
Lecture Notes on Locally Testable Codes and Proofs

Oded Goldreich∗

June 3, 2016

Summary: We survey known results regarding locally testable codes and locally
testable proofs (known as PCPs). Local testability refers to approximately testing large
objects based on a very small number of probes, each retrieving a single bit in the repre-
sentation of the object. This yields super-fast approximate-testing of the corresponding
property (i.e., being a codeword or a valid proof).

In terms of property testing, locally testable codes are error correcting codes such that
the property of being a codeword can be tested within low query complexity. As for
locally testable proofs (PCPs), these can be viewed as massively parametrized properties
that are testable within low query complexity such that the parameterized property is
non-empty if and only if the corresponding parameter is in a predetermined set (of
“valid statements”).

Our first priority is minimizing the number of probes, and we focus on the case that
this number is a constant. In this case (of a constant number of probes), we aim at
minimizing the length of the constructs. That is, we seek locally testable codes and
proofs of short length.

We stress a fundamental difference between the study of locally testable codes and the study of
property testing. Locally testable codes are artificially designed with the aim of making code-
word testing easy. In contrast, property testing envisions natural objects and properties that are
prescribed by an external application.

This text has been adapted from our survey [33, 35], which was intended for readers having
general background in the theory of computation. We chose to maintain this feature of the original
text, and keep this text self-contained. Hence, the property testing perspective is mentioned but
is not extensively relied upon. In particular, the fact that locally testable codes correspond to a
special case of property testing is not pivotal to the presentation, although it is mentioned. Viewing
PCPs in terms of property testing is less natural, yet this perspective is offered too (even in the
foregoing summary); but again it is not pivotal to the presentation.

This text also differs from the other lecture notes in its style: It only provides overviews of
results and proofs, rather than detailed proofs. Furthermore, the footnotes provide additional
details that may be more essential than in other lectures.

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.

1

1 Introduction

Codes (i.e., error correcting codes) and proofs (i.e., automatically verifiable proofs) are fundamental
to computer science as well as to related disciplines such as mathematics and computer engineering.
Redundancy is inherent to error-correcting codes, whereas testing validity is inherent to proofs. In
this survey we also consider less traditional combinations such as testing validity of codewords and
the use of proofs that contain redundancy. The reader may wonder why we explore these non-
traditional possibilities, and the answer is that they offer various advantages (as will be elaborated
next).

Testing the validity of codewords is natural in settings in which one may want to take an action
in case the codeword is corrupted. For example, when storing data in an error correcting format,
we may want to recover the data and re-encode it whenever we find that the current encoding is
corrupted. Doing so may allow to maintain the data integrity over eternity, although the encoded
bits may all get corrupted in the course of time. Of course, we can use the error-correcting decoding
procedure associated with the code in order to check whether the current encoding is corrupted,
but the question is whether we can check (or just approximately check) this property much faster.

Loosely speaking, locally testable codes are error correcting codes that allow for a super-fast
probabilistic testing of whether a give string is a valid codeword or is far from any such codeword.
In particular, the tester works in sub-linear time and reads very few of the bits of the tested object.
Needless to say, the answer provided by such a tester can only be approximately correct (i.e.,
distinguish, with high probability, between valid codewords and strings that are far from the code),
but this would suffice in many applications (including the one outlined in the previous paragraph).

Similarly, locally testable proofs are proofs that allow for a super-fast probabilistic verification.
Again, the tester works in sub-linear time and reads very few of the bits of the tested object (i.e.,
the alleged proof). The tester’s (a.k.a. verifier’s) verdict is only correct with high probability, but
this may suffice for many applications, where the assertion is rather mundane but of great practical
importance. In particular, it suffices in applications in which proofs are used for establishing the
correctness of specific computations of practical interest. Lastly, we comment that such locally

testable proofs must be redundant (or else there would be no chance for verifying them based on
inspecting only a small portion of them).

Our first priority is on minimizing the number of bits of the tested object that the tester reads,
and we focus on the case that this number is a constant. In this case (of a constant number of
probes), we aim at minimizing the length of these constructs (i.e., codes or proofs). An opposite
regime, studied in [50, 51], refers to codes of linear length and seeks to minimize the number of bits
read. We shall briefly review this alternative regime in Section 4.3.

Our interest in relatively short locally testable codes and proofs, is not surprising in view of the
fact that we envision such objects as actually being used in practice. Of course, we do not suggest
that one may actually use (in practice) any of the constructions surveyed here (especially not the
ones that provide the stronger bounds). We rather argue that this direction of research may find
applications in practice. Furthermore, it may even be the case that some of the current concepts
and techniques may lead to such applications.

Organization: In Section 2 we provide a quite comprehensive definitional treatment of locally
testable codes and proofs, while relating them to PCPs, PCPs of Proximity, and property testing.
In Section 3, we survey the main results regarding locally testable codes and proofs as well as many

2

of the underlying ideas.

2 Definitions

Local testability is formulated by considering oracle machines. That is, the tester is an oracle
machine, and the object that it tests is viewed as an oracle. When talking about oracle access
to a string w ∈ {0, 1}n we viewed w as a function w : {1, ..., n} → {0, 1}. For simplicity, we
confine ourselves to non-adaptive probabilistic oracle machines; that is, machines that determine
their queries based on their explicit input (which in case of codes is merely a length parameter) and
their internal coin tosses (but not depending on previous oracle answers). Most importantly, this
simplifies the composition of testers (see Section 3.2.1), and it comes at no real cost (since almost
all known testers are actually non-adaptive).1 Similarly, we focus on testers with one-sided error
probability. Here, the main reason is aesthetic (since one-sided error is especially appealing in case
of proof testers), and again almost all known testers are actually of this type.2

2.1 Codeword testers

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k (output) bits. Such
a generic code is denoted by C : {0, 1}k → {0, 1}n, and the elements of {C(x) : x∈{0, 1}k} ⊆ {0, 1}n

are called codewords (of C).3

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming) distance between its
codewords; that is, minx 6=y{∆(C(x), C(y))}, where ∆(u, v) denotes the number of bit-locations on
which u and v differ. Throughout this work, we focus on codes of linear distance; that is, codes
C : {0, 1}k → {0, 1}n of distance Ω(n).

The distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted ∆C(w), is the minimum

distance between w and the codewords of C; that is, ∆C(w)
def
= minx{∆(w, C(x))}. For δ ∈ [0, 1], the

n-bit long strings u and v are said to be δ-far (resp., δ-close) if ∆(u, v) > δ ·n (resp., ∆(u, v) ≤ δ ·n).
Similarly, w is δ-far from C (resp., δ-close to C) if ∆C(w) > δ · n (resp., ∆C(w) ≤ δ · n).

Loosely speaking, a codeword tester (or a tester for the code C) is a tester for the property of
being a codeword; that is, such a tester should accept any valid codeword, and reject (with high
probability) any string that is far from being a codeword. In the following (basic) version of this
notion, we fix the proximity parameter ǫ (which determines which words are considered “far” from
the code) as well as the query complexity, denoted q. (Furthermore, since we consider a one-sided
error version, we fix the rejection probability to 1/2 (rather than to 1/3).)4

Definition 1 (codeword tests, basic version): Let C : {0, 1}k → {0, 1}n be a code (of distance d),
and let q ∈ N and ǫ ∈ (0, 1). A q-local (codeword) ǫ-tester for C is a (non-adaptive) probabilistic

1In particular, all testers that we shall present are non-adaptive. Furthermore, any oracle machine that makes a
constant number of queries (to a binary oracle) can be emulated by a non-adaptive machine that makes a constant
number of queries to the same oracle, albeit the second constant is exponential in the first one. Finally, we mention
that if the code is linear, then adaptivity is of no advantage [15].

2In the context of proof testing (or verification), one-sided error probability is referred to as perfect completeness.
We mention that in the context of linear codes, one-sided error testing comes with no extra cost [15].

3Indeed, we use C to denote both the encoding function (i.e., the mapping from k-bit strings to n-bit codewords)
and the set of codewords.

4This is done in order to streamline this definition with the standard definition of PCP. As usual, the error
probability can be decreased by repeated invocations of the tester.

3

oracle machine M that makes at most q queries and satisfies the following two conditions:5

Accepting codewords (a.k.a. completeness): For any x ∈ {0, 1}k, given oracle access to C(x), ma-

chine M accepts with probability 1. That is, Pr[MC(x)(1k)=1] = 1, for any x ∈ {0, 1}k.

Rejection of non-codeword (a.k.a. soundness): For any w ∈ {0, 1}n that is ǫ-far from C, given ora-

cle access to w, machine M rejects with probability at least 1/2. That is, Pr[Mw(1k)=1] ≤
1/2, for any w ∈ {0, 1}n that is ǫ-far from C.

We call q the query complexity of M , and ǫ the proximity parameter.

The foregoing definition is interesting only in case ǫn is smaller than the covering radius of C (i.e.,
the smallest r such that for every w ∈ {0, 1}n it holds that ∆C(w) ≤ r).6 Actually, we shall focus
on the case that ǫ < d/2n ≤ r/n, while noting that the case ǫ > 1.01d/n is of limited interest (see
Exercise 1).7 On the other hand, observe that q = Ω(1/ǫ) must hold, which means that we focus
on the case that d = Ω(n/q).

We next consider families of codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K , where n, d : N → N and
K ⊆ N, such that Ck has distance d(k). In accordance with the above, our main interest is in the
case that ǫ(k) < d(k)/2n(k). Furthermore, seeking constant query complexity, we focus on the case
d = Ω(n).

Definition 2 (codeword tests, asymptotic version): For functions n, d : N → N, let C = {Ck :
{0, 1}k → {0, 1}n(k)}k∈K be such that Ck is a code of distance d(k). For functions q : N → N and

ǫ : N → (0, 1), we say that a machine M is a q-local (codeword) ǫ-tester for C = {Ck}k∈K if, for

every k ∈ K, machine M is a q(k)-local ǫ(k)-tester for Ck. Again, q is called the query complexity
of M , and ǫ the proximity parameter.

Recall that being particularly interested in constant query complexity (and recalling that d(k)/n(k) ≥
2ǫ(k) = Ω(1/q(k))), we focus on the case that d = Ω(n) and ǫ is a constant smaller than d/2n. In
this case, we may consider a stronger definition.

Definition 3 (locally testable codes (LTCs)): Let n, d and C be as in Definition 2 and suppose

that d = Ω(n). We say that C is locally testable if for every constant ǫ > 0 there exist a constant q
and a probabilistic polynomial-time oracle machine M such that M is a q-local ǫ-tester for C.

We will be concerned of the growth rate of n as a function of k, for locally testable codes C =
{Ck : {0, 1}k → {0, 1}n(k)}k∈K of distance d = Ω(n). In other words, our main focus is on the case
in which ǫ > 0 and q are fixed constants. (More generally, for d = Ω(n), one may consider the
trade-off between n, the proximity parameter ǫ, and the query complexity q.)

5In order to streamline this definition with the definition of PCP, we provide the tester with 1k (rather than
with n) as an explicit input. Since n = n(k) can be determined based on k, the tester can determine the length of its
oracle (before making any query to it). Recall that providing the tester with the length of its oracle is the standard
convention in property testing.

6Note that ⌊d/2⌋ ≤ r ≤ n−⌈d/2⌉. The lower bound on r follows by considering a string that resides in the middle
of the shortest path between two distinct codewords, and the upper bound follows by considering the distance of any
string to an arbitrary set of two codewords. Codes satisfying r = ⌊d/2⌋ do exist but are quite pathologic (e.g., the
code {0t, 1t}). The typical case is of r ≈ d (see, e.g., Hadamard codes and the guideline to Exercise 1).

7This observation was suggested to us by Zeev Dvir. Recall that the case of ǫ ≥ r/n, which implies ǫ ≥ d/2n, is
always trivial.

4

2.2 Proof testers

We start by recalling the standard definition of PCP.8 Here, the verifier is explicitly given a main
input, denoted x, and is provided with oracle access to an alleged proof, denoted π; that is, the
verifier can read x for free, but its access to π is via queries and the number of queries made by the
verifier is the most important complexity measure. Another key complexity measure is the length
of the alleged proof (as a function of |x|).

Definition 4 (PCP, standard definition): A probabilistically checkable proof (PCP) system for a set
S is a (non-adaptive) probabilistic polynomial-time oracle machine (called a verifier), denoted V ,

satisfying

Completeness: For every x ∈ S there exists a string πx such that, on input x and oracle access to

πx, machine V always accepts x; that is, Pr[V πx(x)=1] = 1.

Soundness: For every x 6∈ S and every string π, on input x and oracle access to π, machine V
rejects x with probability at least 1

2 ; that is, Pr[V π(x)=1] ≤ 1/2,

Let Qx(ω) denote the set of oracle positions inspected by V on input x and random-tape ω ∈ {0, 1}∗.
The query complexity of V is defined as q(n)

def
= maxx∈{0,1}n,ω∈{0,1}∗{|Qx(ω)|}. The proof complexity

of V is defined as p(n)
def
= maxx∈{0,1}n{|⋃ω∈{0,1}∗ Qx(ω)|}.

Note that the proof complexity (i.e. p) of V is upper-bounded by 2r · q, where r and q are the
randomness complexity and the query complexity of the verifier, respectively. On the other hand,
all known PCP constructions have randomness complexity that is at most logarithmic in their
proof complexity (and in some sense this upper-bound always holds [9, Prop. 11.2]). Thus, the
proof complexity of a PCP is typically captured by its randomness complexity, and the latter is
prefered since using it is more convenient when composing proof systems (cf. Section 3.2.2).

recall that the proof complexity of V is defined as the number of bits in the proof that are
inspected by V ; that is, it is the “effective length” of the proof. Typically, this effective length
equals the actual length; that is, all known PCP constructions can be easily modified such that the
oracle locations accessed by V constitute a prefix of the oracle (i.e.,

⋃
ω∈{0,1}∗ Qx(ω) = {1, ..., p(|x|)}

holds, for every x). (For simplicity, the reader may assume that this is the case throughout the
rest of this exposition.) More importantly, all known PCP constructions can be easily modified to
satisfy the following definition, which is closer in spirit to the definition of locally testable codes.

Definition 5 (PCP, augmented): For functions q : N → N and ǫ : N → (0, 1), we say that a PCP

system V for a set S is a q-locally ǫ-testable proof system if it has query complexity q and satisfies

the following condition, which augments the standard soundness condition.9

8For a more paced introduction to the subject as well as a wider perspective, see [34, Chap. 9].
9Definition 5 relies on two natural conventions:

1. All strings in Πx are of the same length, which equals |S

ω∈{0,1}∗ Qx(ω)|, where Qx(ω) is as in Definition 4.
Furthermore, we consider only π’s of this length.

2. If Πx = ∅ (which happens if and only if x 6∈ S), then every π is considered ǫ-far from Πx.

These conventions will also be used in Definition 6.

5

Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every string π that is ǫ-far from Πx
def
= {w :

Pr[V w(x)=1] = 1}, on input x and oracle access to π, machine V rejects x with probability

at least 1
2 .

The proof complexity of V is defined as in Definition 4.

At this point it is natural to refer to the verifier V as a proof tester. Note that Definition 5 uses
the tester V itself in order to define the set (denoted Πx) of valid proofs (for x ∈ S). That is, V is
used both to define the set of valid proofs and to test for the proximity of a given oracle to this set.
A more general definition (presented next), refers to an arbitrary proof system, and lets Πx equal
the set of valid proofs (in that system) for x ∈ S. Obviously, it must hold that Πx 6= ∅ if and only if
x ∈ S. (The reader is encouraged to think of Πx as of a set of (redundant) proofs for an NP-proof
system, although this is only the most appealing case.) Typically, one also requires the existence
of a polynomial-time procedure that, on input a pair (x, π), determines whether or not π ∈ Πx.10

For simplicity we assume that, for some function p : N → N and every x ∈ {0, 1}∗, it holds that
Πx ⊆ {0, 1}p(|x|). The resulting definition follows.

Definition 6 (locally testable proofs): Suppose that, for some function p : N → N and every

x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). For functions q : N → N and ǫ : N → (0, 1), we say that

a (non-adaptive) probabilistic polynomial-time oracle machine V is a q-locally ǫ-tester for proofs in
Π = {Πx}x∈{0,1}∗ if V has query complexity q and satisfies the following conditions:

Accepting valid proofs: For every x ∈ {0, 1}∗ and every π ∈ Πx, on input x and oracle access to

π, machine V accepts x with probability 1.

Rejecting invalid proofs:11 For every x ∈ {0, 1}∗ and every π ∈ {0, 1}p(|x|) that is ǫ(|x|)-far from

Πx, on input x and oracle access to π, machine V rejects x with probability at least 1
2 .

The proof complexity of V is defined as p, and ǫ is called the proximity parameter. In such a case, we

say that Π = {Πx}x∈{0,1}∗ is q-locally ǫ-testable, and that S = {x ∈ {0, 1}∗ : Πx 6= ∅} has q-locally
ǫ-testable proofs of length p.
We say that Π is locally testable if for every constant ǫ > 0 there exists a constant q such that Π is

q-locally ǫ-testable. In such a case, we say that S has locally testable proofs of length p.

This notion of locally testable proofs is closely related to the notion of probabilistically checkable
proofs (i.e., PCPs). The difference is that in the definition of locally testable proofs we required
rejection of strings that are far from any valid proof also in the case that valid proofs exists (i.e.,
the assertion is valid). In contrast, the standard rejection criterion of PCPs refers only to false
assertions (i.e., x’s such that Πx = ∅). Still, all known PCP constructions actually satisfy the
stronger definition.12

10Recall that in the case that the verifier V uses a logarithmic number of coin tosses, its proof complexity is of
polynomial length (and so the “effective length” of the strings in Πx must be polynomial in |x|). Furthermore, if
in addition it holds that Πx = {w : Pr[V w(x) = 1] = 1}, then (scanning all possible coin tosses of) V yields a
polynomial-time procedure for determining whether a given pair (x, π) satisfies π ∈ Πx.

11Recall that if Πx = ∅, then all strings are far from it. Also, since the length of the valid proofs for x is
predetermined to be p(|x|), there is no point to consider alleged proofs of different length. Finally, note that the
current definition of the proof complexity of V is lower-bounded by the definition used in Definition 4.

12
Advanced comment: In some cases this holds only under a weighted version of the Hamming distance, rather

under the standard Hamming distance. Alternatively, these constructions can be easily modified to work under the
standard Hamming distance.

6

Needless to say, the term “locally testable proof” was introduced to match the term “locally
testable codes”. In retrospect, “locally testable proofs” seems a more fitting term than “proba-
bilistically checkable proofs”, because it stresses the positive aspect (of locality) rather than the
negative aspect (of being probabilistic). The latter perspective has been frequently advocated by
Leonid Levin.

2.3 Ramifications and relation to property testing

We first comment about a few definitional choices made above. Firstly, we chose to focus on one-
sided error testers; that is, we only consider testers that always accept valid objects (i.e., accept
valid codewords (resp., valid proofs) with probability 1). In the current context, this is more
appealing than allowing two-sided error probability, but the latter weaker notion is meaningful too.
A second choice, which is a standard one, was to fix the error probability (i.e., the probability of
accepting objects that are far from valid), rather than introducing yet another parameter. Needless
to say, the error probability can be reduced by sequential invocations of the tester.

In the rest of this section, we consider an array of definitional issues. First, we consider two
natural strengthenings of the definition of local testability (cf. Section 2.3.1). Next, we discuss
the relation of local testability to property testing (cf. Section 2.3.2) and to PCPs of Proximity
(cf. Section 2.3.3), while reviewing the latter notion. In Section 2.3.4, we discuss the motivation for
the study of short local testable codes and proofs. Finally (in Section 2.3.5), we mention a weaker
definition, which seems natural only in the context of codes.

2.3.1 Stronger definitions

The definitions of testers presented so far, allow for the construction of a different tester for each
relevant value of the proximity parameter. However, whenever such testers are actually constructed,
they tend to be “uniform” over all relevant values of the proximity parameter ǫ. Thus, it is natural
to present a single tester for all relevant values of the proximity parameter, provide this tester with
the said parameter, allow it to behave accordingly, and measure its query complexity as a function
of that parameter. For example, we may strengthen Definition 3, by requiring the existence of a
function q : (0, 1) → N and an oracle machine M such that, for every constant ǫ > 0, all (sufficiently
large) k and all w ∈ {0, 1}n(k), the following conditions hold:

1. On input (1k, ǫ), machine M makes q(ǫ) queries.

2. If w is a codeword of C, then Pr[Mw(1k, ǫ) = 1] = 1.

3. If w is ǫ-far from {C(x) : x ∈ {0, 1}k}, then Pr[Mw(1k, ǫ) = 1] ≤ 1/2.

An analogous strengthening applies to Definition 6. A special case of interest is when q(ǫ) = O(1/ǫ).
In this case, it makes sense to ask whether or not an even stronger “uniformity” condition may
hold. Like in Definitions 1 and 2 (resp., Definitions 5 and 6), the tester M will not be given the
proximity parameter (and so its query complexity cannot depend on it), but we shall only require
it to reject with probability proportional to the distance of the oracle from the relevant set. For
example, we may strengthen Definition 3, by requiring the existence of an oracle machine M and
a constant q such that for every (sufficiently large) k and w ∈ {0, 1}n(k), the following conditions
hold:

7

1. On input 1k, machine M makes q queries.

2. If w is a codeword of C, then Pr[Mw(1k) = 1] = 1.

3. If w is δ-far from {C(x) : x ∈ {0, 1}k}, then Pr[Mw(1k) = 1] < 1 − Ω(δ).

More generally, we may require the existence of a monotonically non-decreasing function ̺ such
that inputs that are δ-far from the code are rejected with probability at least ̺(δ) (rather than
with probability at least Ω(δ)).

2.3.2 Relation to Property Testing

Locally testable codes (and their corresponding testers) are essentially special cases of property
testing algorithms, as defined in [61, 37]. Specifically, the property being tested is membership
in a predetermined code. The only difference between the definitions presented in Section 2.1
and the formulation that is standard in the property testing literature is that in the latter the
tester is given the proximity parameter as input and determines its behavior (and in particular
the number of queries) accordingly. This difference is eliminated in the first strengthening outlined
in Section 2.3.1, while the second strengthening outlined in Section 2.3.1 is related to the notion
of proximity oblivious testing (cf. [40]). Specifically, using the language of property testing (see
definitions in the first lecture), we have

Definition 7 (locally testable codes, property testing formulations): Let n, d and C = {Ck :
{0, 1}k → {0, 1}n(k)}k∈K be as in Definition 2, and suppose that d = Ω(n).

1. Weak version:13 For q : N × (0, 1] → N, we say that C is uniformly q-locally testable if there

exists a non-adaptive tester of query complexity q and one-sided error for the property C.

A special case of interest is when q(k, ǫ) = q′(ǫ) for some function q′ : (0, 1] → N.

2. Strong version:14 We say that C is locally testable in a ̺-strong sense if there exists a (non-
adaptive) proximity oblivious tester of constant query complexity, detection probability ̺, and

one-sided error for the property C.

We note, however, that most of the property testing literature is concerned with “natural” objects
(e.g., graphs, sets of points, functions) presented in a “natural” form rather than with objects
designed artificially to withstand noise (i.e., codewords of error correcting codes).

Our general formulation of proof testing (i.e., Definition 6) can be viewed as a generalization
of property testing. That is, we view the set Πx as a set of objects having a certain x-dependent
property (rather than as a set of valid proofs for some property of x). In other words, Definition 6
allows to consider properties that are parameterized by auxiliary information (i.e., x), which falls
into the framework of massively parameterized properties (cf. [58]). Note that Πx ⊆ {0, 1}p(|x|),
where p is typically a polymonial (which means that the length of the tested object is polynomial
in the length of the parameter). In contrast, most property testing research refers to the case that

13Indeed, this version corresponds to the first strengthening outlined in Section 2.3.1. Note that the current
formulation includes the case in which for every ǫ > 0 there exists a kǫ ∈ N such that q(k, ǫ) = q′(ǫ) if k ≥ kǫ and
q(k, ǫ) = n(k) otherwise.

14Indeed, this version corresponds to the second strengthening outlined in Section 2.3.1. Recall that the restricted
version of this definition referred to the case that ̺ is linear (i.e., ̺(δ) = Ω(δ)).

8

the length of the tested object is exponential in the length of the parameter (i.e., Πn ⊆ {0, 1}n =
{0, 1}exp(|n|)).15 Hence, using the language of property testing, we can reformulate Definition 6, as
follows:

Definition 8 (locally testable proofs as property testers):16 Suppose that, for some function p :
N → N and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|), and let q : {0, 1}∗× (0, 1] → N. We say

that a (non-adaptive) probabilistic polynomial-time oracle machine V is a q-locally tester for proofs
in {Πx}x∈{0,1}∗ if V has query complexity q and constitutes an tester for the parameterized property

{Πx}x∈{0,1}∗ , where such a tester gets x and ǫ as input parameters and ǫ-tests membership in Πx

using q(x, ǫ) queries.

A special case of interest is when q(x, ǫ) = q′(ǫ) for some function q′ : (0, 1] → N.

2.3.3 Relation to PCPs of Proximity

We start by reviewing the definition of a PCP of Proximity, which may be viewed as a “PCP version”
of a property tester (or a “property testing analogue” of PCP).17 In the following definition, the
tester (or verifier) is given oracle access both to its main input, denoted x, and to an alleged proof,
denoted π, and the query complexity account for its access to both oracles (which can be viewed
as a single oracle, (x, π)). That is, in contrast to the definition of PCP and like in the definition of
property testing, the main input is presented as an oracle and the verifier is charged for accessing
it. In addition, like in the definition of PCP (and unlike in the definition of property testing), the
verifier gets oracle access to an alleged proof.

Definition 9 (PCPs of Proximity):18 A PCP of Proximity for a set S with proximity parameter ǫ is

a (non-adaptive) probabilistic polynomial-time oracle machine, denoted V , satisfying

Completeness: For every x ∈ S there exists a string πx ∈ {0, 1}p(|x|) such that V always accepts

when given access to the oracle (x, πx); that is, Pr[V x,πx(1|x|)=1] = 1.

Soundness: For every x that is ǫ-far from S∩{0, 1}|x| and for every string π, machine V rejects with

probability at least 1
2 when given access to the oracle (x, π); that is, Pr[Mx,π(1|x|)=1] ≤ 1/2.

The query complexity of V is defined as in case of PCP, but here also queries to the x-part are

counted. The proof complexity of V is defined as p.

The definition of a property tester (i.e., an ǫ-tester for S) is obtained as a special case by requiring
that the proof length equals zero. Note that for any (efficiently computable) code C of constant

15Indeed, in the context of property testing, the length of the oracle must always be given to the tester (although
some sources neglect to account for this fact).

16Here, we allow the query complexity to depends (also) on the parameter x, rather than merely on its length
(which also determines the length p(|x|) of the tested object). This seems more natural in the context of testing
massively parameterized properties.

17An “NP version” (or rather an “MA version”) of a property tester was presented by Gur and Rothblum [43]. In
their model, called MAP, the verifier has oracle access to the main input x, but gets free access to an alleged proof π.

18Note that this definition builds on Definition 4 (rather than on Definition 6), except that the proof complexity
is defined as in Definition 6. (We mention that PCPs of Proximity, introduced by Ben-Sasson et al. [11], are almost
identical to Assignment Testers, introduced independently by Dinur and Reingold [24]. Both notions are (important)
special cases of the general definition of a “PCP spot-checker” formulated before by Ergün et al. [26].)

9

relative distance, a PCP for a set S can be obtained from a PCP of Proximity for {C(x) : x ∈ S},
where the complexity of the PCP is related to the complexity of the PCP of Proximity via the rate
of the code (since the complexities of proof testers are measured in terms of the length of their
main input).19

Relation to locally testable proofs (a bit contrived). The definition of a PCP of Proximity
is related to but different from the definition of a locally testable proof: Definition 9 refers to the
distance of the input-oracle x from S, whereas locally testable proofs (see Definition 6) refer to
the distance of the proof-oracle from the set Πx of valid proofs of membership of x ∈ S. Still,
PCPs of Proximity can be defined within the framework of locally testable proofs, by considering
an artificial set of proofs for membership in a generic set. Specifically, given a PCP of Proximity
verifier V of proof complexity p and proximity parameter ǫ for a set S, we consider the set of proofs
(for membership of 1n in the generic set {1}∗)

Π′
1n

def
=

{
xtπ : x ∈ (S ∩ {0, 1}n) , π ∈ Πx , t =

p(n)

ǫn

}
(1)

where Πx
def
= {π′ ∈ {0, 1}p(|x|) : Pr[V x,π′

(1n) = 1]} (2)

so that |π| = ǫ · |xt|. A 3ǫ-tester for proofs in Π′ = {Π′
1n}n∈N can be obtained by emulating the

execution of V and checking that the t copies in the tn-bit long prefix of the oracle are indeed
identical.20

Digest: the use of repetitions. The problem we faced in the construction of Π′ is that the
proof-part (i.e., π) is essential for verification, but we wish the distance to be determined by the
input-part (i.e., x). The solution was to repeat x multiple times so that these repetitions dominate
the length of the oracle. The new tester can still access the alleged proof π, but we are guaranteed
that if xtπ is 3ǫ-far from Π′, then x is 2ǫ-far from S. The repetition test is used in order to handle
the possibility that the oracle does not have the form xtπ but is rather ǫ-far from any string having
this form.

PCPs of Proximity yield locally testable codes. We mention that PCPs of Proximity (of
constant query complexity) yield a simple way of obtaining locally testable codes. More generally,
we can combine any code C0 with any PCP of Proximity V , and obtain a q-locally testable code with
distance essentially determined by C0 and rate determined by V , where q is the query complexity
of V . Specifically, x will be encoded by appending c = C0(x) with a proof that c is a codeword
of C0, and distances will be determined by the weighted Hamming distance that assigns all weight
(uniformly) to the first part of the new code. As in the previous paragraph, these weights can
be (approximately) “emulated” by making suitable repetitions. Specifically, the new codeword,
denoted C(x), equals C0(x)tπ(x), where π(x) is the foregoing proof and t = ω(|π(x)|)/|C0(x)|, and
the new tester checks that the t · |C0(x)|-bit long prefix contains t repetitions of some string and

19For details, see Exercise 2.
20That is, on input x(1) · · · x(t)π, the verifier invokes V x(1),π(1n) as well as performs checks to verify that x(1) = x(i)

for every i ∈ [t]. The latter test is conducted by selecting uniformly several i ∈ [t] and several j ∈ [n] per each i,

and comparing x
(1)
j to x

(i)
j . The key observation is that if V is an ǫ-tester, and x(1) · · ·x(t)π is 3ǫ-far from Π′

1n , then

either x(1) · · ·x(t) is ǫ-far from (x(1))t or x(1) is ǫ-far from S, since |π| < ǫ · |x(1) · · ·x(t)π|. See related Exercise 3.

10

invokes the PCP of Proximity while proving it access to a random copy (as main input) and to the
|π(x)|-bit long suffix (as an alleged proof). See Exercise 3.

We stress that this only yields a weak locally testable code (e.g., as in Definition 3), since
nothing is guaranteed for non-codewords that consists of repetitions of some C0(x) and a false
proof.21 Obtaining a strong locally testable code using this method is possible when the PCP of
Proximity is stronger in a sense that is analogous to Definition 6, but with a single valid proof
(called canonical) per each x ∈ S (i.e., |Πx| = 1 for every x ∈ S). Such strong PCPs of Proximity
were introduced in [41]; see also [38].

2.3.4 Motivation for the study of short locally testable codes and proofs

Local testability offers an extremely strong notion of efficient testing: The tester makes only a
constant number of bit probes, and determining the probed locations (as well as the final decision)
can often be done in time that is poly-logarithmic in the length of the probed object. Recall that
the tested object is supposed to be related to some primal object; in the case of codes, the probed
object is supposed to encode the primal object, whereas in the case of proofs the probed object
is supposed to help verify some property of the primal object. In both cases, the length of the
secondary (probed) object is of natural concern, and this length is stated in terms of the length of
the primary object.

The length of codewords in an error-correcting code is widely recognized as one of the two most
fundamental parameters of the code (the second one being the code’s distance). In particular,
the length of the code is of major importance in applications, because it determines the overhead
involved in encoding information.

As argued in Section 1, the same considerations apply also to proofs. However, in the case
of proofs, this obvious point has been blurred by the unexpected and highly influential applica-
tions of PCPs to establishing hardness results regarding the complexity of natural approximation
problems. In our view, the significance of locally testable proofs (or PCPs) extends far beyond
their applicability to deriving non-approximability results. The mere fact that proofs can be trans-
formed into a format that supports super-fast probabilistic verification is remarkable. From this
perspective, the question of how much redundancy is introduced by such a transformation is a fun-
damental one. Furthermore, locally testable proofs (i.e., PCPs) have been used not only to derive
non-approximability results but also for obtaining positive results (e.g., CS-proofs [49, 56] and their
applications [7, 20]), and the length of the PCP affects the complexity of those applications.

Turning back to the celebrated application of PCP to the study of the complexity of natural ap-
proximation problems, we note that the length of PCPs is relevant also to these non-approximability
results; specifically, the length of PCPs affects the tightness with respect to the running time of the
non-approximability results derived from these PCPs. For example, suppose that (exact) SAT has
complexity 2Ω(n). Then, while the original PCP Theorem [4, 3] only implies that approximating
MaxSAT requires time 2nα

, for some (small constant) α > 0, the results of [17, 22] yield a lower
bound of 2n/poly(log n). We mention that the result of [57] (cf. [23]) allows to achieve a time lower

21
Advanced comment: Actually, we can also achieve the special case of the weak version of Definition 7, where

the query complexity only depends on the proximity parameter ǫ. This can be done by using t = T (|x|) · |π(x)|/|C0(x)|
(e.g., T (k) = log k) and claiming query complexity of the form n(T−1(O(1/ǫ))) (e.g., exp(O(1/ǫ)), resp., assuming

n(k)
def
= |C(1k)| = poly(k)). The claim is valid beacuse the foregoing difficulty arises only when ǫ < 3/t or so, but in

this case n(T−1(O(1/ǫ)))) = n(|x|) = |C(x)|.

11

bound of 2n1−o(1)
simultaneously with optimal non-approximability ratios, but this is currently

unknown for the better lower bound of 2n/poly(log n).

2.3.5 A weaker definition

One of the concrete motivations for locally testable codes refers to settings in which one may want
to re-encode the information when discovering that the codeword is corrupted. In such a case,
assuming that re-encoding is based solely on the corrupted codeword, one may assume (or rather
needs to assume) that the corrupted codeword is not too far from the code. Thus, the following
version of Definition 1 may suffice for various applications.

Definition 10 (weak codeword tests): Let C : {0, 1}k → {0, 1}n be a code of distance d, and let

q ∈ N and ǫ1, ǫ2 ∈ (0, 1) be such that ǫ1 < ǫ2. A weak q-local (codeword) (ǫ1, ǫ2)-tester for C is a

(non-adaptive) probabilistic oracle machine M that makes at most q queries, accepts any codeword

with probability 1, and rejects (w.h.p.) non-codewords that are both ǫ1-far and ǫ2-close to C. That

is, the rejection condition of Definition 1 is modified as follows.

Rejection of non-codeword (weak version): For any w ∈ {0, 1}n such that ∆C(w) ∈ [ǫ1n, ǫ2n], given

oracle access to w, machine M rejects with probability at least 1/2.

Needless to say, there is something highly non-intuitive in this definition: It requires rejection
of non-codewords that are somewhat far from the code, but not the rejection of codewords that
are very far from the code. Still, such weak codeword testers may suffice in some applications.
Interestingly, such weak codeword testers seem easier to consrtruct than standard locally testable
codes; they even achieve linear length (cf. [63, Chap. 5]), whereas this is not known for the standard
notion (see Problem 12). We note that the non-monotonicity of the rejection probability of testers
has been observed before; the most famous example being linearity testing (cf. [19] and [8]).

2.4 On relating locally testable codes and proofs

This section presents an advanced discussion, which is mainly intended for PCP enthusiasts. We
discuss the common beliefs that locally testable codes and proofs are closely related, and point out
that the relation is less clear than one may think.

Locally testable codes can be thought of as the combinatorial counterparts of the complexity
theoretic notion of locally testable proofs (PCPs). In particular, as detailed below, the use of codes
with features related to local testability is implicit in known PCP constructions. This perspective
raises the question of whether one of these notions implies the other, or at least is useful towards
the understanding of the other.

2.4.1 Do PCPs imply locally testable codes?

As started above, the use of codes with features related to local testability is implicit in known PCP
constructions. Furthermore, the known constructions of locally testable proofs (PCPs) provides
a transformation of standard proofs (for say SAT) to locally testable proofs (i.e., PCP-oracles)
such that transformed strings are accepted with probability one by the PCP verifier. Specifically,
denoting by Sx the set of standard proofs referring to an assertion x, there exists a polynomial-

time mapping fx of Sx to Rx
def
= {fx(y) : y ∈ Sx} such that for every π ∈ Rx it holds that

12

Pr[V π(x) = 1] = 1, where V is the PCP verifier. Moreover, starting from different standard
proofs, one obtains locally testable proofs that are far apart, and hence constitute a good code (i.e.,
for every x and every y 6= y′ ∈ Sx, it holds that ∆(fx(y), fx(y′)) ≥ Ω(|fx(y)|)). It is tempting to
think that the corresponding PCP verifier yields a codeword tester, but this is not really the case.

The point is that Definition 5 requires rejection of strings that are far from any valid proof (i.e.,
any string far from Πx), but it is not clear that the only valid proofs (w.r.t V) are those in Rx

(i.e., the proofs obtained by the transformation fx of standard proofs (in Sx) to locally testable
ones).22 In fact, the standard PCP constructions accept also valid proofs that are not in the range
of the corresponding transformation (i.e., fx); that is, Πx as in Definition 5 is a strict superset of
Rx (rather than Πx = Rx). We comment that most known PCP constructions can be modified
to yield Πx = Rx, and thus to yield a locally testable code, but these modifications are far from
being trivial. The interested reader is referred to [41, Sec. 5.2] for a discussion of typical problems
that arise when trying this way. In any case, this is not necessarily the best way to obtain locally
testable codes from PCPs; an alternative way is outlined in Section 2.3.3.

2.4.2 Do locally testable codes imply PCPs?

Saying that locally testable codes are the combinatorial counterparts of locally testable proofs
(PCPs) raises the expectation (or hope) that it would be easier to construct locally testable codes
than it is to construct PCPs. The reason being that combinatorial objects (e.g., codes) should
be easier to understand than complexity theoretic ones (e.g., PCPs). Indeed, this feeling was
among the main motivations of Goldreich and Sudan, and their first result (cf. [41, Sec. 3]) was
along this vein: They showed a relatively simple construction (i.e., simple in comparison to PCP
constructions) of a locally testable code of length ℓ(k) = kc for any constant c > 1. Unfortunately,
their stronger result, providing a locally testable code of shorter length (i.e., length ℓ(k) = k1+o(1))
is obtained by constructing (cf. [41, Sec. 4]) and using (cf. [41, Sec. 5]) a corresponding locally
testable proof (i.e., PCP).

Most subsequent works (e.g., [11, 22]) have followed this route (i.e., of going from a PCP to a
code), but there are notable exceptions. Most importantly, we note that Meir’s work [54] provides
a combinatorial construction of a locally testable code that does not seem to yield a corresponding
locally testable proof. The prior work of Ben-Sasson and Sudan [17] may be viewed as reversing the
course to the “right one”: They first construct locally testable codes, and next use them towards the
construction of proofs, but their set of valid codewords is an NP-complete set. Still, conceptually
they go from codes to proofs (rather than the other way around).

3 Results and Ideas

We review some of the the known constructions of locally testable codes and proofs, starting from
codes and proofs of exponential length and concluding with codes and proofs of nearly linear length.
In all cases, we refer to testers of constant query complexity.23 Before embarking on this journey,
we mention that random linear codes (of linear length) require any codeword tester to read a linear
number of bits of the codeword (see exercises in the first lecture). Furthermore, good codes that

22Let alone that Definition 4 refers only to the case of false assertions, in which case all strings are far from any
valid proof (since the latter does not exist).

23The opposite regime, in which the focus is on linear length codes and the aim is to minimize the query complexity,
is briefly reviewed in Section 4.3.

13

correspond to random “low density parity check” matrices are also as hard to test [15]. These facts
provide a strong indication to the non-triviality of local testability.

Teaching note: Recall that this section only provides overviews of the constructions and their analysis.

The intention is merely to provide a taste of the ideas used. The interested reader should look for detailed

descriptions in other sources, which are indicated in the text.

3.1 The mere existence of locally testable codes and proofs

The mere existence of locally testable codes and proofs, regardless of their length, is non-obvious.
Thus, we start by recalling the simplest constructions known.

3.1.1 The Hadamard Code is locally testable

The simplest example of a locally testable code (of constant relative distance) is the Hadamard
code. This code, denoted CHad, maps x ∈ {0, 1}k to a string (of length n = 2k) that provides the
evaluation of all GF(2)-linear functions at x; that is, the coordinates of the codeword are associated
with linear functions of the form ℓ(z) =

∑k
i=1 ℓizi and so CHad(x)ℓ = ℓ(x) =

∑k
i=1 ℓixi. Testing

whether a string w ∈ {0, 1}2k
is a codeword amounts to linearity testing. This is the case because w

is a codeword of CHad if and only if, when viewed as a function w : {0, 1}k → {0, 1}, it is linear (i.e.,
w(z) =

∑k
i=1 cizi for some ci’s, or equivalently w(y + z) = w(y) + w(z) for all y, z). Hence, local

testability of CHad is achieved by invoking the linearity tester of Blum, Luby, and Rubinfeld [19],
which amounts to uniformly selecting y, z ∈ {0, 1}k and checking whether w(y + z) = w(y) + w(z).

distance

rejection prob.

3/8

1/4

1/4 1/2

Figure 1: The lower bounds that underlie the function Γ. The dashed diagonal line represents the
bound ̺(x) ≥ x, which is slightly improved by the bound ̺(x) ≥ x + η(x).

This natural tester always accepts linear functions, and (as shown in the lecture on linearity
testing) reject any function that is δ-far from being linear with probability at least min(δ/2, 1/6).

14

Recall that the exact behavior of this tester is unknown; that is, denoting by ̺(δ) the minimum
rejection probability of a string that is at (relative) distance δ from CHad, we know lower and upper
bounds on ̺ that are tight only in the interval [0, 5/16] (and at the point 0.5). Specifically, it is
known that ̺(δ) ≥ Γ(δ), where the function Γ : [0, 0.5] → [0, 1] is defined as follows:

Γ(x)
def
=





3x − 6x2 0 ≤ x ≤ 5/16
45/128 5/16 ≤ x ≤ τ2 where τ2 ≈ 44.9962/128
x + η(x) τ2 ≤ x ≤ 1/2,

where η(x)
def
= 1376 · x3 · (1 − 2x)12 ≥ 0.

(3)

The lower bound Γ is composed of three different bounds with “phase transitions” at x = 5
16 and

at x = τ2, where τ2 ≈ 44,9962
128 is the solution to x + η(x) = 45/128 (see Figure 1).24 It was shown

in [8] that the first segment of Γ (i.e., for x ∈ [0, 5/16]) is the best bound possible, and that the
first “phase transitions” (i.e., at x = 5

16) is indeed a reality; in other words, ̺ = Γ in the interval
[0, 5/16].25 We highlight the non-trivial behavior of the detection probability of the aforementioned
test, and specifically the fact that the detection probability does not increase monotonically with
the distance of the tested string from the code (i.e., Γ decreases in the interval [1/4, 5/16], while
equaling ̺ in this interval).

Other codes. We mention that Reed-Muller Codes of constant order are also locally testable [1].
These codes have sub-exponential length, but are quite popular in practice. The Long Code is also
locally testable [9], but this code has double-exponential length (and was introduced merely for the
design of PCPs).26

3.1.2 The Hadamard-Based PCP of ALMSS

The simplest example of a locally testable proof (for arbitrary sets in NP)27 is the “inner verifier”
of the PCP construction of Arora, Lund, Motwani, Sudan and Szegedy [3], which in turn is based
on the Hadamard code. Specifically, proofs of the satisfiability of a given system of quadratic
equations over GF(2), which is an NP-complete problem (see Exercise 5), are presented by providing
a Hadamard encoding of the outer-product of a satisfying assignment with itself (i.e., a satisfying
assignment α ∈ {0, 1}n is presented by CHad(β), where β = (βi,j)i,j∈[n] and βi,j = αiαj). Hence,

the alleged proofs are of length 2n2
, and locations in these proofs correspond to n2-bit long strings

(or, equivalently, to n-by-n Boolean matrices).

Given an alleged proof π ∈ {0, 1}2n2

, viewed as a Boolean function π : {0, 1}n2 → {0, 1}, the
proof-tester (or verifier) proceeds as follows:28

24The third segment is due to [47], which improves over the prior bound of [8] that asserted ̺(x) ≥ max(45/128, x)
for every x ∈ [5/16, 1/2].

25In contrast, the lower bound provided by the other two segments (i.e., for x ∈ [5/16, 1/2]) is unlikely to be tight,
and in particular it is unlikely that the “phase transitions” at x = τ2 represents the behavior of ̺ itself. We also note
that η(x) > 59 · (1 − 2x)12 for every x > τ2, but η(x) < 0.0001 for every x < 1/2.

26Interestingly, some of the best PCP results are obtained by using a relaxed notion of local testability [44, 45].
27A simpler example for a set not known to be in BPP is provided by the interactive proof for graph non-

isomorpishm [39]. Note that any interactive proof system in which the prover sends a constant number of bits yields
a PCP system (see Exercise 4).

28See [34, Sec. 9.3.2.1] for a more detailed description.

15

1. Tests that π is indeed a codeword of the Hadamard Code (i.e., that it is a linear function
from {0, 1}n2

to {0, 1}). If this test passes (with high probability), then π is close to some
codeword CHad(β), for an arbitrary β = (βi,j)i,j∈[n]; that is, for (say) 99% of the Boolean
matrices C = (ci,j)i,j∈[n], it holds that π(C) =

∑
i,j∈[n] ci,jβi,j .

2. Tests that the aforementioned β is indeed an outer-product of some α ∈ {0, 1}n with itself.
This means that for every C = (ci,j)i,j∈[n] (or actually for 99% of them), it holds that π(C) =∑

i,j∈[n] ci,jαiαj . That is, we wish to test whether (βi,j)i,j∈[n] equals (αiαj)i,j∈[n] (i.e., the
equality of two Boolean matrices).

Teaching note: Some readers may prefer to skip the description of how the current step is implemented,

proceed to Step 3, and return to the current step later.

Note that the Hadamard encoding of α is supposed to be part of the Hadamard encoding of β
(because

∑n
i=1 ciαi =

∑n
i=1 ciα

2
i is supposed to equal

∑n
i=1 ciβi,i).

29 So we would like to test
that the latter codeword matches the former one. (Recall that this means testing whether
the matrix (βi,j)i,j∈[n] equals the matrix (αiαj)i,j∈[n].)

This test can be performed by uniformly selecting (r1, ..., rn), (s1, ..., sn) ∈ {0, 1}n, and com-
paring

∑
i,j risjβi,j and

∑
i,j risjαiαj = (

∑
i riαi) · (

∑
j sjαj), where the value

∑
i,j risjβi,j

is supposed to reside in the location that corresponds to the outer-product of (r1, ..., rn) and
(s1, ..., sn). The key observation here is that for n-by-n matrices A 6= B, when r, s ∈ {0, 1}n

are uniformly selected (vectors), it holds that Prs[As = Bs] = 2−rank(A−B) and it follows
that Prr,s[rAs = rBs] ≤ 3/4 (see Exercises 6).

The foregoing suggestion would have been fine if π = CHad(β), but we only know that π is close
to CHad(β). The Hadamard encoding of α is a tiny part of the latter, and so we should not try
to retrieve the latter directly (because this tiny part may be totally corrupted).30 Instead, we
use the paradigm of self-correction (cf. [19]): In general, for any fixed c = (ci,j)i,j∈[n], whenever
we wish to retrieve

∑
i,j∈[n] ci,jβi,j , we uniformly select ω = (ωi,j)i,j∈[n] and retrieve both π(ω)

and π(ω + c). Thus, we obtain a self-corrected value of π(c); that is, if π is δ-close to CHad(β)
then π(ω + c)− π(ω) =

∑
i,j∈[n] ci,jβi,j with probability at least 1− 2δ (over the choice of ω).

Using self-correction, we indirectly obtain bits in CHad(α), for α = (αi)i∈[n] = (βi,i)i∈[n]. Sim-
ilarly, we can obtain any other desired bit in CHad(β), which in turn allows us to test whether
(βi,j)i,j∈[n] = (αiαj)i,j∈[n]. In fact, we are checking whether (βi,j)i,j∈[n] = (βi,iβj,j)i,j∈[n], by
comparing

∑
i,j risjβi,j and (

∑
i riβi,i)·(

∑
j sjβj,j), for randomly selected (r1, ..., rn), (s1, ..., sn) ∈

{0, 1}n.

3. Finally, we get to the purpose of all of the foregoing, which is checking whether the afore-
mentioned α satisfies the given system of quadratic equations. Towards this end, the tester
uniformly selects a linear combination of the equations, and checks whether α satisfies the (sin-
gle) resulting equation. Note that the value of the corresponding quadratic expression (which

29Note that
P

i∈[n] ciβi,i =
P

i,j∈[n] ci,jβi,j , where ci,j = ci if i = j and ci,j = 0 otherwise. Hence, the value of

location (c1, ..., cn) in CHad(α) appears at location (ci,j)i,j∈[n] in CHad(β).
30Likewise, the values at the locations that correspond the outer-product of (r1, ..., rn) and (s1, ..., sn) should not

be retrieved directly, because these locations are a tiny fraction of all 2n2

locations in CHad(β).

16

is a linear combination of quadratic (and linear) forms) appears as a bit of the Hadamard
encoding of β, but again we retrieve it from π by using self-correction.

The foregoing description presumes that each step conducts a constant number of checks such that
if the corresponding condition fails then this step rejects with high (constant) probability.31 In
the analysis, one shows that if π is 0.01-far from a valid Hadamard codeword, then Step 1 rejects
with high probability. Otherwise, if π is 0.01-close to CHad(β) for β = (βi,j)i,j∈[n] that is not an
outer-product of some α = (αi)i∈[n] with itself (i.e., (βi,j)i,j∈[n] 6= (αiαj)i,j∈[n]), then Step 2 rejects
with high probability. Lastly, if π is 0.01-close to CHad(β) such that βi,j = αiαj for some α (and all
i, j ∈ [n]) but α does not satisfy the given system of quadratic equations, then Step 3 rejects with
high probability.

3.2 Locally testable codes and proofs of polynomial length

The constructions presented in Section 3.1 have exponential length in terms of the relevant param-
eter (i.e., the amount of information being encoded in the code or the length of the assertion being
proved). Achieving local testability by codes and proofs that have polynomial length turns out to
be much more challenging.

3.2.1 Locally testable codes of quadratic length

A rather natural interpretation of low-degree tests (cf. [5, 6, 31, 61, 30]) yields a locally testable
code of quadratic length over a sufficiently large alphabet. Similar (and actually better) results
for binary codes required additional ideas, and have appeared only later (cf. [41]). We sketch
both constructions below, starting with locally testable codes over very large alphabets (which are
defined analogously to the binary case).

Locally testable codes over large alphabets. Recall that we presented low-degree tests for
degree d ≪ |F| and functions f : Fm → F as picking d + 2 points over a random line (in Fm) and
checking whether the values of f on these points fits a degree d univariate polynomial. We also
commented that such a test can be viewed as a PCP of Proximity that test whether f is of degree
d by utilizing a proof-oracle (called a line oracle) that provides the univariate degree d polynomials
that describe the value of f on every line in Fm.32 (When queried on (x, h) ∈ Fm × Fm, this
proof-oracle returns the d + 1 coefficients of a polynomial that supposedly describes the value of f
on the line {x + ih : i ∈ F}, and the verifier checks that the value assigned by this polynomial to
a random i ∈ F matches f(x + ih).)

Taking another step, we note that given access only to a “line oracle” L : Fm × Fm → Fd+1,
we can test whether L describes the restrictions of a single degree d multivariate polynomial to
all lines. This is done by selecting a random pair of intersecting lines and checking whether they
agree on the point of intersection. Friedl and Sudan [30] and Rubinfeld and Sudan [61] proposed
to view each valid L as a codeword in a locally testable code over the alphabet Σ = Fd+1. This

31An alternative description may have each step repeat the corresponding check only once so that if the corre-
sponding condition fails, then this step rejects with some (constant) positive probability. In this case, the analysis
will only establish that the entire test rejects with some (constant) positive probability, and repetitions will be used
to reduce the soundness error to 1/2.

32This comment appears as a footnote in the last sectyion of the lecture notes on low degree testing. Recall that
PCPs of Proximity were defined in Section 2.3.3.

17

code maps each m-variate polynomial of degree d to the sequence of univariate polynomials that
describe the restrictions of this polynomial to all possible lines; that is, the polynomial p is mapped
to Lp : Fm × Fm → Fd+1 such that, for every (x, h) ∈ Fm × Fm, it holds that Lp(x, h) is (or
represents) a univariate polynomial that describes the value of p on the line {x + ih : i ∈ F}. The
corresponding 2-query tester of L : Fm ×Fm → Fd+1, will just select a random pair of intersecting
lines and check whether they agree on the point of intersection.33 The analysis of this tester reduces
to the analysis of the corresponding low degree test, undertaken in [3, 59].

The question at this point is what are the parameters of the foregoing code, denoted C : Σk →
Σn, where Σ = Fd+1 (and n = |Fm|2).34 This code has distance (1−d/|F|)·n = Ω(n), since different
polynomials agree with probability at most d/|F| on a random point (and ditto on a random line).
Since Σk corresponds to all possible m-variate polynomials of degree d over F (which have

(m+d
d

)

possible monomials), it follows that Σk = |F|(m+d
d), which implies

k =

(
m+d

d

)

d + 1
≈ (d/m)m

d
=

dm−1

mm
, (4)

when m ≪ d (which is the preferred setting here (see next)). Note that n = |Fm|2, which means
that n ≈ d2 · (m · |F|/d)2m · k2 ≫ k2, since |F| > d. Lastly, |Σ| = |F|d+1 > k(d+1)/(m−1) ≫ k.
Hence, the smaller m, the better the rate (i.e., relation of n to k), but this comes at the expense
of using a relatively larger alphabet. In particular, we consider two instantiations, where in both
|F| = Θ(d):

1. Using d = mm, we get k ≈ (mm)m−1/mm = mm2−2m and n = O(d)2m = m2m2+o(m), which
yields n ≈ exp(

√
log k) · k2 and log |Σ| = log |F|d+1 ≈ d log d ≈ exp(

√
log k).

2. Letting d = mc for any constant c > 1, we get k ≈ m(c−1)m−c and n = m2cm+o(m), which
yields n ≈ k2c/(c−1) and log |Σ| ≈ d log d ≈ (log k)c.

In both cases, we obtain a locally testable code of polynomial length, but this code uses a large
alphabet, whereas we seek codes over binary alphabet.

Alphabet reduction. A natural way of reducing the alphabet size of codes is via the well-known
paradigm of concatenated codes [28]: A concatenated code is obtained by encoding the symbols of
an “outer code” (using the coding method of the “inner code”). Specifically, let C1 : Σk1

1 → Σn1
1 be

the outer code and C2 : Σk2
2 → Σn2

2 be the inner code, where Σ1 ≡ Σk2
2 . Then, the concatenated

code C′ : Σk1k2
2 → Σn1n2

2 is obtained by C′(x1, ..., xk1) = (C2(y1), ..., C2(yn1)), where xi ∈ Σk2
2 ≡ Σ1

and (y1, ..., yn1) = C1(x1, ..., xk1). That is, first C1 is applied to the k1-long sequence of k2-symbol
blocks, which are viewed as symbols of Σ1, and then C2 is applied to the each of the resulting n1

blocks (see Figure 2, where k1 = 4, n1 = 6, k2 = 8 and n2 = 16). Using a good inner code for
relatively short sequences, allows to transform good codes for a large alphabet into good codes for
a smaller alphabet.

33That is, it select uniformly at random x1, x2, h1, h2 ∈ Fm and i1, i2 ∈ F such that x1 + i1h1 = x2 + i2h2, and
checks whether the value of the polynomial L(x1, h1) at i1 equals the value of the polynomial L(x2, h2) at i2.

34Indeed, it would have been more natural to present the code as a mapping from sequences over F to sequences
over Σ = Fd+1. Following the convention of using the same alphabet for both the information and the codeword, we
just pack every d+ 1 elements of F as an element of Σ.

18

Figure 2: Concatenated codes. The outer (resp., inner) encoding is depicted by the horizontal
arrow (resp., vertical arrows).

The problem, however, is that concatenated codes do not necessarily preserve local testability.
Here, we shall use special features of the specific tester used for the outer codes. In particular,
observe that, for each of the two queries made by the tester of C : Σk → Σn, the tester does not
need the entire polynomial represented in Σ = Fd+1, but rather only its value at a specific point.
Thus, encoding Σ by an error correcting code that supports recovery of the said value while using
a constant number of probes will do.35

In particular, for integers h, e such that d + 1 = he, Goldreich and Sudan used an encoding of
the elements of Σ = Fd+1 = Fhe

by sequences of length |F|eh over F (i.e., this inner code mapped
he-long F-sequences to |F|eh-long F-sequences), and provided testing and recovery procedures (for
this inner code) that make O(e) queries [41, Sec. 3.3]. Note that the case of e = 1 and |F| = 2
corresponds to the Hadamard code, and that a bigger constant e allows for shorter codes (e.g., for

|F| = 2, we have length 2eh = 2e·t1/e
, where t denotes the length of the encoded information). The

resulting concatenated code, denoted C′ : F (d+1)·k → Fn′
, is a locally testable code over F , and has

length n′ = n ·O(d)eh = n ·exp((e log d) ·d1/e). Using constant e = 2c and setting d = mc ≈ (log k)c,
we get n′ ≈ k2c/(c−1) · exp(Õ(log k)1/2) and |F| = poly(log k), which means that we have reduced
the alphabet size considerably (from |F|d+1 to |F|, where d = Θ(|F|)).

Finally, a binary locally testable code is obtained by concatenating C′ : Fk′ → Fn′
with the

Hadamard code (which is used to encode elements of F), while noting that the latter supports
a “local recovery” property that suffices to emulate the tester for C′. In particular, the tester of
C′ merely checks a linear (over F) equation referring to a constant number of F-elements, and
for F = GF(2ℓ), this can be emulated by checking related random linear combinations of the bits
representing these elements, which in turn can be locally recovered (or rather self-corrected) from
the Hadamard code. The final result is a locally testable (binary) code of nearly quadratic length;
that is, the length is n′ · 2ℓ = n′ · poly(log k), whereas the information contents is k′ · ℓ > k (and
n′ ≈ k2c/(c−1) ·exp(Õ(log k)1/2)).36 We comment that a version of this tester may use three queries,
whereas 2-query locally testable binary codes are essentially impossible (cf., [13]).

3.2.2 Locally testable proofs of polynomial length: The PCP Theorem

The case of proofs is far more complex than that of codes: Achieving locally testable proofs of
polynomial length is essentially the contents of the celebrated PCP Theorem of Arora, Lund,

35Indeed, this property is related to locally decodable codes (to be briefly discussed in Section 4.4). Here we need
to recover one out of |F| specific linear combinations of the encoded (d+1)-long sequence of F-symbols. In contrast,
locally decodable refers to recovering one out of the F-symbols of the original (d+ 1)-long sequence.

36Actually, the aforementioned result is only implicit in [41], since Goldreich and Sudan apply these ideas directly
to a truncated version of the low-degree based code.

19

Motwani, Sudan and Szegedy [3], which asserts that every set in NP has a PCP system of constant

query complexity and logarithmic randomness complexity.37 The construction is analogous to (but
far more complex than) the one presented in the case of codes:38 First we construct locally testable
proofs over a large alphabet, and next we compose such proofs with corresponding “inner” proofs
(over a smaller alphabet, and finally over a binary one). Our exposition focuses on the construction
of these proof systems and somewhat blurs the issues involved in their composition.

Teaching note: This subsection is significantly more complex than the rest of this section, and some
readers may prefer to skip it and proceed directly to Section 3.3. Specifically, we proceed in four steps:

1. Introduce an NP-complete problem, denoted PVPP.

2. Present a PCP over large alphabet for PVPP.

3. Perform alphabet (and/or query complexity) reduction for PCPs.

4. Discuss the proof composition paradigm, which underlies the prior part.

(The presentation of Step 1-3 (which follows [64, Apdx. C] and [11]) is different from the standard pre-

sentation of [3].) The second and third steps are most imposing and complex, but the reader may benefit

from the discussion of the proof composition paradigm (Step 4) even when skipping all prior steps. Our

presentation of the composition paradigm follows [11], rather than the original presentation of [4, 3]. For

further details regarding the proof composition paradigm, the reader is referred to [34, Sec. 9.3.2.2].

The partially vanishing polynomial problem (PVPP). As a preliminary step, we introduce
the following NP-complete problem, for which we shall present a PCP. The input to the problem
consists of a finite field F , a subset H ⊂ F of size |F|1/15, an integer m < |H|, and a (3m + 4)-
variant polynomial P : F3m+4 → F of total degree 3m|H| + O(1). The problem is to determine
whether there exists an m-variant (“assignment”) polynomial A : Fm → F of total degree m|H|
such that P ′(x, y, z, τ)

def
= P (x, z, y, τ,A(x), A(y), A(z)) vanishes on H3m × {0, 1}3; that is,

P (x, z, y, τ,A(x), A(y), A(z)) = 0 for every x, y, z ∈ Hm and τ ∈ {0, 1}3 ⊂ H. (5)

Note that the instance (i.e., the polynomial P) can be explicitly described by a sequence of
|F|3m+4 log2 |F| bits, whereas the solution sought can be explicitly described by a sequence of
|F|m log2 |F| bits. We comment that the NP-completeness of the aforementioned problem can be
proved via a reduction from 3SAT, by identifying the variables of the formula with Hm and essen-
tially letting P be a low-degree extension of a function f : H3m × {0, 1}3 → {0, 1} that encodes
the structure of the formula (by considering all possible 3-clauses).39 In fact, the resulting P has
degree |H| in each of the first 3m variables and constant degree in each of the other variables, and
this fact can be used to improve the parameters below (but not in a fundamental way).

A PCP over large alphabet for PVPP. The proof that a given input P satisfies the condition
in Eq. (5) consists of an m-variant polynomial A : Fm → F (which is supposed to be of total

37Recall that the proof complexity of PCPs is exponential in their randomness complexity (and linear in their query
complexity).

38Our presentation reverses the historical order in which the corresponding results (for codes and proofs) were
achieved. That is, the constructions of locally testable proofs of polynomial length predated the coding counterparts.

39Specifically, f(x, y, z, σ, τ, ξ) = 1 if and only if xσ ∨ yτ ∨ zξ appears as a clause in the given formula, where xσ

denotes x if σ = 0 and ¬x otherwise.

20

degree m|H|) as well as 3m + 1 auxiliary polynomials Ai : F3m+1 → F , for i = 1, ..., 3m + 1
(each supposedly of degree (3m|H| + O(1)) · m|H|). The polynomial A is supposed to satisfy
Eq. (5); that is, P (x, z, y, τ,A(x), A(y), A(z)) = 0 should hold for every x, y, z ∈ Hm and τ ∈
{0, 1}3 ⊂ H. Furthermore, A0(x, y, z, τ)

def
= P (x, z, y, τ,A(x), A(y), A(z)) should vanish on H3m+1

(i.e., A0(x, y, z, τ) = 0 for every x, y, z ∈ Hm and τ ∈ H). The auxiliary polynomials are given
to assist the verification of the latter condition. In particular, Ai should vanish on F iH3m+1−i, a
condition that is easy to test for A3m+1 (assuming that A3m+1 is a low degree polynomial). Checking
that Ai−1 agrees with Ai on F i−1H3m+1−(i−1), for i = 1, ..., 3m+1, and that all Ai’s are low degree
polynomials, establishes the claim for A0. Thus, testing an alleged proof (A,A1, ..., A3m+1) is
performed as follows:

1. Testing that A is a polynomial of total degree m|H|.
(This is a low-degree test. Recall that it can be performed by selecting a random line through
Fm, and testing whether A restricted to this line agrees with a degree m|H| univariate
polynomial).

2. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai is of total degree d
def
= (3m|H|+ O(1)) ·

m|H|.
(Here we select a random line through F3m+1, and test whether Ai restricted to this line
agrees with a degree d univariate polynomial.)

3. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai agrees with Ai−1 on F i−1HF3m+1−i,
which implies that Ai agrees with Ai−1 on F i−1H3m+1−(i−1).

This is done by uniformly selecting r′ = (r1, ..., ri−1) ∈ F i−1 and r′′ = (ri+1, ..., r3m+1) ∈
F3m+1−i, and comparing Ai−1(r

′, e, r′′) to Ai(r
′, e, r′′), for every e ∈ H. In addition, we check

that both functions when restricted to the axis-parallel line (r′, ·, r′′) agree with a univariate
polynomial of degree d.40

We stress that the values of A0 are computed according to the given polynomial P by accessing
A at the appropriate locations (i.e., by definition A0(x, z, z, τ) = P (x, z, y, τ,A(x), A(y), A(z))).

4. Testing that A3m+1 vanishes on F3m+1.

This is done by uniformly selecting r ∈ F3m+1, and testing whether A3m+1(r) = 0.

The foregoing tester may be viewed as making O(m|F|) queries to an oracle of length |F|m +(3m+
1) · |F|3m+1 over the alphabet F , or alternatively, as making O(m|F| log |F|) binary queries to a
binary oracle of length O(m · |F|3m+1 log |F|). We mention that the foregoing description (which
follows [64, Apdx. C]) is somewhat different than the original presentation in [3], which in turn
follows [5, 6, 27].41

Note that we have already obtained a highly non-trivial tester. It makes O(m|F| log |F|) queries

to a proof of length Õ(m · |F|3m+1) in order to verify a claim regarding an input of length n
def
=

|F|3m+4 log2 |F|. Using m = Θ(log n/ log log n), |H| = log n and |F| = poly(log n), which satisfies

40Thus, effectively, we are self-correcting the values at H (on the said line), based on the values at F (on that line).
41The point is that the sum-check, which originates in [53], is replaced here by an analogous process (which is

non-sequential in nature).

21

m < |H| = |F|1/15, we have obtained a tester of poly-logarithmic query complexity and polynomial

proof complexity (equivalently, logarithmic randomness complexity).42

Although the foregoing tester is highly non-trivial, it falls short from our aim, because it employs
a non-constant number of queries to a proof-oracle over a non-constant alphabet. Of course, we can
convert the latter alphabet to a binary alphabet by increasing the number of queries, but actually
the original proof of the PCP Theorem went in the opposite direction and reduce the number
of queries by “packing” them into a constant number of queries to an oracle over an even larger
alphabet (see the “parallelization technique” below). Either way, we are faced with the problem of
reducing the total amount of information obtained from the oracle.

Alphabet (and/or query complexity) reduction for PCPs. To further reduce the query
complexity, we invoke the “proof composition” paradigm, introduced by Arora and Safra [4] (and
further discussed at the end of the current subsection). Specifically, we compose an “outer” tester
(e.g., the foregoing tester) with an “inner” tester that locally checks the residual condition that
the “outer” would have checked (regarding the answers it would have obtained). That is, rather
than letting the “outer” verifier read (small) portions of the proof-oracle and decide accordingly,
we let the “inner” verifier probe these portions and check whether the “outer” verifier would have
accepted based on them. This composition is not straightforward, because we wish the “inner”
tester to perform its task without reading its entire input (i.e., the answers to the “outer” tester).
This seems quite paradoxical, since it is not clear how the “inner” tester can operate without
reading its entire input. The problem can be resolved by using a “proximity tester” (i.e., a PCP of
Proximity)43 as an “inner” tester, provided that it suffices to have such a proximity test (for the
answers to the “outer” tester). Thus, the challenge is to reach a situation in which the “outer”
tester is “robust” in the sense that, when the assertion is false, the answers obtained by this tester
are far from being convincing (i.e., far from any sequence of answers that is accepted by this tester).
Two approaches towards obtaining such robust testers are known.

• One approach, introduced in [3], is to convert the “outer” tester into one that makes a constant
number of queries over some larger alphabet, and furthermore have the answer be presented
in an error correcting format. Thus, robustness is guaranteed by the fact that the answers
are presented as a sequence consisting of a constant number of codewords, and so any two
(properly formatted) sequences are at constant relative distance of one another.

The implementation of this approach consists of two steps. The first step is to convert the
“outer” tester that makes t = poly(log ℓ) queries to an oracle π : [ℓ] → {0, 1} into a tester that
makes a constant number of queries to an oracle that maps [poly(ℓ)] to {0, 1}poly(t). This step
uses the so-called parallelization technique, which replaces each possible t-sequence of queries
by a (low degree) curve that passes through these t queries as well as through a random point
(cf. [52, 3]). The new proof-oracle answers each such curve C with a (low degree) univariate
polynomial pC that is supposed to describe the values of (a low degree extension π′ of) π at
all poly(t) points that reside on C (i.e., pC(i) = π′(C(i)). The consistency of these pC ’s with
π is check by selecting a random curve C, and comparing the value that pC assigns a random
point on C to the value assigned to this point by π′ (i.e., the low-degree extension of π).44

42In fact, the proof complexity is sub-linear, since eO(m · |F|3m+1) = o(n).
43See Section 2.3.3.
44

Advanced comment: Specifically, we associate [ℓ] with Hm, where m ≈ |H | and H resides in a finite field F

22

In the second step, an error correcting code is applied to the poly(t)-bit long answers provided
by the foregoing oracle, while assuming that the “inner (proximity) verifier” can handle inputs
that are presented in this format (i.e., that it can test an input that is presented in a constant
number of parts, where each part is encoded separately).45

• An alternative approach, pursued and advocated in [11], is to take advantage of the specific
structure of the queries, “bundle” the answers together (into a constant number of bundles)
and show that the “bundled” answers are “robust” in a sense that fits proximity testing. In
particular, the (generic) parallelization step is avoided, and is replaced by a closer analysis of
the specific (outer) tester. Furthermore, the robustness of individual bundles is inherited by
any constant sequence of bundles, and so there is no need to use error correcting codes (on
top of the bundled answers).

Hence, while the first approach relies on a general technique of parallelization (and, historically
(see Footnote 45), also on the specifics of the inner verifier), the second approach refers explicitly
to the notion of robustness and relies on the specifics of the outer verifier. An advantage of the
second approach is that it almost preserves the length of the proofs (whereas the first approach may
square this length). We will outline the second approach next, but warn that this terse description
may be hard to follow.

First, we show how the queries of the foregoing tester for PVPP can be “bundled” such that
the O(m) sub-tests of this tester can be performed by inspecting a constant number of bundles. In
particular, we consider the following “bundling” that accommodates the 3m + 1 different sub-tests
performed in Step (3): Consider B : F3m+1 → F3m+1 such that

B(x1,, x3m+1)
def
= (A1(x1, x2,, x3m+1), A2(x2,, x3m+1, x1), ..., A3m+1(x3m+1, x1,, x3m)) (6)

such that |F| = poly(t, |H |). (We stress that m,H and F used here are different from those used in the foregoing
description of the PCP for PVPP.) For every sequence of queries q = (q1, ..., qt) ∈ (Hm)t made by the original verifier
and every r ∈ Fm, we consider the degree t+1 curve Cq,r : F → Fm such that Cq,r(0) = r and Cq,r(i) = qi for every
i ∈ [t] ⊂ F . Hence, the set of curves corresponds to Ω×Fm, where Ω is the set of all possible outcomes of the internal
coin tosses of the original verifier. The new proof-oracle consists of a function π′ : Fm → F , which is supposed to be
a degree m|H | extension of the original proof π, viewed as a Boolean function π : Hm → {0, 1}, as well as univariate
polynomials of degree m|H | · (t+ 1) that are supposed to represent the restrictions of π′ to all |Ω ×Fm| curves (i.e.,
the polynomial pC : F → F that corresponds to the curve C is supposed to satisfy pC(i) = π′(C(i)) for every i ∈ F).
The new verifier will

1. test that π′ has degree m|H |;
2. test that π′ matches the univariate polynomials by selecting a random point i ∈ F on a random curve C and

comparing the value given by the corresponding univariate polynomial pC to the value given by π′ (i.e., cheching
that pC(i) = π′(C(i)) holds); and

3. select a random curve C = Cq,r and emulate the original tester based on the values pC(1), ..., pC(t) obtained
from the polynomial that corresponds to this curve.

Due to the randomization of the curves via their value at zero, it holds that a random point on a random curve
is distributed almost uniformly in Fm, where the possible slackness is due to the first t points on the curve. The
analysis is based on the fact that if π′ has degree m|H | and the polynomial that corresponds to a curve does not
agree with it at some point, then they disagree on most of the points.

45The aforementioned assumption holds trivially in case one uses a general-purpose “proximity tester” (e.g., a PCP
of Proximity (a.k.a. an Assignment Tester) for sets in P) as done in [24]. But the aforementioned approach can be
applied (and, in fact, was originally applied) using a specific “proximity tester” that can only handle inputs presented
in one specific format (cf. [3]).

23

and perform all 3m + 1 tests of Step (3) by selecting uniformly (r2, ..., r3m+1) ∈ F3m and querying
B at (e, r2, ..., r3m+1) and (r3m+1, e, ..., r3m) for all e ∈ H. Thus, all 3m + 1 tests of Step (3) can
be performed by retrieving the 2 · |F| values of B on two axis parallel random line through F3m+1

(i.e., the lines (·, r2, ..., r3m+1) and (r3m+1, ·, r2, ..., r3m)).46 Likewise, all 3m+1 tests of Step (2) can
be performed by retrieving the |F| values of B on a single (arbitrary) random line through F3m+1.
(The test of Step (1), which refers to A, remains intact, whereas the test of Step (4) is conducted
on B rather than on A3m+1.) Lastly, observe that these tests are “robust” in the sense that if,
for some i, the function Ai is (say) 0.01-far from satisfying the condition (i.e., being low-degree or
agreeing with Ai−1), then with constant probability the |F|-long sequence of values of Ai on an
appropriate random line will be far from satisfying the corresponding predicate. This robustness
feature is inherited by B, since each symbol of B encodes the corresponding values of all Ai’s.
Hence, we have bundled O(m) tests that refer to O(m) different functions (i.e., the Ai’s and A)
into four tests that refer to two functions (i.e., B and A), where each of these tests queries one (or
both) of the functions for its value at O(|F|) points.47

Next, we encode the symbols of B (resp., of A) by a good binary error-correcting, and obtain a
binary function B′ (resp., A′) that preserves the robustness up to a constant factor (which equals the
relative distance of the code). Specifically, we may replace A : Fm → F and B : F3m+1 → F3m+1

by A′ : Fm × [O(log |F|)] → {0, 1} and B′ : F3m+1 × [O(log |F|3m+1)] → {0, 1}, and conduct all all
tests by making O(m2|F| log |F|) queries to A′ and B′ (since each query to A : Fm → F (resp.,
to B : F3m+1 → F3m+1) is replace by O(log |F|) queries to A′ (resp., O(m log |F|) queries to B′)).
The resulting robustness feature asserts that if the original polynomial P had no solution (i.e., an A
satisfying Eq. (5)), then the answers obtained by the tester will be far from satisfying the residual
decision predicate of the tester.

Now, if the robustness feature of the resulting (“outer”) tester fits the proximity testing feature
of the “inner tester” (i.e., the threshold determining what is “far” w.r.t robustness is greater than or
equal to the threshold of “far” w.r.t proximity), then composition is possible. Indeed, we compose
the “outer” tester with an “inner tester” that checks whether the residual decision predicate of the
“outer tester” is satisfies. The benefit of this composition is that the query complexity is reduced
from poly-logarithmic (in n) to polynomial in a double-logarithm function (in n). At this point we
can afford the Hadamard-Based proof tester (because the overhead in the proof length will only
be exponential in poly(log log n) = O(log n)), and obtain a locally testable proof of polynomial (in
n) length. That is, we compose the poly(log log)-query tester (acting as an outer tester) with the
Hadamard-Based tester (acting as an inner tester), and obtain a locally testable proof of polynomial
length (as asserted by the PCP Theorem).

On the proof composition paradigm. The PCP Theorem asserts a PCP system for NP that
simultaneously achieve the minimal possible randomness and query complexity (up to a multiplica-

46Indeed, the values of B(e, r2,, r3m+1) and B(r3m+1, e, r2,, r3m) yield the values of
Ai−1(ri, ..., r3m+1, e, r2, ..., ri−1) and Ai(ri, ..., r3m+1, e, r2, ..., ri−1) for every i ∈ [3m + 1]. Recall, however,
that the values of A0 are determined based on A. Hence, for emulating the first of these tests (i.e., the test
corresponding to i = 1), we use both B and A.

47Actually, the fourth test (corresponding to Step (4)) queries B at a single point. Recall that Step (1) queries A
on a random line, Step (2) queries B on a random line, and Step (3) queries B (and A) on two random axis-parallel
lines.

24

tive factor).48 The foregoing construction obtains this remarkable result by combining two different
PCPs: the first PCP obtains logarithmic randomness but uses poly-logarithmically many queries,
whereas the second PCP uses a constant number of queries but has polynomial randomness com-
plexity. We stress that each of these two PCP systems is highly non-trivial and very interesting by

itself. We also highlight the fact that these PCPs are combined using a very simple composition
method (which refers to auxiliary properties such as robustness and proximity testing). Details
follow.49

Loosely speaking, the proof composition paradigm refers to composing two proof systems such
that the “inner” verifier is used for probabilistically verifying the acceptance criteria of the “outer”
verifier. That is, the combined verifier selects coins for the “outer” verifier, determines the cor-
responding locations that the “outer” verifier would have inspected (in the proof), and verifies
that the “outer” verifier would have accepted the values that reside in these locations. The latter
verification is performed by invoking the “inner” verifier, without reading the values residing in all

the aforementioned locations. Indeed, the aim is to conduct this (“composed”) verification while
using much fewer queries than the query complexity of the “outer” proof system. In particular, the
inner verifier cannot afford to read its input, which makes the composition more subtle than the
term suggests.

In order for the proof composition to work, the verifiers being combined should satisfy some
auxiliary conditions. Specifically, the outer verifier should be robust in the sense that its soundness
condition guarantee that, with high probability, the oracle answers are “far” from satisfying the
residual decision predicate (rather than merely not satisfying it).50 The inner verifier is given oracle
access to its input and is charged for each query made to it, but is only required to reject (with
high probability) inputs that are far from being valid (and, as usual, accept inputs that are valid).
That is, the inner verifier is actually a verifier of proximity (i.e., a PCP of Proximity, as defined in
Section 2.3.3).

Composing two such PCPs yields a new PCP, where the new proof-oracle consists of the proof-
oracle of the “outer” system and a sequence of proof-oracles for the “inner” system (one “inner”
proof per each possible random-tape of the “outer” verifier). The resulting verifier selects coins
for the outer-verifier and uses the corresponding “inner” proof in order to verify that the outer-
verifier would have accepted under this choice of coins. Note that such a choice of coins determines
locations in the “outer” proof that the outer-verifier would have inspected, and the combined verifier
provides the inner-verifier with oracle access to these locations (which the inner-verifier considers as
its input) as well as with oracle access to the corresponding “inner” proof (which the inner-verifier
considers as its proof-oracle).

The quantitative effect of such a composition is easy to analyze. Specifically, composing
an outer-verifier of randomness-complexity r′ and query-complexity q′ with an inner-verifier of
randomness-complexity r′′ and query-complexity q′′ yields a PCP of randomness-complexity r(n) =
r′(n) + r′′(q′(n)) and query-complexity q(n) = q′′(q′(n)), because q′(n) represents the length of the
input (oracle) that is accessed by the inner-verifier. Thus, assuming q′′(m) ≪ m, the query com-

48The claim of minimality assumes that P 6= NP , and for the claim regarding randomness complexity refers to low
query complexity. The point is that a PCP system of randomness complexity r(n) = O(log n) and query complexity
q(n) yields an NP-proof system that utilizes proofs of length 2r(n) · q(n).

49Our presentation of the composition paradigm follows [11], rather than the original presentation of [4, 3]. A more
detailed overview of the composition paradigm is available in [34, Sec. 9.3.2.2].

50Furthermore, the latter predicate, which is well-defined by the non-adaptive nature of the outer verifier, must
have a circuit of size that is at most polynomial in the number of queries.

25

plexity is significantly decreased (from q′(n) to q′′(q′(n))), while the increase in the randomness
complexity is moderate provided that r′′(q′(n)) ≪ r′(n). Furthermore, the verifier resulting from
the composition inherits the robustness features of the inner verifier, which is important in case we
wish to compose the resulting verifier with another inner-verifier.

3.3 Locally testable codes and proofs of nearly linear length

We now move on to even shorter codes and proofs; specifically, codes and proofs of nearly linear

length. The latter term has been given quite different interpretations, and we start by sorting these
out. Currently, this taxonomy is relevant mainly for second-level discussions and review of some
past works.51

Types of nearly linear functions. A few common interpretations of the term “nearly linear”
are listed below (going from the most liberal to the most strict one).

T1-nearly linear: A very liberal notion, which seems at the verge of an abuse of the term, refers
to a sequence of functions fǫ : N → N such that, for every ǫ > 0, it holds that fǫ(n) ≤ n1+ǫ.
That is, each function is actually of the form n 7→ nc, for some constant c > 1, but the
sequence as a whole can be viewed as approaching linearity.

The PCP of Polishchuk and Spielman [59] and the simpler locally testable code of Goldreich
and Sudan [41, Thm. 2.4] have nearly linear length in this sense.

T2-nearly linear: A more reasonable notion of nearly linear functions refers to individual func-
tions f such that f(n) = n1+o(1). Specifically, for some function ǫ : N → [0, 1] that tends to
zero, it holds that f(n) ≤ n1+ǫ(n). Common sub-types include the following:

1. ǫ(n) = 1/ log log n.

2. ǫ(n) = 1/(log n)c for some constant c ∈ (0, 1).

The locally testable codes and proofs of [41, 18, 11] have nearly linear length in this
sense. Specifically, in [41, Sec. 4-5] and [18] any c > 1/2 will do, whereas in [11] any
c > 0 will do.

3. ǫ(n) = exp((log log n)c)
log n for some constant c ∈ (0, 1).

Note that poly(log log n) < exp((log log n)c) < (log n)o(1), for any constant c ∈ (0, 1).

4. ǫ(n) = poly(log log n)
log n , which corresponds to f(n) = q(log n)·n, where q(m) = exp(poly(log m)).

Here near-linearity means as linearity up to a quasi-poly-logarithmic factor, and one is
tempted to view it as a relaxation of the following type (T3).

Indeed, the case in which ǫ(n) = O(log log n)
log n deserves a special category, presented next.

T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmic

factor; that is, f(n) = Õ(n)
def
= poly(log n) ·n, which corresponds to the case of f(n) ≤ n1+ǫ(n)

with ǫ(n) = O(log log n)/ log n.

The results of [17, 22, 65, 66] refer to this notion.

51Things were different when the original version of this text [33] was written. At that time, only T2-nearly linear
length was know for O(1)-local testability, and the T3-nearly linear result achieved later by Dinur [22] seemed a
daring conjecture (which was, nevertheless, stated in [33, Conj. 3.3]).

26

We note that while [17, 22, 65, 66] achieve T3-nearly linear length, the low-error results of [57, 23]
only achieve T2-nearly linear length.

3.3.1 Local testability with nearly linear length

The celebrated gap amplification technique of Dinur [22] is best known for providing an alternative
proof of the PCP Theorem (which asserts that every set in NP has a PCP system of constant

query complexity and logarithmic randomness complexity). However, applying this technique to a
PCP that was (previously) provided by Ben-Sasson and Sudan [17] yields locally testable codes
and proofs of T3-nearly linear length. In particular, the overhead in the code and proof length is
only polylogarithmic in the length of the primal object (which establishes [33, Conj. 3.3]).

Theorem 11 (Dinur [22], building on [17]): There exists a constant q and a poly-logarithmic

function f : N → N such that there exist q-locally testable codes and proofs (for SAT) of length

f(k) · k, where k denotes the length of the actual information (i.e., the assertion in case of proofs
and the encoded information in case of codes).

The PCP system asserted in Theorem 11 is obtained by applying the gap amplification method of
Dinur [22] (reviewed in Section 3.3.2) to the PCP system of Ben-Sasson and Sudan [17]. We mention
that the PCP system (for NP) of Ben-Sasson and Sudan [17] is based on the NP-completeness of a
certain code (of length n = Õ(k)), and on a randomized reduction of testing whether a given n-bit
long string is a codeword to a constant number of similar tests that refer to

√
n-bit long strings.

Applying this reduction log log n times yields a PCP of query complexity poly(log n) and length
Õ(n), which in turn yields a 3-query “weak PCP with soundness error 1 − 1/poly(log n)”.

The PCP system of Theorem 11 can be adapted to yield a PCP of Proximity with the same
parameters, which (as shown in Section 2.3.3) yields a (weak) locally testable code of similar
parameters (i.e., constant number of queries and length n = Õ(k)). Recall that this transformation
of PCP of Proximity to locally testable codes only works for the weak version of the latter notion.
A strong locally testable code of similar parameters was only obtained later (by Viderman [65, 66]).

Is a polylogarithmic overhead the best one can get? In the original version of this sur-
vey [33], we conjectured that a polylogarithmic (length) overhead is inherent to local testability (or,
at least, that linear length O(1)-local testability is impossible). We currently have mixed feelings
with respect to this conjecture (even when confined to proofs), and thus rephrase it as an open
problem.

Open Problem 12 (local testability in linear length): Determine whether there exist locally testable

codes and proofs of linear length.

3.3.2 The gap amplification method

Essentially, Theorem 11 is proved by applying the gap amplification method (of Dinur [22]) to the
(weak) PCP system constructed by Ben-Sasson and Sudan [17]. The latter PCP system has length
ℓ(k) = Õ(k), but its soundness error is 1 − 1/poly(log k) (i.e., its rejection probability is at least
1/poly(log k)). Each application of the gap amplification step doubles the rejection probability while

essentially maintaining the initial complexities. That is, in each step, the constant query complexity
of the verifier is preserved and its randomness complexity is increased only by a constant term (and

27

so the length of the PCP oracle is increased only by a constant factor). Thus, starting from the
system of [17] and applying O(log log k) amplification steps, we essentially obtain Theorem 11.
(Note that a PCP system of polynomial length can be obtained by starting from a trivial “PCP”
system that has rejection probability 1/poly(k), and applying O(log k) amplification steps.)52

In order to rigorously describe the aforementioned process we need to redefine PCP systems

so as to allow arbitrary soundness error. In fact, for technical reasons, it is more convenient to
describe the process in terms of an iterated reduction of a “constraint satisfaction” problem to
itself. Specifically, we refer to systems of 2-variable constraints, which are readily represented by
(labeled) graphs such that the vertices correspond to (non-Boolean) variables and the edges are
associated with constraints.

Definition 13 (CSP with 2-variable constraints): For a fixed finite set Σ, an instance of CSP

consists of a graph G = (V,E), which may have parallel edges and self-loops, and a sequence of

2-variable constraints Φ = (φe)e∈E associated with the edges, where each constraint has the form

φe : Σ2 → {0, 1}. The value of an assignment α : V → Σ is the number of constraints satisfied by α;

that is, the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G,Φ) (standing
for violation) the fraction of unsatisfied constraints under the best possible assignment; that is,

vlt(G,Φ) = min
α:V →Σ

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E|

}

.

(7)

For various functions τ : N → (0, 1], we will consider the promise problem gapCSPΣ
τ , having in-

stances as above, such that the yes-instances are fully satisfiable instances (i.e., vlt = 0) and the

no-instances are pairs (G,Φ) for which vlt(G,Φ) ≥ τ(|G|) holds, where |G| denotes the number of

edges in G.

Note that 3SAT is reducible to gapCSPΣ0
τ0

for Σ0 = {F, T}3 and τ0(m) = 1/m (e.g., replace each
clause of the 3SAT instance by a vertex, and use edge constraints that enforce mutually consistent
and satisfying assignments to each pair of clauses).53 Furthermore, the PCP system of [17] yields
a reduction of 3SAT to gapCSPΣ0

τ1
for τ1(m) = 1/poly(log m) where the size of the graph is nearly

linear in the length of the input formula.
Our goal is to reduce gapCSPΣ0

τ0 (or rather gapCSPΣ0
τ1) to gapCSPΣ

c , for some fixed finite Σ and
constant c > 0, where in the case of gapCSPΣ0

τ1 we wish the reduction to preserve the length of the
instance up to a polylogarithmic factor.54 The PCP Theorem (resp., a PCP of nearly linear length)
follows by showing a simple PCP system for gapCSPΣ

c (e.g., the PCP verifier selects a random edge
and checks whether the pair of values assigned to its endpoints by the alleged proof satisfies the
constraint associated with this edge).55 As noted before, the reduction is obtained by repeated
applications of an amplification step that is captured by the following lemma.

52See Exercise 7.
53Given the instance ∧i∈[m]ψi, we construct a graph G = ([m], E) such that vertices i and j are connected by an

edge if and only if ψi and ψj have some common variable. In this case the constraint φ(i,j) : Σ2
0 → {0, 1} is such

that φ(i,j)(σ, τ) = 1 if and only if ψi(σ) = ψj(τ) and the values assigned to the common variable are identical. For
example, if ψi = x ∨ y ∨ z and ψj = u ∨ ¬x ∨ ¬v, then φ(i,j)(σ, τ) = 1 if and only if σ1 ∨ σ2 ∨ σ3 and τ1 ∨ ¬τ2 ∨ ¬τ3
and σ1 = τ2.

54Hence, for some fixed Σ and constant c > 0, the problem gapCSP
Σ
c is NP-complete. As shown in Exercise 8, this

cannot be the case if |Σ| = 2, unless P = NP.
55For Σ ≡ {0, 1}ℓ, given a gapCSPΣ

c instance (G,Φ), consider the PCP oracle π : [n] × [ℓ] → {0, 1}, where n
denotes the number of vertices in G. The verifier selects a random edge (u, v) in G, obtains σ = π(u, 1) · · · π(u, ℓ)
and τ = π(v, 1) · · ·π(v, ℓ), and checks whether φ(u,v)(σ, tau) = 1.

28

Lemma 14 (amplifying reduction of gapCSP to itself): For some finite Σ and constant c > 0, there

exists a polynomial-time computable function f such that, for every instance (G,Φ) of gapCSPΣ, it

holds that (G′,Φ′) = f(G,Φ) is an instance of gapCSPΣ and the two instances are related as follows:

1. If vlt(G,Φ) = 0, then vlt(G′,Φ′) = 0.

2. vlt(G′,Φ′) ≥ min(2 · vlt(G,Φ), c).

3. |G′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas instances that violate a
ν fraction of the constraints are mapped to instances that violate at least a min(2ν, c) fraction of
the constraints. Furthermore, the mapping increases the number of edges (in the instance) by at
most a constant factor. We stress that both Φ and Φ′ consists of Boolean constraints defined over
Σ2. Thus, by iteratively applying Lemma 14 for a logarithmic (resp., double-logarithmic) number
of times, we reduce gapCSPΣ

τ0 (resp., gapCSPΣ
τ1) to gapCSPΣ

c .

Teaching note: The rest of this subsection is also quite complex, and some readers may prefer to skip it

and proceed directly to Section 4.

Outline of the proof of Lemma 14: Before turning to the proof, let us highlight the difficulty
that it needs to address. Specifically, the lemma asserts a “violation amplifying effect” (i.e., Items 1
and 2), while maintaining the alphabet Σ and allowing only a moderate increase in the size of the
graph (i.e., Item 3). Waiving the latter requirements allows a relatively simple proof that mimics
(an augmented version of) the “parallel repetition” of the corresponding PCP. Thus, the challenge
is significantly decreasing the “size blow-up” that arises from parallel repetition and maintaining
a fixed alphabet. The first goal (i.e., Item 3) calls for a suitable derandomization, and indeed we
shall use a “pseudorandom” generator based on random walks on expander graphs. The second
goal (i.e., fixed alphabet) can be handled by using the proof composition paradigm, which was
outlined in Section 3.2.2.

The lemma is proved by presenting a three-step reduction. The first step is a pre-processing
step that makes the underlying graph suitable for further analysis (e.g., the resulting graph will
be an expander). The value of vlt may decrease during this step by a constant factor. The heart
of the reduction is the second step in which we can increase vlt by any desired constant factor.
This is done by a construction that corresponds to taking a random walk of constant length on the
current graph. The latter step also increases the alphabet Σ, and thus a post-processing step is
employed to regain the original alphabet (by using any inner PCP systems; e.g., the one presented
in Section 3.1.2). Details follow.

We first stress that the aforementioned Σ and c, as well as the auxiliary parameters d and t
(to be introduced in the following two paragraphs), are fixed constants that will be determined
such that various conditions (which arise in the course of our argument) are satisfied. Specifically,
t will be the last parameter to be determined (and it will be made greater than a constant that is
determined by all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the input (G,Φ)
of gapCSPΣ to an instance (G1,Φ1) such that G1 is a d-regular expander graph.56 Furthermore,

56A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely speaking, an expander

29

each vertex in G1 will have at least d/2 self-loops, the number of edges will be preserved up to a
constant factor (i.e., |G1| = O(|G|)), and vlt(G1,Φ1) = Θ(vlt(G,Φ)). This step is quite simple:
essentially, the original vertices are replaced by expanders of size proportional to their degree, and
a big (dummy) expander is “superimposed” on the resulting graph. (The constraints associated
with the edges of the former expanders mandate equality, whereas the the constraints associated
with the edges of the latter expander are trivial (i.e., require nothing).)

The main step is aimed at increasing the fraction of violated constraints by a sufficiently large
constant factor. The intuition underlying this step is that the probability that a random (t-edge
long) walk on the expander G1 intersects a fixed set of edges is closely related to the probability
that a random sample of (t) edges intersects this set. Thus, we may expect such walks to hit a
violated edge with probability that is at least min(Θ(t · ν), c), where ν is the fraction of violated
edges. Indeed, the current step consists of reducing the instance (G1,Φ1) of gapCSPΣ to an instance
(G2,Φ2) of gapCSPΣ′

such that Σ′ = Σdt
and the following holds:

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge long path in G1 is
replaced by a corresponding edge in G2, which is thus a dt-regular graph.

2. The constraints in Φ2 view each element of Σ′ as a Σ-labeling of the (“distance ≤ t”) neigh-
borhood of a vertex, and mandates that the two corresponding labelings (of the endpoints of
the G2-edge) are consistent as well as satisfy Φ1. That is, the following two types of conditions
are enforced by the constraints of Φ2:

(consistency): If vertices u and w are connected in G1 by a path of length at most t and vertex
v resides on this path, then the Φ2-constraint associated with the G2-edge between u
and w mandates the equality of the entries corresponding to vertex v in the Σ′-labeling
of vertices u and w.

(satisfying Φ1): If the G1-edge (v, v′) is on a path of length at most t starting at u, then the
Φ2-constraint associated with the G2-edge that corresponds to this path enforces the
Φ1-constraint that is associated with (v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set to a constant.
(Indeed, the relatively moderate increase in the size of the graph corresponds to the low randomness-
complexity of selecting a random walk of length t in G1.)

Turning to the analysis of this step, we note that vlt(G1,Φ1) = 0 implies vlt(G2,Φ2) = 0.
The interesting fact is that the fraction of violated constraints increases by a factor of Ω(

√
t);

that is, vlt(G2,Φ2) ≥ min(Ω(
√

t · vlt(G1,Φ1)), c). Here we merely provide a rough intuition and
refer the interested reader to [22]. We may focus on any Σ′-labeling of the vertices of G2 that is
consistent with some Σ-labeling of G1, because relatively few inconsistencies (among the Σ-values
assigned to a vertex by the Σ′-labeling of other vertices) can be ignored, while relatively many
such inconsistencies yield violation of the “equality constraints” of many edges in G2. Intuitively,
relying on the hypothesis that G1 is an expander, it follows that the set of violated edge-constraints
(of Φ1) with respect to the aforementioned Σ-labeling causes many more edge-constraints of Φ2 to
be violated (because each edge-constraint of Φ1 is enforced by many edge-constraints of Φ2). The

graph has the property that each cut (i.e., partition of its vertex set) has relatively many edges crossing it. An
equivalent definition, also used in the actual analysis, is that all the eigenvalues of the corresponding adjacency
matrix, except for the largest one (which equals d), have absolute value that is bounded away from d.

30

point is that any set F of edges of G1 is likely to appear on a min(Ω(t) · |F |/|G1|,Ω(1)) fraction of

the edges of G2 (i.e., t-paths of G1). (Note that the claim would have been obvious if G1 were a
complete graph, but it also holds for an expander.)57

The factor of Ω(
√

t) gained in the second step makes up for the constant factor lost in the first
step (as well as the constant factor to be lost in the last step). Furthermore, for a suitable choice
of the constant t, the aforementioned gain yields an overall constant factor amplification (of vlt).
However, so far we obtained an instance of gapCSPΣ′

rather than an instance of gapCSPΣ, where
Σ′ = Σdt

. The purpose of the last step is to reduce the latter instance to an instance of gapCSPΣ.
This is done by viewing the instance of gapCSPΣ′

as a PCP-system,58 and composing it with an
inner-verifier using the proof composition paradigm outlined in Section 3.2.2. We stress that the
inner-verifier used here needs only handle instances of constant size (i.e., having description length
O(dt log |Σ|)), and so the verifier presented in Section 3.1.2 will do. The resulting PCP-system uses

randomness r
def
= log2 |G2|+O(dt log |Σ|)2 and a constant number of binary queries, and has rejection

probability Ω(vlt(G2,Φ2)), which is independent of the choice of the constant t. Moving back to the
world of gapCSP, for Σ = {0, 1}O(1), we can obtain an instance of gapCSPΣ that has a Ω(vlt(G2,Φ2))
fraction of violated constraints. Furthermore, the size of the resulting instance (which is used as
the output (G′,Φ′) of the three-step reduction) is O(2r) = O(|G2|), where the equality uses the
fact that d and t are constants. Recalling that vlt(G2,Φ2) ≥ min(Ω(

√
t · vlt(G1,Φ1)), c) and

vlt(G1,Φ1) = Ω(vlt(G,Φ)), this completes the (outline of the) proof of the entire lemma.

Reflection. In contrast to the proof outlined in Section 3.2.2, which combines two remarkable
constructs by using a simple composition method, the current proof of the PCP Theorem is based
on developing a powerful amplification method that improves the quality of the system to which it
is applied. This new method, captured by the amplification step (Lemma 14), does not obtain the
best aspects of the given systems, but rather obtains a better system than the one given. However,
the quality-amplification offered by Lemma 14 is rather moderate, and thus many applications are
required in order to derive the desired result. Taking the opposite perspective, one may say that
remarkable results are obtained by a gradual process of many moderate amplification steps.

4 Chapter notes

The term “locally testable proof” was introduced in [33] with the intension of matching the term
“locally testable codes”. As started at the end of Section 2.2, the term “locally testable proofs”
seems more fitting than the standard term “probabilistically checkable proofs” (abbreviated PCPs),
because it stresses the positive aspect (of locality) rather than the negative aspect (of being prob-
abilistic). The latter perspective has been frequently advocated by Leonid Levin.

4.1 Historical notes

The celebrated story of the PCP Theorem is well-known; still we provide a brief overview and refer
the interested reader to the account in [32, Sec. 2.6.2] (partially reproduced in the chapter notes

57We mention that, due to a technical difficulty, it is easier to establish the claimed bound of Ω(
√
t · vlt(G1,Φ1))

rather than Ω(t · vlt(G1,Φ1)).
58The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the instance (G2,Φ2) with proba-

bility vlt(G2,Φ2) ∈ [0, 1]).

31

of [34, Chap. 9]).
The PCP model was suggested by Fortnow, Rompel, and Sipser [29] as a model capturing

the power of the (related) model of multi-prover interactive proofs, which was suggested by Ben-
Or, Goldwasser, Kilian and Wigderson [10] as a generalization of the model of interactive proofs
(suggested by Goldwasser, Micali and Rackoff [42]).

The PCP Theorem itself is a culmination of a sequence of works, starting with Babai, Fortnow,
and Lund [5], who showed that (unrestricted) PCPs (which are merely restricted by the verification
time) captured the class NEXP, continuing with the different “scale downs”59 of that result to
the poly-logarithmic query complexity level (by Babai, Fortnow, Levin and Szegedy [6] and Feige,
Goldwasser, Lovász, Safra and Szegedy [27]), and culminating with the PCP characterizations of
NP (by Arora and Safra [4] and Arora, Lund, Motwani, Sudan and Szegedy [3]). These develop-
ments were inspired by the discovery of the power of interactive proof systems and made use of
techniques developed towards this end (by Lund, Fortnow, Karloff, Nisan, and Shamir [53, 62]).
The alternative proof of the PCP Theorem was found by Dinur [22] more than a decade later.

The model of PCPs of Proximity was introduced by Ben-Sasson, Goldreich, Harsha, Sudan and
Vadhan [11], and is almost identical to the notion of Assignment Testers introduced independently
by Dinur and Reingold [24].60 We believe that the proof composition paradigm (of [4]) becomes
more clear when explicitly referring to the inner verifiers as PCPs of Proximity (and to the outer
verifiers as being robust). In retrospect, the work of [6] should be viewed as a PCP of Proximity of
poly-logarithmic verification time for statements that are encoded using a specific error correction
code.

There is a fair amount of confusion regarding credits for the introduction of the notion of
locally testable codes (LTCs). This definition (or at least a related notion)61 is arguably implicit
in [6] as well as in subsequent works on PCP. However, as discussed in Section 2.4, these implicit
definitions do not differentiate between the actual notion and related ones (see, e.g., Footnote 61).
The definition of locally testable codes has appeared independently in the works of Friedl and
Sudan [30] and Rubinfeld and Sudan [61] as well as in the PhD Thesis of Arora [2]. The distinction
between the weak and strong notions (see Definition 7) is due to Goldreich and Sudan [41], which
initiated a systematic study of these notions.

As stated in Section 3.2.2, our presentation reverses the historical order in which the corre-
sponding results (for codes and proofs) were achieved. That is, the constructions of locally testable
proofs of polynomial length, captured in the PCP Theorem [4, 3], predated the coding counterparts.

4.2 On obtaining super-fast testers

Our motivation for studying locally testable codes and proofs referred to super-fast testing, but
our actual definitions have focused on the query complexity of these testers. While the query
complexity of testing has a natural appeal, the hope is that low query complexity testers would
also yield super-fast testing. Indeed, in the case of codes, it is typically the case that the testing time

59The term “scale down” is meant to capture the conceptual contents of moving from NEXP to NP . It is certainly
not meant to diminish the impressive technical achievement involved.

60Both notions are (important) special cases of the general definition of a “PCP spot-checker” formulated before
by Ergün et al. [26].

61The related notion refers to the following relaxed notion of codeword testing: For two fixed good codes C1 ⊆
C2 ⊂ {0, 1}n, one has to accept (with high probability) every codeword of C1, but reject (with high probability) every
string that is far from being a codeword of C2. Indeed, our definitions refer to the special (natural) case that C2 = C1,
but the more general case suffices for the construction of PCPs (and is implicitly achieved in most of them).

32

is related to the query complexity. However, in the case of proofs there is a seemingly unavoidable
(linear) dependence of the verification time on the input length. This (linear) dependence can be
avoided if one considers PCP of Proximity (see Section 2.3.3) rather than standard PCP. But even
in this case, additional work is needed in order to derive testers that work is sub-linear time. The
interested reader is referred to [12, 55].

4.3 The alternative regime: LTCs of linear length

It is quite conceivable that there is a trade-off between the level of locality (i.e., number of queries)
and length of the object being tester (i.e., code or proof). At least, the currently known results
exhibit such a trade-off.

As stated upfront, we have focused on one extreme of the query-vs-length trade-off: We have
insisted on a constant number of queries and sought to minimize the length of the code (or proof).
The opposite extreme is to insist on codes (or proofs) of linear length, and to seek to minimize
the number of queries. In the case of codes, this regime was recently studied by Kopparty, Meir,
Ron-Zewi, and Saraf [50, 51], who obtained codes of optimal rate (with respect to their distance)
that can be tested using quasi-poly-logarithmically number of queries. Specifically, for any constant
δ, η > 0 and a sufficiently large finite set Σ, they obtain codes from Σk to Σn, where k = (1−δ−η)·n,
that have relative distance δ and can be tested using (log k)O(log log k) queries. We briefly review
their ideas next.62

A warm-up: the prior state-of-art. For every constant c > 0, a folklore construction, which
may be traced to [6], achieves a code of constant rate (i.e., n = O(k)) that can be tested using kc

queries. For any selected constant m ∈ N, the construction identifies [k] with Hm, and uses a finite
field F of size O(|H|). The code maps m-variate functions f : Hm → {0, 1} to their low degree
extension; that is, f is mapped to the polynomial p : Fm → F of individual degree |H|−1 that agrees

with f on Hm. This code has relative distance 1 − m·(|H|−1)
|F| > 1

2 rate (|H|/|F|)m = exp(−O(m)),

and it can be checked by inspecting the values of the purported codeword w : Fm → F on O(m)
random axis-parallel lines, which means making O(m) · |F| = O(m) · k1/m queries. (A binary code
can be obtained by encoding the symbols of F via a good binary error correcting code.)

Note that we can use the foregoing construction with m = 1 and |F | = (1 + η(k)) · k, for a
vanishing function η (e.g., η(k) = 1/

√
k). In this case, we obtain a code with very low relative

distance (i.e., the relative distance is η(k)/(1 + η(k)) ≈ η(k)) such that testing is performed by
reading the entire purported codeword. Still, such trivial codes (which have very poor distance but
very high rate) will be an ingredient in the following construction. A crucial tool that allows their
usage is distance amplification, which is actually the pivot of the entire construction.

Distance amplification. Our aim here is to amplify the relative distance of locally testable
codes while preserving their local testability. Specifically, starting with a code of relative distance
δ, we can obtain a code of any desired relative distance δ′ ∈ (0, 1), while increasing the query
complexity (of codeword testing) by a factor of poly(1/δ), and decreasing the rate by only a factor
of approximately 1−δ′. Denoting the initial code by C : Σℓ → Σm, and using an auxiliary encoding

62Our presentation uses extracts from [51, Sec. 1.2], and we thank the authors for the permission to use these
extracts. We omit the credits for various ingredients of the construction, and refer the interested reader to [51,
Sec. 1.2].

33

E : Σ → Λt and a permutation π : [m · t] → [m · t], we derive a code C ′ : Σℓ → Ξm, where Ξ ≡ Λt.
The codeword C ′(x) is obtained by encoding each of the m symbols of y1 · y2 · · · ym = C(x) via E,
permuting the resulting m · t-long sequence E(y1) · E(y2) · · ·E(ym) ∈ (Λt)m according to π, and
viewing each block of t consecutive Ξ-symbols (in the result) as a symbol of Ξ. That is, the ith

symbol of C ′(x) equal the t-tuple

((E(y1) · E(y2) · · ·E(ym))π((i−1)·t+1), ..., (E(y1) · E(y2) · · ·E(ym))π(i·t)) (8)

where y1 · y2 · · · ym = C(x). (9)

If E is a very good code, which we can afford given that Σ is relatively small, and π is “sufficiently
random” (e.g., the permutation defined by the edge-set of a t-regular m-vertex expander will do)63,
then this construction amplifies distances (see next) although the alphabet size is increased (which is
an issue that we already dealt with in other parts of this text). To see why the distance is increased
by Eq. (8), recall that for any x 6= y the codewords C(x) and C(y) are at relative distance δ, and
the encoding E preserves this distance up to a constant factor (when considering the result as a
sequence over Λ). But π “distributes” these Ω(δ · mt) symbols among almost all m symbols of Ξ,
which yields the claimed relative distance of δ′ < 1. Note that if π were totally random, then using
t = O(1/δ) will do (for a fixed pair x 6= y), and it can be shown that t = poly(1/δ) suffices when
using an expander (as outlined in Footnote 63).

The iterative construction. With these preliminaries in place, we turn to the heart of the
construction (of [51]), which is an iterative process. The process starts with a code of very small
length, which can be tested simply by reading the entire purported codeword. Then, the length is
increased iteratively, while the rate, relative distance, and query complexity (of codeword testing)
are not harmed too much. Specifically, when wishing to obtain a code with length n, we start
with a code of length poly(log n), rate 1 − (1/poly(log n)), and relative distance 1/poly(log n).
In each iteration (to be described next), the length and the rate are (roughly) squared, the rel-
ative distance is maintained, and the query complexity is increased by a factor of poly(log n).
Thus, after approximately log log n iterations, we obtain a code of length n, constant rate (since

(1 − (1/poly(log n)))2
log log n

= 1 − o(1)), relative distance 1/poly(log n), and query complexity

(log n)O(log log n). Using the foregoing distance-amplification (which is also used inside the itera-
tive process), this gives a code of high rate with constant relative distance and query complexity
(log n)O(log log n), as asserted upfront.

A single iteration. Suppose that iteration i begins with a code Ci that has has length ni, rate
ri, relative distance δi, and query complexity qi. The iteration consists of two steps.

• Tensor product: First, we take the tensor product of Ci, denoted C2
i , where the tensor product

of Ci consists of all ni×ni matrices such that that each of the rows and columns of the matrix
is a codeword of Ci. The code C2

i has length n2
i , rate r2

i , and relative distance δ2
i . Using

additional features of the code Ci, which are preserved in the iterations, one can show that
C2

i is testable with query complexity qi · poly(1/δi).

63Specifically, we consider the permutation that maps (u, i) to (v, j) if {u, v} is the ith edge incident at u and the
jth edge incident at v.

34

• Distance amplification: Next, we apply the foregoing distance-amplification to the code C2
i ,

and amplify the relative distance from δ2
i to δi. The resulting code has length ni+1 = O(n2

i),

relative distance δi+1 = δi = δ1, rate ri+1 = (1 − δ1) · r2
i = (1 − delta1)

2i−1 · r2i

1 , and query
complexity qi+1 = qi · poly(1/δ1).

Indeed, a crucial detail that we refrained from addressing is the testing of the tensor code. The
interested reader is referred to [51].

4.4 Locally Decodable Codes

Locally decodable codes are in some sense complimentary to local testable codes. Here, one is
given a slightly corrupted codeword (i.e., a string close to some unique codeword), and is required
to recover individual bits of the encoded information based on a constant number of probes (per
recovered bit).64 That is, a code is said to be locally decodable if whenever relatively few location
are corrupted, the decoder is able to recover each information-bit, with high probability, based on
a constant number of probes to the (corrupted) codeword.

The best known locally decodable codes are of strictly sub-exponential length. Specifically, k
information bits can be encoded by codewords of length n = exp(ko(1)) that are locally decodable
using three bit-probes (cf. [25], building over [67]). It is also known that locally testable codes cannot
be T2-nearly linear: Recovery based on q queries requires length at least k1+(2/(q−1)) (cf. [46, 48]).
Indeed, the gap between the known upper and lower bounds is huge. (We mention that locally
decodable codes are related to schemes of (information theoretic) Private Information Retrieval,
introduced in [21].)

A natural relaxation of the definition of locally decodable codes requires that, whenever few
location are corrupted, the decoder should be able to recover most of the individual information-
bits (based on a constant number of queries), and for the rest of the locations the decoder may
output a special failure symbol (but not the wrong value). That is, the decoder must still avoid
errors (with high probability), but on a few bit-locations it is allowed to say “don’t know”. This
relaxed notion of local decodability can be supported by codes that have length ℓ(k) = kc for any
constant c > 1 (cf. [11, Sec. 4.2]).65

An obvious open problem is to separate locally decodable codes from relaxed locally decodable
codes (or to refute this conjectured separation). This separation may follow if one establishes a
k1+ℓ(q) lower bound on the length of q-query locally decodable codes and a ki+u(k) upper bound on
the length of the relaxed counterparts such that ℓ(q) > u(q), but currently we have ℓ(q) = 2/(q−1)
and u(q) = O(1/

√
q). A more ambitious goal is to determine whether there exist locally decodable

codes of polynomial length.

4.5 Exercises

Exercise 1 (ǫ-testing a code of relative distance 0.99ǫ): Show that for every ǫ ∈ (0, 0.001) there

exists a code of relative distance 0.99ǫ and constant rate that can be ǫ-tested with O(1/ǫ) queries.

64The aim in this case is to minimize the length of the code. A dual regime refers to allowing only linear length
codes and minimizing the query complexity (cf. [50]).

65That is, relaxed locally decodable codes of T1-nearly linear length are known [11]. In contrast, by [46], there
exist no (non-relaxed) locally decodable codes of T2-nearly linear length.

35

Guideline: We start with any code C0 ⊂ {0, 1}n of constant rate, distance d = 0.499n and covering
radius smaller than d. (Such a code can be obtained by iteratively adding to the code any n-bit
string that is at distance at least d from the current code.) Now, consider the code C(x) = C0(x)·0m,
and note that C has relative distance greater than d/(n + m) whereas any string that is ǫ-far from
C contains at least ǫ · (n + m) − d non-zeros it its m-bit long suffix.66 Letting m = 1.001d/ǫ and
using d = 0.499n, the claim follows.

Exercise 2 (from a PCP of Proximity for a set of codewords to a PCP for the corresponding
decodings): Suppose that C is an efficiently computable code of relative constant distance greater

than ǫ and constant rate ρ, and that V is a PCP of Proximity for T
def
= {C(x) : x ∈ S} with

proximity parameter ǫ, query complexity q and proof complexity p. Present a PCP for S with query

complexity q′(n) = q(n/ρ) and proof complexity p′(n) = p(n/ρ).

Guideline: On input x and access to an alleged proof π, the verifier computes w = C(x), and invokes
V w,π(1|w|); that is, the verifier emulates queries to w by itself and answers queries to π by querying
its own oracle. The point is that if x 6∈ S, then C(x) is ǫ-far from T .

Exercise 3 (from PCP of Proximity to a locally testable code): Let C0 ⊂ {0, 1}n be an efficiently

computable code of constant rate. Suppose that V is a PCP of Proximity for the set of all C0-

codewords with proximity parameter ǫ, query complexity q, and proof complexity p. Construct a

q-locally 3ǫ-testable code of length O(p(n)/ǫ) and relative distance that approximately equals that of

C0.

Guideline: Let C(x) = C0(x)tπ(x), where π(x) is the (canonical) proof that C0(x) is a codeword of C0,
and t = O(ǫ−1|π(x)|/|C0(x)|). On input w(1) · · ·w(t)π, the 3ǫ-tester for C checks that w(1) · · ·w(t)

consists of t repetitions of the n-bit string w(1), and invokes V while proving it access to w(1) (as
main input) and to π (as an alleged proof). The key observation is that if w(1) · · ·w(t)π is 3ǫ-far
from C, then w(1) · · ·w(t) is 2ǫ-far from Ct

0. Hence, either w(1) · · ·w(t) is ǫ-far from w(1) · · ·w(1) or
w(1) is ǫ-far from S.

Exercise 4 (interactive proofs yield PCPs): Suppose that S has an interactive proof system in

which the prover sends b bits. Show that S has a PCP of query complexity b.

Guideline: The queries correspond to possible partial transcripts of the interaction of the verifier
with the prover.

Exercise 5 (Satisfiability of Quadratic Systems over GF(2)): Prove that the following problem is

NP-complete. An instance of the problem consists of a system of quadratic equations over GF(2),
and the problem is to determine whether there exists an assignment that satisfies all the equations.

Guideline: Start by showing that the corresponding problem for cubic equations is NP-complete, by
a reduction from 3SAT that maps the clause x∨¬y∨z to the equation (1−x)·y ·(1−z) = 0. Reduce
the problem for cubic equations to the problem for quadratic equations by introducing auxiliary
variables; that is, given an instance with variables x1, ..., xn, introduce the auxiliary variables xi,j’s
and add equations of the form xi,j = xi · xj.

66Hence, the density of non-zeros in this suffix is greater than ǫ− (d/m).

36

Exercise 6 (on testing equality of matrices): Prove that for Boolean n-by-n matrices A 6= B,

when r, s ∈ {0, 1}n are uniformly selected vectors, it holds that Prs[As = Bs] = 2−rank(A−B) and

it follows that Prr,s[rAs = rBs] ≤ 3/4.

Guideline: The second assertion follows from the first one by observing that if (u1, ..., un) 6=
(v1,, vn) ∈ {0, 1}n, then Prr[

∑
i riui =

∑
i rivi] = 1/2, when r = (r1,, rn) is uniformly

distributed in {0, 1}n. The first assertion is proved by a generalization of the latter argument.67

Exercise 7 (a trivial PCP with large soundness error): Present a three-query PCP of logarithmic

radomness complexity and soundness error 1 − (1/m) for 3SAT, where m denotes the number of

clauses.

Guideline: The proof-oracle will be viewed of a truth assignment to the input formula.

Exercise 8 (on the complexity of gapCSP
{0,1}
c): Show that for every function τ : N → (0, 1], the

problem gapCSP
{0,1}
τ is solvable in polynomial-time.

Guideline: Reduce solving gapCSP
{0,1}
τ to deciding the satisfiability of 2CNF formulae.

References

[1] N. Alon, M. Krivelevich, T. Kaufman, S. Litsyn, and D. Ron. Testing low-degree polynomials
over GF(2). In Proceedings of the 7th RANDOM, Springer LNCS, Vol. 2764, pages 188–199,
2003.

[2] S. Arora. Probabilistic checking of proofs and the hardness of approximation problems. PhD
thesis, UC Berkeley, 1994.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. Journal of the ACM 45, 3 (May 1998), 501–555. (Preliminary
Version in 33rd FOCS, 1992).

[4] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal

of the ACM 45, 1 (Jan. 1998), 70–122. (Preliminary Version in 33rd FOCS, 1992).

[5] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover inter-
active protocols. Computational Complexity, 1(1):3–40, 1991.

[6] L. Babai, L. Fortnow, L.A Levin and M. Szegedy. Checking computations in polylogarithmic
time. In Proc. 23rd ACM Symposium on the Theory of Computing, May 1991, pp. 21–31.

[7] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd IEEE Symposium

on Foundations of Computer Science, Oct. 2001, pp. 106–115.

67To analyze Prr[
P

i riui =
P

i rivi] = 1/2, consider (w1, ..., wn) = (u1, ..., un) − (v1,, vn), and show that

Prr[
P

i riwi = 0] = 1/2, by observing that
P

i∈[n] riwi =
P

i:wi=1 ri. Similarly, prove that Prs[Ds = 0] = 2−rank(D),

by showing that for any full rank k-by-k submatrix D′ and any v′ ∈ {0, 1}k it holds that Prs′ [D
′s′ = v′] = 2−k.

37

[8] M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing in charac-
teristic two. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science,
pages 432–441, 1995.

[9] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability—towards
tight results. SIAM Journal on Computing 27, 3 (June 1998), 804–915. (Preliminary Version
in 36th FOCS, 1995).

[10] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs:
How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages
113–131, 1988.

[11] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan and S. Vadhan. Robust PCPs of proximity,
shorter PCPs and applications to coding. In Proc. 36th ACM Symposium on the Theory of

Computing, June 2004, pp. 1–10. See ECCC Technical Report TR04-021, March 2004.

[12] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan and S. Vadhan. Short PCPs verifiable in
polylogarithmic time. In 20th IEEE Conference on Computational Complexity, pages 120–134,
2005.

[13] E. Ben-Sasson, O. Goldreich and M. Sudan. Bounds on 2-query codeword testing. In the
proceedings of RANDOM’03, Springer LNCS, Vol. 2764, pages 216–227, 2003.

[14] E. Ben-Sasson, V. Guruswami, T. Kaufman, M. Sudan and M. Viderman. Locally testable
codes require redundant testers. In 24th IEEE Conference on Computational Complexity,
pages 52–61, 2009.

[15] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test. In
Proc. 35th ACM Symposium on the Theory of Computing, June 2003, pp. 345–354.

[16] E. Ben-Sasson and M. Sudan. Robust locally testable codes and products of codes. In Pro-
ceedings of Random-Approx’04, Springer LNCS Vol. 3122, pages 286–297, 2004. See ECCC
TR04-046, 2004.

[17] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM Journal on

Computing, Vol. 38 (2), pages 551–607, 2008. (Preliminary Version in 37th STOC, 2005).

[18] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-efficient low degree
tests and short PCPs via epsilon-biased sets. In Proc. 35th ACM Symposium on the Theory

of Computing, June 2003, pp. 612–621.

[19] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numeri-
cal problems. Journal of Computer and System Science, Vol. 47 (3), pages 549–595, 1993.
(Preliminary Version in 22nd STOC, 1990).

[20] R. Canetti, O. Goldreich, S. and Halevi. The random oracle methodology, revisited. In Proc.

30th ACM Symposium on the Theory of Computing, May 1998, pages 209–218.

[21] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information Retrieval. Journal

of the ACM, Vol. 45, No. 6, pages 965–982, November 1998.

38

[22] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, Vol. 54 (3), Art. 12,
2007. Extended abstract in 38th STOC, 2006.

[23] I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs. In
50th IEEE Symposium on Foundations of Computer Science, pages 472–481, 2009.

[24] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof of the PCP-
Theorem. SIAM Journal on Computing, Vol. 36 (4), pages 975–1024, 2006. Extended abstract
in 45th FOCS, 2004.

[25] K. Efremenko. 3-query locally decodable codes of subexponential length. In 41st ACM Sym-

posium on the Theory of Computing, pages 39–44, 2009.

[26] F. Ergün, R. Kumar, and R. Rubinfeld. Fast approximate PCPs. In Proc. 31st ACM Sympo-

sium on the Theory of Computing, May 1999, pages 41–50.

[27] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the hard-
ness of approximating cliques. Journal of the ACM 43, 2 (Mar. 1996), 268–292. (Preliminary
version in 32nd FOCS, 1991).

[28] G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.

[29] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.
Theoretical Computer Science 134, 2 (Nov. 1994), 545–557.

[30] K. Friedl and M. Sudan. Some improvements to total degree tests. In Proc. 3rd Israel Sympo-

sium on Theoretical and Computing Systems (Tel Aviv, Israel, 4–6 Jan. 1995), pages 190–198.

[31] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting
for polynomials and for approximate functions. In Proc. 23rd ACM Symposium on the Theory

of Computing, pages 32–42, 1991.

[32] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998.

[33] O. Goldreich. Short locally testable codes and proofs (survey). ECCC Technical Report
TR05-014, Jan. 2005.

[34] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[35] O. Goldreich. Short locally testable codes and proofs: A survey in two parts. In [36].

[36] O. Goldreich (ed.). Property Testing: Current Research and Surveys. Springer, LNCS,
Vol. 6390, 2010.

[37] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM 45, 4 (July 1998), 653–750. (Preliminary Version in 37th

FOCS, 1996).

[38] O. Goldreich, T. Gur, and I. Komargodski. Strong Locally Testable Codes with Relaxed Local
Decoders. In 30th IEEE Conference on Computational Complexity, pages 1–41, 2015.

39

[39] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All
Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 3,
pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

[40] O. Goldreich and D. Ron. On proximity oblivious testing. ECCC, TR08-041, 2008. Also in
the proceedings of the 41st STOC, 2009.

[41] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost linear length. In Proc.

43rd IEEE Symposium on Foundations of Computer Science, Nov. 2002, pages 13–22. (See
ECCC Report TR02-050, 2002).

[42] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version in
17th STOC, 1985. Earlier versions date to 1982.

[43] T. Gur and R. Rothblum. Non-interactive proofs of proximity. Technical Report TR13-078,
ECCC, 2013.

[44] J. H̊astad. Clique is hard to approximate within n1−ǫ. Acta Mathematica 182 (1999), 105–142.
(Preliminary Versions in 28th STOC, 1996, and 37th FOCS, 1997).

[45] J. H̊astad. Some optimal inapproximability results. Journal of the ACM 48, 4 (July 2001),
798–859. (Preliminary Version in 29th STOC, 1997).

[46] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. In Proc. 32nd ACM Symposium on the Theory of Computing, pages 80–86, 2000.

[47] T. Kaufman, S. Litsyn, and N. Xie. Breaking the ǫ-soundness bound of the linearity test over
GF(2). SIAM Journal on Computing, Vol. 39 (5), pages 1988–2003, 2009/2010.

[48] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via
a quantum argument. Journal of Computer and System Science, Vol. 69 (3), pages 395–420,
2004. (Preliminary Version in 35th STOC, 2003).

[49] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In Proc. 24th ACM

Symposium on the Theory of Computing, May 1992, pages 723–732.

[50] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf. High rate locally-correctable and locally-
testable codes with sub-polynomial query complexity ECCC, TR15-068, 2015.

[51] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf. High-rate Locally-testable Codes with
Quasi-polylogarithmic Query Complexity. ECCC, TR15-110, 2015.

[52] D. Lapidot and A. Shamir. Fully parallelized multi prover protocols for NEXP-time. In 32nd

IEEE Symposium on Foundations of Computer Science, Oct. 1991, pages 13–18.

[53] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992.

[54] O. Meir. Combinatorial construction of locally testable codes. SIAM Journal on Computing,
Vol. 39 (2), pages 491–544, 2009. Extended abstract in 40th STOC, 2008.

40

[55] O. Meir. Combinatorial PCPs with efficient verifiers. In 50th IEEE Symposium on Foundations

of Computer Science, pages 463–471, 2009

[56] S. Micali. Computationally sound proofs. SIAM Journal on Computing 30, 4 (2000), 1253–
1298. (Preliminary Version in 35th FOCS, 1994).

[57] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. In 49th IEEE Symposium

on Foundations of Computer Science, pages 314–323, 2008.

[58] I. Newman. Property Testing of Massively Parametrized Problems – A Survey. In [36].

[59] A. Polishchuk and D.A. Spielman. Nearly-linear size holographic proofs. In Proc. 26th ACM

Symposium on the Theory of Computing, May 1994, pages 194–203.

[60] R. Raz. A parallel repetition theorem. SIAM Journal of Computing 27, 3 (June 1998), 763–803.
(Preliminary Version in 27th STOC, 1995.)

[61] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing 25, 2 (Apr. 1996), 252–271. (Preliminary
Version in 3rd SODA, 1992).

[62] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877, 1992. Prelim-
inary version in 31st FOCS, 1990.

[63] D. Spielman. Computationally efficient error-correcting codes and holographic proofs. PhD
thesis, Massachusetts Institute of Technology, June 1995.

[64] M. Sudan. Efficient checking of polynomials and proofs and the hardness of approximation

problems. Ph.D. Thesis, Computer Science Division, University of California at Berkeley,
1992. Also appears as Lecture Notes in Computer Science, Vol. 1001, Springer, 1996.

[65] M. Viderman. Strong LTCs with inverse poly-log rate and constant soundness. In the 54th

IEEE Symposium on Foundations of Computer Science, pages 330–339, 2013.

[66] M. Viderman. Explicit strong LTCs with inverse poly-log rate and constant soundness. ECCC,
TR15-020, 2015.

[67] S. Yekhanin. Towards 3-Query locally decodable codes of subexponential length. In 39th ACM

Symposium on the Theory of Computing, pages 266–274, 2007.

41

