
1 Introduction

The human genome, the internet, particle accelerators - the modern world offers many sources

that flood us with information we wish to analyze and understand. However, calculations

that are feasible for relatively small input sizes may become infeasible for inputs of huge size.

In the latter case we may even wish to devise an algorithm that runs in time that is smaller

than the input size itself. Such an algorithm will obviously be able to access only a limited

part of its input.

An additional setting which is similar in some ways is when access to any part of the input

is prohibitively ”expensive”. In such cases we would like to devise an algorithm that would

only access a small number of bits, even if it takes a long time to compute. Access to any

part of the input may, for example, require setting up a sample for an electron microscope, or

checking for radiation levels on a specific square meter of Mars. More common cases include

polling the population of a country.

1.1 Our Work

In this thesis we study complexity classes for sets decidable in sub-linear time or using a

sub-linear number of queries. We use a random access model, as an algorithm running in

sub-linear time cannot access each of the bits of its input in the standard Turing-machine

model (it wouldn’t have time to reach the last bit). A random access model allows an

algorithm that runs in time shorter than its input length to access any bit of the input, even

if it cannot access them all.

As the thesis’s title implies, we focus our study of sublinear algorithms on the study com-

plexity classes of algorithms running in time that is bounded by a polylogarithmic function

of the length of their input, or where the number of queries the algorithm may perform to

the input is restricted in a similar manner. Bounds on the running time that are at least

logarithmic in the size of the input are required because they allow a random access machine

to access any bit of its input. Polylogarithmic bounds are technically appealing because

polylogarithms, like polynomials, are closed under addition, multiplication and composition.

In particular, this allows us to use polylogarithmic-time building blocks in the construction

of polylogarithmic algorithms. Essentially, one can think of these algorithms as those that

take time polynomial in the binary representation of the length of their input. However, our

results can generally be extended to other choices of ”small” complexity bounds.

The sub-linear time and query algorithms generally discussed in computer science liter-

1

ature are mostly approximation algorithms [15, 8]. Such algorithms either give an approx-

imation of some numerical value with high probability, or decide whether a combinatorial

object is ”close” to having a property in some sense (i.e., relate to promise problems [7, 9]).1

In our work we begin by discussing computations that require an exact result and do not

restrict the input to any computation (i.e., refer to standard decision problems rather than

to promise problems), and only later do we turn to discuss promise problems.

In Section 2 we describe our model and give simple separations between deterministic,

nondeterministic and probabilistic computations, based on ”needle in a haystack” style argu-

ments. These arguments hold equally well for polylogarithmic-time and for polylogarithmic-

query computations, as they are essentially information theoretic in nature. Our arguments

are similar in flavor to the one used by Baker et . al . [2] to show that there exists an ora-

cle under which P does not equal NP . However, while Baker et . al . use this argument in

a meta-computational context, in our work the arguments relate to concrete and natural

computational problems in a concrete and natural computational model.

In Section 3, which holds the more complex technical contribution of this thesis, we

consider the intersection of nondeterministic and co-nondeterministic polylogarithmic com-

putations. Unlike the results in Section 2, here the analysis of time-bounded computations

is not the same as that used for query-bounded computations. Our main result shows that

for query-bounded computations, the intersection of nondeterministic (denoted NPLQ) and

co-nondeterministic (denoted coNPLQ) computations can be emulated by a deterministic

machine. Our main result in Section 3 is reminiscent of a similar result in communication

complexity, and we shall discuss this similarity.

In section 4 we turn our attention to complexity classes of promise problems. We argue

that promise problems are an appealing framework for the study polylogarithmic compu-

tations, and discuss classes of promise problems that can be solved using polylogarithmic

time by deterministic, non-deterministic and randomized machines. We give separations and

complete problems for the various complexity classes.

Finally, in section 5 we return to the decision problem setting, and consider two possible

definitions of the Polylogarithmic-time Hierarchy. We show that each definition is a natural

extension of polylogarithmic non-deterministic complexity classes in the sense that both

hierarchies have deterministic polylogarithmic time computations as their 0’th level, and

non-deterministic polylogarithmic time computations as their first level. Despite this, we

show that according to one definition the polylogarithmic hierarchy doesn’t even include

1Chazelle has compiled an extensive bibliography of articles discussing such topics [5].

2

Parity, while the other definition yields a hierarchy that is the equivalent of PH.

1.2 Similar Results in the Literature

After the submission of this thesis Ran Raz noted that many of our results have actually

been reached in the past. These results come generally from two lines of research. The first

is research in relativized complexity, and the second is research in decision-tree complexity.

Relativized complexity research focuses on the computational power of machines that

are given access to an ”oracle” that decides membership in a certain set. These machines

are then given an input and while performing a computation on that input may query the

oracle. There are considerable conceptual differences between the work done in relativized

complexity and ours. In relativized complexity the motivation for the research is often to

better understand what proof techniques may assist in separating various complexity classes

(which refer to the input, not to the oracle), whereas our research relates to a realistic

computational model. In our model the oracle access is to the input that (naturally) changes

from one computation to the next, whereas in relativized complexity the oracle is fixed. Non-

the-less, many results similar to ours were reached before, and the technical similarity of the

settings allows a transformation of results and proofs from one setting to the other. In

particular, Blum and Impagliazzo [3] have shown results equivalent to Theorem 3.2 (that

shows the intersection of NPLQ and coNPLQ to be deterministically decidable) in their

study of generic oracles, and Tardos [18] gives an algorithm almost identical to ours for the

same result.

Research in decision-tree complexity is conceptually closer to ours, and similar results

are known there too. The concept of certificate complexity is closely related to our concepts

of positive and negative t-restricted views (defined in Section 3), and Beals et. al. [1] show

a result regarding certificate complexity that corresponds directly to Theorem 3.2. Lovász

et. al. [14] study search problems in the decision tree model, and give a separation result

that is similar to Theorem 2.6 (which separates non-deterministic and randomized compu-

tations). Buhrman and de Wolf [4] survey many results in this field. The work that comes

closest to ours is by Impagliazzo and Naor [12]. In their work they cover much of the work

done in Sections 2 and 3 of this thesis. In particular, they define classes of deterministic,

nondeterministic and randomized computations that take polylogarithmic time, and discuss

the relationship between these classes.

To the best of our knowledge the results in Sections 4 and 5, unlike those in sections 2

3

and 3, have not been reached before.

2 Deterministic, Nondeterministic and Probabilistic Poly-

logarithmic Time and Queries

This work examines computations that are performed in time that’s significantly shorter

than the length of the input. In order to allow this we consider machines that have direct

access to individual bits of their input. Formally, we consider a Turing Machine with oracle

access to a string x of length n. When the machine writes a binary number i, ranging from

1 to n, on the oracle access tape and invokes the oracle, the oracle returns the i’th bit of x.

If anything else is written on the query tape (such as a number greater than n), the oracle

returns a special symbol b̄. Note that the machine needn’t be given the length of x explicitly -

it can determine it using queries of exponentially increasing length, and performing a binary

search to determine |x|, in O(log(|x|)) queries. Therefore, when describing an algorithm

we may assume, without loss of generality, that it has access to the length of its input. In

general, when we refer in this work to ”a machine” we are discussing a deterministic (or

nondeterministic, depending on context) Turing machine with this type of oracle access to

its input. We note this model is consistent with the behavior of real world computers.

Polylogarithmic time computations have technical difficulties that are not generally en-

countered in other types of computation. In particular, when we state that a machine M is

given as input a 3− tuple of the form (x, y, z), for instance, we cannot automatically assume

that M can tell where the one input ends and the next begins. We can solve this problem

in several ways. The approach taken in this text is generally to have y and z have lengths

that are an easily computable function of the length of x. Other solutions are possible. We

will encounter multiple inputs to a polylogarithmic time machine in Sections 4 and 5.

2.1 Time Complexity

Definition 2.1 (PolyLogarithmic Time): We denote by PLT the class of sets decidable by

a deterministic machine running in time polylogarithmic in the length of its input.

An obvious subclass of PLT consists of sets obtained by exponential padding of sets in

P . That is, for every set S ∈ P we can define a set S ′ ∈ PLT as follows:

S ′ = {x ◦ y : x ∈ S, y ∈ {0, 1}2|x|−|x|}

4

Definition 2.2 (Nondeterministic PolyLogarithmic Time): We denote by NPL the class of

sets decidable by a nondeterministic machine running in time polylogarithmic in the length

of its input.

Like in the case of PLT , an obvious subclass of NPL consists of sets obtained by

exponential padding of sets in NP .

Unlike the case of P versus NP , one can easily show that PLT is a strict subset of NPL.

We use a ”needle in a haystack” argument to show this - we consider the decision problem

of whether an input string contains at least a single bit of value 1. In the deterministic case

a machine querying a polylogarithmic number of bits may fail to query any bit of value 1

in a string containing such bits, and must therefore return an incorrect result, while in the

nondeterministic case the machine needs only guess the location of a bit with value 1. Thus:

Theorem 2.3 PLT 6= NPL.

Proof: Clearly, PLT ⊆ NPL. It is left to show that NPL 6⊆ PLT . We’ll consider a rather

simple set - Or, defined as the set of all binary strings that include at least one non-zero bit.

By showing Or ∈ NPL and Or /∈ PLT we show PLT 6= NPL.

To see that Or ∈ NPL, define the following simple NPL machine M . Machine M performs

a nondeterministic choice of a query location 1 ≤ i ≤ |x|, and returns the bit xi.

To see that Or /∈ PLT , we consider any PLT machine M and its operation on input x = 0n.

Being deterministic, M performs some computations and a series q1, . . . , qm of queries (all

returning 0, of course). For any M that decides Or, it must reject after these queries when

obtaining 0 on every answer. Now consider any input string x′ that has 0 in the locations

q1, . . . , qm, and 1’s in some of the other locations. M must reject x′, and therefore fails to

compute Or correctly.

A similar argument can convince us that the class of complements of sets in NPL, which

we denote coNPL, is not equal to NPL.

Theorem 2.4 NPL 6= coNPL

Proof: It will suffice to show that Or /∈ coNPL, as we’ve already proved Or ∈ NPL.

Consider any coNPL machine M and its operation on input x = 0n. Along each nonde-

terministic path w, M performs some computations and a series qw
1 , . . . , qw

m of queries (all

returning 0, of course). For any M that decides Or, it must reject after these queries when

obtaining 0 on every answer along at least one such nondeterministic path w′. Now consider

5

any input string x′ that has 0 in the locations qw′
1 , . . . , qw′

m , and 1’s in some of the other

locations. M must reject x′ along w′, and therefore fails to compute Or correctly.

Up to this point we discussed deterministic and nondeterministic computations running

in time polylogarithmic in the length of their inputs. It is also natural, however, to design

probabilistic algorithms when we are limited in our access to the input. We therefore define

a natural complexity class for probabilistic computations with running time bound by a

polylogarithmic function.

Definition 2.5 (Bounded-Error Probabilistic PolyLogarithmic-Time): We denote by BPPL
the class of sets decidable by a probabilistic machine running in time polylogarithmic in the

length of its input, such that

1. If the answer is ’yes’ then with probability at least 2
3

the machine accepts.

2. If the answer is ’no’ then with probability at most 1
3

the machine accepts.

Theorem 2.6 NPL 6⊆ BPPL

Proof: It suffices to show that Or /∈ BPPL, as we’ve already proved Or ∈ NPL. Consider

any BPPL machine M and its operation on input x = 0n. Any such machine deciding Or

must return 0 with probability at least 2
3
. Let t denote the polylogarithmic function limiting

the running time of M . By a simple counting argument there is at least one location in

x queried with probability of at most t
n
. We denote this bit location l. Now consider the

operation of M on the input xl = 0l−110n−l. In events where M does not query l it must

return the same result as in the case of M(0n), so M(xl) returns 1 with probability of at

most 1
3

+ t
n
. For any sufficiently large n it follows that M returns 1 with probability less

than 2
3

and thus does not decide Or.

While the class BPP is not known to add any power to P , a different class that uses

randomization in the polynomial settings, IP , is known to add a great deal of power and

is, in fact, equal to PSPACE [17]. One could thus hope that the polylogarithmic version of

interactive proofs would prove to be powerful. To see that this is not the case we first define

the relevant complexity class.

Definition 2.7 (PolyLogarithmic Interactive Proof): We denote by PL − IP the class of

decision problems for which a ”yes” answer can be verified by an interactive proof taking

polylogarithmic time. Here a BPPL verifier sends messages back and forth with an all-

powerful prover. They can have a polylogarithmic number of rounds of interaction. Given

the verifier’s algorithm, at the end:

6

1. If the answer is ’yes’ the prover must be able to behave in such a way that the verifier

accepts with probability at least 2
3

(over the choice of the verifier’s random bits).

2. If the answer is ’no’ then however the prover behaves the verifier must reject with

probability at least 2
3
.

To show that PL − IP is not as powerful as one would hope, we prove that And - the

set of all strings of the form 1∗, is not in PL − IP . This result is not surprising given that

coNP is not a subset of IP relative to a random oracle [6]. We thus see that coNPL is not

a subset of PL − IP (Given that And is equivalent to Not Or, up to the sign of bits, and Or

is in NPL).

Claim 2.8 coNPL 6⊂ PL − IP

Proof: Assume that And is in PL − IP . Then there exists a BPPL verifier V that,

interacting with a computationally unbounded prover P accepts (for any n) the string 1n

with probability at least 2
3
, and rejects any other string of length n with probability at least

2
3

for any prover. Let t denote the polylogarithmic function limiting the running time of V 2.

In the interaction between P and V , where P is proving that 1n is in And, there is at least one

location in 1n queried by V with probability of at most t
n

(by a simple counting argument).

We denote this bit location l. Assume V is given oracle access to the input xl = 1l−101n−l,

and that a prover P ′ attempts to prove this string is in And. P ′ emulates the behavior of P

proving 1n is in And, and as V only queries the bit l with probability t
n
. V must accept with

probability 2
3
− fractn which for a sufficiently large n is greater than 1

3
. Thus, And isn’t in

PL − IP .

2.2 Query Complexity

As in the previous section, we will concern ourselves with decision problems where the

deciding machine accesses a polylogarithmic number of bits of its input. However, while the

polylogarithmic limit to the number of bits accessed in PLT is implicit in the runtime, we

must now make it explicit.

Definition 2.9 (PolyLogarithmic Queries): We denote by PLQ the class of sets decidable

by a deterministic machine performing a polylogarithmic number of queries to its input.

2t limits the total running time of V in the entire interaction

7

In a similar manner to the ”padding” shown for PLT , an obvious subclass of PLQ
consists of sets obtained by exponential padding of computable sets. Using such a padding

we can convince ourselves that PLQ is not a subset of NPL - simply let the padded set

be a computable function not in NP . The proof for such a claim is similar in flavor to the

proof of Theorem 3.1.

Definition 2.10 (Nondeterministic PolyLogarithmic Queries): We denote by NPLQ the

class of sets decidable by a nondeterministic machine performing a polylogarithmic number

of queries to its input. All non-deterministic paths must terminate after a number of steps

bounded by a computable function of the length of the input.

Using the same proof as that used for Theorem 2.3 we get the following two theorems

(they are not exactly corollaries, as they don’t follow from the claim but simply use the same

proof):

Theorem 2.11 NPLQ 6= PLQ

Theorem 2.12 NPL is not a subset of PLQ

In addition, using the same proof as that used for Theorem 2.4, we get the following

theorem (where coNPLQ is the class of complements of sets in NPLQ):

Theorem 2.13 NPLQ 6= coNPLQ

3 The Intersection of Nondeterministic and

Co-nondeterministic Classes

3.1 Does the Intersection of NPL and coNPL equal PLT ?

As the reader may have noted, the relation between the polylogarithmic time complexity

classes is similar to the suspected relation between the polynomial-time complexity classes:

We suspect that NP 6= P , and have that NPL 6= PLT . We suspect that NP 6= coNP ,

and have that NPL 6= coNPL. A similar structure holds for the polylogarithmic query

complexity classes inspected so far. While the proofs of the separation of the aforementioned

complexity classes are simple and rely on no specific computational assumptions, we have

failed to find a similar proof for the claim that NPL∩ coNPL 6= PLT , which is analogous

to the conjecture that NP ∩ coNP 6= P . We can, however, prove the following claim:

8

Theorem 3.1 If NP ∩ coNP 6= P then NPL ∩ coNPL 6= PLT

Proof: If NP ∩ coNP 6= P there exists a set S ∈ NP ∩ coNP such that S /∈ P . Consider

the set S ′ = {x ◦ y : x ∈ S, y ∈ {0, 1}2|x|−|x|} which is a simple padding of S. Clearly, S ′

is in NPL and in coNPL. Assume towards contradiction that S ′ ∈ PLT , and denote the

PLT machine deciding it by M ′. We define a polynomial-time machine M that decides S,

thus reaching a contradiction. When M is given the input x it emulates M ′(x ◦ 02|x|−|x|) in

the straightforward way (returning bits of x for queries to bits of locations 1 . . . |x| and 0

otherwise), running in time polylogarithmic in 2|x| and thus polynomial in |x|. As M is a

deterministic polynomial time machine deciding S (which is not in P), a machine M ′ cannot

exist and S ′ is not in PLT .

If The intersection of NP and coNP does equal P , does this mean that the intersection

of NPL and coNPL equals PLT ? This remains an open question. It would be nice to see

a PLT algorithm for NPL ∩ coNPL using an NP ∩ coNP oracle.

3.2 The Intersection of NPLQ and coNPLQ Equals PLQ

As the title of this subsection suggests, the relation between NPLQ ∩ coNPLQ and PLQ
is different than the one suspected between NP ∩ coNP and P . The rest of this section is

dedicated to proving the following result:

Theorem 3.2 NPLQ ∩ coNPLQ = PLQ

In order to prove this theorem we must first define and develop several concepts.

Definition 3.3 (n-View): An n-view is a partial function from [n] to {0, 1}. We denote the

subset of [n] on which a view v is defined as dom(v).

When an algorithm performs queries to some locations l1 . . . lm on an input string x of

length n, we can describe the information that the algorithm has about x using an n-view,

defined only on the values l1 . . . lm, so that v(l1) = xl1 . . . v(lm) = xlm . If l1 . . . lm are not

all the values in [n], there are several different strings that have the same values in l1 . . . lm.

When a string and a view have the property that the view can be obtained by corresponding

queries to the string, we say the view and the string are consistent. When two views may

have been defined by queries to the same string we say the two views are consistent. The

following definitions formalize these notions.

9

Definition 3.4 (View and string consistency): Denoting the i’th bit of a string x as xi, we

say a string x is consistent with a view v if and only if for every i ∈ dom(v), it holds that

v(i) = xi.

Definition 3.5 (View consistency): The views v1 and v2 are said to be consistent if and

only if there exists a string x such that x is consistent with v1 and x is consistent with v2.

It is clear that one need not search all the strings x of length n to tell if two n-views are

consistent. The following two facts capture two simple ways to determine consistency.

Fact 3.6 (View consistency): Let v1 and v2 be n-views, then v1 and v2 are consistent if and

only if for all i ∈ dom(v1) ∩ dom(v2) it holds that v1(i) = v2(i).

To see this fact is true it suffices to consider any string of length n where xi = v1(i) where

i ∈ dom(v1), and xi = v2(i) where i ∈ dom(v2). Such a string exists if and only if for all

i ∈ dom(v1) ∩ dom(v2) it holds that v1(i) = v2(i).

Fact 3.7 (View and sub-view consistency): Let v1 be a view, v2 be a view such that v1

extends v2(i.e., dom(v2) ⊆ dom(v1), and for all i ∈ dom(v2) it holds that v2(i) = v1(i)).

Then if x is a string consistent with v1, x is consistent with v2, and it holds that v1 and v2

are consistent.

Obviously any set S ∈ {0, 1}n can be defined by a set of n-views S ′, where a string is in

S if and only if it is consistent with some view in S ′. This is trivially true as we can define

the set S ′ to be the views defined on all n bits, so each view is consistent with exactly one

member of S. Sets based on polylogarithmic query computations, however, can be defined

using views in a more compact manner. We will use this fact, but we will first define the

notion of a computable t-restricted collection of views, and we will prove the connection

between such views and NPLQ sets.

Definition 3.8 (Computable t-restricted views): A collection of views V = {Vn}, where

each v ∈ Vn is an n-view, is called computable if there exists a Turing machine that on

input n outputs the list of all views in Vn. Such a collection is called t-restricted (for some

function t) if each v ∈ Vn is defined on at most t(n) points, i.e., for all v ∈ Vn it holds that

|dom(v)| < t(n).

10

Lemma 3.9 If a set S is in NPLQ then there exists a polylogarithmic function t and a

computable t-restricted collection of views, V = {Vn}, such that x ∈ S if and only if x is

consistent with some view in V|x|.

Proof: Let M be an NPLQ machine deciding S. We describe a simple deterministic

algorithm that, given n, outputs a t-restricted collection of views Vn such that x ∈ S if and

only if x is consistent with some view in V|x|. On input n the algorithm works as follows:

Define an (initially) empty collection of views V . For every string x of length n, and

for every nondeterministic computation path w taken by M(x), perform the following. If w

terminates unsuccessfully, disregard it. If w terminates successfully after querying the bits

at locations l1, . . . , lm define the view v to be the partial function from [n] to {0, 1} defined

at locations l1...lm and taking the values v(li) = xli. If v /∈ V add v to V . Once all x’s and

all w’s were examined, output the final V .

The algorithm terminates, because by Definition 2.10 every NPLQ machine, and in

particular M , terminates on all nondeterministic paths. Setting t to be the polylogarithmic

function bounding the number of queries performed by M , the outputted views are all t-

restricted.

It remains to show that x ∈ S if and only if there exists a view v ∈ V such that x is

consistent with be v.

Suppose, first, that x ∈ S. Therefore, there exists a nondeterministic computation path

w taken by M(x) that terminates successfully. The view v is thus added to V . Clearly, x is

consistent with v (as v is defined by queries on x).

Suppose, on the other hand, that x is consistent with some view v ∈ V . It follows that

M queried along some nondeterministic path w all locations l ∈ dom(v) of some x′ ∈ S, and

terminated successfully. As both x and x′ are consistent with v, we have that xl = v(l) = x′
l

for all l ∈ dom(v). Clearly, M(x) will only query, along path w, locations in dom(v) and will

thus accept x along this path. As M decides S, it follows that x ∈ S.

As an easy corollary, we can see that coNPLQ sets can also be characterized by a

polylogarithmic-restricted collection of views, where strings consistent with these views are

not in the set.

Corollary 3.10 If a set S is in coNPLQ there exists a polylogarithmic function t and a

computable t-restricted collection of views, V = {Vn}, such that x 6∈ S if and only if Vn

contains a view consistent with x.

11

We saw above that consistency with a certain view v can ensure that some input x is a

member of some set S. Likewise, consistency with some view v′ can ensure that some input

string x′ is not a member of some set S ′. We call such views positive views and negative

views.

Definition 3.11 (Positive view): An n-view v is said to be a positive view for a set S if

any string x ∈ {0, 1}n that is consistent with v is in S.

Definition 3.12 (Negative view): An n-view v is said to be a negative view for a set S if

any string x ∈ {0, 1}n that is consistent with v is not in S.

Note that we can now see Lemma 3.9 as stating the fact that for every set S ∈ NPLQ
there exists a machine M that on input n outputs a set V of positive views for S such that

every x ∈ S is consistent with some view v ∈ V . In a similar manner, Corollary 3.10 can

be seen as stating the fact that for every set S ∈ coNPLQ there exists a machine M that

on input n outputs a set V of negative views for S such that every x /∈ S is consistent with

some view v ∈ V . We now turn to a claim that helps us understand the relation between

positive and negative views for a set.

Claim 3.13 Let S be a set, v1 be a positive view for S, and v2 be a negative view for S,

then v1 and v2 are not consistent.

Proof: Assume towards contradiction that v1 and v2 are consistent. This means there exists

a string x they are both consistent with (by Definition 3.5). But then, by Definitions 3.11

and 3.12, we get x ∈ S and x /∈ S respectively, which is a blunt contradiction.

Fact 3.14 Let u be an n-view, and let v1 and v2 be n-views that are each consistent with u.

If v1 is not consistent with v2, then there exists a location i in dom(v1) ∩ dom(v2) and not

in dom(u).

Proof: Assume towards contradiction that dom(v1) ∩ dom(v2) ⊆ dom(u). As both v1 and

v2 are consistent with u, for each i in dom(v1) ∩ dom(v2), the equalities v1(i) = u(i) and

v2(i) = u(i) hold, and thus for every i in dom(v1) ∩ dom(v2) it holds that v1(i) = v2(i). But

then v1 and v2 are consistent (according to Fact 3.6), leading to a contradiction.

By combining Claim 3.13 and Fact 3.14, we get a key tool for the proof.

12

Proposition 3.15 Let S be a set, v1 be a positive n-view for S, and v0 be a negative n-view

for S. If v1 is consistent with some n-view u and v0 is also consistent with u, then there

exists a location i in dom(v1) ∩ dom(v0) and not in dom(u).

We now turn to showing a PLQ algorithm that decides sets in NPLQ∩coNPLQ. Such

an algorithm will establish Theorem 3.2.

Let the set S be in NPLQ∩coNPLQ. By Lemma 3.9 there exists a machine M1 that on

input n outputs a set of positive views for S, which we denote V1, such that every x of length

n in S is consistent with some view in V1. Likewise, by Corollary 3.10 there exists a machine

M0 that on input n outputs a set of negative views for S, which we denote V0, such that

every x of length n that is not in S is consistent with some view in V0. Note that the views

outputted by M0 and the views outputted by M1 are restricted by polylogarithmic functions

(which we denote t0 and t1 respectively). We construct a PLQ algorithm for deciding x ∈ S

that works as follows:

The algorithm begins by determining the length of x, using binary search, and initializes

two sets of views: V1 that holds the positive |x|-views for S computed using M1, and V0

that holds the negative |x|-views for S computed using M0. The algorithm also initializes

an (initially) empty view (that is, a view that is defined nowhere), denoting it vx. Next, the

algorithm repeats the following steps until the membership of x in S is decided:

1. If |V1| = 0 then return 0 (indicating x 6∈ S).

2. If vx extends a view v ∈ V0 (i.e., v and vx are consistent and dom(v) ⊆ dom(vx)) then

return 0.3

3. If |V0| = 0 return 1 (indicating x ∈ S).

4. If vx extends a view v ∈ V1 then return 1.

5. Select an arbitrary view v ∈ V0 and query all locations i ∈ dom(v). For each such i

update vx setting vx(i) = xi.
4

6. For all views v ∈ V0, if v is not consistent with vx then remove v from V0.

7. For all views v ∈ V1, if v is not consistent with vx then remove v from V1.

3Steps 2 and 4 are not really required, but help keep the analysis simple
4An alternative version of this algorithm would only query i /∈ dom(vx), and would alternate picking

v ∈ V0 and v ∈ V1. Such an algorithm would improve our query complexity by a factor of 2.

13

Let us first establish the algorithm’s correctness. If the algorithm returns 0 in Step 1 then

there are no positive views consistent with x in V1 (whereas only non consistent views were

dropped in Step 7), and thus by Lemma 3.9 x /∈ S. If the algorithm returns 0 in Step 2

then there is a view v ∈ V0 such that x is consistent with v. This is true because for all

l ∈ dom(v) it holds that v(l) = xl (see Definition 3.4). Thus, as v is a negative view, x /∈ S.

A similar analysis holds for the two possible cases where the algorithm returns 1.

We now calculate the algorithm’s query complexity, showing it to be in PLQ. Let the

positive views for S be restricted by a polylogarithmic function t1, and let the negative

views for S be restricted by a polylogarithmic function t0 (such bounds exist by Lemma 3.9

and Corollary 3.10 respectively). We denote by V i
0 the views in V0 at the end of the i’th

iteration, by V i
1 the views in V1 at the end of the i’th iteration, and by vi

x the view vx at the

end of the i’th iteration. We will show below that for every positive view v ∈ V i
1 it holds

that |dom(v)− dom(vi
x)| ≤ (t1(|x|)− i). When |dom(v)− dom(vi

x)| = 0 for all v ∈ V i
1 , either

|V i
1 | = 0 and we return 0 in the next round, or for all v ∈ V i

1 , it holds that vi
x is an extension

of v and we return 1. In the initialization phase we perform at most O(log(|x|) queries, and

in each iteration we perform at most t0 queries, so we get a total of t0t1 +O(log(|x|) queries.

As t0 and t1 are polylogarithmic functions we have a polylogarithmic query complexity.

It remains to show that for every view v ∈ V i
1 it holds that |dom(v)−dom(vi

x)| ≤ (t1(|x|)−i).

We will do this by induction.

Base case: i = 0. As the views are t1-restricted, the claim holds.

Induction: At the end of the i’th iteration, for every view v1 ∈ V i
1 it holds that |dom(v1)−

dom(vi
x)| ≤ (t1(|x|) − i). During the i+’th iteration, at Step 5 of the algorithm we select a

negative view v0 that is consistent with vi
x. By Proposition 3.15 v0 has at least one location l

in it’s domain that intersects with the domain of any v1 ∈ V i
1 and isn’t in dom(vi

x) . Location

l is added to dom(vi
x) and thus at the end of the i + 1’th iteration, for every v1 ∈ V i+1

1 it

holds that |dom(v1)− dom(vi+1
x)| ≤ (t− i− 1).

Note that our result does not depend on the polylogarithmic nature of t1 and t0. The

proof holds just as well for any values of of t1 and t0, giving us a bound of of log(|x|) + t1t0.

In addition, a non-uniform version of PLQ could decide sets in the intersection of the non-

uniform versions of NPLQ and coNPLQ.

Theorem 3.2 is similar to a result in communication complexity. The setting for two-

party communication complexity has two communicating parties, Alice and Bob, who are

both computationally unbounded [13]. Alice is given access to an input x ∈ X and Bob is

given access to an input y ∈ Y . Together they must compute f(x, y) by sending bits to each

14

other according to a well defined protocol. The deterministic communication complexity of

a function f is the number of bits that Alice and Bob transfer to each other in the process

of computing f . An easy way to think of nondeterminism in communication complexity

is in terms of verifiable proofs. If for every (x, y) ∈ S there is a proof of length N1 that

can be verified by both Alice and Bob for the membership of (x, y) in S, we consider N1

to be the nondeterministic computational complexity of deciding S. Likewise, if there is

a proof of non-membership of length N0, we consider N0 to be the co-nondeterministic

computational complexity of deciding S. In such a case there is a deterministic protocol for

deciding membership in S that requires the communication of O(N1N0) bits. This result, as

well as the algorithm for performing such a protocol, relies heavily on the computationally

unbounded nature of the communicating parties, and one cannot but be reminded of it when

seeing the result NPLQ ∩ coNPLQ = PLQ, and the quantitative version of it presented

in the proof.

4 Promise Problems and Complete Problems

Up to this point our discussion of polylogarithmic time computations has focused on decision

problems. However, we claim that a more natural setting for sublinear time algorithms is

that of promise problems (as defined below). In fact, the field of property testing [8, 15],

that deals exclusively with sublinear algorithms, generally does so in a promise-problem

setting. Furthermore, there are many algorithms that are actually sublinear algorithms that

solve promise problems, but are not generally conceptualized as such. Every time we use a

predefined data structure and perform a query running in sublinear time on that structure,

we’re essentially given a promise - that our data structure is well-shaped, and we perform

a sublinear time computation. A simple example of this is performing binary search on a

sorted list of tokens, to decide whether a token appears in the list. Given the promise that

we’re dealing with a sorted list, deciding whether a token is in it can be done by a PLT
machine. In contrast, when considering the analogous search problem without this promise,

the problem is in NPL and not in PLT (see the special case of Or discussed in claim 2.3).

Definition 4.1 (Promise problems ([7], see also [9])): A promise problem Π is a pair of

non-intersecting sets, denoted (ΠY ES, ΠNO); that is, ΠY ES ⊆ {0, 1}∗ and ΠY ES ∩ ΠNO = φ.

The set ΠY ES ∪ ΠNO is called the promise.

15

To summarize, promise problems provide a suitable framework for discussing polylog-

arithmic complexity classes (because they are the framework in which such computations

are most often used). When we investigate promise classes rather than standard decision

classes the full power of the different polylogarithmic-time computational models comes to

fore. While in Section 2 we were incapable of separating some of the complexity classes we

defined, their promise problem extensions are easily separable.

4.1 Complexity Classes for Promise Problems

It is natural to extend complexity classes to include promise problems that can be solved

using specific computational resources. Thus, if PLT is the class of sets decidable by ma-

chines that run in time bounded by a polylogarithmic function in the length of their input,

promise-PLT is the class of promise problems decidable using the same resources. Obvi-

ously, PLT is a subset of promise-PLT , where the sets in PLT are those sets that have a

trivial promise of {0, 1}∗. Likewise, we can define promise-NPL as follows.

Definition 4.2 (promise-NPL): promise-NPL is the class of promise problems Π =

{ΠY ES, ΠNO} that are decidable by a nondeterministic Turing Machine M running in poly-

logarithmic time, so that:

1. If x ∈ PiY ES then M(x) returns 1 along at least one nondeterministic path.

2. If x ∈ PiNO then M(x) returns 0 along all nondeterministic paths.

In the reminder of this text we will not repeat the definitions of complexity classes for each

promise problem version, but will simply use the prefix ”promise-” to denote the promise

versions of our complexity classes.

In previous sections we showed that NPL isn’t a subset of BPPL but failed to separate

BPPL from NPL, and more importantly, failed to separate BPPL from PLT . The sepa-

ration of the promise versions of these classes, however, is easy, and we can in fact show that

promise-BPPL 6⊆ promise-NPL (and thus clearly promise-BPPL 6⊆ promise-PLT).

Theorem 4.3 promise-BPPL 6⊂ promise-NPL

While the following proof tells us that promise-BPPL isn’t a subset of promise-NPL,

note that a similar proof holds for the computationally unbounded case.

16

Proof: We will consider the following promise problem version of majority, which we call

strong majority. ΠY es is the set of strings that have at least a 2
3

of their bits with the value

1, and ΠNo is the set of strings that have at most a 1
3

of their bits with the value 1. This

promise problem is decidable by a BPPL machine that chooses a location in its input at

random and returns the value of the bit in that location. However, it is not decidable by

any NPL machine. Assume towards a contradiction that such an NPL machine M exists,

and consider M ’s operation on the string x = 1n. M must obviously accept x along at

least one nondeterministic computational path w. Along this path M would inspect at most

a polylogarithmic number of bits in some locations l1, . . . , lm, all having the value 1. Now

consider the string with 1’s in locations l1, ..., lm, and 0 in all other locations. M must clearly

accept such a string, yet it is in ΠNo.

If two decision problem complexity classes are separate, their promise versions are sep-

arate too. The fact that two decision problem complexity classes are equal, however, does

not mean that their promise versions are equal. A concrete example follows. Recall that

we proved that PLQ equals NPLQ ∩ coNPLQ (see theorem 3.2). We now prove that

promise-PLQ does not equal the intersection of promise-NPLQ and promise-coNPLQ.

To do this we introduce what we call ”the missing cat problem”. Assume you lost your

cat, and wish to decide whether it is in the southern hemisphere or the northern hemisphere

of the earth. The claim that the cat is in the northern hemisphere can easily be validated if

someone shows you the cat in Quebec, and can likewise be easily refuted if someone shows

you the cat in New-Zealand. However, no reasonable amount of careful deliberation and

searching will lead you to the location of the cat (assuming that the cat is, naturally, as

likely to be in Northern America as it is to be in Oceania). In a similar manner, assume you

are given a string x that includes only a single bit of value 1. Deciding whether this bit is

in the first half of the string is not possible using PLQ resources. However, the claim that

the bit is in the first half (respectively, the second half) of the string can easily be validated

by being given a pointer to the bit.

Theorem 4.4 promise-PLQ 6= promise-NPLQ ∩ promise-coNPLQ

Proof: We will show the inequality using ”the missing cat problem”. Our promise set is

0∗10∗ and members of ΠY es are strings where the 1 (a.k.a. ”the missing cat”) is in the first

b |x|
2
c bits. The problem is in promise-NPLQ (choose i ∈ [1, b |x|

2
c] nondeterministically,

and return the i’th bit), and is in promise-coNPLQ (choose i ∈ [b |x|
2
c + 1, |x|] nondeter-

ministically, and return the complement of the i’th bit). However, the problem is not in

17

promise-PLQ for the same needle-in-a-haystack argument that shows Or is not in PLQ:

Assume towards contradiction that a certain PLQ machine M decides the problem. Given

a string with the 1 value in the first half of the input, M must query certain bits in locations

l1, ...lm. All these bits may be 0’s, and M must return 1. Now given a different string, where

the bits in locations l1, ...lm are 0’s but the 1 bit is in the second half of the string, M must

again return 1, thus failing to decide Π.

Note that the argument above does not use the computationally unbounded nature of

the machines. Thus, the same promise problem allows us to state the following theorem:

Theorem 4.5 promise-PLT 6= promise-NPL ∩ promise-coNPL

While problems involving missing cats do not generally motivate any research in com-

putational complexity5, ”the missing cat problem” was not introduced merely to amuse the

reader. In many cases actions taken in the macroscopic world are aimed at deciding a ques-

tion, e.g., ”Is Mr. X alive or dead”? Without the assumption that there is only one copy of

Mr. X, this question could not be answered unambiguously. Indeed, by (analogy to) Theo-

rem 3.2, for any question that a court of law could decide using evidence presented to it, it

would not require any evidence from the concrete world that it could not itself collect, after

careful deliberation. In general, we wish to stress that computational problems involving the

macroscopic world are often sublinear problems with a promise.

4.2 PLT Reductions and Complete Problems

A complete problem may offer a way to better understand a complexity class. By seeing

a canonical type of problem for a class, we gain insight into what computational resources

are required to solve problems in that class. Of course, the type of reduction under which

a problem is complete is essential, and should conceptually cover basic computational re-

sources, where the meaning of ”basic” may vary according to the settings. When we say

SAT is NP-complete under P reductions, we’re considering polynomial time computations

to be a basic resource, and stating that the ”added ability” to solve SAT allows us to solve

any problem in NP . In the context of polylogarithmic-time complexity classes, the basic

resources available are PLT computations.

PLT reductions have a technical difficulty that is not shared by the standard types

of reductions. A PLT algorithm doesn’t have sufficient time to read all of its input and

5To the best of our knowledge. The case is different with physics [16].

18

transform it, or even to copy it, and thus cannot present a reduced instance in an explicit

manner. Thus, we use in our definition of PLT reductions an implicit representation of

the reduced instance given the original input: The reduction is a PLT machine that, given

oracle access to the original input and an index of a bit in the reduced instance, returns the

value of that bit.

Following the notational convention used in this work of denoting the i’th bit of the

string x as xi, we denote the i’th bit of the reduced instance of a string x created by the use

of a PLT machine M as Mx
i . Thus, the reduced version of a string x will be of the form

Mx
1 Mx

2 ...Mx
T . In an attempt to retain a standard mode of operation for our PLT machines,

we assume the machine that is used for the reduction is given oracle access to the number

of the required bit, concatenated to the original input, and returns the value of that bit.

Therefore Mx
i is the output of M i◦x6.

Definition 4.6 (PLT reductions): A promise problem Π is said to be PLT -reducible to a

promise problem Π′ if there exist a PLT machine M and a polylogarithmic function t, such

that the following hold:

1. If x is a member of ΠY es then Mx
1 ...Mx

2t(|x|) is a member of Π′
Y es

2. If x is a member of ΠNo then Mx
1 ...Mx

2t(|x|) is a member of Π′
No

We claim that PLT reductions as defined here capture the correct notion of a reduction

in the polylogarithmic settings.

Proposition 4.7 Any promise problem S that is PLT -reducible to a promise-PLT promise

problem T is in promise-PLT .

Proof: Let MT be the PLT machine deciding T , let M be the PLT machine used in the

reduction, and let r be the polylogarithmic function from the reduction. We denote by m

and t the polylogarithmic running times of M and MT respectfully. We construct the PLT
machine MS that decides S as follows: MS emulates MT on the string Mx

1 ...Mx
2r(|x|) in the

straight-forward way (using M to compute the results of any query to bits of the string).

That is, if MT queries the i’th bit of the reduced instance, it is given Mx
i .

6A critical reader may object to this model, claiming that we have no way of appending bits to an oracle-

access string. Even if we cannot do this the model is conceptually robust, as we can easily emulate M i◦x

given access to M and i, and oracle access to x

19

The running time of MS is a polylogarithmic function of the length of the reduced in-

stance. As this length is 2r(|x|), and r is a polylogarithmic function in the length of x, the

total running time is also polylogarithmic in the length of x.

While PLT reductions may initially seem very different from their polynomial-time coun-

terparts, we note that many polynomial-time reductions in the literature are actually PLT
reductions. In particular, the classic reduction of any NP problem to k − SAT (for a fixed

k) is a PLT reduction (see, for instance, the version of this reduction presented by Garey

and Johnson [10]). We will use this fact later, in Section 5.

Using PLT reductions we can now give complete problems that capture the essence of the

different polylogarithmic time complexity classes. We begin by showing that Or is complete

for promise-NPL problems. In this reduction, if M ′ is a machine that nondeterministically

decides a promise problem, we reduce the input x to a string that is a kind of ”truth table”

for the different nondeterministic choices that can be made by M ′(x). Obviously, if x is a

Y ES instance of the promise problem decided by M ′, then such a truth table includes at

least a single 1, and thus the reduced instance is in Or.

Theorem 4.8 Or is complete for promise-NPL

Proof: We already know that Or is in NPL (and thus in promise-NPL), so it remains

to show that every promise problem Π in promise-NPL is reducible to Or. Let M ′ be

the nondeterministic machine deciding Π, and let t be a polylogarithmic function bounding

its running time. We construct the following PLT reduction, denoted M . M reduces

an input x to a string of length 2t(x), where the w’th bit of the reduced instance is the

emulation of M ′(x) where the nondeterministic choices of M ′ are made according to w. As

M ′ decides Π nondeterministically, if x is a member of ΠY es then M ′ accepts along at least

one nondeterministic path w. Mx
w will thus have the value 1, and Mx

1 ...Mx
2t(|x|) is thus a

member of Or. The converse also holds - if x is a member of ΠNo then M ′ does not accept

it along any nondeterministic path, and thus Mx
1 ...Mx

2t(|x|) = 02t(|x|)
and is not a member of

Or.

Note that in the previous case, while Or is complete for a set of promise problems, Or itself

is a ”regular” set, only having the trivial promise, that all input is in {0, 1}∗. In a similar

manner to Theorem 4.8, we can show that And (the set 1∗) is complete for promise-coNPL.

Theorem 4.9 And is complete for promise-coNPL

In the following theorem we show that strong majority, a promise problem with a non-

trivial promise, is complete for promise-BPPL. The problem (as well as the short proof)

20

are analogous to a promise problem that is complete for BPP . As in the case of a complete

problem for promise-NPL our reduction of an input string x is also to a type of ”truth ta-

ble” of the deciding machine M ′(x). Here the truth table is not of nondeterministic choices,

however, but of coin tosses.

Theorem 4.10 promise-BPPL has a complete problem

Proof: Recall that the promise problem strong majority, which was used previously in

proving Theorem 4.3 is defined as follows: ΠY es is the set of strings that have at least 2
3

of their bits with value 1, and ΠNo is the set of strings that have at most 1
3

of their bits

with value 1. We’ve already shown that strong majority is in promise-BPPL, so it remains

to show that any problem in promise-BPPL can be reduced to it. Let M ′ be the BPPL
machine deciding a promise problem Π′, and let t be the polylogarithmic function that limits

the running time of M ′. We construct a PLT reduction denoted M that transforms an input

x to a string of length 2t(x). The i’th bit of the reduced string is the emulation of M ′(x)

where the coin tosses of M ′ are determined according to i. If x is in Π′
Y es then M ′ accepts

with probability of at least 2
3

over its coin tosses, and thus Mx
1 ...Mx

2t(|x|)
has at least a 2

3

fractions of its bits as 1, and Mx
1 ...Mx

2t(|x|) is in ΠY es. Similarly, if x is in Π′
No then M ′ rejects

with probability of at least 2
3

over its coin tosses, and thus Mx
1 ...Mx

2t(|x|) has at most a 1
3

of

its bits set to 1 and is in ΠNo.

Finally, after showing complete problems for promise-NPL, promise-coNPL and promise-

BPPL, we show a complete promise problem for promise-NPL ∩ promise-coNPL. In the

previous complete problems, we used a type of reduction of the input x to a ”truth table”.

In the case of the complete problem for promise-NPL we had a specific type of machine (a

nondeterministic machine running in polylogarithmic time) that was used in the definition of

the class, and we showed that the ”truth table” for any such machine on an accepting input

always has a specific form. A similar method was used for promise-BPPL, where the class is

defined by probabilistic machines. However, in the case of promise-NPL∩promise-coNPL
our complexity class was not defined by a single type of machine, and thus this technique

doesn’t work directly. Instead, we adapt it by simply using two ”truth tables” as our re-

duced instance. If M1 is the nondeterministic machine deciding a promise problem, and M0

the co-nondeterministic machine deciding it, we use as a reduced instance the concatenated

”truth tables” for the nondeterministic choices made by M1(x) and those made by M0(x) to

get a complete problem.

Theorem 4.11 promise-NPL ∩ promise-coNPL has a complete problem

21

Proof: We define the promise problem Π as follows: ΠY es is the set of strings that have at

least one bit set to 1 in the first half of the bits, and no bit set to 1 in the second half, while

ΠNo is the set of strings that have at least one bit set to 1 in the second half of the bits, and

no bit set to 1 in the first half7. Let Π′ be a promise problem in promise-NPL ∩ promise-

coNPL, let M1 and M0 be the nondeterministic and co-nondeterministic machines deciding

Π′ respectively, and let t be a polylogarithmic function bounding both the running time

of M1 and of M0. We construct the following PLT reduction, which we denote M . M

reduces an input x to a string of length 2t(x)+1. The w’th bit of the first half of the reduced

instance is given by emulating Mx
1 along the nondeterministic path w. In a similar manner,

the w’th bit of the second half of the reduced instance is given by emulating Mx
0 along the

nondeterministic path w, and taking the complement of the result.

Obviously, if x is a member of Π′
Y es then M0(x) returns 1 along every computation path

and thus all the bits in the second half of the reduced instance (Mx
1 ...Mx

2t(|x|)+1) will be set to

0. For such an x at least one computation path of M1(x) will return 1 and thus the first half

of the reduced instance will include at least a single 1. A similar analysis holds for the case

where x is a member of Π′
No. Π is in promise-NPL∩ promise-coNPL as a promise-NPL

machine can decide it by choosing nondeterministically a bit from the first half of the input

and returning it, and is in promise-coNPL as the machine can choose nondeterministically

a bit from the second half of the input and return its complement.

5 Polylogarithmic Heirarchies

In this section we present two alternative definitions for polylogarithmic-time hierarchies,

that is, polylogarithmic-time analogues of PH. Studying their properties, we shall show

that both hierarchies are natural extensions of NPL computations. However, while one

definition leads us to a class that (like NPL) does not include even the set Parity, the

other definition leads us to a class that is equal to PH.

In the previous section we extended our treatment of complexity classes to include promise

problems. In this section, however, we return to studying classic decision problems. The

first hierarchy we define is based on expressions that have a number of quantified bits that

is polylogarithmic in the length of the input.

Definition 5.1 (the class Σpl
k): For a natural number k, a set S ⊆ {0, 1}∗ is in Σpl

k if there

7rounding issues are uninteresting

22

exists a polylogarithmic function p and a PLT algorithm V such that x ∈ S if and only if

∃y1 ∈ {0, 1}p(|x|)∀y2 ∈ {0, 1}p(|x|) · · ·Qkyk ∈ {0, 1}p(|x|)V (x, y1, ..., yk) = 1

where Qi is an existential quantifier if i is odd and is a universal quantifier otherwise.

Definition 5.2 (the class Πpl
k): A set is in Πpl

k if it is the complement of a set in Σpl
k .

Definition 5.3 (Polylogarithmically Limited Polylogarithmic Hierarchy): We denote by PLH
the union over all natural k’s of the classes Σpl

k .

A different natural polylogarithmic-time hierarchy can be defined by using expressions

that have a number of quantified bits that is polynomial in the length of the input.

Definition 5.4 (the class polyΣpl
k): For a natural number k, a set S ⊆ {0, 1}∗ is in polyΣpl

k

if there exists a polynomial function p and a PLT algorithm V such that x ∈ S if and only

if

∃y1 ∈ {0, 1}p(|x|)∀y2 ∈ {0, 1}p(|x|) · · ·Qkyk ∈ {0, 1}p(|x|)V (x, y1, ..., yk) = 1

where Qi is an existential quantifier if i is odd and is a universal quantifier otherwise.

Definition 5.5 (the class polyΠpl
k): A set is in polyΠpl

k if it is the complement of a set in

polyΣpl
k .

Definition 5.6 (Polynomially Limited Polylogarithmic Hierarchy): We denote by polyPLH
the union over all natural k’s of the classes polyΣpl

k .

Like in the case of the polynomial-time hierarchy, we note that each level of the polylogarithmic-

time hierarchies can be defined recursively, based on the complement of the previous level.

Proposition 5.7 For every k ≥ 0, a set S is in Σpl
k+1 (respectively, in polyΣpl

k+1) if and only

if there exists a polylogarithmic function (respectively, a polynomial) p and a set S ′ ∈ Πpl
k

(respectively, in polyΠpl
k) such that S = {x : ∃y ∈ {0, 1}p(|x|)(x, y) ∈ S ′}.

The proof of Proposition 5.7 is straightforward and very much like the similar proof for

the recursive definition of PH. The only difference is that some technical difficulties arise

due to the fact that Definitions 5.1 and 5.4 have a fixed length for the strings of quantified

bits, but these are easily solvable.

23

5.1 polyΣpl
1 = Σpl

1 = NPL

Obviously, both polyΣpl
0 and Σpl

0 equal PLT . We now show that polyΣpl
1 and Σpl

1 both equal

NPL. Thus both hierarchies are natural extensions of the notion of nondeterminism in the

polylogarithmic setting.

Proposition 5.8 Σpl
1 = NPL

Proof: Let S be a set in Σpl
1 , where x ∈ S if and only if ∃y ∈ {0, 1}p(|x|)V (x, y) = 1, where p

is a polylogarithmic function and V is a PLT machine. S is decidable by an NPL machine

M that chooses nondeterministically a string y′ = {0, 1}p(|x|) and emulates V (x, y′). In the

other direction, If S is decidable by an NPL machine M that runs in time bounded by a

polylogarithmic function p, then x ∈ S if and only if ∃y ∈ {0, 1}p(|x|)V (x, y) = 1, where V

is a machine emulating M(x), using the bits of y to decide what nondeterministic path M

takes.

Proposition 5.9 Σpl
1 = polyΣpl

1

Proof: The fact that Σpl
1 ⊆ polyΣpl

1 is not, as it may seem, syntactically true. This is due

to the fact that in Definition 5.4 we defined polyΣpl to have fixed polynomial lengths for the

quantified strings. To show that Σpl
1 ⊆ polyΣpl

1 we note that the PLT machine in a polyΣpl
1

expression can be designed to read only a polylogarithmic number of bits from the beginning

of the quantified string y. It now remains to show that polyΣpl
1 ⊆ Σpl

1 .

Let S ∈ polyΣpl
1 be a set such that x ∈ S if and only if ∃y ∈ {0, 1}p(|x|)V (x, y) = 1, where

p is a polynomial and V is a PLT machine, and let t be the polylogarithmic function of the

length of x bounding V ’s running time. V cannot, of course, read all the bits of y. One can

consider the queries made by V (x, y) to different bits of y and the results given to it as a

series of pairs of the form (l, σ), where l is the location in y queried by V (x, y), and σ is the

bit yl. Such a series (l1, σ1) . . . (lt(|x|), σt(|x|)), where li ∈ {0, 1}log(p(|x|)) and σi ∈ {0, 1}, that

leads to V (x, y) = 1, exists if and only if x ∈ S.

To prove that S is in Σpl
1 , we construct a PLT machine V ′ such that x ∈ S if and

only if ∃y′ ∈ {0, 1}t(|x|)(log(p(|x|))+1)V ′(x, y′) = 1. V ′ will emulate V , reading y′ as a series of

t(|x|) pairs of the form (l1, σ1) . . . (lt(|x|), σt(|x|)), where li ∈ {0, 1}log(p(|x|)) and σi ∈ {0, 1}. V ′

emulates V as follows: When V queries the l′th bit of x, V ′ returns xl as the result of the

query. On the i’th time that V queries y (at location l), V ′ checks whether l = li. If it does,

V ′ returns σi to V as yl. Otherwise, V ′ stops the emulation and returns 0. Finally, when

the emulated V halts, V ′ returns the result returned by V .

24

As we stated previously, a series of the form (l1, σ1) . . . (lt(|x|), σt(|x|)) that leads to V (x, y) =

1 exists if and only if x ∈ S. In fact, we must state (without loss of generality) that V never

queries the same location in its input twice. This is essential so that a series that includes

the pairs (l, 0) and (l, 1) will not lead to an emulation of V . Thus, x ∈ S if and only if

∃y′ ∈ {0, 1}t(|x|)(log(p(|x|))+1)V ′(x, y′) = 1.

By combining Propositions 5.8 and 5.9 we get the following theorem:

Theorem 5.10 polyΣpl
1 = Σpl

1 = NPL

5.2 Parity is not in PLH

To see something of the power of PLH (or, in fact, to see something of its lack of power)

we show that Parity is not in PLH. We begin by showing that each set in PLH can be

decided by a family of constant depth unbounded fan-in circuits of quasi-polynomial size.

Once this has been established we invoke H̊astad’s bound on the size of circuits that decide

Parity [11], and are done.

Proposition 5.11 Let S be in Σpl
m. S is decidable by a family of constant depth circuits of

depth m + 1 and of size 2O(t(n)), where t is a polylogarithmic function.

Proof: We prove the Proposition by induction. We begin by showing that any set in Σpl
1

can be decided by a family of depth 2 unbounded fan-in circuits. A similar claim holds for

Πpl
1 , but we do not repeat the argument. As the induction step we assume that any set in

Πpl
m can be decided by a family of circuits of depth m + 1 and of quasi-polynomial size, and

construct a family of circuits to decide any set in Σpl
m+1 using the circuits that decide sets in

Πpl
m. Here, too, the induction step holds for Πpl, and the argument is not repeated.

The base case statement is that every set in Σpl
1 can be decided by a family of unbounded

fan-in circuits of depth 2 and of quasi-polynomial size:

Recall that any set in Σpl
1 can be decided by an NPL machine M . By Lemma 3.9, and

by the fact that NPL ⊂ NPLQ (by Definition 2.10), for any set S in NPL and for any

length n, there is a set VS of t(n)-restricted positive views for S, where t is a polylogarithmic

function. Every x ∈ {0, 1}n is a member of S if and only if it is consistent with some view

in VS.

Note that a simple And with fan-in t(n) can decide whether the input is consistent with

a particular view v ∈ VS. This holds because the consistency of a string x with a t-restricted

view v can be checked by comparing the value of t(|x|) bits in x to the t(|x|) predetermined

25

values of v, which means a conjunction of t(|x|) bit equalities. We denote the And gate

corresponding to vi ∈ VS as Andi. Using a simple counting argument there are at most

2log(n)t(n) positive views in VS. The circuit deciding instances of S of length n is of the form∨
i Andi. Note that a similar construction holds for Πpl

1 (by replacing And’s with Or’s and

vice-versa).

We now prove the induction step. Let S be a set in Σpl
m+1. By Proposition 5.7 there

exists a set S ′ in Πpl
m and a polylogarithmic function p so that x is a member of S if and

only if ∃y ∈ {0, 1}p(|x|)(x, y) ∈ S ′. We create a circuit deciding S by constructing 2p(|x|)

circuits, each deciding S ′ for a different hard-wired value of y ∈ {0, 1}p(|x|), and connecting

their outputs using an Or gate. As each of the circuits deciding S ′ has (by induction) depth

m + 1 and size 2O(t(n)) (for some polylogarithmic function t), the resulting circuit for length

n has depth m + 2 and size 2O(t(n))2p(n) + 1. As both t and p are polylogarithmic functions,

assume without loss of generality that t(n) > p(n) and we have for any set in Σpl
m+1 a family

of circuits of size 2O(t(n)) and depth m + 2 deciding it.

Theorem 5.12 (H̊astad [11]): Depth k circuits that compute parity require size 2c(n
1

k−1) for

some positive constant c

Now given Proposition 5.11 and Theorem 5.12, we get:

Theorem 5.13 Parity is not in PLH

5.3 polyPLH = PH

In contrast to PLH, which we showed not to include Parity, and despite the fact that Σpl
1

equals polyΣpl
1 , the class polyPLH equals PH. We begin by proving that k-SAT ∈ polyΣpl

2 .

In polynomial-time settings this would be enough to convince us that NP ⊆ polyΣpl
2 , but in

the polylogarithmic-time setting we shall need to refer to the fact that the reduction of any

NP set to SAT is a PLT reduction.

Proposition 5.14 k-SAT ∈ polyΣpl
2

Proof: Consider the following PLT machine V ′. V ′ gets as input a triplet of strings (x, z, i),

where x is a k-SAT formula with m clauses over n variables, z ∈ {0, 1}n and i ∈ {0, 1}log(m).

V ′ returns 1 if and only if the i’th clause of x is satisfied by the assignment z. To do this,

V ′ reads all the bits of i, then reads the i’th clause in the formula x and finally reads the

26

relevant bits in the assignment z, verifying that the clause is satisfied. Note that the sizes

of x and z are related by a polynomial, and that i is polylogarithmic in the length of x.

Still, using V ′ it is easy to construct a machine V that reads only the relevant bits of z and

i so that ∃z ∈ {0, 1}p(|x|)∀i ∈ {0, 1}p(|x|)V (x, z, i) = 1 if and only if x is a satisfiable k-SAT

formula.

We now turn to prove the following:

Proposition 5.15 NP ⊆ polyΣpl
2

Proof: We begin by noting that any NP set is PLT -reducible to k-SAT for some constant

k ≥ 3, as mentioned in Section 4. Not only is such a reduction possible, but the reduced

instance is of size polynomial in the length of the original instance (which is not generally

required of PLT reductions).

For any set S ∈ NP we show that S ∈ polyΣpl
2 as follows. Let M be the machine reducing

instances x of a set S to k-SAT formulas of length r(|x|), where r is a polynomial. Let V ′ be

a PLT machine such that if and only if x is a satisfiable k-SAT formula

∃z ∈ {0, 1}p(|x|)∀i ∈ {0, 1}p(|x|)V ′(x, z, i) = 1

We construct the following machine V such that if and only if x is in S

∃z ∈ {0, 1}p(r(|x|))∀i ∈ {0, 1}p(r(|x|))V (x, z, i) = 1

On input (x, z, i) V emulates the operation of V ′ on (Mx
1 . . . Mx

log(r(|x|)), z, i). This means

that V is emulating V ′ on the input Mx
1 . . . Mx

log(r(|x|)) obtained by the reduction applied

to x; that is, every query made by V ′ is answered by V after a polylogarithmic number

of computational steps and a polylogarithmic number of queries to x. As p and r are

polynomials, so is their composition, and thus S is in S ∈ polyΣpl
2 .

From here, the following theorem follows easily.

Theorem 5.16 polyPLH Equals PH

Proof: Clearly, polyPLH ⊆ PH. We show that PH ⊆ polyPLH by induction on the

levels of the hierarchies, showing that Σm ⊆ polyΣpl
m+1. The same holds for Πm but we do

not repeat the proof (although we use this fact in the induction step).

As the base case we note that Σ1 ⊆ polyΣpl
2 (by Proposition 5.15). The induction step

is as follows: Let S be a set in Σm+1. This means that there exists a set S ′ in Πm and a

27

polynomial function p so that x ∈ S if and only if ∃yp(|x|)(x, y) ∈ S ′. As Πm ⊆ polyΠpl
m+1

it holds that S ′ ∈ polyΠpl
m+1. By proposition 5.7 it follows that S ∈ polyΣpl

m+2. Thus

Σm+1 ⊆ polyΣpl
m+2, and therefore polyPLH = PH.

Acknowledgments

I wish to thank my advisor Oded Goldreich. Oded’s classes sparked my interest in theoretical

computer science, and without his kind help and extreme patience this thesis would never

have come to be. Our meetings were made pleasurable by Oded’s good sense of humor and

his tendency not to throw heavy items in my general direction.

I would also like to thank Ran Raz, for pointing out to me work done in the past that was

similar to my own, and to thank my friends Kfir Barhum and Shai Machness for listening to

my endless theories and wild conjectures. A special thanks is due to my wife, Avital Sasson,

who tolerates my pseudo-academic lifestyle. The ”missing cat” problem is in memory of our

cat Lola, who was lost during the writing of this thesis.

28

References

[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca and R. de Wolf. Quantom Lower

Bounds by Polynomials In FOCS’98, pages 352–361, 1998.

[2] T. Baker, J. Gill and R. Solovay. Relativizatons of the P =? NP Question. In

SICOMP, Vol. 4, No. 4, 1975, pages 431-442.

[3] M. Blum and R. Impagliazzo. Generic Oracles and Oracle Classes In FOCS’87,

pages 118–126, 1987.

[4] H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree Complexity:

A Survey In Theoretical Computer Science 288(1), pages 21–43, 2002.

[5] B. Chazelle. Property Testing, in Data-Powered Computing [a bibliography]

http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib.html

[6] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Hastad, D. Ranjan, and P. Ro-

hatgi. The random oracle hypothesis is false. In Journal of Computer and System

Sciences, Vol. 49(1), pages 24–39, 1994.

[7] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with

Applications to Public-Key Cryptography. In Inform. and Control, Vol. 61, pages

159–173, 1984.

[8] E. Fischer. The art of uninformed decisions: A primer to property testing. In

Bulletin of the European Association for Theoretical Computer Science, Vol. 75,

pages 97–126, 2001.

[9] O. Goldreich. On Promise Problems – A Survey In Theoretical Computer Science:

Essays in Memory of Shimon Even, Festschrift series of Springer’s LNCS (as Vol

3895), pages 254–290, March 2006.

[10] M. Garey and D. Johnson. Computers and Intractibility, A Guide to the Theory of

NP-Completeness W.H. Freeman, New York, 1979

[11] J. H̊astad. Computational Limitations for Small-Depth Circuits MIT Press, Cam-

bridge, Ma., 1986

29

[12] R. Impagliazzo and M. Naor. Decision Trees and Downward Closure In Structure

in Complexity Conference, pages 29–38, 1988.

[13] E. Kushilevitz and N. Nisan. Communication Complexity Cambridge University

Press , Cambridge, 1997.

[14] L. Lovász, M. Naor, I. Newman and A. Wigderson. Search Problems in the Decision

Tree Model In FOCS’91, pages 576–585, 1991.

[15] D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597–

649, 2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)

[16] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik In Naturwis-

senschaften Vol. 23, pages 807–812; 823-828; 844-849, 1935.

[17] A. Shamir. IP=PSPACE In FOCS’90, pages 11–15, 1990.

[18] G. Tardos. Query Complexity or Why is it Difficult to Seperate NPA ∩ coNPA

from PA by Random Oracles. In Combinatorica, 9(4), pages 385–392, 1989.

30

