
Verifiable Outsourcing of
Computation

Ron D. Rothblum

Under the Supervision of Professor Oded Goldreich

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science

Submitted for the degree of Doctor of Philosophy

to the Scientific Council of the Weizmann Institute of Science

March 2015

Dedicated to the memory of my father, Uri Rothblum

Abstract

We study the question of designing protocols for allowing a computationally weak client
to outsource its computations to a powerful but untrusted server. Since the client does
not trust the server, the latter must convince the client that the result of the computation
is correct. The two crucial points are that (1) verifying the correctness must be much
easier than directly performing the computation, and (2) the overhead on the server’s
side must be minimal. Our main results are:

1. (Almost) Linear-Time Verification: We show a general-purpose single-round
protocol that allows the client to outsource the computation of any function com-
putable in (arbitrarily large) polynomial-time such that the correctness of the com-
putation can be verified in (almost) linear-time, with only a polynomial overhead
for the server. The security of our protocol relies on the security of a standard
cryptographic primitive.

2. Sublinear-Time Verification: In some settings even linear-time verification may
not be feasible. We initiate the study of non-interactive proofs of proximity. These
allow the client to verify a given statement in sub-linear time, using a short (sublin-
ear length) explicitly given certificate (i.e., proof) from the server. Since the client
cannot even read its entire input, following the property testing literature, we only
guarantee an approximate answer. This notion can be viewed as the NP (or more
accurately MA) analogue of property testing.

Acknowledgements

First and foremost, I would like to thank my advisor, Oded Goldreich, for his support
and guidance. Working with Oded has been a life-changing experience and has shaped
my view of theoretical computer science and beyond. Oded is an amazing mentor and I
feel extremely fortunate to have had the opportunity to learn from him. I admire Oded
for his extraordinary clarity of thought, and his unique ability to communicate these
thoughts to others. What strikes me most about Oded, beyond his uncanny intelligence,
are his friendliness and sense of humor. Our meetings in Dizi were filled with stories and
jokes that I will greatly miss.

I would like to thank Moni Naor and Adi Shamir for serving as my PhD committee,
and for their advice and insights throughout the past few years.

During graduate school, I spent two extremely enjoyable and fruitful summers as an
intern, the first at MSR New England and the second at MSR Silicon Valley. I thank Yael
Kalai and Omer Reingold for hosting me during these internships and for the friendly
and fun atmosphere that they created. I thank Yael for introducing me to the exciting
problem of delegating computation, which turned out to be at the core of my research
and this thesis. I thank Omer for broadening my horizons beyond cryptography and
working with me on problems in pseudorandomness and in data structures.

One of the great things about doing research is being able to collaborate with ex-
ceptionally talented scientists. I thank my co-authors, Gil Cohen, Ivan Damg̊ard, Oded
Goldreich, Tom Gur, Yuval Ishai, Yael Kalai, Jonas Kölker, Raghu Meka, Peter Bro
Miltersen, Ran Raz, Omer Reingold, Guy Rothblum and Udi Wieder for sharing their
knowledge with me and for their collaboration.

Although we Rothblums are geographically far apart, we somehow manage to remain
extremely close. I thank Alex, Modi and little Uriel for the joy that they bring into
my life with every video call and every visit. I thank my brother Guy for his constant
support and encouragement. I also thank Guy for anticipating my research interests years
in advance and developing fascinating lines of research that ended up being at the core
of my research and this thesis.

To my mom and dad, Naomi and Uri, my gratitude is beyond expression. They have
set an example for parenthood to which I can only aspire. Abba, it is inconceivable to me
that you will never read these words. You are forever in my thoughts and in my heart.
This thesis is lovingly dedicated to your memory.

Lastly, I thank my wife, Lucy, for always believing in me, for her boundless enthusiasm
and energy and for her unwavering support even in the worst of times. Mostly, I thank
her for being my best friend. Finally, I thank little Yotam who has recently entered our
lives – he is undoubtedly my best result!

Contents

1 Introduction 1
1.1 Verifiably Outsourcing Computation . 2
1.2 Our Results . 3

1.2.1 Linear-Time Verification for P . 3
1.2.2 Non-Interactive Proofs of Proximity 4
1.2.3 Arguments of Proximity . 5
1.2.4 Proofs of Proximity for Context-Free Languages and Read-Once

Branching Programs . 5
1.3 Organization . 5

2 Delegation for P 7
2.1 Introduction . 7

2.1.1 Multi-Prover Interactive Proofs with No-Signaling Provers 8
2.1.2 From Multi-Prover Interactive Proofs to One-Round Delegation . 10
2.1.3 Summary of Our Results . 11
2.1.4 Related Work . 13
2.1.5 Organization . 14

2.2 Our Results . 14
2.3 Our Techniques . 16

2.3.1 Our Statistically No-Signaling MIP 16
2.3.2 From No-Signaling MIP to a Delegation Scheme 22

2.4 Preliminaries . 23
2.4.1 Notation . 23
2.4.2 Multi-Prover Interactive Proofs 24
2.4.3 No-Signaling MIPs . 25
2.4.4 Probabilistically Checkable Proofs 25
2.4.5 No-Signaling PCPs . 26
2.4.6 Low Degree Extension . 27
2.4.7 Public-Key Encryption and Fully Homomorphic Encryption (FHE) 29
2.4.8 Interactive Argument Systems . 29

2.5 The Base PCP . 30
2.5.1 The PCP Proof . 30
2.5.2 The PCP Verifier, V . 33

CONTENTS

2.5.3 The Relaxed Verifier, V ′ . 35
2.6 Soundness of V ′ versus Soundness of V 35

2.6.1 Proof of Lemma 2.3 . 36
2.7 Soundness of V ′ in the Base PCP . 41

2.7.1 Some Immediate Claims . 42
2.7.2 Additional Notation . 44
2.7.3 Consistency of P0 . 44
2.7.4 Consistency of X . 52
2.7.5 Consistency of X and P0 . 55
2.7.6 Property R(ε′, r′) . 58
2.7.7 Proof of Lemma 2.5 . 62

2.8 Soundness of V in the Base PCP . 64
2.9 The Augmented PCP . 64
2.10 Soundness of V ′ in the Augmented PCP 67

2.10.1 Reading Multiple Points Together 67
2.10.2 The Main Lemma . 69
2.10.3 Some Useful Claims . 72
2.10.4 The Property Rµ and making Progress under Conditioning 73
2.10.5 Proof of Lemma 2.31 . 76

2.11 Soundness of V in the Augmented PCP 80
2.12 From No-Signaling PCP to No-Signaling MIP 81
2.13 A No-Signaling MIP for PSPACE with an Inefficient Prover 84
2.14 Simulating an MIP Oracle . 87
2.15 Proof of Theorem 2.4 . 95
2.16 From No-Signaling MIP’s to One Round Arguments 97
2.17 Delegation for P . 100

Appendix for Chapter 2 103
2.A Computing LDE over Characteristic 2 Fields 103

3 Non-interactive Proofs of Proximity 105
3.1 Introduction . 105

3.1.1 The Notion of MAP . 106
3.1.2 The Power of MAP . 108
3.1.3 The Limitations of MAP . 110
3.1.4 Techniques . 111
3.1.5 Related Works . 114
3.1.6 Organization . 116

3.2 Definitions . 116
3.2.1 Merlin-Arthur Proofs of Proximity 117
3.2.2 Interactive Proofs of Proximity 119
3.2.3 Useful Conventions . 120

3.3 Separation Results . 121

viii

CONTENTS

3.3.1 Exponential Separation between PT and MAP 121
3.3.2 Trade-off between Query and Proof Complexity 129
3.3.3 MAP vs. IPP[O(1)] . 136
3.3.4 Exponential Separation between MAP and IPP 139

3.4 General Transformations . 141
3.4.1 From MAP to PT . 142
3.4.2 From Two-Sided Error MAP to One-Sided Error MAP 143

3.5 An Extremely Hard Property for MAPs 146
3.6 MAPs for Parametrized Concatenation Problems 150

3.6.1 The Generic Scheme . 152
3.6.2 Approximate Hamming Weight 156
3.6.3 Graph Orientation Problems . 160

3.7 Bipartiteness in Bounded Degree Graphs 162

Appendix for Chapter 3 167
3.A Background . 167

3.A.1 Communication Complexity . 167
3.A.2 MA Communication Complexity 168
3.A.3 Error Correcting Codes . 169
3.A.4 Multivariate Polynomials and Low Degree Testing 170
3.A.5 The Sum-Check Protocol . 172

3.B Proofs and Adaptations of Known Results 173
3.B.1 Proofs of Standard Claims from Section 3.5 173
3.B.2 Precision Sampling . 174
3.B.3 Lower Bound on the MA Communication Complexity of GHD . . 175

4 Proofs of Proximity for Context-Free Languages and Read-Once Branch-
ing Programs 177
4.1 Introduction . 177

4.1.1 Our Results . 178
4.1.2 Proof Overview . 180
4.1.3 Organization . 187

4.2 Preliminaries . 187
4.2.1 Property Testing, MAPs and IPPs 188
4.2.2 Read-Once Branching Programs (ROBPs) 190
4.2.3 Context-Free Languages . 190

4.3 MAPs and IPPs for Read-Once Branching Programs 192
4.3.1 IPPs for ROBPs . 192
4.3.2 MAPs for ROBPs . 198
4.3.3 MAPs and IPPs for Affine Spaces 198

4.4 MAPs and IPPs for Context-Free Languages 199
4.4.1 Partitioning Partial Derivation Languages 201
4.4.2 IPP for Partial Derivation Languages 207

ix

4.4.3 Improved MAPs for Specific Context-Free Languages 211

Appendix for Chapter 4 215

4.A Parallel Repetition of IPPs . 215

4.B Computing ROBPs in Low-Depth . 215

4.C Proof of Lemma 4.18 . 216

4.D Efficient Verification for Special Context-Free Languages 218

5 Arguments of Proximity 221

5.1 Introduction . 221

5.1.1 Our Results in a Nutshell . 222

5.1.2 Our Results in More Detail . 223

5.1.3 Related Work . 225

5.2 Our Techniques . 226

5.2.1 Our Positive Results . 226

5.2.2 Our Negative Results . 229

5.3 Preliminaries . 232

5.3.1 Notation . 232

5.3.2 Arguments of Proximity . 232

5.3.3 Interactive Proofs of Proximity (IPP) 233

5.3.4 Multi-Prover Interactive Proofs (MIP) 233

5.3.5 No-Signaling MIP . 234

5.3.6 MIP of proximity (MIPP) . 235

5.3.7 No-Signaling MIPP . 235

5.3.8 Low Degree Extension . 236

5.3.9 Public-Key Encryption and Fully Homomorphic Encryption (FHE) 236

5.4 Lower Bound for IPP and No-Signaling MIPP 237

5.4.1 Proof of Theorem 5.7 . 237

5.4.2 Lower Bound for IPP . 241

5.4.3 Lower Bound for Interactive Arguments of Proximity 243

5.5 No-signaling MIPP for P . 245

5.5.1 Completeness of PVAL . 246

5.5.2 Composing an MIPP with an IPP 248

5.6 Arguments of Proximity for P . 253

5.6.1 Proof of Theorem 5.16 . 257

A Works not included in this Thesis 259

A.1 Efficient Multiparty Protocols via Log-Depth Threshold Formulae [CDI+13]259

A.2 Circular Security of Bit-Encryption [Rot13] 260

A.3 Enhancements of Trapdoor Permutations [GR13a] 261

A.4 Fast Pseudorandomness for Independence and Load Balancing [MRRR14] 262

A.5 Pseudorandom Graphs in Data Structures [RRW14] 262

CONTENTS

Bibliography 263

xi

Chapter 1

Introduction

The past few years have seen a dramatic shift in the nature of computing. The classical
paradigm of “personal computing” is being challenged by the fact that vast amounts of
computation are being executed on massive datasets. Nowadays more and more com-
putations, which used to be performed locally, are being outsourced to the “cloud” -
an external service provider that has extremely powerful hardware and can be paid to
run expensive computations. This exciting shift is coupled with the fact that personal
computing devices (such as smartphones and tablets) have become (relatively) computa-
tionally weaker, and must use the power of the cloud to execute expensive computational
tasks.1

This emerging paradigm of “cloud computing” gives rise to new security concerns,
due to the fact that a potentially untrusted party (i.e., the cloud) is involved in our
computations. Perhaps the most fundamental security concern, if we do not trust the
cloud, is that we cannot just assume that the result of the outsourced computation is
correct. For example, what is to stop the cloud service provider from neglecting to run the
computation all-together and simply providing an arbitrary result (thereby saving itself
a lot of resources)?2 In addition, in some natural scenarios, the cloud service provider
may an ulterior motive to convince the client of an incorrect result.

The focus of this thesis is introducing and exploring models and techniques that allow
a client to securely outsource its computation to an untrusted server in such a way that
the client can efficiently verify the correctness of the result.

1For example, “Siri ... uses a natural language user interface to answer questions, make recommenda-
tions, and perform actions by delegating requests to a set of web services” - Wikipedia entry for “Siri”,
the digital personal assistant software used by Apple.

2This attack is even more profound in case the computation has an a priori expected result. Consider
for instance the SETI (search for extraterrestrial intelligence) program. Here, a huge amount of electro-
magnetic radiation data is processed for signs of transmission from civilizations from other worlds. A
cloud service provider asked to process the data could save itself a lot of resources (without arousing too
much suspicion) by just answering negatively.

1

1. INTRODUCTION

1.1 Verifiably Outsourcing Computation

Suppose that a weak computational client as above wishes to outsource the computation
of a function f , on a given input x, to a powerful server (i.e., the cloud). The client sends
x to the server3 and suppose that the server claims that f(x) = y. Since the client does
not trust the server, in addition to sending y, the server must convince the client that
indeed y = f(x).

One naive solution to this problem is for the client to simply check that y = f(x) by
computing f(x) directly. However, this solution defeats the entire purpose of outsourcing
computation since the client’s running time is equivalent to the time that it takes to
directly compute f without any help from the server. Hence, we seek solutions in which
the verification process is much faster than directly computing f .

On top of the efficient verification, an additional requirement, which seems necessary
for any practical application, is that the server should not work too hard in order to prove
that y = f(x). That is, the running time of the server should not be much longer than
the time that it takes to compute f .

To summarize, we seek a protocol for verifying the correctness of a computation that
is doubly efficient. That is, the protocol should have both

1. Super efficient verification (i.e., the client’s running time is much shorter than the
time that it takes to directly compute f); and

2. Efficient proving (i.e., the server’s running time is proportional to the time that it
takes to compute f).

In addition to the double efficiency requirement, we will aim for solutions in which
the number of rounds of communication is minimal. Ideally, the entire communication
should consist of a single round - the client sends x (and possibly some additional short
string) and the server sends back the result y and a “proof” π that convinces the client
that indeed y = f(x).

Comparison with Interactive Proofs. The problem of verifiably outsourcing com-
putation is closely related to the notion of an interactive proof, introduced by Goldwasser,
Micali and Rackoff [GMR89]. In contrast to our setting, in an interactive proof, the veri-
fier is allowed to run in (arbitrarily large) polynomial-time and the prover’s running time
is typically not restricted. In contrast, the requirement in our setting is much stronger:
the verifier should be super efficient (e.g., linear-time) and the prover should be relatively
efficient (e.g., polynomial-time). The study of such strong interactive proofs (which are

3The fact that the client shares its input x with the server raises an additional security concern.
Namely, the fact that the client’s private information is revealed to the server. In this thesis our focus
is only on the problem of guaranteeing correctness and we ignore the privacy aspect. Still, we note that
solutions that guarantee correctness (as described in this thesis) can be combined with cryptographic
tools such as fully-homomorphic encryption [RAD78, Gen09] to simultaneously yield both correctness
and privacy.

2

1.2 Our Results

inherently limited to tractable languages since the prover is efficient), originates in the
work of Goldwasser, Kalai and Rothblum [GKR08].

1.2 Our Results

We start with a brief descriptions of our main results. More details will follow in subse-
quent subsections.

(Almost) Linear-Time Verification. Together with Kalai and Raz [KRR13a, KRR14],
we designed a general-purpose single-round protocol that allows a verifier to outsource the
computation of any function. For functions that can be computed in (arbitrarily large)
polynomial-time, the verifier in our protocol runs in almost linear-time (i.e., essentially
not doing much more than just reading its input) and the prover runs in polynomial-
time. The verifier is guaranteed that the answer claimed by the prover is indeed correct
(with overwhelming probability), unless the prover can break the security of a standard
cryptographic primitive.

Sublinear-Time Verification. In some settings, when the input itself is huge, even
linear-time verification may not be feasible for the verifier. Since the verifier cannot even
read the entire input, following the property testing literature, we only require it to reject
inputs that are far from being valid.

In [GR15b], together with Gur, we initiated the study of non-interactive proofs of
proximity. Here, the verifier is able to verify that a given statement is close to a true
statement, using a short (sublinear length) explicitly given certificate (i.e., proof), and a
sublinear number of queries to its input. Such proof-systems can be viewed as the NP
analogue of property testing. We explored both the power and the limitations of non-
interactive proofs of proximity and, among other results, showed that such proof-systems
can be exponentially stronger than property testers, but are exponentially weaker than
interactive proofs of proximity, which were recently studied by Rothblum, Vadhan and
Wigderson [RVW13].

1.2.1 Linear-Time Verification for P

Together with Kalai and Raz [KRR13a, KRR14], we constructed a one-round protocol
for verifiably outsourcing the computation of every function computable in time t = t(n),
such that the running time of the verifier is n·polylog(t) and the running time of the prover
poly(t). In particular, for every language in P we obtain almost linear time verification.
Our construction relies on the existence of a (sub-exponentially secure) computational
private information retrieval (PIR) scheme.

Our proof is based on a curious connection between the problem of verifiable outsourc-
ing of computation and a model of multi-prover interactive proofs that are sound against
no-signaling (cheating) strategies. This model was studied in the context of multi-prover

3

1. INTRODUCTION

interactive proofs with provers that share quantum entanglement, and is motivated by
the physical principle that information cannot travel faster than light.

For any language computable in time t = t(n), we constructed a multi-prover in-
teractive proof (MIP) that is sound against no-signaling strategies, where the running
time of the provers is poly(t), the number of provers is polylog(t), and the running time
of the verifier is n · polylog(t). In particular, this shows that the class of languages that
have polynomial-time MIPs that are sound against no-signaling strategies, is exactly EXP.
Previously, this class was only known to contain PSPACE.

To convert our MIP into a one-round verifiable delegation scheme, we used the method
suggested by Aiello et al. [ABOR00], which makes use of a PIR scheme. This method
lacked a proof of security. We proved that this method is secure assuming the underlying
MIP is secure against no-signaling provers. See Chapter 2 for details.

1.2.2 Non-Interactive Proofs of Proximity

The protocol discussed above allows to verify the correctness of any polynomial-time com-
putation in (almost) linear-time. In some settings, however, even linear-time verification
may not be feasible. For example, consider a data analyst performing some statistical
computation on a huge dataset x that is publicly available on the internet. A fundamen-
tal problem that arises when outsourcing computation in this setting is that the analyst
cannot even read her entire input and therefore, the server can easily cheat by providing
an answer corresponding to some dataset x′ that only differs from x on a few bits.

Following the property testing literature, we address this problem by relaxing the
requirement so that the analyst is only assured of the proximity of the statement to
a correct one. Indeed, such an approximate answer can suffice for many applications
(e.g., for statistical analysis). This model, known as interactive proofs of proximity (IPP)
was introduced by Ergün, Kumar and Rubinfeld [EKR04] and was recently studied by
Rothblum, Vadhan and Wigderson [RVW13], who showed a (multi-round) IPP for a large
class of functions, in which the verifier runs in sublinear-time.

Together with Gur [GR15b], we initiated a study of non-interactive proofs of prox-
imity. These proof-systems consist of a verifier that wishes to ascertain the validity of a
given statement, using a short (sublinear length) explicitly4 given proof, and a sublinear
number of queries to its input. Since the verifier cannot even read the entire input, we
only require it to reject inputs that are far from being valid. Thus, the verifier is only
assured of the proximity of the statement to a correct one. Such proof-systems can be
viewed as the NP (or more accurately MA) analogue of property testing.

We explored both the power and limitations of non-interactive proofs of proximity.
We showed that such proof-systems can be exponentially stronger than property testers,
but are exponentially weaker than interactive proofs of proximity. In addition, we showed
a natural problem that has a full and (almost) tight multiplicative trade-off between the
length of the proof and the verifier’s query complexity. See Chapter 3 for details.

4In contrast, in the related model of probabilistically checkable proofs of proximity (PCPPs) the verifier
is given implicit (i.e., oracle) access to the proof, and the length of the proof is typically super-linear.

4

1.3 Organization

1.2.3 Arguments of Proximity

Proofs of proximity guarantee the correctness of the result even if the prover deviates
arbitrarily from the protocol. A natural relaxation to consider is limiting attention to
adversaries that are computationally bounded - that is, soundness is only required to
hold against computationally bounded cheating provers. Together with Kalai [KR14], we
considered this natural relaxation, which we called interactive arguments of proximity.

We constructed such arguments of proximity that improve on the interactive proofs
of proximity of [RVW13] by (1) capturing a richer class of functions and (2) minimizing
the number of rounds in the interaction to a single round. More specifically, assuming
the existence of a sub-exponentially secure FHE scheme, we constructed a one-round
argument of proximity for every language computable in time t, where the running time
of the verifier is o(n) + polylog(t) and the running time of the prover is poly(t).

In contrast, assuming sufficiently hard cryptographic PRGs, we showed a language in
P for which the parameters of our argument-system are close to optimal. In addition,
based on similar cryptographic assumptions, we also show a language in NC1, for which
the parameters of the IPPs of Rothblum et al. [RVW13] are close to optimal.

Finally, using adequate error correcting codes, we observed that any one-round ar-
gument of proximity immediately yields a one-round standard delegation scheme (i.e.,
the verifier rejects every false input) where the verifier runs in exact linear time. See
Chapter 5 for details.

1.2.4 Proofs of Proximity for Context-Free Languages and Read-
Once Branching Programs

To further demonstrate the usefulness of both interactive and non-interactive proofs of
proximity, a basic goal is to design such protocols for natural languages or even classes
of languages. Together with Goldreich and Gur [GGR15], we considered this questions
and constructed proofs of proximity for two natural classes of properties: (1) context-free
languages, and (2) languages accepted by small read-once branching programs. Our main
results are:

1. Non-interactive proofs of proximity for these two classes, in which, for inputs of
length n, both the verifier’s query complexity and the length of the proof are Õ(

√
n).

2. Interactive proofs of proximity for the same two classes with constant query com-
plexity, poly-logarithmic communication complexity, and logarithmically many rounds
of interaction.

See Chapter 4 for details.

1.3 Organization

The thesis is organized in chapters, where each chapter contains a full version of a pub-
lished paper or a paper that is currently in submission. Hence, each chapter may be

5

1. INTRODUCTION

read independently of all other chapters. We note that (1) the first section of each chap-
ter ends with an organization subsection that outlines the structure of that chapter and
(2) appendices relevant to each chapter appear immediately at the end of the relevant
chapter.

In Chapter 2 we present our construction of a delegation scheme for any language in
P (based on [KRR13b]). In Chapter 3 we present our results on non-interactive proofs of
proximity (based on [GR15b]). In Chapter 4 we show how to construct efficient proofs of
proximity for context-free languages and languages accepted by small read-once branch-
ing programs (based on [GGR15]). In Chapter 5 we discuss our results for arguments
of proximity (including also the aforementioned lower bound for interactive proofs of
proximity) (based on [KR14]).

Finally, in Appendix A we give a high-level overview of results that were obtained
during our doctoral studies but are not directly related to verifiable outsourcing of com-
putation and were therefore not included in the thesis.

6

Chapter 2

Delegation for P

2.1 Introduction

The problem of delegating computation considers a setting where one party, the delegator
(or verifier), wishes to delegate the computation of a function f to another party, the
worker (or prover). The challenge is that the delegator may not trust the worker, and thus
it is desirable to have the worker “prove” that the computation was done correctly. We
require that verifying this proof is significantly easier than doing the computation itself;
that is, the delegator’s running time is significantly smaller than the time complexity of
f . Moreover, we require that the running time of the worker is not much larger than the
time complexity of f .

The problem of delegating computation became a central problem in cryptography,
especially with the increasing popularity of cloud computing, where weak devices use
cloud platforms to run their computations.

We focus on the problem of constructing one-round delegation protocols, where the
delegator wants to verify a statement of the form x ∈ L. The delegator sends x to the
worker together with some query q; then the worker computes b = L(x), and based on the
query q provides a non-interactive proof π for the fact that b = L(x). The delegator should
be able to verify the correctness of the proof π very efficiently, and the worker should run
in time polynomial in the time it takes to compute f . Throughout this work (similarly
to all previous works that consider the problem of one-round delegation), the security
requirement is against computationally bounded cheating workers. Namely, we consider
the computational setting, where the security (i.e., soundness) of our scheme relies on a
cryptographic assumption, and the guarantee is that any cheating worker, who cannot
break the underlying assumption, cannot prove the correctness of an incorrect statement.

Previously, [GKR08, KR09] proved that (assuming the existence of a sub-exponentially
secure computational PIR scheme) any function f that can be computed by a LOGSPACE-
uniform circuit C of size t = t(n) and depth d = d(n), has a one-round delegation scheme
where the running time of the verifier is Õ(n+ d), and the running time of the prover is
poly(t).1 Note however that for circuits with large depth d this delegation scheme does

1As is the case with all computationally sound delegation schemes, the runtime of both the prover

7

2. DELEGATION FOR P

not satisfy the efficiency criterion.

A fundamental question is: Do there exist efficient 1-round delegation schemes for all
deterministic computations? There are several works that (partially) answer this question
in the preprocessing model, or under non-falsifiable assumptions.2 We elaborate on these
works in Section 2.1.4.

In this chapter, we answer the above question positively, by constructing a 1-round
delegation scheme for every deterministic computation, assuming a sub-exponentially
secure computational PIR scheme. More specifically, we show a delegation scheme for
every language computable in time t = t(n), where the running time of the verifier is
n ·polylog(t), and the running time of the prover is poly(t). The underlying assumption is
that there exists a computational PIR scheme (or an FHE scheme) that cannot be broken
in time tpolylog(t) for security parameter k ≤ poly(n).3

Our delegation scheme exploits a connection to the seemingly unrelated model of
multi-prover interactive proof systems (MIP) in which soundness holds even against no-
signaling cheating provers. Loosely speaking, no-signaling provers are allowed to use
arbitrary strategies (as opposed to local ones, where the reply of each prover is a function
only of her own input), as long as their strategies cannot be used for communication
between any two disjoint sets of provers.

We show that any MIP that is sound against no-signaling cheating provers can be con-
verted into a 1-round delegation scheme, using a fully-homomorphic encryption scheme
(FHE), or alternatively, using a computational private information retrieval (PIR) scheme.
We elaborate on this connection in Section 2.1.2.

We then construct a new MIP, for every deterministic language, with soundness
against no-signaling cheating provers. This, together with the transformation above,
gives us our 1-round delegation scheme.

2.1.1 Multi-Prover Interactive Proofs with No-Signaling Provers

The study of MIPs that are secure against no-signaling provers was motivated by the
study of MIPs with provers that share entangled quantum states. Recall that no-signaling
provers are allowed to use arbitrary strategies, as long as their strategies cannot be used
for communication between any two disjoint sets of provers. By the physical principle
that information cannot travel faster than light, a consequence of Einstein’s special rela-
tivity theory, it follows that all the strategies that can be realized by provers that share
entangled quantum states are no-signaling strategies.

Moreover, the principle that information cannot travel faster than light is a central
principle in physics, and is likely to remain valid in any future ultimate theory of nature,
since its violation means that information could be sent from future to past. Therefore,

and the verifier also grows polynomially with the security parameter. To avoid cluttering of notation,
throughout this introduction, we omit this dependence on the security parameter.

2We note that under non-falsifiable assumptions, there are known positive results even for non-
deterministic computations. The focus of this work is on deterministic computations.

3In particular, for languages in P we only require a PIR scheme with quasi-polynomial security.

8

2.1 Introduction

soundness against no-signaling strategies is likely to ensure soundness against provers
that obey a future ultimate theory of physics, and not only the current physical theories
that we have, that are known to be incomplete.

The study of MIPs that are secure against no-signaling provers is very appealing also
because no-signaling strategies have a simple mathematical characterization.

Loosely speaking, in a no-signaling strategy the answer given by each prover is allowed
to depend on the queries to all other provers, as long as for any subset of provers S, and
any queries given to the provers in S, the distribution of the answers given by the provers
in S is independent of all the other queries. Thus, the answer of each prover can depend
on the queries to all other provers as a function, but not as a random variable.

More formally, fix any MIP consisting of ` provers, and fix any set of cheating provers
{P ∗1 , . . . , P ∗` } who may see each other’s queries (and thus each answer may depend on
the queries sent to all the provers). The provers are said to be no-signaling if for every
subset of provers {P ∗i }i∈S, and for every two possible query sets {qi}i∈[`] and {q′i}i∈[`]

such that qi = q′i for every i ∈ S, it holds that the distributions of answers {ai}i∈S and
{a′i}i∈S are identical, where {ai}i∈S is the the answers of the provers in S corresponding
to the queries {qi}i∈[`], and {a′i}i∈S is the answers of the provers in S corresponding to
the queries {q′i}i∈[`]. If we have the slightly weaker guarantee that these two distributions
are statistically close, then we say that the provers are statistically no-signaling. More
specifically, if these two distributions are δ-close, then we say that the provers are δ-no-
signaling. We refer the reader to Section 2.4.3 for details.

No-signaling strategies were first studied in physics in the context of Bell inequalities
by Khalfin and Tsirelson [KT85] and Rastall [Ras85], and they gained much attention
after they were reintroduced by Popescu and Rohrlich [PR94]. MIPs that are secure
against no-signaling provers were extensively studied in the literature (see for exam-
ple [Ton09, BLM+05, AII06, KKM+08, IKM09, Hol09, Ito10]). However, their precise
power was unknown. It was known that they contain PSPACE [IKM09] and are contained
in EXP.4 For the case of two provers, Ito [Ito10] showed that the corresponding com-
plexity class is contained in (and therefore equal to) PSPACE. Characterizing the exact
power of MIPs (with more than two provers) that are secure against no-signaling provers
remained an open problem.

In this chapter, we solve this open problem by constructing MIPs that are secure
against no-signaling strategies (and more generally, statistically no-signaling strategies),
for every language in EXP. Moreover, in our construction the provers are efficient; i.e.,
they run in time that is polynomial in the computation time. Specifically, for any lan-
guage computable in time t = t(n), we construct an MIP that is sound against no-
signaling strategies, where the running time of the provers is poly(t), the number of
provers is polylog(t), and the running time of the verifier is n · polylog(t). The fact that
our MIP is efficient implies that the resulting 1-round delegation scheme is efficient. We
note that the previous construction of MIP that is sound against no-signaling strategies
for PSPACE [IKM09] is inefficient (the provers run in time exponential in the space of the

4In a nutshell, one can find the best strategy for the provers by solving an exponential size linear
program.

9

2. DELEGATION FOR P

computation).

2.1.1.1 The Challenges in Proving Soundness Against No-Signaling Strate-
gies

It is tempting to consider known constructions of MIPs and to try to prove their soundness
against no-signaling strategies. However, known constructions of MIPs are usually for
NEXP (or the scaled down version for NP). Since MIPs that are secure against no-
signaling strategies are contained in EXP, there is no hope to construct such MIPs for
NEXP. In particular, all known MIPs for NEXP (or the scaled down version for NP) are
not sound against no-signaling strategies.

Indeed, often the trivial strategy, where the provers simply choose random answers
that make the verifier accept, is no-signaling. For example, consider the trivial 2-prover
interactive proof for graph 3-coloring , where the verifier sends each prover a vertex in
the graph, where with probability 1/2 the vertices are the same and with probability 1/2
there is an edge between these vertices, and the provers reply with the color of these
vertices. Suppose the graph is not 3-colorable. We argue that the “random accepting
strategy” is a no-signaling strategy that is accepted with probability 1. More specifically,
the cheating strategy is the following: If both vertices are the same, choose a random
color from the set of three legal colors, and both provers send this color to the verifier.
Otherwise, choose two different random colors from the set of three legal colors, and each
prover sends one of these colors to the verifier. This strategy is clearly accepted with
probability 1. Moreover, it is a no-signaling strategy, since the distribution of answers of
each prover is uniform, independent of the query to the other prover.

This intuitive argument extends to more sophisticated MIPs and demonstrates the
difficulty in proving soundness against no-signaling strategies.

2.1.2 From Multi-Prover Interactive Proofs to One-Round Del-
egation

Aiello et al. [ABOR00] suggested a method for converting a 1-round MIP into a 1-round
delegation scheme, by using a PIR scheme (or an FHE scheme).5 In this work, we choose
to use the terminology of FHE schemes (as opposed to PIR schemes), because we find this
terminology to be simpler. However, all our results hold with PIR schemes as well.

In the resulting delegation scheme, the verifier computes all the queries of the MIP
verifier, and sends all these queries to the prover, each encrypted under a fresh key, using
an FHE scheme. The prover then computes the MIP provers’ responses homomorphically
over the encrypted queries, that is, underneath the layer of the FHE scheme.

Unfortunately, shortly after this method was introduced, Dwork et al. [DLN+04]
showed that it may, in general, be insecure. We elaborate further on the work of
Dwork et al. and their connection to no-signaling soundness in Section 2.1.4.

5Actually, [ABOR00] suggested to use a PCP. However, as pointed out by [DLN+04] an MIP is more
suitable.

10

2.1 Introduction

Motivated by the work of Aiello et al., Kalai and Raz [KR09] showed that a variant
of this method can be used to securely convert any interactive proof into a one-round
argument system. The idea is simply to have the verifier send all its (say t) messages in
the first round, in the following redundant form: For every i ∈ [t], all the first i messages
are encrypted using a fresh FHE key.6 The work of [KR09], together with the interactive
delegation scheme of Goldwasser et al. [GKR08], gives rise to the 1-round delegation
protocol for LOGSPACE-uniform low-depth circuits, mentioned above.

We show that the method of Aiello et al. [ABOR00] is secure if the underlying MIP
is sound against statistically no-signaling strategies. Thus, we reduce the cryptographic
problem of constructing secure one-round delegation schemes, to the information theoret-
ical problem of constructing MIP schemes that are secure against statistically no-signaling
provers. Such a reduction allows us to “strip off” the cryptography, and to focus on an
information theoretic question of constructing an MIP that is secure against statistically
no-signaling provers.

This result generalizes the work of [KR09], since any interactive proof can be seen
as an MIP where the verifier sends his first i messages to prover i (it is quite easy to
verify that the resulting MIP is secure against statistically no-signaling cheating provers).
Moreover, our result significantly simplifies the one of [KR09], which implicitly converts
the interactive proof into an MIP scheme and then applies the PIR to the resulting MIP
scheme. We believe that due to the lack of the “correct” terminology, the result of [KR09]
was relatively complicated, whereas this current result is significantly simpler and more
general. We refer the reader to Section 2.16 for details.

2.1.3 Summary of Our Results

We show that when applying the method of Aiello et al. [ABOR00] to an MIP that is sound
against statistically no-signaling cheating provers, then the resulting 1-round delegation
protocol is secure (assuming that the underlying FHE is secure against attackers of sub-
exponential size).

Informal Theorem 2.1 (See Theorem 2.11). Assuming the existence of an FHE scheme
with sub-exponential security, there exists an efficient way to convert any 1-round MIP
that is sound against statistically no-signaling cheating provers into a secure 1-round
delegation scheme, where the running time of the prover and verifier in the delegation
scheme are proportional to the running time of the provers and verifier in the MIP.

Remark. More specifically, the precise assumption needed in Informal Theorem 2.1
is that there exists an FHE scheme that, for security parameter k ≤ poly(n), is secure
against adversaries running in time 2O(|a1|+...+|a`|), where |ai| is the answer size of the i’th
prover in the underlying MIP scheme.

6The reason the i’th message is encrypted together with the preceding messages, is since the prover’s
reply may depend on all these messages.

11

2. DELEGATION FOR P

Thus, we reduced the cryptographic problem of constructing secure one-round dele-
gation schemes, to the information theoretical problem of constructing MIP schemes that
are secure against statistically no-signaling provers.

We then construct an efficient MIP, that is sound against statistically no-signaling
strategies, for every language in EXP.

Informal Theorem 2.2 (See Theorem 2.4). For any language L computable in time t =
t(n), there exists an MIP that is secure against statistically no-signaling adversaries. The
(honest) provers in this MIP run in time poly(t), the number of provers and the commu-
nication complexity is polylog(t), and the verifier runs in time n · polylog(t).

We note that our MIP has the additional property that the verifier does not need to
know the entire input, but rather only needs to access a few points in the low-degree
extension of the input (we refer the reader to Section 2.4.6 for the definition of low-
degree extension). This property, which was also a property of the [GKR08] protocol, is
important for applications such as memory delegation [CKLR11].

The above theorem, together with Informal Theorem 2.1, immediately yields the
following corollary:

Informal Theorem 2.3 (See Theorems 2.8-2.10). Assume the existence of an FHE
scheme with sub-exponential security. Then, there exists a 1-round delegation scheme
for any function computable in time t = t(n). The prover in this delegation scheme runs
in time poly(t), the verifier runs in time n ·polylog(t), and the communication complexity
is polylog(t).

Remark. As in Informal Theorem 2.1, the precise assumption needed for the above
theorem is the existence of an FHE scheme that, for security parameter k ≤ poly(n), is
secure against adversaries running in time 2polylog(t).

As a special case, Informal Theorem 2.2 gives soundness against provers that share
an entangled quantum state, since such provers are no-signaling. This gives a scheme for
delegating computation to a group of workers that cannot communicate with each other
(where the parameters are as in Theorem 2). The scheme is information theoretically
secure even if the workers share an entangled quantum state. Moreover, the scheme
remains secure in any future ultimate theory (that may extend quantum theory) as long
as the no-signaling principle remains valid. We note, however, that recent breakthroughs
by Ito and Vidick construct MIPs that are secure against provers that share entangled
quantum states, for any language in NEXP [IV12, Vid13].

The bulk of technical contribution of this work is in proving Informal Theorem 2.2.
As noted above, proving this theorem requires overcoming several technical hurdles that
do not appear in the classical MIP (or PCP) setting. We refer the reader to Section 2.3
for an overview of our techniques for proving this theorem.

Informal Theorem 2.1 is mainly a conceptual contribution. Its proof is relatively
straightforward, but we find the connection between the seemingly unrelated concepts of
delegation and no-signaling soundness to be intriguing.

12

2.1 Introduction

2.1.4 Related Work

Our work is greatly inspired by the work of Aiello et al. [ABOR00], who propose a
general methodology of constructing 1-round delegation schemes, by combining an MIP
(or a PCP) with a (computational) PIR scheme. Also very relevant to our work is the
work of Dwork et al. [DLN+04], who proved that this method is not sound, by giving an
example of a PCP for which the resulting one-round delegation scheme is not sound, no
matter which PIR scheme (or FHE scheme) is used.

Moreover, [DLN+04] define the notion of a “spooky interaction” which is a behavior
of the cheating prover, that on the one hand does not directly contradict the security of
the PIR, yet on the other hand is not consistent with answers based on PIR databases.
Using our terminology, a spooky behavior is exactly a no-signaling distribution on prover
answers that are computed “homomorphically” under the “encrypted” PIR queries.

More importantly, Dwork et al. also argue that the soundness of the [ABOR00] tech-
nique cannot essentially be based on any MIP (or PCP). However, Dwork et al. (and
[ABOR00]) were focused on constructing 1-round delegation schemes for non-deterministic
languages (such as languages in NEXP or the scaled down version of NP). Indeed, it is im-
plicitly shown in [DLN+04] that languages that can be proved by an MIP with soundness
against no-signaling provers are in EXP (and the scaled down version of it is contained in
P). Additionally, Gentry and Wichs [GW11] recently showed a negative result, proving
that there does not exist a non-interactive delegation scheme for NP with a black-box
proof of security under any falsifiable assumption.7 However, these negative results do
not apply to our setting as our delegation scheme is not for all of NP, but rather for
languages in P (or, in the scaled up version, in EXP).

Thus, by focusing on deterministic classes (as opposed to non-deterministic ones), we
manage to show that the [ABOR00] method is indeed sound in some cases.

Related work on computation delegation. Beyond the works of [GKR08, KR09]
that were mentioned earlier, there are many other works on delegating computation
that are less relevant to this work. Let us mention a few. In the interactive set-
ting, Kilian [Kil92] constructed a 4-message delegation scheme for every function in
NEXP. Micali [Mic94] showed that in the so called random oracle model this result
can be made non-interactive, by relying on the Fiat-Shamir paradigm [FS86]. There
are also several results that construct non-interactive delegation schemes under non-
falsifiable assumptions (as defined by Naor [Nao03]). These works include [Gro10, Lip12,
BCCT12a, DFH12, GLR11, BCCT12b, GGPR12] and more. Finally, we mention a
series of results that construct non-interactive delegation scheme in the preprocessing
model, where the verifier is efficient only in the amortized setting. These results include
[GGP10, CKV10, AIK10, PRV12]. There are many other results that we do not mention,
which consider various different models, or are concerned with practical efficiency.

7The model of [GW11] differs from our model in that they allow the prover the additional power of
choosing the instance x after seeing the first message sent by the verifier.

13

2. DELEGATION FOR P

2.1.5 Organization

In Section 2.2, we formally state our results. In Section 2.3, we provide a high-level
overview of our techniques. In Section 2.4, we formally define the notions that we use
throughout this work. In Sections 2.5 to 2.8, we construct a base PCP with soundness
against no-signaling strategies for PSPACE. In Sections 2.9 to 2.11, we construct the
augmented PCP for EXP. In Sections 2.12 to 2.14, we show how to transform this PCP
into an MIP. In Section 2.15, we use the tools from all previous sections to prove the
main information theoretic result. Finally, in Section 2.16 and Section 2.17, we show how
to transform our MIP into an 1-round delegation scheme.

2.2 Our Results

We show a general result on MIP proof systems that are secure against no-signaling
strategies and show how to use the latter to construct a new 1-round delegation scheme
(a.k.a. 1-round argument-system).

Theorem 2.4. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤
exp(n). Then, for any integer (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large)
universal constant, there exists an MIP for L with k·polylog(t) provers and with soundness
error 2−k against 2−k·polylog(t)-no-signaling strategies.

The verifier runs in time n ·k2 ·polylog(t) and the provers run in time poly(t, k). Each
query and answer is of length k · polylog(t).

By setting the parameters t = poly(n) and k = polylog(n) we obtain the following
corollary:

Corollary 2.5. If L ∈ P, then there exists an MIP for L with polylog(n) provers, and
with soundness error 2−polylog(n) against 2−polylog(n)-no-signaling strategies. The verifier
runs in time Õ(n) and the provers run in time poly(n). Each query and answer is of
length polylog(n).

A scaled up result is obtained by setting t = exp(n) and k = poly(n):

Corollary 2.6. If L ∈ EXP, then there exists an MIP for L with poly(n) provers and
with soundness error 2−poly(n) against 2−poly(n)-no-signaling strategies. The verifier runs
in time poly(n) and the provers run in time exp(n). Each query and answer is of length
poly(n).

Having stated our main information-theoretic results, we proceed to state our main
cryptographic results. The following theorems rely on the existence of an (S, δ)-secure
FHE scheme, which is an FHE scheme where any poly(S)-size adversary cannot distin-
guish between an encryption of any two messages with probability greater than δ (see
Section 2.4.7 for a formal definition).8

8Alternatively, we can rely on the existence of a sufficiently strong cryptographic private information
retrieval scheme (PIR), see remark at the end of Section 2.17.

14

2.2 Our Results

We first state our general transformation from any MIP that has soundness against
no-signaling strategies into a 1-round argument-system.

Theorem 2.7 (Simplified; for the full statement see Theorem 2.11). Suppose that the
language L has an MIP with ε soundness against δ-no-signaling strategies and a total of
λ communication (to all provers). Let τ = τ(n) ≥ λ be a security parameter, where n
denotes the input length of the MIP. For every S = S(τ) ≥ τ such that S ≥ max(n, 2λ)
and δ′ = δ′(τ) such that δ′ ≤ δ/λ, if there exists an (S, δ′) secure FHE, then the language
L has a 1-round argument system with soundness (S, ε).

If the MIP verifier runs in time TV , then the running time of the resulting verifier is
TV + poly(τ). If the running time of each MIP prover is TP , then the running time of
the resulting prover is poly(TP , τ, n). The total communication in the resulting argument-
system is of length poly(τ).

By combining Theorem 2.4 with Theorem 2.7 we obtain the following argument-
system:

Theorem 2.8. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤
exp(n). Let τ = τ(n) be a security parameter such that log(t) ≤ τ ≤ poly(t). Let
S = S(τ) ≥ τ such that 2(log(t))c ≤ S ≤ 2poly(n) and S ≤ 2max(n,τ), where c is some

sufficiently large universal constant. If there exists an
(
S, 2−

√
logS
)

-secure FHE, then L

has a 1-round argument system with soundness
(
S, 2−

√
log S

polylog(t)

)
. The verifier runs in time

n·log(S)·polylog(t)+poly(τ) and the prover runs in time poly(t). The total communication
is of length poly(τ).

We stress that the running time of the verifier in Theorem 2.8 only depends poly-
logarithmically on the time that it takes to compute L. We proceed to describe two
useful corollaries of Theorem 2.8.

By setting t = poly(n), τ = nε and S(τ) = 2(log(τ))c where ε > 0 (resp., c > 0)
is a sufficiently small (resp., large) universal constant and assuming the existence of a
quasi-polynomially secure FHE, we obtain a (cryptographic) delegation scheme for P with
quasi-linear verification and sublinear communication.

Theorem 2.9. Suppose that L ∈ P. If there exists a
(
2polylog(τ), 2−polylog(τ)

)
-secure FHE,

then, for every constant α > 0, the language L has a 1-round argument system with
soundness

(
2polylog(n), 2−polylog(n)

)
. The verifier runs in time Õ(n) and the prover runs in

time poly(n). The total communication is of length O(nα).

By setting t = poly(n), τ = (log(n))c and S(τ) = 2τ
ε

where ε > 0 is a sufficiently small
universal constant, c > 0 is a sufficiently large universal constant (that is chosen after
ε) and assuming the existence of a sub-exponentially secure FHE (a stronger assumption
than that in Theorem 2.9) we obtain a (cryptographic) delegation scheme for P with
quasi-linear verification but only poly-logarithmic communication.

15

2. DELEGATION FOR P

Theorem 2.10. Suppose that L ∈ P. If there exists a
(

2τ
ε
, 2−τ

ε/2
)

-secure FHE, where

ε > 0 is a sufficiently small universal constant, then L has a 1-round argument system
with soundness

(
2polylog(n), 2−polylog(n)

)
. The verifier runs in time Õ(n) and the prover

runs in time poly(n). The total communication is of length polylog(n).

2.3 Our Techniques

Our techniques can be separated into two parts. The main technical contribution of this
work is the construction of an MIP that is sound against statistically no-signaling cheating
provers, for any function computable in time t. The number of provers is polylog(t), each
prover runs in time at most poly(t), and the verifier runs in time n · polylog(t). This
construction, described in Section 2.3.1, is information theoretic, and does not rely on
any cryptographic assumptions.

Then, in Section 2.3.2 we show how to convert a statistically no-signaling MIP into
a one-round argument (while preserving the parameters, up to polynomial factors). The
soundness of the resulting one-round argument assumes the existence of a fully homo-
morphic encryption (FHE) scheme with sub-exponential security.

2.3.1 Our Statistically No-Signaling MIP

We start by giving an overview of our MIP, and then give the high-level idea for why
soundness holds against statistically no-signaling cheating provers. The proof of sound-
ness requires a different approach than the ones taken to prove classical soundness. In-
deed, all known MIP’s for NEXP (or the scaled down version of NP) are not sound against
no-signaling adversaries (see discussion in Section 2.1.1.1).

The main difference between a classical MIP and a no-signaling MIP is that in a
classical MIP once a prover fixes his random tape (if at all he uses randomness), then his
answer is a deterministic function of his query. This is not the case in the no-signaling
setting, since a prover’s answer can depend on the other queries. It is required that the
answer of the prover is independent of the other queries as a random variable , but it
may certainly depend on the other queries as a function. This makes the soundness proof
significantly more challenging.

Before presenting the high level ideas of this proof, we first give a high level overview
of our MIP.

As a first step in the construction of our MIP, we would like to assume for simplicity
that any set of (possibly malicious) provers behave symmetrically; namely, any two subsets
of provers, who are asked the same questions, answer similarly. Of course, we cannot
ensure such a thing, since cheating provers may behave arbitrarily. Instead, this is ensured
by defining a new model of no-signaling PCP, as oppose to no-signaling MIP.

Intuitively, a no-signaling PCP is defined like a classical PCP, but where soundness
is required to hold also against a no-signaling prover, who can see all queries. Loosely
speaking, a no-signaling prover, upon receiving any set of queries Q, may reply with

16

2.3 Our Techniques

answers, where each answer may depend on all the queries in Q as a function, but not
as a random variable. Namely, for any set of queries Q and for any subset Q′ ⊆ Q, the
distribution of the answers corresponding to the queries Q′, should be independent of
queries in Q \Q′.

Formally, a no-signaling prover consists of a family of distributions {AQ}, where there
is one distribution for every “sufficiently small” set of queries Q, and the requirement is
that for every subset of queries Q′ ⊆ Q, the distribution (AQ)|Q′ (which is the distribution
of answers AQ restricted to queries in Q′) is independent of queries in Q \ Q′. More
generally, a δ-no-signaling family of distributions has the property that for every three
sets of queries Q1, Q2, Q

′, such that Q′ ⊆ Q1 and Q′ ⊆ Q2, the distributions (AQ1)|Q′
and (AQ2)|Q′ are δ-close. We emphasize that in a δ-no-signaling PCP we think of a set of
queries Q as an unordered set, thus achieving the desired symmetry; i.e., the answers do
not depend on the order of the queries.

We note, however, that the definition of δ-no-signaling PCP given above, is not com-
plete. One needs to define what is a “sufficiently small set of queries”. We define it to be
all the query sets with at most kmax queries. kmax is an important parameter. The larger
kmax is, the more limited the cheating provers are.9 We denote such a PCP by (kmax, δ)
no-signaling PCP, and define it formally in Section 2.4.5. We devote most of the technical
sections to constructing a (kmax, δ)-no-signaling PCP and proving its soundness.

Converting this PCP into a δ-no-signaling MIP is relatively straightforward. The
basic idea is that the MIP verifier emulates the PCP verifier, and sends each query to a
random prover (that was not yet asked any query). Each prover answers by simulating
the (honest) PCP. The parameter kmax corresponds to the number of provers in the
resulting MIP. In this work, kmax = polylog(t), and thus the number of provers in our
MIP is polylog(t), and the verifier in our one-round argument runs in time n · polylog(t).

Overview of our underlying PCP. We present our PCP in two steps. First, we con-
struct a “base” PCP for languages in PSPACE. Then we show how to augment this PCP,
and construct a PCP for EXP. We prove that both PCPs are sound against statistically
no-signalling strategies.

2.3.1.1 Our Base PCP.

Let L be a language computable by a (deterministic) Turing machine running in time t(n)
and space s(n) on instances of length n. Our base PCP for L has kmax = Õ(s(n)). This
PCP is similar to known PCPs (in particular, to the PCP of [Sud00]). The main points of
distinction are that in our base PCP each test is repeated k times, where k is a security
parameter, and that our PCP is applied for deterministic computations, rather than for
non-deterministic computations.

Suppose that the prover needs to prove that x ∈ L, where x is an instance of length n.
The underlying PCP consists of several low degree multi-variate polynomials. The first

9Jumping ahead, we note that in this work kmax = polylog(t).

17

2. DELEGATION FOR P

polynomial is the low-degree extension (defined in Section 2.4.6) of the entire computa-
tion. More specifically, let Cn be a circuit of size N = O(t(n)s(n)) that computes L on
inputs of length n. It is known that the circuit Cn can be made layered, with O(s(n))
gates in each layer, and O(t(n)) layers.

Assume that the wires of the circuit are indexed by the numbers 1, . . . , N , in an order
that agrees with the layers of the circuit. In particular, the indexes of wires at layer i are
larger than the indexes of wires at layer i − 1. We assume that 1, . . . , n are the indexes
of the n input variables and that N is the index of the output wire. Let x1, . . . , xN be
the values of the N wires of the circuit Cn when computed with input x = (x1, . . . , xn).

The entire computation x1, . . . , xN appears in the PCP encoded using an error cor-
recting code (specifically, using the low-degree extension encoding), so that if a single bit
in the computation is incorrect it causes a global affect on the encoding.

In addition, the PCP contains several other low-degree multi-variate polynomials,
denoted by P0, P1, . . . , P`, which are defined in Section 2.5. In this overview we ignore
these polynomials.

The analysis of our base PCP. The analysis of our base PCP begins with an error
amplification step, where (loosely speaking) we prove that if there exists a (statisti-
cally) no-signaling prover (which is a family of distributions, one for every possible set of
queries), that convinces the PCP verifier to accept a statement of the form Cn(x) = b with
some non-negligible probability, then there exists a (statistically) no-signaling prover that
convinces a different verifier, called, the relaxed verifier, to accept the same statement
with probability close to 1 (i.e., with probability 1− 1

poly(t)
for any polynomial poly).

This error amplification step, which is a crucial step in our proof, is achieved as follows:
Recall that the verifier V repeats each test k times, and accepts if and only if all tests
accept. We define a “relaxed” verifier V ′ that makes the exact same queries as V , but
accepts if and only if for each (repeated) test, at least r of the k repetitions are accepting,
where r is a parameter. Loosely speaking, we prove that if the verifier V accepts with

probability ε then the relaxed verifier accepts with probability 1− Õ(2−r)
ε

, where Õ hides
polylog(N) factors.

To prove this we argue that if V and V ′ choose their queries independently then the
probability that V accepts and V ′ rejects is very small. This is true because for each
group of k tests we can first choose the 2k tests for both V and V ′, and only then decide
which tests go to V and which ones go to V ′. Consider the answers for these 2k tests. (It
is important here that kmax is greater than the total number of queries in these 2k tests,
so that all these queries can be asked simultaneously.) If among the 2k tests many are
rejected then V rejects with high probability. On the other hand, if among the 2k tests
only few are rejected (say, less than r) then V ′ always accepts. We refer the reader to
Section 2.6 for details.

In this overview, we ignore the fact that the relaxed verifier is different than the actual
verifier, and assume for simplicity that there is a (statistically) no-signaling prover that
convinces the actual verifier to accept with probability 1− 1

poly(t)
. We will prove that in

that case the statement Cn(x) = b must be correct.

18

2.3 Our Techniques

To this end, we first prove that for every (statistically) no-signaling prover, if the PCP
verifier accepts with probability 1− 1

poly(t)
, then it must be the case that the distributions

corresponding to queries in {x1, . . . , xN} are locally consistent. More specifically, we prove
that for every gate in the circuit Cn, and for every set of queries that include the two
input wires and the output wire of the gate, the answers of values of the inputs and
output wires are consistent with the gate, with very high probability (say, higher than
1 − 1

t3
). We note that this guarantee only requires kmax = polylog(t), and in particular

the dependence on the space s is not needed to obtain this local consistency guarantee.10

We note that the local consistency guarantee is only true if variables in {x1, . . . , xN}
are read in a certain way, which uses interpolation and the local decoding properties of
the low-degree extension encoding. In this overview, for simplicity, we completely ignore
this extra complication and assume that the local consistency guarantee holds as stated
above.

From a classical perspective, it seems that the local consistency guarantee should
immediately imply global consistency, and thus correctness, by applying a straightforward
union bound. However, in the no-signaling setting, this intuition is misleading. The
reason is that in order to apply the union bound we need to consider the probability
that all the local consistency conditions are met simultaneously, and make the following
argument:

Pr[correctness] ≥
Pr[all local consistency conditions hold] =

1− Pr[∃ local consistency condition that does not hold] ≥
1−O(t · s) · Pr[a single local consistency does not hold] ≥

1−O(t · s) · 1

t3
≥

1−O
(

1

t

)
.

Unfortunately, in the no-signaling setting, this type of calculation is not correct, since
it is not clear what it means for all the local consistency conditions to hold simultaneously.
Recall that there is no PCP in the sky, but rather a set of distributions for each set of
queries of size at most kmax. Thus, we can check whether at most kmax local consistency
conditions hold simultaneously, but not more than that, as the relevant random variables
are not even defined simultaneously.

We can still use the local consistency guarantee to argue that up to a small probability
of error, the probability that the output is correct is at least the probability that both
children of the output gate are correct (using the local consistency condition). We can
then proceed by induction, towards the base of the tableau. However, this will incur an
exponential (in t) blowup in the error.

10Jumping ahead, we note that in the base PCP, kmax = Θ̃(s) is required to go from local consistency
to global consistency.

19

2. DELEGATION FOR P

Generally, we cannot afford this exponential blowup in error. Jumping ahead, we
note that curiously, in one of the lemmas for our augmented PCP, we do use this analysis
(and guarantee) for a specific computation for which the depth of the tableau is relatively
small (O(log s)). We elaborate on this point below.

In the analysis of our base PCP, we solve this problem by taking kmax = Θ̃(s), which
enables us to check the correctness of an entire layer of the tableau simultaneously. More
specifically, we first check the correctness of the input. The local consistency condition
implies that this check passes with probability 1 − 1

poly(t)
. Then we check the first two

level simultaneously. This could be done since kmax = Θ̃(s). The local consistency,
together with the correctness of the first level, implies that the second level is correct

with probability at least
(

1− 1
poly(t)

)2

. Then, we check consistency of the second and

third levels, and deduce that the third level is correct with probability
(

1− 1
poly(t)

)3

.

This argument continues by induction until the top layer is reached, and the conclusion

is that the computation is correct with probability
(

1− 1
poly(t)

)t
, which is very close to 1,

as desired.
This idea indeed works, however, it results with an MIP with Θ̃(s) provers, and thus

with a one-round argument where the running time of the verifier grows linearly with s.
We refer the reader to Section 2.7 for the formal analysis.

Our goal is to make kmax independent of s, and thus eliminate the dependency on the
space. Indeed, we manage to “augment” this base PCP, and to prove that our augmented
PCP is secure against statistically no-signaling distributions with kmax = polylog(t). This
gives rise to an MIP where the verifier runs in time n · polylog(t), and where the provers
run in time poly(t). This, in turn, gives rise to our one-round delegation scheme, that
achieves similar parameters.

2.3.1.2 Our Augmented PCP.

Recall that our base PCP is a proof that the computation of Cn was performed correctly,
where Cn is a layered circuit of size N = O(t(n)s(n)) (consisting of O(t(n)) layers each
of size O(s(n))), that computes L on inputs of length n.

The basic idea behind our augmented PCP is to run the same base PCP on an aug-
mented circuit, denoted by C ′n. Loosely speaking, the circuit C ′n computes the same func-
tion as Cn, but in C ′n each layer of the circuit is augmented with the low-degree extension
of the layer, and with all the low-degree tests corresponding to lines of the low-degree
extension. Namely, the circuit C ′n is the same as Cn, but where after each layer we insert
another circuit, denoted by CLDE, which takes as input the entire layer, and computes the
low-degree extension of the layer, and performs all the low-degree tests; i.e., for every
line in the low-degree extension it checks that the values on that line correspond to a
low-degree univariate polynomial.11 It is known that CLDE can be made a circuit of size

11The low-degree tests are seemingly redundant as the values of the low-degree extension were com-
puted by the circuit. However, since we don’t know that the values are computed correctly, the low-degree

20

2.3 Our Techniques

poly(s) and depth O(log s). We refer the reader to Section 2.9 for a formal description of
our augmented PCP.

The basic idea behind adding the computation of CLDE after each layer, is that now
the PCP verifier can read a single point in the low-degree extension of a layer, and in
some sense, this point contains information about the entire layer. As we argue below,
if a random point in the low-degree extension is correct with high probability, then each
value in the layer is correct with almost the same probability. We elaborate below.

Our analysis. Since our augmented PCP is identical to our base PCP, applied to the
augmented circuit C ′n (as opposed to Cn), the analysis of our base PCP implies that if
there exists a (statistically) no-signaling prover that convinces the verifier to accept with
probability close to 1, then local consistency holds with probability close to 1. Namely,
for any set of queries Q of size at most kmax = polylog(t) and for any subset Q′ ⊆ Q of
queries corresponding to variables in the tableau of C ′n, the answers to these queries are
locally consistent (i.e., they satisfy the constraints imposed by the gates and they satisfy
the low-degree tests) with probability close to 1.

We next show how we go from local consistency to global consistency, without in-
creasing the size of kmax. To this end, we use the special structure of C ′n; i.e., the fact
that it includes all the low-degree extensions and low degree tests.

Fix any layer in Cn. We first argue that if a random point in the low-degree extension
of this layer has the correct value with high probability, then the value of every point in
the layer is correct with high probability. The idea is the following: Fix any point z in
the layer. Consider the line connecting this point to the random point in the low-degree
extension. The local consistency condition implies that with high probability the values
on this line correspond to a low degree polynomial. Thus, if the value of the point z is
incorrect (with significant probability) then most of the points on the line are incorrect
(with significant probability), and in particular a random point on the line is incorrect
(with significant probability), contradicting our assumption that a random point in the
low-degree extension is correct with high probability.

We use the argument above to prove the correctness of the entire computation. The
proof is by induction on the depth of the tableau of Cn. In what follows, we denote
the probability that local consistency holds by (1 − ε), and the reader should think of
ε = 1

poly(t)
. We start with the base case, and claim that each element in the base of the

tableau (where the input lies) is correct with probability 1 − ε. This follows from the
local consistency condition. Next we claim that if each element in a layer is correct with
high probability (1− ε), then any point in the low-degree extension of the layer is correct
with probability (1− ε)poly(s). To this end, we use the analysis where the error increases
exponentially with the depth, and we use the fact that the depth of CLDE is O(log s).

For the induction step, we claim that if at layer i a random point in the low-degree
extension is correct with some probability p, then a random point in the low-degree
extension of layer i+1 is correct with probability ≈ p(1−ε)poly(s). Note that this guarantee

tests will be very important in our analysis.

21

2. DELEGATION FOR P

is strong enough for correctness, since by induction we get that a random point in the
low-degree extension of the top layer is correct with probability ≈ (1− ε)t·poly(s) which is
close to 1 for ε = 1

t2·poly(s)
.

To prove the induction step we use conditional probabilities, and condition on the
event that the value of a random point in the low-degree extension of layer i is indeed
correct. Conditioned on this event, each element in the i-th layer of Cn is correct with
probability (1− ε) (which is the probability in which local consistency holds). Therefore,
conditioned on this event, each element in the i+1-th layer of Cn is correct with probability
(1 − ε)3. This implies that, conditioned on this event, each element in the low-degree
extension of the i+ 1-th layer is correct with probability (1− ε)poly(s). Therefore, without
conditioning, the probability that an element in the low-degree extension of the i+ 1-th
layer is correct is p(1− ε)poly(s).

This analysis does not quite work as is, since there is too big of a loss in the correctness
probability when going from a random point in the low-degree extension to a point in
the layer of Cn. We fix this by reading several random points in the low-degree extension
(rather than just one), and we claim that if all of them are correct with some probability
then each point in the layer is correct with essentially the same probability (where the
loss here is exponentially small). We refer the reader to Section 2.10 for details.

2.3.2 From No-Signaling MIP to a Delegation Scheme

In this section we show that the method of Aiello et al. [ABOR00], of using a fully
homomorphic (FHE) scheme to convert a 1-round MIP into a 1-round delegation scheme,
is sound if the underlying MIP is secure against δ-no-signaling provers, where the value
of δ affects the security requirement of the FHE scheme.12

Let us start by recalling their method. Aiello et al. proposed to take any MIP and
convert it into the following 1-round delegation scheme: The verifier computes all the
queries that the MIP verifier would send to the MIP provers, and sends all of these
queries to the prover, each encrypted under a fresh and independent key, using an FHE
scheme. The prover then answers on behalf of each MIP prover, where each answer is
computed homomorphically on the corresponding encrypted query.

As mentioned in the introduction, shortly after this method was introduced, Dwork
et al. [DLN+04] showed that it may, in general, be insecure. In this work, we show that
this method in fact is secure if the underlying MIP is sound against δ-no-signaling provers.

In a nutshell, our result is obtained by proving that if there exists a cheating prover P ∗

that breaks the soundness of the 1-round argument, then this prover can be used to
construct a δ-no-signaling prover PNS that breaks the soundness of the MIP scheme.

The prover PNS uses P ∗ in the obvious way: Given a set of queries (q1, . . . , q`) it
encrypts these queries using fresh and independent keys, and sends the encrypted queries
to P ∗; upon receiving encrypted answers, it decrypts these answers and sends the de-
crypted answers (a1, . . . , a`) to the MIP verifier.

12Aiello et al. originally suggested to use a PCP together with a private information retrieval (PIR)
scheme to construct a 1-round delegation scheme.

22

2.4 Preliminaries

Clearly this strategy breaks the soundness of the MIP verifier, but we need to argue
that it is δ-no-signaling. Indeed, we argue that if PNS is not δ-no-signaling then the
prover P ∗ can be used to break the underlying FHE scheme. Loosely speaking, by the
definition of δ-no-signaling (see Section 2.4.3), if PNS is not δ-no-signaling then there is
a subset S ⊂ [`] such that the distribution of the answers (ai)i∈S, conditioned on the
corresponding queries (qi)i∈S, depends on the other queries (qi)i/∈S. In other words, these
answers give information on the other queries. If this is the case, then indeed one can
use P ∗ to break the FHE scheme.

We note that the above break may take time exponential in the communication com-
plexity of the underlying MIP scheme, since the information obtained from the answers
(ai)i∈S, is not necessarily efficiently computable. Therefore, we need to assume that the
underlying FHE scheme is secure against adversaries of size 2|a1|+...+|a`|. Thus, if we choose
the security parameter of the FHE scheme to be polynomially related to the communi-
cation complexity, then we need to assume sub-exponential security of the underlying
FHE scheme. But one can choose a larger security parameter (resulting in larger com-
munication complexity in the 1-round delegation scheme), and thus relax the security
requirement of the FHE scheme. We refer the reader to Section 2.16 for details.

2.4 Preliminaries

2.4.1 Notation

For a vector a = (a1, . . . , ak) and a subset S ⊆ [k], we denote by aS the sequence of
elements of a that are indexed by indices in S, that is, aS = (ai)i∈S. In general, we
denote by aS a sequence of elements indexed by S, and we denote by ai the ith coordinate
of a vector a.

For a distribution A, we denote by a ∈R A a random variable distributed according
to A (independently of all other random variables).

We will measure the distance between two distributions by their statistical distance,
defined as half the l1-distance between the distributions. We will say that two distribu-
tions are δ-close if their statistical distance is at most δ.

For a field F and an integer `, a line L in F` is an affine function L : F→ F`. A plain
M in F` is an affine function M : F2 → F`. We say that the line L is orthogonal to the
ith coordinate if for every t1, t2 ∈ F, we have L(t1)i = L(t2)i, where L(t1)i, L(t2)i denote
the ith coordinate of the points L(t1), L(t2) respectively.

We will sometimes confuse between a set and a multiset. In particular, many times we
will refer to a multiset as a set. For example, when we choose a (multi)set of k elements
in a certain domain.

We will sometimes write Prx Pry instead of Prx,y.

23

2. DELEGATION FOR P

2.4.2 Multi-Prover Interactive Proofs

Let L be a language and let x be an input of length n. In a one-round k-prover interactive
proof, k computationally unbounded provers, P1, . . . , Pk, try to convince a (probabilistic)
poly(n)-time verifier, V , that x ∈ L. The input x is known to all parties.

The proof consists of only one round. Given x and her random string, the verifier
generates k queries, q1, . . . , qk, one for each prover, and sends them to the k provers. Each
prover responds with an answer that depends only on her own individual query. That
is, the provers respond with answers a1, . . . , ak, where for every i we have ai = Pi(qi).
Finally, the verifier decides wether to accept or reject based on the answers that she
receives (as well as the input x and her random string).

We say that (V, P1, . . . , Pk) is a one-round multi-prover interactive proof system (MIP)
for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability 1, after
interacting with P1, . . . , Pk.

2. Soundness: For every x 6∈ L, and any (computationally unbounded, possibly
cheating) provers P ∗1 , . . . , P

∗
k , the verifier V rejects with probability ≥ 1 − ε, after

interacting with P ∗1 , . . . , P
∗
k , where ε is a parameter referred to as the error or

soundness of the proof system.

Important parameters of an MIP are the number of provers, the length of queries, the
length of answers, and the error.

2.4.2.1 MIPs with Oracle

We will also consider the model of one-round k-prover interactive proofs with oracle, where
the verifier V is given access to an oracle that computes some fixed function (that may
depend on the language L). We require that all queries, to the oracle and the provers,
are done simultaneously.

For every n, let φn : {0, 1}n′ → {0, 1}n′′ be a function (where n′, n′′ depend on n). We
allow the functions φn to depend on the language L (but not on the input x).

We define a one-round multi-prover interactive proof system for L, relative to the
oracle {φn}, exactly as before, except that now the verifier V is a (probabilistic, poly(n)-
time) oracle machine that on input x of length n has free oracle access to the function
φn. The verifier may base her accept/reject decision on queries to the oracle, but the
oracle queries are not adaptive, and we do not allow the queries to the provers to depend
on the answers of the oracle or the queries to the oracle to depend on the answers of the
provers. In other words, we require that all queries, to the oracle and to the provers, are
done simultaneously.

We require the same completeness and soundness properties as before.

24

2.4 Preliminaries

2.4.3 No-Signaling MIPs

We will consider a variant of the MIP model, where the cheating provers are more powerful.
In the MIP model, each prover answers her own query locally, without knowing the queries
that were sent to the other provers. The no-signaling model allows each answer to depend
on all the queries, as long as for any subset S ⊂ [k], and any queries qS for the provers
in S, the distribution of the answers aS, conditioned on the queries qS, is independent of
all the other queries.

Intuitively, this means that the answers aS do not give the provers in S information
about the queries of the provers outside S, except for information that they already have
by seeing the queries qS.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet of
the answers. For every q = (q1, . . . , qk) ∈ Dk, let Aq be a distribution over Σk. We think
of Aq as the distribution of the answers for queries q.

We say that the family of distributions {Aq}q∈Dk is no-signaling if for every subset
S ⊂ [k] and every two sequences of queries q, q′ ∈ Dk, such that qS = q′S, the following
two random variables are identically distributed:

• aS, where a ∈R Aq

• a′S where a′ ∈R Aq′

If the two distributions are δ-close, rather than identical, we say that the family of
distributions {Aq}q∈Dk is δ-no-signaling.

An MIP, (V, P1, . . . , Pk) for a language L (possibly, relative to an oracle {φn}) is said
to have soundness ε against no-signaling strategies (or provers) if the following (more
general) soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions {Aq}q∈Dk ,
the verifier V rejects with probability ≥ 1− ε, where on queries q = (q1, . . . , qk) the
answers are given by (a1, . . . , ak) ∈R Aq, and ε is the error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {Aq}q∈Dk , we say
that the MIP has soundness ε against δ-no-signaling strategies (or provers).

2.4.4 Probabilistically Checkable Proofs

Let L be a language and let x be an input of length n. Intuitively, a probabilistically
checkable proof (PCP) is a proof for x ∈ L that can be verified by reading only a small
number of its symbols.

Formally, a proof is a vector of symbols P ∈ ΣD, where Σ denotes the alphabet of
symbols and D denotes the set of indices. We think of P also as a function P : D → Σ
and hence we think of D as a set of possible queries and we think of Σ as a set of possible
answers.

A PCP verifier V is a probabilistic poly(n)-time Turing machine that is given access
to the input x, as well as an oracle access to the proof P : D → Σ.

25

2. DELEGATION FOR P

Given x and her random string, the verifier generates k queries, q1, . . . , qk ∈ D, and
queries the proof P in all these places to get answers a1 = P (q1), . . . , ak = P (qk). Finally,
the verifier decides wether to accept or reject based on the answers that she receives (as
well as the input x and her random string).

We say that V is a PCP verifier for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, there exists a proof P , such that, the verifier V
accepts with probability 1, after querying P .

2. Soundness: For every x 6∈ L, and any proof P ∗ : D → Σ, the verifier V rejects
with probability ≥ 1 − ε, after querying P ∗, where ε is a parameter referred to as
the error or soundness of the proof system.

Important parameters of a PCP are the length of proof, the number of queries, the
length of answers, and the error.

2.4.4.1 PCPs with Oracle

We will also consider the model of probabilistically checkable proofs with oracle, where
the verifier V is given access to an additional oracle that computes some fixed function
(that may depend on the language L). We require that all queries, to the oracle and to
the PCP proof, are done simultaneously.

For every n, let φn : {0, 1}n′ → {0, 1}n′′ be a function (where n′, n′′ depend on n). We
allow the functions φn to depend on the language L (but not on the input x).

We define a probabilistically checkable proof for L, relative to the oracle {φn}, exactly
as before, except that now the verifier V is a (probabilistic, poly(n)-time) machine with
access to two oracles. The first oracle is the PCP proof P , and in addition, on input x of
length n, the verifier has free oracle access to the function φn. The verifier may base her
accept/reject decision on queries to the oracle φn, but the oracle queries are not adaptive,
and we do not allow the queries to P to depend on the answers of the oracle φn or the
queries to the oracle φn to depend on the answers of P . In other words, we require that
all queries, to the oracle φn and to the PCP proof P , are done simultaneously.

We require the same completeness and soundness properties as before.

2.4.5 No-Signaling PCPs

We will now define the new notion of PCP with no-signaling soundness, in analogy to
MIP with no-signaling soundness.

We will consider a variant of the PCP model, where the cheating proof is more pow-
erful. In the PCP model, each query is answered locally, without knowing the other
queries. In the no-signaling model, we allow each answer to depend on all the queries, as
long as for any subset {q1, . . . , qd} of queries, the distribution of the answers (a1, . . . , ad),
conditioned on the queries {q1, . . . , qd}, is independent of all the other queries.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet
of the answers. Let kmax be some parameter, which is at least the maximal number of

26

2.4 Preliminaries

queries made by the verifier to the proof. For every subset Q = {q1, . . . , qd} ⊂ D, of size
|Q| = d ≤ kmax, let AQ be a distribution over ΣQ. We think of AQ as the distribution of
the answers for the queries {q1, . . . , qd}.

We say that the family of distributions {AQ}Q⊂D,|Q|≤kmax is no-signaling if for every
Q ⊂ D of size at most kmax, and every subset S ⊂ Q, the following two random variables
are identically distributed:

• a ∈R AS

• a′S, where a′ ∈R AQ

If the two distributions are δ-close, rather than identical, we say that the family of
distributions {AQ}Q⊂D,|Q|≤kmax is δ-no-signaling.

A PCP verifier V for a language L (possibly, relative to an oracle {φn}) is said to
have soundness ε against kmax-no-signaling strategies (or proofs) if the following (more
general) soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions
{AQ}Q⊂D,|Q|≤kmax , the verifier V rejects with probability ≥ 1− ε, where on queries
Q = {q1, . . . , qk}, the answers are given by aQ ∈R AQ, and ε is the error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {AQ}Q⊂D,|Q|≤kmax ,
we say that the PCP has soundness ε against (kmax, δ)-no-signaling strategies (or proofs).

Note that kmax is an important parameter. The larger kmax is, the more limited
the cheating proofs are. We will typically take kmax to be significantly larger than the
maximal number of queries made by the verifier.

2.4.5.1 A Note on Ordered versus Unordered Sets

The families of distributions {AQ}Q⊂D,|Q|≤kmax that we consider are defined with un-
ordered sets Q ⊂ D. However, sometimes we will have ordered sets Q (that is, Q will
be a vector of elements); for example, when we need to know which test to apply on
which subset of queries, it is important that the set of queries is ordered by the order
that the queries were chosen. In these cases, we will abuse notation and denote by Q
both the ordered set and the unordered set that corresponds to it. Thus, we will use
the notation AQ to denote the distribution that corresponds to the unordered set that
corresponds to Q. In general, we will sometimes abuse notation between an ordered set
and the unordered set that corresponds to it.

2.4.6 Low Degree Extension

Let F be a field and H ⊂ F a subset of the field. Fix an integer m ∈ N. A basic fact is
that for every function φ : Hm → F, there exists a unique extension of φ into a function
φ̂ : Fm → F (which agrees with φ on Hm; i.e., φ̂|Hm ≡ φ), such that φ̂ is an m-variate
polynomial of degree at most |H|−1 in each variable. Moreover, for every x ∈ Hm, there

27

2. DELEGATION FOR P

exists a unique m-variate polynomial β̂x : Fm → F of degree |H| − 1 in each variable,
such that for every function φ : Hm → F it holds that

φ̂(z1, . . . , zm) =
∑
x∈Hm

β̂x(z1, . . . , zm) · φ(x).

The function φ̂ is called the low degree extension of φ (with respect to F, H,m).

In the following we assume that all algorithms have access to m, the set H and the
field F. We assume that field operations over F can be computed in time poly-logarithmic
in the field size and space that is logarithmic in the field size.

Proposition 2.1 (Cf., e.g., [Rot09, Proposition 3.2.1]). There exists a Turing machine
that on input x ∈ Hm, runs in time poly(|H|,m, log |F|) and space O(log(|F|) + log(m)),
and outputs the polynomial β̂x : Fm → F defined above, represented as an arithmetic
circuit over F.

Moreover, the arithmetic circuit β̂x can be evaluated in time poly(|H|,m, log(|F|)) and
space O(log(|F|) + log(m)). Namely, there exists a Turing machine with the above time
and space bounds that given an input pair (x, z) ∈ Hm × Fm outputs β̂x(z).

Proof. Consider the function β̂x : Fm → F defined as:

β̂x(z)
def
=
∏
i∈[m]

∏
h∈H\{xi}

zi − h
xi − h

.

For every z ∈ Hm it holds that β̂x(z) = 1 if z = x and β̂x(z) = 0 otherwise. Thus, for
every function φ : Hm → F it holds that

∑
x∈Hm β̂x · φ(x) agrees with φ on Hm. Hence,

since β̂x has degree |H| − 1 in each variable,
∑

x∈Hm β̂x · φ(x) is the (unique) low degree
extension of φ.

Proposition 2.2. Let φ : Hm → F and suppose that φ can be evaluated by a Turing
Machine in time t and space s. Then, there exists a Turing machine that, given as
an input a point z ∈ Fm, runs in time |H|m (poly(|H|,m, log(|F|)) +O(t)) and space
O(m log(|H|) + s+ log(|F|)) and outputs the value φ̂(z) where φ̂ is the unique low degree
extension of φ (with respect to H,F,m).

Proof. The Turing machine computes

φ̂(z) =
∑
x∈Hm

β̂x(z) · φ(x)

by generating and evaluating β̂x(z) as in Proposition 2.1.

28

2.4 Preliminaries

2.4.7 Public-Key Encryption and Fully Homomorphic Encryp-
tion (FHE)

A public-key encryption scheme consists of three probabilistic polynomial-time algorithms
(Gen,Enc,Dec). The key generation algorithm Gen, when given as input a security pa-
rameter 1τ , outputs a pair (pk, sk) of public and secret keys. The encryption algorithm,
Enc, on input a public key pk and a message m ∈ {0, 1}poly(τ), outputs a ciphertext m̂, and
the decryption algorithm, Dec, when given the ciphertext m̂ and the secret key sk, out-
puts the original message m (with overwhelming probability). We allow the decryption
process to fail with negligible probability (over the randomness of all algorithms).

Let S : N→ N and δ : N→ [0, 1] be parameters. A public-key encryption scheme has
security (S, δ) if for every family of circuits {Cτ}τ∈N of size poly(S(τ)), for all sufficiently
large τ and for any two messages m,m′ ∈ {0, 1}poly(τ) such that |m| = |m′|,∣∣∣∣ Pr

(pk,sk)∈RGen(1τ)
[Cτ (pk,Encpk(m)) = 1]− Pr

(pk,sk)∈RGen(1τ)
[Cτ (pk,Encpk(m

′)) = 1]

∣∣∣∣ < δ(τ)

where the probability is also over the random coin tosses of Enc.

Fully homomorphic encryption. The tuple (Gen,Enc,Dec,Eval) is a fully-homomorphic
encryption scheme if (1) (Gen,Enc,Dec) is a public-key encryption scheme, and (2) for
every key-pair (pk, sk), the probabilistic polynomial-time algorithm Eval, on input the
public-key pk, a circuit C : {0, 1}k → {0, 1}`, where k, ` ≤ poly(τ) (and τ is the security
parameter), and a ciphertext m̂ that is an encryption of a message m ∈ {0, 1}k with
respect to pk, outputs a string ψ such that the following two conditions hold:

• Homomorphic Evaluation: Decsk(ψ) = C(m), except with negligible probability
(over the coins of all algorithms).

• Compactness: The length of ψ is polynomial in τ , k and ` (and is independent of
the size of C).

2.4.8 Interactive Argument Systems

An interactive argument for a language L consists of a polynomial-time verifier that
wishes to verify a statement of the form x ∈ L, and a prover that helps the verifier
to decide. The two parties, given as input x ∈ {0, 1}n, interact and at the end of the
interaction the verifier either accepts or rejects. We require that if x ∈ L then the verifier
accepts with high probability but if x /∈ L, then no computationally bounded prover can
convince the verifier to accept with non-negligible (in n) probability.

We focus on 1-round argument systems. Such an argument-system consists of a single
message sent from the verifier V to the prover P , followed by a single message sent from
the prover to the verifier.

Let S : N → N and ε : N → [0, 1] be parameters. We say that (V, P) is a one-round
argument-system with soundness (S, ε) for L if the following two properties are satisfied:

29

2. DELEGATION FOR P

1. Completeness: For every x ∈ L, the verifier V (x) accepts with overwhelming
probability, after interacting with P (x).

2. Soundness: For every family of circuits {P ∗n}n∈N of size poly(S(n)), for all suf-
ficiently large x /∈ L, the verifier V rejects with probability ≥ 1 − ε(|x|), after
interacting with P ∗|x| on common input x.

2.5 The Base PCP

2.5.1 The PCP Proof

Let L be a language in DTISP(t(n), s(n)), where poly(n) ≤ t(n) ≤ exp(n) and log(n) ≤
s(n) ≤ poly(n). Let x be an input of length n. Since L ∈ DTISP(t(n), s(n)), for any n
there is a (fanin 2) Boolean circuit Cn of size N = O(t(n)s(n)) that computes L on inputs
of length n. Moreover, the circuit Cn is layered, with O(s(n)) gates in each layer, such
that a child of a gate in layer i+ 1 is either an input variable (or a negation of an input
variable) or a gate in layer i. Moreover, there is a deterministic Turing machine of space
O(logN) that on input n outputs the (description of the) circuit Cn.

Without loss of generality, we assume that in the circuit Cn all negations are on input
variables, and that the two children of any gate in the circuit are different (this property
can be achieved by duplicating each gate in the circuit twice, increasing the number of
gates in each layer by a factor of 2).

Also, we assume that the gates of the circuit are indexed by the numbers 1, . . . , N , in
an order that agrees with the layers of the circuit. In particular, for every gate, the index
of the gate is larger than the indexes of its children. We assume that 1, . . . , n are the
indexes of the n input variables and n+ 1, . . . , 2n are the indexes of their negations. We
assume that the circuit has a special output gate indexed by N whose value represents the
decision of whether x ∈ L (we do not assume that there are no other output gates). We
assume that the Turing machine that outputs the (description of the) circuit Cn outputs
the vertices in the order of their index.

Let w1, . . . , wN be variables in {0, 1} that represent the N wires of the circuit Cn,
in the order of their index. In particular, for every gate, the variable that represents
the output of the gate appears after the variables that represent the inputs for the gate.
Also, w1, . . . , wn represent the n input bits, wn+1, . . . , w2n represent the negations of the
n input bits, and wN represents the output of the circuit.

Let ϕC(w1, . . . , wN) be a 3-CNF Boolean formula that checks that w1, . . . , wN is a
correct computation of the circuit Cn (given the input variables and their negations), by
checking that the computation of every gate in the circuit is performed correctly (except
for negation gates on input variables - and recall that we assume that these are the
only negation gates in the circuit). More precisely, for every (non-negation) gate in the
circuit, the formula ϕC contains four clauses that check that the computation of that gate
is performed correctly for every possibility for the inputs for the gate. For example, if wi
represents the output of a conjunction gate with inputs that are represented by wi1 and

30

2.5 The Base PCP

wi2 , we will have the following four clauses in ϕC (and note that indeed each of them can
be written as a clause):

(wi1 = 0) ∧ (wi2 = 0)→ (wi = 0),

(wi1 = 0) ∧ (wi2 = 1)→ (wi = 0),

(wi1 = 1) ∧ (wi2 = 0)→ (wi = 0),

(wi1 = 1) ∧ (wi2 = 1)→ (wi = 1).

We have ϕC(w1, . . . , wN) = 1 if and only if w1, . . . , wN is a correct computation of the
circuit Cn (assuming that the input variables are given in w1, . . . , wn, and their negations
are given in wn+1, . . . , w2n).

For a fixed input x = (x1, . . . , xn), let ϕx(w1, . . . , w2n, wN) be a 3-CNF Boolean for-
mula that checks that (w1, . . . , wn) = (x1, . . . , xn), (wn+1, . . . , w2n) = (¬x1, . . . ,¬xn) and
that wN = 1. More precisely, for every i ∈ [n], the formula ϕx contains a clause that checks
that wi = xi. For example, if xi = 0, we will have the clause (wi = 0)∨(wi = 0)∨(wi = 0)
that ensures that wi = 0. In the same way, the formula ϕx contains clauses that check
that wn+i = ¬xi, and a clause that checks that wN = 1. We have ϕx(w1, . . . , w2n, wN) = 1
if and only if (w1, . . . , wn) = (x1, . . . , xn), (wn+1, . . . , w2n) = (¬x1, . . . ,¬xn), and wN = 1.

Let ϕ(w1, . . . , wN) be the 3-CNF Boolean formula ϕC(w1, . . . , wN)∧ϕx(w1, . . . , w2n, wN).
Thus, ϕ(w1, . . . , wN) = 1 if and only if w1, . . . , wN is the computation of the circuit Cn
on the input x = (x1, . . . , xn), and wN = 1. Denote by x1, . . . , xN the computation of
the circuit Cn on the input x = (x1, . . . , xn). Thus, ϕ(w1, . . . , wN) = 1 if and only if
(w1, . . . , wN) = (x1, . . . , xN), and xN = 1.

Note also that since there is a deterministic Turing machine of space O(logN) that on
input n outputs the description of the circuit Cn, there is a deterministic Turing machine
of space O(logN) that on input n outputs the formula ϕC.

Let H = {0, 1, . . . , logN − 1} and let m = logN
log logN

, so that N = |H|m. (For simplicity

and without loss of generality we assume that logN and logN
log logN

are integers, larger

than 100). Let ` = 3m+ 3. Let F be a field, such that 4|H|10 ≤ |F| ≤ 8(logN)10.

Since N = |H|m, we can identify [N] and Hm (say, by the lexicographic order on Hm).
In what follows we will abuse notation and view w1, . . . , wN and x1, . . . , xN as indexed
by i ∈ Hm (rather than i ∈ [N]). We can hence view x = (x1, . . . , xN) as a function
x : Hm → {0, 1} (given by x(i) = xi, where we identify [N] and Hm).

Define the multi-variate polynomial X : Fm → F to be the low-degree extension of
x : Hm → {0, 1}.

Let φ : (Hm)3×{0, 1}3 → {0, 1} be the function where φ(i1, i2, i3, b1, b2, b3) = 1 if and
only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in ϕ. Extend φ to be a
function φ : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m×{0, 1}3. Let
φ̂ : F` → F be the low-degree extension of φ.

Let φC : (Hm)3 × {0, 1}3 → {0, 1} be the function where φC(i1, i2, i3, b1, b2, b3) = 1 if
and only if the clause (wi1 = b1)∨ (wi2 = b2)∨ (wi3 = b3) appears in ϕC. Extend φC to be

31

2. DELEGATION FOR P

a function φC : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m × {0, 1}3.
Let φ̂C : F` → F be the low-degree extension of φC.

Let φx : (Hm)3 × {0, 1}3 → {0, 1} be the function where φx(i1, i2, i3, b1, b2, b3) = 1 if
and only if the clause (wi1 = b1)∨ (wi2 = b2)∨ (wi3 = b3) appears in ϕx. Extend φx to be
a function φx : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m × {0, 1}3.
Let φ̂x : F` → F be the low-degree extension of φx.

Since the sets of clauses of ϕC and ϕx are disjoint, we have φ̂ = φ̂x + φ̂C.
Recall that there is a deterministic Turing machine of space O(logN) that on input

n outputs the formula ϕC. Hence, by Proposition 2.2, there is a deterministic Turing
machine of space O(logN) that on input z ∈ F` outputs φ̂C(z). Since φx is Boolean
valued and is zero on all but a fixed set of 2n + 1 points (specifically, the clauses that
verify the correctness of the inputs and output), its low degree extension φ̂x can be
evaluated on a point z ∈ F` in time n · polylogN (by using Proposition 2.1 and iterating
only over the set of O(n) potentially non-zero points).

Since for x ∈ L we have ϕ(x1, . . . , xN) = 1, every clause that appears in ϕ is satisfied
by (x1, . . . , xN). Therefore, if x ∈ L, for every z = (i1, i2, i3, b1, b2, b3) ∈ (Hm)3×H3 = H`,
we have

φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3) = 0 (2.1)

Let P0 : F` → F be the multivariate polynomial defined as follows:
For z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3 × F3 = F`,

P0(z) , φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3)

Equation (2.1) implies that if x ∈ L then P0|H` ≡ 0. Moreover, the fact that X and φ̂
have degree < |H| in each variable, implies that P0 has degree < 2|H| in each variable,
and hence total degree < 2|H|`.

Next we define P1 : F` → F. For every z = (z1, . . . , z`) ∈ F`, let

P1(z) =
∑
h∈H

P0(h, z2, . . . , z`)z1
h

Note that if x ∈ L then P1|F×H`−1 ≡ 0. More generally, we define by induction P1, . . . , P` :
F` → F where for every z = (z1, . . . , z`) ∈ F`,

Pi(z) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)zi
h

Note that P1, . . . , P`−1 have degree < 2|H| in each variable, and hence total degree
< 2|H|`. Note also that if x ∈ L then Pi|Fi×H`−i ≡ 0, and in particular P` ≡ 0.

The PCP proof for x ∈ L consists of `+ 1 multivariate polynomials: The polynomial
X : Fm → F and the ` polynomials Pi : F` → F, for i = 0, . . . , `−1. To these polynomials
we add the polynomial P` ≡ 0. The polynomial P` is not part of the PCP proof (as it
is the 0 polynomial) and is added just for simplicity of the notation. When the verifier
queries P`(z) she gets 0 automatically.

32

2.5 The Base PCP

Let DX = Fm be the domain of X, and let D0, . . . , D` be `+1 copies of F`, the domain
of P0, . . . , P`. We view DX , D0, . . . , D` as the domains of X,P0, . . . , P`, respectively.
Denote,

D = DX ∪D0 ∪ . . . ∪D`

The set D is the alphabet of queries in the PCP. We will refer to D as the domain of
the PCP.

2.5.1.1 Complexity of the Prover

Note that the entire PCP proof can be generated in time poly(N) = poly(t(n)).

2.5.2 The PCP Verifier, V

The verifier knows the language L, or more precisely, she knows the Turing machine of
space O(logN) that on input n outputs the description of the circuit Cn. The verifier
gets an input x of length n and she wants to verify that x ∈ L by querying the PCP proof
X,P0, P1, . . . , P`.

We will first assume that the verifier has access to the correct values of the function
φ̂ : F` → F. That is, the verifier can get the correct value of φ̂(z) for free, for as many
points z ∈ F` as she wants.

Let k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , be a security parameter. (The restriction
k ≤ poly(n) is because we would like the running time of the verifier to be at most
poly(n)).

Recall that we denote by ai the ith coordinate of a vector a. In particular, for a line
L : F → F`, a field element t ∈ F and a coordinate i ∈ {1, . . . , `}, we denote by L(t)i
the ith coordinate of the point L(t) ∈ F`. Recall that we say that a line L : F → F` is
orthogonal to the ith coordinate if for every t1, t2 ∈ F, we have L(t1)i = L(t2)i.

The verifier V makes the following tests on the PCP proof: a Low Degree Test
for X; four types of Low Degree Tests for Pi; a Sum Check for Pi; and a test
of Consistency of X and P0 (the exact tests are described below). We note that we
have four types of low degree tests for Pi, rather than one, just for the simplicity of the
analysis. It would be sufficient to do only one test, similar to the low degree test for
X (but repeated on O(k · |F|2) random lines, rather than k random lines), since all four
types of tests that we actually do (and are formally described below) can be embedded
in such a test.

Formally, the verifier V makes the following tests, and accepts if the PCP proof passes
all of them:

1. Low Degree Test for X: Choose k random lines L1, . . . , Lk : F → Fm. For
every L ∈ {L1, . . . , Lk}, query X on all the points {L(t)}t∈F, and check that the
univariate polynomial X ◦ L : F→ F is of degree < m|H|.

2. Low Degree Test for Pi: Type 1 (fixed L(0)i+1): For every i ∈ {0, . . . , `− 1}
and every u ∈ F, choose k random lines L1, . . . , Lk : F → F`, such that, every line

33

2. DELEGATION FOR P

L ∈ {L1, . . . , Lk} satisfies L(0)i+1 = u. For every L ∈ {L1, . . . , Lk}, query Pi on all
the points {L(t)}t∈F, and check that the univariate polynomial Pi ◦ L : F→ F is of
degree < 2`|H|.

3. Low Degree Test for Pi: Type 2 (orthogonal to the (i + 1)th coordinate):
For every i ∈ {0, . . . , ` − 1}, choose k random lines L1, . . . , Lk : F → F`, such
that, every line L ∈ {L1, . . . , Lk} is orthogonal to the (i + 1)th coordinate. For
every L ∈ {L1, . . . , Lk}, query Pi on all the points {L(t)}t∈F, and check that the
univariate polynomial Pi ◦ L : F→ F is of degree < 2`|H|.

4. Low Degree Test for Pi: Type 3 (fixed L(0)i+1; orthogonal to the ith

coordinate): For every i ∈ {1, . . . , `− 1}, and every u ∈ F, choose k random lines
L1, . . . , Lk : F→ F`, such that, every line L ∈ {L1, . . . , Lk} is orthogonal to the ith

coordinate, and satisfies L(0)i+1 = u. For every L ∈ {L1, . . . , Lk}, query Pi on all
the points {L(t)}t∈F, and check that the univariate polynomial Pi ◦ L : F→ F is of
degree < 2`|H|.

5. Low Degree Test for Pi: Type 4 (fixed L(0)i; orthogonal to the (i + 1)th

coordinate): For every i ∈ {1, . . . , `− 1}, and every u ∈ F, choose k random lines
L1, . . . , Lk : F → F`, such that, every line L ∈ {L1, . . . , Lk} is orthogonal to the
(i + 1)th coordinate, and satisfies L(0)i = u. For every L ∈ {L1, . . . , Lk}, query Pi
on all the points {L(t)}t∈F, and check that the univariate polynomial Pi ◦L : F→ F
is of degree < 2`|H|.

6. Sum Check for Pi: For every i ∈ {1, . . . , `}, choose k random points in F`. For
each of these points, z = (z1, . . . , z`) ∈ F`, query Pi, Pi−1 on all the points
{(z1, . . . , zi−1, t, zi+1, . . . , z`)}t∈F, and check that for every t ∈ F,

Pi(z1, . . . , zi−1, t, zi+1, . . . , z`) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)t
h

7. Consistency of X and P0: Choose k random points in F`. For each of these
points, z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3 × F3 = F`, query P0 on the point z and X
on the points i1, i2, i3, and check that

P0(z) = φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3)

2.5.2.1 Complexity of the Verifier

Note that the total number of queries made by V to the PCP proof, as well as the total
number of queries made by V to the function φ̂, are both at most 6k`|F|2. The time
complexity of V is k · polylog(N) = k · polylog(t(n)).

34

2.6 Soundness of V ′ versus Soundness of V

2.5.3 The Relaxed Verifier, V ′

We will now define another verifier for the PCP proof X,P0, P1, . . . , P`. We will call the
new verifier, the relaxed verifier with parameter r, such that 1 ≤ r < k, and denote it by
V ′. As before, V ′ knows the language L and the input x, and we assume that she has
access to the correct values of the function φ̂ : F` → F.

The verifier V ′ makes the exact same queries as V , but she accepts in some cases
where V rejects.

Recall that V repeated every test k times: The Low Degree Test for X was repeated
on k different lines in Fm. The four types of Low Degree Tests for each Pi (and for three
of these types, for each u ∈ F), were each repeated on k different lines in F`. The Sum
Check for each Pi (for i ∈ {1, . . . , `}) was repeated on k different points in F`. The
Consistency of X and P0 was repeated on k different points in F`.

This gives a partition of all the tests made by V into groups, with exactly k tests in
each group. The verifier V accepted if all the tests in all the groups passed. The relaxed
verifier, V ′, accepts if in each group of k tests at least k − r of the tests pass, that is, at
most r tests fail.

2.6 Soundness of V ′ versus Soundness of V

In this section we will show that if the verifier V can be fooled to accept x 6∈ L, with
very small probability, then the verifier V ′ can be fooled to accept x 6∈ L with probability
very close to 1. Intuitively, this makes sense because the relaxed verifier V ′ accepts even
if she rejects some of the tests, as long as the number of tests rejected in each group of
k tests is at most r.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , is the security parameter of the
PCP, and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and
|F| are bounded by polylog(N).

We will prove the following lemma.

Lemma 2.3. Assume that V doesn’t have soundness ε against (kmax, δ)-no-signaling
strategies, where δ < ε

8·|F|6k`|F|2
. Then, V ′ doesn’t have soundness 1 − (10`|F|2−r +

2δ)/ε against (k′max, δ
′)-no-signaling strategies, where k′max = kmax − 6k`|F|2, and δ′ =

8δ|F|6k`|F|2/ε.

Let us first sketch the main techniques that we will use in the proof of the lemma:
The main claim that we will need in order to prove the lemma (Claim 2.3.1), shows

that if V, V ′ choose their queries independently then the probability that V accepts
and V ′ rejects, when all answers are given by a δ-no-signaling family of distributions
{AS}S⊂D,|S|≤kmax , is very small. This will be true because for each group of k tests we
can first choose the 2k tests for both V, V ′ and only then decide which tests go to V
and which ones go to V ′. If among the 2k tests many are rejected then V rejects with
high probability. On the other hand, if among the 2k tests only few are rejected then V ′

always accepts on that group.

35

2. DELEGATION FOR P

We will assume that there exists a δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax
that fools V with probability larger than ε. That is, the verifier V accepts with proba-
bility > ε, where on queries Q, the answers are given (probabilistically) by AQ ∈R AQ.
We will construct a δ′-no-signaling family of distributions {A′S}S⊂D,|S|≤k′max that fools V ′

with probability close to 1.
This will be done by fixing a set of queries q for V and answers aq for the queries

in q, such that V accepts on queries q and answers aq. The queries q will be chosen
randomly by the distribution of V , and the answers aq will be chosen randomly by the
distribution Aq, conditioned on the event that V accepts on queries q and answers aq.
The family {A′S} will be the family {AS} conditioned on the event that on queries q the
answers are aq.

Formally, for a set S, we denote by Aq∪S|aq the distribution of the random element
A ∈R Aq∪S, conditioned on the event Aq = aq (where we assume that the event Aq = aq
occurs with non-zero probability). Since in Aq∪S|aq we have that the coordinates indexed
by q are fixed to aq, we think of Aq∪S|aq , for simplicity of the notations, as a distribution
over ΣS, rather than over Σq∪S, where Σ = F is the alphabet of the answers, (and note
that in this distribution the coordinates indexed by q ∩ S are fixed to aq∩S). We will
define the family of distributions {A′S} by A′S = Aq∪S|aq .

We assume that for every distribution AS (or A′S) in the family {AS} (or {A′S}),
every query in S ∩D` is answered by 0 with probability 1 (since the polynomial P` was
just the 0 polynomial and was added to the PCP proof for simplicity of notations).

2.6.1 Proof of Lemma 2.3

Proof. Assume that V doesn’t have soundness ε against (kmax, δ)-no-signaling strategies.
Thus, for some x 6∈ L, there exists a δ-no-signaling family of distributions

{AS}S⊂D,|S|≤kmax that fools V with probability larger than ε. That is, the verifier V
accepts with probability > ε, where on queries Q, the answers are given (probabilistically)
by AQ ∈R AQ.

Let Q be the set of queries chosen randomly by the verifier V and let Q′ be the set
of queries chosen independently by the verifier V ′. Thus, Q,Q′ are independent random
variables. Let A ∈R AQ∪Q′ be the (probabilistic) answers for the queries Q ∪Q′.

Let V (Q,AQ) be 1 if V accepts on queries Q and answers AQ, and 0 otherwise. Let
V ′(Q′, AQ′) be 1 if V ′ accepts on queries Q′ and answers AQ′ , and 0 otherwise. (We
assume here that the sets of queries Q,Q′ are ordered by the order that the queries were
chosen by the verifiers, so that the sets of queries also define which tests are performed
on which queries). We denote by V (Q,AQ) also the event V (Q,AQ) = 1, and in the same
way we denote by V ′(Q′, AQ′) also the event V ′(Q′, AQ′) = 1.

Claim 2.3.1.

Pr
Q,Q′

Pr
A∈RAQ∪Q′

[V (Q,AQ) ∧ ¬V ′(Q′, AQ′)] ≤ 5`|F| · 2−r

(where r is the parameter of the relaxed verifier V ′).

36

2.6 Soundness of V ′ versus Soundness of V

Proof. Recall that V and V ′ repeated every test k times, and that this gives a partition
of all the tests performed by V and V ′ into groups, with exactly k tests in each group
(see Section 2.5.3), and the number of groups for each verifier is smaller than 5`|F|.

Let Qi,j be the set of queries chosen randomly by V in order to perform the jth test
in the ith group. Let Q′i,j be the set of queries chosen independently by V ′ in order to
perform the jth test in the ith group. We think of Qi,j, Q

′
i,j also as tests, rather than

just sets of queries. All these tests are performed independently. That is, all the sets in
{Qi,j}i,j ∪ {Q′i,j}i,j are independent, as random variables.

Let Qi be the multiset of tests {Qi,j}j∈[k] and let Q′i be the multiset of tests {Q′i,j}j∈[k].
Let V (Qi, AQi) be 1 if V accepts all the tests inQi (with answers AQi), and 0 otherwise.

Let V ′(Q′i, AQ′i) be 0 if V ′ rejects more than r tests in Q′i (with answers AQ′i), and 1
otherwise. As before, we denote by V (Qi, AQi) also the event V (Qi, AQi) = 1, and in the
same way we denote by V ′(Q′i, AQ′i) also as the event V ′(Q′i, AQ′i) = 1.

Note that if both V (Q,AQ) and ¬V ′(Q′, AQ′) occur, then there exists i such that V
accepts all the tests in Qi while V ′ rejects more than r tests in Q′i. Hence,

Pr
Q,Q′,A

[V (Q,AQ) ∧ ¬V ′(Q′, AQ′)] ≤
∑
i

Pr
Q,Q′,A

[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)]

Thus, it remains to bound Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)] by 2−r, for every i.
Fix i. Let Wi = {{Qi,j, Q

′
i,j}}j∈[k]. That is, Wi is the partition of the multiset Qi∪Q′i

into pairs {Qi,j, Q
′
i,j}, without specifying for each pair which test is Qi,j and which one is

Q′i,j. Note that we could have chosen Qi, Q
′
i by first choosing Wi and only then specifying

which test in each pair is Qi,j and which one is Q′i,j.
Let r(Wi) be the number of pairs in Wi with at least one test that is rejected by the

verifiers. Note that r(Wi) is a random variable that depends on Q,Q′, A, but conditioned
on Wi it is independent of Qi, Q

′
i (that is, r(Wi) is independent of the specification which

test in each pair is Qi,j and which one is Q′i,j).
We can now bound

Pr
Q,Q′,A

[V (Qi, AQi)∧¬V ′(Q′i, AQ′i)] = E
Wi,r(Wi)

[
Pr

Q,Q′,A
[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, r(Wi)]

]
Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, r(Wi)] is bounded as follows:
If r(Wi) < r then [V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)] doesn’t occur, because ¬V ′(Q′i, AQ′i)

doesn’t occur (because in order for ¬V ′(Q′i, AQ′i) to occur V ′ needs to reject at least r
tests in Q′i, which is impossible when r(Wi) < r). Hence,

Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, (r(Wi) < r)] = 0

For r(Wi) ≥ r,

Pr[V (Qi, AQi)∧¬V ′(Q′i, AQ′i) | Wi, (r(Wi) ≥ r)] ≤ Pr[V (Qi, AQi) | Wi, (r(Wi) ≥ r)] ≤ 2−r,

where the second inequality follows because for each pair {Qi,j, Q
′
i,j} ∈ Wi, each test goes

to Qi with probability 1/2 (independently at random), so the probability that Qi gets

37

2. DELEGATION FOR P

none of the rejected tests is ≤ 2−r (because when r(Wi) ≥ r, there are at least r pairs
with at least one rejected test in each pair).

We hence have

Pr
Q,Q′,A

[V (Qi, AQi)∧¬V ′(Q′i, AQ′i)] = E
Wi,r(Wi)

[
Pr

Q,Q′,A
[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, r(Wi)]

]
≤ 2−r

We will now proceed with the proof of Lemma 2.3. Recall that we assume that the
δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax fools V with probability larger
than ε.

Recall that Σ = F is the alphabet of the answers. Recall that for a vector aQ ∈ ΣQ,
we denote by AQ∪Q′|aQ the distribution of the random element A ∈R AQ∪Q′ , conditioned
on the event AQ = aQ, (where we assume that the event AQ = aQ is obtained with non-
zero probability (otherwise we define AQ∪Q′|aQ to be an arbitrary fixed distribution)).
Since in AQ∪Q′|aQ we have that the coordinates indexed by Q are fixed to aQ, we think

of AQ∪Q′ |aQ , for simplicity of the notations, as a distribution over ΣQ′ , rather than over

ΣQ∪Q′ (and note that in this distribution the coordinates indexed by Q ∩Q′ are fixed to
aQ∩Q′).

Since {AS} is a δ-no-signaling family of distributions, the distributions of the following
two random variables are δ-close:

• A ∈R AQ∪Q′

• Ã, where the coordinates indexed by Q of Ã are chosen by ÃQ ∈R AQ, and the
coordinates indexed by Q′ of Ã are chosen by ÃQ′ ∈R AQ∪Q′ |ÃQ (and note that on

Q ∩Q′ the vectors ÃQ, ÃQ′ always agree).

Therefore, by Claim 2.3.1,

5`|F| · 2−r ≥

Pr
Q,Q′

Pr
A∈RAQ∪Q′

[V (Q,AQ) ∧ ¬V ′(Q′, AQ′)] =

E
Q,Q′

E
A∈RAQ∪Q′

[V (Q,AQ) · (1− V ′(Q′, AQ′))] ≥

E
Q

E
Q′

E
ÃQ∈RAQ

E
ÃQ′∈RAQ∪Q′ |ÃQ

[V (Q, ÃQ) · (1− V ′(Q′, ÃQ′))]− δ =

E
Q

E
ÃQ∈RAQ

[
V (Q, ÃQ) · E

Q′
E

ÃQ′∈RAQ∪Q′ |ÃQ

[1− V ′(Q′, ÃQ′)]

]
− δ

38

2.6 Soundness of V ′ versus Soundness of V

That is,

E
Q

E
ÃQ∈RAQ

[
V (Q, ÃQ) · E

Q′
E

ÃQ′∈RAQ∪Q′ |ÃQ

[1− V ′(Q′, ÃQ′)]

]
≤ 5`|F| · 2−r + δ (2.2)

The following claim shows that we can fix the values of Q and ÃQ to specific values q
and ãq that satisfy two desired properties. The first property will be used to show that
V ′ is fooled with high probability. The second one will be used to show that the new
family of distributions that we will construct is δ′-no-signaling.

Claim 2.3.2. We can fix a set of queries q, and answers ãq ∈ Σq, such that:

1.

E
Q′

E
ÃQ′∈RAq∪Q′ |ãq

[1− V ′(Q′, ÃQ′)] ≤ (5`|F| · 2−r + δ) · 2

ε

2.
Pr

Ãq∈RAq
(Ãq = ãq) ≥

ε

2 · |Σ||q|

Proof. Consider the conditional distribution of (Q, ÃQ) | V (Q, ÃQ), that is, the distri-
bution of (Q, ÃQ), where ÃQ ∈R AQ, conditioned on the event V (Q, ÃQ). Fix (q, ãq)
randomly according to this distribution.

By Equation (2.2) and Markov inequality, and since

Pr
Q

Pr
ÃQ∈RAQ

V (Q, ÃQ) > ε,

the first part of the claim occurs with probability larger than 1/2.
Since PrQ PrÃQ∈RAQ V (Q, ÃQ) > ε and since the number of possibilities for each ãq is

|Σ||q|, the second part of the claim occurs with probability larger than 1/2.

Fix q, ãq from Claim 2.3.2. Define the family of distributions {A′S}S⊂D,|S|≤k′max by

A′S = Aq∪S|ãq

(where, as before, Aq∪S|ãq is viewed as a distribution over ΣS). Note also that |q| ≤
6k`|F|2 = kmax − k′max.

By the first part of Claim 2.3.2,

E
Q′

E
A′
Q′∈RA

′
Q′
V ′(Q′, A′Q′) ≥ 1− (10`|F| · 2−r + 2δ)/ε

That is, V ′ is fooled with probability of at least 1− (10`|F| · 2−r + 2δ)/ε.
It remains to prove that {A′S} is a δ′-no-signaling family of distributions.

Claim 2.3.3. {A′S} is a δ′-no-signaling family of distributions, where δ′ = 8δ|Σ|6k`|F|2/ε.

39

2. DELEGATION FOR P

Proof. Let S1 ⊂ S2 ⊂ D, be such that |S2| ≤ k′max. Denote by (A′S2
)S1 and (AS2)S1 the

projections of the distributions A′S2
,AS2 , respectively, on the coordinates in S1.

We need to prove that the distributions A′S1
and (A′S2

)S1 are δ′-close. Without loss of
generality, assume that q ⊆ S1. Otherwise, just add q to both S1, S2 (this doesn’t change
the distance between the two distributions because, by the definition of A′S1

,A′S2
, we just

added fixed coordinates to each of the two distribution).
Denote by AS1|ãq the distribution of A ∈R AS1 conditioned on the event Aq = ãq,

and, in the same way, denote by AS2 |ãq the distribution of A ∈R AS2 conditioned on the
event Aq = ãq, and by (AS2)S1|ãq the distribution of A ∈R (AS2)S1 conditioned on the
event Aq = ãq.

By the definitions, A′S1
= AS1|ãq , and A′S2

= AS2 |ãq . Thus, we need to prove that
AS1|ãq and (AS2|ãq)S1 are δ′-close. Since (AS2|ãq)S1 = (AS2)S1|ãq , we need to prove that
AS1|ãq and (AS2)S1|ãq are δ′-close.

Since A is a δ-no-signaling family, AS1 and (AS2)S1 are δ-close.
By the second part of Claim 2.3.2, and since A is a δ-no-signaling family, we have

that
Pr

A∈RAS1

(Aq = ãq) ≥
ε

2 · |Σ||q|
− δ

and
Pr

A∈R(AS2
)S1

(Aq = ãq) ≥
ε

2 · |Σ||q|
− δ

The proof of the claim thus follows by Proposition 2.4, with µ = AS1 , ψ = (AS2)S1 ,
and

α =
ε

2 · |Σ||q|
− δ ≥ ε

4 · |Σ||q|
≥ ε

4 · |Σ|6k`|F|2

Proposition 2.4. Let δ, α be such that 0 < 2δ < α ≤ 1. Let µ, ψ : Ω → R be two
probability distributions over a finite set Ω, and assume that µ, ψ are δ-close. Let E ⊂ Ω
be an event, such that, µ(E), ψ(E) ≥ α. Denote by µE, ψE the conditional distributions
µ, ψ, conditioned on the event E. Thus, µE, ψE : E → R are probability distributions
over E.

Then, µE, ψE are δ′-close, where δ′ = 2δ/α.

Proof. Denote by µ′ : E → R and ψ′ : E → R the restrictions of µ, ψ to E. That
is, for every e ∈ E, we have µ′(e) = µ(e) and ψ′(e) = ψ(e). Since µ, ψ are δ-close,
‖µ′ − ψ′‖1 ≤ ‖µ− ψ‖1 ≤ 2δ, where ‖ · ‖1 denotes the l1-norm.

Assume without loss of generality µ(E) ≥ ψ(E). That is, ψ(E)
µ(E)
≤ 1.

Assume for a contradiction ‖µE − ψE‖1 > 2δ′. Then

δ′ <
1

2

∑
e∈E

|µE(e)− ψE(e)| =
∑

{e|µE(e)≥ψE(e)}

|µE(e)− ψE(e)| ≤

∑
{e|µE(e)≥ψE(e)}

∣∣∣∣µE(e)− ψ(E)

µ(E)
ψE(e)

∣∣∣∣ ≤∑
e∈E

1

µ(E)
|µ(E) · µE(e)− ψ(E) · ψE(e)|

40

2.7 Soundness of V ′ in the Base PCP

≤ 1

α

∑
e∈E

|µ(E) · µE(e)− ψ(E) · ψE(e)|

Since µ′ = µ(E) · µE, and ψ′ = ψ(E) · ψE, we get δ′ < 2δ/α.

This concludes the proof of Lemma 2.3.

2.7 Soundness of V ′ in the Base PCP

In this section we will show that the verifier V ′ cannot be fooled to accept x 6∈ L, with
probability close to 1.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , is the security parameter of the
PCP, and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and
|F| are bounded by polylog(N).

We will prove the following lemma.

Lemma 2.5. Assume that kmax ≥ 4sk|F| + 6k`|F|2, where s = O(s(n)) is the maximal
number of gates in a layer of the circuit Cn. Assume that δ < 1

1000N`|F| . Fix ε = 1
100N`|F| ,

and note that ε > 10 max
(
δ, 2k
|F|m−2

)
. Assume r < k

20`|F| . Then, V ′ has soundness 1 − ε
against (kmax, δ)-no-signaling strategies.

The rest of the section is devoted for the proof of Lemma 2.5. From now on, through
Section 2.7, fix s, δ, ε, r to be as in the statement of Lemma 2.5.

As for the parameter kmax, for the proof of Lemma 2.5, we will assume that kmax ≥
4sk|F| + 6k`|F|2. We will assume for a contradiction that for some x 6∈ L, there exists
a δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax that fools V ′ with probability
larger than 1 − ε. That is, the verifier V ′ accepts with probability > 1 − ε, where on
queries Q, the answers are given (probabilistically) by A ∈R AQ (see Section 2.7.7).

However, in most parts of Section 2.7, a much weaker requirement kmax ≥ 6k`|F|2
will suffice. Hence, for the rest of the section we fix kmax ≥ 6k`|F|2 and denote by
{AS}S⊂D,|S|≤kmax a δ-no-signaling family of distributions that makes V ′ accept x with
probability > 1 − ε. The requirement that kmax ≥ 4sk|F| + 6k`|F|2 will only be used
in Section 2.7.7, by Lemma 2.28, Lemma 2.29 and by the proof of Lemma 2.5 (and the
requirement will be noted therein).

Recall that we denote by D the domain of the PCP (that is, the alphabet of queries
in the PCP). Recall that

D = DX ∪D0 ∪ . . . ∪D`,

where DX = Fm is viewed as the domain of X, and D0, . . . , D` are ` + 1 copies of F`,
viewed as the domains of P0, . . . , P`, respectively.

For a set S ⊂ D, |S| ≤ kmax, we will view the answers A ∈R AS as a function
A : S → F. We can view A also as a partial function A : D → F, and we denote by
AX , A0, . . . , A` the restriction of that partial function to DX , D0, . . . , D`, respectively.

41

2. DELEGATION FOR P

Recall that we assume that for every distribution AS in the family {AS}, every query
in S ∩ D` is answered by 0 with probability 1 (since the polynomial P` was just the 0
polynomial and was added to the PCP proof for simplicity of notations).

2.7.1 Some Immediate Claims

Fix kmax, s, δ, ε, r to be as in the statement of Lemma 2.5. Assume for a contradiction
that for some x 6∈ L, there exists a δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax
that fools V ′ with probability larger than 1− ε.

We will start by stating an immediate corollary of the fact that {AS} is a δ-no-
signaling family.

Claim 2.5.1. Let S ⊂ D, |S| ≤ kmax be a set generated by some random process. Let
A ∈R AS. Let f(S,A) be a predicate that is satisfied with probability p (where the prob-
ability is over S,A). Let S ′, Q, such that S ′ ⊆ Q ⊂ D, |Q| ≤ kmax, be two sets generated
by some random process, such that the distribution of S ′ is identical to the distribution
of S. Let A′ ∈R AQ. Then the probability that f(S ′, A′S′) is satisfied is between p− δ and
p+ δ, (where the probability is over S ′, Q,A′).

Proof. Since {AS} is a δ-no-signaling family, for every fixed sets s = s′ ⊆ q,

Pr
A∈RAs

(f(s, A)) = Pr
A′∈RAq

(f(s′, A′s′))∓ δ

The claim follows by taking expectation over S on the left hand side and expectation
over S ′, Q on the right hand side.

Next we will state seven immediate corollaries of the fact that V ′ accepts with proba-
bility > 1−ε. The following seven claims correspond to the seven different tests performed
by the verifier V ′. Each claim states that the corresponding test is satisfied with high
probability.

Claim 2.5.2. Low Degree Test for X:
Let L1, . . . , Lk : F→ DX be k random lines. Let S = {Lj(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.
Then, with probability > 1−ε−δ, for at least k−r of the lines L ∈ {L1, . . . , Lk}, we have
that A ◦ L : F→ F is a univariate polynomial of degree < m|H| (where the probability is
over L1, . . . , Lk, A).

Proof. Note that the set S can be extended to a set Q of queries of the verifier V ′, where Q
is generated by the correct distribution of V ′, and S ⊂ Q is the set of queries for the first
test performed by V ′ (that is, the low degree test for X). Let A′ ∈R AQ. Since V ′ accepts
with probability > 1− ε on queries Q and answers A′, and in particular this means that
the first test of V ′ passes with probability > 1 − ε, we have that A′ satisfies the claim
with probability > 1− ε. Formally:

With probability > 1 − ε, for at least k − r of the lines L ∈ {L1, . . . , Lk}, we have
that A′ ◦ L : F→ F is a univariate polynomial of degree < m|H| (where the probability
is over L1, . . . , Lk, Q,A

′).

42

2.7 Soundness of V ′ in the Base PCP

Since {AS} is a δ-no-signaling family, by Claim 2.5.1, the same is satisfied for A,
rather than A′, with probability > 1− ε− δ, rather than > 1− ε.

Claim 2.5.3. Low Degree Test for Pi (fixed L(0)i+1):
Let i ∈ {0, . . . , ` − 1}. Let u ∈ F. Let L1, . . . , Lk : F → Di be k random lines, such
that, every line L ∈ {L1, . . . , Lk} satisfies L(0)i+1 = u. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let
A ∈R AS. Then, with probability > 1−ε−δ, for at least k−r of the lines L ∈ {L1, . . . , Lk},
we have that A ◦ L : F → F is a univariate polynomial of degree < 2`|H| (where the
probability is over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 2.5.2, using the second test performed by V ′ (the
low degree test for Pi, type 1), rather than the first one.

Claim 2.5.4. Low Degree Test for Pi (orthogonal to the (i+ 1)th coordinate):
Let i ∈ {0, . . . , ` − 1}. Let L1, . . . , Lk : F → Di be k random lines, such that, every line
L ∈ {L1, . . . , Lk} is orthogonal to the (i+ 1)th coordinate. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di.
Let A ∈R AS. Then, with probability > 1 − ε − δ, for at least k − r of the lines L ∈
{L1, . . . , Lk}, we have that A ◦ L : F → F is a univariate polynomial of degree < 2`|H|
(where the probability is over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 2.5.2, using the third test performed by V ′ (the low
degree test for Pi, type 2), rather than the first one.

Claim 2.5.5. Low Degree Test for Pi (fixed L(0)i+1; orthogonal to the ith coor-
dinate):
Let i ∈ {1, . . . , `− 1}. Let u ∈ F. Let L1, . . . , Lk : F→ Di be k random lines, such that,
every line L ∈ {L1, . . . , Lk} is orthogonal to the ith coordinate, and satisfies L(0)i+1 = u.
Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS. Then, with probability > 1 − ε − δ, for at
least k − r of the lines L ∈ {L1, . . . , Lk}, we have that A ◦ L : F → F is a univariate
polynomial of degree < 2`|H| (where the probability is over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 2.5.2, using the fourth test performed by V ′ (the
low degree test for Pi, type 3), rather than the first one.

Claim 2.5.6. Low Degree Test for Pi (fixed L(0)i; orthogonal to the (i + 1)th

coordinate):
Let i ∈ {1, . . . , ` − 1}. Let u ∈ F. Let L1, . . . , Lk : F → Di be k random lines, such
that, every line L ∈ {L1, . . . , Lk} is orthogonal to the (i + 1)th coordinate, and satisfies
L(0)i = u. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS. Then, with probability > 1−ε−δ,
for at least k−r of the lines L ∈ {L1, . . . , Lk}, we have that A◦L : F→ F is a univariate
polynomial of degree < 2`|H| (where the probability is over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 2.5.2, using the fifth test performed by V ′ (the low
degree test for Pi, type 4), rather than the first one.

43

2. DELEGATION FOR P

Claim 2.5.7. Sum Check for Pi:
Let i ∈ {1, . . . , `}. Let z1, . . . , zk ∈ F` be k random points, where zj = (zj,1, . . . , zj,`) ∈ F`.
Let Si and Si−1 be two copies of the set of points {(zj,1, . . . , zj,i−1, t, zj,i+1, . . . , zj,`)}j∈[k],t∈F ⊂
F`, and view Si as a subset of Di and Si−1 as a subset of Di−1. Let S = Si ∪ Si−1 ⊂ D.
Let A ∈R AS. Then, with probability > 1− ε− δ, for at least k− r of the indices j ∈ [k],
the following is satisfied for every t ∈ F:

Ai(zj,1, . . . , zj,i−1, t, zj,i+1, . . . , zj,`) =
∑
h∈H

Ai−1(zj,1, . . . , zj,i−1, h, zj,i+1, . . . , zj,`)t
h

(where the probability is over z1, . . . , zk, A).

Proof. Similar to the proof of Claim 2.5.2, using the sixth test performed by V ′ (the sum
check for Pi), rather than the first one.

Claim 2.5.8. Consistency of X and P0:
Let z1, . . . , zk ∈ F` be k random points, where zj = (ij,1, ij,2, ij,3, bj,1, bj,2, bj,3) ∈ (Fm)3 ×
F3 = F`. Let S0 = {zj}j∈[k], viewed as a subset of D0, and let SX = {ij,1, ij,2, ij,3}j∈[k],
viewed as a subset of DX . Let S = S0∪SX ⊂ D. Let A ∈R AS. Then, with probability >
1− ε− δ, for at least k − r of the points zj ∈ {z1, . . . , zk}, the following is satisfied:

A0(zj) = φ̂(zj) · (AX(ij,1)− bj,1) · (AX(ij,2)− bj,2) · (AX(ij,3)− bj,3)

(where the probability is over z1, . . . , zk, A).

Proof. Similar to the proof of Claim 2.5.2, using the seventh test performed by V ′ (the
consistency of X and P0), rather than the first one.

2.7.2 Additional Notation

Let `′ ≥ 0 be an integer. Let M : F2 → F`′ be a plain. For every t1 ∈ F, denote by
M(t1, ∗) : F → F`′ the line L : F → F`′ defined by L(t) = M(t1, t). For every t2 ∈ F,
denote by M(∗, t2) : F→ F`′ the line L : F→ F`′ defined by L(t) = M(t, t2).

Let f : F2 → F be a function. For every t1 ∈ F, define f(t1,∗) : F → F by f(t1,∗)(t) =
f(t1, t). For every t2 ∈ F, define f(∗,t2) : F→ F by f(∗,t2)(t) = f(t, t2).

2.7.3 Consistency of P0

We will now give a definition that will be central in the rest of the section. Intuitively, a
point z satisfies property Z(ε′, r′) if when taking k lines through it, with high probability,
for most of these lines, the answers correspond to low degree polynomials that “evaluate”
the point z to 0.

Definition 2.6. Property Z(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let i ∈ {0, . . . , `}. Let z ∈ Di.

44

2.7 Soundness of V ′ in the Base PCP

Let L1, . . . , Lk : F→ Di be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = z. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS.

Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z and A0(z) = 0.
We say that the point z satisfies property Z(ε′, r′) (also denoted z ∈ Z(ε′, r′)) if with

probability ≥ 1 − ε′, for at least k − r′ of the lines L ∈ {L1, . . . , Lk}, we have that
A0 ◦L : F→ F is a univariate polynomial of degree < 2`|H| (where the probability is over
L1, . . . , Lk, A).

Our main lemma about property Z(ε′, r′) is that the property is satisfied, with small
ε′ and r′, for any point z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H. (Intuitively, this
is analogous to the formula P0|H` ≡ 0, that is satisfied for x ∈ L).

Lemma 2.7. For any z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H, we have z ∈
Z(ε′, r′), where ε′ = 8`|F|ε, and r′ = 8`|F|r.

The rest of Subsection 2.7.3 is devoted for the proof of Lemma 2.7.

2.7.3.1 Proof of Lemma 2.7

First, we define a variant of property Z(ε′, r′), where the random lines are restricted to
be orthogonal to the (i′)th coordinate. (We will use this property only for i′ ∈ {i, i+ 1}).

Definition 2.8. Property Zi′(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let i′ ∈ {1, . . . , `}. Let i ∈ {0, . . . , `}. Let z ∈ Di.

Let L1, . . . , Lk : F→ Di be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = z, and L is orthogonal to the (i′)th coordinate. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di.
Let A ∈R AS.

Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z and A0(z) = 0.
We say that the point z satisfies property Zi′(ε′, r′) (also denoted z ∈ Zi′(ε′, r′)) if

with probability ≥ 1 − ε′, for at least k − r′ of the lines L ∈ {L1, . . . , Lk}, we have that
A0 ◦L : F→ F is a univariate polynomial of degree < 2`|H| (where the probability is over
L1, . . . , Lk, A).

Lemma 2.7 will follow easily by Lemma 2.9, Lemma 2.11 and Lemma 2.12.

Lemma 2.9. For every ε1 ≥ 0, every r1 ≥ 0, every i ∈ {1, . . . , `− 1}, and every z ∈ Di,
if z ∈ Zi+1(ε1, r1) then z ∈ Zi(ε2, r2), where ε2 = ε1 + 3|F|ε, and r2 = r1 + 2|F|r.

Proof. Assume that z ∈ Zi+1(ε1, r1).
Let L1, . . . , Lk : F→ Di be k random lines, such that for every L ∈ {L1, . . . , Lk}, we

have L(0) = z, and L is orthogonal to the (i + 1)th coordinate. Let L′1, . . . , L
′
k : F→ Di

be k random lines, such that for every L′ ∈ {L′1, . . . , L′k}, we have L′(0) = z, and L′ is
orthogonal to the ith coordinate.

Denote by E the event that for every j ∈ [k], the lines Lj, L
′
j are in general position,

that is, the vectors Lj(1)−Lj(0), L′j(1)−L′j(0) span a linear subspace of dimension 2 (as

vectors in Di = F`). Note that the event E occurs with probability of at least 1− k·2
|F|`−2 .

45

2. DELEGATION FOR P

Let M1, . . . ,Mk : F2 → Di be k plains, where Mj(t1, t2) = Lj(t1) +L′j(t2)− z, (where
the addition/substraction are over the vector space Di = F`).

Let S = {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ Di. Let A ∈R AS. Define A0 : S → F by A0(z′) =
A(z′) for z′ 6= z and A0(z) = 0.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F\{0}, the function A0◦Mj(t1, ∗) : F→ F is a univariate polynomial
of degree < 2`|H|.

2. For every t2 ∈ F, the function A0 ◦Mj(∗, t2) : F→ F is a univariate polynomial of
degree < 2`|H|.

By Proposition 2.10, (applied with f = A0 ◦Mj and d = 2`|H|), if Mj is good then
A0 ◦ L′j = A0 ◦Mj(0, ∗) : F→ F is a univariate polynomial of degree < 2`|H|.

Proposition 2.10. Let f : F2 → F be a function. Assume that for every t1 ∈ F\{0}, the
function f(t1,∗) : F→ F is a univariate polynomial of degree < d, and for every t2 ∈ F, the
function f(∗,t2) : F → F is a univariate polynomial of degree < d, where d < |F|. Then,
f(0,∗) : F→ F is a univariate polynomial of degree < d.

Proof. For every t2 ∈ F, the function f(∗,t2) : F → F is a univariate polynomial of
degree < d. Therefore, there exist a1, . . . , ad ∈ F, (where a1, . . . , ad are the Lagrange
interpolation coefficients), such that for every t2 ∈ F, we have f(0, t2) =

∑d
t=1 at · f(t, t2).

That is, f(0,∗) =
∑d

t=1 at · f(t,∗). Since f(1,∗), . . . , f(d,∗) are univariate polynomials of degree
< d, their linear combination f(0,∗) is also a univariate polynomial of degree < d.

We will show that with high probability, at least k−r2 of the plains M ∈ {M1, . . . ,Mk}
are good (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). By Proposition 2.10,

this implies that with high probability, at least k−r2 of the lines L′ ∈ {L′1, . . . , L′k} satisfy
that A0 ◦L′ : F→ F is a univariate polynomial of degree < 2`|H| (where the probability
is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A).

Claim 2.10.1. With probability ≥ 1− ε1−2|F|ε−4|F|δ− 2k
|F|`−2 , for at least k− r1−2|F|r

of the indices j ∈ [k], we have that Mj is good.

Proof. For every t1 ∈ F \ {0}, consider the set of lines {Mj(t1, ∗)}j∈[k] and note that this
is a set of k random lines in Di, such that, every line L ∈ {Mj(t1, ∗)}j∈[k] is orthogonal
to the ith coordinate, and satisfies L(0)i+1 = zi+1. Hence, by Claim 2.5.5, using also
Claim 2.5.1, with probability > 1− ε−2δ, for at least k−r of the indices j ∈ [k], we have
that A ◦Mj(t1, ∗) : F → F is a univariate polynomial of degree < 2`|H|. If, in addition,
the event E occurs, then A0 ◦Mj(t1, ∗) = A ◦Mj(t1, ∗) and hence A0 ◦Mj(t1, ∗) : F→ F
is also a univariate polynomial of degree < 2`|H|.

For every t2 ∈ F \ {0}, consider the set of lines {Mj(∗, t2)}j∈[k] and note that this
is a set of k random lines in Di, such that, every line L ∈ {Mj(∗, t2)}j∈[k] is orthogonal
to the (i + 1)th coordinate, and satisfies L(0)i = zi. Hence, by Claim 2.5.6, using also
Claim 2.5.1, with probability > 1− ε−2δ, for at least k−r of the indices j ∈ [k], we have

46

2.7 Soundness of V ′ in the Base PCP

that A ◦Mj(∗, t2) : F → F is a univariate polynomial of degree < 2`|H|. If, in addition,
the event E occurs, then A0 ◦Mj(∗, t2) = A ◦Mj(∗, t2) and hence A0 ◦Mj(∗, t2) : F→ F
is also a univariate polynomial of degree < 2`|H|.

Consider the set of lines {Mj(∗, 0)}j∈[k] and note that Mj(∗, 0) = Lj. Since z ∈
Zi+1(ε1, r1), and using also Claim 2.5.1, with probability ≥ 1− ε1 − δ, for at least k − r1

of the indices j ∈ [k], we have that A0 ◦Mj(∗, 0) : F → F is a univariate polynomial of
degree < 2`|H|.

Recall also that the event E occurs with probability of at least 1− 2k
|F|`−2 .

Adding up all this, by the union bound, we obtain that with probability ≥ 1 − ε1 −
2|F|ε− 4|F|δ − 2k

|F|`−2 , for at least k − r1 − 2|F|r of the indices j ∈ [k], we have that:

1. For every t1 ∈ F \ {0}, A0 ◦Mj(t1, ∗) is a univariate polynomial of degree < 2`|H|.

2. For every t2 ∈ F \ {0}, A0 ◦Mj(∗, t2) is a univariate polynomial of degree < 2`|H|.

3. A0 ◦Mj(∗, 0) is a univariate polynomial of degree < 2`|H|.

That is, with probability ≥ 1 − ε1 − 2|F|ε − 4|F|δ − 2k
|F|`−2 , for at least k − r1 − 2|F|r of

the indices j ∈ [k], we have that Mj is good.

By Proposition 2.10, Claim 2.10.1 implies that with probability ≥ 1 − ε1 − 2|F|ε −
4|F|δ − 2k

|F|`−2 > 1 − ε2 + δ, at least k − r2 of the lines L′ ∈ {L′1, . . . , L′k} satisfy that

A0 ◦ L′ : F → F is a univariate polynomial of degree < 2`|H| (where the probability is
over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). Thus, using Claim 2.5.1, z ∈ Zi(ε2, r2).

This concludes the proof of Lemma 2.9.

Lemma 2.11. For every ε1 ≥ 0, every r1 ≥ 0, every i ∈ {0, . . . , `−1}, and every z ∈ Di,
if z ∈ Zi+1(ε1, r1) then z ∈ Z(ε2, r2), where ε2 = ε1 + 3|F|ε, and r2 = r1 + 2|F|r.

Proof. Similar to the proof of Lemma 2.9, except that we let L′1, . . . , L
′
k : F → Di be k

random lines, such that for every L′ ∈ {L′1, . . . , L′k}, we have L′(0) = z, (without the
requirement that L′ is orthogonal to the ith coordinate), and we use Claim 2.5.3 and
Claim 2.5.4, rather than Claim 2.5.5 and Claim 2.5.6, in the proof for the equivalent of
Claim 2.10.1.

Lemma 2.12. Let ε1 ≥ 0. Let r1 ≥ 0. Let i ∈ {1, . . . , `}. Let z = (z1, . . . , z`) ∈ F` be
a point, such that, zi ∈ H. For every t ∈ F, let z(t) = (z1, . . . , zi−1, t, zi+1, . . . , z`) ∈ F`.
Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies property
Zi(ε1, r1). Then the point z, viewed as a point in Di−1, satisfies property Zi(ε2, r2), where

ε2 = ε1
1−γ + 2|F|ε, and r2 = r1

1−γ + |F|r, and γ =
√
|H|
|F| .

Proof. Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies
property Zi(ε1, r1).

Let L1, . . . , Lk : F→ F` be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = 0, and L is orthogonal to the ith coordinate.

47

2. DELEGATION FOR P

Denote by E the event that for every j ∈ [k], the line Lj is in a general position (as
a line in F`), that is, it’s image is not a single point. Note that the event E occurs with
probability of at least 1− k

|F|`−1 .

Let M1, . . . ,Mk : F2 → F` be k plains, where Mj(t1, t2) = Lj(t1) + z(t2), (where the
addition is over the vector space F`).

Let Si and Si−1 be two copies of the set of points {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ F`, and
view Si as a subset of Di and Si−1 as a subset of Di−1. Let S = Si ∪ Si−1 ⊂ D. Let
A ∈R AS. Recall that we view A as a function A : S → F, and we denote by Ai, Ai−1 the
restriction of that function to Si, Si−1, respectively.

Define A0
i : Si → F by A0

i (z
′) = Ai(z

′) for z′ 6∈ {z(t)}t∈F, and A0
i (z
′) = 0 for

z′ ∈ {z(t)}t∈F. Define A0
i−1 : Si−1 → F by A0

i−1(z′) = Ai−1(z′) for z′ 6∈ {z(t)}t∈F and
A0
i−1(z′) = 0 for z′ ∈ {z(t)}t∈F.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F, and every t ∈ F,

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

2. For at least |H| values t2 ∈ F, the function A0
i ◦Mj(∗, t2) : F → F is a univariate

polynomial of degree < 2`|H|.

By Proposition 2.13, (applied with f = A0
i ◦Mj, f

′ = A0
i−1 ◦Mj and d = 2`|H|), if

Mj is good then for every t2 ∈ H, the function A0
i−1 ◦Mj(∗, t2) : F → F is a univariate

polynomial of degree < 2`|H|.

Proposition 2.13. Let f : F2 → F and f ′ : F2 → F be two functions. Assume that:

1. For every t1 ∈ F, and every t ∈ F,

f(t1, t) =
∑
h∈H

f ′(t1, h)th

2. For at least |H| values t2 ∈ F, the function f(∗,t2) : F→ F is a univariate polynomial
of degree < d.

Then, for every t2 ∈ H, the function f ′(∗,t2) : F → F is a univariate polynomial of degree
< d.

Proof. For every h ∈ H, present the function f ′(∗,h) : F → F as a univariate polynomial

(in the free variable y),

f ′(y, h) = f ′(∗,h)(y) =

|F|−1∑
s=0

ah,s · ys

48

2.7 Soundness of V ′ in the Base PCP

where ah,0, . . . , ah,|F|−1 ∈ F. Thus, for every y ∈ F, and every t ∈ F,

f(∗,t)(y) = f(y, t) =
∑
h∈H

f ′(y, h)th =
∑
h∈H

|F|−1∑
s=0

ah,s · ys · th =

|F|−1∑
s=0

(∑
h∈H

ah,s · th
)
· ys

Assume for a contradiction that for some s ≥ d, the polynomial
∑

h∈H ah,s · th is not
the identically 0 polynomial, and let s be the largest such index. Since

∑
h∈H ah,s · th

is not identically 0, and its degree is ≤ |H| − 1, it gives 0 on at most |H| − 1 values of
t ∈ F. Hence, the polynomial f(∗,t)(y) is of degree < s for at most |H|− 1 values of t ∈ F,
which is a contradiction to the assumption that for at least |H| values t ∈ F, the function
f(∗,t) : F→ F is a univariate polynomial of degree < d.

Thus, for every s ≥ d, the polynomial
∑

h∈H ah,s · th is the identically 0 polynomial.
That is, for every s ≥ d and every h ∈ H we have ah,s = 0. Hence, for every h ∈ H, the
function f ′(∗,h) : F→ F is a univariate polynomial of degree < d.

We will show that with high probability, at least k−r2 of the plains M ∈ {M1, . . . ,Mk}
are good (where the probability is over L1, . . . , Lk, A).

Claim 2.13.1. With probability ≥ 1−|F|ε−2|F|δ− k
|F|`−1 − ε1+δ

1−γ , for at least k−|F|r− r1
1−γ

of the indices j ∈ [k], we have that Mj is good, where γ =
√
|H|
|F| .

Proof. First note that for t1 = 0,

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

is satisfied trivially (for every j ∈ [k], and every t ∈ F), since A0
i ◦Mj(0, ∗) and A0

i−1 ◦
Mj(0, ∗) are the identically 0 function (by the definitions).

For every t1 ∈ F \ {0}, consider the set of points {Mj(t1, 0)}j∈[k] and note that this is
a set of k random points in F`, such that the ith coordinate of each of these points is 0,
(that is, all other coordinates of all these points are uniformly distributed and independent
random variables). Note that in Claim 2.5.7, the ith coordinate of each random point is
ignored. Hence, by Claim 2.5.7, using also Claim 2.5.1, with probability > 1− ε− 2δ, for
at least k − r of the indices j ∈ [k], the following is satisfied for every t ∈ F:

Ai(Mj(t1, t)) =
∑
h∈H

Ai−1(Mj(t1, h))th

If, in addition, the event E occurs, then for every t ∈ F, we have that, A0
i (Mj(t1, t)) =

Ai(Mj(t1, t)) and A0
i−1(Mj(t1, t)) = Ai−1(Mj(t1, t)) and hence

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

(and recall that for t1 = 0 this is satisfied trivially).

49

2. DELEGATION FOR P

Recall that the event E occurs with probability of at least 1− k
|F|`−1 .

Thus, by the union bound, with probability > 1 − |F|ε − 2|F|δ − k
|F|`−1 , for at least

k− |F|r of the indices j ∈ [k], the following is satisfied for every t1 ∈ F and every t ∈ F:

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th (2.3)

For every t2 ∈ F, consider the set of lines {Mj(∗, t2)}j∈[k] and note that this is a set of
k random lines, such that for every L ∈ {Mj(∗, t2)}j∈[k], we have L(0) = z(t2), and L is
orthogonal to the ith coordinate. Since z(t2), viewed as a point in Di, satisfies property
Zi(ε1, r1), and using also Claim 2.5.1, with probability ≥ 1 − ε1 − δ, for at least k − r1

of the indices j ∈ [k], we have that A0
i ◦Mj(∗, t2) : F → F is a univariate polynomial of

degree < 2`|H|.
Since this is true for every t2 ∈ F, by Proposition 2.14, applied with α = ε1 + δ, we

obtain the following for any γ < 1:
with probability ≥ 1 − ε1+δ

1−γ , for at least γ|F| values t2 ∈ F we have that for at least

k−r1 of the indices j ∈ [k], the function A0
i ◦Mj(∗, t2) : F→ F is a univariate polynomial

of degree < 2`|H|.

Proposition 2.14. Let {Et}t∈F be a set of events, such that, for every t ∈ F, Pr(Et) ≥
1 − α. Then, for any γ < 1, with probability of at least 1 − α

1−γ , at least γ|F| events in

{Et}t∈F occur.

Proof. Let It be the characteristic function of the event ¬Et. Let I =
∑

t∈F It. Thus,
E[I] ≤ α|F|. By Markov’s inequality, Pr[I > (1 − γ)|F|] < α/(1 − γ). Thus, with
probability of at least 1− α/(1− γ), at least γ|F| events in {Et}t∈F occur.

Thus, with probability ≥ 1 − ε1+δ
1−γ , for at least γ|F| values t2 ∈ F we have that for

at most r1 of the indices j ∈ [k], the function A0
i ◦Mj(∗, t2) : F → F is not a univariate

polynomial of degree < 2`|H|.
Since in a {0, 1}-matrix with γ|F| rows and [k] columns, with at most r1 ones in each

row, there are at most γ|F|r1
γ|F|−|H| columns with more than γ|F| − |H| ones (otherwise, the

total number of ones is > γ|F|r1), this implies that with probability ≥ 1 − ε1+δ
1−γ , for at

most γ|F|r1
γ|F|−|H| indices j ∈ [k] we have that for less than |H| of the values t2 ∈ F the

function A0
i ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|.

Combined with Equation (2.3), by the union bound, with probability > 1 − |F|ε −
2|F|δ − k

|F|`−1 − ε1+δ
1−γ , for at least k − |F|r − γ|F|r1

γ|F|−|H| of the indices j ∈ [k], we have that:

1. For every t1 ∈ F and every t ∈ F:

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

2. For at least |H| of the values t2 ∈ F the function A0
i ◦ Mj(∗, t2) : F → F is a

univariate polynomial of degree < 2`|H|.

50

2.7 Soundness of V ′ in the Base PCP

That is, with probability ≥ 1−|F|ε−2|F|δ− k
|F|`−1 − ε1+δ

1−γ , for at least k−|F|r− γ|F|r1
γ|F|−|H|

of the indices j ∈ [k], we have that Mj is good. In particular, for γ =
√
|H|
|F| , we have

that with probability ≥ 1− |F|ε− 2|F|δ − k
|F|`−1 − ε1+δ

1−γ , for at least k − |F|r − r1
1−γ of the

indices j ∈ [k], we have that Mj is good.

By Proposition 2.13, Claim 2.13.1 implies that with probability ≥ 1− |F|ε− 2|F|δ −
k

|F|`−1 − ε1+δ
1−γ > 1− ε2 +δ, at least k−r2 of the indices j ∈ [k] satisfy that for every t2 ∈ H,

the function A0
i−1◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|, (where

the probability is over L1, . . . , Lk, A).
Fix t2 = zi. Consider the set of lines {Mj(∗, t2)}j∈[k] and note that this is a set of k

random lines, such that for every L ∈ {Mj(∗, t2)}j∈[k], we have L(0) = z(t2) = z, and L
is orthogonal to the ith coordinate.

With probability > 1 − ε2 + δ, at least k − r2 of the indices j ∈ [k] satisfy that the
function A0

i−1 ◦Mj(∗, t2) : F → F is a univariate polynomial of degree < 2`|H|. Thus,
using Claim 2.5.1, the point z, viewed as a point in Di−1, satisfies property Zi(ε2, r2).

This concludes the proof of Lemma 2.12.

Combining Lemma 2.12 and Lemma 2.9, we obtain the following lemma.

Lemma 2.15. Let ε1 ≥ 0. Let r1 ≥ 0. Let i ∈ {2, . . . , `}. Let z = (z1, . . . , z`) ∈ F` be
a point, such that, zi ∈ H. For every t ∈ F, let z(t) = (z1, . . . , zi−1, t, zi+1, . . . , z`) ∈ F`.
Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies property
Zi(ε1, r1). Then the point z, viewed as a point in Di−1, satisfies property Zi−1(ε2, r2),

where ε2 = ε1
1−γ + 5|F|ε, and r2 = r1

1−γ + 3|F|r, and γ =
√
|H|
|F| .

Proof. Follows by applying Lemma 2.12 and then Lemma 2.9.

We can now prove Lemma 2.7.

Proof. Recall that we assume that for every distribution AS in the family {AS}, every
query in S ∩ D` is answered by 0 with probability 1 (since the polynomial P` was just
the 0 polynomial and was added to the PCP proof for simplicity of notations). Therefore,
any point z ∈ D`, satisfies property Z`(ε`, r`), where ε` = 0 and r` = 0.

By inductive application of Lemma 2.15, for any i ∈ {1, . . . , ` − 1}, any point z =
(z1, . . . , z`) ∈ Di, such that, zi+1, . . . , z` ∈ H, satisfies property Zi(εi, ri), where εi =
εi+1

1−γ + 5|F|ε and ri = ri+1

1−γ + 3|F|r, and γ =
√
|H|
|F| .

In particular, any point z = (z1, . . . , z`) ∈ D1, such that, z2, . . . , z` ∈ H, satisfies

property Z1(ε1, r1), where ε1 ≤ 5`|F|ε
(1−γ)`

< 6`|F|ε and r1 ≤ 3`|F|r
(1−γ)`

< 6`|F|r.
Hence, by Lemma 2.12, any point z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H,

satisfies property Z1(ε0, r0), where ε0 = ε1
1−γ +2|F|ε < 7`|F|ε, and r0 = r1

1−γ +|F|r < 7`|F|r.
Finally, by Lemma 2.11, any point z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H,

satisfies property Z(ε′, r′), where ε′ < 8`|F|ε, and r′ < 8`|F|r.

51

2. DELEGATION FOR P

2.7.4 Consistency of X

In this subsection we will show that, intuitively, when taking a large number of lines
through a point z ∈ DX , with high probability, there exists a value v ∈ F, such that for
most of these lines, the answers correspond to low degree polynomials that “evaluate”
the point z to v.

This is stated formally in Lemma 2.18, Lemma 2.19 and Lemma 2.20. The main goal
of the subsection is to prove Lemma 2.19 and Lemma 2.20 (their statements could be
read before reading the rest of the subsection). To prove these lemmas, we will need to
first prove Lemma 2.16 and Lemma 2.18.

Lemma 2.16. Let ε′ = 3|F|ε. Let r′ = 2|F|r. Let z ∈ DX . Let L1, . . . , Lk, L
′
1, . . . , L

′
k :

F → DX be 2k random lines, such that for every L ∈ {L1, . . . , Lk, L
′
1, . . . , L

′
k}, we have

L(0) = z. Let S ′ = {Lj(t)}j∈[k],t∈F ∪ {L′j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS′.
For any v ∈ F, define Av : S ′ → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.
Then, with probability ≥ 1 − ε′, for at least k − r′ of the indices j ∈ [k], there exists

v ∈ F, such that, both Av ◦Lj : F→ F and Av ◦L′j : F→ F are univariate polynomials of
degree < m|H| (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A).

Proof. Let L1, . . . , Lk, L
′
1, . . . , L

′
k : F → DX be 2k random lines, such that for every

L ∈ {L1, . . . , Lk, L
′
1, . . . , L

′
k}, we have L(0) = z.

Denote by E the event that for every j ∈ [k], the lines Lj, L
′
j are in general position,

that is, the vectors Lj(1)−Lj(0), L′j(1)−L′j(0) span a linear subspace of dimension 2 (as

vectors in DX = Fm). Note that the event E occurs with probability of at least 1− k·2
|F|m−2 .

Let M1, . . . ,Mk : F2 → DX be k plains, where Mj(t1, t2) = Lj(t1) +L′j(t2)− z, (where
the addition/substraction are over the vector space DX = Fm).

Let S = {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ DX . Let A ∈R AS. For any v ∈ F, define Av : S → F
by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F\{0}, the function A◦Mj(t1, ∗) : F→ F is a univariate polynomial
of degree < m|H|.

2. For every t2 ∈ F\{0}, the function A◦Mj(∗, t2) : F→ F is a univariate polynomial
of degree < m|H|.

By Proposition 2.17, (applied with f = A ◦Mj and d = m|H|), if the event E occurs
and Mj is good then there exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) : F→ F and
Av ◦ L′j = Av ◦Mj(0, ∗) : F→ F are both univariate polynomials of degree < m|H|.

Proposition 2.17. Let f : F2 → F be a function. Assume that for every t1 ∈ F \ {0},
the function f(t1,∗) : F → F is a univariate polynomial of degree < d, and for every
t2 ∈ F \ {0}, the function f(∗,t2) : F→ F is a univariate polynomial of degree < d, where
d < |F|. For any v ∈ F, define f v : F2 → F by f v(t1, t2) = f(t1, t2) for (t1, t2) 6= (0, 0)
and f v(0, 0) = v. Then, there exists v ∈ F, such that, f v(0,∗) : F → F and f v(∗,0) : F → F
are both univariate polynomials of degree < d.

52

2.7 Soundness of V ′ in the Base PCP

Proof. For every t2 ∈ F \ {0}, the function f(∗,t2) : F → F is a univariate polynomial of
degree < d. Therefore, there exist a1, . . . , ad ∈ F, (where a1, . . . , ad are the Lagrange
interpolation coefficients), such that for every t2 ∈ F \ {0}, we have f(0, t2) =

∑d
t=1 at ·

f(t, t2). Since f v(t1, t2) = f(t1, t2) for (t1, t2) 6= (0, 0), this implies that for every t2 ∈
F \ {0} and every v ∈ F, we have f v(0, t2) =

∑d
t=1 at · f v(t, t2).

Let v =
∑d

t=1 at · f(t, 0). Since f v(0, 0) = v, we now have for every t2 ∈ F (including

t2 = 0), f v(0, t2) =
∑d

t=1 at ·f v(t, t2). That is, f v(0,∗) =
∑d

t=1 at ·f v(t,∗). Since f v(1,∗), . . . , f
v
(d,∗)

are identical to f(1,∗), . . . , f(d,∗) and are hence univariate polynomials of degree < d, their
linear combination f v(0,∗) is also a univariate polynomial of degree < d.

The proof now follows from Proposition 2.10, applied on the function f v (with vari-
ables t1, t2 switched).

We will show that with high probability, at least k−r′ of the plains M ∈ {M1, . . . ,Mk}
are good (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). By Proposition 2.17,

this implies that with high probability, for at least k − r′ of the indices j ∈ [k], there
exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) : F → F and Av ◦ L′j = Av ◦Mj(0, ∗) :
F→ F are both univariate polynomials of degree < m|H| (where the probability is over
L1, . . . , Lk, L

′
1, . . . , L

′
k, A).

Claim 2.17.1. With probability ≥ 1− 2|F|ε− 4|F|δ, for at least k − 2|F|r of the indices
j ∈ [k], we have that Mj is good.

Proof. For every t1 ∈ F \ {0}, consider the set of lines {Mj(t1, ∗)}j∈[k] and note that
this is a set of k random lines in DX . Hence, by Claim 2.5.2, using also Claim 2.5.1,
with probability > 1 − ε − 2δ, for at least k − r of the indices j ∈ [k], we have that
A ◦Mj(t1, ∗) : F→ F is a univariate polynomial of degree < m|H|.

For every t2 ∈ F \ {0}, consider the set of lines {Mj(∗, t2)}j∈[k] and note that this
is a set of k random lines in DX . Hence, by Claim 2.5.2, using also Claim 2.5.1, with
probability > 1−ε−2δ, for at least k−r of the indices j ∈ [k], we have that A◦Mj(∗, t2) :
F→ F is a univariate polynomial of degree < m|H|.

Adding up these facts, by the union bound, we obtain that with probability ≥ 1 −
2|F|ε− 4|F|δ, for at least k − 2|F|r of the indices j ∈ [k], we have that:

1. For every t1 ∈ F \ {0}, A ◦Mj(t1, ∗) : F → F is a univariate polynomial of degree
< m|H|.

2. For every t2 ∈ F \ {0}, A ◦Mj(∗, t2) : F → F is a univariate polynomial of degree
< m|H|.

That is, with probability ≥ 1− 2|F|ε− 4|F|δ, for at least k − 2|F|r of the indices j ∈ [k],
we have that Mj is good.

By Proposition 2.17, and since the event E occurs with probability of at least 1− k·2
|F|m−2

Claim 2.17.1 implies that with probability ≥ 1− 2|F|ε− 4|F|δ− 2k
|F|m−2 > 1− ε′+ δ, for at

least k − r′ of the indices j ∈ [k], there exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) :

53

2. DELEGATION FOR P

F → F and Av ◦ L′j = Av ◦Mj(0, ∗) : F → F are both univariate polynomials of degree
< m|H| (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). Thus, using Claim 2.5.1,

Lemma 2.16 follows.

Lemma 2.18. Let r′ = 20|F|r. Let ε′ = 4|F|ε. Let z ∈ DX . Let L1, . . . , L2k : F → DX

be 2k random lines, such that for every L ∈ {L1, . . . , L2k}, we have L(0) = z. Let
S = {Lj(t)}j∈[2k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.
Then, with probability ≥ 1 − ε′, there exists v ∈ F, such that, for at least 2k − r′ of

the indices j ∈ [2k], Av ◦Lj : F→ F is a univariate polynomial of degree < m|H| (where
the probability is over L1, . . . , L2k, A).

Proof. Let L1, . . . , L2k : F→ DX be 2k random lines, such that for every L ∈ {L1, . . . , L2k},
we have L(0) = z. Let S = {Lj(t)}j∈[2k],t∈F ⊂ DX . Let A ∈R AS. For any v ∈ F, define
Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Denote by E the event that there exists v ∈ F, such that, for at least 2k − r′ of the
indices j ∈ [2k], Av ◦ Lj : F → F is a univariate polynomial of degree < m|H|. We will
show that Pr(E) ≥ 1− ε′, as needed (where the probability is over L1, . . . , L2k, A).

Partition L1, . . . , L2k randomly into L′1, . . . , L
′
k and L′′1, . . . , L

′′
k. Denote by E ′ the

event that for at least k− 2|F|r of the indices j ∈ [k], there exists v ∈ F, such that, both
Av ◦ L′j : F → F and Av ◦ L′′j : F → F are univariate polynomials of degree < m|H|. By
Lemma 2.16, Pr(E ′) ≥ 1− 3|F|ε.

Claim 2.18.1. Pr(E ′ | ¬E) ≤ 2−|F|r/4

Proof. For every v ∈ F, let Jv be the set of indices j ∈ [2k], such that, Av ◦Lj : F→ F is
a univariate polynomial of degree < m|H|. Note that for every v 6= v′ ∈ F, Jv ∩ Jv′ = ∅.
If the event ¬E occurs then for every v ∈ F, |Jv| < 2k − r′. Denote by J the largest set
Jv and by J̄ the complement of J in [2k]. Thus, if the event ¬E occurs then |J̄ | > r′.

Given the sets {Jv}v∈F, the probability that E ′ occurs is the probability that when
partitioning [2k] randomly into k pairs, for at least k− 2|F|r pairs the two indices in the
pair are in the same set Jv. Assuming that |J̄ | > r′, this probability can be bounded by
2−|F|r by the following argument:

Choose the partition as follows: First choose randomly k′ = r′/2 different indices
j1, . . . , jk′ in J̄ . Match the indices j1, . . . , jk′ one by one, each to a random index in
[2k] that was still not chosen. Say that jt ∈ {j1, . . . , jk′} is good if it was matched to
an index in a set Jv such that jt ∈ Jv. Finally, extend the partial partition randomly
into a partition of [2k] into k pairs. Note that the probability for an index jt to be
good is at most k

2k−r′ < 0.51, independently of all previous choices of indices. Thus,
the probability that at least k′ − 2|F|r indices jt ∈ {j1, . . . , jk′} are good is at most
k′ ·
(
k′

2|F|r

)
· 0.51k

′−2|F|r < 2−|F|r/4.

Therefore, Pr(E ′ | ¬E) < 2−|F|r/4.

We can now bound,

1− 3|F|ε ≤ Pr(E ′) ≤ Pr(E ′ | ¬E) + Pr(E) < Pr(E) + 2−|F|r/4

54

2.7 Soundness of V ′ in the Base PCP

Thus,
Pr(E) > 1− 3|F|ε− 2−|F|r/4 > 1− 4|F|ε

Lemma 2.19. Let r′ = 20|F|r. Let ε′ = 5|F|ε. Let z ∈ DX . Let L1, . . . , Lk : F → DX

be k random lines, such that for every L ∈ {L1, . . . , Lk}, we have L(0) = z. Let S =
{Lj(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.
Then, with probability ≥ 1− ε′, there exists v ∈ F, such that, for at least k− r′ of the

indices j ∈ [k], Av ◦ Lj : F → F is a univariate polynomial of degree < m|H| (where the
probability is over L1, . . . , Lk, A).

Proof. Follows immediately by Lemma 2.18 and Claim 2.5.1.

Lemma 2.20. Let r′ = 40|F|r. Let ε′ = 10|F|ε. Let z ∈ DX . Let L1, . . . , L3k : F → DX

be 3k random lines, such that for every L ∈ {L1, . . . , L3k}, we have L(0) = z. Let
S = {Lj(t)}j∈[3k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.
Then, with probability ≥ 1 − ε′, there exists v ∈ F, such that, for at least 3k − r′ of

the indices j ∈ [3k], Av ◦Lj : F→ F is a univariate polynomial of degree < m|H| (where
the probability is over L1, . . . , L3k, A).

Proof. Let L1, . . . , L3k : F→ DX be 3k random lines, such that for every L ∈ {L1, . . . , L3k},
we have L(0) = z. Let S = {Lj(t)}j∈[3k],t∈F ⊂ DX . Let A ∈R AS. For any v ∈ F, define
Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Apply Lemma 2.18 twice: once on the set of lines {L1, . . . , L2k}, and once on the set
of lines {Lk+1, . . . , L3k}. By applying Lemma 2.18 twice, and using also Claim 2.5.1, we
know that with probability ≥ 1− ε′, both of the following are satisfied:

1. There exists v1 ∈ F, such that, for at least 2k−20|F|r of the indices j ∈ {1, . . . , 2k},
Av ◦ Lj : F→ F is a univariate polynomial of degree < m|H|.

2. There exists v2 ∈ F, such that, for at least 2k − 20|F|r of the indices j ∈ {k +
1, . . . , 3k}, Av ◦ Lj : F→ F is a univariate polynomial of degree < m|H|.

Note that if both of the above are satisfied then v1 = v2, since 2k − 20|F|r > 3k/2.
Therefore, with probability ≥ 1− ε′, there exists v ∈ F, such that, for at least 3k−40|F|r
of the indices j ∈ {1, . . . , 3k}, Av ◦ Lj : F → F is a univariate polynomial of degree <
m|H|.

2.7.5 Consistency of X and P0

Let i1, i2, i3 ∈ Hm. Let b1, b2, b3 ∈ {0, 1} be such that φ(i1, i2, i3, b1, b2, b3) = 1, that is,
the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in the 3-CNF formula ϕ.

In this subsection we will show that, intuitively, when taking a large number of
lines through each of the points i1, i2, i3 ∈ DX , with high probability, there exist val-
ues v1, v2, v3 ∈ F, that satisfy (v1 − b1) · (v2 − b2) · (v3 − b3) = 0, and such that:

55

2. DELEGATION FOR P

1. For most of the lines through i1, the answers correspond to low degree polynomials
that “evaluate” the point i1 to v1.

2. For most of the lines through i2, the answers correspond to low degree polynomials
that “evaluate” the point i2 to v2.

3. For most of the lines through i3, the answers correspond to low degree polynomials
that “evaluate” the point i3 to v3.

This is stated formally in Lemma 2.22. To prove this lemma, we will need to first
prove Lemma 2.21.

Lemma 2.21. Let r′ = 9`|F|r. Let ε′ = 9`|F|ε. Let z = (i1, i2, i3, b1, b2, b3) ∈ (Hm)3 ×
H3 = H` ⊂ F`. We view z as a point in D0. We view i1, i2, i3 ∈ Hm ⊂ Fm as points in
DX .

Let L1, . . . , Lk : F → D0 be k random lines, such that for every Lj ∈ {L1, . . . , Lk},
we have Lj(0) = z. For every Lj ∈ {L1, . . . , Lk}, the line Lj is a function Lj : F → F`.
Let L1

j : F → Fm be Lj, restricted to coordinates {1, . . . ,m}. Let L2
j : F → Fm be Lj,

restricted to coordinates {m+1, . . . , 2m}. Let L3
j : F→ Fm be Lj, restricted to coordinates

{2m + 1, . . . , 3m}. We think of L1
j , L

2
j , L

3
j as lines L1

j , L
2
j , L

3
j : F → DX , and note that

L1
j(0) = i1, L

2
j(0) = i2, L

3
j(0) = i3.

Let S0 = {Lj(t)}j∈[k],t∈F ⊂ D0. Let SX = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let

S = S0 ∪ SX ⊂ D. Let A ∈R AS.
Define A0

0 : S0 → F by A0
0(z′) = A0(z′) for z′ 6= z and A0

0(z) = 0. For any i ∈ DX

and v ∈ F, define Ai→vX : SX → F by Ai→vX (i′) = AX(i′) for i′ 6= i and Ai→vX (i) = v.
Then, with probability ≥ 1−ε′, there exist v1, v2, v3 ∈ F, such that, for at least k−r′ of

the indices j ∈ [k], the following is satisfied (where the probability is over L1, . . . , Lk, A):

1. A0
0 ◦ Lj : F→ F is a univariate polynomial of degree < 2`|H|.

2. Ai1→v1
X ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai2→v2
X ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

4. Ai3→v3
X ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

5. φ̂(z) · (v1 − b1) · (v2 − b2) · (v3 − b3) = 0

Proof. Let L1, . . . , Lk : F→ D0 be k random lines, such that for every Lj ∈ {L1, . . . , Lk},
we have Lj(0) = z. For every j ∈ [k]: Let L1

j : F → Fm be Lj, restricted to coordinates
{1, . . . ,m}. Let L2

j : F → Fm be Lj, restricted to coordinates {m + 1, . . . , 2m}. Let
L3
j : F → Fm be Lj, restricted to coordinates {2m + 1, . . . , 3m}. We view L1

j , L
2
j , L

3
j as

L1
j , L

2
j , L

3
j : F→ DX .

Let S0 = {Lj(t)}j∈[k],t∈F ⊂ D0. Let SX = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let

S = S0 ∪ SX ⊂ D. Let A ∈R AS.

56

2.7 Soundness of V ′ in the Base PCP

Define A0
0 : S0 → F by A0

0(z′) = A0(z′) for z′ 6= z and A0
0(z) = 0. For any i ∈ DX and

v ∈ F, define Ai→vX : SX → F by Ai→vX (i′) = AX(i′) for i′ 6= i and Ai→vX (i) = v.

Denote by E the event that for every j ∈ [k], and every w ∈ {1, 2, 3} the line Lwj is
in a general position (as a line in Fm), that is, it’s image is not a single point. Note that
the event E occurs with probability of at least 1− 3k

|F|m−1 .

By Lemma 2.7, using Claim 2.5.1, with probability ≥ 1 − 8`|F|ε − δ, for at least
k− 8`|F|r of the indices j ∈ [k], we have that A0

0 ◦Lj : F→ F is a univariate polynomial
of degree < 2`|H|.

By Lemma 2.19, using Claim 2.5.1, with probability ≥ 1−5|F|ε−δ, there exists v1 ∈ F,
such that, for at least k − 20|F|r of the indices j ∈ [k], we have that Ai1→v1

X ◦ L1
j : F→ F

is a univariate polynomial of degree < m|H|.
By Lemma 2.19, using Claim 2.5.1, with probability ≥ 1−5|F|ε−δ, there exists v2 ∈ F,

such that, for at least k − 20|F|r of the indices j ∈ [k], we have that Ai2→v2
X ◦ L2

j : F→ F
is a univariate polynomial of degree < m|H|.

By Lemma 2.19, using Claim 2.5.1, with probability ≥ 1−5|F|ε−δ, there exists v3 ∈ F,
such that, for at least k − 20|F|r of the indices j ∈ [k], we have that Ai3→v3

X ◦ L3
j : F→ F

is a univariate polynomial of degree < m|H|.
For every t ∈ F \ {0}, consider the set of points {Lj(t)}j∈[k] and note that this is a set

of k random points in D0. Each point Lj(t) ∈ F` can be written as

Lj(t) = (L1
j(t), L

2
j(t), L

3
j(t), Lj(t)`−2, Lj(t)`−1, Lj(t)`) ∈ (Fm)3 × F3 = F`

where Lj(t)`−2, Lj(t)`−1, Lj(t)` are the last 3 coordinates of Lj(t). By Claim 2.5.8, using
also Claim 2.5.1, for every t ∈ F \ {0}, with probability > 1− ε− 2δ, for at least k− r of
the indices j ∈ [k], we have

A0(Lj(t)) = φ̂(Lj(t)) ·(AX(L1
j(t))−Lj(t)`−2) ·(AX(L2

j(t))−Lj(t)`−1) ·(AX(L3
j(t))−Lj(t)`)

If in addition the event E occurs, this implies that for every v1, v2, v3 ∈ F,

A0
0(Lj(t)) = φ̂(Lj(t))·(Ai1→v1

X (L1
j(t))−Lj(t)`−2)·(Ai2→v2

X (L2
j(t))−Lj(t)`−1)·(Ai3→v3

X (L3
j(t))−Lj(t)`)

Adding up all this, by the union bound, we obtain that with probability ≥ 1 − ε′,
there exist v1, v2, v3 ∈ F, such that, for at least k− r′ of the indices j ∈ [k], the following
is satisfied (where the probability is over L1, . . . , Lk, A):

1. A0
0 ◦ Lj : F→ F is a univariate polynomial of degree < 2`|H|.

2. Ai1→v1
X ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai2→v2
X ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

4. Ai3→v3
X ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

57

2. DELEGATION FOR P

5. For every t ∈ F \ {0},
A0

0(Lj(t)) =

φ̂(Lj(t))·(Ai1→v1
X (L1

j(t))−Lj(t)`−2)·(Ai2→v2
X (L2

j(t))−Lj(t)`−1)·(Ai3→v3
X (L3

j(t))−Lj(t)`)

Note that since both sides of the equation are polynomials of degree < |F| in the
variable t, the equation must be satisfied for t = 0 as well. Substituting t = 0, since
Lj(0) = z, we have

0 = φ̂(z) · (v1 − b1) · (v2 − b2) · (v3 − b3)

Lemma 2.22. Let r′ = 9`|F|r. Let ε′ = 9`|F|ε+ δ. Let i1, i2, i3 ∈ Hm. We view i1, i2, i3
as points in DX . Let b1, b2, b3 ∈ {0, 1} be such that φ(i1, i2, i3, b1, b2, b3) = 1, that is, the
clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in the 3-CNF formula ϕ.

Let L1
1, . . . , L

1
k : F → DX be k random lines, such that for every L ∈ {L1

1, . . . , L
1
k},

we have L(0) = i1. Let L2
1, . . . , L

2
k : F → DX be k random lines, such that for every

L ∈ {L2
1, . . . , L

2
k}, we have L(0) = i2. Let L3

1, . . . , L
3
k : F → DX be k random lines, such

that for every L ∈ {L3
1, . . . , L

3
k}, we have L(0) = i3.

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Then, with probability ≥ 1− ε′, there exist v1, v2, v3 ∈ F, such that, for at least k − r′
of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. Ai1→v1 ◦ L1
j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ L2
j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ L3
j : F→ F is a univariate polynomial of degree < m|H|.

4. (v1 − b1) · (v2 − b2) · (v3 − b3) = 0

Proof. Follows immediately by Lemma 2.21, applied for the point z = (i1, i2, i3, b1, b2, b3),
and Claim 2.5.1.

2.7.6 Property R(ε′, r′)

Recall that we have a (fanin 2) Boolean circuit Cn of size N = O(t(n)s(n)) that computes
L on inputs of length n. The circuit Cn is layered, with O(s(n)) gates in each layer, such
that a child of a gate in layer i+ 1 is either an input variable (or a negation of an input
variable) or a gate in layer i. Recall that we assume that in the circuit Cn all negations
are on input variables, and that the two children of any gate in the circuit are different.

58

2.7 Soundness of V ′ in the Base PCP

Recall that the gates of the circuit are indexed by the numbers 1, . . . , N , in an order
that agrees with the layers of the circuit. We assume that 1, . . . , n are the indexes of the
n input variables and n+ 1, . . . , 2n are the indexes of their negations, and that N is the
index of the special output gate.

Recall that ϕ(w1, . . . , wN) is a 3-CNF Boolean formula, such that, ϕ(w1, . . . , wN) = 1
if and only if w1, . . . , wN is the computation of the circuit Cn on the input x = (x1, . . . , xn),
and wN = 1. Denote by x1, . . . , xN the computation of the circuit Cn on the input
x = (x1, . . . , xn). Thus, ϕ(w1, . . . , wN) = 1 if and only if (w1, . . . , wN) = (x1, . . . , xN),
and xN = 1.

Recall that since N = |H|m, we identify [N] and Hm by the lexicographic order on
Hm, and view w1, . . . , wN and x1, . . . , xN as indexed by i ∈ Hm (rather than i ∈ [N]).
We hence view x = (x1, . . . , xN) as a function x : Hm → {0, 1} (given by x(i) = xi, where
we identify [N] and Hm).

Recall that φ : (Hm)3 × {0, 1}3 → {0, 1} is a function where φ(i1, i2, i3, b1, b2, b3) = 1
if and only if the clause (wi1 = b1)∨ (wi2 = b2)∨ (wi3 = b3) appears in ϕ, and φ̂ : F` → F
is the low-degree extension of φ.

We will now give a definition that will be central in the rest of the section. Intuitively,
a subset B ⊂ Hm ⊂ DX satisfies property R(ε′, r′) if when taking k lines through every
point in B, with high probability, for every point i ∈ B, for most of the lines through the
point i, the answers correspond to low degree polynomials that “evaluate” the point i to
xi.

To make sure that the property is well defined, we will limit ourselves to sets B ⊂ Hm

such that k|B||F| ≤ kmax. Since we identify Hm and [N], we view each set B also as a
subset of [N]. We will think of every set B also as a subset of DX .

Let B be the set of all subsets B ⊂ [N], such that, k|B||F| ≤ kmax/2.

Definition 2.23. Property R(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let B ⊂ Hm be such that k|B||F| ≤ kmax. We view B as a subset
of DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
We say that the set B satisfies property R(ε′, r′) (also denoted B ∈ R(ε′, r′)) if with

probability ≥ 1 − ε′, for every i ∈ B, for at least k − r′ of the lines L ∈ {Li1, . . . , Lik},
we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree < m|H| (where the
probability is over {Lij}i∈B,j∈[k], A).

We think of the empty set as satisfying R(ε′, r′) for any ε′, r′.
In all that comes below, we fix

r′ = 9`|F|r

Lemma 2.24. Let i ∈ [2n]. Then, {i} ∈ R(ε′, r′), where ε′ = 10`|F|ε, and r′ = 9`|F|r.

59

2. DELEGATION FOR P

Proof. We will give the proof for i ∈ [n], such that, xi = 0. The proof for i ∈ [n], such
that, xi = 1, and for i ∈ {n+ 1, . . . , 2n} is similar.

Recall that for every i ∈ [n], the formula ϕ contains a clause that checks that wi = xi.
For example, if xi = 0, we have the clause (wi = 0) ∨ (wi = 0) ∨ (wi = 0) that ensures
that wi = 0.

Let L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k : F → DX be 3k random lines, such that for

every line L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, we have L(0) = i.

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and Ai→v(i) = v.
By Lemma 2.22, with probability ≥ 1−9`|F|ε−δ, there exist v1, v2, v3 ∈ F, such that,

for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. Ai→v1 ◦ L1
j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai→v2 ◦ L2
j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai→v3 ◦ L3
j : F→ F is a univariate polynomial of degree < m|H|.

4. v1 · v2 · v3 = 0.

On the other hand, by Lemma 2.20, with probability ≥ 1− 10|F|ε, there exists v ∈ F,
such that, for at least 3k − 40|F|r of the lines L ∈ {L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k},

Ai→v ◦ L : F→ F is a univariate polynomial of degree < m|H|.
Thus, by the union bound, with probability ≥ 1 − 9`|F|ε − 10|F|ε − δ, there exist

v1, v2, v3, v ∈ F, such that, v1 · v2 · v3 = 0, and

1. For at least k−r′ of the indices j ∈ [k], Ai→v1◦L1
j : F→ F is a univariate polynomial

of degree < m|H|.

2. For at least k−r′ of the indices j ∈ [k], Ai→v2◦L2
j : F→ F is a univariate polynomial

of degree < m|H|.

3. For at least k−r′ of the indices j ∈ [k], Ai→v3◦L3
j : F→ F is a univariate polynomial

of degree < m|H|.

4. For at least 3k− 40|F|r of the lines L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, Ai→v ◦

L : F→ F is a univariate polynomial of degree < m|H|.

Since, 40|F|r + r′ < k, this implies v = v1 = v2 = v3, and hence v = 0.
Thus, with probability ≥ 1− 9`|F|ε− 10|F|ε− δ > 1− ε′+ δ, for at least k− r′ of the

lines L ∈ {L1
1, . . . , L

1
k}, Ai→0 ◦ L : F→ F is a univariate polynomial of degree < m|H|.

The proof of the lemma hence follows by Claim 2.5.1.

Lemma 2.25. Let i1, i2, i3 ∈ [N] be such that the gate indexed by i1 in the circuit Cn has
children indexed by i2, i3. Let B ∈ B be such that i2, i3 ∈ B. Assume that B ∈ R(ε′, r′),
where r′ = 9`|F|r. Then B ∪ {i1} ∈ R(ε′′, r′), where ε′′ = ε′ + 9`|F|ε+ 3δ.

60

2.7 Soundness of V ′ in the Base PCP

Proof. Let B′ = B ∪ {i1}. For every i ∈ B′, let Li1, . . . , L
i
k : F→ DX be k random lines,

such that for every L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B′,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
Since the gate indexed by i1 in the circuit Cn has children indexed by i2, i3, the formula

ϕ contains the clause (wi2 = xi2) ∧ (wi3 = xi3)→ (wi1 = xi1).
By Lemma 2.22 and Claim 2.5.1, with probability ≥ 1 − 9`|F|ε − 2δ, there exist

v1, v2, v3 ∈ F, such that, for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over {Lij(t)}i∈B′,j∈[k],t∈F, A):

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

4. (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1)

On the other hand, since the set B satisfies property R(ε′, r′), using Claim 2.5.1, with
probability ≥ 1− ε′− δ, for every i ∈ B: For at least k− r′ of the lines L ∈ {Li1, . . . , Lik},
we have that Ai→xi ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Thus, by the union bound, with probability ≥ 1−ε′−9`|F|ε−3δ, there exist v1, v2, v3 ∈
F, such that, (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1), and

1. For at least k − r′ of the indices j ∈ [k], Ai1→v1 ◦ Li1j : F → F is a univariate
polynomial of degree < m|H|.

2. For at least k − r′ of the indices j ∈ [k], Ai2→v2 ◦ Li2j : F → F is a univariate
polynomial of degree < m|H|.

3. For at least k − r′ of the indices j ∈ [k], Ai3→v3 ◦ Li3j : F → F is a univariate
polynomial of degree < m|H|.

4. For every i ∈ B, for at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that
Ai→xi ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Since, r′ + r′ < k, this implies v2 = xi2 , v3 = xi3 and hence also v1 = xi1 .
Thus, with probability ≥ 1− ε′ − 9`|F|ε− 3δ,

1. For at least k − r′ of the indices j ∈ [k], Ai1→xi1 ◦ Li1j : F → F is a univariate
polynomial of degree < m|H|.

2. For every i ∈ B, for at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that
Ai→xi ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Thus B′ ∈ R(ε′′, r′)

61

2. DELEGATION FOR P

Lemma 2.26. Let B1, B2 ∈ B. If B1 ∈ R(ε1, r
′) and B2 ∈ R(ε2, r

′) then B1 ∪ B2 ∈
R(ε′, r′), where ε′ = ε1 + ε2 + 2δ.

Proof. Follows immediately by the union bound and (two applications of) Claim 2.5.1.

Lemma 2.27. Let B1, B2 ∈ B. If B1 ⊂ B2 and B2 ∈ R(ε2, r
′) then B1 ∈ R(ε1, r

′), where
ε1 = ε2 + δ.

Proof. Follows immediately by Claim 2.5.1.

2.7.7 Proof of Lemma 2.5

Lemma 2.5 will be superseded by Lemma 2.31. We include its proof since: (1) it is
simpler than the proof of Lemma 2.31, (2) it allows for a more modular proof and (3)
what remains to be shown is relatively short.

For the rest of Section 2.7, we assume that kmax ≥ 4sk|F| + 6k`|F|2. We assume
for a contradiction that for some x 6∈ L, there exists a δ-no-signaling family of distri-
butions {AS}S⊂D,|S|≤kmax that fools V ′ with probability larger than 1 − ε. That is, the
verifier V ′ accepts with probability > 1 − ε, where on queries Q, the answers are given
(probabilistically) by A ∈R AQ.

For every i ∈ {2n, . . . , N}, define Bi ∈ B as follows: Bi contains all the indexes
2n < i′ ≤ i, such that, in the circuit Cn, the gate indexed by i′ is either in the same layer
as the gate indexed by i, or in the previous layer. Note that B2n = ∅ (this was added
for the simplicity of the notation) and recall that we think of the empty set as satisfying
R(ε′, r′) for any ε′.

Lemma 2.28. Assume that kmax ≥ 4sk|F| + 6k`|F|2. Let i ∈ {2n + 1, . . . , N}. If
Bi−1 ∈ R(ε′, r′), where r′ = 9`|F|r, then Bi ∈ R(ε′′, r′), where ε′′ = ε′ + 30`|F|ε.

Proof. Denote by i1, i2 the indexes of the two children of the gate indexed by i in the
circuit Cn. Note that {i1, i2} ⊂ [2n] ∪ Bi−1. Denote B′ = {i1, i2} ∩ [2n]. Note also that
Bi ⊆ Bi−1 ∪ {i}.

By Lemma 2.24 and Lemma 2.26, B′ ∈ R(20`|F|ε+ 2δ, r′).

Hence, by Lemma 2.26, B′ ∪Bi−1 ∈ R(ε′ + 20`|F|ε+ 4δ, r′).

Hence, by Lemma 2.25, B′ ∪Bi−1 ∪ {i} ∈ R(ε′ + 29`|F|ε+ 7δ, r′).

Hence, by Lemma 2.27, Bi ∈ R(ε′ + 29`|F|ε+ 8δ, r′).

Lemma 2.29. Assume that kmax ≥ 4sk|F| + 6k`|F|2. Then, BN ∈ R(ε′, r′), where
r′ = 9`|F|r and ε′ = 30N`|F|ε = 0.3.

Proof. Follows immediately by an inductive application of Lemma 2.28, and since ε =
1

100N`|F| .

62

2.7 Soundness of V ′ in the Base PCP

Proof of Lemma 2.5

Proof. Let r′ = 9`|F|r.
Consider the point N ∈ [N], viewed as a point in Hm ⊂ DX . Recall that the formula

ϕ contains a clause (wN = 1) ∨ (wN = 1) ∨ (wN = 1) that checks that wN = 1.
Let L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k : F → DX be 3k random lines, such that for

every line L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, we have L(0) = N .

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define AN→v : S → F by AN→v(i′) = A(i′) for i′ 6= N and AN→v(N) =
v.

By Lemma 2.22, with probability ≥ 1−9`|F|ε−δ, there exist v1, v2, v3 ∈ F, such that,
for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. AN→v1 ◦ L1
j : F→ F is a univariate polynomial of degree < m|H|.

2. AN→v2 ◦ L2
j : F→ F is a univariate polynomial of degree < m|H|.

3. AN→v3 ◦ L3
j : F→ F is a univariate polynomial of degree < m|H|.

4. (v1 − 1) · (v2 − 1) · (v3 − 1) = 0.

On the other hand, by (three applications of) Lemma 2.29 and Claim 2.5.1:

1. With probability ≥ 1 − 0.3 − 2δ, for at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k},

we have that AN→xN ◦ L : F→ F is a univariate polynomial of degree < m|H|.

2. With probability ≥ 1 − 0.3 − 2δ, for at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k},

we have that AN→xN ◦ L : F→ F is a univariate polynomial of degree < m|H|.

3. With probability ≥ 1 − 0.3 − 2δ, for at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k},

we have that AN→xN ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Thus, by the union bound, with probability > 0.1 − 9`|F|ε − 7δ > 0, there exist
v1, v2, v3 ∈ F, such that, (v1 − 1) · (v2 − 1) · (v3 − 1) = 0, and

1. For at least k − r′ of the indices j ∈ [k], AN→v1 ◦ L1
j : F → F is a univariate

polynomial of degree < m|H|.

2. For at least k − r′ of the indices j ∈ [k], AN→v2 ◦ L2
j : F → F is a univariate

polynomial of degree < m|H|.

3. For at least k − r′ of the indices j ∈ [k], AN→v3 ◦ L3
j : F → F is a univariate

polynomial of degree < m|H|.

4. For at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN→xN ◦ L : F→ F

is a univariate polynomial of degree < m|H|.

63

2. DELEGATION FOR P

5. For at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN→xN ◦ L : F→ F

is a univariate polynomial of degree < m|H|.

6. For at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN→xN ◦ L : F→ F

is a univariate polynomial of degree < m|H|.

Since, r′ + r′ < k, this implies xN = v1 = v2 = v3, and hence xN = 1. Thus, the
original input x is in the language L.

2.8 Soundness of V in the Base PCP

Lemma 2.30 will be superseded by Lemma 2.46. We include its proof for completeness.
Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , is the security parameter of the

PCP, and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and
|F| are bounded by polylog(N).

Lemma 2.30. For a security parameter k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , fix the
following parameters: Let r = k

40`|F| . Let ε = 2−r/2. Let kmax = 4sk|F| + 12k`|F|2, where

s = O(s(n)) is the maximal number of gates in a layer of the circuit Cn. Let δ = 1

|F|8k`|F|2
.

Then, V has soundness ε against (kmax, δ)-no-signaling strategies.

Proof. Assume for a contradiction that V doesn’t have soundness ε against (kmax, δ)-
no-signaling strategies. By Lemma 2.3, since δ < ε

8·|F|6k`|F|2
, we know that V ′ (with

parameter r) doesn’t have soundness 1−ε′ against (k′max, δ
′)-no-signaling strategies, where

k′max = kmax − 6k`|F|2 = 4sk|F| + 6k`|F|2, and δ′ = 8δ|F|6k`|F|2/ε < 1

|F|k`|F|2
, and ε′ =

(10`|F|2−r + 2δ)/ε < 1
100N`|F| .

Hence V ′ (with parameter r) doesn’t have soundness 1 − ε′ against (k′max, δ
′)-no-

signaling strategies, where k′max = 4sk|F|+ 6k`|F|2, and δ′ = 1

|F|k`|F|2
, and ε′ = 1

100N`|F| .

This contradicts Lemma 2.5.

2.9 The Augmented PCP

In this section we describe the construction of the augmented PCP system, based on the
base PCP system described in Section 2.5.

Let L be a language in DTISP(t(n), s(n)), where poly(n) ≤ t(n) ≤ exp(n) and
max(n, log(t(n))) ≤ s(n) ≤ t(n). Let x be an input of length n. Since L ∈ DTISP(t(n), s(n)),
for any n there is a (fanin 2) Boolean circuit Cn of size N = O(t(n)s(n)) that computes L
on inputs of length n. Moreover, the circuit Cn is layered, with at most t = O(t(n)) layers
that consist of s = O(s(n)) gates each. For simplicity, we think of the input variables
x1, . . . , xn and their negations as being included in each layer of Cn (since s ≥ n this
property can be achieved by increasing s by a constant factor)

We augment each circuit Cn to produce a circuit C′n as follows.

64

2.9 The Augmented PCP

Let G be a finite field of characteristic 2 and size |G| = Θ(log2 s). Fix an arbitrary
set HG ⊂ G of size |HG| = log s and a dimension mG = log s

log log s
(such that |HG|mG = s

and mG · |HG| < |G|−1
2

). (For simplicity and without loss of generality we assume that

log s and log s
log log s

are integers). We construct a circuit CLDE : {0, 1}s → {0, 1}poly(s) by the
following two-step process:

1. Given an input α ∈ {0, 1}s, the circuit CLDE first computes the LDE α̂ of α w.r.t.
G, HG,mG. Recall that the polynomial α̂ : GmG → G is the (unique) individual
degree |HG|−1 polynomial that agrees with α on HmG

G (when α is interpreted as the
truth table of a function α : HmG

G → {0, 1}), see Section 2.4.6. Denote the output
of this step by α′. We note that α′ can be computed by a Boolean circuit of size
poly(|G|mG) = poly(s) and depth O

(
mG ·log(|G|)+logmG ·polylog(|G|)

)
= O(log(s))

(see Appendix 2.A).

2. As its second (seemingly redundant) step, the circuit CLDE verifies that the restric-
tion of α′ to every line L : G → GmG is a degree mG|HG| univariate polynomial.
That is, for every line L, the circuit CLDE checks that the function α′ ◦ L is a de-
gree mG|HG| univariate polynomial. For every such line L there is a corresponding
output bit of CLDE that equals 1 if α′ ◦ L has low degree and 0 otherwise. (Indeed,
if α′ is in fact the LDE of α then every output bit of CLDE should have value 1.)

We note that testing the degree of a univariate function f : G → G can be
done by a Boolean circuit of size poly(|G|) = polylog(s) and depth polylog(|G|) =
polylog(log(s)).

We denote by d the depth of CLDE and note that d = O(log s). We also note that
the circuit CLDE has size poly(s) but if that size is smaller than 2d · s · log5(t) then we
(artificially) increase the size of CLDE to be 2d ·s·log5(t) while maintaining the depth d (by
simply adding dummy gates).13 We assume that CLDE contains no negation gates, but
may contain arbitrary fan-in 2 Boolean gates. We also note that CLDE can be generated
by a Turing machine in space O(log s).

The circuit C′n is constructed by adding to Cn the computation of CLDE on every
layer of Cn. Thus, the circuit C′n is composed of t layers, where each layer consists of the
corresponding layer of Cn and the computation of CLDE on that layer. That is, the first
layer consists of the first layer of Cn and the computation of CLDE on the first layer of Cn

and for each µ ∈ {2, . . . , t}, the µ-th layer of C′n consists of the computation of the µ-th
layer of Cn from the (µ− 1)-th layer of C′n and the computation of CLDE of the µ-th layer
of Cn. We denote the size of C′n by N ′. Recall that the input variables x1, . . . , xn and
their negations are included in each layer of Cn. Thus, the layer µ of C′n can be computed
directly from layer µ− 1 of C′n. Note that C′n has depth t · d and that

s · t · 2d · log5(t) ≤ N ′ ≤ poly(N).

13This step can actually be avoided and we do it solely for convenience.

65

2. DELEGATION FOR P

We call the gate indexed by N ′ the special output gate and note that its value repre-
sents the decision of whether x ∈ L. We also assume without loss of generality that in
the circuit C′n all negations are on input variables, and that the two children of any gate
in the circuit are different (this property can be achieved by duplicating each gate in the
circuit twice, increasing the number of gates in each layer by a factor of 2). Note however
that C′n contains arbitrary fan-in 2 Boolean gates. Lastly, we note that there exists an
O(logN ′) space Turing machine that on input n ∈ N outputs the circuit C′n.

For every layer µ ∈ [t] we denote by βµ ⊂ [N ′] the set of indices of gates in C′n
that are associated with the LDE of the µ-th layer of Cn. For z ∈ GmG , we denote by
βµ[z] ⊂ βµ the set of indices of the log2 |G| gates associated with the point z in the
computation of the LDE of layer µ in C′n. For a sequence of indices Z ⊂ GmG we denote

by βµ[Z]
def
= ∪z∈Zβµ(z).

We construct the formulas ϕ, ϕC, ϕx, as well as the parameters H, F, m and `, exactly
as in Section 2.5 but with respect to the circuit C′n (of size N ′) rather than Cn (of size N).
We also construct the corresponding functions φ, φC′ , φx and φ̂, φ̂C′ , φ̂x as in Section 2.5.

In addition, we construct a formula ϕextra(w1, . . . , wN ′) as follows. For every i ∈ [N ′],
the formula ϕextra contains a (seemingly redundant) clause that verifies that wi has a
Boolean value. Additionally, for every µ ∈ [t], we add to ϕextra clauses that verify that
each one of the output gates of the corresponding CLDE circuit of layer µ has value 1. In
other words,

ϕextra(w1, . . . , wN ′) =∧
i∈[N ′]

(
(wi = 0) ∨ (wi = 0) ∨ (wi = 1)

)
∧

∧
i is output gate of CLDE

(
(wi = 1) ∨ (wi = 1) ∨ (wi = 1)

)
.

Let φextra : (Hm)3×{0, 1}3 → {0, 1} be the function where φextra(i1, i2, i3, b1, b2, b3) = 1
if and only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in ϕextra. Extend
φextra to be a function φextra : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of
H3m × {0, 1}3. Let φ̂extra : F` → F be the low-degree extension of φextra.

Since there is anO(logN ′) space deterministic Turing machine that on input n outputs
ϕextra, by Proposition 2.2, the function φ̂extra can be computed in O(logN ′) space.

Let ϕ′ = ϕ ∧ ϕextra and let φ′ : (Hm)3 × {0, 1}3 → {0, 1} be the function where
φ′(i1, i2, i3, b1, b2, b3) = 1 if and only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3)
appears in ϕ′. Extend φ′ to be a function φ′ : H3m+3 → {0, 1} by setting it to be 0 for
inputs outside of H3m × {0, 1}3. Let φ̂′ : F` → F be the low-degree extension of φ′.

Since the sets of clauses of ϕ and ϕextra are disjoint, we have φ̂′ = φ̂ + φ̂extra =
φ̂x + φ̂C′ + φ̂extra.

The PCP proof (i.e., the polynomials X,P0, . . . , P`) is constructed exactly as in Sec-
tion 2.5.1 except that we use the circuit C′n and the formula ϕ′ (rather than Cn and ϕ).
The PCP verifier V (resp., the relaxed verifier V ′) is constructed exactly as in Section 2.5.2
(resp., Section 2.5.3) with respect to the new PCP proof.

66

2.10 Soundness of V ′ in the Augmented PCP

2.10 Soundness of V ′ in the Augmented PCP

In this section we will show that the relaxed verifier V ′ cannot be fooled to accept x 6∈ L,
with probability close to 1.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N ′, is the security parameter of the
PCP, and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and
|F| are bounded by polylog(N ′).

Recall that t is the depth of the (original) circuit Cn and that d = O(log s) is the
depth of the circuit CLDE. We will prove the following lemma.

Lemma 2.31. Assume that kmax ≥ kpolylog(s) log(t)|F| + 6k`|F|2. Assume that δ <
1

1000N ′`|F| . Fix ε = 1
100N ′`|F| , and note that ε > 10 max

(
δ, 2k
|F|m−2

)
. Assume r < k

20`|F| .

Then, V ′ has soundness 1− ε against (kmax, δ)-no-signaling strategies.

The rest of the section is devoted to the proof of Lemma 2.31. From now on, through
Section 2.10, fix kmax, δ, ε, r to be as in the statement of Lemma 2.31 and fix

r′ = 9`|F|r

(note that r′ < k/2). We also fix a parameter

ν = 10(log(t) + d).

We will assume for a contradiction that for some x 6∈ L, there exists a δ-no-signaling
family of distributions {AS}S⊂D,|S|≤kmax that fools V ′ with probability larger than 1− ε.
That is, the verifier V ′ accepts with probability > 1− ε, where on queries Q, the answers
are given (probabilistically) by A ∈R AQ.

2.10.1 Reading Multiple Points Together

Let B ⊆ Hm and let α : B → {0, 1}. We think of B as specifying a subset of the
variables of the formula ϕ′ and of α as an assignment to B. We say that α is consistent
with respect to B if it satisfies all the clauses of ϕ′ in which only variables in B appear.

Lemma 2.32. Let B ⊆ Hm such that 3k|F||B| < kmax.
For every i ∈ B, let Li1, . . . , L

i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i. Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
Then, with probability ≥ 1−200|B|3`|F|ε, there exists α : B → {0, 1} that is consistent

with respect to B, such that for every i ∈ B, for at least k − r′ of the indices j ∈ [k], it
holds that Ai→α(i) ◦ Lij : F → F is a univariate polynomial of degree < m|H| (where the
probability is over {Lij}i∈B,j∈[k], A).

67

2. DELEGATION FOR P

Proof. For every i ∈ B, let Li1, . . . , L
i
k, L

i
k+1, . . . , L

i
2k, L

i
2k+1, . . . , L

i
3k : F→ DX be 3k ran-

dom lines, such that for every L ∈
{
Lij
}
j∈[3k]

, we have L(0) = i. Let S = {Lij(t)}i∈B,j∈[3k],t∈F ⊂
DX . Let A ∈R AS.

By Lemma 2.20, using also Claim 2.5.1, for every i ∈ B, with probability ≥ 1 −
10|F|ε − δ, there exists vi ∈ F, such that, for at least 3k − r′ of the indices j ∈ [3k],
Ai→vi ◦Lij : F→ F is a univariate polynomial of degree < m|H| (where the probability is
over {Lij}i∈B,j∈[3k], A).14

Let ψ = (wi1 = b1 ∨ wi2 = b2 ∨ wi3 = b3) be a clause in ϕ′ such that i1, i2, i3 ∈ B.
By Lemma 2.22 (using also Claim 2.5.1), with probability ≥ 1 − 9`|F|ε − 2δ there exist

v
(ψ)
1 , v

(ψ)
2 , v

(ψ)
3 ∈ F such that for at least k − r′ of the indices j ∈ [k] it holds that:

1. Ai1→v
(ψ)
1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v
(ψ)
2 ◦ Li2k+j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v
(ψ)
3 ◦ Li32k+j : F→ F is a univariate polynomial of degree < m|H|.

4. (v
(ψ)
1 − b1) · (v(ψ)

2 − b2) · (v(ψ)
3 − b3) = 0.

By the union bound, and since B contains at most 8|B|3 clauses, with probability
≥ 1− |B|(10|F|ε+ δ)− 8|B|3(9`|F|ε+ 2δ) > 1− 100|B|3`|F|ε, for every i ∈ B there exists
vi ∈ F and for every clause ψ = (wi1 = b1 ∨ wi2 = b2 ∨ wi3 = b3) in ϕ′ that contains only

variables from B, there exist v
(ψ)
1 , v

(ψ)
2 , v

(ψ)
3 ∈ F such that:

1. For at least 3k − r′ of the indices j ∈ [3k], Ai→vi ◦ Lij : F → F is a univariate
polynomial of degree < m|H|.

2. For at least k − r′ of the indices j ∈ [k],

(a) Ai1→v
(ψ)
1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

(b) Ai2→v
(ψ)
2 ◦ Li2k+j : F→ F is a univariate polynomial of degree < m|H|.

(c) Ai3→v
(ψ)
3 ◦ Li32k+j : F→ F is a univariate polynomial of degree < m|H|.

(d) (v
(ψ)
1 − b1) · (v(ψ)

2 − b2) · (v(ψ)
3 − b3) = 0.

where the probability is over {Lij}i∈B,j∈[3k], A. But since r′+r′ < k, the latter implies that

for every clause ψ = (wi1 = b1 ∨ wi2 = b2 ∨ wi3 = b3) it holds that v
(ψ)
1 = vi1 , v

(ψ)
2 = vi2

and v
(ψ)
3 = vi3 and in particular, (vi1 − b1) · (vi2 − b2) · (vi3 − b3) = 0. Furthermore, since

for every i ∈ B there is a clause of the form i1 = i2 = i3 = i and b1 = b2 = 0 and b3 = 1
(indeed, these clauses were added in ϕextra to ensure a Boolean value), for every i ∈ B it
holds that vi · vi · (vi − 1) = 0 and so vi ∈ {0, 1}.

14We note that the statement of Lemma 2.20 refers to a smaller value of r′ but of course, in particular,
it also holds for larger values of r′.

68

2.10 Soundness of V ′ in the Augmented PCP

Thus, with probability ≥ 1− 100|B|3`|F|ε, there exists an assignment α : B → {0, 1}
that is consistent with respect to B such that for every i ∈ B, for at least 3k − r′ of
the indices j ∈ [3k] it holds that Ai→α(i) ◦ Lij : F → F is a univariate polynomial of
degree < m|H| (where the probability is over {Lij}i∈B,j∈[3k], A).

The lemma follows from Claim 2.5.1.

2.10.2 The Main Lemma

Fix a layer µ ∈ [t] of the circuit C′n. Recall that:

• βµ ⊂ [N ′] refers to the set of indices of gates in C′n that are associated with the
LDE of the µ-th layer of Cn.

• For every point z ∈ GmG we denote by βµ[z] ⊂ βµ the set of indices of the log2 |G|
gates associated with the point z in the computation of the LDE of layer µ in C′n.

For a sequence Z ⊂ GmG we denote by βµ[Z]
def
= ∪z∈Zβµ(z).

• The values x1, . . . , xN ′ denote the computation of the circuit C′n on the input
(x1, . . . , xn).

Lemma 2.33. Let λ ∈ βµ be a fixed point and let Z = (z1, . . . , zν) be a sequence of ν
points, where each point zi is uniformly distributed in GmG.

Let B = βµ[Z]∪{λ}. We view the random variable B as being distributed over subsets
of Hm ⊂ DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
Let η > 0. Suppose that with probability ≥ 1−η, for every i ∈ βµ[Z], for at least k−r′

of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate polynomial
of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Then, with probability ≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν, for every i ∈ {λ} ∪ βµ[Z],
for at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a
univariate polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Proof. Let z0 ∈ GmG be the point such that λ ∈ βµ[z0] (i.e., λ belongs to the block asso-
ciated with the point z0). Let Z = (z1, . . . , zν) be a sequence of ν uniformly distributed
points in GmG . For every i ∈ [ν], let Lz0,zi : G→ GmG be the line Lz0,zi(t) = (zi−z0)·t+z0

(i.e., the line that passes through the points z0 and zi).
For every line Lz0,zi let Bz0,zi ⊂ [N ′] be the indices of all gates that are associated

with the verification in C′n that the LDE of layer µ restricted to the line Lz0,zi is a degree
mG|HG| univariate polynomial (recall that such gates are a part of the CLDE circuit of the
µ-th layer of C′n, see Section 2.9). Let B′ = ∪i∈[ν]Bzo,zi . Note that |B′| = ν · polylog(s)

69

2. DELEGATION FOR P

(since the verification can be implemented by a Boolean circuit of size polylog(s), see
Section 2.9).

For every assignment α : B′ → {0, 1}, we denote by αG : GmG → G the partial func-

tion15 αG(ζ)
def
= α(βµ[ζ]) ∈ {0, 1}log2 |G| (where αG is only defined over ∪i∈[ν]

{
Lz0,zi(u) :

u ∈ G
}

). We say that α is consistent (w.r.t. the sequence Z) if for every i ∈ [ν] the
function αG ◦ Lz0,zi is a degree mG|HG| (univariate) polynomial. We say that the assign-
ment α : B′ → {0, 1} is correct at the point ζ ∈ ∪i∈[ν]

{
Lz0,zi(u) : u ∈ G

}
if for every

i ∈ βµ(ζ) ⊆ B′ it holds that α(i) = xi. We say that the assignment α is correct at a
sequence of points if it is correct at every point in the sequence.

For every i ∈ B′, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i. Let S = {Lij(t)}i∈B′,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Since the CLDE circuit of layer µ verifies that each line Lz0,zi has low degree, by
applying Lemma 2.32 to the set B′ (while noting that 3k|F||B′| < kmax) we have that,

with probability ≥ 1 − 200(ν · polylog(s)
)3
`|F|ε, (over {Lij}i∈B′,j∈[k], A), there exists a

consistent assignment α : B′ → {0, 1} such that for every i ∈ B′, for at least k − r′

of the indices j ∈ [k], it holds that Ai→α(i) ◦ Lij : F → F is a univariate polynomial of
degree < m|H| .

On the other hand, by the lemma’s hypothesis (using also Claim 2.5.1), with prob-
ability ≥ 1 − η − δ (over Z, {Lij}i∈B′,j∈[k], A), for every i ∈ βµ[Z], for at least k − r′ of
the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate polynomial of
degree < m|H|.

Let E be the event that there exists a consistent assignment α : B′ → {0, 1} that is
correct on Z such that for every i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds
that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

By the union bound (and using the fact that r′ + r′ < k),

Pr[E] ≥ 1− η − polylog(s) · ν3`|F|ε.

where the probability is over Z, {Lij}i∈B′,j∈[k], A.

Let E ′ be the event there exists a consistent assignment α : B′ → {0, 1} that is
incorrect at the point z0 such that for every i ∈ B′, for at least k − r′ of the indices
j ∈ [k], it holds that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

Consider the event E ∧ E ′. If both E and E ′ occur then, by their definitions:

1. There exists a consistent assignment α : B′ → {0, 1} that is correct on Z such
that for every i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds that
Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

15We use α(βµ[ζ]) to denote the element in G that is obtained by considering the assignment α applied
to the gates indexed by βµ[ζ] in C′n and interpreting the resulting log2 G string as the corresponding
element in G.

70

2.10 Soundness of V ′ in the Augmented PCP

2. There exists a consistent assignment α′ : B′ → {0, 1} that is incorrect at the point
z0 such that for every i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds that
Ai→α

′(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

However, since r′+ r′ < k the assignment α must agree with α′ on every i ∈ B′. Thus, if
the event E ∧ E ′ occurs then there exists a single consistent assignment α : B′ → {0, 1}
that is correct on Z and incorrect at the point z0 such that for every i ∈ B′, for at least
k − r′ of the indices j ∈ [k], it holds that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial
of degree < m|H|.

We proceed to compute the probability that the event E ∧ E ′ occurs. First observe
that the sequence Z can be generated by using the following random process. First a
sequence Z ′ = (z′1, . . . , z

′
ν) of ν uniformly random points in GmG is selected. For every

i ∈ [ν], let Lz0,z′i(t) = (z′i − z0)t+ z0 be the line that passes through the points z0 and z′i.
For every i ∈ [ν], the point zi is selected by choosing at random ui ∈ G\{0} and setting
zi = Lz0,z′i(ui). Note that each one of the sequences Z and Z ′ is a sequence of ν uniformly
distributed points in GmG .

Let χ : B′ → {0, 1} denote the assignment of correct values to B′. That is, for
every i ∈ B′, it holds that χ(i) = xi. Note that Z ′ already determines the set B′ and
that Z ′, {Lij}i∈B′,j∈[k], A already determine whether the event E ′ occurs (regardless of the
choice of Z). Furthermore, if Z ′, {Lij}i∈B′,j∈[k], A are such that the event E ′ occurs, then
the assignment α (guaranteed by E ′) is consistent and incorrect at the point z0. Thus,
for every i ∈ [ν] the two polynomials αG ◦ Lz0,z′i and χG ◦ Lz0,z′i differ (at the point 0)
and have degree at most mG|HG|. Hence, the two polynomials can agree on at most

mG|HG| < |G|−1
2

points, or in other words, for every i ∈ [ν] the assignment α is correct
on less than half of the points on the line Lz0,z′i . Thus, we have:

Pr
Z,{Lij}i∈B′,j∈[k],A

[E ∧ E ′] = E
Z′,{Lij}i∈B′,j∈[k],A

[
Pr

u1,...,uν
[E ∧ E ′]

]
= Pr[E ′] · E

Z′,{Lij}i∈B′,j∈[k],A

[
Pr

u1,...,uν
[E ∧ E ′]

∣∣∣∣E ′]+

Pr[¬E ′] · E
Z′,{Lij}i∈B′,j∈[k],A

[
Pr

u1,...,uν
[E ∧ E ′]

∣∣∣∣¬E ′]
However, if Z ′, {Lij}i∈B′,j∈[k] and A are such that ¬E ′ occurs then Pru1,...,uν [E ∧ E ′] = 0.
On the other hand, by the foregoing discussion, if Z ′, {Lij}i∈B′,j∈[k], and A are such that
E ′ occurs then Pru1,...,uν [E ∧ E ′] ≤ 2−ν . Thus:

Pr
Z,{Lij}i∈B′,j∈[k],A

[E ∧ E ′] ≤ Pr[E ′] · 2−ν ≤ 2−ν

and so

Pr[E ∧ ¬E ′] = Pr[E]− Pr[E ∧ E ′] ≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν .

71

2. DELEGATION FOR P

In other words, with probability 1 − η − polylog(s) · ν3`|F|ε − 2−ν , there exists a
consistent assignment α : B′ → {0, 1} that is correct on Z and on z0 such that for every
i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds that Ai→α(i) ◦ Lij : F → F is a
univariate polynomial of degree < m|H|. The lemma follows by Claim 2.5.1.

2.10.3 Some Useful Claims

Claim 2.33.1. Let S ⊂ D, |S| ≤ kmax be a set generated by some random process. Let
A ∈R AS. Let g(S,A) be a predicate such that PrA,S[g(S,A)] ≥ 1/2. Let f(S,A) be a
predicate such that PrA,S[f(S,A) | g(S,A)] = p. Let S ′, Q, such that S ′ ⊆ Q ⊂ D, |Q| ≤
kmax, be two sets generated by some random process, such that the distribution of S ′ is
identical to the distribution of S. Let A′ ∈R AQ. Then,

p− 4δ ≤ Pr
A′,S′,Q

[
f(S ′, A′S′) | g(S ′, A′S′)

]
≤ p+ 4δ

.

Proof. Denote:

a
def
= Pr

S,A∈RAs
[f(S,A) ∧ g(S,A)]

b
def
= Pr

S,A∈RAs
[g(S,A)]

c
def
= Pr

Q,S′,A′∈RAQ
[f(S ′, A′S′) ∧ g(S ′, A′S′)]

d
def
= Pr

Q,S′,A′∈RAQ
[g(S ′, A′S′)]

By Claim 2.5.1, |a − c| < δ and |b − d| < δ (and in particular d ≥ 1/2 − δ > 0.4 and
therefore the conditional probability space in the lemma’s conclusion is non-empty). Note
that:

a

b
= Pr

S,A∈RAs
[f(S,A) | g(S,A)]

c

d
= Pr

Q,S′,A′∈RAQ
[f(S ′, A′S′) | g(S ′, A′S′)].

Using elementary manipulations we have that,∣∣∣a
b
− c

d

∣∣∣ =
|ad− bc|

bd
=
|ad− cd+ cd− bc|

bd
≤ d|a− c|+ c|d− b|

bd
≤ |a− c|

b
+
|d− b|
b
·c/d ≤ 4δ

where the last inequality uses also the hypothesis that b ≥ 1/2 and the fact that c ≤ d.

Claim 2.33.2. Let γ ≥ 0 and let A and B be events over the same probability space such
that Pr[A] ≥ 1− γ and Pr[B] ≥ 1

2
. Then Pr[A|B] ≥ 1− 2γ.

72

2.10 Soundness of V ′ in the Augmented PCP

Proof.

Pr[A|B] =
Pr[A ∧B]

Pr[B]
≥ Pr[A] + Pr[B]− 1

Pr[B]
≥ 1− γ

Pr[B]
≥ 1− 2γ.

Claim 2.33.3. Let γ, η < 1 and let A and B be events over the same probability space
such that Pr[B] ≥ 1− γ and Pr[A|B] ≥ 1− η. Then Pr[A] ≥ 1− γ − η.

Proof.

Pr[A] ≥ Pr[A ∧B] = Pr[A|B] · Pr[B] ≥ (1− γ)(1− η) ≥ 1− γ − η.

Claim 2.33.4 (Union Bound under Conditioning). Let A,B and C be events over the
same probability space, such that C has non-zero probability. Then:

Pr[A ∨B|C] ≤ Pr[A|C] + Pr[B|C].

Proof.

Pr[A ∨B|C] =
Pr[(A ∨B) ∧ C]

Pr[C]
≤ Pr[(A ∧ C)] + Pr[(B ∧ C)]

Pr[C]
= Pr[A|C] + Pr[B|C].

2.10.4 The Property Rµ and making Progress under Condition-
ing

We will now give two definitions that will be central in the rest of the section. The first
definition is analogous to the definition of the property R (Definition 2.23) in Section 2.7.6.

Definition 2.34. Property Rµ(ε′, r′):
Let µ ∈ [t], ε′ ≥ 0 and r′ ≥ 0.

Let B ⊆ [N ′] such that (|B| + ν · log2 |G|) · k|F| < kmax. Let Z be a sequence of ν
uniformly distributed points in GmG. Let B′ = B ∪ βµ[Z]. We view both B and B′ as
being distributed over subsets of Hm ⊆ DX .

For every i ∈ B′, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B′,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines

L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H|.

73

2. DELEGATION FOR P

We say that the set B satisfies property Rµ(ε′, r′) (also denoted B ∈ Rµ(ε′, r′)) if,
conditioned on the event E, with probability ≥ 1 − ε′, for every point i ∈ B, for at least
k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate
polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

To ensure that Rµ is well defined, if Pr[E] = 0, then no set B is said to satisfy
Rµ(ε′, r′).

Definition 2.35. p-good layers:
Let µ ∈ [t]. Let Z be a sequence of ν uniformly distributed points in GmG.

For every i ∈ βµ[Z], let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈βµ[Z],j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
We say that the layer µ is p-good for p ∈ [0, 1] if, with probability ≥ p, for every

point i ∈ βµ[Z], for at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦
L : F → F is a univariate polynomial of degree < m|H| (where the probability is over
Z, {Lij}i∈βµ[Z],j∈[k], A).

Lemma 2.36. Let i1, i2, i3 ∈ [N ′] be such that the gate indexed by i1 in the circuit C′n
has children indexed by i2, i3. Let µ ∈ [t] be a 0.9-good layer. If {i2}, {i3} ∈ Rµ(ε′, r′),
then {i1} ∈ Rµ(ε′′, r′) where ε′′ = 2ε′ + 34`|F|ε.

Proof. Let Z be a sequence of ν uniformly distributed points in GmG . Let B = {i1, i2, i3}∪
βµ[Z]. We view B as being distributed over subsets of Hm ⊆ DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines

L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H|. Since µ is a 0.9-good layer (using also Claim 2.5.1), the event E occurs with
probability ≥ 0.9− δ > 1/2 (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Since {i2} ∈ Rµ(ε′, r′), using also Claim 2.33.1, conditioned on the event E occurring,
with probability ≥ 1 − ε′ − 4δ for at least k − r′ of the lines L ∈ {Li21 , . . . , Li2k }, we
have that Ai2→xi2 ◦ L : F → F is a univariate polynomial of degree < m|H| (where the
probability is over Z, {Lij}i∈B,j∈[k], A).

Similarly, since i3 ∈ Rµ(ε′, r′), conditioned on the event E occurring, with probability
≥ 1− ε′ − 4δ for at least k− r′ of the lines L ∈ {Li31 , . . . , Li3k }, we have that Ai3→xi3 ◦ L :
F → F is a univariate polynomial of degree < m|H| (where the probability is over
Z, {Lij}i∈B,j∈[k], A).

Since the gate indexed by i1 in the circuit C′n has children indexed by i2, i3, the formula
ϕ contains the clause (wi2 = xi2) ∧ (wi3 = xi3) → (wi1 = xi1). Thus, by Lemma 2.22

74

2.10 Soundness of V ′ in the Augmented PCP

(using also Claim 2.5.1), with probability ≥ 1−9`|F|ε−2δ, there exist v1, v2, v3 ∈ F, such
that, for at least k − r′ of the indices j ∈ [k],

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

4. (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1)

Thus, using Claim 2.33.2, conditioned on the event E occurring, with probability ≥
1 − 18`|F|ε − 4δ, there exist v1, v2, v3 ∈ F, such that, for at least k − r′ of the indices
j ∈ [k],

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

4. (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1).

Thus, by the union bound under conditioning (Claim 2.33.4), conditioned on the event
E occurring, with probability ≥ 1 − 2ε′ − 18`|F|ε − 12δ, there exist v1, v2, v3 ∈ F, such
that (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1) and:

• For at least k − r′ of the lines L ∈ {Li21 , . . . , Li2k }, we have that Ai2→xi2 ◦ L : F→ F
is a univariate polynomial of degree < m|H|.

• For at least k − r′ of the lines L ∈ {Li31 , . . . , Li3k }, we have that Ai3→xi3 ◦ L : F→ F
is a univariate polynomial of degree < m|H|.

• For at least k − r′ of the indices j ∈ [k],

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

Since r′ + r′ < k, this implies that v2 = xi2 , v3 = xi3 and hence v1 = xi1 . Thus,
conditioned on the event E occurring, with probability ≥ 1 − 2ε′ − 18`|F|ε − 12δ >
1−2ε′−30`|F|ε, for at least k−r′ of the lines L ∈ {Li11 , . . . , Li1k }, we have that Ai1→xi1 ◦L :
F → F is a univariate polynomial of degree < m|H| (where the probability is over
Z, {Lij}i∈B,j∈[k], A).

The lemma follows by an application of Claim 2.33.1.

75

2. DELEGATION FOR P

If C is a circuit, we say that a subset B of the gates of C is a sub-circuit of C if for
every gate g ∈ B either both of its children are in B or both are not in B. Gates in
B whose children are not in B are called input gates of B and gates in B who are not
children of any gate in B are called output gates of B. We say that the sub-circuit B has
depth ∆ if the longest path from an output gate of B to an input gate of B is of length
∆.

Using Lemma 2.36, we are ready to prove the following lemma.

Lemma 2.37. Let B ⊂ [N ′] be a sub-circuit of C′n of depth ∆ with input gates BI ⊂ B
and output gates BO ⊂ B, such that (|BO| + ν · log2 |G|) · k|F| < kmax. Let µ ∈ [t]
be a 0.9-good layer of the circuit. If for all i ∈ BI it holds that {i} ∈ Rµ(ε′, r′) then
BO ∈ Rµ (ε′′, r′), where ε′′ = |BO| · 2∆ · (2ε′ + 38`|F|ε).

Proof. For every i ∈ BO, by iterated applications of Lemma 2.36, it holds that {i} ∈
Rµ

(
2∆ · (2ε′ + 34`|F|ε) , r′

)
. The lemma follows from |BO| applications of Claim 2.33.1,

and the union bound under conditioning (Claim 2.33.4).

We also prove (simpler) variants of Lemma 2.36 and Lemma 2.37 with respect to
the property R (rather than Rµ), see Definition 2.23. Recall that, intuitively, a subset
B ⊂ Hm ⊂ DX satisfies property R(ε′, r′) if when taking k lines through every point in
B, with high probability, for every point i ∈ B, for most of the lines through the point i,
the answers correspond to low degree polynomials that “evaluate” the point i to xi.

Lemma 2.38. Let i1, i2, i3 ∈ [N ′] be such that the gate indexed by i1 in the circuit
C′n has children indexed by i2, i3. If {i2}, {i3} ∈ R(ε′, r′), then {i1} ∈ R(ε′′, r′) where
ε′′ = 2ε′ + 15`|F|ε.

Proof. If {i2}, {i3} ∈ R(ε′, r′), then by Lemma 2.26, it holds that {i2, i3} ∈ R(2ε′ +
2δ, r′). Since the gate indexed by i1 in the circuit C′n has children indexed by i2, i3, by
Lemma 2.25, it holds that {i1, i2, i3} ∈ R(2ε′ + 9`|F|ε + 5δ, r′). The lemma follows from
Lemma 2.27.

Lemma 2.39. Let B ⊂ [N ′] be a sub-circuit of C′n of depth ∆ with input gates BI ⊂ B
and output gates BO ⊂ B, such that |BO|k|F| < kmax. If for all i ∈ BI it holds that
{i} ∈ R(ε′, r′) then BO ∈ R (ε′′, r′), where ε′′ = |BO| · 2∆ · (2ε′ + 16`|F|ε).

Proof. For every i ∈ BO, by iterated applications of Lemma 2.38, it holds that {i} ∈
R
(
2∆ · (2ε′ + 15`|F|ε) , r′

)
. The lemma follows from |BO| applications of Claim 2.5.1,

and the union bound.

2.10.5 Proof of Lemma 2.31

In this section we complete the proof of Lemma 2.31. We first show that if layer µ − 1
is a good layer then layer µ is also good. Then we derive that the top layer is good and
use that to contradict our assumption that x /∈ L.

76

2.10 Soundness of V ′ in the Augmented PCP

Lemma 2.40. Let µ ∈ [t] be a 0.9-good layer. Then, for every λ ∈ βµ it holds that
λ ∈ Rµ(ε′, r′), where ε′ = polylog(s) · ν3`|F|ε+ 2−ν+1.

Proof. Let λ ∈ βµ. Let Z be a sequence of ν uniformly distributed points in GmG . Let
B = {λ} ∪ βµ[Z].

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and

Ai→v(i) = v.
Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines

L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A). Suppose that Pr[E] = 1−η for
some η ∈ [0, 1]. Note that by the hypothesis that µ is 0.9-good, using also Claim 2.5.1,
η < 0.1 + δ < 1/2.

Denote by E ′ ⊂ E the event that for every point i ∈ {λ} ∪ βµ[Z], for at least k − r′
of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate polynomial
of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A). By Lemma 2.33,
Pr[E ′] ≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν .

Thus, the probability that the event E ′ occurs conditioned on the event E is at least:

Pr[E ′|E] =
Pr[E ′]

Pr[E]
≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν

1− η
≥ 1− polylog(s) · ν3`|F|ε− 2−ν+1

(where the last inequality follows from the fact that η ≤ 1/2) and the lemma follows.

Lemma 2.41. Let µ ∈ [t − 1] be a 0.9-good layer. Then, for every set B ⊆ βµ+1 of
points that belong to layer µ+ 1, such that (|B|+ ν · log2 |G|) · k|F| < kmax, it holds that
B ∈ Rµ(ε′, r′), where ε′ = |B| · 2d ·

(
polylog(s) · ν3`|F|ε+ 2−ν+3

)
.

Proof. Consider the sub-circuit that computes layer µ+ 1 from layer µ. Recall that this
sub-circuit has depth d + 1 and first computes the µ + 1-th layer of Cn, in depth 1, and
then applies a CLDE circuit, of depth d (see Section 2.9). Let BI ⊆ βµ be the variables
associated with the inputs of this sub-circuit. By Lemma 2.40, for every λ ∈ BI it holds
that λ ∈ Rµ(polylog(s) · ν3`|F|ε+ 2−ν+1, r′).

The lemma follows from Lemma 2.37.

Lemma 2.42. If a layer µ ∈ [t − 1] is (1 − ε′)-good, for some ε′ < 0.1, then the layer
µ+ 1 is (1− ε′′)-good, where ε′′ = ε′ + 2d · polylog(s) ·

(
ν4`|F|ε+ 2−ν/2

)
.

Proof. Let Z and Z ′ be two sequences of ν uniformly distributed points in GmG . Let
B = βµ[Z] ∪ βµ+1[Z ′]. We view B as being distributed over subsets of DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

77

2. DELEGATION FOR P

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H| (where the probability is over {Z,Z ′, Lij}i∈B,j∈[k], A). By the hypothesis that µ
is (1− ε′)-good, and using Claim 2.5.1, the event E occurs with probability ≥ 1− ε′ − δ.

By Lemma 2.41 (using the fact that ε′ < 0.1), it holds that βµ+1[Z ′] ∈ Rµ

(
(log2 G ·

ν) · 2d ·
(
polylog(s) · ν3`|F|ε + 2−ν+3

)
, r′
)

. In other words, conditioned on the event E,

with probability ≥ 1− 2dpolylog(s) ·
(
ν4`|F|ε+ 2−ν/2

)
, for every point i ∈ βµ+1[Z ′], for at

least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate
polynomial of degree < m|H| (where the probability is over Z,Z ′, {Lij}i∈B,j∈[k], A).

However, since E occurs with high probability, we can remove the conditioning as
follows. Toward this end, we apply Claim 2.33.3 and obtain that with probability ≥
1 − 2d · polylog(s) ·

(
ν4`|F|ε + 2−ν/2

)
− ε′ − δ, for every point i ∈ βµ+1[Z ′], for at least

k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate
polynomial of degree < m|H| (where the probability is over Z,Z ′, {Lij}i∈B,j∈[k], A). The
lemma follows by Claim 2.5.1.

Recall that 1, . . . , n are the indexes of the n input variables and n+ 1, . . . , 2n are the
indexes of their negations.

Lemma 2.43. The first layer of C′n is (1− ε′)-good, where ε′ = 2dpolylog(s) · ν`|F|ε.

Proof. By Lemma 2.24, for every i ∈ [2n] it holds that {i} ∈ R
(
10`|F|ε, r′

)
. Let C(1)

LDE be

the CLDE circuit of the first layer of C′n. Note that the inputs of C(1)
LDE are associated with

the variables i ∈ [2n] and that C(1)
LDE has depth d. Thus, by Lemma 2.39, for every sequence

of ν points Z in GmG it holds that β1[Z] ∈ R
((
ν · log2(|G|)

)
· 2d · polylog(s) · `|F|ε, r′

)
and

the lemma follows.

Lemma 2.44. The top layer of C′n (i.e., the t-th layer) is (1 − ε′)-good, where ε′ ≤
t · 2d · polylog(s)

(
ν4`|F|ε+ 2−ν/2

)
.

Proof. By induction, using Lemma 2.43 and Lemma 2.42.

Recall that N ′ is the index of the special output gate.

Lemma 2.45. {N ′} ∈ R(ε′, r′), where ε′ = t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
.

Proof. Let Z be a sequence of ν uniformly distributed points in GmG . Let B = {N ′} ∪
βt[Z]. Note that the point N ′ belongs to layer t. We view B as being distributed over
subsets of Hm ⊆ DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

78

2.10 Soundness of V ′ in the Augmented PCP

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βt[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H|. By Lemma 2.44, and using Claim 2.5.1, the event E occurs with probability at
least 1− t · 2d · polylog(s)

(
ν4`|F|ε+ 2−ν/2

)
.

Since by our setting of parameters t ·2d ·polylog(s)
(
ν4`|F|ε+2−ν/2

)
< 0.1, the layer t is

0.9 good and so, by Lemma 2.40, it holds that N ′ ∈ Rt(polylog(s) ·ν3`|F|ε+ 2−ν+1, r′). In
other words, conditioned on the event E, with probability ≥ 1−polylog(s)·ν3`|F|ε−2−ν+1,
for at least k− r′ of the lines L ∈ {LN ′1 , . . . , LN

′

k }, we have that AN
′→xN′ ◦L : F→ F is a

univariate polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Hence, by Claim 2.33.3, with probability ≥ 1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
, for

at least k − r′ of the lines L ∈ {LN ′1 , . . . , LN
′

k }, we have that AN
′→xN′ ◦ L : F → F is a

univariate polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).
The lemma follows by Claim 2.5.1.

Proof of Lemma 2.31

The following proof is similar to the proof of Lemma 2.5 (in Section 2.7.7) but differs in
the actual parameters, and in the use of Lemma 2.45 (rather than Lemma 2.29).

Proof. Consider the point N ′ ∈ [N ′], viewed as a point in Hm ⊂ DX . Recall that the
formula ϕ′ contains a clause (wN ′ = 1)∨ (wN ′ = 1)∨ (wN ′ = 1) that checks that wN ′ = 1.

Let L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k : F → DX be 3k random lines, such that for

every line L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, we have L(0) = N ′.

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define AN
′→v : S → F by AN

′→v(i′) = A(i′) for i′ 6= N ′ and
AN

′→v(N ′) = v.
By Lemma 2.22, with probability ≥ 1−9`|F|ε−δ, there exist v1, v2, v3 ∈ F, such that,

for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. AN
′→v1 ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

2. AN
′→v2 ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

3. AN
′→v3 ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

4. (v1 − 1) · (v2 − 1) · (v3 − 1) = 0.

On the other hand, by (three applications of) Lemma 2.45 and Claim 2.5.1:

1. With probability ≥ 1 − t · 2d · polylog(s)
(
ν4`|F|ε + 2−ν/2

)
− δ, for at least k − r′

of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN

′→xN′ ◦ L : F → F is a univariate
polynomial of degree < m|H|.

79

2. DELEGATION FOR P

2. With probability ≥ 1 − t · 2d · polylog(s)
(
ν4`|F|ε + 2−ν/2

)
− δ, for at least k − r′

of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN

′→xN′ ◦ L : F → F is a univariate
polynomial of degree < m|H|.

3. With probability ≥ 1 − t · 2d · polylog(s)
(
ν4`|F|ε + 2−ν/2

)
− δ, for at least k − r′

of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN

′→xN′ ◦ L : F → F is a univariate
polynomial of degree < m|H|.

Thus, by the union bound, with probability ≥ 1−t·2d ·polylog(s)
(
ν4`|F|ε+2−ν/2

)
> 0,

there exist v1, v2, v3 ∈ F, such that, (v1 − 1) · (v2 − 1) · (v3 − 1) = 0, and

1. For at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN

′→v1 ◦ L : F → F
is a univariate polynomial of degree < m|H|.

2. For at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN

′→v2 ◦ L : F → F
is a univariate polynomial of degree < m|H|.

3. For at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN

′→v3 ◦ L : F → F
is a univariate polynomial of degree < m|H|.

4. For at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN

′→xN′ ◦ L : F→ F
is a univariate polynomial of degree < m|H|.

5. For at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN

′→xN′ ◦ L : F→ F
is a univariate polynomial of degree < m|H|.

6. For at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN

′→xN′ ◦ L : F→ F
is a univariate polynomial of degree < m|H|.

Since, r′ + r′ < k, this implies that xN ′ = v1 = v2 = v3, and hence xN ′ = 1. Since by
our setting of parameters

1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
> 0,

the original input x is in the language L.

2.11 Soundness of V in the Augmented PCP

This section is similar to Section 2.8, but with respect to the augmented PCP.
Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N ′, is the security parameter of the

PCP, and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and
|F| are bounded by polylog(N ′).

Lemma 2.46. For a security parameter k ≤ poly(n), such that 4|F|4 ≤ k ≤ N ′, fix
the following parameters: Let r = k

40`|F| . Let ε = 2−r/2. Let kmax = k · polylog(s) ·
log(t)|F| + 12k`|F|2. Let δ = 1

|F|8k`|F|2
. Then, V has soundness ε against (kmax, δ)-no-

signaling strategies.

80

2.12 From No-Signaling PCP to No-Signaling MIP

The proof of Lemma 2.46 is similar to the proof of Lemma 2.30, but based on
Lemma 2.31 (rather than Lemma 2.5).

Proof. Assume for a contradiction that V doesn’t have soundness ε against (kmax, δ)-
no-signaling strategies. By Lemma 2.3, since δ < ε

8·|F|6k`|F|2
, we know that V ′ (with

parameter r) doesn’t have soundness 1−ε′ against (k′max, δ
′)-no-signaling strategies, where

k′max = kmax−6k`|F|2 = k ·polylog(s) · log(t)|F|+6k`|F|2, and δ′ = 8δ|F|6k`|F|2/ε < 1

|F|k`|F|2
,

and ε′ = (10`|F|2−r + 2δ)/ε < 1
100N ′`|F| .

Hence V ′ (with parameter r) doesn’t have soundness 1 − ε′ against (k′max, δ
′)-no-

signaling strategies, where k′max = k · polylog(s) · log(t)|F|+ 6k`|F|2, and δ′ = 1

|F|k`|F|2
, and

ε′ = 1
100N ′`|F| .

This contradicts Lemma 2.31.

2.12 From No-Signaling PCP to No-Signaling MIP

In this section we show how to transform a PCP that has soundness against (kmax, δ)-
no-signaling strategies into an analogous MIP that uses kmax provers and has soundness
against δ-no-signaling strategies.

Recall that a PCP (resp., MIP) relative to an oracle φn : {0, 1}n′ → {0, 1}n′′ is a PCP
(resp., MIP) in which the verifier has oracle access to the function φn (see Section 2.4).

Lemma 2.47. Let L be a language and suppose that L has a PCP with soundness ε
against (kmax, δ)-no-signaling strategies relative to an oracle {φn : {0, 1}n′ → {0, 1}n′′}n
(where n is the input length). Let D be the query alphabet, Σ be the answer alphabet,
k ≤ kmax be the number of PCP queries and ` be the number of oracle queries. Then,
L has an MIP relative to the same oracle {φn} with soundness ε against δ-no-signaling
strategies. The MIP uses kmax provers, query alphabet D, answer alphabet Σ and ` oracle
queries.

Furthermore, if the running time of the PCP verifier is TV then the running time of the
MIP verifier is O (TV + kmax · (log |D|+ log |Σ|)) and if the PCP proof can be generated
in time TP then the running time of each of the MIP provers is O(TP).

Proof. Let V be the PCP verifier for L and let GP be an algorithm that on input x ∈ L
generates the PCP proof P = GP (x). We use V and GP to construct an MIP for L
(relative to the oracle {φn}) that is sound against δ-no-signaling strategies.

We think of the PCP verifier V as being composed of two algorithms V1 and V2. The
first algorithm, V1, on input x of length n and a random string r generates a set Q ⊂ D
of k queries to the PCP and a set Qφ ⊂ {0, 1}n

′
of ` queries to the oracle. The second

algorithm, V2, given x, the same random string r, the k answers A ∈ ΣQ (of the PCP) and
oracle answers Aφ ∈ ({0, 1}n′′)Qφ , decides whether to accept the proof. We also assume
(without loss of generality) that the algorithm GP is deterministic. (Since completeness
holds with probability 1, we can de-randomize GP by fixing its random string arbitrarily.)

81

2. DELEGATION FOR P

We first describe the kmax (honest) MIP provers’ strategies and then proceed to de-
scribe the MIP verifier’s strategy. Given an input x ∈ L, each MIP prover (individually)
computes the (deterministic) PCP proof P = GP (x) and given a query q ∈ D just answers
with P (q).

The MIP verifier, on input x and a random string r, first runs V1(x, r) to obtain a
set of k PCP queries Q = {q1, . . . , qk} and ` oracle queries Qφ. The set Q is then used
to construct a sequence w ∈ Dkmax of kmax queries as follows. Initially, every entry of
w is set to an arbitrary fixed value z ∈ D. Then, the verifier embeds the k queries of
Q at random in w (which is of length kmax ≥ k). Formally, for every set Q ⊂ D, every
1-to-1 function π : Q → [kmax] and every subset S ⊆ Q, let wS,π ∈ Dkmax be defined as
follows. For every i ∈ [kmax], if there exists q ∈ S such that i = π(q) then (wS,π)i = q and
otherwise (wS,π)i = z. The verifier chooses at random a 1-to-1 function π : Q → [kmax]
and sets w = wQ,π. The verifier then sends w to the kmax provers where prover i gets wi.
Simultaneously, the verifier queries the oracle φn at the points Qφ.

Once the kmax provers respond with their answers α ∈ Σkmax (where the answer of the
ith prover is αi) and the oracle responds with Aφ, the MIP verifier constructs A ∈ ΣQ by
setting Aq = απ(q) for every q ∈ Q. Formally, for every S ⊆ Q, let TS,π : Σkmax → ΣS be
defined as (TS,π(α))q = απ(q) for every q ∈ S. The verifier sets A = TQ,π(α) and outputs
the result of V2 on input (x, r, A,Aφ).

To see that (perfect) completeness holds, observe that the honest MIP provers (that
get queries in Q) answer according to the PCP. Likewise, the oracle queries and answers
are also exactly as in the PCP and therefore if x ∈ L then V2 accepts and we obtain
perfect completeness. We proceed to show that soundness holds against δ-no-signaling
strategies.

Suppose that for some x /∈ L, there exists a δ-no-signaling family of distributions
A = {Au}u∈Dkmax that makes the MIP verifier accept with probability at least ε. By the
construction of the MIP system this implies that:

Pr
α∈RAw,r,π

[V2(x, r, A,Aφ) = 1] ≥ ε (2.4)

where (Q,Qφ) is the output of V1(x, r), the function π : Q→ [kmax] is the random 1-to-1
function, w = wQ,π, A = TQ,π(α), and Aφ are the answers of the oracle φn on the points
Qφ.

We use A to construct a family of distributions B = {BQ}Q⊂D,|Q|≤kmax that violates
the (kmax, δ)-no-signaling soundness of the PCP. For every set Q of size at most kmax,
the distribution BQ is defined by first sampling a random 1-to-1 function π : Q→ [kmax],
setting w = wQ,π, then sampling α from Aw and outputting TQ,π(α). Note that for every
b ∈ ΣQ it holds that

Pr
β∈RBQ

[β = b] = E
π

[
Pr

α∈RAw
[A = b]

]
,

where π : Q→ [kmax] is a random 1-1 function, w = wQ,π and A = TQ,π(α).
We first show that the family of distributions B = {BQ}Q⊂D,|Q|≤kmax fools the PCP

verifier into accepting with probability at least ε, and then proceed to show that B is

82

2.12 From No-Signaling PCP to No-Signaling MIP

δ-no-signaling. Indeed, by the definition of B,

Pr
β∈RBQ,r

[V2(x, r, β, Aφ) = 1] = Pr
α∈RAw,r,π

[V2(x, r, A,Aφ) = 1]

where (Q,Qφ) is the output of V1(x, r), the function π : Q→ [kmax] is the random 1-to-1
function, w = wQ,π, A = TQ,π(α), and Aφ are the answers of the oracle φn on the points
Qφ. Thus, by Eq. (2.4), the PCP verifier accepts x /∈ L with probability at least ε.

The next claim shows that B is δ-no-signaling and therefore we have a contradiction
to our assumption that the PCP has ε-soundness against (kmax, δ)-no-signaling strategies.

Claim 2.47.1. The family of distributions B = {BQ}Q⊂D,|Q|≤kmax is δ-no-signaling.

Proof. To show that B is δ-no-signaling we need to show that for every Q ⊂ D of size at
most kmax and every S ⊂ Q it holds that

1

2

∑
b∈ΣS

∣∣∣∣ Pr
β∈RBS

[β = b]− Pr
β∈RBQ

[βS = b]

∣∣∣∣ ≤ δ.

For every b ∈ ΣS it holds that

Pr
β∈RBS

[β = b] = E
π′

[
Pr

α′∈RAw′
[TS,π′(α

′) = b]

]
= E

π

[
Pr

α∈RAw
[TS,π(α) = b]

]
= E

π

[
Pr

α∈RAw
[(TQ,π(α))S = b]

]
(2.5)

where π′ : S → [kmax] and π : Q → [kmax] are random 1-to-1 functions, w′ = wS,π′ and
w = wS,π, the second equality follows from the fact that π, restricted to S, is distributed
identically to π′, and the last equality follows from the fact that TS,π(α) = (TQ,π(α))S.

On the other hand, using elementary operations and linearity of expectation, for every
b ∈ ΣS it holds that

Pr
β∈RBQ

[βS = b] =
∑

b′∈ΣQ s.t. b′S=b

Pr
β∈RBQ

[β = b′]

=
∑

b′∈ΣQ s.t. b′S=b

E
π

[
Pr

α∈RAw′′
[TQ,π(α) = b′]

]

= E
π

 ∑
b′∈ΣQ s.t. b′S=b

Pr
α∈RAw′′

[TQ,π(α) = b′]


= E

π

[
Pr

α∈RAw′′
[(TQ,π(α))S = b]

]
, (2.6)

where π : Q → [kmax] is a random 1-1 function and w′′ = wQ,π. Using Eq. (2.5) and

83

2. DELEGATION FOR P

Eq. (2.6), we obtain that:

∑
b∈ΣS

∣∣∣∣ Pr
β∈RBS

[β = b]− Pr
β∈RBQ

[βS = b]

∣∣∣∣ =
∑
b∈ΣS

∣∣∣∣Eπ
[

Pr
α∈RAw

[(TQ,π(α))S = b]− Pr
α′′∈RAw′′

[(TQ,π(α′′))S = b]

]∣∣∣∣
≤ E

π

[∑
b∈ΣS

∣∣∣∣ Pr
α∈RAw

[(TQ,π(α))S = b]− Pr
α′′∈RAw′′

[(TQ,π(α′′))S = b]

∣∣∣∣
]

= E
π

[∑
b∈ΣS

∣∣∣∣ Pr
α∈RAw

[απ(S) = b]− Pr
α′′∈RAw′′

[α′′π(S) = b]

∣∣∣∣
]

≤ 2δ,

where π : Q → [kmax] is a random 1-1 function, w = wS,π, w′′ = wQ,π and the last
inequality follows from the fact that wπ(S) = w′′π(S) and our assumption that A is δ-no-
signaling. Thus, B is δ-no-signaling. This concludes the proof of Claim 2.47.1

This concludes the proof of Lemma 2.47

2.13 A No-Signaling MIP for PSPACE with an Ineffi-

cient Prover

In this section we construct MIP protocols that have no-signaling soundness for lan-
guages that can be computed in bounded space. The protocol’s (honest) provers are
inefficient and run in time exponential in the space bound. This protocol will prove use-
ful in Section 2.14 where we apply it to logspace computations (so that the provers run
in polynomial time). We note that a similar result was obtained both by [KR09] and
(independently) by [IKM09].

As a first step we show how to construct MIPs with no-signaling soundness for lan-
guages in IP (Lemma 2.48). We later use (a strong version, due to [GKR08], of) the
IP = PSPACE [LFKN92, Sha92] theorem to obtain the required result (Lemma 2.49).

Lemma 2.48. If a language L has an `-round public-coin interactive proof-system with
soundness ε (and perfect completeness), then for every δ ≥ 0, the language L has a 1-
round `-prover MIP with soundness ε + δ` against δ-no-signaling strategies. If Λ is the
length of the longest message in the interactive proof then the MIP has query and answer
alphabet {0, 1}`·Λ.

Furthermore, if the running time of the interactive-proof verifier is TV then the run-
ning time of the MIP verifier is O(` · TV). If the running time of the interactive-proof
prover is TP then the running time of each MIP prover is O(` · TP).

Proof. Let δ ≥ 0 and let (P, V) be an `-round public-coin interactive proof for a language
L. Let Λ be the length of the longest message in the interactive proof. Let mi denote
the message sent from the verifier to the prover in the ith round and let bi denote the

84

2.13 A No-Signaling MIP for PSPACE with an Inefficient Prover

prover’s response to mi. Since the protocol is public-coin, we assume that the messages
m1, . . . ,m` are generated by the verifier in the beginning of the protocol and in particular,
they do not depend on the prover’s answers. We also assume without loss of generality
that the honest prover’s response bi to the ith message mi depends only on mi and x (and
not on m1, . . . ,mi−1).16 We construct a 1-round MIP (V ′, P ′1, . . . , P

′
`) with δ no-signaling

soundness for L as follows.
The verifier V ′ generates the ` messages m1, . . . ,m` and for every i ∈ [`], it sends mi

to the prover P ′i . The prover P ′i answers the query mi by bi which is computed by the
next message function of P at round i and with respect to mi and x. To decide whether
to accept, the verifier V ′ simply runs V (x,m1, . . . ,m`, b1, . . . , b`).

To show that (perfect) completeness holds, observe that for x ∈ L the probability
that V ′ outputs 1 after interacting with P ′1, . . . , P

′
` equals the probability that V outputs

1 after interacting with P . We proceed to prove that no-signaling soundness holds.
Suppose toward a contradiction that there exists a δ-no-signaling cheating strategy

{Aq}q∈({0,1}Λ)` that breaks the soundness of V ′ with probability ε+ δ`. We use the latter
to construct a cheating prover P ∗ for the interactive proof that breaks soundness with
probability at least ε (contradicting our assumption on the soundness of V).

The cheating prover P ∗ is defined as follows. Given V ’s first message m1, the cheating
prover selects at random (b

(1)
1 , . . . , b

(1)
`) ∈R Am1,∗,...,∗, where ∗ denotes an arbitrary fixed

string (e.g., the string 0Λ). It saves only b1
def
= b

(1)
1 and sends b1 to the verifier. The veri-

fier answers with m2. After receiving m2, the prover selects (b
(2)
1 , . . . , b

(2)
`) ∈R Am1,m2,∗,...,∗

conditioned on b
(2)
1 = b1. It saves only b2

def
= b

(2)
2 and sends b2 to the verifier. Gener-

ally, after getting the ith message mi, the prover selects (b
(i)
1 , . . . , b

(i)
`) ∈R Am1,...,mi,∗,...,∗

conditioned on b
(i)
1 , . . . , b

(i)
i−1 = b1, . . . , bi−1 and sends bi

def
= b

(i)
i to the prover.

Before proceeding we note that in the above process it might happen that the con-
ditional probability space is empty. In such a case the prover P ∗ just sends a special
symbol ⊥.

We show that for every `messagesm1, . . . ,m`, the distribution of the answers b1, . . . , b`
described above is δ`-close to the distribution Am1,...,m` . This follows from the following
claim by setting i = `.

Claim 2.48.1. Fix ` messages m1, . . . ,m` ∈ ({0, 1}Λ)`. Let Bi denote the distribution
of the first i elements in Am1,...,mi,∗,...,∗. Then, for every 0 ≤ i ≤ `, the distribution
(b1, . . . , bi) is δi-close to Bi.

Proof. We prove the claim by induction. The base case i = 0 is trivial and so we proceed
to the inductive step. Suppose that the claim holds for some i. For every β1, . . . , βi ∈
{0, 1}Λ, consider the random variable Xi+1(β1, . . . , βi) defined by the following random
process: select (z1, . . . , zi+1) according to the distribution Bi+1 conditioned on z1, . . . , zi =
β1, . . . , βi and output zi+1. As before, if the conditional probability space is empty then
output ⊥.

16This can be easily achieved by having the verifier resend its previous messages at every round. Note
that this increases the length of each message by a factor of `.

85

2. DELEGATION FOR P

Note that by the definition of P ∗, the message bi+1 is distributed exactly asXi+1(b1, . . . , bi).
Therefore, by the inductive hypothesis, the distributions

• b1, . . . , bi+1; and

• Bi, Xi+1(Bi)

are δi-close. Since A is δ-no-signaling, the distribution Bi is δ-close to the distribution
obtained by taking the i first elements of Bi+1. Therefore, the distributions

• Bi, Xi+1(Bi); and

• Bi+1

are δ-close. Thus, (b1, . . . , bi+1) and Bi+1 are δ(i + 1)-close. This completes the proof of
Claim 2.48.1.

By our assumption, the soundness of V ′ is violated with probability ε + δ` when the
answers that it receives are distributed according toAm1,...,m` . Therefore, by Claim 2.48.1,
the soundness of V is violated with probability at least ε when it receives the answers
b1, . . . , b`, in contradiction to our assumption on the soundness of V .

Using Lemma 2.48, we can prove the following useful lemma.

Lemma 2.49. If L can be computed by a Turing machine in space s
def
= s(n) ≥ n (where

n is the input length) then, for every t ≥ 1, the language L has a poly(s)-prover MIP
with soundness poly(s) · 2−t against 2−t-no-signaling strategies. The query and answer
alphabets are {0, 1}t·poly(s).

Furthermore, the verifier runs in time t · poly(s) and the (honest) provers run in
time t · poly(2s).

Proof. Goldwasser et al. [GKR08] (see also [Rot09, Corollary 3.4.8]) show that if L can
be computed in space s, then L has a poly(s)-round public-coin interactive proof with
soundness error 1

2
. The verifier’s running time is poly(s) and the prover’s running time is

poly(2s). The length of each message is poly(s).17

To this base protocol we apply a O(t)-fold parallel repetition (see, e.g., [Gol08, Exer-
cise 9.1] or [Gol99, Appendix C.1]) which produces a poly(s)-round public-coin interactive
proof with soundness error 2−2t. The verifier’s running time is t · poly(s) and the prover’s
running time is t · poly(2s). The length of each message is t · poly(s). The lemma follows
by applying Lemma 2.48 with δ = 2−t.

17Indeed, the advantage in using the [GKR08] protocol is that the running time of the prover is poly(2s)
rather than 2poly(s) as in the classical [LFKN92, Sha92] protocol.

86

2.14 Simulating an MIP Oracle

2.14 Simulating an MIP Oracle

In this section we show that if a language L has an MIP with soundness against no-
signaling strategies relative to an oracle {φn} and the function {φn} can be computed by
a Turing machine that uses only a small amount of space, then the oracle can essentially
be simulated and L has an MIP with soundness against no-signaling strategies without
an oracle.

Lemma 2.50. Let L be a language and suppose that L has an MIP relative to an oracle
{φn : {0, 1}n′ → {0, 1}n′′}n (where n is the input length) with soundness error ε against
δ-no-signaling strategies. Let k be the number of provers and ` be the number of oracle
queries used by the MIP. Suppose further that the function {φn} can be computed by a
Turing machine in linear space (i.e., in space O(n′)). Then, for every t ≥ 1, the language
L has an MIP protocol without an oracle that has soundness ε + ` · poly(n∗) · 2−t, where
n∗ = n′ + log(n′′), against min(δ, 2−t)-no-signaling strategies. The resulting MIP uses
k + ` · poly(n∗) provers.

Furthermore, if the original MIP verifier runs in time TV then the resulting verifier
runs in time TV +O(` · t · poly(n∗)). If the original MIP provers run in time TP then the
resulting provers run in time TP +O(`·t·poly(2n

∗
)). If the original MIP has query alphabet

D and answer alphabet Σ then the resulting MIP has query alphabet D∪{0, 1}t·poly(n∗) and
answer alphabet Σ ∪ {0, 1}t·poly(n∗).

The high level approach is to use Lemma 2.49 to transform each oracle query into
an additional MIP with no-signaling soundness and to show that composing these MIP
protocols maintains the no-signaling soundness. The rest of this section is devoted to the
(straightforward and somewhat tedious) proof of Lemma 2.50.

Simulating a single query. To prove Lemma 2.50, we first show that if the oracle
can be computed by an MIP protocol with soundness against no-signaling strategies, then
the oracle queries can be removed one by one (Lemma 2.51). For simplicity and since it
suffices for our purposes, in the following we replace the oracle φn : {0, 1}n′ → {0, 1}n′′

with an equivalent oracle φ′n : {0, 1}n∗ → {0, 1} that returns Boolean valued answers,
where n∗ = n′ + log(n′′). The oracle φ′n on input (z, i) ∈ {0, 1}n′+log(n′′) simply outputs
the i-th bit of φn(z).

We note that the requirement in Lemma 2.51 will be that the oracle function {φ′n}
can be computed, rather than decided, by an MIP protocol (with soundness against no-
signaling strategies). This means that both the language Lφ′ = {z ∈ {0, 1}n∗ : φ′n(z) = 1}
and the complement language Lφ′ have MIP protocols with no-signaling soundness. How-
ever, it will be convenient for us to assume that there is a single protocol for computing
{φ′n} with no-signaling soundness, a notion that will be defined next. Indeed, as will be
shown in Claim 2.51.3, the existence of MIP protocols with no-signaling soundness for
both Lφ′ and Lφ′ implies a single protocol for computing {φ′n}.

87

2. DELEGATION FOR P

Multi-prover protocols for computing a function. In a one-round k-prover inter-
active protocol for computing a function f : {0, 1}∗ → {0, 1}∗, there are k computation-
ally unbounded provers, P1, . . . , Pk, that try to convince a (probabilistic) polynomial-time
verifier, V , of the value of f(x) where the input x ∈ {0, 1}∗ is known to all parties.

The interaction is similar to that in a one-round MIP (see Section 2.4.2). Given x and
her random string, the verifier generates k queries, q1, . . . , qk, one for each prover, and
sends them to the k provers. The provers respond with answers a1, . . . , ak. Finally, the
verifier, based on the answers that she receives (as well as the input x and her random
string), either outputs a value (which is supposed to equal f(x)) or outputs a special
abort symbol ⊥.

Denote by D the query alphabet and by Σ the answer alphabet. We say that
(V, P1, . . . , Pk) is a one-round k-prover protocol for computing f , with soundness ε against
δ-no-signaling strategies, if the following two properties are satisfied:

1. Completeness: For every x ∈ {0, 1}∗, the verifier V outputs f(x) with probability
1, after interacting with P1, . . . , Pk.

2. Soundness: For every x ∈ {0, 1}∗, and any δ-no-signaling family of distributions
{Aq}q∈Dk (where Aq is distributed over Σk, for every q ∈ Dk), with probability
≥ 1 − ε, the verifier V outputs either f(x) or ⊥, where on queries q = (q1, . . . , qk)
the answers are given probabilistically by (a1, . . . , ak) ∈R Aq.

We are now ready to state and prove Lemma 2.51.

Lemma 2.51. Let L be a language and suppose that L has an MIP relative to an oracle
{φ′n : {0, 1}n∗ → {0, 1}}n (where n is the input length) with soundness ε against δ-no-
signaling strategies. Let k be the number of provers and ` > 0 be the number of oracle
queries used by the MIP. Suppose further that the function {φ′n} can be computed by a
one-round k′-prover protocol with soundness ε′ against δ′-no-signaling strategies. Then,
L has an MIP relative to the same oracle {φ′n} with ε′′ soundness against δ′′-no-signaling
strategies where ε′′ = ε+ ε′+δ′′ and δ′′ = min(δ, δ′). The resulting MIP uses k+k′ provers
but only `− 1 oracle queries.

Furthermore, if the original MIP verifier for L runs in time TV , and the verifier of the
MIP for {φ′n} runs in time T ′V , then the resulting verifier runs in time TV +O(T ′V +k′n∗).
If the provers of the MIP for L run in time TP and the provers of the MIP for {φ′n} run in
time T ′P then the resulting provers run in time TP +O(T ′P + n∗). If the original MIP has
query alphabet D and answer alphabet Σ and the oracle MIP has query alphabet D′ and
answer alphabet Σ′ then the resulting MIP has query alphabet D′′ = D ∪ ({0, 1}n∗ ×D′)
and answer alphabet Σ′′ = Σ ∪ Σ′. 18

The high level idea is that if the oracle can be computed by a no-signaling MIP
protocol then an oracle query can just be simulated by adding sufficiently many provers
and running the multi-prover protocol for the oracle function with the additional provers.

18Note that we do not assume that D ∩ ({0, 1}n∗ ×D′) = ∅ nor that Σ ∩ Σ′ = ∅.

88

2.14 Simulating an MIP Oracle

The no-signaling soundness property guarantees that revealing the oracle query to the
provers does not harm soundness (too much).

Proof of Lemma 2.51. Let (V, P1, . . . , Pk) be the MIP for L relative to the oracle {φ′n :
{0, 1}n∗ → {0, 1}} that has soundness ε against δ-no-signaling strategies. Let D be
the query alphabet and Σ the answer alphabet. Let (V ′, P ′1, . . . , P

′
k′) be the k′-prover

interactive-protocol for computing {φ′n} with soundness ε′ against δ′-no-signaling strate-
gies. Recall that this means that when interacting with the honest provers, V ′(z) outputs
φ′n(z) (with probability 1) and that no δ′-no-signaling cheating strategy can convince V ′(z)
to output anything other than φ′n(z) or ⊥, with probability greater than ε′. Let D′ be
the query alphabet and Σ′ the answer alphabet of (V ′, P ′1, . . . , P

′
k′). Let Σ′′ = Σ ∪ Σ′. It

will be convenient for us to extend the answer alphabets of both protocols to Σ′′.19

Since we deal with 1-round protocols, it will be convenient to think of each one of our
verifiers as being composed of two algorithms (that share their randomness) - the query
generation step and the verification step. Specifically, we think of V as being composed
of two algorithms V1 and V2. The first algorithm, V1, on input x and a random string
r, outputs a sequence of k prover-queries q ∈ Dk and a sequence of ` oracle-queries
q′ ∈ ({0, 1}n∗)`. The second algorithm, V2, on input x, the same random string r, prover
answers a ∈ (Σ′′)k and oracle answers b ∈ {0, 1}` outputs a bit representing whether
x ∈ L. Similarly, we think of V ′ as being composed of two algorithms V ′1 and V ′2 . The
first algorithm, V ′1 , on input q∗ ∈ {0, 1}n∗ and a random string s, outputs a sequence of
k′ queries w ∈ (D′)k

′
. The second algorithm, V ′2 , on input q∗, the same random string s,

and answers z ∈ (Σ′′)k
′
, outputs the result (which is supposed to be equal to φ′n(q∗)).

We construct an MIP protocol for L with only ` − 1 oracle queries (but using k + k′

provers) as follows. The verifier V ′′ is composed of two steps, where V ′′1 denotes the
query generation step and V ′′2 denotes the verification step. The first algorithm, V ′′1 , on
input x and the random string (r, s), first invokes V1(x, r) to obtain k prover-queries
q = (q1, . . . , qk) ∈ Dk and ` oracle-queries q′ = (q′1, . . . , q

′
`) ∈ ({0, 1}n∗)`. For every

i ∈ [k], the query qi is sent directly to the i-th prover and the oracle queries q′2, . . . , q
′
`

are sent directly to the oracle φ′n. The query q∗
def
= q′1 is handled differently (to avoid

an additional oracle query). The k′ additional prover queries are generated by invoking
V ′1(q∗, s), to obtain a sequence of k′ queries w = (w1, . . . , wk′) ∈ (D′)k

′
. For every i ∈ [k′]

the query (q∗, wi) is sent to the (k + i)-th prover.

We denote the query alphabet by D′′
def
= D ∪ ({0, 1}n∗ × D′). For every sequence

ω ∈ (D′)k
′

we denote by ω(q∗)
def
= (q∗, ω1), . . . , (q∗, ωk′) ∈ (D′′)k

′
. Thus, the sequence of

queries sent by the verifier is (q,w(q∗)) ∈ (D′′)k+k′ .

The honest provers operate as follows. The first k provers operate exactly the same as
the provers P1, . . . , Pk in the original MIP for L. That is, for every i ∈ [k], the i-th prover,

on input x and query qi, answers with ai = Pi(x, qi). We denote a
def
= (a1, . . . , ak) ∈ (Σ′′)k.

The last k′ provers answer their queries as follows. For every i ∈ [k′], the (k + i)-th

19This can be done by having the verifiers reject immediately if they see symbols that are not in their
original alphabets.

89

2. DELEGATION FOR P

prover, given the query (q∗, wi), answers its query with zi = P ′i (q
∗, wi). We denote

z
def
= (z1, . . . , zk′) ∈ (Σ′′)k

′
.

To decide whether to accept, on input x, the random string (r, s), prover answers
(a, z) ∈ (Σ′′)k+k′ , and oracle answers b2, . . . , b` ∈ {0, 1}, the algorithm V ′′2 first recomputes

q∗ from x and r and computes b∗
def
= V ′2(q∗, s, z). If b∗ = ⊥, then V ′′2 rejects. Otherwise,

V ′′2 outputs the result of V2(x, r, a,b), where b = (b∗, b2, . . . , b`). In other words, the
verifier computes the result of the original verification process when the answers to q
are a, the answer to the first oracle query is b∗ and the answers to the rest of the oracle
queries q′2, . . . , q

′
` are (respectively) b2, . . . , b`.

We first argue that the resulting MIP has perfect completeness and then proceed to
prove soundness against δ′′-no-signaling strategies. To show that completeness holds,
observe that when the verifier V ′′ interacts with the honest provers on input x ∈ L, since
the protocol (V ′, P ′1, . . . , P

′
k′) has perfect completeness, it holds that b∗ = φ′n(q∗) and

therefore V ′′2 runs V2 with the correct oracle answers. The completeness of the protocol
follows from the completeness of (V, P1, . . . , Pk).

To show that δ′′-no-signaling soundness holds, assume for a contradiction that there
exists some δ′′-no-signaling cheating strategy {A(χ,ω)}(χ,ω)∈(D′′)k+k′ that fools V ′′ into ac-
cepting x /∈ L with probability ε′′. That is,

Pr
r,s

(a,z)∈RA(q,w(q∗))

[
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

]
≥ ε′′

where q, q∗,w, b2, . . . , b` are constructed as above. Using elementary manipulations we
have that

ε′′ ≤ Pr
r,s

(a,z)∈RA(q,w(q∗))

[
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

]
= Pr

r,s
(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ 6= φ′n(q∗)

)]
+

Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
≤ Pr

r,s
(a,z)∈RA(q,w(q∗))

[
b∗ /∈ {φ′n(q∗),⊥}

]
+

Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
(2.7)

where q, q∗,w, b2, . . . , b` are as above and b∗ = V ′2(q∗, s, z). Lemma 2.51 follows from the
following two claims (Claim 2.51.1 and Claim 2.51.2), that analyze the last two terms
separately.

Claim 2.51.1.
Pr
r,s

(a,z)∈RA(q,w(q∗))

[b∗ /∈ {φ′n(q∗),⊥}] < ε′

90

2.14 Simulating an MIP Oracle

Proof. Suppose otherwise. That is:

Pr
r,s

(a,z)∈RA(q,w(q∗))

[
V ′2(q∗, s, z) /∈ {φ′n(q∗),⊥}

]
≥ ε′.

Then, by an averaging argument, there exists a fixed value of r for which:

Pr
s

(a,z)∈RA(q,w(q∗))

[
V ′2(q∗, s, z) /∈ {φ′n(q∗),⊥}

]
≥ ε′ (2.8)

where q, q∗ are fixed (based on the value of r), and w = V ′1(q∗, s). For the rest of the
proof of Claim 2.51.1, we use r,q, q∗ to refer to the foregoing fixed values.

We construct a δ′-no-signaling strategy B = {Bω}ω∈(D′)k′ that on input q∗, fools V ′ into
outputting a value that is neither φ′n(q∗) nor ⊥, with probability ≥ ε′, contradicting our
assumption on the soundness of (V ′, P ′1, . . . , P

′
k′). For every ω ∈ (D′)k

′
, the distribution

Bω is defined by sampling (a, z) ∈R A(q,ω(q∗)) and outputting z.

To show that B violates the δ′-no-signaling soundness of (V ′, P ′1, . . . , P
′
k′), note that

by Eq. (2.8), the probability that V ′2 , on input q∗, the random string s and given answers
z ∈R Bw, where w = V ′1(q∗, s), outputs a value that is neither φ′n(q∗) nor ⊥ is at least ε′.

We proceed to show that B is δ′-no-signaling. Let S ⊂ [k′] and ω, ω′ ∈ (D′)k
′
, such

that ωS = ω′S. Suppose that the statistical distance between zS and z′S is more than δ,
where z ∈R Bω and z′ ∈R Bω′ . Hence,

δ′ <
1

2

∑
β∈(Σ′′)S

∣∣∣∣ Pr
z∈RBω

[zS = β]− Pr
z′∈RBω′

[z′S = β]

∣∣∣∣
=

1

2

∑
β∈(Σ′′)S

∣∣∣∣∣ Pr
(a,z)∈RA(q,ω(q∗))

[zS = β]− Pr
(a′,z′)∈RA(q,ω′(q∗))

[z′S = β]

∣∣∣∣∣ . (2.9)

Let S ′ = {k + i : i ∈ S}. Then, by Eq. (2.9) the projections of the distributions
A(q,ω(q∗)) and A(q,ω′(q∗)) to coordinates in S ′ are δ′-far. Since (q, ω(q∗))S′ = (q, ω′(q∗))S′
and δ′′ ≤ δ′, this contradicts our assumption that A is δ′′-no-signaling.

This concludes the proof of Claim 2.51.1.

Claim 2.51.2.

Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
< ε+ δ′′

91

2. DELEGATION FOR P

Proof. Suppose otherwise. Thus, by the definition of V ′′2 ,

ε+ δ′′ ≤ Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
= Pr

r,s
(a,z)∈RA(q,w(q∗))

[
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

∣∣ b∗ = φ′n(q∗)
]
· Pr

r,s
(a,z)∈RA(q,w(q∗))

[
b∗ = φ′n(q∗)

]
= Pr

r,s,
(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

∣∣ b∗ = φ′n(q∗)
]
· Pr

r,s
(a,z)∈RA(q,w(q∗))

[
b∗ = φ′n(q∗)

]
= Pr

r,s,
(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

]
(2.10)

where q,q′, q∗,w, b∗ are as above, and φ′n(q′) = (φ′n(q′1), . . . , φ′n(q′`)) (i.e., the correct
oracle answers).

We argue that Eq. (2.10) contradicts the δ-no-signaling soundness of V . Toward this
end, we construct a cheating strategy B = {Bχ}χ∈Dk that fools V into accepting x /∈ L,
with probability ≥ ε. Let σ ∈ (D′′)k

′
be an arbitrary fixed value. For every χ ∈ Dk, the

distribution Bχ is defined by sampling (a, z) ∈R A(χ,σ) and outputting a.
We first show that B is δ-no-signaling and proceed to show that it violates the sound-

ness of (V, P1, . . . , Pk). Let S ⊂ [k] and χ, χ′ ∈ Dk such that χS = χ′S. Suppose toward
a contradiction that the statistical distance between aS and a′S is more than δ, where
a ∈R Bχ and a′ ∈R Bχ′ . Hence,

δ <
1

2

∑
β∈(Σ′′)S

∣∣∣∣ Pr
a∈RBχ

[aS = β]− Pr
a′∈RBχ′

[a′S = β]

∣∣∣∣
=

1

2

∑
β∈(Σ′′)S

∣∣∣∣∣ Pr
(a,z)∈RA(χ,σ)

[aS = β]− Pr
(a′,z′)∈RA(χ′,σ)

[a′S = β]

∣∣∣∣∣ .
In particular, the projections of the distributions A(χ,σ) and A(χ′,σ) to coordinates in S
are δ-far. Since (χ, σ)S = (χ′, σ)S and δ′′ ≤ δ, this contradicts our assumption that A is
δ′′-no-signaling.

We proceed to show that {Bχ}χ∈Dk fools V into accepting x /∈ L with probability ≥ ε.
Assume for a contradiction that

Pr
r,

a′∈RBq

[V2(x, r, a′, φ′n(q′)) = 1] < ε. (2.11)

where q,q′ are as above. Combining Eq. (2.10) and Eq. (2.11) we have that:

E
r,s

[
Pr

(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

]
− Pr

(a′,z′)∈RA(q,σ)

[
V2(x, r, a′, φ′n(q′)) = 1

]]
> δ′′

where q, q∗,q′, φ′n(q′) are as above and w = V ′1(q∗, s).

92

2.14 Simulating an MIP Oracle

By an averaging argument, there exist fixed values for r and s such that:

Pr
(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

]
− Pr

(a′,z′)∈RA(q,σ)

[
V2(x, r, a′, φ′n(q′)) = 1

]
> δ′′

(2.12)

where q, q∗,q′, φ′n(q′) and w are fixed based on the fixed values of r and s.

Equation (2.12) gives a statistical test that distinguishes between the projections of
the distributions A(q,σ) and A(q,w(q∗)) to coordinates in [k] with gap > δ′′, contradicting
our assumption that A is δ′′-no-signaling. Hence, B fools V into accepting x /∈ L with
probability ≥ ε. This concludes the proof of Claim 2.51.2.

This concludes the proof of Lemma 2.51.

To prove Lemma 2.50 we also need the following straightforward claim.

Claim 2.51.3. Let L be a language and suppose that both L and L (i.e., the complement
language of L) have MIP protocols with soundness ε against δ-no-signaling strategies.
Assume that each of the MIP protocols uses k provers. Then, there exists a 2k-prover
interactive protocol for computing the function L(x) : {0, 1}∗ → {0, 1}, where L(x) = 1
if and only if x ∈ L, with soundness ε against δ-no-signaling strategies. If both of the
original MIP protocols use query alphabet D and answer alphabet Σ then the resulting
2k-prover protocol has query alphabet D and answer alphabet Σ∪ {⊥}, where ⊥ /∈ Σ is a
special symbol.

Furthermore, if each of the original MIP verifiers runs in time TV then the resulting
verifier runs in time O(TV + k · log(|Σ|)) and if each of the original MIP (honest) provers
runs in time TP then the resulting provers run in time O(TP + TL + log(|Σ|)), where TL
is the time that it takes for a Turing machine to compute L(x).

Proof. Let (V, P1, . . . , Pk) be the MIP for L and let (V ′, P ′1, . . . , P
′
k) be the MIP for L.

We assume that V and V ′ are composed of two algorithms, a query generation algorithm
and a verification algorithm. The query generation algorithm V1 (resp., V ′1) on input x
and a random string r (resp., r′), outputs k queries q = (q1, . . . , qk) ∈ Dk (resp., q′ =
(q′1, . . . , q

′
k) ∈ Dk). The verification algorithm V2 (resp., V ′2), on input x, the same random

string r (resp., r′) and k answers a = (a1, . . . , ak) ∈ Σk (resp., a′ = (a′1, . . . , a
′
k) ∈ Σk),

outputs a bit representing whether to accept or reject the statement x ∈ L (resp., x /∈ L).

We construct a 2k-prover protocol for computing L as follows. The first k provers
are the same as P1, . . . , Pk except that they first verify that x ∈ L. If x /∈ L, then they
answer with the special symbol ⊥. Similarly, the last k provers are the same as P ′1, . . . , P

′
k

except that they first verify that x /∈ L. If x ∈ L, then they send the special symbol ⊥.

On input x and a random string (r, r′) the query generation algorithm V ′′1 computes
q = V1(x, r) and q′ = V ′1(x, r′), where q,q′ ∈ Dk. For every i ∈ [k], the query qi is sent
to the i-th prover and the query q′i is sent to the (k + i)-th prover. Given the provers’
answers (a, a′) ∈ (Σ ∪ {⊥})k+k, the verification algorithm V ′′2 works as follows:

93

2. DELEGATION FOR P

1. If V2(x, r, a) = 1 and all the entries of a′ are equal to ⊥, then output 1 and halt.20

2. If V ′2(x, r′, a′) = 1 and all the entries of a are equal to ⊥, then output 0 and halt.

3. Output ⊥ and halt.

To see that completeness holds note that if x ∈ L then the last k provers will send ⊥
and, by the completeness of (V, P1, . . . , Pk) the verifier will output 1. If x /∈ L then the
first k provers will send ⊥ and, by the completeness of (V ′, P ′1, . . . , P

′
k), the verifier will

output 0. We proceed to show that soundness against δ-no-signaling strategies holds.
Fix x ∈ {0, 1}∗ and assume toward a contradiction that there exists a δ-no-signaling

strategy {A(u,u′)}(u,u′)∈Dk+k such that

Pr
r,r′

(a,a′)∈RA(q,q′)

[V ′′2 (x, (r, r′), (a, a′)) /∈ {L(x),⊥}] ≥ ε,

where q = V1(x, r) and q′ = V ′1(x, r′). For simplicity let us assume that x /∈ L. The case
that x ∈ L is handled analogously (using the soundness of V ′, rather than the soundness
of V). Thus,

Pr
r,r′

(a,a′)∈RA(q,q′)

[V ′′2 (x, (r, r′), (a, a′)) /∈ {0,⊥}] ≥ ε.

In particular, by the definition of V ′′:

Pr
r,r′

(a,a′)∈RA(q,q′)

[V2(x, r, a) = 1] ≥ ε. (2.13)

where q = V1(x, r) and q′ = V ′1(x, r′).
By an averaging argument, Eq. (2.13) implies that there exists a fixed value of r′ such

that

Pr
r

(a,a′)∈RA(q,q′)

[V2(x, r, a) = 1] ≥ ε. (2.14)

where q′ = V ′1(x, r′) is a fixed value and q = V1(x, r). For the rest of the proof of
Claim 2.51.3 we fix r′ and q′ as above.

We use A to construct a δ-no-signaling strategy B = {Bu}u∈Dk that fools V into
accepting x /∈ L with probability ≥ ε. For every u ∈ Dk, the distribution Bu is defined
by sampling (a, a′) ∈R A(u,q′) and outputting a.

We first show that B violates the soundness of V2 and then show that it is δ-no-
signaling. Indeed, by the definition of B and using Eq. (2.14) it holds that

Pr
r

a∈RBq
[V2(x, r, a) = 1] = Pr

r
(a,a′)∈RA(q,q′)

[V2(x, r, a) = 1] ≥ ε.

20If one of the entries of a (resp., a′) is ⊥, then we define V2(x, r,a) = 0 (resp., V ′2(x, r′,a′) = 0).

94

2.15 Proof of Theorem 2.4

We proceed to show that B is δ-no-signaling. Let S ⊂ [k] and let u1, u2 ∈ Dk such
that (u1)S = (u2)S, and suppose that the statistical distance between (a1)S and (a2)S is
more than δ, where a1 ∈R Bu1 and a2 ∈R Bu2 . Then:

δ <
1

2

∑
β∈ΣS

∣∣∣∣ Pr
a1∈RBu1

[(a1)S = β]− Pr
a2∈RBu2

[(a2)S = β]

∣∣∣∣
=

1

2

∑
β∈ΣS

∣∣∣∣∣ Pr
(a1,a′1)∈RA(u1,q

′)

[(a1)S = β]− Pr
(a2,a′2)∈RA(u2,q

′)

[(a2)S = β]

∣∣∣∣∣ .
Thus, the projections of the distributionsA(u1,q′) andA(u2,q′) to coordinates in S are δ-far.
Since (u1,q

′)S = (u2,q
′)S, this contradicts our assumption that A is δ-no-signaling.

This concludes the proof of Claim 2.51.3.

Using Lemma 2.49, Lemma 2.51 and Claim 2.51.3 we are ready to prove Lemma 2.50.

Proof of Lemma 2.50. As a first step we replace the oracle {φn : {0, 1}n′ → {0, 1}n′′}
with a Boolean valued oracle {φ′n : {0, 1}n∗ → {0, 1}}, where n∗ = n′+log(n′′), by having
the oracle φ′n on input (z, i) ∈ {0, 1}n′+log(n′′) simply output the i-th bit of φn(z). Note
that this step increases the number of oracle queries from ` to ` · log(n′′).

Fix t ≥ 1. Since {φ′n} can be computed in linear (i.e., O(n∗)) space, by Lemma 2.49,
the language Lφ′ = {z ∈ {0, 1}∗ : φ′(z) = 1} has a poly(n∗)-prover MIP with soundness
error poly(n∗) ·2−t against 2−t-no-signaling strategies. The verifier runs in time t ·poly(n∗)
and the (honest) provers run in time t · poly(2n

∗
). The query and answer alphabets are

{0, 1}t·poly(n∗). Similarly, the complement language Lφ′ can also be computed in space
O(n∗) and so it has an MIP with the same parameters.

Thus, by Claim 2.51.3, there exists a poly(n∗)-prover interactive protocol for comput-
ing {φ′n} with soundness poly(n∗) · 2−t against 2−t-no-signaling strategies. The verifier of
the resulting protocol runs in time t · poly(n∗) and the provers run in time t · poly(2n

∗
).

The query and answer alphabets are {0, 1}t·poly(n∗).
The lemma follows by applying Lemma 2.51 iteratively ` · log(n′′) times to the original

MIP for L to remove all of the oracle queries. The resulting MIP has soundness ε +
` · poly(n∗) ·

(
2−t + min(δ, 2−t)

)
against min(δ, 2−t)-no-signaling provers. The MIP uses

k + ` · poly(n∗) provers. The verifier runs in time TV +O(` · t · poly(n∗)) and each prover
runs in time TP + O(` · t · poly(2n

∗
)). The query alphabet is D ∪ {0, 1}t·poly(n∗) and the

answer alphabet is Σ ∪ {0, 1}t·poly(n∗).21

2.15 Proof of Theorem 2.4

Using the tools developed in the previous sections, we are finally ready to prove Theo-
rem 2.4.

21Note that the alphabet sizes do not increase on every iteration.

95

2. DELEGATION FOR P

Theorem 2.4. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤
exp(n). Then, for any integer (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large)
universal constant, there exists an MIP for L with k·polylog(t) provers and with soundness
error 2−k against 2−k·polylog(t)-no-signaling strategies.

The verifier runs in time n ·k2 ·polylog(t) and the provers run in time poly(t, k). Each
query and answer is of length k · polylog(t).

Proof. Let L ∈ DTIME(t(n)), where poly(n) ≤ t(n) ≤ exp(n). Then, L ∈ DTISP(t(n), s(n))
where max(n, log(t(n))) ≤ s(n) ≤ t(n). Fix t = t(n) and s = s(n).

Let Cn be a circuit on n inputs of size N = O(t ·s) that computes L and let C′n be the
augmented circuit of size N ′ = poly(N), as described in Section 2.9. Let the parameters
` and F be as defined in Section 2.9.

Let k′ ≤ poly(n) be an integer such that 4|F|4 ≤ k′ ≤ N ′. Consider the augmented
PCP of Section 2.9, with respect to C′n, and the security parameter k′. Since 4|F|4 ≤
k′ ≤ N ′, by Lemma 2.46, the PCP verifier has soundness ε′ against (kmax, δ

′)-no-signaling
strategies where:

|F| ≤ 8(log(N ′)10

` = 3
log(N ′)

log log(N ′)
+ 3

r =
k′

40`|F|
ε′ = 2−r/2

kmax = k′ · polylog(s) · log(t)|F|+ 12k′`|F|2

δ′ =
1

|F|8k′`|F|2
.

Recall that this PCP is relative to an oracle φ̂′ : F` → F (see Section 2.5 and Sec-
tion 2.9). As noted in Section 2.5.2.1, the total number of PCP queries as well as the
total number of oracle queries is at most 6k′`|F|2 ≤ k′polylogN ′ and the running time of
the verifier is k′polylogN ′. As noted in Section 2.5.1.1 (see also Section 2.9), the PCP can
be generated in time poly(N ′). The query alphabet is of size at most poly(N ′) and the
answer alphabet is of size |F| ≤ polylogN ′.

As a first step, we transform the PCP into an MIP. By applying Lemma 2.47, we
obtain an MIP (relative to the same oracle) with soundness ε′ against δ′-no-signaling
strategies. The MIP uses kmax ≤ k′polylogN ′ provers and k′polylogN ′ oracle queries. The
query and answer alphabets remain unchanged. The running time of the MIP verifier
is: O(k′polylogN ′ + kmax logN ′) ≤ k′polylogN ′. The running time of each MIP prover is
poly(N ′).

Recall that φ̂′ = φ̂x + φ̂C′ + φ̂extra where φ̂x, φ̂C′ , φ̂extra are the low degree extensions
of φx, φC′ and φextra respectively (see Section 2.5 and Section 2.9). As our second step,
we replace the use of the oracle φ̂′ in the MIP with the oracle φ̂C′ + φ̂extra. This is done

96

2.16 From No-Signaling MIP’s to One Round Arguments

by replacing each oracle query φ̂′(z), by first querying the new oracle (φ̂C′ + φ̂extra)(z)
and adding φ̂x(z), which is computed directly by the verifier, to the result. As noted in
Section 2.5, the function φ̂x can be evaluated in time n · polylogN ′. Thus, the resulting
verifier runs in time k′polylogN ′ + (k′polylogN ′) · (npolylogN ′) ≤ n · k′ · polylogN ′ and all
other parameters of the MIP remain unchanged.

At this point we apply Lemma 2.50 to obtain an MIP without an oracle. Note that,
as pointed out in Section 2.5 (resp., Section 2.9), the function φ̂C′ (resp., φ̂extra) can
be computed in space that is linear in its input (i.e., O(log(|F|`)) = O(logN ′) space).
Therefore, we can apply Lemma 2.50, with respect to a parameter t = log2(1/δ′), to
obtain an MIP without an oracle that has soundness ε against δ-no-signaling strategies
where

ε = ε′ + k′δ′polylogN ′

δ = δ′

The resulting MIP uses k′polylogN ′ provers. The resulting MIP verifier runs in time

n · k′ · polylogN ′ +O(k′polylogN ′ log(1/δ)polylogN ′) ≤ n · k′2 · polylogN ′

and the resulting provers run in time

poly(N ′) +O(k′polylogN ′ · log(1/δ) · poly(2O(logN ′))) ≤ poly(N ′).

The query alphabet is of size poly(N ′) + 2log(1/δ)·polylog(N ′) ≤ 2k
′·polylogN ′ and the answer

alphabet is of size polylogN ′ + 2log(1/δ)·polylog(N ′) ≤ 2k
′·polylogN ′ .

The theorem follows by setting k′ = k · polylogN ′ and noting that N ′ = poly(t).22

2.16 From No-Signaling MIP’s to One Round Argu-

ments

In this section we show how to transform any MIP that has soundness against no-signaling
strategies into a 1-round argument system, using a fully-homomorphic encryption scheme
(FHE) (or alternatively, a computational private information retrieval (PIR) scheme).

Theorem 2.11. Suppose that the language L has an ` prover MIP that has ε sound-
ness against δ-no-signaling strategies. Let D be the query alphabet and Σ be the answer
alphabet of the MIP. Let τ = τ(n) ≥ max (`, log(|Σ|), log(|D|)) be a security parame-
ter, where n denotes the input length of the MIP. For every S = S(τ) ≥ τ such that
S ≥ max(n, 2` log(|Σ|)) and δ′ = δ′(τ) such that δ′ ≤ δ/`, if there exists an (S, δ′)-secure
FHE, then the language L has a 1-round argument system with soundness (S, ε).

If the MIP verifier runs in time TV , then the running time of the resulting verifier
is TV + TFHE(τ) where TFHE is a polynomial that depends only on the encryption scheme

22Note that we assumed that k′ < N ′. If this is not the case then we can increase N ′ by adding
sufficiently many dummy gates to the circuit C′n.

97

2. DELEGATION FOR P

(and not on the language L). If the running time of each MIP prover is TP , then the
running time of the resulting prover is poly

(
TP , τ, n

)
. The total communication in the

resulting argument-system is of length poly(τ).

Proof. Let (V, P1, . . . , P`) be an ` prover MIP for L with soundness ε against δ-no-
signaling strategies. Let D be the query alphabet and Σ be the answer alphabet. Since
(V, P1, . . . , P`) is a 1-round protocol, it will be convenient for us to think of V as being
composed of two algorithms that use the same randomness, V1 and V2. The first algo-
rithm, V1, on input x and the random string r outputs a sequence of ` queries q ∈ D`.
The second algorithm, V2, on input x, the same random string r and answers a ∈ Σ`

outputs a bit that represents whether it believes that x ∈ L. We assume without loss of
generality that the provers algorithms P1, . . . , P` are deterministic.

Let (Gen,Enc,Dec,Eval) be an FHE and let τ = τ(n) be a security parameter. We use
the MIP and FHE to construct an argument system (V ′, P ′) as follows. The verifier, given
as input x, first invokes V1 on input x and a random string r to obtain a sequence of `
queries q = (q1, . . . , q`) ∈ D`. Then, for every i ∈ [`], the verifier invokes Gen(1τ), where
τ = τ(|x|), to obtain a key-pair (pki, ski). The verifier then runs Encpki(qi) to obtain a

ciphertext q̂i, for every i ∈ [`]. We denote pk = (pk1, . . . , pk`), and q̂
def
= (q̂1, . . . , q̂`). The

verifier sends (pk, q̂) to P ′.
The prover P ′ is given as input x and a message (pk, q̂) from the verifier. For every

i ∈ [`], let Cx,i : D → Σ be a Boolean circuit that on input q computes the function
Pi(x, q). For every i ∈ [`], the prover P ′ computes âi = Eval(pki, Cx,i, q̂i). The prover

sends â
def
= (â1, . . . , â`) to the verifier.

The verifier V ′, given the message â from the prover, computes ai = Decski(âi), for
every i ∈ [`]. The verifier outputs the result of V2(x, (a1, . . . , a`), r), where r is the same
random string used by V1 to generate the queries.

We proceed to show that (V ′, P ′) is an argument system with soundness (S, ε) (see
definition in Section 2.4.8).

Completeness. Let x ∈ L. By the construction and the correctness of the FHE proto-
col, for every i ∈ [`] it holds that ai = Pi(x, qi), with overwhelming probability. When V2

is invoked with the answers of the honest provers P1, . . . , P`, by the (perfect) completeness
of the MIP, the verifier V outputs 1. Hence, V ′ accepts with overwhelming probability.

Soundness. Let {P ∗n}n∈N be a family of circuits of size at most poly(S(n)) such that
there exist infinitely many x /∈ L such that

Pr[(P ∗|x|, V
′)(x) = 1] > ε, (2.15)

where (P ∗|x|, V
′)(x) denotes the output of V ′ after interacting with the prover P ∗|x| on

common input x (and the probability is over the random coins of V ′). We show a con-
tradiction by constructing a δ-no-signaling (cheating) strategy that fools the underlying
MIP verifier V into accepting some x /∈ L with probability greater than ε.

98

2.16 From No-Signaling MIP’s to One Round Arguments

For every x /∈ L, consider an MIP prover strategy A(x) def
= {A(x)

q }q∈D` , where for

every q = (q1, . . . , q`) ∈ D`, the distribution A(x)
q is sampled as follows. First, for every

i ∈ [`] invoke Gen(1τ), where τ = τ(|x|), to obtain (pki, ski) and compute q̂i ∈R Encpki(qi).
Then, compute â = (â1, . . . , â`) ∈R P ∗|x|(x, (pk, q̂)), where pk = (pk1, . . . , pk`) and q̂ =

(q̂1, . . . , q̂`), and for every i ∈ [`], set ai = Decski(âi). Finally, output a
def
= (a1, . . . , a`).

By the definition of A(x) and V ′ and using Eq. (2.15), for infinitely many x /∈ L, it
holds that

Pr
r

a∈RA
(x)
q

[V2(x, a, r) = 1] = Pr
[
(P ∗|x|, V

′)(x) = 1
]
> ε

where q = V1(x, r). It remains to be shown that for all sufficiently large x /∈ L, the
strategy A(x) is δ-no-signaling.

We need to prove that for all sufficiently large x, every S ⊆ [`], and every two sequences
of queries q = (q1, . . . , q`) ∈ D` and q′ = (q′1, . . . , q

′
`) ∈ D` such that qS = q′S (i.e., qi = q′i

for all i ∈ S), the following two distributions are δ-close:

• aS where a ∈R A(x)
q ; and

• a′S where a′ ∈R A(x)
q′ .

Toward this end, assume for a contradiction that for infinitely many x this is not the
case. That is, for infinitely many x, there exist corresponding S, q, q′ and a distinguisher
Dx such that ∣∣∣ Pr

a∈RA
(x)
q

[Dx(aS) = 1]− Pr
a′∈RA

(x)

q′

[Dx(a′S) = 1]
∣∣∣ > δ. (2.16)

Since Dx takes as input a string of length at most ` · log(|Σ|), it can be implemented by
a circuit of size at most poly(2`·log(|Σ|)). We use {Dx}x to construct a family of circuits
{Cτ}τ that breaks the security of the underlying FHE scheme.

For every x as above and for τ = τ(|x|), let Cτ be a circuit that takes as input a set
of public-keys {pki}i∈[`]\S (with respect to security parameter τ) and a set of ciphertexts
{ci}i∈[`]\S. We show that the circuit Cτ distinguishes between the case that (1) each ci
was sampled from Encpki(qi); and the case that (2) each ci was sampled from Encpki(q

′
i).

The circuit Cτ works as follows:

1. For every i ∈ S, sample (pki, ski) ∈R Gen(1τ) and ci ∈R Encpki(qi). Set pk =
(pk1, . . . , pk`) and c = (c1, . . . , c`) (note that for i /∈ S, the values pki and ci are
given as input to the circuit).

2. Compute â
def
= (â1, . . . , â`) = P ∗|x|(x, pk, c), where P ∗|x|(x, pk, c) denotes the output

of P ∗|x| given as input x and a message (pk, c). (Note that x is fixed inside the

description of Cτ .)

3. For every i ∈ S, set ai = Decski(âi).

4. Output Dx(aS) where aS = (ai)i∈S.

99

2. DELEGATION FOR P

Note that Cτ has size poly
(
2`·log(|Σ|), τ, S(τ), |x|

)
≤ poly(S(τ)).

By Eq. (2.16), the circuit Cτ distinguishes between the two cases with probability δ
for infinitely many values of τ . By a standard hybrid argument we obtain a circuit that
breaks the semantic security of the encryption scheme with distinguishing gap at least
δ/` ≥ δ′(τ) in contradiction to our assumption. Thus, we obtain that for all sufficiently
large x /∈ L, the prover strategy A(x) is δ-no-signaling and the lemma follows.

2.17 Delegation for P

Using all the results above, we are ready to prove Theorem 2.8.

Theorem 2.8. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤
exp(n). Let τ = τ(n) be a security parameter such that log(t) ≤ τ ≤ poly(t). Let
S = S(τ) ≥ τ such that 2(log(t))c ≤ S ≤ 2poly(n) and S ≤ 2max(n,τ), where c is some

sufficiently large universal constant. If there exists an
(
S, 2−

√
logS
)

-secure FHE, then L

has a 1-round argument system with soundness
(
S, 2−

√
log S

polylog(t)

)
. The verifier runs in time

n·log(S)·polylog(t)+poly(τ) and the prover runs in time poly(t). The total communication
is of length poly(τ).

Proof. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n).
Let τ = τ(n) be a security parameter such that log(t) ≤ τ ≤ poly(t). Let S = S(τ) such

that 2(log(t))c
′′
≤ S ≤ 2poly(n) and S ≤ 2max(n,τ), where c′′ = 2(c + c′), the constant c is as

in Theorem 2.4 and c′ is some sufficiently large universal constant. Let δ
def
= 2−

√
logS and

k
def
=

√
logS

(log(t))c′
. Note that by the restriction on S, and our setting of k and δ, it holds that:

1. (log(t))c ≤ k ≤ poly(n).

2. S ≥ max
(
n, 2k

2polylog(t)
)

.

3. δ ≤ 2−kpolylog(t).

(where the latter two conditions are obtained by setting c′ to be a sufficiently large
constant).

By applying Theorem 2.4 (with respect to the parameter k) to the language L, we
obtain an MIP for L with k · polylog(t) provers and with soundness error 2−k against
2−k·polylog(t)-no-signaling strategies. The verifier of the MIP runs in time n ·k2 ·polylog(t) ≤
n · log(S) · polylog(t) and the provers run in time poly(t, k). Each query and answer is of
length k · polylog(t).

Assume that there exists an (S, δ)-secure FHE. By Theorem 2.11 (and our setting of
k, S and δ), we obtain that L has a 1-round argument system with soundness (S, 2−k).
The running time of the verifier is n · log(S) · polylog(t) + poly(τ) and the running time
of the prover is poly(t). The total communication is of length poly(τ).

100

2.17 Delegation for P

Replacing FHE with PIR. As noted in the introduction, Theorem 2.11 and Theo-
rem 2.8 can be based on the assumption that a (sufficiently hard) PIR scheme exists
rather than a full-blown FHE. Indeed, instead of encrypting the MIP queries, the verifier
can send them encapsulated inside PIR queries. The prover, instead of homomorphically
evaluating the MIP prover algorithm on encrypted queries, can pre-compute the answers
to every possible query and answer according to a corresponding PIR database. However,
one must be careful since in the straightforward implementation, the running time of the
prover is exponential in the communication complexity of the underlying MIP. This is a
real concern in our protocol since the MIP has poly-logarithmic communication complex-
ity (which translates to a quasi-polynomial running time of the prover). We resolve this
issue by noting that the next message function of the prover depends only on a logarithmic
number of bits and therefore the PIR database can be constructed in polynomial-time.

101

2. DELEGATION FOR P

102

Appendix for Chapter 2

2.A Computing LDE over Characteristic 2 Fields

Recall that G is a finite field of characteristic 2, HG ⊆ G is an arbitrary subset of G and
mG is the dimension.

Proposition 2.52. There exists a Turing Machine that runs in time poly(|G|mG) and
space O

(
mG · log(|G|) + polylog(|G|)

)
and outputs a Boolean circuit of depth O

(
mG ·

log(|G|) + logmG · polylog(|G|)
)

and size poly(|G|mG) that on input a truth table of a
function α : HmG

G → {0, 1} outputs the truth table of the LDE α̂ : GmG → G of α.

Proof. By the proof of Proposition 2.1,

α̂(z) =
∑

x∈HmG
G

β̂x(z) · α(x) (2.17)

where each β̂x can be computed by an arithmetic circuit (over G) of depth O(log(mG) +
log(|HG|)) and size poly(|HG|,mG) and each arithmetic circuit can be generated (by a
Turing Machine) in time poly(|HG|,mG, log |G|) and in space O(log(|G|) + log(mG)).

Since the field operations can be implemented by Boolean circuits of depth polylog(|G|)
and size polylog(|G|), we can replace each arithmetic circuit by a Boolean circuit of depth
polylog(|G|) · log(mG) and size poly(|HG|,mG, log(|G|)). Each Boolean circuit can be
generated in time poly(|HG|,mG, log(|G|)) and in space O(polylog(|G|) + log(mG)).

The sum of the terms in Eq. 2.17 can be computed by an arithmetic circuit of depth
O(log(|HG|mG)) and size O(|HG|mG). Moreover, since addition over G can be computed
by a constant depth (fan-in 2) Boolean circuit (because G has characteristic 2), the sum
can be computed by a Boolean circuit of depth O(log(|HG|mG)) and size polylog(|G|) ·
O(|HG|mG). The latter Boolean circuit can be generated in time polylog(|G|) ·O(|HG|mG)
and space O(log(|HG|mG)).

103

104

Chapter 3

Non-interactive Proofs of Proximity

3.1 Introduction

Understanding the power and limitations of sublinear algorithms is a central question
in the theory of computation. The study of property testing, initiated by Rubinfeld
and Sudan [RS96] and Goldreich, Goldwasser and Ron [GGR98], aims to address this
question by considering highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Such algorithms,
commonly referred to as property testers, are given oracle access to some object, and are
required to determine whether the object has some predetermined property, or is far (say,
in Hamming distance) from every object that has the property. Remarkably, it turns out
that many natural properties can be tested by making relatively few queries to the object.

Once a model of computation has been established, a fundamental question that arises
is to understand the power of proof-systems in this model. Recall that a proof-system
consists of a powerful prover that wishes to convince a weak verifier, which does not
trust the prover, of the validity of some statement. Since verifying is usually easier than
computing, using the power of proofs, it is often possible to overcome limitations of the
basic model of computation. In this paper we study proof-systems in the context of
property testing, with the hope that by augmenting testers with proofs we can indeed
overcome inherent limitations of property testers.

Thus, we are interested in proof-systems in which the verifier reads only a small
fraction of the input. Of course we cannot hope for such a verifier to reject every false
statement. Instead, as is the case in property testing, we relax the soundness condition
and only require that it be impossible to convince the verifier to accept statements that
are far from true statements. Such proof-systems were first introduced by Ergün, Kumar
and Rubinfeld [EKR04] and were recently further studied by Rothblum, Vadhan and
Wigderson [RVW13] who were motivated by applications to delegation of computation
in sublinear time. Rothblum et al. [RVW13] showed that by allowing a property tester
to interact with an untrusted prover (who can read the entire input), sublinear time
verification is indeed possible for a wide class of properties. As in the property testing
framework, the tester is only assured of the proximity of the input to the property and

105

3. NON-INTERACTIVE PROOFS OF PROXIMITY

hence such protocols are called interactive proofs of proximity (IPPs).

3.1.1 The Notion of MAP

In this work, we also consider proofs of proximity, but restrict the verification process
to be non-interactive. In other words, we augment the property testing framework by
allowing the tester full and free access to an (alleged) proof. Such a proof-aided tester
for a property Π, is given oracle access to an input x and free access to a proof string w,
and should distinguish between the case that x ∈ Π and the case that x is far from Π
while using a sublinear number of queries. We require that for inputs x ∈ Π, there exist
a proof that the tester accepts with high probability, and for inputs x that are far from
Π no proof will make the tester accept, except with some small probability of error.

This type of proof-system can be viewed as the property testing analogue of an NP
proof-system (whereas IPP is the property testing analogue of IP). However, in contrast to
polynomial-time algorithms, sublinear time algorithms inherently rely on randomization.1

Since an NP proof-system in which the verifier is randomized is known as a Merlin-Arthur
(MA) proof-system, we call these sublinear non-interactive proof-systems Merlin-Arthur
proofs of proximity or simply MAPs.

Following the property testing literature, we consider the number of queries that the
tester makes as the main computational resource. We ask whether non-interactive proofs
can reduce the number of queries that property testers make, and if so by how much. (We
note that [RVW13] showed that it is possible to significantly reduce the query complexity
of property testers using interactive proofs, but their proof systems rely fundamentally
on two-way interaction.)

Given the (widely believed) power of proofs in the context of polynomial-time com-
putation, one would hope that proofs can help decrease the number of queries that is
needed to test various properties. This is indeed the case. In fact, for every property Π,
consider a proof-system for the statement x ∈ Π, wherein the proof w is simply equal to
x. In order to verify the statement, the tester need only verify that indeed w ∈ Π and
that w is close to x (i.e., that the relative Hamming distance between w and x is a small
constant). The former check can be carried out without any queries to x, whereas for the
latter a constant number of queries suffice. Thus, using a proof of length linear in the
input size, any property can be tested using a constant number of queries (furthermore,
the tester has one-sided error). In contrast, there exist properties for which linear lower
bounds on the query complexity of standard property testers are known (cf. [GGR98]).

The foregoing discussion leads us to view the proof length, in addition to the number
of queries, as a central computational resource, which we should try to minimize. Thus,
we measure the complexity of an MAP by the total amount of information available to
the tester, namely, the sum of the MAPs query complexity (i.e., the number of queries
that the tester makes) and proof complexity (i.e., the length of the proof). In this work

1It is not difficult to see that the sublinear time deterministic computation or even verification is
limited to trivial properties (cf. [GS10b]).

106

3.1 Introduction

we study the complexity of MAPs in comparison to property testers and to the recently
introduced IPPs.

A Concrete Motivation. We note that the non-interactive nature of such proof-
systems may have significant importance to applications such as delegation of computa-
tion. Specifically, consider a scenario wherein a computationally weak client has reliable
query access to a massive dataset x. The client wishes to compute a function f on x,
but its limited power, along with the massive size of the dataset, prevents it from doing
so. In this case, the client can use a powerful server (e.g., a cloud computing provider)
to compute f(x) for it. However, the client may be distrustful of the server’s answer
(as it might cheat or make a mistake). Thus, an MAP for f can be used to verify the
correctness of the computation delegated to the server: Given access to x, the server can
send the value y = f(x), together with a proof of proximity that ascertains that x is close
to a dataset x′ for which f(x′) = y. The latter can be verified using an MAP verifier that
makes only a small number of queries to x.

We emphasize that the advantage in using non-interactive proofs of proximity (rather
than interactive ones) is not only in removing the need for two-way communication, but
also: (1) the proof can be “annotated” to the dataset by the server in a cheap off-line
phase; and (2) the proof can be re-used for multiple clients.

The Computational Complexity of Generating and Verifying the Proof. As
noted above, we view the number of queries and proof length as the main computational
resources. It is natural to also consider the computational complexity of generating and
verifying the proof. However, in this work our main focus is on the query and proof
complexities. Still, we note that unless stated otherwise, our protocols can be imple-
mented efficiently; that is, the proof can be generated in polynomial-time and verified in
sublinear-time.

Comparison with PCPs of Proximity. PCPs of proximity (PCPPs), first studied
by Ben-Sasson et al. [BSGH+06] and by Dinur and Reingold [DR06] (where they are
called assignment testers) are also non-interactive proof-systems in which the verifier has
oracle access to an object, and needs to decide whether the object is close to having a
predetermined property. However, PCPPs differ from MAPs in that the verifier is only
given query (i.e., oracle) access to the proof, whereas in MAPs, the verifier has free
(explicit) access to the proof. Indeed, in contrast to MAPs, the proof string in PCPPs is
typically of super-linear length (but only a small fraction of it is actually read at random).
Thus, PCPPs may be thought of as the PCP analogue of property testing, whereas MAPs
are the NP analogue of property testing.

In fact, considering a variety of non-interactive proof-systems that differ in whether
the main input and the proof are given explicitly or implicitly (i.e., via query access or
free access), leads to the taxonomy depicted in Table 3.1. Interestingly, the three other
variants, corresponding to NP,PCP and PCPP, have all been well studied. Thus, we view
the notion of MAPs as completing this taxonomy of non-interactive proof-systems.

107

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Access to Proof

Access to Main Input No Proof Free Access Oracle Access

Free Access P NP or MA PCP

Oracle Access Property Testers MAP (this work) PCPP

Table 3.1: Taxonomy of non-interactive proof-systems.

3.1.2 The Power of MAP

The first question that one might ask about the model of MAPs is whether proofs give
a significant savings in the query complexity of property testers (indeed, such savings
are the main reason to introduce a proof-system in the first place). Given the above
discussion on the importance of bounding the proof length, we seek savings in the query
complexity while using only a relatively short proof. Our first result shows that indeed
there exists a property for which a dramatic saving is possible:

Informal Theorem 3.1 (see Theorem 3.7). There exists a (natural) property that has
an MAP that uses a logarithmic-length proof and only a constant number of queries, but
requires n0.999 queries for every property tester.

Here and throughout this work, n denotes the length of the object being tested.

Having established an exponential separation between property testers and MAPs,
we continue our study of MAPs by asking how many queries can be saved by slightly
increasing the length of the proof. The following result shows a property for which a
smooth multiplicative trade-off, which is (almost) tight, between the number of queries
and length of the proof holds:

Informal Theorem 3.2 (see Theorem 3.13). There exists a (natural) property Π such
that, for every p ≥ 1, there is an MAP for Π that uses a proof of length p and makes
n0.999

p
queries. Furthermore, for every p, the trade-off is (almost) tight.

Recall that for property testers huge gaps may exist between the query complexity of
testers that have one-sided error and the query complexity of testers that have two-sided
error (where a one-sided tester is one that accepts every object that has the property
with probability 1). Notable examples for properties for which such gaps are known are
Cycle-Freeness in the bounded degree graph model (see [CGR+12]) and ρ-Clique in the
dense graph model (see [GGR98]). In contrast, we observe that such gaps can not exist
in the case of MAPs.

Informal Theorem 3.3 (see Theorem 3.20). Any two-sided error MAP can be converted
to have one-sided error with only a poly-logarithmic overhead to the query and proof
complexities.

108

3.1 Introduction

Since every property tester can be viewed as an MAP that uses an empty proof, as
an immediate corollary, we obtain a transformation from every two-sided error property
tester into a one sided MAP that uses a proof of only poly-logarithmic length (with
only a poly-logarithmic increase in the query complexity). Moreover, since (as noted
above) there are well-known properties for which one-sided error property testing is
exponentially harder than two-sided error property testing, Informal Theorem 3.3 implies
an exponential separation between MAPs (with poly-logarithmically long proofs) and one-
sided error property testing. We note that Informal Theorem 3.1 shows such a separation
for the more general case of two-sided error.

We note that all of the explicit properties that were discussed thus far are properties
“with distance”; that is, properties for which every two objects that have the property
are far apart. In other words, the set of objects forms an error-correcting code. This
distance, along with a form of local self-correction, is a crucial ingredient of the foregoing
MAPs. In contrast, all of the properties described next are properties “without distance”.
Hence, the power of MAPs is not limited to properties with distance.

MAPs for parameterized concatenation problems. We identify a family of natural
properties, for which it is possible to construct efficient MAPs, by using a generic scheme.
Specifically, for every problem that can be expressed as a parameterized concatenation
problem, we show how to construct an efficient MAP that allows a trade-off between the
query and proof complexity. Loosely speaking, a property Π is a parameterized concate-
nation problem if Π = Πα1 × · · · × Παk , for some integer k, where each property Παi is a
property parameterized by αi.

Using this generic scheme, we obtain MAPs for a couple of natural problems, including:
(1) approximating the Hamming weight of a string, and (2) graph orientation problems.
(For more details, see Section 3.6).

MAPs for graph properties. To see that MAPs are also useful for testing graph prop-
erties, we consider the problem of testing bipartiteness in the bounded-degree graph model.
We construct an MAP protocol for verifying bipartiteness of rapidly-mixing graphs, with
proof complexity p and query complexity q, for every p and q such that p · q ≥ N (where
N is the number of vertices in the graph). In particular, we obtain an MAP verifier that
uses a proof of length N2/3 and makes only N1/3 queries. This stands in contrast to the
Ω(
√
N) lower bound on the query complexity of property testers (which do not use a

proof), shown by Goldreich and Ron [GR02], which also holds for rapidly-mixing graphs.
We remark that in [RVW13] a (multi-round) IPP was given for the same problem (see
Section 3.7).

We note that in the dense graph model, testing bipartiteness (or more generally k-
colorability) can be easily done using only O(1/ε) queries (where ε represents the desired
proximity to the object) when given a proof that is simply the k-coloring of the graph
(which can be represented by N log2 k bits where N is the number of vertices and k is the

109

3. NON-INTERACTIVE PROOFS OF PROXIMITY

number of colors).2 In contrast, for standard property testers such query complexity is
impossible (see [BT04]). We note that a similar protocol (described as a PCPP) for testing
bipartiteness in the dense graph model was suggested in [EKR04] and in [BSGH+06].

MAPs for sparse properties. If a property is relatively sparse, in the sense that it
contains only t objects, then a proof of length log2 t (which fully describes the object) can
be used, and only O(1/ε) queries suffice to verify the proof’s consistency with the object.
Using this observation we note that testing k-juntas and k-linearity can be verified using
only O(1/ε) queries and a proof of length O(k log n), whereas a lower bound of Ω(k)
queries is well-known for standard property testers (cf. [Bla10]).

3.1.3 The Limitations of MAP

In the previous section, we described results that exhibit the power of MAPs. But what
are the limitations of MAPs? As discussed above, a proof of linear length suffices to
reduce the query complexity to O(1/ε). Moreover, Informal Theorem 3.1 shows that
even a logarithmically long proof can be extremely useful for a specific property. Thus,
it is natural to ask whether a sublinear proof can reduce the query complexity for every
property. The following result shows that for almost all properties, even a proof of length
n/100 cannot improve the query complexity by more than a constant factor.

Informal Theorem 3.4 (see Theorem 3.22). For almost all properties, every MAP ver-
ifier that uses a proof of length n/100 must make Ω(n) queries.3

Although Theorem 3.22 holds for most properties, finding an explicit property for
which a similar statement holds remains an interesting open question. We note that
Informal Theorem 3.4 improves upon a result of Fischer et al. [FGL14] (see discussion in
Section 3.1.5).

Since Informal Theorem 3.4 shows that even a relatively long proof cannot help in
general for every property, one might ask whether there are specific properties for which
short proofs do suffice. As was shown in Informal Theorem 3.1, this is indeed the case
and a logarithmically long proof allows for an exponential improvement in the query
complexity for a specific property. But can an even shorter, say constant-size proof,
help? Unfortunately, the answer is negative since an MAP with query complexity q and
proof complexity p can be emulated by a property tester that enumerates all possible
proofs and makes a total of Õ(2p · q) queries. Still, are there any further limits to how
proofs can help a tester?

We first note that the ability to query the object in a way that depends on the proof is
essential to the power of MAP. In contrast, consider proof-oblivious queries MAPs, which
are MAPs in which the verifer’s queries are independent of the provided proof. Such

2Note that the size of the tested object is N2, and so N log2 k is sublinear in the input size. In order
to verify this proof, the verifier chooses O(1/ε) edges at random and accepts if all are properly colored.

3In fact, we show a general additive tradeoff between proof and query complexities, that is, every
MAP verifier that uses a proof of length p must make Ω̃(n− p) queries.

110

3.1 Introduction

MAPs can be viewed as a two step process in which the verifier first (adaptively) queries
the object and only then it receives the proof and decides whether to accept or reject
based on both the answers and the proof. We say that such MAPs have proof oblivious
queries. The following result shows that MAPs with proof-oblivious queries can provide
at most a quadratic improvement over standard property testers.

Informal Theorem 3.5 (see Theorem 3.19). If a property Π has an MAP that makes
q proof oblivious queries and uses a proof of length p, then Π has a property tester that
makes O(q · p) queries.

By Informal Theorem 3.1, the restriction to proof oblivious queries is a necessary pre-
condition for Informal Theorem 3.5 (and indeed, the MAP verifier of Informal Theorem 3.1
must make proof-dependent queries).

Having inspected the relationship between MAPs and property testing, we proceed
to consider the relationship between MAPs and IPPs. Recall that MAPs are actually a
special case of IPPs in which the interaction is limited to a single message sent from the
prover to the verifier. When comparing MAPs and IPPs it is natural to compare both the
query complexity and the total amount of communication with the prover (which in the
case of MAPs is simply the length of the proof).

The following theorem shows that IPPs are stronger than MAPs not only syntactically
but also in essence. We show that even 3-message IPPs may have exponentially better
query complexity than MAPs (while using the same amount of communication). More-
over, we show that IPPs with poly-logarithmically many messages of poly-logarithmic
length can also have exponentially better communication complexity.

Informal Theorem 3.6 (see Theorem 3.16 and Theorem 3.17). There exists a property
Π such that on the one hand, any MAP for Π with proof of length n0.499+o(1) has query
complexity n0.499+o(1), and on the other hand, Π has:

1. A 3-message IPP that makes polylog(n) queries while using a total of n0.499+o(1)

communication.

2. An IPP with only polylog(n) query and communication complexities but using a
poly-logarithmic number of messages.

3.1.4 Techniques

Several of our results (in particular Informal Theorems 3.2 and 3.6) are based on a
specific algebraic property, which we call Sub-Tensor Sum and denote by TensorSum (c.f.
[LFKN92]). Let F be a finite field and let H ⊂ F be an arbitrary subset. We consider
m-variate polynomials over F that have individual degree d. The TensorSum property
contains all such polynomials whose sum on Hm equals 0.4 That is, TensorSum contains
all polynomials P : Fm → F of individual degree d such that∑

x∈Hm

P (x) = 0.

4The choice of the constant 0 is arbitrary.

111

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Selecting |F|,m, d and |H| suitably (as poly-logarithmic functions in the input size n =
|F|m), we obtain the following roughly stated upper and lower bounds for TensorSum (for
the formal statements, see the technical sections):

1. PT: The query complexity of testing TensorSum (without a proof) is Θ(n0.999±o(1))
queries.

2. MAP: The MAP complexity of TensorSum is Θ
(
n0.499±o(1)

)
. Moreover, for every

p ≥ 1, the MAP query complexity of TensorSum with respect to proofs of length p

is Θ
(
n0.999±o(1)

p

)
.

3. IPP[3]: TensorSum has a 3-message IPP with query complexity polylog(n) and
communication complexity O

(
n0.499+o(1)

)
.

4. IPP: TensorSum has an IPP with query and communication complexities polylog(n).
However, in contrast to Item 3, this IPP uses poly-logarithmically many messages.

To get a taste of our proofs, consider the (relatively) simple case wherein we restrict
the TensorSum property to dimension m = 2 and a field F of size

√
n (i.e., bivariate

polynomials over a field of size
√
n). Naturally, we call this variant the Sub-Matrix Sum

property and denote it by MatrixSum. Note that MatrixSum contains all polynomials
P : F2 → F of individual degree d = |F|/10 such that∑

x,y∈H

P (x, y) = 0.

As an MAP proof to the claim that the polynomial P is in MatrixSum, consider the

univariate polynomial Q(x)
def
=
∑

y∈H P (x, y). To verify that P is indeed in MatrixSum
the verifier acts as follows:

1. If
∑

x∈H Q(x) 6= 0, then reject.

2. Verify that P is (close to) a low degree polynomial and reject if not. This can be
done with O(d) queries via the classical low degree test (see Theorem 3.30).

3. Verify that Q is consistent with P . Since both are low degree polynomials, it suffices
for the verifier to check that Q(r) =

∑
y∈H P (r, h) for a random r ∈ F.

Actually, a technical difficulty arises from the fact that P can only be verified to
be close to a low degree polynomial. The naive solution of reading every point
via self-correction is too expensive in the case of MatrixSum. While it is possible to
overcome this difficulty using a slightly more sophisticated technique (to appear in a
forthcoming revision), the naive solution suffices for our actual setting of parameters
(for TensorSum) and so we ignore this difficulty here.

112

3.1 Introduction

By setting |H| = O(|F|) we obtain an MAP with proof and query complexity O(
√
n)

(since n = |F|2). Using more sophisticated techniques in the same spirit, we obtain both
MAP and IPP upper bounds for the TensorSum problem.5

Parameterized Concatenation Problems. Our techniques for showing MAPs for
properties that do not have distance (and a structure that allows for self-correction)
differ from the above. One class of problems that we consider is that of parameterized
concatenation problems. Such properties consists of strings that are a concatenation of
substrings, where each substring satisfies a particular parameterized property. The actual
parameterization is not known a priori to the tester, and so an MAP proof that simply
provides this parameterization turns out to be quite useful. Given this parameterization,
the MAP verifier can simply test each substring individually (or a random subset of
these substrings). Actually, in order to solve the problem more efficiently, the different
substrings are tested with respect to different values of the proximity parameter by using
a technique known as precision sampling (see survey [Gol14, Appendix A]).

Verifying Bipartiteness of Well-Mixing Graphs. Our MAP protocol for proving
bipartiteness of a given well-mixing graph G = (V,E) of size N = |V | proceeds as follows.
The proof consists of a subset W ⊆ V of vertices that are allegedly on the same side of
the graph. The verifier selects a random vertex s ∈ V and takes roughly N/|W | random
walks of length Θ(log n), starting at s. The verifier rejects if two of the walks pass through
vertices of the set W , where the lengths of the paths from s to these vertices of W have
opposite parities. Indeed, such walks cannot occur in bipartite graphs, assuming that all
vertices in S are on the same side.

We show that if the graph is rapidly mixing and far from bipartite, then, for a
O(1/ log(N)) fraction of vertices s ∈ W , the probability that a random walk starting
in s will end in W with odd (respectively, even) parity is roughly |W |/N . Since the
verifier takes N/|W | random walks starting in s, with constant probability, it will detect
a violation and reject. The analysis of our protocol is inspired by [GR02]. Interestingly,
in contrast to the analysis of the rapidly-mixing case in [GR02], our analysis crucially
relies on the random selection of the starting vertex.

Lower Bounds via MA Communication Complexity. As for our property test-
ing lower bounds, we base these on the recently introduced technique of Blais, Brody
and Metulef [BBM11]. The [BBM11] methodology enables one to obtain property test-
ing lower bounds from communication complexity lower bounds. To obtain MAP lower
bounds, we extend the [BBM11] framework. We show that lower bounds on the MA
communication complexity of a communication complexity problem related to a property
Π can be used to derive lower bounds on the MAP complexity of Π.

5We use TensorSum rather than MatrixSum because we do not know how to obtain an IPP nor a full
trade-off between proof and query complexities for MatrixSum.

113

3. NON-INTERACTIVE PROOFS OF PROXIMITY

MA communication complexity, introduced by Babai, Frankl and Simon [BFS86], ex-
tends standard communication complexity by adding a third player, Merlin, who sees
both the input x of Alice and y of Bob and attempts to convince them that f(x, y) = 1
where f is the function that they are trying to compute. We require that if f(x, y) indeed
equals 1, then there exist a proof for which Alice and Bob output the correct value (with
high probability), but if f(x, y) = 0, then no proof will cause them to output a wrong
value (except with some small error probability).

In order to show lower bounds for MAP we are thus left with the task of showing
lower bounds for related MA communication complexity problems. Fortunately, Klauck
[Kla03] showed a strong lower bound for the set-disjointness problem, which we use in our
reductions. Additionally, we extend a recent result of Gur and Raz [GR13b] who give an
MA communication complexity lower bound on the classical problem of Gap Hamming
Distance.

We note that nearly all of the lower bounds shown in [BBM11] are proved via reduc-
tions from the communication complexity problems of set-disjointness and gap Hamming
distance. Since these communication complexity problems have known MA communica-
tion complexity lower bounds (cf. [Kla03, GR13b]), these reductions, together with our
extension of the [BBM11] framework to MAPs, gives MAP lower bounds for the problems
studied in [BBM11] (e.g., testing juntas, Fourier degree, sparse polynomials, monotonic-
ity, etc.).

Lower Bounds via the Probabilistic Method. Lastly, to prove Informal Theo-
rem 3.4, which shows a property that requires Ω(n) queries even from an MAP that
has access to a proof of length n/100, we use a technique that is inspired by [GGR98],
and also uses ideas from [RVW13]. In more detail, we note that MAPs can be repre-
sented by a relatively small class of functions. Since this class of functions is small, using
the probabilistic method, we argue that a “random property” (chosen from an adequate
distribution) fools every MAP verifier in the sense that the verifier cannot distinguish
between a random input that has the property and a totally random input (which will
be far from the property).

3.1.5 Related Works

The notion of interactive proofs of proximity was first considered by Ergün, Kumar and
Rubinfeld [EKR04] (where it was called approximate interactive proofs). More recently,
Rothblum, Vadhan and Wigderson [RVW13] initiated a systematic study of the power
of this notion. Their main result is that all languages in NC have interactive proofs
of proximity with query and communication complexities roughly

√
n, and polylog(n)

communication rounds. On the negative side, [RVW13] show that there exists a language
in NC1 for which the sum of queries and communication in any constant-round interactive
proof of proximity must be polynomially related to n.

The study of interactive proofs-systems (in the polynomial-time setting), of which the
class MA is a special case, was initiated in the seminal works of Goldwasser, Micali and

114

3.1 Introduction

Rackoff [GMR89] and Babai [Bab85]. In the last decade, MA proof-systems were intro-
duced for various computational models. There is a rich body of work in the literature
addressing MA communication complexity protocols (e.g., [Kla03, GS10a, Kla11, She12]).
Aaronson and Wigderson [AW09] used MA communication complexity lower bounds to
show that, for many fundamental questions in complexity theory, any solution will re-
quire “non-algebraizing” techniques. In addition, in a recent line of research, the data
stream model was extended to support several interactive and non-interactive proof
systems. The model of streaming algorithms with non-interactive proofs was first in-
troduced in [CCM09] and extended in [CMT13, GR13b, CCGT13]. Moreover, Cor-
mode et al. [CMT12] have made a significant step toward a practical implementation
of the generic interactive proof-system of Goldwasser et al. [GKR08] for delegation of
data stream computation.

Relation to Partial Testing [FGL14]. Independently of this work, Fischer, Gold-
hirsh and Lachish [FGL14] introduced the notion of partial testing, which is closely related
to MAPs. A property Π is a said to be Π′-partially testable, for Π′ ⊆ Π, if inputs in Π′

can be distinguished from inputs that are far from Π by a tester that makes only few
queries. As pointed out by [FGL14], an MAP(p, q) for a property Π is equivalent to the
existence of sub-properties Π1, . . . ,Π2p ⊆ Π such that ∪i∈[2p]Πi = Π and for every i ∈ [2p],
the property Π is Πi-partially testable using q queries.

In our terminology, the main result of [FGL14] is that there exists a (natural) property
Π such that every MAP(p, q) for Π must satisfy that p · q = Ω(n). In contrast, Informal
Theorem 3.2 shows a different property Π′ for which p · q = Ω(n0.999). However, we also
show an (almost) matching upper bound for our property Π′ (see Informal Theorem 3.2).
We also note that Informal Theorem 3.4 (see Theorem 3.22), which was discovered follow-
ing the publication of [FGL14], shows a property for which every MAP(p, q) must satisfy
p + q = Ω(n); that is, if p = n/100, then q = Ω(n). We note that the latter result also
resolves (a natural interpretation of) a question asked by [FGL14, Open Question 1.4].6

Applications of our Work and Follow-Up Works. Our work has also found appli-
cations in unrelated studies. For example, in the study of sample-based testers, Goldreich
and Ron [GR15a] used the separation between the power of MAPs and property testers
(see Theorem 3.7) in order to show that proximity-oblivious testers do not necessarily
imply fair proximity-oblivious testers (where fair proximity-oblivious testers are such in
which every query is almost uniformly distributed). Another example is an application
for testing dynamic environments. Specifically, the separation between the power of stan-
dard MAPs and MAPs with proof-oblivious queries (see Lemma 3.6 and Theorem 3.19)
was used to show that time-conforming testers can be exponentially weaker than their
non-time-conforming counterparts (see [GR14] for details). In addition, following the pub-
lication of this work, Goldreich, Gur, and Komargodski [GGK14] improved on Informal

6Loosely speaking, in the terminology of [FGL14], Theorem 3.22 implies that for every r there exists
a property Π that can be tested with r queries, but every partition of Π into k properties Π1, . . . ,Πk,
such that Π is Pi-partially testable with O(1) queries, must satisfy that k = 2Ω(r).

115

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Theorem 3.1 by tightening the separation between MAPs and testers (see Section 3.3.1
for more details).

Non-Deterministic Testing of Graphs Last, we note that Alon et al. [AFNS06]
discussed the notion of non-deterministic property testing of graphs, which was formally
stated recently by Lovász and Vesztergombi [LV12], and further studied by Gishboliner
and Shapira et al. [GS13]. This model is a form of PCP of proximity in which both the
proof and verification procedure are restricted to be of a particular form.

3.1.6 Organization

This paper’s organization differs from the order in which our results were reviewed in the
introduction, so that technically related results are grouped together. In Section 3.2 we
formally define MAPs and property testers (which are essentially MAPs with an empty
string). In Section 3.3 we formally state and prove all of our separation results, whereas
in Section 3.4 we prove our general transformation results. In Section 3.5 we show a
property that is hard for MAPs even given a (relatively) long proof. In Section 3.6 we
consider MAPs for concatenation problems and in Section 3.7 we show our MAP for
verifying bipartiteness of rapidly-mixing graphs in the bounded degree model. Important
background material is provided in Section 3.A.

3.2 Definitions

In this section we formally define Merlin-Arthur proofs of proximity. We start by intro-
ducing some relevant notations and standard definitions.

A property may be defined as a set of strings. However, since we mostly consider
properties that consist of (non-Boolean) functions, it will be useful for us to use the
following (also commonly used) equivalent definition.

For every n ∈ N, let Dn and Rn be sets. For simplicity we use the convention that
Dn = [n] (and Rn will usually be of size much smaller than n). Let Fn be the set of
all functions from Dn to Rn. A property is an ensemble Π = ∪n∈N Πn, where Πn ⊆ Fn.
In the (rare) case that we test properties of strings (rather than functions), we view the
n-bit string x as a function Ix : [n]→ {0, 1} where Ix(i) = xi for all i ∈ [n]. For the rest
of this work, it will sometimes be convenient for us to refer to Π as a problem (rather
than a property), where we actually refer to the testing problems that are associated with
Π (and are defined in the following subsections).

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We define the

(absolute) distance of x and y as ∆ (x, y)
def
= |{xi 6= yi : i ∈ [n]}|. If ∆ (x, y) ≤ ε ·n, then

we say that x is ε-close to y, and otherwise we say that x is ε-far from y. We define the

distance of x from a set S ⊆ Σn as ∆ (x, S)
def
= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε · n, then

we say that x is ε-close to S and otherwise we say that x is ε-far from S. We extend these
definitions from strings to functions, while identifying a function with its truth table.

116

3.2 Definitions

Notation. For a finite set S, we denote by x ∈R S a random variable x that is uniformly
distributed in S. We denote by Af (x) the output of algorithm A given an explicit input
x and implicit (i.e., oracle) access to the function f . Last, given a binary string s, we
denote its Hamming weight by wt(x).

Integrality Issues. Throughout this work, for simplicity of notation, we use the con-
vention that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the nearest integer.

3.2.1 Merlin-Arthur Proofs of Proximity

We are now ready to define Merlin-Arthur proofs of proximity.

Definition 3.1. A Merlin-Arthur proof of proximity (MAP) for a property Π = ∪n∈NΠn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs an
integer n ∈ N, a proximity parameter ε > 0, and a proof string w ∈ {0, 1}∗; in addition,
it is given oracle access to a function f ∈ Fn. The verifier satisfies the following two
conditions:

1. Completeness: For every n ∈ N and f ∈ Πn, there exists a string w (referred to as
a proof or witness) such that for every proximity parameter ε > 0:

Pr
[
V f (n, ε, w) = 1

]
≥ 2/3.

where the probability is over the random coin tosses of the verifier V .

2. Soundness: For every n ∈ N, function f ∈ Fn, string w, and proximity parameter
ε > 0, if f is ε-far from Πn, then:

Pr
[
V f (n, ε, w) = 1

]
≤ 1/3.

where the probability is over the random coin tosses of the verifier V .

If the completeness condition holds with probability 1, then we say that the MAP has
a one-sided error and otherwise we say that it has two-sided error.

We note that MAPs can be viewed as a restricted form of the interactive proofs of
proximity, studied by [RVW13] (see Section 3.2.2 for the definition of IPP).

An MAP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn and any w ∈ {0, 1}∗, the verifier makes at most q(n, ε) queries to f . The
MAP is said to have proof complexity p : N → N if for every n ∈ N and f ∈ Πn there
exists w ∈ {0, 1}p(n) for which the completeness condition holds.7 If the MAP has query

complexity q and proof complexity p, we say that it has complexity t(n, ε)
def
= q(n, ε)+p(n).

7Without loss of generality, using adequate padding, we assume that there is a fixed proof length p(n)
for objects of size n. The latter can be complemented by restricting the soundness condition to hold
only for strings of length p(n) (rather than strings of arbitrary length), since the verifier can immediately
reject proofs that have length that is not p(n).

117

3. NON-INTERACTIVE PROOFS OF PROXIMITY

For every pair of functions q : N× R+ → N and p : N→ N, we denote by MAP2(p, q)
(resp., MAP1(p, q)) the complexity class of all properties that have an MAP with proof
complexity O(p), query complexity O(q) and two-sided error (resp., one-sided error). We
also use MAP as a shorthand for the class MAP2.

Note that we defined MAPs such that the proofs do not depend on the proximity
parameter ε. Since our focus is on demonstrating the power of MAPs (and our lower
bounds refer to fixed valued of the proximity parameter), this makes our results stronger.
Nevertheless, see Section 3.2.1 for a discussion of the alternate notion, in which the proof
may depend on the proximity parameter.

Proof oblivious queries. An aspect of MAP proof-systems, which turns out to be
very important, is whether the queries that the verifier makes depend on the proof. An
MAP in which the queries do not depend on the proof may be thought of as the following
two step process:

1. The verifier is given oracle access to the object being tested. The verifier’s queries
may be adaptively generated (based on answers to previous queries).

2. After getting answers to all of its queries, the verifier is given explicit and free access
to the proof string (which is chosen obliviously of the verifier’s queries). Based on
the queries, answers and the proof, the verifier decides whether to accept or reject.

The foregoing discussion gives rise to the following definition.

Definition 3.2. An MAP verifier for a property Π ⊆ {Fn}n is said to make proof oblivious
queries if for every n ∈ N, function f ∈ Fn, proximity parameter ε > 0, random string
r and two proof string w,w′ ∈ {0, 1}∗, the MAP verifier, given oracle access to f , the
random string r and explicit access to n, ε, and given either the proof string w or w′,
makes the same sequence of queries.

MA proximity-oblivious testing. We also present an MA version of proximity-oblivious
testing (defined in [GR11]). Loosely speaking, a proximity-oblivious tester (POT) is a test-
ing algorithm that satisfies the following conditions: (1) it is oblivious of the proximity
parameter ε (i.e., it does not get ε as part of its input) and (2) it rejects statements that
are ε-far from true statements with probability that is some increasing function of ε. A
standard property tester can be obtained by repeating the POT sufficiently many times.

We give a definition of one-sided error MA proximity-oblivious testers, and note that
a two-sided error variant of MA proximity-oblivious testers can be defined similarly to
[GS12].

Definition 3.3. Let ρ : (0, 1] → (0, 1] be some increasing function. A (one-sided error)
MA proximity-oblivious tester for a property Π = ∪i∈NΠn with detection probability ρ con-
sists of a probabilistic verifier V that is given as explicit inputs an integer n ∈ N and a
proof string w ∈ {0, 1}∗, and is given oracle access to a function f ∈ Fn. The verifier
satisfies the following two conditions:

118

3.2 Definitions

1. Completeness: For every n ∈ N and f ∈ Πn, there exists a proof w such that:

Pr
[
V f (n,w) = 1

]
= 1.

2. Soundness: For every n ∈ N, function f ∈ Fn, and proof w, if f is ε-far from Πn,
then:

Pr
[
V f (n,w) = 0

]
≥ ρ(ε).

(In both conditions the probability is over the random coin tosses of the verifier V .)

We remark that a few of the MAPs presented in this work are based on corresponding
MA proximity-oblivious testers. The most notable example is the MAP in Theorem 3.9.

MAPs with Proximity-Dependent Proofs We defined the notion of MAPs such
that the proof of proximity is oblivious of the proximity parameter ε. However, it is also
natural to consider a relaxation of MAPs wherein the proof of proximity may depend
on the proximity parameter. In fact, one can consider two levels of relaxation: (1) the
content of the proof but not its length may depend on the proximity parameter, and (2)
both the contents and the length of the proof may depend on the proximity parameter.
We note that the first possibility is almost equivalent to the standard definition of MAP,
since it always suffices to refer to only a logarithmic number of values of ε (i.e., ε = 2i

for all i ∈ [log n]), and concatenate the proofs for these values, thus obtaining a standard
MAP with only a logarithmic overhead to the proof complexity.

Property Testing The standard definition of property testing may be derived from
Definition 3.1 by restricting both the completeness and soundness conditions to hold
when the proof length is fixed to 0. Hence, MAPs are a strict syntactic generalization of
property testers. We will always refer to a tester that uses a proof as an “MAP verifier”
and reserve “tester” solely for (standard) property testers that do not use a proof.

For a property Π and a proximity parameter ε > 0, we denote by PTε(Π) the min-
imum, over all testers T for Π, of the query complexity of T with respect to proximity
ε. For every function q : N × R+ → N, we denote by PT2(q) (resp., PT1(q)) the class
MAP2(0, q) (resp., MAP1(0, q)). We also use PT as a shorthand for the class PT2.

For a detailed introduction to property testing, see the surveys [Ron08, Ron09] and
the collection [Gol10a].

3.2.2 Interactive Proofs of Proximity

In this section we define interactive proofs of proximity, following Rothblum et al. [RVW13].8

For two interactive algorithms A and B, we denote by (Af , Bf)(x) the output of (say)
A when interacting with B when both algorithms are given x as an explicit input and
implicit (i.e., oracle) access to the function f .

8Our definition of IPP slightly differs from that of [RVW13] in that they consider the absolute distance
of objects from the property rather relative distance. (Needless to say, we take this into account when
discussing their results.)

119

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Definition 3.4. An interactive proof of proximity system (IPP) for a property Π is an
interactive protocol with two parties: a (computationally unbounded) prover P and a
verifier V, which is a probabilistic algorithm. The parties send messages to each other,
and at the end of the communication, the following two conditions are satisfied:

1. Completeness: For every ε > 0, n ∈ N, and f ∈ Πn it holds that,

Pr
[
(Vf ,Pf)(n, ε) = 1

]
≥ 2/3.

where the probability is over the coin tosses of V.

2. Soundness: For every ε > 0, n ∈ N, f ∈ Fn that is ε-far from Πn and for every
computationally unbounded (cheating) prover P∗ it holds that

Pr
[
(Vf ,P∗)(n, ε) = 1

]
≤ 1/3.

where the probability is over the coin tosses of V.

If the completeness condition holds with probability 1, then we say that the IPP has a
one-sided error and otherwise the IPP is said to have a two-sided error.

An IPP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn and any prover strategy P∗, the verifier makes at most q(n, ε) queries to f when
interacting with P∗. The IPP is said to have communication complexity c : N × R+ → N
if for every n ∈ N, ε > 0 and f ∈ Πn the communication between V and P consists of
at most c(n, ε) bits. If the IPP has query complexity q and communication complexity c,
we say that it has IPP complexity q + c.

For every pair of functions c, q : N×R+ → N, we denote by IPP2(c, q) (resp., IPP1(c, q))
the complexity class of all properties that have an IPP with communication complexity
O(c), query complexity O(q) and two-sided error (resp., one-sided error). We also use
IPP as a shorthand for the class IPP2.

An important parameter of an IPP is the number of messages m sent between the
two parties. We denote by IPP[m](c, q) the set of properties that have m-message IPP
protocols in which the verifier uses at most O(c) bits of communication, and makes at
most O(q) oracles queries.

3.2.3 Useful Conventions

The proximity parameter. We view the proximity parameter as a function ε = ε(n).
For simplicity we assume that ε(n) is a non-increasing function.

Our definition of MAPs requires that soundness hold with respect to every value of
ε > 0. However, throughout this work we sometimes find it convenient to restrict the
proximity to ε ∈ (0, ε0) for some constant ε0 ∈ (0, 1). We note that latter type of MAPs
can be extended to the more general form by simply running the base tester with respect
to proximity ε′ = min(ε, ε0) (incurring only a constant overhead).

120

3.3 Separation Results

Implicit input length and proximity parameter. Throughout this work, for sim-
plicity of notation, we use the convention that the input length n and proximity parameter
ε are given implicitly to all testers and verifiers (e.g., when we write T f we actually mean
T f (n, ε)).

3.3 Separation Results

In this section we explore the power of MAP verifiers in comparison to other types of
testers, such as property testers and IPP verifiers and present properties that exhibit a
separation between these different types of testers.

In Section 3.3.1 we show an exponential gap between the complexity of PT and MAP.
In Section 3.3.2 we show a problem that has an MAP with an (almost) tight multi-
plicative tradeoff between the proof length and number of queries. In Section 3.3.3 we
consider 3-message IPP verifiers and show that they may have exponentially smaller
query complexity than MAP verifiers (when using a proof of similar length). Finally,
in Section 3.3.4 we also show an exponential gap between the total complexity (i.e.,
query plus proof/communication complexities) of MAP and general IPP (which uses a
poly-logarithmic number of messages).

3.3.1 Exponential Separation between PT and MAP

In this section we show an exponential separation between the power of property testing
and MAP. Roughly speaking, we show a property that requires roughly n0.999 queries
for every property tester but has an MAP that, while using a proof of only logarithmic
length, requires only a constant number of queries. We prove the following incomparable
variants of this result.

Theorem 3.7. For every constant α > 0, there exists a property Πα that has an MAP that
uses a proof of length O(log n) and makes poly(1/ε) queries for every ε > 1/polylog(n),
but for which every property tester must make Ω(n1−α) queries. Furthermore, the MAP
has one-sided error.

A limitation of the foregoing theorem is that the proximity parameter is required to be
larger than 1/polylog(n). We also consider two incomparable variants of Theorem 3.7 that
let us handle general values of ε. In Theorem 3.8 we do so but at the cost of increasing
the MAP query complexity to depend poly-logarithmically on n.

Theorem 3.8. For every constant α > 0, there exists a property Πα that has an MAP
that uses a proof of length O(log n) and makes poly(log n, 1/ε) queries, but for which every
property tester must make Ω(n1−α) queries. Furthermore, the MAP has one-sided error.

The above separation results refer to the general (i.e., two-sided error) classes PT2 and
MAP2. As noted in the introduction, a more restricted separation between the one-sided
error classes (i.e., between PT1 and MAP1) can be obtained by using Theorem 3.20. We

121

3. NON-INTERACTIVE PROOFS OF PROXIMITY

remark that the preliminary technical report [GR13c] also contained a proof of the follow-
ing (incomparable) variant, which can handle all values of the proximity parameter while
using poly(1/ε) query complexity, at the cost of having a smaller (yet still exponential)
gap between the power of property testers and MAPs.

Theorem 3.9 ([GR13c]). There exists a universal constant c ∈ (0, 1) and a property Π
that has an MAP that uses a proof of length O(log n) and makes poly(1/ε) queries (without
limitation on ε), but for which every property tester must make nc queries. Furthermore,
the MAP has one-sided error.9

A different proof of Theorem 3.9 is sketched in [FGL14] who, using a result of
Alon et al. [AKNS00], showed a property that requires Ω(

√
n) queries (without a proof)

but can be tested using only O(1/ε) queries and a proof of length O(log n).

Follow-Up Work. Following the publication of this work, Goldreich, Gur, and Komar-
godski [GGK14] improved the separation between MAPs and testers, achieving the best
of Theorems 3.7 to 3.9 simultaneously; that is, they obtain a separation for all values of
the proximity parameter, with constant query complexity for the MAPs, and nearly-linear
query complexity for testers.

Theorem 3.10 ([GGK14]). For every constant α > 0, there a property Πα that has an
MAP that uses a proof of length O(log n) and makes poly(1/ε) queries (without limitation
on ε), but for which every property tester must make n1−α queries. Furthermore, the
MAP has one-sided error.

In the next subsections we will show two lemmas (Lemmas 3.5 and 3.6) that allow
us to reduce the problem of separating the power of MAPs and testers to the problem
of designing error-correcting codes that are both locally testable and locally decodable.
Theorems 3.7 to 3.10 are then obtained by instantiating Lemmas 3.5 and 3.6 with such
codes. Since the codes of [GGK14] improve upon the codes that are used to obtain
Theorems 3.7 to 3.9, we omit the more involved proof of Theorem 3.9, which consists of a
construction of a code with the desired properties (see technical report [GR13c] for details
and proof). We provide the proofs of Theorems 3.7 and 3.8, which are instantiations of
Lemmas 3.5 and 3.6 for known codes.

3.3.1.1 Our Approach

The proof of Theorem 3.7 is heavily based on error correcting codes. Recall that a code
is an injective function C : Σk → Σn over an alphabet Σ. The relative distance of the
code is the minimal relative distance between every two (distinct) codewords, and the
stretch of the code is n when viewed as a function of k. Further necessary background is
provided in Section 3.A.3.

9We remark that the proof of Theorem 3.9 can be adapted to yield an MA proximity-oblivious tester
(see Definition 3.3) for Π.

122

3.3 Separation Results

As discussed in the introduction, the complexities of property testers and MAP veri-
fiers with proof oblivious queries are polynomially related (see Theorem 3.19). Thus, in
order to show an exponential separation between PT and MAP, one has to use an MAP
for which the queries inherently depend on the proof. That is, the property Π should
satisfy the following:

1. Π can be efficiently verified by an MAP in which the queries are “strongly affected”
by the proof;

2. Π is hard for property testers (and hence for MAPs with proof oblivious queries).

Thus, intuitively, we seek a property that is based on a “hidden structure” that can
be tested locally if one knows where to look but cannot be tested locally otherwise.

As a first (naive) candidate, consider the property containing the set of all non-zero
strings. A short proof for this property could direct us to the exact location of a non-zero
bit, which can then be verified by a single query. However, the aforementioned property
is (almost) trivial — as all strings are close to a string with a non-zero bit. Hence, we
seek a robust version of this property.

This naturally leads us to consider an encoded version of the foregoing naive property.
Fix an error-correcting code C and consider the property that contains all codewords that
encode non-zero strings. Assuming that the code is both locally testable and locally de-
codable (i.e., both an LTC and an LDC, see Section 3.A.3), it is easy to test this property
using an MAP that simply specifies a non-zero coordinate of the encoded message. How-
ever, this property may also be easy to test without a proof since all one needs to do is
test that the string is not the (single) encoding of the zero message but is (close to) a
codeword.

To overcome this difficulty, we consider a “twist” of the foregoing property in which
we consider two codewords that must be non-zero on the same coordinate. That is, for
every code C, we define the encoded intersecting messages property, denoted by EIMC as:

EIMC
def
=
{(
C(x), C(y)

)
: x, y ∈ Σk, k ∈ N and ∃i ∈ [k] s.t. xi 6= 0 and yi 6= 0

}
,

where we assume that 0 ∈ Σ. We note that we could have slightly modified our definition
by requiring that xi = yi = 1 (where the choice of 1 is arbitrary) rather than xi, yi 6= 0.
Another notable variant is obtained by requiring that Σ = {0, 1}; then the property EIMC

contains all pairs of codewords whose corresponding encoded messages (viewed as sets)
intersect (i.e., are not disjoint).

For the lower bound, we only require that C have constant relative distance and the
quality of the lower bound is directly related to the stretch of the code. For the upper
bound, in addition to the constant relative distance, we need C to be both an LTC and
an LDC with small query complexities. Indeed, the query complexity of the MAP that
we construct is proportional to the number of queries required by the LTC and LDC
procedures.

It is well-known that (a suitable instantiation of) the Reed-Muller code is both an LTC
and LDC with polylog(n) query complexities, and almost linear stretch. By instantiating

123

3. NON-INTERACTIVE PROOFS OF PROXIMITY

EIM with this code, we can obtain Theorem 3.8; namely, a property that has an MAP
with a proof of length O(log n) and polylog(n) query complexity, but requires an almost
linear number of queries by any (standard) property tester.

In order to obtain a result with constant MAP query complexity (as in Theorem 3.7),
we need a code that is both an LTC and an LDC, with constant query complexities. While
LTCs with constant query complexity (and almost linear stretch) are known, constructing
LDCs with constant query complexity (and polynomial stretch) is a major open problem in
the theory of computation. However, we observe that for our construction it actually suf-
fices that C be a relaxed-LDC. Relaxed-LDCs, introduced by Ben-Sasson et al. [BSGH+06],
are a weaker form of LDCs in which the decoder is allowed to output a special abort symbol
⊥ in case it is unable to decode a corrupt codeword. However, the decoder is not allowed
to abort when given as input a correct codeword. We refer the reader to Definition 3.27
for the formal definition.

Ben-Sasson et al. [BSGH+06] used PCPPs to construct an O(1)-relaxed-LDC with
almost linear stretch. Furthermore, [BSGH+06] argue that their relaxed-LDC is also
a poly(1/ε)-LTC. However, the LTC property only holds for proximity parameter ε >
1/polylog(n). Thus, using the [BSGH+06] code, we (only) obtain Theorem 3.7. In
addition, by combining ideas and results of [BSGH+06] and [GS06] we construct an
O(1)-relaxed-LDC that is also a poly(1/ε)-LTC for general values of ε > 0, albeit with
polynomial (rather than almost linear) stretch. Using the latter result, which may be of
independent interest, we obtain Theorem 3.9.

Organization. In Section 3.3.1.2 we show that for every code C : Σk → Σn that is a
t1-relaxed-LDC and a t2-LTC, it holds that EIMC ∈ MAP

(
log k, t1(n/2)+t2(n/2, ε/2)

)
. In

Section 3.3.1.3 we show an Ω(k/ log |Σ|) lower bound on the query complexity of testing
EIMC (without a proof of proximity). In Section 3.3.1.4 we state the result of [BSGH+06]
and derive Theorem 3.7, and in Section 3.3.1.5 we prove Theorem 3.8 using an appropriate
instantiation of the Reed-Muller code.

3.3.1.2 An MAP Upper Bound for EIM

Lemma 3.5. Let C : Σk → Σn be a code with constant relative distance that is a t1-
relaxed-LDC and also a t2-LTC. Then, EIMC ∈ MAP1

(
log k, t1(n/2) + t2(n/2, ε/2)

)
.

Proof. We prove Lemma 3.5 by showing an MAP proof-system for proving proximity
to EIMC . The proof of proximity for the statement (C(x), C(y)) ∈ EIMC is simply a
coordinate i ∈ [k] such that the messages x and y are non-zero i (i.e., xi, yi 6= 0). Given
the proof i and oracle access to a pair of strings (α, β), it suffices for the verifier to check
that both α and β are close to codewords (using the LTC property) and if so to reconstruct
the ith symbol of the underlying messages (using the relaxed-LDC property). (Lastly, it
verifies that both symbols are non zero.)

The full protocol is described in Fig. 3.1, where δ0 ∈ (0, 1) denotes the relative distance
of C, and δ ∈ (0, δ0/2) denotes the decoding radius of C (i.e., strings that are δ-close to
codewords are correctly decoded by the relaxed-LDC procedure).

124

3.3 Separation Results

MAP for EIMC (where C : Σk → Σn is a t1-relaxed-LDC and a t2-LTC)

Input: a proximity parameter ε ∈ (0, 2δ) (where δ is the decoding radius) and oracle access to
a pair (α, β) ∈ Σn+n.

The Proof:

• Let x, y ∈ Σk be the unique messages encoded in α and β, respectively; that is, C(x) = α
and C(y) = β. Denote the ith symbol of x by xi, and the ith symbol of y by yi.

• The proof consists of a coordinate i ∈ [k] such that xi 6= 0 and yi 6= 0 (which exists, for
(α, β) ∈ EIMC).

The Verifier:

1. Run the local testing algorithm of C on α and on β with respect to proximity parameter
ε/2 and reject if either test rejects.

2. Run the (relaxed) local decoding algorithm of C to obtain the ith message symbol of α,
denoted σ, and the ith message symbol of β, denoted τ .

3. Accept if both σ 6= 0 and τ 6= 0, and reject otherwise.

Figure 3.1: MAP for EIMC

Since the code is a t1-relaxed-LDC and a t2-LTC, the query complexity of the MAP
is 2t1(n/2) + 2t2(n/2, ε/2), and the proof complexity is log2 k. We proceed to show that
both completeness and soundness hold.

Completeness. If (α, β) ∈ EIMc, then there exist x, y ∈ Σk such that α = C(x) and
β = C(y), and therefore the local testing algorithm succeeds. Since the proof consists of
a coordinate i for which xi, yi 6= 0, and the local decoding algorithm always succeeds, the
MAP verifier always accepts.

Soundness. Suppose that (α, β) is ε-far from EIMC and let i ∈ [k] be some alleged proof
to the false statement (α, β) ∈ EIMC . There are two possible scenarios to consider:

1. either α or β are ε/2-far from C; or

2. both α and β are ε/2-close to C.

In the first case, with probability at least 1/2, the local testing algorithm will fail and
therefore the MAP verifier rejects with probability at least 1/2. We proceed to the second
case.

Suppose that both α and β are ε/2-close to the code. Then, there exist unique
x, y ∈ Σk s.t. α is ε/2-close to C(x) and β is ε/2-close to C(y), where uniqueness holds

125

3. NON-INTERACTIVE PROOFS OF PROXIMITY

since ε/2 < δ < δ0/2. However, since (α, β) is ε-far from having the property EIMC ,
this implies that either xi = 0 or yi = 0 (where i is the alleged proof). Thus, when
running the relaxed local decoding algorithm (since ε/2 < δ), with probability at least
2/3, the decoder will output either 0 or ⊥ on one of the two codewords (with respect to
coordinate i), in which case the verifier rejects. We conclude that in both scenarios the
verifier rejects with probability at least 1/2.

3.3.1.3 A PT Lower Bound for EIM

Next, we show a that the query complexity of property testing the EIM property must
be linear in k.

Lemma 3.6. Let C : Σk → Σn be an error-correcting code with relative distance at least
δ0 ∈ (0, 1). Then, for any ε ∈ (0, δ0/2) it holds that:

PTε

(
EIMC

)
= Ω(k/ log |Σ|)

The proof of Lemma 3.6 uses the framework of [BBM11] for showing property testing
lower bounds via communication complexity lower bounds. The necessary background on
communication complexity is provided in Section 3.A.1 (for a comprehensive introduction
to communication complexity, see [KN97]).

The basic approach of [BBM11] is to reduce a hard communication complexity prob-
lem to the property testing problem for which we want to show a lower bound. We
follow [BBM11] by showing a reduction from the well-known communication complexity
problem of set-disjointness. The aforementioned framework allows us to obtain a lower
bound on the query complexity of testing the encoded intersecting messages property.

For sake of self containment, we state the relevant definitions and lemmas that we
need from [BBM11].

Definition 3.7 (Combining operators). A combining operator is an operator ψ that takes
as input two functions f, g : D → R (where D and R are some finite sets) and returns

a function hf,g. We denote by |ψ| def
= log2 |R|. The combining operator is called simple if

hf,g(x) can be computed from x, f(x) and g(x) (i.e., without requiring access to f and g).

Let Π be a property, and let ψ be a combining operator. For every integer n ∈ N and
proximity parameter ε > 0, we denote by CΠ

ψ,ε the communication complexity problem
wherein Alice gets a function f , and Bob gets a function g,10 and their goal is to decide
whether ψ(f, g) ∈ Π or ψ(f, g) is ε-far from Π.11 Next, we state the main lemma from
[BBM11].

10More formally, the parties get as input strings that represent the truth table of the functions.
11Due to the symmetrical definition of the communication complexity model, it is unimportant which

of these cases (i.e., ψ ∈ Π or ψ that is ε-far from Π) is viewed as a YES-instance of Π. In contrast, see
Footnote 13.

126

3.3 Separation Results

Lemma 3.8. For any simple combining operator ψ, any property Π and any proximity
parameter ε > 0, we have that:

PTε(Π) ≥
CC(CΠ

ψ,ε)

2|ψ|

where PTε(Π) refers to the query complexity of the property Π with respect to proximity
ε and CC(C) refers to the communication complexity of C (see Section 3.A.1).

Recall that the set-disjointness problem is the communication complexity problem
wherein Alice gets an n-bit string x, Bob gets an n-bit string y, and their goal is to
decide whether there exists i ∈ [n] such that xi = yi = 1. Equivalently, Alice and Bob’s
inputs can be viewed as indicator vectors of sets A,B ⊆ [n]. In this case, the goal of the
players is to decide if the sets corresponding to their inputs intersect or not. Following
many works in the literature we consider the promise problem (sometimes also called
unique disjointness) in which the intersection is of size at most 1. That is, the two
parties need to distinguish between the case that their intersection is empty, and the case
that it is of size exactly 1. We denote the latter problem by DISJn.

It is well-known (see Section 3.A.1) that the randomized communication complexity
of the set-disjointness problem is linear in the size of the inputs, even under the promise
that A and B intersect in at most one element.

Theorem 3.11 ([KS92]). For every n ∈ N,

CC(DISJn) = Ω(n).

Using the aforementioned results, we are ready to prove Lemma 3.6.

Proof of Lemma 3.6. Let C : Σk → Σn be an error-correcting code with relative distance
δ0 ∈ (0, 1) where we assume without loss of generality that {0, 1} ⊆ Σ. Denote by Pair
the operator that takes two strings x, y ∈ Σk and returns a function z : [k] → Σ that
outputs (xi, yi) on input i ∈ [k]. Consider CEIMC

Pair,ε , the communication complexity problem

wherein Alice gets a string x ∈ Σk, Bob gets a string y ∈ Σk, and their goal is to decide
whether (x, y) ∈ EIMC or (x, y) is ε-far from EIMC . Using the results of [BBM11] (see
Lemma 3.8) we have,

PTε(EIMC) ≥ 1

2 log |Σ|
CC
(
CEIMC
Pair,ε

)
. (3.1)

Since by Theorem 3.11 we have CC(DISJk) = Ω(k), then it suffices to show that

CC
(
CEIMC
Pair,ε

)
≥ CC(DISJk). (3.2)

Toward this end, we show a reduction from the communication complexity problem
DISJk to the communication complexity problem CEIMC

Pair,ε . We note that, under the natural
association of EIMC with YES-instances and “far from EIMC” with NO-instances, our

127

3. NON-INTERACTIVE PROOFS OF PROXIMITY

reduction maps YES (resp., NO) instances of DISJk to NO (resp., YES) instances of EIMC .
Let π be a protocol for CEIMC

Pair,ε with communication complexity c. Consider the following
protocol for DISJk.

Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively) for DISJk. Alice
computes α = C(x). Bob computes β = C(y). The players then run π on (α, β) and
return the negation of its output.

Indeed, if (x, y) ∈ DISJk (i.e., their intersection is empty), then for every i ∈ [k], either
xi = 0 or yi = 0. Since the relative distance of C is at least δ0, it holds that (α, β) is
(δ0/2)-far from EIMc. On the other hand, if (x, y) 6∈ DISJk (i.e., their intersection is of
size 1), then there exists i ∈ [k] such that xi = yi = 1. Hence,

(
α, β

)
∈ EIMc. Moreover,

note that the total number of bits that were communicated is exactly c.
Using Eq. (3.1) and Eq. (3.2), together with Theorem 3.11, we conclude that for every

ε > 0,

PTε(EIMc) ≥
1

2 log |Σ|
CC
(
CEIMC
Pair,ε

)
≥ 1

2 log |Σ|
CC(DISJk) = Ω(k).

3.3.1.4 Proof of Theorem 3.7

In order to obtain an O(1)-relaxed-LDC that is also a poly(1/ε)-LTC, we shall use the
following construction of Ben-Sasson et al. [BSGH+06].

Theorem 3.12 ([BSGH+06, Remark 4.6]). For every α > 0, there exists a binary code
that is an O(1)-relaxed-LDC and a t-LTC with constant relative distance and stretch n =
k1+α, where for ε > 1/polylog(n) it holds that t(n, ε) = poly

(
1
αε

)
.

Theorem 3.7 follows by combining Theorem 3.12 with Lemma 3.5 and Lemma 3.6.

3.3.1.5 Proof of Theorem 3.8

In this section we show that a well-known variant of the Reed-Muller error-correcting code
is an polylog(n)-LDC (and in particular a polylog(n)-relaxed-LDC) and a poly(log n, 1/ε)-
LTC. Combining the latter with Lemma 3.5 and Lemma 3.6, we prove Theorem 3.8.

Lemma 3.9. For every constant α > 0, there exists a polylog(n)-LDC that is also a
poly(log n, 1/ε)-LTC with stretch n = k1+α and relative distance 1− o(1).

Proof. We construct a code C : Σk → Σn as follows. Fix a finite field F and an integer
m such that |F|m = n. The alphabet of the code is Σ = F. Consider an arbitrary subset
H ⊂ F of size k1/m. We view a message x ∈ Fk as a function x : Hm → F by identifying
Hm and [k] in some canonical way. The encoding C(x) is the low degree extension x̂ of
x with respect to the field F. Namely, the (unique) m-variate polynomial of individual
degree |H| − 1 that agrees with x on Hm.

The code stretches k = |H|m symbols to n = |F|m symbols, and by the Schwartz-

Zippel Lemma it has relative distance at least 1 − m|H|
|F| . Furthermore, the code can be

128

3.3 Separation Results

locally tested using O(m|H| · poly(1/ε)) queries (see Theorem 3.31), and locally decoded
using O(m|H|) queries (see Theorem 3.29). Thus, to obtain our result we need to set
our parameters as to maximize the ratio |H|/|F|, while minimizing m · |H| and keeping
|F| > m · |H|.

For every constant α > 0 and every integer n ∈ N, we let F be a finite field of
size (log n)1/α, let m = α · logn

log log(n)
and let H be some fixed (arbitrary) subset of F of

size |F|1−α. Hence, m·|H|
|F| = α · logn

log logn
· |F|−α = o(1). The code has relative distance

1 − (|H|−1)·m
|F| = 1 − o(1), stretch n = |F|m = |H|m/(1−α) = k1/(1−α). In addition, it

can be locally tested using poly(log n, 1/ε) queries, and locally decoded using polylog(n)
queries.

A natural property. We remark that when the encoded intersecting messages property
is instantiated with the foregoing variant of the Reed-Muller code, we obtain a natural
property that consists of pairs (P,Q) of low-degree polynomials, whose product P ·Q is
non-zero on a given subset of its domain. That is, the property is

ΠF,d,m,H =

{
(P,Q) : P,Q : Fm → F have individual degree d and

∑
x∈Hm

(P ·Q)(x) 6= 0

}
.

3.3.2 Trade-off between Query and Proof Complexity

In this section we show a property that has a multiplicative trade-off between proof and
query complexities for MAP testing. We show a property that can be tested with a nearly
smooth tradeoff between the proof and query complexities.

Theorem 3.13. For every constant α > 0, there exists a property Πα such that for every
sublinear function p : N → N, the query complexity of Π for MAP verifiers, which use

proofs of length p, is upper bounded by n1−α+o(1)

p
·poly(1/ε) and lower bounded by Ω̃

(
n1−α

p

)
.

Our proof is heavily based on multivariate polynomials, and we refer the reader to
Section 3.A.4 for the necessary background (e.g., the Schwartz-Zippel lemma and low
degree testing). In fact, the proof of Theorem 3.13 is based on a specific algebraic
property that we call Sub-Tensor Sum. We note that this property will also be used in
Section 3.3.3 and Section 3.3.4.

We proceed to describe the sub-tensor sum problem. Let F be a finite field, let
m, d ∈ N such that d ·m < |F|/10 and let H ⊂ F. Consider the following property.

Definition 3.10. The Sub-Tensor Sum property, denoted TensorSumF,m,d,H , is parame-
terized by a field F, a dimension m ∈ N, a degree d ∈ N and a subset H ⊂ F, and contains
all polynomials P : Fm → F of individual degree d, such that∑

x∈Hm

P (x) = 0

where the arithmetic is over F.

129

3. NON-INTERACTIVE PROOFS OF PROXIMITY

To obtain a tight trade-off, we shall be using some d = Θ(|H|). To simplify the
notation, when the parameters are clear from the context, we shorthand TensorSum for
TensorSumF,m,d,H . Next, we proceed to show the (almost) tight multiplicative trade-off
for TensorSum. In Section 3.3.2.1 we prove the upper bound and in Section 3.3.2.2 we
prove the lower bound. Finally, in Section 3.3.2.3 we set the parameters for proving
Theorem 3.13.

3.3.2.1 MAP Upper Bound for TensorSum

We start by proving the following upper bound.

Lemma 3.11. If dm < |F|/10, then, for every ` ∈ {0, . . . ,m}, the TensorSumF,m,d,H
property has an MAP with proof complexity (d+1)` ·log(|F |) and query complexity |H|m−` ·
(dm2 log |H|) · poly(1/ε). Furthermore, the MAP has a one-sided error.

We note that the additional parameter ` essentially controls the proof length (and
will be set as roughly the logarithm of the desired proof length). Moreover, d will be set
such that d = Θ(|H|) and therefore d` · |H|m−` ≈ |H|m and so we can set ` to obtain the
desired trade-off between proof and query complexities.

Proof of Lemma 3.11. We prove the lemma by showing an MAP protocol for the state-
ment P ∈ TensorSum. The main idea is to partition Hm into |H|` sub-tensors of the
form (x1, . . . , x`, ∗, ∗, . . . , ∗) for every x1, . . . , x` ∈ H, and use a low degree `-variate poly-
nomial Q such that Q(x1, . . . , x`) equals the sum of the (x1, . . . , x`)

th tensor over Hm−`.
Specifically, we refer to the polynomial:

Q(x1, . . . , x`) =
∑

x`+1,...,xm∈H

P (x1, . . . , xm).

Thus, the MAP proof for the statement P ∈ TensorSum, consists of the polynomial
Q. The verifier checks that (1) P is (close to) a low degree polynomial, (2) the sum of
Q on H` is 0, and (3) that Q is consistent with P . The last step uses the fact that both
Q and P are low degree polynomials and so it suffices to verify consistency of a random
point in Q by reading the entire corresponding sub-tensor (i.e., |H|m−` points) from P .
Actually, since P can only be verified to be close to a low degree polynomial, the |H|m−`
points are read via self-correction. The detailed protocol is presented in Fig. 3.2 (where
all arithmetic is over F).

Note that the proof of proximity consists of |Q| = O((d + 1)` log |F|) bits and that
the total number of queries to the oracle is dominated by the |H|m−` invocations of
the self-correction algorithm (which requires (m log(|H|) · dm · poly(1/ε) queries for each
invocation to obtain the desired soundness level). We proceed to show that completeness
and soundness hold.

130

3.3 Separation Results

MAP for TensorSum with parameter ` ≤ m

Parameters: F (field), m (dimension), d (individual degree) and H ⊂ F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

The Proof:

• The proof consists of a multivariate polynomial Q̃ : F` → F of individual degree d
(specified by its (d+ 1)` coefficients), which allegedly equals

Q(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P (x1, . . . , xm).

The Verifier:

1. If
∑

x1,...,x`∈H Q̃(x1, . . . , x`) 6= 0, then reject.

2. Run the low individual d-degree test (see Theorem 3.31) on P with respect to the
proximity parameter ε. If the test fails, then reject.

3. Select uniformly at random r1, . . . , r` ∈R F.

4. For every x`+1, . . . , xm ∈ H, read the value of P (r1, . . . , r`, x`+1, . . . , xm) using self cor-
rection (see Theorem 3.29) repeated O(m log(|H|)) times (to reduce the error probability
to 1

10|H|m for each point). Denote the value read by zr1,...,r`,x`+1,...,xm .

5. Accept if Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm and otherwise reject.

Figure 3.2: MAP for TensorSum

Completeness. If P ∈ TensorSum, then
∑

x1,...,x`∈H Q(x1, . . . , x`) = 0 and P has individ-

ual degree d (and so the individual degree test passes). Moreover, in this case Q̃ = Q
and

Q(r1, . . . , r`) =
∑

x`+1,...,xm∈H

P (r1, . . . , r`, x`+1, . . . , xm).

By the zero-error feature of the self-correction procedure, with probability 1,

zr1,...,r`,x`+1,...,xm = P (r1, . . . , r`, x`+1, . . . , xm),

and therefore
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm = Q̃(r1, . . . , r`). Hence, in this case, the veri-
fier accepts with probability 1.

Soundness. Let ε > 0 and let P : Fm → F be a polynomial that is ε-far from TensorSum.
Let Q̃ be an alleged proof (to the false statement P ∈ TensorSum).

131

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Consider first the case that P is ε-far from having individual degree d. In this case,
by the individual degree test (Theorem 3.31), the verifier rejects with probability at least
1/2. Thus, we focus on the case that P is ε-close to a polynomial P ′ of individual degree
d. We may also assume that

∑
x1,...,x`∈H Q̃(x1, . . . , x`) = 0 (since otherwise the verifier

rejects with probability 1). Define

Q′(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P ′(x1, . . . , xm).

Clearly
∑

x1,...,x`
Q′(x1, . . . , x`) 6= 0 (since otherwise P is ε-close to P ′ ∈ TensorSum).

Thus, the individual degree d polynomials Q′ and Q̃ differ, and so, by the Schwartz-
Zippel Lemma they can agree on at most a d`

F fraction of their domain F`.
To complete the argument note that the self-correction algorithm guarantees that

every zr1,...,r`,x`+1,...,xm is equal to P ′(r1, . . . , r`, x`+1, . . . , xm), with probability 1 − 1
10|H|m

(here we use our assumption that, without loss of generality, ε < 1/3). Therefore, by the
union bound, all points are read correctly with probability at least 0.9, and in this case∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm = Q′(r1, . . . , r`). Thus, with probability 0.9·(1− dm
F) ≥ 2/3,

the verifier rejects when testing that Q̃(r1, . . . , r`) equals
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm .

3.3.2.2 MAP Lower Bound for TensorSum

Next, we give an (almost) matching lower bound on the MAP complexity of Sub-Tensor
Sum. Formally, we show

Lemma 3.12. For every ε ∈ (0, 1− dm
|F|), if d ≥ 2(|H|−1), then every MAP for TensorSum

(with respect to proximity parameter ε) that has proof complexity p ≥ 1 must have query

complexity q = Ω
(
|H|m
p·log |F|

)
.

As an immediate corollary of Lemma 3.12 we obtain the following:12

Corollary 3.14. For every ε ∈ (0, 1− dm
|F|), if d ≥ 2(|H| − 1),

PTε(TensorSum) = Ω

(
|H|m

log(|F|)

)
.

In order to prove Lemma 3.12, we first extend the framework of [BBM11] from the
property testing model to the MAP model. More specifically, we show a methodology
for proving lower bounds on MAPs via MA communication complexity lower bounds. We
refer the reader to Section 3.A.2 for background on MA communication complexity.

Let Π be a property and let ψ be a simple combining operator (see Definition 3.7). For
every proximity parameter ε > 0, denote by CΠ

ψ,ε the communication complexity problem
in which Alice gets as input a function f and Bob gets as input a function g and they

12The corollary can be derived by setting p = 1, and the fact that any property tester is an MAP.

132

3.3 Separation Results

need to decide between a YES-instance, wherein ψ(f, g) ∈ Π, and a NO-instance, wherein
ψ(f, g) is ε-far from Π.13 We prove the following lemma.

Lemma 3.13 (MAP lower bounds via MA communication complexity). For any sim-
ple combining operator ψ, any property Π and any proximity parameter ε > 0, if Π ∈
MAP(p, q), then CΠ

ψ,ε has an MA communication complexity protocol with a proof of length
p and total communication 2q|ψ|.

Proof. Let V be an MAP verifier for Π with proof complexity p and query complexity q.
We construct an MA communication complexity protocol for CΠ

ψ,ε. Recall that Alice and
Bob get as input function f and g (respectively) and have free access to a proof string
w ∈ {0, 1}p.

The (honest) proof string for the protocol is simply the proof string w of the MAP

with respect to h
def
= ψ(f, g). As their first step, Alice and Bob emulate the execution of

the MAP protocol with respect to the proof string w using their common random string
as the source of randomness (for the emulated verifier). Whenever the MAP verifier V
queries the input at a point x, Alice and Bob compute f(x) and g(x) (respectively) and
send their values to each other. Since ψ is a simple combining operator, each player
can compute h(x) from x, f(x) and g(x), and feed it as an answer to the emulated MAP
verifier. The players accept if V accepts, and reject otherwise.

Observe that both players use the same common random string as the source of
randomness, and forward the same values to the MAP verifier (i.e., both the proof string
and the oracle answers). Therefore, they emulate the verifier identically.

Note that by the definition of the communication complexity problem, if (f, g) ∈ CΠ
ψ,ε,

then h ∈ Π; hence the verifier will accept. On the other hand, if the pair (f, g) /∈ CΠ
ψ,ε,

then h is ε-far from Π, so the verifier will reject.
During the entire reduction, the players communicated 2|ψ| bits for every query of

the verifier. Hence the total number of bits that were communicated is 2|ψ| · q.

We proceed by stating Klauck’s lower bound on the MA communication complexity
of set-disjointness [Kla03], and use Lemma 3.13 to show a lower bound on the MAP
complexity of the Sub-Tensor Sum property.

Theorem 3.15 ([Kla03]). Every MA communication complexity protocol for DISJn with
proof complexity p and communication complexity c satisfies p · c = Ω(n).

Proof of Lemma 3.12. Denote k = |H|m and by f · g the function h(x)
def
= f(x) · g(x).

Let CTensorSum·,ε be the communication complexity problem wherein Alice gets a function

13 When proving property testing lower bounds via standard (i.e., non-MA) communication complexity
lower bounds (using [BBM11] framework) one may also map YES-instances (respectively, NO-instances)
of communication complexity problems to NO-instances (respectively, YES-instances) of property testing
problems. This is possible due to the symmetrical definition of standard communication complexity (in
fact, the above was used in the proof of Lemma 3.6). In contrast, the definition of MA communication
complexity is asymmetrical ; therefore when using our extension of the framework to MA one must map
YES-instances to YES-instances, and NO-instances to NO-instances.

133

3. NON-INTERACTIVE PROOFS OF PROXIMITY

f : Fm → F, Bob gets a function g : Fm → F, and their goal is to decide whether
f · g ∈ TensorSum or f · g is ε-far from TensorSum.

Recall that by Theorem 3.15 we know that every MA communication complexity
protocol for DISJk with proof complexity p and communication complexity c satisfies
p ·c = Ω(k). On the other hand, by Lemma 3.13 we know that if TensorSum ∈ MAP(p, q),
then CC(CTensorSum·,ε) has an MA communication complexity protocol with a proof of length
p and a total of 2q log |F| communication.

Hence, to prove the lemma, it suffices to reduce DISJk to CTensorSum·,ε (this reduction
takes place entirely within the setting of MA communication complexity). Toward this
end, suppose that π is an MA communication complexity protocol for CTensorSum·,ε with proof
complexity p and communication complexity c. We use π to construct an MA protocol
for DISJk.

Let a ∈ {0, 1}k and b ∈ {0, 1}k be the respective inputs of Alice and Bob for the
set-disjointness problem. Recall that F (a finite field), d (the individual degree), m (the
dimension) and H ⊂ F are parameters of the TensorSum problem. The reduction to
TensorSum proceeds as follows. First, Alice and Bob compute the low degree extension
â and b̂ of their respective inputs with respect to F,m, d and H. Namely, they associate
their inputs a and b with indicator functions a, b : Hm → {0, 1} by mapping [k] to Hm

in some canonical way. Then, they compute the (unique) polynomials â, b̂ : Fm → F of
individual degree |H| − 1 that agree with a and b (respectively) on Hm.

Denote by w the proof for the protocol π with respect to the input pair (â, b̂). The
proof for the set disjointness problem is simply w. Alice and Bob proceed by running
π on input (â, b̂), with respect to the proof w and proximity parameter ε and return its
output.

Observe that if (a, b) ∈ DISJk, then
∑

i∈[k] aibi = 0 (where the summation is over the

integers). Hence,∑
x1,...,xm∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 0

(where the first summation is over F, and the second summation is over the integers).
Thus, â · b̂ ∈ TensorSumF,m,d,H (here we use the lemma’s hypothesis that d ≥ 2(|H| − 1)

since â · b̂ is the product of two polynomials of individual degree |H| − 1). We conclude
that there exists a proof w of length p such that the MA communication complexity
protocol for DISJk accepts with high probability.

On the other hand, if (a, b) 6∈ DISJk, then (by the promise of having an intersection of
size at most 1) it holds that

∑
i∈[k] aibi = 1 (where the summation is over the integers).

Hence∑
x1,...,∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 1

(where the first summation is over F, and the second summation is over the integers).
Thus, â · b̂ is an m-variate polynomials of (individual) degree d (≥ 2(|H| − 1)) whose

134

3.3 Separation Results

sum over Hm is non-zero. By the Schwartz-Zippel lemma (see Section 3.A.4), and since
ε < 1− dm

|F| , the function â · b̂ is at least ε-far from TensorSum.
We conclude that every MAP verifier for TensorSum with q queries and p proof length

must satisfy q · p ≥ Ω
(

k
log(|F|)

)
.

3.3.2.3 Proof of Theorem 3.13

In this section we complete the proof of Theorem 3.13, which states that for every constant
α > 0, there exists a property Πα such that for every sublinear function p : N → N, the
query complexity of Π for MAP verifiers that use proofs of length p is upper bounded by
n1−α+o(1)

p
· poly(1/ε) and lower bounded by Ω̃

(
n1−α

p

)
.

Toward this end, we need to set the parameters of the TensorSum problem. Our
parameters are governed by n = |F|m (i.e., the size of the object equals n), dm < |F|/10
(so that we can apply the Schwartz-Zippel lemma) and d = 2(|H|−1) (see Lemma 3.12).
Since p · q = Ω̃(|H|m), and the object size is |F|m, we need to maximize the ratio |H|/|F|
to obtain a better lower bound (while recalling that |H| ≤ d/2− 1).

For every constant α > 0 and every integer n ∈ N, let F be a finite field of size
(log n)1/α, let m = α · logn

log log(n)
, let H be some fixed (arbitrary) subset of F of size |F|1−α

and let d = 2(|H| − 1). Note that |F|m = n and |H|m = n1−α.
Lemma 3.11 guarantees the existence of an MAP for TensorSumF,m,d,H with proof

complexity (d+1)` · log(|F |) and query complexity |H|m−` ·dm2 log(|H|) for every ` ∈ [m].
Thus, for every parameter p ∈ {(d+ 1)i · log(|F|) : i ∈ N} (which corresponds to the
proof length), we set:

` =
log(p)− log log(|F |)

log(d+ 1)
.

and apply Lemma 3.11. We obtain an MAP protocol for computing TensorSumF,m,d,H
with a proof of length

(d+ 1)` · log(|F |) = p

and query complexity:

|H|m−` · dm2 log(|H|) · poly(1/ε) =
n1−α

|H|`
· polylog(n) · poly(1/ε). (3.3)

By our setting of ` we have:

|H|` = |H|
log p−log log |F|

log(d+1) ≥ 2
log |H|

log(2|H|) ·(log p−log log |F|) =

(
p

log |F|

)1− 1
1+logH

≥ p

no(1)
(3.4)

where the first inequality follows from d = 2(|H|−1) ≤ 2|H|−1 and the second inequality
follows from our setting of |H| and |F| (and since p ≤ n). Combining Eq. (3.3) and

Eq. (3.4) we have that the query complexity of the MAP is n1−α+o(1)

p
· poly(1/ε).

On the other hand, by Lemma 3.12, for every MAP for TensorSum with proof com-

plexity p and query complexity q, it holds that p ·q ≥ Ω
(
|H|m
log |F|

)
= Ω̃(n1−α). The theorem

follows.

135

3. NON-INTERACTIVE PROOFS OF PROXIMITY

3.3.3 MAP vs. IPP[O(1)]

In this section and the following one, we consider the power of MAP in comparison to the
more general notion of IPP (for a formal definition of IPP, see Section 3.2.2.) Roughly
speaking, in this section we show a property that requires

√
n queries by an MAP verifier

that uses a proof of length
√
n but requires only polylog(n) queries by an IPP[3] verifier

(i.e., an IPP with only 3-messages) that also uses a proof of length
√
n.

Theorem 3.16. For every α > 0, there exists a property Πα such that:

1. The MAP complexity of Πα is Ω̃
(
n1/2−α); and

2. There is an IPP[3] for Πα with polylog(n) · poly(1/ε) query complexity and commu-
nication complexity Õ(n1/2−α+o(1)).

The property that we use is the TensorSum property (introduced in Section 3.3.2).
Note that the first part of Theorem 3.16 was already shown in Theorem 3.13, and so,
to prove Theorem 3.16, what remains to be shown is that TensorSum can be tested by a
3-message IPP verifier that uses roughly

√
n communication and polylog(n) queries.

Lemma 3.14. If dm < |F|/10, then there is a 3-message IPP for TensorSumF,d,m,H (where
F is a finite field, m is the dimension, d is the degree and H ⊂ F) with communication
complexity O

(
(d+ 1)m/2 log(|F|)

)
and query complexity O (dm · poly(1/ε)).

We note that Theorem 3.16 follows from Lemma 3.14 (and Lemma 3.12) by setting the
parameters F,m, d,H as in Section 3.3.2.3. Namely, fix a finite field F of size (log n)1/α, a
dimension m = α· logn

log log(n)
, an arbitrary subset H ⊂ F of size |F |1−α and set d = 2(|H|−1).

We proceed to prove Lemma 3.14

Proof of Lemma 3.14. The first part of the protocol closely resembles the MAP that was
presented in Lemma 3.11. Indeed, the first message from the prover to the verifier is the
polynomial Q that is (allegedly) the sum of P on H` sub-tensors of Hm, each of dimension
m−`. The verifier checks that P is close to a low degree polynomial and that Q sums to 0,
but the consistency check of P and Q is different. Recall that in Lemma 3.11, the verifier
chose a random sub-tensor and checked the consistency of Q and P by reading all points
in the sub-tensor. Using two additional messages we replace these queries by having the
prover provide them. That is, after the prover “commits” to the sum of all sub-tensors,
the verifier chooses one of them at random and sends its choice to the prover. Then, the
prover provides the value of all points in that sub-tensor via a polynomial W : Fm−` → F
of individual degree |H| − 1. The verifier can readily check the that the two polynomials
Q and W sent by the prover are consistent with each other (using no queries to P), and
that the second polynomial (i.e., W) is consistent with P using only a constant number
of queries.

Similarly to the protocol of Section 3.3.2, the protocol uses a parameter ` except
that in this case, an optimal result is obtained by fixing ` = m/2 (but for simplicity of
notations we keep ` as a parameter). The IPP[3] protocol, in which the prover is denoted

136

3.3 Separation Results

by P and the verifier is denoted by V , is described in Section 3.3.3. It can be readily
verified that by setting ` = m/2, the query and communication complexities are as stated.
We proceed to prove that completeness and soundness hold.

IPP[3] for TensorSum

Parameters: F (field), m (dimension), d (individual degree), H ⊂ F and ` = m/2.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

1. V runs the low individual d-degree test (see Theorem 3.31) on P with respect to the
proximity parameter ε. If the test fails then V rejects.

2. P sends to V an individual degree d multivariate polynomial Q̃ : F` → F of individual
degree d (by specifying its (d+ 1)` coefficients), which allegedly equals

Q(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P (x1, . . . , xm).

3. If
∑

x1,...,x`∈H Q̃(x1, . . . , x`) 6= 0, then V rejects.

4. V selects uniformly at random r1, . . . , r` ∈R F and sends r1, . . . , r` to P.

5. P sends to V an individual degree d multivariate polynomial W̃ : Fm−` → F of individual
degree d (by specifying its (d+ 1)m−` coefficients), which allegedly equals

W (x`+1, . . . , xm)
def
= P (r1, . . . , r`, x`+1, . . . , xm).

6. V selects at random s`+1, . . . , sm ∈R F, reads the value zr1,...,r`,s`+1,...,sm of the polynomial
P (r1, . . . , r`, s`+1, . . . , sm) using the self-correction algorithm (see Theorem 3.29) with
soundness error 1/10 and rejects if zr1,...,r`,s`+1,...,m 6= W (s`+1, . . . , sm).

7. V accepts if Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈H W̃ (x`+1, . . . , xm) and rejects otherwise.

Figure 3.3: IPP[3] for TensorSum

Completeness. If P ∈ TensorSum, then P has individual degree d and the low degree
tests passes. In this case Q̃ = Q and W̃ = W and therefore all the verifier’s tests pass
(since

∑
x1,...,x`∈H Q(x1, . . . , x`) = 0 holds as well).

Soundness. Let ε > 0 and let P : Fm → F be ε-far from TensorSum. If P is ε-far
from having individual degree d, then the low degree test rejects with probability at least
1/2 and so we assume that P is ε-close to an individual degree d polynomial P ′. The

137

3. NON-INTERACTIVE PROOFS OF PROXIMITY

(cheating) prover sends two polynomials Q̃ and an W̃ . We proceed to prove two claims
regarding these polynomials.

Claim 3.14.1. If Q̃(x1, . . . , x`) ≡
∑

x`+1,...,xm∈H P
′(x1, . . . , xm) (as formal polynomials

over x1, . . . , x`), then the verifier rejects with probability 1.

Proof. Observe that
∑

x1,...,xm∈H P
′(x1, . . . , xm) 6= 0, as otherwise P is ε-close to TensorSum.

Therefore, if the polynomials Q̃(x1, . . . , x`) and
∑

x`+1,...,xm∈H P
′(x1, . . . , xm) are equal,

then the verifier rejects when testing whether
∑

x1,...,x`∈H Q̃(x1, . . . , x`) = 0.

Claim 3.14.2. For every value of r1, . . . , r` ∈ F, if the prover sends an individual-
degree d polynomial W̃ (x`+1, . . . , xm) (which depends on r1, . . . , r`) that differs from the
polynomial P ′(r1, . . . , r`, x`+1, . . . , xm) (as formal polynomials in x`+1, . . . , xm), then the
verifier rejects with probability at least 2/3.

Proof. Assume that W̃ (x`+1, . . . , xm) 6≡ P ′(r1, . . . , r`, x`+1, . . . , xm). Thus, the polyno-
mials W̃ (x`+1, . . . , xm) and P ′(r1, . . . , r`, x`+1, . . . , xm) are two different (m − `)-variate
polynomials of individual degree d and, by the Schwartz-Zippel Lemma, they can agree
on at most a d(m−`)

|F| < 0.1 fraction of their domain. Therefore, with probability 0.9 over
the verifier’s choice of s`+1, . . . , sm ∈ F, it holds that

W̃ (s`+1, . . . , sm) 6= P ′(r1, . . . , r`, s`+1, . . . , sm).

Using the self-correction procedure, with probability at least 0.9, the verifier cor-
rectly obtains the value zr1,...,r`,s`+1,...,sm = P ′(r1, . . . , r`, s`+1, . . . , sm). Hence, with prob-
ability at least 0.92 > 2/3, the verifier rejects when testing whether zr1,...,r`,s`+1,...,sm =

W̃ (s`+1, . . . , sm).

By Claim 3.14.2, we can assume that

W̃ (x`+1, . . . , xm) ≡ P ′(r1, . . . , r`, x`+1, . . . , xm) (3.5)

(since otherwise the verifier rejects). On the other hand, by Claim 3.14.1 and using the
Schwartz-Zippel Lemma, with probability at least 1− d`

|F| over the choice of r1, . . . , r` ∈R F,
it holds that

Q̃(r1, . . . , r`) 6=
∑

x`+1,...,xm∈H

P ′(r1, . . . , r`, x`+1, . . . , xm) =
∑

x`+1,...,xm∈H

W̃ (x`+1, . . . , xm)

where the last equality is due to Eq. (3.5). Hence, the verifier rejects with probability
1 − d`

|F| > 0.9 when testing whether Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈HW (x`+1, . . . , xm). This
completes the proof of Lemma 3.14.

138

3.3 Separation Results

3.3.4 Exponential Separation between MAP and IPP

In this section we show an exponential separation between MAP and general IPP. Namely,
we show a property that has MAP complexity roughly

√
n but has IPP complexity

polylog(n). In contrast to the IPP of Section 3.3.3 (which used O(1) messages) here
we use an IPP with poly-logarithmically many messages.

Theorem 3.17. For every α > 0, there exists a property Πα such that:

1. The MAP complexity of Πα is Ω̃
(
n1/2−α · poly(1/ε)

)
; and

2. Πα has an IPP with query complexity polylog(n) · poly(1/ε) and communication
complexity polylog(n).

Moreover, the PT complexity of Πα is Θ̃(n1−α).

To prove Theorem 3.17, we yet again use the TensorSum problem. The first part of
the theorem follows directly from Theorem 3.13 and the query complexity of property
testers (without a proof) is implied by Corollary 3.14.14 Thus, to prove the theorem, all
that remains is to show an IPP protocol for TensorSum.

Lemma 3.15. If d ·m < F/10, then there exists an m-round IPP for TensorSumF,m,d,H
with communication complexity O(dm log |F |), and query complexity O(dm · poly(1/ε)).

Proof. The proof of Lemma 3.15 follows by adapting the well-known sum-check protocol
of Lund et al. [LFKN92] to the settings of interactive proofs of proximity. Recall that
the sum-check protocol is an interactive protocol that enables verification of the a claim
of the form: ∑

x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a low-degree polynomial. The difference between our setting and the classical
setting of the sum-check protocol of [LFKN92] is that in the latter the verifier has explicit
and direct access to P .15 In our setting the verifier only has oracle access to a function that
is allegedly a low-degree polynomial. However, we observe that the sum-check protocol
can be extended to this setting by having the verifier (1) test that the function is close
to a low-degree polynomial P , (2) obtain values from P via self-correction, and (3) run
the sum-check protocol as-is with respect to the self-corrected P . The IPP protocol is
described in Fig. 3.4, where the prover is denoted by P , the verifier is denoted by V and
all arithmetic is over the field F. (For a high level description of the sum-check protocol,
see Section 3.A.5.)

We note that during the run of the IPP the prover sends m degree d univariate
polynomial, and the verifier sends m elements in F. Thus, the total communication
complexity of the IPP is O(dm log |F |). The only queries that the verifier performs are
for the low degree test and the self-correction, which total in O(dm · poly(1/ε)) queries.

14We note that the property testing upper bound of Õ(n1−α) can be obtained by a verifier that tests
for low degree and reads all points in Hm using self correction.

15An additional minor difference is that in the [LFKN92] protocol the set H is fixed to {0, 1}, but this
is common in the PCP literature (most notably in [BFLS91]).

139

3. NON-INTERACTIVE PROOFS OF PROXIMITY

IPP for TensorSum

Parameters: F (field), m (dimension), d (individual degree) and H ⊂ F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

1. V runs the individual degree d test (see Theorem 3.31) on P with respect to proximity
parameter ε, and rejects if the test fails.

2. Let ν0
def
= 0.

3. For i← 1, . . . ,m:

(a) P sends to V a degree d univariate polynomial P̃i : F→ F (by specifying its d+ 1
coefficients), which allegedly equals:

Pi(z)
def
=

∑
xi+1,...,xm∈H

P (r1, . . . , ri−1, z, xi+1, . . . , xm).

(b) V verifies that
∑

z∈H P̃i(z) = νi−1.

(c) V selects uniformly at random ri ∈R F and sets νi
def
= P̃i(ri).

(d) If i 6= m, then V sends ri to P.

4. V obtains the value of z∗ of P (r1, . . . , rm) via self-correction (see Theorem 3.29) with
soundness error 0.1.

5. V verifies that z∗ = νm.

Figure 3.4: IPP for TensorSumm,d,F,S,c

Completeness. If P ∈ TensorSum, then the low degree test always passes, and since we
have

∑
x∈Hm P (x) = 0, and the prover supplies the correct polynomials (i.e., P̃i = Pi for

every i ∈ [m]), the verifier always accepts.

Soundness. Suppose that P : Fm → F is ε-far from TensorSum. Let P∗ be a cheating
prover that attempts to convince the verifier of the false statement P ∈ TensorSum. If
P is ε-far from having individual degree d, then the verifier rejects with probability 1/2.
Thus, we focus on the case that P is ε-close to a polynomial P ′ of individual degree d.

For every i ∈ [m], let:

P ′i (z)
def
=

∑
xi+1,...,xm∈H

P ′(r1, . . . , ri−1, z, xi+1, . . . , xm)

(where the values ri are those sent from the verifier to the prover). The next two claims

140

3.4 General Transformations

relate the polynomials P ′i to the polynomials P̃i sent by the prover P∗. Recall that both
polynomials depend only on r1, . . . , ri−1.

Claim 3.15.1. If P̃1 ≡ P ′1, then the verifier rejects with probability 1.

Proof. Observe that
∑

x∈Hm P ′(x) 6= 0 must hold, since otherwise P ∈ TensorSum. There-

fore
∑

z∈H P
′
1(z) = 0, and so, if P̃1 ≡ P ′1, then the verifier rejects when testing that∑

z∈H P̃1(z) = 0.

Claim 3.15.2. For every i ∈ [m − 1] and every r1, . . . , ri−1 ∈ F, if P̃i 6≡ P ′i then, with
probability at least 1− d/|F| over the choice of ri, if P̃i+1 ≡ P ′i+1 then the verifier rejects.

Proof. If P̃i+1 ≡ P ′i+1 then
∑

z∈H P̃i+1(z) =
∑

z∈H P
′
i+1(z) = P ′i (ri). Thus, since the

polynomials P̃i and P ′i differ, with probability at least 1−d/|F| over the choice of ri ∈R F
it holds that P̃i(ri) 6= P ′i (ri), and in this case the verifier will reject when testing whether∑

z∈H P̃i+1(z) = νi, since νi = P̃i(ri).

By Claim 3.15.3 and an application of the union bound, with probability 1− dm/|F|,
if there exists an i ∈ [m− 1] such that P̃i 6≡ P ′i but P̃i+1 ≡ P ′i+1 then the verifier rejects.

By Claim 3.15.1, we can assume that P̃1 6≡ P ′1 and so we need only consider the case that
for every i ∈ [m] it holds that P̃i 6≡ P ′i . The following claim shows that also in this case
the verifier rejects with probability at least 2/3. The theorem follows.

Claim 3.15.3. For every r1, . . . , rm−1 ∈ F, if P̃m 6≡ P ′m, then the verifier rejects with
probability at least 2/3 (over the choice of rm and the self-correction procedure).

Proof. If P̃m 6≡ P ′m then these are two distinct degree d polynomials, which can agree on
at most d points. Thus, with probability 1− d/|F|, it holds that P̃m(rm) 6= P ′m(rm) (over
the choice of rm ∈R F). Now, the self-correction algorithm guarantees that the verifier
computes z∗ = P ′(r1, . . . , rm) = P ′m(rm) correctly with probability 0.9. In such case, the
verifier rejects with probability 1− d/|F| when testing that z∗ = P̃m(rm). It follows that
the verifier rejects with probability 0.9 · (1− d/|F|) > 2/3.

This completes the proof of Lemma 3.15.

3.4 General Transformations

In this section we show general transformations on MAP proof-systems. In Section 3.4.1
we show general transformations from MAPs with restricted proofs into PT. In Sec-
tion 3.4.2 we show a general transformation from MAPs that have two-sided error into
MAPs that have one-sided error.

141

3. NON-INTERACTIVE PROOFS OF PROXIMITY

3.4.1 From MAP to PT

In this section we show that MAPs with restricted proofs can be emulated by property
testers. We show two such results. Theorem 3.18 shows that every MAP that uses a
very short proof can be emulated by a property tester, and Theorem 3.19 shows that
even MAPs with long proofs in which the verifier’s queries are proof oblivious (see Defi-
nition 3.2) can also be emulated. We note that in both constructions the tester may be
inefficient in terms of computational complexity (even if the original MAP verifier can be
implemented efficiently).

Theorem 3.18. If the property Π has an MAP verifier that makes q queries and uses a
proof of length p, then Π has a property tester that makes Õ(2p · q) queries. Moreover, if
the MAP tester has one-sided error, then the resulting property tester has one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity q and proof complexity p.
We start by running the verifier O(p) times using fresh (independent) randomness, but
the same proof string, and ruling by majority vote. We obtain an MAP verifier V ′ for Π

that has soundness error 2−(p+2), uses q′
def
= O(p · q) queries and a proof of length p.

We use V ′ to construct a property tester T for Π. The tester T , given oracle access to
a function f , simply enumerates over all possible 2p proof strings for V ′. For each proof
string w ∈ {0, 1}p, the tester T emulates V ′ (using fresh randomness) while feeding it the
proof string w, and forwarding its oracle queries to f . If for some string w the verifier
accepts, then T accepts. Otherwise, it rejects. Clearly, T has query complexity 2p · q′.

If f ∈ Π, then there exists a proof string w that will make V ′ accept, with probability
at least 1 − 2−(p+2). Therefore, T accepts in this case with probability at least 2/3. On
the other hand, if f is ε-far from Π, then no string w will make V ′ accept with probability
greater than 2−(p+2). Thus, by the union bound, T will accept with probability at most
2p · 2−(p+2) < 1/3.

The furthermore clause of Theorem 3.18, follows by noting that both the parallel
repetition and proof enumeration steps preserve one-sided error.

The tester of Theorem 3.18 makes O(p · q) queries for every one of the possible 2p

proof strings. However, the fact that these queries were chosen independently (i.e., based
on fresh randomness) is not used in the soundness argument. Indeed, for soundness we
simply applied a union bound, which would have worked just as well if the queries were
not independent (i.e., were determined based on the same randomness). This leads us to
consider using the same sequence of queries for all of the proofs in the emulation step.
The problem that we run into is in the completeness condition. Namely, a sequence of
queries that was generated with respect to a particular proof may not be “good” for
a different proof. More precisely, if the distribution of queries that the MAP verifier
generates (heavily) depends on the proof, then the only guarantee that we have is that
the MAP verifier will be correct when emulated with a distribution of queries that matches
the specific good proof.16 Hence, we may indeed have to generate a different sequence of
queries for every possible proof string.

16For an example of such MAPs, see Theorem 3.7 and Theorem 3.20.

142

3.4 General Transformations

However, as proved in the following theorem, if the tester makes proof oblivious queries
(see Definition 3.2), then the foregoing problem can be avoided and indeed it suffices to
make only one sequence of queries, and reuse this sequence for all the 2p emulations.

Theorem 3.19. If the property Π has an MAP verifier that makes q proof oblivious
queries and uses a proof of length p, then Π has a property tester that makes O(p · q)
queries. Moreover, if the MAP verifier has one-sided error, then the resulting property
tester has one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity q and proof complexity p,
and let V ′ be exactly as in the proof of Theorem 3.18 (i.e., an MAP verifier for Π with
soundness error 2−(p+2), using q′ = O(p · q) queries and a proof of length p).

As hinted above, the construction of the property tester T differs from that in Theo-
rem 3.18. The tester T is given oracle access to f . It first emulates V ′ using an arbitrary
(dummy) proof string, denoted w0, a random string r, and by forwarding V ′’s queries to
f . The key observation here is that the distribution of the queries does not depend on
the proof at all, and so an arbitrary proof would suffice for our needs. Thus, T obtains
a sequence āfr = (a1, . . . , aq′) of answers (corresponding to queries specified by r and
the previous answers). Now, T enumerates over all possible 2p proof strings for V ′, and
for each proof string w ∈ {0, 1}p it emulates V ′ while feeding it the proof string w, the
random string r, and the answer sequence āfr . If for some string w the verifier accepts,
then T accepts. Otherwise, it rejects.

If f ∈ Π, then there exists a proof string w that will make V ′ accept with probability
at least 2/3. The key point is that since the distribution of the queries does not depend
on w. Hence, the queries actually made by T (using the dummy proof w0) are identical to
those V ′ would have made using the proof w (and the same randomness as T). Hence, T
accepts in this case with probability at least 2/3 (and in case V ′ has one-sided error, then
T accepts with probability 1). On the other hand, similarly to the proof of Theorem 3.18,
if f is ε-far from Π then no string w will make V ′ accept with probability greater than
2−(p+2). Thus, by the union bound, T will accept in this case with probability at most
2p · 2−(p+2) < 1/3.

3.4.2 From Two-Sided Error MAP to One-Sided Error MAP

In this section we show a general result transforming any MAP (which may have two-sided
error) into an MAP with one-sided error, while incurring only a poly-logarithmic overhead
to the query and proof complexities. The construction is based on the ideas introduced
in Lautemann’s [Lau83] proof that BPP is contained the polynomial hierarchy coupled
with the observation that MAPs may have very low randomness complexity (adapted
from [GS10b], which in turns follows an idea of Newman [New91]). We note that both
the verifier and the proof generation algorithm in this construction may be inefficient in
the computational complexity sense. (This is a consequence of each one of the two parts
of the transformation).

143

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Theorem 3.20. Let Π be a property of functions fn : Dn → Rn, where |Rn| ≤ exp
(
poly(n)

)
.

If Π has a two-sided error MAP with q queries and a proof of length p, then Π has a one-
sided error MAP with O(q · polylog(n)) queries and a proof of length O(p+ polylog(n)).

We note that typically |Rn| ≤ n and that properties for which |Rn| > exp(poly(n))
seem quite pathological. Before proceeding to the proof of Theorem 3.20, we note that
as a direct application of the theorem we obtain the following relation between two-sided
error property testers and one-sided error MAP (denoted MAP1).

Corollary 3.21. For every function q : N× R+ → N it holds that:

PT(q) ⊆ MAP1(polylog(n), q · polylog(n)).

The proof of Theorem 3.20 is based on two lemmas. The first, Lemma 3.16, shows that
a two-sided error MAP verifier that has low randomness complexity, can be transformed
into a one-sided error MAP. The proof of this lemma is based on the technique of
Lautemann [Lau83]. The second lemma (Lemma 3.17) shows that the Goldreich-Sheffet
[GS10b] technique for reducing the randomness of property testers can also be used to
reduce the randomness of MAP verifiers.

Lemma 3.16. If the property Π has a two-sided MAP verifier that makes q queries,
uses a proof of length p, and has randomness complexity r, then Π has a one-sided MAP
verifier that makes O(q · r log r) queries and uses a proof of length O(p+ r2 log r).

Proof. Following [Lau83], the construction involves two main steps. The first step is a
parallel repetition step that significantly reduces both the completeness and soundness
errors of the MAP. At this point, almost the entire set of possible random strings lead
to accepting inputs that have the property and rejecting inputs that are far from the
property. The main observation is that there must exist relatively few “shifts” s1, . . . , st
such that for an input that has the property, for every random string r there exists a
shift si such that r ⊕ si leads to accepting, whereas if the input is far from the property,
then with high probability over the choice of r, no shift will result in accepting. Details
follow.

Let V(2) be a two-sided error MAP verifier for a property Π with query complexity

q
def
= q(n, ε), proof complexity p

def
= p(n) and randomness complexity r

def
= r(n, ε). To

prove the theorem we construct a one-sided error MAP verifier V(1) for Π.
Let V(2)′ be the two-sided error MAP obtained by taking the majority of m = Θ(log r)

repetitions of V(2) using fresh random coins but using the same proof string for all repeti-
tions. By the Chernoff bound, this amplification yields both completeness and soundness

errors that are at most δ
def
= 2−Ω(m), which may be made smaller than 1

c·rm for any desired

constant c > 0. Note that V(2)′ has query complexity q′
def
= qm, proof complexity p′

def
= p,

and randomness complexity r′
def
= rm.

Denote by V f
(2)′(w; s) the (deterministic) output of V f

(2)′(w) when invoked with the
random string s. We construct the one-sided error MAP verifier V(1) as follows. The

144

3.4 General Transformations

proof string for V(1) consists of the original proof string w for V(2) as well as a sequence of
strings (s1, . . . , st) each of length r′, where t = Θ(r) such that δt < 2−r

′
and δt < 1

3
. Given

the proof string (w, s1, . . . , st), the verifier V(1) chooses a random string s ∈R {0, 1}r
′

and

runs V f
(2)′(w; s⊕ si) for each i ∈ [t]. If for some i ∈ [t] the test accepts, then V(1) accepts;

otherwise it rejects. The proof and query complexities can be readily verified, and so we
proceed to prove the completeness and soundness of V(1).

Completeness. Let f ∈ Π of size n and let ε > 0. Then, by the completeness of V(2)′ ,

there exists a proof string w such that Prs∈{0,1}r′ [V
f

(2)′(w; s) = 1] ≥ 1− δ. We show that

there exists a sequence (s1, . . . , st) such that Prs∈{0,1}r′ [V
f

(1)(w, s1, . . . , st; s) = 1] = 1.

To show that such a sequence (s1, . . . , st) exists we use the probabilistic method.
Specifically, we consider a sequence that is chosen uniformly at random, that is, each
si ∈R {0, 1}r

′
. By the union bound,

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
≤
∑
s

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
,

(3.6)
but since the si’s are independent, for every s ∈ {0, 1}r′ ,

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]

=
t∏
i=1

Pr
si

[
V f

(2)′(w; s⊕ si) = 0
]
≤ δt. (3.7)

Combining Equations (3.6) and (3.7) we obtain that:

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
≤ 2r

′ · δt < 1.

and (zero-error) completeness follows.

Soundness. Let f of size n be ε-far from having the property Π for ε > 0. Then, by the
soundness of V(2)′ , for every proof string w, the verifier V(2)′ accepts f with probability
at most δ. Hence, by the union bound,

Pr
s

[
∃i ∈ [t] s.t. V f

(2)′(w; s⊕ si) = 1
]
≤
∑
i∈[t]

Pr
s

[
V f

(2)′(w; s⊕ si) = 1
]
≤ t · δ < 1/3

and the lemma follows.

Lemma 3.17. Let Π be a property of functions fn : Dn → Rn, where |Rn| ≤ exp
(
poly(n)

)
.

If Π has an MAP verifier that makes q queries, uses a proof of length p, and has ran-
domness complexity r, then Π has an MAP verifier that makes q queries, uses a proof of
length p and has randomness complexity O(log n).

145

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Proof. The proof follows the proof of [GS10b] with a minor modification to handle the
dependence of the verifier on the proof. Namely, using the probabilistic method, we show
the existence of a small subset of the random strings that behaves similarly to the entire
set.

Let Π be a property of functions fn : Dn → Rn, where |Rn| = exp
(
poly(n)

)
(and

where Dn = [n], cf. Section 3.2), and let V be the MAP verifier of the lemma statement.

Fix an input length n and let D
def
= Dn, R

def
= Rn and p

def
= p(n). Consider a 2r×|R||D| · 2p

matrix where the rows correspond to all possible random strings γ used by the verifier
and the columns correspond to pairs (f, w) of functions f : Dn → Rn and possible proofs
w ∈ {0, 1}p. The entry (γ, (f, w)) of the matrix corresponds to the output of V f (w; γ),
that is, the output of the verifier when given oracle access to f , the proof string w and
random coins γ.

Note that for every function f ∈ Π, by the completeness of V , there exists a proof
string w such that the average of the (f, w) column is at least 2/3. Similarly, by the
soundness of V , for functions that are ε-far from Π and every proof string w the average
of the (f, w) column is at most 1/3.

We show that there exists a multi-set, S, of size poly(n) of the rows such that the
average of every column when taken over the rows of S is at most 1/7-far from the
average taken over all rows. Thus, we obtain an MAP verifier that uses only log2 |S| =
O(log n) random coins, by simply running the original tester V but with respect to
random coins selected uniformly from S (rather than from {0, 1}r). To obtain soundness
and completeness error 1/3 we use O(1) parallel repetitions.

We use the probabilistic method to show the existence of a small multi-set S as above.
Consider a multi-set S of the rows, of size t, chosen uniformly at random and fix some
function f and proof string w. By the Chernoff bound, with probability 2−Ω(t) over
the choice of S, the average over the rows in S of the (f, w)-column is 1/7-close to the
average over all rows. Thus, by setting t = log(|R||D| · 2p) and applying the union bound,
we obtain that there exists a multi-set S as desired.

Since the new verifier selects at random from S, it can be implemented using log2 t
random coins. We complete the proof by noting that the proof length p can always
be made to satisfy p ≤ n (since a proof of length n suffices to test any property using
only O(1/ε) queries, see discussion in Section 3.1.2), that the domain size is n and that
|R| ≤ exp(poly(n)) (by the hypothesis).

Theorem 3.20 follows by applying the randomness reducing transformation of Lemma 3.17,
and then applying Lemma 3.16 to the resulting MAP verifier.

3.5 An Extremely Hard Property for MAPs

As noted in the introduction, every property has an MAP that uses a proof of length n
and makes only O(1/ε) queries (where the proof is simply the object itself). In contrast,
in this section we show that for “almost all” properties Π, every MAP for Π that uses a
proof that is even n/100 bits long, requires Ω(n) queries.

146

3.5 An Extremely Hard Property for MAPs

Our result is actually slightly stronger. Roughly speaking, we show that for every t,
a random property of size 2t can be tested (without a proof) using O(t) queries, but any
MAP that uses a proof of length even t/100 must make Ω(t) queries in order test this
property.

In the following we consider properties that are sets of strings rather than functions.
We note that a function formulation (as in Definition 3.1) can be easily obtained by
mapping every string x ∈ {0, 1}n to the function fx : [n]→ {0, 1}, defined as fx(i) = xi.

Theorem 3.22. Let t = t(n) < n/10. Every property Π = ∪n∈NΠn (where Πn ⊆ {0, 1}n)
of size 2t can be tested with O

(
t/ε
)

queries (without using a proof), but for every n ∈ N,
for 99% of sets Πn ⊆ {0, 1}n of size 2t, it holds that every MAP for testing ε < 1/4
proximity to Πn that uses a proof of length p must make at least t− p−O(log n) queries.

The rest of this section is devoted to the proof of Theorem 3.22, which is inspired
by [GGR98, Section 4.1] and uses also ideas from [RVW13, Section 4]. We remark that
while Theorem 3.22 holds for almost all properties, finding an explicit property for which
a similar statement holds is an interesting open question.

The key idea in the proof of Theorem 3.22 is to show that MAPs that use a rela-
tively short proof and make relatively few queries can be represented by a small class
of functions. Since this class of functions is small, we argue that a (small) random set
S ⊆ {0, 1}n, viewed as a property, will fool every MAP, in the sense that no MAP verifier
can distinguish between a random element in S and a random element in {0, 1}n.

The foregoing intuition is formalized by the following lemma shows that exists a set
of randomized decision trees (see definition below) such that for every MAP, there exists
a subset of the decision trees such that the MAP accepts an input x (with probability
at least 2/3) if and only if at least one of the randomized decision trees accepts x (with
probability at least 2/3).

Lemma 3.18. Let ε ∈ (0, 1/4). For every n ∈ N and for every p, q ≤ n, there exists a

class of functions F (n)
p,q of size 2(poly(n)·2p+q) of functions from {0, 1}n to {0, 1}, such that

the following holds. For every MAP verifier V for testing ε-proximity to Πn ⊆ {0, 1}n
that uses a proof of length p and q queries, it holds that IV ∈ F (n)

p,q , where IV (x) is
defined as the indicator function for the event that there exists some π ∈ {0, 1}p such that
Pr[V x(n, ε, π) = 1] ≥ 2/3.

Note that the order of quantifiers in Lemma 3.18 is such that the class of functions is
the same for every MAP verifier (and depends only on p and q). This will be crucial in
showing that a random set fools every MAP verifier. Also note that if p+q � n, then the
size of F is quite small relative to the class of all functions from {0, 1}n to {0, 1} (which
has size 22n).

Proof of Lemma 3.18. To facilitate the proof of Lemma 3.18, it will be useful to describe
standard testers (which do not use a proof) as randomized decision trees. Our main
observation is that, roughly speaking, an MAP can be expressed as an OR of randomized
decision trees.

147

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Recall that a randomized decision tree is a model of computation for computing a ran-
domized function f : {0, 1}n → {0, 1}. The randomized decision tree is a rooted ordered
binary tree. Each internal vertex of the tree is labeled with a value i ∈ {1, . . . , n, ∗} and
the leaves of the tree are labeled with 0 or 1. (We think of a node that is labeled with
i ∈ [n] as representing the reading of the ith bit, and of a node that is labeled with ∗
as representing a random coin toss.) Given an input x ∈ {0, 1}n, the decision tree is
recursively evaluated as follows. If the root’s label is ∗, then one of its two children is
selected uniformly at random, and we recurse on that child. Otherwise (i.e., i ∈ [n]),
if xi = 0, then we recurse on the left subtree, and if xi = 1, then we recurse on the
right subtree. Once a leaf is reached, we output the label of that leaf and halt. If T is a
randomized decision tree, we denote by T (x) the (random variable that corresponds to)
the output of T on input x.

The size of the decision tree is defined as the number of vertices in the tree, and the
depth of the tree is defined as the longest path between the root of the tree and one of
its leaves. (See [BdW02] for an extensive survey of decision tree complexity.) Let RDTs

be the set of all randomized decision trees of size s. For every T1, . . . , Tt ∈ RDTs let
fT1,...,Tt : {0, 1}n → {0, 1} be the function defined as fT1,...,Tt(x) = 1 if and only if there
exists i ∈ [t] such that Pr[Ti(x) = 1] ≥ 2/3. Consider the class of functions

Fs,t =
{
fT1,...,Tt : T1, . . . , Tt ∈ RDTs

}
.

We show that Fpoly(n)·2q ,2p satisfies the conditions of the lemma.
Let V be an MAP verifier of ε-proximity for Πn that uses a proof of length p bits,

q queries, and r random bits. The main observation is that for every fixed proof string
π ∈ {0, 1}p, the (randomized) decision V x(n, ε, π) can be expressed as a randomized
decision tree TV,π of depth r + q (and size 2r+q), which is defined as follows. The first r
vertices in every path from the root to a leaf in the tree are labeled by ∗ (these vertices
correspond to the random coin tosses of V). Every other internal vertex is labeled by
some i ∈ [n], corresponding to a query to xi made by V . The two edges leaving every
vertex, labeled by 0 and 1, correspond to the actual value of xi, and these edges lead
to a vertex that is labeled by the next query made by V , given the answer xi to the
query i. Given an input x and a random string ρ ∈ {0, 1}r, the leaf that is reached
by evaluating the decision tree on input x and the random string ρ is labeled with the
value V x(n, ε, π; ρ). (Recall that V x(n, ε, π; ρ) denotes the output of the verifier V given
oracle access to x, direct access to n, ε, π and the random string ρ.) We are interested
in Pr [V x(n, ε, π) = 1].

Let IV : {0, 1}n → {0, 1} be defined as IV (x) = 1 if and only if there exists π ∈ {0, 1}p
such that Pr[V x(n, ε, π) = 1] ≥ 2/3. Since the randomized functions V x(n, ε, π) and
TV,π(x) are identically distributed, it holds that IV ∈ F2r+q ,2p .

By Lemma 3.17, we may assume without loss of generality that V has randomness
complexity r = O(log n). The lemma follows by noting that |RDTs| ≤ (n + 1)s and
therefore |Fs,t| ≤ |RDTs|t ≤ (n+ 1)s·t.

Before proceeding to the proof of Theorem 3.22, we state a few standard propositions

148

3.5 An Extremely Hard Property for MAPs

(Propositions 3.19, 3.20 and 3.22) whose proofs are deferred to Section 3.B.1. We start
by noting that sparse properties can be efficiently tested.

Proposition 3.19 (folklore). Every property Π = ∪n∈NΠn (where Πn ⊆ {0, 1}n) can be
tested by making O(log |Πn|/ε) queries (without a proof).

We note that Proposition 3.19 has standard proofs via learning theory techniques.17 In
Section 3.B.1 we provide an alternative proof that uses the notion of MAPs in a somewhat
surprising, but very natural way.

The following (standard) proposition shows that, with high probability, a random
n-bit string will be far from any small subset of {0, 1}n.

Proposition 3.20 (folklore). For every constant ε ∈ (0, 1/4] and set S ⊆ {0, 1}n, it
holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| · 2−n/8.

For the last claim that we need, recall the definition of a PRG.

Definition 3.21. A set S ⊆ {0, 1}n is called a pseudorandom generator (PRG) for fooling
a class F of functions from {0, 1}n to {0, 1} if for every f ∈ F it holds that∣∣∣∣ Pr

x∈RS
[f(x) = 1]− Pr

x∈R{0,1}n
[f(x) = 1]

∣∣∣∣ < 1/10.

(note that the choice of the constant 1/10 is arbitrary.)
The following (well-known) lemma shows that for every class of functions F , a random

set of size O(log |F|) is a PRG that fools F .

Proposition 3.22 (implicit in [GK92], see also [Gol08, Exercise 8.1]). Let F be a class

of functions from {0, 1}n to {0, 1}, of size at most 22n/4. Then, 99% of subsets of {0, 1}n
of size s = O(log |F|) are PRGs that fool F .

We are now ready to prove Theorem 3.22.

Proof of Theorem 3.22. Fix ε ∈ (0, 1/4). Let t, p, q : N → N be functions such that
t = t(n) < n/10, p = p(n) ≤ n, q = q(n) ≤ n and t = p+ q +O(log n).

Let S
def
= ∪n∈NSn where for every n ∈ N, the set Sn ⊆ {0, 1}n is a random subset of

{0, 1}n of size 2t(n). By Proposition 3.19, (for any choice of S) the property S can be
tested using O(log(|Sn|)/ε) = O(t/ε) queries (without a proof).

Fix n ∈ N and let F (n)
p,q be the class of functions of size 2(poly(n)·2p+q) guaranteed by

Lemma 3.18, with respect to p and q. Since O(log |F (n)
p,q |) = O(2p+q · poly(n)) = 2t, by

Proposition 3.22 (applied to the class F (n)
p,q), with probability 0.99 over the choice of Sn,

it holds that for every f ∈ F (n)
p,q :∣∣∣∣ Pr

x∈RSn
[f(x) = 1]− Pr

x∈R{0,1}n
[f(x) = 1]

∣∣∣∣ < 1/10. (3.8)

17Either by an explicit reduction of property testing to learning (see [GGR98, Section 3]), or by
applying Occam’s razor directly to the testing problem.

149

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Let Sn be a set for which Eq. (3.8) holds and assume toward a contradiction that
there exists an MAP verifier V that uses a proof of length p and q queries, and tests
ε-proximity to Sn.

By Lemma 3.18, it holds that IV ∈ F (n)
p,q , where the function IV is defined as IV (x) = 1

if and only if there exists π ∈ {0, 1}p such that Pr[V x(n, ε, π)] ≥ 2/3. We proceed to
show that IV is a distinguisher for the PRG Sn, in contradiction to Eq. (3.8).

By the completeness of the MAP, for every x ∈ Sn it holds that IV (x) = 1 and
therefore

E
x∈RSn

[IV (x)] = 1.

On the other hand, by the soundness of the MAP, for every x that is ε-far from Sn it
holds that IV (x) = 0 and so

E
x∈R{0,1}n

[IV (x)] ≤ E
x that is

ε-far from Sn

[IV (x)] + Pr
x∈R{0,1}n

[
x is ε-close to Sn

]
≤ |Sn| · 2−n/8 ≤ 2−Ω(n),

where the second inequality follows from Proposition 3.20 (and the fact that IV (x) = 0
for every x that is ε-far from Sn), and the last inequality follows from our setting of
t ≤ n/10. Therefore,

E
x∈RSn

[IV (x)]− E
x∈R{0,1}n

[IV (x)] ≥ 1− 2−Ω(n),

in contradiction to Eq. (3.8).

3.6 MAPs for Parametrized Concatenation Problems

In this section we give a scheme for constructing efficient MAPs for parameterized con-
catenation problems. For starters, we review the notion of (non-parameterized) concate-
nation problems: The k-concatenation problem of a property Π is defined as the property

Π×k
def
=
{

(x1, . . . , xk) : ∀i ∈ [k], xi ∈ Π and |xi| = |x1|
}

. For every i ∈ [k], we will refer
to xi as the ith block or sub-input.

Concatenation problems (in the context of property testing) were recently studied by
Goldreich [Gol14], who showed that the query complexity of the concatenation problem
Π×k (of a property Π) is roughly the same as the query complexity of the problem of
testing a single instance of Π, regardless of the number of concatenations. More precisely,
the query complexity of testing proximity of an input of length n ·k (for Π×k) is the same,
up to a polylogarithmic factor, as the query complexity of testing proximity of an input
of length n (for Π), provided that the query complexity of Π increases at least linearly
with 1/ε (which is typically the case).

We consider a generalization of the notion of a concatenation problem by allowing
the underlying property to depend on some parameter, which may differ between the
different blocks. Consider a family of properties {Πα }α∈A, where α is the parameter
and A is some domain. As we shall show, some natural properties can be expressed as

150

3.6 MAPs for Parametrized Concatenation Problems

a concatenation Πα1 × . . . ,Παk of a property Πα, with respect to different values of the
parameter. For example, testing whether a given string x has Hamming weight w can
be expressed as the question of testing whether x can be partitioned into k blocks such
that the ith block has Hamming weight wi and

∑
i∈[k] wi = w. (Other natural examples

are reviewed below.)
In this section it will be convenient for us to view the input length n ∈ N , the

proximity parameter ε ∈ (0, 1), and the number of concatenations k as fixed. We note
that although we fix n, ε, and k, these parameters should be viewed as generic, and
so we allow ourselves to write asymptotic expressions such as poly(n), poly(ε), etc. If
Π ⊆ {0, 1}n, then we say that a verifier V is an MAP(p, q) for Π with respect to proximity
ε if V can distinguish between inputs that are in Π and inputs that are ε-far from Π using
a proof of length p and q queries. (See the end of Section 3.6.1 for a discussion of the issues
involved in providing a uniform treatment of parameterized concatenation problems.)

Additionally, throughout this section we study properties that are more naturally
expressed as sets of strings (rather than functions), therefore we present them as such.
Note that a function formulation (as in Definition 3.1) can be easily obtained by the
(trivial) mapping that maps the string x ∈ Σn to the function fx : [n] → Σ defined as
fx(i) = xi. We proceed to define parameterized concatenation problems.

Definition 3.23. Let A be a finite set, and n, k, n/k ∈ N. For every α ∈ A, let Πα
n/k ⊆

{0, 1}n/k be a property of n/k-bit strings that is parameterized by α. For every subset
Ā ⊆ Ak, we say that the property ΠĀ

n is a parameterized k-concatenation property (of
n-bit strings), where ΠĀ

n is defined as

ΠĀ
n

def
=

⋃
(α1,...,αk)∈Ā

Πα1

n/k × . . .× Παk
n/k.

If we consider the task of testing ΠĀ
n , it is not a priori clear (for the tester) what value

of the parameter αi to use for each block. This is where MAPs can help us. That is, the
proof of proximity will simply tell the MAP verifier the correct value of the parameter for
each block. Using this idea, in Section 3.6.1 we construct an MAP for any parameterized
concatenation problem. In Sections 3.6.2 to 3.6.3, we demonstrate the applicability of
this technique by using it to construct efficient MAPs (which manage to bypass some
lower bounds for testers that do not use a proof) for a couple of natural properties:

1. Approximate Hamming weight: The first application of our scheme is an effi-
cient MAP for the problem of approximating the Hamming weight of a given string.
In this problem, which is parameterized by w ∈ [n], the tester needs to distinguish
between inputs that have Hamming weight exactly w and those that have Hamming
weight /∈ [w − εn, w + εn].

We complement this MAP with a (non-tight) lower bound on the MAP complexity
of the approximate Hamming weight property. We leave the question of resolving
the gap between the upper and lower bounds to future work. See Section 3.6.2.

151

3. NON-INTERACTIVE PROOFS OF PROXIMITY

2. Graph orientation problems: In addition, we show an MAP in the graph ori-
entation model (see Section 3.6.3 for details on this model). Specifically, our MAP
distinguishes between orientations (of a specific undirected graph) that are Eulerian
and those that are far from Eulerian. Our MAP has lower query complexity than
the best possible property tester for this problem, and the gap in query complexity
increases with the size of the proof. See Section 3.6.3.

Properties with/without distance. Note that all of the explicit properties studied
in Section 3.3 are properties of low-degree polynomials and error-correcting codes. The
MAPs that we have shown for these properties crucially relied on the fact that these
properties have distance (i.e., properties wherein every two objects that have the property
are far from each other), and moreover, they allow for a local form of self-correction.18

We note that in contrast, all of the properties that we study in this section are without
distance (as is the property of bipartiteness studied in Section 3.7). For example, the
Hamming weight property is without distance since there are pairs of strings at distance
2 that have the same Hamming weight.

3.6.1 The Generic Scheme

In this section we show a generic scheme for parameterized concatenation problems.

Theorem 3.23. Ler c1, c2 ≥ 0 be constants. Let ΠĀ
n be a parameterized k-concatenation

property (of n-bit strings) with respect to A, Ā, and {Πα
n/k}α∈A, as in Definition 3.23.

Suppose that for every α ∈ A, the property Πα
n/k can be tested with respect to any proxim-

ity parameter ε′ > 0 (without using a proof) with query complexity O ((n/k)c1 · (ε′)−c2).
Then, the property Π has an MAP, with respect to proximity parameter ε, that uses a
proof of length k · log |A| and has query complexity:{

Õ
(
(n/k)c1 · ε−max(1,c2)

)
if c1 > 0 and c2 ≥ 0

Õ
(

(n/k)1−1/c2 · ε−1
)

if c1 = 0 and c2 ≥ 1.

Furthermore, if the testers for {Πα
n/k}α∈A have a one-sided error, then the resulting MAP

has a one-sided error.

Proof. The key idea is to use the proof in order to “break” the problem of testing property
Π into the concatenation problem of testing several sub-properties with smaller inputs.
Then, instead of solving each sub-problem independently, we efficiently verify that the
(smaller) sub-inputs together are not too far from their corresponding sub-properties.

More specifically, we partition the input x (of length n) into k blocks x1, . . . , xk of
length n/k each. If x ∈ ΠĀ

n , then there must exist (α1, . . . , αk) ∈ Ā such that xi ∈ Παi
n/k

for each i ∈ [k]. The proof is simply (α1, . . . , αk); that is, the “hidden” parameter for each

18An important natural subset of this type of properties with distance is the set of properties of
algebraic objects; see [KS08] for an extensive study of algebraic properties.

152

3.6 MAPs for Parametrized Concatenation Problems

sub-property. The verifier, given this alleged proof, checks that indeed (α1, . . . , αk) ∈ Ā
(i.e., the parameterization of the sub-properties is valid), and is then left with the task
of ascertaining that the k blocks are not “far” from Πα1

n/k × · · · × Παk
n/k.

Toward this end, similarly to the approach in [Gol14, Section 5], we note that given
an input that is far from Πα1

n/k × · · · ×Παk
n/k, the distance from the property can be either

“spread” between all of the sub-inputs, or “concentrated” on a few sub-inputs — or
anything in between. The main idea is that if the distance is “concentrated”, then the
deviation in these sub-inputs must be large, and so, we can detect that such particular
sub-inputs do not have their corresponding sub-property by using a test with low query
complexity. Since we only read a few bits for this test, we can afford to run it on many
sub-inputs (thereby increasing our chance of catching a sub-input that is far from its
corresponding sub-property). On the other hand, if the distance is “spread” among the
sub-inputs, then it suffices to examine only a few sub-inputs, but for each such sub-input,
we need to run a test with high query complexity. Interestingly, in the latter case it is
sometimes beneficial for the verifier to simply read the entire block rather than to run
the “expensive” tester.

Since the verifier does not know whether it is in one of the extreme situations or any-
where in between, naively we might want to consider the “worst of all worlds” (i.e., small
spread and high query complexity per block). We improve upon the performance of the
forgoing approach by using the precision sampling technique (originating in Levin [Lev85,
last paragraph of Section 9], see also [Gol14, Appendix A.2]), which allows us to deal with
all of the possible distributions of the distance economically (specifically, by considering
only a logarithmic number of representative distributions). The resulting MAP protocol
for parameterized concatenation problems is presented in Fig. 3.1.

Note that the length of the proof, which is (α1, . . . , αk), is bounded by k · log |A|. As
for the query complexity, first recall that for any α and ε′ > 0, the property Πα

n/k has

a tester with query complexity T (n/k, ε′) = (n/k)c1 · (ε′)−c2 . Thus, the total number of
queries is at most:

O

 ∑
j∈[dlog2 2/εe]

log(1/ε)

2jε
· log(1/ε) · T

(
n/k, 2−j

) = Õ

(n/k)c1

ε

∑
j∈[dlog2(2/ε)e]

2j(c2−1)


= Õ

(
(n/k)c1 ε−max(1,c2)

)
.

For the special case in which c1 = 0, we tighten the analysis. Observe that, without
loss of generality, for any proximity parameter ε, it holds that T (n, ε) ≤ n (simply since
the tester can always just read the entire input). Therefore, the query complexity is

153

3. NON-INTERACTIVE PROOFS OF PROXIMITY

MAP for the parameterized k-concatenation problem ΠĀ
n

Input: a proximity parameter ε > 0 and oracle access to a string x ∈ {0, 1}n.

The Proof:

• The string x is interpreted as a k sub-inputs x = (x1, . . . , xk) ∈ ({0, 1}n/k)k.

• The proof consists of the parameters for the concatenated problems; namely, the values
(α1, . . . , αk) such that xi ∈ Παi

n/k, for every i ∈ [k] (such values must exist for x ∈ ΠĀ
n).

The Verifier:

1. If (α1, . . . , αk) /∈ Ā, then reject.

2. For every j ∈ [dlog2(2/ε)e], perform the following test:

(a) Select uniformly at random O
(

log(1/ε)
2jε

)
indices in [k]. Denote the chosen indices

by I.

(b) For every i ∈ I: Run the Παi
n/k tester O(log(1/ε)) times on input xi, with respect

to proximity parameter 2−j . Reject if the majority of the tests failed.

3. If all of the previous tests passed, then accept.

Figure 3.1: MAP for Π

bounded in this case by:

O

 ∑
j∈[dlog2 2/εe]

log(1/ε)

2jε
· log(1/ε) · T

(
n/k, 2−j

) = Õ

1

ε

∑
j∈[dlog2 2/εe]

min

(
n/k

2j
, 2j(c2−1)

)
≤ Õ

1

ε

∑
j∈[dlog2 2/εe]

(n/k)1−1/c2

 ,

where the last inequality follows from the fact that c2 ≥ 1 (by our assumption) and thus
min

(
n/k · 2−j, 2(c2−1)j

)
≤ (n/k)1−1/c2 . Therefore, the total query complexity in this case

is Õ
(
(n/k)1−1/c2 · ε−1

)
.

We proceed to prove the completeness and soundness of the protocol.

Completeness. Suppose that x ∈ ΠĀ
n and that (x1, . . . , xk) ∈ Πα1

n/k × . . . × Παk
n/k. The

tester for each sub-property is invoked O(log(1/ε)) times in Step (2b) on some xi ∈ Παi
n/k.

Therefore, with probability 1−poly(ε) the majority of these invocations will accept. The
total number of times that this step is run is at most O(1/ε · log2(1/ε)) and therefore, by
the union bound, the MAP verifier accepts with probability at least 2/3.

154

3.6 MAPs for Parametrized Concatenation Problems

Soundness. Suppose that x ∈ {0, 1}n is ε-far from ΠĀ
n . Let (α1, . . . , αk) ∈ Ā be an

alleged proof for the false statement x ∈ ΠĀ
n (notice that if (α1, . . . , αk) /∈ Ā, then

the tester immediately rejects). Thus, x = (x1, . . . , xk) ∈ ({0, 1}n/k)k is ε-far from
Πα1

n/k × . . .× Παk
n/k (since otherwise x is ε-close to ΠĀ

n).

The following claim shows that it suffices to consider O (log(1/ε)) different distribu-
tions of the distance between the sub-inputs. Since the proof of the claim is similar to
results of [Gol14, Section 5], we defer it to Section 3.B.2).

Claim 3.23.1 (Precision Sampling (cf. [Lev85, last paragraph of Section 9] or [Gol14,

Appendix A.2])). There exists j ∈ [dlog2 2/εe] such that a 2jε
4·dlog2(2/ε)e fraction of x1, . . . , xk

are 2−j-far from their corresponding sub-properties Πα1

n/k, . . . ,Π
αk
n/k.

Consider the execution of iteration j, where j is the index guaranteed by Claim 3.23.1.

In this iteration, since the verifier selects uniformly at random O
(

log(1/ε)
2jε

)
indices in [k],

with probability at least 0.9, it selects at least one i ∈ [k] such that xi is 2−j-far from
Παi .

Suppose that such an i is indeed selected. Since the base tester for Παi
i is run with

respect to proximity 2−j, it will reject xi with probability 2/3. Since the test is repeated
O(log(1/ε)) times, the majority of these tests will reject with probability at least 0.9.
Thus, the MAP verifier rejects x with probability at least 0.9 · 0.9 ≥ 2/3.

On providing a uniform treatment. Recall that throughout this section we have
fixed n, ε and k. Before proceeding to describe the applications of Theorem 3.23, we
shortly discuss issues that arise when considering a uniform (asymptotic) treatment. In
some cases, in order to optimize the total complexity (i.e., the sum of the proof complexity
and the query complexity) of the MAP in Theorem 3.23, it is beneficial to allow the
number k of concatenations to depend on the proximity parameter ε. However, if k
depends on ε, then the following two issues arise.

First, notice that if k depends on ε, then the proof string in Theorem 3.23 becomes
dependent on ε too, and therefore this protocol does not fall in our definition of MAP
(Definition 3.1), which requires a single proof of proximity that works for every value of
ε > 0. Hence, one can consider a slight relaxation of Definition 3.1 in which we allow
the proof of proximity to depend on ε. Since formally such a protocol is not an MAP, we
call it an MAPPDP (where PDP stands for proximity dependent proofs). Note that in an
MAPPDP both the contents of the proof of proximity, and its length may depend on the
proximity parameter. See Section 3.2.1 for further discussion of MAPPDP.

An additional issue that arises when the number of concatenations k depends on ε is
that it is unclear how to define a k-concatenation property, as the naive definition that
follows Definition 3.23 would make the property itself depend on k, and therefore also
on the proximity parameter. While this issue can be overcome for the specific properties
that are studied below, doing so in general would be extremely cumbersome, which is the
main reason for our non-uniform treatment.

155

3. NON-INTERACTIVE PROOFS OF PROXIMITY

3.6.2 Approximate Hamming Weight

In this section we consider the problem of deciding whether a given string x ∈ {0, 1}n has
Hamming weight approximately w. More specifically, we would like a tester that accepts
every string x ∈ {0, 1}n that has Hamming weight w ∈ [n], and rejects strings that have
Hamming weight that is ε-far from having weight w. Namely, the tester should reject
every string x ∈ {0, 1}n for which wt(x) /∈ [w − εn, w + εn], where wt(x) denotes the
Hamming weight of x.

More formally, we consider a family of properties {Hammingwn}w, indexed by a weight
w ∈ {0, . . . , n}. The property Hammingwn is defined as the set that consists of all strings
x ∈ {0, 1}n that have Hamming weight exactly w.

By well-known sampling lower bounds (see, e.g., [BYKS01, Theorem 15], improv-
ing upon [CEG95]), the query complexity of any property tester (which does not use a
proof) is Ω

(
min (n, ε−2)

)
. Our goal is to use MAPs in order to bypass this lower bound.

We remark that Hammingw was already studied by [RVW13] who showed a multiple-
message IPP for Hammingw with complexity Õ (ε−1) and a 2-message IPP with complexity

Õ
(
n

1
3 · ε− 2

3

)
. (Note that for ε = 1/

√
n, the 2-message protocol of [RVW13] has sublinear

complexity of Õ
(
n2/3

)
, whereas testing without a proof requires Ω(n) queries.)

Using Theorem 3.23, we show that the performance of the [RVW13] 2-message IPP
can be matched by an MAP (i.e., a 1-message IPP), while essentially preserving its com-
plexity.19 Thus, we show that even a non-interactive proof suffices to bypass the property
testing lower bound.

More generally, for every constant parameter α ∈ (0, 1), we show that there exists
an explicit MAP for Hamming that uses a proof of length Õ(nα), and makes at most

Õ
(√

n1−α · ε−1
)

queries to the input string. For every value of α ∈ (0, 1), there is a

range of ε for which the MAP is more efficient than the best possible property tester
(which does not use a proof) for Hamming. A comparison of the efficiency of our MAP
versus standard property testers, for different values of α, is provided in Table 3.1.

Before we proceed, we note that we actually prove a slightly stronger result. Namely,
that for every k ∈ [n] there is an MAP for Hamming that uses a proof of length k · log n,

and makes at most Õ
(√

n/k · ε−1
)

queries (where the more restricted statement above

is obtained by setting k = nα). In order to minimize the total complexity (i.e., the sum
of the proof complexity and the query complexity) of the MAP, we also consider MAPPDP

verifiers (recall that MAPPDP is a slight relaxation of our definition of MAP that allows
the proof of proximity to depend on the proximity parameter, see the discussion at the
end of Section 3.6.1. With this relaxation, we can set k = n

1
3 · ε− 2

3 to obtain an MAPPDP

with (total) complexity Õ
(
n

1
3 · ε− 2

3

)
. See further discussion in Section 3.2.1.

We complement the foregoing upper bound by showing a lower bound on the MAP
complexity of Hamming. Specifically, we show that every MAP for Hamming that uses

19We note that an MAP for approximating the Hamming distance with similar performance was also
discovered independently by (Guy) Rothblum et al. following the initial publication of [RVW13].

156

3.6 MAPs for Parametrized Concatenation Problems

MAP

Parameters Property Testing Proof Complexity Query Complexity

General

α ∈ (0, 1)
Θ (min (n, ε−2)) Õ(nα)

Õ
(√

n1−α · ε−1
)

Improves for n−
1
2−

α
2 < ε < n−

1
2 + α

2

α = 0.02 Θ (min (n, ε−2)) Õ (n0.02)
Õ (n0.49 · ε−1)

Improves for n−0.51 < ε < n−0.49

α = 2/3 Θ (min (n, ε−2)) Õ
(
n2/3

) Õ
(
n1/6 · ε−1

)
Improves for n−5/6 < ε < n−1/6

α = 0.98 Θ (min (n, ε−2)) Õ (n0.98)
Õ (n0.01 · ε−1)

Improves for n−0.99 < ε < n−0.01

Table 3.1: The complexity of testing Hamming for different values of α.

a proof of length p ≥ 1 must use Ω
(

min(n,ε−2)
p

)
queries. Note that the two bounds do

not match (e.g., for ε = 1/
√
n and p = n2/3, the upper bound is Õ

(
n2/3

)
and the lower

bound is Ω(n1/3)). We leave the question of resolving this gap for future work.

Theorem 3.24. For every w ∈ {0, . . . , n}, the property Hammingwn has a (two-sided
error) MAP, with respect to proximity parameter ε, that uses a proof of length k · log n

and Õ
(√

n/k · ε−1
)

queries.

We remark that by applying Theorem 3.20 to the MAP of Theorem 3.24, we can (some-
what surprisingly) construct a one-sided error MAP with proof complexity O(k log n +

polylogn) and query complexity Õ
(√

n/k · ε−1
)

. In contrast, the query complexity of

every one-sided error property tester for Hammingwn (without a proof) is linear in the
input size.

Proof of Theorem 3.24. Fix w ∈ [n]. It is well-known (and easy to show, e.g., via the
Chernoff bound) that ε-proximity to Hammingwn can be tested, without a proof, using
O(ε−2) queries (with a two-sided error). Let

Ā
def
=
{

(w1, . . . , wk) ∈ {0, . . . , n/k}k :
k∑
i=1

wi = w
}
.

Observe that a string x = (x1, . . . , xk) ∈ ({0, 1}n/k)k has Hamming weight w if and only
if, for every i ∈ [k] the string xi has Hamming weight wi and

∑k
i=1wi = w. Hence,

Hammingwn =
⋃

(w1,...,wk)∈Ā

Hammingw1

n/k × . . .× Hammingwkn/k.

157

3. NON-INTERACTIVE PROOFS OF PROXIMITY

The theorem follows from Theorem 3.23 (where c1 = 0 and c2 = 2).

Relation to TensorSum. The Hamming problem is loosely related to the Sub-Tensor
Sum problem (see Section 3.3.2), since in both problems we want to compute the sum of
the entries of a given input string. In the Sub-Tensor Problem we want an exact answer
but are given the string in an error-corrected format (where we think of the input as
f : Hm → F which is encoded by a low degree polynomial f̂ : Fm → F that agrees with f
on Hm). In the Hamming problem we do not have the benefit of an error-correcting code
but allow an approximate answer.

Next, we show a lower bound on the MAP complexity of the property Hammingn/2n

(the set of all strings of Hamming weight exactly n/2, where n is the length of the string).
We note that the lower bound can be extended to Hammingwn for more general values of w
by reducing to Hammingn/2n using adequate padding (while taking care of the integrality
issues that arise). We also note that the lower bound only holds for reasonable complexity
measures (which are specified formally below).

The lower bound is proved using our extension of the [BBM11] framework to the
MAP model that was established in Section 3.3.2.2. Recall that this extension allows us
to prove lower bounds on the complexity of MAPs via MA communication complexity
lower bounds. We note that since an MAP lower bound refers to a particular value of ε,
it immediately implies a lower bound also on MAPPDP.

One natural candidate for a communication complexity problem on which we can base
our Hamming lower bound is the Hamming Distance communication problem, wherein
Alice and Bob need to decide whether the Hamming distance of their input strings is
equal to a predetermined number. However, as opposed to the MAP lower bounds that
we have shown before (e.g., for TensorSum, and EIM), Hamming is a property of non-
robust objects; i.e., there is no significant distance between every pair of valid objects.
In order to overcome the lack of distance between valid objects in Hamming, we wish
to reduce Hamming to an MA communication complexity gap-problem wherein the YES-
instances and NO-instances are far apart. Indeed, the Gap Hamming Distance problem,
described next, serves this purpose.

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance problem, denoted by GHDn,t,g,
is the promise problem wherein Alice gets as input an n-bit string x, Bob gets as input
an n-bit string y, and the players need to decide whether the Hamming distance of their
strings is greater than t+g (considered a YES-instance), or smaller than t−g (considered
a NO-instance). See Section 3.B.3 for formal definitions and background. By extending
a recent result of Gur and Raz [GR13b], we show

Lemma 3.24. Let g, n ∈ N such that g ≤ n and t = α · n for some constant α ∈ (0, 1).
Then, every MA communication complexity protocol for GHDn,t,g, with proof complexity

p ≥ 1, has communication complexity at least Ω

(
min(n,(n/g)2)

p

)
.

The proof of Lemma 3.24, which is by a reduction to the result of [GR13b], is presented
in Section 3.B.3 (see Corollary 3.33). Equipped with Lemma 3.24, we proceed to prove

158

3.6 MAPs for Parametrized Concatenation Problems

the lower bound for Hammingwn .

Theorem 3.25. For every n ∈ N and ε
def
= ε(n) ∈ (0, 1/2), if Hammingn/2n has an

MAP with respect to proximity parameter ε, with proof complexity p = Ω(log n) and
query complexity q such that p(O(n)) = O(p(n)) and q(O(n)) = O(q(n)), then p · q =
Ω (min (n, ε−2)).

We note that our restriction on the form of p and q is satisfied by reasonable functions
such as f(n) = a · nb for any a, b ≥ 0 as well as for f(n) = a · polylog(n).

Proof of Theorem 3.25. Throughout the proof we fix the function w as w(m)
def
= m/2. By

Lemma 3.13, if Hammingwn ∈ MAP(p, q), then the communication complexity (promise)

problem CHammingw
⊕,ε has an MA communication complexity protocol with a proof of length

p and total communication 2q, where (following [BBM11]) CHammingw
⊕,ε refers to the commu-

nication complexity (promise) problem, in which Alice and Bob need to decide whether
their inputs have Hamming distance exactly n/2 or are ε-far from having such distance.

Thus, by Lemma 3.24, the theorem follows by reducing GHDn,n/2−εn,εn to CHammingw
⊕,ε , which

is done next. (We stress that this reduction takes place entirely in the context of MA
communication complexity.)

We note that both GHDn,n/2−εn,εn and CHammingw
⊕,ε are communication complexity (promise)

problems that refer to the Hamming distance ∆ (x, y) between the inputs x and y
(of Alice and Bob, respectively). In GHDn,n/2−εn,εn the YES-instances correspond to
∆ (x, y) ≥ n/2 and the NO-instances correspond to ∆ (x, y) ≤ n/2 − 2εn, whereas in

CHammingw
⊕,ε the YES-instances correspond to ∆ (x, y) = n/2 and the NO-instances corre-

spond to ∆ (x, y) /∈ [n/2− εn, n/2 + εn].

We proceed to show a reduction from GHDn,n/2−εn,εn to CHammingw
⊕,ε . Since the reduction

is between two MA communication complexity problems, we may allow the reduction to
make use of a proof string. Specifically, the reduction is given as a proof string an integer
d̃ ∈ {0, . . . , n} that allegedly equals ∆ (x, y), and maps a pair (x, y) ∈ {0, 1}n+n to a pair
(x′, y′) ∈ {0, 1}2n+2n such that a YES (resp., NO) instance of GHDn,n/2−εn,εn is mapped

to a YES (resp., NO) instance of CHammingw
⊕,ε .

The reduction, given input d̃ and (x, y), first checks that d̃ ≥ n/2 and rejects otherwise
(since ∆ (x, y) < n/2 does not correspond to a YES instance of GHDn,n/2−ε,εn). Then,
the reduction maps the pair (x, y) ∈ {0, 1}n+n to the pair (x′, y′) ∈ {0, 1}2n+2n by setting

x′ = x ◦ 0n and y′ = y ◦ 0d̃1n−d̃. That is, Alice (resp., Bob), given input x (resp., y)
and the alleged proof d̃, first checks that d̃ ≥ n/2 and then computes x′ (resp., y′). The

parties then run the CHammingw
⊕,ε MA communication complexity protocol on input (x′, y′).

If (x, y) is a YES-instance of GHDn,n/2−εn,εn (i.e., ∆ (x, y) ≥ n/2) and d̃ = ∆ (x, y)
(i.e., the provided proof is correct), then

∆ (x′, y′) = ∆ (x, y) + n− d̃ = n,

159

3. NON-INTERACTIVE PROOFS OF PROXIMITY

and so (x′, y′) is a YES-instance of CHammingw
⊕,ε . On the other hand, if (x, y) is a NO-instance

of GHDn,n/2−εn,εn (i.e., ∆ (x, y) ≤ n/2− 2εn), then for every d̃ ≥ n/2

∆ (x′, y′) = ∆ (x, y) + n− d̃ ≤ n− 2εn

and so (x′, y′) is a NO-instance of CHammingw
⊕,ε .

Let us spell out how the reduction is used to prove the theorem. Suppose that
Hammingw is in the class MAP(p, q), where p and q are as in the hypothesis. Then,

by Lemma 3.13, the CHammingw
⊕,ε problem has an MA communication complexity protocol

with proof complexity p and communication complexity 2q. Our reduction maps in-
puts of length n (of GHDn,n/2−εn,εn) to inputs of length 2n (of CHammingw

⊕,ε), while using
an additional proof of length log2 n. Thus, the reduction implies an MA communication
complexity protocol for GHDn,n/2−εn,εn with proof complexity p(2n) + log2 n = O(p(n))
and communication complexity 2q(2n) = O(q(n)). Hence, by Lemma 3.24, it holds that
p · q = Ω (min(n, ε−2)).

3.6.3 Graph Orientation Problems

In this section we apply Theorem 3.23 to the problem of testing graph orientations for
being Eulerian in the graph orientation model. In the graph orientation model, introduced
by Halevy et al. [HLNT05], an underlying directed graph G = (V,E) with a canonical
orientation (i.e., wherein each edge is directed from the vertex with the smaller lexico-
graphical order to the vertex with the larger lexicographical order) is given as an explicit
input to the tester, and the actual input, to which the tester only has oracle access, is an

orientation
−→
G = { d(e) ∈ {0, 1} : e ∈ E } of G, wherein d(e) represents the direction of

the edge e.
Given a property ΠG (parameterized by the fixed directed graph G) of graph orienta-

tions, a tester for ΠG is given query access to an orientation of G; that is, every query is
an edge e ∈ E, and the answer to the query is the direction of e in G (i.e., d(e) ∈ {0, 1}).
An orientation

−→
G of G is ε-close to ΠG if it can be modified to be in ΠG by inverting the

direction of at most an ε-fraction of the edges of G. Note that the distance function in the
orientation model naturally depends on the size of the underlying graph. Moreover, the
testing algorithm may strongly depend on the structure of the underlying graph. We note
that the graph orientation model falls within the standard property testing framework,
as a special case of property testing of massively parameterized problems (see [New10]
for a survey on massively parameterized properties).

We consider the graph orientation property of being Eulerian, which was first pointed
out by Halevy et al. [HLNT07] as a natural property for the graph orientation model.
Recall that a directed graph is Eulerian if for every vertex v in the graph, the in-degree of v
is equal to its out-degree. If G is a directed graph (with canonical orientation), we denote
by EulerG the property that contains all orientations of G to (directed) Eulerian graphs.
While no (non-trivial) upper bound is known for this property, Fischer et al. [FLM+12]
showed that for general graphs, testing proximity to being Eulerian with 1-sided error is

160

3.6 MAPs for Parametrized Concatenation Problems

hard. Specifically, They showed that for G = K2,n−2 (i.e., the full bipartite graph with
2 vertices on one side, and n − 2 vertices on the other side), a one-sided error tester for
EulerG must use Ω(n) queries.

Using Theorem 3.23 we show, for every α ∈ (0, 1], an MAP with 1-sided error for
EulerK2,n−2 , which uses a proof of length Õ(nα) and Õ(n1−αε−1) queries. Hence, we have
a smooth (up to poly-logarithmic factors) multiplicative trade-off between the query and
proof complexities of the MAP. We note that it seems that using similar techniques, it is
possible to obtain, using Theorem 3.23, efficient MAPs for several problems in the graph
orientation model.

Formally, let K2,n−2 be the graph with a set of vertices V = { v1, ..., vn } and a set of
edges E = { (vi, vj) : i ∈ {1, 2}, j ∈ { 3, ..., n } }.

Theorem 3.26. The property EulerK2,n−2 has a one-sided error MAP, with respect to
proximity parameter ε, that uses a proof of length O(k · log n) and has query complexity
Õ
(
n
k
· ε−1

)
.

Proof. The main idea is to divide K2,n−2 into sub-graphs of equal size, wherein v1 and v2

are the only vertices that appear in all sub-graphs. We require that for all j ∈ { 3, . . . , n },
the in-degree of vj is equal to its out-degree. However, since v1 and v2 appear in all of
the sub-graphs, we can allow their in-degree in each subgraph to be different than their
out-degree in this subgraph, as long as the sum of their in-degrees is equal to the sum of
their out-degrees.

We denote the in-degree of a vertex v ∈ K2,n−2 by din(v) and the out-degree of v ∈
K2,n−2 by dout(v). We start by considering the following generalization of the EulerK2,n−2

property. For every a, b ∈ Z, let Euler
(a,b)
K2,n−2

be the set of all orientations of K2,n−2 such
that:

1. din(v1)− dout(v1) = a.

2. din(v2)− dout(v2) = b

3. din(vj) = dout(vj), for all j ∈ { 3, . . . , n }.

(note that a and bmay be negative). Let Ā be the set of all sequences
(
(a1, b1), . . . , (ak, bk)

)
,

where ai, bi ∈ {−(n−2), . . . , n−2} for every i ∈ [k] and for which it holds that
∑k

i=1 ai = 0

and
∑k

i=1 bi = 0. Consider the property:

Π
def
=

⋃
(a1,b1),...,(ak,bk)∈Ā

Euler
(a1,b1)
K2,n/k−2

× . . .× Euler
(ak,bk)
K2,n/k−2

.

This property contains all sequences of k orientations of the graphs K2,n/k−2 such that
(1) the vertices on the “large” side have in degree that is equal to their out degree and (2)
for the vertices on the “small” sides, the sum, over all graphs, of their in-degree equals
the sum of their out-degrees. We note that there is a trivial mapping between Π and
EulerK2,n−2 which simply identifies the pair of vertices on the smaller side of graphs in Π
as a singe pair of vertices.

161

3. NON-INTERACTIVE PROOFS OF PROXIMITY

By applying Theorem 3.23 with c1 = 1, c2 = 0, and using the trivial tester (that
queries the entire orientation) for every subgraph, the property Π has an MAP with proof
of length O(k · log n), and query complexity Õ

(
n
k
· ε−1

)
. By the foregoing discussion, this

MAP can be easily modified to work also for the property EulerK2,n−2 .

3.7 Bipartiteness in Bounded Degree Graphs

In this section we consider the problem of testing bipartiteness for “rapidly-mixing”
graphs in the bounded-degree graph model. In a classical result, Goldreich and Ron [GR99]
showed that any graph can be tested for bipartiteness in the bounded-degree model, using
a tester with query complexity Õ(

√
N/ε), where N is the number of vertices in the tested

graph. Goldreich and Ron first consider the (far simpler) case in which there is a promise
that the graph is “rapidly-mixing” (see definition below). More recently, Rothblum, Vad-
han and Wigderson [RVW13] showed a 2-message IPP for bipartiteness, in the rapidly-
mixing case, with communication and query complexities that are poly(logN, ε−1).

Roughly speaking, using similar techniques to (the rapidly-mixing case in) [GR99],
we construct an MAP protocol for testing bipartiteness of rapidly-mixing graphs, with
proof complexity p and query complexity q for every p and q such that p · q ≥ N . Thus,
the query complexity of our MAP improves upon that of the [GR99] bipartiteness tester
(which does not use a proof) only if the proof is of length ω(

√
N). In particular, we

obtain an MAP verifier that uses a proof of length N2/3 and makes only N1/3 queries. In
contrast, a lower bound of Ω(

√
N) for testers (which do not use a proof) was shown by

Goldreich and Ron [GR02] (and this lower bound holds also in the rapidly-mixing case).
We leave the questions of (1) extending our result to graphs that are not rapidly-

mixing, and (2) obtaining an MAP for bipartiteness with query and proof complexities
that are both o(

√
N), for future research.

The Bounded Degree Graph Model. In the bounded degree graph model, intro-
duced by Goldreich and Ron [GR02] (see also [Gol11]), the object that is being tested is
a graph G = (V,E) with degree bounded by some constant d. The graph is represented
by a function g : V × [d] → V ∪ {⊥} such that g(u, i) = v if v is the ith vertex incident
at u, and g(u, i) = ⊥ if u has less than i neighbors. The distance between two graphs,
represented by functions g, g′ : V × [d]→ V ∪ {⊥} is measured (as usual) as the fraction
of pairs (u, i) such that g(u, i) 6= g′(u, i). For further details, see [Gol11].

Rapidly-Mixing Graphs. Let G = (V,E) be graph with degree bounded by d and

let N
def
= |V |. A (lazy) random walk of length ` starting at a vertex s ∈ V is a random

walk that involves ` steps. At each step, if the walk is currently at vertex v with degree
dv ≤ d, then the walk continues to each neighbor of v with probability 1/2d and stays at
v with probability 1− dv

2d
≥ 1/2 (a so-called “lazy” step). We say that G is rapidly-mixing

if for every s, t ∈ V , the probability that a (lazy) random walk of length Ω(logN) that
starts in s ends in t, is at least 1/(2N) and at most 2/N . We will use the fact that

162

3.7 Bipartiteness in Bounded Degree Graphs

in a rapidly-mixing graph G = (V,E), for every vertex s ∈ V and subset T ⊆ V , the
probability that a random walk of length Ω(logN) that starts at s ends in T , is at least
|T |/(2N) and at most 2|T |/N . We mention the well-known fact that expander graphs
are rapidly-mixing.

We proceed to describe our MAP. Actually since we require a promise that the graph
is rapidly-mixing, we will need a “promise-problem” variant of the notion of MAP. For
sake of brevity we only define this notion implicitly (in the next theorem).

Theorem 3.27. There exists a probabilistic verifier V that given oracle access to a graph
G of size N (in the bounded degree model), and explicit access to N , the degree bound d,
a proximity parameter ε ∈ (0, 1), and a proof string w of length k · logN , makes at most
Õ(N

k
· ε−2) oracle queries, and satisfies the following two conditions:

1. (Completeness:) if G is bipartite, then there exists a proof string w ∈ {0, 1}k logN

such that V G(N, d, ε, w) = 1, with probability 1.

2. (Soundness:) if G is rapidly-mixing and ε-far from every bipartite graph, then for
every proof string w, with probability at least 1/2, it holds that V G(N, d, ε, w) = 0.

Note that our tester has a one-sided error.

Proof. We define the parity of a (lazy) random walk as the parity of the number of actual
(i.e., non-lazy) steps that take place in it. Loosely speaking, the proof that the graph G is
bipartite is a subset S ⊆ V of k vertices that are allegedly on the same side of G. To verify
the proof, the verifier selects roughly O(logN) starting vertices, and takes approximately
N/k random walks of length O(logN) from each starting vertex s. If there exist two
random walks that start in s and end in S with different parities, then two corresponding
vertices in S must be on different sides and the verifier rejects. Otherwise, the verifier
accepts.

Since the graph is rapidly-mixing, the probability that a random walk that starts in
s ends in S is roughly |S|/N . The key point (which is proved formally below) is that if
the graph is far from bipartite, then for many starting vertices, the probability that the
random walk ends in S with parity 0 (or equivalently, with parity 1) is Ω (|S|/N). That
is, the probability of reaching S with either parity is significant enough. The protocol is
presented in Fig. 3.1.

Note that the proof and query complexities are as stated. We proceed to show that
completeness and soundness hold.

Completeness. If G = ((L,R), E) is a bipartite graph such that |L| ≥ |R|, and S ⊆ L is
the proof string, then there is no path between two vertices in S that has an odd length.
Therefore, for every vertex s ∈ V , there are no two paths with different parities that end
in S.

163

3. NON-INTERACTIVE PROOFS OF PROXIMITY

MAP for Bipartiteness of rapidly-mixing graphs (in the bounded degree graph model)

Input: oracle access to a graph G = (V,E), the size N
def
= |V | of the graph, a bound d on the

maximal degree in G, a proximity parameter ε ∈ (0, 1), and a parameter k ∈ [N].

The Proof:
Let V = (L,R) such that L,R are disjoint independent sets and |L| ≥ |R| (such a partition is
guaranteed if the graph is bipartite). The proof is an (arbitrary) subset S ⊆ L of size k.

The Verifier:

1. Repeat O
(

logN
ε

)
times:

(a) Select uniformly at random s ∈ V .

(b) Take O
(
N
k ·

logN
ε

)
(lazy) random walks starting at s, each of length `

def
= O(logN).

(c) Reject if there are two walks that end in S, having different parities.

2. If all of the previous tests passed, then accept.

Figure 3.1: MAP for Bipartiteness of rapidly-mixing graphs

Soundness. Suppose that G = (V,E) is a rapidly-mixing graph of size N = |V | that is
ε-far from every bipartite graph and let S ⊆ V . For every v ∈ V and σ ∈ {0, 1}, let pσv be
the probability that a (lazy) random walk of length ` = O(logN) that starts at v, ends

in S with parity σ. Since the graph is rapidly-mixing, p0
v + p1

v ≥
|S|
2N

for every v ∈ V .
The following claim shows that, for an average vertex v, the probability that one

random walk that starts at v ends in S with parity 0 and a second random walk that
starts at v ends in S with parity 1, is roughly Ω((|S|/N)2) (i.e., roughly the same as the
probability for two random walks that start at v to end in S without any restriction on
the parities of the walks).

Claim 3.24.1.
∑

v∈V p
0
vp

1
v >

ε|S|2
64`N

.

Proof. Suppose otherwise. Consider the following partition of the graph into (V0, V1)
where V0 = {v ∈ V : p0

v ≥ p1
v} and V1 = {v ∈ V : p1

v > p0
v}. Let E ′ = E(V0, V0) ∪

E(V1, V1) be the set of all internal edges within V0 and within V1. We will obtain a
contradiction by showing that G is ε-close to the bipartite graph ((V0, V1), E\E ′) that is
obtained from G by removing all edges in E ′.

For every v ∈ V and σ ∈ {0, 1}, let Aσv,m denote the event that a (lazy) random
walk of length m (where m is a parameter) that starts at v, ends in S with parity σ. In
particular, Pr[Aσv,`] = pσv . Then, for every σ ∈ {0, 1} and v ∈ Vσ, it holds that

p1−σ
v ≥

∑
u∈Vσ s.t. (v,u)∈E′

1

2d
· Pr[Aσu,`−1], (3.9)

164

3.7 Bipartiteness in Bounded Degree Graphs

since a walk from v to S with parity 1 − σ can be obtained by a step to one of the
neighbors of v in Vσ (which happens with probability 1/2d for each neighbor), and a walk
of length `− 1 from this neighbor u to S with parity σ (i.e., the event Aσu,`−1).

Intuitively, since we expect the number of lazy steps in a lazy random walk to be rather
large (at least `/2 in expectation), the probability that the event Aσu,`−1 occurs is closely
related to the probability that the event Aσu,` occurs (indeed, we expect the discrepancy
in the number of steps to be “hidden” by the (deviation of the number of) lazy steps).
The foregoing intuition is formalized by observing that with very high probability at least
one lazy step occurs and the probability that Aσu,` occurs, conditioned on a specific step
being lazy, is equal to the probability that Aσu,`−1 occurs. Indeed, by the union bound,

pσu = Pr[Aσu,`]

≤ Pr[Aσu,` ∧ no lazy steps in the walk] +
∑
i∈[`]

Pr[Aσu,` ∧ the ith step in the walk is lazy]

≤ Pr[no lazy steps in the walk] +
∑
i∈[`]

Pr[Aσu,` | the ith step in the walk is lazy]

We can bound the first term by 2−`, which by setting ` = log(4n), is at most 1/(4N).
As for the second term, the probability that a random walk of length ` from u ends in
S with parity σ conditioned on the ith step being lazy is equal to the probability that a
random walk of length `− 1 from u ends in S with parity σ. Hence

pσu ≤
1

4N
+ ` · Pr[Aσu,`−1] (3.10)

Using Eq. (3.9) and Eq. (3.10), we obtain that:∑
v∈V

p0
vp

1
v =

∑
σ∈{0,1}

∑
v∈Vσ

pσvp
1−σ
v

≥
∑

σ∈{0,1}

∑
(v,u)∈E′

s.t. v,u∈Vσ

pσv ·
Pr[Aσu,`−1]

2d

≥
∑

σ∈{0,1}

∑
(v,u)∈E′

s.t. v,u∈Vσ

pσv ·
1

2`d
·
(
pσu −

1

4N

)

≥ |E ′| · 1

2`d
· |S|

4N
· |S|

8N

where the last inequality follows from the fact that for every w ∈ Vσ it holds that
pσw ≥ (pσw + p1−σ

w)/2 ≥ |S|/4n.

Hence, by our hypothesis, |E ′| ≤ ε|S|2
64`N

·
(

1
2`d
· |S|

4N
· |S|

8N

)−1

= εdN . Therefore, by

removing an ε fraction of the edges of G we obtain a bipartite graph, in contradiction to
our assumption that G is ε-far from bipartite. This concludes the proof of Claim 3.24.1.

165

3. NON-INTERACTIVE PROOFS OF PROXIMITY

We say that a vertex v is good if p0
vp

1
v ≥

ε|S|2
128`N2 . (Intuitively, a vertex v is good if two

random walks that start at v are likely to end in S with different parities.) Let α ∈ [0, 1]
be the fraction of good vertices in V . By Claim 3.24.1,

ε|S|2

64`N
<
∑
v∈V

p0
vp

1
v =

∑
v is good

p0
vp

1
v +

∑
v is not good

p0
vp

1
v ≤ αN ·

(
2|S|
N

)2

+N · ε|S|2

128`N2
,

where the last inequality uses the fact that for every vertex v ∈ V it holds that p0
v · p1

v ≤
(p0
v + p1

v)
2 ≤ (2|S|/N)2. Hence, the fraction of good vertices is at least α = Ω(ε/ logN).

Hence, with probability at least 0.9, at least one of the starting vertices s (which
were selected in one of the O(logN/ε) iterations) is good. Assume that indeed, in one

of the iterations a good vertex s is selected. Hence, p0
sp

1
s ≥

ε|S|2
128`N2 and p0

s + p1
s ≤

2|S|
N

,

which implies that p0
s, p

1
s = Ω

(
|S|ε

N logN

)
. Therefore, since we take O

(
N
|S| ·

logN
ε

)
random

walks starting in s, with probability 0.9, there will be at least one walk thats ends in S
with parity 0 and one walk that ends in S with parity 1. Hence, the tester rejects with
probability at least 0.92 ≥ 1/2.

166

Appendix for Chapter 3

3.A Background

3.A.1 Communication Complexity

Let X and Y be finite sets, and let f : X × Y → {0, 1} be a function. In the two-party
probabilistic communication complexity model we have two computationally unbounded
players, traditionally referred to as Alice and Bob. Both players share a random string.
Alice gets as an input x ∈ X. Bob gets as an input y ∈ Y . At the beginning, neither
one of the players has any information regarding the input of the other player. Their
common goal is to compute the value of f(x, y), while minimizing the communication
between them. In each step of the protocol, one of the players sends one bit to the other
player. This bit may depend on the player’s input, the common random string, as well as
on all previous bits communicated between the two players. At the end of the protocol,
both players output f(x, y) with high probability.

We say that a given protocol π computes a (possibly partial) function f : X × Y →
{0, 1} if for every x ∈ X and y ∈ Y with probability at least 2/3 Alice outputs f(x, y)
after interacting with Bob.20 We define the communication complexity of the protocol
CC(π) to be the maximum number of communicated bits in the protocol π when Alice
and Bob are given inputs from X and Y respectively. The communication complexity of
a function f is defined as:

CC(f) = min
π that compute f

CC(π).

For a family of functions F = {fn : Xn → Yn}n∈N we define the communication
complexity of F as CCn(F) = CC(fn).

Set-Disjointness. The (unique) set-disjointness problem is the classical communica-
tion complexity problem wherein Alice gets an n-bit string x, Bob gets an n-bit string y,
and their goal is to decide whether there exists i ∈ [n] such that xi = yi = 1. Formally,

20In the case of a partial function, we consider only relevant x and y’s.

167

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Definition 3.25. For every n ∈ N, DISJn : {0, 1}n×{0, 1}n → {0, 1} is the communica-
tion complexity predicate given by the partial function

DISJn(x, y) =

{
1 if

∑
i∈[n] xiyi = 0

0 if
∑

i∈[n] xiyi = 1

(where the arithmetic is over the integers).

It is well-known (see [KS92]) that the communication complexity of the set-disjointness
problem is linear in the size of the inputs.

3.A.2 MA Communication Complexity

In MA communication complexity protocols, we have a function f : X × Y → {0, 1} (for
some finite sets X, Y), and three computationally unbounded parties: Merlin, Alice, and
Bob. The function f is known to all parties. Alice gets as an input x ∈ X. Bob gets as
an input y ∈ Y . Merlin sees both x, y but Alice and Bob share a private random string
that Merlin cannot see.

At the beginning of an MA communication complexity protocol, Merlin, who sees both
inputs x and y, sends a proof string w = w(x, y) that asserts that f(x, y) = 1 to Alice
and Bob. The two players exchanges messages and at the end of the protocol, (say) Alice
outputs an answer z ∈ {0, 1}. Note that the answer may depend on the proof w as well as
the input (x, y). For a protocol π, denote by π

(
(x, y), w

)
the probabilistically generated

answer z ∈ {0, 1} given by Alice on input (x, y) and proof w.

We define MA communication complexity protocol as follows.

Definition 3.26. An MA(c, p)-communication complexity protocol for f is probabilistic
communication complexity protocol π between Alice and Bob in which they both get as
input a p-bit proof, they can communicate at most c bits, and the protocol satisfies the
following two conditions:

1. Completeness: for all (x, y) ∈ f−1(1), there exists a string w ∈ {0, 1}p such that

Pr
[
π
(
(x, y), w

)
= 1
]
≥ 2/3

(where the probability is over the common random string).

2. Soundness: for all (x, y) ∈ f−1(0) and for any string w ∈ {0, 1}p we have

Pr
[
π
(
(x, y), w

)
= 1
]
≤ 1/3

(where the probability is over the common random string).

168

3.A Background

The MA Communication Complexity of Set-Disjointness. Recall that there is a
well-known linear lower bound on the communication complexity of the the set-disjointness
problem (DISJ) (see Section 3.3.1.3 for formal definitions and statement of the lower
bound). A decade after the communication complexity of DISJ was settled, Klauck
[Kla03, Kla11] showed the following lower bound on the MA communication complex-
ity of set-disjointness (later proved to be tight, by Aaronson and Wigderson [AW09]).

Theorem 3.28. Every MA communication complexity protocol for DISJn with proof com-
plexity p and communication complexity c satisfies p · c = Ω(n).

3.A.3 Error Correcting Codes

We first introduce codes as objects of fixed length and then give asymptotic variants
of the definitions. Let Σ be a finite alphabet. An error-correcting code (over Σ) is an
injective function C : Σk → Σn where k, n ∈ N and k < n. Every element in the range of
C is called a codeword. The stretch of the code is n (viewed as a function of k) and the
relative distance is defined as d/n, where d is the minimal distance between two (distinct)
codewords.

We say that the code C is a t-locally testable code (LTC), where t : [0, 1]→ N, if there
exists a probabilistic algorithm T that given oracle access to w ∈ Σn and a proximity
parameter ε > 0 makes at most t(ε) queries. The algorithm accepts every codeword with
probability 1, and rejects every string that is ε-far from the code with probability at least
1/2. For further details on LTCs, see [GS06, Gol10b].

We say that the code C, with relative distance δ0, is a t-locally decodable code (t-
LDC), where t ∈ N, if there exists a constant δ ∈ (0, δ0/2) called the decoding radius, and
a probabilistic algorithm D that given i ∈ [k] and oracle access to a string w ∈ {0, 1}n
that is δ-close to a codeword w′ = C(m) for some m ∈ {0, 1}k, makes at most t queries to
the oracle and outputs mi (i.e., the ith bit of m) with probability at least 2/3. Moreover,
if w is a codeword, then the algorithm outputs mi with probability 1. For further details
on LDCs, see [KT00].

An important parameter of both LTCs and LDCs are their query complexities; that
is, the number of queries t made to the string w. In both cases we are interested in codes
for which the number of queries t is significantly smaller than n. While there are known
LTCs with (almost) linear stretch and constant query complexity (i.e., t does not depend
on n), obtaining an LDC with constant query complexity and polynomial stretch is a
major open problem in coding theory.

We will also consider a relaxation of LDCs, introduced by Ben-Sasson et al. [BSGH+06],
known as relaxed-LDC. In this variant, the decoder is allowed to abort on corrupted code-
words. Indeed, the main advantage of relaxed-LDCs over standard LDCs is that there are
known constructions (see [BSGH+06]) of relaxed-LDCs with constant query complexity
and almost linear stretch.

169

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Definition 3.27 (relaxed-LDC, adapted from [BSGH+06, Definition 4.5]). We say that
the code C : Σk → Σn with relative distance δ0 is a t-relaxed-LDC if there exists a
constant δ ∈ (0, δ0/2) and a probabilistic algorithm D that, given an integer i ∈ [k] and
oracle access to a string w ∈ Σn, makes at most t queries and satisfies the following two
conditions:

1. If w = C(m) is a codeword that encodes the message m ∈ {0, 1}k, then D outputs
mi with probability 1.

2. If w is δ-close to a codeword w′ = C(m), then, with probability at least 2/3, the
decoder D outputs a value σ ∈ {mi,⊥}; that is, Pr[Dw(i) ∈ {mi,⊥}] ≥ 2/3.

We note that our definition differs from the original definition in [BSGH+06] in two ways.
The first difference is that [BSGH+06] require an additional, third, condition that we
do not need. (However, [BSGH+06] show that a code that satisfies conditions 1 and 2
above can be converted into an “equally good” code that satisfies also the additional
third condition.) The second difference is that [BSGH+06] only require that the decoder
succeed in decoding valid codewords with probability 2/3 whereas we require successful
decoding with probability 1. Fortunately, the constructions of [BSGH+06] actually satisfy
the stronger requirement.

The asymptotic variants of the foregoing definitions are obtained in the natural way
by considering families of codes, one for each input length. Let k : N → N be some
(sublinear) function an let {Σn}n∈N be an ensemble of alphabets. A family of codes is an
ensemble {Cn}n∈N such that Cn : (Σn)k(n) → (Σn)n is a code for every n ∈ N.

We say that the family of codes is a t-LTC for a function t : N × [0, 1] → N if for
every n ∈ N, the code Cn is a t(n, ·)-LTC. Similarly we say that a family of codes is a
t-LDC (resp., relaxed-LDC) for a function t : N→ N if for every n ∈ N, the code Cn is a
t(n)-LDC (resp., t(n)-relaxed-LDC). We sometimes abuse notation and refer to a family
of codes as a single code.

3.A.4 Multivariate Polynomials and Low Degree Testing

In this section we recall some important facts on multivariate polynomials (see [Sud95] for
a far more detailed introduction). In the following we fix a finite field F and a dimension
m and consider m-variate polynomials over F.

Lemma 3.28 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of
total degree d. Let S ⊂ F and let r1, . . . , rm be selected uniformly at random in S. Then,

Pr
r1,...,rm∈RS

[P (r1, . . . , rm) = 0] ≤ d

|S|
.

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct polynomi-
als P,Q : Fm → F of total degree d may agree on at most a d

|F| -fraction of their domain

(i.e., Fm).

170

3.A Background

Theorem 3.29 (Self-Correction Procedure (cf. [GS92, Sud95]). Let δ < 1/3, and d,m ∈
N. There exists an algorithm that, given x ∈ Fm and oracle access to an m-variate
function P : Fm → F that is δ-close to a polynomial P ′ of individual degree d, makes
O(d · m) oracle queries and outputs P ′(x) with probability 2/3. Furthermore, if P has
total degree t, then given x ∈ Fm, the algorithm outputs P (x) with probability 1.

In Theorem 3.29, as well as in the two following theorems, the error probability can
be decreased to be an arbitrarily small constant using standard error reduction (while
increasing the number of queries by a constant factor).

Theorem 3.30 (Total Degree Test (a.k.a. Low Degree Test) (see [RS96, Sud95, AS03]).
Let ε ∈ (0, 1/2), t,m ∈ N. There exists an algorithm that, given oracle access to an
m-variate function P : Fm → F, makes O(t · poly(1/ε)) queries and:

1. Accepts every function that is a polynomial of total degree t with probability 1; and

2. Rejects functions that are ε-far from every polynomial of total degree t with proba-
bility at least 1/2.

We will also need a more refined version of the test that tests the individual degree
of the polynomial. Such a test is implicit in [GS06, Section 5.4.2] but for sake of self-
containment we provide a full proof via a reduction to the total degree test.

Theorem 3.31 (Individual Degree Test). Let d,m ∈ N such that dm < |F|/10 and
ε ∈ (0, 1 − dm

|F|). There exists an algorithm that, given oracle access to an m-variate

polynomial P : Fm → F, makes O(dm · poly(1/ε)) queries, and:

1. Accepts every function that is a polynomial of individual degree d with probability
1; and

2. Rejects functions that are ε-far from every polynomial of individual degree d with
probability at least 1/2.

Proof. Given oracle access to the function P , the verifier T first runs the total degree test
on P with respect to proximity ε and total degree dm. If the total degree verifier rejects,
then T rejects.

If the test succeeds, then for every axis i ∈ [m], the verifier T chooses at random
r1, . . . , ri−1, ri+1, . . . , rm ∈R F, and runs a univariate degree d test on the polynomial

Qi(z)
def
= P (r1, . . . , ri−1, z, ri+1, . . . , rm) with soundness error 1/10. If for some axis i the

univariate test rejects, then T rejects, otherwise it accepts.

Completeness. Completeness follow from the completeness of the total degree test to-
gether with the fact that the restriction of an individual degree d polynomial to any of
its axes is a degree d univariate polynomial.

171

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Soundness. Suppose that P is ε-far from every polynomial of individual degree d. If P
is ε-far from every total degree dm polynomial, then the total degree test rejects with
probability 1/2. Thus, we focus on the case that P is ε-close to a total degree dm
polynomial P ′. In this case the polynomials P and P ′ are polynomials of total degree dm
and since ε < 1− dm

F , by the Schwartz-Zippel lemma, they must be identical. Thus, P is
a polynomial of total degree dm.

By the hypothesis, P cannot have individual degree d and therefore, there exists
i ∈ [m] such that P (x1, . . . , xm), as a formal polynomial, has degree d′ > d in xi. Thus,
there exist polynomials P0, . . . , Pd′ each of total degree at most dm such that

P (x1, . . . , xm) =
∑

j∈{0,...,d′}

Pj(x1, . . . , xi−1, xi+1, . . . , xm) · xji

and Pd′ 6≡ 0.

Since Pd′ is a non-zero polynomial of total degree dm, by the Schwartz-Zippel lemma,
it can vanish on only a dm

|F| fraction of its domain. Thus, when testing the ith axis, with

probability 1− dm
|F| , the verifier selects r1, . . . , ri−1, ri+1, . . . , rm ∈ F such that it guaranties

that Pd′(r1, . . . , ri−1, ri+1, . . . , rm) does not vanish. In this case, the polynomial Q(z)
def
=

P (r1, . . . , ri−1, z, ri+1, . . . , rm) is a degree d′ univariate polynomial and the verifier rejects
it with probability 0.9. Thus, the verifier rejects with probability at least 0.92 > 1/2.

3.A.5 The Sum-Check Protocol

In this appendix we provide some background on the sum-check protocol that was first
introduced by Lund et al. [LFKN92]. Recall that the sum-check protocol is an interactive
proof for a statement of the form∑

x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a (relatively) low-degree polynomial over a finite field F.

In order to verify that the polynomial P sums to 0 over Hm it suffices to verify that
for every h ∈ H, the sum of the sub-tensor (h, ∗, . . . , ∗) equals some value ah ∈ F and
that

∑
h∈H ah = 0. However, the straightforward recursion (which computes the sum of

every sub-tensor) will yield a total query complexity of Ω(Hm).

The sum-check protocol takes a different approach by having the prover convince
the verifier of the sum of just a single randomly selected sub-tensor (thus, yielding the
desired efficiency). More specifically, the verifier asks the prover to specify the sum of all
sum-tensors of the form (z, ∗ . . . , ∗) for every z ∈ F (rather than z ∈ H). A key point is
that these sums can be specified by the low-degree polynomial:

P1(z)
def
=

∑
x2,...,xm∈H

P (z, x2, . . . , xm).

172

3.B Proofs and Adaptations of Known Results

Since P1 has low-degree, if the prover provides a different (low-degree) polynomial P̃1,
then these two polynomials must differ on almost all points in F. Thus, it suffices for the
verifier to select at random a point r ∈R F and to have the prover recursively prove that∑

x2,...,xm∈H P (r1, x2, . . . , xm) = P̃1(r1). Hence, we reduced the m-dimensional TensorSum
problem to an (m− 1)-dimensional TensorSum problem using 2 messages and no queries.
The recursion terminates when m = 1 in which case the verifier can verify the claim
directly.

We note that when extending the sum-check protocol to be an IPP, we need to take
into account the possibility that P is not low degree but this is handled by using the low
degree test (Theorem 3.30) and self-correction (Theorem 3.29).

3.B Proofs and Adaptations of Known Results

In this section we provide proofs and adaptations of known results, which are included
here for completeness.

3.B.1 Proofs of Standard Claims from Section 3.5

In this section we provide the missing proofs of the standard claims used in Section 3.5.

Proof of Proposition 3.19. We show that every property Π = ∪n∈NΠn (where Πn ⊆
{0, 1}n) can be tested by making O(log |Πn|/ε) queries. Recall that the lemma can be
proved via learning theory techniques, but we provide an alternative proof that makes
use of the notion of MAPs.

Consider an MAP for Π in which the proof, of length log2 |Πn|, is an explicit and con-
cise description of the object x ∈ Πn (e.g., its index with respect to the lexicographical
ordering of the strings in Πn). The verifier can verify the proof by querying the object
x at O(1/ε) locations uniformly at random (and compare the answers to the string re-
constructed based on the proof). The lemma follows by noting that this MAP makes
proof-oblivious queries and applying Theorem 3.19, which guarantees that if Π has an
MAP verifier that makes q proof oblivious queries and uses a proof of length p, then Π
has a tester that makes O(p · q) queries without using a proof.

Proof of Proposition 3.20. We show that for every constant ε ∈ (0, 1/4] and set S ⊆
{0, 1}n it holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| · 2−n/8. Observe that

Pr
x∈R{0,1}n

[∃s ∈ S such that x is ε-close to s] ≤
∑
s∈S

Pr
x∈R{0,1}n

[x is ε-close to s]

= |S| · Pr
x∈R{0,1}n

[x has at most εn 1’s]

≤ |S| · exp(−2 · (1/4)2 · n).

where the first inequality follows from the union bound, and the last inequality follows
from the Chernoff bound and the fact that ε < 1/4.

173

3. NON-INTERACTIVE PROOFS OF PROXIMITY

Proof of Proposition 3.22. Let F be a class of functions of size at most 22n/4 . We show
that 99% of sets of size O(log |F|) are PRGs that fool F .

For every set S ⊆ {0, 1}n and function f ∈ F , let δf (S) = |Prx∈RS[f(x) = 1]− µf |
where µf

def
= Prx∈R{0,1}n [f(x) = 1]. Let s ∈ [2n/4] be an integer and let S be a random set

of size s. Then, for every f ∈ F it holds that

Pr
S

[δf (S) ≥ 1/10] = Pr
S

[∣∣∣∣ Pr
x∈RS

[f(x) = 1]− µf
∣∣∣∣ ≥ 1/10

]
≤ 2−Ω(t),

where the last inequality follows from the Chernoff bound.21 Thus, by the union bound,
the probability that for every f ∈ F it holds that δf (S) < 1/10, is at least |F| · 2−Ω(s)

(where the probability is over the choice of S). The lemma follows by setting s =
Θ(log |F|).

3.B.2 Precision Sampling

Proof of Claim 3.23.1. We show that there exists j ∈ [dlog2 2/εe] such that a 2jε
4·dlog2(2/ε)e

fraction of x1, . . . , xk are 2−j-far from their corresponding sub-properties Πα1

n/k, . . . ,Π
αk
n/k.

Let d
def
= dlog2(2/ε)e. Let ∆REL (z,W) be defined as the minimal relative Hamming

distance of z from the set W . For every j ∈ [d], let

Sj
def
=
{
i ∈ [k] : ∆REL

(
xi,Π

αi
n/k

)
∈
(
2−j, 2−(j−1)

]}
,

and let T = [k]\(∪i∈[d]Sj). Notice that the sets T, S1, S2, . . . , Sd form a partition of the k
inputs. Also note that, by our setting of d, for every i ∈ T , it holds that xi is ε/2-close
to Παi

n/k.

Suppose towards a contradiction that for every j ∈ [d] it holds that |Sj| < 2jε
4d
· k.

Using the fact that for every i ∈ Sj it holds that xi is 2−(j−1)-close to Παi , we get

∆REL

(
x,Πα1

n/k × . . .× Παk
n/k

)
≤ 1

k

k∑
i=1

∆REL (xi,Π
αi)

=
1

k

∑
i∈T

∆REL (xi,Π
αi) +

1

k

∑
j∈[d]

∑
i∈Sj

∆REL

(
xi,Π

αi
n/k

)
≤ |T |

k
· ε

2
+

1

k

∑
j∈[d]

2−(j−1) · |Sj|

<
ε

2
+
∑
j∈[d]

ε

2d

= ε,

21We note that since the set S is chosen with repetitions one cannot directly apply the Chernoff bound.
Still, since s ≤ 2n/4 the probability for a repetition is at most s2/2n ≤ 2−Ω(n). Conditioning on an event
(i.e., that there are no repetitions) that occurs with probability 1− δ can increase the probability by at
most a 1/(1− δ) factor.

174

3.B Proofs and Adaptations of Known Results

contradicting our assumption that x is ε-far from ΠĀ.

3.B.3 Lower Bound on the MA Communication Complexity of
GHD

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance problem is the promise problem
wherein Alice gets as input an n-bit string x, Bob gets as input an n-bit string y, and
the players need to decide whether the Hamming distance of their strings is greater than
t+ g (a YES instance), or smaller than t− g (a NO instance). Formally,

Definition 3.29. The Gap Hamming Distance problem is the communication complexity
problem of computing the (partial) Boolean function GHDn,t,g : {0, 1}n × {0, 1}n → {0, 1}
given by

GHDn,t,g(x, y) =

{
1 if ∆ (x, y) ≥ t+ g

0 if ∆ (x, y) ≤ t− g
.

We denote GHD
def
= GHDn,n

2
,
√
n.

The (standard) communication complexity of GHD has been studied extensively, and
after a long line of work, Chakrabarti and Regev [CR11] have shown the seminal linear
lower bound on the communication complexity of GHD (later, the proof was significantly
simplified by [Vid11, She11]).

In a subsequent work, Gur and Raz [GR13b] showed the following tight lower bound
on the MA communication complexity of GHD.

Theorem 3.32 ([GR13b]). Every MA communication complexity protocol for GHD, with
proof complexity p ≥ 1, has communication complexity at least Ω(n/p).

We note that the aforementioned lower bound can be extended for general settings of
the parameters of the Gap Hamming Distance problem. Specifically, we use the fact that
the simple reductions in [CR11, Section 4]) are based solely on padding arguments (and
thus are robust to MA) to obtain the following corollary.

Corollary 3.33. Let g, n ∈ N such that g ≤ n, let α ∈ (0, 1) and t = αn. Then, every
MA communication complexity protocol for GHDn,t,g, with proof complexity p ≥ 1, has

communication complexity at least Ω

(
min(n,(n/g)2)

p

)
.

175

176

Chapter 4

Proofs of Proximity for Context-Free
Languages and Read-Once
Branching Programs

4.1 Introduction

The field of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldreich,
Goldwasser and Ron [GGR98], studies a computational model that consists of probabilis-
tic algorithms, called testers, that need to decide whether a given object has a certain
global property or is far (say, in Hamming distance) from all objects that have the prop-
erty, based only on a local view of the object.

A line of work [EKR04, BSGH+06, DR06, RVW13, GR13b, FGL14, KR14] has con-
sidered the question of designing proof systems within the property testing model. The
minimal type of such a proof system, which was recently studied by Gur and Rothblum
[GR13b], augments the property testing framework by replacing the tester with a verifier
that receives, in addition to oracle access to the input, also free access to an explicitly
given short (i.e., sub-linear length) proof. The guarantee is that for inputs that have
the property there exists a proof that makes the verifier accept with high probability,
whereas, for inputs that are far from the property, the verifier will reject every alleged
proof with high probability. These proof systems can be thought of as the NP (or more
accurately MA) analogue of property testing, and are called Merlin-Arthur proofs of prox-
imity (MAP).1

A more general notion was considered by Rothblum, Vadhan and Wigderson [RVW13]
(prior to [GR13b]). Their proof system, which can be thought of as the IP analogue of
property testing, consists of an all powerful (but untrusted) prover who interacts with a
verifier that only has oracle access to the input x. The prover tries to convince the verifier

1A related notion is that of a probabilistically checkable proof of proximity (PCPP) [BSGH+06, DR06].
PCPPs differ from MAPs in that the verifier is only given query (i.e., oracle) access to the proof, whereas
in MAPs, the verifier has free (explicit) access to the proof. Hence, PCPPs are a PCP analogue of property
testing.

177

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

that x has a particular property Π. Here, the guarantee is that for inputs in Π, there
exists a prover strategy that will make the verifier accept with high probability, whereas
for inputs that are far from Π, the verifier will reject with high probability no matter
what prover strategy is employed. The latter proof systems are known as interactive
proofs of proximity (IPPs).2

The focus of this paper is identifying natural classes of properties that are known to
be hard to test, but become easy to verify using the power of a proof (MAP) or interaction
with a prover (IPP).

4.1.1 Our Results

One well-known class of properties that is hard to test is the class of context-free languages.
Alon et al. [AKNS00] showed that there exists a context-free language that requires
Ω (
√
n) queries to test (where here and throughout this work, n denotes the size of the

input) and a context-free language that requires Ω(n) queries to test with one-sided error.
Furthermore, there are no known (non-trivial) testers for general context-free languages.

Another interesting class is the class of languages that are accepted by small read-
once branching programs (ROBPs). Newman [New02] showed that the set of strings
accepted by any small width ROBP can be efficiently tested.3 More specifically, Newman
showed that width w ROBPs can be tested using (2w/ε)O(w) queries, where ε is the
proximity parameter. Bollig [Bol05] showed that Newman’s result cannot be extended
to polynomial-sized ROBPs, by exhibiting an O(n2)-sized ROBP that requires Ω(

√
n)

queries to test. No (non-trivial) testers for general ROBPs are known for width Ω(
√

log n).

In this work we consider the question of constructing efficient MAPs and IPPs for
these two classes.4 Here, by “efficient”, we mean that both the query complexity (i.e.,
the number of queries performed by the verifier to the input) and the proof complexity
(i.e., the length of the MAP proof) or communication complexity (i.e., the amount of
communication with the IPP prover) are small and, in particular, sub-linear5.

Our first pair of results are efficient MAPs for context-free languages and for ROBPs.
These MAPs offer a multiplicative trade-off between the query and proof complexities.
Here and throughout this work, n ∈ N specifies the length of the main input and ε ∈ (0, 1)
denotes the proximity parameter.

2Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a
single message sent from the prover to the verifier.

3The result in [New02] is stated only for oblivious ROBPs but in [Bol05, Section 1.3] it is stated that
Newman’s result holds also for general non-oblivious ROBPs.

4To see that these two classes do not contain each other, observe that the language {0i1j2i3j : i, j ≥
1}, which is not a context-free language [HMU06, Example 7.20], has a poly(n)-width ROBP (which
simply counts the number of repeated occurrences of 0, 1, 2 and 3). On the other hand, Kriegal and
Waack [KW88] showed that every ROBP for the Dyck2 language, which is a context-free language, has
size 2Ω(n).

5As pointed out in [GR13b], if we do not restrict the length of the proof, then every property Π can
be verified trivially using only a constant amount of queries, by considering an MAP proof that contains
a full description of the input.

178

4.1 Introduction

Theorem 4.1. For every context-free language L and every k = k(n) such that 2 ≤
k ≤ n, there exists an MAP for L that uses a proof of length O(k · log n) and has query
complexity O

(
n
k
· ε−1

)
. Furthermore, the MAP has one-sided error.

Theorem 4.2. If a language L is recognized by a size s = s(n) ROBP, then for every
k = k(n) such that 2 ≤ k ≤ n, there exists an MAP for L that uses a proof of length
O(k · log s) and has query complexity O

(
n
k
· ε−1

)
. Furthermore, the MAP has one-sided

error.

Hence, by setting k =
√
n, every context-free language and every language accepted

by an ROBP of size at most 2polylog(n), has an MAP in which both the proof and query
complexity are Õ (

√
n) (w.r.t. constant proximity parameter).

Next, we ask whether the query and proof complexity in Theorems 4.1 and 4.2 can be
significantly reduced by allowing more extensive interaction between the verifier and the
prover (i.e., arbitrary interactive communication rather than just a fixed non-interactive
proof). Very relevant to this question is a recent result of [RVW13] by which, loosely
speaking, every language in NC (which contains all context-free languages [Ruz81] and
languages accepted by small ROBPs6) has an IPP with Õ(

√
n) query and communication

complexities. While the [RVW13] result is more general, for context-free languages and
ROBPs it achieves roughly the same query and communication complexities as the MAPs
in Theorems 4.1 and 4.2, but uses much more interaction (i.e., at least logarithmically
many rounds of interaction compared to just a single message in our MAPs).

Using cryptographic assumptions7, Kalai and Rothblum [KR14] recently showed that
there exists a language in NC1 for which every IPP requires that either the query or
communication complexity be Ω(

√
n). Hence, we cannot hope to improve the [RVW13]

result in general. Still, for the special case of context-free languages and ROBPs, we
show that we can actually extend the MAP protocols in Theorems 4.1 and 4.2 into highly
efficient IPPs with only poly-logarithmic complexity (using a sub-logarithmic number of
rounds). More generally, our IPPs offer a trade-off between the number of rounds of
interaction and the query and communication complexities.

Theorem 4.3. For every context-free language L, every k = k(n) ≥ 2 and r = r(n) ≥ 1
such that kr ≤ n, there exists an r-round IPP for L with communication complexity
O
(
(rk log n) · ε−1

)
and query complexity O

(
n
kr
· ε−1

)
. Furthermore, the IPP is public-coin

and has one-sided error.

Theorem 4.4. If a language L is recognized by a size s = s(n) ROBP, then for every
k = k(n) ≥ 2 and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round IPP for
L with communication complexity O

(
(rk log s) · ε−1

)
and query complexity O

(
n
kr
· ε−1

)
.

Furthermore, the IPP is public-coin and has one-sided error.

6See Section 4.B for a discussion on why languages accepted by ROBPs can be computed in small
depth.

7A sufficient assumption for [KR14] is the existence of (length-doubling) PRGs that can be computed
in NC1 and whose output cannot be distinguished from random by circuits of size 2o(n).

179

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

(Interestingly, and in contrast to Theorems 4.1 and 4.2, here the communication complex-
ity also depends on the proximity parameter ε.) In particular, by setting k = log n and
r = logn

log logn
, we obtain IPPs for context-free languages and size 2polylog(n) ROBPs, with

a sub-logarithmic number of rounds, constant query complexity, and poly-logarithmic
communication complexity (w.r.t. constant proximity parameter).

A Remark on Computational Complexity. Following the property testing liter-
ature, we view the query complexity and the proof complexity (resp., communication
complexity) as the primary resources of an MAP (resp., IPP). Still, the running time of
the verifier and of the prover are also important resources. The proofs/provers in our
MAPs and IPPs are indeed efficient; that is, polynomial in the main input x (and in the
case of ROBPs also in the size of the ROBP).

As for our verifiers, those in Theorems 4.1 and 4.3 run in polynomial time (i.e.,
poly(|x|) time) rather than in sub-linear time as one might hope. However, by increasing
the round complexity in Theorem 4.3 by a poly-logarithmic factor, we can obtain an
IPP with sub-linear time verification. Constructing an MAP for context-free languages
with sub-linear time verification remains an interesting open question. The verifiers
in Theorems 4.2 and 4.4 run in sub-linear time if they are given a suitable (natural)
representation of the ROBP.8 See the technical sections (specifically Remark 4.7 and
Remark 4.16) for further details.

Improved Results for Specific Languages. The paradigm used for the general re-
sults in Theorems 4.1-4.4 can be extended to yield better results for specific languages.
A notable class of languages for which we obtain such an improvement is the class of
languages of balanced parentheses expressions (a.k.a the Dyck languages), which are

context-free languages, for which Parnas et al. [PRR01] showed a lower bound of Ω̃(n1/11)
for ordinary testers. Using special properties of the Dyck languages, we can improve on
the general result in Theorem 4.1 in this special case and obtain a somewhat more efficient
MAP for the Dyck languages. See details in Section 4.4.3.

4.1.2 Proof Overview

The proofs of Theorems 4.1 and 4.2 (i.e., the MAP results) will follow (roughly) as special
cases of the proofs of Theorems 4.3 and 4.4 (i.e., the IPP results), respectively. Hence, in
this overview we focus on the proofs of Theorems 4.3 and 4.4, while explaining how to
derive Theorems 4.1 and 4.2 as special cases.

The proofs of Theorems 4.3 and 4.4 share a common theme: For L that is either a
context-free language or is accepted by a ROBP, we show that every input x ∈ L can be
broken-down into k sub-problems (related to L) such that the following holds:

8Indeed, the running time of the verifier crucially relies on the specific representation of the ROBP.
We remark that there are other natural representations of ROBPs than the one we use, and for some of
these representations obtaining sub-linear running time may not be feasible.

180

4.1 Introduction

1. On the one hand, if x ∈ L, then there exists (1) a partition of [n] into sets S1, . . . , Sk
(each of size roughly n/k); and (2) languages L1, . . . ,Lk such that both (1) and (2)
have a concise representation, and, for every i ∈ [k], the projection of x on Si,
denoted x[Si], is in the language Li. Furthermore, if L is a context-free language
(resp., accepted by an ROBP), then the languages L1, . . . ,Lk are all “variants” of
context-free languages9 (resp., accepted by ROBPs).

2. On the other hand, if x is “far” from L, then for every concise representation of a
partition S1, . . . , Sk of [n] and languages L1, . . . ,Lk (of the type used in 1), for an
average i ∈ [k], it holds that x[Si] is proportionally “far” from Li.

By design, the partition S1, . . . , Sk as well as the corresponding languages L1, . . . ,Lk
depend on the entire input x, and so the verifier (who only has query access to x) cannot
generate them by itself. Instead, the concise representation of S1, . . . , Sk and L1, . . . ,Lk
will be specified by the prover (as a single message in the case of an IPP, or as the entire
proof string in the case of an MAP).

Given the latter, we construct an MAP as follows. The MAP verifier selects at random
a small subset I ⊆ [k] and, for every i ∈ I, reads all of x[Si] (which is of length roughly
n/k) and checks that x[Si] ∈ Li. Indeed, by the two foregoing conditions, if x ∈ L, then
x[Si] ∈ Li for every i ∈ [k], whereas if x is “far” from L, then, by an averaging argument,
for many i ∈ [k], it holds that x[Si] is proportionally “far” from Li (and in particular
x[Si] 6∈ Li), and the verifier will reject.

A natural approach for extending the foregoing MAP to an IPP is to have the verifier
send the set I (where I is chosen at random as in the MAP) to the prover, and then
recursively run |I| IPP protocols to check that x[Si] is close to Li, for every i ∈ I. In each
recursive call the input shrinks by (roughly) a factor of k. After the recursion reaches
depth r, where r is a predetermined bound on the number of rounds, the verifier can
simply read its entire current input (of length O(n/kr)) and decide whether to accept or
reject.

The foregoing approach indeed works, but because there is more than one recursive
call in each round, the complexity of the resulting IPP depends exponentially on the
number of rounds r. Instead, we use a more economical approach, which avoids the
exponential dependence on r, based on the notion of a proximity oblivious tester [GR11].
Recall that a proximity oblivious tester for a property Π is a tester that does not receive the
proximity parameter ε as input and is only required to reject inputs that are ε-far from
Π with probability proportional to ε (rather than probability 2/3). To present a more
economical recursion, the IPP that we design is similarly “proximity oblivious”. The idea
is to have the verifier select at random only a single index i ∈ [k], send i to the prover,
and then have the two parties recursively run an IPP protocol for verifying that x[Si] is
close to Li. Indeed, if x ∈ L then x[Si] ∈ Li, whereas if x is ε-far from L, then, since i
was chosen at random, on the average x[Si] is ε-far from Li, and therefore, by inductive

9If L is a context-free language, then the languages L1, . . . ,Lk will be variants of context-free lan-
guages, which we call “partial derivation languages”. However, if L is accepted by an ROBP, then the
languages L1, . . . ,Lk are also accepted by (different) ROBPs.

181

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

reasoning, the verifier will reject with probability ε. To obtain constant soundness we
can just repeat10 the entire proximity oblivious protocol O(1/ε) times in parallel.

This concludes the high-level description of our MAPs and IPPs. Of course, the way in
which the partition is generated is quite different in the case of context-free languages and
in the case of ROBP, and different technical problems arise in each case. In the following
subsections we discuss the specific details. In Section 4.1.2.1 we give an overview of how
to partition read-once branching programs. Partitioning context-free languages is more
involved, and so, in Section 4.1.2.2, as a warm-up, we first consider partitioning into two
parts (i.e., k = 2). Then, in Section 4.1.2.3 we show how to extend the technique to
multiple parts (i.e., general k ≥ 2).

4.1.2.1 Partitioning ROBPs

Recall that a branching program on n variables is a directed acyclic graph with a unique
source vertex with in-degree 0 and (possibly) multiple sink vertices with out-degree 0.
Each sink vertex is labeled with either 0 (i.e., reject) or 1 (i.e., accept). Each non-sink
vertex is labeled by an index i ∈ [n] and has exactly 2 outgoing edges, which are labeled
by 0 and 1. The output of the branching program B on input x ∈ {0, 1}n, denoted B(x),
is computed in a natural way by starting at the source vertex and taking a walk such that
at a vertex labeled by i ∈ [n], we traverse the outgoing edge labeled by xi. Once a sink
is reached, we output its label. The branching program is read-once (ROBP for short) if
along every path from source to sink, every index (i ∈ [n]) appears at most once. The
size of a branching program B, denoted |B|, is the number of vertices in it.

For any fixed ROBP B, we construct an IPP (and an MAP, which is a special case

of the IPP) for the language accepted by B, denoted LB
def
= {x ∈ {0, 1}n : B(x) = 1}.

In this overview, we make a simplifying assumption that B is both layered and ordered
(a.k.a., an ordered binary decision diagram or OBDD). That is, we assume that the
vertices of B are partitioned into n + 1 layers such that, for every i ∈ [n], edges only
go from layer i to layer i + 1; and vertices in layer i are labeled by the index i (i.e., the
ROBP reads its input “in order”).

The key idea, which enables the IPP verifier to generate the aforementioned partition
S1, . . . , Sk (together with the corresponding languages), is to have the prover specify k
evenly-spaced vertices along the accepting path corresponding to the input x ∈ LB. More
specifically, observe that x induces a path ϕ0 ϕ1 · · · ϕn from the start vertex ϕ0

to some accepting sink ϕn. The prover sends to the verifier a subsequence of this walk,
specifically the subsequence ϕn/k, . . . , ϕi·n/k, . . . , ϕn.

Given the subsequence, we can reduce the problem of verifying that there exists a path
of length n from ϕ0 to ϕn to verifying that there exists a path of length n/k between each
pair of consecutive vertices in the sequence ϕ0, ϕn/k, . . . , ϕi·n/k, . . . , ϕn. In other words, for
every i ∈ [k] we consider the ROBP Bi that consists only of layers (i−1) ·n/k up to i ·n/k
of B, with the starting state ϕ(i−1)·n/k and the (only) accepting state ϕi·n/k. Verifying

10As expected, parallel repetition reduces the soundness error of IPPs at an exponential rate. See
Section 4.A for details.

182

4.1 Introduction

that x ∈ LB can be reduced to verifying that x[Si] ∈ LBi , for every i ∈ [k], where Si ⊆ [n]

is the set of coordinates of x that are read by Bi and LBi
def
= {z ∈ {0, 1}n/k : Bi(z) = 1}.

Moreover, since S1, . . . , Sk is a partition of [n], if x is ε-far from LB, then x[Si] is ε-far
from LBi , for an average i ∈ [k]. Hence, we can follow the high-level outline that was
suggested in Section 4.1.2; that is, the IPP verifier selects i ∈ [k] at random, sends i to
the prover, and then the two parties recursively run an IPP protocol to verify that x[Si]
is close to the LBi .

The foregoing intuition almost works but there is a subtle problem: What if the
message sent by a cheating prover is such that LBi∗ is empty, for some i∗ ∈ [k]. This
corresponds to a situation in which the branching program B contains no path from
ϕ(i∗−1)·n/k to ϕi∗·n/k. In such case, with high probability (i.e., if the verifier chooses i such
that i 6= i∗) the verifier, as described so far, will not notice this fact and may accept
inputs that are far from LB.

We overcome this difficulty by observing that when the verifier interacts with the
honest prover, it holds that x[Si] ∈ LBi for every i ∈ [k], and therefore LBi 6= ∅. Hence,
we can have the verifier explicitly check that LBi 6= ∅ for every i ∈ [k] (i.e., that there
exists some input that leads from ϕ(i−1)·n/k to ϕi·n/k in B). This check requires direct and
full access to the branching program B (which is fixed) but does not require any queries
to the input x, and so we can perform it for every11 i ∈ [k].

Given this additional check, we can show that the foregoing IPP works. To do so, we
argue by induction on the number of rounds that if the input x is ε-far from L then the
verifier rejects with probability at least ε. Indeed, if x is ε-far from LB, then in the first
round we have that:

Pr
[
Verifier for LB rejects x

]
= E

i

[
Pr
[
Verifier for LBi rejects x[Si]

]]
≥ E

i

[
εi
]

≥ ε,

where εi denotes the relative distance of x[Si] from LBi , for every i ∈ [k], and the first
inequality follows from the induction hypothesis.

We remark that when dealing with general ROBPs, rather than OBDDs, there are
several additional technical difficulties. In particular, since B is not layered, we have to
modify our definition of Bi (which previously consisted of layers (i − 1) · n/k to i · n/k
of B). A natural approach is to define Bi to consist of all paths (in B) of length n/k
starting at ϕ(i−1)·n/k.

12 The difficulty is that Bi may depend on many, possibly even all,
of the bits of x (since different paths may look at different bits), rather than just n/k
bits (as was the case for OBDDs). Hence, the input does not necessarily shrink in the
recursive step. Nevertheless, we resolve this issue by showing that the effective length of

11However, this check does increase the running time of the verifier (which we view as a secondary
resource) to poly(|B|). This computation can be minimized by using a pre-processing step in which we
compute a |B| × |B|-sized table whose (v, u)th entry says whether the vertices v and u are connected in
B.

12The actual definition of Bi that we use is different. See Section 4.3 (in particular Footnote 18).

183

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

the input, which is the number of bits that need to be read in order to determine whether
the ROBP accepts, does shrink, and this suffices to make progress in the recursion. For
further details, see Section 4.3.

4.1.2.2 Partitioning Context-Free Languages into Two Parts

Recall that a context-free grammar is a tupleG = (V,Σ, R,Astart), where V = {A1, A2, . . . }
denotes a (finite) set of variables, Σ = {σ1, σ2, . . . } denotes a (finite) set of terminal
symbols (i.e., the alphabet), R is a set of production rules (e.g., rules of the form
A7 → σ5A3A9σ8A2) and Astart ∈ V denotes a special “start” variable. We say that a

string α ∈ (Σ ∪ V)∗ is derived from a variable Aj, denoted by Aj
∗⇒ α, if α can be

obtained from Aj by iteratively applying production rules in R. Each such derivation
can be described by a derivation tree, which is a rooted, directed, ordered, and labeled
tree (with edges oriented away from the root), where the root is labeled by Aj, the leaves
are labeled by the sybmols of α (in order), and the children of each vertex in the tree
correspond to an application of a production rule in G. The language L ⊆ Σ∗ generated
by G consists of all strings that can be derived from Astart using the production rules in
R.

Let L be a context-free language and let G = (V,Σ, R,Astart) be the context-free
grammar that generates L. In this section we show how to partition x ∈ L into two
parts. Next, in Section 4.1.2.3, we show how to extend this technique to multiple parts.

For x ∈ L (i.e., Astart
∗⇒ x), there exists a derivation tree T corresponding to the

derivation Astart
∗⇒ x. For simplicity, let us assume that T is a binary tree. The root of

T is labeled by Astart and the leaves are labeled, in order, by x1, . . . , xn, where n
def
= |x|.

Recall that the Lewis-Stearns-Harmanis Lemma [LSH65] states that every binary tree on
n leaves has a subtree13 with a number of leaves between n/3 and 2n/3. Applying this
lemma to T , we can find such a subtree T ′ of T . Observe that T ′ induces a partition of
[n] into two parts S1, S2 ⊆ [n], where S1 (which is actually an interval) contains all the

leaves of T that belong to T ′ and S2
def
= [n]\S1 contains all other leaves. The IPP prover

finds T ′ and sends S1 and A1 to the verifier, where A1 is the label of the root of T ′. Since
S1 is an interval, the latter requires only O(log n) communication.

Given (S1, A1), the verifier can construct the partition and the corresponding lan-
guages, where the partition is simply (S1, S2) and the languages are

L1
def
=
{
w ∈ Σ|S1| : A1

∗⇒ w
}

and

L2
def
=
{
w ∈ Σ|S2| : A2

∗⇒ w[1, . . . , s− 1] ◦ A1 ◦ w[s, . . . , |S2|]
}
,

where A2
def
= Astart and s ∈ [n] is the starting position of the interval S1 in [n].

13Here and throughout this work, by a subtree, we mean a node of the tree together with all of its
descendants, see also Section 4.2.3.

184

4.1 Introduction

Note that L2 is not quite a context-free language (although L1 is). Rather, L2 consists
of strings that correspond to partial derivations (i.e., derivation processes that end before
all symbols are terminals) starting from Astart that produce strings that have the variable
A1 in their sth coordinate. We refer to such languages, which we view as generalization
of context-free languages, as partial derivation languages, and for the recursion to go
through, we actually design the original protocol to handle not only context-free languages
but also partial derivation languages.

Observe that if x ∈ L, then clearly x[S1] ∈ L1 and x[S2] ∈ L2. On the other hand,
suppose that x[S1] is ε1-close to a string z1 ∈ L1 and x[S2] is ε2-close to a string z2 ∈ L2.
If we choose i ∈ {1, 2} at random, such that Pr[i = 1] = |S1|/n and Pr[i = 2] = |S2|/n,

then x is Ei[εi]-close to the string z = z2[1, . . . , s− 1] ◦ z1 ◦ z2[s, |S2|]. Since A1
∗⇒ z1 and

Astart
∗⇒ z2[1, . . . , s − 1] ◦ A1 ◦ z2[s, . . . , |S2|] (because z1 ∈ L1 and z2 ∈ L2), we deduce

that Astart
∗⇒ z, and therefore z ∈ L. Hence, x is Ei[εi]-close to L.

Given the above, we can design an IPP for L similarly to the IPP for ROBP that was
described in Section 4.1.2.1. Specifically, given (S1, A1), the verifier chooses at random
i ∈ {1, 2} according to the distribution above, sends i to the prover, and both parties run
the protocol recursively, with respect to the language Li and the input x[Si].

4.1.2.3 Partitioning Context-Free Languages into Multiple Parts

The first step in partitioning context-free languages into multiple parts is a generalization
of the Lewis-Stearns-Hartmanis lemma that shows that, for every desired parameter
t ∈ [n], every (constant degree) tree T with n leaves has a subtree with roughly t leaves.
The precise statement of the lemma and its proof are given in Lemma 4.5 below.

Using Lemma 4.5, we can partition an input x ∈ L into k parts of (roughly) the same
size in the following way. As before, we construct a derivation tree T corresponding to
the derivation Astart

∗⇒ x. However, this time we use Lemma 4.5 to find a subtree T1

with roughly n/k leaves. The coordinates of the leaves of T1 constitute the first part of
the partition (denoted by S1). To find the second subtree, we remove the entire subtree
T1 from T , except for its root. We obtain a new tree T ′ with (roughly) n − n

k
leaves,

where one of the leaves of T ′ is labeled by a variable rather than a terminal. By applying
Lemma 4.5 again on the new tree T ′, we can find a subtree T2 of T ′ with roughly n/k
leaves. The second part (denoted by S2) of our partition will consist of the coordinates
of all the leaves of T2 that are labeled by terminals (i.e., are also leaves of the original
tree T). We stress that S2 may not be an interval (but rather two intervals separated by
S1).

We proceed similarly, where in each iteration we remove the subtree that was found in
the previous iteration (except for its root) and find a new subtree Ti of T with roughly n/k
leaves. The subtrees T1, T2, . . . , Tk induce a partition of [n] where the ith part, denoted
Si (of size roughly n/k), consists of all leaves of Ti that are labeled by terminals (i.e., are
leaves of the original tree T) but do not belong to S1 ∪ · · · ∪ Si−1.

While the representation of a general partition of [n] into k parts requires n · log2(k)
bits, we show that the partition S1, . . . , S` actually has a concise representation. Indeed,

185

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

each subtree Ti induces an interval Ii ⊆ [n], which contains all of its leaves (but potentially
also coordinates of other parts in the partition). Given I1, . . . , I`, the partition S1, . . . , S`
is uniquely determined (by setting Si = Ii\(I1 ∪ · · · ∪ Ii−1)). We remark that each pair
of intervals can be either disjoint or nested (i.e., either Ii ∩ Ij = ∅ or Ii (Ij).

In light of the foregoing discussion, the prover can send to the verifier the intervals
I1, . . . , Ik and the variables A1, . . . , A` of the roots of the subtrees T1, . . . , Tk (respectively).
Note that the root of the last subtree Tk is in fact the root of the original derivation tree
T (and thus Ak = Astart) and that its corresponding interval Ik is [n].

Let Ii1 , . . . , Iik be the ordered (from left to right) maximal intervals of Ik = [n]. That
is, the (disjoint) intervals that are contained in Ik but are not contained in any of the
other intervals. Observe that if the intervals were generated as prescribed, then Astart

yields a string x′ (composed of terminals and variables) that results from x by replacing
the substring x[Iij] with the variable Aij , for every j ∈ [k]. Denote the language that
contains all such strings by Lk. Similarly, for any interval Iij ∈ {Ii1 , . . . , Iik}, observe
that Aij yields the string that results from x[Iij] by replacing coordinates in the maximal
intervals that Iij contains with the corresponding variables. Denote the language of all
such strings by Lij . We show that by applying this idea iteratively we obtain languages
L1, . . . ,Lk such that (1) if x ∈ L, then x[Si] ∈ Li for every i ∈ [k]; and (2) if x is ε-far
from L, then x[Si] is ε-far from Li, for an average i ∈ [k], where the average is weighted
proportionally to the sizes of S1, . . . , Sk.

Given the partition above, verifying that x ∈ L is reduced to testing that the sub-
input x[Si] is close to Li, for i ∈ [k] distributed as above. Hence, as before, the verifier
chooses i at random, sends i to the prover and the two parties recursively run an IPP for
verifying that x[Si] is ε-close to Li.

We emphasize that, as was the case for k = 2, the languages L1, . . . ,Lk are not
necessarily context-free languages but are rather “partial derivation languages”. Indeed,
for the recursion to go through, we design the IPP to work for such languages (rather
than just context-free languages).

4.1.2.4 Digest and Relation to Concatenation Problems

The proofs of Theorems 4.1-4.4 are based on a natural paradigm for designing proofs of
proximity. This paradigm consists of two steps: (1) partition the problem into smaller
related sub-problems, and (2) verifying a small random sample of the sub-problems.
This basic approach was taken by [RVW13] in their construction of an IPP for the Ham-
ming weight problem (i.e., approximating whether a given string has Hamming weight
n/2). The partitioning in this case is into several intervals of equal length and the IPP
prover specifies the Hamming weight of each substring. A more general instantiation of
this paradigm was used in [GR13b] to construct MAPs for parameterized concatenation
problems. Loosely speaking, a language L is a parameterized concatenation problem if
L = Lα1 × · · · × Lαk , for some integer k, where each language Lαi is a language parame-
terized by αi; thus, the partitioning is done by providing the parameters α1, . . . , αk.

In this work we significantly extend the foregoing framework in several aspects: The

186

4.2 Preliminaries

partition is not restricted to contiguous intervals, but is rather more involved and depends
more dramatically on the structure of the specific language and, moreover, also on the
specific input. Furthermore, whereas for concatenation problems the parameterization of
each problem is “light” (typically having a logarithmic description length), in our settings
the parameterization can be quite extensive, as in massively parameterized problems (see
survey by Newman [New10]).

4.1.3 Organization

In Section 4.2 we provide the necessarily preliminaries regarding proofs of proximity,
context-free languages, and branching programs. In Section 4.3 we construct MAPs and
IPPs for languages accepted by ROBPs (with additional discussion on testing affine sub-
spaces in Section 4.3.3). In Section 4.4 we construct MAPs and IPPs for context-free lan-
guages (with additional discussion on the Dyck languages in Section 4.4.3). Sections 4.3
and 4.4 can be read independently of each other. We note that the implementation of the
outline provided in Section 4.1.2 is far more involved in the case of context-free languages.

4.2 Preliminaries

We begin with some standard notations:

• We denote the concatenation of two strings x ∈ Σn and y ∈ Σm (over a common
alphabet Σ) by x ◦ y ∈ Σn+m.

• We denote the absolute distance between two (equal length) strings x ∈ Σn and y ∈
Σn by ∆ (x, y)

def
= |{xi 6= yi : i ∈ [n]}|, and their relative distance by ∆REL (x, y)

def
=

∆(x,y)
n

. If ∆REL (x, y) ≤ ε, we say that x is ε-close to y, and otherwise we say that
x is ε-far from y. Similarly, we denote the absolute distance of x from a non-empty

set S ⊆ Σn by ∆ (x, S)
def
= miny∈S ∆ (x, y) and the relative distance of x from S by

∆REL (x, S)
def
= miny∈S ∆REL (x, y). If ∆REL (x, S) ≤ ε, we say that x is ε-close to S,

and otherwise we say that x is ε-far from S.

• We denote the projection of a string x ∈ Σn to a subset of coordinates S ⊆ [n] by
x[S]. For every i, j ∈ [n], we denote by x[i, j] the projection of x to the interval
[i, j] (if i > j then the interval is empty).

• We denote by Ax(y) the output of algorithm A, given direct access to input y and
query (i.e., oracle) access to the string x. Given two interactive machines A and
B, we denote by (Ax, B(y))(z) the output of A when interacting with B, where A
(resp., B) is given oracle access to x (resp., direct access to y) and both parties
have direct access to z.

187

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Integrality. Throughout this work, for simplicity of notation, we use the convention
that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the closest integer.

4.2.1 Property Testing, MAPs and IPPs

In this section we define testers, MAPs and IPPs. Actually, testers and MAPs will be
defined as restrictions of IPPs.

4.2.1.1 IPP

We define a language, over an alphabet Σ, as an ensemble L def
= ∪n∈NLn, where Ln ⊆ Σn

for every n ∈ N. The definition of an IPP is a natural extension of the standard definition
of IP (interactive proof) where the main distinction is that the verifier only has oracle
access to the input. Also, since our focus is on the query and communication complexities,
we do not restrict the computational complexity of the verifier (see discussion at the end
of Section 4.1).

Definition 4.1 (Interactive Proof of Proximity (IPP) [EKR04, RVW13]). An interactive
proof of proximity (IPP) for the language L = ∪n∈NLn is an interactive protocol with
two parties: a (computationally unbounded) prover P, which has free access to input
x, and a verifier V, which is a probabilistic computationally unbounded algorithm which
has oracle access to x. The parties send messages to each other, and at the end of the
communication, the following two conditions are satisfied:

1. Completeness: For every n ∈ N, proximity parameter ε > 0 and x ∈ Ln it holds
that

Pr [(Vx,P(x))(n, ε) = 1] ≥ 2/3.

where the probability is over the coin tosses of V.

2. Soundness: For every n ∈ N, ε > 0, and x ∈ {0, 1}n that is ε-far from Ln and for
every computationally unbounded (cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n, ε) = 0] ≥ 2/3.

where the probability is over the coin tosses of V.

If the completeness condition holds with probability 1, then we say that the IPP has a one-
sided error and otherwise the IPP is said to have a two-sided error. If all of the verifier’s
messages are uniformly distributed and independent random strings then the IPP is said
to be public-coin.

An IPP for L = ∪n∈NLn is said to have query complexity q : N × R+ → N if, for
every14 n ∈ N, ε > 0 and x ∈ Ln, the verifier V makes at most q(n, ε) queries to x when

14We measure the resources used in the protocol only when the verifier interacts with the honest
prover. However, in the general case, the verifier can simply halt once one of its resources exceeds the
corresponding bound (since it knows that it must be interacting with a cheating prover).

188

4.2 Preliminaries

interacting with P . The IPP is said to have communication complexity c : N×R+ → N if,
for every n ∈ N, ε > 0 and x ∈ Ln, the communication between V and P consists of at
most c(|x|, ε) bits. A round of communication consists of a single message sent from the
verifier to the prover followed by a single message sent from the prover to the verifier.
The IPP is said to have r rounds (sometimes called an r-round IPP), for r : N×R+ → N
if, for every n ∈ N, ε > 0 and x ∈ Ln, if the number of rounds in the interaction between
V and P on input x is at most r(|x|, ε).

The standard definition of a property tester may be derived from Definition 4.1 by
restricting the communication complexity to 0. The definition of an MAP can be derived
by restricting the communication to be only from the prover to the verifier (see [GR13b]
for further details on MAPs).

Non-uniform IPPs. While Definition 4.1 refers to a uniform definition of IPP, through-
out this work it will be convenient for us to use a non-uniform definition. That is, we fix
an integer n ∈ N, which we think of as a variable parameter, and restrict Definition 4.1
to inputs of length n. Hence, unless stated otherwise, by an IPP we actually mean the
non-uniform variant. Despite the fact that the integer n is fixed, we view it as a generic
parameter and allow ourselves to write asymptotic expressions such as O(n). We also
note that while our results are proved in terms of non-uniform IPP, they can be extended
to the uniform setting in a straightforward manner.

4.2.1.2 Proximity Oblivious IPP

Extending the notion of proximity oblivious testers [GR11], we define a proximity oblivious
IPP, as a variant of an IPP in which neither party receives the proximity parameter as
input and for every ε > 0, the verifier is required to reject inputs that are ε-far from the
language with some probability ρ(ε).

Definition 4.2 (Proximity Oblivious IPP). Let ρ : (0, 1]→ (0, 1] be a monotone function.
A proximity oblivious IPP with detection probability ρ, for the language L = ∪n∈NLn is
similar to Definition 4.1, except that the neither the verifier nor the prover15 receive
the proximity parameter as input, and the completeness and soundness conditions are
modified as follows:

1. Completeness: For every n ∈ N, and x ∈ Ln it holds that16

Pr [(Vx,P(x))(n) = 1] = 1.

15Since we do not bound the computational resources of the prover, it can simply deduce the proximity
parameter from the input.

16Note that we require the verifier to accept inputs x ∈ L with probability 1. A more general definition
could allow this probability to be some smaller constant or even a function of ε (see [GS12]). For simplicity
(and since it suffices for our purposes), in this work we only consider proximity oblivious IPPs with perfect
completeness.

189

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

2. Soundness: For every n ∈ N, every x ∈ Σn, and for every computationally un-
bounded (cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n) = 0] ≥ ρ
(
∆(x,Ln)

)
In both condiditons the probability is over the coin tosses of V.

Note that any proximity oblivious IPP with detection probability ρ(·), can be trans-
formed into a standard IPP (as in Definition 4.1) by repeating the proximity oblivious IPP
O(1/ρ(ε)) times in parallel (see Section 4.A for details on parallel repetition for IPPs).

4.2.2 Read-Once Branching Programs (ROBPs)

In this section we provide the necessary background on ROBPs (needed only for Sec-
tion 4.3). An ROBP is defined as follows

Definition 4.3 (ROBP). A branching program on n variables is a directed acyclic graph
that has a unique source vertex with in-degree 0 and (possibly) multiple sink vertices with
out-degree 0. Each sink vertex is labeled either with 0 (i.e., reject) or 1 (i.e., accept).
Each non-sink vertex is labeled by an index i ∈ [n] and has exactly 2 outgoing edges,
which are labeled by 0 and 1.

The output of the branching program B on input x ∈ {0, 1}n, denoted B(x), is the
label of the sink vertex reached by taking a walk, starting at the source vertex such that
at every vertex labeled by i ∈ [n], the step taken is on the edge labeled by xi.

The branching program is said to be read-once (or ROBP for short) if along every path
from source to sink, every index i ∈ [n] appears at most once. The size of a branching
program B, denoted |B|, is the number of vertices in its graph.

Let ϕ and ψ be vertices in the branching program B on n variables and let x ∈ {0, 1}n.

Loosely speaking, we write ϕ
x,k

ψ if the walk of length k corresponding to x that starts
at ϕ ends at ψ. Note that only k coordinates of x are read (adaptively) in this walk and

that ϕ itself only determines the first variable read. Formally, we write ϕ
x,1

ψ if the edge
(ϕ, ψ) appears in B and is labeled by xi, where i is the label of ϕ, and we (inductively)

write ϕ
x,k

ψ if there exists a vertex ζ in B such that ϕ
x,1

ζ and ζ
x,k−1

ψ.

4.2.3 Context-Free Languages

In this section we provide the necessary background on context-free languages (needed
only for Section 4.4). To define context-free languages, we first define context-free gram-
mars (see [HMU06] for more details).

Definition 4.4 (Context-free grammar). A context-free grammar is a tuple G = (V,Σ, R,Astart)
such that V is a (finite) set of symbols, referred to as variables; Σ is a (finite) set of sym-
bols, referred to as terminals; R ⊆ V ×(V ∪Σ)∗ is a (finite) relation, where each (A,α) ∈ R
is referred to as a production rule and is denoted by A→ α; Astart ∈ V is a variable that
is referred to as the start variable.

190

4.2 Preliminaries

Let G = (V,Σ, R,Astart) be a context-free grammar, and let α, β ∈ (V ∪Σ)∗ be strings
of terminals and variables. We say that α directly yields β, denoted by α ⇒ β, if there
exists a production rule A→ γ in R such that β is obtained from α by replacing exactly
one occurrence of the variable A in α with the string γ ∈ (V ∪Σ)∗. We say that α yields β,

denoted α
∗⇒ β if there exists a finite sequence of strings α0, . . . , αk ∈ (V ∪Σ)∗ such that

α0 = α, αk = β, and α0 ⇒ . . . ⇒ αk. The language Ln ⊆ Σn is a context-free language
if there exists a grammar G = (V,Σ, R,Astart) such that Ln = {x ∈ Σn : Astart

∗⇒ x},
where the derivation is with respect to the rules in R.

Derivation Tree. Let G = (V,Σ, R,Astart) be a context-free grammar. For A ∈ V and

x ∈ Σ∗, a derivation tree, corresponding to the derivation A
∗⇒ x, is a rooted, directed,

ordered, and labeled tree T (with edges oriented away from the root) that satisfies the
following properties:

• Each internal vertex is labeled by some variable, and the root is labeled by the
variable A.

• Each leaf is labeled by a terminal symbol, where the ith leaf is labeled by the ith

symbol of x.

• For every internal vertex v, if v is labeled by the variable A′ ∈ V and for every
i ∈ [k] (where k is the number of children of v) the ith child of v is labeled by
αi ∈ V ∪ Σ, then the production rule A′ → α0 ◦ · · · ◦ αk must belong to R.

For every derivation A
∗⇒ x there exists a corresponding derivation tree.

Trees and the Lewis-Stearns-Hartmanis Lemma. In this work we only consider
trees that are rooted, directed, and ordered (e.g., derivation trees as above). Thus,
throughout this work, whenever we say tree we mean a rooted, directed, and ordered tree
(with edges oriented away from the root). Note that the fact that the tree is ordered
induces an ordering of its leaves. We define the arity of a tree to be the maximal number
of children of any vertex in the tree. We follow the data-structure literature and define a
subtree of a tree T as a tree consisting of a node in T and all of its descendants in T .17

For a tree T , we denote by L(T) the number of leaves of T . We will use the following
straightforward generalization of the Lewis-Stearns-Hartmanis Lemma [LSH65]:

Lemma 4.5. Let T be a tree with arity d and let t ∈ [L(T)]. Then, there exists a subtree
T ′ of T with L(T ′) ∈ [t/d, t] leaves.

The Lewis-Stearns-Hartmanis lemma corresponds to the special case of Lemma 4.5 in
which d = 2 (i.e., a binary tree) and t = 2n/3.

17This definition differs from the graph-theoretic definition that defines a subtree as any connected
subgraph of a tree. For example, the root of a tree is a subtree in the graph theoretic sense but not
according to our definition (unless the tree has exactly one vertex).

191

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Proof of Lemma 4.5. We prove by induction on the size of the tree (not on the number
of leaves), noting that the base case holds trivially. Suppose that the lemma holds for all
trees of size less than n. Let T be a tree of size n and let t ∈ [L(T)].

If t = L(T), then we are done (since L(T) ∈ [t/d, t] and so T itself has the desired
property). Otherwise, if t < L(T), then T has a subtree T ′ (rooted at one of its children)
such that L(T ′) ≥ t/d (since otherwise T has a total of less than d · t/d = t < L(T)
leaves). If L(T ′) ≤ t, then we are also done (since L(T ′) ∈ [t/d, t] and so T ′ satisfies
the desired property). Otherwise, t ∈ [L(T ′)] and the lemma follows by applying the
induction hypothesis on T ′.

4.3 MAPs and IPPs for Read-Once Branching Pro-

grams

In this section we prove Theorem 4.4 (and Theorem 4.2 will follow as a special case of
the proof) by constructing an IPP for every language that is accepted by an ROBP.

4.3.1 IPPs for ROBPs

Before presenting the IPP formally, we provide a short overview of the protocol (for
a more detailed overview, see Section 4.1.2.1). Let B be an ROBP on n variables. We
construct an r-round public-coin IPP for the language that is accepted by B. The IPP runs
recursively, where each round of communication is as follows. Given an input x that is
accepted by B within n′ ≤ n steps, the prover finds the accepting path ϕ0 ϕ1 · · · ϕn′
and sends to the verifier the subsequence ϕn′/k, . . . , ϕi·n′/k, . . . , ϕn′ that contains every
(n′/k)th vertex along this path. The verifier checks that every two consecutive vertices
in the prover’s message are connected (this can be done without making queries to the
input x), then selects uniformly at random i ∈ [k], sends i to the prover, and defines a
new ROBP Bi that has the same graph as B, but its source vertex is ϕ(i−1)·n′/k and its
unique accepting sink is ϕi·n′/k.

18 Subsequently, both parties (recursively) invoke the IPP
protocol on input x and the ROBP Bi.

A crucial point is that although the input x does not not shrink in each recursive call,
the effective length of the input, n′, which is the alleged number of bits of x that need to
be read in order to get from the source to the accepting sink, does shrink (by a factor
of k). Hence, after r such rounds, the verifier can read all bits of x that are required to
verify the current statement (which refers to a path of length n/kr). Interestingly, and in
contrast to the simpler case of OBDDs, in this last step the verifier reads the n/kr bits
of the input adaptively, based on the steps taken by the ROBP.

18 One could alternatively define Bi to consist only of vertices at distance at most n′/k from ϕ(i−1)·n′/k.
We refrain from taking this approach due to technical reasons. Note that also when using this alternate
definition, when considering general ROBPs (rather than OBDDs), Bi could potentially look at all of
the n bits of the input (see discussion at the end of Section 4.1.2.1).

192

4.3 MAPs and IPPs for Read-Once Branching Programs

In the IPP that we construct, we assume for simplicity that the verifier is given an
integer n′ ≤ n, and the claim (which the verifier is trying to validate) is that B(x) = 1
after reading exactly n′ bits of the input x. Furthermore, we assume that the ROBP B
is such that there exists some accepting path (i.e., from the source to some accepting
sink) of length n′. We can reduce the general case to this restricted setting by having
the prover send n′ as part of its first message and having the verifier explicitly check that
there is some accepting path of length n′ (this check requires no queries to the main input
x).

Recall that, as noted in Section 4.1.2, to facilitate the recursion we use the notion of a
proximity oblivious IPP (see Section 4.2.1.2). When handling general ROBPs (rather than
OBDDs), we follow this approach in spirit but, due to technical reasons, the construction
will not exactly fit Definition 4.2. More specifically, since in each step of the recursion
only the effective length of the input shrinks (but the actual length of the input stays the
same), throughout the proof it will be more convenient for us to use absolute distances,
denoted by ∆ (see Section 4.2) rather than with distances that are relative to n. Hence,
the detection probability ρ of the verifier will be a function of the absolute distance (rather
than of the relative distance) of the input from the language. That is, we will construct
an absolute proximity oblivious IPP with detection probability

{
ρn : {0, . . . , n} → (0, 1]

}
n∈N,

which is the same as Definition 4.2 except that we modify the soundness condition as
follows:

• Soundness: For every n ∈ N, x ∈ Σn, and for every computationally unbounded
(cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n) = 0] ≥ ρn
(
∆ (x,Ln)

)
(4.1)

Again, we can transform an absolute proximity oblivious IPP with detection probabil-
ity
{
ρn : {0, . . . , n} → (0, 1]

}
n∈N into a standard IPP (as in Definition 4.1) by repeating

the base protocol O(1/ρn(ε · n)) times in parallel.
The absolute proximity oblivious IPP for ROBPs, denoted ROBP-IPP, is presented in

Fig. 4.1 (recall that the notation ϕ
x,m

ψ, which is used in Fig. 4.1 means that, given
input x, the ROBP walks from ϕ to ψ in m steps, see Section 4.2.2 for details).

It can be easily verified that the round complexity is r, the communication complex-
ity is O(rk · log(|B|)) and the query complexity is O(n/kr). We proceed to show that
completeness and soundness hold.

Completeness. Let B be a ROBP on n variables, let r ≥ 0, n′ ∈ [n], and let x ∈ Bn
such that B(x) = 1 after reading exactly n′ bits of the input. (Perfect) completeness
follows by induction on r as follows.

For r = 0, the verifier just reads the appropriate n′ bits of the input and accepts with
probability 1. For r ≥ 1, let (ϕ0, ϕ1, . . . , ϕn′) be the accepting path corresponding to x.
The checks that the verifier performs in the current round pass, since ϕn′ is indeed an

accepting sink and ϕ(i−1)·n′/kr
x,n′/kr

ϕi·n′/kr , for every i ∈ [pr]. Furthermore, since for

193

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

The Protocol ROBP-IPPBn,n′,r:

Common Input: Integers n, n′ ∈ N, a ROBP B on n variables such that there exists some
accepting path of length n′ in B, and a parameter r ∈ N.

Prover’s Input: Direct access to x ∈ {0, 1}n such that B(x) = 1 in exactly n′ steps.

Verifier’s Input: Oracle access to the same x.

1. If r = 0, the verifier V checks whether B(x) = 1 after exactly n′ steps by (adaptively)
reading the appropriate n′ bits of x. If B(x) = 1, then V accepts, otherwise it rejects,
and in either case both parties terminate the protocol.

2. The Prover P:

(a) Let ϕ = (ϕ0, . . . , ϕn′) ∈ [|B|]n′ be the sequence of vertices in the accepting path
(of length n′ ≤ n) in B that corresponds to the evaluation of B on input x.

(b) Send (ϕn′/k, ϕ2n′/k, . . . , ϕn′) to V.a

3. The Verifier V:

(a) Check that ϕn′ is an accepting sink of B.

(b) Let ϕ0 be the source of B.

(c) For every i ∈ [k], check that there exists some input x(i) ∈ {0, 1}n such that

ϕ(i−1)·n′/k
x(i),n′/k

ϕi·n′/k.
b

(d) Select uniformly at random an index i in [k], and send i to P.

4. Denote by Bi the ROBP that has the same graph as B, except that its source is
ϕ(i−1)·n′/k, and its unique accepting vertex is ϕi·n′/k.

5. Both parties (recursively) invoke ROBP-IPPBin,n′′,r−1, where n′′ = n′/k, on input x.

aThe accepting sink ϕn′ is also sent since (in the first step of the recursion) there could be multiple
accepting sinks.

bThis check is performed without making any queries to the main input x. Although our focus is
not on computational complexity, we note that this can be done in poly(s) time.

Figure 4.1: IPP for ROBPs

194

4.3 MAPs and IPPs for Read-Once Branching Programs

every choice of i ∈ [k] (made by the verifier) it holds that ϕ(i−1)·n′/k
x,n′/k

ϕi·n′/k, the two
parties recursively run the r − 1 round protocol on a branching program Bi such that
Bi(x) = 1 after reading exactly n′/k bits of x. Hence, by the inductive hypothesis the
verifier accepts with probability 1.

Soundness. Soundness follows directly from the following lemma, which is proved by
induction on the number of rounds r. We suggest to the reader to first consider the case
that n′ = n in both the lemma statement and its proof. Nevertheless, we stress that in
lower levels of the recursion, the parameter n′ becomes much smaller than n.

Lemma 4.6. Let n ∈ N, n′ ∈ [n] and r ≥ 0. For every ROBP B of size s on n variables
that has an accepting path of length n′, every x that is in absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1}, and for every cheating prover strategy P∗ it holds that:

Pr[(Vx,P∗)(n, n′, B, r) = 0] ≥ ε,

where V is the r-round verifier of ROBP-IPP (of Fig. 4.1).

Proof. We prove Lemma 4.6 by induction on the number of rounds r ≥ 0. In the base case,
corresponding to r = 0, the verifier simply ignores the prover and reads the appropriate
n′ bits of x. Hence, if B(x) 6= 1, then the verifier rejects with probability 1.19

In the inductive step, for r ≥ 1, let x ∈ {0, 1}n that is at absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1} and let P ∗ be a (deterministic) cheating prover strategy for the
protocol ROBP-IPP of Fig. 4.1 (with r rounds). Let (ϕn′/k, ϕ2n′/k, . . . , ϕn′) be the first
message sent by P ∗ to V and let ϕ0 be the source. Since the verifier explicitly checks these
conditions, it must be the case that ϕn′ is an accepting sink, and that for every i ∈ [k],

there exists some x(i) ∈ {0, 1}n such that ϕ(i−1)·n′/k
x(i),n′/k

ϕi·n′/k. Furthermore, for
every i ∈ [k], we assume without loss of generality that x(i) is the string z that minimizes

the distance of x to the set

{
z ∈ {0, 1}n : ϕ(i−1)·n′/k

z,n′/k
ϕi·n′/k

}
.

Recall that ∆ denotes absolute distance (see Section 4.2) and let εi
def
=

∆(x,x(i))
n′/k

. The
following claim, which crucially uses the fact that B is read-once, shows that the average
of the εi’s (which will later be shown to lower bound the rejection probability of V) is at
least ε.

Claim 4.6.1. Ei[εi] ≥ ε.

Proof. For every i ∈ [k], let Ji ⊆ [n] be the set of n′/k variables that are read when
going from ϕ(i−1)·n′/k to ϕi·n′/k on input x(i). We first prove that the sets Ji’s are disjoint.
Assume otherwise; that is, that there exists j ∈ Ji1 ∩ Ji2 for some i1, i2 ∈ [k]. For every
i ∈ [k], denote the path from ϕ(i−1)·n′/k to ϕi·n′/k (in B) on input x(i) by Pi. Consider

19In the trivial case that ε = 0 (i.e., B(x) = 1), the verifier also satisfies the requirement, since it
rejects with probability at least 0 = ε. It may also be worth mentioning that it always holds that ε ≤ 1,
since B has an accepting path of length n′.

195

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

the concatenated path P1 ◦ · · · ◦ Pk. This is a path in B in which the label j appears
twice (both in Pi1 and in Pi2) in contradiction to our assumption that B is a read-once
branching program.

Define x′ ∈ {0, 1}n as follows. For every j ∈ [n], if j ∈ Ji for some i ∈ [k] (which must

be unique as just shown), then x′[j]
def
= x(i)[j], and otherwise (i.e., if j /∈ J1 ∪ · · · ∪ Jp) we

set x′[j]
def
= x[j]. Note that

ϕ0

x′,n′/k
ϕn′/k

x′,n′/k
. . .

x′,n′/k
ϕn′

and therefore B(x′) = 1. The claim follows by noting that

ε·n′ ≤ ∆ (x, x′) =
∑
i∈[k]

∆ (x[Ji], x
′[Ji]) =

∑
i∈[k]

∆
(
x[Ji], x

(i)[Ji]
)
≤
∑
i∈[k]

∆
(
x, x(i)

)
=
∑
i∈[k]

εi·n′/k,

where the first inequality follows from the fact that x is in absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1} combined with the fact that B(x′) = 1, and the first and
second equality follow from the definition of x′ (the first equality also uses the fact that
the Ji’s are disjoint). The claim follows.

For every i ∈ [k], let Bi be the ROBP that has the same graph as B, but its source is
ϕ(i−1)·n′/k, and its unique accepting vertex is ϕi·n′/k. Let P ∗i be the residual r − 1 round
strategy of P ∗ after receiving the message i from V in the first round, and let Vi be
the residual strategy of V after fixing its first message to i. Note that Vi is exactly the
strategy of the verifier in ROBP-IPPBin,n′,r−1.

Claim 4.6.2. For every i ∈ [k], it holds that

Pr[(Vxi , P ∗i)(n, n′′, Bi, r − 1) = 0] ≥ εi,

where n′′ = n′/k.

Proof. Let i ∈ [k]. Recall that x(i) was chosen as z ∈ {0, 1}n that minimizes the distance

of x to the set Si
def
=
{
z ∈ {0, 1}n : Bi(z) = 1 using exactly n′/k steps

}
. Hence,

∆ (x, Si) = ∆
(
x, x(i)

)
= εi · n′/k.

Hence, (Vxi , P ∗i)(n, n′′, Bi, r−1) corresponds to an invocation of the r−1 round version
of the protocol on an input x that is in absolute distance εi · n′/k from Si. Therefore, by
the inductive hypothesis, the verifier Vi rejects with probability at least εi.

Using Claim 4.6.1 and Claim 4.6.2 we obtain that

Pr[(Vx, P ∗)(n, n′, B, r) = 0] = E
i∈[k]

[
Pr[(Vxi , P ∗i)(n, n′/k,Bi, r − 1) = 0]

]
≥ E

i∈[k]
[εi] ≥ ε,

(4.2)
and the lemma follows.

196

4.3 MAPs and IPPs for Read-Once Branching Programs

This concludes the proof of Theorem 4.4.

Remark 4.7 (Computational Complexity). The running time of the IPP prover in
Fig. 4.1 is polynomial in its input (i.e., poly(|B|, n, k, r, 1/ε)). As for the IPP verifier, if
the representation of the ROBP B allows one to check if two vertices in the graph of B are
connected in polylog(|B|) time, then the verifier runs in time poly(log n, k, r, log(|B|), 1/ε).
If such a representation is not available, then it can be generated in a relatively expensive
(i.e., poly(|B|) time) pre-processing step, which does not depend on the input x and can
be re-used for multiple inputs.

Alternatively, for some other natural representations, the verifier can employ the
prover to efficiently check if two vertices in B are connected. Consider for example a
natural representation in which there exists a polynomial (i.e., poly(log(|B|))) size circuit
C that on input a vertex v (in the graph of B) and a bit σ ∈ {0, 1} outputs the neigh-
bor u of v that σ leads to (i.e., the edge (v, u) is labeled by σ). Suppose further that C
is O(log(|B|)-space uniform (i.e., can be generated by an O(log(|B|))-space Turing ma-
chine). In such case we can use the prover to check connectivity, as described next, and
so we obtain sub-linear verification.

In order to verify connectivity efficiently, we first observe that there exists an (O(log(|B|))-
space uniform) circuit, of polylog(|B|)-depth and poly(|B|)-size, that on input two vertices
v and u outputs 1 if and only if they are connected (possibly via a long path).20 Now we
can apply the efficient interactive proof-system for low-depth computation21 of Goldwasser
et al. [GKR08, Theorem 1] to obtain an interactive proof-system that verifies that two
given vertices are connected, where the verifier runs in time polylog(|B|) and the prover
runs in time poly(|B|).22 We note that employing this proof-system inside our IPP in-
creases the round complexity of the IPP by a polylog(|B|) factor.

Remark 4.8 (IPPs for Ordered Binary Decision Diagrams). Recall that an ordered bi-
nary decision diagram (OBDD) is an ROBP that is both layered and ordered (see Sec-
tion 4.1.2.1). We observe that the communication complexity in Theorem 4.4 can be
slightly improved for OBDDs of width w and size s = O(nw) from O

(
(pr log s) · ε−1

)
to

O
(
(pr logw) · ε−1

)
, by noting that the ith vertex specified by the prover (say, in the first

round) must be in layer i · n/p and therefore it can be specified using only log2w bits.

20The circuit first uses C to generate the entire adjacency matrix of B and then checks whether v and
u are connected by repeated squaring of the adjacency matrix. Note that all actions can be implemented
in polylog(|B|)-depth and poly(|B|)-size.

21Goldwasser et al. show that any language that is accepted by a (O(log(S(n)))-space uniform)
circuit of depth D(n) and size S(n), has an interactive proof-system, where the verifier runs in time
(n+D(n)) · polylog(S(n)) and the prover runs in time poly(S(n)).

22We stress that the interactive proof-system for verifying connectivity is a standard interactive proof-
system and not a “proof of proximity” (i.e., not an IPP). Indeed, this is crucial for our application since
we use the interactive proof-system for connectivity as a subroutine within our IPP, and the IPP verifier
should reject if at any point it encounters a pair of vertices that are disconnected (even if the pair is
“close” to being connected).

197

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

4.3.2 MAPs for ROBPs

We observe that Theorem 4.2 follows almost directly from the proof of Theorem 4.4,
when restricted to the case r = 1. Indeed, the only two gaps (which are easily resolved)
are:

1. Interaction: Theorem 4.4 (restricted to r = 1) guarantees a 1-round IPP for lan-
guages recoginzed by ROBPs. In general, a 1-round IPP is not necessarily an MAP,
since it may include a message sent from the verifier to the prover. Nevertheless,
the order of the messages in our protocol is such that first the prover sends a mes-
sage to the verifier and then the verifier responds. The last message can clearly be
avoided and so we obtain an MAP.

2. Dependence on the Proximity Parameter in the Proof Length: Recall that there
is a linear dependence on 1/ε in the communication complexity in Theorem 4.4,
due to the O(1/ε) parallel repetitions that were used. However, for MAPs, parallel
repetition can be performed without increasing the proof length, since the proof is
a deterministic function of the input. Hence, we can save the additional O(1/ε)
factor that is used for general IPPs.

4.3.3 MAPs and IPPs for Affine Spaces

In this section, as an example, we show how Theorems 4.2 and 4.4 can yield MAPs and
IPPs for any affine space.

Before proceeding to the proof, we remark that Rothblum et al. [RVW13] identified
a specific affine space, called PVAL, as being “complete” for the construction of IPPs for
the class NC.23 They constructed an IPP for PVAL and thereby obtain IPPs for all of NC.
Interestingly, PVAL is an affine space and so the results of this section yield an alternative
IPP for it. Unfortunately though, the parameters obtained by our IPP are inferior24 to
those of [RVW13] and do not yield an alternative IPP for NC.

Definition 4.9. Let F be a finite field, n ∈ N and t ∈ [n]. An affine subspace of the
vector space Fn, denoted AffineSpaceA,b, is parametrized by a matrix A ∈ Ft×n and a
vector b ∈ Ft and consists of all strings x ∈ Fn such that Ax = b.

Our construction of an IPP for every affine space follows directly from Theorem 4.4
by showing that membership in an affine subspaces can be recognized by a small-width
OBDD.

Proposition 4.10. Let F be a finite field, n ∈ N and t ∈ [n]. For every A ∈ Ft×n and
b ∈ Ft, there exists a width |F|O(t) OBDD that accepts AffineSpaceA,b.

23The language PVAL is parameterized by a sequence of points in a finite vector space and a sequence
of values, and consists of all strings x whose low degree extension LDE(x) is equal to the given sequence
of values at the corresponding sequence of points

24More specifically, for a PVAL instance parameterized by t points, the communication complexity in
our protocol is O(t · 1/ε · polylog(n)), whereas in [RVW13] it is O(t · (1/ε)o(1) · polylog(n)). Our result is
insufficient since in the context of the proof of IPPs for NC, t =

√
n and ε = 1/

√
n.

198

4.4 MAPs and IPPs for Context-Free Languages

Proof. We describe a deterministic streaming algorithm for deciding membership in AffineSpaceA,b.
The algorithm gets access to a stream of n fields elements, reads the input element-by-
element (in order) and stores a total of t field elements at any given time. Transforming
the latter into an OBDD, as required, is straightforward.25

Denote the columns of A by a1, . . . , an ∈ Ft. The algorithm maintains a vector c ∈ Ft
which is initialized to 0. The streaming algorithm reads the input x ∈ Fn element-by-
element and after reading the ith element, the algorithm sets c ← c + xiai (where the
addition is over F). In the end, it holds that

c =
n∑
i=1

xiai = Ax

and therefore it suffices for the algorithm to accept if c = b and reject otherwise.

By applying Theorem 4.4, we obtain the following corollary.

Corollary 4.5. Let F be a finite field, n ∈ N and t ∈ [n]. For every A ∈ Ft×n, b ∈ Ft
and for every k = k(n) ≥ 2 and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round
IPP for AffineSpaceA,b with communication complexity O

(
(rk · t log |F|) · ε−1

)
and query

complexity O
(
n
kr
· ε−1

)
. Furthermore, the IPP is public-coin and has one-sided error.

4.4 MAPs and IPPs for Context-Free Languages

In this section we prove Theorem 4.3 by constructing an IPP for any context-free language.
As noted in the introduction, the proof of Theorem 4.1 will follow as a special case of
this IPP.

The proof of Theorem 4.3 extensively uses the notions of a partial derivation and a
partial derivation language. Recall that a partial derivation of a grammar G is a derivation,
according to the production rules of G, in which not all variables are expanded. Our
notion of a partial derivation language is more complex. In particular, it does not refer
to the language that consist of all possible partial derivations of the grammar (i.e., {x ∈
(Σ∪V)∗ : Astart

∗⇒ x}). Rather, we define a partial derivation language as a language that
consists of the subsequence of terminal symbols that correspond to partial derivations
that start at some fixed variable. Furthermore, we consider only partial derivations in
which the subsequence of variables in the partial derivation occur in specific locations.
More concretely, a partial derivation language is parameterized by (1) a start variable
A0; (2) the number of terminals m; (3) a sequence of ` locations i1, . . . , i`; and (4) a
corresponding sequence of variables A1, . . . , A`. The language consists of strings z of
length m such that the string z′ = z[1, i1− 1] ◦A1 ◦ z[i1, i2− 1] ◦ · · · ◦A` ◦ z[i`,m] can be
derived from A0. More formally,

25Loosely speaking, each layer of the OBDD will consist of the 2O(t log |F|) possible configurations of the
streaming algorithm (which include both its current state and possibly some of the bits of the element
that is currently being read).

199

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Definition 4.11 (Partial Derivation Language). A partial derivation language of the gram-
mar G = (V,Σ, R,Astart) is a language L ⊆ Σm, parameterized by indices 1 ≤ i1 ≤ . . . ≤
i` ≤ m and variables A0, . . . , A` ∈ V such that

L def
=
{
z ∈ Σm : A0

∗⇒ z[1, i1 − 1] ◦ A1 ◦ z[i1, i2 − 1] ◦ · · · ◦ A` ◦ z[i`,m]
}
.

The concise description of a partial derivation language L ⊆ Σm, parameterized by i =

(i1, . . . , i`) and A = (A0, . . . , A`), is denoted by 〈L〉 def
=
(
m, i, A

)
.

We stress that z ∈ L, where L is a partial derivation language such that 〈L〉 =(
m, (i1, . . . , i`), (A0, . . . , A`)

)
, means that z is a string of terminal symbols such that

A0
∗⇒ z′, where z′ is an interleaving of z and A1, . . . , A`, in which Aj appears in coordinate

ij + j − 1. Indeed, there is a natural 1-1 correspondence between the indices ij ∈ [m]
that are the locations in z in which the variables should be inserted, and the indices

i′j ∈ [m+ `], where i′j
def
= ij + j − 1, that are the locations in the string z′ = z[1, i1 − 1] ◦

A1 ◦ z[i1, i2 − 1] ◦ · · · ◦ A` ◦ z[i`,m] in which the fixed variables appear.
Our construction of an IPP is recursive, and to facilitate the recursion, as discussed in

Section 4.1.2.2, it will be useful for us to construct an IPP for partial derivation languages
rather than just context-free languages. Additionally, as discussed in Section 4.1.2, the
IPP will be proximity oblivious26 (see Section 4.2.1.2). That is, we prove the following
(more general) lemma:

Lemma 4.12. Let G be a context-free grammar, let L be a partial derivation language
corresponding to G, parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
. For every in-

tegers k ≥ 2 and r ≥ 1 such that kr ≤ n, there exists an r-round proximity oblivious IPP
for L with detection probability ρ(ε) = ε, communication complexity O(rk log(n+ `)) and
query complexity O

(
n+`
kr

)
. Furthermore, the proximity oblivious IPP is public-coin.

Theorem 4.3 follows directly from Lemma 4.12 by observing that (1) every context-free
language is a partial derivation language, without any fixed variables (i.e., ` = 0), and
(2) we can transform any proximity oblivious IPP into a standard IPP (by repeating the
former O(1/ε) times in parallel).

Lemma 4.12 is proved in Sections 4.4.1 and 4.4.2. Specifically, in Section 4.4.1, which
contains the more involved (and interesting) part of the proof, we show a scheme for
partitioning partial derivation languages into several smaller partial derivation languages.
Then, in Section 4.4.2 we use this partition to construct an IPP for partial derivation
languages (which is a fairly straightforward implementation of the outline presented in
Sections 4.1.2.2 and 4.1.2.3), as well as describe the steps required to derive an MAP
(thereby proving Theorem 4.1). Finally, in Section 4.4.3 we show how to improve the
efficiency of the foregoing MAP for the Dyck languages (i.e., the languages of balanced
parentheses expressions).

26In contrast to the case of ROBPS (see Section 4.3), here we can directly use Definition 4.2 without
any modifications.

200

4.4 MAPs and IPPs for Context-Free Languages

4.4.1 Partitioning Partial Derivation Languages

Let L ⊆ Σn be a partial derivation language27 of a context-free grammarG = (V,Σ, R,Astart),
parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
, and let d = O(1) be the length of

the longest production rule in R (so that every x ∈ L has a derivation tree with arity at
most d).

In this section we describe a technique for partitioning L into several partial derivation
languages L1, . . . ,Lk (of shorter strings), while preserving distances. That is, inputs x
that belongs to L will be partitioned into k parts such that for every j ∈ [k], the jth part
of x belongs to Lj, whereas, for inputs x that are far from L, the jth part of x will be far
from Lj, for an average j. Later, in Section 4.4.2, we use this partition to construct an
IPP for L. (See Sections 4.1.2.2 and 4.1.2.3 for a high-level overview.)

The partition, which will be constructed jointly by the IPP prover and verifier, has
two different representations. The first representation, which we call the interval rep-
resentation, is a concise representation that is generated by the prover and sent to the
verifier. The advantage of this representation is has a simple syntactic structure. The
second representation, which is the actual partition, will be derived by the verifier from
the interval representation. The main advantage of the latter representation is that it
facilitates the verification of the semantic relation of the partition to the main input x.

We begin by describing the procedure that is used to generate the interval repre-
sentation of the partition. The procedure, called Generate-Intervals(x, t), is given
as input x ∈ L (recall that L is parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
)

and a parameter t ∈ [n′], where n′
def
= n + ` and t specifies the desired size of each

part in the partition. We assume for simplicity that t ≥ 2d, and the case that t <
2d = O(1) will be handled separately (and trivially) in Section 4.4.2. First, the proce-

dure constructs28 a derivation tree T corresponding to the derivation A0
∗⇒ x′, where

x′
def
= x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n] (A0

∗⇒ x′ follows from the fact
that x ∈ L). Next, using Lemma 4.5, the procedure finds k = O(n′/t) rooted subtrees29

T1, . . . , Tk of T such that (1) every vertex of T belongs to at least one of the subtrees,
and (2) for each i < j either Ti and Tj are disjoint or Ti is a subtree of Tj. The procedure
outputs I = (I1, . . . , Ik) ∈ ([n′]2)k and B = (B1, . . . , Bk) ∈ V k where Bj is the label of
the root of Tj and Ij ⊆ [n′] is the minimal interval that contains all the leaves of Tj, for
every j ∈ [k]. Each pair of intervals is either disjoint or contained in one other. The
Generate-Intervals procedure is detailed in Fig. 4.1.

To see that Generate-Intervals halts with k ≤ n′

t/d−1
≤ 2d · n′

t
intervals, observe

that in each iteration the number of leaves of the tree T ′ (defined in Step 3a) decreases

27We suggest to the reader to consider the case that L is a context-free language (i.e., no variables are
fixed) at first reading, since it is somewhat simpler. However, we stress that we have to handle general
partial derivation languages for the recursion to go through.

28Although our focus is not on computational complexity, we remark that such a derivation tree can
be constructed in time poly(n′), see [HMU06] for details.

29Recall that we define a subtree of a tree T as a tree consisting of a node in T together with all of its
descendants, see Section 4.2.3.

201

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Generate-Intervals(x, t)

Input: x ∈ L (where L is a partial derivation language parameterized by(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and t ∈ [2d, n′], where n′ = n+ `.

1. Construct a derivation tree T of arity d, with n′ leaves, corresponding to the derivation
A0

∗⇒ x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n] (according to the grammar G).

2. Set j = 1.

3. Repeat: (prior to the jth iteration, we have already constructed subtrees T1, . . . , Tj−1 of
T).

(a) Construct a tree T ′ from T by removing all the vertices of Tj′ except for the root
of Tj′ , for every j′ ∈ [j − 1]. Note that there is a natural correspondence between
the vertices of T ′ and the vertices of T from which they were copied.

(b) If the number of leaves of T ′ is less than t, then exit the loop.

(c) Applying Lemma 4.5 to T ′, with size parameter t, find a subtree of T ′ with t′ leaves
such that t′ ∈ [t/d, t]. Denote the root of this subtree by v′. Let v be the vertex in
T that corresponds to v′, and define Ti as the subtree of T rooted at v.

(d) Increment j by 1.

4. Set k = j and Tk = T .

5. For every j ∈ [k], let Bj be the label of (i.e., the variable associated with) the root of
Tj , and let Ij ⊆ [n′] be the minimal interval that contains all the leaves of Tj in T .

6. Output (I,B), where I = (I1, . . . , Ik) and B = (B1, . . . , Bk).

Figure 4.1: The Generate-Intervals Procedure for the Partial Derivation Language L.

additively by at least t/d− 1 and that we assumed that t ≥ 2d.
As noted above, the output (I, B) of Generate-Intervals is in the first represen-

tation of the partition, which we called the interval representation. Next, we show a
transformation T (which will be applied by the IPP verifier) that transforms the interval
representation of the partition into an actual partition of the main input x.

Actually, instead of partitioning the input x into parts S1, . . . , Sk ⊆ [n], it will be
more convenient to view the partition as a partition of the terminal coordinates of x′ =
x[1, i1− 1] ◦A1 ◦ x[i1, i2− 1] ◦ · · · ◦A` ◦ x[i`, n].30 That is, instead of a partition of [n], we

will find a partition of [n′]\{i′1, . . . , i′`}, where i′j
def
= ij + j − 1, for every j ∈ [`] (indeed,

the non-terminal coordinates of x′ are precisely {i′1, . . . , i′`}).
Our aim is to design a transformation T that maps (I, B) into a partition S1, . . . , Sk

of [n′]\{i′1, . . . , i′`}, where the parts have roughly the same length, together with (con-
cise descriptions of) partial derivation languages L1, . . . ,Lk that satisfy the following

30Of course, the distinction disappears in the simpler case that L is a context-free language (i.e., ` = 0).

202

4.4 MAPs and IPPs for Context-Free Languages

conditions:

• Completeness: If x ∈ L and (I, B) is the output of Generate-Intervals(x, t),
then x′[Sj] ∈ Lj, for every j ∈ [k].

• Soundness: If x is ε-far from L, then for every (I, B) ∈ ([n′]2)k×V k it holds that
x′[Sj] is ε-far from Lj, for an average j ∈ [k] (where the average is weighted based
on the lengths of the parts).

We begin with a high-level overview of the transformation T in the special and slightly
simpler case that L is a context-free language (i.e., ` = 0). In this case, given input
(I, B), where I = (I1, . . . , Ik) and B = (B1, . . . , Bk), the transformation first constructs
a partition of [n] into k parts S1, . . . , Sk by setting Sj = Ij\(I1 ∪ · · · ∪ Ij−1), for every
j ∈ [k]. The transformation outputs S1, . . . , Sk as well as (concise) descriptions of k
partial derivation languages L1, . . . ,Lk such that for every j ∈ [k], the language Lj is a
partial derivation language corresponding to a partial derivation starting from Bj into
strings that have variables Bji at fixed coordinates corresponding to the relative position
of all subintervals Iji of Ij. The transformation also checks that the languages L1, . . . ,Lk
are non-empty so that the distance of x′[Sj] from the corresponding language Lj is well
defined (this check is indeed necessary — see discussion in Section 4.1.2).

The case that L is a partial derivation language (rather than a context-free language)
is quite similar, where a fairly minor complication that arises is that we need to remove
the non-terminal coordinates from the partition, and so we set Sj = Ij\(I1 ∪ · · · ∪ Ij−1 ∪
{i′1, . . . , i′`}). For technical reasons, it is more convenient for us to view each one of
the non-terminal coordinates i′1, . . . , i

′
` as an additional artificial singleton interval. The

transformation T is detailed in Fig. 4.2, and the completeness and soundness require-
ments (which were stated loosely above) are stated formally in the following two lemmas
(Lemmas 4.13 and 4.14).

Lemma 4.13 (Completeness of T). For every x ∈ L (where L is a partial derivation
language parameterized by

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and parameter t ∈ [2d, n′], if

(I, B) ∈ ([n′]2)k×V k is the output of Generate-Intervals(x, t), then the transformation
T (I, B) does not reject, but rather outputs

(
(S1, 〈L1〉) . . . , (Sk, 〈Lk〉)

)
such that for every

j ∈ [k]:

1. Lj ⊆ Σ|Sj | is a partial derivation language on strings of length nj = |Sj| with `j
fixed variables such that nj + `j ≤ t; and,

2. x′[Sj] ∈ Lj, where x′ = x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n].

Proof. Let x ∈ L and let (I, B) be the output of Generate-Intervals(x, t), where
I = (I1, . . . , Ik) and B = (B1, . . . , Bk). Since Ik = [n′] and Bk = A0, the transformation
T (I, B) does not reject, but rather outputs

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
. Let I ′1, . . . , I

′
`+k

be as defined in T (see Fig. 4.2).
The fact that, for every j ∈ [k], it holds that Lj ⊆ Σ|Sj | is a partial derivation language

on strings of length nj with `j fixed variables such that nj + `j ≤ t follows from the fact

203

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

The Transformation T
(
I,B

)
Input: I = (I1, . . . , Ik) ∈ ([n′]2)k and B = (B1, . . . , Bk) ∈ V k (recall that n′ = n+ ` and that
〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
).

1. Check that (I,B) is well formed: for every j < i either Ij (Ii or Ij ∩ Ii = ∅, and
Ik = [n′] and Bk = A0 (recall that A0 ∈ V is a variable such that all partial derivations
in L start from A0). If any test fails, then rejecta and halt.

2. For j ∈ [`], let I ′j = {ij}.

3. For j ∈ [k], let I ′`+j = Ij .

4. For every j ∈ [k]:

(a) Let I ′j,1, . . . , I
′
j,`j

be the ordered sequence (from left to right) of all maximal (strict)

sub-intervals of Ij = I ′`+j from the set of intervals {I ′1, . . . , I ′`+k}. That is, all in-
tervals (in order) from the set of intervals {I ′1, . . . , I ′`+k} that are strictly contained

in Ij but are not contained in any other interval that is strictly contained in I ′j .
b

(b) Let Sj = Ij\(I ′j,1 ∪ · · · ∪ I ′j,`j).
c

(c) For every s ∈ [`j], let ij,s ∈ [|Ij |] be the relative starting position of the sub-interval
I ′j,s inside Ij , let i′j,s = ij,s−

∑
s′<s |I ′j,s′ |, and let B′j,s be the label of the root of the

subtree that corresponds to the interval I ′j,s. Define the following partial derivation
language of G:

Lj
def
=
{
w ∈ Σ|Sj | : Bj

∗⇒ w[1, i′j,1−1]◦B′j,1◦w[i′j,1, i
′
j,2−1]◦· · ·◦B′j,`j ◦w[i′j,`j , |S

′
j |]
}

(see also Fig. 4.3). That is, 〈Lj〉 =
(
|Sj |, (i′j,1, . . . , i′j,`j), (B

′
j,1, . . . , B

′
j,`j

)
)
.

(d) If Lj = ∅, then reject and halt.d

5. Output
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.

aIn case the reader is bothered by the fact that the transformation may “reject”, we can easily
avoid rejecting by outputting instead some canonical representation of a “partition” that will always
be rejected by the IPP verifier.

bIn other words, an interval I ′ ∈ {I ′1, . . . , I ′`+k} is contained in the sequence if and only if I ′ (Ij
and I ′ ∩ I ′′ 6= I ′, for every I ′′ ∈ {I ′1, . . . , I ′`+k}\{I ′} such that I ′′ (Ij .

cEquivalently, Sj = Ij \ (I ′1 ∪ · · · ∪ I ′`+j−1). We use the slightly more complicated definition to
facilitate the proof.

dThis check, which only requires access to 〈Lj〉 and the grammar G, can be done in poly(n′) time.

Figure 4.2: The Transformation T .

204

4.4 MAPs and IPPs for Context-Free Languages

Figure 4.3: The partial derivation tree that describes the partial derivation Bj
∗⇒

w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i
′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |S

′
j |].

that the quantity nj + `j corresponds to the number of leaves of the subtree that was
constructed in Item 3c in the Generate-Intervals procedure (recall that this subtree
had at most t leaves).

To complete the proof of Lemma 4.13, we need to show that x′[Sj] ∈ Lj, where

x′
def
= x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n], for every j ∈ [k]. Let j ∈ [k], and

let `j, i
′
j,1, . . . , i

′
j,`j
, B′j,1, . . . , B

′
j,`j

be as in Fig. 4.2. Let w = x′[Sj], and observe that by
construction,

Bj
∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i

′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |Si|].

Hence, w ∈ Lj and completeness follows.

Lemma 4.14 (Soundness of T). For every ε ∈ [0, 1], every x ∈ Σn that is ε-far from L
(parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and every (I, B) ∈ ([n′]2)k × V k,

it holds that T (I, B) either rejects or outputs a sequence
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such

that:

1. The sets S1, . . . , Sk ⊆ [n′]\{i′1, . . . , i′`} form a partition of [n′]\{i′1, . . . , i′`}.

2. It holds that
E
j∼D

[
∆REL (x′[Sj],Lj)

]
≥ ε,

where x′ = x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n] and D is a distribution
over [k] such that Prj∼D[j = j′] = |Sj′|/n for every j′ ∈ [k].

205

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Proof. Let x ∈ Σn and let I = (I1, . . . , Ik) ∈ ([n′]2)k be a sequence of intervals and
B = (B1, . . . , Bk) ∈ V k a sequence of variables such that the transformation T

(
I, B

)
does not reject and outputs

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
. Let I ′1, . . . , I

′
`+k be as defined in

T (see Fig. 4.2).
To see that S1, . . . , Sk form a partition of [n′]\{i′1, . . . , i′`}, observe that for each j ∈ [k],

it holds that Sj = Ij\(I ′j,1∪ · · · ∪ I ′j,`j), where I ′j,1, . . . , I
′
j,`j

are the ordered sequence (from

left to right) of all maximal sub-intervals of I ′j out of I ′1, . . . , I
′
`+k (i.e., all intervals that

are contained in Ij but are not contained in any other interval that is strictly contained
in Ij). Thus, the Sj’s are disjoint. Furthermore, since I ′`+k = [n′], for every index i ∈ [n′]
there exists j ∈ [`+ k] such that i ∈ I ′j. Hence, either i ∈ {i′1, . . . , i′`} (in case j ∈ [`]) or
i ∈ Sj′ for some j′ ∈ [k], and so S1, . . . , Sk form a partition of [n′]\{i′1, . . . , i′`}.

For every j ∈ [k], let εj = ∆REL (x′[Sj],Lj). Let D be the distribution as in the
lemma’s statement (i.e., Prj∼D[j = j′] = |Sj′ |/n, for every j′ ∈ [k]). Suppose that
Ej∼D[εj] < ε, for some ε ∈ [0, 1], where x′ = x[1, i1−1]◦A1 ◦x[i1, i2−1]◦ · · ·◦A` ◦x[i`, n].
We will show that x is ε-close to L.

For every j ∈ [k], since the transformation explicitly checks31 (in Step 4d) that Lj 6= ∅,
there exists a string zj ∈ Σ|Sj | such that zj ∈ Lj and ∆REL (x′[Sj], zj) = εj (i.e., zj ∈ Lj
minimizes the distance of x′[Sj] to Lj).

Using z1, . . . , zk, we construct a string z ∈ L that is ε-close to x as follows. Let z ∈ Σn

such that the string z′ = z[1, i1−1]◦A1 ◦z[i1, i2−1]◦ · · · ◦A` ◦z[i`, n] satisfies z′[Sj] = zj,
for every j ∈ [k]. (The fact that such a string z exists follows from the fact that S1, . . . , Sk
are a partition of n′\{i′1, . . . , i′`}.)

Observe that ∆REL (x, z) = ∆REL (x′, z′) ≤ Ej∼D
[
∆REL (x′[Sj], z

′[Sj])
]

= Ej∼D[εj] < ε
and so x is ε-close to z. By applying the following claim, with respect to j = k, and using
the fact that the transformation explicitly checks that Ik = [n′] and Bk = A0, we obtain

that A0
∗⇒ z′, and therefore z ∈ L. Hence x is ε-close to a string z ∈ L, and soundness

follows.

Claim 4.14.1. For every j ∈ [k], it holds that Bj
∗⇒ z′[Ij].

Proof. We prove the claim by induction on j. Let j ∈ [k], and suppose that the claim

holds for every j′ < j. Let y = z′[Sj]. Note that y ∈ Lj. We show that Bj
∗⇒ z′[Ij].

Recall that I ′1, . . . , I
′
`+k were fixed above as in Fig. 4.2. That is, for j ∈ [`], it holds

that I ′j = {ij}, and for j ∈ [`+ 1, `+ k] it holds that I ′j = Ij−`.
Let I ′j,1, . . . , I

′
j,`j

be the ordered maximal sub-intervals (in the set {I ′1, . . . , I ′`+k}) of Ij.
By the construction of T it holds that

Lj =
{
w ∈ Σ|Sj | : Bj

∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i
′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |Sj|]

}
,

where ij,s is the relative starting position of the interval I ′j,1 inside Ij, i
′
j,s

def
= ij,s −∑

s′<s |I ′j,s′ | and B′j,s is the label of the subtree that corresponds to the interval I ′j,s, for

31Indeed, this was the reason that we added this additional check, and without it soundness would not
hold. See further discussion in Section 4.1.2.

206

4.4 MAPs and IPPs for Context-Free Languages

every s ∈ [`j]. Therefore, since y ∈ Lj, it holds that

Bj
∗⇒ y[1, i′j,1 − 1] ◦B′j,1 ◦ y[i′j,1, i

′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ y[i′j,`j , |Si|]. (4.3)

On the other hand, for every i ∈ [`j], it holds that

B′j,s
∗⇒ z′[I ′j,s], (4.4)

where Eq. (4.4) follows from the inductive hypothesis and from the fact that B′j,s = Aj,s
and z′[I ′j,s] = z′j,s = Aj,s. for s ∈ [`j].

By combining Eq. (4.3), Eq. (4.4), and the definition of i′j,s we obtain that

Bj
∗⇒ y[1, i′j,1] ◦ z′[I ′j,1] ◦ y[i′j,1, i

′
j,2 − 1] ◦ . . . z′[I ′j,`j] ◦ y[i′j,`j , |Si|].

The claim follows by observing that

z′[Ij] = y[1, i′j,1] ◦ z′[I ′j,1] ◦ y[i′j,1, i
′
j,2 − 1] ◦ . . . z′[I ′j,`j] ◦ y[i′j,`j , |Si|],

and therefore Bj
∗⇒ z′[Ij].

This completes the proof of Lemma 4.14

4.4.2 IPP for Partial Derivation Languages

Using Lemmas 4.13 and 4.14, we complete the proof of Lemma 4.12 (which is a relatively
straightforward implementation of the ideas outlined in Section 4.1.2).

Proof of Lemma 4.12. Let G = (V,Σ, R,Astart) be a context-free grammar. We construct
a proximity oblivious IPP for every partial derivation language L ⊆ Σn of the grammar
G.

The proximity oblivious IPP has two parameters: r which is the round complexity, and
k which roughly corresponds to the amount of communication in each round. The IPP
runs recursively, where each round of communication proceeds as follows. The (honest)
prover uses the Generate-Intervals procedure on its input x and parameter t = n′/k
(where n′ = n+`), to obtain

(
I, B) and sends

(
I, B) to the verifier. The verifier applies the

transformation T (I, B) to derive the partition S1, . . . , Sk and the corresponding partial
derivation languages L1, . . . ,Lk. Then, the verifier selects at random j ∈ [k] and sends
j to the prover (where j is distributed according to D as above). The two parties then

recurse on input x′[Sj], where x′
def
= x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n], with

respect to the partial derivation language Lj. The recursion stops once either:

1. n′ ≤ O(k) (i.e., the input is very short), in which case the prover can send x∗ = x
to the verifier.32 Then, the verifier checks that x∗ ∈ L and that x∗ is consistent
with x at a randomly selected coordinate; or,

32This check is to ensure that the parameter t = n′/k is larger than 2d.

207

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

2. r rounds have passed, in which case the verifier reads its entire input x (which has
shortened by a multiplicative factor of roughly k in each step of the recursion) and
verifies that x ∈ L.

The IPP for L, denoted CFL-IPP, is detailed in Fig. 4.4.
Without loss of generality, we can measure the complexity of the protocol only when

the verifier interacts with the honest prover (see discussion in Section 4.2.1). It can
be easily verified that the round complexity is at most r rounds. By Lemma 4.13, the
protocol recurses on a partial derivation language Lj on strings of length nj with `j
fixed variables such that nj + `j ≤ n′/k. Hence, after at most r rounds, the current
input length has length at most n′/kr, where n′ = n+ `, and so the query complexity of
the IPP is O(n′/kr). Since in each round the communication is at most O(k log n′), the
communication complexity of the IPP is O(rk log n′).

Completeness. Let L be a partial derivation language, with 〈L〉 def
=
(
n, i, A

)
, and let

x ∈ L. We show that perfect completeness hold by induction on r. For r = 0 or n′ = O(p),
perfect completeness follows from the fact that V just checks that x ∈ L. For r > 1 (with
n′/k ≥ 2d), by Lemma 4.13, the verifier produces

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that Lj

is a partial derivation language and x′[Sj] ∈ Lj, for every j ∈ [k] (in particular, Lj 6= ∅).
Hence, by the inductive hypothesis, the verifier in the r − 1 round protocol for Lj will
accept on input x′[Sj] with probability 1.

Soundness. Soundness follows from the following lemma, which is proved by induction
on the number of rounds r.

Lemma 4.15. Let L be a partial derivation language, and let k ≥ 1 and r ≥ 0. For
every ε ∈ [0, 1] and every x that is ε-far from L, and for every cheating prover strategy
P ∗ it holds that:

Pr
[(
V, P ∗

)
(x) = 0

]
≥ ε,

where V is the verifier in CFL-IPPLr,p (see Fig. 4.4).

Proof. We first consider the trivial case that n′ = O(k). In this case, if x∗ is ε-close to
x, then x∗ 6∈ L (since x is ε-far from L) and the verifier rejects with probability 1 ≥ ε.
Otherwise, x∗ is ε-far from L and the verifier rejects with probability at least ε when
checking the consistency of x∗ and x.

We proceed to the more interesting case, in which n′/k > 2d, and prove by induction
on r. For r = 0, the verifier ignores the prover and reads all of x. Hence, if B(x) 6= 1,
then the verifier rejects with probability 1.33

For r ≥ 1, let ε ∈ [0, 1], let x ∈ Σn be ε-far from L, and let P ∗ be a deterministic
cheating prover strategy for the protocol CFL-IPPLr,k of Fig. 4.4 (with r rounds). Let (I, B)
be the first message sent by P ∗ to V . Assume that the invocation of the transformation

33In the trivial case that ε = 0 (i.e., B(x) = 1), the verifier also satisfies the requirement, since it
rejects with probability at least 0 = ε.

208

4.4 MAPs and IPPs for Context-Free Languages

The Protocol CFL-IPPLk,r

Parameters: L ⊆ Σn is a partial derivation language, with 〈L〉 =(
n, (i1, . . . , i`), (A0, . . . , A`)

)
, the parameters k, r ∈ N correspond (roughly) to the amount of

communication in each round and to the number of rounds, respectively. Let n′ = n+ `.

Prover’s Input: Direct access to x ∈ L, with n
def
= |x|.

Verifier’s Input: Oracle access to x, and direct access to 〈L〉.

1. If r = 0, then the verifier V checks whether x ∈ L by explicitly reading all of x. If
x ∈ L, then V accepts, otherwise it rejects, and in either case both parties terminate
the protocol.

2. If n′ = O(k), the prover sends x∗ = x to V. The verifier V accepts if x∗ ∈ L and x∗

agrees with x at a randomly chosen coordinate. Otherwise V rejects, and in either case
both parties terminate the protocol.

3. The Prover P:

(a) Invoke Generate-Intervals(x, n′/k) to obtain
(
I,B

)
.

(b) Send
(
I,B

)
to V.

4. The Verifier V:

(a) Invoke T
(
I,B

)
. If the transformation rejects, then immediately re-

ject and halt. Otherwise, denote the output of the transformation by(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.a

(b) Select j ∼ D, where D is the distribution in the statement of Lemma 4.14 (i.e.,
Prj∼D[j = j′] = |Sj′ |/n, for every j′ ∈ [k]).

(c) Send j to P.

5. Both parties (recursively) invoke CFL-IPP
Lj
r−1,k on input x′[Sj].

aThe reader may note that, in contrast to Fig. 4.1, the verifier does not check that Lj 6= ∅, for every
j ∈ [k]. This check is actually performed within the transformation T (see Step 4d in Fig. 4.2).

Figure 4.4: IPP for Context-Free Languages

209

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

T
(
I, B

)
does not reject (otherwise the verifier rejects with probability 1, and we are

done), and denote its output by
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.

For every j ∈ [k], let εj = ∆REL (x′[Sj],Lj) denote the relative distance of x′[Sj] from
Lj, and let D be the distribution as in CFL-IPPLr,k. By Lemma 4.14, it holds that

E
j∼D

[εj] ≥ ε. (4.5)

For every j ∈ [k], let P ∗j be the residual r − 1 round strategy of P ∗ after receiving
the message j from V in the first round, and let Vj be the residual strategy of V after
fixing its first message to j. Observe that, by construction, Vj is simply the strategy of

the verifier in the protocol CFL-IPP
Lj
k,r−1. Hence, by the inductive hypothesis, for every

j ∈ [k] it holds that
Pr
[(
Vj,P∗j

)
(x′[Sj]) = 0

]
≥ εj. (4.6)

Using Eqs. (4.5) and (4.6) we obtain that:

Pr[
(
V, P ∗

)
(x) = 0] = E

j∼D

[
Pr[
(
Vj,P∗j

)
(x′[Sj]) = 0]

]
≥ E

j∼D
[εj] ≥ ε, (4.7)

and the lemma follows.

This concludes the proof of Lemma 4.12 and Theorem 4.3.

Remark 4.16 (Computational Complexity). The IPP prover in Fig. 4.4 can be imple-
mented in time poly(n, k, r). As for the IPP verifier, Step 4d in Fig. 4.2 can be imple-
mented in time poly(n), and so we obtain a total running-time of poly(n, k, r), which
is super-linear. We remark that for context-free languages whose partial derivation lan-
guages are themselves context-free languages, we can actually do better and obtain run-
ning time poly(log n, k, r) (an example for such a context-free language is the language of
balanced parentheses expressions, see Section 4.4.3). See Section 4.D for details.

Alternatively, by increasing the round complexity of our IPP, we can also obtain sub-
linear time verification. The technique is similar to that described in Remark 4.7. More
specifically, we can implement Step 4d in Fig. 4.2 (i.e., checking that a given partial
derivation language is non-empty (which is the main bottleneck in our IPP)) via an inter-
active proof-system. To do so, we first construct a (logspace) uniform low-depth circuit
that, given the description of a partial derivation language, outputs 1 if and only if the
language is non-empty. An efficient interactive proof-system follows from the efficient in-
teractive proof-system for low-depth computation of Goldwasser et al. [GKR08, Theorem
1]. Details follow.

Fix the grammar G = (V,Σ, R,Astart) and consider a description (m, i, A) of a partial
derivation language, where i = (i1, . . . , i`) and A = (A0, . . . , A`). Given (m, i, A), the
circuit first constructs a string z ∈ (V ∪ {∗})m+`, where ′∗′ is some character that does

not belong to V ∪Σ and z
def
= ∗i1−1 ◦A1 ◦∗i2−i1 ◦ · · · ◦A` ◦∗m−i`+1. The circuit then checks

whether z can be derived from A0, according to an auxiliary (unary) grammar G′, which
is identical to G except that all the terminals are replaced by the unique terminal ′∗′. By

210

4.4 MAPs and IPPs for Context-Free Languages

a result of Ruzzo [Ruz81], membership in context-free languages can be computed by a
(logspace uniform) NC2 circuit, and so we obtain a (O(log(m) + log(|`|))-space uniform)
circuit that checks if the partial derivation language is non-empty, in depth polylog(m+`)
and size poly(m, `).

Given the above circuit, we can use [GKR08, Theorem 1] to obtain an interactive
proof-system in which the verifier runs in ` ·poly(log(`), log(m)) time and the prover runs
in time poly(m, `). We note that using this proof-system inside our IPP increases the
round complexity of our IPP by a poly-logarithmic factor.

Remark 4.17 (MAPs for Context-Free Languages). Theorem 4.2 follows directly from
the proof of Lemma 4.12, while noting that the two issues the arise in the case of MAPs
for ROBPs (see Section 4.3.2) apply also here and can be resolved similarly.

4.4.3 Improved MAPs for Specific Context-Free Languages

In this section we show that the efficiency of the MAPs for general context-free languages
(i.e., Theorem 4.1) can be improved for context-free languages whose corresponding par-
tial derivation languages have efficient testers (which do not use a proof). Most notably,
we obtain such an improvement for the Dyck languages (i.e., languages of balanced paren-
theses expressions).

Recall that in the proof of Theorem 4.1, given the MAP proof, the MAP verifier (implic-
itly) constructs a partition S1, . . . , Sk of [n] and partial derivation languages L1, . . . ,Lk.
Then, the verifier chooses an index j ∈ [k] at random and checks whether x[Sj] ∈ Lj
by explicitly reading all of x[Sj]. However, by Lemma 4.14, the MAP verifier does not
really have to check that x[Sj] ∈ Lj exactly, but rather it suffices to check that x[Sj] is
close to Lj. Since no non-trivial tester is known for general context-free languages (let
alone for their corresponding partial derivation languages), we could not use this fact
to our advantage in the general case. However, for some specific languages, such as the
Dyck languages, more efficient testers are known and we can utilize them to improve the
efficiency of our MAPs.

A technical difficulty that we encounter when taking this approach is that when testing
whether x[Sj] is close to Lj it is not a priori clear which value of the proximity parameter
the verifier should use (recall that Lemma 4.14 only guarantees that x[Sj] is ε-far for an
average j ∈ [k] but not necessarily for every j ∈ [k]). Of course, if Lj has a proximity-
oblivious tester, then the issue is mute and we can just run the tester directly. In the
more general case, we can simply apply an averaging argument. The naive averaging
argument shows that for an ε/2 fraction of j ∈ [k], it holds that x[Sj] is ε/2 far from
Lj. However, by applying a more refined averaging argument, due to Levin [Lev85] (see
[Gol14, Appendix A.2]), we obtain an additional improvement.

Lemma 4.18. Let G be a context-free grammar and α ≥ 0 and β ≥ 1 be constants.
Suppose that every partial derivation language of G (as in Definition 4.11) has a property
tester with query complexity O

(
mα · δ−β

)
for inputs of length m and proximity parameter

δ > 0. Then, for every k ≥ 1 the language L has an MAP with proof complexity O(k log n)

211

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

and query complexity O
(
(n/k)α · ε−β · log2(1/ε)

)
. Furthermore, if α = 0, then the query

complexity is at most O
(
(n/k)1−1/β · ε−1 · log3(1/ε)

)
.

The MAP in Lemma 4.18 has one-sided error if and only if the testers for the partial
derivation languages have one-sided errors. However, even if the resulting MAP has
two-sided error, a one-sided error MAP (with only a poly-logarithmic overhead) can be
obtained by applying a generic transformation from two-sided error MAPs into one-sided
error MAPs (see of [GR13b, Theorem 4.3]).

Note that the alternative bound for α = 0 improves over the general case only for
sub-constant values of the proximity parameter (i.e., ε < (n/k)−1/β · polylog(n)). The
bound is obtained by observing that, for very small values of the proximity parameter, it
is advantageous to read the entire input rather than apply the tester. We defer the proof
of Lemma 4.18, which is relatively straightforward, to Section 4.C.

Using Lemma 4.18 we now show how to construct an improved MAP for the Dyck
languages. Loosely speaking, the κth-order Dyck language consists of all of strings that
form a balanced parenthesis expression with κ distinct types of parentheses. The Dyck
languages can be defined via a context-free grammar as follows.

Definition 4.19. Let κ ∈ N be a constant. The κth-order Dyck language, denoted Dyckκ,
is the language generated by the context-free grammar GDyckκ = (V,Σκ, R,Astart), where
V = {A}, Astart = A, Σκ = {‘[1’, ‘]1’, ‘[2’, ‘]2’, . . . , ‘[κ’, ‘]κ’}, and the production rules R
consist of: (1) A ⇒ [iA]i for every i ∈ [κ], (2) A ⇒ AA, (3) A ⇒ λ, where λ denotes
the empty string.

Alon et al. [AKNS00] showed a tester (with two-sided error) for the first order Dyck
language (i.e., Dyck1) with query complexity Õ(1/ε2). As for higher order Dyck lan-
guages, Parnas et al. [PRR01] showed that any Dyck language (of any fixed order) can be
tested (with two-sided error) by making O(n2/3 · ε−3) queries.34 Furthermore, by the fol-
lowing proposition, the foregoing results can be extended to the case of partial derivation
languages of the Dyck languages (with respect to the foregoing grammars).

Proposition 4.20. Let m,κ ∈ N. If L ⊆ (Σκ)
m is a partial derivation language of the

grammar GDyckκ, then L is equal to Dyckκ ∩ (Σκ)
m.

Proof. Let L ⊆ (Σκ)
m be a partial derivation language of GDyckκ such that 〈L〉 =(

m, (i1, . . . , iκ), (A, . . . , A)
)

(here we used the fact that the grammar GDyckκ uses only
a single variable – A).

On one hand, if x ∈ L, then A
∗⇒ x[1, i1− 1] ◦A ◦x[i1, i2− 1] ◦ · · · ◦A ◦x[i`,m]. Using

the production rule A⇒ λ we have that A
∗⇒ x[1, i1 − 1] ◦ x[i1, i2 − 1] ◦ · · · ◦ x[i`,m] = x

and therefore x ∈ Dyckκ ∩ (Σκ)
m.

On the other hand, if x ∈ Dyckκ∩(Σκ)
m, then A

∗⇒ x. The following claim shows that,
for the Dyck grammars, we can generate a partial derivation in which A is inserted in any
desired sequence of positions. Therefore, A

∗⇒ x[1, i1−1]◦A◦x[i1, i2−1]◦· · ·◦A◦x[i`,m],
which implies that x ∈ L.

34For perspective, recall that Parnas et al. [PRR01] also showed that, for κ ≥ 2, any tester (which

does not use a proof) for Dyckκ must make at least Ω̃(n1/11) queries.

212

4.4 MAPs and IPPs for Context-Free Languages

Claim 4.20.1. Let α ∈ (Σκ ∪{A})m
′
, for some m′ ∈ N, and let i ∈ [m′]. If A

∗⇒ α, then

A
∗⇒ α[1, i− 1] ◦ A ◦ α[i,m′].

Proof. Since A
∗⇒ α (according to the grammar GDyckκ), there exists a corresponding

partial derivation tree T , in which all internal vertices are labeled by the variable A and
each leaf is labeled by either ’A’, ’[j’, ’]j’, for some j ∈ [κ]. We prove the claim by
extending T into a partial derivation tree T ′ that corresponds to the partial derivation
A
∗⇒ α[1, i− 1] ◦ A ◦ α[i,m′].

Denote the ith leaf of T by v and denote v’s parent by u. The specific way in which
T ′ is constructed from T depends on whether the label of v is ’A’, ’[j’ or ’]j’ (for some
j ∈ [κ]), and is detailed in Fig. 4.5.

Figure 4.5: Construction of T ′ from T . The original tree T is on the left, and the new
tree T ′ is on the right. In each case the ith leaf of the tree has a shaded background, both
in T and in T ′ (note that in all cases the ith leaf of T is v and the ith leaf of T ′ is labeled
by A, the newly inserted symbol).

This concludes the proof of Proposition 4.20.

213

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Thus, the property testers of [PRR01] for the Dyck languages are also testers for the
partial derivation languages (of the Dyck languages), and we obtain the following result.

Theorem 4.6. Let κ ≥ 2. For every p such that 2 ≤ p ≤ n, there exists an MAP for
Dyckκ that uses a proof of length O(p log n) and has query complexity O

(
(n/p)2/3 · ε−3 ·

log2(1/ε)
)
. Furthermore, there exists an MAP with one-sided error for Dyckκ that uses a

proof of length O(p log n+ polylog(n)) and has query complexity (n/p)2/3 · ε−3 ·polylog(n).

The furthermore clause is obtained by applying the generic transformation from one-sided
error MAP into two-sided error MAP (see [GR13b, Theorem 4.3]) and using the fact that
without loss of generality we may assume that ε ≥ 1/n (and so log2(1/ε) ≤ polylog(n)).
We conclude this section with some second order remarks.

Improvement for Dyck1 and ε� 1/
√
n. For Dyck1 (i.e., κ = 1), and for small values

of the proximity parameter (i.e., ε < 1√
n·polylog(n)

) we can improve Theorem 4.6, by using

the tester of Alon et al. [AKNS00] (which has query complexity Õ(1/ε2)). Using the
special case of Lemma 4.18, we obtain query complexity O

(√
n/p · ε−1 · log3(1/ε)

)
with

a proof of length O(p log n).

Extension to IPPs. The idea of applying non-trivial testers can also be used to obtain
improved IPPs, by applying the tester after the last round of interaction (instead of
running the trivial tester that reads the entire (current) input). The savings in this
case are less significant since the query and communication complexities of our IPPs are
already fairly small. Hence, we only elaborate briefly on these IPPs below.

If the partial derivation languages of the grammar have proximity-oblivious testers,
then the latter can simply be employed in the last step of the recursion in Fig. 4.4.
However, if only standard testers (which are not proximity oblivious) are available, then
we can generalize the strategy in the proof of Lemma 4.18 by applying an averaging
argument in each step of the recursion, while incurring an Õ(1/ε) multiplicative overhead
in each round. Unfortunately, the latter strategy results in an exponential dependence
on the round complexity of the protocol.

Computational Complexity for Dyck Languages. In general, as noted in Re-
mark 4.16, the running time of the verifier in Fig. 4.4 is poly(n) (because it verifies that
each of the languages L1, . . . ,Lk is non-empty). However, as shown in Proposition 4.20,
for the Dyck languages, the partial derivation languages L1, . . . ,Lk are themselves Dyck
languages. Since the Dyck language on m-bit strings is non-empty if and only if m is even,
the running time of the verifier can be reduced to poly(log n, k, r) (see also Section 4.D).

The MAP proof in Theorem 4.6 is generated efficiently (i.e., in time poly(n)) for
every context-free language, and in particular for the Dyck language. However, for the
furthermore clause of Theorem 4.6, we apply the transformation of [GR13b, Theorem
4.3], which in general does not preserve computational efficiency of the proof generating
procedure. Hence, we do not obtain an MAP for the Dyck languages that simultaneously
has both one-sided error and an efficient procedure of generating the MAP proof.

214

Appendix for Chapter 4

4.A Parallel Repetition of IPPs

The k-fold parallel repetition of an IPP (V1,P1) is an IPP (Vk,Pk) in which the two
parties perform k parallel repetitions of (V1,P1), using independent random coins for
each invocation. Note that the query and communication complexities of (Vk,Pk) are k
times the query and communication complexities of (V1,P1), respectively. The verifier Vk
accepts if V1 accepts in a majority of the k invocations. For our applications it suffices
to focus on the case that (V1,P1) has a one-sided error, in which case Vk can just check
that V1 accepts in all the k invocations.

It is clear that if (V1,P1) has perfect completeness, then so does (Vk,Pk). The main
challenge is in proving that the soundness error decreases exponentially with k since if
P ∗ is the optimal cheating strategy against V , it is not a priori clear that the optimal
cheating strategy against Vk is k independent copies of P∗.

Nevertheless, the following lemma, taken verbatim from [Gol99, Lemma C.1] shows
that the soundness error for any interactive machine Vk does decrease exponentially.

Lemma 4.21 ([Gol99, Lemma C.1]). Let V1 be an interactive machine, and Vk be an
interactive machine obtained from V1 by playing k versions of V1 in parallel. Let

p1(x)
def
= max

P∗
{Pr[(P∗,V1)(x) = 1]} , and

pk(x)
def
= max

P∗
{Pr[(P∗,Vk)(x) = 1]} .

Then,
pk(x) = (p1(x))k.

We stress that Lemma 4.21 holds for any x and is independent of the operation of V1.
It holds as long as Vk executes k independent copies of V1 and accepts if all copies accept.
Hence, it holds also when V1 is an IPP verifier; in that case Vk has query complexity that
is k times that of V1.

4.B Computing ROBPs in Low-Depth

For any branching program B (including branching programs that are not read-once),
we show that the language LB = {x ∈ {0, 1}∗ : B(x) = 1} can be recognized by

215

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

a poly(|B|, n)-size circuit of depth O((log(|B|))2) (with fan-in 2). We stress that the
branching program B is fixed and the circuit only gets x as input. For simplicity, we
assume without loss of generality that B has a unique accepting sink (otherwise we can
add a new unique accepting sink t and have all former accepting sinks direct to t).

The idea (which is in essence the folklore proof that (non-deterministic) log-space
is contained in NC2) proceeds as follows. First, based on the input x (and the fixed
branching program B), compute a |B| × |B| matrix Mx whose (u, v)th entry is 1 if the
branching program traverses from the vertex u ∈ B to v ∈ B on input x in a single step.
In addition, for every sink t ∈ B we set the (t, t)th-entry of Mx to 1 (these correspond to
self loops). All other entries of Mx are set to 0. Given input x, the matrix Mx (which
is a permutation matrix) can be computed by a constant-depth circuit of size poly(|B|)
(in fact, every entry in Mx is either a fixed constant, or equal to some variable or its
negation).

Observe that for every k ≥ 1, the (u, v)th-th entry of (Mx)
k is equal to 1 if and only if

the branching program traverses from u to v, on input x, in k steps (or at most k steps if
v is a sink). Hence, to check whether the source s leads to the (unique) accepting sink t
on input x, it suffices to check whether the (s, t)th-th entry of (Mx)

|B| is equal to 1. Using
repeated squaring we can compute (Mx)

|B| in O(log2(|B|)) depth and we obtain a circuit
as required.

4.C Proof of Lemma 4.18

We proceed to describe the MAP, which is similar to the MAP of Theorem 4.1 except
that we use the guaranteed property testers for the partial derivation languages. Given
x ∈ L, the MAP proof is the output (I, B) of Generate-Intervals(x, t) (see Fig. 4.1),
where t = n/k and as in the proof of Theorem 4.1 we assume that t ≥ 2d. The MAP
verifier, given direct access to (I, B) and oracle access to x ∈ Σn, first runs T (I, B) to
obtain (S1, 〈L1〉), . . . , (S`, 〈L`〉) and rejects if T rejects. Otherwise, the verifier runs the
following procedure for every j ∈

[
dlog2(2/ε)e

]
:

1. Select uniformly at random O
(

log(1/ε)
2jε

)
indices in [`]. Denote the chosen indices by

I.

2. For every index i ∈ I, run the property tester for Li on input x[Si] (while simulating
its oracle queries with queries to x), with respect to proximity parameter 2−j and
with completeness and soundness errors poly(ε) (as usual, the latter can be obtained
by taking the majority of O(log(1/ε)) independent tests). If the tester rejects then
reject and halt.

If none of the above test fails then the verifier accepts.
We first show that completeness and soundness hold and later show that the query

complexity is as stated.

216

4.C Proof of Lemma 4.18

Completeness. If x ∈ L, by Lemma 4.13, the transformation T produces as output(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that Lj is a partial derivation language and x[Sj] ∈ Lj,

for every j ∈ [k]. Since the tester for each partial derivation language Lj has completeness
error poly(ε) and we perform Step 2 O(ε−1 ·log2(1/ε)) times in total, the verifier accepts in
all tests with probability at least 2/3. Furthermore, if the testers for the partial derivation
languages have a one-sided error, then the MAP verifier accepts with probability 1 and
otherwise we can apply a generic transformation (as discussed in the beginning of the
proof) to obtain a one-sided error.

Soundness. Let x ∈ Σn that is ε-far from L, and let (I, B) be an alleged proof. By
Lemma 4.14, the transformation T either rejects (in which case the verifier rejects and
we are done), or produces

(
(S1, 〈L1〉), . . . , (Sk, 〈L`〉

)
, where S1, . . . , S` form a partition of

[n] and Lj is a partial derivation language, such that x is ε-far from
{
z ∈ Σn : ∀j ∈

[k], z[Sj] ∈ Lj
}

. The following claim, which is a refined averaging argument, shows that
either there are many indexes i ∈ [k] such x[Si] is mildly far from Li or there are few
indexes i ∈ [`] such that x[Si] is extremely far from Li (or anything in between).

Lemma 4.22 (Precision Sampling). There exists j∗ ∈ [dlog2 2/εe] such that for a 2j
∗
ε

4·dlog2(2/ε)e
fraction of the indexes i ∈ [`] it holds that x[Si] is 2−j

∗
-far from Li.

For completeness, we provide the proof of Lemma 4.22, which is standard.

Proof. Let d
def
= dlog2(2/ε)e. Recall that ∆REL (z,W) is the minimal relative Hamming

distance of z from the set W . For every k ∈ [d], let

Bk
def
=
{
i ∈ [`] : ∆REL (x[Si],Li) ∈

(
2−k, 2−(k−1)

]}
,

and let Bd+1 = [`]\(∪i∈[d]Bk). Note that the sets B0, . . . , Bd, Bd+1 form a partition [`].
Also note that by our setting of d, for every i ∈ Bd+1 it holds that x[Si] is ε/2-close to
Li.

Suppose towards a contradiction that for every k ∈ [d] it holds that |Bk| < 2kε
4d
· `.

Using the fact that for every i ∈ Bk it holds that x[Si] is 2−(k−1)-close to Li, we obtain
that

∆REL (x,L) ≤ 1

`

∑̀
i=1

∆REL (x[Si],Li)

=
1

`

∑
i∈Bd+1

∆REL (x[Si],Li) +
1

`

∑
k∈[d]

∑
i∈Bk

∆REL (x[Si],Li)

≤ |Bd+1|
`
· ε

2
+

1

`

∑
k∈[d]

2−(k−1) · |Bk|

<
ε

2
+
∑
k∈[d]

ε

2d

= ε,

217

4. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

in contradiction to our assumption that x is ε-far from L.

Next, consider the execution of iteration j∗ of the verifier, where j∗ is as guaranteed

by Lemma 4.22. Since the verifier selects uniformly at random O
(

log(1/ε)

2j∗ε

)
indices in

[k], with probability at least 9/10 it selects at least one index i ∈ [k] such that x[Si] is
2−j

∗
-far from Li. In this case, the tester for Li, with respect to proximity parameter 2−j

∗

will reject x[Si] with probability 1− poly(ε). Thus, the verifier rejects x with probability
at least (1− poly(ε)) · 9/10 ≥ 2/3.

Query Complexity. Recall that we assumed that every partial derivation language
has a tester with query complexity Q(m, δ) = O(mα · δ−β), for inputs of length m with
respect to proximity parameter δ > 0. By definition, it holds that |Si| ≤ t = n/p, for
every i ∈ [`]. Thus, the query complexity is at most

∑
j∈[dlog2 2/εe]

∑
i∈I

(
log(1/ε) ·Q

(
n/k, 2−j

))
= O

log(1/ε) ·
∑

j∈[dlog2 2/εe]

2jβ · log(1/ε)

2j · ε
· (n/k)α


= O

(n/k)α · (log(1/ε))2

ε
·

∑
j∈[dlog2 2/εe]

2(β−1)j


= O

(
(n/k)α · ε−β · log2(1/ε)

)
.

For the particular case in which α = 0, we tighten the analysis for small values of ε
by noting that the query complexity for any language is upper bounded by the size of
the object:

∑
j∈[dlog2 2/εe]

∑
i∈I

(
log(1/ε) ·Q

(
n/k, 2−j

))
= O

log(1/ε) ·
∑

j∈[dlog2 2/εe]

log(1/ε)

2j · ε
·min

(
n/k, 2jβ

)
= O

(
(n/k)1−1/β · ε−1 · log3(1/ε)

)
,

where the last equality follows since min
(
n/k, 2jβ

)
≤ (n/k)1−1/β ·

(
2jβ
)1/β

, for every j ≥ 1

(while using the fact that β ≥ 1). Note that log3(1/ε) ≤ polylog(n) since without loss of
generality we may assume that ε ≥ 1/n.

4.D Efficient Verification for Special Context-Free

Languages

As stated in Remark 4.16, in this section we show that for special context-free lan-
guages we can improve the running time of the verifier in Fig. 4.4 from poly(n, k, r) to
poly(log n, k, r). Specifically, we refer to context-free languages whose partial derivation

218

4.D Efficient Verification for Special Context-Free Languages

languages are themselves context-free languages (e.g., the Dyck language, see Proposi-
tion 4.20).

The crucial step in improving the verifier’s running-time is an efficient implementation
of Item 4d in Fig. 4.2. In the general case, this step can be implemented in time poly(n),
but we show that if the partial derivation languages are context-free languages, then we
obtain running time polylog(n).

Lemma 4.23. For every context-free language L over an alphabet Σ, there exist an
algorithm that given an integer n ∈ N, runs in time polylog(n) and accepts if and only if
L ∩ Σn 6= ∅.

Proof. Let G be a context-free grammar that accepts L, and let G′ be the context-free
grammar that is obtained from G by replacing all the terminal symbols in G by a single
terminal symbol, denoted 0. Note that L ∩ Σn 6= ∅ if and only if G′ accepts 0n.

Observe that the language L′ accepted by G′ is a unary context-free language. Gins-
burg and Rice [GR62] showed that such a language must be regular.

Proposition 4.24 ([GR62]). Every unary context-free language is regular.

Hence, there exists a finite-state automaton over the unary alphabet that accepts L′.
Such an automaton can be viewed as a directed graph with a single outgoing edge from
each node. Hence, the graph is a directed path (from the start node) of length a feeding
into a directed cycle of length b, and some of the nodes are accepting. Hence, the accepted
lengths have the form j + i · b, where j ∈ [a+ b− 1] and i ≥ 0.

The lemma follows by observing that an algorithm can easily check in polylog(n) time
if the given input n has the desired form, by checking if n − j is divisible by b, for the
specific set of j ∈ [a+ b− 1] that correspond to accepting nodes of the automaton.

219

220

Chapter 5

Arguments of Proximity

5.1 Introduction

With the prominent use of computers, tremendous amounts of data are available. For
example, hospitals have massive amounts of medical data. This data is very precious as
it can be used, for example, to learn important statistics about various diseases. This
data is often too large to store locally, and thus is often stored on cloud platforms (or
external servers). As a result, if a hospital (which has bounded storage and bounded
computational power), wishes to perform some computation on its medical data, it would
need to delegate this computation to the cloud. Since the cloud’s computation may be
faulty, the party delegating the computation (say, the hospital), may want a proof that
the computation was done correctly. It is important that this proof can be verified very
efficiently, and that the prover’s running time is not much larger than the time it takes
to perform the computation, since otherwise, the solution will not be practical.

This problem is closely related to the problem of computation delegation, where a
weak client delegates a computation to a powerful server, and the server needs to provide
the client with a proof that the computation was done correctly. In contrast to the
current setting, in the setting of computation delegation, the input is thought of as
being small and the computation is thought of as being large. The client (verifier) is
required to run in time that is proportional to the input size (but much smaller than
the time it takes to do the computation), and the powerful server (prover) runs in time
polynomially related to the time it takes to do the computation. Indeed the problem
of computation delegation is extremely important, and received a lot of attention (e.g.,
[GKR08, Mic94, Gro10, GGP10, CKV10, AIK10, GLR11, Lip12, BCCT12a, DFH12,
BCCT12b, GGPR12, PRV12, KRR13a, KRR13b]).

In reality, however, the input (data) is often very large, and the client cannot even
store the data. Hence, we seek a solution in which the client runs in time that is sub-linear
in the input size. The question is:

If the client cannot read the data, how can he verify the correctness of a computation
on the data?

221

5. ARGUMENTS OF PROXIMITY

The work of [CKLR11], on memory delegation, considers this setting where the input
(thought of as the client’s memory) is large, and the client cannot store it locally. However,
in memory delegation, it is assumed that the client (verifier) stores a short “commitment”
of the input, and then can verify computations in sub-linear time. However, computing
such a commitment takes time at least linear in the input length, which is infeasible in
many settings.

Recently, Rothblum, Vadhan and Wigderson [RVW13], in their work on interactive
proofs of proximity (IPP, a notion first studied by Ergün, Kumar and Rubinfeld [EKR04]),
provide a solution where the verifier does not need to know such a commitment. Without
such a commitment, the verifier cannot be sure that the computation is correct (since he
cannot read the entire input), however they guarantee that the input is “close” to being
correct. More specifically, they construct an interactive proof system for every language
computable by a (log-space uniform) low depth circuit, where the verifier is given oracle
access to the input (the data), and the verifier can check whether the input is close to
being in the language in sub-linear time in the input (and linear time in the depth of the
computation). We note that in many settings where the data is large (such as medical
data) and the goal is to compute some statistics on this data, an approximate solution is
acceptable.

The work of [RVW13] is the starting point of our work.

5.1.1 Our Results in a Nutshell

We depart from the interactive proof of proximity setting, and consider arguments of
proximity. In contrast to proofs of proximity, in an argument of proximity, soundness
is required to hold only against computationally bounded cheating provers. Namely, the
soundness guarantee is that any bounded cheating prover can convince the verifier to
accept an input that is far from the language (in Hamming distance) only with small
probability. By relaxing the power of the prover we obtain stronger results.

We construct one-round arguments of proximity for every deterministic language
(without a dependency on the depth). Namely, fix any t = t(n) and any language L ∈
DTIME(t(n)), we construct a one-round argument of proximity for L where the verifier
runs in time o(n) + polylog(t), assuming the existence of a sub-exponentially secure fully
homomorphic encryption (FHE) scheme.

Our one-round argument of proximity is constructed in two steps, and follows the
outline of the recent works of Kalai et al. [KRR13a, KRR13b]. These works first show
how to construct an MIP for all deterministic languages, that is sound against no-signaling
strategies. Such no-signaling soundness is stronger than the typical notion of soundness,
and is inspired by quantum physics and by the principal that information cannot travel
faster than light (see Section 5.3.5 for the definition, and [KRR13a, KRR13b] for more
background on this notion). They then show how to convert these no-signaling MIPs into
one-round arguments.

As our first step, we combine the interactive proof of proximity (IPP) of [RVW13],

222

5.1 Introduction

and the no-signaling MIP construction of [KRR13b], to obtain a no-signaling multi-prover
interactive proof of proximity (MIPP). (See Theorem 5.2 and Theorem 5.12.) This con-
struction combines techniques and results of [RVW13] and [KRR13b], and may be of
independent interest.

Then, similarly to [KRR13a], we show how to convert any no-signaling MIPP to a one-
round argument of proximity. (See Theorem 5.1 and Theorem 5.16.) This transformation
relies on a heuristic developed by Aiello et al. [ABOR00], which uses a (computational)
PIR scheme (or a fully homomorphic encryption scheme) to convert any MIP into a one-
round argument. This heuristic was proven to be secure in [KRR13a] if the underlying
MIP is secure against no-signaling strategies. We extend the result of [KRR13a] to the
proximity setting.

Finally, we provide a negative result, which shows that the parameters we obtain for
MIPP and the parameters obtained in [RVW13], are somewhat tight. (See Theorem 5.4,
and Theorems 5.7 and 5.8.) Proving such a lower bound was left as an open problem in
[RVW13]. This part contains several new ideas, and is the main technical contribution
of this work.

We also show that the parameters in our one-round argument of proximity are some-
what optimal, for arguments which have adaptive soundness and are proven to be adap-
tively sound via a black-box reduction to a falsifiable assumption; see Section 5.2 and
Section 5.4.3 for details.

Linear-time delegation. We observe that both proofs and arguments of proximity,
aside from being natural notions, can also be used as tools to obtain new results for
delegating computation in the standard setting (i.e., where soundness is guaranteed for
every x 6∈ L). More specifically, using our results on arguments of proximity and the
[RVW13] results on interactive proofs of proximity for low-depth circuits, we can con-
struct (standard) one-round argument-systems for any deterministic computation, and
interactive proof systems for low-depth circuits, where the verifier truly runs in linear-
time. In contrast, the results of [GKR08] and [KRR13b] only give a quasi-linear time
verifier.1 See Section 5.2 for details.

5.1.2 Our Results in More Detail

Our main result is a construction of a one-round argument of proximity for any determin-
istic language. Here, and throughout this work, we use n to denote the input length. Let
t = t(n), let L ∈ DTIME(t) be a language. For a proximity parameter ε = ε(n) ∈ (0, 1),
we denote by ε-IPP an interactive proof for testing ε-proximity to L.2 Similarly we denote
by ε-MIPP a multi-prover interactive proof for testing ε-proximity to L.

1Actually, by an observation of Vu et al. [VSBW13] (see also [Tha13, Lemma 3]), the verifier in the
[GKR08] protocol can be directly implemented in linear-time. However the latter implementation would
only guarantee constant soundness error.

2A string x ∈ {0, 1}n is ε-close to L if there exists x′ ∈ {0, 1}n ∩ L such that 4(x, x′) ≤ εn, where 4
denotes the Hamming distance between the two strings.

223

5. ARGUMENTS OF PROXIMITY

Theorem 5.1 (Informal, see Theorem 5.16). Suppose that there exists a sub-exponentially

secure FHE. Fix a proximity parameter ε
def
= n−(1−β), for some sufficiently small β > 0,

and a security parameter τ (polynomially related to n).
There exists a 1-round argument of ε-proximity for L, where the verifier runs in time

n1−γ + polylog(t) + polyFHE(τ), where γ > 0 is a constant and polyFHE is a polynomial that
depends only on the FHE scheme, and makes n1−γ + polylog(t) oracle queries to the main
input. The prover runs in time poly(t). The total communication is of length polyFHE(τ).

Note that for languages in DTIME(2n
α
) for sufficiently small α > 0 (and in particular

for languages in P), the verifier in Theorem 5.1 runs in sub-linear time.
As mentioned previously, this result is obtained in two steps. We first construct an

MIPP that is sound against no-signaling strategies, and then show how to convert any
such MIPP into a one-round argument of proximity.

Theorem 5.2 (Informal, see Theorem 5.12). Fix a proximity parameter ε = ε(n) ∈
(0, 1). There exists an ε-MIPP that is secure against no-signaling strategies, where the

verifier makes q = (1/ε)1+o(1) oracle queries to the input, the communication complexity
c = (εn)2 · no(1) · polylog(t) and the running time of the verifier is (εn)2 · polylog(t) +(

1
ε

+ εn
)1+o(1)

.

We then show how to convert any no-signaling ε-MIPP to a one-round argument of
ε-proximity. In the following we say that a fully homomorphic encryption scheme (FHE)
is (T, δ) secure if every family of circuits of size T can break the semantic security of the
FHE with probability at most δ.

Theorem 5.3 (Informal, see Theorem 5.18). Fix a proximity parameter ε = ε(n) ∈ (0, 1).
Suppose that the language L has an `-prover ε-MIPP that is sound against δ-no-signaling
strategies, with communication complexity c. Suppose that there exists a (T, δ/`)-secure
FHE, where T ≥ 2c. Then L has a 1-round argument of ε-proximity where the running
time of the prover and verifier and the communication complexity of the argument system,
are proportional to those of the underlying MIPP scheme.

We note that the parameters in Theorem 5.2 are somewhat similar to the parameters of
the interactive proof of proximity (IPP) in [RVW13]. In particular, in both constructions
it holds that c·q = Ω(n). The work of [RVW13] shows that this lower bound of c·q = Ω(n)
is inherent for IPPs with 2-messages (and that a weaker bound holds for IPPs with a
constant number of rounds), and left open the question of whether this lower bound is
inherent for general (multi-round) IPPs.

We resolve this question by showing that for every ε-IPP, and every ε-MIPP that is
sound against no-signaling strategies, it must be the case that c ·q = Ω(n). For this result
we assume the existence of exponentially hard pseudorandom generators.

Theorem 5.4 (Informal, see Theorem 5.7 and Theorem 5.8). Assume the existence of
exponentially hard pseudorandom generators. There exists a constant ε > 0 such that
for every q = q(n) ≤ n, there exists a language L ∈ P such that for every ε-IPP for L

224

5.1 Introduction

, and for every ε-MIPP for L that sound against no-signaling adversaries, it holds that
q · c = Ω(n), where q is the query complexity and c is the communication complexity.

In fact, assuming a slightly stronger cryptographic assumption, we can replace L ∈ P
with L ∈ NC1 (which shows that the [RVW13] upper bound for log-space uniform NC is
essentially tight). See Section 5.4 for details.

We note that the [RVW13] lower bound for 2-message IPPs is unconditional (and in
particular they do not assume that the verifier is computationally bounded). It remains
an interesting open problem to obtain an unconditional lower bound for multi-message
IPPs.

The parameters we obtain for the one-round argument also satisfy q · c = Ω(n). We
show that these parameters are close to optimal for arguments with adaptive soundness,
that are proven sound via a black-box reduction to falsifiable assumptions. We refer the
reader to Section 5.4.3 for details.

Finally, using the [RVW13] protocol or the protocol of Theorem 5.1 we construct
delegation schemes in which the verifier runs in linear-time.

Theorem 5.5 (Informal, see details in Section 5.2). For every language in (logspace-
uniform) NC there exists an interactive proof system in which the verifier runs in time
O(n) and the prover runs in time poly(n).

Theorem 5.6 (Informal, see details in Section 5.2). Assume that there exists a sub-
exponentially secure FHE. Then, for every language in P there exists a 1-round argument-
system in which the verifier runs in time O(n) and the prover runs in time poly(n).

5.1.3 Related Work

As mentioned above, the work of [RVW13] and [KRR13a, KRR13b] are most related
to ours. Both our work, and the work of [RVW13], lie in the intersection of property-
testing and computation delegation. As opposed to property testing, where an algorithm
is required to decide whether an input is close to the language on its own in sub-linear
time, in our work the algorithm receives a proof, and only needs to verify correctness of
the proof in sub-linear time. Thus, our task is significantly easier than the task in property
testing. Indeed we get much stronger results. In particular, the works on property testing
typically get sub-linear algorithms for specific languages, whereas our result holds for all
deterministic languages.3

Another very related problem is that of constructing a probabilistically checkable proof
of proximity (PCPP) [BSGH+06] (also known as assignment testers [DR06]). A PCPP
consists of a prover who publishes a long proof, and a verifier, who gets oracle access to
this proof and to the instance x, and needs to decide whether x is close to the language
in sub-linear time. The significant difference between PCPP and proofs/argument of

3Indeed, as shown by Goldwasser, Goldreich and Ron [GGR98], there are properties in very low
complexity classes that require Ω(n) queries and running-time in order to test (without the help of a
prover).

225

5. ARGUMENTS OF PROXIMITY

proximity is that in the PCPP setting the proof is a fixed string (and cannot be modified
adaptively based on the verifier’s messages).

The fundamental works of Kilian and Micali [Kil92, Mic94] show how to convert any
probabilistically checkable proof (PCP) into a 2-round (4-message) argument. As pointed
out by [RVW13], their transformation can be also used to convert any PCPP into a 2-
round argument of proximity. Thus, obtaining a 2-round argument of proximity follows
immediately by applying the transformation of [Kil92, Mic94] to any PCPP construc-
tion. Moreover, the parameters of the resulting 2-round argument are optimal (up to
logarithmic factors); i.e., the query complexity, the communication complexity and the
runtime of the verifier is poly(log(t), τ) where t is the time it takes to compute if x is in
the language, and where τ is the security parameter.

The focus of this work is on constructing one-round arguments of proximity. Unfortu-
nately, our parameters do not match those of the two-round arguments of proximity out-
lined above. However, we show that using our techniques (i.e., of constructing one-round
arguments of proximity from no-signaling MIPPs), our parameters are almost optimal.

Other works that are related to ours are the work of Gur and Rothblum [GR13b] on
non-interactive proofs of proximity, and of Fischer et al. [FGL14] on partial testing. The
former studies an NP version of property testing (which can be thought of as a 1-message
variant of IPP), whereas the latter studies a model of property testing in which the tester
needs to only accept a sub-property (we note that the two notions, which were developed
independently, are tightly related, see [GR13b, FGL14] for details).

Organization

In Section 5.2 we give a high level view of our techniques. In Section 5.3 we formally
define arguments of proximity and the other central definitions that are used throughout
this work. In Section 5.4 we show our lower bounds. In Section 5.5 we construct a no-
signaling MIPP for every language in P. Lastly, in Section 5.6 we show how to transform
the no-signaling MIPP into an argument of proximity.

5.2 Our Techniques

5.2.1 Our Positive Results

To construct arguments of proximity for languages in DTIME(t), we adapt the tech-
nique of [KRR13a] to the “proximity” setting. That is, we first construct an MIPP
that has soundness against no-signaling strategies and then employ the technique of
Aiello et al. [ABOR00] to obtain an argument of proximity. We elaborate on these two
steps below. In what follows, we focus for simplicity on languages in P, though everything
extends to languages in DTIME(t).

No-Signaling MIPPs for P. Our first step (which is technically more involved) is a
construction of MIPPs that are sound against no-signaling strategies for any language

226

5.2 Our Techniques

L ∈ P. This construction is inspired by (and reminiscent of) the IPP construction of
[RVW13]. The starting point for the [RVW13] IPP is the “Muggles” protocol of Gold-
wasser et al. [GKR08], whereas our starting point is the no-signaling MIP of [KRR13b].

The main technical difficulty in using both the [GKR08] and [KRR13b] protocols by
a sublinear time verifier is that in both protocols, the verifier needs to compute an error
corrected encoding of the input x. More specifically, the verifier needs to compute the
low degree extension of x, denoted LDEx (see Section 5.3.8 for a definition of LDE). Since,
by design, error-correcting codes are very sensitive to changes in the input, a sub-linear
algorithm has no hope of computing LDEx.

The key point is that in both the [GKR08] and the [KRR13b] protocols, it suffices for
the verifier to check the value of LDEx at relatively few randomly selected points (this
property was also used by [CKLR11] in their work on memory delegation). Hence, it
will be useful for us to view both the [GKR08] and [KRR13b] protocols as protocols for
producing a sequence of points J in the low degree extension of x and a sequence of
corresponding values ~v with the following properties:

• If x ∈ L and the prover(s) honestly follow the protocol then LDEx(J) = ~v.

• If x /∈ L then no matter what the cheating prover does (resp., no-signaling cheating
prover do), with high probability the verifier outputs J,~v such that LDEx(J) 6= ~v.

Hence, the verifiers in both protocols first run this subroutine to produce J and ~v and
then accept if and only if LDEx(J) = ~v. Remarkably, in both cases, in the protocol that
produces J and ~v, the verifier does not need to access x.

The next step in [RVW13] is a parallel repetition of the foregoing protocol in order
to reduce the soundness error. Once the soundness error is sufficiently small, [RVW13]
argue that for every x that is ε-far from L, no matter what the cheating prover does (in
the parallel repetition of the base protocol), the verifier will output J,~v such that not
only LDEx(J) 6= ~v, but furthermore, x is far from any x′ such that LDEx′(J) = ~v. This
steps simply follows by taking a union bound over all x′ that are close to x.

We borrow this step almost as-is from [RVW13] except for the following technical
difficulty - it is not known whether parallel repetition decreases the soundness error of
no-signaling MIP protocols.4 However, we observe that the [KRR13b] protocol already
allows for sufficient flexibility in choosing its soundness error so that the parallel repetition
step can be avoided.

The last step of [RVW13] is designing an IPP protocol for a language that they call
PVALJ,~v (for “polynomial evaluation”). This language, parameterized by J and ~v, consists
of all strings x such that LDEx(J) = ~v. Using this IPP for PVAL, the IPP verifier for a
language L first runs the (parallel repetition of the) [GKR08] protocol, to produce J,~v
as above. Then, the IPP verifier runs the PVALJ,~v protocol and accepts if and only if the
PVAL-verifier accepts. If x ∈ L then we know that LDEx(J) = ~v and therefore the PVAL-
verifier will accept, whereas if x is far from L then x is far from PVALJ,~v and therefore

4Holenstein [Hol09] showed a parallel repetition theorem for no-signaling 2-prover MIPs. It is not
known whether this result can be extended to 3 or more provers.

227

5. ARGUMENTS OF PROXIMITY

the PVAL-verifier will reject. Hence the (parallel repetition of the) [GKR08] protocol is
sequentially composed with the IPP for PVAL.

For the no-signaling case, we also use the [RVW13] IPP protocol for PVAL. A technical
difficulty that arises is that in contrast to the IPP setting in which sequential composition
(of two interactive proofs) is trivial, here we need to compose a 1-round no-signaling MIP
with an IPP protocol, to produce a no-signalling MIPP. We indeed prove that such a
composition holds thereby constructing a no-signaling MIPP as we desire. See Section 5.5
for details.

From No-Signaling MIPP to Arguments of Proximity. The transformation from
a no-signaling MIPP to an argument of proximity is based on the assumption that there
exists a fully homomorphic encryption scheme (or alternatively, a computational private
information retrieval scheme) and is practically identical to that in [KRR13a]. More
specifically, the argument’s verifier uses the MIPP verifier to generate a sequence of queries
q1, . . . , q` to the ` provers. It encrypts each query using a fresh encryption key as follows:
q̂i ← Encki(qi). The argument’s verifier sends all the encrypted queries to the prover.
Given q̂1, . . . , q̂`, the prover uses the homomorphic evaluation algorithm to compute the
MIPP answers “underneath” the encryption. It sends these answers back to the verifier,
which can decrypt the encrypted answers and decide. As in [KRR13a] we show that if
the MIPP is sound against no-signaling strategies then, assuming the semantic security
of the FHE, the resulting protocol is sound against computationally bounded adversaries.
See Section 5.6 for details.

Linear-time delegation. We show that using the foregoing one-round argument of
proximity for every language L ∈ P and good error-correcting codes, one can easily con-
struct a one-round delegation protocol where the verifier runs in linear time (in contrast,
the verifier in [KRR13b] runs in quasi-linear time). A similar observation, in the context
of PCPs, was previously pointed out by [EKR04].

Let L ∈ P and consider L′ = {ECC(x) : x ∈ L} where ECC is an error correcting code
with constant rate, constant relative distance, linear-time encoding and polynomial-time
decoding5. Then, L′ ∈ P and so it has an argument of proximity with a sublinear-time
verifier. We construct a delegation scheme for L by having both the verifier and the
prover compute x′ = ECC(x) and run the argument of proximity protocol with respect to
x′. Since the argument of proximity verifier runs in sublinear time, and ECC(x) can be
computed in linear-time, the resulting delegation verifier runs in linear-time. Soundness
follows from the fact that a cheating prover that convinces the argument-system verifier
to accept x /∈ L can be used to convince the argument-of-proximity verifier to accept
ECC(x) which is indeed far from L′.

A similar result can be obtained for interactive proofs for low-depth computation
based on the results of [RVW13] by using an error-correcting code that can be decoded
in logarithmic-depth (such a code was constructed by Spielman [Spi96]).

5Such codes are known to exist, see, e.g., [Spi96].

228

5.2 Our Techniques

5.2.2 Our Negative Results

We prove that assuming the existence of exponentially hard pseudorandom generators,
there exists a constant ε > 0 for which there does not exist a no-signaling ε-MIPP for
all of P with query complexity q and communication complexity c such that q · c = o(n)
(where n is the input length). We also show a similar result for ε-IPP.

We start by focusing on our lower bound for MIPP. The high-level idea is the following:
Suppose (towards contradiction) that every language in P has a no-signaling MIPP with
query complexity q and communication complexity c where q · c = o(n). The fact that
q = o(n) implies that (for every language in P), there is some set of coordinates S ⊆ [n]
of size O(n/q) that with high (constant) probability the verifier does not query.

As a first step, suppose for the sake of simplicity that there is a fixed (universal)
set of coordinates S ⊆ [n] such that with high probability the verifier never queries the
coordinates in S, for every language in P (for example, if the verifier’s queries are non-
adaptive and are generated before it communicates with the prover, then such a set S
must exist). We derive a contradiction by showing that one can use the no-signaling MIPP
to construct a no-signaling MIP for languages in NP \ P with communication c = o(n).
The latter was shown to be impossible, assuming that NP * DTIME(2o(n)) [DLN+04] (see
also [Ito10]).

The basic idea is the following: Take any language L ∈ NP \ P that is assumed to be
hard to compute in time 2o(n), and convert it into the language L′ ∈ P, defined as follows:
x′ ∈ L′ if and only if x′S is a valid witness of x′[n]\S in the underlying NP language L.
The no-signaling MIP for L will simply be the no-signaling ε-MIPP for L′, where the
MIP verifier simulates the ε-MIPP verifier with oracle access to x′ where x′[n]\S = x, and

x′S = 0|S|. Note that the MIP verifier, which takes as input x (supposedly in L), cannot
(efficiently) generate a corresponding witness w and set x′S = w. But the point is that
it does not need to, since S was chosen so that with high probability the MIPP verifier
for L′ will not query x′ on coordinates in S.

There are several problems with this approach. First, the witness can be very long
compared to x, and the set S may be very small compared to n. In this case we will
not be able to fit the entire witness in the coordinate set S. Second, after running the
MIPP, the verifier is convinced that x′ is close to an instance in L′. However, this does
not imply that x is in L (and can only imply that x is close to L).

One can fix these two problems with a single solution: Instead of setting x′[n]\S = x we

set x′[n]\S = ECC(x), where ECC is a error-correcting code with efficient encoding, that is

resilient to 2ε-fraction of errors. Now, we can take ECC(x) so that |ECC(x)| is very large
compared to |w|, so that we can fit all of the witness in the coordinate set S. Moreover, if
|ECC(x)| > |w| then if x′ is ε-close to L′ then x′[n]\S is 2ε-close to L. This, together with

the fact that ECC(x) is resilient to 2ε-fraction of errors implies that the encoded element
is indeed in L.

The foregoing idea indeed seems to work if there was a fixed (universal) set S that
the MIPP verifier does not query (with high probability). However, this is not necessarily
the case, and this set S may be different for different languages in P. In particular, we

229

5. ARGUMENTS OF PROXIMITY

cannot claim that for the language L′ the set S is exactly where the witness lies. Namely,
it may be that the verifier in the underlying MIPP always queries some coordinates in S.

We solve this problem by using repetitions. Namely, every element x′ ∈ L′ will consist
of many instances (encoded using an error-correcting code) along with many witnesses;
i.e., x′ = (ECC(x1, . . . , xm), w1, . . . , wm), where each wj is a witness for the NP statement
xj ∈ L. Now, suppose that the verifier makes q queries to x′ (where q = o(n)). Then if
we take m = 4q then we know that 3/4 of the (xj, wj)’s are not queried.

As above, we derive a contradiction by showing that one can use the no-signaling MIPP
to construct a no-signaling MIP for languages in NP\P with o(n) communication, (which
is known to be impossible for languages that cannot be computed in time 2o(n) [DLN+04,
Ito10]). However, now the no-signaling MIP construction will be different: Given an
instance x (supposedly in L), the MIP verifier will choose a random i∗ ∈R [m], along with
m random instance and witness pairs (x1, w1), . . . , (xm, wm), where xi∗ = x and wi∗ can
be arbitrary (assumed not to be queried).

We need to argue that with probability at least 3/4 the verifier will not query the
coordinates of wi∗ , and thus with probability at least 3/4 the MIP verifier will successfully
simulate the MIPP verifier. If the queries of the MIPP verifier were chosen before inter-
acting with the prover then this would follow immediately from the fact that i∗ ∈ [m]
is chosen at random. However, the MIPP verifier may choose its oracle queries after in-
teracting with the MIPP provers, and therefore we need to argue that the MIPP provers
also do not know i∗. Note that the MIPP provers see all of x1, . . . , xm. Hence, in order
to claim that the provers cannot guess i∗ it needs to be the case that x is distributed
identically to the other x1, . . . , xm.

Hence, we seek a language L ∈ NP\P for which there exists a distribution D (dis-
tributed over L) such that:

1. It is computationally hard to distinguish between x ∈R D and x 6∈ L (i.e., L is hard
on the average); and

2. x ∈R D can be sampled together with a corresponding NP witness.

We note that the first requirement is needed to obtain a contradiction (and replaces
the weaker assumption that L ∈ NP\P) whereas the second assumption is required so
that we can sample x1, . . . , xm (together with the corresponding witnesses) so that MIPP
protocol cannot distinguish between x and any of the xj’s (thereby hiding i∗). In can be
easily verified that both requirement are met by considering D which is the output of
a cryptographic pseudorandom generator (PRG). Hence the language L that we use is
precisely the output of such a PRG.

Indeed, we can only argue that our no-signaling MIP has average-case complete-
ness (with respect to the distribution D), since if x ∈ L is distributed differently from
(x1, . . . , xm) then the verifier of the MIPP may always query the coordinates where the
witness of x is embedded, in which case the MIP verifier will fail to simulate. However,
for random x ∈R L the provers (and verifier) in the MIPP cannot guess i∗ with any
non-negligible advantage, and therefore the verifier will not query the coordinates of wi∗

230

5.2 Our Techniques

with probability at least 3/4, in which case the MIP verifier will succeed in simulating
the underlying ε-MIPP verifier. We refer the reader to Section 5.4 for further details.

A Lower Bound for IPP. To obtain a multiplicative lower bound for IPP, we follow the
same paradigm outlined above for MIPP’s with no-signaling soundness. More specifically,
we consider a language L ∈ NP and the corresponding language

L′ =
{(

ECC(x1, . . . , xm), w1, . . . , wm
)

: wj is an NP-witness for xj
}

as above. We show that an IPP protocol for L′ implies a (standard) interactive-proof for L
with similar communication complexity. Here we obtain a contradiction by arguing that
(assuming exponential hardness) there are languages in NP\P for which every interactive
proof require Ω(n) communication. The latter is based on the proof that IP ⊆ PSPACE
(i.e., the “easy” direction in the IP = PSPACE theorem).

Given the [RVW13] positive result of IPP for low depth computations, we would like
to show that our lower bound is not just for languages in P but even for languages, say, in
NC1 (thereby showing that the [RVW13] result is tight). To do so we observe that if (1)
the error correcting code that we use has an encoding procedure that can be computed
by an NC1 circuit and (2) the cryptographic PRG can be computed in NC1, then indeed
L′ ∈ NC1. We refer the reader to Section 5.4.2 for further details.

A Lower Bound for One-Round Arguments of Proximity. For one-round argu-
ments of proximity, we show a similar lower-bound of q ·c = Ω(n), assuming the argument
has adaptive soundness (as defined in Section 5.4.3), and the proof of (adaptive) soundness
is via a black-box reduction to some falsifiable cryptographic assumption.

Loosely speaking, a cryptographic assumption is falsifiable (a notion due to Naor [Nao03])
if there is an efficient way to “falsify it”, i.e., to demonstrate that it is false. We note
that most standard cryptographic assumptions (e.g., one-way functions, public-key en-
cryption, LWE etc.) are falsifiable. A black-box reduction of one cryptographic primitive
to another, is a reduction that, using black-box access to any (possibly inefficient) adver-
sary for the first primitive, breaks the security of the second primitive.

Similarly to the MIPP and IPP lower bounds, we consider the languages L and L′, as
above, where L ∈ NP is exponentially hard on average and L ∈ P. We prove that if there
exists an adaptively sound one-round argument of proximity for L′ with q · c = o(n) then
there exists an adaptively sound one-round argument for L with o(n) communication (in
the crs model).

We then rely on a result of Gentry and Wichs [GW11], which shows that there does
not exist a one-round argument for exponentially hard (on average) NP languages, with
adaptive soundness and black-box reduction to a falsifiable assumption.

We conclude that P does not have an adaptively sound one-round argument of prox-
imity with q · c = o(n), and a black-box reduction to a falsifiable assumption. We refer
the reader to Section 5.4.3 for details.

231

5. ARGUMENTS OF PROXIMITY

5.3 Preliminaries

5.3.1 Notation

For x, y ∈ {0, 1}n, we denote the Hamming distance of x and y by ∆(x, y)
def
= |{i ∈

[n] : xi 6= yi}|. We say that x is ε-close to y if ∆(x, y) ≤ δ. We say that x is ε-close to a
set S ⊆ {0, 1}n if there exists y ∈ S such that x is ε-close to y.

If A is an oracle machine, we denote by Ax(z) the output of A when given oracle
access to x and explicit access to z.

For a vector a = (a1, . . . , a`) and a subset S ⊆ [`], we denote by aS the sequence of
elements of a that are indexed by indices in S, that is, aS = (ai)i∈S. In general, we denote
by aS a sequence of elements indexed by S, and we denote by ai the ith coordinate of a
vector a.

For a distribution A, we denote by a ∈R A a random variable distributed according
to A (independently of all other random variables).

We will measure the distance between two distributions by their statistical distance,
defined as half the l1-distance between the distributions. We will say that two distribu-
tions are δ-close if their statistical distance is at most δ.

5.3.2 Arguments of Proximity

An interactive argument of proximity for a language L consists of a polynomial-time
verifier that wishes to verify that x is close (in Hamming distance) to some x′ such that
x′ ∈ L, and a prover that helps the verifier to decide. The verifier is given as input
n ∈ N, a proximity parameter ε = ε(n) > 0 and oracle access to x ∈ {0, 1}n (and its
oracle queries are counted). The prover gets as input ε and x. The two parties interact
and at the end of the interaction the verifier either accepts or rejects. We require that
if x ∈ L then the verifier accepts with high probability but if x is ε-far from L, then no
computationally bounded prover can convince the verifier to accept with non-negligible
(in n) probability.

We focus on 1-round arguments of proximity systems. Such an argument-system
consists of a single message sent from the verifier V to the prover P , followed by a single
message sent from the prover to the verifier.

Let ε = ε(n) ∈ (0, 1) be a proximity parameter. Let T : N → N and s : N → [0, 1]
be parameters. We say that (V, P) is a one-round argument of ε-proximity for L, with
soundness (T, s), if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V x(|x|, ε) accepts with overwhelming
probability, after interacting with P (ε, x).

2. Soundness: For every family of circuits {P ∗n}n∈N of size poly(T (n)) and for all
sufficiently large x /∈ L, the verifier V x(|x|, ε) rejects with probability ≥ 1− s(|x|),
after interacting with P ∗|x|(ε, x).

232

5.3 Preliminaries

5.3.3 Interactive Proofs of Proximity (IPP)

We define interactive proofs of proximity (IPP), following [RVW13]. In an IPP for a
language L, a single computationally unbounded prover, P , tries to convince a (proba-
bilistic) polynomial-time verifier, V , that the input x is close (in Hamming distance) to
some x′ ∈ L. The prover has free access to ε and x. The verifier has free access to n = |x|
and ε but only has oracle access to x (and the number of oracle queries is counted).

Let ε = ε(n) ∈ (0, 1) be a proximity parameter. We say that (V, P) is an interactive
proof of ε-proximity (ε-IPP) for L, with completeness c ∈ [0, 1] and soundness s ∈ [0, 1],
if the following properties are satisfied:

1. Running Time: The verifier runs in polynomial time, i.e., time polynomial in the
communication complexity and the number of oracle queries.

2. Completeness: For every x ∈ L, the verifier V accepts with probability c, after
interacting with P .

3. Soundness: For every x that is ε-far from L, and any (computationally unbounded,
possibly cheating) prover P ∗, the verifier V rejects with probability ≥ 1 − s, after
interacting with P ∗.

We denote such a proof system by ε-IPP (and omit the soundness and completeness
parameters from the notation). We say that the proof-system has perfect completeness
if completeness hold with probability 1 (i.e. c = 1). The parameters we are mainly
interested in are the query complexity and the communication complexity.

We say that an IPP is public-coin if each one of the verifier’s messages is a uniformly
random string.

5.3.4 Multi-Prover Interactive Proofs (MIP)

Let L be a language and let x be an input of length n. In a one-round `-prover interactive
proof, ` computationally unbounded provers, P1, . . . , P`, try to convince a (probabilistic)
poly(n)-time verifier, V , that x ∈ L. The input x is known to all parties.

The proof consists of only one round. Given x and its random string, the verifier
generates ` queries, q1, . . . , q`, one for each prover, and sends them to the ` provers. Each
prover responds with an answer that depends only on its own individual query. That
is, the provers respond with answers a1, . . . , a`, where for every i we have ai = Pi(qi).
Finally, the verifier decides wether to accept or reject based on the answers that it receives
(as well as the input x and its random string).

We say that (V, P1, . . . , P`) is a one-round multi-prover interactive proof system (MIP)
for L, with completeness c ∈ [0, 1] and soundness s ∈ [0, 1] (think of s < c) if the following
two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability c, over
the random coins of V , P1, . . . , P`, after interacting with P1, . . . , P`, where c is a
parameter referred to as the completeness of the proof system.

233

5. ARGUMENTS OF PROXIMITY

2. Soundness: For every x 6∈ L, and any (computationally unbounded, possibly
cheating) provers P ∗1 , . . . , P

∗
` , the verifier V rejects with probability ≥ 1 − s, over

the random coins of V , after interacting with P ∗1 , . . . , P
∗
` , where s is a parameter

referred to as the error or soundness of the proof system.

Important parameters of an MIP are the number of provers, the length of queries, the
length of answers, and the error. We say that the proof-system has perfect completeness
If completeness hold with probability 1 (i.e. c = 1).

5.3.5 No-Signaling MIP

We will consider a variant of the MIP model, where the cheating provers are more powerful.
In the MIP model, each prover answers its own query locally, without knowing the queries
that were sent to the other provers. The no-signaling model allows each answer to depend
on all the queries, as long as for any subset S ⊂ [`], and any queries qS for the provers
in S, the distribution of the answers aS, conditioned on the queries qS, is independent of
all the other queries.

Intuitively, this means that the answers aS do not give the provers in S information
about the queries of the provers outside S, except for information that they already have
by seeing the queries qS.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet of
the answers. For every q = (q1, . . . , q`) ∈ D`, let Aq be a distribution over Σ`. We think
of Aq as the distribution of the answers for queries q.

We say that the family of distributions {Aq}q∈D` is no-signaling if for every subset
S ⊂ [`] and every two sequences of queries q, q′ ∈ D`, such that qS = q′S, the following
two random variables are identically distributed:

• aS, where a ∈R Aq

• a′S where a′ ∈R Aq′

If the two distributions are δ-close, rather than identical, we say that the family of
distributions {Aq}q∈D` is δ-no-signaling.

An MIP (V, P1, . . . , P`) for a language L is said to have soundness s against no-signaling
strategies (or provers) if the following (more general) soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions {Aq}q∈D` ,
the verifier V rejects with probability ≥ 1− s, where on queries q = (q1, . . . , q`) the
answers are given by (a1, . . . , a`) ∈R Aq, and s is the soundness parameter.

If the property is satisfied for any δ-no-signaling family of distributions {Aq}q∈D` , we say
that the MIP has soundness s against δ-no-signaling strategies (or provers).

234

5.3 Preliminaries

5.3.6 MIP of proximity (MIPP)

Let L be a language, let x be an input of length n (which we refer to as the main
input) and let ε = ε(n) ∈ (0, 1) be a proximity parameter. In a one-round `-prover
interactive proof of proximity, ` computationally unbounded provers, P1, . . . , P`, try to
convince a (probabilistic) polynomial-time verifier, V , that the input x is ε-close (in
relative Hamming distance) to some x′ ∈ L. The provers have free access to n, ε and x.
The verifier has free access to n and ε and oracle access to x (and the number of oracle
queries is counted).

We say that (V, P1, . . . , P`) is a one-round multi-prover interactive proof system of
ε-proximity (ε-MIPP) for L, with completeness c ∈ [0, 1] and soundness s ∈ [0, 1], if the
following properties are satisfied:

1. Running Time: The verifier runs in polynomial time, i.e., time polynomial in the
communication complexity and the number of oracle queries.

2. Completeness: For every x ∈ L the verifier V accepts with probability c, after
interacting with P1, . . . , P`.

3. Soundness: For every x that is ε-far from L, and any (computationally unbounded,
possibly cheating) provers P ∗1 , . . . , P

∗
` , the verifier V rejects with probability ≥ 1−s,

after interacting with P ∗1 , . . . , P
∗
` .

We denote such a proof system by ε-MIPP (and omit the soundness and completeness
parameters from the notation). We say that the proof-system has perfect completeness
if completeness hold with probability 1 (i.e. c = 1). The parameters we are mainly
interested in are the query complexity and the communication complexity.

5.3.7 No-Signaling MIPP

An ε-MIPP, (V, P1, . . . , P`) for a language L is said to have soundness s against no-
signaling strategies (or provers) if the following (more general) soundness property is
satisfied:

2. Soundness: For every x that is ε-far from L, and any no-signaling family of
distributions {Aq}q∈D` , the verifier V rejects with probability ≥ 1 − s, where on
queries q = (q1, . . . , q`) the answers are given by (a1, . . . , a`) ∈R Aq, and s is the
error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {Aq}q∈D` , we say
that the MIP has soundness s against δ-no-signaling strategies (or provers).

235

5. ARGUMENTS OF PROXIMITY

5.3.8 Low Degree Extension

Let F be a field and H ⊂ F a subset of the field. Fix an integer m ∈ N. A basic fact is
that for every function φ : Hm → F, there exists a unique extension of φ into a function
φ̂ : Fm → F (which agrees with φ on Hm; i.e., φ̂|Hm ≡ φ), such that φ̂ is an m-variate
polynomial of degree at most |H|−1 in each variable. Moreover, for every x ∈ Hm, there
exists a unique m-variate polynomial β̂x : Fm → F of degree |H| − 1 in each variable,
such that for every function φ : Hm → F it holds that

φ̂(z1, . . . , zm) =
∑
x∈Hm

β̂x(z1, . . . , zm) · φ(x).

The function φ̂ is called the low degree extension of φ (with respect to F, H,m).
If x ∈ {0, 1}n is a string such that n = |H|m, then we denote by LDEx : Fm → F the

low degree extension of x when viewed as a function, namely, the function LDEx = φ̂x,
where φx : [n]→ {0, 1} is defined as φx(i) = xi.

5.3.9 Public-Key Encryption and Fully Homomorphic Encryp-
tion (FHE)

A public-key encryption scheme consists of three probabilistic polynomial-time algorithms
(Gen,Enc,Dec). The key generation algorithm Gen, when given as input a security pa-
rameter 1τ , outputs a pair (pk, sk) of public and secret keys. The encryption algorithm,
Enc, on input a public key pk and a message m ∈ {0, 1}poly(τ), outputs a ciphertext m̂, and
the decryption algorithm, Dec, when given the ciphertext m̂ and the secret key sk, out-
puts the original message m (with overwhelming probability). We allow the decryption
process to fail with negligible probability (over the randomness of all algorithms).

Let T : N→ N and δ : N→ [0, 1] be parameters. A public-key encryption scheme has
security (S, δ) if for every family of circuits {Cτ}τ∈N of size poly(T (τ)), for all sufficiently
large τ and for any two messages m,m′ ∈ {0, 1}poly(τ) such that |m| = |m′|,∣∣∣∣ Pr

(pk,sk)∈RGen(1τ)
[Cτ (pk,Encpk(m)) = 1]− Pr

(pk,sk)∈RGen(1τ)
[Cτ (pk,Encpk(m

′)) = 1]

∣∣∣∣ < δ(τ)

where the probability is also over the random coin tosses of Enc.

Fully homomorphic encryption. The tuple (Gen,Enc,Dec,Eval) is a fully-homomorphic
encryption scheme if (1) (Gen,Enc,Dec) is a public-key encryption scheme, and (2) for
every key-pair (pk, sk), the probabilistic polynomial-time algorithm Eval, on input the
public-key pk, a circuit C : {0, 1}k → {0, 1}`, where k, ` ≤ poly(τ) (and τ is the security
parameter), and a ciphertext m̂ that is an encryption of a message m ∈ {0, 1}k with
respect to pk, outputs a string ψ such that the following two conditions hold:

• Homomorphic Evaluation: Decsk(ψ) = C(m), except with negligible probability
(over the coins of all algorithms).

236

5.4 Lower Bound for IPP and No-Signaling MIPP

• Compactness: The length of ψ is polynomial in τ , k and ` (and is independent of
the size of C).

5.4 Lower Bound for IPP and No-Signaling MIPP

In this section we prove a lower bound, showing that there does not exist a no-signaling
MIPP for all of P with query complexity q and communication complexity c such that
q · c = o(n) (where n is the input length). More specifically, for every q we construct
a language L in P and prove that if exponentially hard pseudo-random generators exist
then for any no-signaling ε-MIPP for L with query complexity q and communication
complexity c, it must be the case that q · c = Ω(n). Later, in Section 5.4.2, we show a
similar result for IPP.

In what follows we denote by τ the security parameter.

Definition 5.1. A pseudo-random generator G : {0, 1}n → {0, 1}`(n) (with stretch `(n) >
n) is said to be exponentially hard if for every circuit family {Aτ}τ of size 2o(τ),∣∣∣∣ Pr

s∈R{0,1}τ
[Aτ (1τ , G(s)) = 1]− Pr

y∈R{0,1}`(τ)
[Aτ (1τ , y) = 1]

∣∣∣∣ = negl(τ).

Theorem 5.7. Assume the existence of exponentially hard pseudo-random generators.
There exists a constant ε > 0 such that for every q = q(n) ≤ n, there exists a language
L ∈ P such that every MIPP for testing ε-proximity to L with completeness 2/3, soundness
1/3, query complexity q and communication complexity c it holds that q · c = Ω(n).

Remark 1. The above theorem holds with respect to any constant completeness pa-
rameter c > 0 and constant soundness parameter s such that s < c, and we chose c = 2/3
and s = 1/3 only for the sake of concreteness.

Remark 2. We note that the assumption in Theorem 5.7 can be reduced to sub-
exponentially hard pseudo-random generators (i.e., it is infeasible for circuits of size
2τ

δ
to distinguish the output of the generator from uniform, for some δ > 0), rather than

exponential hardness, at the cost of a weaker implication (i.e., q · c = Ω(nδ)).

We refer the reader to Section 5.2 for the high-level overview of the proof.

5.4.1 Proof of Theorem 5.7

We start by defining the notion of average-case no-signaling MIP (in the crs model), which
is used in the proof of Theorem 5.7. We note that this average-case completeness seems
too weak for applications and we define this weak notion only for the sake of the proof
of Theorem 5.7.

237

5. ARGUMENTS OF PROXIMITY

Definition 5.2. An average-case no-signaling MIP in the common random string (crs)
model, for a language L, with completeness c and soundness s, consists of (V, P1, . . . , P`, crs),
where as before V is the verifier, P1, . . . , P` are the provers, and crs is a common ran-
dom string of length poly(n), chosen uniformly at random and given to all parties. In
particular, V ’s queries and decision may depend on the crs, and the answers generated
by both honest and cheating provers may depend on the crs. The following completeness
and soundness conditions are required:

• Average-case completeness. For all sufficiently large n ∈ N,

Pr
[
(V, P1, . . . , P`)(x, crs) = 1

]
≥ c,

where the probability is over uniformly distributed x ∈R L∩{0, 1}n, over uniformly
generated crs ∈R {0, 1}poly(n), and over the random coin tosses of the verifier V .

• Soundness against no-signaling provers. For every x 6∈ L, and every family of
distributions {Aq,crs}q∈D`,crs∈{0,1}poly(n) such that for every crs ∈ {0, 1}poly(n) the family
of distributions {Aq,crs}q∈D` is no-signaling, the verifier V rejects with probability ≥
1−s, where the answers corresponding to (q, crs) are given by (a1, . . . , a`) ∈R Aq,crs.

The following claim, which we use in the proof of Theorem 5.7, follows from [DLN+04]
(see also [Ito10]).

Claim 5.2.1. Suppose that a language L has an average-case no-signaling MIP in the
crs model, communication complexity c = c(n) (where n is the instance length), and with
constant completeness and soundness (where the soundness parameter is smaller than the
completeness parameter). Then, there exists a randomized algorithm D that runs in time
poly(n, 2c) such that:

• For every n ∈ N,

Pr
x∈RL∩{0,1}n

[D(x) = 1] ≥ 2/3

where the probability is also over the coin tosses of D.

• For every x 6∈ L it holds that

Pr[D(x) = 1] ≤ 1/3

where the probability is over the coins tosses of D.

We note that [DLN+04, Ito10] did not consider the crs model nor average-case com-
pleteness, but the claim extends readily to this setting as well.

We are now ready to prove Theorem 5.7.

238

5.4 Lower Bound for IPP and No-Signaling MIPP

Proof of Theorem 5.7. Assume that there exists a pseudo-random generator (PRG),
denoted by G : {0, 1}τ → {0, 1}2τ , that is exponentially secure. Namely, every adversary
of size 2o(τ) cannot distinguish between uniformly distributed r ∈R {0, 1}2τ and G(s) for
uniformly distributed s ∈R {0, 1}τ , with non-negligible advantage. For sake of simplicity,
we assume that G is injective6.

Let ε > 0 be a constant for which there exists a (good) error-correcting-code, denoted
by ECC, with constant rate and efficient encoding that is resilient to (2ε)-fraction of
adversarially chosen errors.

Fix any query complexity q = o(n).7 We show that there exists a language L ∈ P
such that for every no-signaling ε-MIPP for L with query complexity q and communication
complexity c (and completeness 2

3
and soundness 1

3
) it must be the case that q · c = Ω(n).

Consider the following language:

L =
{

(ECC(r1, . . . , rm), s1, . . . , sm) : ∀i ∈ [m], G(si) = ri
}
,

where m = 4q and τ = |si| = Θ(n/q), where n = |(ECC(r1, . . . , rm), s1, . . . , sm)|. The
fact that |si| = Θ(n/q) follows from the fact that ECC has constant rate (i.e., |ECC(z)| =
O(|z|)).

The fact that ECC is efficiently decodable and G is efficiently computable implies that
L ∈ P. Suppose for contradiction that there exists a no-signaling ε-MIPP for L, denoted
by (V, P1, . . . , P`), with communication complexity c such that c = o(n/q).

Consider the following NP language

LG = {r : ∃s s.t. G(s) = r}.

Claim 5.2.1, together with the fact that G is exponentially secure, implies that LG
does not have an average-case MIP in the crs model with soundness against no-signaling
strategies, with communication complexity o(τ) for instances of length τ .

We obtain a contradiction by constructing an average-case MIP in the crs model with
soundness against no-signaling strategies, with communication complexity o(τ). To this
end, consider the following MIP in the crs model for LG, denoted by (V ′, P ′1, . . . , P

′
`, crs).

• The crs consists of m uniformly distributed seeds s1, . . . , sm ∈R {0, 1}τ , and a
random coordinate i ∈R [m].

• The verifier V ′, on input r ∈ {0, 1}2τ , does the following:

1. Let ri = r, and for every j ∈ [m] \ {i}, let rj = G(sj).

2. Emulate V with oracle access to (ECC(r1, . . . , rm), s1, . . . , sm).

(Note that with overwhelming probability r 6= G(si), and thus ri 6= G(si).
However V will not notice this unless it queries coordinates that belong to si.)

6We note that this assumption can be easily removed by replacing the use of the uniform distribution
over the language L′ (defined below) with the distribution G(s) for s ∈R {0, 1}τ .

7Note that for q = Ω(n) the theorem is trivially true.

239

5. ARGUMENTS OF PROXIMITY

• The provers P ′1, . . . , P
′
`, emulate P1, . . . , P` on input (ECC(r1, . . . , rm), s1, . . . , sm),

while setting ri = r and setting si = s where r = G(s) (assuming that such s
exists).8 If such s does not exist then the provers P ′1, . . . , P

′
` send a reject message,

and abort.

Note that the communication complexity of (V ′, P ′1, . . . , P
′
`, crs) is equal to the com-

munication complexity of (V, P1, . . . , P`, crs), denoted by c. By our assumption, c =
o(n/q) = o(τ), as desired.

We proceed to prove that (V ′, P ′1, . . . , P
′
`, crs) has average-case completeness 1

2
and

soundness 1
3
.

Average-case completeness. We need to prove that

Pr[(V ′, P ′1, . . . , P
′
`)(r, crs) = 1] ≥ 1

2
,

where the probability is over uniformly distributed r ∈R (LG)τ , over uniformly generated
crs = (s1, . . . , sm, i) where each sj ∈R {0, 1}τ , i ∈R [m], and over the random coin tosses
of the verifier V .

Let GOOD denote the event that V ′ does not query any of the coordinates that belong
to si, where i ∈ [m] is the random coordinate chosen by V ′. Notice that for every r ∈ LG,

Pr
[
(V ′, P ′1, . . . , P

′
`)(r, crs) = 1 | GOOD

]
=

Pr
[
(V, P1, . . . , P`)(ECC(r1, . . . , rm), s1, . . . , sm) = 1 | si is not queried

]
≥ 2

3
where the probabilities are over a uniformly distributed crs and the random coin tosses
of V ′ and V , and where in the second equation ri = r and si = s, where r = G(s). Recall
that the fact that r ∈ LG implies that such s exists.

The fact that

Pr[(V ′, P ′1, . . . , P
′
`)(r, crs) = 1] ≥ Pr[(V ′, P ′1, . . . , P

′
`)(r, crs) = 1| GOOD] · Pr[GOOD]

implies that it suffices to prove that

Pr[GOOD] ≥ 3

4
, (5.1)

where the probability is over uniformly distributed r ∈R LG, uniformly distributed crs,
and over the random coin tosses of V ′.

Note that r1, . . . , rm are all distributed identically to r, and thus V, P1, . . . , P`, which
all receive as input (ECC(r1, . . . , rm), s1, . . . , sm), where ri = r, do not have any advantage
in guessing i (here we crucially use the fact that the MIPP provers are not given access
to the crs). Therefore, since V makes at most q queries, and since m = 4q, it follows
from the union bound that V queries any location of si with probability at most q

m
= 1

4
,

thereby establishing Eq. (5.1).

8This step can be done by a brute force search (since the honest provers are also computationally
unbounded). Nevertheless, we note that typically in proof-systems for language in NP the prover is given
the NP witness and so this step can also be done efficiently.

240

5.4 Lower Bound for IPP and No-Signaling MIPP

Soundness against No-Signaling Strategies. We prove that for every r /∈ LG, every
crs = (s1, . . . , sm, i), and every no-signaling cheating strategy PNS = (P ∗1 , . . . , P

∗
`),

Pr[(V ′, PNS)(r, crs) = 1] ≤ 1

3
,

where the probability is over the random coin tosses of V ′ and PNS.
To this end, fix any r /∈ LG and any crs = (s1, . . . , sm, i) where each sj ∈ {0, 1}τ and

i ∈ [m]. Suppose for the sake of contradiction that there exists a no-signaling cheating
strategy PNS = (P ∗1 , . . . , P

∗
`) such that

Pr[(V ′, PNS)(r, crs) = 1] >
1

3
,

where the probability is over the random coin tosses of V ′ and PNS.
Recall that V ′ runs V on input (ECC(r1, . . . , rm), s1, . . . , sm), where ri = r and where

rj = G(sj) for every j ∈ [m] \ {i}. We prove that there exists a no-signaling cheating

strategy, denoted by P̂NS, such that

Pr[(V, P̂NS)(ECC(r1, . . . , rm), s1, . . . , sm) = 1] >
1

3
, (5.2)

where the probability is over the random coin tosses of V and P̂NS.

The cheating strategy P̂NS simply emulates PNS. Namely, P̂NS, upon receiving queries
(q1, . . . , q`), will emulate PNS(r, crs) upon receiving (q1, . . . , q`), where r = ri and crs =
(s1, . . . , sm, i). Note that P̂NS simulates PNS perfectly, and therefore indeed Equation (5.2)
holds. Also note that the fact that PNS is a no-signaling strategy immediately implies
that P̂NS is also a no-signaling strategy.

To get a contradiction, it thus remains to show that (ECC(r1, . . . , rm), s1, . . . , sm) is ε-
far from L. Indeed, the fact that ECC is an error correcting code resilient to 2ε-fraction of
adversarial errors, together with the fact that r /∈ LG implies that (ECC(r1, . . . , rm), s1, . . . , sm)
is ε-far from L, as desired.

5.4.2 Lower Bound for IPP

In this section we show how to extend Theorem 5.7 to the setting of IPP. As is Theo-
rem 5.7, our lower bound for IPP is based on a cryptographic assumption. Specifically, we
assume the existence of an exponentially secure PRG that is computable in NC1 (defined
next).

An exponentially secure PRG in NC1, is a function G : {0, 1}τ → {0, 1}2τ such that:

1. G is computable by an NC1 circuit.

2. Every family of circuits of size 2o(τ) cannot distinguish between uniformly dis-
tributed r ∈R {0, 1}2τ and G(s) for uniformly distributed s ∈R {0, 1}τ , with non-
negligible advantage.

241

5. ARGUMENTS OF PROXIMITY

We note that there are several candidate PRGs in NC1 (based on assumptions related
to factoring, discrete log and lattices, see [AIK06] for details) and that for some of these
PRGs there are no known attacks that take time 2o(τ) (and for the other candidates
there are no known attacks that take time 2n

δ
for some δ > 0, see remark following the

statement of Theorem 5.7).

Theorem 5.8. Assume the existence of an exponentially secure PRG in NC1. There
exists a constant ε > 0 such that for every q = q(n) ≤ n, there exists a language L ∈ NC1

such that every ε-IPP for L with completeness 2/3, soundness 1/3, query complexity q
and communication complexity c it holds that q · c = Ω(n).

The proof of Theorem 5.8 is very similar to the proof of Theorem 5.7 and so we provide
only a sketch.

Proof Sketch. Analogously to the proof of Theorem 5.7, we consider the language

L =
{

(ECC(r1, . . . , rm), s1, . . . , sm) : ∀i ∈ [m], G(si) = ri
}
,

whereG : {0, 1}τ → {0, 1}2τ is an exponentially secure PRG and ECC is a (good) efficiently
computable error-correcting code with constant rate that is resilient to 2ε-fraction of
adversarial error. In addition, we require that both G and ECC are computable in NC1,9

and thus L ∈ NC1. We also consider the NP language

LG = {r : ∃s s.t. G(s) = r},

As in the proof of Theorem 5.7, we assume for contradiction that there exists an ε-IPP
for L with q · c = o(n).10

Analogously to the proof of Theorem 5.7, we show that such an ε-IPP for L implies
an interactive proof for LG with average-case completeness (i.e., completeness is only
guaranteed for random x ∈ LG), communication complexity c, and where both verifier
and prover have access to a common random string (crs).

The key step in the proof is to show (analogously to Claim 5.2.1) that such an average-
case interactive proof (in the crs model) implies a randomized algorithm that runs in time
poly(2c, n) and with high probability accepts x ∈R LG and rejects x /∈ LG.

The latter randomized algorithm is constructed as in the proof that IP ⊆ PSPACE.
Namely, we show a randomized prover strategy P ∗ that (with high probability, almost)
maximizes the verifier’s acceptance probability for every x (both x ∈ L and x /∈ L) and
can be computed in time poly(n, 2c). The prover P ∗ is defined as follows. To decide its
next message at every round of the interaction, P ∗ estimates for every α ∈ {0, 1}≤c, the
acceptance probability of the verifier if it sends α as its response, conditioned on the

9Such an error correcting code was constructed, for example, by Spielman [Spi96].
10We note that if the ε-IPP for L is a public-coin protocol, then the proof follows from Theorem 5.7 to-

gether with a general transformation from public-coin IPP to no-signaling MIPP, (which can be thought of
as a special case of Lemma 5.10). In general, one could use the Goldwasser-Sipser [GS86] transformation
(to a public-coin protocol) to obtain a version of Theorem 5.8 with slightly worse parameters.

242

5.4 Lower Bound for IPP and No-Signaling MIPP

transcript so far. It then sends α that maximizes the acceptance probability. We note
that the above sampling can be done by rejection sampling. Since the entire transcript is
of length at most c, with high probability it suffices for P ∗ to sample poly(n, 2c) random
strings.

The rest of the proof is similar to the proof of Theorem 5.7, and we obtain a contra-
diction by showing a 2o(τ) randomized algorithm that breaks the pseudorandomness of
the PRG.

5.4.3 Lower Bound for Interactive Arguments of Proximity

In this section we show a significant barrier for constructing arguments of proximity for
P with query complexity q and communication complexity c such that q · c = o(n). We
interpret this result as showing that, in a sense, Theorem 5.16 is (almost) tight. For this
section, we assume that the reader is familiar with definition and results in [GW11].

Throughout this section we assume the existence of an exponentially hard pseudo-
random generator G : {0, 1}τ → {0, 1}2τ (see Definition 5.1). As before, we consider the

language LG
def
= {r ∈ {0, 1}∗ : ∃s s.t. G(s) = r}.

We show that if every language in P has a 1-round argument of proximity with query
complexity q and communication complexity c such that q · c = o(n), then there exists
a 1-round argument-system for LG (albeit only with average-case completeness) where
the prover-to-verifier message has length o(n). Such an argument system is known as a
SNARG (succinct non-interactive argument-system) in the literature.

Such a SNARG for LG stands in contrast to a result of Gentry and Wichs [GW11],
which shows that soundness of any SNARG for the language LG cannot be shown by a
black-box reduction to any falsifiable cryptographic assumption (unless the assumption
itself is false). We refer the reader to [GW11] for the definition of black-box reduction
and the definition of falsifiable assumptions (originally defined by [Nao03]).

We note that the [GW11] result is only known to hold if the SNARG satisfies a strong
notion of soundness, called adaptive soundness. A SNARG has adaptive soundness if
the verifier’s message to the prover does not depend on the input x and the standard
computational soundness condition is extended so that the cheating prover may choose
x 6∈ L, on which it wants to cheat, after seeing the verifier’s message.

We first define what we mean by a falsifiable cryptographic assumption.

Definition 5.3 ([Nao03, GW11])). A falsifiable cryptographic assumption consists of an
efficient interactive challenger C and a constant c ∈ [0, 1). On input a security parameter
τ , the challenger C(1τ) interacts with a machine A(1τ) and may output a special symbol
win. If this occurs, we say that A(1τ) wins C(1τ). The assumption associated with the
tuple (C, c) states that for any efficient A, we have Pr[A(1τ) wins C(1τ)] ≤ c+ negl(τ),
where the probability is over the random coins of C and A.

Let Π = (P, V) be an adaptively sound argument-system. We say that a (possibly
inefficient) algorithm P ∗ is a Π-adversary if P ∗ violates the adaptive soundness of Π
(while ignoring the efficiency restriction).

243

5. ARGUMENTS OF PROXIMITY

Definition 5.4. A black-box reduction showing the soundness of an adaptively sound
1-round argument Π = (P, V1, V2) based on a falsifiable assumption (C; c) is an efficient
oracle-machine R(·) such that, for every (possibly inefficient) Π-adversary P , the machine
RP breaks the assumption.

Using these two notions, we can now state the [GW11] result.

Theorem 5.9 (Informal [GW11]). Assume that there exists an exponentially hard pseudo-
random generator G : {0, 1}τ → {0, 1}2τ . The adaptive soundness of any candidate
SNARG for the language LG cannot be shown by a black-box reduction to any falsifi-
able cryptographic assumption (unless the assumption itself is false). Furthermore, the
theorem holds even if the SNARG only has average-case completeness.

We note that the furthermore clause is not stated explicitly in [GW11], however, it
is easy to verify that the result extends also to the case where the SNARG only satisfies
average-case completeness.

We show the following:

Theorem 5.10 (Informal). Assume that there exists an exponentially hard pseudo-random
generator G : {0, 1}τ → {0, 1}2τ . There exists a constant ε > 0 such that the fol-
lowing holds. Suppose that every language in P has a 1-round argument of ε-proximity
with adaptive soundness, query complexity q and communication complexity c such that
q · c = o(n). Then, there exists a 1-round argument-system for the language LG (albeit
only with average-case completeness), where the prover-to-verifier message has length
o(n). Furthermore, the adaptive soundness of LG is shown by a black-box reduction to
the adaptive soundness of the argument of proximity for P.

By combining Theorem 5.10 with Theorem 5.9, we obtain the following corollary.

Corollary 5.11 (Informal). Assume that there exists an exponentially hard pseudo-
random generator. There exists a constant ε > 0 and a language L ∈ P such that
the adaptive soundness of any argument of ε-proximity for L with query complexity q
and communication complexity c such that q · c = o(n) cannot be proven by a black-
box reduction to any falsifiable cryptographic assumption (unless the assumption itself is
false).

Proof Sketch of Theorem 5.10. The proof uses similar ideas to those in the proof
of Theorem 5.7 (and Theorem 5.8).

Assume that there exists a pseudo-random generator (PRG), denoted by G : {0, 1}τ →
{0, 1}2τ , that is exponentially secure (see Definition 5.1). For sake of simplicity, we assume
that G is injective (see Footnote 6).

Let ECC be an error-correcting code as in the proof of Theorem 5.7. Namely, ECC has
constant rate, efficient encoding and is resilient to (2ε)-fraction of adversarially chosen
errors, for some constant ε > 0.

244

5.5 No-signaling MIPP for P

Fix any query complexity q = q(n) and consider the following language:

L =
{

(ECC(r1, . . . , rm), s1, . . . , sm) : ∀i ∈ [m], G(si) = ri
}
,

where m = 4q and τ = |si| = Θ(n/q), where n = |(ECC(r1, . . . , rm), s1, . . . , sm)|. The
fact that |si| = Θ(n/q) follows from the fact that ECC has constant rate (i.e., |ECC(z)| =
O(|z|)).

The fact that ECC is efficiently encodable and G is efficiently computable implies that
L ∈ P. Assume that L has an argument of ε-proximity, denoted by (V, P), with query
complexity q and communication complexity c such that c = o(n/q).

In a similar manner to the proof of Theorem 5.7, we show that the language LG has
an (average-case) SNARG, in the crs model with communication complexity o(τ). Note
that this implies a SNARG without a crs where the prover-to-verifier message is of length
o(τ), since the crs can be made part of the verifier-to-prover message.

Consider the following SNARG for LG, denoted by (V ′, P ′).

• The crs consists of m uniformly distributed seeds s1, . . . , sm ∈R {0, 1}τ , and a
random coordinate i ∈R [m].

• The verifier V ′, on input r ∈ {0, 1}2τ , does the following:

1. Let ri = r, and for every j ∈ [m] \ {i}, let rj = G(sj).

2. Emulate V with oracle access to (ECC(r1, . . . , rm), s1, . . . , sm).

(Note that with overwhelming probability r 6= G(si), and thus ri 6= G(si).
However V will not notice this unless it queries coordinates that belong to si.)

• The prover P ′, which in addition to r and the crs gets access to s, the NP-witness cor-
responding to r (i.e., r = G(s)) emulates the prover P on input (ECC(r1, . . . , rm), s1, . . . , sm),
while setting ri = r and setting si = s where r = G(s).

Note that the communication complexity of (V ′, P ′) is equal to the communication
complexity of (V, P), denoted by c. By our assumption, c = o(n/q) = o(τ), as desired.

The proof that (V ′, P ′) has average-case completeness 1
2

and adaptive soundness 1
3

is
analogous to the proof in Theorem 5.7 and so we omit it here. Moreover, it is easy to see
that the reduction above is a black-box reduction.

5.5 No-signaling MIPP for P

In this section we construct an ε-MIPP for every language in P. Later, in Section 5.6, we
show how to transform such an MIPP into a one-round argument of ε-proximity.

245

5. ARGUMENTS OF PROXIMITY

Theorem 5.12. Let L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n),
let k be an integer such that (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large)
universal constant, and let ε = ε(n) ∈ (0, 1).

Then, L has an ε-MIPP with ` provers, where ` = (k + εn) · polylog(t), perfect com-
pleteness and soundness 2−k against δ-no-signaling strategies, where δ = 2−(k+εn)·polylog(t).

The resulting MIPP has queries and answers (to the provers) of length (k + εn) ·
polylog(t)+k·εn·(1/ε)o(1). The verifier runs in time (k+εn)2·polylog(t)+k·(1/ε+εn)1+o(1)

and has query complexity (to the main input) k · (1/ε)1+o(1). Each of the (honest) provers
runs in time poly(t, k).

Note that the communication complexity of our ε-MIPP is roughly (εn)2 and the
query complexity is roughly 1/ε. Thus, Theorem 5.12 is interesting for ε ≤ 1

n1/2+α (for
any constant α > 0), as it gives an ε-MIPP where the verifier runs in sub-linear time.

In Section 5.4 we show a lower bound, where we prove that for any ε-MIPP (even
for constant ε > 0) with query complexity q and communication complexity c, it must
be the case that q · c = Ω(n). Notice that our upper bound in Theorem 5.12 does not
quite match the lower bound, since in our upper bound there is a quadratic blowup in
communication complexity. If our ε-MIPP above did not have the quadratic blowup in
communication complexity, and the communication complexity was roughly εn (or more
precisely, was (k + εn) · polylog(t) · no(1)) then our lower bound and upper bound would
match.

We note that the reason for the quadratic blowup in communication is inherited from
[KRR13b], and we are hopeful that this blowup is not inherent and can be removed, in
which case the ε-MIPP in Theorem 5.12 would match our lower bound in Section 5.4 (up
to polylogarithmic factors).

The proof of Theorem 5.12 follows the outline of the [RVW13] IPP protocol for lan-
guages in (logspace-uniform) NC. We first show that (in a sense) the language PVAL
(defined next) is complete for constructing ε-MIPPs for P. Then, using the fact (shown
by [RVW13]) that PVAL has an ε-IPP, we construct an ε-MIPP for every language in P
by showing a composition lemma between no-signaling MIPPs and IPPs.

5.5.1 Completeness of PVAL

Throughout this section we think of n (which is some sufficiently large integer) as the
input size. Let L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n), let k be
an integer such that (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large) universal
constant, and let ε = ε(n) ∈ (0, 1).

The following notations and constants are taken (almost verbatim) from [KRR13b].
Let N = poly(t) be the size of the “augmented” circuit for computing L as defined in
[KRR13b, Section 9] (the actual details of this augmented circuit are not important).
Let H = {0, 1, . . . , logN − 1} and let11 m = logn

log logN
, so that n = |H|m. (For simplicity

11In contrast, in [KRR13b] the value of m is logN
log logN . The reason that we take m to be smaller is that

246

5.5 No-signaling MIPP for P

and without loss of generality we assume that logN and logn
log logN

are integers). Let F be

a field, such that 4|H|10 ≤ |F| ≤ 8(logN)10.
Recall that if x ∈ {0, 1}n, we denote by LDEx : Fm → F the low degree extension of

x with respect to F, H and m (see Section 5.3.8).

Definition 5.5. Let J ∈ (Fm)` be a sequence of ` points in Fm and let ~v ∈ F ` be a
sequence of ` corresponding values. The language PVALJ,~v ⊆ {0, 1}n is defined as:

PVALJ,~v
def
= {x : Hm → {0, 1} | s.t. LDEx(J) = ~v} .

Remark. The language PVAL obviously also depends on the choice of F, H and m (as
defined above) but for sake of brevity we omit them from the notation.

Theorem 5.13 (No-Signaling MIP for Deterministic Languages [KRR13b]). There exists
a 1-round protocol for L ∈ DTIME(t(n)) between k·polylog(t) provers and a verifier, where
the provers get as input x ∈ {0, 1}n, and the verifier only gets the input n. The (honest)
provers are allowed to communicate only with the verifier and not with each other. The
output of the protocol is a sequence of k · polylog(t) coordinates J ∈ (Fm)k·polylog(t) and a
sequence of values ~v ∈ Fk·polylog(t), such that:

• Completeness. If x ∈ L and the provers honestly follows the protocol, then
LDEx(J) = ~v (with probability 1).

• Soundness. If x /∈ L, then for any 2−k·polylog(t)-no-signaling cheating family of
distribution A, with probability at least 1 − 2−k (over the verifier’s coins and a
random sample from A), it holds that LDEx(J) 6= ~v.

The verifier runs in time k2 · polylog(t) (without accessing x) and the provers run in
time poly(t, k). Each query and answer (to the provers) is of length k · polylog(t).

Theorem 5.14 (PVAL is Complete for No-Signaling MIPP). There exists a 1-round pro-
tocol for L ∈ DTIME(t(n)) between (k + εn) · polylog(t) provers and a verifier, where the
provers get as input x ∈ {0, 1}n, and the verifier only gets the input n. The (honest)
provers are allowed to communicate only with the verifier and not with each other. The
output of the protocol is a sequence of (k+εn)·polylog(t) coordinates J ∈ (Fm)(k+εn)·polylog(t)

and a sequence of values ~v ∈ F(k+εn)·polylog(t), such that:

• Completeness. If x ∈ L and the provers honestly follows the protocol, then x ∈
PVALJ,~v (with probability 1).

• Soundness. If x is ε-far from L, then for any 2−(k+εn)·polylog(t)-no-signaling cheat-
ing family of distributions A, with probability at least 1−2−k over the verifier’s and
provers’ coins, it holds that x is ε-far from PVALJ,~v.

we will only be interested in the low degree extension of the input x ∈ {0, 1}n rather then the entire
computation.

247

5. ARGUMENTS OF PROXIMITY

The verifier runs in time (k+εn)2 ·polylog(t) (without accessing x) and the provers run
in time poly(t, k). Each query and answer (to the provers) is of length (k+εn) ·polylog(t).

Proof. We use the 1-round protocol of Theorem 5.13 with respect to the parameter
k′ = k + εn log n. To show that completeness holds, note that if x ∈ L, then by Theo-
rem 5.13, it holds that LDEx(J) = ~v (with probability 1) and therefore x ∈ PVALJ,~v (with
probability 1).

For soundness, let x be ε-far from L and let A be a 2−(k+εn logn)·polylog(t)-no-signaling
(cheating) family of distributions. For every x′ that is ε-close to x it holds that x′ /∈ L
(since x is ε-far from L) and therefore, by Theorem 5.13, with probability 1 − 2−k

′
it

holds that LDEx′(J) 6= ~v. Since there are
(
n
εn

)
≤ 2εn logn different x′ that are ε-close to x,

by taking a union bound over all such x′, the probability that there exists some x′ that
is ε-close to x such that LDEx′(J) = ~v, is at most 2−k

′ · 2εn logn = 2−k.

5.5.2 Composing an MIPP with an IPP

In this section we construct an MIPP that is sounds against δ-no-signaling strategies for
every language in P. The main step is composing the reduction of Theorem 5.14 with an
IPP for PVAL. Such an IPP was constructed by [RVW13]. We first state the [RVW13]
result for PVAL and then show how it can be combined with Theorem 5.14 to obtain
Theorem 5.12.

Lemma 5.6 (IPP for PVAL [RVW13]). Let J ∈ (Fm)` be a sequence of ` = O(εn ·
log n) points in Fm, let ~v ∈ F ` be a sequence of ` corresponding values. There exists a
public-coin12 IPP for PVALJ,V , with perfect completeness, soundness 1/2, query complexity
(1/ε)1+o(1), and O(log(1/ε)/ log log n) rounds, where ε is the proximity parameter and
n = |H|m is the input length. The communication complexity is εn · (1/ε)o(1), and the
verifier runtime is (1/ε+ εn)1+o(1). The honest prover runtime is poly(n).

To amplify the soundness of the protocol, we run the protocol for PVAL in parallel k
times:

Corollary 5.15 (Parallel Repetition of [RVW13]). Let J ∈ (Fm)` be a sequence of ` =
O(εn·log n) points in Fm, let ~v ∈ F ` be a sequence of ` corresponding values and let k ∈ N
be a parameter. There exists a public-coin IPP to PVALJ,~v, with perfect completeness,
soundness 2−k, query complexity k · (1/ε)1+o(1), and O(log(1/ε)/ log log n) rounds, where
ε is the proximity parameter and n = |H|m is the input length. The communication
complexity is k · εn · (1/ε)o(1), and the verifier runtime is k · (1/ε+ εn)1+o(1). The honest
prover runtime is poly(k, n).

Proof. Follows from the fact that parallel repetition decreases the soundness error expo-
nentially. This is known for interactive proofs (for a proof, see [Gol08, Exercise 9.1] or
[Gol99, Appendix C.1]), and the proof extends readily for IPPs.

12[RVW13] do not explicitly mention that their protocol is public coin, but by inspection it is easy to
see that it is indeed public coin.

248

5.5 No-signaling MIPP for P

We proceed to show that above IPP for PVAL can be composed together with the
reduction of Theorem 5.14 to construct a no-signaling MIPP for L. To facilitate the
proof, we consider a notion of a proof-system that is a hybrid between a no-signaling
MIPP and a single-prover public-coin IPP.

Hybrid MIPP. We think of the hybrid MIPP as being composed of ` + 1 provers and
a verifier. The verifier first interacts with the first ` provers as in a (one-round) MIPP.
Then, the verifier continues the interaction with the last prover as a (single-prover) public-
coin IPP (which may consist of multiple rounds). Loosely speaking, “Hybrid soundness”
for a language L will require that cheating strategies in which the first ` provers are
δ-no-signaling (but do not depend on the messages of the last prover, even as a function)
and the last prover (of the interactive proof) is classical but is given all the queries of
the first ` provers as input, cannot convince the verifier to accept x that is ε-far from L
(except with some bounded probability).

Our actual definition of a hybrid MIPP will be slightly different than that described
above. Since we deal with a public-coin `′-round protocol, it will be convenient to think
of this protocol as an MIPP with `′ provers, P1, . . . , P`′ , where in the soundness condition
we let Pi see all messages seen by provers P1, . . . , Pi−1. Using this modification we can
define the hybrid MIPP as an MIPP (i.e., completeness is as in a standard MIPP) that
satisfies the following hybrid soundness condition.

Definition 5.7. We say that an MIPP for L with `+ `′ provers has soundness s against
(`, `′, δ)-hybrid strategies if the following condition holds:

• Hybrid Soundness. For every ε > 0, every x that is ε-far from L, every δ-no-
signaling family of distributions A = {Aq}q∈D`, and every (deterministic) cheating
strategies P ∗1 , . . . , P

∗
`′, the probability that the verifier accepts when given as input

n, ε, answers a = (a1, . . . , a`+`′) ∈ Σ`+`′ and oracle access to x is at most s, where
q = (q1, . . . , q`+`′) ∈ D`+`′ are the queries generated by the verifier, (a1, . . . , a`) ∈R
A(q1,...,q`) and for every i ∈ [`′] it holds that a`+i = P ∗i (q1, . . . , q`+i, a1, . . . , a`+i−1).

The following lemma shows that we can compose an MIPP that is sound against δ-
no-signaling strategies with an IPP to obtain an MIPP with hybrid soundness. Using this
lemma together with Theorem 5.14 and Corollary 5.15 we obtain an MIP with hybrid
soundness for every language in P. Later we will show how to transform such a hybrid
MIPP into an MIPP that is sound against no-signaling strategies.

Lemma 5.8. Let L be a language and let {L′α}α be a family of languages such that the
following holds:

1. There exists a 1-round protocol between a probabilistic verifier, which takes as in-
put n and ε > 0, and ` provers, which take as input ε > 0 and x ∈ {0, 1}n, such
that at the end of the interaction, the verifier outputs a value α and the following
two conditions hold:

249

5. ARGUMENTS OF PROXIMITY

• Completeness. For every ε > 0, and every x ∈ L if the provers honestly
follows the protocol, then with probability 1, it holds that x ∈ L′α.

• Soundness. For every ε > 0, every x that is ε-far from L, and every δ-
no-signaling cheating family of distributions A, it holds that with probability
≥ 1− s over the verifiers coins and a random sample from A, it holds that x
is ε-far from L′α.

2. For every value of α, the language L′α has an `′ round public-coin IPP with prefect
completeness and soundness s′.

Then, L has an ` + `′-prover ε-MIPP with perfect completeness and soundness s + s′

against (`, `′, δ)-hybrid strategies.
If the original MIPP protocol has query alphabet D, answer alphabet Σ (these alphabets

refer to the communication with the provers) and randomness complexity r, and the IPP
verifier has total communication c′, then the resulting hybrid MIPP has query alphabet
D∪{0, 1}r+c′ and answer alphabet Σ∪{0, 1}c′. If the original MIPP verifier runs in time
TV and the IPP verifier runs in time T ′V , then the resulting hybrid MIPP verifier runs
in time TV + T ′V . If the IPP verifier has query complexity Q (to the main input), then
the resulting MIPP verifier has query complexity Q (to the main input). If each of the
original MIPP provers runs in time TP and the next message function of the IPP verifier
can be computed in time T ′P , then each of the resulting hybrid MIPP provers runs in time
TP + T ′P .

Proof. Let (V, P1, . . . , P`) be a 1-round multi-prover protocol for computing α as above.
Let D be the query alphabet and Σ the answer alphabet of the protocol (used in the
communication with the provers). We think of V as being composed of two algorithms
V1 and V2 as follows. The algorithm V1, given as input n ∈ N, ε > 0 and a random string
r, generates a sequence of queries q = (q1, . . . , q`) ∈ D` and sends the query qi to prover
Pi. The algorithm V2, given as input n ∈ N, ε > 0 and same random string r and a
sequence of answers a = (a1, . . . , a`) ∈ Σ` outputs a value α.

Let (V ′, P ′) be a public-coin interactive proof of ε-proximity to L′α, with perfect
completeness and soundness s′, where α is given as a parameter to both V ′ and P ′. Since
V ′ is public-coin, its messages consist of uniformly random coins and in particular do
not depend on the value of α nor on x. We think of the prover algorithm P ′ as being
composed of `′ algorithms P ′1, . . . , P

′
`′ where P ′i is simply the next message function of P ′

(and may depend on α, x and on the first i messages that P ′ receives).
We use (V1, P1, . . . , P`) and (V ′, P ′1, . . . , P

′
`′) to construct an ` + `′ prover MIP of ε-

proximity (V ′′, P ′′1 , . . . , P
′′
`+`′) for L with soundness s+s′ against (`, `′, δ)-hybrid strategies.

The verifier V ′′ on input n, ε > 0, a random string (r, r′) and oracle access to x, operates
as follows. First it runs V1(n, ε, r) to obtain a sequence of queries q = (q1, . . . , q`) ∈ D`.
For every i ∈ [`] the query qi is sent to P ′′i . The verifier V ′′ also runs V ′ on input n, ε to
generates the `′ messages (m1, . . . ,m`′) of V ′ (as noted above, since mi is just a random
string, we do not need α nor oracle access to x for this step). For every i ∈ [`′], V ′′ sends
(r,m1, . . . ,mi) to P ′′`+i .

250

5.5 No-signaling MIPP for P

For i ∈ [`], the prover P ′′i is identical to the prover Pi. For i ∈ [`′], the prover P ′′`+i, on
input (x, ε, (r,m1, . . . ,mi)) first computes the value of α (by simulating the provers Pi and
the verifier V1, while using r as its random coins) and then outputs P ′i (x, ε, α,m1, . . . ,mi),
where m1, . . . ,mi are interpreted as the first i messages in the interactive proof.

To decide whether to accept, given as input n, ε, the random string (r, r′), prover
answers (a1, . . . , a`+`′), and oracle access to x, the verifier V ′′ first runs V2 on input n, ε,
r and (a1, . . . , a`) to obtain the value α. Then, it outputs the result of V ′ on input n, ε,
r′, α while forwarding V ′ oracle queries to x (using its own oracle queries).

We first argue that the resulting MIPP has perfect completeness and then proceed
to prove soundness against (`, `′, δ)-no-signaling strategies. To show that completeness
holds, observe that when the verifier V ′′ interacts with the honest provers on input x ∈ L,
since the protocol (V, P1, . . . , P`) has perfect completeness, it holds that x ∈ Lα and
therefore V ′′2 runs V ′ on a value α such that x ∈ Lα. The perfect completeness of the
protocol follows from the prefect completeness of (V ′, P ′).

To show that (`, `′, δ)-hybrid soundness holds, assume for a contradiction that there ex-
ists some δ-no-signaling cheating strategy {Aω}ω∈D` and (deterministic) cheating strate-
gies P ∗1 , . . . , P

∗
` that fool V ′′ into accepting some x that is ε-far from L with probability

≥ s+ s′.
By elementary manipulations we have that:

s+ s′ ≤ Pr[V ′′ accepts] ≤ Pr[V ′ accepts ∧ x is ε-far from Lα] + Pr[x is ε-close to Lα]

We obtain a contradiction by bounding each term separately and showing that their
sum is smaller than s+ s′.

Claim 5.8.1.
Pr
[
x is ε-close to Lα

]
< s

Proof. Follows directly from the soundness condition of (V, P1, . . . , P`).

Claim 5.8.2.
Pr[V ′ accepts ∧ x is ε-far from Lα] < s′

Proof. Suppose otherwise. Then by an averaging argument there exist fixed values of
r = r∗ and (a1, . . . , a`) = (a∗1, . . . , a

∗
`) such that:

Pr
[
V ′ accepts ∧ x is ε-far from Lα | r = r∗ ∧ (a1, . . . , a`) = (a∗1, . . . , a

∗
`)
]
≥ s′

Once r and (a1, . . . , a`) are fixed, then α = V2(n, ε, r∗, (a∗1, . . . , a
∗
`)) is also fixed. Hence,

there exists a value of α such that x is ε-far from Lα and

Pr
[
V ′ accepts | r = r∗ ∧ (a1, . . . , a`) = (a∗1, . . . , a

∗
`)] ≥ s′

We construct a cheating strategy P ∗∗ that fools V ′ into accepting that x ∈ Lα with
probability ≥ s′, even though x is ε-far from Lα. This contradicts the soundness of the
proof-system (V ′, P ′). The prover P ∗∗ simply simulates P ∗ conditioned on r = r∗ and on
(a1, . . . , a`) = (a∗1, . . . , a

∗
`).

This concludes the proof of Claim 5.8.2.

251

5. ARGUMENTS OF PROXIMITY

This concludes the proof of Lemma 5.8.

Lemma 5.8, combined with Theorem 5.14 and Corollary 5.15, implies the following
lemma.

Lemma 5.9. Let L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n), let
k be an integer such that (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large)
universal constant, and let ε = ε(n) ∈ (0, 1).

Then, L has an ε-MIPP with ` provers, where ` = (k+εn)·polylog(t), with perfect com-
pleteness and soundness 2−k against (`, `′, δ)-hybrid strategies, where `′ = O(log(1/ε)/ log log n)
and δ = 2−(k+εn)·polylog(t).

The queries and answers of the MIPP (to the provers) are of length (k+εn)·polylog(t)+
k ·εn ·(1/ε)o(1). The verifier runs in time (k+εn)2 ·polylog(t)+k ·(1/ε+εn)1+o(1) and has
query complexity k · (1/ε)1+o(1) (to the main input). Each of the (honest) provers runs in
time poly(t, k).

Proof. Follows directly from Lemma 5.8, combined with Theorem 5.14 and Corollary 5.15
(with respect to k′ = (k + ε · n) · polylog(t)).

The following lemma shows that an MIPP with soundness against hybrid strategies
has soundness against no-signaling strategies (with a slight loss in parameters).

Lemma 5.10. Let ε = ε(n) > 0. Suppose that (V, P1, . . . , P`+`′) is an ε-MIPP for a
language L with soundness s against (`, `′, δ)-hybrid strategies. Then, (V, P1, . . . , P`+`′)
is an ε-MIP of proximity to L with soundness s+ `′ · δ against δ-no-signaling strategies.

Lemma 5.10 follows directly from `′ applications of the following proposition.

Proposition 5.11. Let ε = ε(n) > 0. Suppose that (V, P1, . . . , P`+`′) is an ε-MIPP for
a language L with soundness s against (`, `′, δ)-hybrid strategies. Then, (V, P1, . . . , P`+`′)
is an ε-MIPP for L with soundness s+ δ against (`+ 1, `′ − 1, δ)-hybrid strategies.

Proof. To prove the proposition, it suffices to show that V has soundness s + δ against
(` + 1, `′ − 1, δ)-hybrid strategies. Let x be ε-far from L, let A = {Aq}q∈D`+1 be a δ-
no-signaling family of distributions and let P ∗2 , . . . , P

∗
`′ be cheating strategies, such that

A, P ∗2 , . . . , P ∗`′ violate the (` + 1, `′ − 1, δ)-hybrid soundness of V with probability s + δ.
Using A, P ∗2 , . . . , P ∗` we will break the (`, `′, δ)-hybrid soundness of V , contradicting our
assumption.

Let σ ∈ D be an arbitrary element in D. For every ω ∈ D`, let Bω = A(ω,σ). Let
P ∗1 (q1, . . . , q`+1, a1, . . . , a`) be defined as follows. The prover P ∗1 first samples (a′1, . . . , a

′
`+1) ∈R

Aq1,...,q`+1
conditioned on a′i = ai for every i ∈ [`] and outputs a′`+1. In the case that the

conditional probability space is empty, P ∗1 sends an arbitrary response (which can be
thought of as aborting).

Claim 5.11.1. B = {Bω}ω∈D` is δ-no-signaling.

252

5.6 Arguments of Proximity for P

Proof. Let S ⊆ [`] and let ω1, ω2 ∈ D`. Suppose that (a1)S and (a2)S are δ-far, where
a1 ∈R Bω1 and a2 ∈R Bω2 . Hence, the projections of the distributions A(ω1,σ) and A(ω2,σ)

to coordinates in S ⊆ [` + 1] are δ-far, in contradiction to our assumption that A is
δ-no-signaling.

Claim 5.11.2. For every sequence of queries q1, . . . , q`+1 ∈ D, the following two distri-
butions are δ-close:

• (a1, . . . , a`+1) ∈R A(q1,...,q`+1).

• (a′1, . . . , a
′
`+1) where (a′1, . . . , a

′
`) ∈R A(q1,...,q`,σ) and a′`+1 = P ∗1 (q1, . . . , q`+1, a

′
1, . . . , a

′
`).

Proof. We first note that (a1, . . . , a`+1) and (a1, . . . , a`, P
∗(q1, . . . , q`+1, a1, . . . , a`)) are

identically distributed. Hence, we need to show that the distributions

(a1, . . . , a`, P
∗(q1, . . . , q`+1, a1, . . . , a`))

and
(a′1, . . . , a

′
`, P

∗(q1, . . . , q`+1, a
′
1, . . . , a

′
`))

are δ-close. The latter follows from the fact that A is δ-no-signaling.

By our assumption that A and P2, . . . , P` violate the (` + 1, `′ − 1, δ)-hybrid sound-
ness of V , it holds that V accepts x with probability at least s + δ when given answers
(a1, . . . , a`+`′) where (a1, . . . , a`+1) ∈R A(q1,...,q`+1) and a`+i = Pi(q1, . . . , q`+i, a1, . . . , a`+i−1)
for i ∈ {2, . . . , `}, where q1, . . . , q`+`′ are V ’s queries (to the provers). Hence, by Claim 5.11.2,
the verifier accepts x with probability at least s when given answers (a′1, . . . , a

′
`+`′) where

where (a′1, . . . , a
′
`) ∈R A(q1,...,q`,σ) and a`+i = Pi(q1, . . . , q`+i, a

′
1, . . . , a

′
`+i−1) for i ∈ [`].

We conclude this section by noting that Theorem 5.12 follows directly from Lemma 5.9
combined with Lemma 5.10.

5.6 Arguments of Proximity for P

In this section we construct arguments of proximity for every deterministic language:

Theorem 5.16. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤
exp(n). Let β and β′ be constants such that 0 < β < β′ < 1/2. Fix a proximity parameter

ε
def
= n−(1−β) and a security parameter τ

def
= n2β′+o(1) · polylog(t).

If there exists a
(
T, 2−

√
log T

)
-secure FHE, where T (τ) = 2τ

β/β′
, then L has a 1-round

argument of ε-proximity with soundness
(
T, 2−n

o(1)·polylog(t)
)

.

The verifier runs in time n1−β+o(1) ·polylog(t) + polyFHE(τ), where polyFHE is a polyno-
mial that depends only on the FHE scheme, and makes n1−β+o(1) ·polylog(t) oracle queries
to the main input. The prover runs in time poly(t). The total communication is of length
polyFHE(τ).

253

5. ARGUMENTS OF PROXIMITY

We also state the immediate corollary for languages in P:

Corollary 5.17. Let L ∈ P. Let β and β′ be any constants such that 0 < β < β′ < 1/2.
Fix a proximity parameter ε = n−(1−β) and a security parameter τ = n2β′+o(1).

If there exists a
(
T, 2−

√
log T

)
-secure FHE, where T (τ) = 2τ

β/β′
, then L has a 1-round

argument of ε-proximity with soundness
(
T, 2−n

o(1)
)

.

The verifier runs in time n1−β+o(1) + polyFHE(τ), where polyFHE is a polynomial that
depends only on the FHE scheme, and makes n1−β+o(1) oracle queries to the main input.
The prover runs in time poly(n). The total communication is of length polyFHE(τ).

We note that by setting β and β′ to be sufficiently small, assuming the existence of
a sub-exponentially secure FHE, we obtain an argument of proximity with a sub-linear
time verifier.

To prove Theorem 5.16, we show (in Theorem 5.18) how to transform any MIPP that
has soundness against no-signaling strategies into a 1-round argument of proximity, using
a fully-homomorphic encryption scheme (FHE) . The transformation is similar to (and
is based on) the corresponding transformation from [KRR13a] from MIPs (i.e., without
proximity) that have soundness against no-signaling strategies into 1-round argument-
systems. Theorem 5.16 will follow by applying the transformation of Theorem 5.18 to
the MIPP of Theorem 5.12.

Theorem 5.18. Let ε = ε(n) > 0 be a proximity parameter. Suppose that the language
L has an ` prover ε-MIPP that has soundness s against δ-no-signaling strategies. Let D
be the query alphabet and Σ be the answer alphabet of the MIPP (used in the interaction
with the provers). Let τ = τ(n) be a security parameter, where n denotes the input
length. For every T = T (τ) ≥ τ such that T ≥ max(n, 2` log(|Σ|)) and δ′ = δ′(τ) such that
δ′ ≤ δ/`, if there exists a (T, δ′)-secure FHE, then the language L has a 1-round argument
of ε-proximity with soundness (T, s).

If the MIPP verifier runs in time TV , then the running time of the resulting verifier
is TV + TFHE(τ, `, log(|D|), log(|Σ|)), where TFHE is a polynomial that depends only on the
encryption scheme (and not on the language L). If the MIPP verifier makes Q oracle
queries to the main input then the resulting verifier also makes Q oracle queries to the
main input. If the running time of each MIPP prover is TP , then the running time of
the resulting prover is poly

(
TP , τ, n, `, log(|D|), log(|Σ|)

)
. The total communication in the

resulting argument-system is of length poly(τ, `, log(|D|), log(|Σ|)).

Proof. Let (V, P1, . . . , P`) be an ` prover MIPP for L with soundness s against δ-no-
signaling strategies. Let D be the query alphabet and Σ be the answer alphabet. Since
(V, P1, . . . , P`) is a 1-round protocol, it will be convenient for us to think of V as being
composed of two algorithms that use the same randomness, V1 and V2. The first algo-
rithm, V1, on input n, the proximity parameter ε > 0, the random string r and oracle
access to x, outputs a sequence of ` queries q ∈ D`. The second algorithm, V2, on input
n, proximity parameter ε, the same random string r, the answers a ∈ Σ` and oracle access
to x, outputs a bit that represents whether it believes that x ∈ L or x is ε-far from L.

254

5.6 Arguments of Proximity for P

We assume without loss of generality that the (honest) provers algorithms P1, . . . , P` are
deterministic.

Let (Gen,Enc,Dec,Eval) be an FHE and let τ = τ(n) be a security parameter. We use
the MIPP and FHE to construct an argument of proximity (V ′, P ′) as follows. The verifier,
given as input n, a proximity parameter ε > 0, a random string r and oracle access to
x ∈ {0, 1}n, first invokes V1 on input n, ε > while forwarding V1’s oracle queries to x
(i.e., its own oracle), to obtain a sequence of ` queries q = (q1, . . . , q`) ∈ D`. Then, for
every i ∈ [`], the verifier invokes Gen(1τ), where τ = τ(n), to obtain a key-pair (pki, ski).
The verifier then runs Encpki(qi) to obtain a ciphertext q̂i, for every i ∈ [`]. We denote

pk = (pk1, . . . , pk`), and q̂
def
= (q̂1, . . . , q̂`). The verifier sends (pk, q̂) to P ′.

The prover P ′ is given as input x, a proximity parameter ε > 0, and a message
(pk, q̂) from the verifier. For every i ∈ [`], let Cx,i : D → Σ be a Boolean circuit that
on input q computes the function Pi(x, q). For every i ∈ [`], the prover P ′ computes

âi = Eval(pki, Cx,i, q̂i). The prover sends â
def
= (â1, . . . , â`) to the verifier.

The verifier V ′, given the message â from the prover, computes ai = Decski(âi), for
every i ∈ [`]. The verifier outputs the result of V x

2 (n, ε, (a1, . . . , a`), r), where r is the
same random string used by V1 to generate the queries, and the superscript denotes
oracle access to x.

We proceed to show that (V ′, P ′) is an argument of proximity with soundness (T, s)
(see definition in Section 5.3.2).

Completeness. Let x ∈ L. By the construction and the correctness of the FHE proto-
col, for every i ∈ [`] it holds that ai = Pi(x, qi), with overwhelming probability. When V2

is invoked with the answers of the honest provers P1, . . . , P`, by the (perfect) completeness
of the MIPP, the verifier V outputs 1. Hence, V ′ accepts with overwhelming probability.

Soundness. Fix any ε = ε(n) > 0. Assume for the sake of contradiction that there
exists a family of circuits {P ∗n}n∈N of size at most poly(T (n)) such that there exist infinitely
many x that are ε-far from L such that

Pr[(P ∗|x|, V
′)(x) = 1] > s, (5.3)

where (P ∗|x|, V
′)(x) denotes the output of V ′ after interacting with the prover P ∗|x| where

V ′ has oracle access to x and P ∗|x| has direct access to x (and the probability is over the

random coins of V ′). We show a contradiction by constructing a δ-no-signaling (cheating)
strategy that fools the underlying MIPP verifier V into accepting some x that is ε-far from
L with probability greater than s.

For every x that is ε-far from L, consider an MIPP prover strategy A(x) def
= {A(x)

q }q∈D` ,
where for every q = (q1, . . . , q`) ∈ D`, the distribution A(x)

q is sampled as follows. First,
for every i ∈ [`] invoke Gen(1τ), where τ = τ(|x|), to obtain (pki, ski) and compute q̂i ∈R
Encpki(qi). Then, compute â = (â1, . . . , â`) ∈R P ∗|x|(x, (pk, q̂)), where pk = (pk1, . . . , pk`)

and q̂ = (q̂1, . . . , q̂`), and for every i ∈ [`], set ai = Decski(âi). Finally, output a
def
=

(a1, . . . , a`).

255

5. ARGUMENTS OF PROXIMITY

By the definition of A(x) and V ′ and using Eq. (5.3), for infinitely many x that are
ε-far from L, it holds that

Pr
r

a∈RA
(x)
q

[V x
2 (n, ε, a, r) = 1] = Pr

[
(P ∗|x|, V

′)(x) = 1
]
> s

where q = V1(x, r) and the superscript denotes oracle access to x. It remains to show
that for every sufficiently large x that is ε-far from L, the strategy A(x) is δ-no-signaling.

We need to prove that for all sufficiently large x that are ε-far from L, every S ⊆ [`],
and every two sequences of queries q = (q1, . . . , q`) ∈ D` and q′ = (q′1, . . . , q

′
`) ∈ D` such

that qS = q′S (i.e., qi = q′i for all i ∈ S), the following two distributions are δ-close:

• aS where a ∈R A(x)
q ; and

• a′S where a′ ∈R A(x)
q′ .

Toward this end, assume for a contradiction that for infinitely many x this is not the
case. That is, for infinitely many x, there exist corresponding S, q, q′ and a distinguisher
Dx such that ∣∣∣ Pr

a∈RA
(x)
q

[Dx(aS) = 1]− Pr
a′∈RA

(x)

q′

[Dx(a′S) = 1]
∣∣∣ > δ. (5.4)

Since Dx takes as input a string of length at most ` · log(|Σ|), it can be implemented by
a circuit of size at most poly(2`·log(|Σ|)). We use {Dx}x to construct a family of circuits
{Cτ}τ that breaks the security of the underlying FHE scheme.

For every x as above and for τ = τ(|x|), let Cτ be a circuit that takes as input a set
of public-keys {pki}i∈[`]\S (with respect to security parameter τ) and a set of ciphertexts
{ci}i∈[`]\S. We show that the circuit Cτ distinguishes between the case that (1) each ci
was sampled from Encpki(qi); and the case that (2) each ci was sampled from Encpki(q

′
i).

The circuit Cτ works as follows:

1. For every i ∈ S, sample (pki, ski) ∈R Gen(1τ) and ci ∈R Encpki(qi). Set pk =
(pk1, . . . , pk`) and c = (c1, . . . , c`) (note that for i /∈ S, the values pki and ci are
given as input to the circuit).

2. Compute â
def
= (â1, . . . , â`) = P ∗|x|(x, pk, c), where P ∗|x|(x, pk, c) denotes the output

of P ∗|x| given as input x and a message (pk, c). (Note that x is fixed inside the

description of Cτ .)

3. For every i ∈ S, set ai = Decski(âi).

4. Output Dx(aS) where aS = (ai)i∈S.

Note that Cτ has size poly
(
2`·log(|Σ|), τ, T (τ), |x|

)
≤ poly(T (τ)).

By Eq. (5.4), the circuit Cτ distinguishes between the two cases with probability δ
for infinitely many values of τ . By a standard hybrid argument we obtain a circuit that
breaks the semantic security of the encryption scheme with distinguishing gap at least
δ/` ≥ δ′(τ) in contradiction to our assumption. Thus, we obtain that for all sufficiently
large x /∈ L, the prover strategy A(x) is δ-no-signaling and the lemma follows.

256

5.6 Arguments of Proximity for P

5.6.1 Proof of Theorem 5.16

Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n). Let β and

β′ be constants such that 0 < β < β′ < 1/2. Fix a proximity parameter ε
def
= n−(1−β) and

a security parameter τ
def
= n2β′+o(1) · polylog(t).

Let T (τ) = 2τ
β/β′

and fix k
def
= no(1) · polylog(t) and δ

def
= 2−

√
log T . Note that the

following inequalities hold:

1. (log(t))c ≤ k ≤ poly(n), where the constant c is as in Theorem 5.12.

2. T ≥ max
(
n, 2(k+εn)2·polylog(t)·no(1)

)
.

3. δ ≤ 2−(k+εn)polylog(t).

By applying Theorem 5.12 (with soundness parameter k) to the language L, we obtain
an ε-MIPP for L with ` provers, where ` = (k+ εn) · polylog(t), perfect completeness and
soundness 2−k against δ-no-signaling strategies, where δ = 2−(k+εn)·polylog(t).

The queries and answers (to the provers) are of length (k + εn) · polylog(t) + k · εn ·
(1/ε)o(1). The verifier runs in time (k + εn)2 · polylog(t) + k · (1/ε + εn)1+o(1) and has
query complexity (to the main input) k · (1/ε)1+o(1). Each of the (honest) provers runs
in time poly(t, k).

Assume that there exists a (T, δ)-secure FHE. By Theorem 5.18 (and our setting of k,
T and δ), we obtain that L has a 1-round argument of proximity with soundness (T, 2−k).

The verifier runs in time k · (1/ε+ εn)1+o(1) + poly(τ) and makes k · (1/ε)1+o(1) oracle
queries to the main input. The prover runs in time poly(t). The total communication is
of length poly(τ).

257

258

Appendix A

Works not included in this Thesis

In this section we provide a high-level description of results obtained during our doctoral
studies and were not included above. See the links provided below for the full versions.

A.1 Efficient Multiparty Protocols via Log-Depth Thresh-

old Formulae [CDI+13]

Secure multiparty computation (MPC) enables a set of parties to jointly accomplish
some distributed computational task, while maintaining the secrecy of the inputs and the
correctness of the outputs in the presence of coalitions of dishonest parties. Originating
from the seminal works of [Yao82, GMW87, BGW88, CCD88], secure MPC has been the
subject of an enormous body of work.

Together with Cohen, Damg̊ard, Ishai, Kölker, Miltersen and Raz [CDI+13], we put
forward a new approach for the design of efficient multiparty protocols:

1. Design a protocol π for a small number of parties (say, 3 or 4) that achieves security
against a single corrupted party. Such protocols are typically easy to construct,
because they may employ techniques that do not scale well with the number of
corrupted parties.

2. Recursively compose π with itself to obtain an efficient n-party protocol that
achieves security against a constant fraction of corrupted parties.

The second step of our approach builds on the “player emulation” technique of Hirt
and Maurer [HM00], where the actual steps of the recursive composition are designing
according to a logarithmic-depth formula that computes a threshold function using only
constant fan-in threshold gates.

Using this approach, we simplified and improved upon previous results. In particular:

• We provided conceptually simple constructions of efficient protocols for MPC in the
presence of an honest majority, as well as broadcast protocols from point-to-point
channels and a 2-cast primitive.

259

A. WORKS NOT INCLUDED IN THIS THESIS

• We obtained new results regarding MPC over blackbox groups1 and other algebraic
structures.

The above results rely on the following complexity-theoretic contributions, which may
be of independent interest. In the following we say that a function f is an ε-approximation
of the n/m-out-of-n threshold function, if for every string x, if the relative Hamming
weight of x is greater than 1/m + ε, then f(x) = 1, and if the weight is smaller than
1/m− ε, then f(x) = 0.

• We showed that for every j, k ∈ N such that m
def
= k−1

j−1
is an integer, there is an

explicit (poly(n)-time) construction of a logarithmic-depth formula that computes

an Ω
(

1√
logn

)
approximation of an (n/m)-out-of-n threshold function using only

j-out-of-k threshold gates and no constants.

• For the special case of n-bit majority from 3-bit majority gates, a non-explicit
construction follows from the work of Valiant [Val84]. For this special case, we
provided an explicit construction with a better approximation than for the general
threshold case (specifically, a 2−O(

√
logn) approximation of the majority function),

and also an exact explicit construction based on standard complexity-theoretic or
cryptographic assumptions.

A.2 Circular Security of Bit-Encryption [Rot13]

A public-key encryption scheme is said to be circular secure if security is not violated
even if the adversary is given a “circular” encryption in which the secret key is encrypted
using the corresponding public-key.

Motivated by recent developments in fully homomorphic encryption, in [Rot13], we
considered the folklore conjecture that every semantically-secure bit-encryption scheme is
circular secure, or in other words, that every bit-encryption scheme remains secure even
when the adversary is given encryptions of the individual bits of the private-key. We
showed the following obstacles to proving this conjecture:

1. We constructed a public-key bit-encryption scheme that is plausibly semantically
secure, but is not circular secure. The circular security attack manages to fully
recover the private-key.

The construction is based on an extension of the Symmetric External Diffie-Hellman
assumption (SXDH) from bilinear groups, to `-multilinear groups of order p where
` ≥ c · log p for some c > 1.

1In an MPC protocol over a blackbox group, there is an underlying (possibly non-Abelian) group and
the parties wish to securely compute a product of group elements held by the individual players. While
it is possible in principle to emulate each algebraic operation by a sequence of Boolean operations, this is
inefficient both in theory and in practice. This inefficiency can be avoided by designing protocols which
make a blackbox (i.e., oracle) use of the underlying group.

260

A.3 Enhancements of Trapdoor Permutations [GR13a]

While there do exist `-multilinear groups (unconditionally), for ` ≥ 3 there were no
known candidates for which the SXDH problem was believed to be hard.2 Never-
theless, there is also no evidence that such groups do not exist. Our result shows
that in order to prove the folklore conjecture, one must rule out the possibility that
there exist `-multilinear groups for which SXDH is hard.

2. We showed that the folklore conjecture cannot be proved using a black-box reduc-
tion. That is, there is no reduction of circular security of a bit-encryption scheme
to semantic security of the very same scheme that uses both the encryption scheme
and the adversary as black-boxes.

Both of our negative results extend also to the (seemingly) weaker conjecture that
every CCA secure bit-encryption scheme is circular secure.

As a final contribution, we showed an equivalence between three seemingly distinct
notions of circular security for public-key bit-encryption schemes. In particular, we give
a general search to decision reduction that shows that an adversary that distinguishes
between encryptions of the bits of the private-key and encryptions of zeros can be used
to actually recover the private-key.

Follow-up Work: Realizing Multilinear Maps. Following the publication of [Rot13],
Garg, Gentry and Halevi [GGH13] suggested the first concrete candidate for a multilinear
map based on hard computational problems on lattices. Unfortunately, the parameters
of the [GGH13] multilinear map do not suffice for an instantiation of our construction
(i.e. ` = o(log p)). Additionally, in a very recent work Koppula et al. [KRW13] gave
an alternate construction of a circular insecure bit-encryption scheme, based on indistin-
guishability obfuscation.

A.3 Enhancements of Trapdoor Permutations [GR13a]

Loosely speaking, the notion of trapdoor permutations refers to a collection of permuta-
tions that are easy to sample and have domains that are easy to sample from (when given
the description of the permutation). The main requirements are that these permutations
are easy to evaluate, easy to invert when given a suitable trapdoor, but hard to invert
when only given the description of the permutation (but not the trapdoor).

Together with Goldreich [GR13a], we took a closer look at several enhancements of
the notion of trapdoor permutations. Specifically, we considered the notions of enhanced
trapdoor permutation [Gol04] and doubly enhanced trapdoor permutation [Gol09] as well
as intermediate notions [Rot10]. These enhancements arose in the study of Oblivious
Transfer and NIZK, but they address natural concerns that may arise also in other ap-
plications of trapdoor permutations. We clarified why these enhancements are needed in
such applications, and showed that they actually suffice for these needs.

2This state of affairs has recently changed, see below.

261

A. WORKS NOT INCLUDED IN THIS THESIS

A.4 Fast Pseudorandomness for Independence and

Load Balancing [MRRR14]

Together with Meka, Reingold and Rothblum [MRRR14] we considered the question of
constructing computationally efficient pseudorandom objects. We provided new con-
structions of several such fundamental pseudorandom objects. Loosely speaking, these
constructions obtained exponential improvements in efficiency compared to previous con-
structions with comparable randomness complexity. Our measure of efficiency was the
number of word operations, as captured by the well-established unit-cost word RAM
model. Our main results were the following:

1. A family of (1/n)-almost log n-wise independent Boolean hash functions withO(log n)
description length (or seed length) and O(log log n) operations per evaluation.

Prior constructions with similar seed lengths required Θ(log n) operations.

2. ε-biased sequences for ε = 1/poly(n) with seed lengthO(log n log log n) andO((log log n)2)
operations (to evaluate an output bit or a block of up to log n consecutive bits).

Prior constructions achieve O(log n) seed length, but require Θ(log n) operations.
This construction implies pseudorandom generators with similar efficiency that fool
classes such as low-degree polynomials and read-once CNFs.

3. Hash functions for placing n balls in n bins such that with all but probability
1/n the maximal load is O(log n/ log log n) (which is optimal), with seed-length
O(log n log log n) and O((log log n)2) operations per evaluation.

The previously known construction with similar seed length required Θ(log n log log n)
operations. Indeed, our construction is an efficient instantiation of that construc-
tion, due to Celis, Reingold, Segev and Wieder [CRSW13].

These constructions are all simultaneously within log log n factors of the optimal seed
length, and within (log log n)2 factors of the optimal computational efficiency.

A.5 Pseudorandom Graphs in Data Structures [RRW14]

Together with Reingold and Wieder [RRW14], we proved that the hash functions required
for several data structure applications could be instantiated using the hash functions of
Celis et al.[CRSW13]. These functions simultaneously enjoy short description length as
well as fast evaluation time. The applications we considered are: (1) Cuckoo Hashing,
(2) Cuckoo Hashing with Stash and (3) the Power of Two Choices paradigm for load
balancing. Our analysis relied on a notion of sparse pseudorandom graphs that are similar
to random graphs in having no large connected component and no dense subgraph. Such
graphs may be of independent interest. Relating pseudorandom graphs to the two-choice
paradigm relies on a very simple new proof we give (at the price of somewhat worse
parameters).

262

Bibliography

[ABOR00] William Aiello, Sandeep Bhatt, Rafail Ostrovsky, and S. Raj. Ra-
jagopalan. Fast verification of any remote procedure call: Short witness-
indistinguishable one-round proofs for NP. In ICALP: Annual International
Colloquium on Automata, Languages and Programming, 2000.

[AFNS06] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial
characterization of the testable graph properties: it’s all about regularity. In
STOC, pages 251–260, 2006.

[AII06] David Avis, Hiroshi Imai, and Tsuyoshi Ito. On the relationship between con-
vex bodies related to correlation experiments with dichotomic observables.
Journal of Physics A: Mathematical and General, 39(36), 39(36):11283,
2006.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0.
SIAM J. Comput., 36(4):845–888, 2006.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to
soundness: Efficient verification via secure computation. In ICALP (1),
pages 152–163, 2010.

[AKNS00] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular
languages are testable with a constant number of queries. SIAM J. Comput.,
30(6):1842–1862, 2000.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its ap-
plications. Combinatorica, 23(3):365–426, 2003.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in com-
plexity theory. ACM Trans. Comput. Theory, 1:2:1–2:54, February 2009.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the
seventeenth annual ACM symposium on Theory of computing, pages 421–
429. ACM, 1985.

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds
via communication complexity. In IEEE Conference on Computational Com-
plexity, pages 210–220, 2011.

263

A. BIBLIOGRAPHY

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCCT12a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In ITCS, pages 326–349, 2012.

[BCCT12b] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for snarks and proof-carrying data. IACR
Cryptology ePrint Archive, 2012:95, 2012.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In STOC, pages 21–31, 1991.

[BFS86] Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in commu-
nication complexity theory. In Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, pages 337–347, Washington, DC, USA,
1986. IEEE Computer Society.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In STOC, pages 1–10, 1988.

[Bla10] Eric Blais. Testing juntas: A brief survey. In Goldreich [Gol10a], pages
32–40.

[BLM+05] Jonathan Barrett, Noah Linden, Serge Massar, Stefano Pironio, Sandu
Popescu, and David Roberts. Nonlocal correlations as an information-
theoretic resource. Physical Review A, 71(022101), 71(2):022101, 2005.

[Bol05] Beate Bollig. Property testing and the branching program size of boolean
functions. In Fundamentals of Computation Theory, 15th International Sym-
posium, FCT 2005, Lübeck, Germany, August 17-20, 2005, Proceedings,
pages 258–269, 2005.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil P. Vadhan. Robust PCPs of proximity, shorter PCPs, and applications
to coding. SIAM J. Comput., 36(4):889–974, 2006.

[BT04] Andrej Bogdanov and Luca Trevisan. Lower bounds for testing bipartiteness
in dense graphs. In IEEE Conference on Computational Complexity, pages
75–81, 2004.

[BYKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: lower
bounds and applications. In STOC, pages 266–275, 2001.

264

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In STOC, pages 11–19, 1988.

[CCGT13] Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. An-
notations for sparse data streams. arXiv preprint arXiv:1304.3816, 2013.

[CCM09] Amit Chakrabarti, Graham Cormode, and Andrew Mcgregor. Annotations
in data streams. In Proceedings of the 36th International Colloquium on
Automata, Languages and Programming: Part I, ICALP ’09, pages 222–234,
Berlin, Heidelberg, 2009. Springer-Verlag.

[CDI+13] Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Mil-
tersen, Ran Raz, and Ron D. Rothblum. Efficient multiparty protocols via
log-depth threshold formulae - (extended abstract). In Advances in Cryptol-
ogy - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, pages 185–202, 2013.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling
algorithms for estimating the average. Inf. Process. Lett., 53(1):17–25, 1995.

[CGR+12] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and
Christian Sohler. Finding cycles and trees in sublinear time. Random Struc-
tures & Algorithms, 2012.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory
delegation. In CRYPTO, pages 151–168, 2011.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved dele-
gation of computation using fully homomorphic encryption. In CRYPTO,
pages 483–501, 2010.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical ver-
ified computation with streaming interactive proofs. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, pages 90–112.
ACM, 2012.

[CMT13] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming
graph computations with a helpful advisor. Algorithmica, 65(2):409–442,
2013.

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the com-
munication complexity of gap-hamming-distance. In Proceedings of the 43rd
annual ACM symposium on Theory of computing, STOC ’11, pages 51–60,
New York, NY, USA, 2011. ACM.

[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins:
Smaller hash families and faster evaluation. SIAM J. Comput., 42(3):1030–
1050, 2013.

265

A. BIBLIOGRAPHY

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party com-
putation with low communication. In TCC, pages 54–74, 2012.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and
Omer Reingold. Succinct proofs for NP and spooky interactions. Un-
published manuscript, available at http://www.cs.bgu.ac.il/~kobbi/

papers/spooky_sub_crypto.pdf, 2004.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial
proof of the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate prob-
abilistically checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FGL14] Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal
tests and decomposability. In Innovations in Theoretical Computer Science,
ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 483–500, 2014.

[FLM+12] Eldar Fischer, Oded Lachish, Arie Matsliah, Ilan Newman, and Orly Ya-
halom. On the query complexity of testing orientations for being eulerian.
ACM Transactions on Algorithms, 8(2):15, 2012.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, pages 186–194, 1986.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, pages 169–178. ACM, 2009.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In EUROCRYPT, pages 1–17, 2013.

[GGK14] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable
codes with relaxed local decoders. Electronic Colloquium on Computational
Complexity (ECCC), 21:25, 2014.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In CRYPTO,
pages 465–482, 2010.

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. IACR Cryp-
tology ePrint Archive, 2012:215, 2012.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. Journal of the ACM (JACM),
45(4):653–750, 1998.

266

http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf

[GGR15] Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity
for context-free languages and read-once branching programs. Electronic
Colloquium on Computational Complexity (ECCC), 22:24, 2015.

[GK92] Oded Goldreich and Hugo Krawczyk. Sparse pseudorandom distributions.
Random Struct. Algorithms, 3(2):163–174, 1992.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of compu-
tation without rejection problem from designated verifier cs-proofs. IACR
Cryptology ePrint Archive, 2011:456, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC, pages 218–229. ACM, 1987.

[Gol99] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudoran-
domness, volume 17 of Algorithms and Combinatorics. Springer-Verlag, 1999.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2: Basic Applica-
tions. Cambridge University Press, 2004.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[Gol09] Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced) trap-
door permutations: The state of the art. http: // www. wisdom. weizmann.
ac. il/ ~ oded/ PSBookFrag/ nizk-tdp. ps , November 2008 (revised Octo-
ber 2009).

[Gol10a] Oded Goldreich, editor. Property Testing - Current Research and Surveys,
volume 6390 of Lecture Notes in Computer Science. Springer, 2010.

[Gol10b] Oded Goldreich. Short locally testable codes and proofs: A survey in two
parts. In Property Testing [Gol10a], pages 65–104.

[Gol11] Oded Goldreich. Introduction to testing graph properties. In Studies in Com-
plexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 470–506. Springer, 2011.

267

http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps

A. BIBLIOGRAPHY

[Gol14] Oded Goldreich. On multiple input problems in property testing. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 704–720, 2014.

[GR62] Seymour Ginsburg and H Gordon Rice. Two families of languages related to
ALGOL. Journal of the ACM (JACM), 9(3):350–371, 1962.

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded
degree graphs. Combinatorica, 19(3):335–373, 1999.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.
Algorithmica, 32(2):302–343, 2002.

[GR11] Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Jour-
nal on Computing, 40(2):534–566, 2011.

[GR13a] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permu-
tations. J. Cryptology, 26(3):484–512, 2013.

[GR13b] Tom Gur and Ran Raz. Arthur-Merlin streaming complexity. In Proceedings
of the 40th International Colloquium on Automata, Languages and Program-
ming (ICALP), 2013.

[GR13c] Tom Gur and Ron Rothblum. Non-interactive proofs of proximity. Electronic
Colloquium on Computational Complexity (ECCC), 20:78, 2013.

[GR14] Oded Goldreich and Dana Ron. On learning and testing dynamic envi-
ronments. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
336–343, 2014.

[GR15a] Oded Goldreich and Dana Ron. On sample-based testers. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS
2015, Rehovot, Israel, January 11-13, 2015, pages 337–345, 2015.

[GR15b] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 133–142.
ACM, 2015.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In ASIACRYPT, pages 321–340, 2010.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. In STOC, pages 59–68, 1986.

268

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomi-
als. Inf. Process. Lett., 43(4):169–174, 1992.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of
almost-linear length. J. ACM, 53(4):558–655, 2006.

[GS10a] Dmitry Gavinsky and Alexander A Sherstov. A separation of NP and coNP
in multiparty communication complexity. arXiv preprint arXiv:1004.0817,
2010.

[GS10b] Oded Goldreich and Or Sheffet. On the randomness complexity of property
testing. Computational Complexity, 19(1):99–133, 2010.

[GS12] Oded Goldreich and Igor Shinkar. Two-sided error proximity oblivious test-
ing - (extended abstract). In APPROX-RANDOM, pages 565–578, 2012.

[GS13] Lior Gishboliner and Asaf Shapira. Deterministic vs non-deterministic
graph property testing. Electronic Colloquium on Computational Complexity
(ECCC), 20:59, 2013.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In STOC, pages 99–108, 2011.

[HLNT05] Shirley Halevy, Oded Lachish, Ilan Newman, and Dekel Tsur. Testing ori-
entation properties. Electronic Colloquium on Computational Complexity
(ECCC), 2005.

[HLNT07] Shirley Halevy, Oded Lachish, Ilan Newman, and Dekel Tsur. Testing proper-
ties of constraint-graphs. In IEEE Conference on Computational Complexity,
pages 264–277, 2007.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary
structures in perfect multiparty computation. J. Cryptology, 13(1):31–60,
2000.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[Hol09] Thomas Holenstein. Parallel repetition: Simplification and the no-signaling
case. Theory of Computing, 5(1):141–172, 2009.

[IKM09] Tsuyoshi Ito, Hirotada Kobayashi, and Keiji Matsumoto. Oracularization
and two-prover one-round interactive proofs against nonlocal strategies. In
IEEE Conference on Computational Complexity, pages 217–228, 2009.

[Ito10] Tsuyoshi Ito. Polynomial-space approximation of no-signaling provers. In
ICALP (1), pages 140–151, 2010.

269

A. BIBLIOGRAPHY

[IV12] Tsuyoshi Ito and Thomas Vidick. A multi-prover interactive proof for NEXP
sound against entangled provers. CoRR, abs/1207.0550, 2012.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In STOC, pages 723–732, 1992.

[KKM+08] Julia Kempe, Hirotada Kobayashi, Keiji Matsumoto, Ben Toner, and
Thomas Vidick. Entangled games are hard to approximate. In FOCS, pages
447–456, 2008.

[Kla03] Hartmut Klauck. Rectangle size bounds and threshold covers in communi-
cation complexity. In Computational Complexity, 2003. Proceedings. 18th
IEEE Annual Conference on, pages 118–134. IEEE, 2003.

[Kla11] Hartmut Klauck. On Arthur Merlin games in communication complexity. In
Computational Complexity (CCC), 2011 IEEE 26th Annual Conference on,
pages 189–199. IEEE, 2011.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
University Press, 1997.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In
CRYPTO, pages 143–159, 2009.

[KR14] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity.
Manuscript, 2014.

[KRR13a] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded
space. In STOC, pages 565–574, 2013.

[KRR13b] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: The power of no-signaling proofs. Electronic Colloquium on
Computational Complexity (ECCC), 20:183, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: the power of no-signaling proofs. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 485–494, 2014.

[KRW13] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular
security for arbitrary length key cycles. IACR Cryptology ePrint Archive,
2013:683, 2013.

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communica-
tion complexity of set intersection. SIAM Journal on Discrete Mathematics,
5(4):545–557, 1992.

270

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of
invariance. In Proceedings of the 40th annual ACM Symposium on Theory
of Computing (STOC), pages 403–412. ACM, 2008.

[KT85] Leonid A. Khalfin and Boris S. Tsirelson. Quantum and quasi-classical
analogs of Bell inequalities. In In Symposium on the Foundations of Modern
Physics, pages 441–460, 1985.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding pro-
cedures for error-correcting codes. In STOC, pages 80–86, 2000.

[KW88] Klaus Kriegel and Stephan Waack. Lower bounds on the complexity of real-
time branching programs. ITA, 22(4):447–459, 1988.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett.,
17(4):215–217, 1983.

[Lev85] Leonid A. Levin. One-way functions and pseudorandom generators. In
STOC, pages 363–365, 1985.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Alge-
braic methods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In TCC, pages 169–189, 2012.

[LSH65] Philip M. Lewis, Richard Edwin Stearns, and Juris Hartmanis. Memory
bounds for recognition of context-free and context-sensitive languages. In
SWCT (FOCS), pages 191–202, 1965.

[LV12] László Lovász and Katalin Vesztergombi. Nondeterministic graph property
testing. arXiv preprint arXiv:1202.5337, 2012.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453,
1994.

[MRRR14] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum.
Fast pseudorandomness for independence and load balancing - (extended
abstract). In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceed-
ings, Part I, pages 859–870, 2014.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO,
pages 96–109, 2003.

[New91] Ilan Newman. Private vs. common random bits in communication complex-
ity. Information processing letters, 39(2):67–71, 1991.

271

A. BIBLIOGRAPHY

[New02] Ilan Newman. Testing membership in languages that have small width
branching programs. SIAM Journal on Computing, 31(5):1557–1570, 2002.

[New10] Ilan Newman. Property testing of massively parametrized problems - a sur-
vey. In Property Testing, pages 142–157, 2010.

[PR94] Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom.
Foundations of Physics, 24(3):379–385, 1994.

[PRR01] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing parenthesis lan-
guages. In RANDOM-APPROX, pages 261–272, 2001.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to dele-
gate and verify in public: Verifiable computation from attribute-based en-
cryption. In TCC, pages 422–439, 2012.

[RAD78] Ronald L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On data
banks and privacy homomorphisms. In Foundations of Secure Computation,
pages 169–180. Academic Press, 1978.

[Ras85] Peter Rastall. Locality, Bell’s theorem, and quantum mechanics. Foundations
of Physics, 15(9):963–972, 1985.

[Ron08] Dana Ron. Property testing: A learning theory perspective. Foundations
and Trends in Machine Learning, 1(3):307–402, 2008.

[Ron09] Dana Ron. Algorithmic and analysis techniques in property testing. Foun-
dations and Trends in Theoretical Computer Science, 5(2):73–205, 2009.

[Rot09] Guy N. Rothblum. Delegating computation reliably: paradigms and construc-
tions. PhD thesis, Massachusetts Institute of Technology, 2009.

[Rot10] Ron Rothblum. A taxonomy of enhanced trapdoor permutations. Electronic
Colloquium on Computational Complexity (ECCC), 17:145, 2010.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In TCC, pages
579–598, 2013.

[RRW14] Omer Reingold, Ron D. Rothblum, and Udi Wieder. Pseudorandom graphs
in data structures. In Automata, Languages, and Programming - 41st Inter-
national Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, pages 943–954, 2014.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomi-
als with applications to program testing. SIAM J. Comput., 25(2):252–271,
1996.

272

[Ruz81] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci.,
22(3):365–383, 1981.

[RVW13] Guy N. Rothblum, Salil Vadhan, and Avi Wigderson. Interactive proofs of
proximity: Delegating computation in sublinear time. In Proceedings of the
45th annual ACM Symposium on Theory of Computing (STOC), 2013.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[She11] Alexander A. Sherstov. The communication complexity of gap hamming dis-
tance. Electronic Colloquium on Computational Complexity (ECCC), 18:63,
2011.

[She12] Alexander A Sherstov. The multiparty communication complexity of set
disjointness. In Proceedings of the 44th symposium on Theory of Computing,
pages 525–548. ACM, 2012.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting
codes. IEEE Transactions on Information Theory, 42(6):1723–1731, 1996.

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs anf the Hard-
ness of Approximation Problems, volume 1001 of Lecture Notes in Computer
Science. Springer, 1995.

[Sud00] Madhu Sudan. Probabilistically checkable proofs - lecture notes, 2000. Avail-
able at http://people.csail.mit.edu/madhu/pcp/pcp.ps.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
CRYPTO (2), pages 71–89, 2013.

[Ton09] Ben Toner. Monogamy of non-local quantum correlations. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Science,
465(2101):59–69, 2009.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J.
Algorithms, 5(3):363–366, 1984.

[Vid11] Thomas Vidick. A concentration inequality for the overlap of a vector on
a large set, with application to the communication complexity of the gap-
hamming-distance problem. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:51, 2011.

[Vid13] Thomas Vidick. Three-player entangled xor games are np-hard to approxi-
mate. In FOCS, 2013.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Wal-
fish. A hybrid architecture for interactive verifiable computation. In IEEE
Symposium on Security and Privacy, pages 223–237, 2013.

273

http://people.csail.mit.edu/madhu/pcp/pcp.ps

A. BIBLIOGRAPHY

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In FOCS, pages 160–164, 1982.

274

	1 Introduction
	1.1 Verifiably Outsourcing Computation
	1.2 Our Results
	1.2.1 Linear-Time Verification for P
	1.2.2 Non-Interactive Proofs of Proximity
	1.2.3 Arguments of Proximity
	1.2.4 Proofs of Proximity for Context-Free Languages and Read-Once Branching Programs

	1.3 Organization

	2 Delegation for P
	2.1 Introduction
	2.1.1 Multi-Prover Interactive Proofs with No-Signaling Provers
	2.1.2 From Multi-Prover Interactive Proofs to One-Round Delegation
	2.1.3 Summary of Our Results
	2.1.4 Related Work
	2.1.5 Organization

	2.2 Our Results
	2.3 Our Techniques
	2.3.1 Our Statistically No-Signaling MIP
	2.3.2 From No-Signaling MIP to a Delegation Scheme

	2.4 Preliminaries
	2.4.1 Notation
	2.4.2 Multi-Prover Interactive Proofs
	2.4.3 No-Signaling MIPs
	2.4.4 Probabilistically Checkable Proofs
	2.4.5 No-Signaling PCPs
	2.4.6 Low Degree Extension
	2.4.7 Public-Key Encryption and Fully Homomorphic Encryption (FHE)
	2.4.8 Interactive Argument Systems

	2.5 The Base PCP
	2.5.1 The PCP Proof
	2.5.2 The PCP Verifier, V
	2.5.3 The Relaxed Verifier, V'

	2.6 Soundness of V' versus Soundness of V
	2.6.1 Proof of Lemma 2.3

	2.7 Soundness of V' in the Base PCP
	2.7.1 Some Immediate Claims
	2.7.2 Additional Notation
	2.7.3 Consistency of P0
	2.7.4 Consistency of X
	2.7.5 Consistency of X and P0
	2.7.6 Property R(',r')
	2.7.7 Proof of Lemma 2.5

	2.8 Soundness of V in the Base PCP
	2.9 The Augmented PCP
	2.10 Soundness of V' in the Augmented PCP
	2.10.1 Reading Multiple Points Together
	2.10.2 The Main Lemma
	2.10.3 Some Useful Claims
	2.10.4 The Property R and making Progress under Conditioning
	2.10.5 Proof of Lemma 2.31

	2.11 Soundness of V in the Augmented PCP
	2.12 From No-Signaling PCP to No-Signaling MIP
	2.13 A No-Signaling MIP for PSPACE with an Inefficient Prover
	2.14 Simulating an MIP Oracle
	2.15 Proof of Theorem 2.4
	2.16 From No-Signaling MIP's to One Round Arguments
	2.17 Delegation for P

	Appendix for Chapter 2
	2.A Computing LDE over Characteristic 2 Fields

	3 Non-interactive Proofs of Proximity
	3.1 Introduction
	3.1.1 The Notion of MAP
	3.1.2 The Power of MAP
	3.1.3 The Limitations of MAP
	3.1.4 Techniques
	3.1.5 Related Works
	3.1.6 Organization

	3.2 Definitions
	3.2.1 Merlin-Arthur Proofs of Proximity
	3.2.2 Interactive Proofs of Proximity
	3.2.3 Useful Conventions

	3.3 Separation Results
	3.3.1 Exponential Separation between PT and MAP
	3.3.2 Trade-off between Query and Proof Complexity
	3.3.3 MAP vs. IPP[O(1)]
	3.3.4 Exponential Separation between MAP and IPP

	3.4 General Transformations
	3.4.1 From MAP to PT
	3.4.2 From Two-Sided Error MAP to One-Sided Error MAP

	3.5 An Extremely Hard Property for MAPs
	3.6 MAPs for Parametrized Concatenation Problems
	3.6.1 The Generic Scheme
	3.6.2 Approximate Hamming Weight
	3.6.3 Graph Orientation Problems

	3.7 Bipartiteness in Bounded Degree Graphs

	Appendix for Chapter 3
	3.A Background
	3.A.1 Communication Complexity
	3.A.2 MA Communication Complexity
	3.A.3 Error Correcting Codes
	3.A.4 Multivariate Polynomials and Low Degree Testing
	3.A.5 The Sum-Check Protocol

	3.B Proofs and Adaptations of Known Results
	3.B.1 Proofs of Standard Claims from Section 3.5
	3.B.2 Precision Sampling
	3.B.3 Lower Bound on the MA Communication Complexity of GHD

	4 Proofs of Proximity for Context-Free Languages and Read-Once Branching Programs
	4.1 Introduction
	4.1.1 Our Results
	4.1.2 Proof Overview
	4.1.3 Organization

	4.2 Preliminaries
	4.2.1 Property Testing, MAPs and IPPs
	4.2.2 Read-Once Branching Programs (ROBPs)
	4.2.3 Context-Free Languages

	4.3 MAPs and IPPs for Read-Once Branching Programs
	4.3.1 IPPs for ROBPs
	4.3.2 MAPs for ROBPs
	4.3.3 MAPs and IPPs for Affine Spaces

	4.4 MAPs and IPPs for Context-Free Languages
	4.4.1 Partitioning Partial Derivation Languages
	4.4.2 IPP for Partial Derivation Languages
	4.4.3 Improved MAPs for Specific Context-Free Languages

	Appendix for Chapter 4
	4.A Parallel Repetition of IPPs
	4.B Computing ROBPs in Low-Depth
	4.C Proof of cfl:thm:generalcfl
	4.D Efficient Verification for Special Context-Free Languages

	5 Arguments of Proximity
	5.1 Introduction
	5.1.1 Our Results in a Nutshell
	5.1.2 Our Results in More Detail
	5.1.3 Related Work

	5.2 Our Techniques
	5.2.1 Our Positive Results
	5.2.2 Our Negative Results

	5.3 Preliminaries
	5.3.1 Notation
	5.3.2 Arguments of Proximity
	5.3.3 Interactive Proofs of Proximity (IPP)
	5.3.4 Multi-Prover Interactive Proofs (MIP)
	5.3.5 No-Signaling MIP
	5.3.6 MIP of proximity (MIPP)
	5.3.7 No-Signaling MIPP
	5.3.8 Low Degree Extension
	5.3.9 Public-Key Encryption and Fully Homomorphic Encryption (FHE)

	5.4 Lower Bound for IPP and No-Signaling MIPP
	5.4.1 Proof of Theorem 5.7
	5.4.2 Lower Bound for IPP
	5.4.3 Lower Bound for Interactive Arguments of Proximity

	5.5 No-signaling MIPP for P
	5.5.1 Completeness of PVAL
	5.5.2 Composing an MIPP with an IPP

	5.6 Arguments of Proximity for P
	5.6.1 Proof of Theorem 5.16

	A Works not included in this Thesis
	A.1 Efficient Multiparty Protocols via Log-Depth Threshold Formulae CDIKMRR13
	A.2 Circular Security of Bit-Encryption Rothblum13
	A.3 Enhancements of Trapdoor Permutations GR13trapdoor
	A.4 Fast Pseudorandomness for Independence and Load Balancing MRRR14
	A.5 Pseudorandom Graphs in Data Structures RRW14

	Bibliography

