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PrefaceThe current manuscript is a preliminary draft of the chapter onencryption schemes (Chapter 5) of the second volume of the workFoundations of Cryptography. This manuscript subsumes previousversions posted in Dec. 1999 and June 2001, respectively.The bigger picture. The current manuscript is part of a working draft ofPart 2 of the three-part work Foundations of Cryptography (see Figure 0.1). Thethree parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-sics. The �rst part (containing Chapters 1{4) has been published by CambridgeUniversity Press (in June 2001). The second part, consists of Chapters 5{7 (re-garding Encryptioni Schemes, Signatures Schemes, and General CryptographicProtocols, respectively). We hope to publish the second part with CambridgeUniversity Press within a couple of years.Part 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsPart 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsPart 3: Beyond the Basics� � �Figure 0.1: Organization of this work
III
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IV The partition of the work into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple of years, and publish it without waiting for the third part.Prerequisites. The most relevant background for this text is provided bybasic knowledge of algorithms (including randomized ones), computability andelementary probability theory. Background on (computational) number theory,which is required for speci�c implementations of certain constructs, is not reallyrequired here.Using this text. The text is intended as part of a work that is aimed to serveboth as a textbook and a reference text. That is, it is aimed at serving both thebeginner and the expert. In order to achieve this aim, the presentation of thebasic material is very detailed so to allow a typical CS-undergraduate to followit. An advanced student (and certainly an expert) will �nd the pace (in theseparts) way too slow. However, an attempt was made to allow the latter readerto easily skip details obvious to him/her. In particular, proofs are typicallypresented in a modular way. We start with a high-level sketch of the main ideas,and only later pass to the technical details. Passage from high-level descriptionsto lower level details is typically marked by phrases such as details follow.In a few places, we provide straightforward but tedious details in in-dented paragraphs as this one. In some other (even fewer) places suchparagraphs provide technical proofs of claims that are of marginal rele-vance to the topic of the book.More advanced material is typically presented at a faster pace and with lessdetails. Thus, we hope that the attempt to satisfy a wide range of readers willnot harm any of them.Teaching. The material presented in the full (three-volume) work is, on onehand, way beyond what one may want to cover in a course, and on the otherhand falls very short of what one may want to know about Cryptography ingeneral. To assist these con
icting needs we make a distinction between basicand advanced material, and provide suggestions for further reading (in the lastsection of each chapter). In particular, sections, subsections, and subsubsectionsmarked by an asterisk (*) are intended for advanced reading.
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Chapter 5Encryption SchemesUp-to the 1970's, Cryptography was understood as the art of building encryptionschemes; that is, the art of constructing schemes allowing secret data exchangeover insecure channels. Since the 1970's, other tasks (e.g., signature schemes)have been recognized as falling within the domain of Cryptography (and even asbeing at least as central to Cryptography). Yet, the construction of encryptionschemes remains, and is likely to remain, a central enterprise of Cryptography.In this chapter we review the well-known notions of private-key and public-key encryption schemes. More importantly, we de�ne what is meant by sayingthat such schemes are secure. It turns out that using randomness throughoutthe encryption process (i.e., not only at the key-generation phase) is essential tosecurity. We present some basic constructions of secure (private-key and public-key) encryption schemes. Finally, we discuss \dynamic" notions of securityculminating in robustness against chosen ciphertext attacks.Teaching Tip: We assume that the reader is familiar with the material inprevious chapters (and speci�cally with Sections 2.2, 2.4, 2.5, 3.2{3.4, and 3.6).This familiarity is important not only because we use some of the notions andresults presented in these sections, but rather because we use similar proof tech-niques (and do it while assuming that this is not the reader's �rst encounterwith these techniques).5.1 The Basic SettingLoosely speaking, encryption schemes are supposed to enable private communi-cation between parties that communicate over an insecure channel. Thus, thebasic setting consists of a sender, a receiver, and an insecure channel that maybe tapped by an adversary. The goal is to allow the sender to transfer infor-mation to the receiver, over the insecure channel, without letting the adversary�gure out this information. Thus, we distinguish between the actual (secret)information that the receiver wishes to transmit and the messages sent over the359
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360 CHAPTER 5. ENCRYPTION SCHEMESinsecure communication channel. The former is called the plaintext, whereasthe latter is called the ciphertext. Clearly, the ciphertext must di�er from theplaintext or else the adversary can easily obtain the plaintext by tapping thechannel. Thus, the sender must transform the plaintext into a ciphertext sothat the receiver can retrieve the plaintext from the ciphertext, but the adver-sary cannot do so. Clearly, something must distinguish the receiver (who is ableto retrieve the plaintext from the corresponding ciphertext) from the adversary(who cannot do so). Speci�cally, the receiver know something that the adversarydoes not know. This thing is called a key.An encryption scheme consists of a method of transforming plaintexts to ci-phertexts and vice versa, using adequate keys. These keys are essential to theability to e�ect these transformations. We stress that the encryption scheme it-self (i.e., the encryption/decryption algorithms) may be known to the adversary,and its security relies on the hypothesis that the adversary does not know thekeys.1 Formally, we need to consider a third algorithm; namely, a probabilisticalgorithm used to generate keys. This algorithm must be probabilistic (or else,by invoking it the adversary obtains the very same key used by the receiver).In accordance with the above, an encryption scheme consists of three algo-rithms. These algorithms are public (i.e., known to all parties). The obviousalgorithms are the encryption algorithm, which transforms plaintexts to cipher-texts, and the decryption algorithm, which transforms ciphertexts to plaintexts.By the discussion above, it is clear that the description algorithm must employa key that is known to the receiver but is not known to the adversary. Thiskey is generated using a third algorithm, called the key-generator. Furthermore,it is not hard to see that the encryption process must also depend on the key(or else messages sent to one party can be read by a di�erent party who is alsoa potential receiver). Thus, the key-generation algorithm is used to produce apair of (related) keys, one for encryption and one for decryption. The encryptionalgorithm, given an encryption-key and a plaintext, produces a plaintext thatwhen fed to the decryption algorithm, with the corresponding decryption-key,returns the original plaintext. We stress that knowledge of the decryption-keyis essential for the latter transformation.5.1.1 Private-Key versus Public-Key SchemesA fundamental distinction between encryption schemes refers to the rela-tion between the two keys (mentioned above). The simpler (and older) notionassumes that the encryption-key equals the decryption-key. Such schemes arecalled private-key (or symmetric). To use a private-key scheme, the legitimateparties must �rst agree on the secret key. This can be done by having one partygenerate the key at random and send it to the other party using a (secondary)channel that (unlike the main channel) is assumed to be secure (i.e., it can not1 In fact, in many cases, the legitimate interest may be served best by publicizing thescheme itself. In our opinion, this is the best way to obtain an (unbiased) expert evaluationof the security of the scheme.
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5.1. THE BASIC SETTING 361
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The key K is known to both receiver and sender, but is un-known to the adversary. For example, the receiver may generateK at random and pass it to the sender via a perfectly-privatesecondary channel (not shown here).Figure 5.1: Private-key encryption schemes { an illustration.be tapped by the adversary). A crucial point is that the key is generated inde-pendently of the plaintext, and so it can be generated and exchanged prior tothe plaintext even being determined. Thus, private-key encryption is a way ofextending a private channel over time: If the parties can use a private channeltoday (e.g., they are currently in the same physical location) but not tomorrow,then they can use the private channel today to exchange a secret key that theymay use tomorrow for secret communication. A simple example of a private-keyencryption scheme is the one-time pad. The secret key is merely a uniformlychosen sequence of n bits, and an n-bit long ciphertext is produced by XORingthe plaintext, bit-by-bit, with the key. The plaintext is recovered from the ci-phertext in the same way. Clearly, the one-time pad provides absolute security.However, its usage of the key is ine�cient; or, put in other words, it requires keysof length comparable to the total length of data communicated. In the rest ofthis chapter we will only discuss encryption schemes where n-bit long keys allowto securely communicated data of length greater than n (but still polynomial inn). A new type of encryption schemes has emerged in the 1970's. In theseschemes, called public-key (or asymmetric), the decryption-key di�ers from theencryption-key. Furthermore, it is infeasible to �nd the decryption-key, giventhe encryption-key. These schemes enable secure communication without everusing a secure channel. Instead, each party applies the key-generation algorithmto produce a pair of keys. The party, called P , keeps the decryption-key, denoteddP , secret and publishes the encryption-key, denoted eP . Now, any party cansend P private messages by encrypting them using the encryption-key eP . PartyP can decrypt these messages by using the decryption-key dP , but nobody else
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362 CHAPTER 5. ENCRYPTION SCHEMES
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The key-pair (e; d) is generated by the receiver, who posts theencryption-key e on a public media, while keeping the decryption-key d secret.Figure 5.2: Public-key encryption schemes { an illustration.can do so.5.1.2 The Syntax of Encryption SchemesWe start by de�ning the basic mechanism of encryption schemes. This de�nitionsays nothing about the security of the scheme (which is the subject of the nextsection).De�nition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G;E;D),of probabilistic polynomial-time algorithms satisfying the following two condi-tions1. On input 1n, algorithm G (called the key-generator) outputs a pair of bitstrings.2. For every pair (e; d) in the range of G(1n), and for every � 2 f0; 1g�,algorithms E (encryption) and D (decryption) satisfyPr[D(d;E(e; �))=�] = 1where the probability is taken over the internal coin tosses of algorithms Eand D.The integer n serves as the security parameter of the scheme. Each (e; d) inthe range of G(1n) constitutes a pair of corresponding encryption/decryptionkeys. The string E(e; �) is the encryption of the plaintext � 2 f0; 1g� using theencryption-key e, whereas D(d; �) is the decryption of the ciphertext � usingthe decryption-key d.
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5.2. DEFINITIONS OF SECURITY 363We stress that De�nition 5.1.1 says nothing about security, and so trivial (in-secure) algorithms may satisfy it (e.g., E(e; �) def= � and D(d; �) def= �). Fur-thermore, De�nition 5.1.1 does not distinguish private-key encryption schemesfrom public-key ones. The di�erence between the two types is introduced in thesecurity de�nitions: In a public-key scheme the \breaking algorithm" gets theencryption-key (i.e., e) as an additional input (and thus e 6= d follows); whilein private-key schemes e is not given to the \breaking algorithm" (and thus onemay assume, without loss of generality, that e = d).We stress that the above de�nition requires the scheme to operate for everyplaintext, and speci�cally for plaintext of length exceeding the length of theencryption-key. (This rules out the information theoretic secure \one-time pad"scheme mentioned above.)Notation: In the rest of this text, we write Ee(�) instead of E(e; �) and Dd(�)instead of D(d; �). Sometimes, when there is little risk of confusion, we dropthese subscripts. Also, we let G1(1n) (resp., G2(1n)) denote the �rst (resp.,second) element in the pair G(1n). That is, G(1n) = (G1(1n); G2(1n)). Withoutloss of generality, we may assume that jG1(1n)j and jG2(1n)j are polynomiallyrelated to n, and that each of these integers can be e�ciently computed fromthe other. (In fact, we may even assume that jG1(1n)j = jG2(1n)j = n; seeExercise 5.)Comments: De�nition 5.1.1 may be relaxed in several ways without signif-icantly harming its usefulness. For example, we may relax Condition (2) andallow a negligible decryption error (e.g., Pr[Dd(Ee(�)) 6= �] < 2�n). Alterna-tively, one may postulate that Condition (2) holds for all but a negligible measureof the key-pairs generated by G(1n). At least one of these relaxations is essentialfor each of the popular suggestions of encryption schemes.Another relaxation consists of restricting the domain of possible plaintexts(and ciphertexts). For example, one may restrict Condition (2) to �'s of length`(n), where ` : N!N is some �xed function. Given a scheme of the latter type(with plaintext length `), we may construct a scheme as in De�nition 5.1.1 bybreaking plaintexts into blocks of length `(n) and applying the restricted schemeseparately to each block. For more details see Sections 5.2.4 and 5.3.2.5.2 De�nitions of SecurityIn this section we present two fundamental de�nitions of security and prove theirequivalence. The �rst de�nition, called semantic security, is the most naturalone. Semantic security is a computational complexity analogue of Shannon'sde�nition of perfect privacy (which requires that the ciphertext yields no in-formation regarding the plaintext). Loosely speaking, an encryption scheme issemantically secure if it is infeasible to learn anything about the plaintext fromthe ciphertext (i.e., impossibility is replaced by infeasibility). The second def-
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364 CHAPTER 5. ENCRYPTION SCHEMESinition has a more technical 
avor. It interprets security as the infeasibility ofdistinguishing between encryptions of a given pair of messages. This de�nitionis useful in demonstrating the security of a proposed encryption scheme, and forthe analysis of cryptographic protocols that utilize an encryption scheme.We stress that the de�nitions presented below go way beyond saying that itis infeasible to recover the plaintext from the ciphertext. The latter statementis indeed a minimal requirement from a secure encryption scheme, but we claimthat it is way too weak a requirement: An encryption scheme is typically used inapplications where obtaining speci�c partial information on the plaintext endan-gers the security of the application. When designing an application-independentencryption scheme, we do not know which partial information endangers theapplication and which does not. Furthermore, even if one wants to design anencryption scheme tailored to one's own speci�c applications, it is rare (to saythe least) that one has a precise characterization of all possible partial informa-tion that endanger these applications. Thus, we require that it is infeasible toobtain any information about the plaintext from the ciphertext. Furthermore,in most applications the plaintext may not be uniformly distributed and somea-priori information regarding it may be available to the adversary. We requirethat the secrecy of all partial information is preserved also in such a case. Thatis, even in presence of a-priori information on the plaintext, it is infeasible toobtain any (new) information about the plaintext from the ciphertext (beyondwhat is feasible to obtain from the a-priori information on the plaintext). Thede�nition of semantic security postulates all of this.Security of multiple plaintexts. In continuation to the above discussion,the de�nitions are presented �rst in terms of the security of a single encryptedplaintext. However, in many cases, it is desirable to encrypt many plaintextsusing the same encryption-key, and security needs to be preserved in these casestoo. Adequate de�nitions and discussions are deferred to Section 5.2.4.A technical comment: non-uniform complexity formulation. To sim-plify the exposition, we adopt a non-uniform formulation. Namely, in the secu-rity de�nitions we expand the domain of e�cient adversaries/algorithms to in-clude (explicitly or implicitly) non-uniform polynomial-size circuits, rather thanonly probabilistic polynomial-time machines. Likewise, we make no computationrestriction regarding the probability distribution from which messages are taken,nor regarding the a-priori information available on these messages. We note thatemploying such a non-uniform complexity formulation (rather than a uniformone) may only strengthen the de�nitions; yet, it does weaken the implicationsproven between the de�nitions, since these (simpler) proofs make free usage ofnon-uniformity. A uniform-complexity treatment is provided in Section 5.2.5.
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5.2. DEFINITIONS OF SECURITY 3655.2.1 Semantic SecurityLoosely speaking, semantic security means that whatever can be e�ciently com-puted from the ciphertext, can be e�ciently computed also without the cipher-text. Thus, an adversary gains nothing by intercepting ciphertexts sent betweencommunicating parties who use a semantically secure encryption scheme, sinceit could have obtained the same without intercepting these ciphertexts. Indeed,this formulation follows the simulation paradigm: \lack of gain" is captured byasserting that whatever is learned from the ciphertext can be learned withinrelated complexity also without the ciphertext.5.2.1.1 The actual de�nitionsTo be somewhat more accurate, semantic security means that whatever can bee�ciently computed from the ciphertext, can be e�ciently computed when givenonly the length of the plaintext. Note that this formulation does not rule out thepossibility that the length of the plaintext can be inferred from the ciphertext.Indeed, some information about the length of the plaintext must be revealed bythe ciphertext (see Exercise 3). We stress that other than information aboutthe length of the plaintext, the ciphertext is required to yield nothing about theplaintext.In the actual de�nitions, we consider only information regarding the plain-text (rather than regarding something else like the ciphertext) that can be ob-tained from the ciphertext. Furthermore, we restrict our attention to functions(rather than to randomized processes) applied to the plaintext. We do so be-cause of the intuitive appeal of this special case, and are comfortable doing sobecause this special case implies the general one (cf. Exercise 12). We augmentthis formulation by requiring that the above remains valid even in presence ofauxiliary partial information about the plaintext. Namely, whatever can be e�-ciently computed from the ciphertext and additional partial information aboutthe plaintext, can be e�ciently computed given only the length of the plaintextand the same partial information. In the de�nition that follows, the informa-tion regarding the plaintext that the adversary tries to obtain is captured bythe function f , whereas the a-priori partial information about the plaintext iscaptured by the function h. The above is required to hold for any distributionof plaintexts, captured by the probability ensemble fXngn2N.Security holds only for plaintexts of length polynomial in the security pa-rameter. This is captured below by the restriction jXnj = poly(n). Note thatwe cannot hope to provide computational security for plaintexts of unboundedlength in the security parameter (see Exercise 2). Likewise, we restrict the func-tions f and h to be polynomially-bounded; that is, jf(x)j; jh(x)j = poly(jxj).The di�erence between private-key and public-key encryption schemes ismanifested in the de�nition of security. In the latter case, the adversary (whichis trying to obtain information on the plaintext) is given the encryption-key,whereas in the former case it is not. Thus, the di�erence between these schemesamounts to a di�erence in the adversary model (considered in the de�nition
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366 CHAPTER 5. ENCRYPTION SCHEMESof security). We start by presenting the de�nition for private-key encryptionschemes.De�nition 5.2.1 (semantic security { private-key): An encryption scheme,(G;E;D), is semantically secure (in the private-key model) if for every proba-bilistic polynomial-time algorithm A there exists a probabilistic polynomial-timealgorithm A0 so that for every ensemble fXngn2N, with jXnj = poly(n), everypair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomialp(�) and all su�ciently large nPr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; 1jXnj; h(Xn))=f(Xn)i+ 1p(n)(The probability in the above terms is taken over Xn as well as over the internalcoin tosses of algorithms either G, E and A or A0.)The input 1n is given to both algorithms for technical reasons.2 The function hprovides both algorithms with partial information regarding the plaintext Xn.Furthermore, h also makes the de�nition implicitly non-uniform; see furtherdiscussion below. In addition, both algorithms get the length of Xn. Thesealgorithms then try to guess the value f(Xn); namely, they try to infer informa-tion about the plaintextXn. Loosely speaking, in semantically secure encryptionscheme the ciphertext does not help in this inference task. That is, the successprobability of any e�cient algorithm (i.e., algorithm A) that is given the cipher-text, can be matched, up-to a negligible fraction, by the success probability ofan e�cient algorithm (i.e., algorithm A0) that is not given the ciphertext at all.De�nition 5.2.1 refers to private-key encryption schemes. To derive a def-inition of security for public-key encryption schemes, the encryption-key (i.e.,G1(1n)) should be given to the adversary as an additional input. That is,De�nition 5.2.2 (semantic security { public-key): An encryption scheme, (G;E;D),is semantically secure (in the public-key model) if for every probabilistic polynomial-time algorithm A, there exists a probabilistic polynomial-time algorithm A0 suchthat for every fXngn2N, f; h, p(�) and n as in De�nition 5.2.1Pr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; 1jXnj; h(Xn))=f(Xn)i+ 1p(n)We comment that it is pointless to give the random encryption-key (i.e., G1(1n))to algorithm A0 (since the task and main inputs of A0 are unrelated to theencryption-key, and anyhow A0 could generate a random encryption-key by it-self).2 The role of the auxiliary input 1n is to allow smooth transition to fully non-uniformformulations as discussed below and as in De�nition 5.2.3.
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5.2. DEFINITIONS OF SECURITY 367Terminology: For sake of simplicity, we refer to an encryption scheme that issemantically secure in the private-key (resp., public-key) model as to a semantically-secure private-key (resp., public-key) encryption scheme.The reader may note that a semantically-secure public-key encryption schemecannot employ a deterministic encryption algorithm; that is, Ee(x) must be arandom variable rather than a �xed string. This is more evident with respect tothe equivalent De�nition 5.2.4 (below). See further discussion following De�ni-tion 5.2.4.5.2.1.2 Further discussion of some de�nitional choicesWe discuss several secondary issues regarding De�nitions 5.2.1 and 5.2.2. The in-terested reader is also referred to Exercises 16, 15 and 17 that present additionalvariants of the de�nition of semantic security.Implicit non-uniformity of the de�nitions. The fact that h is not requiredto be computable, makes the above de�nitions non-uniform. This is the case be-cause both algorithms are given h(Xn) as auxiliary input, and this may accountfor arbitrary (polynomially-bounded) advise. For example, letting h(x) = ajxj,means that both algorithms are supplied with (non-uniform) advice (as in one ofthe possible formulations of non-uniform polynomial-time; see Section 1.3.3). Ingeneral, the function h can code both information regarding its input and non-uniform advice depending on its input length (i.e., h(x) = (h0(x); ajxj)). Thus,the above de�nitions are equivalent to allowing A and A0 be related families ofnon-uniform circuits, where by `related' we mean that the circuits in the familyA0 = fA0ngn2N can be e�ciently computed from the corresponding circuits inthe family A = fAngn2N. For further discussion, see Exercise 8.Lack of computational restrictions regarding the function f . We donot require that the function f is even computable. This seems strange at�rst glance, because (unlike the situation w.r.t h which codes a-priori infor-mation given to the algorithms) the algorithms are asked to guess the valueof f (on a plaintext implicit in the ciphertext given only to A). However, aswe shall see in the sequel (see also Exercise 12), the meaning of semantic se-curity is essentially that the distribution ensembles (E(Xn); 1jXnj; h(Xn)) and(E(1jXnj); 1jXnj; h(Xn)) are computationally indistinguishable (and so whateverA can compute can also be computed by A0).Other modi�cations of no impact. Actually, inclusion of a-priori informa-tion regarding the plaintext (captured by the function h) does not a�ect thede�nition of semantic security: De�nition 5.2.1 remains intact if we restrict hto only depend on the length of the plaintext (and so only provide plaintext-oblivious non-uniform advice). (This can be shown in various ways; e.g., seeExercise 13.1.) Also, the function f can be restricted to be a Boolean functionhaving polynomial-size circuits, and the random variable Xn may be restricted
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368 CHAPTER 5. ENCRYPTION SCHEMESto be very \dull" (e.g., have only two strings in its support): See proof of Theo-rem 5.2.5. On the other hand, De�nition 5.2.1 implies stronger forms discussedin Exercises 12, 17 and 18.5.2.2 Indistinguishability of EncryptionsThe following technical interpretation of security states that it is infeasible todistinguish the encryptions of two plaintexts (of the same length). That is, suchciphertexts are computationally indistinguishable as de�ned in De�nition 3.2.7.Again, we start with the private-key variant.De�nition 5.2.3 (indistinguishability of encryptions { private-key): An en-cryption scheme, (G;E;D), has indistinguishable encryptions (in the private-keymodel) if for every polynomial-size circuit family fCng, every polynomial p, allsu�ciently large n and every x; y 2 f0; 1gpoly(n) (i.e., jxj = jyj),jPr �Cn(EG1(1n)(x))=1�� Pr �Cn(EG1(1n)(y))=1� j < 1p(n)The probability in the above terms is taken over the internal coin tosses of algo-rithms G and E.Note that the potential plaintexts to be distinguished can be incorporated intothe circuit Cn. Thus, the circuit models both the adversary's strategy and itsa-priori information: See Exercise 10.Again, the security de�nition for public-key encryption schemes can be de-rived by adding the encryption-key (i.e., G1(1n)) as an additional input to thealgorithm. That is,De�nition 5.2.4 (indistinguishability of encryptions { public-key): An encryp-tion scheme, (G;E;D), has indistinguishable encryptions (in the public-key model)if for every polynomial-size circuit family fCng, and every p(�), n, x and y asin De�nition 5.2.3jPr �Cn(G1(1n); EG1(1n)(x))=1�� Pr �Cn(G1(1n); EG1(1n)(y))=1� j < 1p(n)Terminology: For sake of simplicity, we refer to an encryption scheme that hasindistinguishable encryptions in the private-key (resp., public-key) model as toa ciphertext-indistinguishable private-key (resp., public-key) encryption scheme.Failure of deterministic encryption algorithms: A ciphertext-indistinguishablepublic-key encryption scheme cannot employ a deterministic encryption algo-rithm (i.e., Ee(x) cannot be a �xed string). For a public-key encryption schemewith a deterministic encryption algorithm E, given an encryption-key e and apair of candidate plaintexts (x; y), one can easily distinguish Ee(x) from Ee(y)(by merely applying Ee to x and comparing the result to the given cipher-text). In contrast, in case the encryption algorithm itself is randomized, the
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5.2. DEFINITIONS OF SECURITY 369same plaintext can be encrypted in exponentially many di�erent ways, underthe same encryption-key. Furthermore, the probability that applying Ee twiceto the same message (while using independent randomization in Ee) results inthe same ciphertext may be exponentially vanishing. (Indeed, as shown be-low, public-key encryption scheme having indistinguishable encryptions can beconstructed based on any trapdoor permutations, and these schemes employrandomized encryption algorithms.)5.2.3 Equivalence of the Security De�nitionsThe following theorem is stated and proven for private-key encryption schemes.A similar result holds for public-key encryption schemes (see Exercise 11).Theorem 5.2.5 (equivalence of de�nitions { private-key): A private-key en-cryption scheme is semantically secure if and only if it has indistinguishableencryptions.Let (G;E;D) be an encryption scheme. We formulate a proposition for each ofthe two directions of the above theorem. Each proposition is in fact strongerthan the corresponding direction stated in Theorem 5.2.5. The more usefuldirection is stated �rst: it asserts that the technical interpretation of security, interms of ciphertext-indistinguishability, implies the natural notion of semanticsecurity. Thus, the following proposition yields a methodology for designingsemantically secure encryption schemes: design and prove your scheme to beciphertext-indistinguishable, and conclude (by applying the proposition) thatit is semantically secure. The opposite direction (of Theorem 5.2.5) establishthe \completeness" of the latter methodology, and more generally assert thatrequiring an encryption scheme to be ciphertext-indistinguishable does not ruleout schemes that are semantically secure.Proposition 5.2.6 (useful direction { \indistinguishability" implies \security"):Suppose that (G;E;D) is a ciphertext-indistinguishable private-key encryptionscheme. Then (G;E;D) is semantically-secure. Furthermore, the simulatingalgorithm A0 (which is used to establish semantic-security) captures the com-putation of a probabilistic polynomial-time oracle machine that is given oracleaccess to original adversary algorithm A.Proposition 5.2.7 (opposite direction { \security" implies \indistinguishabil-ity"): Suppose that (G;E;D) is a semantically secure private-key encryptionscheme. Then (G;E;D) has indistinguishable encryptions. Furthermore, theconclusion holds even if the de�nition of semantic security is restricted to thespecial case satisfying the following four conditions:1. the random variable Xn is uniformly distributed over a set containing twostrings;2. the value of h depends only on the length of its input (i.e., h(x) = h0(jxj));
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370 CHAPTER 5. ENCRYPTION SCHEMES3. the function f is Boolean and is computable by a polynomial-size circuit;4. the algorithm A is deterministic.In addition, no computational restrictions are placed on algorithm A0 and it canbe replaced by any function, which may depend on fXngn2N, h, f and A.Observe that the above four itemized conditions limit the scope of the fouruniversal quanti�ers in De�nition 5.2.1, whereas the last sentence removes arestriction on the existential quanti�er (i.e., removes the complexity bound onA0) and allows the latter to depend on all universal quanti�ers. Each of thesemodi�cations makes the resulting de�nition potentially weaker. Still, combiningPropositions 5.2.7 and 5.2.6 it follows that a weak version of De�nition 5.2.1implies (an even stronger version than) the one stated in De�nition 5.2.1.5.2.3.1 Proof of Proposition 5.2.6.Suppose that (G;E;D) has indistinguishable encryptions. We will show that(G;E;D) is semantically secure by constructing, for every probabilistic polynomial-time algorithm A, a probabilistic polynomial-time algorithm A0 such that thefollowing holds: for every fXngn2N, f and h, algorithm A0 guesses f(Xn) from(1n; 1jXnj; h(Xn)) essentially as good as A guesses f(Xn) from (1n; E(Xn); 1jXnj; h(Xn)).Speci�cally, A0 merely invokes A on input (E(1jXnj); 1jXnj; h(Xn)), and returnswhatever A does. That is, A0 invokes A with a dummy encryption rather thanwith an encryption of Xn (which A expects to get, but A0 does not have). In-tuitively, the indistinguishability of encryptions implies that A behaves as wellwhen invoked by A0 (and given a dummy encryption) as when given the encryp-tion of Xn, and this establishes the desired claim. Below, we merely implementthe above plan, where the main issue in the implementation is to who that thespeci�c formulation of indistinguishability of encryptions su�ces to establish theabove eluded \similar behavior" clause (which refers in success in guessing thevalue of f(Xn)).Let A be an algorithm that tries to infer partial information (i.e., the valuef(Xn)) from the encryption of the message Xn (when also given 1n; 1jXnj and a-priori information h(Xn)). Intuitively, on input E(�) and (1j�j; h(�)), algorithmA tries to guess f(�). We construct a new algorithm, A0, that performs as wellwithout getting the input E(�). The new algorithm consists of invoking A oninput EG1(1n)(1j�j) and (1n; 1j�j; h(�)), and outputting whatever A does. Thatis, on input (1n; 1j�j; h(�)), algorithm A0 proceeds as follows:1. A0 invokes the key-generator G (on input 1n), and obtains an encryption-key e G1(1n).2. A0 invokes the encryption algorithm with key e and (\dummy") plaintext1j�j, obtaining a ciphertext �  Ee(1j�j).3. A0 invokes A on input (�; 1j�j; h(�)), and outputs whatever A does.Observe that A0 is described in terms of an oracle machine that makes a singleoracle call to (any given) A, in addition to invoking the �xed algorithms G
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5.2. DEFINITIONS OF SECURITY 371and E. Furthermore, the construction of A0 does not depend on the functionsh and f or on the distribution of messages to be encrypted (represented bythe probability ensembles fXngn2N). Thus, A0 is probabilistic polynomial-timewhenever A is probabilistic polynomial-time (and regardless of the complexityof h, f and fXngn2N)Indistinguishability of encryptions will be used to prove that A0 performsessentially as well as A. Speci�cally, the proof will use a reducibility argument.Claim 5.2.6.1: Let A0 be as above. Then, for every fXngn2N, f , h and p as inDe�nition 5.2.1, and all su�ciently large n'sPr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; 1jXnj; h(Xn))=f(Xn)i+ 1p(n)Proof: To simplify the notations, let us incorporate (1n; 1j�j) into h(�). Usingthe de�nition of A0, we can rewritten the claim as assertingPr �A(EG1(1n)(Xn); h(Xn))=f(Xn)�< Pr hA(EG1(1n)(1jXnj); h(Xn))=f(Xn)i+ 1p(n)Intuitively, this follows by the indistinguishability of encryptions, by �xing aviolating value of Xn and incorporating the corresponding values of h(Xn) andf(Xn) in a description of a circuit (which will distinguish an encryption of thisvalue of Xn from an encryption of 1jXnj). Details follow.Assume, towards the contradiction that for some polynomial p and in�nitelymany n's the above inequality is violated. Then, for each such n, we haveE[�(Xn)] > 1=p(n), where�(x) def= ���Pr �A(EG1(1n)(x); h(x))=f(x)� � Pr hA(EG1(1n)(1jxj); h(x))=f(x)i���We use an averaging argument to single out a string xn in the support of Xnsuch that �(xn) � �(Xn): That is, let xn 2 f0; 1gpoly(n) be a string for whichthe value of �(�) is maximum, and so �(xn) > 1=p(n). Using this xn, weintroduce a circuit Cn, which incorporates the �xed values f(xn) and h(xn),and distinguishes the encryption of xn from the encryption of 1jxnj. The circuitCn operates as follows. On input � = E(�), the circuit Cn invokes A(�; h(xn))and outputs 1 if and only if A outputs the value f(xn). Otherwise, Cn outputs0. The above circuit is indeed of polynomial-size because it merely incorporatesstrings of polynomial length (i.e., f(xn) and h(xn)) and emulates a polynomial-time computation (i.e., of A). (Note that the circuit family fCng is indeednon-uniform since its de�nition is based on a non-uniform selection of xn's aswell as on a hard-wiring of (possibly uncomputable) corresponding strings h(xn)and f(xn).) Clearly,Pr �Cn(EG1(1n)(�))=1� = Pr �A(EG1(1n)(�); h(xn))=f(xn)� (5.1)
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372 CHAPTER 5. ENCRYPTION SCHEMESCombining Eq. (5.1) with the de�nition of �(xn), we get���Pr �Cn(EG1(1n)(xn))=1�� Pr hCn(EG1(1n)(1jxnj))=1i��� = �(xn)> 1p(n)This contradicts our hypothesis that E has indistinguishable encryptions, andthe claim follows. 2We have just shown that A0 performs essentially as well as A, and so Proposition5.2.6 follows.Comments: The fact that we deal with a non-uniform model of computationallows the above proof to proceed regardless of the complexity of f and h. Allthat our de�nition of Cn requires is the hardwiring of the values of f and h on asingle string, and this can be done regardless of the complexity of f and h (pro-vided that they are both polynomially-bounded; i.e., jf(x)j; jh(x)j = poly(jxj)).When proving the public-key analogue of Proposition 5.2.6, algorithm A0 isde�ned exactly as above, but its analysis is slightly di�erent: the distinguish-ing circuit, considered in the analysis of the performance of A0, obtains theencryption-key as part of its input, and passes it to algorithm A (upon invokingit).5.2.3.2 Proof of Proposition 5.2.7Intuitively, indistinguishability of encryption (i.e., of the encryptions of xn andyn) is a special case of semantic security in which f indicates one of the plaintextsand h does not distinguish them (i.e., f(z) = 1 i� z = xn and h(xn) = h(yn)).The only issue to be addressed by the actual proof is that semantic securityrefers to uniform (probabilistic polynomial-time) adversaries, whereas indistin-guishability of encryption refers to non-uniform polynomial-size circuits. Thisgap is bridged by using the function h to provide the algorithms in the semantic-security formulation with adequate non-uniform advice (which may be used bythe circuit in the indistinguishability of encryption formulation).The actual proof is by a (direct) reducibility argument. We show that if(G;E;D) has distinguishable encryptions then it is not semantically secure(not even in the restricted sense mentioned in the furthermore-clause of theproposition). Towards this end, we assume that there exists a polynomial p,a polynomial-size circuit family fCng, such that for in�nitely many n's thereexists xn; yn 2 f0; 1gpoly(n) so that��Pr �Cn(EG1(1n)(xn))=1�� Pr �Cn(EG1(1n)(yn))=1��� > 1p(n) (5.2)Using this sequence of Cn's, xn's and yn's, we de�ne fXngn2N, f and h (referredto in De�nition 5.2.1) as follows:
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5.2. DEFINITIONS OF SECURITY 373� The probability ensembles fXngn2N is de�ned such that Xn is uniformlydistributed over fxn; yng.� The function f :f0; 1g�!f0; 1g is de�ned such that f(xn) = 1 and f(yn) =0, for every n. Note that f(Xn) = 1 with probability 1=2 and is 0 otherwise.� The function h is de�ned such that h(Xn) equals the description of thecircuit Cn. Note that h(Xn) = Cn with probability 1, and thus reveals noinformation on the value of Xn. (In the sequel, we write h(Xn) = h0(n) =Cn.)(Note that Xn, f and h satisfy the restrictions stated in the furthermore-clauseof the proposition.)We will present a (deterministic) polynomial-time algorithm A that, givenCn = h(Xn), guesses the value of f(Xn) from the encryption of Xn, and doesso signi�cantly better that with probability 12 . This violates (even the restrictedform of) semantic security, since no algorithm (regardless of its complexity) canguess f(Xn) better than with probability 1=2 when only given 1jXnj (becausegiven the constant values 1jXnj and h(Xn), the value of f(Xn) is uniformlydistributed over f0; 1g). Details follow.Let us assume, without loss of generality, that for in�nitely many n'sPr �Cn(EG1(1n)(xn))=1� > Pr �Cn(EG1(1n)(yn))=1� + 1p(n) (5.3)Claim 5.2.7.1: There exists a (deterministic) polynomial-time algorithm A suchthat for in�nitely many n'sPr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i > 12 + 12p(n)Proof: Algorithm A uses Cn = h(Xn) in a straightforward manner: On input� = E(�) (where � is in the support of Xn) and (1n; 1j�j; h(�)), algorithm Arecovers Cn = h0(jXnj) = h(�), invokes Cn on input �, and outputs 1 if Cnoutputs 1 (otherwise, Cn outputs 0).3It is left to analyze the success probability of A. Letting m = jxnj = jynj, wehave Pr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i= 12 � Pr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn) jXn=xni+ 12 � Pr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn) jXn=yni3 We comment that the `1' output by Cn is an indication that � is more likely to be xn,whereas the output of A is a guess of f(�). This point may be better stressed by rede�ning fso that f(xn) def= xn and f(x) = yn if x 6= xn, and having A output xn if Cn outputs 1 andoutput yn otherwise.
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374 CHAPTER 5. ENCRYPTION SCHEMES= 12 � Pr hA(1n; EG1(1n)(xn); 1jxnj; Cn)=1i+ 12 � Pr hA(1n; EG1(1n)(yn); 1jynj; Cn)=0i= 12 � �Pr �Cn(EG1(1n)(xn))=1�+ 1� Pr �Cn(EG1(1n)(yn))=1��> 12 + 12p(n)where the inequality is due to Eq. (5.3). 2In contrast, as observed above, no algorithm (regardless of its complexity)can guess f(Xn) with success probability above 1=2, when given only 1jXnj andh(Xn). That is, we haveFact 5.2.7.2: For every n and every algorithm A0Pr hA0(1n; 1jXnj; h(Xn))=f(Xn)i � 12 (5.4)Proof: Just observe that the output of A0, on its constant input values 1n; 1jXnjand h(Xn), is stochastically independent of the random variable f(Xn), whichin turn is uniformly distributed in f0; 1g. Eq. (5.4) follows (and equality holdsin case A0 always outputs a value in f0; 1g). 2Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to thehypothesis that the scheme is semantically secure (even in the restricted sensementioned in the furthermore-clause of the proposition). Thus, the propositionfollows.Comment: When proving the public-key analogue of Proposition 5.2.7, algo-rithm A is de�ned as above except that it passes the encryption-key, given to itas part of its input, to the circuit Cn. The rest of the proof remains intact.5.2.4 Multiple MessagesThe above de�nitions only refer to the security of an encryption scheme thatis used to encrypt a single plaintext (per a generated key). Since the plain-text may be longer than the key, these de�nitions are already non-trivial, andan encryption scheme satisfying them (even in the private-key model) impliesthe existence of one-way functions (see Exercise 1). Still, in many cases, it isdesirable to encrypt many plaintexts using the same encryption-key. Looselyspeaking, an encryption scheme is secure in the multiple-message setting if anal-ogous de�nitions (to the above) hold also when polynomially-many plaintextsare encrypted using the same encryption-key.We show that in the public-key model, security in the single-message set-ting (discussed above) implies security in the multiple-message setting (de�nedbelow). We stress that this is not necessarily true for the private-key model.
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5.2. DEFINITIONS OF SECURITY 3755.2.4.1 De�nitionsFor a sequence of strings x = (x(1); :::; x(t)), we let Ee(x) denote the sequenceof the t results that are obtained by applying the randomized process Ee tothe t strings x(1); :::; x(t), respectively. That is, Ee(x) = Ee(x(1)); :::; Ee(x(t)).We stress that in each of these t invocations, the randomized process Ee uti-lizes independently chosen random coins. For sake of simplicity, we consider theencryption of (polynomially) many plaintexts of the same (polynomial) length(rather than the encryption of plaintexts of various lengths as discussed in Ex-ercise 19). The number of plaintexts as well as their total length (in unary) aregiven to all algorithms either implicitly or explicitly.4De�nition 5.2.8 (semantic security { multiple messages):For private-key: An encryption scheme, (G;E;D), is semantically secure formultiple messages in the private-key model if for every polynomial t(�)and every probabilistic polynomial-time algorithm A, there exists a proba-bilistic polynomial-time algorithm A0 such that for every ensemble fXn =(X(1)n ; :::; X(t(n))n )gn2N, with jX(i)n j = poly(n), every pair of functions f; h :f0; 1g� ! f0; 1g�, every polynomial p(�) and all su�ciently large nPr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; t(n); 1jXnj; h(Xn))=f(Xn)i+ 1p(n)For public-key: An encryption scheme, (G;E;D), is semantically secure formultiple messages in the public-key model if for t(�), A, A0, fXngn2N,f; h, p(�) and n as abovePr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; t(n); 1jXnj; h(Xn))=f(Xn)i+ 1p(n)We stress that the elements of Xn are not necessarily independent; they maydepend on one another. Note that the above de�nition also cover the case wherethe adversary obtains some of the plaintexts themselves. In this case it is stillinfeasible for him/her to obtain information about the missing plaintexts (seeExercise 21).De�nition 5.2.9 (indistinguishability of encryptions { multiple messages):4 For example, A can infer the number of plaintexts from the number of ciphertexts, whereasA0 is given this number explicitly. Given the number of the plaintexts as well as their totallength, both algorithms can infer the length of each plaintext.
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376 CHAPTER 5. ENCRYPTION SCHEMESFor private-key: An encryption scheme, (G;E;D), has indistinguishable en-cryptions for multiple messages in the private-key model if for every poly-nomial t(�), every polynomial-size circuit family fCng, every polynomial p,all su�ciently large n and every x1; :::; xt(n); y1; :::; yt(n) 2 f0; 1gpoly(n)jPr �Cn(EG1(1n)(�x))=1�� Pr �Cn(EG1(1n)(�y))=1� j < 1p(n)where �x = (x1; :::; xt(n)) and �y = (y1; :::; yt(n)).For public-key: An encryption scheme, (G;E;D), has indistinguishable encryp-tions for multiple messages in the public-key model if for t(�), fCng, p, nand x1; :::; xt(n); y1; :::; yt(n) as abovejPr �Cn(G1(1n); EG1(1n)(�x))=1��Pr �Cn(G1(1n); EG1(1n)(�y))=1� j < 1p(n)The equivalence of De�nitions 5.2.8 and 5.2.9 can be established analogously tothe proof of Theorem 5.2.5.Theorem 5.2.10 (equivalence of de�nitions { multiple messages): A private-key (resp., public-key) encryption scheme is semantically secure for multiple mes-sages if and only if it has indistinguishable encryptions for multiple messages.Thus, proving that single-message security implies multiple-message security forone de�nition of security, yields the same for the other. We may thus concentrateon the ciphertext-indistinguishability de�nitions.5.2.4.2 The e�ect on the public-key modelWe �rst consider public-key encryption schemes.Theorem 5.2.11 (single-message security implies multiple-message security):A public-key encryption scheme has indistinguishable encryptions for multiplemessages (i.e., satis�es De�nition 5.2.9 in the public-key model) if and only ifit has indistinguishable encryptions for a single message (i.e., satis�es De�ni-tion 5.2.4).Proof: Clearly, multiple-message security implies single-message security as aspecial case. The other direction follows by adapting the proof of Theorem 3.2.6to the current setting.Suppose, towards the contradiction, that there exist a polynomial t(�), apolynomial-size circuit family fCng, and a polynomial p, such that for in�nitelymany n's, there exists x1; :::; xt(n); y1; :::; yt(n) 2 f0; 1gpoly(n) so that��Pr �Cn(G1(1n); EG1(1n)(�x))=1�� Pr �Cn(G1(1n); EG1(1n)(�y))=1��� > 1p(n)
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5.2. DEFINITIONS OF SECURITY 377where �x = (x1; :::; xt(n)) and �y = (y1; :::; yt(n)). Let us consider such a generic nand the corresponding sequences x1; :::; xt(n) and y1; :::; yt(n). We use a hybridargument: de�ne �h(i) def= (x1; :::; xi; yi+1; :::; yt(n))and H(i)n def= (G1(1n); EG1(1n)(�h(i)))Since H(0)n = (G1(1n); EG1(1n)(�y)) and H(t(n))n = (G1(1n); EG1(1n)(�x)), it followsthat there exists an i 2 f0; :::; t(n)� 1g so that���Pr hCn(H(i)n )=1i� Pr hCn(H(i+1)n )=1i��� > 1t(n) � p(n) (5.5)We show that Eq. (5.5) yields a polynomial-size circuit that distinguishes theencryption of xi+1 from the encryption of yi+1, and thus derive a contradic-tion to security in the single-message setting. Speci�cally, we construct a cir-cuit Dn that incorporates the circuit Cn as well as the index i and the stringsx1; :::; xi+1; yi+1; :::; yt(n). On input an encryption-key e and (corresponding)ciphertext �, the circuit Dn operates as follows:� For every j � i, the circuit Dn generates an encryption of xj using theencryption-key e. Similarly, for every j � i + 2, the circuit Dn generatesan encryption of yj using the encryption-key e.Let us denote the resulting ciphertexts by �1; :::; �i; �i+2; :::; �t(n). That is,�j  Ee(xj) for j � i and �j  Ee(yj) for j � i+ 2.� Finally, Dn invokes Cn on input the encryption-key e and the sequence ofciphertexts �1; :::; �i; �; �i+2; :::; �t(n), and outputs whatever Cn does.We stress that the construction of Dn relies in an essential way on the fact thatthe encryption-key is given to it as input.We now turn to the analysis of the circuit Dn. Suppose that � is a (ran-dom) encryption of xi+1 with key e; that is, � = Ee(xi+1). Then, Dn(e; �) �Cn(e; Ee(�h(i+1))) = Cn(H(i+1)n ), where X � Y means that the random vari-ables X and Y are identically distributed. Similarly, for � = Ee(yi+1), we haveDn(e; �) � Cn(e; Ee(�h(i))) = Cn(H(i)n ). Thus, by Eq. (5.5), we have��Pr �Dn(G1(1n); EG1(1n)(yi+1)=1��Pr �Dn(G1(1n); EG1(1n)(xi+1)=1��� > 1t(n) � p(n)in contradiction to our hypothesis that (G;E;D) is a ciphertext-indistinguishablepublic-key encryption scheme (in the single message sense). The theorem follows.
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378 CHAPTER 5. ENCRYPTION SCHEMESDiscussion: The fact that we are in the public-key model is essential to theabove proof. It allows the circuit Dn to form encryptions relative to the sameencryption-key used in the ciphertext given to it. In fact, as stated above (andproven next), the analogous result does not hold in the private-key model.5.2.4.3 The e�ect on the private-key modelIn contrary to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishabilityfor a single message does not necessarily imply ciphertext-indistinguishabilityfor multiple messages.Proposition 5.2.12 Suppose that there exist pseudorandom generators (robustagainst polynomial-size circuits). Then, there exists a private-key encryptionscheme that satis�es De�nition 5.2.3 but does not satisfy De�nition 5.2.9.Proof: We start with the construction of the private-key encryption scheme.The encryption/decryption key for security parameter n is a uniformly dis-tributed n-bit long string, denoted s. To encrypt a ciphertext, x, the encryptionalgorithm uses the key s as a seed for a pseudorandom generator, denoted g,that stretches seeds of length n into sequences of length jxj. The ciphertext isobtained by a bit-by-bit exclusive-or of x and g(s). Decryption is done in ananalogous manner.We �rst show that this encryption scheme satis�es De�nition 5.2.3. Intu-itively, this follow from the hypothesis that g is a pseudorandom generator andthe fact that x�Ujxj is uniformly distributed over f0; 1gjxj. Speci�cally, supposetowards the contradiction that for some polynomial-size circuit family fCng, apolynomial p, and in�nitely many n'sjPr[Cn(x� g(Un))=1]� Pr[Cn(y � g(Un))=1]j > 1p(n)where Un is uniformly distributed over f0; 1gn and jxj = jyj = m = poly(n). Onthe other hand, Pr[Cn(x� Um)=1] = Pr[Cn(y � Um)=1]Thus, without loss of generalityjPr[Cn(x� g(Un))=1]� Pr[Cn(x � Um)=1]j > 12 � p(n)Incorporating x into the circuit Cn we obtain a circuit that distinguishes Umfrom g(Un), in contradiction to our hypothesis (regarding the pseudorandomnessof g).Next, we observe that the above encryption scheme does not satisfy De�ni-tion 5.2.9. Speci�cally, given the ciphertexts of two plaintexts, one may easilyretrieve the exclusive-or of the corresponding plaintexts. That is,Es(x1)�Es(x2) = (x1 � g(s))� (x2 � g(s)) = x1 � x2
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5.2. DEFINITIONS OF SECURITY 379This clearly violates De�nition 5.2.8 (e.g., consider f(x1; x2) = x1 � x2) as wellas De�nition 5.2.9 (e.g., consider any �x = (x1; x2) and �y = (y1; y2) such thatx1�x2 6= y1�y2). Viewed in a di�erent way, note that any plaintext-ciphertextpair yields a corresponding pre�x of the pseudorandom sequence, and knowledgeof this pre�x violates the security of additional plaintexts. That is, given theencryption of a known plaintext x1 along with the encryption of an unknownplaintext x2, we can retrieve x2. On input the ciphertexts �1; �2, knowing thatthe �rst plaintext is x1, �rst retrieves the pseudorandom sequence (i.e., it is justr def= �1�x1), and next retrieves the second plaintext (i.e., by computing �2�r).Discussion: The single-message security of the above scheme was proven byconsidering an ideal version of the scheme in which the pseudorandom sequenceis replaced by a truly random sequence. The latter scheme is secure in an in-formation theoretic sense, and the security of the actual scheme followed by theindistinguishability of the two sequences. As we show in Section 5.3.1 (below),the above construction can be modi�ed to yield a private-key \stream-cipher"that is secure for multiple message encryptions. All that is needed is to makesure that (as opposed to the construction above) the same portion of the pseu-dorandom sequence is never used twice.An alternative proof of Proposition 5.2.12: Given an arbitrary private-key encryption scheme (G;E;D), consider the following private-key encryptionscheme (G0; E0; D0):� G0(1n) = ((k; r); (k; r), where (k; k)  G(1n) and r is uniformly selectedin f0; 1gjkj;� E0(k;r)(x) = (Ek(x); k � r) with probability 1=2 and E0(k;r)(x) = (Ek(x); r)otherwise;� and D0(k;r)(y; z) = Dk(y).If (G;E;D) is secure than so is (G0; E0; D0) (with respect to a single message);however, (G0; E0; D0) is not secure with respect to two messages. For furtherdiscussion see Exercise 20.5.2.5 * A uniform-complexity treatmentAs stated at the beginning of this section, the non-uniform formulation wasadopted here for sake of simplicity. In this subsection we sketch a uniform-complexity de�nitional treatment of security. We stress that by uniform or non-uniform complexity treatment of cryptographic primitives we merely refer to themodeling of the adversary. The honest (legitimate) parties are always modeledby uniform complexity classes (most commonly probabilistic polynomial-time).
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380 CHAPTER 5. ENCRYPTION SCHEMESThe notion of e�ciently constructible ensembles, de�ned in Section 3.2.3,is central to the uniform-complexity treatment. Recall that an ensemble, X =fXngn2N, is said to be polynomial-time constructible if there exists a probabilisticpolynomial time algorithm S so that for every n, the random variables S(1n)and Xn are identically distributed.5.2.5.1 The de�nitionsWe present only the de�nitions of security for multiple messages; the single-message variant can be easily obtained by setting the polynomial t (below) to beidentically 1. Likewise, we present the public-key version, and the private-keyanalogous can be obtained by omitting G1(1n) from the inputs to the variousalgorithms.The uniformity of the following de�nitions is re
ected in the complexity ofthe inputs given to the algorithms. Speci�cally, the plaintexts are taken frompolynomial-time constructible ensembles and so are the auxiliary inputs given tothe algorithms. For example, in the following de�nition we require the ensemblefXng to be polynomial-time constructible and the function h to be polynomial-time computable.De�nition 5.2.13 (semantic security { uniform-complexity version): An en-cryption scheme, (G;E;D), is uniformly semantically secure in the public-keymodel if for every polynomial t, and every probabilistic polynomial-time algo-rithm A there exists a probabilistic polynomial-time algorithm A0 such that for ev-ery polynomial-time constructible ensemble fXn = (X(1)n ; :::; X(t(n))n )gn2N, withjX(i)n j = poly(n), every polynomial-time computable h : f0; 1g� ! f0; 1g�, everyf : f0; 1g� ! f0; 1g�, every positive polynomial p and all su�ciently large n'sPr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; t(n); 1jXnj; h(Xn))=f(Xn)i+ 1p(n)where Ee(xn) def= Ee(x(1)n ); :::; Ee(x(t(n))n ) (for x = (x(1)n ; :::; x(t(n))n )) is as in Def-inition 5.2.8.Again, we stress that Xn is a sequence of random variables, which may dependon one another. Also, the encryption-key G1(1n) was omitted from the input ofA0 (since the latter may generate it by itself). We stress that even here (i.e., inthe uniform complexity setting) no computational limitation are placed on thefunction f .De�nition 5.2.14 (indistinguishability of encryptions { uniform-complexity ver-sion): An encryption scheme, (G;E;D), has uniformly indistinguishable encryp-tions in the public-key model if for every polynomial t, every probabilistic polynomial-time algorithm D0, every polynomial-time constructible ensemble T def= fTn =
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5.2. DEFINITIONS OF SECURITY 381XnY nZngn2N, with Xn = (X(1)n ; :::; X(t(n))n ), Y n = (Y (1)n ; :::; Y (t(n))n ), and jX(i)n j =jY (i)n j = poly(n),jPr �D0(Zn; G1(1n); EG1(1n)(Xn))=1�� Pr �D0(Zn; G1(1n); EG1(1n)(Y n))=1� j < 1p(n)for every positive polynomial p and all su�ciently large n's.The random variable Zn captures a-priori information about the plaintexts forwhich encryptions should be distinguished. A special case of interest is whenZn = XnY n. Uniformity is captured in the requirement thatD0 is a probabilisticpolynomial-time algorithm (rather than a family of polynomial-size circuits) andthat the ensemble fTn = XnY nZngn2N be polynomial-time constructible.5.2.5.2 Equivalence of the multiple-message de�nitionsWe prove the equivalence of the uniform-complexity de�nitions (presented above)for (multiple-message) security.Theorem 5.2.15 (equivalence of de�nitions { uniform treatment): A public-key encryption scheme satis�es De�nition 5.2.13 if and only if it satis�es Def-inition 5.2.14. Furthermore, this holds even if De�nition 5.2.14 is restricted tothe special case where Zn = XnY n, and even if De�nition 5.2.13 is restricted tothe special case where f is polynomial-time computable.An analogous result holds for the private-key model. The important direction ofthe theorem holds also for the single-message version (this is quite obvious fromthe proof below). In the other direction, we seem to use the multiple-messageversion (of semantic security) in an essential way.Proof Sketch: Again, we start with the more important direction; that is,assuming that (G;E;D) has (uniformly) indistinguishable encryptions in thespecial case where Zn = XnY n, we show that it is (uniformly) semanticallysecure. Our construction of algorithm A0 is analogous to the construction usedin the non-uniform treatment. Speci�cally, on input (1j�nj; h(�n)), algorithmA0 generates a random encryption of a dummy sequence of message (i.e., 1j�nj),feeds it to A, and outputs whatever A does.5 That is,A0(1j�nj; h(�n)) = A(G1(1n); EG1(1n)(1j�nj); 1j�nj; h(�n)) (5.6)As in the non-uniform case, the analysis of algorithm A0 reduces to the followingclaim.5 The above description is slightly inaccurate. Algorithm A0 is also provided with theauxiliary inputs 1n and t(n). Using t(n), the algorithm breaks 1j�nj into a sequence of t(n)equal-length (unary) strings, using 1n it generates a random encryption-key, and using thiskey it generates the corresponding sequence of encryptions.
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382 CHAPTER 5. ENCRYPTION SCHEMESClaim 5.2.15.1: For every polynomial-time constructible ensemble fXngn2N,with Xn = (X(1)n ; :::; X(t(n))n ) and jX(i)n j = poly(n), every polynomial-time com-putable h, every positive polynomial p and all su�ciently large n'sPr �A(G1(1n); EG1(1n)(Xn); h(Xn))=f(Xn)�< Pr hA(G1(1n); EG1(1n)(1jXnj); h(Xn))=f(Xn)i+ 1p(n)Proof sketch: Analogously to the non-uniform case, assuming towards the con-tradiction that the claim does not hold, yields an algorithm that distinguishesencryptions of Xn from encryptions of Y n = 1jXnj, when getting auxiliary in-formation Zn = XnY n = Xn1jXnj. Thus, we derive contradiction to De�ni-tion 5.2.14 (even under the special case postulated in the theorem).We note that the auxiliary information that is given to the distinguishingalgorithm replaces the hard-wiring of auxiliary information that was used inthe non-uniform case (and is not possible in the uniform complexity model).Speci�cally, rather than using a hard-wired value of h (at some non-uniformly�xed sequence), the distinguishing algorithm will use the auxiliary informationZn = Xn1jXnj in order to compute h(Xn), which it will pass to A. Indeed, werely on the hypothesis that h is e�ciently computable.The actual proof is quite simple in case the function f is also polynomial-time computable (which is not the case in general). In this special case, on input(e; z; Ee(�)), where z = (x; 1jxj) and � 2 fx; 1jxjg, the distinguishing algorithmcomputes u = h(x) and v = f(x), invokes A, and outputs 1 if and only ifA(e; Ee(�); 1jxj; u) = v.(We comment that in case � = 1jxj, we actually mean that � is asequence of t(n) strings of the form 1`(n), where t and ` are as in x =(x(1); :::; x(t(n))) 2 (f0; 1g`(n))t(n).)The proof becomes more involved in case f is not polynomial-time computable.6Again, the solution is in realizing that indistinguishability of encryption postu-lates a similar output pro�le in both cases, and in particular no value can occurnon-negligibly more in one case than in the other. To clarify the point, we de-�ne �v(xn) to be the di�erence between Pr[A(G1(1n); EG1(1n)(xn); h(xn))= v]and Pr[A(G1(1n); EG1(1n)(1jxnj); h(xn)) = v]. We know that E[�f(Xn)(Xn)] >1=p(n), but given xn we cannot evaluate �f(xn)(xn), since we do not havef(xn). Instead, we let �(xn) def= maxvf�v(xn)g, and observe that E[�(Xn)] �E[�f(Xn)(Xn)] > 1=p(n). Furthermore, given xn we can approximate �(xn)in polynomial-time, and can �nd (in polynomial-time) a value v such that�v(xn) > �(xn)� (1=2p(n)), with probability at least 1� 2�n.On approximating�(xn) etc.: By invoking algorithm A on O(n�p(n)3) sam-ples of the distributions (G1(1n); EG1(1n)(xn); h(xn)) andG1(1n); EG1(1n)(1jxnj); h(xn)),6 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the valuesof h and f on good sequences) into the algorithm D0 (which is required to be uniform).
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5.2. DEFINITIONS OF SECURITY 383we obtain (implicitly) an approximation of all �v(xn)'s up-to an additivedeviation of 1=4p(n) (with error probability at most 2�n). The approxima-tion to �v(xn), denoted e�v(xn) is merely the di�erence between the frac-tion of samples (from both distributions) on which algorithm A returned1. (Indeed, most �v(xn)'s are approximated by 0, but some �v(xn)'smay approximated by non-zero values.) We just output v for which theapproximated value e�v(xn) is largest. Thus, if for some v0 it holds that�v0(xn) = �(xn), then with probability at least 1�2�n we output v suchthat �v(xn) � e�v(xn)� (1=4p(n))� e�v0(xn)� (1=4p(n))� �v0(xn)� (1=4p(n)) � (1=4p(n))Thus, �v(xn) � �(xn)� (1=2p(n)).Thus, on input (e; z; Ee(�)), where z = (x; 1jxj), the new algorithm, denoted D0,operates in two stages.1. In the �rst stage, D0 ignores the ciphertext Ee(�). Using z, algorithm D0recovers x, and computes u = h(x). Using x and u, algorithmD0 estimates�(x), and �nds a v as above.2. In the second stage (using u and v found in the �rst stage), algorithm D0invokes A, and outputs 1 if and only if A(e; Ee(�); 1jxj; u) = v.Let V (x) be the value found in the �rst stage of algorithm A (i.e., obliviously ofthe ciphertext Ee(�)). The reader can easily verify that���Pr �D0(G1(1n); Zn; EG1(1n)(Xn))=1�� Pr hD0(G1(1n); Zn; EG1(1n)(1Xn))=1i���= E h�V (Xn)(Xn)i� �1� 2�n� � E ��(Xn)� 12p(n)�� 2�n> E ��(Xn)�� 23p(n) > 13p(n)Thus, we have derived a probabilistic polynomial-time algorithm (i.e., D0) thatdistinguishes encryptions of Xn from encryptions of Y n = 1jXnj, when gettingauxiliary information Zn = Xn1jXnj. By hypothesis fXng is polynomial-timeconstructible, and it follows that so is fXnY nZng Thus, we derive contradictionto De�nition 5.2.14 (even under the special case postulated in the theorem), andthe claim follows. 2Having established the important direction, we now turn to the oppositeone. That is, we assume that (G;E;D) is (uniformly) semantically secure andprove that it has (uniformly) indistinguishable encryptions. Again, the proof is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



384 CHAPTER 5. ENCRYPTION SCHEMESby contradiction. Suppose, without loss of generality, that there exists a proba-bilistic polynomial-time algorithm D0, a polynomial-time constructible ensembleT def= fTn = XnY nZngn2N (as in De�nition 5.2.14), a positive polynomial p andin�nitely many n's so thatPr �D0(Zn; G1(1n); EG1(1n)(Xn))=1�> Pr �D0(Zn; G1(1n); EG1(1n)(Y n))=1� j + 1p(n)Let t(n) and `(n) be such that Xn (resp., Y n) consists of t(n) strings, eachof length `(n). Suppose, without loss of generality, that jZnj = m(n) � `(n),and parse Zn into Zn = (Z(1)n ; :::; Z(m(n))n ) 2 (f0; 1g`(n))m(n) such that Zn =Z(1)n � � �Z(m(n))n . We de�ne an auxiliary polynomial-time constructible ensembleQ def= fQngn2N so thatQn = � 0`(n)ZnXnY n with probability 121`(n)ZnY nXn with probability 12That is, Qn is a sequence of 1 +m(n) + 2t(n) strings, each of length `(n), thatcontains ZnXnY n in addition to a bit (provided in the `(n)-bit long pre�x)indicating whether the order of Xn and Y n is switched or not. We de�ne thefunction f so that to equal this \switch" indicator bit, and the function h toprovide all information in Qn except this switch bit. That is, we de�ne f and has follows:� The function f :f0; 1g�!f0; 1g is de�ned so that f returns the �rst bit ofits input; that is, f(�`(n)abc) = �, for (a; b; c) 2 (f0; 1gl(n))m(n)+2t(n).� The function h : f0; 1g� ! f0; 1g is de�ned so that h provides the in-formation in the su�x without yielding information on the pre�x; thatis, h(�`(n)abc) = abc if � = 0 and h(�`(n)abc) = acb otherwise. Thus,h(Qn) = ZnXnY n; that is, it returns Tn to its original order (undoing thepossible switch employed in Qn).We stress that both h and f are polynomial-time computable.We will show that the distinguishing algorithmD0 (which distinguishes E(Xn)from E(Y n), when also given Zn � Zn) can be transformed into a polynomial-size algorithm A that guesses the value of f(Qn), from the encryption of Qn(and the value of h(Qn)), and does so signi�cantly better than with proba-bility 12 . This violates semantic security, since no algorithm (regardless of itsrunning-time) can guess f(Qn) better than with probability 1=2 when only givenh(Qn) and 1jQnj (since given h(Qn) and 1jQnj, the value of f(Qn) is uniformlydistributed over f0; 1g).On input (e; Ee(�); 1j�j; h(�)), where � = �`(n)abc 2 (f0; 1gl(n))1+m(n)+2t(n)equals either (0`(n); z; x; y) or (1`(n); z; y; x), algorithm A proceeds in two stages:
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5.2. DEFINITIONS OF SECURITY 3851. In the �rst stage, algorithmA ignores the ciphertext Ee(�). It �rst extractsx; y and z � ovz out of h(�) = z x y, and approximates �(z; x; y), whichis de�ned to equalPr �D0(z;G1(1n); EG1(1n)(x))=1�� Pr �D0(z;G1(1n); EG1(1n)(y))=1�(5.7)Speci�cally, using O(n � p(n)2) samples, algorithm A obtains an approx-imation, denoted e�(z; x; y), such that je�(z; x; y) � �(z; x; y)j < 1=3p(n)with probability at least 1� 2�n.Algorithm A sets � = 1 if e�(z; x; y) > 1=3p(n), sets � = �1 if e�(z; x; y) <�1=3p(n), and sets � = 0 otherwise (i.e., je�(z; x; y)j � 1=3p(n)).In case � = 0, algorithm A halts with an arbitrary reasonable guess (say arandomly selected bit). (We stress that all this is done obliviously of theciphertext Ee(�), which is only used next.)2. In the second stage, algorithm A extracts the last block of ciphertexts (i.e.,Ee(c)) out of Ee(�) = Ee(�`(n)abc), and invokes D0 on input (z; e; Ee(c)),where z is as extracted in the �rst stage. Using the value of � as determinedin the �rst stage, algorithm A decides as follows:� In case � = 1, algorithm A outputs 1 if and only if the output of D0is 1.� In case � = �1, algorithm A outputs 0 if and only if the output of D0is 1.Claim 5.2.15.2: Let p, Qn, h, f and A be as above.Pr �A(G1(1n); EG1(1n)(Qn); h(Qn))=f(Qn)� > 12 + 110 � p(n)2Proof sketch: We focus on the case in which the approximation of �(z; x; y)computed by (the �rst stage of) A is within 1=3p(n) of the correct value. Thus,in case � 6= 0, the sign of � concurs with the sign of �(z; x; y). It follows that,for every possible (z; x; y) such that � = 1 (it holds that �(z; x; y) > 0 and) thefollowing holdsPr �A(G1(1n); EG1(1n)(Qn); h(Qn))=f(Qn) j (Zn; Xn; Xn)=(z; x; y)�= 12 � Pr hA(G1(1n); EG1(1n)(0`(n); z; x; y); h(0`(n); z; x; y))=0i+ 12 � Pr hA(G1(1n); EG1(1n)(1`(n); z; y; x); h(1`(n); z; y; x))=1i= 12 � Pr �D0(z;G1(1n); EG1(1n)(y))=0�+ 12 � Pr �D0(z;G1(1n); EG1(1n)(x))=1�= 12 � (1 + �(z; x; y))
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386 CHAPTER 5. ENCRYPTION SCHEMESSimilarly, for every possible (z; x; y) such that � = �1 (it holds that �(z; x; y) <0 and) the following holdsPr �A(G1(1n); EG1(1n)(Qn); h(Qn))=f(Qn) j (Zn; Xn; Xn)=(z; x; y)�= 12 � Pr hA(G1(1n); EG1(1n)(0`(n); z; x; y); h(0`(n); z; x; y))=0i+ 12 � Pr hA(G1(1n); EG1(1n)(1`(n); z; y; x); h(1`(n); z; y; x))=1i= 12 � Pr �D0(z;G1(1n); EG1(1n)(y))=1�+ 12 � Pr �D0(z;G1(1n); EG1(1n)(x))=0�= 12 � (1��(z; x; y))Thus, in both cases where � 6= 0, algorithm A succeeds with probability1 + � ��(z; x; y)2 = 1 + j�(z; x; y)j2and in case � = 0 it succeeds with probability 1=2. Recall that if �(z; x; y) >23p(n) then � = 1. Using the contradiction hypothesis that asserts that E[�(Zn; Xn; Y n)] >1p(n) , we lower bound Pr[�(Zn; Xn; Xn) > 23p(n) ] by 13p(n) . Thus, the overall suc-cess probability of algorithm A is at least13p(n) � 1 + (2=3p(n))2 +�1� 13p(n)� � 12 = 12 + 1(3p(n))2and the claim follows. 2This completes the proof of the opposite direction.Discussion: The proof of the �rst (i.e., important) direction holds also in thesingle-message setting. In general, for any function t, in order to prove thatsemantic security holds with respect to t-long sequences of ciphertexts, we justuse the hypothesis that t-long message-sequences have indistinguishable encryp-tions. In contrast, the proof of the second (i.e., opposite) direction makes anessential use of the multiple-message setting. In particular, in order to provethat t-long message-sequences have indistinguishable encryptions, we use thehypothesis that semantic security holds with respect to (1 + m + 2t)-long se-quences of ciphertexts, where m depends on the length of the auxiliary input inthe claim of ciphertext-indistinguishability. Thus, even if we only want to es-tablish ciphertext-indistinguishability in the single-message setting, we do so byusing semantic security in the multiple-message setting. Furthermore, we use thefact that given a sequence of ciphertexts, we can extract a certain subsequenceof ciphertexts.
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5.2. DEFINITIONS OF SECURITY 3875.2.5.3 Single-message versus multiple-message de�nitionsAs in the non-uniform case, for the public-key model, single-message securityimplies multiple-message security. Again, this implication does not hold in theprivate-key model. The proofs of both statements are analogous to the proofsprovided in the non-uniform case. Speci�cally:1. For the public-key model, single-message uniform-indistinguishability ofencryptions imply multiple-message uniform-indistinguishability of encryp-tions, which in turn implies multiple-message uniform-semantic security.In the proof of this result, we use the fact that all hybrids are polynomial-time constructible, and that we may select a random pair of neighboringhybrids (cf. the proof of Theorem 3.2.6). We also use the fact that anensemble of triplets, fTn = XnY nZ 0ngn2N, with Xn = (X(1)n ; :::; X(t(n))n ),Y n = (Y (1)n ; :::; Y (t(n))n ), as in De�nition 5.2.14, induces an ensemble oftriplets, fTn = XnYnZngn2N, for the case t � 1. Speci�cally, we shall useXn = X(i)n , Yn = Y (i)n , and Zn = (Xn; Y n; Z 0n; i), where i is uniformlydistributed in f1; :::; t(n)g.2. For the private-key model, single-message uniform-indistinguishability ofencryptions does not imply multiple-message uniform-indistinguishabilityof encryptions. The proof is exactly as in the non-uniform case.5.2.5.4 The gain of a uniform treatmentSuppose that one is content with the uniform-complexity level of security, whichis what we advocate below. Then the gain in using the uniform-complexitytreatment is that a uniform-complexity level of security can be obtained usingonly uniform complexity assumptions (rather than non-uniform complexity as-sumptions). Speci�cally, the results presented in the next section are based onnon-uniform assumptions such as the existence of functions that cannot be in-verted by polynomial-size circuits (rather than by probabilistic polynomial-timealgorithms). These non-uniform assumption are used in order to satisfy thenon-uniform de�nitions presented in the main text (above). Using any of theseconstructions, while making the analogous uniform assumptions, yields encryp-tion schemes with the analogous uniform-complexity security. (We stress thatthis is no coincidence, but is rather an artifact of these results being proven bya uniform reducibility argument.)However, something is lost when relying on these (seemingly weaker) uniformcomplexity assumptions. Namely, the security we obtain is only against the(seemingly weaker) uniform adversaries. We believe that this loss in securityis immaterial. Our belief is based on the thesis that uniform complexity is theright model of \real world" cryptography. We believe that it is reasonable toconsider only objects (i.e., inputs) generated by uniform and e�cient proceduresand the e�ect that these objects have on uniformly and e�cient observers (i.e.,
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388 CHAPTER 5. ENCRYPTION SCHEMESadversaries). In particular, schemes secure against probabilistic polynomial-timeadversaries can be used in any setting consisting of probabilistic polynomial-timemachines with inputs generated by probabilistic polynomial-time procedures.We believe that the cryptographic setting is such a case.5.3 Constructions of Secure Encryption SchemesIn this subsection we present constructions of secure private-key and public-key encryption schemes. Here and throughout this section security means se-mantic security in the multiple-message setting. Recall that this is equivalentto ciphertext-indistinguishability (in the multiple-message setting). Also recallthat for public-key schemes it su�ces to prove ciphertext-indistinguishability inthe single-message setting. The main results of this section are� Using any (non-uniformly robust) pseudorandom function, one can con-struct secure private-key encryption schemes. Recall, that the former canbe constructed using any (non-uniformly strong) one-way function.� Using any (non-uniform strong) trapdoor one-way permutation, one canconstruct secure public-key encryption schemes.In addition, we review some popular suggestions for private-key and public-keyencryption schemes.Probabilistic Encryption: Before starting, we recall that a secure public-keyencryption scheme must employ a probabilistic (i.e., randomized) encryption al-gorithm. Otherwise, given the encryption-key as (additional) input, it is easyto distinguish the encryption of the all-zero message from the encryption of theall-ones message. The same holds for private-key encryption schemes when con-sidering the multi-message setting.7 For example, using a deterministic (private-key) encryption algorithm allows the adversary to distinguish two encryptionsof the same message from the encryptions of a pair of di�erent messages. Thus,the common practice of using pseudorandom permutations as \block-ciphers"(see de�nition below) is not secure (again, one can distinguish two encryptionsof the same message from encryptions of two di�erent messages). This explainsthe linkage between the above robust security de�nitions and randomized (a.k.aprobabilistic) encryption schemes. Indeed, all our encryption schemes will em-ploy randomized encryption algorithms.87 We note that the above does not hold with respect to private-key schemes in the single-message setting (or for the augmented model of state-based ciphers discussed in Section 5.3.1).In such a case, the private-key can be augmented to include a seed for a pseudorandomgenerator, the output of which can be used to eliminate randomness from the encryptionalgorithm. (Question: why does the argument fail in the public-key setting and in the multi-message private-key setting?)8 The (private-key) stream-ciphers discussed in Section 5.3.1 are an exception, but{ aswe point out{ they do not adhere to our (basic) formulation of encryption schemes (as inDe�nition 5.1.1).
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 3895.3.1 * Stream{CiphersIt is common practice to use \pseudorandom generators" as a basis for private-key stream ciphers (see de�nition below). Speci�cally, the pseudorandom gener-ator is used to produce a stream of bits that are XORed with the correspondingplaintext bits to yield corresponding ciphertext bits. That is, the generatedpseudorandom sequence (which is determined by the a-priori shared key) is usedas a \one-time pad" instead of a truly random sequence, with the advantage thatthe generated sequence may be much longer than the key (whereas this is notpossible for a truly random sequence). This common practice is indeed soundprovided one actually uses pseudorandom generators (as de�ned in Section 3.3),rather than using programs that are called \pseudorandom generators" but ac-tually produce sequences that are easy to predict (such as the linear congruentialgenerator or some modi�cations of it that output a constant fraction of the bitsof each resulting number).As we shall see, using any pseudorandom generator one may obtain a secureprivate-key stream cipher that allows to encrypt a stream of plaintext bits. Wenote that such a stream cipher does not conform with our formulation of anencryption scheme (i.e., as in De�nition 5.1.1), because in order to encryptseveral messages one is required to maintain a counter (so to prevent reusingparts of the pseudorandom \one-time pad"). In other words, we obtain a secureencryption scheme with a variable state that is modi�ed after the encryption ofeach message. We stress that constructions of secure and stateless encryptionschemes (i.e., conforming with De�nition 5.1.1) are known and are presented inSections 5.3.3 and 5.3.4. The traditional interest in stream ciphers is due toe�ciency considerations. We discuss this issue at the end of Section 5.3.3. Butbefore doing so, let us formalize the above discussion.5.3.1.1 De�nitionsWe start by extending the simple mechanism of encryption schemes (as presentedin De�nition 5.1.1). The key-generation algorithm remains unchanged, but boththe encryption and decryption algorithm take an additional input and emit anadditional output, corresponding to their state before and after the operation.The length of the state is not allowed to grow by too much during each applica-tion of the encryption algorithm (see Item 3 in De�nition 5.3.1 below), or elsethe e�ciency of the entire \repeated encryption" process can not be guaranteed.For sake of simplicity, we incorporate the key in the state of the correspondingalgorithm. Thus, the initial state of each of the algorithms is set to equal itscorresponding key. Furthermore, one may think of the intermediate states as ofupdated values of the corresponding key. For clarity, the reader may considerof the special case in which the state contains the initial key, the number oftimes the scheme was invoked (or the total number of bits in such invocations),and auxiliary information that allows to speed-up the computation of the nextciphertext (or plaintext).For simplicity, we assume below that the decryption algorithm (i.e., D) is
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390 CHAPTER 5. ENCRYPTION SCHEMESdeterministic (otherwise formulating the reconstruction condition would be morecomplex). Intuitively, the main part of the reconstruction condition (i.e., Item 2in De�nition 5.3.1) is that the (proper) iterative encryption-decryption processrecovers the original plaintexts. The additional requirement in Item 2 is thatthe state of the decryption algorithm is updated correctly as long as it is fedwith strings of length equal to the length of the valid ciphertexts. This extrarequirement implies that given the initial decryption-key and the current cipher-text as well as the lengths of all previous ciphertexts (which may be actuallyincorporated in the current ciphertext), one may recover the current plaintext.This fact is interesting for two reasons:A theoretical reason: It implies that, without loss of generality (alas with possi-ble loss in e�ciency), the decryption algorithm may be stateless. Further-more, without loss of generality (alas with possible loss in e�ciency), thestate of the encryption algorithm may consist of the initial encryption-keyand the lengths of the plaintexts encrypted so far.A practical reason: It allows to recover from the loss of some of the ciphertexts.That is, assuming that all ciphertexts have the same (known) length (whichis typically the case in the relevant applications), if the receiver knows (oris given) the total number of ciphertexts sent so far then it can recover thecurrent plaintext from the current ciphertext, even if some of the previousciphertexts were lost.We comment that in traditional stream ciphers, the plaintexts (and ciphertexts)are individual bits or blocks of a �xed number of bits (i.e., j�(i)j = j�(i)j = ` forall i's).De�nition 5.3.1 (state-based cipher { the mechanism): A state-based encryp-tion scheme is a triple, (G;E;D), of probabilistic polynomial-time algorithmssatisfying the following three conditions1. On input 1n, algorithm G outputs a pair of bit strings.2. For every pair (e(0); d(0)) in the range of G(1n), and every sequence ofplaintexts �(i)'s, the following holds: if (e(i); �(i))  E(e(i�1); �(i)) and(d(i); 
(i))  D(d(i�1); �(i)), for i = 1; 2; :::, then 
(i) = �(i) for ev-ery i. Furthermore, for every i and every � 2 f0; 1gj�(i)j, it holds thatD(d(i�1); �) = (d(i); �).3. There exists a polynomial p such that for every pair (e(0); d(0)) in the rangeof G(1n), and every sequence of �(i)'s and e(i)'s as above, it holds thatje(i)j � je(i�1)j+ j�(i)j � p(n). Similarly for the d(i)'s.That is, as in De�nition 5.1.1, the encryption-decryption process operates prop-erly (i.e., the decrypted message equals the plaintext), provided that the cor-responding algorithms get the corresponding keys (or states). Note that inDe�nition 5.3.1 the keys are modi�ed by the encryption-decryption process, and
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 391so correct decryption requires holding the correctly-updated decryption-key. Westress that the furthermore clause in Item 2 guarantees that the decryption-keyis correctly updated as long as the decryption process is fed with strings ofthe correct lengths (but not necessarily with the correct ciphertexts). As discussabove, this extra condition has interesting theoretical and practical consequencesto be further emphasized in Construction 5.3.3 (below). We comment that inConstruction 5.3.3, it holds that je(i)j � je(0)j+ log2Pij=1 j�(j)j, which is muchstronger than the requirement in Item 3.We stress that De�nition 5.3.1 refers to the encryption of multiple messages(and is meaningless when considering the encryption of a single message). How-ever, De�nition 5.3.1 by itself does not explain why one should encrypt the ithmessage using the updated encryption-key e(i�1), rather than reusing the ini-tial encryption-key e(0) in all encryptions (where decryption is done by reusingthe initial decryption-key d(0)). Indeed, the reason for updating these keys isprovided by the following security de�nition that refers to the encryption of mul-tiple messages, and holds only in case the encryption-keys in use are properlyupdated (in the multiple-message encryption process). Below we present onlythe semantic security de�nition for private-key schemes.De�nition 5.3.2 (semantic security { state-based cipher): For a state-basedencryption scheme, (G;E;D), and any x = (x(1); :::; x(t)), we let Ee(x) =(y(1); :::; y(t)) be the result of the following t-step (possibly random) process, wheree(0) def= e. For i = 1; :::; t, we let (e(i); y(i))  E(e(i�1); x(i)), where each ofthe t invocations E utilizes independently chosen random coins. The scheme(G;E;D) is semantically secure in the state-based private-key model if for ev-ery polynomial t(�) and every probabilistic polynomial-time algorithm A thereexists a probabilistic polynomial-time algorithm A0 such that for every ensemblefXn = (X(1)n ; :::; X(t(n))n )gn2N, with jX(i)n j = poly(n), every pair of functionsf; h : f0; 1g� ! f0; 1g�, every polynomial p(�) and all su�ciently large nPr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; t(n); 1jXnj; h(Xn))=f(Xn)i+ 1p(n)Note that De�nition 5.3.2 (only) di�ers from De�nition 5.2.8 in the preamblede�ning the random variable Ee(x), which mandates that the encryption-keye(i�1) is used in the ith encryption. Furthermore, De�nition 5.3.2 guaran-tees nothing regarding an encryption process in which the plaintext sequencex(1); :::; x(t) is encrypted by E(e; x(1)); E(e; x(2)); :::; E(e; x(t)) (i.e., the initialencryption-key e itself is used in all encryptions, as in De�nition 5.2.8).5.3.1.2 A sound version of a common practiceUsing any (on-line) pseudorandom generator, one can easily construct a securestate-based private-key encryption scheme. Recall that on-line pseudorandomgenerators are a special case of variable-output pseudorandom generators (see
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392 CHAPTER 5. ENCRYPTION SCHEMESSection 3.3.3), in which a hidden state is maintained and updated so to allowgeneration of the next output bit in time polynomial in the length of the initialseed, regardless of the number of bits generated so far. Speci�cally, the next(hidden) state and output bit are produced by applying a (polynomial-timecomputable) function g :f0; 1gn!f0; 1gn+1 to the current state (i.e., s0�  g(s),where s is the current state, s0 is the next state and � is the next output bit).The suggested state-based private-key encryption scheme will be initialized witha key equal to the seed of such a generator, and will maintain and update a stateallowing it to quickly produce the next output bit of the generator. The streamof plaintext bits will be encrypted by XORing these bits with the correspondingoutput bits of the generator.Construction 5.3.3 (how to construct stream ciphers (i.e., state-based private-key encryption schemes)): Let g be a polynomial-time computable function suchthat jg(s)j = jsj+ 1 for all s 2 f0; 1g�.key-generation and initial state: On input 1n, uniformly select s 2 f0; 1gn, andoutput the key-pair (s; s). The initial state of each algorithm is set to(s; 0; s).(We maintain the initial key s and a step-counter in order to allow recoveryfrom loss of ciphertexts.)encrypting the next plaintext bit x with state (s; t; s0): Let s00� = g(s0), wherejs00j = js0j and � 2 f0; 1g. Output the ciphertext bit x��, and set the newstate to (s; t+ 1; s00).decrypting the ciphertext bit y with state (s; t; s0): Let s00� = g(s0), where js00j =js0j and � 2 f0; 1g. Output the plaintext bit y � �, and set the new stateto (s; t+ 1; s00).When noti�ed that some ciphertext bits may have been lost and that thecurrent ciphertext bit has index t0, the decryption procedure �rst recoversthe correct current state, denoted st0 . This is done by computing si�i =g(si�1), for i = 1; :::; t0, where s0 def= s.Note that both the encryption and decryption algorithms are deterministic, andthat the state after encryption of t bits has length 2n+ log2 t < 3n (for t < 2n).Recall that g (as in Construction 5.3.3) is called a next step function of anon-line pseudorandom generator if for every polynomial p the ensemble fGpngn2Nis pseudorandom (with respect to polynomial-size circuits), where Gpn is de�nedby the following random process:Uniformly select s0 2 f0; 1gn;For i = 1 to p(n), let si�i  g(si�1), where �i 2 f0; 1g (and si 2 f0; 1gn);Output �1�2 � � ��p(n).Also recall that if g is (itself) a pseudorandom generator then it constitutes anext step function of an on-line pseudorandom generator (see Exercise 21 ofChapter 3). Thus:
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 393Proposition 5.3.4 If g is a pseudorandom generator (with respect to polynomial-size circuits) then Construction 5.3.3 constitutes a secure state-based private-keyencryption scheme.Proof Idea: Consider an ideal version of Construction 5.3.3 in which a trulyrandom sequence is used instead of the output produced by the on-line pseudo-random generator de�ned by g. The ideal version coincides with the traditionalone-time pad, and thus is perfectly secure. The security of the actual Construc-tion 5.3.3 follows by the pseudorandomness of the on-line generator.5.3.2 Preliminaries: Block{CiphersMany encryption schemes are more conveniently presented by �rst presenting arestricted type of encryption scheme that we call a block-cipher.9 In contrastto encryption schemes (as de�ned in De�nition 5.1.1), block-ciphers (de�nedbelow) are only required to operate on plaintext of a speci�c length (which is afunction of the security parameter). As we shall see, given a secure block-cipherwe can easily construct a (general) secure encryption scheme.5.3.2.1 De�nitionsWe start by considering the syntax (i.e., De�nition 5.1.1).De�nition 5.3.5 (block-cipher): A block-cipher is a triple, (G;E;D), of prob-abilistic polynomial-time algorithms satisfying the following two conditions1. On input 1n, algorithm G outputs a pair of bit strings.2. There exists a polynomially-bounded function ` : N! N , called the blocklength, so that for every pair (e; d) in the range of G(1n), and for each� 2 f0; 1g`(n), algorithms E and D satisfyPr[Dd(Ee(�))=�] = 1Typically, we use either `(n) = �(n) or `(n) = 1. Analogously to De�ni-tion 5.1.1, the above de�nition does not distinguish private-key encryption schemesfrom public-key ones. The di�erence between the two types is captured in thesecurity de�nitions, which are essentially as before with the modi�cation thatwe only consider plaintexts of length `(n). For example, the analogue of De�ni-tion 5.2.1 readsDe�nition 5.3.6 (semantic security { private-key block-ciphers): A block-cipher,(G;E;D), with block length ` is semantically secure (in the private-key model)9 In using the term block-cipher, we abuse standard terminology by which a block-ciphermust, in addition to operating on plaintext of speci�c length, produce ciphertexts equal inlength to the length of the corresponding plaintexts. We comment that the latter cannot besemantically secure; see Exercise 22.
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394 CHAPTER 5. ENCRYPTION SCHEMESif for every probabilistic polynomial-time algorithm A there exists a probabilis-tic polynomial-time algorithm A0 such that for every ensemble fXngn2N, withjXnj = `(n), and f; h, p(�) and n as in De�nition 5.2.1Pr hA(1n; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1n; 1jXnj; h(Xn))=f(Xn)i+ 1p(n)5.3.2.2 Transforming block-ciphers into general encryption schemesThere are obvious ways of transforming a block-cipher into a general encryptionscheme. The basic idea is to break the plaintexts (for the resulting scheme)into blocks and encode each block separately by using the block-cipher. Thus,the security of the block-cipher (in the multiple-message settings) implies thesecurity of the resulting encryption scheme. The only technicality we need todeal with is how to encrypt plaintexts of length that is not an integer multipleof the block-length (i.e., `(n)). This is easily resolved by padding the last block(while indicating the end of the actual plaintext).10Construction 5.3.7 (from block-ciphers to general encryption schemes): Let(G;E;D) be a block-cipher with block length function `. We construct an en-cryption scheme, (G0; E0; D0) as follows. The key-generation algorithm, G0, isidentical to G. To encrypt a message � (with encryption-key e generated undersecurity parameter n), we break it into consecutive blocks of length `(n), whilepossibly augmenting the last block. Let �1; :::; �t be the resulting blocks. ThenE0e(�) def= (j�j; Ee(�1); :::; Ee(�t))To decrypt the ciphertext (m;�1; :::; �t) (with decryption-key d), we let �i =Dd(�i) for i = 1; :::; t, and let the plaintext be the m-bit long pre�x of the con-catenated string �1 � � ��t.The above construction yields ciphertexts which reveal the exact length of theplaintext. Recall that this is not prohibited by the de�nitions of security, andthat we cannot hope to entirely hide the length. However, we can easily constructencryption schemes that hide some information about the length of the plaintext;see examples in Exercise 4. Also, note that the above construction applies evento the special case where ` is identically 1.Proposition 5.3.8 Let (G;E;D) and (G0; E0; D0) be as in Construction 5.3.7.Suppose that the former a secure private-key11 (resp., public-key) block-cipher.Then the latter is a secure private-key (resp., public-key) encryption scheme.10 We choose to use a very simple indication of the end of the actual plaintext (i.e., includeits length in the ciphertext). In fact, it su�ces to include the length of the plaintext modulo`(n). Another natural alternative is to use a padding of the form 10(`(n)�j�j�1)mod`(n), whileobserving that no padding is ever required in case `(n) = 1.11 Recall that throughout this section security means security in the multiple-messagesetting.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 395Proof Sketch: The proof is by a reducibility argument. Assuming towards thecontradiction that the encryption scheme (G0; E0; D0) is not secure, we concludethat neither is (G;E;D), contradicting our hypothesis. Speci�cally, we rely onthe fact that in both schemes security means security in the multiple-message set-ting. Note that in case the security of (G0; E0; D0) is violated via t(n) messages oflength L(n) = poly(n), the security of (G;E;D) is violated via t(n) �dL(n)=`(n)emessages of length `(n). Also, the argument may utilize any of the two notionsof security (i.e., semantic security or ciphertext-indistinguishability).5.3.3 Private-key encryption schemesSecure private-key encryption schemes can be easily constructed using any e�-ciently computable pseudorandom function ensemble (see Section 3.6). Speci�-cally, we present a block cipher with block length `(n) = n. The key-generationalgorithm consists of selecting a seed, denoted s, for such a function, denotedfs. To encrypt a message x 2 f0; 1gn (using key s), the encryption algorithmuniformly selects a string r 2 f0; 1gn and produces the ciphertext (r; x� fs(r)).To decrypt the ciphertext (r; y) (using key s), the decryption algorithm justcomputes y � fs(r). Formally, we haveConstruction 5.3.9 (a private-key block-cipher based on pseudorandom func-tions): Let F = fFng be an e�ciently computable function ensemble and let Iand V be the algorithms associated with it. That is, I(1n) selects a function withdistribution Fn and V (s; x) returns fs(x), where fs is the function associatedwith the string s. We de�ne a private-key block cipher, (G;E;D), with blocklength `(n) = n as followskey-generation: G(1n) = (k; k), where k  I(1n).encrypting plaintext x 2 f0; 1gn (using the key k): Ek(x) = (r; V (k; r)�x), wherer is uniformly chosen in f0; 1gn.decrypting ciphertext (r; y) (using the key k): Dk(r; y) = V (k; r) � y.Clearly, for every k (in the range of I(1n)) and x 2 f0; 1gn,Dk(Ek(x)) = Dk(Un; fk(Un)� x) = fk(Un)� (fk(Un)� x) = xBelow we assume that F is pseudorandom with respect to polynomial-size cir-cuits, meaning that no polynomial-size circuit having \oracle gates" can distin-guish the case the answers are provided by a random function from the case inwhich the answers are provided by a function in F . Alternatively, one may con-sider probabilistic polynomial-time oracle machines that obtain a non-uniformpolynomially-long auxiliary input. That is,for every probabilistic polynomial-time oracle machine M for everypair of positive polynomial p and q, for all su�ciently large n's and
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396 CHAPTER 5. ENCRYPTION SCHEMESall z 2 f0; 1gp(n),��Pr �Mf (z)=1�� Pr �MfI(1n)(z)=1��� < 1q(n)where f is a uniformly selected function mapping f0; 1gn to f0; 1gn.Recall, that such (non-uniformly strong) pseudorandom functions can be con-structed using any non-uniformly strong one-way function.Proposition 5.3.10 Let F and (G;E;D) be as in Construction 5.3.9, and sup-pose that F is pseudorandom with respect to polynomial-size circuits. Then(G;E;D) is secure.The proof of Proposition 5.3.10 is given below. Combining Propositions 5.3.8and 5.3.10 (with the above), we obtainTheorem 5.3.11 If there exist (non-uniformly strong) one-way functions thenthere exist secure private-key encryption schemes.The converse holds too; see Exercise 1.Proof of Proposition 5.3.10: The proof consists of two steps (suggested asa general methodology in Section 3.6):1. Prove that an idealized version of the scheme, in which one uses a uniformlyselected function f :f0; 1gn!f0; 1gn, rather than the pseudorandom func-tion fs, is secure (in the sense of ciphertext-indistinguishability).2. Conclude that the real scheme (as presented above) is secure (since other-wise one could distinguish a pseudorandom function from a truly randomone).Speci�cally, in the ideal version the messages x(1); :::; x(t) are encrypted by(r(1); f(r(1)) � x(1)); :::; (r(t); f(r(t)) � x(t)), where the r(j)'s are independentlyand uniformly selected, and f is a random function. Thus, with probabilitygreater than 1� t2 �2�n, the r(j)'s are all distinct and so the values f(r(j))�x(j)are independently and uniformly distributed, regardless of the x(j)'s. It followsthat the ideal version is ciphertext-indistinguishable. Now, if the actual schemeis not ciphertext-indistinguishable, then for some sequence of r(j)'s a polynomial-size circuit can distinguish the f(r(j)) � x(j)'s from the fs(r(j)) � x(j)'s, wheref is random and fs is pseudorandom. But this contradicts the hypothesis thatpolynomial-size circuits cannot distinguish between the two cases.Discussion: Note that we could have gotten rid of the randomization if wehad allowed the encryption algorithm to be history dependent (as discussed inSection 5.3.1 above). Speci�cally, in such a case, we could have used a counter in
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 397the role of r. Furthermore, if the encryption scheme is used for fifo communica-tion between the parties and both can maintain the counter value then there isno need for the sender to send the counter value. However, in the later case Con-struction 5.3.3 is preferable (because the adequate pseudorandom generator maybe more e�cient than a pseudorandom function as used in Construction 5.3.9).We note that in case the encryption scheme is not used for fifo communicationand one may need to decrypt messages with arbitrary varying counter values, itis typically better to use Construction 5.3.9. Furthermore, in many cases it maybe preferable to select a value (i.e., r) at random rather than rely on a counterthat must stored in a reliable manner between applications (of the encryptionalgorithm).The ciphertexts produced by Construction 5.3.9 are longer than the corre-sponding plaintexts. This is unavoidable in case of secure (history-independent)encryption schemes (see Exercise 22). In particular, the common practice ofusing pseudorandom permutations as block-ciphers12 is not secure (e.g., onecan distinguish two encryptions of the same message from encryptions of twodi�erent messages).Recall that by combining Constructions 5.3.7 and 5.3.9 (and referring toPropositions 5.3.8 and 5.3.10), we obtain a (full-
edged) private-key encryptionscheme. A more e�cient scheme is obtained by a direct combination of the ideasunderlying both constructions:Construction 5.3.12 (a private-key encryption scheme based on pseudoran-dom functions): Let F = fFng (and I and V ) be as in Construction 5.3.9; thatis, F = fFng is an e�ciently computable function ensemble and I and V be theselection and evaluation algorithms associated with it. We de�ne a private-keyencryption scheme, (G;E;D), as follows:key-generation: G(1n) = (i; i), where i I(1n).encrypting plaintext � 2 f0; 1g� (using the key i): Break � into consecutive blocksof length n, while possibly augmenting the last block. Let �1; :::; �t be theresulting blocks. Associate f0; 1gn with the set of integer residues modulo2n, select uniformly r 2 f0; 1gn, and compute rj = r + j mod 2n, for j =1; :::; t. Finally, form the ciphertext (r; j�j; V (i; r1)� �1; :::; V (i; rt)� �t).That is,Ei(x) = (r; j�j; V (i; (r + 1 mod 2n))� �1; :::; V (i; (r + t mod 2n))� �t)decrypting ciphertext (r;m; y1; :::; yt) (using the key i): For j = 1; :::; t, com-pute �j = V (i; (r + j mod 2n)) � yj , and output the m-bit long pre�xof �1 � � ��t. That is, Di(r;m; y1; :::; yt) is the m-bit long pre�x of(V (i; (r + 1 mod 2n))� y1) � � � (V (i; (r + t mod 2n))� yt)Clearly, Construction 5.3.12 constitutes a private-key encryption scheme (pro-vided that F is pseudorandom with respect to polynomial-size circuits). SeeExercise 23.12 That is, letting Ei(x) = pi(x), where pi is the permutation associated with the string i.
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398 CHAPTER 5. ENCRYPTION SCHEMES5.3.4 Public-key encryption schemesAs mentioned above, randomization during the encryption process can be avoidedin private-key encryption schemes that employ a varying state (not allowed inour basic De�nition 5.1.1). In case of public-key encryption schemes, random-ization during the encryption process is essential (even if the encryption schemeemploys a varying state). Thus, the randomized encryption paradigm plays aneven more pivotal role in the construction of public-key encryption scheme. Todemonstrate this paradigm we start with a very simple (and quite wasteful) con-struction. But before doing so, we recall the notion of trapdoor permutations.Trapdoor permutations: All our constructions employ a collection of trap-door permutations, as in De�nition 2.4.5. Recall that such a collection, fp�g�,comes with four probabilistic polynomial-time algorithms, denoted here by I; S; Fand B (for index, sample, forward and backward), such that the following (syn-tactic) conditions hold1. On input 1n, algorithm I selects a random n-bit long index � of a permu-tation p�, along with a corresponding trapdoor � ;2. On input �, algorithm S samples the domain of p�, returning a randomelement in it;3. For x in the domain of p�, given � and x, algorithm F returns p�(x) (i.e.,F (�; x) = p�(x));4. For y in the range of p� if (�; �) is a possible output of I(1n) then, given� and y, algorithm B returns p�1� (y) (i.e., B(�; y) = p�1� (y)).The hardness condition refers to the di�culty of inverting p� on a randomelement of its range, when given only the range-element and �. That is, letI1(1n) denote the �rst element in the output of I(1n) (i.e., the index), then forevery polynomial-size circuit family fCng, every polynomial p and all su�cientlylarge n's Pr[Cn(I1(1n); pI1(1n)(S(I1(1n))) = S(I1(1n))] < 1p(n)Namely, Cn fails to invert p� on p�(x), where � and x are selected by I andS as above. Recall the above collection can be easily modi�ed to have a hard-core predicate (cf. Theorem 2.5.2). For simplicity, we continue to refer to thecollection as fp�g, and let b denote the corresponding hard-core predicate.5.3.4.1 Simple schemesWe are now ready to present a very simple (alas quite wasteful) construction ofa secure public-key encryption scheme. It is a block-cipher with ` � 1.Construction 5.3.13 (a simple public-key block-cipher scheme): Let fp�g,I; S; F;B and b be as above.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 399key-generation: The key-generation algorithm consists of selecting at random apermutation p� together with a trapdoor � for it: The permutation (orrather its description) serves as the public-key, whereas the trapdoor servesas the private-key. That is, G(1n) = I(1n), which means that the index-trapdoor pair generated by I is associated with the key-pair of G.encryption: To encrypt a bit �, using the encryption-key �, the encryption al-gorithm randomly selects an element, r, in the domain of p� and producesthe ciphertext (p�(r); ��b(r)). That is, E�(�) = (F (�; r); ��b(r)), wherer  S(�).decryption: To decrypt the ciphertext (y; &), using the decryption-key � , the de-cryption algorithm just computes & � b(p�1� (y)), where the inverse is com-puted using the trapdoor � of p�. That is, D� (y; &) = & � b(B(�; y)).Clearly, for every possible (�; �) output of G and for every � 2 f0; 1g, it holdsthat D� (E�(�)) = D� (F (�; S(�)); � � b(S(�)))= (� � b(S(�))) � b(B(�; F (�; S(�))))= � � b(S(�))� b(p�1� (p�(S(�))))= � � b(S(�))� b(S(�)) = �The security of the above public-key encryption scheme follows from the (non-uniform) one-way feature of the collection fp�g (or rather from the hypothesisthat b is a corresponding hard-core predicate).Proposition 5.3.14 Suppose that b is a (non-uniformly strong) hard-core ofthe collection fp�g. Then Construction 5.3.13 constitute a secure public-keyblock-cipher (with block-length ` � 1).Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),it su�ces to show single-message ciphertext-indistinguishability. Furthermore,by Proposition 5.2.7 and the fact that here there are only two plaintexts (i.e., 0and 1), it su�ces to show that one cannot predict which of the two plaintexts(selected at random) is being encrypted (signi�cantly better than with successprobability 1/2). We conclude by noting that a good guess for the plaintext �,given the encryption-key � and the ciphertext E�(�) = (f�(r); � � b(r)), wherer  S(�), yields a good guess for b(r) given (�; f�(r)). That is, the latter guessis correct with probability equal to the probability that former guess is correct.Thus, violation of the security of the encryption scheme yields a contradictionto the the hypothesis that b is a hard-core of fp�g. Details follow.Recall that by saying that b is a hard-core of fp�g we mean that for everypolynomial-size circuit family fCng, every polynomial p and all su�ciently largen's Pr[Cn(I1(1n); pI1(1n)(S(I1(1n))) = b(S(I1(1n)))] < 12 + 1p(n) (5.8)
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400 CHAPTER 5. ENCRYPTION SCHEMESBy Proposition 5.2.7, it su�ces to show that for randomly chosen � (i.e., �  I1(1n)) and uniformly distributed � 2 f0; 1g, no polynomial-size circuit giventhe encryption-key � and the ciphertext E�(�), can predict � non-negligiblybetter than with success probability 1=2. The actual proof uses a reducibilityargument: Suppose towards the contradiction that there exists a polynomial-sizecircuit family fC 0ng, a polynomial p0 and in�nitely many n's such thatPr[C 0n(I1(1n); EI1(1n)(�)) = �] > 12 + 1p0(n) (5.9)where � is uniformly distributed in f0; 1g. Recall that E�(�) = (p�(r); ��b(r)),where r  S(�) is a random sample in p�'s domain, and consider the followingprobabilistic circuit C 00n : On input � and y (in the range of p�), the circuitC 00n uniformly selects & 2 f0; 1g, invokes C 0n on input (�; (y; &)), and outputsC 0n(�; (y; &)) � & . In the following analysis of the behavior of C 00n , we let �  I1(1n), r  S(�), and consider uniformly distributed &; � 2 f0; 1g:Pr[C 00n(�; p�(r)) = b(r)] = Pr[C 0n(�; (p�(r); &)) � & = b(r)]= Pr[C 0n(�; (p�(r); &)) = & � b(r)]= Pr[C 0n(�; (p�(r); � � b(r)) = (� � b(r))� b(r)]= Pr[C 0n(�;E�(�)) = �]> 12 + 1p0(n)where the inequality is due to Eq. (5.9). Removing the randomization from C 00n(i.e., by �xing the best possible choice), we derive a contradiction to Eq. (5.8).The proposition follows.Using Propositions 5.3.8 and 5.3.14, and recalling that Theorem 2.5.2 applies alsoto collections of one-way functions and to the non-uniform setting, we obtainTheorem 5.3.15 If there exist collections of (non-uniformly hard) trapdoor per-mutations then there exist secure public-key encryption schemes.A generalization: As admitted above, Construction 5.3.13 is quite wasteful.Speci�cally, it is wasteful in bandwidth; that is, the relation between the length ofthe plaintext and the length of the ciphertext. In Construction 5.3.13 the relationbetween these lengths equals the security parameter (i.e., the length of descrip-tion of individual elements in the domain of the permutation). However, theidea underlying Construction 5.3.13 can yield e�cient public-key schemes, pro-vided we use trapdoor permutations having hard-core functions with large range(see Section 2.5.3). To demonstrate the point, we use the following assumptionrelating to the RSA collection of trapdoor permutations (cf. Subsections 2.4.3and 2.4.4).
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 401Large hard-core conjecture for RSA: The �rst n=2 least signi�cant bits ofthe argument constitute a (non-uniformly strong) hard-core function of the RSAfunction when applied with n-bit long moduli.We stress that the conjecture is not know to follow from the assumption thatthe RSA collection is (non-uniformly) hard to invert. What can be proved underthe latter assumption is only that the �rst O(log n) least signi�cant bits of theargument constitute a (non-uniformly strong) hard-core function of RSA (withn-bit long moduli). Still, if the above conjecture holds then one obtains a securepublic-key encryption scheme with e�ciency comparable to that of \plain RSA"(see discussion below). Furthermore, this scheme coincides with the commonpractice of randomly padding messages (using padding equal in length to themessage) before encrypting them (by applying the RSA function). That is, weconsider the following scheme:Construction 5.3.16 (Randomized RSA { a public-key block-cipher scheme):This scheme employs the RSA collection of trapdoor permutations (cf. Subsec-tions 2.4.3 and 2.4.4). The following description is, however, self-contained.key-generation: The key-generation algorithm consists of selecting at randomtwo n-bit primes, P and Q, setting N = P � Q, selecting at random apair (e; d) so that e � d � 1 (mod (P � 1) � (Q � 1)), and outputting thetuple ((N; e); (N; d)), where (N; e) is the encryption-key and (N; d) is thedecryption-key. That is, ((N; e); (N; d))  G(1n), where N , e and d areas speci�ed above.(Note that N is 2n-bit long.)encryption: To encrypt an n-bit string � (using the encryption-key (N; e)), theencryption algorithm randomly selects an element, r 2 f0; :::; N � 1g, andproduces the ciphertext (re mod N; � � lsb(r)), where lsb(r) denotes then least signi�cant bits of r. That is, E(N;e)(�) = (re mod N; � � lsb(r)).decryption: To decrypt the ciphertext (y; &) 2 f0; :::; N � 1g � f0; 1gn (usingthe decryption-key (N; d)), the decryption algorithm just computes & �lsb(yd mod N), where lsb(�) is as above. That is, D(N;d)(y; &) = & �lsb(yd mod N).The bandwidth of the above scheme is much better than in Construction 5.3.13:a plaintext of length n is encrypted via a ciphertext of length 3n. Furthermore,Randomized RSA is almost as e�cient as \plain RSA" (or the RSA functionitself).To see that Randomized RSA satis�es the syntactic requirements of an en-cryption scheme, consider any possible output of G(1n), denoted ((N; e); (N; d)),and any � 2 f0; 1gn. Then, for r uniformly selected in f0; :::; N � 1g, it holdsthat D(N;d)(E(N;e)(�)) = D(N;d)((re mod N); � � lsb(r))= (� � lsb(r)) � lsb((re mod N)d mod N)= � � lsb(r) � lsb(red mod N) = �
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402 CHAPTER 5. ENCRYPTION SCHEMESwhere the last equality is due to red � r (mod N). The security of Random-ized RSA (as a public-key encryption scheme) follows from the large hard-coreconjecture for RSA, analogously to the proof of Proposition 5.3.14.Proposition 5.3.17 Suppose that the large hard-core conjecture for RSA doeshold. Then Construction 5.3.16 constitute a secure public-key block-cipher (withblock-length `(n) = n).Proof Sketch: Recall that by the equivalence theorems (i.e., Theorems 5.2.5and 5.2.11), it su�ces to show single-message ciphertext-indistinguishability.Considering any two strings x and y, we need to show that ((N; e); re mod N; x�lsb(r)) and ((N; e); re mod N; y� lsb(r)) are indistinguishable, where N; e andr are selected at random as in the construction. It su�ces to show that, for everyx, the distributions ((N; e); re mod N; x� lsb(r)) and ((N; e); re mod N; x� s)are indistinguishable, where s 2 f0; 1gn is uniformly distributed, independentlyof anything else. The latter claim follows from the hypothesis that the n leastsigni�cant bits are a hard-core function for RSA with moduli of length 2n.Discussion: We wish to stress that encrypting messages by merely applyingthe RSA function to them (without randomization), yields an insecure encryptionscheme. Unfortunately, this procedure (referred to about as `plain RSA'), isquite common in practice. The fact that plain RSA is de�nitely insecure is aspecial case of the fact that any public-key encryption scheme that employs adeterministic encryption algorithm is insecure. We warn that the fact that insuch deterministic encryption schemes one can distinguish encryptions of twospeci�c messages (e.g., the all-zero message and the all-one message) is not\merely of theoretical concern" { it may seriously endanger some applications!In contrast, Randomized RSA (as de�ned in Construction 5.3.16)may be secure,provided a quite reasonable conjecture (i.e., the large hard-core conjecture forRSA) holds. Thus, the common practice of applying the RSA function to arandomly-padded version of the plaintext is way superior to using the RSAfunction directly (i.e., without randomization): the randomized version is likelyto be secure, whereas the non-randomized (or plain) version is de�nitely insecure.We note that Construction 5.3.16 (or alternatively Construction 5.3.13) gen-eralizes to any collection of trapdoor permutations having a corresponding largehard-core function. Suppose that fp�g is such a collection, and h (or ratherfh�g) is a corresponding hard-core function (resp., a corresponding collection ofhard-core functions) such that any element in the domain of p� is mapped toan `(j�j)-bit long string. Then we can encrypt an `(j�j)-bit long plaintext, x,by (p�(r); h(r)�x) (resp., (p�(r); h�(r)�x)), where r  S(�) (as in Construc-tion 5.3.13). This yields a secure public-key encryption scheme with bandwidththat relates to the relation between `(j�j) and the length of a description ofindividual elements in the domain of p�.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 4035.3.4.2 An alternative schemeAn alternative construction of a public-key encryption scheme is presented be-low. Rather than encrypting each plaintext bit (or block of bits) by an inde-pendently selected element in the domain of the trapdoor permutation (as donein Construction 5.3.13), we select only one such element (for the entire plain-text), and generate from it additional bits, one per each bit of the plaintext.These additional bits are determine by successive applications of the trapdoorpermutation, and only the last result is included in the ciphertext. In a sense,the construction of the encryption scheme (below) augments the constructionof a pseudorandom generator based on one-way permutations (i.e., Construc-tion 3.4.4).Construction 5.3.18 (a public-key encryption scheme): Let fp�g, I; S; F;Band b be as in Construction 5.3.13. We use the notation pi+1� (x) = p�(pi�(x))and p�(i+1)� (x) = p�1� (p�i� (x)).key-generation: The key-generation algorithm consists of selecting at random apermutation p� together with a trapdoor, exactly as in Construction 5.3.13.That is, G(1n) = I(1n), which means that the index-trapdoor pair generatedby I is associated with the key-pair of G.encryption: To encrypt a string �, using the encryption-key �, the encryptionalgorithm randomly selects an element, r, in the domain of p� and producesthe ciphertext (pj�j� (r); � �G(j�j)� (r)), whereG(`)� (r) def= b(r) � b(p�(r)) � � � b(p`�1� (r)) (5.10)That is, E�(�) = (pj�j� (S(�)); � �G(j�j)� (S(�))).decryption: To decrypt the ciphertext (y; &), using the decryption-key � , the de-cryption algorithm just computes & �G(j&j)� (p�j&j� (y)), where the inverse iscomputed using the trapdoor � of p�. That is, D� (y; &) = &�G(j&j)� (p�j&j� (y)).We stress that the above encryption scheme is a full-
edged one (rather than ablock-cipher). Its bandwidth tends to 1 with the length of the plaintext; thatis, a plaintext of length ` = poly(n) is encrypted via a ciphertext of lengthm + `, where m denotes the length of the description of individual elements inthe domain of p�. Clearly, for every possible (�; �) output of G (and r  S(�)),it holds thatD� (E�(�)) = D� (pj�j� (r); � �G(j�j)� (r))= (� �G(j�j)� (r)) �G(j�j)� (p�j��G(j�j)� (r)j� (pj�j� (r)))= � �G(j�j)� (r) �G(j�j)� (r) = �The security of the above public-key encryption scheme follows from the (non-uniform) one-way feature of the collection fp�g, but here we restrict the samplingalgorithm S to produce almost uniform distribution over the domain (so thatthis distribution is preserved under successive applications of p�).
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404 CHAPTER 5. ENCRYPTION SCHEMESProposition 5.3.19 Suppose that b is a (non-uniformly strong) hard-core ofthe trapdoor collection fp�g. Furthermore, suppose that this trapdoor collectionutilizes a domain sampling algorithm S so that the statistical di�erence betweenS(�) and the uniform distribution over the domain of p� is negligible in terms ofj�j. Then Construction 5.3.18 constitute a secure public-key encryption scheme.Proof: Again, we prove single-message ciphertext-indistinguishability. As in theproof of Proposition 5.3.17, it su�ces to show that, for every �, the distributions(�; pj�j� (S(�)); � �G(j�j)� (S(�))) and (�; pj�j� (S(�)); � � s) are indistinguishable,where s 2 f0; 1gj�j is uniformly distributed, independently of anything else. Thelatter claim holds by a minor extension to Proposition 3.4.6: the latter refers tothe case S(�) is uniform over the domain of p�, but can be extended to the casein which there is a negligible statistical di�erence between the distributions.Details: We need to prove that for every polynomial ` and every se-quence of pairs (�0n; �00n) 2 f0; 1g`(n) � f0; 1g`(n), the distributions D0n def=(�; p`(n)� (S(�)); �0n�G(`(n))� (S(�))) andD00n def= (�; p`(n)� (S(�)); �00n�G(`(n))� (S(�)))are indistinguishable, where � I1(1n). We prove the above in two steps:1. We �rst prove that for every sequence of �n's, the distributionsDn def=(�; p`(n)� (S(�)); �n � G(`(n))� (S(�))) and Rn def= (�; p`(n)� (S(�)); �n �U`(n)) are indistinguishable, where U`(n) denotes a random variableuniformly distributed over f0; 1g`(n) and � I1(1n).Suppose �rst that S(�) is uniform over the domain of p�. Thenthe indistinguishability of fDngn2N and fRngn2N follows directlyfrom Proposition 3.4.6 (as adapted to circuits): the adapted formrefers to the indistinguishability of (�; p`(n)� (S(�)); G(`(n))� (S(�))) and(�; p`(n)� (S(�)); U`(n)), and yields the desired claim by noting that �ncan be incorporated in the prospective distinguisher. The extension(to the case that S(�) has negligible statistical di�erence to the uni-form distribution over the domain of p�) is straightforward.2. Applying the previous item to D0n and R0n def= (�; p`(n)� (S(�)); �0n �U`(n)), we conclude that fD0ngn2N and fR0ngn2N are indistinguish-able. Similarly, fD00ngn2N and fR00ngn2N, where R00n def= (�; p`(n)� (S(�)); �00n�U`(n)), are indistinguishable. Furthermore, fR0ngn2N and fR00ngn2Nare identically distributed. Thus, fD0ngn2N and fD00ngn2N are indis-tinguishable.The proposition follows.An instantiation: Assuming that factoring Blum Integers (i.e., products oftwo primes each congruent to 3 (mod 4)) is hard, one may use the modu-lar squaring function (which induces a permutation over the quadratic residuesmodulo the product of these integers) in role of the trapdoor permutation usedin Construction 5.3.18. This yields a secure public-key encryption scheme withe�ciency comparable to that of plain RSA (see further discussion below).
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 405Construction 5.3.20 (The Blum-Goldwasser Public-Key Encryption Scheme):Consult Appendix A for the relevant number theoretic background, and note thatfor P � 3 (mod 4) the number (P + 1)=4 is an integer. For simplicity, wepresent a block-cipher with arbitrary block-length `(n) = poly(n); a full-
edgedencryption scheme can be derived by an easy modi�cation (see Exercise 24).key-generation: The key-generation algorithm consists of selecting at randomtwo n-bit primes, P and Q, each congruent to 3 mod 4, and outputting thepair (N; (P;Q)), where N = P �Q.Actually, for sake of e�ciency, the key-generator also computesdP = ((P + 1)=4)`(n) mod P � 1 (in f0; :::; P � 2g)dQ = ((Q+ 1)=4)`(n) mod Q� 1 (in f0; :::; Q� 2g)cP = Q � (Q�1 mod P ) (in f0; :::; N �Qg)cQ = P � (P�1 mod Q) (in f0; :::; N � Pg)It outputs the pair (N;T ), where N serves as the encryption-key and T =(P;Q;N; cP ; dP ; cQ; dQ) serves as decryption-key.encryption: To encrypt the message � 2 f0; 1g`(n), using the encryption-key N :1. Uniformly select s0 2 f1; :::; Ng.(Note that if GCD(s0; N) = 1 then s20 mod N is a uniformly dis-tributed quadratic residue modulo N .)2. For i = 1; ::; `(n) + 1, compute si  s2i�1 mod N and bi = lsb(si),where lsb(s) is the least signi�cant bit of s.The ciphertext is (s`(n)+1; &), where & = � � b1b2 � � � b`(n).decryption: To decrypt of the ciphertext (r; &) using the decryption-key T =(P;Q;N; cP ; dP ; cQ; dQ), one �rst retrieves s1 and then computes the bi'sas above. Instead of extracting modular square roots successively `(n)times, we extract the 2`(n)-th root, which can be done as e�ciently asextracting a single square root:1. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  cP � s0 + cQ � s00 mod N .3. For i = 1; ::; `(n), compute bi = lsb(si) and si+1  s2i mod N .The plaintext is & � b1b2 � � � b`(n).Again, one can easily verify that the above construction constitutes an encryp-tion scheme: the main fact to verify is that the value of s1 as reconstructedin the decryption stage equals the value used in the encryption stage. Thisfollows by combining the Chinese Reminder Theorem with the fact that for ev-ery quadratic residue s mod N it holds that s � (s2` mod N)dP (mod P ) ands � (s2` mod N)dQ (mod Q).
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406 CHAPTER 5. ENCRYPTION SCHEMESDetails: Recall that for a prime P � 3 (mod 4), and every integer i, wehave i(P+1)=2) � i (mod P ). Thus, for every integer j, we have(j2` mod N)dP � �j2` mod N�((P+1)=4)` (mod P )� j((P+1)=2)` (mod P )� j (mod P )Similarly, j � (j2` mod N)dQ (mod Q). Observing that cP and cQ are asin the Chinese Reminder Theorem (i.e., i � cP � (i mod P )+cQ � (i mod Q)(mod N), for every integer i), we conclude that s1 as recovered in Step 2of the decryption process equals s1 as �rst computed in Step 2 of theencryption process.Encryption amounts to `(n) + 1 modular multiplications, whereas decryptionamounts to `(n)+2 such multiplications and 2 modular exponentiations (relativeto half-sized moduli). Counting modular exponentiations with respect to n-bit moduli as O(n) (i.e., at least n and at most 2n) modular multiplications(with respect to n-bit moduli), we conclude that the entire encryption-decryptionprocess requires work comparable to 2`(n) + 4n modular multiplications. Forcomparison to (Randomized) RSA, note that encrypting/decrypting `(n)-bitmessages (in Randomized RSA) amounts to d`(n)=ne modular exponentiations,and so the total work is comparable to 2 � (`(n)=n) � 1:5n = 3`(n) (for generalexponent e, or half that much in case e = 3).The security of the Blum-Goldwasser scheme (i.e., Construction 5.3.20) fol-lows immediately from Proposition 5.3.19 and the fact that the least signi�cantbit (i.e., lsb) is a hard-core for the modular squaring function. Recalling thatinverting the latter is computationally equivalent to factoring, we get:Corollary 5.3.21 Suppose that factoring is infeasible in the sense that for everypolynomial-size circuit fCng, every positive polynomial p and all su�ciently largen's Pr[Cn(Pn �Qn) = Pn] < 1p(n)where Pn and Qn are uniformly distributed n-bit long primes. Then Construc-tion 5.3.20 constitutes a secure public-key encryption scheme.Thus, the conjectured infeasibility of factoring (which is a necessary conditionfor security of RSA), yields a secure public-key encryption scheme with e�ciencycomparable to that of (plain or Randomized) RSA. In contrast, recall that plainRSA itself is not secure (as it employs a deterministic encryption algorithm),whereas Randomized RSA (i.e., Construction 5.3.16) is not known to be se-cure under standard assumption such as intractability of factoring (or even ofinverting the RSA function).1313 Recall that Randomized RSA is secure provided that the n=2 least signi�cant bits consti-tute a hard-core function for n-bit RSA moduli. This is a reasonable conjecture, but it seemsstronger than the conjecture that RSA is hard to invert: assuming that RSA is hard to invert,we only know that the O(log n) least signi�cant bits constitute a hard-core function for n-bitmoduli.
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5.4. * BEYOND EAVESDROPPING SECURITY 4075.4 * Beyond eavesdropping securityOur treatment so far has referred only to a \passive" attack in which the ad-versary merely eavesdrops on the line over which ciphertexts are being sent.Stronger types of attacks, culminating in the so-called Chosen Ciphertext At-tack, may be possible in various applications. Speci�cally, in some settings it isfeasible for the adversary to make the sender encrypt a message of the adver-sary's choice, and in some settings the adversary may even make the receiverdecrypt a ciphertext of the adversary's choice. This gives rise to chosen plaintextattacks and to chosen ciphertext attacks, respectively, which are not covered bythe security de�nitions considered in previous sections. Thus, our main goalin this section is to provide a treatment to such types of \active" attacks. Inaddition, we also discuss the related notion of non-malleable encryption schemes(see Section 5.4.5).5.4.1 OverviewWe start with an overview of the type of attacks and results considered in thecurrent (rather long) section.5.4.1.1 Types of attacksThe following mini-taxonomy of attacks is certainly not exhaustive.Passive attacks. We �rst re-consider passive attacks as referred to in the def-initions given in previous sections. In case of public-key schemes we distinguishtwo sub-cases:1. A key-oblivious, passive attack, as captured in the abovementioned de�ni-tions. By `key-obliviousness' we refer to the postulation that the choice ofplaintext does not depend on the public-key.2. A key-dependent, passive attack, in which the choice of plaintext may de-pend on the public-key.(In De�nition 5.2.2 the choice of plaintext means the random variable Xn,whereas in De�nition 5.2.4 it means the pair (xn; yn). In both these de�nitions,the choice of the plaintext is key-oblivious.)Chosen Plaintext Attacks. Here the attacker may obtain the encryptionof any plaintext of its choice (under the key being attacked). Indeed, such anattack does not add power in case of public-key schemes.Chosen Ciphertext Attacks. Here the attacker may obtain the decryptionof any ciphertext of its choice (under the key being attacked). That is, theattacker is given oracle access to the decryption function corresponding to thedecryption-key in use. We distinguish two types of such attacks.
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408 CHAPTER 5. ENCRYPTION SCHEMES1. In an a-priori chosen ciphertext attack, the attacker is given this oracleaccess prior to being presented the ciphertext that it should attack (i.e.,the ciphertext for which it has to learn partial information). That is, theattack consists of two stages: in the �rst stage the attacker is given theabove oracle access, and in the second stage the oracle is removed and theattacker is given a `test ciphertext' (i.e., a target to be learned).2. In an a-posteriori chosen ciphertext attack, after being given the targetciphertext, the oracle is not removed but the adversary's access to it isrestricted in that it is not allowed to make a query equal to the targetciphertext.In both cases, the adversary may make queries that do not correspond to alegitimate ciphertext, and the answer will be accordingly (i.e., a special `failure'symbol). Furthermore, in both cases the adversary may e�ect the selection ofthe target ciphertext (by specifying a distribution from which the correspondingplaintext is to be drawn).Formal de�nitions of all types of attacks listed above are given in the followingcorresponding subsections (i.e., in Sections 5.4.2, 5.4.3 and 5.4.4, respectively).In addition, in Section 5.4.5, we consider the related notion of malleability; thatis, attacks aimed at generating ciphertexts related to the secret plaintext ratherthan gaining information about it.5.4.1.2 ConstructionsAs in the basic case, actively-secure private-key encryption schemes can be con-structed based on the existence of one-way functions, whereas actively-securepublic-key encryption schemes are based on the existence of trapdoor permu-tations. In both cases, withstanding a-posteriori chosen ciphertext attacks isharder than withstanding a-priori chosen ciphertext attacks. We will presentthe following results.For private-key schemes: We will show that the private-key encryptionscheme based on pseudorandom functions (i.e., Construction 5.3.9), is securealso under a-priori chosen ciphertext attacks, but is not secure under an a-posteriori chosen ciphertext attack. We will also show how to transform anypassively-secure private-key encryption scheme into a scheme secure under (a-posteriori) chosen ciphertext attacks, by using a message authentication schemeon top of the basic encryption. Thus, the latter construction relies on messageauthentication schemes as de�ned in Section 6.1. We mention that messageauthentication schemes can be constructed using pseudorandom functions; seeSection 6.3.For public-key schemes: Assuming the existence of trapdoor permutations,we will present constructions of public-key encryption schemes that are secureagainst (a-priori and a-posteriori) chosen ciphertext attacks. The constructions
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5.4. * BEYOND EAVESDROPPING SECURITY 409utilize various forms of non-interactive zero-knowledge proofs (see Section 4.10),which can be constructed under the former assumption. We warn that theseconstructions are rather complex. We will start with the construction of a public-key encryption scheme that is secure against a-priori chosen ciphertext attacks,and then turn to the more complex scheme that is secure also under a-posteriorichosen ciphertext attacks.As a corollary to the relation between these strong notions of security andnon-malleable encryption scheme, we will conclude that the abovementionedschemes are non-malleable.5.4.1.3 Methodological commentsAs hinted above, we do not cover all possible intermediate types of attacks, butrather focus on some natural ones. For example, we only consider key-dependentattacks on public-key encryption schemes (but not on private-key schemes).The attacks are presented in increasing order of strength; hence, securityunder such attacks yields increasingly stronger notions. This fact may be bestveri�ed when considering the indistinguishability variants of these security de�-nitions.A uniform-complexity treatment seems more appealing in the current section(i.e., more than in the previous sections). However, for sake of consistency withthe basic de�nitions (i.e., the previous sections of this chapter), we use non-uniform formulations of the various de�nitions. To obtain the correspondinguniform-complexity formulations, one should merely restrict the (polynomial-size) circuit families to be constructible by a uniform polynomial-time machine.We stress that all the results extend to the uniform-complexity setting (becauseall our reductions are either uniform or can be adapted to be uniform using thetechniques of Section 5.2.5).As mentioned above, non-interactive zero-knowledge proofs play a centralrole in the construction of public-key encryption schemes that are secure underchosen ciphertext attacks. At that point, we will assume that the reader is fairlycomfortable with the notion of zero-knowledge proofs. Furthermore, althoughwe recall the relevant de�nition of non-interactive zero-knowledge, which willserve as our starting point towards stronger notions, we recommend to study �rstthe more basic de�nitions (and results) regarding non-interactive zero-knowledgeproofs (as presented in Section 4.10). In our constructions of encryption schemesthat are secure under a-posteriori chosen ciphertext attacks, we shall use someresults from Chapter 6. In case of private-key encryption schemes (cf. Sec-tion 5.4.4.3), we will use a message authentication scheme, but do so in a self-contained way. In case of public-key encryption schemes (cf. Section 5.4.4.4),we will use signature schemes having an extra property in order to construct acertain non-interactive zero-knowledge proof, which we use for the constructionof the encryption scheme. At that point we shall refer to a speci�c result provedin Chapter 6.
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410 CHAPTER 5. ENCRYPTION SCHEMES5.4.2 Key-dependent passive attacksThe following discussion as well as the entire subsection refers only to public-key encryption schemes. For sake of simplicity, we present the single-messagede�nitions of security; and note that, as in the basic case (for public-key en-cryption schemes), the single-message de�nitions of security are equivalent tothe multiple-message ones.In De�nitions 5.2.2 and 5.2.4 the plaintext distribution (or pair) is �xedobliviously of the encryption-key. This su�ces for the natural case in whichthe (high level) application (using the encryption scheme) is oblivious of theencryption-key.14 However, in some settings, the adversary may have partialcontrol on the application. Furthermore, in the public-key case, the adversaryknows the encryption-key in use, and so (if it may partially control the appli-cation then) it may be able to cause the application to invoke the encryptionscheme on plaintexts that are related to the encryption-key in use. Thus, forsuch settings, we need stronger de�nitions of security that postulate that partialinformation about the plaintext remains secret even if the plaintext does dependon the encryption-key in use. Note that here we merely consider the dependenceof the \target" plaintext (i.e., the one for which the adversary wishes to obtainpartial information) on the encryption-key, and ignore the fact that the abovemotivation also suggests that the adversary can obtain the encryptions of ad-ditional plaintexts chosen by it (as discussed in Section 5.4.3). However, it iseasy to see that (in the public-key setting discussed here) these additional en-cryptions are of no use because the adversary can generate them by itself (seeSection 5.4.3).5.4.2.1 De�nitionsRecall that we seek a de�nition that guarantees that partial information aboutthe plaintext remains secret even if the plaintext does depend on the encryption-key in use. That is, we seek a strengthening of semantic security (as de�ned inDe�nition 5.2.2) in which one allows the plaintext distribution ensemble (de-noted fXngn2N in De�nition 5.2.2) to depend on the encryption-key in use (i.e.,for encryption-key e we consider the distribution Xe over f0; 1gpoly(jej)). Fur-thermore, we also allow the partial information functions (denoted f and h inDe�nition 5.2.2) to depend on the encryption-key in use (i.e., for encryption-keye, we consider the functions fe and he). In the actual de�nition it is importantto restrict the scope of the functions he's and the distributions Xe's so thattheir dependency on e is polynomial-time computable (see Exercise 25). Thisyields the de�nition presented in Exercise 26, which is equivalent to the followingformulation.14 Indeed, it is natural (and even methodologically imperative) that a high-level applicationthat uses encryption as a tool, is oblivious of the keys used by that tool. However, this refersonly to proposer operation of the application, and deviation may be caused (in some settings)by an improper behavior (i.e., an adversary).
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5.4. * BEYOND EAVESDROPPING SECURITY 411De�nition 5.4.1 (semantic security under key-dependent passive attacks): Thesequence f(fe; he; Xe)ge2f0;1g� is admissible for the current de�nition if1. The functions fe : f0; 1g� ! f0; 1g� are polynomially-bounded; that is,there exists a polynomial ` such that jfe(x)j � `(jxj+ jej).2. There exists a non-uniform family of polynomial-size (h-evaluation) cir-cuits fHngn2N such that for every e in the range of G1(1n) and everyx 2 f0; 1gpoly(jej) it holds that Hn(e; x) = he(x).3. There exists a non-uniform family of (probabilistic) polynomial-size (sam-pling) circuits fSngn2N such that for every e in the range of G1(1n) andfor some m = poly(jej), the random variables Sn(e; Um) and Xe are iden-tically distributed. We stress that for every e, the length of Xe is �xed.An encryption scheme, (G;E;D), is semantically secure under key-dependent pas-sive attacks if for every probabilistic polynomial-time algorithm A, there existsa probabilistic polynomial-time algorithm A0 such that for every admissible se-quence f(fe; he; Xe)ge2f0;1g�, every positive polynomial p(�) and all su�cientlylarge n: Pr hA(e; Ee(Xe); 1jXej; he(Xe))=fe(Xe)i< Pr hA0(e; 1jXej; he(Xe))=fe(Xe)i+ 1p(n)where (e; d)  G(1n), and the probability is taken over the internal coin tossesof algorithms G, E, A and A0, as well as over Xe.We stress that the performance of A0 is measured against the same distributionof triplets (fe; he; Xe) (i.e., e G1(1n)) as the one considered for algorithm A.Unlike in other versions of the de�nition of semantic security, here it is importantto let A0 have the encryption-key e because the task (i.e., the evaluation offe(Xe)) as well as its main input (i.e., the value he(Xe)) are related to e. (Indeed,if e were not given to A0 then no encryption scheme (G;E;D) could have satis�edthe revised De�nition 5.4.1: Considering he(x) = x�e (for jxj = jej) and fe(x) =x, note that it is easy for A to compute x from e and he(x) (which are explicitin (e; Ee(x); 1jxj; he(x))), whereas no A0 can compute x from (1n; 1jxj; he(x)).)Using Exercise 13.2, one may verify that De�nition 5.2.2 is a special caseof De�nition 5.4.1. An analogous modi�cation (or generalization) of De�ni-tion 5.2.4 yields the following:De�nition 5.4.2 (indistinguishability of encryptions under key-dependent pas-sive attacks): The sequence f(xe; ye)ge2f0;1g� is admissible for the current de�-nition if there exists a non-uniform family of polynomial-size circuits fPngn2Nthat maps each encryption-key e 2 f0; 1g� to the corresponding pair of (equallength) strings (xe; ye). That is, for every e in the range of G1(1n), it holdsthat Pn(e) = (xe; ye). An encryption scheme, (G;E;D), has indistinguishable
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412 CHAPTER 5. ENCRYPTION SCHEMESencryptions under key-dependent passive attacks if for every non-uniform familyof polynomial-size circuits fCng, every admissible sequence f(xe; ye)ge2f0;1g� ,every positive polynomial p(�) and all su�ciently large n:jPr [Cn(e; Ee(xe))=1]� Pr [Cn(e; Ee(ye))=1] j < 1p(n)where (e; d)  G(1n), and the probability is taken over the internal coin tossesof algorithms G and E.As in the basic case, the two de�nitions are equivalent.Theorem 5.4.3 (equivalence of de�nitions for key-dependent passive attacks):The public-key encryption scheme (G;E;D) is semantically secure under key-dependent passive attacks if and only if it has indistinguishable encryptions underkey-dependent passive attacks.Proof Sketch: In order to show that indistinguishable encryptions impliessemantic security, we follow the proof of Proposition 5.2.6. Speci�cally, A0 isconstructed and analyzed almost as before, with the exception that A0 getsand uses the encryption-key e (rather than generating a random encryption-keyby itself).15 That is, we let A0(e; 1jxj; he(x)) = A(e; Ee(1jxj); 1jxj; he(x)), andshow that for every (deterministic) polynomial-size circuit families fCngn2N andfHngn2N (and all su�ciently large n):Pr hA(e; Ee(Cn(e)); 1jCn(e)j; Hn(e; Cn(e)))=fe(Cn(e))i (5.11)< Pr hA(e; Ee(1jCn(e)j); 1jCn(e)j; Hn(e; Cn(e)))=fe(Cn(e))i+ 1poly(n)where e  G1(1n). Once proven, Eq. (5.11) implies that (G;E;D) satis�esDe�nition 5.4.1.On how Eq. (5.11) implies De�nition 5.4.1: The issue is that Eq. (5.11) refersto deterministic circuits (i.e. Cn's), whereas De�nition 5.4.1 refers to prob-abilistic circuits (i.e. Sn's). This small gap can be bridged by �xing a se-quence of coins for the probabilistic (sampling) circuits. Speci�cally, start-ing with any admissible (for De�nition 5.4.1) sequence f(fe; he; Xe)ge2f0;1g� ,where Hn(e; x) = he(x) and Xe � Sn(e; Upoly(n)), we consider some se-quence of coins rn (for Sn) that maximizes the gap between Pr[A(e; Ee(xe); 1jxej; Hn(e; xe))=fe(xe)] and Pr[A0(e; 1jxej; Hn(e; xe)) = fe(xe)], where e is random andxe = Sn(e; rn). Recalling that A0(e; 1m; 
) = A(e;Ee(1m); 1m; 
) andincorporating the sequence of rn's in A, we obtain a contradiction toEq. (5.11) (i.e., by letting Cn(e) = Sn(e; rn) = xe).Assuming (to the contrary of the above claim) that Eq. (5.11) does not hold,we obtain a sequence of admissible pairs f(xe; ye)ge2f0;1g� for De�nition 5.4.215 Here we use the convention by which A0 gets e along with he(x) (and 1jxj). This isimportant because A0 must feed a matching pair (e; he(x)) to A.
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5.4. * BEYOND EAVESDROPPING SECURITY 413such that their encryptions can be distinguished (in contradiction to our hy-pothesis). Speci�cally, we set xe def= Cn(e) and ye def= 1jxej, and let C 0n(e; �) def=A(e; �; 1jxej; Hn(e; xe)), where xe = Cn(e). Thus, we obtain a (poly(n)-size)circuit C 0n such thatjPr[C 0n(e; Ee(xe))=fe(xe)]� Pr[C 0n(e; Ee(ye))=fe(xe)]j > 1poly(n)where e is distributed according to G1(1n). Using an idea as in the proof of The-orem 5.2.15, we derive a (poly(n)-size) circuit C 00n that distinguishes (e; Ee(xe))from (e; Ee(ye)), where e G1(1n), in contradiction to our hypothesis.Details: Recall that the idea was to proceed in two stages. First, usingonly e (which also yields xe; ye), we �nd an arbitrary value v such thatjPr[C0n(e; Ee(xe))=v]� Pr[C0n(e; Ee(ye))=v]j is large. In the second stage,we use this value v in order to distinguish the case in which we are givenan encryption of xe from the case in which we are given an encryptionof ye. (We comment if (e; x) 7! fe(x) were computable by a poly(n)-sizecircuit then converting C0n into a distinguisher C00n would have been mucheasier; we further comment that as a corollary to the current proof, onecan conclude that the restricted form is equivalent to the general one.)This concludes the proof that indistinguishable encryptions (as per De�nition 5.4.2)implies semantic security (as per De�nition 5.4.1), and we now turn to the op-posite direction.Suppose that (G;E;D) does not have indistinguishable encryptions, and con-sider an admissible sequence f(xe; ye)ge2f0;1g� that witnesses this failure. Follow-ing the proof of Proposition 5.2.7, we de�ne a probability ensemble fXege2f0;1g�and function ensembles fhege2f0;1g� and ffege2f0;1g� , in an analogous manner:� The distribution Xe is uniformly distributed over fxe; yeg.� The function fe satis�es fe(xe) = 1 and fe(ye) = 0.� The function he is de�ned such that he(Xe) equals the description ofthe circuit Cn that distinguishes (e; Ee(xe)) from (e; Ee(ye)), where e  G1(1n) (and (xe; ye) = Pn(e)).Using the admissibility of the sequence f(xe; ye)ge (for De�nition 5.4.2) it followsthat f(fe; he; Xe)ge is admissible for De�nition 5.4.1. Using the same algorithmA as in the proof of Proposition 5.2.7 (i.e., A(e; �; Cn) = Cn(e; �), where �is a ciphertext and Cn = he(Xe)), and using the same analysis, we derive acontradiction to the hypothesis that (G;E;D) satis�es De�nition 5.4.1.Details: Without loss of generality, suppose thatPr [Cn(e;Ee(xe))=1] > Pr [Cn(e;Ee(ye))=1] + 1p(n)for e G1(1n). Then,Pr [A(e;Ee(Xe); he(Xe))=fe(Xe)] > 12 + 12p(n)
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414 CHAPTER 5. ENCRYPTION SCHEMESOn the other hand, for every algorithm A0Pr �A0(e; 1jXej; he(Xe))=fe(Xe)� � 12because (e; 1jXej; he(Xe)) contains no information about the value of fe(Xe)(which is uniformly distributed in f0; 1g). This violates De�nition 5.4.1,and so our initial contradiction hypothesis (i.e., that one can distinguishencryptions under (G;E;D)) must be false.The theorem follows.Multiple-message security: De�nitions 5.4.1 and 5.4.2 can be easily gener-alized to handle the encryption of many messages (as in Section 5.2.4), yieldingagain two equivalent de�nitions. Since we are in the public-key setting, onecan show (analogously to Theorem 5.2.11) that the single-message de�nitionsof security are equivalent to the multiple-message ones (i.e., by showing thatDe�nition 5.4.2 implies its multiple-message generalization). One important ob-servation is that admissibility for the multiple-message de�nition enables one tocarry out a hybrid argument (as in the proof of Theorem 5.2.11). For details seeExercise 27. The bottom-line is that we can freely use any of the four de�nitions,and security for that de�nition implies security for any of the other de�nitions.5.4.2.2 ConstructionsAll the results presented in Section 5.3.4 extend to security under key-dependentpassive attacks. That is, for each of the constructions presented in Section 5.3.4,the same assumption used to prove security under key-oblivious passive at-tacks actually su�ces for proving security under key-dependent passive attacks.Before demonstrating this fact, we comment that (in general) security underkey-oblivious passive attacks does not necessarily imply security under key-dependent passive attacks; see Exercise 28.Initial observations: We start by observing that Construction 5.3.7 (fromblock-ciphers to general encryption schemes) maintains its security in our con-text. That is:Proposition 5.4.4 (extension of Proposition 5.3.8): Let (G;E;D) and (G0; E0; D0)be as in Construction 5.3.7; i.e., (G0; E0; D0) be the full-
edged encryption con-structed based on the block-cipher (G;E;D). Then if (G;E;D) is secure underkey-dependent passive attacks, then so is (G0; E0; D0).Proof Idea: As in the proof of Proposition 5.3.8, we merely observe thatmultiple-message security of (G0; E0; D0) is equivalent to multiple-message se-curity of (G;E;D).We next observe that Construction 5.3.13 (a block-cipher with block length` � 1) maintains its security also under a key-dependent passive attack. This isa special case of the following observation:
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5.4. * BEYOND EAVESDROPPING SECURITY 415Proposition 5.4.5 Let (G;E;D) be a block-cipher with logarithmically boundedblock-length (i.e., `(n) = O(log n)). If (G;E;D) is secure under key-obliviouspassive attacks then it is also secure under key-dependent passive attacks.Proof Sketch: Here we use the de�nition of ciphertext-indistinguishability inthe single-message setting. The key observation is that the set of possible mes-sages is relatively small, and so selecting a message in a key-dependent mannerdoes not give much advantage over selecting a message at random (i.e., oblivi-ously of the key).Consider an arbitrary admissible set of pairs, f(xe; ye)ge2f0;1g� , where jxej =jyej = O(log jej), and a circuit family fCng that tries to distinguish (e; Ee(xe))from (e; Ee(ye)). We shall show that fCng necessarily fails.Let fPngn2N be the circuit family producing the abovementioned admissibleset (i.e., Pn(e) = (xe; ye)). Fixing some n 2 N and an arbitrary (x; y) 2 f0; 1g��f0; 1g�, we consider a circuit Cx;yn (depending on the circuits Cn and Pn and thepair (x; y)) that, on input (e; �), operates as follows:1. Using the hard-wired circuit Pn and the input (key) e, the circuit Cx;ynchecks whether (xe; ye) equals the hard-wired pair (x; y) (i.e., Cx;yn checkswhether Pn(e) = (x; y)). In case the check fails, Cx;yn outputs an arbitraryvalue (e.g., 1) obliviously of the ciphertext �.2. Otherwise (i.e., Pn(e) = (x; y)), the circuit Cx;yn invokes Cn on its owninput and answers accordingly (i.e., outputs Cn(e; �)).Since (G;E;D) is secure under key-oblivious passive attacks it follows that (forevery (x; y) 2 f0; 1gm � f0; 1gm, where m � poly(n)) the circuit Cx;yn cannotdistinguish the case � = Ee(x) from the case � = Ee(y). Thus, for somenegligible function � :N ! [0; 1] and every pair (x; y) 2 f0; 1gm � f0; 1gm, thefollowing holds�(n) > jPre[Cx;yn ((e; Ee(x)) = 1]� Pre[Cx;yn ((e; Ee(y)) = 1]j= ����Pre � Cn((e; Ee(xe))=1^ (xe; ye)=(x; y) �� Pre � Cn((e; Ee(ye))=1^ (xe; ye)=(x; y) �����where e G1(1n). Since the above holds for any pair (x; y) 2 f0; 1gm�f0; 1gm,and since jxej = jyej = `(n) it follows thatjPre[Cn((e; Ee(xe)) = 1]� Pre[Cn((e; Ee(ye)) = 1]j� Xjxj=jyj=`(n) ����Pre � Cn((e; Ee(xe))=1^ (xe; ye)=(x; y) �� Pre � Cn((e; Ee(ye))=1^ (xe; ye)=(x; y) �����< 22`(n) � �(n)and the proposition follows.
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416 CHAPTER 5. ENCRYPTION SCHEMESA feasibility result: Combining Theorem 5.3.15 with Propositions 5.4.4 and 5.4.5,we obtain a feasibility result:Theorem 5.4.6 If there exist collections of (non-uniformly hard) trapdoor per-mutations then there exist public-key encryption schemes that are secure underkey-dependent passive attacks.More e�cient schemes: In order to obtain more e�cient schemes, we di-rectly analyze the e�cient constructions presented in Section 5.3.4. For example,extending the proof of Proposition 5.3.19, we obtain:Proposition 5.4.7 Suppose that b is a (non-uniformly strong) hard-core of thetrapdoor collection fp�g. Furthermore, suppose that this trapdoor collection uti-lizes a domain sampling algorithm S so that the statistical di�erence betweenS(�) and the uniform distribution over the domain of p� is negligible in termsof j�j. Then Construction 5.3.18 constitute a public-key encryption scheme thatis secure under key-dependent passive attacks.Proof Sketch: Again, we prove single-message ciphertext-indistinguishability.We rely heavily on the admissibility condition. In analogy to the proof of Propo-sition 5.3.19, it su�ces to show that, for every polynomial-size circuit familyfCng, the distributions (�; p�̀(S(�)); Cn(�)�G(`)� (S(�))) and (�; p�̀(S(�)); Cn(�)�s) are indistinguishable, for a randomly generated � and ` = jCn(�)j, wheres 2 f0; 1g` is uniformly distributed (independently of anything else).16 Incor-porating fCng in the potential distinguisher, it su�ces to show that the dis-tributions (�; p�̀(S(�)); G(`)� (S(�))) and (�; p�̀(S(�)); s) are indistinguishable.The latter claim follows as in the proof of Proposition 5.3.19 (i.e., by a minorextension to Proposition 3.4.6). The proposition follows.5.4.3 Chosen plaintext attackSo far, we have discussed only passive attacks (in two variants: key-obliviousversus key-dependent, discussed in Section 5.2 and 5.4.2, respectively). Turningto active attacks, we start with mild active attacks in which the adversary mayobtain (from some legitimate user) ciphertexts corresponding to plaintexts ofits choice. Such attacks will be called chosen plaintext attack, and are possible(as well as are all that is possible) in some applications. For example, in somesettings the adversary may (directly or indirectly) control the encrypting module(but not the decrypting module).Intuitively, a chosen plaintext attack poses additional threat in case of private-key encryption schemes (see Exercise 29), but not in the case of public-key en-cryption schemes. In fact, we will show that, in the case of public-key encryptionschemes, a chosen plaintext attack can be emulated by a passive key-dependentattack.16 Recall that here � serves as an encryption-key and Cn(�) is a key-dependent plaintext.Typically, Cn(�) would be the �rst or second element in the plaintext pair (x�; y�) = Pn(�).
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5.4. * BEYOND EAVESDROPPING SECURITY 4175.4.3.1 De�nitionsWe start by rigorously formulating the framework of chosen plaintext attacks.Intuitively, such attacks proceeds in four stages corresponding to the generationof a key (by a legitimate party), the adversary's requests (answered by the legit-imate party) to encrypt plaintexts under this key, the generation of a challengeciphertext (under this key and according to a templet speci�ed by the adver-sary), and additional requests to encrypt plaintexts (under the same key). Thatis, a chosen plaintext attack proceeds as follows:1. Key generation: A key-pair (e; d)  G(1n) is generated (by a legitimateparty). In the public-key setting the adversary is given (1n; e), whereas inthe private-key setting the adversary is only given 1n.2. Encryption requests: Based on the information obtained so far, the adver-sary may request (the legitimate party) to encrypt plaintexts of its (i.e.,the adversary's) choice. A request to encrypt the plaintext x is answeredwith a value taken from the distribution Ee(x), where e is as determinedin Step 1. After making several such requests, the adversary moves to thenext stage.3. Challenge generation: Based on the information obtained so far, the ad-versary speci�es a challenge templet and is given an actual challenge.When de�ning semantic security the challenge templet is a triplet of cir-cuits (Sm; hm; fm), where Sm speci�es a distribution of m-bit long plain-texts (and hm; fm : f0; 1gm ! f0; 1g�), and the actual challenge is a pair(Ee(x); hm(x)) where x is distributed according to Sm(Upoly(n)). Whende�ning indistinguishability of encryptions the challenge templet is merelya pair of equal-length strings, and the actual challenge is an encryption ofone of these two strings.4. Additional encryption requests: Based on the information obtained so far,the adversary may request to encrypt additional plaintexts of its choice.These requests are handled as in Step 2. After making several such re-quests, the adversary produces an output and halts.In the actual de�nition, the adversary's strategy will be decoupled into two partscorresponding to its actions before and after the generation of the actual chal-lenge. Each part will be represented by a (probabilistic polynomial-time) oraclemachine, where the oracle is an \encryption oracle" (with respect to the key gen-erated in Step 1). The �rst part, denoted A1, captures the adversary's behaviorduring Step 2. It is given a security parameter (and possibly an encryption-key),and its output is a pair (�; �), where � is the templet generated in the beginningof Step 3 and � is a state information passed to the second part of the adversary.The second part of the adversary, denoted A2, captures the adversary's behaviorduring Step 4. It is given the state � (of the �rst part) as well as the actualchallenge (generated Step 3), and produces the actual output of the adversary.
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418 CHAPTER 5. ENCRYPTION SCHEMESIn accordance to using non-uniform formulations, we let each of the two oraclemachines have a (non-uniform) auxiliary input. In fact, it su�ces to provide onlythe �rst machine with such a (non-uniform) auxiliary input, because it can passauxiliary input to the second machine in the state information �. (Similarly,in the case of public-key schemes, it su�ces to provide only the �rst machinewith the encryption-key.) We comment that we provide these machines withprobabilistic oracles; that is, in response to a plaintext query x, the oracle Eereturns a random ciphertext Ee(x) (i.e., the result of a probabilistic processapplied to e and x). Thus, in the case of public-key schemes, the four-stepattack process can be written as follows:(e; d)  G(1n)(�; �)  AEe1 (e; z)c def= an actual challenge generated according to the templet �output  AEe2 (�; c)where z denotes (non-uniform) auxiliary input given to the adversary. In caseof private-key schemes, the adversary (i.e., A1) is given 1n instead of e.Semantic security: Instantiating the above framework to derive a de�nitionof semantic security amounts to specifying the challenge generation (as hintedabove) and to postulating that the success probability in such an attack shouldbe met by a corresponding benign process. Speci�cally, the challenge generationconsists of the adversary specifying a triplet of circuits, denoted (Sm; hm; fm),and being presented with an encryption of x  Sm(Upoly(n)) along with thepartial information hm(x). The adversary's goal is to guess fm(x), and seman-tic security amount to saying that the adversary's success probability can bematched by a corresponding algorithm that is only given hm(x) and 1jxj = 1m.Like the adversary, the corresponding algorithm is decoupled into two parts, the�rst is in charge of outputting a challenge templet, and the second is in chargeof solving the challenge, where state information is passed from the �rst part tothe second part. It is important to require that the challenge templet producedby the corresponding algorithm is distributed exactly as the challenge templetproduced by the adversary. (See further discussion below.)De�nition 5.4.8 (semantic security under chosen plaintext attacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto be semantically secure under chosen plaintext attacks if for every pair ofprobabilistic polynomial-time oracle machines, A1 and A2, there exists apair of probabilistic polynomial-time algorithms, A01 and A02, such that thefollowing two conditions hold:
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5.4. * BEYOND EAVESDROPPING SECURITY 4191. For every positive polynomial p(�), and all su�ciently large n andz 2 f0; 1gpoly(n):Pr266664 v = fm(x) where(e; d) G(1n)((Sm; hm; fm); �) AEe1 (e; z)c (Ee(x); hm(x)) ; where x Sm(Upoly(n))v  AEe2 (�; c) 377775< Pr2664 v = fm(x) where((Sm; hm; fm); �) A01(1n; z)x Sm(Upoly(n))v  A02(�; 1jxj; hm(x)) 3775+ 1p(n)Recall that (Sm; hm; fm) is a triplet of circuits produced as in Step 3 ofthe foregoing description, and that x is a sample from the distributioninduced by Sm.2. For every n and z, the �rst element (i.e., the (Sm; hm; fm) part) in therandom variables A01(1n; z) and AEG1(1n)1 (G1(1n); z) are identicallydistributed.For private-key schemes: The de�nition is identical except that algorithm A1gets the security parameter 1n instead of the encryption-key e.Note that as in almost all other de�nitions of semantic security (with the excep-tion of De�nition 5.4.1), algorithm A01 does not get a (random) encryption-keyas input (but may rather generate one by itself).17 Since the challenge templetis not �xed (or determined by e) but rather chosen by A and A0 themselves, it isvery important to require that in both cases the challenge templet is distributedidentically (or approximately so): there is no point in relating the success prob-ability of A and A0, unless these probabilities refer to same distribution of prob-lems (i.e., challenge templets). (The issue arises also in De�nition 5.4.1 where itwas resolved by forcing A0 to refer to the challenge templet determined by thepublic-key e.)18De�nition 5.4.8 implies De�nition 5.4.1, but this may not be evident from thede�nitions themselves (most importantly, because here fm is computationallybounded whereas in De�nition 5.4.1 the function is computationally unbounded).Still the validity of the claim follows from the equivalence of the two de�nitionsto the corresponding notions of indistinguishability of encryptions (and the factthat the implication is evident for the latter formulations).17 In fact, A01 is likely to start by generating e  G1(1n), because it has to generate achallenge templet that is distributed as the one produced by A1 on input e G1(1n).18 Indeed, an alternative solution could have been the one adopted here and in the sequel;that is, allow A0 to select the challenge templet by itself provided that the selection yields adistribution similar to the one faced by A, as induced by the public-key e.
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420 CHAPTER 5. ENCRYPTION SCHEMESIndistinguishability of encryptions: Deriving the corresponding de�nitionof indistinguishability of encryptions (from the above framework) is considerablysimpler. Here the challenge generation consists of the adversary specifying twoequal-length strings and the adversary is presented with the encryption of oneof them. The adversary's goal is to distinguish the two possible cases.De�nition 5.4.9 (indistinguishability of encryptions under chosen plaintext at-tacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto have indistinguishable encryptions under chosen plaintext attacks if forevery pair of probabilistic polynomial-time oracle machines, A1 and A2,for every positive polynomial p(�), and all su�ciently large n and z 2f0; 1gpoly(n): jp(1)n;z � p(2)n;zj < 1p(n)where p(i)n;z def= Pr266664 v = 1 where(e; d) G(1n)((x(1); x(2)); �) AEe1 (e; z)c Ee(x(i))v  AEe2 (�; c) 377775where jx(1)j = jx(2)j.For private-key schemes: The de�nition is identical except that A1 gets thesecurity parameter 1n instead of the encryption-key e.Clearly, De�nition 5.4.9 implies De�nition 5.4.2 as a special case. Further-more, for public-key schemes, the two de�nitions are equivalent (see Proposi-tion 5.4.10), whereas for private-key schemes De�nition 5.4.9 is strictly stronger(see Exercise 29).Proposition 5.4.10 Let (G;E;D) be a public-key encryption scheme that hasindistinguishable encryptions under key-dependent passive attacks. Then, (G;E;D)has indistinguishable encryptions under chosen plaintext attack.Proof Sketch: They key observation is that, in the public-key model, a chosenplaintext attack can be emulated by a passive key-dependent attack. Speci�-cally, the (passive) attacker can emulate access to an encryption oracle by itself(by using the encryption-key given to it). Thus, we obtain an attacker as inDe�nition 5.4.9, with the important exception that it never makes oracle calls(but rather emulates Ee by itself). Put in other words, we have an attacker as inDe�nition 5.4.2, with the minor exception that it is a probabilistic polynomial-time machine with auxiliary input (rather than being a polynomial-size circuit)and that it distinguishes a pair of plaintext distributions rather than a pair of
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5.4. * BEYOND EAVESDROPPING SECURITY 421(�xed) plaintexts. However, �xing the best possible coins for this attacker (andincorporating them as well as z in an adequate circuit), we obtain an attackerexactly as in De�nition 5.4.2 such that its distinguishing gap is at least as largeas the one of the (initial) chosen plaintext attacker.Equivalence of semantic security and ciphertext-indistinguishability.As in previous cases, we show that the two formulations of (chosen plaintextattack) security (i.e., semantic security and indistinguishable encryptions) arein fact equivalent.Theorem 5.4.11 (equivalence of de�nitions for chosen plaintext attacks): Apublic-key (resp., private-key) encryption scheme (G;E;D) is semantically se-cure under chosen plaintext attacks if and only if it has indistinguishable encryp-tions under chosen plaintext attacks.Proof Sketch: In order to show that indistinguishable encryptions impliessemantic security, we follow again the ideas underlying the proof of Proposi-tion 5.2.6. Speci�cally, for both the private-key and public-key cases, A01 andA02 are constructed as follows:1. A01(1n; z) def= (�; �0), where (�; �0) is generated as follows:First, A01 generates an instance of the encryption scheme; that is, A01 lets(e; d)  G(1n). Next, A01 invokes A1, while emulating the oracle Ee, andsets (�; �) AEe1 (1n; z). Finally, A01 sets �0 def= (e; �).We warn that the generation of the key-pair by A01 should not be confusedwith the generation of the key-pair in the probabilistic evaluation of thecombined algorithmA = (A1; A2). In particular, the generated encryption-key e, allows A01 to emulate the encryption oracle Ee (also in the private-key case). Furthermore, A01 outputs the encryption-key e as part of thestate passed by it to A02, whereas A1 does not necessarily do so (and, infact, cannot do so in case of private-key model). This will allow A02 too toemulate the encryption oracle Ee.2. A02((e; �); 1m; 
) def= AEe2 (�; (Ee(1m); 
)), where typically 
 = hm(x) andm = jxj.Since A01 merely emulates the generation of a key-pair and the actions of A1with respect to such a pair, the equal distribution condition (i.e., Item 2 in Def-inition 5.4.8) holds. Using the (corresponding) indistinguishability of encryp-tion hypothesis, we show that (even in the presence of an encryption oracle Ee)the distributions (�; (Ee(x); h(x))) and (�; (Ee(1jxj); h(x))) are indistinguishable,where (e; d) G(1n), ((S; h; f); �) AEe1 (y; z) (with y = e or y = 1n dependingon the model), and x S(Upoly(n)).Details: Suppose that given ((S; h; f); �) generated by AEe1 (y; z) and oracleaccess to Ee, where e  G1(1n) (and y is as above), one can distinguish
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422 CHAPTER 5. ENCRYPTION SCHEMES(�; (Ee(x); h(x))) and (�; (Ee(1jxj); h(x))), where x  S(Upoly(n)). Thenwe obtain a distinguisher as in De�nition 5.4.9 as follows. The �rst partof the distinguisher invokes A1 (while answering its oracle queries by for-warding these queries to its own Ee oracle), and obtains ((S; h; f); �)  AEe1 (y; z). It sets x(1)  S(Upoly(n)) and x(2) = 1jx(1) j. and outputs((x(1); x(2)); (�; h(x(1)))). That is, (x(1); x(2)) is the challenge templet, andit is answered with Ee(x(i)), where i is either 1 or 2. The second part of thenew distinguisher, gets as input a challenge ciphertext �  Ee(x(i)) andthe state generated by the �rst part (�; L(x(1))), and invokes the distin-guisher of the contradiction hypothesis with input (�; (�; h(x(1)))), whileanswering its oracle queries by forwarding these queries to its own Ee ora-cle. Thus, the new distinguisher violates the condition in De�nition 5.4.9,in contradiction to the hypothesis that (G;E;D) has indistinguishable en-cryptions.It follows that indistinguishable encryptions (as per De�nition 5.4.9) impliessemantic security (as per De�nition 5.4.8). (Here, this implication is easier toprove than in previous cases, because the function f is computable via a circuitthat is generated as part of the challenge templet (and, w.l.o.g., is part of �.)We now turn to the opposite direction. Suppose that (G;E;D) does nothave indistinguishable encryptions, and consider the pairs (x(1); x(2)) producedas a challenge templet by the distinguishing adversary. Following the ideas ofthe proof of Proposition 5.2.7, we let the semantic-security adversary generatea corresponding challenge templet (S; h; f) such that� The circuit S samples uniformly in fx(1); x(2)g.� The function f satis�es f(x(1)) = 1 and f(x(2)) = 0.� The function h is de�ned arbitrarily subject to h(x(1)) = h(x(2)).We stress that when the semantic-security adversary invokes the distinguish-ing adversary, the former uses its own oracle to answer the queries made bythe latter. The reader may easily verify that the semantic-security adversaryhas a noticeable advantage in guessing f(S(Upoly(n))) (by using the distinguish-ing gap between Ee(x(1)) and Ee(x(2))), whereas no algorithm that only getsh(S(Upoly(n))) can have any advantage in such a guess. We derive a contradic-tion to the hypothesis that (G;E;D) satis�es De�nition 5.4.8, and the theoremfollows.Multiple-message security: De�nitions 5.4.8 and 5.4.9 can be easily gen-eralized to handle challenges in which multiple plaintexts are encrypted. Asin previous cases, the corresponding (multiple-plaintext) de�nitions are equiva-lent. Furthermore, the multiple-plaintext de�nitions are equivalent to the single-plaintext de�nition, both for public-key and private-key schemes. We stress theequivalence for private-key schemes (which does not hold for the basic de�ni-tions presented in Section 5.1; see Proposition 5.2.12). To see the equivalenceit is best to consider the notion of indistinguishable encryptions. In this case,
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5.4. * BEYOND EAVESDROPPING SECURITY 423the argument used in the proof of Theorem 5.2.11 can be applied here by usingan encryption oracle (rather than by generating encryptions using knowledge ofthe encryption-key, which is only possible in the public-key setting).5.4.3.2 ConstructionsIn view of Proposition 5.4.10 (and Theorem 5.4.11), we focus on private-keyencryption schemes (because a public-key encryption scheme is secure underchosen plaintext attacks if and only if it is secure under passive key-dependentattacks). All the results presented in Section 5.3.3 extend to security under cho-sen plaintext attacks. Speci�cally, we prove that Constructions 5.3.9 and 5.3.12remain secure also under a chosen plaintext attack.Proposition 5.4.12 Let F and (G;E;D) be as in Construction 5.3.9, and sup-pose that F is pseudorandom with respect to polynomial-size circuits. Then theprivate-key encryption scheme (G;E;D) is secure under chosen plaintext at-tacks. The same holds with respect to Construction 5.3.12.Proof Sketch: We focus on Construction 5.3.9, and follow the technique under-lying the proof of Proposition 5.3.10. That is, we consider an idealized version ofthe scheme, in which one uses a uniformly selected function f :f0; 1gn!f0; 1gn,rather than the pseudorandom function fs. Essentially, all that the adversaryobtains by encryption queries in the ideal version is pairs (r; f(r)), where ther's are uniformly and independently distributed in f0; 1gn. As to the challengeitself, the plaintext is \masked" by the value of f at another uniformly andindependently distributed element in f0; 1gn. Thus, unless the latter elementhappens to equal one of the r's used by the encryption oracle (which happenswith negligible probability), the challenge plaintext is perfectly masked. Thus,the ideal version is secure under a chosen plaintext attack, and the same holdsfor the real scheme (since otherwise one derives a contradiction to the hypothesisthat F is pseudorandom).Summary: Private-key and public-key encryption schemes that are secure un-der chosen plaintext attacks exist if and only if corresponding schemes that aresecure under passive (key-dependent) attacks exist.5.4.4 Chosen ciphertext attackWe now turn to stronger forms of active attacks in which the adversary mayobtain (from some legitimate user) plaintexts corresponding to ciphertexts of itschoice. We consider two types of such attacks, called chosen ciphertext attacks:In the milder type, called a-priori chosen ciphertext attacks, such decryption re-quests can be made only before the challenge ciphertext (for which the adversaryshould gain knowledge) is presented. In the stronger type, called a-posteriorichosen ciphertext attacks, such decryption requests can be made also after the
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424 CHAPTER 5. ENCRYPTION SCHEMESchallenge ciphertext is presented, as long as one does not request to decrypt thisvery (challenge) ciphertext.Both types of attacks address security threats in realistic applications: Insome settings the adversary may experiment with the decryption module, beforethe actual ciphertext in which it is interested is sent. Such a setting correspondsto an a-priori chosen ciphertext attack. In other settings, one may invoke thedecryption module on inputs of one's choice at any time but all these invocationsare recorded, and real damage is caused only by knowledge gained with respectto a ciphertext for which a decryption request was not recorded. In such asetting protection against a-posteriori chosen ciphertext attacks is adequate.Furthermore, in both cases, decryption requests can be made also with respectto strings that are not valid ciphertexts, in which case the decryption modulereturns a special error symbol.Typically, in settings in which a mild or strong form of a chosen ciphertextattack is possible, a chosen plaintext attack is possible too. Thus, we actuallyconsider combined attacks in which the adversary may ask for encryption anddecryption of strings of its choice. Indeed (analogously to Proposition 5.4.10), incase of public-key schemes (but not in case of private-key schemes) the combinedattack is equivalent to a \pure" chosen ciphertext attack.Organization: We start by providing security de�nitions for the two typesof attacks discussed above. In Section 5.4.4.2, we further extend the de�ni-tional treatment of security (and derive a seemingly stronger notion that isin fact equivalent to the notions in Section 5.4.4.1). In Section 5.4.4.3 (resp.,Section 5.4.4.4) we discuss the construction of private-key (resp., public-key)encryption schemes that are secure under chosen ciphertext attacks.5.4.4.1 De�nitions for two types of attacksFollowing Section 5.4.3.1 and bearing in mind that we wish to de�ne two typesof (i.e., a-priori and a-posteriori chosen ciphertext) attacks, we �rst formulatethe framework of chosen ciphertext attacks. As in the case of chosen plaintextattacks, we consider attacks that proceeds in four stages corresponding to thegeneration of a pair of keys (by a legitimate party), the adversary's requests(answered by the legitimate party) to encrypt and/or decrypt strings under thecorresponding key, the generation of a challenge ciphertext (under this key andaccording to a templet speci�ed by the adversary), and additional requests toencrypt and/or decrypt strings. That is, a chosen ciphertext attack proceeds asfollows:1. Key generation: A key-pair (e; d)  G(1n) is generated (by a legitimateparty). In the public-key setting the adversary is given (1n; e), whereas inthe private-key setting the adversary is only given 1n.2. Encryption and decryption requests: Based on the information obtainedso far, the adversary may request (the legitimate party) to encrypt and/or
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5.4. * BEYOND EAVESDROPPING SECURITY 425decrypt strings of its (i.e., the adversary's) choice. A request to encryptthe plaintext x is answered with a value taken from the distribution Ee(x),where e is as determined in Step 1. A request to decrypt a valid (w.r.t. Ee)ciphertext y is answered with the value Dd(y), where d is as determinedin Step 1. A request to decrypt a string y that is not a valid ciphertext(w.r.t. Ee) is answered with a special error symbol. After making severalsuch requests, the adversary moves to the next stage.3. Challenge generation: Based on the information obtained so far, the ad-versary speci�es a challenge templet and is given an actual challenge. Thisis done as in the corresponding step in the framework of chosen plaintextattacks.4. Additional encryption and decryption requests: Based on the informationobtained so far, the adversary may request to encrypt additional plain-texts of its choice. In addition, in case of an a-posteriori chosen ciphertextattack (but not in the case of a-priori chosen ciphertext attack), the ad-versary may make additional decryption requests with the only (natural)restriction that it is not allowed to ask to decrypt the challenge ciphertext.All requests are handled as in Step 2. After making several such requests,the adversary produces an output and halts.In the actual de�nition, as in the case of chosen plaintext attacks, the adversary'sstrategy will be decoupled into two parts corresponding to its actions before andafter the generation of the actual challenge. Each part will be represented by a(probabilistic polynomial-time) two-oracle machine, where the �rst oracle is an\encryption oracle" and the second is a \decryption oracle" (both with respectto the corresponding key generated in Step 1). As in the case of chosen plaintextattacks, the two parts are denoted A1 and A2, and A1 passes a state information(denoted �) to A2. Again, in accordance to using non-uniform formulations,we provide A1 with a (non-uniform) auxiliary input. Thus, in the case of (a-posteriori chosen ciphertext attacks on) public-key schemes, the four-step attackprocess can be written as follows:(e; d)  G(1n)(�; �)  AEe;Dd1 (e; z)c def= an actual challenge generated according to the templet �output  AEe;Dd2 (�; c)where A2 is not allowed to make a query regarding the ciphertext in c, andz denotes the (non-uniform) auxiliary input given to the adversary. In case ofprivate-key schemes, the adversary (i.e., A1) is given 1n instead of e. In case of a-priori chosen ciphertext attacks, A2 is not allowed to query Dd (or, equivalently,A2 is only given oracle access to the oracle Ee).
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426 CHAPTER 5. ENCRYPTION SCHEMESSemantic security: As in the case of chosen plaintext attacks, a de�nition ofsemantic security is derived by an adequate speci�cation of the challenge gener-ation and the meaning of success. As before, the challenge generation consistsof the adversary specifying a triplet of circuits, denoted (S; h; f), and being pre-sented with an encryption of x S(Upoly(n)) along with the partial informationh(x). The adversary's goal is to guess f(x), and semantic security amount to say-ing that the adversary's success probability can be matched by a correspondingalgorithm that is only given h(x) and 1jxj. Again, the corresponding algorithm isdecoupled into two parts, the �rst is in charge of outputting a challenge templet,and the second is in charge of solving the challenge, where state information ispassed from the �rst part to the second part. Furthermore, again, it is importantto require that the challenge templet produced by the corresponding algorithmis distributed exactly as the challenge templet produced by the adversary.De�nition 5.4.13 (semantic security under chosen ciphertext attacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto be semantically secure under a-priori chosen ciphertext attacks if for everypair of probabilistic polynomial-time oracle machines, A1 and A2, thereexists a pair of probabilistic polynomial-time algorithms, A01 and A02, suchthat the following two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n andz 2 f0; 1gpoly(n):Pr266664 v = f(x) where(e; d) G(1n)((S; h; f); �) AEe;Dd1 (e; z)c (Ee(x); h(x)) ; where x S(Upoly(n))v  AEe2 (�; c) 377775< Pr2664 v = f(x) where((S; h; f); �) A01(1n; z)x S(Upoly(n))v  A02(�; 1jxj; h(x)) 3775+ 1p(n)2. For every n and z, the �rst element (i.e., the (S; h; f) part) in therandom variables A01(1n; z) and AEG1(1n);DG2(1n)1 (G1(1n); z) are iden-tically distributed.Semantic security under a-posteriori chosen ciphertext attacks is de�ned anal-ogously, except that A2 is given oracle access to both Ee and Dd with therestriction that when given the challenge c = (c0; c00), machine A2 is notallowed to make the query c0 to the oracle Dd.For private-key schemes: The de�nition is identical except that algorithm A1gets the security parameter 1n instead of the encryption-key e.
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5.4. * BEYOND EAVESDROPPING SECURITY 427Clearly, the a-posteriori version of De�nition 5.4.13 implies its a-priori version,which in turn implies De�nition 5.4.8. It is easy to see that these implicationsare strict (see Exercises 31 and 30, respectively).Indistinguishability of encryptions: As in the case of chosen plaintext at-tacks, deriving the corresponding de�nition of indistinguishability of encryptions(from the above framework) is considerably simpler: the challenge generationconsists of the adversary specifying two equal-length strings and the adversaryis presented with the encryption of one of them.De�nition 5.4.14 (indistinguishability of encryptions under chosen ciphertextattacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto have indistinguishable encryptions under a-priori chosen ciphertext attacksif for every pair of probabilistic polynomial-time oracle machines, A1 andA2, for every positive polynomial p(�), and all su�ciently large n and z 2f0; 1gpoly(n): jp(1)n;z � p(2)n;zj < 1p(n)where p(i)n;z def= Pr266664 v = 1 where(e; d) G(1n)((x(1); x(2)); �) AEe;Dd1 (e; z)c Ee(x(i))v  AEe2 (�; c) 377775where jx(1)j = jx(2)j.Indistinguishability of encryptions under a-posteriori chosen ciphertext attacksis de�ned analogously, except that A2 is given oracle access to both Ee andDd with the restriction that when given the challenge c, machine A2 is notallowed to make the query c to the oracle Dd.For private-key schemes: The de�nition is identical except that A1 gets thesecurity parameter 1n instead of the encryption-key e.Clearly, the a-posteriori version of De�nition 5.4.14 implies its a-priori version,which in turn implies De�nition 5.4.9 as a special case. Again, it is easy to seethat these implications are strict (see Exercises 31 and 30, respectively).Terminology: We use CCA as a shorthand for chosen ciphertext attack.Equivalence of semantic security and ciphertext-indistinguishability.Again, we show that the two formulations of security (i.e., semantic security andindistinguishable encryptions) are in fact equivalent.
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428 CHAPTER 5. ENCRYPTION SCHEMESTheorem 5.4.15 (equivalence of de�nitions for CCA): A public-key (resp., private-key) encryption scheme (G;E;D) is semantically secure under a-priori CCA ifand only if it has indistinguishable encryptions under a-priori CCA. An analo-gous claim holds for a-posteriori CCA.Proof Sketch: We adapt the proof of Theorem 5.4.11 to the current setting.The adaptation is straightforward, and we focus on the case of a-posteriori CCAsecurity (while commenting on the case of a-priori CCA security).In order to show that indistinguishable encryptions implies semantic security,given and adversary (A1; A2) we construct the following matching algorithmA01; A02:1. A01(1n; z) def= (�; �0), where (�; �0) is generated as follows:First, A01 generates an instance of the encryption scheme; that is, A01 lets(e; d)  G(1n). Next, A01 invokes A1, while emulating the oracles Ee andDd, and sets (�; �)  AEe;Dd1 (1n; z). Finally, A01 sets �0 def= ((e; d); �). (Incase of a-priori CCA security, we may set �0 def= (e; �), as in the proof ofTheorem 5.4.11.)We comment that the generated key-pair (e; d), allows A01 to emulate theencryption and decryption oracles Ee and Dd.2. A02(((e; d); �); 1m; 
) def= AEe;Dd2 (�; (Ee(1m); 
)), where typically 
 = h(x)andm = jxj. (In case of a-priori CCA security, we may setA02((e; �); 1m; 
) def=AEe2 (�; (Ee(1m); 
)), as in the proof of Theorem 5.4.11.)Again, since A01 merely emulates the generation of a key-pair and the actionsof A1 with respect to such a pair, the equal distribution condition (i.e., Item 2in De�nition 5.4.13) holds. Using the (corresponding) indistinguishability of en-cryption hypothesis, we show that (even in the presence of the encryption oracleEe and a restricted decryption oracleDd) the distributions (�; (Ee(x); h(x))) and(�; (Ee(1jxj); h(x))) are indistinguishable, where (e; d) G(1n), ((S; h; f); �) AEe1 (y; z) (with y = e or y = 1n depending on the model), and x S(Upoly(n)).The main thing to notice is that the oracle queries made by a possible dis-tinguisher of the above distributions can be handled by a distinguisher of en-cryptions (as in De�nition 5.4.14), by passing these queries to its own oracles.It follows that indistinguishable encryptions (as per De�nition 5.4.14) impliessemantic security (as per De�nition 5.4.13).We now turn to the opposite direction. Here the construction of a challengetemplet (as per De�nition 5.4.13) is exactly as the corresponding construction inthe proof of Theorem 5.4.11. Again, the thing to notice is that the oracle queriesmade by a possible distinguisher of encryptions (as in De�nition 5.4.14) can behandled by the semantic-security adversary, by passing these queries to its ownoracles. We derive a contradiction to the hypothesis that (G;E;D) satis�esDe�nition 5.4.13, and the theorem follows.
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5.4. * BEYOND EAVESDROPPING SECURITY 429Multiple-message security: De�nitions 5.4.13 and 5.4.14 can be easily gen-eralized to handle challenges in which multiple plaintexts are encrypted. Westress that in case of a-posteriori CCA the adversary is not allowed to makea decryption query that equals any of the challenge ciphertexts. As in pre-vious cases, the corresponding (multiple-plaintext) de�nitions are equivalent.Furthermore, as in case of chosen plaintext attacks, the multiple-plaintext de�-nitions are equivalent to the single-plaintext de�nition (both for public-key andprivate-key schemes). We stress that the above notion of multiple-message CCAsecurity refers to a single challenge-generation step in which a sequence of mes-sages (rather than a single message) can be speci�ed. A more general notion ofmultiple-message CCA security allows multiple challenge-generation steps thatmay be interleaved with the query steps. This notion generalizes the notion ofchosen ciphertext attacks, and is discussed in the next subsection. Actually,we will focus on this generalization when applied to a-posteriori chosen cipher-text attacks, although a similar generalization can be applied to a-priori chosenciphertext attacks (and in fact also to chosen plaintext attacks).5.4.4.2 A third equivalent de�nition of a-posteriori CCA-securityIn continuation to the last paragraph, we consider general attacks during whichseveral challenge templets may be produced (at arbitrary times and possiblyinterleaved with encryption and decryption queries).19 Each of these challengetemplets will be answered similarly to the way such templets were answeredabove (i.e., by selecting a plaintext from the speci�ed distribution and provid-ing its encryption together with the speci�ed partial information). Unlike inSection 5.4.4.1, we will even allow attacks that make decryption queries regard-ing ciphertexts obtained as (part of the) answer to previous challenge templets.After such an attack, the adversary will try to obtain information about theunrevealed plaintexts, and security holds if its success probability can be met bya corresponding benign adversary that does not see the ciphertexts. Indeed, theabove discussion requires clari�cation and careful formulation, provided next.We start with a description of the actual attacks. It will be convenient tochange the formalism and consider the generation of challenge templets as chal-lenge queries that are answered by a special oracle called the tester, and denotedTe;r, where e is an encryption-key and r is a random string of adequate length.On query a challenge templet of the form (S; h), where S is a sampling circuitand h is a function (evaluation circuit), the (randomized) oracle Te;r returnsthe pair (Ee(x); h(x)), where x = S(r). (Indeed, we may assume without lossof generality that all queries (S; h) satisfy that S is a sampling circuit mappingjrj-bit long strings into string of the length that �ts h's input.) We stress thatr is not known to the adversary, and that this formalism supports the genera-tion of dependent challenges as well as independent ones.20 A multiple-challenge19 Note that in this section we generalize the notion of an a-posteriori chosen ciphertextattack. When generalizing the notion of an a-priori chosen ciphertext attack, we disallowdecryption queries after the �rst challenge templet is produced.20 Independently distributed plaintexts can be obtained by sampling circuits that refer to
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430 CHAPTER 5. ENCRYPTION SCHEMESCCA is allowed queries to Te;r as well as unrestricted queries to both Ee and thecorresponding Dd, including decryption queries referring to previously obtainedchallenge ciphertexts. It terminates by outputting a function f and a value v,hoping that f(x1; :::; xt) = v, where xi = Si(r) and (Si; hi) is the i challengequery made by the adversary. Note that the description of f may encode vari-ous information gathered by the adversary during its attack (e.g., it may evenencode its entire computation transcript).We now turn to describe the benign adversary (which does not see the ci-phertexts). Such an adversary is given oracle access to a corresponding oracle,Tr, that behave as follows. On query a challenge templet of the form (S; h), theoracle returns h(x), where x = S(r). (Again, r is not known to the adversary.)Like the real adversary, the benign adversary also terminates by outputting afunction f and a value v, hoping that f(x1; :::; xt) = v, where xi = Si(r) and(Si; hi) is the i challenge query made by the adversary.Security amounts to asserting the the e�ect of any e�cient multiple-challengeCCA can be simulated by a e�cient benign adversary that does not see the ci-phertexts. As in De�nition 5.4.13, the simulation has to satisfy two conditions:First, the probability that f(x1; :::; xt) = v in the CCA must be met by theprobability that a corresponding event holds in the benign model (where theadversary does not see ciphertexts). Second, the challenge queries as well as thefunction f should be distributed similarly in the two models. Actually, each de-cryption query (of the real attacker) that refer to a ciphertext c that is containedin the answer given to a challenge query (S; h) is considered (or counted) as a(�ctitious) challenge query (S; id), where id is the identity function. Note thatthis convention is justi�ed by the fact that the challenge query (S; id) is equiv-alent to the decryption query c (followed by the encryption query x = Dd(c)).Put in other words, if the real adversary made a decryption query that refers toa ciphertext c contained in the answer given to the challenge (S; h) (and thusobtained Dd(c) = Dd(Ee(S(r))) = S(r)), then it is only fair that we allow thebenign adversary (which sees no ciphertexts) to make the challenge query (S; id)and so obtain id(S(r)) = S(r).In order to obtain the actual de�nition, we need to de�ne the trace of theexecution of the above two types of adversaries. For a multiple-challenge CCAadversary, denoted A, the trace is de�ned as the sequence of challenge queriesmade during the attack, augmented by (�ctitious) challenge queries such thatthe (�ctitious challenge) query (S; id) is included if and only if the adversarymade a decryption query c such that (c; �) is the answer given to a previouschallenge query of the form (S; �). For the benign adversary, denoted B, thetrace is de�ned as the sequence of challenge queries made during the attack.De�nition 5.4.16 (multiple-challenge CCA security):For public-key schemes: A public-key encryption scheme, (G;E;D), is saiddisjoint parts of the random string r. On the other hand, making a pair of queries of the form(S; �) and (C � S; �), where C is a deterministic circuit, will yield a pair of plaintexts of theform x def= S(r) and C(x).
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5.4. * BEYOND EAVESDROPPING SECURITY 431to be secure under multiple-challenge chosen ciphertext attacks if for everyprobabilistic polynomial-time oracle machine A there exists a probabilisticpolynomial-time oracle machine B such that the following two conditionshold:1. For every positive polynomial p(�), and all su�ciently large n andz 2 f0; 1gpoly(n):Pr2664 v = f(x1; :::; xt) where(e; d) G(1n) and r  Upoly(n)(f; v) AEe;Dd;Te;r(e; z)xi  Si(r), for i = 1; :::; t. 3775< Pr2664 v = f(x1; :::; xt) wherer  Upoly(n)(f; v) BTr (1n; z)xi  Si(r), for i = 1; :::; t. 3775+ 1p(n)where Si is the �rst part of the ith challenge query made by A (resp.,B) to Te;r (resp., to Tr).2. The following two probability ensembles, indexed by n 2 N and z 2f0; 1gpoly(n), are computationally indistinguishable:(a) The trace of AEG1(1n);DG2(1n);TG1(1n);Upoly(n) (G1(1n); z), augmentedby its output.(b) The trace of BTUpoly(n) (1n; z) augmented by its output.For private-key schemes: The de�nition is identical except that machine Agets the security parameter 1n instead of the encryption-key e.To get more comfortable with De�nition 5.4.16, consider the special case inwhich the real CCA adversary does not make decryption queries to ciphertextsobtained as part of answers to challenge queries. (In the proof of Theorem 5.4.17,such adversaries will be called canonical and will be showed to be as powerful asthe general ones.) The trace of such adversaries equals the sequence of challengequeries made during the attack, which simpli�es Condition 2. Furthermore,consider the special case in which such an adversary makes a single challengequery, and further restrict it to make only a query of the form (S; 0), where 0is the all-zero function (i.e., which yields no information). Still, even this veryrestricted case (of De�nition 5.4.16) easily implies security under a-posterioriCCA (cf. Exercise 32). More importantly, the following holds:Theorem 5.4.17 (a-posteriori-CCA implies De�nition 5.4.16): Let (G;E;D)be a public-key (resp., private-key) encryption scheme that is secure under a-posteriori CCA. Then (G;E;D) is secure under multiple-challenge chosen ci-phertext attacks.
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432 CHAPTER 5. ENCRYPTION SCHEMESProof Sketch: As a bridge between the multiple-challenge CCA and the corre-sponding benign adversary that does not see the ciphertext, we consider canon-ical adversaries that can perfectly simulate any multiple-challenge CCA withoutmaking decryption queries to ciphertexts obtained as part of answers to chal-lenge queries. Instead, these canonical adversaries make corresponding queriesof the form (S; id), where id is the identity function and (S; �) is the challenge-query that was answered with the said ciphertext. Speci�cally, suppose thata multiple-challenge CCA has made the challenge query (S; h), which was an-swered by (c; v) where c = Ee(x), v = h(x) and x = S(r), and at a later stagemakes the decryption query c, which is to be answered by Dd(c) = x. Then,the corresponding canonical adversary makes the challenge query (S; h) as theoriginal adversary, receiving the same pair (c; v), but later instead of making thedecryption query c the canonical adversary makes the challenge query (S; id),which is answered by id(S(r)) = x = Dd(c). Note that the trace of the cor-responding canonical adversary is identical to the trace of the original CCAadversary (and the same holds with respect to their outputs).Thus, given an a-posteriori-CCA secure encryption scheme, it su�ces toestablish De�nition 5.4.16 when the quanti�cation is restricted to canonical ad-versaries A. Indeed, as in previous cases, we construct a benign adversary Bin the natural manner: On input (1n; z), machine B generates (e; d)  G(1n),and invokes A on input (y; z), where y = e if we are in the public-key case andy = 1n otherwise. Next, B emulates all oracles expected by A, while using itsown oracle Tr. Speci�cally, the oracles Ee and Dd are perfectly emulated by us-ing the corresponding keys (known to B), and the oracle Te;r is (non-perfectly)emulated using the oracle Tr (i.e., the query (S; h) is forwarded to Tr, and theanswer h(S(r)) is augmented with Ee(1m), where m is the number of outputbits in S). Note that the latter emulation (i.e., the answer (Ee(1jS(r)j); h(S(r))))is non-perfect since the answer of Te;r would have been (Ee(S(r)); h(S(r))), yet(as we shall show) A cannot tell the di�erence.In order to show that B satis�es both conditions of De�nition 5.4.16 (w.r.tthe above A), we will show that the following two ensembles are computationallyindistinguishable:1. The global view in real attack of A on (G;E;D). That is, we consider theoutput of the following experiment:(a) (e; d) G(1n) and r  Upoly(n).(b) (f; v)  AEe;Dd;Te;r(y; z), where y = e if we are in the public-keycase and y = 1n otherwise. Furthermore, we let ((S1; h1); :::; (St; ht))denote the trace of the execution AEe;Dd;Te;r (y; z).(c) The output is ((S1; h1); :::; (St; ht)); (f; v); r.2. The global view in an attack emulated by B. That is, we consider theoutput of an experiment as above, except that AEe;Dd;Te;r (y; z) is replacedby AEe;Dd;T 0e;r(y; z), where on query (S; h) the oracle T 0e;r replies with(Ee(1jS(r)j); h(S(r))) rather than with (Ee(S(r)); h(S(r))).
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5.4. * BEYOND EAVESDROPPING SECURITY 433Note that computational indistinguishability of the above ensembles immediatelyimplies Condition 2 of De�nition 5.4.16, whereas Condition 1 also follows becauseusing r we can determine whether or not f(S1(r); :::; St(r)) = v holds (for (f; v)and S1; :::; St). Also note that the above ensembles may be computationallyindistinguishable only in case A is canonical (which we have assumed to be thecase).21The computational indistinguishability of the above ensembles is proven us-ing a hybrid argument, which in turn relies on the hypothesis that (G;E;D)has indistinguishable encryptions under a-posteriori-CCAs. Speci�cally, we in-troduce t + 1 mental experiments that are hybrids of the above two ensembles(which we wish to relate). Each of these mental experiments is given oracleaccess to Ee and Dd, where (e; d)  G(1n) is selected from the outside. Theith hybrid experiment uses these two oracles (in addition to y which equals ein the public-key case and 1n otherwise), in order to emulate an execution ofAEe;Dd;�ie;r (y; z), where r is selected by the experiment itself and �ie;r is a hybridof Te;r and T 0e;r. Speci�cally, �ie;r is a history-dependent process that answerslike Te;r on the �rst i queries and like T 0e;r on the rest. Thus, for i = 0; :::; t, wede�ne the ith hybrid experiment as a process that given y (which equals e or 1n)and oracle access to Ee and Dd, where (e; d) G(1n), behaves as follows:1. The process selects r  Upoly(n).2. The process emulates an execution of AEe;Dd;�ie;r(y; z), where y = e ifwe are in the public-key case and y = 1n otherwise, by using the ora-cles Ee and Dd. Speci�cally, the answers of �ie;r are emulated using theknowledge of r and oracle access to Ee: the jth query to �ie;r, denoted(Sj ; hj), is answered by (Ee(Sj(r)); hj(Sj(r))) if j � i and is answered by(Ee(1jSj(r)j); hj(Sj(r))) otherwise. (The process answers A's queries to Eeand Dd by forwarding them to its own corresponding oracles.)3. As before, (f; v) denotes the output ofAEe;Dd;�ie;r (y; z) and ((S1; h1); :::; (St; ht))denotes its trace. The process outputs ((S1; h1); :::; (St; ht)); (f; v); r.We stress that since A is canonical, none of the Dd-queries equals a ciphertextobtained as part of the answer of a �ie;r-query.Clearly, the distribution of the 0-hybrid is identical to the distribution ofthe global view in an attack emulated by B, whereas the distribution of thet-hybrid is identical to the distribution of the global view in a real attack by A.21 Non-canonical adversaries can easily distinguish the two types of views by distinguishingthe oracle Te;r from oracle T 0e;r . For example, suppose we make a challenge query with asampling-circuit S that generates some distribution over f0; 1gm n f1mg, next make a decryp-tion query on the ciphertext obtained in the challenge query, and output the answer. Then,in case we query the oracle Te;r, we output Dd(Ee(S(r))) 6= 1m; whereas in case we querythe oracle T 0e;r , we output Dd(Ee(1m)) = 1m. Recall that, at this point, we are guaranteedthat A is canonical (and indeed it might have been derived for perfectly-emulating some non-canonical A0). An alternative way of handling non-canonical adversaries is to let B handledthe disallowed (decryption) queries by making the corresponding challenge query, and return-ing its answer rather than the decryption value. (Note that B that emulates T 0r;e can detectwhich queries are disallowed.)
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434 CHAPTER 5. ENCRYPTION SCHEMESOn the other hand, distinguishing the i-hybrid from the (i+ 1)-hybrid yields asuccessful a-posteriori-CCA (in the sense of distinguishing encryptions). Thatis, assuming that one can distinguish the i-hybrid from the (i + 1)-hybrid, weconstruct a a-posteriori-CCA adversary (as per De�nition 5.4.14) as follows. For(e; d) G(1n), given y = e if we are in the public-key case and y = 1n otherwise,the attacker (having oracle access to Ee and Dd) behaves as follows1. The attacker selects r  Upoly(n).2. The attacker emulates an execution of AEe;Dd;�je;r (y; z), where j 2 fi; i+1g(is unknown to the attacker), as follows. The queries to Ee and Dd areanswered by using the corresponding oracles available to the attacker, andthe issue is answering the queries to �je;r. The �rst i queries to �je;rare answered as in both �ie;r and �i+1e;r (i.e., query (S; h) is answered by(Ee(S(r)); h(S(r)))), and the last t � (i + 1) queries are also answeredas in both �ie;r and �i+1e;r (i.e., by (Ee(1jS(r)j); h(S(r))), this time). Thei + 1 query, denoted (Si+1; hi+1), is answered by producing the chal-lenge templet (Si+1(r); 1jSi+1(r)j), which is answered by the challenge ci-phertext c (where c 2 fEe(Si+1(r)); Ee(1jSi+1(r)j)g), and replying with(c; hi+1(Si+1(r))).Note that if c = Ee(Si+1(r)) then we emulate �i+1e;r , whereas if c =Ee(1jSi+1(r)j) then we emulate �ie;r.3. Again, (f; v) denotes the output of AEe;Dd;�je;r(y; z), and ((S1; h1); :::; (St; ht))denotes its trace. The attacker feeds ((S1; h1); :::; (St; ht)); (f; v); r to thehybrid distinguisher (which we have assumed to exist towards the contra-diction), and outputs whatever the latter does.The above is an a-posteriori-CCA as in De�nition 5.4.14: it produces a singlechallenge (i.e., the pair of plaintexts (Si+1(r); 1jSi+1(r)j)), and distinguishes thecase it is given the ciphertext c = Ee(Si+1(r)) from the case it is given theciphertext c = Ee(1jSi+1(r)j), without querying Dd on the challenge ciphertextc. The last assertion follows by the hypothesis that A is canonical, and so noneof the Dd-queries that A makes equals the ciphertext c obtained as (part of) theanswer to the i+1st �je;r-query. Thus, distinguishing the i+1st and ith hybridsimplies distinguishing encryptions under an a-posteriori-CCA, which contradictsour hypothesis regarding (G;E;D). The theorem follows.Further generalization. Recall that we have allowed arbitrary challengequeries of the form (S; h) that were answered by (Ee(S(r)); L(S(r))). Instead,we may allow queries of the form (S; h) that are answered by (Ee(S(r)); h(r));that is, h is applied to r itself rather than to S(r). Actually, given the indepen-dence of h from S, one could have replaced the challenge queries by two typesof queries: partial-information (on r) queries that correspond to the h's (and areanswered by h(r)), and encrypted partial-information queries that correspond tothe S's (and are answered by Ee(S(r))). As shown in Exercise 33, all these formsare in fact equivalent.
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5.4. * BEYOND EAVESDROPPING SECURITY 4355.4.4.3 Constructing CCA-secure private-key schemesIn this section we show simple constructions of CCA-secure private-key encryp-tion schemes. We start with a-priori CCA, and next turn to a-posteriori CCA.Security under a-priori CCA. All the results presented in Section 5.3.3extend to security under a-priori chosen ciphertext attacks. Speci�cally, weprove that Constructions 5.3.9 and 5.3.12 remain secure also under an a-prioriCCA.Proposition 5.4.18 Let F and (G;E;D) be as in Construction 5.3.9, and sup-pose that F is pseudorandom with respect to polynomial-size circuits. Then theprivate-key encryption scheme (G;E;D) is secure under a-priori chosen cipher-text attacks. The same holds with respect to Construction 5.3.12.Proof Sketch: As in the proof of 5.4.12, we focus on Construction 5.3.9, andconsider an idealized version of the scheme, in which one uses a uniformly se-lected function f :f0; 1gn!f0; 1gn (rather than the pseudorandom function fs).Again, all that the adversary obtains by encryption queries in the ideal versionis pairs (r; f(r)), where the r's are uniformly and independently distributed inf0; 1gn. Similarly, decryption queries provide the adversary with pairs (r; f(r)),but here the r's are selected by the adversary. Still in an a-priori CCA, alldecryption queries are made before the challenge is presented, and so these r'sare selected (by the adversary) independent of the challenge. Turning to thechallenge itself, we observe that the plaintext is \masked" by the value of fat another uniformly and independently distributed element in f0; 1gn, denotedrC . We stress that rC is independent of all r's selected in decryption queries(because these occur before rC is selected), as well as being independent of all r'sselected by the encryption oracle (regardless of whether these queries are madeprior or subsequently to the challenge). Now, unless rC happens to equal oneof the r's that appear in the pairs (r; f(r)) obtained by the adversary (whichhappens with negligible probability), the challenge plaintext is perfectly masked.Thus, the ideal version is secure under an a-priori CCA, and the same holds forthe real scheme.Security under a-posteriori CCA. Unfortunately, Constructions 5.3.9 and 5.3.12are not secure under an a-posteriori chosen ciphertext attacks: Given a challengeciphertext (r; x � fs(r)), the adversary may obtain fs(r) by making the query(r; y0), for any y0 6= x � fs(r). This query is allowed and is answered with x0such that y0 = x0 � fs(r). Thus, the adversary may recover the challenge plain-text x from the challenge ciphertext (r; y), where y def= x � fs(r), by computingy � (y0 � x0). Thus, we should look for new private-key encryption schemes ifwe want to obtain one that is secure under a-posteriori CCA. Actually, we showhow to transform any private-key encryption scheme that is secure under chosenplaintext attack (CPA) into one that is secure under a-posteriori CCA.
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436 CHAPTER 5. ENCRYPTION SCHEMESThe idea underlying our transformation (of CPA-secure schemes into CCA-secure ones) is to eliminate the adversary's gain from chosen ciphertext attacksby making it infeasible to produce a legitimate ciphertext (other than the onesgiven explicitly to the adversary). Thus, an a-posteriori CCA adversary can beemulated by a chosen plaintext attack (CPA) adversary, while almost preservingthe success probability.The question is indeed how to make it infeasible for the (a-posteriori CCA)adversary to produce a legitimate ciphertext (other than the ones explicitly givento it). One answer is to use \Message Authentication Codes" (with unique validtags) as de�ned in Section 6.1. That is, we augment each ciphertext with acorresponding authentication tag (which is \hard to forge"), and consider anaugmented ciphertext to be valid only if it consists of a valid (string,tag)-pair.For sake of self-containment (and concreteness), we will use below a speci�cimplementation of such MACs via pseudorandom functions. Incorporating thisMAC in Construction 5.3.9, we obtain the followingConstruction 5.4.19 (a private-key block-cipher secure against a-posteriori-CCA): As in Construction 5.3.9, let F = fFng be an e�ciently computablefunction ensemble and let I be the function-selection algorithm associated withit; i.e., I(1n) selects a function fs with distribution Fn. We de�ne a private-keyblock cipher, (G;E;D), with block length `(n) = n as followskey-generation: G(1n) = ((k; k0); (k; k0)), where both k  I(1n) and k0  I(1n).encrypting plaintext x 2 f0; 1gn (using the key (k; k0)):Ek;k0 (x) = ((r; fk(r) � x); fk0 (r; fk(r) � x));where r is uniformly chosen in f0; 1gn.decrypting ciphertext (r; y) (using the key (k; k0)): Dk;k0 ((r; y); t) = fk(r)� y iffk0(r; y) = t and Dk;k0 ((r; y); t) = ? otherwise.Proposition 5.4.20 Let F and (G;E;D) be as in Construction 5.4.19, andsuppose that F is pseudorandom with respect to polynomial-size circuits. Thenthe private-key encryption scheme (G;E;D) is secure under a-posteriori chosenciphertext attacks.Proof Sketch: Following the motivation preceding the construction, we emulateany a-posteriori-CCA adversary by a CPA adversary. Speci�cally, we need toshow how to answer description queries made by the CCA adversary. Let usdenote such a generic query by ((r; y); t), and consider the following three cases:1. If ((r; y); t) equals the answer given to some (previous) encryption queryx, then we answer the current query with x.Clearly, the answer we give is always correct.2. If ((r; y); t) equals the challenge ciphertext then this query is not allowed.
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5.4. * BEYOND EAVESDROPPING SECURITY 4373. Otherwise, we answer that ((r; y); t) is not a valid ciphertext.We need to show that our answer is indeed correct. Recall that in this case((r; y); t) did not appear before as an answer to an encryption query. Sincefor every (r; y) there is a unique t such that ((r; y); t) is a valid ciphertext,the case hypothesis implies that one of the following sub-cases must occur:Case 1: Some ((r; y); t0), with t0 6= t, has appeared before as an answer toan encryption query. In this case ((r; y); t) is de�nitely not a validciphertext (because ((r; y); t0) is the unique valid ciphertext of theform ((r; y); �)).Case 2: No triple of the form ((r; y); �) has appear before as such an answer(to an encryption query). In this sub-case, the ciphertext is valid ifand only if t = fk0(r; y). That is, in order to produce such a validciphertext the adversary must guessed the value of fk0 at (r; y), whenonly seeing the value of fk0 at other arguments. By the pseudoran-domness of the function fk0 , the adversary may succeed in such aguess only with negligible probability, and hence our answer is wrongonly with negligible probability.Finally, note that the CPA-security of Construction 5.3.9 (see Proposition 5.4.12)implies that so is Construction 5.4.19. The proposition follows.An alternative proof of Proposition 5.4.20: Building on the proof ofProposition 5.4.18, we (need to) consider here also description queries madeafter the challenge ciphertext, denoted ((rC ; yC); tC), is presented. Let us de-note such a generic query by ((r; y); t). We consider three cases:1. If r 6= rC then this query can be treated as in the proof of Proposition 5.4.18(i.e., it is not more dangerous than a query made during an a-priori-CCAattack).2. If r = rC and (y; t) 6= (yC ; tC) then except with negligible probability thisquery is not a valid ciphertext, because it is infeasible to guess the valueof fk0(r; y) (which is the only value of t such that ((r; y); t) is valid).3. If r = rC and (y; t) = (yC ; tC) then this query is not allowed.The proposition follows.The same construction and analysis can be applied to Construction 5.3.12.Combining this with Corollary 3.6.7, we getTheorem 5.4.21 If there exist (non-uniformly hard) one-way functions thenthere exist private-key encryption schemes that are secure under a-posteriorichosen ciphertext attacks.
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438 CHAPTER 5. ENCRYPTION SCHEMES5.4.4.4 Constructing CCA-secure public-key schemesUsing strong forms of Non-Interactive Zero-Knowledge (NIZK) proofs, we showhow to transform any public-key encryption scheme that is secure in the passive(key-dependent) sense into one that is secure under a-posteriori CCA. As in caseof private-key schemes, the idea underlying the transformation is to eliminatethe adversary's gain from chosen ciphertext attacks.Recall that in case of private-key schemes the adversary's gain from a CCAwas eliminated by making it infeasible (for the adversary) to produce legitimateciphertexts (other than those explicitly given to it). However, in the contextof public-key schemes, the adversary can easily generate legitimate ciphertexts(by applying the keyed encryption algorithm to any plaintext of its choice).Thus, in the current context the adversary's gain from a CCA is eliminatedby making it infeasible (for the adversary) to produce legitimate ciphertextswithout \knowing" the corresponding plaintext. This, in turn, will be achievedby augmenting the plaintext with a non-interactive zero-knowledge \proof ofknowledge" of the corresponding plaintext.Since the notion of a proof-of-knowledge is quite complex in general (cf. Sec-tion 4.7), and more so in the non-interactive (zero-knowledge) context (let alonethat we will need strengthenings of it), we will not make explicit use of thisnotion (of a non-interactive (zero-knowledge) proof-of-knowledge). Instead, wewill use non-interactive (zero-knowledge) proofs of membership (NIZK) as de-�ned in Section 4.10. In fact, our starting point is the de�nition of adaptiveNIZK system (i.e., De�nition 4.10.15). We focus on proof systems in whichthe prover is implemented by a probabilistic polynomial-time algorithm that isgiven a suitable auxiliary-input. For sake of clarity let us reproduce the resultingde�nition.De�nition 5.4.22 (adaptive NIZK): An adaptive non-interactive zero-knowledgeproof system (adaptive NIZK) for a language L 2 NP, with an NP-relation RL,consists of a pair of probabilistic polynomial-time algorithms, denoted (P; V ),that satisfy the following:� Syntax: Both machines are given the same uniformly selected referencestring r 2 f0; 1gm along with an actual input x 2 f0; 1g� such that jxj =poly(m) and an auxiliary input. Speci�cally, on input r, x and w (suppos-edly, (x;w) 2 RL), the prover P outputs an alleged proof �  P (x;w; r);whereas on input r, x and �, the veri�er V decides according to V (x; r; �) 2f0; 1g.� Completeness: For every (x;w) 2 RL with jxj = poly(m), the probabilitythat V does not accept the input x (based on the proof P (x;w; Um) and thereference string Um) is negligible; that is, Pr[V (x; Um; P (x;w; Um)) 6= 1] isnegligible. (Typically, the error probability here is zero, in which case wesay that the proof has perfect completeness.)� Adaptive Soundness: For every � : f0; 1gm! (f0; 1gpoly(m) n L) and every�:f0; 1gm!f0; 1gpoly(m), the probability that V accepts the input �(Um)
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5.4. * BEYOND EAVESDROPPING SECURITY 439(based on the proof �(Um) and the reference string Um) is negligible; thatis, Pr[V (�(Um); Um;�(Um)) = 1] is negligible.� Adaptive Zero-Knowledge: There exist two probabilistic polynomial-time al-gorithms, S1 and S2, such that for every pair of functions � : f0; 1gm!(f0; 1gpoly(m) \ L) and W : f0; 1gm! f0; 1gpoly(m) such that � is imple-mentable by polynomial-size circuits and (�(r);W (r))2RL (8r2f0; 1gm),the ensembles f(Um;�(Um); P (�(Um);W (Um); Um))gm2N and fS�(1m)gn2Nare computationally indistinguishable (by non-uniform families of polynomial-size circuits), where S�(1m) denotes the output of the following randomizedprocess:1. (r; s) S1(1m);2. x �(r);3. �  S2(x; s);4. Output (r; x; �).Indeed, S is a two-stage simulator that �rst produces (obliviously of theactual input) an alleged reference string r (along with auxiliary informations), and then given an actual input (which may depend on r) simulates theactual proof.Note that it is important that in the zero-knowledge condition the function �is required to be implementable by polynomial-size circuits (as otherwise thereference string produced by S1 would have had to be statistically close to Um;see Exercise 34). In the rest of this subsection, whenever we refer to an adap-tive NIZK, we mean the de�nition above. Actually, we may relax the adaptivesoundness condition so that it only applies to functions � and � that are im-plementable by polynomial-size circuits. That is, computational-soundness willactually su�ce for the rest of this subsection.Note that (analogously to Proposition 5.4.10), in case of public-key schemesthe combined chosen plaintext and ciphertext attack (as in De�nitions 5.4.13and 5.4.14) is equivalent to a \pure" chosen ciphertext attack. Thus, in thissubsection we consider only attacks of the latter type. Another technical pointis that in our construction we can use any public-key encryption scheme that issecure in the passive (key-dependent) sense, provided that for all but a negligiblemeasure of the key-pairs that it generates there is no decryption error.The general framework. Using an adaptive NIZK, (P; V ) (for NP) withsimulator S = (S1; S2), and an arbitrary public-key encryption scheme, (G;E;D),we present the following public-key encryption scheme:Construction 5.4.23 (CCA-security construction framework): Let Ee(x; s) de-note the ciphertext produced by E when given the encryption-key e, the plaintextx and coins s; that is, Ee(x)  Ee(x; s), where s is selected uniformly among
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440 CHAPTER 5. ENCRYPTION SCHEMESthe set of poly(jej)-long bit strings. We use an adaptive NIZK (P; V ) for thelanguage LR de�ned by the following NP-relationR def= f((e1; e2; y1; y2); (x; s1; s2)) : y1 = Ee1(x; s1) & y2 = Ee2 (x; s2)g (5.12)That is, (e1; e2; y1; y2) 2 LR if both yi's are ciphertexts produced using theencryption-keys e1 and e2, respectively, of the same plaintext.key-generation: G0(1n) ((e1; e2; r); (d1; d2; r)), where (e1; d1) G(1n), (e2; d2) G(1n), and r is uniformly distributed in f0; 1gn.encrypting plaintext x 2 f0; 1g� (using the key e = (e1; e2; r)): E0e(x) (y1; y2; �),where s1; s2 are uniformly selected poly(n)-long bit strings, y1 = Ee1(x; s1),y2 = Ee2 (x; s2) and �  P ((e1; e2; y1; y2); (x; s1; s2); r).decrypting ciphertext (y1; y2; �) (using the key d = (d1; d2; r)): If V ((e1; e2; y1; y2); r; �) =1 then return Dd1(y1) else return an error symbol indicating that the ci-phertext is not valid.Indeed, our choice to decrypt according to y1 (in case � is a valid proof) isimmaterial, and we might as well decrypt according to y2 or decrypt accordingto both and return a result only if both results are identical. We stress that, hereas well as in the following analysis, we rely on the hypothesis that decryptionis error-free, which implies that for x 6= x0 the supports of Ee(x) and Ee(x0)are disjoint. (Thus, Dd1(y1) = Dd2(y2), for any (e1; e2; y1; y2) 2 LR, where the(ei; di)'s are in the range of G.)Clearly, Construction 5.4.23 constitute a public-key encryption scheme; thatis, D0d(E0e(x)) = x, provided that the NIZK proof generated during the en-cryption stage was accepted during the decryption stage. Indeed, if the NIZKsystem enjoys perfect completeness (which is typically the case), then the de-cryption error is zero. By the zero-knowledge property, the passive security ofthe original encryption scheme (G;E;D) is preserved by Construction 5.4.23.Intuitively, creating a valid ciphertext seems to imply \knowledge" of the cor-responding plaintext, but this appealing claim should be examined with morecare (and in fact is not always valid). Furthermore, as stated above, our actualproof will not relate to the notion of \knowledge". Instead, the actual proof willproceed by showing how a chosen-ciphertext attack on Construction 5.4.23 canbe transformed into a (key-dependent) passive attack on (G;E;D). In fact, wewill augment the notion of (adaptive) NIZK in order to present such a transfor-mation. Furthermore, we will do so in two steps. The �rst augmentation will beused to deal with a-priori CCA, and further augmentation will be used to dealwith a-posteriori CCA.Step I: a-priori CCALet us start by considering an a-priori CCA. Given such an adversary A, we con-struct a passive adversary B that attacks (G;E;D) by emulating the attack of
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5.4. * BEYOND EAVESDROPPING SECURITY 441A on Construction 5.4.23. One important observation is that the latter encryp-tion scheme uses two keys of the original scheme. Thus, given an encryption-keyof the original scheme, B generates another encryption-key (while storing thecorresponding decryption-key), and invokes A giving it the pair of encryption-keys (along with a reference string to be generated as discussed below). WhenA makes a decryption query, B may answer the query by using the storeddecryption-key (generated by B before). This works provided that the queryciphertext contains a pair of ciphertexts of the same plaintext according to thetwo keys, which is the reason we augmented this pair by a proof of consistency.Thus, actually, B should examine this proof and act analogously to the decryp-tion process of Construction 5.4.23.The next problem arises when A asks to be given a challenge. Algorithm Boutputs the request as its own challenge templet, but the challenge given to Bis a single ciphertext of the original scheme and so B needs to augment it intosomething that looks like a ciphertext of Construction 5.4.23. Here is where werely on the zero-knowledge property of the proof of consistency (for producingthe required proof that relates to a plaintext we do not know), but in order forso the reference string needs to be generated by S1 (rather than be uniformlydistributed). But this leads to the following problem: when referring (above) tothe soundness of the proofs of consistency we assumed that the reference stringis uniformly distributed (since soundness was stated for that case), and it isnot clear whether soundness holds when the reference string is generated by thesimulator (who must use a di�erent22 distribution). This question is addressedby the notion of (weak) simulation-soundness.De�ning and constructing adaptive NIZKs with weak simulation-soundness.The above discussion leads to the following de�nition.De�nition 5.4.24 (weak simulation-soundness): Let (P; V ) be an adaptive NIZKfor a language L, and (S1; S2) be a corresponding two-stage simulator. We saythat weak simulation-soundness holds if for every polynomial-size implementable� and �,Pr [�(r) 62L and V (�(r); r;�(r))=1, where (r; s) S1(1n)] < �(n)where � :N! [0; 1] is a negligible function.Note that the computational limitation on � is essential to the viability of thede�nition (see Exercise 35). It is tempting to conjecture that every adaptiveNIZK (or rather its simulator) satis�es weak simulation-soundness; however,this is not true (for further discussion see Exercise 36). Nevertheless, adaptiveNIZK (for NP) with a simulator satisfying weak simulation-soundness can beconstructed given any adaptive NIZK (for NP).22 Prove that the distribution produced by S1 must be far-away from uniform. See relatedExercises 34 and 35.
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442 CHAPTER 5. ENCRYPTION SCHEMESConstruction 5.4.25 (from adaptive NIZK to weak simulation-soundness): Let(P; V ) be an adaptive NIZK for some language L, and let (S1; S2) be the cor-responding two-stage simulator. We construct the following adaptive NIZK thatworks with reference string ((r01 ; r11); :::; (r0n; r1n)), where r�i 2 f0; 1gn.Prover P 0: on common input x and auxiliary-input w (s.t., (x;w) 2 RL), (andreference string ((r01 ; r11); :::; (r0n; r1n))), uniformly select b1; :::; bn 2 f0; 1g,compute �i  P (x;w; rbii ) for i = 1; :::; n, and output � def= (b1; :::; bn; �1; :::; �n).Veri�er V 0: on common input x (and reference string ((r01 ; r11); :::; (r0n; r1n))), givenan alleged proof � = (b1; :::; bn; �1; :::; �n), accept if and only if V (x; rbii ; �i) =1 for all i 2 f1; :::; ng.Simulator's �rst stage S01: on input 1n, select uniformly c1; :::; cn 2 f0; 1g, gen-erate (rcii ; si)  S1(1n), select uniformly r1�c11 ; :::; r1�cnn 2 f0; 1gn, andoutput (r; s), where r def= ((r01 ; r11); :::; (r0n; r1n)) and s def= (c1; :::; cn; s1; :::; sn).Simulator's second stage S02: on input (s; x), where s = (c1; :::; cn; s1; :::; sn),compute �i  S2(x; si) for i = 1; :::; n, and output (c1; :::; cn; �1; :::; �n).It is easy to see that Construction 5.4.25 preserves the adaptive NIZK featuresof (P; V; S1; S2). Furthermore, as shown below, Construction 5.4.25 is weaksimulation-sound.Proposition 5.4.26 Construction 5.4.25 is an adaptive NIZK for L and weaksimulation-soundness holds with respect to the prescribed simulator.Proof Sketch: Completeness and soundness follow by the corresponding prop-erties of (P; V ). To see that the simulation is indistinguishable from the realexecution of (P 0; V 0), note that the two probability ensembles di�er in twoaspects: �rst, the simulation uses rcii 's generated by S1(1n), whereas in thereal execution the rcii 's are uniformly distributed; and second, the simulationuses simulated proofs produced by S2(x; si) rather than real proofs produced byP (x;w; rbii ). Still, indistinguishability the output of the original simulator fromthe real execution of (P; V ), can be used to prove the the current ensembles areindistinguishable too. Speci�cally, we consider a hybrid distribution in which allrbi 's are generated by S1(1n) but the individual proofs (i.e., �i's) are producedby P (x;w; rbii ). Using the fact that indistinguishability (by small circuits) is pre-served under repeated sampling, we show that the hybrid is indistinguishablefrom each of the two ensembles (i.e., real execution of (P 0; V 0) and the simulationby (S01; S02)).To establish the weak simulation-soundness property, we consider an arbi-trary cheating prover C = (�;�) that is implementable by a family of smallcircuits. We say that C(r) = (�(r);�(r)) succeeds if it holds that �(r) 62 L andV 0(�(r); r;�(r)) = 1. We are interested in the probability that C(r) succeedswhen (r; s)  S01(1n). Recall that s = (c1; :::; cn; s1; :::; sn), where the ci's areselected uniformly in f0; 1g, whereas �(r) has the form (b1; :::; bn; �1; :::; �n). Let

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.4. * BEYOND EAVESDROPPING SECURITY 443us denote the latter bi's by B(r); that is, �(r) = (B(r);�0(r)). We distinguishtwo cases according to whether or not B(r) = c def= (c1; :::; cn):Pr[C(r) = (�(r); (B(r);�0(r))) succeeds, when (r; s) S01(1n)]= Pr[C(r) succeeds and B(r) = c, when (r; (c; s0)) S01(1n)]+ Pr[C(r) succeeds and B(r) 6= c, when (r; (c; s0)) S01(1n)]The �rst term must be negligible because otherwise B can distinguish a sequenceof 2n uniformly generated rbi 's from a sequence of rbi 's as generated by S01 (sincein the �rst case Pr[B(r) = c] = 2�n by information theoretic considerations).The second term must be negligible because in case the ith bit of B(r) is di�erentfrom ci (i.e., bi 6= ci), the ith alleged proof (i.e., �i) is with respect to a uniformlydistributed reference string (i.e., rbii = r1�cii , which is selected uniformly inf0; 1gn), and thus can be valid only with negligible probability (or else the(adaptive) soundness of (P; V ) is violated).Using adaptive NIZKs with weak simulation-soundness. Following theforegoing motivating discussion, we show that if the adaptive NIZK used in Con-struction 5.4.23 has the weak simulation-soundness property then the encryptionscheme in the construction is secure under a-priori CCA.Theorem 5.4.27 Suppose that the adaptive NIZK (P; V ) used in Construc-tion 5.4.23 has the weak simulation-soundness property and that the public-keyencryption scheme (G;E;D) is passively secure in the key-dependent sense. Fur-ther suppose that the probability that G(1n) produces a pair (e; d) such thatPr[Dd(Ee(x)) = x] < 1 for some x 2 f0; 1gpoly(n), is negligible. Then Con-struction 5.4.23 constitutes a public-key encryption scheme that is secure undera-priori CCA.Combining the above with Theorem 4.10.16 and Proposition 5.4.26, it followthat public-key encryption schemes that are secure under a-priori CCA exist,provided that trapdoor permutations exist.Proof Sketch: Assuming towards the contradiction that the scheme (G0; E0; D0)is not secure under a-priori CCA, we show that the scheme (G;E;D) is not secureunder a (key-dependent) passive attack. Speci�cally, we refer to the de�nitionsof security in the sense of indistinguishable encryptions (as in De�nitions 5.4.14and 5.4.2, respectively). To streamline the proof, we reformulate De�nition 5.4.2,incorporating both circuits (i.e., the one selecting message pairs and the onetrying to distinguish their encryptions) into one circuit and allow this circuitto be probabilistic. (Certainly, this model of a key-dependent passive attack isequivalent to the one in De�nition 5.4.2.)Let (A01; A02) be an a-priori CCA adversary attacking the scheme (G0; E0; D0)(as per De�nition 5.4.14), and (S1; S2) be the two-stage simulator for (P; V ).We construct a (key-dependent) passive adversary A (attacking (G;E;D)) that,given an encryption-key e (in the range of G1(1n)), behaves as follows:
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444 CHAPTER 5. ENCRYPTION SCHEMES1. Initialization: A generates (e1; d1)  G(1n), (r; s)  S1(n), and setse = (e1; e; r).2. Emulation of A0Dd1 (e): A invokes A01 on input e, and answers its (decryp-tion) queries as follows. When asked to decrypt the alleged ciphertext(q1; q2; q3), adversary A checks if q3 is a valid proof of consistence of q1and q2 (with respect to the reference string r). If the proof is valid, thenA answers with Dd1(q1) else A returns the error symbol.(Note that the emulation is perfect, although A only knows part of thecorresponding decryption-key d.)3. Using A02 for the �nal decision: Let ((x(1); x(2)); �) denote the challengetemplet output by A01. Then, given a ciphertext y = Ee(x), where x 2fx(1); x(2)g, adversary A form a corresponding ciphertext (y1; y; �), by let-ting y1  Ee1 (0jx(1)j) and �  S2(s; (e1; e; y1; y)). Finally, A invokes A02on input (�; (y1; y; �)), and outputs whatever the latter does. Recall that,here (in case of a-priori CCA), A02 is an ordinary machine (rather than anoracle machine).(Note that this emulation is not perfect, since (typically) A invokesA02 withan illegal ciphertext, still we shall see that A02 cannot tell the di�erence.)In order to analyze the performance of A, we introduce the following hybridprocess as a mental experiment. The hybrid process behaves as A, with the onlyexception that (in Step 3) y1  Ee1(x) (rather than y1  Ee1 (0jxj)). Thus,unlike A, the hybrid process invokes A02 with a legal ciphertext. (The questionof how the hybrid process \knows" or gets this y1 is out of place; we merelyde�ne a mental experiment.) Let p(j)A = p(j)A (n) (resp., p(j)H = p(j)H (n)) denotethe probability that A (resp., the hybrid process) outputs 1 when x = x(j).Claim 5.4.27.1: For both j's the absolute di�erence between p(j)A (n) and p(j)H (n)is a negligible function in n.Proof: De�ne an auxiliary hybrid process that behaves as the hybrid processexcept that when emulating Dd, the auxiliary process answers according to Dd2(rather than according to Dd1). (Again, this is a mental experiment.) Letp(j)HH denote the probability that this auxiliary process outputs 1 when x =x(j). Similarly, de�ne another mental experiment that behaves as A except thatwhen emulating Dd, the auxiliary process answers according to Dd2 (rather thanaccording to Dd1), and let p(j)AA denote the probability that this process outputs1 when x = x(j). Let m def= jxj. We establish the following facts:Fact 1. For both j's the absolute di�erence between p(j)H and p(j)HH is negligible.The reason is that by weak simulation-soundness, it is infeasible to producetriples (q1; q2; q3) such that Dd1(q1) 6= Dd2(q2) and yet q3 is a valid proof(w.r.t r) that q1 and q2 encrypt the same plaintext. Here we rely on thehypothesis that except with negligible probability over the key-generation,the decryption is error-less (i.e., always yields the original plaintext).
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5.4. * BEYOND EAVESDROPPING SECURITY 445Fact 2. Similarly, for both j's the absolute di�erence between p(j)A and p(j)AA isnegligible.Fact 3. Finally, for both j's the absolute di�erence between p(j)HH and p(j)AA isnegligible.The reason is that the experiments AA and HH di�er only in the input(�; (y1; y; �)) that they feed to A02: whereas AA forms y1  Ee1(0m) (and�  S2(s; (e1; e; y1; y))), the process HH forms y1  Ee1(x) (and �  S2(s; (e1; e; y1; y))). However, A02 cannot distinguish the two cases becausethis would have violated the security of Ee1 .That is, to establish Fact 3, we construct a passive attack, denoted B,that behaves similarly to A except that it switches its reference to thetwo basic keys (i.e., the �rst two components of the encryption-key e)and acts very di�erently in Step 3 (e.g., produces a di�erent challengetemplet). Speci�cally, given an attacked encryption-key e, adversary Bgenerates (e2; d2) G(1n), sets e = (e; e2; �), and emulates A0Dd1 (e) usingthe decryption-key d2 to answer queries. For a �xed j, when obtaining(from A01) the challenge templet ((x(1); x(2)); �), adversary B produces thechallenge templet ((0m; x(j)); �), and invokes A02 on input (�; (y; y2; �)),where y = Ee(x) (x 2 f0m; x(j)g) is the challenge ciphertext given to B,and B computes y2  Ee2 (x(j)) and �  S2(s; (e; e2; y; y2)). (Finally, Boutputs the output obtained from A02.) Note that when given the challengeciphertext Ee(x(j)), the adversary B behaves as experiment HH , whereaswhen given Ee(0m) it behaves as experiment AA. Thus, if p(j)HH and p(j)AAdi�er in a non-negligible manner, then B violates the passive security ofthe encryption scheme (G;E;D).Combining the above three facts, the current claim follows. 2Let us denote by p(j)cca(n) the probability that the CCA adversary (A01; A02) out-puts 1 when given a ciphertext corresponding to the jth plaintext in its challengetemplet (see De�nitions 5.4.14). Recall that by the hypothesis jp(j)cca(n)�p(j)cca(n)jis not negligible.Claim 5.4.27.2: For both j's the absolute di�erence between p(j)cca(n) and p(j)H (n)is a negligible function in n.Proof: The only di�erence between the output in a real attack of (A01; A02) andthe output of the hybrid process is that in the hybrid process a \simulated refer-ence string" and a \simulated proof" are used instead of a uniformly distributedreference string and a real NIZK proof. However, this di�erence is indistinguish-able. 2Combining Claims 5.4.27.1 and 5.4.27.2, we conclude that A violates the pas-sive security of (G;E;D). This contradicts the hypothesis, and so the theoremfollows.
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446 CHAPTER 5. ENCRYPTION SCHEMESStep II: a-posteriori CCAIn order to use Construction 5.4.23 in the context of a-posteriori CCA security,we need to further strengthen the NIZK proof in use. The reason is that, in ana-posteriori CCA, the adversary may try to generate false proofs (as part of theciphertext queries in the second stage) after being given a (single) proof (as partof the challenge ciphertext). Speci�cally, when trying to extend the proof ofTheorem 5.4.27, we need to argue that, given a simulated proof (to either a falseor a true statement), it is infeasible to generate a false proof to a false statement(as long as one does not just copy the given simulated proof, in case it is toa false statement). The notion of weak simulation-soundness does not su�ceto bound the probability of success in such attempts, because it only refer towhat one can do when only given the simulated reference string. The followingde�nition addresses the situation in which one is given a single simulated proof(along with the simulated reference string). (We comment that a more generalnotion that refers to situations in which one is given a many simulated proofs isnot necessary for the current application.)De�nition 5.4.28 (1-proof simulation-soundness): Let (P; V ) be an adaptiveNIZK for a language L, and (S1; S2) be a corresponding two-stage simulator. Wesay that 1-proof simulation-soundness holds if for every triplet of polynomial-sizecircuit families (�1;�2;�2), the probability of the following event is negligible:The event: for (x1; �1; x2; �2) generated as described below the following threeconditions hold: x2 62 L, (x2; �2) 6= (x1; �1), and V (x2; r; �2) = 1.The generation process: First (r; s)  S1(1n), then x1  �1(r), next �1  S2(s; x1), and �nally (x2; �2) (�2(r; �1);�2(r; �1)).Note that weak simulation-soundness is obtained as a special case (by letting�(r) = �2(r; �) and �(r) = �2(r; �)).Theorem 5.4.29 Suppose that the adaptive NIZK (P; V ) used in Construc-tion 5.4.23 has the 1-proof simulation-soundness property and that the encryp-tion scheme (G;E;D) is as in Theorem 5.4.27. Then Construction 5.4.23 con-stitutes a public-key encryption scheme that is secure under a-posteriori CCA.Proof Sketch: The proof follows the structure of the proof of Theorem 5.4.27.Speci�cally, given an a-posteriori CCA (A01; A02) (attacking (G0; E0; D0)), we �rstconstruct a passive adversary A (attacking (G;E;D)). The construction is as inthe proof of Theorem 5.4.27 with the exception that in Step 3 we need to emulatethe decryption oracle (for A02). This emulation is performed exactly as the oneperformed in Step 2 (for A01). Next, we analyze this passive adversary as in theproof of Theorem 5.4.27, while referring (in the current analysis unlike in theprevious one) to an A02 that may make decryption queries. The analysis of thehandling of these queries relies on the 1-proof simulation-soundness property.In particular, when proving a claim analogous to Claim 5.4.27.1, we have toestablish two facts (corresponding to Facts 1 and 2) that refer to the di�erence
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5.4. * BEYOND EAVESDROPPING SECURITY 447in the process's output when decrypting according to Dd1 and Dd2 , respectively.Both facts follow from the fact (established below) that, except with negligibleprobability, neither A01 nor A02 can produce a query (q1; q2; q3) such that q3 is avalid proof that q1 and q2 are consistent and yet Dd1(q1) 6= Dd2(q2). (We stressthat in the current context we refer also to A02, which may try to produce sucha query based on the challenge ciphertext given to it.)Fact 5.4.29.1: The probability that A01 produces a query (q1; q2; q3) such that q3 isa valid proof (w.r.t reference string r) that (supposedly) there exists x; s1; s2 suchthat qi = Eei(x; si) (for i = 1; 2), and yet Dd1(q1) 6= Dd2(q2) is negligible. Thesame holds for A02 as long as the query is di�erent from the challenge ciphertextgiven to it. This holds regardless of whether the challenge ciphertext (given toA02) is produced as in A (i.e., y1 = Ee1(0m)) or as in the hybrid process H (i.e.,y1 = Ee1(x)).Proof: Recall that one of our hypotheses is that the encryption (G;E;D) iserror-free (except for a negligible measure of the key-pairs). Thus, the cur-rent fact refers to a situation that either A01 or A02 produces a valid prooffor a false statement. The �rst part (i.e., referring to A01) follows from theweak simulation-soundness of the NIZK, which in turn follows from its 1-proofsimulation-soundness property. We focus on the second part, which refers to A02.Let (y1; y2; �) denote the challenge ciphertext given to A02 (i.e., y2 = y isthe challenge ciphertext given to A(e) (or to H(e)), which augments it with y1and �  S2(s; (e1; e2; y1; y2))). Recall that (r; s)  S1(1n) and that e2 =e. Suppose that A02 produces a query (q1; q2; q3) as in the claim; that is,(q1; q2; q3) 6= (y1; y2; �), the encryptions q1 and q2 are not consistent (w.r.t e1 ande2 respectively), and yet V ((e1; e2; q1; q2); r; q3) = 1. Speci�cally, it holds thatx2 def= (e1; e2; q1; q2) 62 LR, where LR is as in Construction 5.4.23 (see Eq. (5.12)),and yet V (x2; r; q3) = 1 (i.e., �2 def= q3 is a valid proof of the false statement re-garding x2). Since (y1; y2; �) is produced by letting �  S2(s; (e1; e2; y1; y2)), itfollows that �1 def= � is a simulated proof (w.r.t the reference string r) for the al-leged membership of x1 def= (e1; e2; y1; y2) in LR, where (r; s) S1(1n). Further-more, given such a proof (along with the reference string r), A02 produces a query(q1; q2; q3) that yields a pair (x2; �2) such that x2 = (e1; e2; q1; q2) 62 LR and yetV (x2; r; �2) = 1 (where �2 = q3). Thus, using A01 and A02 (along with (G;E;D)),we obtain circuits �1;�2;�2 that violate the hypothesis that (S1; S2) is 1-proofsimulation-sound (i.e., �1(r) = (e1; e2; y1; y2), �1 = �  S2(s; (e1; e2; y1; y2)),�2(r; �1) = (e1; e2; q1; q2) and �2(r; �1) = q3, where (y1; y2; �) and (q1; q2; q3)are derived from the input and output to A02). 2Fact 5.4.29.1 implies (adequate extension of) the �rst two facts in the proof ofa claim analogous to Claim 5.4.27.1. The third fact in that proof as well asthe proof of Claim 5.4.27.2 do not refer to the soundness of the NIZK-proofs,and are established here exactly as in the proof of Theorem 5.4.27. The currenttheorem follows.
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448 CHAPTER 5. ENCRYPTION SCHEMESConstructing adaptive NIZK with 1-proof simulation-soundness prop-erty. Using a standard NIZK proof, a weak form of a signature scheme, and aspeci�c commitment scheme, we construct the desired NIZK. Since all ingredi-ents can be implemented using trapdoor permutations, we obtain:Theorem 5.4.30 If there exist collections of (non-uniformly hard) trapdoorpermutations then every language in NP has an adaptive NIZK with 1-proofsimulation-soundness property.Proof Sketch: Let L 2 NP . We construct a suitable NIZK for L using thefollowing three ingredients:1. An adaptive Non-Interactive Witness-Indistinguishable (NIWI) proof, de-noted (Pwi; V wi), for a suitable language in NP . We stress that we meana proof system that operates with a reference string of length n and can beapplied to prove (adaptively chosen) statements of length poly(n), wherethe adaptivity refers both to the soundness and witness-indistinguishabilityrequirements.By Theorem 4.10.16, the existence of trapdoor permutations implies thatevery language in NP has an adaptive NIZK that operates with a referencestring of length n and can be applied to prove statements of length poly(n).Indeed, in analogy to discussions in Section 4.6, any NIZK is a NIWI.2. A super-secure one-time signature scheme, denoted (Got; Sot; V ot). Specif-ically, one-time security (see Section 6.4.1) means that we consider onlyattacks in which the adversary may obtain a signature to a single documentof its choice (rather than signatures to polynomially-many documents ofits choice). On the other hand, super-security (see Section 6.5.2) meansthat the adversary should fail to produce a valid document-signature thatis di�erent from the query-answer pair that appeared in the attack. (Westress that, unlike in ordinary security, the adversary may succeed even incase it produces a di�erent signature to the same document for which it hasobtained a signature during the attack.) By Theorem 6.5.2, super-secureone-time signature scheme can be constructed based on any one-way func-tion. (If we were willing to assume the existence of collision-free hashingfunctions then we could have used the easier-to-establish Theorem 6.5.1instead.)3. A perfectly-binding commitment scheme, denoted C, as de�ned in Sec-tion 4.4.1. Furthermore, we require that the commitment strings arepseudorandom; that is, the ensembles fC(x)gx2f0;1g� and fUjC(x)jgx2f0;1g�are computationally indistinguishable. Additionally, we require that thesupport of C(Un) is a negligible portion of f0; 1gjC(Un)j. (The latterrequirement may be omitted if we are willing to settle for (ordinary)computational-soundness rather than (ordinary) information-theoretic sound-ness.)
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5.4. * BEYOND EAVESDROPPING SECURITY 449Using any collection of one-way permutations (e.g., the one in the hypoth-esis), we may obtain the desired commitment scheme. Speci�cally, Con-struction 4.4.2 satis�es the pseudorandomness property required above.To obtain the additional (\negligible portion") requirement, we merely letC(x) equal a pair of two independent commitments to x (and it followsthat the support of C(Un) is at most a 2n � (2�n)2 = 2�n fraction off0; 1gjC(Un)j).23 We denote by C(x; r) the commitment produced to valuex while using coins r; that is, C(x) = C(x; r), where r is uniformly chosenin f0; 1g`(jxj), for some polynomial `.Given the above ingredients, we construct an adaptive NIZK for L (with witnessrelation R) as follows. The NIZK proof uses a reference string of the formr = (r1; r2), where n def= jr2j and m def= jr1j = poly(n).Prover P : On common input x and auxiliary-input w (and reference string r =(r1; r2)), where supposedly (x;w) 2 R, the prover behaves as follows1. Generates a key-pair for the one-time signature scheme; that is, (s; v) Got(1n).2. Compute a pre-proof p  Pwi((x; r1; v); w; r2), where (V wi; V wi) isa proof system (using r2 as reference string) for the following NP-language L0:L0 def= f(x; y; v) : (x 2 L) _ (9w0 y = C(v; w0))g (5.13)The corresponding NP-relation isR0 def= f((x; y; v); w0) : ((x;w0) 2 R) _ (y = C(v; w0))g (5.14)Note that P indeed feeds Pwi with an adequate NP-witness (i.e.,((x; r1; v); w) 2 R0 since (x;w) 2 R). The �rst part of the referencestring of P is part of the statement fed to Pwi, whereas the secondpart of P 's reference string serves as a reference string for Pwi. Thebehavior of V (w.r.t V wi) will be analogous.3. The prover computes a signature � to (x; p) relative to the signing-keys (generated in Step 1). That is, P computes �  Sots(x; p).The prover outputs the triplet (v; p; �).Veri�er V : On common input x and an alleged proof (v; p; �) (and referencestring r = (r1; r2)), the veri�er accepts if and only if the following twoconditions hold23 This presupposes that in the original commitment scheme the support of C(x) is atmost a 2�jxj fraction of f0; 1gjC(x)j, which does hold for Construction 4.4.2. Alternatively,using any collection of one-way functions, we may also obtain the desired commitment scheme.Speci�cally, Construction 4.4.4 will do, except that it uses two messages. However, since the�rst message (i.e., sent by the receiver) is a random string, we may incorporate it in thereference string (of the scheme presented below).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



450 CHAPTER 5. ENCRYPTION SCHEMES1. � is a valid signature with respect to the veri�cation-key v to the pair(x; p). That is, V otv((x; p); �) = 1.2. p is a valid proof with respect to the reference string r2 to the state-ment (x; r1; v) 2 L0. That is, V wi((x; r1; v); r2; p) = 1.Simulator's �rst stage S1: On input 1m+n (from which S1 determines n and m),the �rst stage produces a reference string and auxiliary information asfollows.1. As the real prover, S1(1m+n) starts by generating a key-pair for theone-time signature scheme; that is, (s; v) Got(1n).2. Unlike in the real setting, S1(1m+n) selects s1 uniformly in f0; 1g`(jvj),and set r1 = C(v; s1). (Note that in the real setting, r1 is uniformlydistributed independently of v, and thus r1 is unlikely to be in thesupport of C(v).)3. As in the real setting, S1(1m+n) selects r2 uniformly in f0; 1gn.S1(1m+n) outputs the pair (r; s), where r = (r1; r2) and s = (v; s; s1; r2).Simulator's second stage S2: On input a statement x and auxiliary input s =(v; s; s1; r2) (as generated by S1), S2 proceeds as follows:1. Using (the NP-witness) s1, computes a pre-proof p Pwi((x;C(v; s1); v); s1; r2).Note that indeed, ((x;C(v; s1); v); s1) 2 R0.2. Using (the signing-key) s, computes a signature � to (x; p) relative tos, where p is as computed in the �rst step. That is, �  Sots(x; p).S2(s; x) outputs (v; p; �).As we will see below, the above (two-stage) simulator produces output that isindistinguishable from the output of the real execution. Intuitively, the �rststage of the simulator enables cheating to entities (such as the second stage ofthe simulator) that can produce signatures with respect to the veri�cation-keycommitted to in the string r1 (which is part of the reference string generated byS1). This allows the simulation (which gets the signing-key) to cheat, but doesnot allow cheating by an adversary that sees only the veri�cation-key and onevalid signature (which are both part of the single proof given to the adversary inthe de�nition of 1-proof simulation-soundness). Thus, one-time signatures yield1-proof simulation-soundness, and indeed using general signature schemes (aswell as some technical modi�cations) yield \many-proofs simulation-soundness"(which is none of our concern here). We now turn to the actual proof of theabove properties.Claim 5.4.30.1: (P; V ) satis�es completeness and adaptive soundness.Proof: Completeness follows by combining the syntactic properties of the one-time signature scheme, the completeness property of the proof system (Pwi; V wi)and the de�nition of R0. Adaptive computational-soundness follows from the fact
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5.4. * BEYOND EAVESDROPPING SECURITY 451that, given only the (uniformly distributed) reference string r = (r1; r2), it isinfeasible to �nd v such that r1 is in the support of C(v). Using the additionalproperty by which C(Got2(1n)) covers a negligible portion of f0; 1gm, it followsthat for a uniformly selected r1 2 f0; 1gm there exist no v such that r1 is inthe support of C(v). Thus, using also the (adaptive) soundness of (Pwi; Vwi),except with negligible probability, when presented with a valid proof (v; p; �) forx, it must be the case that (x; r1; v) 2 L0, and so x 2 L. 2Claim 5.4.30.2 (adaptive zero-knowledge): For every e�cient way of selectinginputs �, the output produced by the two-stage simulator (S1; S2) is indistin-guishable from the one produced by P . That is, the ensembles fS�(1m+n)g andR�;W def= f(Um+n;�(Um+n); P (�(Um+n);W (Um+n); Um+n))g are computation-ally indistinguishable, where S� is de�ned as in De�nition 5.4.22.Proof: Consider a hybrid distribution H�(1m+n), in which everything exceptthe pre-proof is produced as by S�(1m+n), and the pre-proof is computed asby the real prover. That is, (r; s)  S1(1m+n) (where r = (r1; r2) and s =(v; s; s1; r2)) is produced as by S�, but then for (x;w) = (�(r);W (r)), the pre-proof is computed using the witness w (i.e., p  Pwi((x; r1; v); w; r2) ratherthan p Pwi((x; r1; v); s1; r2)). The �nal proof � = (v; p; �) is obtained (as inboth cases) by letting �  Sots(x; p). We now relate the hybrid ensemble toboth ensembles in the claim.1. By the (adaptive) witness indistinguishability of Pwi, the ensembles H�and S� are computationally indistinguishable. (Recall that these ensem-bles di�er only in the way the pre-proof is produced; speci�cally, they di�eronly in the NP-witness used by Pwi to prove the very same claim.)2. By the pseudorandomness of the commitments produced for any �xedvalue, H� and R�;W are computationally indistinguishable. (Recall thatthese ensembles di�er only in the way the �rst part of the reference string(i.e., r1) is produced.)The claim follows. 2Claim 5.4.30.3 (1-proof simulation-soundness): For every triplet of polynomial-size circuit families (�1;�2;�2), consider the following process: First (r; s)  S1(1m+n), then x1  �1(r), next �1  S2(s; x1), and �nally (x2; �2)  (�2(r; �1);�2(r; �1)). Then, the probability that the following three condi-tions hold simultaneously is negligible: (1) x2 62 L, (2) (x2; �2) 6= (x1; �1),and (3) V (x2; r; �2) = 1.Proof: Recall that r = (r1; r2) and s = (v; s; s1; r2), where (s; v)  Got(1n)and r1 = C(v; s1) for a uniformly chosen s1 2 f0; 1g`(jvj) (and r2 is selecteduniformly in f0; 1gn). Also recall that �1 = (v1; p1; �1), where v1 = v, p1  Pwi((x;C(v; s1); v); s1; r2) and �1  Sots(x1; p1). Let us denote (v2; p2; �2) def=�2. Using the de�nition of V , we need to upper boundPr � (x2 62 L) ^ ((x2; �2) 6= (x1; �1))^ (V otv2((x2; p2); �2) = 1) ^ (V wi((x2; r1; v2); r2; p2) = 1) � (5.15)
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452 CHAPTER 5. ENCRYPTION SCHEMESWe consider two cases (in which the event in Eq. (5.15) may hold):v2 = v1: In this case, either (x2; p2) 6= (x1; p1) or �2 6= �1 must hold (becauseotherwise (x2; �2) = (x2; (v2; p2; �2)) = (x1; (v1; p1; �1)) = (x1; �1) fol-lows). But this means that (�2;�2), given a single valid signature �1 (tothe document (x1; p1)) with respect to a randomly generated veri�cation-key v = v1 = v2, is able to produce a valid document-signature pair((x2; p2); �2) (with respect to the same veri�cation-key) such that ((x2; p2); �2) 6=((x1; p1); �1), in contradiction to the super-security of the one-time signa-ture scheme.Details: It su�ces to upper boundPr � (v2 = v1) ^ ((x2; �2) 6= (x1; �1))^ (V otv2((x2; p2); �2) = 1) � (5.16)As explained above, the �rst two conditions in Eq. (5.16) imply that((x2; p2); �2) 6= ((x1; p1); �1). Using (S1; S2) and (�1;�2;�2), we de-rive an attacker, A, that violates the super-security of the (one-time)signature scheme. The attacker just emulates the process described inthe claim's hypothesis, except that it obtains v as input (rather thangenerating the pair (s; v) by invoking Got) and uses oracle access toSots in order to produce the signature �1. Note that A uses its ora-cle only once and that the probability that A produces a document-signature pair di�erent from the (single) query-answer pair is lowerbounded by Eq. (5.16).v2 6= v1: Since r1 = C(v1; s1), it follows (by the perfect binding property of C)that r1 6= C(v2; w0) for every w0. Thus, if (x2; r1; v2) 2 L0 then x2 2 L, andso assuming x2 62 L it follows that (x2; r1; v2) 62 L0. Now, by the adaptivesoundness of (Pwi; V wi) and the fact that r2 was selected uniformly inf0; 1gn, it follows that except with negligible probability p2 is not a validproof (w.r.t the reference string r2) of the false statement \(x2; r1; v2) 2L0". Details: It su�ces to upper boundPr � (v2 6= v1) ^ (x2 62 L)^ (Vwi((x2; r1; v2); r2; p2) = 1) � (5.17)As explained above, the �rst two conditions in Eq. (5.17) imply (x2; r1; v2) 62L0. The key observation is that r2 (generated by S1) is uniformly dis-tributed in f0; 1gn, and thus the adaptive soundness of the NIWIsystem applies. We conclude that Eq. (5.17) is upper bounded by thesoundness error of the NIWI system, and the claim follows also in thiscase.Combining both cases, the claim follows. 2The current theorem follows.
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5.4. * BEYOND EAVESDROPPING SECURITY 453Conclusion: Combining Theorems 5.4.6, 5.4.30 and 5.4.29, we get:Theorem 5.4.31 If there exist collections of (non-uniformly hard) trapdoor per-mutations then there exist public-key encryption schemes that are secure undera-posteriori chosen ciphertext attacks.5.4.5 Non-malleable encryption schemesSo far, our treatment has referred to an adversary that, when given a ciphertext,tries to gain explicit information about the plaintext. A less explicit gain, cap-tured by the so-called notion of malleability, is the ability to generate an encryp-tion of a related plaintext (possibly without learning anything about the origi-nal plaintext). Loosely speaking, an encryption scheme is called non-malleableif given a ciphertext it is infeasible (for an adversary) to produce a (di�erent)valid ciphertext for a related plaintext. For example, given a ciphertext of aplaintext of the form 1x, for an unknown x, it should be infeasible to produce aciphertext to the plaintext 0x.Non-malleability may relate to any of the types of attacks considered above(e.g., passive attacks, chosen ciphertext attacks, etc). Thus, we have a \matrix"of adversaries, with one dimension (parameter) being the type of attack and thesecond being its purpose. So far, we have discussed the �rst dimension (i.e., thetype of the attack), when focusing on a particular purpose (i.e., of violating thesecrecy of the plaintext). We now turn to the second dimension (i.e., the purposeof the attack), and consider also the purpose of malleability. That is, we makea distinction between the following two notions (or purposes of attack):1. Standard security: the infeasibility of obtaining information regarding theplaintext. As de�ned above, such information is captured by a function(or a randomized process) applied to the bare plaintext, and it may notdepend on the encryption-key (or decryption-key).2. In contrast, the notion of non-malleability refers to generating a stringdepending on both the plaintext and the current encryption-key. Specif-ically, one requires that it should be infeasible for an adversary, given aciphertext, to produce a valid ciphertext (under the same encryption-key)for a related plaintext.We shall show below that, with the exception of passive attacks on private-keyschemes, non-malleability always implies security against attempts to obtain in-formation on the plaintext. We shall also show that security and non-malleabilityare equivalent under a-posteriori chosen ciphertext attack. Thus, the resultsof the previous sections imply that non-malleable (under a-posteriori chosenciphertext attack) encryption schemes can be constructed based on the sameassumptions used to construct passively-secure encryption schemes.
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454 CHAPTER 5. ENCRYPTION SCHEMES5.4.5.1 De�nitionsFor sake of brevity, we present just a couple of de�nitions. Speci�cally, focusingon the public-key model, we consider only (key-oblivious) passive attacks andchosen ciphertext attacks. The de�nitions refer to an adversary that given aciphertext tries to generate a di�erent ciphertext to a plaintext related to theoriginal one. That is, given Ee(x), the adversary tries to output Ee(y) such that(x; y) 2 R with respect to some (e�ciently recognizable)24 relation R. Looselyspeaking, the adversary's success probability in such an attempt is compared tothe success probability of generating such Ee(y) when not given Ee(x). As incase of semantic security, we strengthen the de�nition by consider all possiblepartial information functions h.De�nition 5.4.32 (passive non-malleability) A public-key encryption scheme(G;E;D) is said to be non-malleable under passive attacks if for every proba-bilistic polynomial-time algorithm A there exists a probabilistic polynomial-timealgorithm A0 such that for every ensemble fXngn2N, with jXnj = poly(n), everypolynomially-bounded h :f0; 1g�!f0; 1g�, every polynomially-bounded relation Rthat is recognizable by a (non-uniform) family of polynomial-size circuits, everypolynomial p(�) and all su�ciently large nPr2664 (x; y) 2 R where(e; d) G(1n) and x Xnc Ee(x) and c0  A(e; c; 1jxj; h(x))y  Dd(c0) if c0 6= c and y  0jxj otherwise 3775< Pr24 (x; y) 2 R where(e; d) G(1n) and x Xnc0  A0(e; 1jxj; h(x)) and y  Dd(c0) 35+ 1p(n)We stress that the de�nition e�ectively prevents the adversary A from just out-putting the ciphertext given to it (because in this case the output is treated as ifit were Ee(1jxj)). This provision is important because otherwise no encryptionscheme could have satis�ed the de�nition (see Exercise 37). Note that, sinceA0 is given the encryption-key, it (i.e., A0) can certainly produce ciphertexts,but its information regarding Xn is restricted to h(Xn) (and 1jXnj). Thus, ifgiven h(Xn) and 1jXnj it is hard to generate y such that (Xn; y) 2 R then itwill be hard for A0 to produce an encryption of such y. We comment that anequivalent de�nition may be obtained by requiring A0 to output the plaintext(i.e., y) rather than its encryption under a randomly generated encryption-key.De�nition 5.4.32 cannot be satis�ed by encryption schemes in which one canmodify bits in the ciphertext without changing the corresponding plaintext (i.e.,consider the identity relation). We stress that such encryption schemes maybe semantically secure under passive attacks (e.g., given a semantically secureencryption scheme (G;E;D), consider E0e(x) = Ee(x)�, for randomly chosen24 The computational restriction on R is essential here; see Exercise 15 that refers to arelated de�nition of semantic security.
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5.4. * BEYOND EAVESDROPPING SECURITY 455� 2 f0; 1g). However, such encryption schemes may not be (semantically) secureunder a-posteriori-CCA.Turning to the de�nition of non-malleability under chosen ciphertext attacks,we adopt the de�nitional framework of Section 5.4.4.1. Speci�cally, analogouslyto De�nition 5.4.13, the challenge templet produced by A1 (and A01) is a tripletof circuits representing a distribution S (represented by a sampling circuit), afunction h (represented by an evaluation circuit), and a relation R (representedby an membership recognition circuit). The goal of A2 (and A02) will be toproduce a ciphertext of a plaintext that is R-related to the challenge plaintextS(Upoly(n)).De�nition 5.4.33 (non-malleability under chosen ciphertext attacks): A public-key encryption scheme is said to be non-malleable under a-priori chosen ciphertextattacks if for every pair of probabilistic polynomial-time oracle machines, A1 andA2, there exists a pair of probabilistic polynomial-time algorithms, A01 and A02,such that the following two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n and z 2f0; 1gpoly(n):Pr26666664 (x; y) 2 R where(e; d) G(1n)((S; h;R); �) AEe;Dd1 (e; z)(c; v) (Ee(x); h(x)) ;where x S(Upoly(n))c0  AEe2 (�; c; v)y  Dd(c0) if c0 6= c and y  0jxj otherwise.
37777775< Pr2664 (x; y) 2 R where((S; h;R); �) A01(1n; z)x S(Upoly(n))y  A02(�; 1jxj; h(x)) 3775+ 1p(n)2. For every n and z, the �rst element (i.e., the (S; h;R) part) in the ran-dom variables A01(1n; z) and AEG1(1n);DG2(1n)1 (G1(1n); z) are identically dis-tributed.Non-malleability under a-posteriori chosen ciphertext attacks is de�ned analogously,except that A2 is given oracle access to both Ee and Dd with the restriction thatwhen given the challenge (c; v), machine A2 is not allowed to make the query cto the oracle Dd.5.4.5.2 Relation to semantic securityWith the exception of passive attacks on private-key schemes, for any type ofattack, non-malleability under this type of attack implies semantic security underthe same type. For example, we show the following:
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456 CHAPTER 5. ENCRYPTION SCHEMESProposition 5.4.34 Let (G;E;D) be a public-key encryption scheme that isnon-malleable under passive attacks (resp., under a-posteriori chosen ciphertextattacks). Then, (G;E;D) is semantically secure under passive attacks (resp.,under a-posteriori chosen ciphertext attacks).Proof Sketch: For clarity, the reader may consider the case of passive attacks,but the same argument holds also for each of the other types of attacks consideredabove.Suppose (towards the contradiction) that (G;E;D) is not semantically secure(under the relevant type of attacks). Using the equivalence to indistinguishabilityof encryptions, it follows that under such attacks one can distinguish encryptionto xn from encryption to yn. Consider the relation R = f(x; �x) : x 2 f0; 1g�g),where �x is the complement of x, and the uniform distribution Zn on fxn; yng.We construct an algorithm than given a ciphertext (as well as an encryption-keye) runs the above distinguisher, and produces Ee(�xn) in case the distinguisher\votes" for xn (and produces Ee(�yn) otherwise). Indeed, given Ee(Zn), ouralgorithm outputs Ee( �Zn) (and so hit R) with probability that is non-negligiblyhigher than 1=2. This performance cannot be met by any algorithm that is notgiven Ee(Zn). Thus, we derive a contradiction to the hypothesis that (G;E;D)is non-malleable.We stress that the above argument only relies on the fact that, in the public-keymodel, we can produce the encryption of any string, since we are explicitly giventhe encryption-key. In fact, it su�ces to have access to an encryption oracle,and thus the argument extends also to active attacks in the private-key model(in which the attacker is allowed encryption queries).On the other hand, under most types of attacks considered above, non-malleability is strictly stronger than semantic security. Still, in the specialcase of a-posteriori chosen ciphertext attacks, the two notions are equivalent.Speci�cally, we prove that, in case of a-posteriori-CCA, semantic security im-plies non-malleability.Proposition 5.4.35 Let (G;E;D) be a public-key encryption scheme that is se-mantically secure under a-posteriori chosen ciphertext attacks. Then, (G;E;D)is non-malleabable under a-posteriori chosen ciphertext attacks. The same holdsfor private-key encryption schemes.Proof Sketch: Suppose towards the contradiction that (G;E;D) is not non-malleabable under a-posteriori chosen ciphertext attacks, and let A = (A1; A2)be an adversary demonstrating this. We construct a (semantic security) adver-sary B = (B1; B2) that invokes A, and at the very end uses its own decryptionoracle to decrypt the ciphertext output by A, and outputs the response. Intu-itively, B violates semantic security (with respect to relations, as can be de�nedanalogously to Exercise 15). Details follow.Given an encryption-key e, algorithm B1 invokes A1(e), while answering A1'squeries by querying its own oracles, and obtains the challenge templet (S; h;R)(and state �), which it outputs. Algorithm B2, is given a ciphertext c along
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5.5. MISCELLANEOUS 457with some auxiliary information, and invokes A2 on the very same input, whileanswering A2's queries by querying its own oracles. When A2 halts with outputc0 6= c, algorithm B2 forwards c0 to its decryption oracle, and outputs the answer.Thus, the plaintext output by B hits the relation R with the same probabilitythat the plaintext corresponding to (the decryption of) A's output hits R. Wehave to show that this hitting probability cannot be met by an algorithm thatdoes not get the ciphertext; but this follows from the hypothesis regardingA (andthe fact that in both cases the corresponding algorithm (i.e., A0 or B0) outputs aplaintext (rather than a ciphertext)). Finally, we have to establish, analogouslyto Exercise 15, that semantic security with respect to relations holds (in ourcurrent context of chosen ciphertext attacks) if and only if semantic security(with respect to functions) holds. The latter claim follows as in Exercise 15by relying on the fact that in the current context the relevant relations havepolynomial-size circuits. (A similar argument holds for private-key schemes.)Conclusion: Combining Theorem 5.4.31 and Proposition 5.4.35 we get:Theorem 5.4.36 If there exist collections of (non-uniformly hard) trapdoor per-mutations then there exist public-key encryption schemes that are non-malleableunder a-posteriori chosen ciphertext attacks.Analogously, using Theorem 5.4.21, we get:Theorem 5.4.37 If there exist (non-uniformly hard) one-way functions thenthere exist private-key encryption schemes that are non-malleable under a-posteriorichosen ciphertext attacks.5.5 Miscellaneous5.5.1 On Using Encryption SchemesOnce de�ned and constructed, encryption schemes may be (and are actually)used as building blocks towards various goals that are di�erent from the originalmotivation. Still, the original motivation (i.e., secret communication of infor-mation) is of great importance, and in this subsection we discuss several issuesregarding the use of encryption schemes towards achieving it.Using private-key schemes { the key exchange problem. As discussedin Section 5.1.1, using a private-key encryption scheme requires the communi-cating parties to share a secret key. This key can be generated by one partyand secretly communicated to the other party by an alternative (expensive) se-cure channel. Often, a preferable solution consists of employing a key-exchange(or rather key-generation) protocol, which is executed over the standard (inse-cure) communication channel. An important distinction refers to the question
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458 CHAPTER 5. ENCRYPTION SCHEMESof whether the insecure communication channel between the legitimate partiesis tapped by a passive adversary or may even be subject to active attacks inwhich an adversary may modify the messages sent over the channel (and evendelete and insert such messages). Protocols secure against passive (resp., ac-tive) adversaries are often referred to by the term authenticated key-exchange(resp., unauthenticated key-exchange), because in the passive case one refers tothe messages received over the channel as being authentic (rather than possiblymodi�ed by the adversary).A simple (generic) authenticated key-exchange protocol consists of using apublic-key encryption scheme in order to secretly communicate a key (for theprivate-key encryption scheme, which is used in the actual communication).25Speci�cally, one party generates a random instance of a public-key encryptionscheme, sends the encryption-key to the other party, which generates a randomkey (for the private-key encryption scheme), and sends an encryption (usingthe received encryption-key) of the newly generated key to the �rst party. A fa-mous alternative is the so-called Di�e-Hellman Key-Exchange [78]: for a (large)prime P and primitive element g, which are universal or generated on-the-
y(by one party that openly communicates them to the other), the �rst (resp.,second) party uniformly selects x 2 ZP (resp., y 2 ZP ) and sends gx mod P(resp., gy mod P ) to the other party, and both parties determined gxy mod P astheir common key, relying on the fact that gxy � (gx mod P )y � (gy mod P )x(mod P ). (The security of this protocol relies on the assumption that givena prime P , a primitive element g, and the triplet (P; g; (gx mod P ); (gy modP ); (gz mod P )), it is infeasible to decide whether z � xy (mod P � 1), forx; y; z 2 ZP .) The construction of unauthenticated key-exchange protocols isfar more complex, and the interested reader is referred to [30, 31, 18].Using state-dependent private-key schemes. In many communicationsettings it is reasonable to assume that the encryption device may maintain (andmodify) a state (e.g., a counter). In such a case, the stream ciphers discussedin Section 5.3.1 become relevant. Furthermore, using a stream cipher is particu-larly appealing in applications where decryption is performed in the same orderas encryption (e.g., in fifo communication). In such applications, the streamcipher of Construction 5.3.3 is preferable to the (pseudorandom function based)encryption scheme of Construction 5.3.9 for a couple of reasons. First, applyingan on-line pseudorandom generator is likely to be more e�cient than applyinga pseudorandom function. Second, for a `-bit long counter (or random value),Construction 5.3.3 allows to securely encrypt 2` messages (or bits), whereasConstruction 5.3.9 de�nitely becomes insecure when p2` messages (or bits) areencrypted. For small values of ` (e.g., ` = 64), this di�erence is crucial.Using public-key schemes { public-key infrastructure. As in the case ofprivate-key schemes, an important distinction refers to the question of whether25 One reason not to use the public-key encryption scheme itself for the actual (encrypted)communication is that private-key encryption schemes tend to be much faster.
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5.5. MISCELLANEOUS 459the insecure communication channel between the legitimate parties is tappedby a passive adversary or may even be subject to active attacks. In typicalapplications of public-key encryption schemes, the parties communicate througha communication network (and not via a point-to-point channel), in which caseactive attacks are very realistic (e.g., it is easy to send mail over the internetpretending to be somebody else). Thus, the standard use of public-key en-cryption schemes in real-life communication requires a mechanism for providingthe sender with the receiver's authentic encryption-key (rather than trusting an\unauthenticated" incoming message to specify an encryption-key). In smallsystems, one may assume that each user holds a local record of the encryption-keys of all other users. However, this is not realistic in large-scale systems, andso the sender must obtain the relevant encryption-key on-the-
y in a \reliable"way (i.e., typically, certi�ed by some trusted authority). In most theoreticalwork, one assumes that the encryption-keys are posted and can be retrievedfrom a public-�le that is maintained by a trusted party (which makes sure thateach user can post only encryption-keys bearing its own identity). In abstractterms, such trusted party may provide each user with a (signed) certi�cate stat-ing the authenticity of the user's encryption-key. In practice, maintaining such apublic-�le (and handling such certi�cates) is a major problem, and mechanismsthat implement this abstraction are typically referred to by the generic term\public-key infrastructure (PKI)". For a discussion of the practical problemsregarding PKI deployment see, e.g., [180, Chap. 13].5.5.2 On Information Theoretic SecurityIn contrast to the bulk of our treatment, which focuses on computationally-bounded adversaries, in this section we consider computationally-unboundedadversaries. We stress that also here the length (and number) of the plaintexts isstill bounded (as usual, by an unknown polynomial). The resulting notion of se-curity is the one suggested by Shannon: a (private-key or public-key) encryptionscheme is called perfectly-secure (or information-theoretically secure) if the cipher-text yields no information regarding the plaintext. That is, perfect-security isderived from De�nitions 5.2.1 and 5.2.2 by allowing computationally-unboundedalgorithms (in the roles of A and A0).It is easy to see that no public-key encryption scheme may be perfectly-secure:a computationally-unbounded adversary that is given a encryption-key can �nda corresponding decryption-key, which allows it to decrypt any ciphertext.In contrast, restricted types of private-key encryption schemes may be perfectly-secure. Speci�cally, the traditional \one-time pad" yields such a (private-key)scheme that can be used to securely communicate an a-priori bounded number ofbits. Furthermore, multiple-messages may be handled provided that their totallength is a-priori bounded and that we use a state (as in Construction 5.3.3).We stress that this state-based private-key perfectly-secure encryption schemeuses a key of length equal to the total length of plaintexts to be encrypted. In-deed, the key must be at least that long (to allow perfect-security), and a stateis essential for allowing several plaintexts to be securely encrypted.
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460 CHAPTER 5. ENCRYPTION SCHEMESPartial information models. Note that, in case of private-key encryptionscheme, the limitation of perfect-security hold only if the adversary has fullinformation of the communication over the channel (i.e., holds the full contentsof all ciphertexts sent). On the other hand, perfectly-secure private channels canbe implemented on top of channels to which the adversary has limited access.We mention three types of channels of the latter type, which have received a lotof attention.� The bounded-storage model, where the adversary can freely tap the com-munication channel but is restricted in the amount of data it can store(cf., [56]).� The noisy channel model (which generalizes the wiretap channel of [237])where both the communication between the legitimate parties and thetapping channel of the adversary are subjected to noise (cf., [179, 71] andthe references therein).� Quantum Channels where an adversary is (supposedly) prevented fromobtaining full information by the (currently believed) laws of quantummechanics (cf., [51] and the references therein).Following are the author's subjective opinions regarding these models (as a pos-sible basis for actual secure communication). The bounded-storage model is veryappealing, because it clearly states its reasonable assumptions regarding the theabilities of the adversary. In contrast, making absolute assumptions about thenoise level at any point in time seems (overly) optimistic, and thus not adequatein the context of cryptography. Basing cryptography on quantum mechanicssounds as a very appealing idea, but attempts to implement this idea have oftenstumbled over unjusti�ed hidden assumptions (which are to be expected giventhe confusing nature of quantum mechanics and the discrepancy between itsscienti�c culture and cryptography).5.5.3 On Popular SchemesThe reader may note that we have avoided the presentation of several popularencryption schemes. We regret to say that most of these schemes are proposedwithout any reference to a satisfactory notion of security. That is, not onlythat no reason is given to believe that these schemes are (semantically) secure(which is often clearly not the case), but it seems that the proposal does noteven consider such a property to be desirable (not to say necessary). It is thusnot surprising that we have nothing to say about the contents of such proposals.In contrast, we highlight a few things that we have said about other popularschemes and common practices:� The common practice of using \pseudorandom generators" as a basis forprivate-key stream ciphers (i.e., Construction 5.3.3) is sound, provided thatone actually uses pseudorandom generators (rather than programs that are
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5.5. MISCELLANEOUS 461called \pseudorandom generators" but actually produce sequences that areeasy to predict).26� Whereas the plain RSA public-key encryption scheme (which employs adeterministic encryption algorithm) is not secure, the randomized RSAencryption scheme (i.e., Construction 5.3.16) is secure, provided that thelarge hard-core conjecture holds (see Section 5.3.4.1). Some support forthe latter (clearly stated) conjecture may be derived from the fact thata related function (i.e., much fewer least signi�cant bits) constitutes ahard-core of the RSA.� Assuming the intractability of factoring, there exists a secure public-keyencryption scheme with e�ciency comparable to that of plain RSA: werefer to the Blum-Goldwasser public-key encryption scheme (i.e., Con-struction 5.3.20).Finally, we warn that encryption schemes proved to be secure in the randomoracle model are not necessarily secure (in the standard sense). For further dis-cussion of the Random Oracle Methodology, we refer the reader to Section 6.6.3.5.5.4 Historical NotesThe notion of private-key encryption scheme seems almost as ancient as the al-phabet itself. Furthermore, it seems that the development of encryption methodswent along with the development of communication media. As the amounts ofcommunication grow, more e�cient and sophisticated encryption methods wererequired. Computational complexity considerations were explicitly introducedinto the arena by Shannon [226]: In his work, Shannon considered the classicalsetting where no computational considerations are present. He showed that inthis information theoretic setting, secure communication of information is pos-sible only as long as its entropy is lower than the entropy of the key. He thusconcluded that if one wishes to have an encryption scheme that is capable ofhandling messages with total entropy exceeding the length of the key then onemust settle for a computational relaxation of the secrecy condition. That is,rather than requiring that the ciphertext yields no information on the plaintext,one has to require that such information cannot be e�ciently computed from theciphertext. The latter requirement indeed coincides with the above de�nition ofsemantic security.The notion of public-key encryption scheme was introduced by Di�e andHellman [78]. First concrete candidates were suggested by Rivest, Shamir andAdleman [216] and by Merkle and Hellman [185]. However, satisfactory de�-nitions of security were presented only a few years afterwards, by Goldwasser26 The linear congruential generator is easy to predict [49]. The same holds for some modi�-cations of it that output a constant fraction of the bits of each resulting number [99]. We warnthat sequences having large linear-complexity (LFSR-complexity) are not necessarily hard topredict.
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462 CHAPTER 5. ENCRYPTION SCHEMESand Micali [141]. The two de�nitions presented in Section 5.2 originate in [141],where it was shown that ciphertext-indistinguishability implies semantic secu-rity. The converse direction is due to [186].Regarding the seminal paper of Goldwasser and Micali [141], a few addi-tional comments are due. Arguably, this paper is the basis of the entire rigorousapproach to cryptography (presented in the current book): It introduced gen-eral notions such as computational indistinguishability, de�nitional approachessuch as the simulation paradigm, and techniques such as the hybrid argument.The paper's title (\Probabilistic Encryption") is due to the authors' realiza-tion that public-key encryption schemes in which the encryption algorithm isdeterministic cannot be secure in the sense de�ned in their paper. Indeed, thisled the authors to (explicitly) introduce and justify the paradigm of \random-izing the plaintext" as part of the encryption process. Technically speaking,the paper only presents security de�nitions for public-key encryption schemes,and furthermore some of these de�nitions are syntactically di�erent from theones we have presented above (yet, all these de�nitions are equivalent). Finally,the term \ciphertext-indistinguishability" used here replaces the (generic) term\polynomial-security" used in [141]. Many of our modi�cations (to the de�ni-tions in [141]) have already appeared in [110], which is also the main source ofour uniform-complexity treatment.The �rst construction of a secure public-key encryption scheme based ona simple complexity assumption was given by Goldwasser and Micali [141].27Speci�cally, they constructed a public-key encryption scheme assuming that de-ciding Quadratic Residiousity modulo composite numbers is intractable. Thecondition was weaken by Yao [238] who prove that any trapdoor permutationwill do. The e�cient public-key encryption scheme of Construction 5.3.20 isdue to Blum and Goldwasser [46]. The security is based on the fact that theleast signi�cant bit of the modular squaring function is a hard-core predicate,provided that factoring is intractable, a result mostly due to [5].For decades, it has been common practice to use \pseudorandom generators"in the design of stream ciphers. As pointed out by Blum and Micali [47], thispractice is sound provided that one uses pseudorandom generators (as de�nedin Chapter 3). The construction of private-key encryption schemes based onpseudorandom functions is due to [119].We comment that it is indeed peculiar that the rigorous study of (the securityof) private-key encryption schemes has legged behind the corresponding studyof public-key encryption schemes. This historical fact may be explained by thevery thing that makes it peculiar; that is, private-key encryption schemes areless complex than public-key ones, and hence the problematics of their security(when applied to popular candidates) is less obvious. In particular, the need fora rigorous study of (the security of) public-key encryption schemes arose fromobservations regarding some of their concrete applications (e.g., doubts raised27 Recall that plain RSA is not secure, whereas Randomized RSA is based on the LargeHard-Core Conjecture for RSA (which is less appealing that the standard conjecture referringto the intractability of inverting RSA).
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5.5. MISCELLANEOUS 463by Lipton concerning the security of the \mental poker" protocol of [225], whichused \plain RSA" as an encryption scheme). In contrast, the need for a rigorousstudy of (the security of) private-key encryption schemes arose later and byanalogy to the public-key case.Credits for the advanced section (i.e., Section 5.4)De�nitional issues. The de�nitional treatment of Goldwasser andMicali [141]actually refer to key-dependent passive attacks (rather than to key-oblivious pas-sive attacks). Chosen ciphertext attacks (of the a-priori and a-posteriori type)were �rst considered in [199] (and [213], respectively). However, these papers fo-cused on the formulation in terms of indistinguishability of encryptions, and for-mulations in terms of semantic security have not appeared before. Section 5.4.4.2is based on [128]. The study of the non-malleability of the encryption schemeswas initiated by Dolev, Dwork and Naor [79].Constructions. The framework for constructing public-key encryption schemesthat withstand Chosen Ciphertext Attacks (i.e., Construction 5.4.23) is due toNaor and Yung [199], who used it to construct public-key schemes that with-stand a-priori CCA (under suitable assumptions). This framework was appliedto the setting of a-posteriori CCA by Sahai [218, 219], who followed and im-proved ideas of Dolev, Dwork and Noar [79] (which were the �rst to constructpublic-key schemes that withstand a-posteriori CCA and prove Theorem 5.4.31).Our presentation of the proof of Theorem 5.4.31 follows subsequent simpli�ca-tion due to Lindell [173]. The key role of non-interactive zero-knowledge proofsin this context was suggested by Blum, Feldman and Micali [45]. The fact thatsecurity and non-malleability are equivalent under a-posteriori chosen ciphertextattack was proven in [79, 19].5.5.5 Suggestion for Further ReadingFor discussion of Non-Malleable Cryptography, which actually transcends thedomain of encryption, see [79]. Speci�cally, we wish to highlight the notionof non-malleable commitment scheme, which is arguably the most appealinginstantiation of the \non-malleability paradigm": it is infeasible for a party thatis given a non-malleable commitment to produce a commitment to a relatedstring. Note that ability to produce related commitments may endanger someapplications (cf. [127]) even if this ability is not decoupled with the ability toproperly decommit (to the produced commitment) once a decommitment to theoriginal commitment is obtained.Recall that there is a gap between the assumptions currently required forthe construction of private-key and public-key encryption schemes: whereas theformer can be constructed based on any one-way functions, the latter seem torequire a trapdoor permutation (or, actually, a \trapdoor predicate" [141]). Apartial explanation to this gap was provided by Impagliazzo and Rudich, who
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464 CHAPTER 5. ENCRYPTION SCHEMESshowed that generic (black-box) constructions of public-key encryption schemescannot rely on one-way functions [151] (or even on one-way permutations [158]).For a detailed discussion of the relationship among the various notions ofsecure private-key and public-key encryption schemes, the reader is referredto [160] and [19], respectively.5.5.6 Open ProblemsSecure public-key encryption schemes exist if there exist collections of (non-uniformly hard) trapdoor permutations (cf. Theorem 5.3.15). It is not knownwhether the converse holds (although secure public-key encryption schemes eas-ily imply one-way function). (The few-to-1 feature of the function collection isimportant; see [25].)Randomized RSA (i.e., Construction 5.3.16) is commonly believed to be asecure public-key encryption scheme. It would be of great practical importanceto gain additional support for this belief. As shown in Proposition 5.3.17, thesecurity of Randomized RSA follows from the Large Hard-Core Conjecture forRSA, but the latter is not known to follow from a more standard assumptionsuch as that RSA is hard to invert. This is indeed the third place in this bookwhere we suggest the establishment of the latter implication as an importantopen problem.The constructions of public-key encryption schemes secure against chosenciphertext attacks (presented in Section 5.4) are to be considered as plausibil-ity results (which also o�er some useful construction paradigms). Presenting\reasonably-e�cient" public-key encryption schemes that are secure against (a-posteriori) chosen ciphertext attacks, under widely believed assumptions, is animportant open problem. (We comment that the \reasonably-e�cient" schemeof [70] is based on a very strong assumption regarding the Di�e-Hellman KeyExchange. Speci�cally, it is assumed that for a prime P and primitive elementg, given (P; g; (gx mod P ); (gy mod P ); (gz mod P )), it is infeasible to decidewhether z � xy (mod P � 1).)5.5.7 ExercisesExercise 1: Encryption schemes imply one-way function [149]: Show that theexistence of a secure private-key encryption scheme (i.e., as in De�ni-tion 5.2.1) implies the existence of one-way functions.Guideline: Recall that, by Exercise 11 of Chapter 3, it su�ces to provethat the former implies the existence of a pair of polynomial-time con-structible probability ensembles that are statistically far apart and stillare computationally indistinguishable. To prove the existence of such en-sembles consider the encryption of n + 1-bit plaintexts relative to a ran-dom n-bit long key, denoted Kn. Speci�cally, let the �rst ensemble bef(Un+1; E(Un+1))gn2N, where E(x) = EKn(x), and the second ensem-ble be f(U(1)n+1; E(U(2)n+1))gn2N , where U(1)n+1 and U(2)n+1 are independentlydistributed. It is easy to show that these ensembles are computationally
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5.5. MISCELLANEOUS 465indistinguishable and are both polynomial-time constructible. The moreinteresting part is to show that these ensembles are statistically far apart.To prove this fact, assume towards the contradiction that for all but a negli-gible fraction of the 2n+1 possible x's, the distribution of E(x) is statisticallyclose to a single distribution Y , and show that this does not allow correctdecryption (since there are only 2n possible keys).Exercise 2: Encryption schemes with unbounded-length plaintext: Suppose thatthe de�nition of semantic security is modi�ed so that no bound is placedon the length of plaintexts. Prove that in such a case there exists nosemantically secure public-key encryption scheme. (Hint: A plaintext of lengthexponential in the security parameter allows the adversary to �nd the decryption keyby exhaustive search.)Exercise 3: Encryption schemes must leak information about the length of theplaintext: Suppose that the de�nition of semantic security is modi�ed sothat the algorithms are not given the length of the plaintext. Prove thatin such a case there exists no semantically secure encryption scheme.Guideline: First show that for some polynomial p, jE(1n)j < p(n),whereas for some x 2 f0; 1gp(n) it holds that Pr[jE(x)j<p(n)] < 1=2.Exercise 4: Hiding partial information about the length of the plaintext: Us-ing an arbitrary secure encryption scheme, construct a correspondinglysecure encryption scheme that hides the exact length of the plaintext. Inparticular, construct an encryption scheme that reveals only the followingfunction h0 of the length of the plaintext:1. h0(m) = dm=ne � n, where n is the security parameter.2. h0(m) = 2dlog2me(Hint: Just use an adequate padding convention, making sure that it always allowscorrect decoding.)Exercise 5: Length parameters: Assuming the existence of a secure public-key(resp., private-key) encryption scheme, prove the existence of such schemein which the length of keys equal the security parameter. Furthermore,show that (without loss of generality) the length of ciphertexts may be a�xed polynomial in the length of the plaintext.Exercise 6: On the distribution of public-keys: Let (G;E;D) be a secure public-key encryption scheme. Prove that for every polynomial p, and all su�-ciently large n, it holds that maxefPr[G1(1n)=e]g < 1=p(n).Guideline: Show that for any encryption-key e in the range of G1(1), onecan �nd a corresponding decryption-key in expected time 1=Pr[G1(1n)=e].Exercise 7: Deterministic encryption schemes: Prove that in order to be se-mantically secure a public-key encryption scheme must have a probabilisticencryption algorithm. (Hint: Otherwise, one can distinguish the encryptions of twocandidate plaintexts by computing the unique ciphertext for each of them.)
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466 CHAPTER 5. ENCRYPTION SCHEMESExercise 8: An alternative formulation of De�nition 5.2.1: Prove that the fol-lowing de�nition, in which we use non-uniform families of polynomial-sizecircuits (rather than probabilistic polynomial-time algorithms) is equiva-lent to De�nition 5.2.1.There exists a probabilistic polynomial-time transformation Tsuch that for every polynomial-size circuit family fCngn2N, andfor every fXngn2N, f; h : f0; 1g� ! f0; 1g�, p(�) and n as inDe�nition 5.2.1Pr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hC 0n(1jXnj; h(Xn))=f(Xn)i+ 1p(n)where C 0n  T (Cn) and the probability is also taken over theinternal coin tosses of T .Same for public-key encryption.Guideline: The alternative view of non-uniformity, discussed in Sec-tion 1.3, is useful here. That is, we can view a circuit family as a sequence ofadvices given to a universal machine. Thus, the above de�nition states thatadvices for a machine that gets the ciphertext can be e�ciently transformedinto advices for a machine that does not get the ciphertext. However, wecan incorporate the (probabilistic) transformation program into the seconduniversal algorithm (which then become probabilistic). Consequently, theadvices are identical for both machines (and can be incorporated in theauxiliary input h(Xn) used in De�nition 5.2.1). Viewed this way, the abovede�nition is equivalent to asserting that for some (universal) deterministicpolynomial-time algorithm U there exists a probabilistic polynomial-timealgorithm U 0 and for every fXngn2N, f; h : f0; 1g� ! f0; 1g�, p(�) and nas in De�nition 5.2.1Pr �U(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)�< Pr �U 0(1jXnj; h(Xn))=f(Xn)�+ 1p(n)Still, a gap remains between the above de�nition and De�nition 5.2.1:the above condition refers only to one possible deterministic algorithmU , whereas De�nition 5.2.1 refers to all probabilistic polynomial-time al-gorithms. To close the gap, we �rst observe that (by Propositions 5.2.7and 5.2.6) De�nition 5.2.1 is equivalent to a form in which one only quan-ti�es over deterministic polynomial-time algorithms A. We conclude byobserving that one can code any algorithm A (and polynomial time-bound)referred to by De�nition 5.2.1 in the auxiliary input (i.e., h(Xn)) given toU .Exercise 9: In continuation to Exercise 8, consider a de�nition in which thetransformation T (of the circuit family fCngn2N to the circuit familyfC 0ngn2N) is not required to (even) be computable.28 Clearly, the new28 Equivalently, one may require that for any polynomial-size circuit family fCngn2N thereexists a polynomial-size circuit family fC0ngn2N satisfying the above inequality.
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5.5. MISCELLANEOUS 467de�nition is not stronger than the one in Exercise 8. Show that the twode�nitions are in fact equivalent.Guideline: Use the furthermore-clause of Proposition 5.2.7 to show thatthe new de�nition implies indistinguishability of encryptions, and concludeby applying Proposition 5.2.6 and invoking Exercise 8.Exercise 10: An alternative formulation of De�nition 5.2.3: Prove that De�-nition 5.2.3 remains unchanged when supplying the circuit with auxiliary-input. That is, an encryption scheme satis�es the modi�ed De�nition 5.2.3if and only iffor every polynomial-size circuit family fCng, every polynomialp, all su�ciently large n and every x; y 2 f0; 1gpoly(n) (i.e., jxj =jyj) and z 2 f0; 1gpoly(n),jPr �Cn(z; EG1(1n)(x))=1�� Pr �Cn(z; EG1(1n)(y))=1� j < 1p(n)(Hint: incorporate z in the circuit Cn.)Exercise 11: Equivalence of the security de�nitions in the public-key model:Prove that a public-key encryption scheme is semantically secure if andonly if it has indistinguishable encryptions.Exercise 12: The technical contents of semantic security: The following ex-plains the lack of computational requirements regarding the function f ,in De�nition 5.2.1. Prove that an encryption scheme, (G;E;D), is (se-mantically) secure (in the private-key model) if and only if the followingholds:There exists a probabilistic polynomial-time algorithm A0 sothat for every fXngn2N and h : f0; 1g� ! f0; 1g� as in Def-inition 5.2.1, the following two ensembles are computationallyindistinguishable.1. fEG1(1n)(Xn); 1jXnj; h(Xn)gn2N.2. fA0(1jXnj; h(Xn))gn2N.Formulate and prove an analogous claim for the public-key model.Guideline: We care mainly about the fact that the above de�nition im-plies semantic security. The other direction can be proven analogously tothe proof of Proposition 5.2.7.Exercise 13: Equivalent formulations of semantic security:1. Prove that De�nition 5.2.1 remains unchanged if we restrict the func-tion h to depend only on the length of its input (i.e., h(x) = h0(jxj)for some h0 : N ! f0; 1g�).
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468 CHAPTER 5. ENCRYPTION SCHEMES2. Prove that De�nition 5.2.1 remains unchanged if we may restrict thefunction h and the probability ensemble fXngn2N so that they arecomputable (resp., sampleable) by polynomial-size circuits.Guideline (Part 1): Prove that this special case (i.e., obtained by therestriction on h) is equivalent to the general one. This follows by combin-ing Propositions 5.2.7 and 5.2.6. Alternatively, this follows by consideringall possible probability ensembles fX0ngn2N obtained from fXngn2N byconditioning that h(Xn) = an (for every possible sequence of an's).Guideline (Part 2): The claim regarding h follows from Part 1. To es-tablish the claim regardingXn, observe that (by Propositions 5.2.7 and 5.2.6)we may consider the case in which Xn ranges over two strings.Exercise 14: A variant on Exercises 12 and 13.1: Prove that an encryptionscheme, (G;E;D), is (semantically) secure (in the private-key model) ifand only if the following holds.For every probabilistic polynomial-time algorithm A there ex-ists a probabilistic polynomial-time algorithm A0 such that forevery ensemble fXngn2N, with jXnj = poly(n), and polynomi-ally bounded h0 the following two ensembles are computationallyindistinguishable.1. fA(EG1(1n)(Xn); 1jXnj; h0(jXnj))gn2N.2. fA0(1jXnj; h0(jXnj))gn2N.(Indeed, since jXnj is constant, so is h0(jXnj). So an equivalent form isobtained by replacing h0(jXnj) with a poly(n)-bit long string vn.)Formulate and prove an analogous claim for the public-key model.Guideline: Again, we care mainly about the fact that the above im-plies semantic security. The easiest proof of this direction is by applyingPropositions 5.2.7 and 5.2.6. A more interesting proof is obtained by usingExercise 12: Indeed, the current formulation is a special case of the formu-lation in Exercise 12, and so we need to prove that it implies the generalcase. The latter is proven by observing that otherwise { using an averag-ing argument { we derive a contradiction in one of the residual probabilityspaces de�ned by conditioning on h(Xn) (i.e., (Xnjh(Xn) = v) for some v).Exercise 15: Semantic security with respect to relations: The formulation ofsemantic security in De�nition 5.2.1 refers to computing a function of theplaintext. Here we present a (related) de�nition that refers to �ndingstrings that are in a certain relation to the plaintext. Note that unlikein De�nition 5.2.1, here we consider only e�ciently recognizable relations.Speci�cally, we require the following:For every probabilistic polynomial-time algorithm A there existsa probabilistic polynomial-time algorithm A0 such that for every
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5.5. MISCELLANEOUS 469ensemble fXngn2N, with jXnj = poly(n), every polynomially-bounded function h : f0; 1g� ! f0; 1g�, every polynomially-bounded relation R that is recognizable by a (non-uniform) fam-ily of polynomial-size circuits, every polynomial p(�) and all suf-�ciently large nPr h(Xn; A(EG1(1n)(Xn); 1jXnj; h(Xn))) 2 Ri< Pr h(Xn; A0(1jXnj; h(Xn))) 2 Ri+ 1p(n)1. Prove that the above de�nition is in fact equivalent to the standardde�nition of semantic security.2. Show that if the computational restriction on the relation R is re-moved then so encryption scheme can satisfy the resulting de�nition.Formulate and prove analogous claims for the public-key model.Guideline (for Part 1): Show that the new de�nition is equivalent toindistinguishability of encryptions. Speci�cally, follow the proofs of Propo-sitions 5.2.6 and 5.2.7, using the circuits guaranteed for R in the �rst proof,and noting that the second proof holds intact.Guideline (for Part 2): Consider the relation R = f(x;Ee(x)) : jxj =2jejg, and the distribution Xn = U2n. (Note that if the encryption schemeis semantically secure then this R is not recognizable by small circuits.)Exercise 16: Another equivalent de�nition of security: The following exerciseis interesting mainly for historical reasons. In the de�nition of semanticsecurity appearing in [141], the term maxu;vfPr[f(Xn) = vjh(Xn) = u]gappears instead of the term Pr[A0(1jXnj; h(Xn)) = f(Xn)]. That is, it isrequired thatfor every probabilistic polynomial-time algorithm A every en-semble fXngn2N, with jXnj = poly(n), every pair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomial p(�)and all su�ciently large nPr hA(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< maxu;v fPr [f(Xn)=vjh(Xn)=u]g+ 1p(n)Prove that the above formulation is in fact equivalent to De�nition 5.2.1.Guideline: First, note that the above de�nition implies De�nition 5.2.1(since maxu;vfPr[f(Xn)=vjh(Xn)=u]g � Pr[A0(h(Xn); 1n; jXnj) = f(Xn)],for every algorithm A0). Next note that in the special case, in which Xn sat-is�es Pr[f(Xn) = 0jh(Xn)=u] = Pr[f(Xn) = 1jh(Xn) =u] = 12 , for all u's,
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470 CHAPTER 5. ENCRYPTION SCHEMESthe above terms are equal (since A0 can easily achieve success probability1=2 by simply always outputting 1). Finally, combining Propositions 5.2.7and 5.2.6. infer that it su�ces to consider only the latter special case.Exercise 17: Semantic security with a randomized h: The following syntacticstrengthening of semantic security is important in some applications. Itsessence is in considering information related to the plaintext, in the formof a related random variable, rather than partial information about theplaintext (in the form of a function of it). Prove that an encryption scheme,(G;E;D), is (semantically) secure (in the private-key model) if and onlyif the following holds.For every probabilistic polynomial-time algorithm A there ex-ists a probabilistic polynomial-time algorithm A0 such that forevery f(Xn; Zn)gn2N, with j(Xn; Zn)j = poly(n), where Zn maydependent arbitrarily on Xn, and f , p(�) and n as in De�ni-tion 5.2.1 Pr hA(EG1(1n)(Xn); 1jXnj; Zn)=f(Xn)i< Pr hA0(1jXnj; Zn)=f(Xn)i+ 1p(n)That is, the auxiliary input h(Xn) of De�nition 5.2.1 is replaced by therandom variable Zn. Formulate and prove an analogous claim for thepublic-key model.Guideline: De�nition 5.2.1 is clearly a special case of the above. Onthe other hand, the proof of Proposition 5.2.6 extends easily to the above(seemingly stronger) formulation of semantic security.Exercise 18: Semantic Security w.r.t Oracles (suggested by Boaz Barak): Con-sider an extended de�nition of semantic security in which, in additionto the regular inputs, the algorithms have oracle access to a functionHx : f0; 1g� ! f0; 1g� (instead of being given the value h(x)). The Hx'shave to be restricted to have polynomial (in jxj) size circuit. That is,an encryption scheme, (G;E;D), is extended-semantically secure (in theprivate-key model) For every probabilistic polynomial-time algorithm Athere exists a probabilistic polynomial-time algorithm A0 such that for ev-ery ensemble fXngn2N, with jXnj = poly(n), every polynomially-boundedfunction f : f0; 1g� ! f0; 1g�, every family of polynomial-sized circuitsfHxgx2f0;1g�, every polynomial p(�) and all su�ciently large nPr hAHXn (EG1(1n)(Xn); 1jXnj)=f(Xn)i< Pr hA0HXn (1jXnj)=f(Xn)i+ 1p(n)The de�nition of public-key security is analogous.
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5.5. MISCELLANEOUS 4711. Show that if (G;E;D) has indistinguishable encryptions then it isextended-semantically secure.2. Show that if no restriction are placed on the Hx's then no scheme canbe extended-semantically secure (in this unrestricted sense).Guideline (for Part 1): The proof is almost identical to the proofof Proposition 5.2.6: The algorithm A0 forms an encryption of 1jXnj, andinvokes A on it. Indistinguishability of encryptions is used in order to es-tablish that A0HXn (1jXnj) performs essentially as well as AHXn (E(Xn)).Otherwise, we obtain a distinguisher of E(xn) from E(1jxnj), for some in-�nite sequence of xn's. In particular, the oracle Hxn (being implementableby a small circuit) can be incorporated into a distinguisher.Guideline (for Part 2): In such a case, Hx may be de�ned so that,when queried about a ciphertext, it reveals the decryption-key in use. This isobvious in case of public-key schemes, but is also doable in some private-keyschemes (e.g., suppose that the ciphertext always contains a commitmentto the private-key). Such an oracle allows A (which is given a ciphertext)to recover the corresponding plaintext, but does not help A0 (which is given1jXnj) to �nd any information about the value of Xn.Exercise 19: Multiple messages of varying lengths: In continuation to Sec-tion 5.2.4, generalize the treatment to encryption of multiple messagesof varying lengths. Provide adequate de�nitions, and analogous results.Guideline: For example, a generalization of the �rst item of De�ni-tion 5.2.8 postulates that for every pair of polynomials t(�) and `(�), andevery probabilistic polynomial-time algorithm A, there exists a probabilis-tic polynomial-time algorithm A0 such that for every ensemble fXn =(X(1)n ; :::;X(t(n))n )gn2N, with jX(i)n j � `(n), every pair of functions f; h :f0; 1g� ! f0; 1g�, every polynomial p(�) and all su�ciently large nPr hA(EG1(1n)(Xn); (1jX(1)n j; :::;1jX(t(n))n j); h(Xn))=f(Xn)i< Pr hA0((1jX(1)n j; :::;1jX(t(n))n j); h(Xn))=f(Xn)i+ 1p(n)Exercise 20: Private-key encryption secure w.r.t exactly t messages: In con-tinuation to Proposition 5.2.12, show that if secure private-key encryptionschemes exist then for every t there are such scheme that are secure withrespect to the encryption of t messages but not with respect to the encryp-tion of t+ 1 messages.Guideline: Given an arbitrary private-key encryption scheme (G;E;D),consider the following private-key encryption scheme (G0; E0;D0):� G0(1n) = (k; k), where k = (k0; k1; :::; kt) such that (k0; k0)  G(1n)and k1; :::; kt are uniformly and independently selected in f0; 1gn (w.l.o.g.,n = jk0j);� E0(k0;k1;:::;kt)(x) = (Ek0 (x); r;Pti=0 kiri), where r is uniformly se-lected in f0; 1gn, and the arithmetics is of the �eld GF (2n);� and D0(k0;k1;:::;kt)(y; r; v) = Dk0(y).
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472 CHAPTER 5. ENCRYPTION SCHEMESExercise 21: Known plaintext attacks: Loosely speaking, in a known plaintextattack on a private-key (resp., public-key) encryption scheme the adver-sary is given some plaintext/ciphertext pairs in addition to some extraciphertexts (without corresponding plaintexts). Semantic security in thissetting means that whatever can be e�ciently computed about the missingplaintexts, can be also e�ciently computed given only the length of theseplaintexts.1. Provide formal de�nitions of security for private-key/public-key inboth the single-message and multiple-message settings.2. Prove that any secure public-key encryption scheme is also secure inthe presence of known plaintext attack.3. Prove that any private-key encryption scheme that is secure in themultiple-message setting is also secure in the presence of known plain-text attack.Guideline (for Part 3): Consider a function h in the multiple-messagesetting that reveals some of the plaintexts.Exercise 22: On the standard notion of block-cipher: A standard block-cipheris a triple, (G;E;D), of probabilistic polynomial-time algorithms that sat-is�es De�nition 5.3.5 as well as jEe(�)j = `(n) for every pair (e; d) in therange of G(1n) and every � 2 f0; 1g`(n).1. Prove that a standard block-cipher cannot be semantically secure (inthe multiple-message model). Furthermore, show that any seman-tically secure encryption scheme must employ ciphertexts that arelonger than the corresponding plaintexts.2. Present a state-based version of the de�nition of a standard block-cipher, and note that Construction 5.3.3 satis�es it.Guideline (for Part 1): Consider the encryption of a pair of two iden-tical messages versus the encryption of a pair of two di�erent messages,and use the fact that Ee must be a permutation of f0; 1g`(n). Extend theargument to any encryption scheme in which plaintexts of length `(n) areencrypted by ciphertexts of length `(n)+O(log n), observing that otherwisemost plaintexts have only poly(n)-many ciphertexts under Ee.Exercise 23: A secure private-key encryption scheme: Assuming that F ispseudorandom with respect to polynomial-size circuits, prove that Con-struction 5.3.12 constitutes a private-key encryption scheme.Guideline: Adapt the proof of Proposition 5.3.10. This requires bound-ing the probability that for t uniformly selected r(j)'s there exists j1; j2 2f1; :::; tg and k1; k2 2 f1; :::; tg such that r(j1)+k1 � r(j2)+k2 (mod 2n).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.5. MISCELLANEOUS 473Exercise 24: The Blum-Goldwasser public-key encryption scheme was presentedin Construction 5.3.20 as a block-cipher (with arbitrary block length). Pro-vide an alternative presentation of this scheme as a full-
edged encryptionscheme (rather than a block-cipher), and prove its security (under thefactoring assumption).Guideline: In the alternative presentation, the values of dP and dQ can-not be determined at key-generation time, but are rather computed by thedecryption process. (This means that decryption requires two additionalmodular exponentiations.)Exercise 25: Restricting the ensembles fhege2f0;1g� and fXege2f0;1g� in De�-nition 5.4.1:1. Show that if one allows arbitrary function ensembles fhege2f0;1g� inDe�nition 5.4.1 then no encryption scheme can satisfy it.2. Show that if one allows arbitrary function ensembles fXege2f0;1g� inDe�nition 5.4.1 then no encryption scheme can satisfy it, even if oneuses only a single function h that is polynomial-time computable.Guideline: For Part 1, consider the functions he(x) = d, where d is adecryption-key corresponding to the encryption-key e. For Part 2, considerthe random variable Xe = (d; Ujej), where d is as before, and the functionh(x0; x00) = x0.Exercise 26: An alternative formulation of De�nition 5.4.1: Show that thefollowing formulation of the de�nition of admissible ensembles fhege andfXege is equivalent to the one in De�nition 5.4.2:� There is a non-uniform polynomial-time algorithm (i.e., a non-uniformfamily of polynomial-size circuits) that maps a string e 2 f0; 1g� intoa circuit that computes the corresponding function he. That is, oninput e, the algorithm outputs a circuit Ce such that Ce(x) = he(x)holds for all strings of length � poly(jej).� There is a non-uniform polynomial-time algorithm that maps a stringe 2 f0; 1g� into a circuit that samples the corresponding distributionsXe. That is, on input e, the algorithm outputs a circuit Se such thatSe(Um) is distributed identically toXe, where Um denotes the uniformdistribution over the set of strings of length m = m(e).Note that the above formulation is in greater agreement with the moti-vating discussion preceding De�nition 5.4.2. The formulation in De�ni-tion 5.4.2 was preferred because of its greater simplicity.Guideline: Consider for example, the condition regarding fheg. Theformulation in De�nition 5.4.2 is shown to imply the one above by using acircuit family fAng such that on input e (in the range of G1(1n)) the circuitAn outputs the circuit Ce(�) def= Hn(e; �); that is, An has Hn hard-wired
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474 CHAPTER 5. ENCRYPTION SCHEMESand just outputs it while �xing its �rst input to be e. On the other hand,given a circuit family fAng that maps e 7! Ce as above, we obtain a circuitHn as required in the formulation of De�nition 5.4.2 as follows. The circuitHn has An hard-wired, and so on input (e; x), the circuit Hn �rst computesCe  An(e), and the outputs Ce(x).Exercise 27: Multiple-message security in context of key-dependent passive at-tacks: Formulate multiple-message security generalizations of De�nitions 5.4.1and 5.4.2, and prove that both are equivalent to the single-message de�ni-tions.Guideline: Note that admissibility for the multiple-message generaliza-tion of De�nition 5.4.2 means that given an encryption key e, one can com-pute (via a polynomial-size circuit that depends only on jej) a correspondingpair of sequences ((x(1)e ; :::; x(t(jej))e ); (y(1)e ; :::; y(t(jej))e )). Thus, ability to dis-tinguish corresponding sequences of encryptions yields ability to distinguishencryptions to x(i)e from encryptions to y(i)e , where the latter distinguishergenerates the corresponding x-y hybrid (using the circuit guaranteed by theadmissibility condition) and invokes the former distinguisher on the result-ing sequence of encryptions.Exercise 28: Key-oblivious versus key-dependent passive attacks: Assumingthe existence of secure public-key encryption schemes, show that there ex-ist one that satis�es the basic de�nition (i.e., as in De�nition 5.2.2) but isinsecure under key-dependent passive attacks (i.e., as in De�nition 5.4.1).Guideline: Given a scheme (G;E;D), de�ne (G;E0;D0) such that E0e(x) =(1; Ee(x)) if x 6= e and E0e(x) = (0; x) otherwise (i.e., for x = e). UsingExercise 6 (which establishes that each encryption-key is generated withnegligible probability), show that (G;E0;D0) satis�es De�nition 5.2.2. Al-ternatively, use G0(1n) = ((r;G1(1n)); G2(1n)), where r is uniformly dis-tributed in f0; 1gn, which immediately implies that each encryption-key isgenerated with negligible probability.Exercise 29: Passive attacks versus Chosen Plaintext Attacks: Assuming theexistence of secure private-key encryption schemes, show that there existone that is secure in the standard (multi-message) sense (i.e., as in Def-inition 5.2.8) but is insecure under a chosen plaintext attack (i.e., as inDe�nition 5.4.8).Guideline: Given a scheme (G;E;D), de�ne (G0; E0;D0) such that1. G0(1n) = ((k; r); (k; r)), where (k; k)  G(1n) and r is selected uni-formly in f0; 1gn.2. E0(k;r)(x) = (1; r;Ek(x)) if x 6= r and E0(k;r)(x) = (0; k; x) otherwise(i.e., for x = r).Show that (G0; E0; D0) is secure in the standard sense, and present a (simplebut very \harmful") chosen message attack on it.Exercise 30: Chosen Plaintext Attacks versus Chosen Ciphertext Attacks: As-suming the existence of secure private-key (resp., public-key) encryption
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5.5. MISCELLANEOUS 475schemes that are secure under a chosen plaintext attack, show that thereexist one that is secure in the former sense but is not secure under a chosenciphertext attack (even not in the a-priori sense).Guideline: Given a scheme (G;E;D), de�ne (G0; E0;D0) such that G0 =G and1. E0e(x) = (1; Ee(x)) with probability 1� 2�jej and E0e(x) = (0; x) oth-erwise.2. D0d(1; y) = Dd(y) and D0d(0; y) = (d; y).Recall that decryption is allowed to fail with negligible probability, andnote that the construction is adequate for both public-key and private-keyschemes. Alternatively, to obtain error-free decryption, de�ne E0e(x) =(1; Ee(x)), D0d(1; y) = Dd(y) and D0d(0; y) = (d; y). In case of private-keyschemes, we may de�ne E0k(k) = (0; 1jkj) and E0k(x) = (1; Ek(x)) for x 6= k.Exercise 31: The two versions of Chosen Ciphertext Attacks: Assuming theexistence of secure private-key (resp., public-key) encryption schemes thatare secure under an a-priori chosen plaintext attack, show that there existone that is secure in the former sense but is not secure under an a-posteriorichosen ciphertext attack.Guideline: Given a scheme (G;E;D), de�ne (G0; E0;D0) such that G0 =G and1. E0e(x) (b; Ee(x)), where b is uniformly selected in f0; 1g.2. D0d(b; y) = Dd(y).Exercise 32: Multiple-challenge CCA security implies a-posteriori-CCA secu-rity: Show that De�nition 5.4.16 implies security under a-posteriori CCA,Guideline: It is tempting to claim that it is immediate that De�ni-tion 5.4.13 is a special case of De�nition 5.4.16, obtained when allowingonly one challenge query. However, things are not so simple, because inDe�nition 5.4.13 the challenges are required to be identically distributedwhereas in De�nition 5.4.16 only computational indistinguishability is re-quired. Instead, we suggest to show that De�nition 5.4.14 (which is equiv-alent to De�nition 5.4.13) is a special case of the (very) restricted case ofDe�nition 5.4.16 discussed following the de�nition (i.e., a canonical adver-sary that makes a single query of the form (S; 0)).Exercise 33: Equivalent forms of multiple-challenge CCA security:1. Consider a modi�cation of De�nition 5.4.16 in which challenge queriesof the form (S; h) are answered by (Ee(S(r)); h(r)), rather than by(Ee(S(r)); h(S(r))). Prove that the original de�nition is equivalentto the modi�ed one.2. Consider a modi�cation of De�nition 5.4.16 in which the challengequeries of the form (S; h) are replaced by two type of queries: partial-information queries of the form (leak; h) that are answered by h(r),and partial-encryption queries of the form (enc; S) that are answeredby Ee(S(r)). Prove that the original de�nition is equivalent to themodi�ed one.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



476 CHAPTER 5. ENCRYPTION SCHEMESGuideline: Show how the modi�ed model of Part 1 can emulate theoriginal model (that's easy), and how the original model can emulate themodi�ed model of Part 1 (e.g., replace the query (S; h) by the pair of queries(S; 0) and (id; h)). Next relate the models in Parts 1 and 2.Exercise 34: Computational restriction on the choice of input in the de�nitionof adaptive NIZK: Show that if De�nition 5.4.22 is strengthened by waivingthe computational bounds on � then only trivial NIZKs (i.e., for languagesin BPP) can satisfy it.Guideline: Show that allowing a computationally-unbounded � forcesS1 to generate a reference string that is statistically close to the uniformdistribution. Thus, soundness implies weak simulation-soundness in thesense of Exercise 35.Exercise 35: Weak simulation-soundness can hold only with respect to computationally-bounded cheating provers: Show that if De�nition 5.4.24 is strengthenedby waiving the computational bounds on � then only trivial NIZKs (i.e.,for languages in BPP) can satisfy it.Guideline: Show that otherwise the two-stage simulation procedure candistinguish inputs in the language from inputs outside the language, becausein the �rst case it produces an valid proof whereas in the second one itcannot do so. The latter fact is proved by showing that if S2 (which alsogets an auxiliary input s produced by S1 along with the reference string)generates a valid proof then a computationally-unbounded prover may dothe same by �rst generating s according to the conditional distributioninduced by the reference string (and then invoking S2).Exercise 36: Does weak simulation-soundness hold for all adaptive NIZKs?1. Detect the 
aw in the following argument towards an a�rmative an-swer: If weak simulation-soundness does not hold then we can dis-tinguish a uniformly selected reference string (for which soundnessholds) from a reference string generated by S1 (for which soundnessdoes not hold).2. Assuming the existence of one-way permutations (and adaptive NIZKs),show an adaptive NIZK with a suitable simulator such that weaksimulation-soundness does not hold.3. (By Boaz Barak and Yehuda Lindell): For languages of pairs (�; x)such that one can generate �'s along with suitable trapdoors t(�)'sthat allow to determine whether or not inputs of the form (�; �) are inthe language, de�ne a weaker notion of simulation-soundness in whicha random � is generated and then one is required to produce validproofs for a no-instance of the form (�; �) with respect to a reference-string generated by S1. Provide a clear de�nition, prove that it issatis�ed by any adaptive NIZK for the corresponding language, andshow that this de�nition su�ces for proving Theorem 5.4.27.
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5.5. MISCELLANEOUS 477Guideline (Part 1): The existence of an e�cient C = (�;�) that vio-lates weak simulation-soundness only means that for reference string gener-ated by S1 the cheating � generates a valid proof for a no-instance selectedby �. When C is given a uniformly selected reference string it may eitherfail to produce a valid proof or may produce a valid proof for a yes-instance.However, we cannot necessarily distinguish no-instances from yes-instances(see, for example, Part 2). This gap is eliminated in Part 3.Guideline (Part 2): Given a one-way permutation f with a correspond-ing hard-core b, consider the pseudorandom generator G(s) def= b(s)b(f(s)) � � � b(f2jsj�1(s))f2jsj(s)(see proof of Proposition 5.3.14). Let L denote the set of strings thatare not images of G, and note that L is in NP . Given any adaptiveNIZK for L, denoted (P;V ), consider the modi�cation (P 0; V 0) such thatP 0(x;w; (r1; r2)) = P (x;w; r1) and V 0(x; (r1; r2); �) = 1 if either V (x; �; r1) =1 or x = r2. The modi�ed simulator is derived by S01(1n)  ((r1; r2); s),where (r1; s)  S1(1n) and r2  G(Un) (and S02(x; s) = S2(x:s)). Ver-ify that the modi�ed algorithms satisfy the de�nition of an adaptive NIZK,and note that weak simulation-soundness is easily violated by �(r1; r2) = r2(and any �).Guideline (Part 3): For an encryption scheme (G;E;D), we are inter-ested in the \consistency language" of pairs (�; x) such that � = (e1; e2)is a pair of encryption-keys (with corresponding trapdoor being the corre-sponding pair of decryption-keys) and x = (y1; y2) is a pair of correspondingencryptions of the same plaintext (i.e., 9s; s1; s2 such that Eei(s; si) = yifor i = 1; 2).Exercise 37: On de�ning non-malleability: Show that when de�ning non-malleability(i.e., in De�nitions 5.4.32 and 5.4.33) it is essential to prevent A from out-putting the ciphertext that is given to it.Guideline: Consider the identity relation, a constant function h, and letXn be uniform over f0; 1gn. Note that A gets (e; Ee(Xn); 1n), whereas A0only gets (e; 1n).
Author's Note: First draft written mainly in 1997. Major revisioncompleted and posted in Dec. 1999. Second major revision completedand posted in June 2001. Third major revision completed and postedin Feb. 2002.
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