
Foundations of Cryptographyan Additional Fragment (Nr. 1)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.February 9, 1996



1PrefaceThis fragment contains the the section on non-interactive zero-knowledge which was missing fromthe chapter on zero-knowledge in my 1995 fragments of a book on Foundation of Cryptography.With this section completed, these fragments now contain a �rst draft for three major chaptersand an introduction chapter. The three chapters are the chapters on computational di�culty (orone-way functions), pseudorandom generators and zero-knowledge. Unfortunately, I am forcedto repeat my warning from the 1995 fragments:None of these chapters has been carefully proof-read and I expect them to be fullof various mistakes ranging from spelling and grammatical mistakes to minor tech-nical inaccuracies. I hope and believe that they are no fatal mistakes, but I cannotguarantee this either.To further augment the current section I enclose at its end some bibliographical notes taken fromthe revised concluding section for the Chaper on Zero-Knowledge (i.e., Section 6.12).

c
1996 Copyright by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use is grantedwithout fee provided that copies are not made or distributed for pro�t or commercial advantageand that new copies bear this notice and the full citation on the �rst page. Abstracting withcredit is permitted.



26.10 * Non-Interactive Zero-Knowledge ProofsIn this section we consider `non-interactive' zero-knowledge proof systems. Actually, the termnon-interactive is somewhat misleading. Indeed, in the model which we will discuss the interactionbetween the prover and the veri�er is minimal; it consists of the prover sending a single messageto the veri�er (as in the case of an NP-proof). Yet, both the prover and the veri�er have accessto a (trusted) random string, which can be thought of as a restricted trusted third party. Non-interactive zero-knowledge proof systems have various applications (e.g., to Encryption Schemessecure against Chosen Message Attacks and to Signature Schemes).We start with basic de�nitions and constructions allowing to prove a single assertion of a-priori bounded length. Next we extend the treatment to proof systems in which many assertionsof various lengths can be proven, as long as the total length of all assertions is a polynomial ina security parameter but the polynomial is not a-priori known. Jumping ahead, we note that,unlike the basic treatment, the extended treatment allows to prove assertions of total length muchbigger than the length of the trusted random string. The relation between the total length ofthe provable assertions and the length of the trusted random string is analogous to the relationbetween the total length of messages that can be encrypted (resp., documents that can be signed)and the length of the encryption-key (resp., signing-key). We stress, however, that even handlingthe basic case is very challenging in the case of non-interactive zero-knowledge proofs.6.10.1 Basic De�nitionsIn the setting of non-interactive proof systems, both the prover and veri�er are ordinary proba-bilistic machines which, in addition to the common-input, also get a common random-string. Westress that both the prover and veri�er may toss coins and get auxiliary inputs, in addition to theabove common input and random-string. However, for sake of simplicity we present a de�nitionfor the case in which none of these machines gets an auxiliary input. The veri�er also gets asinput the output produced by the prover.De�nition 1 (non-interactive proof system): A pair of probabilistic machines, (P; V ), is calleda non-interactive proof system for a language L if V is polynomial-time and the following twoconditions hold� Completeness: For every x 2 LProb (V (x;R; P (x;R))=1)� 23where R is a random variable uniformly distributed in f0; 1gpoly(jxj).� Soundness: For every x 62 L and every machine B,Prob (V (x;R;B(x;R))=1)� 13where R is a random variable uniformly distributed in f0; 1gpoly(jxj).



6.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 3The uniformly chosen string R is called the common random-string.As usual, the error probability in both conditions can be reduced (from 13) up to 2�poly(jxj), byrepeating the \protocol" su�ciently many times (using a sequence of many independently chosenrandom-strings). In stating the soundness condition, we have deviated from common formulationswhich allows x 62 L to be selected after R. Namely, in many sources the soundness condition isstated asfor every n and every pair of functions � : f0; 1gpoly(n) 7! (f0; 1gn � L) and � :f0; 1gpoly(n) 7!f0; 1gpoly(n) Prob (V (�(R); R; �(R))=1)� 13where R is a random variable uniformly distributed in f0; 1gpoly(n).Clearly, the two formulations are equivalent; starting from the weaker soundness condition, onemay �rst reduce the soundness error to 13 �2�n (by repetitions), and next apply a standard countingargument. Every language in NP has a non-interactive proof system (in which no randomnessis used). However, this NP-proof system is unlikely to be zero-knowledge.The de�nition of zero-knowledge for the non-interactive model gets simpli�ed since we need onlyconsider one veri�er. Actually, we can avoid considering the veri�er at all.De�nition 2 (non-interactive zero-knowledge): A non-interactive proof system, (P; V ), for alanguage L is zero-knowledge if there exists a probabilistic polynomial-time algorithm M suchthat the ensembles f(x;Rjxj; P (x;Rjxj))gx2L and fM(x)gx2L are computationally indistinguish-able, where Rn is a random variable uniformly distributed in f0; 1gpoly(n).6.10.2 ConstructionsA �ctitious abstraction which is nevertheless very helpful for constructing non-interactive zero-knowledge proof systems is the hidden bits model. In this model the common random-string isuniformly selected as before, but only the prover can see all of it. The `proof' he sends the veri�erconsists of two parts; a `certi�cate' and the speci�cation of some bit positions in the commonrandom-string. The veri�er may only inspect the bits of the common random-string residing inthe locations which have been speci�ed by the prover. Certainly, in addition, the veri�er inspectsthe common input and the `certi�cate'.De�nition 3 (proof systems in the Hidden Bits Model): A pair of probabilistic machines, (P; V ),is called a hidden-bits proof system for L if V is polynomial-time and the following two conditionshold



4 � Completeness: For every x 2 LProb (V (x;RI; I; �)=1)� 23where (I; �) def= P (x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) andRI is the sequence of bits at positions I � f1; 2; :::;poly(jxj)g. That is, RI = ri1 � � �rit,where R = r1 � � �rt and I = (i1; :::; it).� Soundness: For every x 62 L and every machine B,Prob (V (x;RI; I; �)=1)� 13where (I; �) def= B(x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) andRI is the sequence of bits at positions I � f1; 2; :::;poly(jxj)g.In both cases, I is called the set of revealed bits and � is called the certi�cate. Zero-knowledgeis de�ned as before, with the exception that we need to simulate (x;RI; P (x;R)) rather than(x;R; P (x;R)), where (I; �) = P (x;R).As hinted above, we do not suggest the Hidden-Bits Model as a realistic model. The importanceof the model stems from two facts. Firstly, it is a `clean' model which facilitates the design ofproof systems (in it), and secondly that proof systems in the Hidden-Bits Model can be easilytransformed into non-interactive proof systems (i.e., the realistic model). The transformationfollows.Construction 4 (from Hidden Bits proof systems to non-interactive ones): Let (P; V ) be ahidden-bits proof system for L, f : f0; 1g� 7! f0; 1g� and b : f0; 1g� 7! f0; 1g. Furthermore, letm = poly(n) denote the length of the common random-string for common inputs of length nand suppose that f is 1-1 and length preserving. Following is a speci�cation of a non-interactivesystem, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Common Random-String: s = (s1; :::; sm), where each si is in f0; 1gn.� Prover (denoted P 0):{ computes ri = b(f�1(si)), for i = 1; 2; :::;m.{ invokes P to get (I; �) = P (x; r1 � � �rm).{ outputs (I; �; pI), where pI def= (f�1(si1) � � �f�1(sit)) for I = (i1; :::; it).� Veri�er (denoted V 0) given prover's output (I; �; (p1 � � �pt)):{ checks that sij = f(pj), for each ij 2 I. In case a mismatch is found, V 0 rejects.



6.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 5{ computes ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.{ invokes V on (x; r; I; �) and accepts if and only if V accepts.Proposition 5 Let (P; V ), L, f , b and (P 0; V 0) be as in Construction 4. Then, (P 0; V 0) is anon-interactive proof system for L, provided that Prob(b(Un) = 1) = 12. Furthermore, if P iszero-knowledge and b is a hard-core of f then P 0 is zero-knowledge too.We remark that P 0 is not perfect zero-knowledge even in case P is. Also, P 0 may not be im-plemented in polynomial-time (even with help of auxiliary inputs) even if P is (see Remark 6below).proof: To see that (P 0; V 0) is a non-interactive proof system for L we note that uniformly chosensi 2 f0; 1gn induce uniformly distributed bits ri 2 f0; 1g. (This follows by ri = b(f�1(si)), thefact that f is one-to-one, and the fact that b(f�1(Un)) = b(Un) is unbiased.) Note that in case bis a hard-core of f , it is almost unbiased (i.e., Prob(b(Un)=1) = 12 � 1�(n) , where � is a negligiblefunction). Thus, saying that b is a hard-core for f essentially su�ces.To see that P 0 is zero-knowledge note that we can convert an e�cient simulator for P intoan e�cient simulator for P 0. Speci�cally, for each revealed bit of value � we uniformly select astring r 2 f0; 1gn so that b(r) = � and put f(r) in the corresponding position in the commonrandom-string. For each unrevealed bit we uniformly select a string s 2 f0; 1gn and put it in thecorresponding position in the common random-string. Using the fact that b is a hard-core of f , itfollows that the simulator's output is computationally indistinguishable from the veri�er's view.Remark 6 (e�cient implementation of P 0): As stated above, in general P 0 cannot be e�cientlyimplemented given a black-box access to P . What is needed is ability (of P 0) to invert f ,however for P 0 to be zero-knowledge f must be one-way. The oblivious solution is to use afamily of trapdoor permutations and let the prover know the trapdoor. Furthermore, the familyshould have the property that its members can be e�ciently recognized (i.e., given a descriptionof a function one can e�ciently decide whether it is in the family). In other words, P 0 startsby selecting a permutation f over f0; 1gn so that it knows its trapdoor, and proceeds as inConstruction 4, except that it also appends f to the `proof'. The veri�er acts as in Construction 4with respect to the function f speci�ed in the proof. In addition it also checks that f is indeedin the family. Both the completeness and the zero-knowledge conditions follow exactly as in theproof of Proposition 5. For the soundness condition we need to consider all possible membersof the family (w.l.o.g., there are at most 2n such permutation). For each such permutation, theargument is as before and our claim thus follows by a counting argument. (Actually, we needalso to repeat the (P; V ) system for O(n) times to make the counting argument work.)We now turn to the construction of proof systems in the Hidden Bits model. Speci�cally, we aregoing to construct a proof system for the Hamiltonian Cycle (HC) problem which is NP-complete



6(and thus get proof systems for any language in NP). We consider directed graphs (and theexistence of directed Hamiltonian cycles). Below, we present a basic zero-knowledge system inwhich Hamiltonian graphs are accepted with probability 1 whereas non-Hamiltonian graphs onn vertices are rejected with probability 
(n�3=2).Construction 7 (Hidden Bits systems for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Common Random-String: viewed as an n3-by-n3 Boolean matrix M , with each entry being1 with probability n�5.(This is implemented by breaking the common random-string to blocks of length 5 log2 nand setting a matrix entry to 1 i� the corresponding block is all 1's.)� De�nitions: A permutation matrix is a matrix in which each row (resp., column) containsa single entry of value 1. A Hamiltonian matrix is a permutation matrix which correspondsto a single directed cycle (it follows that the corresponding directed graph consists of asingle Hamiltonian cycle). An n3-by-n3 matrix M is called useful if it contains an n-by-nHamiltonian submatrix and all other entries in M are 0.� Prover: Let C be a Hamiltonian cycle in G, in case such exists.case 1: M is useful. Let H denote its Hamiltonian n-by-n submatrix.{ the prover reveals all entries in M which are not in H.{ the prover �nds a 1-1 mapping, �1, of V to the rows of H and a 1-1 mapping, �2,of V to the columns of H so that the edges of C are mapped to the 1-entries of H.(Directed pairs of vertices ofG, being edges or not, are mapped in the natural man-ner; that is (u; v) is mapped to the matrix entry (�1(u); �2(v)). The mapping-pair(�1; �2) is an isomorphism of C toH . Actually, we should specify one isomorphismamong the n possible ones.){ the prover reveals the entries corresponding to non-edges of G.(The correspondence is by the above mappings.){ the prover outputs the mapping pair (�1; �2) (as a certi�cate).case 2: M is not useful. In this case the prover reveals all entries of M .� Veri�er:case 1: The prover has not revealed all entries inM . Let (�1; �2) be the certi�cate sent/outputby the prover. The veri�er checks that all entries in M which do not have an imageunder (�1; �2) in E are revealed and are indeed zero. That is, the veri�er accepts if allmatrix entries, except for the entries in f(�1(u); �2(v)) : (u; v)2Eg, are revealed andall revealed bits are 0.



6.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 7case 2: The prover has revealed all of M . In this case the veri�er accepts i� M is notuseful.The following fact is instrumental for the analysis of Construction 7.Fact 6.10: Prob(M is useful) = 
(n�3=2).proof: With probability 
(1=pn), the matrix M contains exactly n entries of value 1. Consid-ering any row of M , observe that with probability at most �n32 � � (n�5)2 < n�4 this row containsmore than a single 1-entry. Thus, with probability 
(1=pn), the matrix M contains an n-by-npermutation matrix and all its other entries are 0. The fact follows by observing that there aren! (n-by-n) permutation matrices and (n� 1)! of them are Hamiltonian matrices.Proposition 8 There exists a (perfect) zero-knowledge Hidden Bits proof system for GraphHamiltonicity. Furthermore, the prover may be implemented by a polynomial-time machine whichgets an Hamiltonian cycle as auxiliary input.proof: We start by demonstrating a gap in the acceptance probability of the veri�er of Con-struction 7. Firstly, we claim that in case G is Hamiltonian and the prover follows the programthen the veri�er accepts no matter which matrix M appears as common random-string. Theclaim follows easily by observing that in Case 1 the mapping-pair maps the Hamiltonian cycleof G to the Hamiltonian cycle of H and, since the latter contains the only 1-entries in M , allnon-edges of G are mapped to 0-entries of M . (In Case 2 the claim is trivial.) We remark thatthe prover's actions can be implemented in polynomial-time when given an Hamiltonian cycle ofG as auxiliary input. Speci�cally, all that the prover needs to do is check if M is useful and �ndan isomorphism between two given n-vertex cycles.Next, suppose that G is non-Hamiltonian. By Fact 6.10, with probability at least 
(n�3=2),the matrix M is useful and let H denote its n-by-n Hamiltonian submatrix. In this case theprover must reveal all entries not in the submatrix H since mapping V �V to any other n-by-nsubmatrix ofM will reveal 1-entries (in the rest ofM). Thus, the prover must output a mappingpair (�1; �2) so that �1(V )��2(V ) = H . Also, each non-edge of G must be mapped to a 0-entryof H (or else the veri�er will reject). It follows that the preimage of each 1-entry in H must bean edge in G, which implies that G has a Hamiltonian cycle (in contradiction to our hypothesis).We conclude that in case G is non-Hamiltonian, it is rejected with probability 
(n�3=2).Finally, we show that the above prover is zero-knowledge. This is done by constructinga simulator that on input a graph G randomly selects an n3-by-n3 matrix, denoted M , withdistribution as in the common random-string (i.e., each entry being 1 with probability n�5). IfMis not useful then the simulator outputs (G;M; f1; :::; n3g2) (i.e., all bits are revealed with valuesas inM and no certi�cate is given). Otherwise, the prover selects uniformly a pair of 1-1 mappings(�1; �2) so that �i : V 7!f1; :::; n3g, for i = 1; 2. The prover outputs (G; 0n6�jEj; I; (�1; �2)), whereI def= f1; :::; n3g2 � f(�1(u); �2(v)) : (u; v) 2 Eg. The reader can easily verify that the outputdistribution of the simulator is identical to the distribution seen by the veri�er.



8Using Propositions 8 and 5 and Remark 6, we concludeTheorem 9 Assuming the existence of one-way permutations, each language in NP has a zero-knowledge non-interactive proof system. Furthermore, assuming the existence of families of trap-door permutations for which membership in the family can be decided in BPP, each language inNP has a zero-knowledge non-interactive proof system in which the prover can be implementedby a probabilistic polynomial-time machine which gets an NP-witness as auxiliary input.6.10.3 Extensions: many assertions of varying lengthThe de�nitions presented in Section 6.10.1 are restricted in two ways. Firstly, they consider onlythe proving of one assertion relative to the common random-string, and furthermore the commonrandom-string is allowed to be longer than the assertion (though polynomial in length of theassertion). A stronger de�nition provided below allows proving poly(n)-many assertions, each ofpoly(n)-length, using the same n-bit long common random-string.We �rst note that it su�ces to treat the case in which the number of assertions is unboundedbut the length of each assertion is a-priori bounded. Speci�cally, for any " > 0, it su�ces toconsider the case where poly(n)-many assertions, each of length n", need to be proven relativeto the same n-bit long common random-string. The reason for this is that we can reduce, in a\zero-knowledge manner", any NP-assertion of length poly(n) into a sequence of poly(n)-manyNP-assertions, each of length n". For example, �rst we reduce the original NP-assertion toan assertion regarding the 3-colorability of a poly(n)-vertex graph. Next, we use a commitmentscheme with commitments of length n", in order to commit to the coloring of each vertex. Finally,for each edge, we (invoke the proof system to) prove that the corresponding two commitmentsare to two di�erent values in f1; 2; 3g.We now turn to the actual de�nitions. First we note that nothing needs to be changedregarding the de�nition of non-interactive proof systems (De�nition 1). We still require ability tobe convinced by valid assertions and \protection" from false assertions. Alas a minor technicaldi�erence is that, while in De�nition 1 we have denoted by n the length of the assertion andconsidered a common random-string of length poly(n), here we let n denote the length of thecommon random-string used for assertions of length n". We call " the fundamental constant ofthe proof system. In contrast, the de�nition of zero-knowledge has to be extended to handle asequence of proofs.De�nition 10 (non-interactive zero-knowledge { extended): A non-interactive proof system,(P; V ), with fundamental constant ", for a language L is strongly zero-knowledge if there exists aprobabilistic polynomial-time algorithm M such that the ensemblesf((x1; :::; xm); Un; (P (x1; Un); :::; P (xm; Un)))gx1;:::;xm2Ln" and fM(x1; :::; xm)gx1;:::;xm2Ln"are computationally indistinguishable, where m = poly(n) and L` def= L \ f0; 1g`.



6.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 9We now turn to the construction of strong zero-knowledge (non-interactive) proof systems. Theunderlying idea is to facilitate the simulation by potentially proving a �ctitious assertion regardinga portion of the common random-string. The assertion that will be potentially proven about thisportion will have the following properties1. The assertion holds for a negligible fraction of the strings of the same length. Thus, addingthis potential ability does not signi�cantly e�ect the soundness condition.2. Strings satisfying the assertion are computationally indistinguishable from uniformly dis-tributed strings of the same length. Thus, it will be ok for the simulator to use such stringsrather than uniformly chosen ones (used in the real proof system).3. The decision problem for the assertion is in NP . This will allow a reduction to an NP-complete problem.An immediate assertion, concerning strings, which comes to mind is being produced by a pseu-dorandom generator.Construction 11 (strong zero-knowledge non-interactive proof systems): Let G : f0; 1g` 7!f0; 1g2`, L1 be an NP-complete language, and (P; V ) be a non-interactive proof system for L1.Furthermore, suppose that (P; V ) uses a common random-string of length n�2` for assertions oflength poly(`) and that P takes as auxiliary input an NP-witness for membership in L1. Followingis a speci�cation of a non-interactive system for L 2 NP:� Common Input: x 2 f0; 1g`.� Common Random-String: r = (p; s), where p 2 f0; 1g2` and s 2 f0; 1gn�2`.� Prover:{ Using a standard reduction of L2 to L1, reduces (x; p) to y 2 f0; 1gpoly(`), whereL2 def= f(x; p) : x2L_ 9w2f0; 1gjxj s.t. G(w) = pgIn case the prover is given a witness u for x2L, it reduces u to a witness, denoted w,for y 2 L1.{ Invokes P with common input y, auxiliary input w and common random-string s,getting output � which it outputs/sends.� Veri�er:{ Reduces (x; p) into y using the same standard reduction of L2 to L1.{ Invokes V with common input y, common random-string s and prover's output �, anddecide as V does.



10Proposition 12 Let (P; V ) be as above, G be a pseudorandom generator, and poly(`) = n".Furthermore, suppose that P is zero-knowledge and that when given an NP-witness as auxiliaryinput it can be implemented in probabilistic polynomial-time. Then, Construction 11 constitutesa zero-knowledge non-interactive proof system for L, with fundamental constant ". Furthermore,the prover may be implemented by a probabilistic polynomial-time machine which gets an NP-witness as auxiliary input.proof sketch: The completeness and e�ciency claims for the new prover follow immediatelyfrom the hypothesis concerning (P; V ). The soundness condition follows by observing that theprobability that p is in the range of G is at most 2�`. To prove the zero-knowledge property, weconstruct a simulator as follows. The simulator uniformly selects u0 2 f0; 1g` and s 2 f0; 1gn�2`,sets p = G(u0), and follows the prover's program except that it uses u0 as the NP-witness for(x; p) 2 L2. Namely, the simulator reduces (x; p) 2 L1 to y 2 L1 along with reducing theNP-witness u0 to a witness w0 (for y). Next, the simulator invokes P with common input y,auxiliary input w0 and common random-string s. Note that the e�ciency of the simulator relieson the e�cient implementation of P . To prove that the simulator's output is computationallyindistinguishable from the veri�er's view we combine the following two observations:1. The distribution of the common random-string is very di�erent in the two cases. Yet, bythe pseudorandomness of G this di�erence is computationally indistinguishable. Thus, wemay consider the veri�er's view in case the common random-string is selected exactly as inthe simulation (but the prover acts as in Construction 11).2. The zero-knowledge property of P implies that P is witness-indistinguishable (see Sec-tion ??). Thus, one cannot distinguish the case P uses a witness for x 2L (as in Construc-tion 11) from the case P uses as witness a seed for the pseudorandom sequence p (as donein the simulator). The same holds when repeating the process polynomially-many times.Using Theorem 9 and Proposition 12, we obtainTheorem 13 Assuming the existence of families of trapdoor permutations for which member-ship in the family can be decided in BPP, each language in NP has a strong zero-knowledgenon-interactive proof system. Furthermore, the prover can be implemented by a probabilisticpolynomial-time machine which gets an NP-witness as auxiliary input.



6.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 11Bibliographical NotesNon-interactive zero-knowledge proof systems were introduced by Blum, Feldman and Micali.The constructions presented in Section 6.10 are due to Feige, Lapidot and Shamir [FLSnizk].Author's Note: BFM has appeared in STOC88, and FLSnizk in FOCS90Multi-prover interactive proofs were introduced by Ben-Or, Goldwasser, A much more e�-cient construction of non-interactive proof systems for NP , based on the same assumptions as[FLSnizk], has appeared in a paper of Kilian and Petrnak [KP96].Author's Note: KP96 has appeared in ECCC and will appear in Jour of Cryptology.


