ǫ-far from Π, then the tester accepts with probability at most 1/3, where G is ǫ-far
from Π if for every k-vertex graph G′ = ([k], E′) ∈ Π it holds that the symmetric difference
between E and E′ has cardinality that is greater than ǫ · k2/2 (equiv., the representations of
G and G′ as adjacency predicates differ on more than ǫ · k2 vertex-pairs).5

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error;
otherwise, we say that it has two-sided error. A tester is called non-adaptive if it determines all its
queries based solely on its internal coin tosses (and the parameters k and ǫ); otherwise, it is called
adaptive.

The query complexity of a tester is the number of queries it makes to any k-vertex graph, as a
function of the parameters k and ǫ.6 We say that a tester is efficient if it runs in time that is linear
in its query complexity, where basic operations on elements of [k] (and in particular, uniformly
selecting an element in [k]) are counted at unit cost.

We stress that testers are defined as (uniform) algorithms that are given the size parameter k
and the distance (or proximity) parameter ǫ as explicit inputs.7 This uniformity (over the values of
the distance parameter) makes the positive results stronger and more appealing (especially in light
of a separation result shown in [9]). In contrast, negative results typically refer to a fixed value of
the distance parameter.

Representing graphs by their adjacency predicate is very natural, but it is quite problematic if
the input graph is not dense (i.e., if |E| = o(k2)). In such a case (i.e., when G is not dense), queries
to the oracle are likely to be uninformative (e.g., a uniformly distributed query is answered by 0
with probability 1 − o(1)). On the other hand, each non-dense graph is o(1)-close to the empty
graph, so if the latter has the property (and we are guaranteed that the tested graph is non-dense),
then testing is trivial (for any constant ǫ > 0). All these reservations are not applicable when the
tested graph is dense, as is the case when the graph is used to represent a (symmetric) binary
relation that is satisfied quite frequently (say, with constant frequency).

2.2 Abuses of the model: Trivial and sparse properties

In continuation to the foregoing discussion, we note that graph properties can be trivial to test
also when the input graph is dense. One such case is when every k-vertex graph is ǫ-close to the
property (for every ǫ > k−Ω(1)). This is the case with many natural graph properties: for example,
every k-vertex graph is O(1/k)-close to being connected (or even Hamiltonian and Eulerian), and
ditto with respect to being unconnected.

Proposition 3 (trivially testable properties (in the dense graph model)): Let Π be a graph property
and c > 0. If every k-vertex graph is k−c-close to Π, then ǫ-testing Π with one-sided error can be
done with zero queries if ǫ ≥ k−c and with (1/ǫ)2/c queries otherwise.

5Indeed, it is more natural to consider the symmetric difference between E and E′ as a fraction of
`

k
2

´

, but it is
more convenient to adopt the alternative normalization.

6As in Footnote 4, we deviated from the convention of presenting the query complexity as a function of n = k2

and ǫ.
7That is, we refer to the standard (uniform) model of computation (cf., e.g., [23, Sec. 1.2.3]), which does not allow

for hard-wiring of some parameters (e.g., input length) into the computing device (as done in the case of non-uniform
circuit families).
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Proof: If ǫ ≥ k−c, then the tester accepts the graph without making any query (since, in this
case, the graph is ǫ-close to Π). Otherwise (i.e., ǫ < k−c), the tester just retrieves the entire graph
and decides accordingly, but in this case k2 < (1/ǫ)2/c.

Another case when testing is easy, alas not that trivial, is when the property is satisfied only for
sparse graphs. For example, consider being planar or being cycle-free.8 In such a case, testing the
property reduces to checking that the graph is sparse enough and retrieving it only in that case.

Proposition 4 (testing “sparse graph” properties in the dense graph model): Let Π be a graph
property and c < 2. If every k-vertex graph in Π has at most kc edges, then ǫ-testing Π can be done
in poly(1/ǫ) many queries. In particular, if ǫ ≥ 3k−(2−c) then O(1/ǫ) queries suffice.

(Note that this tester has two-sided error.)

Proof: If ǫ ≥ 3k−(2−c), then the tester uses O(1/ǫ) random queries to estimate the edge density
of the graph such that it distinguishes between density at least 2ǫ/3 and density at most ǫ/3.9 In
the first case the tester rejects (since the graph is far enough from being sufficiently sparse), and
in the second case the tester accepts (since the graph is close enough to the empty graph, which is
close enough to Π). Otherwise (i.e., when ǫ < 3k−(2−c)), the tester just retrieves the entire graph
and decides accordingly, but in this case k2 < (3/ǫ)2/(2−c).

2.3 Testing degree regularity

A case in which the the fact that we deal with graphs actually makes life harder is that of testing
degree regularity. A graph is called regular if all its vertices have the same degree; that is, G =

([k], E) is regular if there exists an integer d such that dG(u)
def
= |{v : {u, v}| equals d for every

u ∈ [k]. In such a case we say that G is d-regular.

Theorem 5 (testing degree regularity in the dense graph model): Degree regularity can be tested
by using O(1/ǫ2) non-adaptive queries.

We note that this upper bound is tight (see Exercise 1). As discussed in the proof (see Claim 5.1),
the tester is identical to one that could be used to test that a k-by-k Boolean matrix has rows of
equal Hamming weight, but its analysis is more complex in the current setting (in which the matrix
must be symmetric and lack 1-entries on its diagonal). The point is that it is not obvious that if the
average deviation of the degrees of vertices in the graph (from some value) is small, then the graph
is close to being regular. (In contrast, it is obvious that if the average deviation of the weights of
rows in a matrix (from some value) is small, then the matrix is close to having equal weight rows.)

Proof: We start by reviewing a simpler tester of query complexity Õ(1/ǫ3). This tester selects
O(1/ǫ) random vertices, and estimates the degree of each of them up to ±0.01ǫk using a sample
of s = Õ(1/ǫ2) random vertices (and making the corresponding s queries).10 The tester accepts if
and only if all these estimates are at most 0.02ǫk apart.

8Recall that any k-vertex planar graph has at most max(k − 1, 3k − 6) edges, whereas any (k-vertex) cycle-free
graph has at most k − 1 edges.

9The analysis uses a multiplicative Chernoff bound.
10Recall that we can the estimate of the average value of a function f : [k] → {0, ..., k − 1} by a sample of size

O(t/ǫ2) such that, with probability at least 1 − 2−t, the estimate is within an additive deviation of 0.01ǫk from the
actual value.
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If G is regular, then the tester will accept it with high probability. On the other hand, if the
tester accepts G with high probability, then we can infer that there exists an integer d such that all
but at most 0.02ǫk of the vertices have degree d±(0.02ǫk+1). (This can be shown by considering the
0.01ǫk vertices of highest degree and 0.01ǫk vertices of lowest degree.)11 The analysis is completed
by proving that in this case the graph G is ǫ-close to regular.

Claim 5.1 (local-vs-global distance to degree regularity): If d < k and dk/2 are natural numbers
and

∑
v∈[k] |dG(v) − d| ≤ ǫ′ · k2, then G is 6ǫ′-close to the set of d-regular k-vertex graphs.

(Indeed,
∑

v∈[k] |dG(v)− d| represents the “local” distance of G from being regular, whereas we are
interested in the “global” distance as captured by Definition 2.) Note that a version of Claim 5.1
that refers to a k-by-k Boolean matrix G and lets dG(v) denote the Hamming weight of row v is
trivial. In that case (of general Boolean matrices), the matrix G is ǫ′-close to a matrix in which all
rows have weight d. But the latter matrix is not necessarily symmetric and may have 1-entries on the
diagonal (i.e., it does not necessarily correspond to an adjacency matrix of a graph). Turning back
to our application, note if there exists an integer d such that all but at most 0.02ǫk of the vertices in
the graph G have degree d±(0.03ǫk), then

∑
v∈[k] |dG(v)−d| < 0.02ǫk ·(k−1)+k ·0.03ǫk < 0.05ǫk2.

(This assumes that dk is even; otherwise we can use d − 1 instead of d.)12

Proof: We modify G in three stages, while keeping track of the number of edge modifications. In the
first stage we reduce all vertex degrees to at most d, by scanning all vertices and omitting dG(v)−d

edges incident at each vertex v ∈ H
def
= {u : dG(u) > d}. Since

∑
v∈H(dG(v)−d) ≤ ǫ′k2, we obtain a

graph G′ that is ǫ′k2

k2/2 -close to G such that dG′(v) ≤ d holds for each vertex v, because every omitted

edge reduces
∑

v∈H max(0, dG(v)−d) by at least one unit. Furthermore,
∑

v∈[k] |dG′(v)−d| ≤ ǫ′ ·k2,
because each omitted edge {u, v} reduces either |d(u) − d| or |d(v) − d| (while possibly increasing
the other by one unit).

In the second stage, we insert an edge between every pair of vertices that are currently non-

adjacent and have both degree smaller than d. Thus, we obtain a graph G′′ that is ǫ′k2/2
k2/2

-close to

G′ such that {v : dG′′(v) < d} is a clique (and dG′′(v) ≤ d for all v).
In the third stage, we iteratively increase the degrees of vertices that have degree less than d

while preserving the degrees of all other vertices. Denoting by Γ(v) the current set of neighbours
of vertex v, we distinguish two cases.

Case 1: There exists a single vertex of degree less than d. Denoting this vertex by v, we
note that |Γ(v)| ≤ d−2 must hold (since

∑
u∈[k] |Γ(u)| must be even, whereas in this case this

sum equal (k− 1) · d+ |Γ(v)| = kd− (d− |Γ(v)|), and by the hypothesis kd is even). We shall
show that there exist two vertices u and w such that {u,w} is an edge in the current graph
but u,w 6∈ Γ(v) ∪ {v}. Adding the edges {u, v} and {w, v} to the graph, while omitting the
edge {u,w}, we increase |Γ(v)| by two, while preserving the degrees of all other vertices.

11Let L and H be the corresponding sets; that is, let L (resp., H) be a set of 0.01ǫk vertices having the lowest

(resp., highest) degree in G. For ℓ
def
= maxv∈L{dG(v)} and h

def
= minv∈H{dG(v)}, if h−ℓ ≤ 0.04ǫk, then each vertex in

[k]\(L∪H) has degree that resides in {ℓ, ..., h}, and the claim follows (since these degrees are all within ±(0.02ǫk+1)
from ⌊(ℓ + h)/2⌋). On the other hand, if h− ℓ > 0.04ǫk, then the tester rejects with high probability (by having seen
at least one vertex in L and one vertex in H , and having estimated their degrees well enough).

12Being even more nitpicking, we note that using d−1 instead of d yields an additional loss of k edges, which is OK
provided k ≤ 0.01ǫk2. On the other hand, if ǫ < 100/k, then we can just retrieve the entire graph using

`

k
2

´

= O(1/ǫ2)
queries.
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We show the existence of two such vertices by recalling that |Γ(v) ∪ {v}| ≤ d − 1 whereas all
other k−1 ≥ d vertices in the graph have degree d (which actually implies that k−1 ≥ d+1).
Considering an arbitrary vertex u 6∈ Γ(v)∪{v}, we note that u has d neighbors (since u 6= v),
and these neighbors cannot all be in Γ(v) ∪ {v} (which has size at most d − 1). Thus, there
exists w ∈ Γ(u) \ (Γ(v) ∪ {v}), and we are done.

Case 2: There exist at least two vertices of degree less than d. Let v1 and v2 be two ver-
tices such that |Γ(vi)| ≤ d − 1 holds for both i ∈ {1, 2}. Note that {v1, v2} is an edge in the
current graph, since the set of vertices of degree less than d constitute a clique. We shall show
that there exists two vertices u1 and u2 such that {u1, u2} is an edge in the current graph
but neither {v1, u1} nor {v2, u2} are edges (and so |Γ(u1)| = |Γ(u2)| = d). Adding the edges
{u1, v1} and {u2, v2} to the graph, while omitting the edge {u1, u2}, we increase |Γ(vi)| by
one (for each i ∈ {1, 2}), while preserving the degrees of all other vertices.

We show the existence of two such vertices by starting with an arbitrary vertex u1 6∈ (Γ(v1)∪
{v1, v2}). Such a vertex exists since v2 ∈ Γ(v1) and so |Γ(v1) ∪ {v1, v2}| = |Γ(v1) ∪ {v1}| ≤
d < k. We now make the following two observations.

• Vertex u1 has d neighbors (see above).13 Obviously, v1 6∈ Γ(u1) (since u1 6∈ Γ(v1)).

• The set (Γ(v2) ∪ {v2}) \ {v1} has size at most d − 1, since v1 ∈ Γ(v2) and |Γ(v2)| < d.

It follows that Γ(u1) cannot be contained in Γ(v2) ∪ {v2}, since |Γ(u1) \ {v1}| = d whereas
|(Γ(v2) ∪ {v2}) \ {v1}| ≤ d − 1. Hence, there exists u2 ∈ Γ(u1) \ (Γ(v2) ∪ {v2}).

Thus, in each step of the third stage, we decrease
∑

v∈[N ] |dG′′(v)−d| by two units, while preserving
both the invariances established in the second stage (i.e., {v : dG′′(v) < d} is a clique and dG′′(v) ≤ d
for all v). Since in each step we modified three edges (and there are at most ǫ′k2/2 steps), we

conclude that G′′ is 3ǫ′k2/2
k2/2

-close to a d-regular graph, and the claim follows (by recalling that G is

3ǫ′-close to G′′).

Reducing the query complexity. The wasteful aspect in the aforementioned tester is that it samples
O(1/ǫ) vertices and estimates the degree of each of these vertices up to an additive term of 0.01ǫk.
This tester admits a straightforward analysis by which if

∑
v∈[k] |dG(v)−d| > 0.05ǫk2, then at least

0.02ǫk of the vertices have degree outside the interval [d ± 0.03ǫk]. In this analysis a vertex was
defined as “exceptional” if its degree deviates from the average value by more than 0.03ǫk, but when
lower-bounding the number of exceptional vertices we used k as an upper bound on the contribution
of each exceptional vertex (to the sum of deviations). That is, the threshold for being considered
“exceptional” is minimalistic (i.e., it considers an extremely mild deviation as exceptional), but
when analyzing the number of exceptional vertices we considered the maximal possible deviation.

Obviously, we must take into account both these extreme cases (i.e., both mild deviations and
huge deviations of individuial degrees), but we may observe that in each case the number of vertices
of a given deviation may be related to the magnitude of the deviation. That is, if exceptional vertices
“deviate by much” (i.e., their degrees deviates from the average by at least δk ≫ ǫk), then less
samples suffice for detecting their deviation (i.e., O(1/δ2) ≪ O(1/ǫ2) samples suffice). On the other
hand, if exceptional vertices only “deviate by little” (i.e., their degrees deviates from the average

13This is beacuse since u1 6∈ Γ(v1), whereas all vertices of degree lower than d are neighbors of v1 (since the vertices
of lower degree form a clique).
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by at most δk = Ω(ǫk) (or so)), then it suffices to sample less vertices (i.e., it suffices to sample
O(ǫ/δ) vertices). Of course, we do not know which case holds, and in fact we may have a mix of
several cases. Still, we can handle all cases concurrently.

Specifically, one can show that there exists i ∈ [log2(O(1)/ǫ)] such that at least Ω(2−i ·k) of the
vertices have degrees that deviate from the average by Θ(2iǫ · k/ log(1/ǫ)) units, since otherwise
the total deviation would have been

∑

i∈[ℓ]

o(2−i · k) · Θ(2iǫ · k/ log(1/ǫ)) =
∑

i∈[ℓ]

o(ǫk2/ log(1/ǫ)) = o(ǫk2)

in contradiction to the hypothesis. Hence, for every i ∈ [log2(O(1)/ǫ)], we attempt to detect a
Ω(2−i) fraction of the vertices that have degrees that deviate from the average by approximately
Θ(2iǫ · k/ log(1/ǫ)) units, where the total amount of work involved in performing the relevant
estimates is

∑

i∈[ℓ]

O(2−i)−1 · Θ(2iǫ/ log(1/ǫ))−2 =
∑

i∈[ℓ]

O(2−i(log(1/ǫ))2/ǫ2) = Õ(1/ǫ2).

Actually, we shall obtain a slightly better result by attempting to detect a Ω(2−i) fraction of the
vertices that have degrees that deviate from the average by approximately Θ(24i/5ǫ ·k) units. (The
analysis of this choice will appear within and after the presentation of Algorithm 5.2.) In addition,
we simplify the analysis by introducing an auxiliary step in which we estimate the average degree
of the vertices in the graph.

Algorithm 5.2 (the actual tester): For a sufficiently large constant c, let ℓ
def
= log2(c/ǫ).

1. The tester estimates the average degree of the graph by making O(1/ǫ2) uniformly distributed
queries. This allows to estimate the avearge degree up to ±ǫ ·k/c, with probability at least 5/6.
Let d̃ denote the estimated average.

2. For every i ∈ [ℓ], the tester attempts to find a vertex with degree outside the interval [d̃ ±
21+(4i/5)ǫ · k/c], by taking a sample of c · 2i vertices, and estimating their degree up to up to
±24i/5ǫ · k/c. Specifically:

(a) The tester selects uniformly c · 2i vertices, and estimates the degree of each of these

vertices up to ±24i/5ǫ · k/c units by using a sample of si
def
= c3 · 2−3i/2ǫ−2 ≫ (24i/5ǫ/c)−2

random vertices. Note that with probability at least

1 − c · 2i · exp(−2 · si · (2
4i/5ǫ/c)2) = 1 − c · 2i · exp(−2 · c32−3i/2ǫ−2 · 28i/5ǫ2/c2)

= 1 − c · 2i · exp(−2c · 2i/10)

> 1 − 2−i−c

all these estimates are as desired.

(b) If any of these estimates is outside the interval [d̃±21+(4i/5)ǫ·k/c], then the tester rejects.

If the tester did not reject in any of these ℓ iterations, then it accepts.

11



The query complexity of Algorithm 5.2 is O(1/ǫ2) +
∑

i∈[ℓ] c2
i · c32−3i/2ǫ−2 = O(1/ǫ2). The prob-

ability that any of the estimates performed in (any of the iterations of) Step 2 deviates by more
than desrired is

∑
i∈[ℓ] 2

−i−c = 2−c < 1/10.
We first observe that Algorithm 5.2 accepts each regular graph with probability at least 2/3.

This is the case since, Pr[|d̃ − d| ≤ ǫk/c] ≥ 0.9, where d denotes the degree of each vertex in the
graph, and with probability at least 0.9 for each i ∈ [ℓ] each of the degree estimates performed
in (the ith iteration of) Step 2 fell inside the interval [d ± 24i/5ǫ · k/c], which is contained in
[d̃ ± 21+(4i/5)ǫ · k/c].

On the other hand, if a graph G is accepted with probability at least 1/3, then (as detailed
next), for every i ∈ [ℓ], it holds that all but at most a 2−i fraction of the vertices have degree that
is within 22+(4i/5)ǫ · k/c of the average degree of G, denoted d.

Claim: If, for some i ∈ [ℓ], more than a 2−i fraction of the vertices have degree that
deviates from d by more than 22+(4i/5)ǫ·k/c, then Algorithm 5.2 rejects with probability
greater than 2/3.

Proof: We first observe that, with probability at least 0.9, such a deviating vertex,
denoted v, is selected in the ith iteration of Step 2. Now, with probability at least
0.9, the degree v is estimated within ±24i/5ǫ · k/c of its correct value. Recalling that
Pr[|d̃ − d| < ǫk/c] ≥ 0.9, we conclude that, with probability at least 0.7, the estimated
degree of v deviates from d̃ by more than 22+(4i/5)ǫk/c−24i/5ǫk/c−ǫk/c ≥ 21+(4i/5)ǫk/c,
which causes the algorithm to reject, and the claim follows.

Now, for each i ∈ [ℓ], let us denote the set of deviating vertices by Bi; that is, each vertex in [k]\Bi

has degree in (d ± 22+(4i/5)ǫ/c · k). Recall that |Bi| ≤ 2−i · k. (Also, let B0 = [k], and note that
[k] \ Bℓ = ∪i∈[ℓ](Bi−1 \ Bi).)

14 Hence,

∑

v∈[k]\Bℓ

|dG(v) − d| =
∑

i∈[ℓ]

∑

v∈Bi−1\Bi

|dG(v) − d|

≤
∑

i∈[ℓ]

|Bi−1| · max
v∈[k]\Bi

{|dG(v) − d|}

≤
∑

i∈[ℓ]

2−(i−1) · 22+(4i/5)ǫk2/c

=
∑

i∈[ℓ]

2−0.2i · 8ǫk2/c

which is smaller than 0.04ǫk2 by a suitable choice of c. Finally, under such a choice, |Bℓ| ≤ 2−ℓ ·k =
(ǫ/c) · k is smaller than 0.01ǫk, hence

∑
v∈Bℓ

|dG(v) − d| < 0.01ǫk2, and so
∑

v∈[k] |dG(v) − d| <

0.05ǫk2. Applying Claim 5.1, it follows that G is 0.3ǫ-close to being regular, and the theorem
follows.

14Indeed, the definition of B0 is a fictitious; it is made in order to have [k] \ Bℓ = ∪i∈[ℓ](Bi−1 \ Bi) hold. The
alternative would have been to treat the case of i = 1 separately; that is, write [k] \Bℓ = ([k] \B1)∪∪ℓ

i=2(Bi−1 \Bi).
Note that, either way, we treat Bℓ separately.

12



2.4 Digest: Levin’s economical work investment strategy

The strategy underlying Algorithm 5.2 can be traced to Levin’s work on one-way functions and
pseudorandom generators [40]. An attempt to abstract this strategy follows.

The strategy refers to situations in which one can sample a huge space that contains elements
of different quality such that elements of lower quality require more work to utilize. The aim is
to utilize some element, but the work required for utilizing the various elements is not known a
priori, and it only becomes known after the entire amount of required work is invested. Only a
lower bound on the expected quality of elements is known, and it is also known how the amount of
required work relates to the quality of the element (see specific cases below). Note that it may be
that most of the elements are of very poor quality, and so it is not a good idea to select a single
(random) element and invest as much work as is needed to utilize it. Instead, one may want to
select many random elements and invest in each of them a limited amount of work (which may be
viewed as probing the required amount of work).

To be more concrete, let us denote the (unknown to us) quality of a sample point ω ∈ Ω by
q(ω) ∈ (0, 1], and suppose that the amount of work that needs to be invested in a sample point ω
is O(1/q(ω)c), where in the setting of Algorithm 5.2 it holds that c = 2. Indeed, c = 1 and c = 2
are the common cases, where O(1/q(ω)) corresponds to the number of trials that is required to
succeed in an experiment (which depends on ω) that succeeds with probability q(ω), and O(1/q(ω)2)
corresponds to the number of trials that is required for estimating the success probability of an
experiment up to ±q(ω). Recall that we only know a lower bound, denoted ǫ, on the average quality
of an element (i.e., Eω∈Ω[q(ω)] > ǫ), and we wish to minimize the total amount of work invested in
utilizing some element.

One natural strategy that comes to mind is to sample O(1/ǫ) points and invest O(1/ǫc) work in
each of these points. In this case we succeed with constant probability, while investing O(1/ǫc+1)
work. The analysis is based on the fact that Eω[q(ω)] > ǫ implies that Prω[q(ω) > ǫ/2] > ǫ/2. The
strategy underlying Algorithm 5.2 is based on the fact that there exists i ∈ [log2(O(1)/ǫ)], such
that Prω[q(ω) > 24i/5 · ǫ] = Ω(2−i). In this case (when c = 2), for every i, we selected O(2i) points
and invested O(1/24i/5ǫ)2 work in each of them. Hence, we achieved the goal while investing (1/ǫ2)
work.

Teaching note: In the following general analysis, we shall use a setting of parameters

that is different from the one used above. This is made in order to better serve the case

of c = 1. In addition, we believe that a different variation on the very same idea will

serve the reader better.

In general, for any c ≥ 1 and ℓ = ⌈log2(2/ǫ)⌉, we may use the fact that there exists i ∈ [ℓ]
such that Prω[q(ω) > 2i · ǫ] > 2−i/(i + 3)2. (The analysis is analogous to the one performed at the
end of the proof of Theorem 5, although the quantity analyzed here is different (and so are some
parameters).)15 Hence, selecting O(i2 · 2i) points (for each i ∈ [ℓ]), and investing O(1/2iǫ)c work

15Let Bi = {ω ∈ Ω : q(ω) > 2iǫ} and B0 = Ω, and note that Bℓ = ∅. Suppose, towards the contradiction, that
|Bi| ≤ 2−i/(i + 3)2 for every i ∈ [ℓ]. Then,

X

ω∈Ω

q(ω) =
X

i∈[ℓ]

X

ω∈Bi−1\Bi

q(ω)

≤
X

i∈[ℓ]

|Bi−1| · 2
iǫ
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in each of them, we achieved the goal while investing a total amount of work that equals

∑

i∈[ℓ]

O(i2 · 2i/(2iǫ)c) = O(1/ǫc) ·
∑

i∈[ℓ]

i2 · 2−(c−1)·i

which equals (1/ǫc) work if c > 1 and Õ(1/ǫ) work if c = 1. (For c > 1 we use
∑

i∈[ℓ] 2
−Ω(i) = O(1),

whereas for c = 1 we use
∑

i∈[ℓ] i
2 = O(ℓ3).) The same argument extends to the case that the work

invested in ω is Õ(1/q(ω)c); see Exercise 2.

3 Graph Partition Problems

In this section we present a natural class of graph properties, called general graph partition prob-
lems, which contains properties such as k-Colorability (for any k ≥ 2) and properties that refer
to the density of the max-clique and to the density of the max-cut in a graph. The main result of
this section is that each of these properties has a tester of query complexity that is polynomial in
the reciprocal of the proximity parameter.

Loosely speaking, a graph partition problem calls for partitioning the graph into a given number
of parts such that the sizes of the parts fit the given bounds and ditto with respect to the number of
edges between parts. More specifically, each graph partition problem (resp., property) is specified
by a number t ∈ N and a sequence of intervals (which serve as parameters of the problem), and
a graph G = ([k], E) is a yes-instance of this problem (resp., has the corresponding property) if
there exists a t-partition, (V1, ..., Vt), of [k] such that

1. For each i ∈ [t], the density of Vi fits the corresponding interval (specified in the sequence of
parameters).

2. For each i, j ∈ [t] (including the case i = j), the density of edges between Vi and Vj fits the
corresponding interval.

A formal definition of this framework is deferred to Section 3.2; here we only clarify the framework
by considering a few appealing examples that refer to the case of t ≤ 2.

We start by considering the case of t = 1, which is a bit of “abuse” of the term partition.
Two natural properties that can be casted in that case are the property of being a clique and the
property of having at least ρ · k2 edges, for any ρ ∈ (0, 0.5). The first property can be ǫ-tested by
uniformly selecting O(1/ǫ) vertex-pairs and checking if each of these pairs constitutes an edge of
the graph. The second property can be ǫ-tested by estimating the fraction of edges in the graph, up
to an additive deviation of ǫ/2, which can be done using a random sample of O(1/ǫ2) vertex-pairs.
Turning to the case of t = 2, we consider the following natural properties.

Biclique: A graph G = ([k], E) is a biclique (a.k.a a complete bipartite graph) if its vertices can
be 2-partitioned into two parts, denoted V1 and V2, such that each part is an independent set
and all pairs in V1 × V2 are connected in the graph (i.e., E = {{u, v} : (u, v) ∈ V1 × V2}).

≤
X

i∈[ℓ]

2−(i−1)|Ω| · 2iǫ/((i − 1) + 3)2

< 2ǫ|Ω|/2

where the last inequality uses
P

i≥1
1

(i+t)2
<

P

i≥1
1

(i+t)(i+t−1)
, which equals

P

i≥1

“

1
i+t−1

− 1
i+t

”

= 1/t.
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Bipartiteness: A graph G = ([k], E) is bipartite (or 2-colorable) if its vertices can be 2-partitioned
into two parts, V1 and V2, such that each part is an independent set (i.e., E ⊆ {{u, v} :
(u, v) ∈ V1 × V2}).

Max-Cut: For ρ ∈ (0, 0.25], a graph G = ([k], E) has a ρ-cut if its vertices can be 2-partitioned into
two parts, V1 and V2, such that the number of edges between V1 and V2 is at least ρ · k2 (i.e.,
|E ∩ {{u, v} : (u, v) ∈ V1 × V2}| ≥ ρ · k2).

Min-Bisection: For ρ ∈ (0, 0.25], a graph G = ([k], E) has a ρ-bisection if its vertices can be 2-
partitioned into two equal sized parts, V1 and V2, such that the number of edges between V1

and V2 is at most ρ · k2 (i.e., |V1| = |V2| and |E ∩ {{u, v} : (u, v) ∈ V1 × V2}| ≤ ρ · k2).

Max-Clique: For ρ ∈ (0, 1], a graph G = ([k], E) has a ρ-clique if its vertices can be 2-partitioned
into two parts, V1 and V2, such that |V1| = ⌈ρ · k⌉ and the subgraph induced by V1 is a clique
(i.e., for every distinct u, v ∈ V1 it holds that {u, v} ∈ E).

Indeed, with the exception of Max-Clique, all the foregoing properties generalized naturally to the
case of t > 2. As stated in the beginning of this section, all of these properties are ǫ-testable using
poly(1/ǫ) queries (for details see Section 3.1 and 3.2). Here we consider the case of Biclique.

Proposition 6 (testing whether a graph is a biclique (in the dense graph model)): The property
Biclique has a (one-sided error) proximity oblivious tester that makes three queries and has linear
rejection probability. That is, a graph that is ǫ-far from being a biclique is rejected with probability
at least Ω(ǫ), whereas a biclique is accepted with probability 1.

We stress that the empty graph G = ([k], ∅) is considered a biclique (by virtue of a trivial 2-
partition ([k], ∅)). Note that ǫ-testing that a graph is not empty can be done by O(1/ǫ) queries
(see Proposition 3).

Proof: The tester selects uniformly three random vertices and accepts if and only if the induced
subgraph is a biclique (i.e., contains either two edges or no edges).16 We stress that while the
selected vertices are uniformly and independently distributed in [k], the queried pairs are dependent
(although each query is uniformly distributed in [k] × [k]).

If G = ([k], E) is a biclique, then it is accepted with probability 1, since the induced graph
is a 3-vertex biclique. In other words, if all three vertices were selected in the same independent
set of the k-vertex biclique, then the induced subgraph is a 3-vertex independent set (which is a
biclique), and otherwise (i.e., when one selected vertex resides in one independent set and the other
two vertices reside in the other set) the induced subgraph is a 3-vertex biclique with two edges.

Assuming that G is ǫ-far from being a biclique, fix the first vertex u that is selected by the
tester. Then, u defines a 2-partition of the vertices of G such that the neighbours of u are on one
side and the other vertices are on the other; that is, the 2-partition is (Γ(u), [k] \ Γ(u)), where
Γ(u) = {v ∈ [k] : {u, v} ∈ E} 6∋ u. Since G is ǫ-far from being a biclique, there are at least ǫk2

vertex pairs17 that violate this 2-partition, where a pair (v,w) is said to violate the 2-partition

16This description ignores the possibility that the selected vertices are not distinct. In such a case, we just accept
without making any queries. Alternatively, we can select uniformly a 3-subset of [k].

17Note that here we count ordered pairs of vertices, rather than unordered pairs. Indeed, at some times it is more
convenient to count in one way, and at other times the other way is preferred. We believe that, when low level details
are concerned, local convenience should have precedence over global consistency.

15



(Γ(u), [k] \ Γ(u)) if the subgraph induced by {u, v,w} is not a biclique. (That is, a violating pair
represents either an edge that is missing between the two parts (i.e., between Γ(u) and [k]\Γ(u)) or
an edge that is present inside one of these parts (i.e., internal to either Γ(u) or [k] \Γ(u)).) Hence,

the probability that the tester selects a violating pair is at least ǫk2

k2 , and the claim follows.

Digest. The analysis of the foregoing tester reveals that we can actually select the first vertex
arbitrarily, and only select the two other vertices at random. More importantly, the foregoing proof
illustrated a technique that is quite popular in the area (see, e.g., Section 3.1). Specifically, the first
vertex “induces” (or forces) auxiliary conditions on the graph (i.e., the existence of edges between
its neighbors and non-neighbors and the non-existence of other edges), and these conditions are
checked by the random pair of vertices selected next. In general, in the “force and check” technique,
the tester designates parts of its sample to force conditions on the object, and these conditions are
checked by the second part of the sample. Note that the forcing can be implicit (like the partition
of [k] according to neighbors versus non-neighbors of u), whereas the checking actually tests these
conditions via queries (e.g., the three queries of the foregoing tester are defined and performed only
once the other two vertices are selected).

Teaching note: The following four paragraphs may be used as a motivation towards

the tester for Bipartiteness (of Section 3.1), but some readers may find this discussion

a bit too abstract.

Turning back to the tester presented in the proof of Proposition 6, recall that the vertex u
induced a 2-partition of [k] and that the placement of each vertex v with respect to that partition
can be determined by a single query to G. In other words, we have implemented an oracle χ :
[k] → {1, 2} (i.e., χ(v) = 1 if and only if v ∈ Γ(u) (or equivalently, if and only if {v, u} ∈ E)),
and observed that G is a biclique if and only if χ is a 2-partition that witnesses this claim (i.e.,
E = {{v,w} : χ(v) 6= χ(w)}). We then checking if G is a biclique by selecting a random pair (v,w)
and accepted if and only if {u, v}∈E ⇐⇒ χ(v) 6=χ(w).

As a motivation towards the presentation of the tester for Bipartiteness, suppose that one
provides an implementation of T oracles χ1, ..., χT : [k] → {1, 2} and shows that G is a bipartite if
and only if at least one of these χi’s is a 2-partition that witnesses this claim (i.e., E ⊆ {{v,w} :
χi(v) 6= χi(w)}). Then, we can test whether G is bipartite or ǫ-far from being bipartite by selecting
m = O(ǫ−1 log T ) random pairs (v1, w1), ..., (vm, wm) and accepting if and only if there exists an
i ∈ [T ] such that for every j ∈ [m] it holds that {u, v}∈E =⇒ χi(vj) 6=χi(wj).

18 Furthermore, if
we can answer all these Tm queries by making a total number of q(ǫ) queries to the graph G, then
we would get an ǫ-tester of query complexity q(ǫ). As shown next, this would follow even if we can
only answer these oracle queries for vertices in a (good) set V , provided that all but at most 0.1ǫk2

of the edges are adjacent to vertices in V (where and edge is considered adjacent to V if both its
endpoint are adjacent to some vertices in V ).

The tester operates as outlined above, except that whenever it gets no answer to χi(v) (i.e.,
v 6∈ V ), it just sets χi(v) so to avoid rejection (whenever possible). This provision guarantees
that the tester always accepts a bipartite graph (since for the suitable χi there exists a setting of
χi(v) (for every v ∈ [k] \ V ) that avoids rejection). On the other hand, if G is ǫ-far from being
bipartite, then for every χ : [k] → {1, 2} there exist at least ǫk2 pairs (v,w) such that {v,w} ∈ E

18See analysis in the end of last paragraph.
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and χ(v) = χ(w). In particular, this holds for each of the foregoing χi’s, whereas only 0.2ǫk2 of
these pairs may be “invisible” to the tester.19 Hence, each χi is detected as bad with probability
at least 1 − (1 − 0.8ǫ)m = 1 − (1/3T ).

The crucial details that were avoided so far are the specification of the T partitions χi’s and their
implementation via queries to the graph. We leave these crucial details to the proof of Lemma 8,
since it makes little sense to give these details without provide that they actually work.20

3.1 Testing Bipartiteness

We first note that Bipartiteness has no proximity oblivious tester that makes a constant number
of queries (and has rejection probability that only depends on the distance of the graph from being
bipartite).21 This can be shown by considering graphs that have “odd-girth” that is larger than the
potential query complexity (see Exercise 4). Nevertheless, testing Bipartitenss is quite simple:
It amounts to selecting a small random set of vertices, and checking whether the induced subgraph
is bipartite. Specifically, the size of the sample is polynomial in the reciprocal of the proximity
parameter.

Algorithm 7 (testing Bipartiteness in the dense graph model): On input k, ǫ and oracle access
to an adjacency predicate of an k-vertex graph, G = ([k], E), the tester proceeds as follows:

1. Uniformly select a subset of Õ(1/ǫ2) vertices of G.

2. Accept if and only if the subgraph induced by this subset is bipartite.

Step (2) amounts to querying the adjacency predicate on all pairs of vertices that belong to the
subset selected at Step (1), and testing whether the induced subgraph is bipartite (e.g., by running
BFS).22 As will become clear from the analysis, it actually suffice to query only Õ(1/ǫ3) of these
pairs. Since being bipartite is “closed under taking subgraph” (i.e., if G is bipartite then every
subgraph of G is bipartite), Algorithm 7 always accepts bipartite graphs (i.e., it has one-sided error
as a tester). Hence, in case of rejection, the algorithm can output a witness of length poly(1/ǫ) log k
that certifies that the graph is not bipartite.23 The analysis of Algorithm 7 is completed by the
following lemma.

Lemma 8 (analysis of Algorithm 7): If G = ([k], E) is ǫ-far from being bipartite, then Algorithm 7
rejects it with probability at least 1/2, when invoked with the proximity parameter ǫ.

19Recall that the number of edges that have at least one endpoint that does not neighbor V is at most 0.1ǫk2.
20If one insists to know, then the answer is essentially as follows. For a random set U of size t = eO(1/ǫ), we consider

all 2-partitions of U , and, for such each 2-partition (U1, U2), we define the 2-partition χU1,U2
: [k] → {1, 2} such that

χU1,U2
(v) = i if any only if v is a neighbor of some vertex in U3−i. Note that this definition may be contradictory

(when v neighbors both U1 and U2) and partial (if v neighbors no vertex in U). Both issues will be handled in the
proof of Lemma 8.

21Recall that the definition of proximity oblivious tester that we used in this text requires that the rejection
probability only depends on the distance of the input from the property.

22Recall that a connected graph is bipartite if and only if for any vertex v there is no edge between any pair of
vertices that are at equal distance from v. (Indeed, the existence of such edge implies the existence of an odd cycle,
and otherwise we can place all vertices that are at odd distance from v in the same side of the 2-partition.)

23Indeed, in this case, the witness may consist of an odd-length cycle of eO(1/ǫ2) vertices.
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Proof: Denoting by R the random Õ(1/ǫ2)-subset of [k] selected in Step (1), we shall show that,
with probability at least 1/2, the subgraph of G induced by R is not bipartite. That is, assuming
that G is ǫ-far from bipartite, we prove that with high probability GR is not bipartite, where GR

is the subgraph of G induced by R.

We view R as a union of two disjoint sets U and S, where t
def
= |U | = O(ǫ−1 · log(1/ǫ)) and

m
def
= |S| = O(t/ǫ). We will consider all possible 2-partitions of U , and associate a partial 2-

partition of [k] with each such 2-partition of U . Specifically, the partial 2-partition of [k] that is
associated with a given 2-partition (of U), denoted (U1, U2), places all neighbors of U1 (respectively,
U2) opposite to U1 (respectively, U2).

24 The point is that such a placement of vertices is forced
upon any 2-partition that is consistent with the 2-partition (U1, U2) in the sense that if v neighbors
Ui and the subgraph induced by U ∪ {v} is bipartite with a 2-partition that places U1 on one side
and U2 on the other, then v must be on the side opposite to Ui.

The idea is that since G is ǫ-far from being bipartite, then any 2-partition of its vertices (and, in
particular, one associated to the 2-partition of U) must have at least ǫk2/2 edges that are internal
to one of the sides of the said 2-partition of [k], and (with high probability) the sample S will
hit some of these edges. There are a couple of problems with this idea. Firstly, we do not know
the 2-partition of U , but as hinted above we shall consider all of them. (Indeed, there are only 2t

possibilities, whereas the size of S is selected such that the probability of not detecting a problem
with any fixed 2-partition is smaller than 2−t/10.) Secondly, the 2-partition of U only forces the
placement of vertices that neighbour U , while we do not know the placement of the other vertices
(and so cannot detect problems with edges incident to them).

The second problem is solved by showing that, with high probability, almost all high-degree
vertices in [k] do neighbor U , and so are forced by each of its possible 2-partitions. Since there
are relatively few edges incident to vertices that do not neighbor U , it follows that, with very high
probability, each such 2-partition of U is detected as illegal by GR. Details follow, but before we
proceed let us stress the key observation: It suffices to rule out relatively few (partial) 2-partitions
of [k] (i.e., those induced by 2-partitions of U), rather than all possible 2-partitions of [k].

We use the notations Γ(v)
def
= {u : {u, v} ∈ E} and Γ(X)

def
= ∪v∈XΓ(v). Given a 2-partition

(U1, U2) of U , we define a (possibly partial) 2-partition of [k], denoted (V1, V2), such that V1
def
= Γ(U2)

and V2
def
= Γ(U1), where we assume, for simplicity that V1 ∩ V2 is indeed empty (otherwise things

are easier).25 As suggested above, if one claims that G can be “legally bi-partitioned” with U1 and
U2 on different sides, then V1 = Γ(U2) must be on the opposite side to U2 (and Γ(U1) opposite to
U1).

26 Note that the 2-partition of U places no restriction on vertices that have no neighbor in
U . Thus, we first ensure that almost all “influential” (i.e., “high-degree”) vertices in [k] have a
neighbor in U .

Definition 8.1 (high-degree vertices and good sets): We say that a vertex v is of high-degree if it
has degree at least ǫk/6. We call U good if all but at most ǫk/6 of the high-degree vertices have a
neighbor in U .

24Indeed, the placement of vertices that do not neighbor U remains undetermined (or is arbitrary). This is the
reason that we referred to the associated partition as partial.

25In this case the 2-partition (U1, U2) is ruled out by GU . In the rest of the analysis, we shall not use this fact.
The reader may redefine V2 = Γ(U1) \ V1.

26Formally, we say that for any 2-coloring χ : [k] → {1, 2} (i.e., a mapping χ such that χ(u) 6= χ(v) for every
{u, v} ∈ E), the following holds: if χ(u) = i for every u ∈ Ui and i ∈ {1, 2}, then χ(v) 6= i for every v ∈ Γ(Ui).
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We comment that not insisting that a good set U neighbors all high-degree vertices allows us to
show that, with high probability, a random U of size Õ(1/ǫ) is good, where the point is that this
size is unrelated to the size of the graph. (In contrast, if we were to insist that a good U neighbors
all high-degree vertices, then we would have had to use |U | = Ω(ǫ−1 log k).)

Claim 8.2 (random t-sets are good): With probability at least 3/4, a uniformly chosen set U of
size t is good.

Proof: For any high-degree vertex v, the probability that v does not have any neighbor in a
uniformly chosen U is at most (1 − (ǫ/6))t < ǫ/24, since t = Ω(ǫ−1 log(1/ǫ)). Hence, the expected
number of high-degree vertices that do not have a neighbor in a random set U is less than ǫk/24,
and the claim follows by Markov’s Inequality.

Definition 8.3 (disturbing a 2-partition of U): We say that an edge disturbs the 2-partition (U1, U2)
of U if both its end-points are in the same set Γ(Ui), for some i ∈ {1, 2}.

Claim 8.4 (lower bound on the number of disturbing edges): For any good set U and any 2-
partition of U , at least ǫk2/6 edges disturb this 2-partition.

Proof: Since G is ǫ-far from being bipartote, each 2-partition of [k] has at least ǫk2/2 violating edges
(i.e., edges with both end-points on the same side). In particular, this holds for the 2-partition
(V1, V2) defined by letting V1 = Γ(U2) and V2 = [k] \ V1, where (U1, U2) is the given 2-partition of
U . We upper bound the number of edges with both sides in the same Vi that are not disturbing.
Actually, we upper bound the number of edges that have an end-point that is not in Γ(U).

• The number of edges incident at high-degree vertices that do not neighbor the good set U is
bounded by (ǫk/6) · k, since there are at most ǫk/6 such vertices.

• The number of edges incident at vertices that are not of high-degree is bounded by k · ǫk/6,
since each such vertex has at most ǫk/6 incident edges.

Hence, that are at most ǫk2/3 edges that do not have both end-points in Γ(U). This leaves us with
at least ǫk2/6 violating edges with both end-points in Γ(U) (i.e., edges disturbing the 2-partition
(U1, U2)).

The lemma follows by observing that GR is bipartite only if either (1) the set U is not good; or (2)
the set U is good and there exists a partition of U so that none of the disturbing edges occurs in
GR. Using Claim 8.2 the probability of event (1) is bounded by 1/4, whereas the probability of
event (2) is bounded by the probability that there exists a 2-partition of U such that none of the
corresponding disturbing edges has both end-points in the second sample S. By Claim 8.4, each
2-partition of U has at least ǫk2/6 disturbing edges, and (as shown next) the probability that none
of them has both end-points in S is at most (1 − (ǫ/6))m/2. Actually, we pair the m vertices of S,
and consider the probability that none of these m/2 pairs is a disturbing edge for some partition
of U . Thus, the probability of event (2) is upper-bounded by

2t ·
(
1 −

ǫ

6

)m/2
<

1

4

where the inequality holds since m = Ω(t/ǫ). The lemma follows.
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Approximate 2-coloring procedures that arises from the proof of Lemma 8. By an
approximate 2-coloring of a graph G = ([k], E), we mean a 2-partition χ : [k] → {1, 2} with relatively
few edges have endpoints that are assigned the same color (e.g., |{{u, v} ∈ E : χ(v) = χ(w)}| =
o(|E|)). The partitioning rule employed in the proof of Lemma 8 (i.e., χ(v) = 1 if and only
if v ∈ Γ(U2) for an adequate 2-partition (U1, U2) of U) yields a randomized poly(1/ǫ) · k-time
algorithm for approximately 2-coloring a k-vertex bipartite graph such that (with high probability)
at most ǫk2 edges have endpoints that are assigned the same color. This is done by running the
tester, determining a 2-partition of U that is consistent with any 2-coloring of the subgraph induced
by R = U ∪ S, and 2-partitioning [k] as done in the proof (with vertices that do not neighbor
U , or neighbor both U1 and U2, placed arbitrarily). Thus, the placement (or coloring) of each
vertex is determined by inspecting at most Õ(1/ǫ) entries of the adjacency matrix. Furthermore,
the aforementioned 2-partition of U constitutes a succinct representation of the 2-partition of the
entire graph. All this is a typical consequence of the fact that the analysis of the tester follows the
“force-and-check” paradigm.

On the complexity of testing Bipartiteness. We comment that a more complex analysis,
due to Alon and Krivelevich [4], implies that the Algorithm 7 is an ǫ-tester for Bipartiteness even
if one selects only Õ(1/ǫ) vertices (rather than Õ(1/ǫ2) vertices) in Step (1)). That is, if G is ǫ-far
from being bipartite, then, with high probability, the subgraph induced by a random set of Õ(1/ǫ)
vertices of G is not bipartite. The reader can verify that inspecting the subgraph induced by o(1/ǫ)
vertices will not do (see Exercise 5). Furthermore, while the result of Alon and Krivelevich [4]
asserts that Bipartiteness can be ǫ-tested using Õ(1/ǫ2) non-adaptive queries, Bogdanov and
Trevisan [15] showed that Ω(1/ǫ2) queries are required by any non-adaptive ǫ-tester. For general
(adaptive) testers, a lower bound of Ω(1/ǫ3/2) queries is known [15], even if the input (k-vertex)
graph has max-degree at most O(ǫk), and this lower bound is almost tight for that case [35].

Open Problem 9 (what is the query complexity of testing Bipartiteness): Can Bipartiteness

be ǫ-tested using Õ(1/ǫc) queries for some c < 2? And how about c = 1.5?

We mention that Bogdanov and Li [14] showed that the answer to the first question is positive,
provided that the following conjecture holds.

Conjecture 10 (a random induced subgraph preserves the distance from being bipartite): If G
is ǫ-far from being bipartite, then, with probability at least 2/3, the subgraph induced by a set of
Õ(1/ǫ) vertices of G is Ω(ǫ)-far from being bipartite.

Recall that Alon and Krivelevich [4] showed that, with high probability, such a subgraph is not
bipartite; but the conjecture postulates that it is far from being bipartite. Note that the proof of
Lemma 8 implies that (with high probability) the subgraph induced by a set of Õ(1/ǫ2) vertices of
G is Ω(ǫ)-far from being bipartite (see Exercise 6).

3.2 The actual definition and the general result

It is time to provide the actual definition of the class of general graph partition problems. Recall that
a graph partition problem calls for partitioning the graph into a predetermined number of parts
such that the sizes of the parts fit predetermined bounds and ditto with respect to the number
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of edges between parts. Hence, each problem (or property) in this class is defined in terms of a
sequence of parameters. The main parameter, denoted t, represents the number of parts in the
partition. In addition, we have, (1) for each i ∈ [t], a pair of corresponding upper and lower bounds
on the density of the ith set, and (2) for each (i, j) ∈ [t]2, two pairs of corresponding upper and lower
bounds on the “absolute” and “relative” density of the edges between the ith and jth sets, where
by absolute (resp., relative) density we mean the size normalized by k2 (resp., by the maximum
number possible, given the actual sizes of the ith and jth sets).

In the following definition, for a graph G = (V,E) and two sets V ′, V ′′ ⊆ V , we denote by
E(V ′, V ′′) the set of edges having one endpoint in V ′ and another endpoint in V ′′. (Indeed, if
V ′ = V ′′, then E(V ′, V ′′) denotes the set of edges with both endpoints in V ′ = V ′′.) Note that, for

V ′ ∩ V ′′ = ∅, it holds that |E(V ′, V ′′)| ≤ |V ′| · |V ′′|, whereas |E(V ′, V ′)| ≤
(
|V ′|
2

)
. For that reason

(and for it only), Conditions 3 and 4 are separated.27

Definition 11 (general partition problem): A graph partition problem is parameterized by a se-
quence (t, (Li,Hi)i∈[t], (L

abs

i,j ,Habs

i,j )i,j∈[t], (L
rel

i,j ,Hrel

i,j )i,j∈[t]) and consists of all graphs G = (V,E)
such that there exists a t-partition of V , denoted (V1, ..., Vt), that satisfies the following conditions:

1. For every i ∈ [t],

Li ≤
|Vi|

|V |
≤ Hi.

2. For every i, j ∈ [t],

Labs

i,j ≤
|E(Vi, Vj)|

|V |2
≤ Habs

i,j .

3. For every i, j ∈ [t] such that i 6= j,

Lrel

i,j ≤
|E(Vi, Vj)|

|Vi| · |Vj |
≤ Hrel

i,j .

4. For every i ∈ [t],

Lrel

i,i ≤
|E(Vi, Vi)|(

|Vi|
2

) ≤ Hrel

i,i .

Definition 11 extends the definition used in [26, Sec. 9], which only contained Conditions 1 and 2.
We believe that the added conditions (Nr. 3 and 4) increase flexibility and avoid some technicalities.
Using Definition 11, we can easily formulate the natural partition problems that were stated at the
beginning of Section 3, where in all cases we use t = 2.

Biclique: Here we use Lrel

1,2 = 1 and Habs

1,1 = Habs

2,2 = 0.

That is, we mandate maximal edge density between the two parts (i.e., no edges may be
missing) and minimal edge density within each part (i.e., no edges may be present there).

All other parameters are trivial, which means that the lower bounds (e.g., Li’s) are all set
to 0, while the upper bounds (e.g., Hi’s) are all set to 1.

27Indeed, Condition 4 could have been integrated in Condition 3 if we had fictitiously defined E(V ′, V ′) to include
self-loops and two copies of each edge.
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Bipartiteness: Here we use Habs

1,1 = Habs

2,2 = 0. Again, all other parameters are trivial.

Max-Cut (for ρ ∈ (0, 0.25]): Here we use Labs

1,2 = ρ (and again all other parameters are trivial).

Min-Bisection (for ρ ∈ (0, 0.25]): Here we use Habs

1,2 = ρ and L1 = L2 = H1 = H2 = 1/2.

Max-Clique (for ρ ∈ (01]): Here we use Li = ρ and Lrel

1,1 = 1.

The following result follows from the techniques used in the proof of [26, Thm. 9.1].28

Theorem 12 (testing general partition problems (in the dense graph model)): Every graph par-
tition problem can be ǫ-tested within query complexity poly(t/ǫ)t, where the polynomial does not
depend on the parameters of the graph partition problem and t is the first parameter of the prob-
lem (cf., Definition 11). The computational complexity of the tester is exponential in its query
complexity.

The tester operates by selecting a sample of poly(t/ǫ)t vertices and checking whether the induced
subgraph satisfies the very same graph partition problem, possibly up to a small relaxation in the
density parameters.29 The latter checking is done by merely going over all possible t-partitions of
the induced graph and checking if any of them satisfies the corresponding property. This explains
the exponential time bound, which seems unavoidable in general, because a T (1/ǫ) time bound for
ǫ-testing properties such as Max-Cut or 3-coloring would have implied a T (k2)-time algorithm for
these problems (by setting ǫ = 1/k2).

Finding approximately good partitions. As in the case of Bipartiteness, the tester for each
graph partition problem can be modified into an algorithm that finds an (succinct representation
of an) approximately adequate partition whenever it exists. That is, if the k-vertex graph has the
desired (t-partition) property, then the testing algorithm may actually output auxiliary information
that allows to reconstruct, in poly(1/ǫ)·k-time, a t-partition that approximately obeys the property.
(For example, for ρ-Cut, we can construct a 2-partition with at least (ρ − ǫ) · k2 crossing edges.)
Furthermore, the location of each vertex with respect to that t-partition can be determined in
poly(1/ǫ)-time. We comment that this notion of a succinct representation of a structure that
corresponds to an (approximate) NP-witness may be relevant for other sets in NP (i.e., not only
to graph partition problems).30

28Indeed, [26, Thm. 9.1] only refers to the case in which all the relative bounds (i.e., the Lrel

i,j ’s and Hrel

i,j ’s) are
trivial, since such bounds were not included in the definition used in [26, Sec. 9]. Nevertheless, the proof seems
to extend in a straightforward manner, if one can use such an expression when referring to such a complex proof.
Verifying this belief and providing a detailed proof would be a worthy project.

29The analysis of the tester uses the force-and-check technique. In particular, we consider all possible t-partitions
of the first part of the sample, denoted U , as well as all possible (approximate) values for a sequence of auxiliary
parameters. Each such pair of choices induces a t-partition of [k]. It is shown that if the input graph satisfies the
property, then one of these t-partitions of [k] witnesses this fact, and that it is possible to determine the location of
every vertex that is adjacent to U with respect each of these partitions based on its adjacency relation with U (and
the auxiliary parameters), where all but at most 0.1ǫk2 of the edges are adjacent to vertices in Γ(U). The details are
quite tedious, but this is a merely complex incarnation of the abstract outline that followed the proof of Proposition 6.

30Indeed, an interesting algorithmic application was presented in [20], where an implicit partition of an imaginary
hypergraph is used in order to efficiently construct a regular partition (with almost optimal parameters) of a given
graph.
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The case of t-Colorability. We mention that better bounds are known for some specific
properties that fall into the framework of Definition 11. Most notably, t-Colorability (i.e.,
Habs

i,i = 0 for all i ∈ [t]) can be ǫ-tested using poly(t/ǫ) queries. In this case, the tester selects a

random sample of Õ(t/ǫ2) vertices and accepts if and only if the induced subgraph is t-colorable.
Recall that for 2-Colorability (i.e., Bipartiteness), a random sample of Õ(1/ǫ) vertices suffices.
Let us state these results in combinatorial terms.

Theorem 13 (testing t-Colorability (in the dense graph model)):31 For every t ≥ 2, if a graph
G is ǫ-far from being t-colorable, then, with high probability, a random induced subgraph of size
Õ(t/ǫct) of G is not t-colorable, where c2 = 1 and ct = 2 otherwise.

4 Connection to Szemeŕedi’s Regularity Lemma

The problem of testing graph properties (in the dense graph model) is related to Szemeŕedi’s
Regularity Lemma [46]. This relation arises when focusing on the question of which graph properties
are testable within query complexity that only depends on the proximity parameter?

We stress the fact that the foregoing question ignores the specific dependence (of the query
complexity on the proximity parameter). It rather stresses the independence of the query complex-
ity from the size of the graph, and it seems adequate to say that such properties have size-oblivious

tester, although this term is a bit misleading (since the tester must use the size parameter in order
to operate).32

4.1 The Regularity Lemma

Recall that for a graph G = (V,E) and two disjoint sets A,B ⊆ V , we denote by E(A,B) the set
of edges having one endpoint in A and another endpoint in B.

Definition 14 (edge density and regular pairs): Let G = (V,E) be a graph and A,B ⊆ V be
disjoint and non-empty sets of vertices.

• The edge density of the pair (A,B) is defined as d(A,B)
def
= |E(A,B)|

|A|·|B| .

• The pair (A,B) is said to be γ-regular if for every A′ ⊆ A and B′ ⊆ B such that |A′| ≥ γ · |A|
and |B′| ≥ γ · |B| it holds that |d(A′, B′) − d(A,B)| ≤ γ.

In many ways, a regular pair in a graph “looks like” a random bipartite graph of the some edge
density; that is, the reader may think of and analyze a regular pair as if it was such a random
bipartite graph, and the conclusion reached in such an analysis would typically hold for the regular
pair.33 Indeed, for sufficiently large A and B, a random bipartite graph between A and B is regular

31Note that the problem of 1-coloring is almost trivial, since it asks if the graph is empty.
32For starters, even selecting a uniformly distributed vertex requires knowing the number of vertices. In addition,

as pointed out by Alon and Shapira [9], the final decision of the tester may also depend on the number of vertices.
A trivial example refers to the graph property that requires having an odd number of vertices. In any case, the term
“size-oblivious testability” seems much better than the term “testability” which is often used (when referring to the
independence of the query complexity from the size of the graph).

33Of course, the word “typically” is crucial here, and it refers to natural assertions that one may want to make on
graphs. For example, if the regular pair (A,B) has edge density ρ, then almost all vertices in A have degree that is
approximately ρ · |B|, and almost all pairs of vertices in A have approximately ρ2 · |B| common neighbors in B. See
Exercise 7.
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with very high probability (see Exercise 8). The regularity lemma asserts that, for every ℓ ∈ N

and γ > 0, every sufficiently large graph can be partitioned into (at least ℓ) almost equal sets
such that all but at most a γ fraction of the set-pairs are γ-regular, where the number of parts is
upper-bounded by a function of ℓ and γ. That is:

Theorem 15 (Szemeŕedi’s Regularity Lemma [46]):34 For every ℓ ∈ N and γ > 0 there exists
a T = T (ℓ, γ) such that every sufficiently large graph G = (V,E) there exists a t ∈ [ℓ, T ] and a
t-partition of V , denoted (V1, ..., Vt) that satisfies the following two conditions:

1. Equipartition: For every i ∈ [t], it holds that ⌊|V |/t⌋ ≤ |Vi| ≤ ⌈|V |/t⌉.

2. Regularity: For all but at most a γ fraction of the pairs {i, j} ∈
([t]

2

)
, it holds that (Vi, Vj) is

γ-regular.

Intuitively this means that every graph graph can be equipartitioned into a constant number of
parts such that almost all pairs of parts looks like a random bipartite graph of the some edge
density. The said constant depends on the parameters ℓ and γ, alas the bound for this quantity
(i.e., T (ℓ, γ)) is a tower of poly(1/γ) exponents; that is, T (ℓ, γ) = T(poly(1/γ)), where T is defined
inductively by T(m) = exp(T(m − 1)) with T(1) = 2. It turns out that this huge upper bound
cannot be significantly improved, since T (ℓ, γ) = T((1/γ)Ω(1)) is a lower bound on the number of
required sets [36]. (A proof of Theorem 15 can be found in many sources; see, for example, [10,
Sec. 9.4].)35

4.2 Subgraph freeness

The relevance of the regularity lemma to property testing can be illustrated by considering the
problem of testing H-freeness, for a fixed graph H (say the triangle).

Definition 16 (subgraph freeness): Let H be a fixed graph. A graph G = (V,E) is H-free if G
contains no subgraph that is isomorphic to H.36

(For example, if H contains a single edge, then H-freeness means having no edges.)37 We stress
that Definition 16 requires that G contains no copy of H as a subgraph, and this is a more strict
requirement than requiring that G contains no induced subgraph that is isomorphic to H. (The
difference between these two notion arises when H is not a clique.)

34An alternative (popular) formulation requires all sets to be of equal size, but allows an exceptional set of size at
most γ · |V |.

35The basic idea is to start with an arbitrary ℓ-equipartition and “refine” it in iteration till the current partition
satisfies the regularity condition. If the current t-partition violates the regularity condition, then the γ ·

`

t
2

´

non-
regular pairs give rise to a 2t-partition of each of the original parts such that some potential function, which ranges
in [0, 1], increases by at least poly(γ). This yields a refinement of the original t-partition, which yields a exp(O(t))-
equipartition (by further refinement, which never decreases the potential). Hence we have poly(γ) many refinement
steps, where in each step the number of parts grows exponentially. Finally, we mention that the potential function

used assigns the partition (V1, ..., Vt) of [k], the value
P

i<j

|Vi|·|Vj |

k2 ·d(Vi, Vj)
2. The verification of the aforementioned

features of this potential function is left to Exercise 9.
36That is, if H = ([t], F ), then G is H-free if and only if for every one-to-one mapping φ : [t] → V there exists

an edge {i, j} ∈ F such that {φ(i), φ(j)} 6∈ E. Equivalently, G is not H-free if and only if there exists a one-to-one
mapping φ : [t] → V such that {{π(i), π(j)} : {i, j} ∈ F} ⊆ E.

37Hence, our focus is on graphs H that have at least two edges, which means that they have at least three vertices.
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Suppose that H is a t-vertex graph. Then, a natural (one-sided error) proximity oblivious tester
for H-freeness consists of selecting t random vertices in the tested graph, and checking whether
the induced subgraph contains a copy of H. The question is what is the rejection probability of
this (one-sided error) tester. In other words, we pose the following question (for which only partial
answers, reviewed next, are known).38

Open Problem 17 (the number of copies of H in graphs that are ǫ-far from H-free): Let H be a
connected t-vertex graph and let #H(ǫ, k) denote the minimal number of copies of H in a k-vertex
graph that is ǫ-far from being H-free. Provide relatively tight lower and upper bounds on #H(ǫ, k).

Note that, for t ≥ 3, it is not a priori clear whether #H(ǫ, k) can be lower bounded by ρH(ǫ) ·
(
k
t

)
for

any function ρH : (0, 1] → N. Such a lower bound is established using the Regularity Lemma, and
no other proof of it is know when H is not bipartite. Furthermore, for any non-bipartite t-vertex
graph H, the known bounds on the function ρH are far apart. Interestingly, in this case it is known
that ρH(ǫ) ≪ poly(ǫ). For example, if G is ǫ-far from triangle-free, then it does not follow that G
has poly(ǫ) ·

(k
3

)
triangles. These striking facts are summarized in the following theorem.

Theorem 18 (upper and lower bounds on #H(ǫ, k)): Let H and #H(ǫ, k) be as in Problem 17.
Then, it holds that

1. #H(ǫ, k) ≥ ρH((0.1ǫ)t−2/t)t ·
(k

t

)
for ρH(ǫ′) that is the reciprocal of a tower of poly(1/ǫ′)

exponents.

2. If H is bipartite, then #H(ǫ, k) ≥ ρH(ǫ) ·
(
k
t

)
for ρH(ǫ) = Ω(ǫt2/4).

3. If H is not bipartite, then for every positive polynomial p it holds that #H(ǫ, k) < p(ǫ) ·
(k

t

)
.

In fact, #H(ǫ, k) < exp(−Ω(log(1/ǫ))2) ·
(
k
t

)
.

(Recall that t denotes the number of vertices in H.)

Theorem 18 summarizes the state of knowledge with respect to Problem 17, and indeed it leaves
much to be understood (i.e., note the huge gap between Parts 1 and 3). Nevertheless, Theo-
rem 18 suffices for establishing the existence of (one-sided error) proximity oblivious tester for all
subgraph-freeness properties. Specifically, H-freeness has a proximity oblivious tester with detec-
tion probability function ρH as asserted in Parts 1 and 2, but for non-bipartite H this detection
probability is not polynomial in the distance from the corresponding property. Furthermore, in
that case, H-freeness has no ǫ-tester of poly(1/ǫ) query complexity, even when allowing two-sided
error [5].39 Here we shall only prove Part 1; the proofs of Parts 2 and 3 can be found in [1].40

38We focus on the case of connected t-vertex graphs H , while noting that the general case is reducible to it.
Specifically, if G is ǫ-far from being H-free and H ′ is a connected component of H , then G is ǫ-far from being
H ′-free. Hence, if for every connected t′-vertex graph H ′ it holds that #H′(ǫ, k) ≥ ρH′(ǫ) ·

`

k
t′

´

for some function
ρH′ : (0, 1] → N, then the same holds for unconnected graphs H , because the number of intersections between copies
of different connected components of H is at least one order of magnitude smaller: Specifically, the number of copies
of H ′ that intersect copies of a t′′-vertex H ′′ is at most t′t′′ ·

`

k
t′+t′′−1

´

, whereas the number of (t′ + t′′)-vertex sets

that contain copies of both H ′ and H ′′ is at least ρH′(ǫ) ·
`

k
t′

´

· ρH′′(ǫ) ·
`

k
t′′

´

.
39For induced subgraph freeness, this lower bound holds for any graph H that has at least five vertices, regardless

if it is bipartite or not [8].
40The proof of Part 2 reduces to the fact (cf. [1, Lem. 2.1] or Exercise 10) that if a k-vertex graph has at least ǫk2

edges, then it contains at least Ω((2ǫ)t1t2) · kt1+t2 copies of Kt1,t2 (i.e., the biclique with t1 vertices on one side and
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Proof of Part 1: Fixing any k-vertex graph G = ([k], E) that is ǫ-far from being H-free, we set
γ = (0.1ǫ)t−2 and ℓ = 10/ǫ, and apply the regularity lemma G. Denoting the partition provided by
the regularity lemma, by (V1, ..., VT ), where T is upper-bounded by a tower of poly(1/γ) exponents,
we modify G as follows:

1. We omit all edges that are internal to any of the Vi’s.

In total, we omitted at most T ·
(⌈k/T ⌉

2

)
< k2/T ≤ k2/ℓ = 0.1ǫk2 edges.

2. We omit all edges between pairs of sets that are not γ-regular.

Here, we omitted at most γ ·
(T

2

)
· ⌈k/T ⌉2 < γ · k2 ≤ 0.1ǫk2 edges.

3. We omit all edges between pairs of sets that have edge density below 0.2ǫ; that is, we omit
all edges between Vi and Vj if and only if d(Vi, Vj) ≤ 0.2ǫ.

Here, we omitted at most
(T

2

)
· 0.2ǫ · ⌈k/T ⌉2 < 0.1ǫ · k2 edges.

Hence, the resulting graph, denoted G′ = ([k], E′), is a subgraph of G that is not H-free.41 Fur-
thermore, by Steps 2 and 3, every pair (Vi, Vj) is γ-regular in G′ and has edge density that is either
at least 0.2ǫ or equals zero (i.e., there are no edges between Vi and Vj in G′). Lastly, by Step 1,
the graph G′ contains no edges that are internal to any Vi.

Given that G′ contains some copies of H, we shall lower bound the number of copies of H
in G′. At this point we invoke the intuition provided right after Definition 14, by which regular
pairs behave as random bipartite graphs of similar edge density. Considering the guaranteed copy
of H = ([t], F ) in G′ = ([k], E′), we observe that its edges reside in regular pairs that have edge
density at least 0.2ǫ. If these regular pairs would behave as random bipartite graphs of similar
density, then we should expect to have at least (0.2ǫ)|F | · (k/T )t copies of H on G′, due merely to
these regular pairs, and the Part 1 would follow (since this quantity is Ω(ǫ)t

2
·T−t ·

(k
t

)
). The actual

proof amounts to materializing this observation in the real setting in which the regular pairs are
fixed bipartite graphs rather than being random bipartite graphs of similar densities.

Starting the actual proof and considering the guaranteed copy of H in G′, we make the following
initial observations. We first observe that if H is a clique, then this copy (of H) contains at most
one vertex in each of the Vi’s, since each pair of vertices in the copy of H must be connected
in G′ (whereas vertices in the same Vi are not connected). Turning to the general case (i.e., a
general t-vertex graph H), we admit that a copy of H may contain several vertices in the same Vi.
But, in such a case, we can partition each Vi into t equal parts, while noting that the regularity
condition is preserved, except that the regularity parameter is now t times bigger.42 Hence, we
should actually invoke the regularity lemma with γ = (0.1ǫ)t−2/t (rather than with γ = (0.1ǫ)t−2).
We shall assume, without loss of generality, that the ith vertex of the foregoing copy of H resides
in Vi. Furthermore, we observe that if Vi and Vj contain vertices of this copy (of H) that are

t2 vertices on the other side). Hence, if the k-vertex graph G is ǫ-far from being H-free, then G must be ǫ-far from

the empty graph, and hence contain at least Ω((2ǫ)t′·(t−t′)) · kt copies of Kt′,t−t′ for every t′ ∈ [t − 1]. (Thus, if H

is a subgraph of Kt′,t−t′ , then G contain at least Ω((2ǫ)t′·(t−t′)) · kt copies of H .) We also mention that a two-sided
error ǫ-tester of query complexity O(1/ǫ) (for H-freeness) can just estimate the number of edges in the tested graph,
and reject if and only if it is safe to say that the graph has more than 0.4ǫk2 edges (cf., Proposition 4). A partial
proof of Part 3 can be found in [45, Sec. 9.1].

41Indeed, although we can show that G′ is 0.4ǫ-far from being H-free, we only use the fact that G′ is not H-free.
42Since every (Vi, Vj) is γ-regular, each of the t2 resulting pairs is tγ-regular (see Exerecise 11). Also, since there

are no edges between vertices of Vi there will be no edges between its t parts.
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connected in H, then (by Steps 2 and 3) the pair (Vi, Vj) is γ-regular and has edge density at least
0.2ǫ. Let us summarize:

Starting point: The graph G′ contains a copy of H such that the ith vertex of the foregoing copy
of H resides in Vi, and if i and j are connected in H then the pair (Vi, Vj) has edge density
at least 0.2ǫ (and is γ-regular).

We now consider an auxiliary graph A = ([T ], F ) such that {i, j} ∈ F if and only if there is an edge
in G′ between some vertex of Vi and some vertex of Vj (i.e., there exists u ∈ Vi and v ∈ Vj such
that {u, v} ∈ E′). However, according to Step 3, the existence of a single edge (in G′) between Vi

and Vj implies the existence of at least 0.2ǫ · ⌊k/T ⌋2 such edges. Furthermore, by Steps 2 and 3, if
{i, j1}, {i, j2} ∈ F (equivalently, if there are edges (in G′) between Vi and both Vj1 and Vj2), then
there are many vertices in Vi that have many edges to both Vj1 and Vj2 (in G′). A more elaborate
argument, which is presented next, shows that the existence of any t-vertex subgraph in A, implies
that this subgraph appears in “abundance” in G′. This fact combined with the fact that A must
contain a copy of H (since G′ is not H-free), implies that G′ (and so also G) conatins many copies
of H. Let us first detail the argument for the case that H is the (three-vertex) triangle.

The case in which H is a triangle. Since the graph G′ is not triangle-free, it follows that the graph
A contains a triangle (which, w.l.o.g, consists of the vertices 1, 2 and 3). Turning back to G′, for
each vertex v ∈ V1, we consider its neighbors in V2 and V3, and denote the corresponding sets by
Γ2(v) and Γ3(v), respectively; that is, Γi(v) = {u ∈ Vi : {u, v} ∈ E′}. We make the following two
observations:

Observation 1: If |Γi(v)| ≥ 0.1ǫ · |Vi| for both i ∈ {2, 3}, then the number of triangles that involve
v is at least (0.1ǫ)3 · ⌊k/T ⌋2.

This follows since for such a vertex v, each pair (w2, w3) ∈ Γ2(v)×Γ3(v) such that {w2, w3} ∈
E′ yields a triangle, whereas the density of such edges (i.e., edges between Γ2(v) and Γ3(v))
is approximately the density of edges between V2 and V3. Specifically, we have

dG′(Γ2(v),Γ3(v)) · |Γ2(v)| · |Γ3(v)| ≥ (dG′(V2, V3) − γ) · |Γ2(v)| · |Γ3(v)|

≥ 0.1ǫ · (0.1ǫ · ⌊k/T ⌋)2

where the first inequality uses the fact that (V2, V3) is a γ-regular pair (and |Γi(v)| ≥ 0.1ǫ · |Vi|
for both i ∈ {2, 3}), whereas the second inequality uses the fact that (V2, V3) has edge density
at least 0.2ǫ (and γ ≤ 0.1ǫ).

Observation 2: Most of the vertices v ∈ V1 satisfy |Γi(v)| ≥ 0.1ǫ · |Vi| for both i ∈ {2, 3}. In fact,
for every i ∈ {1, 2}, at least a 1 − γ fraction of the vertices v ∈ V1 satisfy |Γi(v)| ≥ 0.1ǫ · |Vi|.

To see this, let V ′
1

def
= {v ∈ V1 : |Γi(v)| < 0.1ǫ · |Vi|}, and assume towards the contradiction

that |V ′
1 | > γ · |V1|. Now, since the pair (V1, Vi) is γ-regular (and |V ′

1 | ≥ γ · |V1|), we have

dG′(V ′
1 , Vi) · |V

′
1 | · |Vi| ≥ (dG′(V1, Vi) − γ) · |V ′

1 | · |Vi|

≥ 0.1ǫ · |V ′
1 | · |Vi|

but this contradicts the definition of V ′
1 , which asserts that each v ∈ V ′

1 has less than 0.1ǫ · |Vi|
neighbors in Vi.

27



Combining the two observations, we conclude that there are at least 0.5|V1| · (0.1ǫ)3 · ⌊k/T ⌋2 >
0.4 · (0.1ǫ/T )3 · k3 triangles in G′. Recalling that T is upper-bounded by function of ǫ (i.e., a tower
of poly(1/(0.1ǫ)) exponents), Part 1 follows in this case (in which H is a triangle).

The general case: arbitrary H. We now turn to the general case in which H is an arbitrary t-vertex
graph. Recall that by our hypothesis G′ contains a copy of H with a single vertex in Vi for every
i ∈ [t]. It follows that the auxiliary graph A contains a copy of H, and that this copy resides on the

vertices 1, 2, ..., t. In this case we proceed in t− 2 iterations, starting with H(0) = H and V
(0)
i = Vi

for every i ∈ [t].

In the ith iteration, we claim that, at least half of the vertices in V
(i−1)
i have at least 0.1ǫ·|V

(i−1)
j |

neighbors in V
(i−1)
j for every j > i that is a neighbor of i in H(i−1). This claim is analogous to

Observation 2 (above), and is proved in the same manner (while relying on |V
(i−1)
i | ≥ γ · |Vi|, which

will be established below). For each such vertex v, we define V
(i)
j = V

(i−1)
j if j does not neighbor i

in H(i−1) and V
(i)
j = {u ∈ V

(i−1)
j : {u, v} ∈ E′} otherwise.43 We then argue as follows:

1. Let H(i) be the subgraph of H(i−1) induced by {i + 1, ..., t}. Then, the number of copies of

H(i−1) in G′ that involve v as well as a single vertex from each V
(i−1)
j for j ∈ {i + 1, ..., t}

is lower-bounded by the number of copies of H(i) in G′ that contain a single vertex from each

V
(i)
j for j ∈ {i + 1, ..., t}.

2. For every j ∈ {i+1, ..., t}, it holds that |V
(i)
j | ≥ 0.1ǫ · |V

(i−1)
j | ≥ (0.1ǫ)i · |Vj |. Hence, for every

i ∈ [t−2] and j ∈ {i+1, ..., t}, it holds that |V
(i)
j | ≥ γ · |Vj |. (In particular, |V

(i)
i+1| ≥ γ · |Vi+1|.)

It follows that the number of copies of H(i−1) in G′ that involve a single vertex from each V
(i)
j

for j ∈ {i, ..., t} is at least 0.5 · |V
(i−1)
i | ≥ 0.5 · (0.1ǫ)i−1 · |Vi| times the number of copies of H(i)

in G′ that involve a single vertex from each V
(i)
j for j ∈ {i + 1, ..., t}.44 Lastly, we show that the

number of copies of H(t−2) in G′ that involve a single vertex from each V
(t−2)
j for j ∈ {t − 1, t} is

at least 0.1ǫ · |V
(t−2)
t−1 | · |V

(t−2)
t |, which is at least 0.1ǫ · ((0.1ǫ)t−2 · ⌊k/t⌋)2. This claim is analogous

to Observation 1 (above), and is proved in the same manner (while relying on |V
(t−2)
j | ≥ γ|Vj | for

both j ∈ {t − 1, t}).45 Hence, the number of copies of H in G′ is at least

t−2∏

i=1

(
0.5 · (0.1ǫ)i−1 · |Vi|

)
· 0.1ǫ ·

(
(0.1ǫ)t−2 · ⌊k/t⌋

)2

43The notation V
(i)

j is imprecise, since this set depends on v as well as the sequence of vertices fixed in the prior
i− 1 iterations. That is, for every choice of (v1, .., vi−1) ∈ V1 × · · · × Vi−1 made in the prior i− 1 iterations, we claim

that (for every j > i that is a neighbor of i in H(i−1)), it holds that at least half of the vertices in V
(v1,...,vi−1)

i have

at least 0.1ǫ · |V
(v1,...,vi−1)

j | neighbors in V
(v1,...,vi−1)

j . For every such vertex vi, we define V
(v1,...,vi)

j = V
(v1,...,vi−1)

j if

j does not neighbor i in H(i−1) and V
(v1,...,vi)
j = {u ∈ V

(v1,...,vi−1)

j : {u, vi} ∈ E′} otherwise.
44Recall that for most vertices v ∈ V

(i−1)
i , it holds that that number of copies of H(i−1) in which v participates

equals the number of copies of H(i) in G′ that involve a single vertex from each V
(i)

j for j ∈ {i + 1, ..., t}, where the

V
(i)

j ’s are defined based on v and H(i−1).
45Alternatively, we can use yet another iteration, while setting γ = (0.1ǫ)t−1 (rather than γ = (0.1ǫ)t−2), and use

the corresponding claim regarding H(t−1), which is trivial.
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>
(
(0.1ǫ)t−2 · ⌊k/T ⌋

)t−2
· (0.1ǫ)2t−3 · ⌊k/T ⌋2

>
(0.1ǫ)t

2

T t
· kt

and the claim follows.

Digest: On an apparent waste in the proof. The reader may wonder why we did not use
the fact that G′ is actually 0.4ǫ-far from being H-free (rather than only using the fact that G′ is
not H-free). Using this stronger fact, we can indeed infer that the auxiliary graph A is 0.4ǫ-far
from being H-free. But we cannot capitalize on the latter fact, since we do not have a good lower
bound on the number of copies of H in A. Indeed, getting such a lower bound is the contents of
Part 1 of Theorem 18, but the result established there is meaningless for graphs of size T (such as
A). The only lower bound that is obvious with respect to A, is that (the T -vertex graph) A has at
least Ω(ǫT 2/t) different t-vertex subsets that contain a copy of H, since omitting all edges that are
incident at any such vertex (in any such t-subset) eliminates all copies of H.46 But, at best, this
will only allow us to assert that #H(ǫ, k) ≥ Ω(ǫT 2) · (k/T )t, which is not significantly better than
the bound #H(ǫ, k) ≥ (0.1ǫ/T )t ·

(k
t

)
that we just proved.

Summary. For sake of good order, we spell out the results regarding testing subgraph freeness
that are implied by Theorem 18 (and by the discussion that followed it (including Footnote 40)).

Corollary 19 (on the complexity of testing subgraph freeness (in the dense graph model)): Let
H be a t-vertex graph. Then:

1. There exists a one-sided error proximity oblivious tester that makes t queries and has detection
probability ̺H(δ) = 1/T(poly(δt/t))t, where T is the tower-of-exponents function (i.e., T(m) =
exp(T(m − 1)) and T(1) = 2).

2. If H is bipartite, then there exists a one-sided error proximity oblivious tester that makes
t queries and has detection probability ̺H(δ) = Ω(δt2/4). In this case, H-freeness has a
two-sided error tester of query complexity O(1/ǫ).47

3. If H is not bipartite, then H-freeness has no ǫ-tester of poly(1/ǫ) query complexity, even
when allowing two-sided error.48

We mention that the corresponding properties that refer to induced subgraphs freeness also have
constant-query (one-sided error) proximity oblivious testers, but their detection probability is even
worse (i.e., it is a tower of tower functions [8]).49 Furthermore, this result extends to the case that
the property postulates freeness for a family of graphs; that is, for a fixed family of (forbidden)

46Note that the subgraph induced by each t-subset may contain several different copies of H , but since H is
connected it suffices to disconnect one of the vertices in the t-subset from all other vertices in this subset.

47See Footnote 40.
48Indeed, this result (of Alon and Shapira [5]) is stronger than the corresponding part of Theorem 18: It refers to

general testers (rather than to one-sided error testers that arise from repeating a t-query proximity oblivious tester
for a predetermined number of times.

49Recall that a graph G is H-free if G contains no subgraph that is isomorphic to H . In contrast, G is induced

H-free if G contains no induced subgraph that is isomorphic to H .
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graphs H, a graph G is induced H-free if G contains no induced subgraph that is isomorphic to a
graph in H. (Note that here we focus on induced subgraph freeness, since non-induced subgraph
freeness with respect to a finite set of graphs H, can be captured by induced subgraph freeness
with respect to a finite set of graphs H′.)50

Actually, the foregoing result (i.e., that every induced subgraph freeness property has a constant-
query proximity oblivious tester) is, in some sense, the strongest possible. Loosely speaking, a graph
property has a constant-query (one-sided error) proximity-oblivious tester if and only if it expressible
as an induced subgraph freeness property. Recall that a proximity-oblivious tester (POT) is required
to have detection probability that only depends on the distance of the tested object from the
property. The actual result, stated next, allows the family of forbidden subgraphs to depend on
the number of vertices in the tested graph, as long as the number of vertices in each graph in the
family is uniformly bounded.

Theorem 20 (characterization of graph properties having a POT (in the dense graph model)):
Let Π =

⋃
k∈N

Πk be a graph property such that each Πk consists of all k-vertex graphs that satisfy
Π. Then, Π has a constant-query (one-sided error) proximity-oblivious tester if and only if there
exist a constant c and an infinite sequence H = (Hk)k∈N of sets of graphs such that

1. each Hk contains graphs of size at most c; and

2. Πk equals the set of k-vertex graphs that are induced Hk-free.

(Note that the number of possible Hk’s is upper bounded by a function of c; indeed, it is at
most double-exponential in c2.)51 The existence of POTs for properties that satisfy the (induced
subgraph) condition follows from [8], whereas the opposite direction is based on Theorem 25 (below).

4.3 The structure of properties that have size-oblivious testers

The role of the regularity lemma is not confined to proving the existence of proximity-oblivious
testers for any graph property that is expressible as an induced subgraph freeness property. It turns
out that every graph property that can be tested using a number of queries that is independent
of the size of the graph can be expressed in terms properties having a regular partition that fits
a given sequence of edge densities. (In the following definition, t denotes the number of parts is
the partition, γ denotes the regularity parameter, C denotes the set of regular pairs, and the di,j ’s
denote the prescribed densities.)

Definition 21 (regularity properties): A regularity property is parameterized by a sequence

(γ, t, (di,j)i<j:i,j∈[t], C)

such that γ ∈ (0, 1] and C ⊂
(
[t]
2

)
has size ⌈(1 − γ) ·

(
t
2

)
⌉. This property consists of all graphs

G = (V,E) such that there exists a t-equipartition of V , denoted (V1, ..., Vt), and for every (i, j) ∈ C
the pair (Vi, Vj) is γ-regular and |E(Vi, Vj)| = ⌊di,j · |Vi| · |Vj |⌋. We call max(γ, 1/t) the fineness of
the property.

50Specifically, suppose that H contains graphs with at most t vertices. Then, H′ is the set set of all t-vertex graphs
that contain a subgraphs that is in H. Note that G contains a (general) subgraph that is isomorphic to a graph in
H′ if and only if G contains an induced subgraph that is isomorphic to a graph in H.

51This fact is important towards applying the result of [8], which relates to the case that Hk is independent of k.
Note that a property Π that satisfies the “H-freeness” condition is a union of a finite number of (trivially modified)
induced freeness properties (as in [8]).
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We shall consider properties that can be expressed as the union of a finite number of regularity
properties of a bounded fineness. In fact, we shall refer to properties that are approximated by the
latter, where the notion of approximation is as defined in the notes on testing by implicit sampling.

Definition 22 (approximation of a property): The property Π is δ-approximated by the property
Π′ if each object in Π is δ-close to some object in Π′, and vice versa.

We are finally ready to state the result alluded to above. It asserts that every graph property
that can be tested using a number of queries that is independent of the size of the graph can be
approximated by the union of regularity properties (where fineness of these properties is lower-
bounded in terms of the approximation parameter). Actually, the converse holds as well.

Theorem 23 (characterization of properties that have size-oblivious testers (in the dense graph
model)): Let Π be a graph property. Then, the following two conditions are equivalent.

1. There exists a function q : (0, 1] → N such that the property Π has a tester of query complexity
q(ǫ).

2. There exists a function T : (0, 1] → N such that for every ǫ > 0, the property Π is ǫ-
approximated by the union of T (ǫ) regularity properties of fineness 1/T (ǫ).

5 A Taxonomy of the known results

Teaching note: The current section is a kind of digest of the material presented in

Sections 2–4, organized according to the query complexity of the various property testing

problems. In addition it presents two results: A query complexity hierarchy (Theorem 24)

and a result asserting that the non-adaptive testers can achieve query complexity that is

at most quadratic in the query complexity of an arbitrary tester (Theorem 25). Actually,

the tester derived in Theorem 25 is even more restricted: It merely inspects the subgraph

induced by a random sample of vertices.

Testers of query complexity that depends on the size of the graph. We first mention
that graph properties of arbitrary query complexity are known: Specifically, in this model, graph
properties (even those in P) may have query complexity ranging from O(1/ǫ) to Ω(k2), where k
denotes the number of vertices, and the same holds also for monotone graph properties52 in NP .
One of these hierarchy theorems states (cf. [27]).

Theorem 24 (query hierarchy for testing graph properties in the dense graph model): For every
q : N → N that is at most quadratic such that k 7→ ⌊

√
q(k)⌋ is onto, there exists a graph property

Π and ǫ > 0 such that ǫ-testing Π on k-vertex graphs has query complexity Θ(q(k)). Furthermore,
if k 7→ q(k) is computable in poly(log k)-time, then Π is in P, and the tester is relatively efficient
in the sense that its running time is polynomial in the total length of its queries.

52A graph property Π is called monotone if, for every G ∈ Π, the graph obtained from G by adding any edge to G
is also in Π. The same result holds for anti-monotone properties (where omitting edges preserves the property).
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We mention that the testers used in the upper bound have query complexity poly(1/ǫ) · q(k).
Theorem 24 is established in [27] by using unnatural graph properties, starting from the Ω(k2)

lower bound of [26], which also uses an unnatural graph property.53 In contrast, the Ω(k) lower
bound established in [19] (following [2]) refers to the natural property of testing whether an k-vertex
graph consists of two isomorphic copies of some k/2-vertex graph.

Testers of query complexity that is independent of the size of the graph. In this section,
we focus on properties that can be tested within query complexity that only depends on the proximity
parameter (i.e., ǫ); that is, the query complexity does not depend on the size of the graph being tested.
As we have seen, there is much to say about this class of properties. For q : (0, 1] → N, let C(q)
denote the class of graph properties that can be tested within query complexity q. We shall focus
on three classes of properties.

1. Arbitrary q such that q(ǫ) ≫ poly(1/ǫ). By Corollary 18, triangle-freeness is in the class C(q),
for some (tower-of-exponents) function q, but is not in the class C(q) for any polynomial q.
The same holds for H-freeness for any non-bipartite H.

2. The case of q(ǫ) = poly(1/ǫ). By Theorem 12, every graph partition problem is in the class
C(q), for some polynomial q. In particular, t-Colorability is in C(qt) where q2(ǫ) = Õ(ǫ−2)
and qk(ǫ) = Õ(ǫ−4) for any k ≥ 3 (see Theorem 13). It is also known that q2(ǫ) cannot be
o(ǫ−3/2).

By Theorem 5, degree regularity is in C(q) for q(ǫ) = O(1/ǫ2), and q(ǫ) cannot be o(1/ǫ2)
(see Exercise 1).

3. The case of q(ǫ) = Õ(1/ǫ). By Proposition 6, Biclique is in C(q) for q(ǫ) = O(1/ǫ). As men-
tioned in Footnote 40, the same bound holds for H-freeness for any bipartite H. Additional
properties in this class are reviewed in Section 5.3.

Before further discussing the foregoing results, we mention that, when disregarding a possible
quadratic blow-up in the query complexity, we may assume that the tester is non-adaptive. Fur-
thermore, it is actually canonical in the following sense.

Theorem 25 (canonical testers [34, Thm 2]):54 Let Π be any graph property. If there exists a tester
with query complexity q for Π, then there exists a tester for Π that uniformly selects at random a
set of O(q) vertices and accepts if and only if the induced subgraph has property Π′, where Π′ is a
graph property that may depend on the number of vertices in the tested graph (i.e., k) as well as
on Π. Furthermore, if the original tester has one-sided error, then so does the new tester, and a
sample of 2q vertices suffices

Indeed, the resulting tester is called canonical. In particular, it decided based on an inspection of the
subgraph induced by a random sample of vertices (and, thus, is, in particular, non-adaptive). We

53This is a common phenomenon in hierarchy theorems; cf. [23, Chap. 4].
54As pointed out in [9], the statement of [34, Thm 2] should be corrected such that the auxiliary property Π′ may

depend on k and not only on Π. Thus, on input k and ǫ (and oracle access to an k-vertex graph G), the canonical
tester checks whether a random induced subgraph of size s = O(q(k, ǫ)) has the property Π′, where Π′ itself (or rather
its intersection with the set of s-vertex graphs) may depend on k. In other words, the tester’s decision depends only
on the induced subgraph that it sees and on the size parameter k.
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warn that Π′ need not equal Π (let alone that Π′ may depend on k). Still, in many natural cases,
Π′ = Π (e.g., t-Colorability). We warn that, in addition to the (possible) quadratic blow-up in
the query complexity, the time complexity of the canonical tester may be significantly larger than
the time complexity of the original tester.

5.1 Testability in q(ǫ) queries, for any function q

Recall that Theorem 18 (Part 1) implies that all subgraph freeness properties have constant-query
(one-sided error) proximity-oblivious testers. Also, Theorem 23 provides a combinatorial charac-
terization of the class of properties that can be tested within query complexity that only depends
on the proximity parameter.

The downside of the algorithms that emerge from the aforementioned results is that their query
complexity is related to the proximity parameter via a function that grows tremendously fast.
Specifically, in the general case, the query complexity is only upper bounded by a tower of a tower
of exponents (in a monotonically growing function of 1/ǫ, which in turn depends on the property at
hand). Furthermore, it is known that a super-polynomial dependence on the proximity parameter
is inherent to the foregoing result. Actually, as shown by Alon [1], such a dependence is essential
even for testing triangle freeness.

The latter fact provides a nice demonstration of the non-triviality of testing graph properties.
One might have guessed that O(1/ǫ) or O(1/ǫ3) queries would have sufficed to detect a triangle in
any graph that is ǫ-far from being triangle free, but Alon’s result asserts that this guess is wrong
and that poly(1/ǫ) queries do not suffice. We mention that the best upper bound known for the
query complexity of testing triangle freeness is T(poly(1/ǫ)), where T is the tower function defined
inductively by T(n) = exp(T(n − 1)) with T(1) = 2 (cf. [1]).

Perspective: Is it all about combinatorics? Theorem 25 seems to suggest that the study
of testing graph properties (in this model) reduces to combinatorics, since it asserts that testing
reduces to inspecting a random induced subgraph (of the corresponding size). This lesson is made
more concrete by the characterization of “size-oblivious” testable graph properties provided by
Theorem 23, which refers to the notion of a regularity property, where regularity is in the sense of
Szemeŕedi’s Regularity Lemma [46]. Recall that this result essentially asserts that a graph property
can be tested in query complexity that only depends on ǫ if and only if it can be characterized
in terms of a constant number of regularity properties. In retrospect, this justifies the use of the
Regularity Lemma in the proof of (Part 1 of) Theorem 18. In any case, the lesson is that, when
ignoring the specific dependency on ǫ, testing graph properties in query complexity that only depends
on ǫ reduces to testing the edge densities of pairs in a regular partition. However, as noted already
and further advocated next, this lesson ignores both the running time of the tester and the exact
value of the query complexity.

Perspective: The exact query complexity does matter. It is indeed an amazing fact that
many properties can be tested within (query) complexity that only depends on the proximity
parameter (rather than also on the size of the object being tested). This amazing statement seems
to put in shadow the question of the form of the aforementioned dependence, and blurs the difference
between a reasonable dependence (e.g., a polynomial relation) and a prohibiting one (e.g., a tower-
function relation). We beg to disagree with this sentiment and claim that, as in the context of
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standard approximation problems (cf. [38]), the dependence of the complexity on the approximation
(or proximity) parameter is a key issue.

We wish to stress that we do value the impressive results of [2, 5, 6, 7, 21] (let alone [3]), which
refer to graph property testers having query complexity that is independent of the graph size but
depends prohibitively on the proximity parameter. We view such results as an impressive first
step, which called for further investigation directed at determining the actual dependency of the
complexity on the proximity parameter.

While it is conceivable that there exist (natural) graph properties that can be tested in exp(1/ǫ)
queries but not in poly(1/ǫ) queries, we are not aware of such a property. (Needless to say, demon-
strating the existence of such (natural) properties is an interesting open problem.) We thus move
directly from complexities of the form T(1/ǫ) (and larger) to complexities of the form poly(1/ǫ).

5.2 Testability in poly(1/ǫ) queries

Testers of query complexity poly(1/ǫ) are known for several natural graph properties, which fall
under the general framework of graph partition problems (presented and studied in Section 3). We
briefly recall some of these properties, while reminding the reader that by Theorem 12, every graph
partition problem is testable in poly(1/ǫ) queries.

• t-Colorability, for any fixed t ≥ 2.

Recall that by Theorem 13, t-Colorability has a one-sided error tester of query complexity
Õ(t2/ǫ4) for any t > 2. For t = 2 this tester has query-complexity (and running-time) Õ(1/ǫ2).

• ρ-Clique, for any fixed ρ > 0, where ρ-Clique is the set of graphs that have a clique of
density ρ (i.e., k-vertex graphs having a clique of size ρk).

• ρ-Cut, for any fixed ρ > 0, where ρ-Cut is the set of graphs that have a cut of density at
least ρ (compared to k2).

• ρ-Bisection, for any fixed ρ > 0, where ρ-Bisection is the set of graphs that have a
bisection of density at most ρ (i.e., an k-vertex graph is in ρ-Bisection if its vertex set can be
partitioned into two equal parts with at most ρk2 edges going between them).

Except for k-Colorability, all the other testers have two-sided error, and this is unavoidable for
any tester of o(k) query complexity for any of these properties.

Beyond graph partition problems. Although many natural graph properties can be formu-
lated as partition problems, many other properties that can be tested with poly(1/ǫ) queries cannot
be formulated as such problems. The list include the set of regular graphs, connected graphs, planar
graphs, and more. We identify three classes of such natural properties:

1. Properties that only depends on the vertex degree distribution (e.g., degree regularity and
average degree). For example, for any fixed ρ > 0, the set of k-vertex graphs having ρk2 edges
can be tested using O(1/ǫ2) queries, which is the best result possible.55 The same holds with
respect to testing degree regularity (see Theorem 5 and Exercise 1).

55Both the upper and lower bounds can be proved by reduction to the problem of estimating the average value of
Boolean functions (cf. [18]).
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2. Properties that are satisfied only by sparse graphs (e.g., k-vertex graphs having O(k) edges)
such as Cycle-freeness and Planarity. See Proposition 4 for a more general statement.

3. Properties that are almost trivial in the sense that, for some constant c > 0 and every ǫ > k−c,
all k-vertex graphs are ǫ-close to the property (see Proposition 3). For example, every k-vertex
graph is k−1-close to being connected (or being Hamiltonian or Eulerian).

In view of all of the foregoing, we believe that characterizing the class of graph properties that
can be tested in poly(1/ǫ) queries may be very challenging. We mention that the special case of
induced subgraph freeness properties was resolved in [8].

5.3 Testability in Õ(1/ǫ) queries

While Theorem 25 may be interpreted as suggesting that testing in the dense graph model leaves
no room for algorithmic design, this conclusion is valid only if one ignores a possible quadratic
blow-up in the query complexity (and also disregards the time complexity). As advocated in [30],
a finer examination of the model, which takes into account the exact query complexity (i.e., cares
about a quadratic blow-up), reveals the role of algorithmic design. In particular, the results in [30]
distinguish adaptive testers from non-adaptive ones, and distinguish the latter from canonical
testers. These results refer to testability in Õ(1/ǫ) queries. In particular, it is known that:56

• Testing every “non-trivial for testing” graph property requires Ω(1/ǫ) queries, even when
adaptive testers are allowed. Furthermore, any canonical tester for such a property requires
Ω(1/ǫ2) queries, since it must inspect a subgraph that is induced by Ω(1/ǫ) vertices.

• There exist an infinite class of natural graph properties that can be tested by Õ(1/ǫ) non-
adaptive queries. Specifically, this class contains all properties obtained by an (uneven)
blow-up of some fixed graph.57

• There exists a natural graph property that can be tested by Õ(1/ǫ) adaptive queries, requires
Ω(ǫ−4/3) non-adaptive queries, and is actually testable by O(ǫ−4/3) non-adaptive queries. The
property for which this is shown is called Clique Collection, and contains all graphs that
consist of a collection of isolated cliques. That is, the problem of testing Clique Collection

has (general) query complexity Θ̃(1/ǫ) and non-adaptive query complexity Θ(ǫ−4/3).

• There exists a natural graph property that can be tested by Õ(1/ǫ) adaptive queries but re-
quires Ω(ǫ−3/2) non-adaptive queries. The property for which this is shown is called Biclique

Collection, and contains all graphs that consist of a collection of isolated bicliques.

All the above testers have one-sided error probability and are efficient, whereas the lower bounds
hold also for two-sided error testers (regardless of efficiency).

The foregoing results seem to indicate that even at this low complexity level (i.e., testing in
Õ(1/ǫ) adaptive queries) there is a lot of structure and much to be understood. In particular, it is

56With the exception of the result regarding testability by eO(1/ǫ) non-adaptive queries, all other results are due
to [30]. The exceptional result was prove in a subsequent work of [11], which extended a corresponding result of [30],
which in turn referred to the special case in which H is a t-clique.

57That is, for any fixed graph H = ([t], F ), a k-vertex blow-up of H is a k-vertex graph obtained by replacing each
vertex of H by an independent set (of arbitrary size), called a cloud, and connecting the vertices of the ith and jth

clouds by a biclique if and only if {i, j} ∈ F .
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conjectured in [30] that, for every t ≥ 4, there exist graph properties that can be tested by Õ(1/ǫ)

adaptive queries and have non-adaptive query complexity Θ(ǫ−2+ 2
t ). Partial progress towards es-

tablishing this conjecture is presented in [30].

5.4 Additional issues

Let us highlight some issues that arise from the foregoing exposition.

Adaptive testers versus non-adaptive ones. Recall that Theorem 25 asserts that canonical
testers (which are, in particular, non-adaptive) have query complexity that is at most quadratic
in the query complexity of general (possibly adaptive) testers. The results surveyed in Section 5.3
indicate that a polynomial gap may exist: There is a (natural) property that can be ǫ-tested
by Õ(1/ǫ) adaptive queries, but requires Ω(1/ǫ3/2) non-adaptive queries. Furthermore, it was
conjectured that for every c < 2, there exist graph properties that can be tested by Õ(1/ǫ) adaptive
queries and has non-adaptive query complexity Θ((1/ǫ)c). Here we propose a possibly easier goal:

Open Problem 26 (a maximal gap between adaptive and non-adaptive queries): Show that, for
every c < 2, there exist graph properties that can be tested by q(ǫ) = Ω(1/ǫ) adaptive queries but
requires Θ(q(ǫ)c) non-adaptive queries.

A different question, raised by Michael Krivelevich, is whether (adaptive versus non-adaptive com-
plexity) gaps exists also for properties having query complexity that is significantly larger than
Õ(1/ǫ); that is, does there exist a graph property that, for some c > 1, has adaptive query
complexity q(ǫ) ≥ (1/ǫ)c and non-adaptive query complexity Ω(q(ǫ)c)? Recall that ǫ-testing
Bipartiteness, which has non-adaptive query complexity Θ̃(ǫ−2) (cf. [4, 15])58 and requires
Ω(ǫ−3/2) adaptive queries [15], may be testable in ǫ−(2−Ω(1)) adaptive queries (cf. [14]).

One-sided versus two-sided error probability. As noted above, for many natural properties
there is a significant gap between the complexity of one-sided and two-sided error testers. For
example, ρ-Cut has a two-sided error tester of query complexity poly(1/ǫ), but no one-sided error
tester of query complexity o(k2) where k is the number of vertices in the tested graph. In general,
the interested reader may contrast the characterization of two-sided error testers in [3] with the
results in [7].

Proximity Oblivious Testers. Some of the positive results regarding property testing were
obtained by presenting (one-sided error) proximity oblivious testers (of constant-query complexity
and detection probability that depends only on the distance of the tested graph from the property).
Furthermore, Theorem 20 provided a simple characterization of properties having such testers. It
follows that constant-query proximity-oblivious testers do not exist for many easily testable prop-
erties (e.g., Bipartiteness (see Exercise 4)). Furthermore, even when proximity-oblivious testers
exist, repeating them does not necessarily yield the best standard testers for the corresponding
property (see, e.g., Clique Collection [31]).

58The eO(ǫ−2) upper bound is due to [4], improving over [26], whereas the Ω(ǫ−2) lower bound is due to [15].
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Tolerant testing. Recall that property testing calls for distinguishing objects having a predeter-
mined property from object that are far from any objects that has this property (i.e., are far from
the property). A more “tolerant” notion requires distinguishing objects that are close to having the
property from objects that are far from this property. Such a distinguisher is called a tolerant tester,
and is a special case of a distance approximator that given any object is required to approximate its
distance to the property. The general study of these related notions (which are applicable to all
three models discussed in Section 1) was initiated by Parnas, Ron, and Rubinfeld [43].

A simple observation is that any tester that makes uniformly distributed queries offers some
level of tolerance. Specifically, if a tester makes q(ǫ) queries and each query is uniformly distributed,
then this tester distinguishes between objects that are ǫ-far from the property and objects that are
(ǫ/10q(ǫ))-close to the property. Needless to say, the challenge is to provide stronger relations
between property testing and distance approximators. Such a result was provided by Fischer and
Newman [21]: They showed that any graph property that can be tested in a number of queries that
only depends on the proximity parameter, has a distance approximator of query complexity that only
depends on the proximity parameter.59

Directed graphs. Our discussion was confined to undirected graphs. Nevertheless, the three
models discussed in Section 1 extend naturally to the case of directed graphs. In particular, in
the dense graph model, a directed graph is represented by its adjacency matrix, which is possibly
asymmetric; that is, the (i, j)th entry in the matrix is 1 if and only if there is a directed edge from
the ith vertex to the jth vertex. The study of testing properties of directed graphs was initiated
by Bender and Ron [13]. In particular, in the dense graph model, they showed a poly(1/ǫ)-query
tester for Acyclicity (i.e., the set of directed graphs that contain no directed cycles). Testing
directed graphs in the dense graph model was further studied in [5], which focuses on testing
subgraph-freeness.

6 Final notes

It should not come as a surprise that this relatively long lecture notes have a relatively long section
of final notes. Following the usual historical notes and before the usual exercises, we insert a
discussion of property testing versus other forms of approximation (Section 6.2) as well as other
reflections (Section 6.3).

6.1 Historical perspective and credits

The study of property testing in the dense graph model was initiated by Goldreich, Goldwasser, and
Ron [26], as a concrete and yet general framework for the study of property testing at large. From
that perspective, it was most natural to represent graphs as Boolean functions, and the adjacency
matrix representation was the obvious choice. This dictated the choice of the type of queries as
well as the distance measure, leading to the definition of the dense graph model.

Testing graph properties in the dense graph model has attracted a lot of attention. Among the
directions explored are the study of the complexity of specific natural properties [26, 4, 15, 35, 19],
attempts to explore general classes of easily testable properties [26, 2, 1], and characterizations of

59This result is implied by Theorem 23, but it was proved in [21] before the latter theorem was proved in [3]. In
fact, the ideas in [21] paved the road to [3].
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classes of properties that are testable under various restrictions (e.g., [1, 5, 34, 6, 7, 8, 21, 3, 17]). In
addition, many studies of property testing at large have devoted special attention to testing graph
properties in the dense graph model [27, 31, 33, 32]. Some of the aforementioned works as well as
some that were not listed will be further discussed below.

Before proceeding, we comment on the relation between the dense graph model and the other
two models that were briefly presented in Section 1 and will be the topic of the two subsequent
lectures. In retrospect, the dense graph model seems most natural when graphs are viewed as
representing generic (symmetric) binary relations. But, in many other setting, the other two
models are more natural. Needless to say, the general graph model is the most general one, and it
is indeed closest to actual algorithmic applications. In other words, this model is relevant for most
applications, since these seem to refer to general graphs (which model various natural and artificial
objects). In contrast, the dense graph model is relevant to applications that refer to (dense) binary
relations over finite sets, whereas the bounded-degree graph model is relevant only to applications
in which the vertex degree is bounded. The study of testing graph properties in the bounded-degree
graph model was initiated by Goldreich and Ron [29], whereas the study of the general model was
initiated by Parnas and Ron [42] and generalized to its current form by Kaufman, Krivelevich, and
Ron [39].60

Simple properties: trivial, sparse, and degree-regularity. The results presented in Sec-
tions 2.2 and 2.3 are taken from [26], with the exception of the improved bound stated in Theorem 5.
The latter improvement (over [26, Prop. 10.2.1.3]) appeared in [24, Apdx A.1], but the proof of
Claim 5.1 is reproduced from [33, Apdx A.1].

The strategy underlying Algorithm 5.2 can be traced to the last paragraph of Levin’s work on
one-way functions and pseudorandom generators [40, Sec. 9], and is stated explicitly in [28, Lem. 3]
(see [22, Clm. 2.5.4.1] for an alternative presentation). Within the context of property testing, this
strategy was first used in [29] (see Lemma 3.3 in the proceeding version and Lemma 3.6 in the
journal version).

Testing general partition problems. The framework of general graph partition problems was
introduced by Goldreich, Goldwasser, and Ron [26], and the testers for all properties in it (as
summarized by Theorem 12) constitute the main results in their paper. We chose to present only
the analysis of the Bipartiteness tester (i.e., Lemma 8, which is taken from [26]). The improved
testers for t-Colorability (captured by Theorem 13) are due to Alon and Krivelevich [4].

Using Szemeŕedi’s Regularity Lemma. In retrospect, it turns out that testers for k-Colorability
were implicit in works of Bollobas et al. [16] and Rodl and Duke [44], referring to k = 2 and k > 2,
respectively. These works, which predate the definition of property testing, use the regularity
lemma, and obtain testers of correspondingly huge query complexity (i.e., a tower of poly(1/ǫ)
exponents). Testers for subgraph freeness which are also based on the regularity lemma, were
presented by Alon et al. [2]; the corresponding result is stated in Part 1 of Theorem 18. Several
subsequent works also used the regularity lemma (or new extensions of it), culminating with the
work of Alon et al. [3], to be reviewed next.

60Parnas and Ron [42] only allowed incidence queries (like in the bounded-degree graph model), and Kaufman,
Krivelevich, and Ron [39] also allowed adjacency queries (as in the dense graph model).
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Characterizations. The celebrated result of Alon, Fischer, Newman, and Shapira [3] provides a
combinatorial characterization of the class of properties that can be tested within query complexity
that only depends on the proximity parameter (see Theorem 23). We view the result more as a
structural result regarding properties that can be tested within such a complexity (than as a char-
acterization). It asserts that these properties can be approximated by finite unions of “regularity
properties” (where each regular property is a set of graphs that has a regular partition with certain
edge densities).61 A result of a similar flavour was proved independently by Borgs et al. [17], while
referring to “graph limits”.

The class of graph properties that can be tested within query complexity that only depends on
the proximity parameter ǫ, contains natural properties that are not testable in query complexity
poly(1/ǫ); see [1]. A begging open problem is to characterize the class of graph properties that are
testable in poly(1/ǫ) queries.

Open Problem 27 (characterization of graph properties that are testable in poly(1/ǫ) queries):
Characterize the class of graph properties that can be tested, in the dense graph model, within query
complexity that is polynomial in the reciprocal of the proximity parameter.

This problem has been resolved for the class of subgraph freeness properties [5] (see Theorem 18).
It will be interesting to find other classes of natural graph properties that are “split” among
those having poly(1/ǫ)-query testers and those having F (1/ǫ)-query testers only for some super-
polynomial function F .

The characterization of graph properties that have constant-query (one-sided error) proximity
oblivious testers (i.e., Theorem 20) is due to Goldreich and Ron [31], which build on [8] for con-
structing testers and on [34] for inferring that such testers exist only for induced subgraph freeness
properties.

Canonical testers and the power of adaptivity. The notion of canonical testers and Theo-
rem 25 are due to Goldreich and Trevisan [34]. Theorem 25 explains that the fact that almost all
prior testers, in the dense graph model, work by inspecting a random induced subgraph is no coinci-
dence, since the query complexity of such testers is at most quadratic in the query complexity of the
best possible tester. Complexity gaps between canonical testers and general non-adaptive testers,
and between the latter and general adaptive testers were shown by Goldreich and Ron [30]. While
the demonstrated gap for the first case it optimal (i.e., it matches the quadratic upper bound), the
gap shown in the second case is not optimal (see Problem 26).

6.2 Testing versus other forms of approximation

We shortly discuss the relation of the notion of approximation underlying the definition of test-
ing graph properties (in the dense graph model)62 to more traditional notions of approximation.
Throughout this section, we refer to randomized algorithms that have a small error probability,
which we ignore for simplicity.

61These are regular partitions in the sense of Szemeredi’s Regularity Lemma [46], and the specified edge densities
may be different for each regular pair.

62Analogous relations hold also in the other models of testing graph properties.
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Application to the standard notion of approximation. The relation of testing graph prop-
erties to standard notions of approximation is best illustrated in the case of Max-CUT. Any tester
for ρ-Cut, working in time T (ǫ, k), yields an algorithm for approximating the size of the maximum
cut in an k-vertex graph, up to additive error ǫk2, in time Õ(log(1/ǫ)) · T (ǫ, k).63 Thus, for any
constant ǫ > 0, using the tester of Theorem 12, we can approximate the size of the max-cut to
within ǫk2 in constant time. This yields a constant-time approximation scheme (i.e., to within any
constant relative error) for dense graphs. Finding an approximate max-cut does not seem to follow
from the mere existence of a tester for ρ-cut; yet, the tester of Theorem 12 can be used to find such
a cut in time linear in k.

Relation to “dual approximation” (cf. [38, Chap. 3]). To illustrate this relation, we consider
the tester for ρ-Clique. The traditional notion of approximating Max-Clique corresponds to
distinguishing the case in which the given k-vertex graph has a clique of size ρk from, say, the
case in which the graph has no clique of size ρk/2. On the other hand, when we talk of testing
ρ-Clique, the task is to distinguish the case in which an k-vertex graph has a clique of size ρk from
the case in which it is ǫ-far from the class of k-vertex graphs having a clique of size ρk. This is
equivalent to the “dual approximation” task of distinguishing the case in which an k-vertex graph
has a clique of size ρk from the case in which any ρk-subset of the vertices misses at least ǫk2 edges.
To demonstrate that these two tasks are vastly different, we mention that whereas the former task
is NP-Hard for ρ < 1/4 (see [12, 37]), the latter task can be solved in exp(O(1/ǫ2))-time, for any
ρ, ǫ > 0. We believe that there is no absolute sense in which one of these approximation tasks
is more important than the other: Each of these tasks may be relevant in some applications and
irrelevant in others.

6.3 Two additional points

Let us reflect about some issues that arise from the foregoing exposition.

A contrast to recognizing graph properties. The notion of testing a graph property Π is
a relaxation of the classical notion of recognizing the graph property Π, which has received much
attention since the early 1970’s (cf. [41]). In the classical (recognition) problem there are no margins
of error; that is, one is required to accept all graphs having property Π and reject all graphs that lack
property Π. In 1975, Rivest and Vuillemin resolved the Aanderaa–Rosenberg Conjecture, showing
that any deterministic procedure for deciding any non-trivial monotone k-vertex graph property
must examine Ω(k2) entries in the adjacency matrix representing the graph. The query complexity
of randomized decision procedures was conjectured by Yao to be Ω(k2), and the currently best lower
bound is Ω(k4/3). This stands in striking contrast to the aforementioned results regarding testing
graph properties that establish that many natural (non-trivial) monotone graph properties can be
tested by examining a constant number of locations in the matrix (where this constant depends on
the constant value of the proximity parameter).

63Note that is a graph G is ǫ-close to having a ρ-cut, then it must have a cut of size at least (ρ − 0.5ǫ) · k2. (This
is since G′ is ǫ-close to a graph G′ that has a ρ-cut, and this very cut only misses ǫk2/2 edges in G.) Hence, if the

tester accepts G with probability at least 2/3, then G must have a (ρ− 0.5ǫ)-cut. The eO(log(1/ǫ) factor accounts for
a binary search (for the highest value of ρ ∈ {ǫ, 2ǫ, ..., ⌊1/ǫ⌋ · ǫ}) as well as for error reduction needed for invoking the
tester log(1/ǫ) times.
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Graph properties are poor codes. We note that with the exception of two properties, which
each contains a single k-vertex graph, the adjacency matrix representation of any property Πk of

k-vertex graphs yields a code over {0, 1}(
k
2) with relative distance at most O(1/k). Specifically, if

Πk neither consists of the k-vertex clique nor of the k-vertex independent set, then Πk contains
a graph G = ([k], E) that contains two vertices i, j ∈ [k] that have different neighborhoods in G.
Consider a permutation π that transposes i and j, while leaving the rest of [k] intact, and let
G′ = ([k], {{π(u), π(v)} : (u, v)∈E}).64 Then G′ ∈ Πk, but G′ is 2k

k2 -close to G.

6.4 Exercises

The exercises in this section seem more interesting than the ones in prior lectures.

Exercise 1 (query complexity lower bound for testing degree regularity): Prove that ǫ-testing
degree regularity requires Ω(1/ǫ2) queries.

Guideline: Show that distinguishing the following two sets of graphs requires Ω(1/ǫ2) queries. The
first set consists of k-vertex graphs that consist of two equal-sized connected components such that
each component is 0.25k-regular. The second set is similar except that one connected components
is (0.25+ ǫ) ·k-regular and the other is (0.25− ǫ) ·k-regular. Reduce from the problem of estimating
the average of a Boolean function defined on a large set (see [18]). Specifically, first reduce the
problem of distinguishing functions f : [k] → {0, 1} that have average value 0.5 from functions
f : [k] → {0, 1} that have average value 0.5 + ǫ to the problem of distinguishing pairs of functions
f1, f2 : [k] → {0, 1} that have equal average value (of 0.5) from pairs of functions that have an
average that differs by at least 2ǫ.65 Next, reduce the latter problem to the one about graphs.66

Exercise 2 (On Levin’s economical work investment strategy): In continuation to Section 2.4,
show that the goal can be achieved by investing O(1/ǫc) work if c > 1 and the work invested in
element ω is Õ(1/q(ω)c). Also show that if the work invested in ω is O(1/q(ω)), then the goal can
be achieved by investing (ǫ−1 log(1/ǫ)) work.

Guideline: Suppose that the work invested in ω is ((log(1/q(ω))d/q(ω)c). Then, for c > 1, selecting
O(id+2 · 2i) points (for each i ∈ [ℓ]), and investing O(1/2iǫ)c work in each of them, will do. For
c = 1, selecting O(log(1/ǫ))d+1 · 2i points (for each i ∈ [ℓ]), yields a better result.

Exercise 3 (testing d-regularity): For any fixed ρ > 0, prove that ǫ-testing if a k-vertex graph is
⌊ρk⌋-regular can be done by O(1/ǫ2) non-adaptive queries.

Guideline: Use an adaptation of the proof of Theorem 5.

64That is, the adjacency matrix representing G′ is obtained from the adjacency matrix representing G by switching
the ith and jth rows (and ditto for the columns).

65For example, map f to the pair (f, f ⊕ 1).
66First replace [k] by Zk. Then, for each σ ∈ {1, 2} and i, j ∈ Zk, let gσ(i, j) = fσ(i + j mod k) if i 6= j and

gσ(i, i) = 0 otherwise. Finally, consider the graph represented by the adjacency predicate g : Z
2
2k → {0, 1} such

that for every i, j ∈ Zk it holds that g(i, j) = g1(i, j) and g(i + k, j + k) = g2(i, j), where g(i, j) = 0 if i ∈ Zk and
j ∈ Z2k \ Zk (or vice versa).
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Exercise 4 (Bipartiteness has no proximity oblivious tester):67 Prove that Bipartiteness has
no proximity oblivious tester that makes a constant number of queries. Start with the case of
one-sided error.

Guideline: The following two notions are useful towards a solution. The odd-girth of a graph is the
length of the shortest odd cycle in it.68 A m-factor blow-up of a graph H = ([ℓ], F ) is a m · ℓ-vertex
graph obtained by replacing each vertex of H by an independent set of size m, called a cloud,
and connecting the vertices of the ith and jth clouds by a biclique if and only if {i, j} ∈ F . The
one-sided error case can be handled by considering, for every q, an arbitrary k-vertex graph that
has odd-girth greater than q and is Ω(1/q2)-far from being bipartite. (For example, consider a
k/ℓ-factor blow-up of an ℓ-cycle, where ℓ = 2⌈q/2⌉ + 1.)69 Then, a q-query proximity oblivious
tester (POT) must reject this graph with positive probability, although it saw no cycle in it, which
means that this POT cannot have one-sided error.

Moving to the two sided-error case, suppose towards the contradiction that a (two-sided error)
POT that makes q queries exists. Let ℓ = 2⌈q/2⌉ + 1, and consider the following two distributions
on k-vertex graphs (for each k that is a multiple of 2 · ℓ):

1. Uniform distribution over all graphs that are obtained by a k/2ℓ-factor blow-up of a 2ℓ-cycle.

2. Uniform distribution over all graphs that are obtained by a k/2ℓ-factor blow-up of a graph
that consists of two disjoint ℓ-cycles.

Note that the graphs in the first distribution are bipartite, whereas all graphs in the second dis-
tribution are Θ(1/q2)-far from being bipartite. The key observation is that these two distributions
are perfectly indistinguishable by a machine that makes q queries. This claim is proved by show-
ing that the answers provided by these two distributions on any sequence of queries is identically
distributed (see exercise in the notes on lower bound techniques).70

Exercise 5 (testers for Bipartiteness must inspect Ω(1/ǫ) vertices):71 Bipartiteness can not
be ǫ-tested by an algorithm whose queries touch o(1/ǫ) vertices. (Equivalently, if an ǫ-tester for
Bipartiteness inspects the subgraph induced by s(ǫ) vertices, then s(ǫ) = Ω(1/ǫ).)

Guideline: Consider the following two distributions on k-vertex graphs. In both distributions, one
selects uniformly a 3-partition (V0, V1, V2) such that |V0| = 3ǫk and |V1| = |V2| = (1−3ǫ)k/2. In the
first distribution bicliques are placed between each pair of parts, whereas in the second distribution

67Based on a result in [31].
68For general perspective, we mention that the girth of a graph is the length of the shortest cycle in it, and that a

k-vertex graph of girth g can have at most k1+Θ(1/g) edges.
69To see that this graph is Ω(1/q2)-far from being bipartite, consider the omission of any set of 0.1 · m2 edges,

where m = k/ℓ. Call a vertex good if it has at least 5
3
· m edges (in the resulting graph), and note that at least 0.6

of the vertices in each cloud are good. Now, pick a good vertex v1 in the first cloud, and for i = 2, ..., ℓ − 1 pick a
good vertex vi in the ith cloud such that vi is adjacent to vi−1. (Such a choice exists, since vi−1 has at least 2m/3
neighbors in the ixth cloud and at most 0.4m of them are not good.) Observing that both v1 and vℓ−1 have each
2m/3 neighbors in the ℓth cloud, the claim follows. (We mention that the same argument establishes the existence of
at least (0.1m)ℓ different ℓ-cycles in the resulting graph.)

70It is instructive to think that each pair query (u, v) is answered by either 0 (indicating that {u, v} is not an edge)
or by σ ∈ {±1}, where σ = 1 (resp., σ = −1) indicates that v resides in the cloud succeeding (resp., preceding) the
cloud in which u resides.

71Based on a result in [4].
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a biclique is placed only between V1 and V2. Then, each graph in the first distribution is ǫ-far from
being bipartite (because there are 3ǫk · ((1 − 3ǫ)k/2)2 triangles, whereas each edge participates in
less than k/2 triangles). Yet, an algorithm that “inspects” o(1/ǫ) vertices is unlikely to distinguish
the two distributions (since it is unlikely to inspect any vertex of V0).

Exercise 6 (a random induced subgraph preserves the distance from being bipartite): Prove that
if G = ([k], E) is ǫ-far from being bipartite, then, with probability at least 2/3, the subgraph induced
by a set of Õ(1/ǫ2) vertices of G is Ω(ǫ)-far from being bipartite.

Guideline: Following the proof of Lemma 8, note that, for every partition (U1, U2) of U , the set S
approximates the number of disturbing edges. That is, while the current proof only shows that S
hits some disturbing edges, one can actually show that the subgraph induced by S contains Ω(ǫ·|S|2)
disturbing edges. Specifically, consider a partition of

(S
2

)
into |S| − 1 disjoint perfect matchings,

and show that (with high probability) each perfect matching contains Ω(ǫ · |S|) disturbing edges.

Exercise 7 (some properties of regular pairs): Let (A,B) be a γ-regular pair of edge density ρ,
and let ΓB(v) = {u ∈ B : {u, v}} denote the neighbors of vertex v ∈ A in the set B. Prove the
following claims.

1. At least a 1 − 2γ fraction of the vertices v ∈ A satisfy (ρ − γ) · |B| ≤ |ΓB(v)| ≤ (ρ + γ) · |B|.

2. If ρ ≥ 2γ, then at least a (1−2γ)2 fraction of the vertex pairs v1, v2 ∈ A satisfy (ρ2−2γ)·|B| ≤
|ΓB(v1) ∩ ΓB(v2)| ≤ (ρ2 + 2γ) · |B|.

Guideline: For Item 1, consider the set of vertices v that violate the degree bound, and focus on the
majority that violate the bound in the same direction. For Item 2, fix any vertex v1 that satisfies
Item 1 and let B′ = ΓB(v1).

Exercise 8 (regular pairs in a random graph): Let A and B be disjoint sets of size N . Prove that a
random bipartite graph between A and B is γ-regular with probability at least 1−exp(−γ4 ·N2+2N).

Guideline: Fixing any A′ ⊆ A and B′ ⊆ B, the probability that |d(A′, B′) − d(A,B)| > γ is
exponentially vanishing in γ2 · |A′| · |B′|.

Exercise 9 (on the proof of the regularity lemma): In continuation to Footnote 35, consider the
potential function that assigns the partition (V1, ..., Vt), of [k], the value k−2 ·

∑
i<j f(Vi, Vj), where

f(A,B) = |A| · |B| · d(A,B)2.

1. Prove that this function does not decrease under a refinement of the partition.

2. Prove that if (Vi, Vj) is not γ-regular, then Vi and Vj can be 2-partitioned, into (Vi,1, Vi,2) and
(Vj,1, Vj,2), respectively, such that

∑
σ,τ∈{1,2} f(Vi,σ, Vi,τ ) ≥ f(Vi, Vj) + γ4 · |Vi| · |Vj|.

Guideline: For Part 1, consider an arbitrary 2-partition of Vi, denoted (V ′
i , V ′′

i ), and show that
f(V ′

i , Vj) + f(V ′′
i , Vj) ≥ f(Vi, Vj). Specifically, consider a random variable Z that is assigned

d(V ′
i , Vj) with probability |V ′

i |/|Vi| and d(V ′′
i , Vj) otherwise; note that E[Z] = d(Vi, Vj) =

√
f(Vi, Vj)/(|Vi| · |Vj |)

whereas E[Z2] = (f(V ′
i , Vj) + f(V ′′

i , Vj))/(|Vi| · |Vj|); and conclude by using E[Z]2 ≤ E[Z2].
For Part 2, use the subsets V ′

i ⊂ Vi and V ′
j ⊂ Vj that witness the violation of the regularity

condition (i.e., satisfy |d(V ′
i , V ′

j ) − d(Vi, Vj)| > γ), and consider an analogous random variable Z
(which selects one of the four relevant pairs).
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Exercise 10 (the number of copies of Kt1,t2 in a dense graph):72 Prove that if a k-vertex graph
has at least ǫk2 edges, then it contains at least Ω((2ǫ)t1t2) · kt1+t2 copies of Kt1,t2 (i.e., the biclique
with t1 vertices on one side and t2 vertices on the other side).

Guideline: Let G = ([k], E) have degree sequence d1, ..., dk . Then, Prv,u1,...,ut∈[k][(∀i∈ [t]) {v, ui}∈E]

equals 1
k ·

∑
i∈[k](di/k)t ≥ ( 1

k ·
∑

i∈[k] di/k)t = (2|E|/k2)t. Define an auxilary bipartite graph in
which the t-subset U is connected to v 6∈ U if for every u ∈ U it holds that {v, u} ∈ E. Then, the

average degree of t-subsets is at least p
def
= (2|E|/k2)t −

(
t+1
2

)
/k, where the second term accounts

for Prv,u1,...,ut∈[k][|{v, u1, ...., ut}| < t+1]. Show that the probability that a random U is connected

to t′ random vi’s is at least pt′ .

Exercise 11 (subsets of regular pairs): Let (A,B) be a γ-regular pair, and A′ ⊆ A and B′ ⊆ B.
Prove that (A′, B′) is a t · γ-regular pair for t = max(2, |A|/|A′|, |B|/|B′|).

Guideline: Note that C ′′ ⊆ C ′ ⊆ C satisfies |C′′|
|C| = |C′′|

|C′| ·
|C′|
|C| .
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