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PrefaceThe current manuscript is a preliminary draft of the chapter onencryption schemes (Chapter 5) of the second volume of the workFoundations of Cryptography. This manuscript subsumes previousversions posted in Dec. 1999 and June 2001, respectively.The bigger picture. The current manuscript is part of a working draft ofPart 2 of the three-part work Foundations of Cryptography (see Figure 0.1). Thethree parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-sics. The �rst part (containing Chapters 1{4) has been published by CambridgeUniversity Press (in June 2001). The second part, consists of Chapters 5{7 (re-garding Encryptioni Schemes, Signatures Schemes, and General CryptographicProtocols, respectively). We hope to publish the second part with CambridgeUniversity Press within a couple of years.Part 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsPart 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsPart 3: Beyond the Basics� � �Figure 0.1: Organization of this work
III
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IV The partition of the work into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple of years, and publish it without waiting for the third part.Prerequisites. The most relevant background for this text is provided bybasic knowledge of algorithms (including randomized ones), computability andelementary probability theory. Background on (computational) number theory,which is required for speci�c implementations of certain constructs, is not reallyrequired here.Using this text. The text is intended as part of a work that is aimed to serveboth as a textbook and a reference text. That is, it is aimed at serving both thebeginner and the expert. In order to achieve this aim, the presentation of thebasic material is very detailed so to allow a typical CS-undergraduate to followit. An advanced student (and certainly an expert) will �nd the pace (in theseparts) way too slow. However, an attempt was made to allow the latter readerto easily skip details obvious to him/her. In particular, proofs are typicallypresented in a modular way. We start with a high-level sketch of the main ideas,and only later pass to the technical details. Passage from high-level descriptionsto lower level details is typically marked by phrases such as details follow.In a few places, we provide straightforward but tedious details in in-dented paragraphs as this one. In some other (even fewer) places suchparagraphs provide technical proofs of claims that are of marginal rele-vance to the topic of the book.More advanced material is typically presented at a faster pace and with lessdetails. Thus, we hope that the attempt to satisfy a wide range of readers willnot harm any of them.Teaching. The material presented in the full (three-volume) work is, on onehand, way beyond what one may want to cover in a course, and on the otherhand falls very short of what one may want to know about Cryptography ingeneral. To assist these con
icting needs we make a distinction between basicand advanced material, and provide suggestions for further reading (in the lastsection of each chapter). In particular, sections, subsections, and subsubsectionsmarked by an asterisk (*) are intended for advanced reading.
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Chapter 5Encryption SchemesUp-to the 1970's, Cryptography was understood as the art of building encryptionschemes; that is, the art of constructing schemes allowing secret data exchangeover insecure channels. Since the 1970's, other tasks (e.g., signature schemes)have been recognized as falling within the domain of Cryptography (and even asbeing at least as central to Cryptography). Yet, the construction of encryptionschemes remains, and is likely to remain, a central enterprise of Cryptography.In this chapter we review the well-known notions of private-key and public-key encryption schemes. More importantly, we de�ne what is meant by sayingthat such schemes are secure, and present some basic constructions of secure(private-key and public-key) encryption schemes. It turns out that using ran-domness throughout the encryption process (i.e., not only at the key-generationphase) is essential to security.Our main treatment (i.e., Sections 5.1{5.3) refers to security under \passive"(eavesdropping) attacks. In contrast, in Section 5.4, we discuss notions of secu-rity under active attacks, culminating in robustness against chosen ciphertextattacks.Teaching Tip: We assume that the reader is familiar with the material inprevious chapters (and speci�cally with Sections 2.2, 2.4, 2.5, 3.2{3.4, and 3.6).This familiarity is important not only because we use some of the notions andresults presented in these sections, but rather because we use similar proof tech-niques (and do so while assuming that this is not the reader's �rst encounterwith these techniques).5.1 The Basic SettingLoosely speaking, encryption schemes are supposed to enable private exchange ofinformation between parties that communicate over an insecure channel. Thus,the basic setting consists of a sender, a receiver, and an insecure channel that359
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360 CHAPTER 5. ENCRYPTION SCHEMESmay be tapped by an adversary. The goal is to allow the sender to transfer infor-mation to the receiver, over the insecure channel, without letting the adversary�gure out this information. Thus, we distinguish between the actual (secret)information that the receiver wishes to transmit and the message(s) sent overthe insecure communication channel. The former is called the plaintext, whereasthe latter is called the ciphertext. Clearly, the ciphertext must di�er from theplaintext or else the adversary can easily obtain the plaintext by tapping thechannel. Thus, the sender must transform the plaintext into a correspondingciphertext such that the receiver can retrieve the plaintext from the ciphertext,but the adversary cannot do so. Clearly, something must distinguish the receiver(who is able to retrieve the plaintext from the corresponding ciphertext) fromthe adversary (who cannot do so). Speci�cally, the receiver know somethingthat the adversary does not know. This thing is called a key.An encryption scheme consists of a method of transforming plaintexts to ci-phertexts and vice versa, using adequate keys. These keys are essential to theability to e�ect these transformations. Formally, these transformations are per-formed by corresponding algorithms: An encryption algorithm that transformsa given plaintext and an adequate (encryption) key into a corresponding ci-phertext, and a decryption algorithm that given the ciphertext and an adequate(decryption) key recovers the original plaintext. Actually, we need to considera third algorithm; namely, a probabilistic algorithm used to generate keys (i.e.,a key-generation algorithm). This algorithm must be probabilistic (or else, byinvoking it, the adversary obtains the very same key used by the receiver). Westress that the encryption scheme itself (i.e., the abovementioned three algo-rithms) may be known to the adversary, and the scheme's security relies on thehypothesis that the adversary does not know the actual keys in use.1In accordance with the above, an encryption scheme consists of three algo-rithms. These algorithms are public (i.e., known to all parties). The two obviousalgorithms are the encryption algorithm, which transforms plaintexts to cipher-texts, and the decryption algorithm, which transforms ciphertexts to plaintexts.By the discussion above, it is clear that the decryption algorithm must employ akey that is known to the receiver but is not known to the adversary. This key isgenerated using a third algorithm, called the key-generator. Furthermore, it isnot hard to see that the encryption process must also depend on the key (or elsemessages sent to one party can be read by a di�erent party who is also a poten-tial receiver). Thus, the key-generation algorithm is used to produce a pair of(related) keys, one for encryption and one for decryption. The encryption algo-rithm, given an encryption-key and a plaintext, produces a plaintext that whenfed to the decryption algorithm, together with the corresponding decryption-key,yields the original plaintext. We stress that knowledge of the decryption-key isessential for the latter transformation.1 In fact, in many cases, the legitimate interest may be served best by publicizing thescheme itself, because this allows to obtain an (independent) expert evaluation of the securityof the scheme.
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5.1. THE BASIC SETTING 361
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The key K is known to both receiver and sender, but is un-known to the adversary. For example, the receiver may generateK at random and pass it to the sender via a perfectly-privatesecondary channel (not shown here).Figure 5.1: Private-key encryption schemes { an illustration.5.1.1 Private-Key versus Public-Key SchemesA fundamental distinction between encryption schemes refers to the relation be-tween the abovementioned pair of keys (i.e., the encryption-key and the decryption-key). The simpler (and older) notion assumes that the encryption-key equalsthe decryption-key. Such schemes are called private-key (or symmetric).Private-Key Encryption Schemes. To use a private-key scheme, the legit-imate parties must �rst agree on the secret key. This can be done by having oneparty generate the key at random and send it to the other party using a (sec-ondary) channel that (unlike the main channel) is assumed to be secure (i.e., itcan not be tapped by the adversary). A crucial point is that the key is generatedindependently of the plaintext, and so it can be generated and exchanged priorto the plaintext even being determined. Thus, private-key encryption is a wayof extending a private channel over time: If the parties can use a private channeltoday (e.g., they are currently in the same physical location) but not tomorrow,then they can use the private channel today to exchange a secret key that theymay use tomorrow for secret communication.A simple example of a private-key encryption scheme is the one-time pad.The secret key is merely a uniformly chosen sequence of n bits, and an n-bit longciphertext is produced by XORing the plaintext, bit-by-bit, with the key. Theplaintext is recovered from the ciphertext in the same way. Clearly, the one-timepad provides absolute security. However, its usage of the key is ine�cient; or,put in other words, it requires keys of length comparable to the total length (or
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362 CHAPTER 5. ENCRYPTION SCHEMESinformation contents) of the data being communicated. In the rest of this chapterwe will only discuss encryption schemes in which n-bit long keys allow to securelycommunicated data of a-priori unbounded (poly(n)) length. In particular, n-bit long keys allow to securely communicated signi�cantly more than n bits ofinformation.
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The key-pair (e; d) is generated by the receiver, who posts theencryption-key e on a public media, while keeping the decryption-key d secret.Figure 5.2: Public-key encryption schemes { an illustration.Public-Key Encryption Schemes. A new type of encryption schemes hasemerged in the 1970's. In these schemes, called public-key (or asymmetric), thedecryption-key di�ers from the encryption-key. Furthermore, it is infeasible to�nd the decryption-key, given the encryption-key. These schemes enable securecommunication without ever using a secure channel. Instead, each party appliesthe key-generation algorithm to produce a pair of keys. The party, called P ,keeps the decryption-key, denoted dP , secret and publishes the encryption-key,denoted eP . Now, any party can send P private messages by encrypting themusing the encryption-key eP . Party P can decrypt these messages by using thedecryption-key dP , but nobody else can do so.5.1.2 The Syntax of Encryption SchemesWe start by de�ning the basic mechanism of encryption schemes. This de�nitionsays nothing about the security of the scheme (which is the subject of the nextsection).De�nition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G;E;D),of probabilistic polynomial-time algorithms satisfying the following two condi-tions
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5.1. THE BASIC SETTING 3631. On input 1n, algorithm G (called the key-generator) outputs a pair of bitstrings.2. For every pair (e; d) in the range of G(1n), and for every � 2 f0; 1g�,algorithms E (encryption) and D (decryption) satisfyPr[D(d;E(e; �))=�] = 1where the probability is taken over the internal coin tosses of algorithms Eand D.The integer n serves as the security parameter of the scheme. Each (e; d) inthe range of G(1n) constitutes a pair of corresponding encryption/decryptionkeys. The string E(e; �) is the encryption of the plaintext � 2 f0; 1g� using theencryption-key e, whereas D(d; �) is the decryption of the ciphertext � usingthe decryption-key d.We stress that De�nition 5.1.1 says nothing about security, and so trivial (in-secure) algorithms may satisfy it (e.g., E(e; �) def= � and D(d; �) def= �). Fur-thermore, De�nition 5.1.1 does not distinguish private-key encryption schemesfrom public-key ones. The di�erence between the two types is introduced in thesecurity de�nitions: In a public-key scheme the \breaking algorithm" gets theencryption-key (i.e., e) as an additional input (and thus e 6= d follows); whilein private-key schemes e is not given to the \breaking algorithm" (and thus onemay assume, without loss of generality, that e = d).We stress that the above de�nition requires the scheme to operate for everyplaintext, and speci�cally for plaintext of length exceeding the length of theencryption-key. (This rules out the information theoretic secure \one-time pad"scheme mentioned above.)Notation: In the rest of this text, we write Ee(�) instead of E(e; �) and Dd(�)instead of D(d; �). Sometimes, when there is little risk of confusion, we dropthese subscripts. Also, we let G1(1n) (resp., G2(1n)) denote the �rst (resp.,second) element in the pair G(1n). That is, G(1n) = (G1(1n); G2(1n)). Withoutloss of generality, we may assume that jG1(1n)j and jG2(1n)j are polynomiallyrelated to n, and that each of these integers can be e�ciently computed fromthe other. (In fact, we may even assume that jG1(1n)j = jG2(1n)j = n; seeExercise 6.)Comments: De�nition 5.1.1 may be relaxed in several ways without signif-icantly harming its usefulness. For example, we may relax Condition (2) andallow a negligible decryption error (e.g., Pr[Dd(Ee(�)) 6= �] < 2�n). Alterna-tively, one may postulate that Condition (2) holds for all but a negligible measureof the key-pairs generated by G(1n). At least one of these relaxations is essentialfor some suggestions of (public-key) encryption schemes.Another relaxation consists of restricting the domain of possible plaintexts(and ciphertexts). For example, one may restrict Condition (2) to �'s of length
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364 CHAPTER 5. ENCRYPTION SCHEMES`(n), where ` : N!N is some �xed function. Given a scheme of the latter type(with plaintext length `), we may construct a scheme as in De�nition 5.1.1 bybreaking plaintexts into blocks of length `(n) and applying the restricted schemeseparately to each block. (Note that security of the resulting scheme requiresthat the security of the length-restricted scheme is preserved under multipleencryptions with the same key.) For more details see Sections 5.2.4 and 5.3.2.5.2 De�nitions of SecurityIn this section we present two fundamental de�nitions of security and prove theirequivalence. The �rst de�nition, called semantic security, is the most naturalone. Semantic security is a computational-complexity analogue of Shannon'sde�nition of perfect privacy (which requires that the ciphertext yields no in-formation regarding the plaintext). Loosely speaking, an encryption scheme issemantically secure if it is infeasible to learn anything about the plaintext fromthe ciphertext (i.e., impossibility is replaced by infeasibility). The second def-inition has a more technical 
avor. It interprets security as the infeasibility ofdistinguishing between encryptions of a given pair of messages. This de�nitionis useful in demonstrating the security of a proposed encryption scheme, and forthe analysis of cryptographic protocols that utilize an encryption scheme.We stress that the de�nitions presented below go way beyond saying that itis infeasible to recover the plaintext from the ciphertext. The latter statementis indeed a minimal requirement from a secure encryption scheme, but we claimthat it is way too weak a requirement: For example, one should certainly notuse an encryption scheme that leaks the �rst part of the plaintext (even if itis infeasible to recover the entire plaintext from the ciphertext). In general, anencryption scheme is typically used in applications where even obtaining partialinformation on the plaintext may endanger the security of the application. Thequestion of which partial information endangers the security of a speci�c appli-cation is typically hard (if not impossible) to answer. Furthermore, we wish todesign application-independent encryption schemes, and doing so it is the casethat each partial information may endanger some application. Thus, we requirethat it is infeasible to obtain any information about the plaintext from the ci-phertext. Moreover, in most applications the plaintext may not be uniformlydistributed and some a-priori information regarding it may be available to theadversary. We thus require that the secrecy of all partial information be pre-served also in such a case. That is, even in presence of a-priori information onthe plaintext, it is infeasible to obtain any (new) information about the plain-text from the ciphertext (beyond what is feasible to obtain from the a-prioriinformation on the plaintext). The de�nition of semantic security postulates allof this.Security of multiple plaintexts. In continuation to the above discussion,the de�nitions are presented �rst in terms of the security of a single encryptedplaintext. However, in many cases, it is desirable to encrypt many plaintexts
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5.2. DEFINITIONS OF SECURITY 365using the same encryption-key, and security needs to be preserved in these casestoo. Adequate de�nitions and discussions are deferred to Section 5.2.4.A technical comment: non-uniform complexity formulation. To sim-plify the exposition, we adopt a non-uniform formulation. Namely, in the secu-rity de�nitions we expand the domain of e�cient adversaries/algorithms to in-clude (explicitly or implicitly) non-uniform polynomial-size circuits, rather thanonly probabilistic polynomial-time machines. Likewise, we make no computationrestriction regarding the probability distribution from which messages are taken,nor regarding the a-priori information available on these messages. We note thatemploying such a non-uniform complexity formulation (rather than a uniformone) may only strengthen the de�nitions; yet, it does weaken the implicationsproven between the de�nitions, since these (simpler) proofs make free usage ofnon-uniformity. A uniform-complexity treatment is provided in Section 5.2.5.5.2.1 Semantic SecurityA good disguise should not reveal the person's height.Sha� Goldwasser and Silvio Micali, 1982Loosely speaking, semantic security means that nothing can be gained by lookingat a ciphertext. Following the simulation paradigm, this means that whatevercan be e�ciently learned from the ciphertext can also be e�ciently learned fromscratch (or from nothing).5.2.1.1 The actual de�nitionsTo be somewhat more accurate, semantic security means that whatever can bee�ciently computed from the ciphertext, can be e�ciently computed when givenonly the length of the plaintext. Note that this formulation does not rule out thepossibility that the length of the plaintext can be inferred from the ciphertext.Indeed, some information about the length of the plaintext must be revealed bythe ciphertext (see Exercise 4). We stress that other than information aboutthe length of the plaintext, the ciphertext is required to yield nothing about theplaintext.In the actual de�nitions, we consider only information regarding the plain-text (rather than regarding something else like the ciphertext) that can be ob-tained from the ciphertext. Furthermore, we restrict our attention to functions(rather than randomized processes) applied to the plaintext. We do so becauseof the intuitive appeal of this special case, and are comfortable doing so be-cause this special case implies the general one (see Exercise 13). We augmentthis formulation by requiring that the above remains valid even in presence ofauxiliary partial information about the plaintext. Namely, whatever can be e�-ciently computed from the ciphertext and additional partial information aboutthe plaintext, can be e�ciently computed given only the length of the plaintext
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366 CHAPTER 5. ENCRYPTION SCHEMESand the same partial information. In the de�nition that follows, the informa-tion regarding the plaintext that the adversary tries to obtain is captured bythe function f , whereas the a-priori partial information about the plaintext iscaptured by the function h. The above is required to hold for any distributionof plaintexts, captured by the probability ensemble fXngn2N.Security holds only for plaintexts of length polynomial in the security pa-rameter. This is captured below by the restriction jXnj � poly(n), where `poly'represents an arbitrary (unspeci�ed) polynomial. Note that we cannot hope toprovide computational security for plaintexts of unbounded length or for plain-texts of length that is exponential in the security parameter (see Exercise 3).Likewise, we restrict the functions f and h to be polynomially-bounded; that is,jf(z)j; jh(z)j � poly(jzj).The di�erence between private-key and public-key encryption schemes ismanifested in the de�nition of security. In the latter case, the adversary (whichis trying to obtain information on the plaintext) is given the encryption-key,whereas in the former case it is not. Thus, the di�erence between these schemesamounts to a di�erence in the adversary model (considered in the de�nitionof security). We start by presenting the de�nition for private-key encryptionschemes.De�nition 5.2.1 (semantic security { private-key): An encryption scheme,(G;E;D), is semantically secure (in the private-key model) if for every proba-bilistic polynomial-time algorithm A there exists a probabilistic polynomial-timealgorithm A0 such that for every ensemble fXngn2N, with jXnj � poly(n), everypair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomialp(�) and all su�ciently large nPr hA(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)(The probability in the above terms is taken over Xn as well as over the internalcoin tosses of either algorithms G, E and A or algorithm A0.)The security parameter 1n is given to both algorithms (as well as to the functionsh and f) for technical reasons.2 The function h provides both algorithms withpartial information regarding the plaintext Xn. Furthermore, h also makes thede�nition implicitly non-uniform; see further discussion below. In addition, bothalgorithms get the length of Xn. These algorithms then try to guess the valuef(1n; Xn); namely, they try to infer information about the plaintextXn. Looselyspeaking, in a semantically secure encryption scheme the ciphertext does not help2 The role of the auxiliary input 1n is to allow smooth transition to fully non-uniformformulations (as discussed below and as in De�nition 5.2.3). Speci�cally, 1n indicates thatthe nth circuit is to be used. In light of the fact that 1n is given to both algorithms, we mayreplace the input part 1jXnj by jXnj, because the former may be recovered from the latter inpoly(n)-time.
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5.2. DEFINITIONS OF SECURITY 367in this inference task. That is, the success probability of any e�cient algorithm(i.e., algorithmA) that is given the ciphertext, can be matched, up-to a negligiblefraction, by the success probability of an e�cient algorithm (i.e., algorithm A0)that is not given the ciphertext at all.De�nition 5.2.1 refers to private-key encryption schemes. To derive a def-inition of security for public-key encryption schemes, the encryption-key (i.e.,G1(1n)) should be given to the adversary as an additional input. That is,De�nition 5.2.2 (semantic security { public-key): An encryption scheme, (G;E;D),is semantically secure (in the public-key model) if for every probabilistic polynomial-time algorithm A, there exists a probabilistic polynomial-time algorithm A0 suchthat for every fXngn2N, f; h, p(�) and n as in De�nition 5.2.1Pr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)We comment that it is pointless to give the random encryption-key (i.e., G1(1n))to algorithm A0 (because the task as well as the main inputs of A0 are unrelatedto the encryption-key, and anyhow A0 could generate a random encryption-keyby itself).Terminology: For sake of simplicity, we refer to an encryption scheme that issemantically secure in the private-key (resp., public-key) model as to a semantically-secure private-key (resp., public-key) encryption scheme.The reader may note that a semantically-secure public-key encryption schemecannot employ a deterministic encryption algorithm; that is, Ee(x) must be arandom variable rather than a �xed string. This is more evident with respect tothe equivalent De�nition 5.2.4 (below). See further discussion following De�ni-tion 5.2.4.5.2.1.2 Further discussion of some de�nitional choicesWe discuss several secondary issues regarding De�nitions 5.2.1 and 5.2.2. The in-terested reader is also referred to Exercises 19, 16 and 17 that present additionalvariants of the de�nition of semantic security.Implicit non-uniformity of the de�nitions. The fact that h is not requiredto be computable, makes the above de�nitions non-uniform. This is the casebecause both algorithms are given h(1n; Xn) as auxiliary input, and the lattermay account for arbitrary (polynomially-bounded) advise. For example, lettingh(1n; �) = an 2 f0; 1gpoly(n), means that both algorithms are supplied with(non-uniform) advice (as in one of the common formulations of non-uniformpolynomial-time; see Section 1.3.3). In general, the function h can code bothinformation regarding its main input and non-uniform advice depending on thesecurity parameter (i.e., h(1n; x) = (h0(x); an)). We comment that the above
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368 CHAPTER 5. ENCRYPTION SCHEMESde�nitions are equivalent to allowing A and A0 to be related families of non-uniform circuits, where by related we mean that the circuits in the family A0 =fA0ngn2N can be e�ciently computed from the corresponding circuits in thefamily A = fAngn2N. For further discussion, see Exercise 9.Lack of computational restrictions regarding the function f . We donot require that the function f is even computable. This seems strange at �rstglance, because (unlike the situation w.r.t h which codes a-priori informationgiven to the algorithms) the algorithms are asked to guess the value of f (ata plaintext implicit in the ciphertext given only to A). However, as we shallsee in the sequel (see also Exercise 13), the meaning of semantic security isessentially that the probability ensembles f(1n; E(Xn); 1jXnj; h(1n; Xn))gn andf(1n; E(1jXnj); 1jXnj; h(1n; Xn))gn are computationally indistinguishable (and sowhatever A can compute can also be computed by A0).Other modi�cations of no impact. Actually, inclusion of a-priori informa-tion regarding the plaintext (captured by the function h) does not a�ect thede�nition of semantic security: De�nition 5.2.1 remains intact if we restricth to only depend on the security parameter (and so only provide plaintext-oblivious non-uniform advice). (This can be shown in various ways; e.g., seeExercise 14.1.) Also, the function f can be restricted to be a Boolean functionhaving polynomial-size circuits, and the random variable Xn may be restrictedto be very \dull" (e.g., have only two strings in its support): See proof of Theo-rem 5.2.5. On the other hand, De�nition 5.2.1 implies stronger forms discussedin Exercises 13, 17 and 18.5.2.2 Indistinguishability of EncryptionsA good disguise should not allow a mother to distinguish her own children.Sha� Goldwasser and Silvio Micali, 1982The following technical interpretation of security states that it is infeasible todistinguish the encryptions of two plaintexts (of the same length). That is, suchciphertexts are computationally indistinguishable as de�ned in De�nition 3.2.7.Again, we start with the private-key variant.De�nition 5.2.3 (indistinguishability of encryptions { private-key): An en-cryption scheme, (G;E;D), has indistinguishable encryptions (in the private-keymodel) if for every polynomial-size circuit family fCng, every polynomial p, allsu�ciently large n and every x; y 2 f0; 1gpoly(n) (i.e., jxj = jyj),jPr �Cn(EG1(1n)(x))=1�� Pr �Cn(EG1(1n)(y))=1� j < 1p(n)The probability in the above terms is taken over the internal coin tosses of algo-rithms G and E.
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5.2. DEFINITIONS OF SECURITY 369Note that the potential plaintexts to be distinguished can be incorporated intothe circuit Cn. Thus, the circuit models both the adversary's strategy and itsa-priori information: See Exercise 11.Again, the security de�nition for public-key encryption schemes is derived byadding the encryption-key (i.e., G1(1n)) as an additional input to the potentialdistinguisher. That is,De�nition 5.2.4 (indistinguishability of encryptions { public-key): An encryp-tion scheme, (G;E;D), has indistinguishable encryptions (in the public-key model)if for every polynomial-size circuit family fCng, and every p(�), n, x and y asin De�nition 5.2.3jPr �Cn(G1(1n); EG1(1n)(x))=1�� Pr �Cn(G1(1n); EG1(1n)(y))=1� j < 1p(n)Terminology: We refer to an encryption scheme that has indistinguishable en-cryptions in the private-key (resp., public-key) model as to a ciphertext-indistinguishableprivate-key (resp., public-key) encryption scheme.Failure of deterministic encryption algorithms: A ciphertext-indistinguishablepublic-key encryption scheme cannot employ a deterministic encryption algo-rithm (i.e., Ee(x) cannot be a �xed string). The reason being that, for a public-key encryption scheme with a deterministic encryption algorithm E, given anencryption-key e and a pair of candidate plaintexts (x; y), one can easily distin-guish Ee(x) from Ee(y) (by merely applying Ee to x and comparing the resultto the given ciphertext). In contrast, in case the encryption algorithm itself israndomized, the same plaintext can be encrypted in exponentially many dif-ferent ways, under the same encryption-key. Furthermore, the probability thatapplying Ee twice to the same message (while using independent randomizationin Ee) results in the same ciphertext may be exponentially vanishing. (Indeed,as shown below, public-key encryption scheme having indistinguishable encryp-tions can be constructed based on any trapdoor permutations, and these schemesemploy randomized encryption algorithms.)5.2.3 Equivalence of the Security De�nitionsThe following theorem is stated and proven for private-key encryption schemes.A similar result holds for public-key encryption schemes (see Exercise 12).Theorem 5.2.5 (equivalence of de�nitions { private-key): A private-key en-cryption scheme is semantically secure if and only if it has indistinguishableencryptions.Let (G;E;D) be an encryption scheme. We formulate a proposition for each ofthe two directions of the above theorem. Each proposition is in fact strongerthan the corresponding direction stated in Theorem 5.2.5. The more usefuldirection is stated �rst: it asserts that the technical interpretation of security, in
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370 CHAPTER 5. ENCRYPTION SCHEMESterms of ciphertext-indistinguishability, implies the natural notion of semanticsecurity. Thus, the following proposition yields a methodology for designingsemantically secure encryption schemes: design and prove your scheme to beciphertext-indistinguishable, and conclude (by applying the proposition) thatit is semantically secure. The opposite direction (of Theorem 5.2.5) establishthe \completeness" of the latter methodology, and more generally assert thatrequiring an encryption scheme to be ciphertext-indistinguishable does not ruleout schemes that are semantically secure.Proposition 5.2.6 (useful direction { \indistinguishability" implies \security"):Suppose that (G;E;D) is a ciphertext-indistinguishable private-key encryptionscheme. Then (G;E;D) is semantically-secure. Furthermore, the simulatingalgorithm A0 (which is used to establish semantic-security) captures the compu-tation of a universal probabilistic polynomial-time oracle machine that is givenoracle access to the speci�c (original) adversary algorithm A.Proposition 5.2.7 (opposite direction { \security" implies \indistinguishabil-ity"): Suppose that (G;E;D) is a semantically secure private-key encryptionscheme. Then (G;E;D) has indistinguishable encryptions. Furthermore, theconclusion holds even if the de�nition of semantic security is restricted to thespecial case satisfying the following four conditions:1. the random variable Xn is uniformly distributed over a set containing twostrings;2. the value of h depends only on the length of its input or alternativelyh(1n; x) = h0(n);3. the function f is Boolean and is computable by a family of (possibly non-uniform) polynomial-size circuits;4. the algorithm A is deterministic.In addition, no computational restrictions are placed on algorithm A0 (i.e., A0can be replaced by any function, which in turn may depend on fXngn2N, h, fand A).Observe that the above four itemized conditions limit the scope of the fouruniversal quanti�ers in De�nition 5.2.1, whereas the last sentence removes arestriction on the existential quanti�er (i.e., removes the complexity bound onA0) and allows the latter to depend on all universal quanti�ers. Each of thesemodi�cations makes the resulting de�nition potentially weaker. Still, combiningPropositions 5.2.7 and 5.2.6 it follows that a weak version of De�nition 5.2.1implies (an even stronger version than) the one stated in De�nition 5.2.1.5.2.3.1 Proof of Proposition 5.2.6.Suppose that (G;E;D) has indistinguishable encryptions. We will show that(G;E;D) is semantically secure by constructing, for every probabilistic polynomial-time algorithm A, a probabilistic polynomial-time algorithm A0 such that the fol-lowing holds: for every fXngn2N, f and h, algorithm A0 guesses f(1n; Xn) from
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5.2. DEFINITIONS OF SECURITY 371(1n; 1jXnj; h(1n; Xn)) essentially as good as A guesses f(1n; Xn) from E(Xn)and (1n; 1jXnj; h(1n; Xn)). Our construction of A0 consists of merely invoking Aon input (1n; E(1jXnj); 1jXnj; h(1n; Xn)), and returning whatever A does. Thatis, A0 invokes A with a dummy encryption rather than with an encryption of Xn(which A expects to get, but A0 does not have). Intuitively, the indistinguisha-bility of encryptions implies that A behaves as well when invoked by A0 (andgiven a dummy encryption) as when given the encryption of Xn, and this es-tablishes the desired claim. The main issue in materializing the above intuitionis to show that the speci�c formulation of indistinguishability of encryptionssu�ces to establish the above eluded \similar behavior" clause (which refers tothe success in guessing the value of f(1n; Xn)).Let A be an algorithm that tries to infer partial information (i.e., the valuef(1n; Xn)) from the encryption of the plaintext Xn (when also given 1n; 1jXnjand a-priori information h(1n; Xn)). Intuitively, on input E(�) and (1n; 1j�j; h(1n; �)),algorithm A tries to guess f(1n; �). We construct a new algorithm, A0, that per-forms essentially as well without getting the input E(�). The new algorithmconsists of invoking A on input EG1(1n)(1j�j) and (1n; 1j�j; h(1n; �)), and out-putting whatever A does. That is, on input (1n; 1j�j; h(1n; �)), algorithm A0proceeds as follows:1. A0 invokes the key-generator G (on input 1n), and obtains an encryption-key e G1(1n).2. A0 invokes the encryption algorithm with key e and (\dummy") plaintext1j�j, obtaining a ciphertext �  Ee(1j�j).3. A0 invokes A on input (1n; �; 1j�j; h(1n; �)), and outputs whatever A does.Observe that A0 is described in terms of an oracle machine that makes a singleoracle call to (any given) A, in addition to invoking the �xed algorithms Gand E. Furthermore, the construction of A0 neither depend on the functionsh and f nor on the distribution of plaintexts to be encrypted (represented bythe probability ensembles fXngn2N). Thus, A0 is probabilistic polynomial-timewhenever A is probabilistic polynomial-time (and regardless of the complexityof h, f and fXngn2N).Indistinguishability of encryptions will be used to prove that A0 performsessentially as well as A. Speci�cally, the proof will use a reducibility argument.Claim 5.2.6.1: Let A0 be as above. Then, for every fXngn2N, f , h and p as inDe�nition 5.2.1, and all su�ciently large n'sPr hA(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)Proof: To simplify the notations, let us incorporate (1n; 1j�j) into hn(�) def=h(1n; �) and let fn(�) def= f(1n; �). Using the de�nition of A0, we rewrite the
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372 CHAPTER 5. ENCRYPTION SCHEMESclaim as assertingPr �A(EG1(1n)(Xn); hn(Xn))=fn(Xn)�< Pr hA(EG1(1n)(1jXnj); hn(Xn))=fn(Xn)i+ 1p(n) (5.1)Intuitively, Eq. (5.1) follows from the indistinguishability of encryptions. Other-wise, by �xing a violating value of Xn and hard-wiring the corresponding valuesof hn(Xn) and fn(Xn), we get a small circuit that distinguishes an encryptionof this value of Xn from an encryption of 1jXnj. Details follow.Assume, towards the contradiction that for some polynomial p and in�nitelymany n's Eq. (5.1) is violated. Then, for each such n, we have E[�n(Xn)] >1=p(n), where�n(x) def= ���Pr �A(EG1(1n)(x); hn(x))=fn(x)� � Pr hA(EG1(1n)(1jxj); hn(x))=fn(x)i���We use an averaging argument to single out a string xn in the support of Xn suchthat �n(xn) � E[�n(Xn)]: That is, let xn 2 f0; 1gpoly(n) be a string for whichthe value of �n(�) is maximum, and so �n(xn) > 1=p(n). Using this xn, weintroduce a circuit Cn, which incorporates the �xed values fn(xn) and hn(xn),and distinguishes the encryption of xn from the encryption of 1jxnj. The circuitCn operates as follows. On input � = E(�), the circuit Cn invokes A(�; hn(xn))and outputs 1 if and only if A outputs the value fn(xn). Otherwise, Cn outputs0. The above circuit is indeed of polynomial-size because it merely incorpo-rates strings of polynomial length (i.e., fn(xn) and hn(xn)) and emulates apolynomial-time computation (i.e., that of A). (Note that the circuit familyfCng is indeed non-uniform since its de�nition is based on a non-uniform selec-tion of xn's as well as on a hard-wiring of (possibly uncomputable) correspondingstrings hn(xn) and fn(xn).) Clearly,Pr �Cn(EG1(1n)(�))=1� = Pr �A(EG1(1n)(�); hn(xn))=fn(xn)� (5.2)Combining Eq. (5.2) with the de�nition of �n(xn), we get���Pr �Cn(EG1(1n)(xn))=1�� Pr hCn(EG1(1n)(1jxnj))=1i��� = �n(xn)> 1p(n)This contradicts our hypothesis that E has indistinguishable encryptions, andthe claim follows. 2We have just shown that A0 performs essentially as well as A, and so Proposition5.2.6 follows.
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5.2. DEFINITIONS OF SECURITY 373Comments: The fact that we deal with a non-uniform model of computationallows the above proof to proceed regardless of the complexity of f and h. Allthat our de�nition of Cn requires is the hardwiring of the values of f and h ona single string, and this can be done regardless of the complexity of f and h(provided that jfn(xn)j; jhn(xn)j � poly(n)).When proving the public-key analogue of Proposition 5.2.6, algorithm A0 isde�ned exactly as above, but its analysis is slightly di�erent: the distinguish-ing circuit, considered in the analysis of the performance of A0, obtains theencryption-key as part of its input, and passes it to algorithm A (upon invokingthe latter).5.2.3.2 Proof of Proposition 5.2.7Intuitively, indistinguishability of encryption (i.e., of the encryptions of xn andyn) is a special case of semantic security in which f indicates one of the plaintextsand h does not distinguish them (i.e., f(1n; z) = 1 i� z = xn and h(1n; xn) =h(1n; yn)). The only issue to be addressed by the actual proof is that semanticsecurity refers to uniform (probabilistic polynomial-time) adversaries, whereasindistinguishability of encryption refers to non-uniform polynomial-size circuits.This gap is bridged by using the function h to provide the algorithms in thesemantic-security formulation with adequate non-uniform advice (which may beused by the machine in the indistinguishability of encryption formulation).The actual proof is by a (direct) reducibility argument. We show that if(G;E;D) has distinguishable encryptions then it is not semantically secure(not even in the restricted sense mentioned in the furthermore-clause of theproposition). Towards this end, we assume that there exists a polynomial p,a polynomial-size circuit family fCng, such that for in�nitely many n's thereexists xn; yn 2 f0; 1gpoly(n) so that��Pr �Cn(EG1(1n)(xn))=1�� Pr �Cn(EG1(1n)(yn))=1��� > 1p(n) (5.3)Using these sequences of Cn's, xn's and yn's, we de�ne fXngn2N, f and h(referred to in De�nition 5.2.1) as follows:� The probability ensembles fXngn2N is de�ned such that Xn is uniformlydistributed over fxn; yng.� The (Boolean) function f is de�ned such that f(1n; xn) = 1 and f(1n; yn) =0, for every n. Note that f(1n; Xn) = 1 with probability 1=2 and equals 0otherwise.� The function h is de�ned such that h(1n; Xn) equals the description ofthe circuit Cn. Note that h(1n; Xn) = Cn with probability 1, and thush(1n; Xn) reveals no information on the value of Xn.Note that Xn, f and h satisfy the restrictions stated in the furthermore-clauseof the proposition. Intuitively, Eq. (5.3) implies violation of semantic securitywith respect to the above Xn, h and f . Indeed, we will present a (deterministic)
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374 CHAPTER 5. ENCRYPTION SCHEMESpolynomial-time algorithm A that, given Cn = h(1n; Xn), guesses the value off(1n; Xn) from the encryption of Xn, and does so signi�cantly better that withprobability 12 . This violates (even the restricted form of) semantic security,because no algorithm (regardless of its complexity) can guess f(1n; Xn) betterthan with probability 1=2 when only given 1jXnj (because given the constantvalues 1jXnj and h(1n; Xn), the value of f(1n; Xn) is uniformly distributed overf0; 1g). Details follow.Let us assume, without loss of generality, that for in�nitely many n'sPr �Cn(EG1(1n)(xn))=1� > Pr �Cn(EG1(1n)(yn))=1� + 1p(n) (5.4)Claim 5.2.7.1: There exists a (deterministic) polynomial-time algorithm A suchthat for in�nitely many n'sPr hA(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i > 12 + 12p(n)Proof: The desired algorithm A merely uses Cn = h(1n; Xn) to distinguishE(xn) from E(yn), and thus given E(Xn) it produces a guess for the value off(1n; Xn). Speci�cally, on input � = E(�) (where � is in the support of Xn)and (1n; 1j�j; h(1n; �)), algorithm A recovers Cn = h(1n; �), invokes Cn on input�, and outputs 1 if Cn outputs 1 (otherwise, A outputs 0).3It is left to analyze the success probability of A. Letting m = jxnj = jynj,hn(�) def= h(1n; �) and fn(�) def= f(1n; �), we havePr hA(1n; EG1(1n)(Xn); 1jXnj; hn(Xn))=fn(Xn)i= 12 � Pr hA(1n; EG1(1n)(Xn); 1jXnj; hn(Xn))=fn(Xn) jXn=xni+ 12 � Pr hA(1n; EG1(1n)(Xn); 1jXnj; hn(Xn))=fn(Xn) jXn=yni= 12 � Pr hA(1n; EG1(1n)(xn); 1jxnj; Cn)=1i+ 12 � Pr hA(1n; EG1(1n)(yn); 1jynj; Cn)=0i= 12 � �Pr �Cn(EG1(1n)(xn))=1�+ 1� Pr �Cn(EG1(1n)(yn))=1��> 12 + 12p(n)where the inequality is due to Eq. (5.4). 23 We comment that the value `1' output by Cn is an indication that � is more likely to bexn, whereas the output of A is a guess of f(�). This point may be better stressed by rede�ningf such that f(1n; xn) def= xn and f(1n ; x) def= yn if x 6= xn, and having A output xn if Cnoutputs 1 and output yn otherwise.
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5.2. DEFINITIONS OF SECURITY 375In contrast, as mentioned above, no algorithm (regardless of its complexity)can guess f(1n; Xn) with success probability above 1=2, when given only 1jXnjand h(1n; Xn). That is, we haveFact 5.2.7.2: For every n and every algorithm A0Pr hA0(1n; 1jXnj; h(1n; Xn))=f(1n; Xn)i � 12 (5.5)Proof: Just observe that the output of A0, on its constant input values 1n; 1jXnjand h(1n; Xn), is stochastically independent of the random variable f(1n; Xn),which in turn is uniformly distributed in f0; 1g. Eq. (5.5) follows (and equalityholds in case A0 always outputs a value in f0; 1g). 2Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to thehypothesis that the scheme is semantically secure (even in the restricted sensementioned in the furthermore-clause of the proposition). Thus, the propositionfollows.Comment: When proving the public-key analogue of Proposition 5.2.7, algo-rithm A is de�ned as above except that it passes the encryption-key, given to itas part of its input, to the circuit Cn. The rest of the proof remains intact.5.2.4 Multiple MessagesThe above de�nitions only refer to the security of an encryption scheme thatis used to encrypt a single plaintext (per a generated key). Since the plain-text may be longer than the key, these de�nitions are already non-trivial, andan encryption scheme satisfying them (even in the private-key model) impliesthe existence of one-way functions (see Exercise 2). Still, in many cases, it isdesirable to encrypt many plaintexts using the same encryption-key. Looselyspeaking, an encryption scheme is secure in the multiple-message setting if anal-ogous de�nitions (to the above) hold also when polynomially-many plaintextsare encrypted using the same encryption-key.We show that in the public-key model, security in the single-message set-ting (discussed above) implies security in the multiple-message setting (de�nedbelow). We stress that this is not necessarily true for the private-key model.5.2.4.1 De�nitionsFor a sequence of strings x = (x(1); :::; x(t)), we let Ee(x) denote the sequenceof the t results that are obtained by applying the randomized process Ee tothe t strings x(1); :::; x(t), respectively. That is, Ee(x) = Ee(x(1)); :::; Ee(x(t)).We stress that in each of these t invocations, the randomized process Ee uti-lizes independently chosen random coins. For sake of simplicity, we consider theencryption of (polynomially) many plaintexts of the same (polynomial) length
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376 CHAPTER 5. ENCRYPTION SCHEMES(rather than the encryption of plaintexts of various lengths as discussed in Ex-ercise 20). The number of plaintexts as well as their total length (in unary) aregiven to all algorithms either implicitly or explicitly.4De�nition 5.2.8 (semantic security { multiple messages):For private-key: An encryption scheme, (G;E;D), is semantically secure formultiple messages in the private-key model if for every probabilistic polynomial-time algorithm A, there exists a probabilistic polynomial-time algorithm A0such that for every ensemble fXn = (X(1)n ; :::; X(t(n))n )gn2N, with jX(1)n j =� � � = jX(t(n))n j � poly(n) and t(n) � poly(n), every pair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomial p(�) and allsu�ciently large nPr hA(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; t(n); 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)For public-key: An encryption scheme, (G;E;D), is semantically secure formultiple messages in the public-key model if for A, A0, t(�), fXngn2N,f; h, p(�) and n as above, it holds thatPr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; t(n); 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)We stress that the elements of Xn are not necessarily independent; they maydepend on one another. Note that the above de�nition also cover the case wherethe adversary obtains some of the plaintexts themselves. In this case it is stillinfeasible for him/her to obtain information about the missing plaintexts (seeExercise 22).De�nition 5.2.9 (indistinguishability of encryptions { multiple messages):For private-key: An encryption scheme, (G;E;D), has indistinguishable en-cryptions for multiple messages in the private-key model if for every polynomial-size circuit family fCng, every polynomial p, all su�ciently large n andevery x1; :::; xt(n); y1; :::; yt(n) 2 f0; 1gpoly(n), with t(n) � poly(n), it holdsthat jPr �Cn(EG1(1n)(�x))=1�� Pr �Cn(EG1(1n)(�y))=1� j < 1p(n)where �x = (x1; :::; xt(n)) and �y = (y1; :::; yt(n)).4 For example, A can infer the number of plaintexts from the number of ciphertexts, whereasA0 is given this number explicitly. Given the number of the plaintexts as well as their totallength, both algorithms can infer the length of each plaintext.
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5.2. DEFINITIONS OF SECURITY 377For public-key: An encryption scheme, (G;E;D), has indistinguishable encryp-tions for multiple messages in the public-key model if for t(�), fCng, p, nand x1; :::; xt(n); y1; :::; yt(n) as abovejPr �Cn(G1(1n); EG1(1n)(�x))=1��Pr �Cn(G1(1n); EG1(1n)(�y))=1� j < 1p(n)The equivalence of De�nitions 5.2.8 and 5.2.9 can be established analogously tothe proof of Theorem 5.2.5.Theorem 5.2.10 (equivalence of de�nitions { multiple messages): A private-key (resp., public-key) encryption scheme is semantically secure for multiple mes-sages if and only if it has indistinguishable encryptions for multiple messages.Thus, proving that single-message security implies multiple-message security forone de�nition of security, yields the same for the other. We may thus concentrateon the ciphertext-indistinguishability de�nitions.5.2.4.2 The e�ect on the public-key modelWe �rst consider public-key encryption schemes.Theorem 5.2.11 (single-message security implies multiple-message security):A public-key encryption scheme has indistinguishable encryptions for multiplemessages (i.e., satis�es De�nition 5.2.9 in the public-key model) if and only ifit has indistinguishable encryptions for a single message (i.e., satis�es De�ni-tion 5.2.4).Proof: Clearly, multiple-message security implies single-message security as aspecial case. The other direction follows by adapting the proof of Theorem 3.2.6to the current setting.Suppose, towards the contradiction, that there exist a polynomial t(�), apolynomial-size circuit family fCng, and a polynomial p, such that for in�nitelymany n's, there exists x1; :::; xt(n); y1; :::; yt(n) 2 f0; 1gpoly(n) so that��Pr �Cn(G1(1n); EG1(1n)(�x))=1�� Pr �Cn(G1(1n); EG1(1n)(�y))=1��� > 1p(n)where �x = (x1; :::; xt(n)) and �y = (y1; :::; yt(n)). Let us consider such a generic nand the corresponding sequences x1; :::; xt(n) and y1; :::; yt(n). We use a hybridargument. Speci�cally, de�ne�h(i) def= (x1; :::; xi; yi+1; :::; yt(n))and H(i)n def= (G1(1n); EG1(1n)(�h(i)))Since H(0)n = (G1(1n); EG1(1n)(�y)) and H(t(n))n = (G1(1n); EG1(1n)(�x)), it followsthat there exists an i 2 f0; :::; t(n)� 1g so that���Pr hCn(H(i)n )=1i� Pr hCn(H(i+1)n )=1i��� > 1t(n) � p(n) (5.6)
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378 CHAPTER 5. ENCRYPTION SCHEMESWe show that Eq. (5.6) yields a polynomial-size circuit that distinguishes theencryption of xi+1 from the encryption of yi+1, and thus derive a contradic-tion to security in the single-message setting. Speci�cally, we construct a cir-cuit Dn that incorporates the circuit Cn as well as the index i and the stringsx1; :::; xi+1; yi+1; :::; yt(n). On input an encryption-key e and (corresponding)ciphertext �, the circuit Dn operates as follows:� For every j � i, the circuit Dn generates an encryption of xj using theencryption-key e. Similarly, for every j � i + 2, the circuit Dn generatesan encryption of yj using the encryption-key e.Let us denote the resulting ciphertexts by �1; :::; �i; �i+2; :::; �t(n). That is,�j  Ee(xj) for j � i and �j  Ee(yj) for j � i+ 2.� Finally, Dn invokes Cn on input the encryption-key e and the sequence ofciphertexts �1; :::; �i; �; �i+2; :::; �t(n), and outputs whatever Cn does.We stress that the construction of Dn relies in an essential way on the fact thatthe encryption-key is given to Dn as input.We now turn to the analysis of the circuit Dn. Suppose that � is a (random)encryption of xi+1 with (random) key e; that is, � = Ee(xi+1). Then, Dn(e; �) �Cn(e; Ee(�h(i+1))) = Cn(H(i+1)n ), where X � Y means that the random variablesX and Y are identically distributed. Similarly, for � = Ee(yi+1), we haveDn(e; �) � Cn(e; Ee(�h(i))) = Cn(H(i)n ). Thus, by Eq. (5.6), we have��Pr �Dn(G1(1n); EG1(1n)(yi+1)=1��Pr �Dn(G1(1n); EG1(1n)(xi+1)=1��� > 1t(n) � p(n)in contradiction to our hypothesis that (G;E;D) is a ciphertext-indistinguishablepublic-key encryption scheme (in the single message sense). The theorem follows.Discussion: The fact that we are in the public-key model is essential to theabove proof. It allows the circuit Dn to form encryptions relative to the sameencryption-key used in the ciphertext given to it. In fact, as stated above (andproven next), the analogous result does not hold in the private-key model.5.2.4.3 The e�ect on the private-key modelIn contrary to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishabilityfor a single message does not necessarily imply ciphertext-indistinguishabilityfor multiple messages.Proposition 5.2.12 Suppose that there exist pseudorandom generators (robustagainst polynomial-size circuits). Then, there exists a private-key encryptionscheme that satis�es De�nition 5.2.3 but does not satisfy De�nition 5.2.9.
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5.2. DEFINITIONS OF SECURITY 379Proof: We start with the construction of the desired private-key encryptionscheme. The encryption/decryption key for security parameter n is a uniformlydistributed n-bit long string, denoted s. To encrypt a ciphertext, x, the encryp-tion algorithm uses the key s as a seed for a (variable-output) pseudorandomgenerator, denoted g, that stretches seeds of length n into sequences of length jxj.The ciphertext is obtained by a bit-by-bit exclusive-or of x and g(s). Decryptionis done in an analogous manner.We �rst show that this encryption scheme satis�es De�nition 5.2.3. Intu-itively, this follow from the hypothesis that g is a pseudorandom generator andthe fact that x�Ujxj is uniformly distributed over f0; 1gjxj. Speci�cally, supposetowards the contradiction that for some polynomial-size circuit family fCng, apolynomial p, and in�nitely many n'sjPr[Cn(x� g(Un))=1]� Pr[Cn(y � g(Un))=1]j > 1p(n)where Un is uniformly distributed over f0; 1gn and jxj = jyj = m = poly(n). Onthe other hand, Pr[Cn(x� Um)=1] = Pr[Cn(y � Um)=1]Thus, without loss of generalityjPr[Cn(x� g(Un))=1]� Pr[Cn(x � Um)=1]j > 12 � p(n)Incorporating x into the circuit Cn, we obtain a circuit that distinguishes Umfrom g(Un), in contradiction to our hypothesis (regarding the pseudorandomnessof g).Next, we observe that the above encryption scheme does not satisfy De�ni-tion 5.2.9. Speci�cally, given the ciphertexts of two plaintexts, one may easilyretrieve the exclusive-or of the corresponding plaintexts. That is,Es(x1)�Es(x2) = (x1 � g(s))� (x2 � g(s)) = x1 � x2This clearly violates De�nition 5.2.8 (e.g., consider f(x1; x2) = x1 � x2) as wellas De�nition 5.2.9 (e.g., consider any �x = (x1; x2) and �y = (y1; y2) such thatx1�x2 6= y1�y2). Viewed in a di�erent way, note that any plaintext-ciphertextpair yields a corresponding pre�x of the pseudorandom sequence, and knowledgeof this pre�x violates the security of additional plaintexts. That is, given theencryption of a known plaintext x1 along with the encryption of an unknownplaintext x2, we can retrieve x2.55 On input the ciphertexts �1; �2, knowing that the �rst plaintext is x1, �rst retrieves thepseudorandom sequence (i.e., it is just r def= �1 � x1), and next retrieves the second plaintext(i.e., by computing �2 � r).
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380 CHAPTER 5. ENCRYPTION SCHEMESDiscussion: The single-message security of the above scheme was proven byconsidering an ideal version of the scheme in which the pseudorandom sequenceis replaced by a truly random sequence. The latter scheme is secure in aninformation theoretic sense, and the security of the actual scheme followed bythe indistinguishability of the two sequences. As we show in Section 5.3.1, theabove construction can be modi�ed to yield a private-key \stream-cipher" thatis secure for multiple message encryptions. All that is needed in order to obtainmultiple-message security is to make sure that (as opposed to the constructionabove) the same portion of the pseudorandom sequence is never used twice.An alternative proof of Proposition 5.2.12: Given an arbitrary private-key encryption scheme (G;E;D), consider the following private-key encryptionscheme (G0; E0; D0):� G0(1n) = ((k; r); (k; r), where (k; k)  G(1n) and r is uniformly selectedin f0; 1gjkj;� E0(k;r)(x) = (Ek(x); k � r) with probability 1=2 and E0(k;r)(x) = (Ek(x); r)otherwise;� and D0(k;r)(y; z) = Dk(y).If (G;E;D) is secure then so is (G0; E0; D0) (with respect to a single message);however, (G0; E0; D0) is not secure with respect to two messages. For furtherdiscussion see Exercise 21.5.2.5 * A uniform-complexity treatmentAs stated at the beginning of this section, the non-uniform formulation wasadopted here for sake of simplicity. In this subsection we sketch a uniform-complexity de�nitional treatment of security. We stress that by uniform or non-uniform complexity treatment of cryptographic primitives we refer merely to themodeling of the adversary. The honest (legitimate) parties are always modeledby uniform complexity classes (most commonly probabilistic polynomial-time).The notion of e�ciently constructible ensembles, de�ned in Section 3.2.3,is central to the uniform-complexity treatment. Recall that an ensemble, X =fXngn2N, is said to be polynomial-time constructible if there exists a probabilisticpolynomial time algorithm S so that for every n, the random variables S(1n)and Xn are identically distributed.5.2.5.1 The de�nitionsWe present only the de�nitions of security for multiple messages; the single-message variant can be easily obtained by setting the polynomial t (below) to beidentically 1. Likewise, we present the public-key version, and the private-keyanalogous can be obtained by omitting G1(1n) from the inputs to the variousalgorithms.
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5.2. DEFINITIONS OF SECURITY 381The uniformity of the following de�nitions is re
ected in the complexity ofthe inputs given to the algorithms. Speci�cally, the plaintexts are taken frompolynomial-time constructible ensembles and so are the auxiliary inputs given tothe algorithms. For example, in the following de�nition we require the ensemblefXng to be polynomial-time constructible and the function h to be polynomial-time computable.De�nition 5.2.13 (semantic security { uniform-complexity version): An en-cryption scheme, (G;E;D), is uniformly semantically secure in the public-keymodel if for every two polynomials t; `, and every probabilistic polynomial-timealgorithm A there exists a probabilistic polynomial-time algorithm A0 such thatfor every polynomial-time constructible ensemble fXn = (X(1)n ; :::; X(t(n))n )gn2N,with jX(i)n j = `(n), every polynomial-time computable h : f0; 1g� ! f0; 1g�, ev-ery f : f0; 1g� ! f0; 1g�, every positive polynomial p and all su�ciently largen's Pr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; t(n); 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)where Ee(x) def= Ee(x(1)); :::; Ee(x(t(n))), for x = (x(1); :::; x(t(n))) 2 f0; 1gt(n)�`(n),is as in De�nition 5.2.8.Again, we stress that Xn is a sequence of random variables, which may dependon one another. We stress that even here (i.e., in the uniform complexity setting)no computational limitation are placed on the function f .De�nition 5.2.14 (indistinguishability of encryptions { uniform-complexity ver-sion): An encryption scheme, (G;E;D), has uniformly indistinguishable encryp-tions in the public-key model if for every two polynomials t; `, every probabilis-tic polynomial-time algorithm D0, every polynomial-time constructible ensembleT def= fTn = XnY nZngn2N, with Xn = (X(1)n ; :::; X(t(n))n ), Y n = (Y (1)n ; :::; Y (t(n))n ),and jX(i)n j = jY (i)n j = `(n), it holds thatjPr �D0(1n; Zn; G1(1n); EG1(1n)(Xn))=1�� Pr �D0(1n; Zn; G1(1n); EG1(1n)(Y n))=1� j < 1p(n)for every positive polynomial p and all su�ciently large n's.The random variable Zn captures a-priori information about the plaintexts forwhich encryptions should be distinguished. A special case of interest is whenZn = XnY n. Uniformity is captured in the requirement thatD0 is a probabilisticpolynomial-time algorithm (rather than a family of polynomial-size circuits) andthat the ensemble fTn = XnY nZngn2N be polynomial-time constructible.
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382 CHAPTER 5. ENCRYPTION SCHEMES5.2.5.2 Equivalence of the multiple-message de�nitionsWe prove the equivalence of the uniform-complexity de�nitions (presented above)for (multiple-message) security.Theorem 5.2.15 (equivalence of de�nitions { uniform treatment): A public-key encryption scheme satis�es De�nition 5.2.13 if and only if it satis�es Def-inition 5.2.14. Furthermore, this holds even if De�nition 5.2.14 is restricted tothe special case where Zn = XnY n, and even if De�nition 5.2.13 is restricted tothe special case where f is polynomial-time computable.An analogous result holds for the private-key model. The important direction ofthe theorem holds also for the single-message version (this is quite obvious fromthe proof below). In the other direction, we seem to use the multiple-messageversion (of semantic security) in an essential way.Proof Sketch: Again, we start with the more important direction; that is,assuming that (G;E;D) has (uniformly) indistinguishable encryptions, for thespecial case where Zn = XnY n, we show that it is (uniformly) semanticallysecure. Our construction of algorithm A0 is analogous to the construction usedin the non-uniform treatment. Speci�cally, on input (1n; t(n); 1j�j; h(1n; �)),algorithm A0 generates a random encryption of a dummy sequence of plaintexts(i.e., 1j�j), feeds it to A, and outputs whatever A does.6 That is,A0(1n; t(n); 1j�j; u) = A(1n; G1(1n); EG1(1n)(1j�j); 1j�j; u) (5.7)As in the non-uniform case, the analysis of algorithm A0 reduces to the followingclaim.Claim 5.2.15.1: For every two polynomials t and `, every polynomial-time con-structible ensemble fXngn2N, with Xn = (X(1)n ; :::; X(t(n))n ) and jX(i)n j = `(n),every polynomial-time computable h, every positive polynomial p and all su�-ciently large n'sPr hA(1n; G1(1n); EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA(1n; G1(1n); EG1(1n)(1jXnj); 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)Proof sketch: Analogously to the non-uniform case, assuming towards the con-tradiction that the claim does not hold, yields an algorithm that distinguishesencryptions of Xn from encryptions of Y n = 1jXnj, when getting auxiliary in-formation Zn = XnY n = Xn1jXnj. Thus, we derive contradiction to De�ni-tion 5.2.14 (even under the special case postulated in the theorem).We note that the auxiliary information that is given to the distinguishingalgorithm replaces the hard-wiring of auxiliary information that was used in6 More accurately, algorithm A0 proceeds as follows. Using t(n), the algorithm breaks1j�j into a sequence of t(n) equal-length (unary) strings, using 1n it generates a randomencryption-key, and using this key it generates the corresponding sequence of encryptions.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.2. DEFINITIONS OF SECURITY 383the non-uniform case (and is not possible in the uniform complexity model).Speci�cally, rather than using a hard-wired value of h (at some non-uniformly�xed sequence), the distinguishing algorithm will use the auxiliary informationZn = Xn1jXnj in order to compute hn(Xn) def= (1n; 1jXnj; h(1n; Xn)), which itwill pass to A. Indeed, we rely on the hypothesis that h is e�ciently computable.The actual proof is quite simple in case the function f is also polynomial-time computable (which is not the case in general). In this special case, oninput (1n; e; z; Ee(�)), where z = (x; 1jxj) (for x  Xn) and � 2 fx; 1jxjg, thedistinguishing algorithm computes u = h(1n; x) and v = f(1n; x), invokes A,and outputs 1 if and only if A(1n; e; Ee(�); 1jxj; u) = v.(We comment that in case � = 1jxj, we actually mean that � is asequence of t(n) strings of the form 1`(n), where t and ` are as in x =(x(1); :::; x(t(n))) 2 (f0; 1g`(n))t(n).)The proof becomes more involved in case f is not polynomial-time computable.7Again, the solution is in realizing that indistinguishability of encryption postu-lates a similar output pro�le in both cases, and in particular no value can occurnon-negligibly more in one case than in the other. To clarify the point, we de-�ne �n;v(x) to be the di�erence between Pr[A(G1(1n); EG1(1n)(x); hn(x)) = v]and Pr[A(G1(1n); EG1(1n)(1jxj); hn(x)) = v], where hn(x) def= (1n; 1jxj; h(1n; x)).We do know that E[�n;f(1n;Xn)(Xn)] > 1=p(n), but given x (and 1n) we can-not even approximate �n;f(1n;x)(x), because we do not have (and cannot com-pute) f(1n; x). Instead, we let �n(x) def= maxv2f0;1gpoly(n)f�n;v(x)g, and observethat E[�n(Xn)] � E[�n;f(1n;Xn)(Xn)] > 1=p(n). Furthermore, given (1n; x) wecan approximate �n(x) in polynomial-time, and we can �nd (in probabilisticpolynomial-time) a value v such that �n;v(x) > �n(x)� (1=2p(n)), with prob-ability at least 1� 2�n.On approximating�n(x) and �nding an adequate v: Let q(n) be a bound onthe length of f(1n; x). By invoking algorithm A on O(n q(n) � p(n)2) sam-ples of the distributions (G1(1n); EG1(1n)(x); hn(x)) and (G1(1n); EG1(1n)(1jxj); hn(x)),we obtain (implicitly) an approximation of all �n;v(x)'s up-to an addi-tive deviation of 1=4p(n) (with error probability at most 2�n).8 The ap-proximation to �n;v(x), denoted e�n;v(x) is merely the di�erence betweenthe fraction of samples (from both distributions) on which algorithm Areturned v. (Indeed, most �n;v(x)'s are approximated by 0, but some�n;v(x)'s may approximated by non-zero values.) We just output a stringv for which the approximated value e�n;v(x) is the largest. Thus, if forsome vn it holds that �n;vn(x) = �n(x), then with probability at least1� 2�n we output v such that�n;v(x) � e�n;v(x)� (1=4p(n))7 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the valuesof h and f on good sequences) into the algorithm D0 (which is required to be uniform).8 For every �xed v, the probability that j�n;v(x)� e�n;v(x)j > 1=4p(n) is at most 2�nq(n),and we need consider only 2q(n) such v's. We stress that the same sample is used to deriveimplicit approximations of all �n;v(x)'s (i.e., for all v's).
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384 CHAPTER 5. ENCRYPTION SCHEMES� e�n;vn(x)� (1=4p(n))� �n;vn(x)� (1=4p(n)) � (1=4p(n))Thus, �n;v(x) � �n(x)� (1=2p(n)).Thus, on input (1n; e; z; Ee(�)), where z = (x; 1jxj), the distinguisher, denotedD0, operates in two stages.1. In the �rst stage, D0 ignores the ciphertext Ee(�). Using z, algorithm D0recovers x, and computes u = hn(x) def= (1n; 1jxj; h(1n; x)). Using x andu, algorithm D0 estimates �n(x), and �nds a v as above. That is, withprobability at least 1� 2�n, it holds that �n;v(x) > �n(x)� (1=2p(n)).2. In the second stage (using u and v, as determined in the �rst stage),algorithm D0 invokes A, and outputs 1 if and only if A(e; Ee(�); u) = v.Let Vn(x) be the value found in the �rst stage of algorithm A (i.e., obliviouslyof the ciphertext Ee(�)). The reader can easily verify that��Pr �D0(1n; G1(1n); Zn; EG1(1n)(Xn))=1�� Pr hD0(1n; G1(1n); Zn; EG1(1n)(1Xn))=1i���= E h�n;Vn(Xn)(Xn)i� �1� 2�n� � E ��n(Xn)� 12p(n)�� 2�n> E ��n(Xn)�� 23p(n) > 13p(n)Thus, we have derived a probabilistic polynomial-time algorithm (i.e., D0) thatdistinguishes encryptions of Xn from encryptions of Y n = 1jXnj, when gettingauxiliary information Zn = Xn1jXnj. By hypothesis fXng is polynomial-timeconstructible, and it follows that so is fXnY nZng Thus, we derive contradictionto De�nition 5.2.14 (even under the special case postulated in the theorem), andthe claim follows. 2Having established the important direction, we now turn to the oppositeone. That is, we assume that (G;E;D) is (uniformly) semantically secure andprove that it has (uniformly) indistinguishable encryptions. Again, the proof isby contradiction. Suppose, without loss of generality, that there exists a proba-bilistic polynomial-time algorithm D0, a polynomial-time constructible ensembleT def= fTn = XnY nZngn2N (as in De�nition 5.2.14), a positive polynomial p andin�nitely many n's so thatPr �D0(Zn; G1(1n); EG1(1n)(Xn))=1�> Pr �D0(Zn; G1(1n); EG1(1n)(Y n))=1� j + 1p(n)
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5.2. DEFINITIONS OF SECURITY 385Let t(n) and `(n) be such that Xn (resp., Y n) consists of t(n) strings, eachof length `(n). Suppose, without loss of generality, that jZnj = m(n) � `(n),and parse Zn into Zn = (Z(1)n ; :::; Z(m(n))n ) 2 (f0; 1g`(n))m(n) such that Zn =Z(1)n � � �Z(m(n))n . We de�ne an auxiliary polynomial-time constructible ensembleQ def= fQngn2N such thatQn = � 0`(n)ZnXnY n with probability 121`(n)ZnY nXn with probability 12 (5.8)That is, Qn is a sequence of 1 +m(n) + 2t(n) strings, each of length `(n), thatcontains ZnXnY n in addition to a bit (encoded in the `(n)-bit long pre�x)indicating whether or not the order of Xn and Y n is switched. We de�ne thefunction f so that to equal this \switch"-indicator bit, and the function h toprovide all information in Qn except this switch bit. That is, we de�ne f and has follows:� We de�ne f(1n; q) def= fn(q), where fn returns the �rst bit of its input; thatis, fn(�`(n)z��) = �, for (z; �; �) 2 (f0; 1gl(n))m(n)+2t(n).� We de�ne h(1n; q) def= hn(q), where hn re-orders the su�x of its inputaccording to the �rst bit; that is, hn(0`(n)z��) = z�� and hn(1`(n)z��) =z��. Thus, h(1n; Qn) = ZnXnY n, where ZnXnY n is determined byTn = XnY nZn (and is independent of the switch-case chosen in Eq. (5.8)).We stress that both h and f are polynomial-time computable.We will show that the distinguishing algorithmD0 (which distinguishes E(Xn)from E(Y n), when also given Zn � Zn) can be transformed into a polynomial-size algorithm A that guesses the value of f(1n; Qn), from the encryption of Qn(and the value of h(1n; Qn)), and does so signi�cantly better than with prob-ability 12 . This violates semantic security, since no algorithm (regardless of itsrunning-time) can guess f(1n; Qn) better than with probability 1=2 when onlygiven h(1n; Qn) and 1jQnj (because, conditioned on the value of h(1n; Qn) (and1jQnj), the value of f(1n; Qn) is uniformly distributed over f0; 1g).On input (e; Ee(�); 1j�j; h(1n; �)), where � = �`(n)z u v 2 (f0; 1gl(n))1+m(n)+2t(n)equals either (0`(n); z; x; y) or (1`(n); z; y; x), algorithm A proceeds in two stages:1. In the �rst stage, algorithmA ignores the ciphertext Ee(�). It �rst extractsx; y and z � z out of h(1n; �) = z x y, and approximates �n(z; x; y), whichis de�ned to equalPr �D0(z;G1(1n); EG1(1n)(x))=1�� Pr �D0(z;G1(1n); EG1(1n)(y))=1�Speci�cally, using O(n�p(n)2) samples, algorithm A obtains an approxima-tion, denoted e�n(z; x; y), such that je�n(z; x; y) � �n(z; x; y)j < 1=3p(n)with probability at least 1� 2�n.AlgorithmA sets � = 1 if e�n(z; x; y) > 1=3p(n), sets � = �1 if e�n(z; x; y) <�1=3p(n), and sets � = 0 otherwise (i.e., je�n(z; x; y)j � 1=3p(n)).
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386 CHAPTER 5. ENCRYPTION SCHEMESIn case � = 0, algorithm A halts with an arbitrary reasonable guess (say arandomly selected bit). (We stress that all this is done obliviously of theciphertext Ee(�), which is only used next.)2. In the second stage, algorithm A extracts the last block of ciphertexts(i.e., Ee(v)) out of Ee(�) = Ee(�`(n)z u v), and invokes D0 on input(z; e; Ee(v)), where z is as extracted in the �rst stage. Using the valueof � as determined in the �rst stage, algorithm A decides (i.e., determinesits output bit) as follows:� In case � = 1, algorithm A outputs 1 if and only if the output of D0is 1.� In case � = �1, algorithm A outputs 0 if and only if the output of D0is 1.Claim 5.2.15.2: Let p, Qn, h, f and A be as above.Pr �A(G1(1n); EG1(1n)(Qn); h(1n; Qn))=f(1n; Qn)� > 12 + 17 � p(n)Proof sketch: We focus on the case in which the approximation of �n(z; x; y)computed by (the �rst stage of) A is within 1=3p(n) of the correct value. Thus,in case � 6= 0, the sign of � agrees with the sign of �n(z; x; y). It follows that,for every possible (z; x; y) such that � = 1 (it holds that �n(z; x; y) > 0 and)the following holdsPr �A(G1(1n); EG1(1n)(Qn); h(1n; Qn))=f(1n; Qn) j (Zn; Xn; Xn)=(z; x; y)�= 12 � Pr hA(G1(1n); EG1(1n)(0`(n); z; x; y); hn(0`(n); z; x; y))=0i+ 12 � Pr hA(G1(1n); EG1(1n)(1`(n); z; y; x); hn(1`(n); z; y; x))=1i= 12 � Pr �D0(z;G1(1n); EG1(1n)(y))=0�+ 12 � Pr �D0(z;G1(1n); EG1(1n)(x))=1�= 12 � (1 + �n(z; x; y))Similarly, for every possible (z; x; y) such that � = �1 (it holds that �n(z; x; y) <0 and) the following holdsPr �A(G1(1n); EG1(1n)(Qn); h(1n; Qn))=f(1n; Qn) j (Zn; Xn; Xn)=(z; x; y)�= 12 � (1��n(z; x; y))Thus, in both cases where � 6= 0, algorithm A succeeds with probability1 + � ��n(z; x; y)2 = 1 + j�n(z; x; y)j2
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5.2. DEFINITIONS OF SECURITY 387and in case � = 0 it succeeds with probability 1=2, which is bounded belowby (1 + j�n(z; x; y)j � (2=3p(n)))=2 (because j�n(z; x; y)j � 2=3p(n) for � =0). Thus, ignoring the negligible probability that the approximation deviatedfrom the correct value by more than 1=3p(n), the overall success probability ofalgorithm A isE �1 + j�n(Zn; Xn; Y n)j � (2=3p(n))2 � � 1 + E[�n(Zn; Xn; Y n)]� (2=3p(n))2> 1 + (1=p(n))� (2=3p(n))2 = 12 + 16p(n)where the last inequality follows by the contradiction hypothesis (i.e., thatE[�n(Zn; Xn; Y n)] > 1p(n) ). The claim follows. 2This completes the proof of the opposite direction.Discussion: The proof of the �rst (i.e., important) direction holds also in thesingle-message setting. In general, for any function t, in order to prove thatsemantic security holds with respect to t-long sequences of ciphertexts, we justuse the hypothesis that t-long message-sequences have indistinguishable encryp-tions. In contrast, the proof of the second (i.e., opposite) direction makes anessential use of the multiple-message setting. In particular, in order to provethat t-long message-sequences have indistinguishable encryptions, we use thehypothesis that semantic security holds with respect to (1 + m + 2t)-long se-quences of ciphertexts, where m depends on the length of the auxiliary input inthe claim of ciphertext-indistinguishability. Thus, even if we only want to es-tablish ciphertext-indistinguishability in the single-message setting, we do so byusing semantic security in the multiple-message setting. Furthermore, we use thefact that given a sequence of ciphertexts, we can extract a certain subsequenceof ciphertexts.5.2.5.3 Single-message versus multiple-message de�nitionsAs in the non-uniform case, for the public-key model, single-message securityimplies multiple-message security. Again, this implication does not hold in theprivate-key model. The proofs of both statements are analogous to the proofsprovided in the non-uniform case. Speci�cally:1. For the public-key model, single-message uniform-indistinguishability ofencryptions imply multiple-message uniform-indistinguishability of encryp-tions, which in turn implies multiple-message uniform-semantic security.In the proof of this result, we use the fact that all hybrids are polynomial-time constructible, and that we may select a random pair of neighboringhybrids (as in the proof of Theorem 3.2.6). We also use the fact that anensemble of triplets, fTn = XnY nZ 0ngn2N, with Xn = (X(1)n ; :::; X(t(n))n ),Y n = (Y (1)n ; :::; Y (t(n))n ), as in De�nition 5.2.14, induces an ensemble of
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388 CHAPTER 5. ENCRYPTION SCHEMEStriplets, fTn = XnYnZngn2N, for the case t � 1. Speci�cally, we shall useXn = X(i)n , Yn = Y (i)n , and Zn = (Xn; Y n; Z 0n; i), where i is uniformlydistributed in f1; :::; t(n)g.2. For the private-key model, single-message uniform-indistinguishability ofencryptions does not imply multiple-message uniform-indistinguishabilityof encryptions. The proof is exactly as in the non-uniform case.5.2.5.4 The gain of a uniform treatmentSuppose that one is content with the uniform-complexity level of security, whichis what we advocate below. Then the gain in using the uniform-complexitytreatment is that a uniform-complexity level of security can be obtained us-ing only uniform complexity assumptions (rather than non-uniform complexityassumptions). Speci�cally, the results presented in Section 5.3 are based onnon-uniform assumptions such as the existence of functions that cannot be in-verted by polynomial-size circuits (rather than by probabilistic polynomial-timealgorithms). These non-uniform assumption are used in order to satisfy thenon-uniform de�nitions presented in the main text (above). Using any of theseconstructions, while making the analogous uniform assumptions, yields encryp-tion schemes with the analogous uniform-complexity security. (We stress thatthis is no coincidence, but is rather an artifact of these construction being provensecure via a uniform reducibility argument.)However, something is lost when relying on these (seemingly weaker) uniformcomplexity assumptions. Namely, the security we obtain is only against the(seemingly weaker) uniform adversaries. We believe that this loss in security isimmaterial. In particular, schemes secure against probabilistic polynomial-timeadversaries can be used in any setting consisting of probabilistic polynomial-timemachines with inputs generated by probabilistic polynomial-time procedures.We believe that the cryptographic setting is such a case. That is, we believethat the world should be modeled as a probabilistic polynomial-time procedure;namely, each object in the world was generated at some point by a uniform ande�cient procedure (possibly depending on previously existing objects) ratherthan handed down from heaven (where it might have been selected non-uniformlyor using non-recursive procedures).5.3 Constructions of Secure Encryption SchemesIn this section we present constructions of secure private-key and public-keyencryption schemes. Here and throughout this section security means seman-tic security in the multiple-message setting. Recall that this is equivalent tociphertext-indistinguishability (in the multiple-message setting). Also recall thatfor public-key schemes it su�ces to prove ciphertext-indistinguishability in thesingle-message setting. The main results of this section are
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 389� Using any (non-uniformly robust) pseudorandom function, one can con-struct secure private-key encryption schemes. Recall, that the former canbe constructed using any (non-uniformly strong) one-way function.� Using any (non-uniform strong) trapdoor one-way permutation, one canconstruct secure public-key encryption schemes.In addition, we review some popular suggestions for private-key and public-keyencryption schemes.Probabilistic Encryption: Before starting, we recall that a secure public-keyencryption scheme must employ a probabilistic (i.e., randomized) encryption al-gorithm. Otherwise, given the encryption-key as (additional) input, it is easyto distinguish the encryption of the all-zero message from the encryption of theall-ones message. The same holds for private-key encryption schemes when con-sidering the multi-message setting.9 For example, using a deterministic (private-key) encryption algorithm allows the adversary to distinguish two encryptionsof the same message from the encryptions of a pair of di�erent messages. Thus,the common practice of using pseudorandom permutations as \block-ciphers"(see de�nition below) is not secure (again, one can distinguish two encryptionsof the same message from encryptions of two di�erent messages). This explainsthe linkage between our security de�nitions and randomized (a.k.a probabilistic)encryption schemes. Indeed, all our encryption schemes will employ randomizedencryption algorithms.105.3.1 * Stream{CiphersIt is common practice to use \pseudorandom generators" as a basis for private-key stream ciphers (see de�nition below). Speci�cally, the pseudorandom gener-ator is used to produce a stream of bits that are XORed with the correspondingplaintext bits to yield corresponding ciphertext bits. That is, the generatedpseudorandom sequence (which is determined by the a-priori shared key) is usedas a \one-time pad" instead of a truly random sequence, with the advantage thatthe generated sequence may be much longer than the key (whereas this is notpossible for a truly random sequence). This common practice is indeed soundprovided one actually uses pseudorandom generators (as de�ned in Section 3.3),rather than using programs that are called \pseudorandom generators" but ac-tually produce sequences that are easy to predict (such as the linear congruential9 We note that the above does not hold with respect to private-key schemes in the single-message setting (or for the augmented model of state-based ciphers discussed in Section 5.3.1).In such a case, the private-key can be augmented to include a seed for a pseudorandomgenerator, the output of which can be used to eliminate randomness from the encryptionalgorithm. (Question: why does the argument fail in the public-key setting and in the multi-message private-key setting?)10 The (private-key) stream-ciphers discussed in Section 5.3.1 are an exception, but (asfurther explained in Section 5.3.1) these schemes do not adhere to our (basic) formulation ofencryption schemes (as in De�nition 5.1.1).
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390 CHAPTER 5. ENCRYPTION SCHEMESgenerator or some modi�cations of it that output a constant fraction of the bitsof each resulting number).As we shall see, using any pseudorandom generator one may obtain a secureprivate-key stream cipher that allows to encrypt a stream of plaintext bits. Wenote that such a stream cipher does not conform with our formulation of anencryption scheme (i.e., as in De�nition 5.1.1), because in order to encryptseveral messages one is required to maintain a counter (so to prevent reusingparts of the pseudorandom \one-time pad"). In other words, we obtain a secureencryption scheme with a variable state that is modi�ed after the encryption ofeach message. We stress that constructions of secure and stateless encryptionschemes (i.e., conforming with De�nition 5.1.1) are known and are presented inSections 5.3.3 and 5.3.4. The traditional interest in stream ciphers is due toe�ciency considerations. We discuss this issue at the end of Section 5.3.3. Butbefore doing so, let us formalize the above discussion.5.3.1.1 De�nitionsWe start by extending the simple mechanism of encryption schemes (as presentedin De�nition 5.1.1). The key-generation algorithm remains unchanged, but boththe encryption and decryption algorithm take an additional input and emit anadditional output, corresponding to their state before and after the operation.The length of the state is not allowed to grow by too much during each applica-tion of the encryption algorithm (see Item 3 in De�nition 5.3.1 below), or elsethe e�ciency of the entire \repeated encryption" process can not be guaranteed.For sake of simplicity, we incorporate the key in the state of the correspondingalgorithm. Thus, the initial state of each of the algorithms is set to equal itscorresponding key. Furthermore, one may think of the intermediate states as ofupdated values of the corresponding key. For clarity, the reader may considerof the special case in which the state contains the initial key, the number oftimes the scheme was invoked (or the total number of bits in such invocations),and auxiliary information that allows to speed-up the computation of the nextciphertext (or plaintext).For simplicity, we assume below that the decryption algorithm (i.e., D) isdeterministic (otherwise formulating the reconstruction condition would be morecomplex). Intuitively, the main part of the reconstruction condition (i.e., Item 2in De�nition 5.3.1) is that the (proper) iterative encryption-decryption processrecovers the original plaintexts. The additional requirement in Item 2 is thatthe state of the decryption algorithm is updated correctly as long as it is fedwith strings of length equal to the length of the valid ciphertexts. The reason forthis additional requirement is discussed below. We comment that in traditionalstream ciphers, the plaintexts (and ciphertexts) are individual bits or blocks ofa �xed number of bits (i.e., j�(i)j = j�(i)j = ` for all i's).De�nition 5.3.1 (state-based cipher { the mechanism): A state-based encryp-tion scheme is a triple, (G;E;D), of probabilistic polynomial-time algorithmssatisfying the following three conditions

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 3911. On input 1n, algorithm G outputs a pair of bit strings.2. For every pair (e(0); d(0)) in the range of G(1n), and every sequence ofplaintexts �(i)'s, the following holds: if (e(i); �(i))  E(e(i�1); �(i)) and(d(i); 
(i))  D(d(i�1); �(i)), for i = 1; 2; :::, then 
(i) = �(i) for ev-ery i. Furthermore, for every i and every � 2 f0; 1gj�(i)j, it holds thatD(d(i�1); �) = (d(i); �).3. There exists a polynomial p such that for every pair (e(0); d(0)) in the rangeof G(1n), and every sequence of �(i)'s and e(i)'s as above, it holds thatje(i)j � je(i�1)j+ j�(i)j � p(n). Similarly for the d(i)'s.That is, as in De�nition 5.1.1, the encryption-decryption process operates prop-erly (i.e., the decrypted message equals the plaintext), provided that the corre-sponding algorithms get the corresponding keys (or states). Note that in De�-nition 5.3.1 the keys are modi�ed by the encryption-decryption process, and socorrect decryption requires holding the correctly-updated decryption-key. Westress that the furthermore clause in Item 2 guarantees that the decryption-key is correctly updated as long as the decryption process is fed with strings ofthe correct lengths (but not necessarily with the correct ciphertexts). This extrarequirement implies that given the initial decryption-key and the current cipher-text as well as the lengths of all previous ciphertexts (which may be actuallyincorporated in the current ciphertext), one may recover the current plaintext.This fact is interesting for two reasons:A theoretical reason: It implies that, without loss of generality (alas with possi-ble loss in e�ciency), the decryption algorithm may be stateless. Further-more, without loss of generality (alas with possible loss in e�ciency), thestate of the encryption algorithm may consist of the initial encryption-keyand the lengths of the plaintexts encrypted so far.A practical reason: It allows to recover from the loss of some of the ciphertexts.That is, assuming that all ciphertexts have the same (known) length (whichis typically the case in the relevant applications), if the receiver knows (oris given) the total number of ciphertexts sent so far then it can recover thecurrent plaintext from the current ciphertext, even if some of the previousciphertexts were lost. See special provision in Construction 5.3.3.We comment that in Construction 5.3.3, it holds that je(i)j � je(0)j+log2Pij=1 j�(j)j,which is much stronger than the requirement in Item 3 (of De�nition 5.3.1).We stress that De�nition 5.3.1 refers to the encryption of multiple messages(and meaningfully extends De�nition 5.1.1 only when considering the encryptionof multiple messages). However, De�nition 5.3.1 by itself does not explain whyone should encrypt the ith message using the updated encryption-key e(i�1),rather than reusing the initial encryption-key e(0) in all encryptions (where de-cryption is done by reusing the initial decryption-key d(0)). Indeed, the reasonfor updating these keys is provided by the following security de�nition that refers
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392 CHAPTER 5. ENCRYPTION SCHEMESto the encryption of multiple messages, and holds only in case the encryption-keys in use are properly updated (in the multiple-message encryption process).Below we present only the semantic security de�nition for private-key schemes.De�nition 5.3.2 (semantic security { state-based cipher): For a state-basedencryption scheme, (G;E;D), and any x = (x(1); :::; x(t)), we let Ee(x) =(y(1); :::; y(t)) be the result of the following t-step (possibly random) process,where e(0) def= e. For i = 1; :::; t, we let (e(i); y(i))  E(e(i�1); x(i)), whereeach of the t invocations E utilizes independently chosen random coins. Thescheme (G;E;D) is semantically secure in the state-based private-key modelif for every polynomial t(�) and every probabilistic polynomial-time algorithmA there exists a probabilistic polynomial-time algorithm A0 such that for everyfXn = (X(1)n ; :::; X(t(n))n )gn2N, f , h, p(�) and n as in De�nition 5.2.8, it holdsthat Pr hA(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; t(n); 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)Note that De�nition 5.3.2 (only) di�ers from De�nition 5.2.8 in the preamblede�ning the random variable Ee(x), which mandates that the encryption-keye(i�1) is used in the ith encryption. Furthermore, De�nition 5.3.2 guaran-tees nothing regarding an encryption process in which the plaintext sequencex(1); :::; x(t) is encrypted by E(e; x(1)); E(e; x(2)); :::; E(e; x(t)) (i.e., the initialencryption-key e itself is used in all encryptions, as in De�nition 5.2.8).5.3.1.2 A sound version of a common practiceUsing any (on-line) pseudorandom generator, one can easily construct a securestate-based private-key encryption scheme. Recall that on-line pseudorandomgenerators are a special case of variable-output pseudorandom generators (seeSection 3.3.3), in which a hidden state is maintained and updated so to allowgeneration of the next output bit in time polynomial in the length of the initialseed, regardless of the number of bits generated so far. Speci�cally, the next(hidden) state and output bit are produced by applying a (polynomial-timecomputable) function g :f0; 1gn!f0; 1gn+1 to the current state (i.e., s0�  g(s),where s is the current state, s0 is the next state and � is the next output bit).The suggested state-based private-key encryption scheme will be initialized witha key equal to the seed of such a generator, and will maintain and update a stateallowing it to quickly produce the next output bit of the generator. The streamof plaintext bits will be encrypted by XORing these bits with the correspondingoutput bits of the generator.Construction 5.3.3 (how to construct stream ciphers (i.e., state-based private-key encryption schemes)): Let g be a polynomial-time computable function suchthat jg(s)j = jsj+ 1 for all s 2 f0; 1g�.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 393key-generation and initial state: On input 1n, uniformly select s 2 f0; 1gn, andoutput the key-pair (s; s). The initial state of each algorithm is set to(s; 0; s).(We maintain the initial key s and a step-counter in order to allow recoveryfrom loss of ciphertexts.)encrypting the next plaintext bit x with state (s; t; s0): Let s00� = g(s0), wherejs00j = js0j and � 2 f0; 1g. Output the ciphertext bit x��, and set the newstate to (s; t+ 1; s00).decrypting the ciphertext bit y with state (s; t; s0): Let s00� = g(s0), where js00j =js0j and � 2 f0; 1g. Output the plaintext bit y � �, and set the new stateto (s; t+ 1; s00).When noti�ed that some ciphertext bits may have been lost and that thecurrent ciphertext bit has index t0, the decryption procedure �rst recoversthe correct current state, denoted st0 , to be used in decryption instead of s0.This is done by computing si�i = g(si�1), for i = 1; :::; t0, where s0 def= s.Note that both the encryption and decryption algorithms are deterministic, andthat the state after encryption of t bits has length 2n+ log2 t < 3n (for t < 2n).Recall that g (as in Construction 5.3.3) is called a next step function of anon-line pseudorandom generator if for every polynomial p the ensemble fGpngn2Nis pseudorandom (with respect to polynomial-size circuits), where Gpn is de�nedby the following random process:Uniformly select s0 2 f0; 1gn;For i = 1 to p(n), let si�i  g(si�1), where �i 2 f0; 1g (and si 2 f0; 1gn);Output �1�2 � � ��p(n).Also recall that if g is (itself) a pseudorandom generator then it constitutes anext step function of an on-line pseudorandom generator (see Exercise 21 ofChapter 3). Thus:Proposition 5.3.4 If g is a pseudorandom generator (with respect to polynomial-size circuits) then Construction 5.3.3 constitutes a secure state-based private-keyencryption scheme.Proof Idea: Consider an ideal version of Construction 5.3.3 in which a trulyrandom sequence is used instead of the output produced by the on-line pseudo-random generator de�ned by g. The ideal version coincides with the traditionalone-time pad, and thus is perfectly secure. The security of the actual Construc-tion 5.3.3 follows by the pseudorandomness of the on-line generator.5.3.2 Preliminaries: Block{CiphersMany encryption schemes are conveniently presented by �rst presenting a re-stricted type of encryption scheme that we call a block-cipher.11 In contrast to11 In using the term block-cipher, we abuse standard terminology by which a block-ciphermust, in addition to operating on plaintext of speci�c length, produce ciphertexts of length
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394 CHAPTER 5. ENCRYPTION SCHEMESencryption schemes (as de�ned in De�nition 5.1.1), block-ciphers (de�ned be-low) are only required to operate on plaintexts of a speci�c length (which is afunction of the security parameter). As we shall see, given a secure block-cipherwe can easily construct a (general) secure encryption scheme.5.3.2.1 De�nitionsWe start by considering the syntax (i.e., De�nition 5.1.1).De�nition 5.3.5 (block-cipher): A block-cipher is a triple, (G;E;D), of prob-abilistic polynomial-time algorithms satisfying the following two conditions1. On input 1n, algorithm G outputs a pair of bit strings.2. There exists a polynomially-bounded function ` : N! N , called the blocklength, so that for every pair (e; d) in the range of G(1n), and for each� 2 f0; 1g`(n), algorithms E and D satisfyPr[Dd(Ee(�))=�] = 1Typically, we use either `(n) = �(n) or `(n) = 1. Analogously to De�ni-tion 5.1.1, the above de�nition does not distinguish private-key encryption schemesfrom public-key ones. The di�erence between the two types is captured in thesecurity de�nitions, which are essentially as before with the modi�cation thatwe only consider plaintexts of length `(n). For example, the analogue of De�ni-tion 5.2.8 (for private-key schemes) readsDe�nition 5.3.6 (semantic security { private-key block-ciphers): A block-cipher,(G;E;D), with block length ` is semantically secure (in the private-key model)if for every probabilistic polynomial-time algorithm A there exists a probabilisticpolynomial-time algorithm A0 such that for every ensemble fXn = (X(1)n ; :::; X(t(n))n )gn2N,with jX(1)n j = � � � = jX(t(n))n j = `(n) and t(n) � poly(n), every pair of polynomially-bounded functions f; h, every polynomial p(�) and all su�ciently large n, it holdsthat Pr hA(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; t(n); 1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)where Ee(x(1); :::; x(t)) = Ee(x(1)); :::; Ee(x(t)), as in De�nition 5.2.8.Note that, in case ` is polynomial-time computable, we can omit the auxiliaryinput 1jXnj = 1t(n)�`(n), because it can be reconstructed from the security pa-rameter n and the value t(n).that equals the length of the corresponding plaintexts. We comment that the latter cannot besemantically secure; see Exercise 23.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 3955.3.2.2 Transforming block-ciphers into general encryption schemesThere are obvious ways of transforming a block-cipher into a general encryptionscheme. The basic idea is to break the plaintexts (for the resulting scheme)into blocks and encode each block separately by using the block-cipher. Thus,the security of the block-cipher (in the multiple-message settings) implies thesecurity of the resulting encryption scheme. The only technicality we need todeal with is how to encrypt plaintexts of length that is not an integer multiple ofthe block-length (i.e., of `(n)). This is easily resolved by padding the last block(while indicating the end of the actual plaintext).12Construction 5.3.7 (from block-ciphers to general encryption schemes): Let(G;E;D) be a block-cipher with block length function `. We construct an en-cryption scheme, (G0; E0; D0) as follows. The key-generation algorithm, G0, isidentical to G. To encrypt a message � (with encryption-key e generated undersecurity parameter n), we break it into consecutive blocks of length `(n), whilepossibly augmenting the last block. Let �1; :::; �t be the resulting blocks. ThenE0e(�) def= (j�j; Ee(�1); :::; Ee(�t))To decrypt the ciphertext (m;�1; :::; �t) (with decryption-key d), we let �i =Dd(�i) for i = 1; :::; t, and let the plaintext be the m-bit long pre�x of the con-catenated string �1 � � ��t.The above construction yields ciphertexts which reveal the exact length of theplaintext. Recall that this is not prohibited by the de�nitions of security, andthat we cannot hope to totally hide the plaintext length. However, we can easilyconstruct encryption schemes that hide some information about the length ofthe plaintext; see examples in Exercise 5. Also, note that the above constructionapplies even to the special case where ` is identically 1.Proposition 5.3.8 Let (G;E;D) and (G0; E0; D0) be as in Construction 5.3.7.Suppose that the former a secure private-key13 (resp., public-key) block-cipher.Then the latter is a secure private-key (resp., public-key) encryption scheme.Proof Sketch: The proof is by a reducibility argument. Assuming towards thecontradiction that the encryption scheme (G0; E0; D0) is not secure, we concludethat neither is (G;E;D), contradicting our hypothesis. Speci�cally, we rely onthe fact that in both schemes security means security in the multiple-messagesetting. Note that in case the security of (G0; E0; D0) is violated via t(n) messagesof length L(n), the security of (G;E;D) is violated via t(n)�dL(n)=`(n)emessagesof length `(n). Also, the argument may utilize any of the two notions of security(i.e., semantic security or ciphertext-indistinguishability).12 We choose to use a very simple indication of the end of the actual plaintext (i.e., to includeits length in the ciphertext). In fact, it su�ces to include the length of the plaintext modulo`(n). Another natural alternative is to use a padding of the form 10(`(n)�j�j�1)mod`(n), whileobserving that no padding is ever required in case `(n) = 1.13 Recall that throughout this section security means security in the multiple-messagesetting.
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396 CHAPTER 5. ENCRYPTION SCHEMES5.3.3 Private-key encryption schemesSecure private-key encryption schemes can be easily constructed using any e�-ciently computable pseudorandom function ensemble (see Section 3.6). Speci�-cally, we present a block cipher with block length `(n) = n. The key-generationalgorithm consists of selecting a seed, denoted s, for such a function, denotedfs. To encrypt a message x 2 f0; 1gn (using key s), the encryption algorithmuniformly selects a string r 2 f0; 1gn and produces the ciphertext (r; x� fs(r)).To decrypt the ciphertext (r; y) (using key s), the decryption algorithm justcomputes y � fs(r). Formally, we haveConstruction 5.3.9 (a private-key block-cipher based on pseudorandom func-tions): Let F = fFng be an e�ciently computable function ensemble and let Iand V be the algorithms associated with it. That is, I(1n) selects a function withdistribution Fn and V (s; x) returns fs(x), where fs is the function associatedwith the string s. We de�ne a private-key block cipher, (G;E;D), with blocklength `(n) = n as followskey-generation: G(1n) = (k; k), where k  I(1n).encrypting plaintext x 2 f0; 1gn (using the key k): Ek(x) = (r; V (k; r)�x), wherer is uniformly chosen in f0; 1gn.decrypting ciphertext (r; y) (using the key k): Dk(r; y) = V (k; r) � y.Clearly, for every k (in the range of I(1n)) and x 2 f0; 1gn,Dk(Ek(x)) = Dk(Un; fk(Un)� x) = fk(Un)� (fk(Un)� x) = xBelow we assume that F is pseudorandom with respect to polynomial-size circuits,meaning that no polynomial-size circuit having \oracle gates" can distinguishthe case in which the answers are provided by a random function from thecase in which the answers are provided by a function in F . Alternatively, onemay consider probabilistic polynomial-time oracle machines that obtain a non-uniform polynomially-long auxiliary input. That is,for every probabilistic polynomial-time oracle machine M for everypair of positive polynomial p and q, for all su�ciently large n's andall z 2 f0; 1gp(n),��Pr �M�(z)=1�� Pr �MfI(1n)(z)=1��� < 1q(n)where � is a uniformly selected function mapping f0; 1gn to f0; 1gn.Analogously to Corollary 3.6.7, such (non-uniformly strong) pseudorandom func-tions can be constructed using any non-uniformly strong one-way function.Proposition 5.3.10 Let F and (G;E;D) be as in Construction 5.3.9, and sup-pose that F is pseudorandom with respect to polynomial-size circuits. Then(G;E;D) is secure.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 397The proof of Proposition 5.3.10 is given below. Combining Propositions 5.3.8and 5.3.10 (with the above), we obtainTheorem 5.3.11 If there exist (non-uniformly strong) one-way functions thenthere exist secure private-key encryption schemes.The converse holds too; see Exercise 2.Proof of Proposition 5.3.10: The proof consists of two steps (suggested asa general methodology in Section 3.6):1. Prove that an idealized version of the scheme, in which one uses a uniformlyselected function � :f0; 1gn!f0; 1gn, rather than the pseudorandom func-tion fs, is secure (in the sense of ciphertext-indistinguishability).2. Conclude that the real scheme (as presented above) is secure (becauseotherwise one could distinguish a pseudorandom function from a trulyrandom one).Speci�cally, in the ideal version the messages x(1); :::; x(t) are encrypted by(r(1); �(r(1))�x(1)); :::; (r(t); �(r(t))�x(t)), where the r(j)'s are independently anduniformly selected, and � is a random function. Thus, with probability greaterthan 1 � t2 � 2�n, the r(j)'s are all distinct and so the values �(r(j)) � x(j) areindependently and uniformly distributed, regardless of the x(j)'s. It follows thatthe ideal version is ciphertext-indistinguishable; that is, for any x(1); :::; x(t) andy(1); :::; y(t), the statistical di�erence between the distributions (U (1)n ; �(U (1)n )�x(1)); :::; (U (t)n ; �(U (t)n )� x(t)) and (U (1)n ; �(U (1)n )� y(1)); :::; (U (t)n ; �(U (t)n )� y(t))is at most t2 � 2�n.Now, if the actual scheme is not ciphertext-indistinguishable, then for somesequence of r(j)'s and v(j)'s a polynomial-size circuit can distinguish the �(r(j))�v(j)'s from the fs(r(j))�v(j)'s, where � is random and fs is pseudorandom.14 Butthis contradicts the hypothesis that polynomial-size circuits cannot distinguishbetween the two cases.Discussion: Note that we could have gotten rid of the randomization if wehad allowed the encryption algorithm to be history dependent (as discussed inSection 5.3.1). Speci�cally, in such a case, we could have used a counter in therole of r. Furthermore, if the encryption scheme is used for fifo communicationbetween the parties and both can maintain the counter value then there is noneed for the sender to send the counter value. However, in the later case Con-struction 5.3.3 is preferable (because the adequate pseudorandom generator maybe more e�cient than a pseudorandom function as used in Construction 5.3.9).14 The v(j)'s either equal the x(j)'s or the y(j)'s, whereas the r(j)'s are random (or are �xedby an averaging argument). The conclusion follows by considering the actual encryptionsof the x(j)'s and the y(j)'s versus their ideal encryptions. Since the actual encryptions aredistinguishable while the ideals are not, the actual encryption of either the x(j)'s or the y(j)'smust be distinguishable from the corresponding ideal version.
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398 CHAPTER 5. ENCRYPTION SCHEMESWe note that in case the encryption scheme is not used for fifo communicationand one may need to decrypt messages with arbitrary varying counter values, itis typically better to use Construction 5.3.9. Furthermore, in many cases it maybe preferable to select a value (i.e., r) at random rather than rely on a counterthat must be stored in a reliable manner between applications (of the encryptionalgorithm).The ciphertexts produced by Construction 5.3.9 are longer than the corre-sponding plaintexts. This is unavoidable in case of secure (history-independent)encryption schemes (see Exercise 23). In particular, the common practice ofusing pseudorandom permutations as block-ciphers15 is not secure (e.g., onecan distinguish two encryptions of the same message from encryptions of twodi�erent messages).Recall that by combining Constructions 5.3.7 and 5.3.9 (and referring toPropositions 5.3.8 and 5.3.10), we obtain a (full-
edged) private-key encryptionscheme. A more e�cient scheme is obtained by a direct combination of the ideasunderlying both constructions:Construction 5.3.12 (a private-key encryption scheme based on pseudoran-dom functions): Let F = fFng (and I and V ) be as in Construction 5.3.9; thatis, F = fFng is an e�ciently computable function ensemble, and I and V bethe selection and evaluation algorithms associated with it (e.g., V (s; x) = fs(x)).We de�ne a private-key encryption scheme, (G;E;D), as follows:key-generation: G(1n) = (k; k), where k  I(1n).encrypting plaintext � 2 f0; 1g� (using the key k): Break � into consecutive blocksof length n, while possibly augmenting the last block. Let �1; :::; �t be the re-sulting blocks. Associate f0; 1gn with the set of integer residues modulo 2n,select uniformly r 2 f0; 1gn, and compute ri = r+i mod 2n, for i = 1; :::; t.Finally, form the ciphertext (r; j�j; V (k; r1) � �1; :::; V (k; rt) � �t). Thatis, Ek(x) = (r; j�j; fk(r + 1 mod 2n)� �1; :::; fk(r + t mod 2n)� �t)decrypting ciphertext (r;m; y1; :::; yt) (using the key k): For i = 1; :::; t, com-pute �i = V (k; (r + i mod 2n)) � yi, and output the m-bit long pre�x of�1 � � ��t. That is, Dk(r;m; y1; :::; yt) is the m-bit long pre�x of(V (k; (r + 1 mod 2n))� y1) � � � (V (k; (r + t mod 2n))� yt)= (fk(r + 1 mod 2n)� y1) � � � (fk(r + t mod 2n)� yt)Clearly, Construction 5.3.12 constitutes a private-key encryption scheme (pro-vided that F is pseudorandom with respect to polynomial-size circuits). SeeExercise 24.15 That is, letting Ek(x) = pk(x), where pk is the permutation associated with the string k.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 3995.3.4 Public-key encryption schemesAs mentioned above, randomization during the encryption process can be avoidedin private-key encryption schemes that employ a varying state (not allowed inour basic De�nition 5.1.1). In case of public-key encryption schemes, random-ization during the encryption process is essential (even if the encryption schemeemploys a varying state). Thus, the randomized encryption paradigm plays aneven more pivotal role in the construction of public-key encryption scheme. Todemonstrate this paradigm we start with a very simple (and quite wasteful) con-struction. But before doing so, we recall the notion of trapdoor permutations.Trapdoor permutations: All our constructions employ a collection of trap-door permutations, as in De�nition 2.4.5. Recall that such a collection, fp�g�,comes with four probabilistic polynomial-time algorithms, denoted here by I; S; Fand B (for index, sample, forward and backward), such that the following (syn-tactic) conditions hold1. On input 1n, algorithm I selects a random n-bit long index � of a permu-tation p�, along with a corresponding trapdoor � ;2. On input �, algorithm S samples the domain of p�, returning a randomelement in it;3. For x in the domain of p�, given � and x, algorithm F returns p�(x) (i.e.,F (�; x) = p�(x));4. For y in the range of p� if (�; �) is a possible output of I(1n) then, given� and y, algorithm B returns p�1� (y) (i.e., B(�; y) = p�1� (y)).The hardness condition refers to the di�culty of inverting p� on a randomelement of its range, when given only the range-element and �. That is, letI1(1n) denote the �rst element in the output of I(1n) (i.e., the index), then forevery polynomial-size circuit family fCng, every polynomial p and all su�cientlylarge n's Pr[Cn(I1(1n); pI1(1n)(S(I1(1n))) = S(I1(1n))] < 1p(n)Namely, Cn fails to invert p� on p�(x), where � and x are selected by I andS as above. Recall the above collection can be easily modi�ed to have a hard-core predicate (see Theorem 2.5.2). For simplicity, we continue to refer to thecollection as fp�g, and let b denote the corresponding hard-core predicate.5.3.4.1 Simple schemesWe are now ready to present a very simple (alas quite wasteful) construction ofa secure public-key encryption scheme. Actually, we present a block-cipher withblock-length ` � 1.
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400 CHAPTER 5. ENCRYPTION SCHEMESConstruction 5.3.13 (a simple public-key block-cipher scheme): Let fp�g,I; S; F;B and b be as above.key-generation: The key-generation algorithm consists of selecting at random apermutation p� together with a trapdoor � for it: The permutation (orrather its description) serves as the public-key, whereas the trapdoor servesas the private-key. That is, G(1n) = I(1n), which means that the index-trapdoor pair generated by I is associated with the key-pair of G.encryption: To encrypt a bit �, using the encryption-key �, the encryption al-gorithm randomly selects an element, r, in the domain of p� and producesthe ciphertext (p�(r); ��b(r)). That is, E�(�) = (F (�; r); ��b(r)), wherer  S(�).decryption: To decrypt the ciphertext (y; &), using the decryption-key � , the de-cryption algorithm just computes & � b(p�1� (y)), where the inverse is com-puted using the trapdoor � of p�. That is, D� (y; &) = & � b(B(�; y)).Clearly, for every possible (�; �) output of G and for every � 2 f0; 1g, it holdsthat D� (E�(�)) = D� (F (�; S(�)); � � b(S(�)))= (� � b(S(�))) � b(B(�; F (�; S(�))))= � � b(S(�))� b(p�1� (p�(S(�))))= � � b(S(�))� b(S(�)) = �The security of the above public-key encryption scheme follows from the (non-uniform) one-way feature of the collection fp�g (or rather from the hypothesisthat b is a corresponding hard-core predicate).Proposition 5.3.14 Suppose that b is a (non-uniformly strong) hard-core ofthe collection fp�g. Then Construction 5.3.13 constitute a secure public-keyblock-cipher (with block-length ` � 1).Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),it su�ces to show single-message ciphertext-indistinguishability. Furthermore,by Proposition 5.2.7 and the fact that here there are only two plaintexts (i.e., 0and 1), it su�ces to show that one cannot predict which of the two plaintexts(selected at random) is being encrypted (signi�cantly better than with successprobability 1/2). We conclude by noting that a good guess for the plaintext �,given the encryption-key � and the ciphertext E�(�) = (f�(r); � � b(r)), wherer  S(�), yields a good guess for b(r) given (�; f�(r)). That is, the latter guessis correct with probability equal to the probability that former guess is correct.Thus, violation of the security of the encryption scheme yields a contradictionto the the hypothesis that b is a hard-core of fp�g. Details follow.Recall that by saying that b is a hard-core of fp�g we mean that for everypolynomial-size circuit family fCng, every polynomial p and all su�ciently large
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 401n's Pr[Cn(I1(1n); pI1(1n)(S(I1(1n))) = b(S(I1(1n)))] < 12 + 1p(n) (5.9)By Proposition 5.2.7, it su�ces to show that for randomly chosen � (i.e., �  I1(1n)) and uniformly distributed � 2 f0; 1g, no polynomial-size circuit giventhe encryption-key � and the ciphertext E�(�), can predict � non-negligiblybetter than with success probability 1=2. The actual proof uses a reducibilityargument: Suppose towards the contradiction that there exists a polynomial-sizecircuit family fC 0ng, a polynomial p0 and in�nitely many n's such thatPr[C 0n(I1(1n); EI1(1n)(�)) = �] > 12 + 1p0(n) (5.10)where � is uniformly distributed in f0; 1g. Recall that E�(�) = (p�(r); ��b(r)),where r  S(�) is a random sample in p�'s domain, and consider the followingprobabilistic circuit C 00n : On input � and y (in the range of p�), the circuitC 00n uniformly selects & 2 f0; 1g, invokes C 0n on input (�; (y; &)), and outputsC 0n(�; (y; &)) � & . In the following analysis of the behavior of C 00n , we let �  I1(1n), r  S(�), and consider uniformly distributed & 2 f0; 1g and � def= &�b(r):Pr[C 00n(�; p�(r)) = b(r)] = Pr[C 0n(�; (p�(r); &)) � & = b(r)]= Pr[C 0n(�; (p�(r); &)) = & � b(r)]= Pr[C 0n(�; (p�(r); � � b(r)) = �]= Pr[C 0n(�;E�(�)) = �]> 12 + 1p0(n)where the inequality is due to Eq. (5.10). Removing the randomization from C 00n(i.e., by �xing the best possible choice), we derive a contradiction to Eq. (5.9).The proposition follows.Using Propositions 5.3.8 and 5.3.14, and recalling that Theorem 2.5.2 applies alsoto collections of one-way functions and to the non-uniform setting, we obtainTheorem 5.3.15 If there exist collections of (non-uniformly hard) trapdoor per-mutations then there exist secure public-key encryption schemes.A generalization: As admitted above, Construction 5.3.13 is quite wasteful.Speci�cally, it is wasteful in bandwidth; that is, the relation between the length ofthe plaintext and the length of the ciphertext. In Construction 5.3.13 the relationbetween these lengths equals the security parameter (i.e., the length of descrip-tion of individual elements in the domain of the permutation). However, theidea underlying Construction 5.3.13 can yield e�cient public-key schemes, pro-vided we use trapdoor permutations having hard-core functions with large range(see Section 2.5.3). To demonstrate the point, we use the following assumption
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402 CHAPTER 5. ENCRYPTION SCHEMESrelating to the RSA collection of trapdoor permutations (cf. Subsections 2.4.3and 2.4.4).Large hard-core conjecture for RSA: The �rst n=2 least signi�cant bits of theargument constitute a (non-uniformly strong) hard-core function of the RSAfunction when applied with n-bit long moduli.We stress that the conjecture is not know to follow from the assumption thatthe RSA collection is (non-uniformly) hard to invert. What can be provedunder the latter assumption is only that the �rst O(log n) least signi�cant bitsof the argument constitute a (non-uniformly strong) hard-core function of RSA(with n-bit long moduli). Still, if the large hard-core conjecture holds then oneobtains a secure public-key encryption scheme with e�ciency comparable to thatof \plain RSA" (see discussion below). Furthermore, this scheme coincides withthe common practice of randomly padding messages (using padding equal inlength to the message) before encrypting them (by applying the RSA function).That is, we consider the following scheme:Construction 5.3.16 (Randomized RSA { a public-key block-cipher scheme):This scheme employs the RSA collection of trapdoor permutations (cf. Subsec-tions 2.4.3 and 2.4.4). The following description is, however, self-contained.key-generation: The key-generation algorithm consists of selecting at randomtwo n-bit primes, P and Q, setting N = P � Q, selecting at random apair (e; d) so that e � d � 1 (mod (P � 1) � (Q � 1)), and outputting thetuple ((N; e); (N; d)), where (N; e) is the encryption-key and (N; d) is thedecryption-key. That is, ((N; e); (N; d))  G(1n), where N , e and d areas speci�ed above.(Note that N is 2n-bit long.)encryption: To encrypt an n-bit string � (using the encryption-key (N; e)), theencryption algorithm randomly selects an element, r 2 f0; :::; N � 1g, andproduces the ciphertext (re mod N; � � lsb(r)), where lsb(r) denotes then least signi�cant bits of r. That is, E(N;e)(�) = (re mod N; � � lsb(r)).decryption: To decrypt the ciphertext (y; &) 2 f0; :::; N � 1g � f0; 1gn (usingthe decryption-key (N; d)), the decryption algorithm just computes & �lsb(yd mod N), where lsb(�) is as above. That is, D(N;d)(y; &) = & �lsb(yd mod N).The bandwidth of the above scheme is much better than in Construction 5.3.13:a plaintext of length n is encrypted via a ciphertext of length 2n + n = 3n.Furthermore, Randomized RSA is almost as e�cient as \plain RSA" (or theRSA function itself).To see that Randomized RSA satis�es the syntactic requirements of an en-cryption scheme, consider any possible output of G(1n), denoted ((N; e); (N; d)),
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 403and any � 2 f0; 1gn. Then, for r uniformly selected in f0; :::; N � 1g, it holdsthat D(N;d)(E(N;e)(�)) = D(N;d)((re mod N); � � lsb(r))= (� � lsb(r)) � lsb((re mod N)d mod N)= � � lsb(r) � lsb(red mod N) = �where the last equality is due to red � r (mod N). The security of Random-ized RSA (as a public-key encryption scheme) follows from the large hard-coreconjecture for RSA, analogously to the proof of Proposition 5.3.14.Proposition 5.3.17 Suppose that the large hard-core conjecture for RSA doeshold. Then Construction 5.3.16 constitute a secure public-key block-cipher (withblock-length `(n) = n).Proof Sketch: Recall that by the equivalence theorems (i.e., Theorems 5.2.5and 5.2.11), it su�ces to show single-message ciphertext-indistinguishability.Considering any two strings x and y, we need to show that ((N; e); re mod N; x�lsb(r)) and ((N; e); re mod N; y� lsb(r)) are indistinguishable, where N; e andr are selected at random as in the construction. It su�ces to show that, for everyx, the distributions ((N; e); re mod N; x� lsb(r)) and ((N; e); re mod N; x� s)are indistinguishable, where s 2 f0; 1gn is uniformly distributed, independentlyof anything else. The latter claim follows from the hypothesis that the n leastsigni�cant bits are a hard-core function for RSA with moduli of length 2n.Discussion: We wish to stress that encrypting messages by merely applyingthe RSA function to them (without randomization), yields an insecure encryptionscheme. Unfortunately, this procedure (referred to above as `plain RSA'), isquite common in practice. The fact that plain RSA is de�nitely insecure is aspecial case of the fact that any public-key encryption scheme that employs adeterministic encryption algorithm is insecure. We warn that the fact that insuch deterministic encryption schemes one can distinguish encryptions of twospeci�c messages (e.g., the all-zero message and the all-one message) is not\merely of theoretical concern"; it may seriously endanger some applications! Incontrast, Randomized RSA (as de�ned in Construction 5.3.16) may be secure,provided a quite reasonable conjecture (i.e., the large hard-core conjecture forRSA) holds. Thus, the common practice of applying the RSA function to arandomly-padded version of the plaintext is way superior to using the RSAfunction directly (i.e., without randomization): the randomized version is likelyto be secure, whereas the non-randomized (or plain) version is de�nitely insecure.We note that Construction 5.3.16 (or alternatively Construction 5.3.13) gen-eralizes to any collection of trapdoor permutations having a corresponding largehard-core function. Suppose that fp�g is such a collection, and h (or ratherfh�g) is a corresponding hard-core function (resp., a corresponding collection ofhard-core functions) such that any element in the domain of p� is mapped by
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404 CHAPTER 5. ENCRYPTION SCHEMESh (or h�) to an `(j�j)-bit long string. Then we can encrypt an `(j�j)-bit longplaintext, x, by (p�(r); h(r)�x) (resp., (p�(r); h�(r)� x)), where r  S(�) (asin Construction 5.3.13). This yields a secure public-key encryption scheme withbandwidth that relates to the ratio of `(j�j) over the length of a description ofindividual elements in the domain of p�.5.3.4.2 An alternative schemeAn alternative construction of a public-key encryption scheme is presented be-low. Rather than encrypting each plaintext bit (or block of bits) by an inde-pendently selected element in the domain of the trapdoor permutation (as donein Construction 5.3.13), we select only one such element (for the entire plain-text), and generate from it additional bits, one per each bit of the plaintext.These additional bits are determine by successive applications of the trapdoorpermutation, and only the last result is included in the ciphertext. In a sense,the construction of the encryption scheme (below) augments the constructionof a pseudorandom generator based on one-way permutations (i.e., Construc-tion 3.4.4).Construction 5.3.18 (a public-key encryption scheme): Let fp�g, I; S; F;Band b be as in Construction 5.3.13. We use the notation pi+1� (x) = p�(pi�(x))and p�(i+1)� (x) = p�1� (p�i� (x)).key-generation: The key-generation algorithm consists of selecting at random apermutation p� together with a trapdoor, exactly as in Construction 5.3.13.That is, G(1n) = I(1n), which means that the index-trapdoor pair generatedby I is associated with the key-pair of G.encryption: To encrypt a string �, using the encryption-key �, the encryptionalgorithm randomly selects an element, r, in the domain of p� and producesthe ciphertext (pj�j� (r); � �G(j�j)� (r)), whereG(`)� (r) def= b(r) � b(p�(r)) � � � b(p`�1� (r)) (5.11)That is, E�(�) = (pj�j� (S(�)); � �G(j�j)� (S(�))).decryption: To decrypt the ciphertext (y; &), using the decryption-key � , the de-cryption algorithm just computes & �G(j&j)� (p�j&j� (y)), where the inverse iscomputed using the trapdoor � of p�. That is, D� (y; &) = &�G(j&j)� (p�j&j� (y)).We stress that the above encryption scheme is a full-
edged one (rather than ablock-cipher). Its bandwidth tends to 1 with the length of the plaintext; thatis, a plaintext of length ` = poly(n) is encrypted via a ciphertext of lengthm + `, where m denotes the length of the description of individual elements inthe domain of p�. Clearly, for every possible (�; �) output of G (and r  S(�)),
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 405it holds thatD� (E�(�)) = D� (pj�j� (r); � �G(j�j)� (r))= (� �G(j�j)� (r)) �G(j�j)� (p�j��G(j�j)� (r)j� (pj�j� (r)))= � �G(j�j)� (r) �G(j�j)� (r) = �The security of the above public-key encryption scheme follows from the (non-uniform) one-way feature of the collection fp�g, but here we restrict the samplingalgorithm S to produce almost uniform distribution over the domain (so thatthis distribution is preserved under successive applications of p�).Proposition 5.3.19 Suppose that b is a (non-uniformly strong) hard-core ofthe trapdoor collection fp�g. Furthermore, suppose that this trapdoor collectionutilizes a domain sampling algorithm S so that the statistical di�erence betweenS(�) and the uniform distribution over the domain of p� is negligible in terms ofj�j. Then Construction 5.3.18 constitute a secure public-key encryption scheme.Proof: Again, we prove single-message ciphertext-indistinguishability. As in theproof of Proposition 5.3.17, it su�ces to show that, for every �, the distributions(�; pj�j� (S(�)); � �G(j�j)� (S(�))) and (�; pj�j� (S(�)); � � s) are indistinguishable,where s 2 f0; 1gj�j is uniformly distributed, independently of anything else. Thelatter claim holds by a minor extension to Proposition 3.4.6: the latter refers tothe case S(�) is uniform over the domain of p�, but can be extended to the casein which there is a negligible statistical di�erence between the distributions.Details: We need to prove that for every polynomial ` and every se-quence of pairs (�0n; �00n) 2 f0; 1g`(n) � f0; 1g`(n), the distributions D0n def=(�; p`(n)� (S(�)); �0n�G(`(n))� (S(�))) andD00n def= (�; p`(n)� (S(�)); �00n�G(`(n))� (S(�)))are indistinguishable, where � I1(1n). We prove the above in two steps:1. We �rst prove that for every sequence of �n's, the distributionsDn def=(�; p`(n)� (S(�)); �n � G(`(n))� (S(�))) and Rn def= (�; p`(n)� (S(�)); �n �U`(n)) are indistinguishable, where U`(n) denotes a random variableuniformly distributed over f0; 1g`(n) and � I1(1n).Suppose �rst that S(�) is uniform over the domain of p�. Thenthe indistinguishability of fDngn2N and fRngn2N follows directlyfrom Proposition 3.4.6 (as adapted to circuits): the adapted formrefers to the indistinguishability of (�; p`(n)� (S(�)); G(`(n))� (S(�))) and(�; p`(n)� (S(�)); U`(n)), and yields the desired claim by noting that �ncan be incorporated in the prospective distinguisher. The extension(to the case that S(�) has negligible statistical di�erence to the uni-form distribution over the domain of p�) is straightforward.2. Applying the previous item to D0n and R0n def= (�; p`(n)� (S(�)); �0n �U`(n)), we conclude that fD0ngn2N and fR0ngn2N are indistinguish-able. Similarly, fD00ngn2N and fR00ngn2N, where R00n def= (�; p`(n)� (S(�)); �00n�U`(n)), are indistinguishable. Furthermore, fR0ngn2N and fR00ngn2Nare identically distributed. Thus, fD0ngn2N and fD00ngn2N are indis-tinguishable.
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406 CHAPTER 5. ENCRYPTION SCHEMESThe proposition follows.An instantiation: Assuming that factoring Blum Integers (i.e., products oftwo primes each congruent to 3 (mod 4)) is hard, one may use the modu-lar squaring function (which induces a permutation over the quadratic residuesmodulo the product of these integers) in role of the trapdoor permutation usedin Construction 5.3.18. This yields a secure public-key encryption scheme withe�ciency comparable to that of plain RSA (see further discussion below).Construction 5.3.20 (The Blum-Goldwasser Public-Key Encryption Scheme):Consult Appendix ?? for the relevant number theoretic background, and notethat for P � 3 (mod 4) the number (P +1)=4 is an integer. For simplicity, wepresent a block-cipher with arbitrary block-length `(n) = poly(n); a full-
edgedencryption scheme can be derived by an easy modi�cation (see Exercise 25).key-generation: The key-generation algorithm consists of selecting at randomtwo n-bit primes, P and Q, each congruent to 3 mod 4, and outputting thepair (N; (P;Q)), where N = P �Q.Actually, for sake of e�ciency, the key-generator also computesdP = ((P + 1)=4)`(n) mod P � 1 (in f0; :::; P � 2g)dQ = ((Q+ 1)=4)`(n) mod Q� 1 (in f0; :::; Q� 2g)cP = Q � (Q�1 mod P ) (in f0; :::; N �Qg)cQ = P � (P�1 mod Q) (in f0; :::; N � Pg)It outputs the pair (N;T ), where N serves as the encryption-key and T =(P;Q;N; cP ; dP ; cQ; dQ) serves as decryption-key.encryption: To encrypt the message � 2 f0; 1g`(n), using the encryption-key N :1. Uniformly select s0 2 f1; :::; Ng.(Note that if GCD(s0; N) = 1 then s20 mod N is a uniformly dis-tributed quadratic residue modulo N .)2. For i = 1; ::; `(n) + 1, compute si  s2i�1 mod N and bi = lsb(si),where lsb(s) is the least signi�cant bit of s.The ciphertext is (s`(n)+1; &), where & = � � b1b2 � � � b`(n).decryption: To decrypt of the ciphertext (r; &) using the decryption-key T =(P;Q;N; cP ; dP ; cQ; dQ), one �rst retrieves s1 and then computes the bi'sas above. Instead of successively extracting modular square roots `(n)times, we extract the 2`(n)-th root, which can be done as e�ciently as ex-tracting a single square root. Extracting the 2`(n)-th root modulo N is doneby extracting the corresponding root modulo P and modulo Q (by raisingto power dP modulo P and dQ modulo Q, respectively), and combining theresults via the Chinese Reminder Theorem:
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 4071. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  cP � s0 + cQ � s00 mod N .3. For i = 1; ::; `(n), compute bi = lsb(si) and si+1  s2i mod N .The plaintext is & � b1b2 � � � b`(n).Again, one can easily verify that the above construction constitutes an encryp-tion scheme: the main fact to verify is that the value of s1 as reconstructedin the decryption stage equals the value used in the encryption stage. Thisfollows by combining the Chinese Reminder Theorem with the fact that for ev-ery quadratic residue s mod N it holds that s � (s2` mod N)dP (mod P ) ands � (s2` mod N)dQ (mod Q).Details: Recall that for a prime P � 3 (mod 4), and every quadraticresidue r, we have r(P+1)=2 � r (mod P ). Thus, for every quadraticresidue s (mod N), we have(s2` mod N)dP � �s2` mod N�((P+1)=4)` (mod P )� s((P+1)=2)` (mod P )� s (mod P )Similarly, (s2` mod N)dQ � s (mod Q). Finally, observing that cP andcQ are as in the Chinese Reminder Theorem,16 we conclude that s1 asrecovered in Step 2 of the decryption process equals s1 as �rst computedin Step 2 of the encryption process.Encryption amounts to `(n) + 1 modular multiplications, whereas decryptionamounts to `(n)+2 such multiplications and 2 modular exponentiations (relativeto half-sized moduli). Counting modular exponentiations with respect to n-bitmoduli as O(n) (i.e., at least n, typically 1:5n, and at most 2n) modular multi-plications (with respect to n-bit moduli), we conclude that the entire encryption-decryption process requires work comparable to 2`(n) + 3n modular multiplica-tions. For comparison to (Randomized) RSA, note that encrypting/decrypting`(n)-bit messages (in Randomized RSA) amounts to d`(n)=ne modular expo-nentiations, and so the total work is comparable to 2 � (`(n)=n) � 1:5n = 3`(n)modular multiplications (for general exponent e, or (`(n)=n)�(2+1:5n) � 1:5`(n)modular multiplications in case e = 3).The security of the Blum-Goldwasser scheme (i.e., Construction 5.3.20) fol-lows immediately from Proposition 5.3.19 and the fact that the least signi�cantbit (i.e., lsb) is a hard-core for the modular squaring function. Recalling thatinverting the latter is computationally equivalent to factoring, we get:Corollary 5.3.21 Suppose that factoring is infeasible in the sense that for everypolynomial-size circuit fCng, every positive polynomial p and all su�ciently largen's Pr[Cn(Pn �Qn) = Pn] < 1p(n)16 That is, i � cP � (i mod P ) + cQ � (i mod Q) (mod N), for every integer i.
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408 CHAPTER 5. ENCRYPTION SCHEMESwhere Pn and Qn are uniformly distributed n-bit long primes. Then Construc-tion 5.3.20 constitutes a secure public-key encryption scheme.Thus, the conjectured infeasibility of factoring (which is a necessary conditionfor security of RSA), yields a secure public-key encryption scheme with e�ciencycomparable to that of (plain or Randomized) RSA. In contrast, recall that plainRSA itself is not secure (as it employs a deterministic encryption algorithm),whereas Randomized RSA (i.e., Construction 5.3.16) is not known to be se-cure under standard assumption such as intractability of factoring (or even ofinverting the RSA function).175.4 * Beyond eavesdropping securityOur treatment so far has referred only to a \passive" attack in which the ad-versary merely eavesdrops on the line over which ciphertexts are being sent.Stronger types of attacks, culminating in the so-called Chosen Ciphertext At-tack, may be possible in various applications. Speci�cally, in some settings it isfeasible for the adversary to make the sender encrypt a message of the adver-sary's choice, and in some settings the adversary may even make the receiverdecrypt a ciphertext of the adversary's choice. This gives rise to chosen plaintextattacks and to chosen ciphertext attacks, respectively, which are not covered bythe security de�nitions considered in previous sections. Thus, our main goalin this section is to provide a treatment to such types of \active" attacks. Inaddition, we also discuss the related notion of non-malleable encryption schemes(see Section 5.4.5).5.4.1 OverviewWe start with an overview of the type of attacks and results considered in thecurrent (rather long) section.5.4.1.1 Types of attacksThe following mini-taxonomy of attacks is certainly not exhaustive.Passive attacks. We �rst re-consider passive attacks as referred to in the def-initions given in previous sections. In case of public-key schemes we distinguishtwo sub-cases:1. A key-oblivious, passive attack, as captured in the abovementioned de�ni-tions. By `key-obliviousness' we refer to the postulation that the choice ofplaintext does not depend on the public-key.17 Recall that Randomized RSA is secure provided that the n=2 least signi�cant bits consti-tute a hard-core function for n-bit RSA moduli. This is a reasonable conjecture, but it seemsstronger than the conjecture that RSA is hard to invert: assuming that RSA is hard to invert,we only know that the O(log n) least signi�cant bits constitute a hard-core function for n-bitmoduli.
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5.4. * BEYOND EAVESDROPPING SECURITY 4092. A key-dependent, passive attack, in which the choice of plaintext may de-pend on the public-key.(In De�nition 5.2.2 the choice of plaintext means the random variable Xn,whereas in De�nition 5.2.4 it means the pair (xn; yn). In both these de�nitions,the choice of the plaintext is key-oblivious.)Chosen Plaintext Attacks. Here the attacker may obtain the encryptionof any plaintext of its choice (under the key being attacked). Indeed, such anattack does not add power in case of public-key schemes.Chosen Ciphertext Attacks. Here the attacker may obtain the decryptionof any ciphertext of its choice (under the key being attacked). That is, theattacker is given oracle access to the decryption function corresponding to thedecryption-key in use. We distinguish two types of such attacks.1. In an a-priori chosen ciphertext attack, the attacker is given access tothe decryption oracle only prior to being presented with the ciphertextthat it should attack (i.e., the ciphertext for which it has to learn partialinformation). That is, the attack consists of two stages: in the �rst stagethe attacker is given the above oracle access, and in the second stage theoracle is removed and the attacker is given a `test ciphertext' (i.e., a targetto be learned).2. In an a-posteriori chosen ciphertext attack, after being given the targetciphertext, the decryption oracle is not removed but rather the adversary'saccess to this oracle is restricted in the natural way (i.e., the adversary isnot allowed to query the oracle on the target ciphertext).In both cases, the adversary may make queries that do not correspond to alegitimate ciphertext, and the answer will be accordingly (i.e., a special `failure'symbol). Furthermore, in both cases the adversary may e�ect the selection ofthe target ciphertext (by specifying a distribution from which the correspondingplaintext is to be drawn).Formal de�nitions of all types of attacks listed above are given in the followingsubsections (i.e., in Sections 5.4.2, 5.4.3 and 5.4.4, respectively). In addition, inSection 5.4.5, we consider the related notion of malleability; that is, attacksaimed at generating encryptions of plaintexts related to the secret plaintextrather than gaining information about the latter.5.4.1.2 ConstructionsAs in the basic case (i.e., Section 5.3), actively-secure private-key encryptionschemes can be constructed based on the existence of one-way functions, whereasactively-secure public-key encryption schemes are based on the existence of (en-hanced) trapdoor permutations. In both cases, withstanding a-posteriori chosenciphertext attacks is harder than withstanding a-priori chosen ciphertext attacks.We will present the following results.
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410 CHAPTER 5. ENCRYPTION SCHEMESFor private-key schemes: We will show that the private-key encryptionscheme based on pseudorandom functions (i.e., Construction 5.3.9), is securealso under a-priori chosen ciphertext attacks, but is not secure under an a-posteriori chosen ciphertext attack. We will also show how to transform anypassively-secure private-key encryption scheme into a scheme secure under (a-posteriori) chosen ciphertext attacks, by using a message authentication schemeon top of the basic encryption. Thus, the latter construction relies on messageauthentication schemes as de�ned in Section 6.1. We mention that messageauthentication schemes can be constructed using pseudorandom functions; seeSection 6.3.For public-key schemes: Assuming the existence of enhanced trapdoor per-mutations (see Section C.1), we will present constructions of public-key encryp-tion schemes that are secure against (a-priori and a-posteriori) chosen cipher-text attacks. The constructions utilize various forms of non-interactive zero-knowledge proofs (see Section 4.10), which can be constructed under the formerassumption. We warn that these constructions are rather complex.As a corollary to the relation between these strong notions of security andnon-malleable encryption scheme, we will conclude that the abovementionedschemes are non-malleable.5.4.1.3 Methodological commentsAs hinted above, we do not cover all possible intermediate types of attacks, butrather focus on some natural ones. For example, we only consider key-dependentattacks on public-key encryption schemes (but not on private-key schemes).The attacks are presented in increasing order of strength; hence, securityunder such attacks yields increasingly stronger notions. This fact may be bestveri�ed when considering the indistinguishability variants of these security de�-nitions.A uniform-complexity treatment seems more appealing in the current section(i.e., more than in the previous sections). However, for sake of consistencywith the basic de�nitions (i.e., the previous sections of this chapter), we usenon-uniform formulations of the various de�nitions. In fact, our treatment ofthe active attacks (i.e., in Sections 5.4.3 and 5.4.4) only uses non-uniformityin referring to (non-uniform) auxiliary inputs, and so non-uniformity can beeasily eliminated in that case (i.e., by just eliminating these auxiliary inputsfrom all the de�nitions). (In Section 5.4.2 we refer to non-uniform families of(polynomial-size) circuits, but also in this case all results extend to the uniform-complexity setting (because all the reductions are actually uniform).)As mentioned above, non-interactive zero-knowledge proofs play a centralrole in the construction of public-key encryption schemes that are secure underchosen ciphertext attacks. At that point, we will assume that the reader is fairlycomfortable with the notion of zero-knowledge proofs. Furthermore, althoughwe recall the relevant de�nition of non-interactive zero-knowledge, which willserve as our starting point towards stronger notions, we recommend to study �rst
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5.4. * BEYOND EAVESDROPPING SECURITY 411the more basic de�nitions (and results) regarding non-interactive zero-knowledgeproofs (as presented in Section 4.10). In our constructions of encryption schemesthat are secure under a-posteriori chosen ciphertext attacks, we shall use someresults from Chapter 6. In case of private-key encryption schemes (treated inSection 5.4.4.3), we will use a message authentication scheme, but do so in aself-contained way. In case of public-key encryption schemes (treated in Sec-tion 5.4.4.4), we will use signature schemes (having an extra property) in orderto construct a certain non-interactive zero-knowledge proof, which we use for theconstruction of the encryption scheme. At that point we shall refer to a speci�cresult proved in Chapter 6.5.4.2 Key-dependent passive attacksThe following discussion as well as the entire subsection refers only to public-key encryption schemes. For sake of simplicity, we present the single-messagede�nitions of security. We note that, as in the basic case (for public-key encryp-tion schemes), the single-message de�nitions of security are equivalent to themultiple-message ones.In De�nitions 5.2.2 and 5.2.4 the plaintext distribution (or pair) is �xedobliviously of the encryption-key. This su�ces for the natural case in whichthe (high level) application (using the encryption scheme) is oblivious of theencryption-key.18 However, in some settings, the adversary may have partialcontrol on the application. Furthermore, in the public-key case, the adversaryknows the encryption-key in use, and so (if it may partially control the appli-cation then) it may be able to cause the application to invoke the encryptionscheme on plaintexts that are related to the encryption-key in use. Thus, forsuch settings, we need stronger de�nitions of security that postulate that partialinformation about the plaintext remains secret even if the plaintext does dependon the encryption-key in use. Note that here we merely consider the dependenceof the \target" plaintext (i.e., the one for which the adversary wishes to obtainpartial information) on the encryption-key, and ignore the fact that the abovemotivation also suggests that the adversary can obtain the encryptions of ad-ditional plaintexts chosen by it (as discussed in Section 5.4.3). However, it iseasy to see that (in the public-key setting discussed here) these additional en-cryptions are of no use because the adversary can generate them by itself (seeSection 5.4.3).5.4.2.1 De�nitionsRecall that we seek a de�nition that guarantees that partial information aboutthe plaintext remains secret even if the plaintext does depend on the encryption-key in use. That is, we seek a strengthening of semantic security (as de�ned in18 Indeed, it is natural (and even methodologically imperative) that a high-level applicationthat uses encryption as a tool, be oblivious of the keys used by that tool. However, this refersonly to proper operation of the application, and deviation may be caused (in some settings)by an improper behavior (i.e., an adversary).
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412 CHAPTER 5. ENCRYPTION SCHEMESDe�nition 5.2.2) in which one allows the plaintext distribution ensemble (de-noted fXngn2N in De�nition 5.2.2) to depend on the encryption-key in use (i.e.,for encryption-key e we consider the distribution Xe over f0; 1gpoly(jej)). Fur-thermore, we also allow the partial information functions (denoted f and h inDe�nition 5.2.2) to depend on the encryption-key in use (i.e., for encryption-keye, we consider the functions fe and he). In the actual de�nition it is importantto restrict the scope of the functions he's and the distributions Xe's so thattheir dependency on e is polynomial-time computable (see Exercise 26). Thisyields the de�nition presented in Exercise 27, which is equivalent to the followingformulation.19De�nition 5.4.1 (semantic security under key-dependent passive attacks): Thesequence f(fe; he; Xe)ge2f0;1g� is admissible for the current de�nition if1. The functions fe : f0; 1g� ! f0; 1g� are polynomially-bounded; that is,there exists a polynomial ` such that jfe(x)j � `(jxj+ jej).2. There exists a non-uniform family of polynomial-size (h-evaluation) cir-cuits fHngn2N such that for every e in the range of G1(1n) and every xin the support of Xe it holds that Hn(e; x) = he(x).3. There exists a non-uniform family of (probabilistic) polynomial-size (sam-pling) circuits fSngn2N such that for every e in the range of G1(1n) andfor some m = poly(jej), the random variables Sn(e; Um) and Xe are iden-tically distributed.20An encryption scheme, (G;E;D), is semantically secure under key-dependent pas-sive attacks if for every probabilistic polynomial-time algorithm A, there existsa probabilistic polynomial-time algorithm A0 such that for every admissible se-quence f(fe; he; Xe)ge2f0;1g�, every positive polynomial p(�) and all su�cientlylarge n it holds thatPr hA(e; Ee(Xe); 1jXej; he(Xe))=fe(Xe)i< Pr hA0(e; 1jXej; he(Xe))=fe(Xe)i+ 1p(n)where (e; d)  G(1n), and the probability is taken over the internal coin tossesof algorithms G, E, A and A0, as well as over Xe.We stress that the performance of A0 is measured against the same distributionof triplets (fe; he; Xe) (i.e., e G1(1n)) as the one considered for algorithm A.Unlike in other versions of the de�nition of semantic security, here it is importantto let A0 have the encryption-key e because the task (i.e., the evaluation of19 Recall that, without loss of generality, we may assume that the keys generated by G(1n)have length n. Thus, there is no point in providing the algorithms with 1n as an auxiliaryinput (as done in De�nition 5.2.2).20 We stress that for every e, the length of Xe is �xed.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.4. * BEYOND EAVESDROPPING SECURITY 413fe(Xe)) as well as its main input (i.e., the value he(Xe)) are related to e. (Indeed,if e were not given to A0 then no encryption scheme (G;E;D) could have satis�edthe revised De�nition 5.4.1: Considering he(x) = x�e (for jxj = jej) and fe(x) =x, note that it is easy for A to compute x from e and he(x) (which are explicitin (e; Ee(x); 1jxj; he(x))), whereas no A0 can compute x from (1n; 1jxj; he(x)).)Using Exercise 14.2, one may verify that De�nition 5.2.2 is a special caseof De�nition 5.4.1. An analogous modi�cation (or generalization) of De�ni-tion 5.2.4 yields the following:De�nition 5.4.2 (indistinguishability of encryptions under key-dependent pas-sive attacks): The sequence f(xe; ye)ge2f0;1g� is admissible for the current de�-nition if there exists a non-uniform family of polynomial-size circuits fPngn2Nthat maps each encryption-key e 2 f0; 1g� to the corresponding pair of (equallength) strings (xe; ye). That is, for every e in the range of G1(1n), it holdsthat Pn(e) = (xe; ye). An encryption scheme, (G;E;D), has indistinguishableencryptions under key-dependent passive attacks if for every non-uniform familyof polynomial-size circuits fCng, every admissible sequence f(xe; ye)ge2f0;1g� ,every positive polynomial p(�) and all su�ciently large n it holds thatjPr [Cn(e; Ee(xe))=1]� Pr [Cn(e; Ee(ye))=1] j < 1p(n)where (e; d)  G(1n), and the probability is taken over the internal coin tossesof algorithms G and E.As in the basic case (i.e., Section 5.2), the two de�nitions are equivalent.Theorem 5.4.3 (equivalence of de�nitions for key-dependent passive attacks):The public-key encryption scheme (G;E;D) is semantically secure under key-dependent passive attacks if and only if it has indistinguishable encryptions underkey-dependent passive attacks.Proof Sketch: In order to show that indistinguishable encryptions impliessemantic security, we follow the proof of Proposition 5.2.6. Speci�cally, A0 isconstructed and analyzed almost as before, with the exception that A0 gets anduses the encryption-key e (rather than letting it generate a random encryption-key by itself).21 That is, we let A0(e; 1jxj; he(x)) = A(e; Ee(1jxj); 1jxj; he(x)), andshow that for every (deterministic) polynomial-size circuit families fCngn2N andfHngn2N (and all su�ciently large n) it holds that:Pr hA(e; Ee(Cn(e)); 1jCn(e)j; Hn(e; Cn(e)))=fe(Cn(e))i (5.12)< Pr hA(e; Ee(1jCn(e)j); 1jCn(e)j; Hn(e; Cn(e)))=fe(Cn(e))i+ 1poly(n)where e  G1(1n). Once proven, Eq. (5.12) implies that (G;E;D) satis�esDe�nition 5.4.1.21 Here we use the convention by which A0 gets e along with he(x) (and 1jxj). This isimportant because A0 must feed a matching pair (e; he(x)) to A.
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414 CHAPTER 5. ENCRYPTION SCHEMESOn how Eq. (5.12) implies De�nition 5.4.1: The issue is that Eq. (5.12) refersto deterministic circuits (i.e. Cn's), whereas De�nition 5.4.1 refers to prob-abilistic circuits (i.e. Sn's). This small gap can be bridged by �xing a se-quence of coins for the probabilistic (sampling) circuits. Speci�cally, start-ing with any admissible (for De�nition 5.4.1) sequence f(fe; he; Xe)ge2f0;1g� ,where Hn(e; x) = he(x) and Xe � Sn(e; Upoly(n)), we consider some se-quence of coins rn (for Sn) that maximizes the gap between Pr[A(e; Ee(xe); 1jxej; Hn(e; xe))=fe(xe)] and Pr[A0(e; 1jxej; Hn(e; xe)) = fe(xe)], where e is random andxe = Sn(e; rn). Recalling that A0(e; 1`; 
) = A(e; Ee(1`); 1`; 
) and incor-porating the sequence of rn's in A, we obtain a contradiction to Eq. (5.12)(i.e., by letting Cn(e) = Sn(e; rn) = xe).Assuming (to the contrary of the above claim) that Eq. (5.12) does not hold,we obtain a sequence of admissible pairs f(xe; ye)ge2f0;1g� for De�nition 5.4.2such that their encryptions can be distinguished (in contradiction to our hy-pothesis). Speci�cally, we set xe def= Cn(e) and ye def= 1jxej, and let C 0n(e; �) def=A(e; �; 1jxej; Hn(e; xe)), where xe = Cn(e). Thus, we obtain a (poly(n)-size)circuit C 0n such thatjPr[C 0n(e; Ee(xe))=fe(xe)]� Pr[C 0n(e; Ee(ye))=fe(xe)]j > 1poly(n)where e is distributed according to G1(1n). Using an idea as in the proof of The-orem 5.2.15, we derive a (poly(n)-size) circuit C 00n that distinguishes (e; Ee(xe))from (e; Ee(ye)), where e G1(1n), in contradiction to our hypothesis.Details: We refer to the proof of Claim 5.2.15.1 (contained in the proof ofTheorem 5.2.15). Recall that the idea was to proceed in two stages. First,using only e (which also yields xe and ye), we �nd an arbitrary value v suchthat jPr[C0n(e;Ee(xe))=v]� Pr[C0n(e; Ee(ye))=v]j is large. In the secondstage, we use this value v in order to distinguish the case in which we aregiven an encryption of xe from the case in which we are given an encryptionof ye. (We comment if (e; x) 7! fe(x) were computable by a poly(n)-sizecircuit then converting C0n into a distinguisher C00n would have been mucheasier; we further comment that as a corollary to the current proof, onecan conclude that the restricted form is equivalent to the general one.)This concludes the proof that indistinguishable encryptions (as per De�nition 5.4.2)implies semantic security (as per De�nition 5.4.1), and we now turn to the op-posite direction.Suppose that (G;E;D) does not have indistinguishable encryptions, and con-sider an admissible sequence f(xe; ye)ge2f0;1g� that witnesses this failure. Follow-ing the proof of Proposition 5.2.7, we de�ne a probability ensemble fXege2f0;1g�and function ensembles fhege2f0;1g� and ffege2f0;1g� , in an analogous manner:� The distribution Xe is uniformly distributed over fxe; yeg.� The function fe satis�es fe(xe) = 1 and fe(ye) = 0.
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5.4. * BEYOND EAVESDROPPING SECURITY 415� The function he is de�ned such that he(Xe) equals the description ofthe circuit Cn that distinguishes (e; Ee(xe)) from (e; Ee(ye)), where e  G1(1n) (and (xe; ye) = Pn(e)).Using the admissibility of the sequence f(xe; ye)ge (for De�nition 5.4.2) it followsthat f(fe; he; Xe)ge is admissible for De�nition 5.4.1. Using the same algorithmA as in the proof of Proposition 5.2.7 (i.e., A(e; �; Cn) = Cn(e; �), where �is a ciphertext and Cn = he(Xe)), and using the same analysis, we derive acontradiction to the hypothesis that (G;E;D) satis�es De�nition 5.4.1.Details: Without loss of generality, suppose thatPr [Cn(e;Ee(xe))=1] > Pr [Cn(e;Ee(ye))=1] + 1p(n)for e G1(1n). Then, as shown in Claim 5.2.7.1,Pr [A(e;Ee(Xe); he(Xe))=fe(Xe)] > 12 + 12p(n)On the other hand, as shown in Fact 5.2.7.2, for every algorithm A0Pr �A0(e; 1jXej; he(Xe))=fe(Xe)� � 12because (e; 1jXej; he(Xe)) contains no information about the value of fe(Xe)(which is uniformly distributed in f0; 1g). This violates De�nition 5.4.1,and so our initial contradiction hypothesis (i.e., that one can distinguishencryptions under (G;E;D)) must be false.The theorem follows.Multiple-message security: De�nitions 5.4.1 and 5.4.2 can be easily gener-alized to handle the encryption of many messages (as in Section 5.2.4), yieldingagain two equivalent de�nitions. Since we are in the public-key setting, onecan show (analogously to Theorem 5.2.11) that the single-message de�nitionsof security are equivalent to the multiple-message ones (i.e., by showing thatDe�nition 5.4.2 implies its multiple-message generalization). One important ob-servation is that admissibility for the multiple-message de�nition enables one tocarry out a hybrid argument (as in the proof of Theorem 5.2.11). For details seeExercise 28. The bottom-line is that we can freely use any of the four de�nitions,and security for that de�nition implies security for any of the other de�nitions.5.4.2.2 ConstructionsAll the results presented in Section 5.3.4 extend to security under key-dependentpassive attacks. That is, for each of the constructions presented in Section 5.3.4,the same assumption used to prove security under key-oblivious passive at-tacks actually su�ces for proving security under key-dependent passive attacks.Before demonstrating this fact, we comment that (in general) security underkey-oblivious passive attacks does not necessarily imply security under key-dependent passive attacks; see Exercise 29.
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416 CHAPTER 5. ENCRYPTION SCHEMESInitial observations: We start by observing that Construction 5.3.7 (i.e., thetransformation of block-ciphers to general encryption schemes) maintains itssecurity in our context. That is:Proposition 5.4.4 (extension of Proposition 5.3.8): Let (G;E;D) and (G0; E0; D0)be as in Construction 5.3.7; i.e., (G0; E0; D0) be the full-
edged encryption con-structed based on the block-cipher (G;E;D). Then if (G;E;D) is secure underkey-dependent passive attacks, then so is (G0; E0; D0).Proof Idea: As in the proof of Proposition 5.3.8, we merely observe thatmultiple-message security of (G0; E0; D0) is equivalent to multiple-message se-curity of (G;E;D).We next observe that Construction 5.3.13 (a block-cipher with block length` � 1) maintains its security also under a key-dependent passive attack. This isa special case of the following observation:Proposition 5.4.5 Let (G;E;D) be a block-cipher with logarithmically boundedblock-length (i.e., `(n) = O(log n)). If (G;E;D) is secure under key-obliviouspassive attacks then it is also secure under key-dependent passive attacks.Proof Sketch: Here we use the de�nition of ciphertext-indistinguishability inthe single-message setting. The key observation is that the set of possible mes-sages is relatively small, and so selecting a message in a key-dependent mannerdoes not give much advantage over selecting a message at random (i.e., oblivi-ously of the key).Consider an arbitrary admissible (for De�nition 5.4.2) set of pairs, f(xe; ye)ge2f0;1g� ,where jxej = jyej = O(log jej), and a circuit family fCng that tries to distinguish(e; Ee(xe)) from (e; Ee(ye)). We shall show that fCng necessarily fails by re-lating its distinguishing gap to the distinguishing gap of a key-oblivious attack(represented below by the Cx;yn 's).Let fPngn2N be the circuit family producing the abovementioned admissibleset (i.e., Pn(e) = (xe; ye)). Fixing some n 2 N and an arbitrary (x; y) 2 f0; 1g��f0; 1g�, we consider a circuit Cx;yn (depending on the circuits Cn and Pn and thepair (x; y)) that, on input (e; �), operates as follows:1. Using the hard-wired circuit Pn and the input (key) e, the circuit Cx;ynchecks whether (xe; ye) equals the hard-wired pair (x; y) (i.e., Cx;yn checkswhether Pn(e) = (x; y)). In case the check fails, Cx;yn outputs an arbitraryvalue (e.g., 1) obliviously of the ciphertext �.2. Otherwise (i.e., Pn(e) = (x; y)), the circuit Cx;yn invokes Cn on its owninput and answers accordingly (i.e., outputs Cn(e; �)).Since (G;E;D) is secure under key-oblivious passive attacks it follows that (forevery (x; y) 2 f0; 1gm � f0; 1gm, where m � poly(n)) the circuit Cx;yn cannotdistinguish the case � = Ee(x) from the case � = Ee(y). Thus, for some
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5.4. * BEYOND EAVESDROPPING SECURITY 417negligible function � :N ! [0; 1] and every pair (x; y) 2 f0; 1gm � f0; 1gm, thefollowing holds�(n) > jPre[Cx;yn ((e; Ee(x)) = 1]� Pre[Cx;yn ((e; Ee(y)) = 1]j= ����Pre � Cn((e; Ee(xe))=1^ (xe; ye)=(x; y) �� Pre � Cn((e; Ee(ye))=1^ (xe; ye)=(x; y) �����where e  G1(1n) and equality holds because in case (xe; ye) 6= (x; y) the out-put of Cx;yn (e; �) is independent of � (and so in this case Cx;yn (e; Ee(x)) =Cx;yn (e; Ee(y))). Since the above holds for any pair (x; y) 2 f0; 1gm � f0; 1gm,and since jxej = jyej = `(n) it follows thatjPre[Cn((e; Ee(xe)) = 1]� Pre[Cn((e; Ee(ye)) = 1]j� Xjxj=jyj=`(n) ����Pre � Cn((e; Ee(xe))=1^ (xe; ye)=(x; y) �� Pre � Cn((e; Ee(ye))=1^ (xe; ye)=(x; y) �����< 22`(n) � �(n)and the proposition follows.A feasibility result: Combining Theorem 5.3.15 with Propositions 5.4.4 and 5.4.5,we obtain a feasibility result:Theorem 5.4.6 If there exist collections of (non-uniformly hard) trapdoor per-mutations then there exist public-key encryption schemes that are secure underkey-dependent passive attacks.More e�cient schemes: In order to obtain more e�cient schemes, we di-rectly analyze the e�cient constructions presented in Section 5.3.4. For example,extending the proof of Proposition 5.3.19, we obtain:Proposition 5.4.7 Suppose that b is a (non-uniformly strong) hard-core of thetrapdoor collection fp�g. Furthermore, suppose that this trapdoor collection uti-lizes a domain sampling algorithm S so that the statistical di�erence betweenS(�) and the uniform distribution over the domain of p� is negligible in termsof j�j. Then Construction 5.3.18 constitute a public-key encryption scheme thatis secure under key-dependent passive attacks.Proof Sketch: Again, we prove single-message ciphertext-indistinguishability.We rely heavily on the admissibility condition. In analogy to the proof of Propo-sition 5.3.19, it su�ces to show that, for every polynomial-size circuit familyfCng, the distributions (�; p�̀(S(�)); Cn(�)�G(`)� (S(�))) and (�; p�̀(S(�)); Cn(�)�U`) are indistinguishable, for a randomly generated (encryption-key) �, where` = jCn(�)j and U` is uniformly distributed (independently of anything else).2222 Recall that here � serves as an encryption-key and Cn(�) is a key-dependent plaintext.Typically, Cn(�) would be the �rst or second element in the plaintext pair (x�; y�) = Pn(�).
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418 CHAPTER 5. ENCRYPTION SCHEMESIncorporating fCng in the potential distinguisher, it su�ces to show that thedistributions (�; p�̀(S(�)); G(`)� (S(�))) and (�; p�̀(S(�)); U`) are indistinguish-able. The latter claim follows as in the proof of Proposition 5.3.19 (i.e., by aminor extension to Proposition 3.4.6). The proposition follows.5.4.3 Chosen plaintext attackSo far, we have discussed only passive attacks (in two variants: key-obliviousversus key-dependent, discussed in Section 5.2 and 5.4.2, respectively). Turningto active attacks, we start with mild active attacks in which the adversary mayobtain (from some legitimate user) ciphertexts corresponding to plaintexts of theadversary's choice. Such attacks will be called chosen plaintext attack, and arepossible (as well as are all that is possible) in some applications. For example, insome settings the adversary may (directly or indirectly) control the encryptingmodule (but not the decrypting module).Intuitively, a chosen plaintext attack poses additional threat in case of private-key encryption schemes (see Exercise 30), but not in the case of public-key en-cryption schemes. In fact, we will show that, in the case of public-key encryptionschemes, a chosen plaintext attack can be emulated by a passive key-dependentattack.5.4.3.1 De�nitionsWe start by rigorously formulating the framework of chosen plaintext attacks.Intuitively, such attacks proceeds in four stages corresponding to the generationof a key (by a legitimate party), the adversary's requests (answered by the legit-imate party) to encrypt plaintexts under this key, the generation of a challengeciphertext (under this key and according to a templet speci�ed by the adver-sary), and additional requests to encrypt plaintexts (under the same key). Thatis, a chosen plaintext attack proceeds as follows:1. Key generation: A key-pair (e; d)  G(1n) is generated (by a legitimateparty). In the public-key setting the adversary is given (1n; e), whereas inthe private-key setting the adversary is only given 1n. Actually, assuming(without loss of generality) that jej = n, we may replace (1n; e) by e in theformer case.2. Encryption requests: Based on the information obtained so far, the adver-sary may request (the legitimate party) to encrypt plaintexts of its (i.e.,the adversary's) choice. A request to encrypt the plaintext x is answeredwith a value taken from the distribution Ee(x), where e is as determinedin Step 1. After making several such requests, the adversary moves to thenext stage.3. Challenge generation: Based on the information obtained so far, the ad-versary speci�es a challenge templet and is given an actual challenge.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.4. * BEYOND EAVESDROPPING SECURITY 419When de�ning semantic security the challenge templet is a triplet of cir-cuits (Sm; hm; fm), where Sm speci�es a distribution of m-bit long plain-texts (and hm; fm : f0; 1gm ! f0; 1g�), and the actual challenge is a pair(Ee(x); hm(x)) where x is distributed according to Sm(Upoly(n)). Whende�ning indistinguishability of encryptions the challenge templet is merelya pair of equal-length strings, and the actual challenge is an encryption ofone of these two strings.4. Additional encryption requests: Based on the information obtained so far,the adversary may request to encrypt additional plaintexts of its choice.These requests are handled as in Step 2. After making several such re-quests, the adversary produces an output and halts.In the actual de�nition, the adversary's strategy will be decoupled into two partscorresponding to its actions before and after the generation of the actual chal-lenge. Each part will be represented by a (probabilistic polynomial-time) oraclemachine, where the oracle is an \encryption oracle" (with respect to the key gen-erated in Step 1). The �rst part, denoted A1, captures the adversary's behaviorduring Step 2. It is given a security parameter (and possibly an encryption-key),and its output is a pair (�; �), where � is the templet generated in the beginningof Step 3 and � is a state information passed to the second part of the adversary.The second part of the adversary, denoted A2, captures the adversary's behaviorduring Step 4. It is given the state � (of the �rst part) as well as the actualchallenge (generated Step 3), and produces the actual output of the adversary.In accordance to using non-uniform formulations, we let each of the two oraclemachines have a (non-uniform) auxiliary input. In fact, it su�ces to provide onlythe �rst machine with such a (non-uniform) auxiliary input, because it can passauxiliary input to the second machine in the state information �. (Similarly,in the case of public-key schemes, it su�ces to provide only the �rst machinewith the encryption-key.) We comment that we provide these machines withprobabilistic oracles; that is, in response to a plaintext query x, the oracle Eereturns a random ciphertext Ee(x) (i.e., the result of a probabilistic processapplied to e and x). Thus, in the case of public-key schemes, the four-stepattack process can be written as follows:(e; d)  G(1n)(�; �)  AEe1 (e; z)c def= an actual challenge generated according to the templet �output  AEe2 (�; c)where z denotes (non-uniform) auxiliary input given to the adversary. In caseof private-key schemes, the adversary (i.e., A1) is given 1n instead of e.Semantic security: Instantiating the above framework to derive a de�ni-tion of semantic security amounts to specifying the challenge generation and topostulating that the success probability in such an attack should be met by a
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420 CHAPTER 5. ENCRYPTION SCHEMEScorresponding benign process. As hinted above, the challenge generation con-sists of the adversary specifying a triplet of circuits, denoted (Sm; hm; fm), andbeing presented with an encryption of x  Sm(Upoly(n)) 2 f0; 1gm along withthe partial information hm(x). The adversary's goal is to guess fm(x), and se-mantic security amount to saying that the adversary's success probability can bematched by a corresponding algorithm that is only given hm(x) and 1jxj = 1m.Like the adversary, the corresponding algorithm is decoupled into two parts, the�rst is in charge of outputting a challenge templet, and the second is in charge ofsolving the challenge (without being given a ciphertext), where state informationis passed from the �rst part to the second part. It is important to require thatthe challenge templet produced by the corresponding algorithm is distributed ex-actly as the challenge templet produced by the adversary. (See further discussionbelow.)De�nition 5.4.8 (semantic security under chosen plaintext attacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto be semantically secure under chosen plaintext attacks if for every pair ofprobabilistic polynomial-time oracle machines, A1 and A2, there exists apair of probabilistic polynomial-time algorithms, A01 and A02, such that thefollowing two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n andz 2 f0; 1gpoly(n) it holds thatPr266664 v = fm(x) where(e; d) G(1n)((Sm; hm; fm); �) AEe1 (e; z)c (Ee(x); hm(x)) ; where x Sm(Upoly(n))v  AEe2 (�; c) 377775< Pr2664 v = fm(x) where((Sm; hm; fm); �) A01(1n; z)x Sm(Upoly(n))v  A02(�; 1jxj; hm(x)) 3775+ 1p(n)Recall that (Sm; hm; fm) is a triplet of circuits produced as in Step 3 ofthe foregoing description, and that x is a sample from the distributioninduced by Sm.2. For every n and z, the �rst elements (i.e., the (Sm; hm; fm) part)in the random variables A01(1n; z) and AEG1(1n)1 (G1(1n); z) are iden-tically distributed.For private-key schemes: The de�nition is identical except that algorithm A1gets the security parameter 1n instead of the encryption-key e.Note that as in almost all other de�nitions of semantic security (with the excep-tion of De�nition 5.4.1), algorithm A01 does not get a (random) encryption-key
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5.4. * BEYOND EAVESDROPPING SECURITY 421as input (but may rather generate one by itself).23 Since the challenge templetis not �xed (or determined by e) but is rather chosen by A and A0 themselves,it is very important to require that in both cases the challenge templet is dis-tributed identically (or approximately so): there is no point in relating the suc-cess probability of A and A0, unless these probabilities refer to same distributionof problems (i.e., challenge templets).24 (The issue arises also in De�nition 5.4.1where it was resolved by forcing A0 to refer to the challenge templet determinedby the public-key e.)25De�nition 5.4.8 implies De�nition 5.4.1, but this may not be evident from thede�nitions themselves (most importantly, because here fm is computationallybounded whereas in De�nition 5.4.1 the function is computationally unbounded).Still the validity of the claim follows easily from the equivalence of the twode�nitions to the corresponding notions of indistinguishability of encryptions(and the fact that the implication is evident for the latter formulations).Indistinguishability of encryptions: Deriving the corresponding de�nitionof indistinguishability of encryptions (from the above framework) is considerablysimpler. Here the challenge generation consists of the adversary specifying twoequal-length strings and the adversary is presented with the encryption of oneof them. The adversary's goal is to distinguish the two possible cases.De�nition 5.4.9 (indistinguishability of encryptions under chosen plaintext at-tacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto have indistinguishable encryptions under chosen plaintext attacks if forevery pair of probabilistic polynomial-time oracle machines, A1 and A2,for every positive polynomial p(�), and all su�ciently large n and z 2f0; 1gpoly(n) it holds that jp(1)n;z � p(2)n;zj < 1p(n)23 In fact, A01 is likely to start by generating e  G1(1n), because it has to generate achallenge templet that is distributed as the one produced by A1 on input e G1(1n).24 Failure to make this requirement would have resulted in a fundamentally bad de�nition(by which every encryption scheme is secure). For example, algorithm A01 could have set hm toequal the function fm selected by A1 (in a corresponding attack). Doing so, the success of Ato guess the value of fm(x) from the (insecure) encryption of x and a (possibly) useless valuehm(x) (e.g., for a constant function hm) would have been met by success of A0 to \guess" thevalue of fm(x) from fm(x) itself (without being given the encryption of x).25 Indeed, an alternative solution could have been the one adopted here and in the sequel;that is, allow A0 to select the challenge templet by itself provided that the selection yields adistribution similar to the one faced by A, as induced by the public-key e.
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422 CHAPTER 5. ENCRYPTION SCHEMESwhere p(i)n;z def= Pr266664 v = 1 where(e; d) G(1n)((x(1); x(2)); �) AEe1 (e; z)c Ee(x(i))v  AEe2 (�; c) 377775where jx(1)j = jx(2)j.For private-key schemes: The de�nition is identical except that A1 gets thesecurity parameter 1n instead of the encryption-key e.Clearly, De�nition 5.4.9 implies De�nition 5.4.2 as a special case. Further-more, for public-key schemes, the two de�nitions are equivalent (see Proposi-tion 5.4.10), whereas for private-key schemes De�nition 5.4.9 is strictly stronger(see Exercise 30).Proposition 5.4.10 Let (G;E;D) be a public-key encryption scheme that hasindistinguishable encryptions under key-dependent passive attacks. Then, (G;E;D)has indistinguishable encryptions under chosen plaintext attack.Proof Sketch: They key observation is that, in the public-key model, a chosenplaintext attack can be emulated by a passive key-dependent attack. Speci�-cally, the (passive) attacker can emulate access to an encryption oracle by itself(by using the encryption-key given to it). Thus, we obtain an attacker as inDe�nition 5.4.9, with the important exception that it never makes oracle calls(but rather emulates Ee by itself). Put in other words, we have an attacker as inDe�nition 5.4.2, with the minor exception that it is a probabilistic polynomial-time machine with auxiliary input (rather than being a polynomial-size circuit)and that it distinguishes a pair of plaintext distributions rather than a pair of(�xed) plaintexts (which depend on the encryption-key). However, �xing thebest possible coins for this attacker (and incorporating them as well as z inan adequate circuit), we obtain an attacker exactly as in De�nition 5.4.2 suchthat its distinguishing gap is at least as large as the one of the (initial) chosenplaintext attacker.Equivalence of semantic security and ciphertext-indistinguishability.As in previous cases, we show that the two formulations of (chosen plaintextattack) security (i.e., semantic security and indistinguishable encryptions) arein fact equivalent.Theorem 5.4.11 (equivalence of de�nitions for chosen plaintext attacks): Apublic-key (resp., private-key) encryption scheme (G;E;D) is semantically se-cure under chosen plaintext attacks if and only if it has indistinguishable encryp-tions under chosen plaintext attacks.
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5.4. * BEYOND EAVESDROPPING SECURITY 423Proof Sketch: In order to show that indistinguishable encryptions impliessemantic security, we follow again the ideas underlying the proof of Proposi-tion 5.2.6. Speci�cally, for both the private-key and public-key cases, A01 andA02 are constructed as follows:1. A01(1n; z) def= (�; �0), where (�; �0) is generated as follows:First, A01 generates an instance of the encryption scheme; that is, A01 lets(e; d)  G(1n). Next, A01 invokes A1, while emulating the oracle Ee, andsets (�; �) AEe1 (1n; z). Finally, A01 sets �0 def= (e; �).We warn that the generation of the key-pair by A01 should not be confusedwith the generation of the key-pair in the probabilistic experiment referringto the combined algorithm A = (A1; A2). In particular, the generatedencryption-key e allows A01 to emulate the encryption oracle Ee (also inthe private-key case). Furthermore, A01 outputs the encryption-key e aspart of the state passed by it to A02, whereas A1 does not necessarily doso (and, in fact, cannot do so in case of the private-key model). This willallow A02 too to emulate the encryption oracle Ee.2. A02((e; �); 1m; 
) def= AEe2 (�; (Ee(1m); 
)), where typically 
 = hm(x) andm = jxj.Since A01 merely emulates the generation of a key-pair and the actions of A1with respect to such a pair, the equal distribution condition (i.e., Item 2 in Def-inition 5.4.8) holds. Using the (corresponding) indistinguishability of encryp-tion hypothesis, we show that (even in the presence of an encryption oracle Ee)the distributions (�; (Ee(x); h(x))) and (�; (Ee(1jxj); h(x))) are indistinguishable,where (e; d) G(1n), ((S; h; f); �) AEe1 (y; z) (with y = e or y = 1n dependingon the model), and x S(Upoly(n)).Details: Suppose that given ((S; h; f); �) generated by AEe1 (y; z) and oracleaccess to Ee, where e  G1(1n) (and y is as above), one can distinguish(�; (Ee(x); h(x))) and (�; (Ee(1jxj); h(x))), where x  S(Upoly(n)). Thenwe obtain a distinguisher as in De�nition 5.4.9 as follows. The �rst partof the distinguisher invokes A1 (while answering its oracle queries by for-warding these queries to its own Ee oracle), and obtains ((S; h; f); �)  AEe1 (y; z). It sets x(1)  S(Upoly(n)) and x(2) = 1jx(1)j, and outputs((x(1); x(2)); (�; h(x(1)))). That is, (x(1); x(2)) is the challenge templet, andit is answered with Ee(x(i)), where i is either 1 or 2. The second part of thenew distinguisher, gets as input a challenge ciphertext �  Ee(x(i)) andthe state generated by the �rst part (�; h(x(1))), and invokes the distin-guisher of the contradiction hypothesis with input (�; (�; h(x(1)))), whileanswering its oracle queries by forwarding these queries to its own Ee ora-cle. Thus, the new distinguisher violates the condition in De�nition 5.4.9,in contradiction to the hypothesis that (G;E;D) has indistinguishable en-cryptions.It follows that indistinguishable encryptions (as per De�nition 5.4.9) impliessemantic security (as per De�nition 5.4.8). (Here, this implication is easier to
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424 CHAPTER 5. ENCRYPTION SCHEMESprove than in previous cases, because the function f is computable via a circuitthat is generated as part of the challenge templet (and, w.l.o.g., is part of �.)We now turn to the opposite direction. Suppose that (G;E;D) does nothave indistinguishable encryptions, and consider the pairs (x(1); x(2)) producedas a challenge templet by the distinguishing adversary. Following the ideas ofthe proof of Proposition 5.2.7, we let the semantic-security adversary generatea corresponding challenge templet (S; h; f) such that� The circuit S samples uniformly in fx(1); x(2)g.� The function f satis�es f(x(1)) = 1 and f(x(2)) = 0.� The function h is de�ned arbitrarily subject to h(x(1)) = h(x(2)).Note that here we do not need to use h for passing non-uniform information(e.g., a description of the distinguisher). Instead, non-uniform information(i.e., the auxiliary input z to the distinguisher) is passed explicitly by othermeans (i.e., as the auxiliary input to the semantic-security adversary).We stress that when the semantic-security adversary invokes the distinguishingadversary, the former uses its own oracle to answer the queries made by thelatter. (Likewise, the former passes its auxiliary input z to the latter.) Thereader may easily verify that the semantic-security adversary has a noticeableadvantage in guessing f(S(Upoly(n))) (by using the distinguishing gap betweenEe(x(1)) and Ee(x(2))), whereas no algorithm that only gets h(S(Upoly(n))) canhave any advantage in such a guess. We derive a contradiction to the hypothesisthat (G;E;D) satis�es De�nition 5.4.8, and the theorem follows.Multiple-message security: De�nitions 5.4.8 and 5.4.9 can be easily gen-eralized to handle challenges in which multiple plaintexts are encrypted. Asin previous cases, the corresponding (multiple-plaintext) de�nitions are equiva-lent. Furthermore, the multiple-plaintext de�nitions are equivalent to the single-plaintext de�nition, both for public-key and private-key schemes. We stress theequivalence for private-key schemes (which does not hold for the basic de�ni-tions presented in Section 5.1; see Proposition 5.2.12). To see the equivalence itis best to consider the notion of indistinguishable encryptions. In this case, theargument used in the proof of Theorem 5.2.11 (i.e., the public-key case) can beapplied here by using the encryption oracle in order to produce the ciphertextsneeded for the hybrid argument (rather than by generating these ciphertextsusing knowledge of the encryption-key, which is only possible in the public-keysetting).5.4.3.2 ConstructionsIn view of Proposition 5.4.10 (and Theorem 5.4.11), we focus on private-keyencryption schemes (because a public-key encryption scheme is secure underchosen plaintext attacks if and only if it is secure under passive key-dependent
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5.4. * BEYOND EAVESDROPPING SECURITY 425attacks). All the results presented in Section 5.3.3 extend to security under cho-sen plaintext attacks. Speci�cally, we prove that Constructions 5.3.9 and 5.3.12remain secure also under a chosen plaintext attack.Proposition 5.4.12 Let F and (G;E;D) be as in Construction 5.3.9, and sup-pose that F is pseudorandom with respect to polynomial-size circuits. Then theprivate-key encryption scheme (G;E;D) is secure under chosen plaintext at-tacks. The same holds with respect to Construction 5.3.12.Proof Sketch: We focus on Construction 5.3.9, and follow the technique under-lying the proof of Proposition 5.3.10. That is, we consider an idealized version ofthe scheme, in which one uses a uniformly selected function � :f0; 1gn!f0; 1gn,rather than the pseudorandom function fs. Essentially, all that the adversaryobtains by encryption queries in the ideal version is pairs (r; �(r)), where ther's are uniformly and independently distributed in f0; 1gn. As to the challengeitself, the plaintext is \masked" by the value of � at another uniformly andindependently distributed element in f0; 1gn. Thus, unless the latter elementhappens to equal one of the r's used by the encryption oracle (which happenswith negligible probability), the challenge plaintext is perfectly masked. Thus,the ideal version is secure under a chosen plaintext attack, and the same holdsfor the real scheme (since otherwise one derives a contradiction to the hypothesisthat F is pseudorandom).Summary: Private-key and public-key encryption schemes that are secure un-der chosen plaintext attacks exist if and only if corresponding schemes that aresecure under passive (key-dependent) attacks exist.265.4.4 Chosen ciphertext attackWe now turn to stronger forms of active attacks in which the adversary mayobtain (from some legitimate user) plaintexts corresponding to ciphertexts of itschoice. We consider two types of such attacks, called chosen ciphertext attacks:In the milder type, called a-priori chosen ciphertext attacks, such decryption re-quests can be made only before the challenge ciphertext (for which the adversaryshould gain knowledge) is presented. In the stronger type, called a-posteriorichosen ciphertext attacks, such decryption requests can be made also after thechallenge ciphertext is presented, as long as one does not request to decrypt thisvery (challenge) ciphertext.Both types of attacks address security threats in realistic applications: Insome settings the adversary may experiment with the decryption module, beforethe actual ciphertext in which it is interested is sent. Such a setting correspondsto an a-priori chosen ciphertext attack. In other settings, one may invoke thedecryption module on inputs of one's choice at any time but all these invocationsare recorded, and real damage is caused only by knowledge gained with respect26 Hint: when establishing the claim for the private-key case, use Exercise 2.
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426 CHAPTER 5. ENCRYPTION SCHEMESto a ciphertext for which a decryption request was not recorded. In such asetting protection against a-posteriori chosen ciphertext attacks is adequate.Furthermore, in both cases, decryption requests can be made also with respectto strings that are not valid ciphertexts, in which case the decryption modulereturns a special error symbol.Typically, in settings in which a mild or strong form of a chosen ciphertextattack is possible, a chosen plaintext attack is possible too. Thus, we actuallyconsider combined attacks in which the adversary may ask for encryption anddecryption of strings of its choice. Indeed (analogously to Proposition 5.4.10), incase of public-key schemes (but not in case of private-key schemes) the combinedattack is equivalent to a \pure" chosen ciphertext attack.Organization: We start by providing security de�nitions for the two typesof attacks discussed above. In Section 5.4.4.2, we further extend the de�ni-tional treatment of security (and derive a seemingly stronger notion that isin fact equivalent to the notions in Section 5.4.4.1). In Section 5.4.4.3 (resp.,Section 5.4.4.4) we discuss the construction of private-key (resp., public-key)encryption schemes that are secure under chosen ciphertext attacks.5.4.4.1 De�nitions for two types of attacksFollowing Section 5.4.3.1 and bearing in mind that we wish to de�ne two types ofchosen ciphertext attacks (i.e., a-priori and a-posteriori ones), we �rst formulatethe framework of chosen ciphertext attacks. As in the case of chosen plaintextattacks, we consider attacks that proceeds in four stages corresponding to thegeneration of a pair of keys (by a legitimate party), the adversary's requests(answered by the legitimate party) to encrypt and/or decrypt strings under thecorresponding key, the generation of a challenge ciphertext (under this key andaccording to a templet speci�ed by the adversary), and additional requests toencrypt and/or decrypt strings. That is, a chosen ciphertext attack proceeds asfollows:1. Key generation: A key-pair (e; d)  G(1n) is generated (by a legitimateparty). In the public-key setting the adversary is given e, whereas in theprivate-key setting the adversary is only given 1n.2. Encryption and decryption requests: Based on the information obtainedso far, the adversary may request (the legitimate party) to encrypt and/ordecrypt strings of its (i.e., the adversary's) choice. A request to encryptthe plaintext x is answered with a value taken from the distribution Ee(x),where e is as determined in Step 1. A request to decrypt a valid (w.r.t. Ee)ciphertext y is answered with the value Dd(y), where d is as determinedin Step 1. A request to decrypt a string y that is not a valid ciphertext(w.r.t. Ee) is answered with a special error symbol. After making severalsuch requests, the adversary moves to the next stage.
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5.4. * BEYOND EAVESDROPPING SECURITY 4273. Challenge generation: Based on the information obtained so far, the ad-versary speci�es a challenge templet and is given an actual challenge. Thisis done as in the corresponding step in the framework of chosen plaintextattacks.4. Additional encryption and decryption requests: Based on the informationobtained so far, the adversary may request to encrypt additional plain-texts of its choice. In addition, in case of an a-posteriori chosen ciphertextattack (but not in the case of a-priori chosen ciphertext attack), the ad-versary may make additional decryption requests with the only (natural)restriction that it is not allowed to ask to decrypt the challenge ciphertext.All requests are handled as in Step 2. After making several such requests,the adversary produces an output and halts.In the actual de�nition, as in the case of chosen plaintext attacks, the adversary'sstrategy will be decoupled into two parts corresponding to its actions before andafter the generation of the actual challenge. Each part will be represented by a(probabilistic polynomial-time) two-oracle machine, where the �rst oracle is an\encryption oracle" and the second is a \decryption oracle" (both with respectto the corresponding key generated in Step 1). As in the case of chosen plaintextattacks, the two parts are denoted A1 and A2, and A1 passes a state information(denoted �) to A2. Again, in accordance to using non-uniform formulations,we provide A1 with a (non-uniform) auxiliary input. Thus, in the case of (a-posteriori chosen ciphertext attacks on) public-key schemes, the four-step attackprocess can be written as follows:(e; d)  G(1n)(�; �)  AEe;Dd1 (e; z)c def= an actual challenge generated according to the templet �output  AEe;Dd2 (�; c)where A2 is not allowed to make a query regarding the ciphertext in c, andz denotes the (non-uniform) auxiliary input given to the adversary. In case ofprivate-key schemes, the adversary (i.e., A1) is given 1n instead of e. In case of a-priori chosen ciphertext attacks, A2 is not allowed to query Dd (or, equivalently,A2 is only given oracle access to the oracle Ee).Semantic security: As in the case of chosen plaintext attacks, a de�nition ofsemantic security is derived by an adequate speci�cation of the challenge gener-ation and the meaning of success. As before, the challenge generation consistsof the adversary specifying a triplet of circuits, denoted (S; h; f), and being pre-sented with an encryption of x S(Upoly(n)) along with the partial informationh(x). The adversary's goal is to guess f(x), and semantic security amount to say-ing that the adversary's success probability can be matched by a correspondingalgorithm that is only given h(x) and 1jxj. Again, the corresponding algorithm isdecoupled into two parts, the �rst is in charge of outputting a challenge templet,
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428 CHAPTER 5. ENCRYPTION SCHEMESand the second is in charge of solving the challenge, where state information ispassed from the �rst part to the second part. Furthermore, again, it is importantto require that the challenge templet produced by the corresponding algorithmis distributed exactly as the challenge templet produced by the adversary.De�nition 5.4.13 (semantic security under chosen ciphertext attacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto be semantically secure under a-priori chosen ciphertext attacks if for everypair of probabilistic polynomial-time oracle machines, A1 and A2, thereexists a pair of probabilistic polynomial-time algorithms, A01 and A02, suchthat the following two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n andz 2 f0; 1gpoly(n) it holds thatPr266664 v = f(x) where(e; d) G(1n)((S; h; f); �) AEe;Dd1 (e; z)c (Ee(x); h(x)) ; where x S(Upoly(n))v  AEe2 (�; c) 377775< Pr2664 v = f(x) where((S; h; f); �) A01(1n; z)x S(Upoly(n))v  A02(�; 1jxj; h(x)) 3775+ 1p(n)2. For every n and z, the �rst elements (i.e., the (S; h; f) part) in therandom variables A01(1n; z) and AEG1(1n);DG2(1n)1 (G1(1n); z) are iden-tically distributed.Semantic security under a-posteriori chosen ciphertext attacks is de�ned anal-ogously, except that A2 is given oracle access to both Ee and Dd with therestriction that when given the challenge c = (c0; c00), machine A2 is notallowed to make the query c0 to the oracle Dd.For private-key schemes: The de�nition is identical except that algorithm A1gets the security parameter 1n instead of the encryption-key e.Clearly, the a-posteriori version of De�nition 5.4.13 implies its a-priori version,which in turn implies De�nition 5.4.8. Furthermore, these implications are strict(see Exercises 32 and 31, respectively).Indistinguishability of encryptions: As in the case of chosen plaintext at-tacks, deriving the corresponding de�nition of indistinguishability of encryptions(from the above framework) is considerably simpler: the challenge generationconsists of the adversary specifying two equal-length strings and the adversaryis presented with the encryption of one of them.
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5.4. * BEYOND EAVESDROPPING SECURITY 429De�nition 5.4.14 (indistinguishability of encryptions under chosen ciphertextattacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto have indistinguishable encryptions under a-priori chosen ciphertext attacksif for every pair of probabilistic polynomial-time oracle machines, A1 andA2, for every positive polynomial p(�), and all su�ciently large n and z 2f0; 1gpoly(n) it holds that jp(1)n;z � p(2)n;zj < 1p(n)where p(i)n;z def= Pr266664 v = 1 where(e; d) G(1n)((x(1); x(2)); �) AEe;Dd1 (e; z)c Ee(x(i))v  AEe2 (�; c) 377775where jx(1)j = jx(2)j.Indistinguishability of encryptions under a-posteriori chosen ciphertext attacksis de�ned analogously, except that A2 is given oracle access to both Ee andDd with the restriction that when given the challenge c, machine A2 is notallowed to make the query c to the oracle Dd.For private-key schemes: The de�nition is identical except that A1 gets thesecurity parameter 1n instead of the encryption-key e.Clearly, the a-posteriori version of De�nition 5.4.14 implies its a-priori version,which in turn implies De�nition 5.4.9 as a special case. Again, these implicationsare strict (see again Exercises 32 and 31, respectively).Terminology: We use CCA as a shorthand for chosen ciphertext attack.Equivalence of semantic security and ciphertext-indistinguishability.Again, we show that the two formulations of security (i.e., semantic security andindistinguishable encryptions) are in fact equivalent.Theorem 5.4.15 (equivalence of de�nitions for CCA): A public-key (resp., private-key) encryption scheme (G;E;D) is semantically secure under a-priori CCA ifand only if it has indistinguishable encryptions under a-priori CCA. An analo-gous claim holds for a-posteriori CCA.Proof Sketch: We adapt the proof of Theorem 5.4.11 to the current setting.The adaptation is straightforward, and we focus on the case of a-posteriori CCAsecurity (while commenting on the case of a-priori CCA security).In order to show that indistinguishable encryptions implies semantic secu-rity, given an adversary (A1; A2) we construct the following matching algorithmA01; A02:
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430 CHAPTER 5. ENCRYPTION SCHEMES1. A01(1n; z) def= (�; �0), where (�; �0) is generated as follows:First, A01 generates an instance of the encryption scheme; that is, A01 lets(e; d)  G(1n). Next, A01 invokes A1, while emulating the oracles Ee andDd, and sets (�; �)  AEe;Dd1 (1n; z). Finally, A01 sets �0 def= ((e; d); �). (Incase of a-priori CCA security, we may set �0 def= (e; �), as in the proof ofTheorem 5.4.11.)We comment that the generated key-pair (e; d), allows A01 to emulate theencryption and decryption oracles Ee and Dd.2. A02(((e; d); �); 1m; 
) def= AEe;Dd2 (�; (Ee(1m); 
)), where typically 
 = h(x)andm = jxj. (In case of a-priori CCA security, we may setA02((e; �); 1m; 
) def=AEe2 (�; (Ee(1m); 
)), as in the proof of Theorem 5.4.11.)Again, since A01 merely emulates the generation of a key-pair and the actionsof A1 with respect to such a pair, the equal distribution condition (i.e., Item 2in De�nition 5.4.13) holds. Using the (corresponding) indistinguishability of en-cryption hypothesis, we show that (even in the presence of the encryption oracleEe and a restricted decryption oracleDd) the distributions (�; (Ee(x); h(x))) and(�; (Ee(1jxj); h(x))) are indistinguishable, where (e; d) G(1n), ((S; h; f); �) AEe1 (y; z) (with y = e or y = 1n depending on the model), and x S(Upoly(n)).The main thing to notice is that the oracle queries made by a possible dis-tinguisher of the above distributions can be handled by a distinguisher of en-cryptions (as in De�nition 5.4.14), by passing these queries to its own oracles.It follows that indistinguishable encryptions (as per De�nition 5.4.14) impliessemantic security (as per De�nition 5.4.13).We now turn to the opposite direction. Here the construction of a challengetemplet (as per De�nition 5.4.13) is exactly as the corresponding construction inthe proof of Theorem 5.4.11. Again, the thing to notice is that the oracle queriesmade by a possible distinguisher of encryptions (as in De�nition 5.4.14) can behandled by the semantic-security adversary, by passing these queries to its ownoracles. We derive a contradiction to the hypothesis that (G;E;D) satis�esDe�nition 5.4.13, and the theorem follows.Multiple-message security: De�nitions 5.4.13 and 5.4.14 can be easily gen-eralized to handle challenges in which multiple plaintexts are encrypted. Westress that in case of a-posteriori CCA the adversary is not allowed to makea decryption query that equals any of the challenge ciphertexts. As in pre-vious cases, the corresponding (multiple-plaintext) de�nitions are equivalent.Furthermore, as in case of chosen plaintext attacks, the multiple-plaintext de�-nitions are equivalent to the single-plaintext de�nition (both for public-key andprivate-key schemes). We stress that the above notion of multiple-message CCAsecurity refers to a single challenge-generation step in which a sequence of mes-sages (rather than a single message) can be speci�ed. A more general notion ofmultiple-message CCA security allows multiple challenge-generation steps that
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5.4. * BEYOND EAVESDROPPING SECURITY 431may be interleaved with the query steps. This notion generalizes the notion ofchosen ciphertext attacks, and is discussed next (i.e., in Subsection 5.4.4.2). Ac-tually, we will focus on this generalization when applied to a-posteriori chosenciphertext attacks, although a similar generalization can be applied to a-priorichosen ciphertext attacks (and in fact also to chosen plaintext attacks).5.4.4.2 A third equivalent de�nition of a-posteriori CCA-securityIn continuation to the last paragraph, we consider general attacks during whichseveral challenge templets may be produced (at arbitrary times and possiblyinterleaved with encryption and decryption queries).27 Each of these challengetemplets will be answered similarly to the way such templets were answeredabove (i.e., by selecting a plaintext from the speci�ed distribution and provid-ing its encryption together with the speci�ed partial information). Unlike inSection 5.4.4.1, we will even allow attacks that make decryption queries regard-ing ciphertexts obtained as (part of the) answer to previous challenge templets.After such an attack, the adversary will try to obtain information about theunrevealed plaintexts, and security holds if its success probability can be met bya corresponding benign adversary that does not see the ciphertexts. Indeed, theabove discussion requires clari�cation and careful formulation, provided next.We start with a description of the actual attacks. It will be convenient tochange the formalism and consider the generation of challenge templets as chal-lenge queries that are answered by a special oracle called the tester, and denotedTe;r, where e is an encryption-key and r is a random string of adequate length.On query a challenge templet of the form (S; h), where S is a sampling circuitand h is (an evaluation circuit for) a function, the (randomized) oracle Te;r re-turns the pair (Ee(x); h(x)), where x = S(r). (Indeed, we may assume withoutloss of generality that for all queries (S; h) it holds that S is a sampling circuitthat generates strings of length that �ts h's input.) We stress that r is not knownto the adversary, and that this formalism supports the generation of dependentchallenges as well as of independent ones.28 A multiple-challenge CCA is allowedqueries to Te;r as well as unrestricted queries to both Ee and the correspondingDd, including decryption queries referring to previously obtained challenge ci-phertexts. It terminates by outputting a function f and a value v, hoping thatf(x1; :::; xt) = v, where xi = Si(r) and (Si; hi) is the ith challenge query madeby the adversary. Note that the description of f may encode various informationgathered by the adversary during its attack (e.g., it may even encode its entirecomputation transcript).27 Note that in this section we generalize the notion of an a-posteriori chosen ciphertextattack. When generalizing the notion of an a-priori chosen ciphertext attack, we disallowdecryption queries after the �rst challenge templet is produced.28 Independently distributed plaintexts can be obtained by sampling circuits that refer todisjoint parts of the random string r. On the other hand, we can obtain a pair of plaintextssuch that the second plaintext is a function of the �rst one by letting the second samplingcircuit equal the composition of the �rst sampling circuit with the said function. That is,making queries of the form (S; �) and (C � S; �), where C is a deterministic circuit, we obtainanswers that refer to the plaintexts x def= S(r) and C(x).
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432 CHAPTER 5. ENCRYPTION SCHEMESWe now turn to describe the benign adversary (which does not see the ci-phertexts). Such an adversary is given oracle access to a corresponding oracle,Tr, that behave as follows. On query a challenge templet of the form (S; h), theoracle returns h(x), where x = S(r). (Again, r is not known to the adversary.)Like the real adversary, the benign adversary also terminates by outputting afunction f and a value v, hoping that f(x1; :::; xt) = v, where xi = Si(r) and(Si; hi) is the ith challenge query made by the adversary.Security amounts to asserting that the e�ect of any e�cient multiple-challengeCCA can be simulated by a e�cient benign adversary that does not see the ci-phertexts. As in De�nition 5.4.13, the simulation has to satisfy two conditions:First, the probability that f(x1; :::; xt) = v in the CCA must be met by theprobability that a corresponding event holds in the benign model (where theadversary does not see ciphertexts). Second, the challenge queries as well asthe function f should be distributed similarly in the two models. Actually, thesecond condition should be modi�ed in order to account for the case that thereal CCA adversary makes a decryption query that refers to a ciphertext that iscontained in the answer given to a previous challenge query, denoted (S; h). Notethat such a decryption query (i.e., Ee(S(r))) reveals S(r) to the attacker, andthat this has nothing to do with the security of the encryption scheme. Thus,it is only fair to also allow the benign adversary (which sees no ciphertexts) tomake the corresponding query, which is equivalent to the challenge query (S; id),where id is the identity function. (Indeed, the answer will be id(S(r)) = S(r).)In order to obtain the actual de�nition, we need to de�ne the trace of theexecution of the above two types of adversaries. For a multiple-challenge CCAadversary, denoted A, the trace is de�ned as the sequence of challenge queriesmade during the attack, augmented by �ctitious challenge queries such that the(�ctitious challenge) query (S; id) is included if and only if the adversary madea decryption query c such that (c; �) is the answer given to a previous challengequery of the form (S; �). (This convention is justi�ed by the fact that the answer(Ee(S(r)); id(S(r))) to the �ctitious challenge query (S; id) is e�ciently com-putable from the answer S(r) to the decryption query c = Ee(S(r)).)29 In fact,for simplicity, we will assume below that A (or rather a minor modi�cation ofA) actually makes these �ctitious challenge queries. For the benign adversary,denoted B, the trace is de�ned as the sequence of challenge queries made duringthe attack.De�nition 5.4.16 (multiple-challenge CCA security):For public-key schemes: A public-key encryption scheme, (G;E;D), is saidto be secure under multiple-challenge chosen ciphertext attacks if for everyprobabilistic polynomial-time oracle machine A there exists a probabilisticpolynomial-time oracle machine B such that the following two conditionshold:29 Indeed, the value (Ee(S(r));id(S(r))) is obtained from S(r) by making an encryptionquery S(r).
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5.4. * BEYOND EAVESDROPPING SECURITY 4331. For every positive polynomial p(�), and all su�ciently large n andz 2 f0; 1gpoly(n) it holds thatPr2664 v = f(x1; :::; xt) where(e; d) G(1n) and r  Upoly(n)(f; v) AEe;Dd;Te;r(e; z)xi  Si(r), for i = 1; :::; t. 3775< Pr2664 v = f(x1; :::; xt) wherer  Upoly(n)(f; v) BTr (1n; z)xi  Si(r), for i = 1; :::; t. 3775+ 1p(n)where t is the number of challenge queries made by A (resp., B), andSi is the �rst part of the ith challenge query made by A (resp., B) toTe;r (resp., to Tr).2. The following two probability ensembles, indexed by n 2 N and z 2f0; 1gpoly(n), are computationally indistinguishable:(a) The trace of AEG1(1n);DG2(1n);TG1(1n);Upoly(n) (G1(1n); z) augmentedby its output.(b) The trace of BTUpoly(n) (1n; z) augmented by its output.That is, in both cases, we refer to the corresponding sequence((S1; h1); :::; (St; ht); (f; v)) :where (Si; hi) denotes the ith challenge query.For private-key schemes: The de�nition is identical except that machine Agets the security parameter 1n instead of the encryption-key e.To get more comfortable with De�nition 5.4.16, consider the special case in whichthe real CCA adversary does not make decryption queries to ciphertexts obtainedas part of answers to challenge queries. (In the proof of Theorem 5.4.17, suchadversaries will be called canonical and will be showed to be as powerful as thegeneral ones.) The trace of such adversaries equals the sequence of actual chal-lenge queries made during the attack (without any �ctitious challenge queries),which simpli�es the meaning of Condition 2. Furthermore, the special case inwhich such an adversary makes a single challenge query is very similar to Def-inition 5.4.13, with the exception that here Condition 2 allows computationalindistinguishability (rather than requiring identical distributions). Still, thisvery restricted case (of De�nition 5.4.16) does imply security under a-posterioriCCA (see Exercise 33). More importantly, the following holds:Theorem 5.4.17 (a-posteriori-CCA implies De�nition 5.4.16): Let (G;E;D)be a public-key (resp., private-key) encryption scheme that is secure under a-posteriori CCA. Then (G;E;D) is secure under multiple-challenge chosen ci-phertext attacks.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



434 CHAPTER 5. ENCRYPTION SCHEMESProof Sketch: As a bridge between the multiple-challenge CCA and the corre-sponding benign adversary that does not see the ciphertext, we consider canon-ical adversaries that can perfectly simulate any multiple-challenge CCA withoutmaking decryption queries to ciphertexts obtained as part of answers to challengequeries. Instead, these canonical adversaries make corresponding queries of theform (S; id), where id is the identity function and (S; �) is the challenge-querythat was answered with the said ciphertext. Speci�cally, suppose that a multiple-challenge CCA has made the challenge query (S; h), which was answered by (c; v)where c = Ee(x), v = h(x) and x = S(r), and at a later stage makes the decryp-tion query c, which is to be answered by Dd(c) = x. Then, the correspondingcanonical adversary makes the challenge query (S; h) as the original adversary,receiving the same pair (c; v), but later (instead of making the decryption queryc) the canonical adversary makes the challenge query (S; id), which is answeredby id(S(r)) = x = Dd(c). Note that the trace of the corresponding canonicaladversary is identical to the trace of the original CCA adversary (and the sameholds with respect to their outputs).Thus, given an a-posteriori-CCA secure encryption scheme, it su�ces toestablish De�nition 5.4.16 when the quanti�cation is restricted to canonical ad-versaries A. Indeed, as in previous cases, we construct a benign adversary Bin the natural manner: On input (1n; z), machine B generates (e; d)  G(1n),and invokes A on input (y; z), where y = e if we are in the public-key case andy = 1n otherwise. Next, B emulates all oracles expected by A, while using itsown oracle Tr. Speci�cally, the oracles Ee and Dd are perfectly emulated by us-ing the corresponding keys (known to B), and the oracle Te;r is (non-perfectly)emulated using the oracle Tr; that is, the query (S; h) is forwarded to Tr, andthe answer h(S(r)) is augmented with Ee(1m), where m is the number of outputbits in S. Note that the latter emulation (i.e., the answer (Ee(1jS(r)j); h(S(r))))is non-perfect since the answer of Te;r would have been (Ee(S(r)); h(S(r))), yet(as we shall show) A cannot tell the di�erence.In order to show that B satis�es both conditions of De�nition 5.4.16 (w.r.tthe above A), we will show that the following two ensembles are computationallyindistinguishable:1. The global view in real attack of A on (G;E;D). That is, we consider theoutput of the following experiment:(a) (e; d) G(1n) and r  Upoly(n).(b) (f; v)  AEe;Dd;Te;r(y; z), where y = e if we are in the public-keycase and y = 1n otherwise. Furthermore, we let ((S1; h1); :::; (St; ht))denote the trace of the execution AEe;Dd;Te;r (y; z).(c) The output is ((S1; h1); :::; (St; ht)); (f; v); r.2. The global view in an attack emulated by B. That is, we consider theoutput of an experiment as above, except that AEe;Dd;Te;r (y; z) is replacedby AEe;Dd;T 0e;r(y; z), where on query (S; h) the oracle T 0e;r replies with(Ee(1jS(r)j); h(S(r))) rather than with (Ee(S(r)); h(S(r))).
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5.4. * BEYOND EAVESDROPPING SECURITY 435Note that computational indistinguishability of the above ensembles immediatelyimplies Condition 2 of De�nition 5.4.16, whereas Condition 1 also follows becauseusing r we can determine whether or not f(S1(r); :::; St(r)) = v holds (for (f; v)and S1; :::; St that appear in the ensemble's output). Also note that the aboveensembles may be computationally indistinguishable only in case A is canonical(which we have assumed to be the case).30The computational indistinguishability of the above two ensembles is provenusing a hybrid argument, which in turn relies on the hypothesis that (G;E;D)has indistinguishable encryptions under a-posteriori-CCAs. Speci�cally, we in-troduce t + 1 mental experiments that are hybrids of the above two ensembles(which we wish to relate). Each of these mental experiments is given oracleaccess to Ee and Dd, where (e; d)  G(1n) is selected from the outside. Theith hybrid experiment uses these two oracles (in addition to y which equals ein the public-key case and 1n otherwise), in order to emulate an execution ofAEe;Dd;�ie;r (y; z), where r is selected by the experiment itself and �ie;r is a hybridof Te;r and T 0e;r. Speci�cally, �ie;r is a history-dependent process that answerslike Te;r on the �rst i queries and like T 0e;r on the rest. Thus, for i = 0; :::; t, wede�ne the ith hybrid experiment as a process that given y (which equals e or 1n)and oracle access to Ee and Dd, where (e; d) G(1n), behaves as follows:1. The process selects r  Upoly(n).2. The process emulates an execution of AEe;Dd;�ie;r(y; z), where y = e ifwe are in the public-key case and y = 1n otherwise, by using the ora-cles Ee and Dd. Speci�cally, the answers of �ie;r are emulated using theknowledge of r and oracle access to Ee: the jth query to �ie;r, denoted(Sj ; hj), is answered by (Ee(Sj(r)); hj(Sj(r))) if j � i and is answered by(Ee(1jSj(r)j); hj(Sj(r))) otherwise. (The process answers A's queries to Eeand Dd by forwarding them to its own corresponding oracles.)3. As before, (f; v) denotes the output ofAEe;Dd;�ie;r (y; z) and ((S1; h1); :::; (St; ht))denotes its trace. The process outputs ((S1; h1); :::; (St; ht)); (f; v); r.We stress that since A is canonical, none of the Dd-queries equals a ciphertextobtained as part of the answer of a �ie;r-query.Clearly, the distribution of the 0-hybrid is identical to the distribution ofthe global view in an attack emulated by B, whereas the distribution of thet-hybrid is identical to the distribution of the global view in a real attack by A.30 Non-canonical adversaries can easily distinguish the two types of views by distinguishingthe oracle Te;r from oracle T 0e;r . For example, suppose we make a challenge query with asampling-circuit S that generates some distribution over f0; 1gm n f1mg, next make a decryp-tion query on the ciphertext obtained in the challenge query, and output the answer. Then, incase we query the oracle Te;r , we output Dd(Ee(S(r))) 6= 1m; whereas in case we query the or-acle T 0e;r, we output Dd(Ee(1m)) = 1m. Recall however that, at this point of the proof, we areguaranteed that A is canonical (and indeed A might have been derived by perfectly-emulatingsome non-canonical A0). An alternative way of handling non-canonical adversaries is to let Bhandled the disallowed (decryption) queries by making the corresponding challenge query, andreturning its answer rather than the decryption value. (Note that B, which emulates T 0r;e, candetect which queries are disallowed.)
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436 CHAPTER 5. ENCRYPTION SCHEMESOn the other hand, distinguishing the i-hybrid from the (i+ 1)-hybrid yields asuccessful a-posteriori-CCA (in the sense of distinguishing encryptions). Thatis, assuming that one can distinguish the i-hybrid from the (i + 1)-hybrid, weconstruct an a-posteriori-CCA adversary (as per De�nition 5.4.14) as follows.For (e; d)  G(1n), given y = e if we are in the public-key case and y = 1notherwise, the attacker (having oracle access to Ee and Dd) behaves as follows1. The attacker selects r  Upoly(n).2. The attacker emulates an execution of AEe;Dd;�je;r (y; z), where j 2 fi; i+1g(is unknown to the attacker), as follows. The queries to Ee and Dd areanswered by using the corresponding oracles available to the attacker, andthe issue is answering the queries to �je;r. The �rst i queries to �je;rare answered as in both �ie;r and �i+1e;r (i.e., query (S; h) is answered by(Ee(S(r)); h(S(r)))), and the last t � (i + 1) queries are also answeredas in both �ie;r and �i+1e;r (i.e., by (Ee(1jS(r)j); h(S(r))), this time). Thei + 1st query, denoted (Si+1; hi+1), is answered by producing the chal-lenge templet (Si+1(r); 1jSi+1(r)j), which is answered by the challenge ci-phertext c (where c 2 fEe(Si+1(r)); Ee(1jSi+1(r)j)g), and replying with(c; hi+1(Si+1(r))).Note that if c = Ee(Si+1(r)) then we emulate �i+1e;r , whereas if c =Ee(1jSi+1(r)j) then we emulate �ie;r.3. Again, (f; v) denotes the output of AEe;Dd;�je;r(y; z), and ((S1; h1); :::; (St; ht))denotes its trace. The attacker feeds ((S1; h1); :::; (St; ht)); (f; v); r to thehybrid distinguisher (which we have assumed to exist towards the contra-diction), and outputs whatever the latter does.The above is an a-posteriori-CCA as in De�nition 5.4.14: it produces a singlechallenge (i.e., the pair of plaintexts (Si+1(r); 1jSi+1(r)j)), and distinguishes thecase it is given the ciphertext c = Ee(Si+1(r)) from the case it is given theciphertext c = Ee(1jSi+1(r)j), without querying Dd on the challenge ciphertextc. The last assertion follows by the hypothesis that A is canonical, and so noneof the Dd-queries that A makes equals the ciphertext c obtained as (part of) theanswer to the i+1st �je;r-query. Thus, distinguishing the i+1st and ith hybridsimplies distinguishing encryptions under an a-posteriori-CCA, which contradictsour hypothesis regarding (G;E;D). The theorem follows.Further generalization. Recall that we have allowed arbitrary challengequeries of the form (S; h) that were answered by (Ee(S(r)); h(S(r))). Instead,we may allow queries of the form (S; h) that are answered by (Ee(S(r)); h(r));that is, h is applied to r itself rather than to S(r). Actually, given the indepen-dence of h from S, one could have replaced the challenge queries by two typesof queries: partial-information (on r) queries that correspond to the h's (and areanswered by h(r)), and encrypted partial-information queries that correspond tothe S's (and are answered by Ee(S(r))). As shown in Exercise 34, all these formsare in fact equivalent.
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5.4. * BEYOND EAVESDROPPING SECURITY 4375.4.4.3 Constructing CCA-secure private-key schemesIn this section we present simple constructions of CCA-secure private-key en-cryption schemes. We start with a-priori CCA, and next turn to a-posterioriCCA.Security under a-priori CCA. All the results presented in Section 5.3.3extend to security under a-priori chosen ciphertext attacks. Speci�cally, weprove that Constructions 5.3.9 and 5.3.12 remain secure also under an a-prioriCCA.Proposition 5.4.18 Let F and (G;E;D) be as in Construction 5.3.9, and sup-pose that F is pseudorandom with respect to polynomial-size circuits. Then theprivate-key encryption scheme (G;E;D) is secure under a-priori chosen cipher-text attacks. The same holds with respect to Construction 5.3.12.Proof Sketch: As in the proof of 5.4.12, we focus on Construction 5.3.9, andconsider an idealized version of the scheme in which one uses a uniformly selectedfunction � :f0; 1gn!f0; 1gn (rather than the pseudorandom function fs). Again,all that the adversary obtains by encryption queries in the ideal version is pairs(r; �(r)), where the r's are uniformly and independently distributed in f0; 1gn.Similarly, decryption queries provide the adversary with pairs (r; �(r)), but herethe r's are selected by the adversary. Still in an a-priori CCA, all decryptionqueries are made before the challenge is presented, and so these r's are selected(by the adversary) independent of the challenge. Turning to the challenge itself,we observe that the plaintext is \masked" by the value of � at another uniformlyand independently distributed element in f0; 1gn, denoted rC . We stress that rCis independent of all r's selected in decryption queries (because these occur beforerC is selected), as well as being independent of all r's selected by the encryptionoracle (regardless of whether these queries are made prior or subsequently tothe challenge). Now, unless rC happens to equal one of the r's that appearin the pairs (r; �(r)) obtained by the adversary (which happens with negligibleprobability), the challenge plaintext is perfectly masked. Thus, the ideal versionis secure under an a-priori CCA, and the same holds for the real scheme.Security under a-posteriori CCA. Unfortunately, Constructions 5.3.9 and 5.3.12are not secure under an a-posteriori chosen ciphertext attacks: Given a challengeciphertext (r; x � fs(r)), the adversary may obtain fs(r) by making the query(r; y0), for any y0 6= x � fs(r). This query is allowed and is answered with x0such that y0 = x0 � fs(r). Thus, the adversary may recover the challenge plain-text x from the challenge ciphertext (r; y), where y def= x � fs(r), by computingy � (y0 � x0). Thus, we should look for new private-key encryption schemes ifwe want to obtain one that is secure under a-posteriori CCA. Actually, we showhow to transform any private-key encryption scheme that is secure under chosenplaintext attack (CPA) into one that is secure under a-posteriori CCA.
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438 CHAPTER 5. ENCRYPTION SCHEMESThe idea underlying our transformation (of CPA-secure schemes into CCA-secure ones) is to eliminate the adversary's gain from chosen ciphertext attacksby making it infeasible to produce a legitimate ciphertext (other than the onesgiven explicitly to the adversary). Thus, an a-posteriori CCA adversary can beemulated by a chosen plaintext attack (CPA) adversary, while almost preservingthe success probability.The question is indeed how to make it infeasible for the (a-posteriori CCA)adversary to produce a legitimate ciphertext (other than the ones explicitlygiven to it). One answer is to use \Message Authentication Codes" as de�nedin Section 6.1.31 That is, we augment each ciphertext with a correspondingauthentication tag (which is \hard to forge"), and consider an augmented ci-phertext to be valid only if it consists of a valid (string,tag)-pair. For sake ofself-containment (and concreteness), we will use below a speci�c implementa-tion of such MACs via pseudorandom functions. Incorporating this MAC inConstruction 5.3.9, we obtain the followingConstruction 5.4.19 (a private-key block-cipher secure against a-posteriori-CCA): As in Construction 5.3.9, let F = fFng be an e�ciently computablefunction ensemble and let I be the function-selection algorithm associated withit; i.e., I(1n) selects a function fs with distribution Fn. We de�ne a private-keyblock cipher, (G;E;D), with block length `(n) = n as followskey-generation: G(1n) = ((k; k0); (k; k0)), where k and k0 are generated by twoindependent invocations of I(1n).encrypting plaintext x 2 f0; 1gn (using the key (k; k0)):Ek;k0 (x) = ((r; fk(r) � x); fk0 (r; fk(r) � x));where r is uniformly chosen in f0; 1gn.decrypting ciphertext (r; y) (using the key (k; k0)): Dk;k0 ((r; y); t) = fk(r)� y iffk0(r; y) = t and Dk;k0 ((r; y); t) = ? otherwise.Proposition 5.4.20 Let F and (G;E;D) be as in Construction 5.4.19, andsuppose that F is pseudorandom with respect to polynomial-size circuits. Thenthe private-key encryption scheme (G;E;D) is secure under a-posteriori chosenciphertext attacks.Proof Sketch: Following the motivation preceding the construction, we emulateany a-posteriori-CCA adversary by a CPA adversary. Speci�cally, we need toshow how to answer decryption queries made by the CCA adversary. Let usdenote such a generic query by ((r; y); t), and consider the following three cases:1. If ((r; y); t) equals the answer given to some (previous) encryption queryx, then we answer the current query with x.Clearly, the answer we give is always correct.31 In fact, we need to use secure Message Authentication Codes that have unique valid tags(or at least are super-secure), as discussed in Section 6.5.1 (resp., Section 6.5.2).
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5.4. * BEYOND EAVESDROPPING SECURITY 4392. If ((r; y); t) equals the challenge ciphertext then this query is not allowed.3. Otherwise, we answer that ((r; y); t) is not a valid ciphertext.We need to show that our answer is indeed correct. Recall that in this case((r; y); t) did not appear before as an answer to an encryption query. Sincefor every (r; y) there is a unique t0 such that ((r; y); t0) is a valid ciphertext,the case hypothesis implies that one of the following sub-cases must occur:Case 1: Some ((r; y); t0), with t0 6= t, has appeared before as an answer toan encryption query. In this case ((r; y); t) is de�nitely not a validciphertext (because ((r; y); t0) is the unique valid ciphertext of theform ((r; y); �)).Case 2: No triple of the form ((r; y); �) has appear before as such an answer(to an encryption query). In this sub-case, the ciphertext is valid ifand only if t = fk0(r; y). That is, in order to produce such a valid ci-phertext the adversary must guess the value of fk0 at (r; y), when onlyseeing the value of fk0 at other arguments. By the pseudorandomnessof the function fk0 , the adversary may succeed in such a guess onlywith negligible probability, and hence our answer is wrong only withnegligible probability.Finally, note that the CPA-security of Construction 5.3.9 (see Proposition 5.4.12)implies that so is Construction 5.4.19. The proposition follows.An alternative proof of Proposition 5.4.20: Augmenting the proof ofProposition 5.4.18, we (need to) consider here also decryption queries made afterthe challenge ciphertext, denoted ((rC ; yC); tC), is presented. Let us denote sucha generic query by ((r; y); t). We consider four cases:1. If r 6= rC then this query can be treated as in the proof of Proposi-tion 5.4.18, because it reveals nothing on fk(rC). Indeed, such a queryis not more dangerous than a query made during an a-priori-CCA attack.2. If r = rC and y 6= yC then, except with negligible probability, this query isnot a valid ciphertext, because it is infeasible to guess the value of fk0(r; y)(which is the only value of t0 such that ((r; y); t0) is valid). Thus, suchqueries (which are almost always answered by ?) can be ignored.3. If (r; y) = (rC ; yC) and t 6= tC then (surely) this query is not a validciphertext, and can be ignored (as in the previous case).4. If (r; y; t) = (rC ; yC ; tC) then this query is not allowed.The proposition follows.The same construction and analysis can be applied to Construction 5.3.12.Combining this with Corollary 3.6.7, we get
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440 CHAPTER 5. ENCRYPTION SCHEMESTheorem 5.4.21 If there exist (non-uniformly hard) one-way functions thenthere exist private-key encryption schemes that are secure under a-posteriorichosen ciphertext attacks.5.4.4.4 Constructing CCA-secure public-key schemesIn this section we present fairly complicated constructions of CCA-secure public-key encryption schemes. Again, we start by considering a-priori CCA, and thenaugment the constructions in order to handle a-posteriori CCA. Speci�cally, wewill show how to transform any public-key encryption scheme that is securein the passive (key-dependent) sense into one that is secure under a-posterioriCCA. As in case of private-key schemes, the idea underlying the transformationis to eliminate the adversary's gain from chosen ciphertext attacks.Recall that in case of private-key schemes the adversary's gain from a CCAwas eliminated by making it infeasible (for the adversary) to produce legitimateciphertexts (other than those explicitly given to it). However, in the contextof public-key schemes, the adversary can easily generate legitimate ciphertexts(by applying the keyed encryption algorithm to any plaintext of its choice).Thus, in the current context the adversary's gain from a CCA is eliminatedby making it infeasible (for the adversary) to produce legitimate ciphertextswithout \knowing" the corresponding plaintext. This, in turn, will be achievedby augmenting the plaintext with a non-interactive zero-knowledge \proof ofknowledge" of the corresponding plaintext.NIZK: Preliminaries. Strong forms of Non-Interactive Zero-Knowledge (NIZK)proofs will play a key role in our transformation, and we will assume that thereader is familiar with the main notions and results that are presented in Sec-tion 4.10. Since the notion of a proof-of-knowledge is quite complex in general(cf. Section 4.7), and more so in the non-interactive (zero-knowledge) context(let alone that we will need strengthenings of it), we will not make explicit useof this notion (i.e., of proof-of-knowledge). Instead, we will use non-interactive(zero-knowledge) proofs of membership (NIZK) as de�ned in Section 4.10. Infact, our starting point is the de�nition of adaptive NIZK system (i.e., De�ni-tion 4.10.15), when extended to handle assertions of a-priori unbounded length(as discussed at the beginning of Section 4.10.3.1). We focus on proof systems inwhich the prover is implemented by a probabilistic polynomial-time algorithmthat is given a suitable auxiliary-input (e.g., an NP-witness). For sake of clarity,let us reproduce the resulting de�nition.De�nition 5.4.22 (adaptive NIZK): An adaptive non-interactive zero-knowledgeproof system (adaptive NIZK) for a language L 2 NP, with an NP-relation RL,consists of a pair of probabilistic polynomial-time algorithms, denoted (P; V ),that satisfy the following:� Syntax: Both machines are given the same uniformly selected referencestring r 2 f0; 1gm along with an actual input x 2 f0; 1g� such that jxj =
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5.4. * BEYOND EAVESDROPPING SECURITY 441poly(m) and an auxiliary input. Speci�cally, on input r, x and w (suppos-edly, (x;w) 2 RL), the prover P outputs an alleged proof �  P (x;w; r);whereas on input r, x and �, the veri�er V decides according to V (x; r; �) 2f0; 1g.� Completeness: For every (x;w) 2 RL with jxj = poly(m), the probabilitythat V does not accept the input x (based on the proof P (x;w; Um) and thereference string Um) is negligible; that is, Pr[V (x; Um; P (x;w; Um)) 6= 1] isnegligible. (Typically, the error probability here is zero, in which case wesay that the proof has perfect completeness.)� Adaptive Soundness: For every � : f0; 1gm! (f0; 1gpoly(m) n L) and every�:f0; 1gm!f0; 1gpoly(m), the probability that V accepts the input �(Um)(based on the proof �(Um) and the reference string Um) is negligible; thatis, Pr[V (�(Um); Um;�(Um)) = 1] is negligible.� Adaptive Zero-Knowledge: There exist two probabilistic polynomial-time al-gorithms, S1 and S2, such that for every pair of functions � : f0; 1gm!(f0; 1gpoly(m) \ L) and W :f0; 1gm!f0; 1gpoly(m) such that � and W areimplementable by polynomial-size circuits and (�(r);W (r)) 2 RL (8r 2f0; 1gm), the ensembles f(Um;�(Um); P (�(Um);W (Um); Um))gm2N andfS�(1m)gn2N are computationally indistinguishable (by non-uniform fam-ilies of polynomial-size circuits), where S�(1m) denotes the output of thefollowing randomized process:1. (r; s) S1(1m);2. x �(r);3. �  S2(x; s);4. Output (r; x; �).Indeed, S is a two-stage simulator that �rst produces (obliviously of theactual input) an alleged reference string r (along with the auxiliary in-formation s)32, and then given an actual input (which may depend on r)simulates the actual proof.Note that it is important that in the zero-knowledge condition the function �is required to be implementable by polynomial-size circuits (because otherwiseonly L in BPP can have such proof systems; see Exercise 35). In the rest of thissubsection, whenever we refer to an adaptive NIZK, we mean the de�nition above.Actually, we may relax the adaptive soundness condition so that it only appliesto functions � and � that are implementable by polynomial-size circuits. Thatis, computational-soundness will actually su�ce for the rest of this subsection.32 The auxiliary information s may explicitly contain r. Alternatively, s may just equal thecoins used by S1. In the constructions that follow, we do not follow either of these conventions,but rather let s equal the very information about r that S2 needs.
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442 CHAPTER 5. ENCRYPTION SCHEMESAdditional conventions. Note that (analogously to Proposition 5.4.10) incase of public-key schemes, the combined chosen plaintext and ciphertext attack(as in De�nitions 5.4.13 and 5.4.14) is equivalent to a \pure" chosen ciphertextattack. Thus, in this subsection we consider only attacks of the latter type.Another technical point is that in our construction we can use any public-keyencryption scheme that is secure in the passive (key-dependent) sense, providedthat for all but a negligible measure of the key-pairs that it generates there is nodecryption error. For simplicity of presentation, we will assume that the basicencryption scheme has no decryption error at all (i.e., on all key-pairs).The general framework. The following schema (for construction of CCA-secure public-key encryption schemes) uses a passively-secure public-key encryp-tion scheme, denoted (G;E;D), and an adaptive NIZK, denoted (P; V ), for arelated NP-set.Construction 5.4.23 (CCA-security construction framework): Let Ee(x; s) de-note the ciphertext produced by E when given the encryption-key e, the plaintextx and the coins s; that is, Ee(x) Ee(x; s), where s is selected uniformly amongthe set of poly(jej; jxj)-long bit strings. We use an adaptive NIZK (P; V ) for thelanguage LR de�ned by the following NP-relationR def= f((e1; e2; y1; y2); (x; s1; s2)) : y1 = Ee1(x; s1) & y2 = Ee2 (x; s2)g (5.13)That is, (e1; e2; y1; y2) 2 LR if both yi's are ciphertexts produced using theencryption-keys e1 and e2, respectively, of the same plaintext.key-generation: G0(1n)  ((e1; e2; r); (d1; d2; r)), where (e1; d1) and (e2; d2) areselected at random by invoking G(1n) twice, and r is uniformly distributedin f0; 1gn.encrypting plaintext x 2 f0; 1g� (using the key e = (e1; e2; r)): E0e(x) (y1; y2; �),where s1; s2 are uniformly selected poly(n)-long bit strings, y1 = Ee1(x; s1),y2 = Ee2 (x; s2) and �  P ((e1; e2; y1; y2); (x; s1; s2); r).decrypting ciphertext (y1; y2; �) (using the key d = (d1; d2; r)): If V ((e1; e2; y1; y2); r; �) =1 then return Dd1(y1) else return an error symbol indicating that the ci-phertext is not valid.Indeed, our choice to decrypt according to y1 (in case � is a valid proof) isimmaterial, and we might as well decrypt according to y2 or decrypt accordingto both and return a result only if both outcomes are identical. We stress that,here as well as in the following analysis, we rely on the hypothesis that decryptionis error-free, which implies that Dd(Ee(x)) = x for every (e; d) in the range ofG. Thus, Dd1(y1) = Dd2(y2), for any (e1; e2; y1; y2) 2 LR, where the (ei; di)'sare in the range of G.Clearly, Construction 5.4.23 constitute a public-key encryption scheme; thatis, D0d(E0e(x)) = x, provided that the NIZK proof generated during the encryp-tion stage was accepted during the decryption stage. Indeed, if the NIZK system
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5.4. * BEYOND EAVESDROPPING SECURITY 443enjoys perfect completeness (which is typically the case), then the decryption er-ror is zero. By the zero-knowledge property, the passive security of the originalencryption scheme (G;E;D) is preserved by Construction 5.4.23. Intuitively,creating a valid ciphertext seems to imply \knowledge" of the correspondingplaintext, but this appealing claim should be examined with more care (and infact is not always valid). Furthermore, as stated above, our actual proof willnot refer to the notion of \knowledge". Instead, the actual proof will proceedby showing how a chosen-ciphertext attack on Construction 5.4.23 can be trans-formed into a (key-dependent) passive attack on (G;E;D). In fact, we need andwill augment the notion of (adaptive) NIZK in order to present such a transfor-mation. Furthermore, we will do so in two steps. The �rst augmentation will beused to deal with a-priori CCA, and further augmentation will be used to dealwith a-posteriori CCA.Step I: a-priori CCALet us start by considering an a-priori CCA. Given such an adversary A, we con-struct a passive adversary B that attacks (G;E;D) by emulating the attack ofA on Construction 5.4.23. One important observation is that the latter encryp-tion scheme uses two keys of the original scheme. Thus, given an encryption-keyof the original scheme, B generates another encryption-key (while storing thecorresponding decryption-key), and invokes A giving it the pair of encryption-keys (along with a reference string to be generated as discussed below). WhenA makes a decryption query, B may answer the query by using the storeddecryption-key (generated by B before). This works provided that the queryciphertext contains a pair of ciphertexts of the same plaintext according to thetwo keys, which is the reason we augmented the ciphertext pairs by a proof ofconsistency. Thus, actually, B should examine the latter proof and act analo-gously to the decryption process of Construction 5.4.23.The next problem arises when A asks to be given a challenge. AlgorithmB forwards the request as its own challenge templet, but the challenge givento B is a single ciphertext of the original scheme and so B needs to augmentit into something that looks like a ciphertext of Construction 5.4.23. Here iswhere we rely on the zero-knowledge property of the proof of consistency (forproducing the required proof that relates to a plaintext we do not know), but inorder to do so the reference string needs to be generated by the simulator (ratherthan be uniformly distributed). But this leads to the following problem: whenreferring (above) to the soundness of the proofs of consistency we assumed thatthe reference string is uniformly distributed (since soundness was stated for thatcase), and it is not clear whether soundness holds when the reference string isgenerated by the simulator (who must use a di�erent33 distribution). This issueis addressed by the notion of (weak) simulation-soundness.33 Indeed, prove that the distribution produced by the simulator must be far-away fromuniform. See related Exercises 35 and 36.
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444 CHAPTER 5. ENCRYPTION SCHEMESDe�ning and constructing adaptive NIZKs with a weak simulation-soundness property. The above discussion leads to the following de�nition.De�nition 5.4.24 (weak simulation-soundness): Let (P; V ) be an adaptive NIZKfor a language L, and (S1; S2) be a corresponding two-stage simulator. We saythat weak simulation-soundness holds if for every polynomial-size implementablefunctions � and �, it holds thatPr [�(r) 62L and V (�(r); r;�(r))=1, where (r; s) S1(1n)] < �(n)where � :N! [0; 1] is a negligible function.Note that the computational limitation on � is essential to the viability of thede�nition (see Exercise 36). It is tempting to conjecture that every adaptiveNIZK (or rather its simulator) satis�es weak simulation-soundness; however,this is not true (for further discussion see Exercise 37). Nevertheless, adaptiveNIZK (for NP) with a simulator satisfying weak simulation-soundness can beconstructed given any adaptive NIZK (for NP).Construction 5.4.25 (from adaptive NIZK to weak simulation-soundness): Let(P; V ) be an adaptive NIZK for some language L, and let (S1; S2) be the cor-responding two-stage simulator. We construct the following adaptive NIZK thatworks with reference string ((r01 ; r11); :::; (r0n; r1n)), where r�i 2 f0; 1gn.Prover P 0: on common input x and auxiliary-input w (s.t., (x;w) 2 RL), (andreference string ((r01 ; r11); :::; (r0n; r1n))), uniformly select b1; :::; bn 2 f0; 1g,compute �i  P (x;w; rbii ) for i = 1; :::; n, and output � def= (b1; :::; bn; �1; :::; �n).Veri�er V 0: on common input x (and reference string ((r01 ; r11); :::; (r0n; r1n))), givenan alleged proof � = (b1; :::; bn; �1; :::; �n), accept if and only if V (x; rbii ; �i) =1 for each i 2 f1; :::; ng.Simulator's �rst stage S01: on input 1n, select uniformly c1; :::; cn 2 f0; 1g, gen-erate (rcii ; si)  S1(1n) for i = 1; :::; n, select uniformly r1�c11 ; :::; r1�cnn 2f0; 1gn, and output (r; s), where r def= ((r01 ; r11); :::; (r0n; r1n)) and s def= (c1; :::; cn; s1; :::; sn).Simulator's second stage S02: on input (s; x), where s = (c1; :::; cn; s1; :::; sn),compute �i  S2(x; si) for i = 1; :::; n, and output (c1; :::; cn; �1; :::; �n).It is easy to see that Construction 5.4.25 preserves the adaptive NIZK featuresof (P; V; S1; S2). Furthermore, as shown below, Construction 5.4.25 is weaksimulation-sound.Proposition 5.4.26 Construction 5.4.25 is an adaptive NIZK for L and weaksimulation-soundness holds with respect to the prescribed simulator.Proof Sketch: Completeness and soundness follow by the corresponding prop-erties of (P; V ). To see that the simulation is indistinguishable from the real ex-ecution of (P 0; V 0), note that the two probability ensembles di�er in two aspects:
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5.4. * BEYOND EAVESDROPPING SECURITY 445�rst, the simulation uses rcii 's generated by S1(1n), whereas in the real executionthe rcii 's are uniformly distributed; and second, the simulation uses simulatedproofs produced by S2(x; si) rather than real proofs produced by P (x;w; rbii ).Still, the indistinguishability of the output of the original simulator from thereal execution of (P; V ) can be used to prove that the current ensembles areindistinguishable too. Speci�cally, we consider a hybrid distribution in which allrbi 's are generated by S1(1n) but the individual proofs (i.e., �i's) are producedby P (x;w; rbii ). Using the fact that indistinguishability (by small circuits) ispreserved under repeated sampling, we show that this hybrid ensemble is indis-tinguishable from each of the two original ensembles (i.e., the real execution of(P 0; V 0) and the simulation by (S01; S02)).To establish the weak simulation-soundness property, we consider an arbi-trary cheating prover C = (�;�) that is implementable by a family of smallcircuits. We say that C(r) = (�(r);�(r)) succeeds if it holds that �(r) 62 L andV 0(�(r); r;�(r)) = 1. We are interested in the probability that C(r) succeedswhen (r; s)  S01(1n). Recall that s = (c1; :::; cn; s1; :::; sn), where the ci's areselected uniformly in f0; 1g, whereas �(r) has the form (b1; :::; bn; �1; :::; �n). Letus denote the latter sequence of bi's by B(r); that is, �(r) = (B(r);�0(r)). Wedistinguish two cases according to whether or not B(r) = c def= (c1; :::; cn):Pr[C(r) = (�(r); (B(r);�0(r))) succeeds, when (r; s) S01(1n)]= Pr[C(r) succeeds and B(r) = c, when (r; (c; s0)) S01(1n)] (5.14)+Pr[C(r) succeeds and B(r) 6= c, when (r; (c; s0)) S01(1n)] (5.15)Eq. (5.14) must be negligible because otherwise B can distinguish a sequenceof 2n uniformly generated rbi 's from a sequence of rbi 's as generated by S01(since in the �rst case Pr[B(r) = c] = 2�n by information theoretic considera-tions, whereas in the second case Pr[B(r) = c] is lower-bounded by Eq. (5.14)).Eq. (5.15) must be negligible because in case the ith bit of B(r) is di�erentfrom ci (i.e., bi 6= ci), the ith alleged proof (i.e., �i) is with respect to a uni-formly distributed reference string (i.e., rbii = r1�cii , which is selected uniformlyin f0; 1gn), and thus can be valid only with negligible probability (or else the(adaptive) soundness of (P; V ) is violated).Using adaptive NIZKs with weak simulation-soundness. Following theforegoing motivating discussion, we show that if the adaptive NIZK used in Con-struction 5.4.23 has the weak simulation-soundness property then the resultingencryption scheme (G0; E0; D0) is secure under a-priori CCA.Theorem 5.4.27 Suppose that the adaptive NIZK (P; V ) used in Construc-tion 5.4.23 has the weak simulation-soundness property and that the public-keyencryption scheme (G;E;D) is passively secure in the key-dependent sense. Fur-ther suppose that the probability that G(1n) produces a pair (e; d) such thatPr[Dd(Ee(x)) = x] < 1, for some x 2 f0; 1gpoly(n), is negligible. Then Con-struction 5.4.23 constitutes a public-key encryption scheme that is secure undera-priori CCA.
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446 CHAPTER 5. ENCRYPTION SCHEMESCombining the above with Theorem 4.10.16 and Proposition 5.4.26, it followthat public-key encryption schemes that are secure under a-priori CCA exist,provided that enhanced34 trapdoor permutations exists.Proof Sketch: Assuming towards the contradiction that the scheme (G0; E0; D0)is not secure under a-priori CCA, we show that the scheme (G;E;D) is not secureunder a (key-dependent) passive attack. Speci�cally, we refer to the de�nitionsof security in the sense of indistinguishable encryptions (as in De�nitions 5.4.14and 5.4.2, respectively). To streamline the proof, we reformulate De�nition 5.4.2,incorporating both circuits (i.e., the one selecting message pairs and the onetrying to distinguish their encryptions) into one circuit and allow this circuitto be probabilistic. (Certainly, this model of a key-dependent passive attack isequivalent to the one in De�nition 5.4.2.)Let (A01; A02) be an a-priori CCA adversary attacking the scheme (G0; E0; D0)(as per De�nition 5.4.14), and (S1; S2) be the two-stage simulator for (P; V ).We construct a (key-dependent) passive adversary A (attacking (G;E;D)) that,given an encryption-key e (in the range of G1(1n)), behaves as follows:1. Initialization: A generates (e1; d1)  G(1n), (r; s)  S1(n), and setse = (e1; e; r).(We assume that (e; d) G(1n), and let (e2; d2) def= (e; d), so e = (e1; e2; r).)2. Emulation of A0Dd1 (e): A invokes A01 on input e, and answers its (decryp-tion) queries as follows. When asked to decrypt the alleged ciphertext(q1; q2; q3), adversary A checks if q3 is a valid proof of consistence of q1and q2 (with respect to the reference string r). If the proof is valid thenA answers with Dd1(q1) else A returns the error symbol.(Note that the emulation is perfect, although A only knows part of thecorresponding decryption-key d.)3. Using A02 for the �nal decision: Let ((x(1); x(2)); �) denote the challengetemplet output by A01. Then, given a ciphertext y = Ee(x), where x 2fx(1); x(2)g, adversary A form a corresponding ciphertext (y1; y; �), by let-ting y1  Ee1 (0jx(1)j) and �  S2(s; (e1; e; y1; y)). Finally, A invokes A02on input (�; (y1; y; �)), and outputs whatever the latter does. Recall that,here (in case of a-priori CCA), A02 is an ordinary machine (rather than anoracle machine).(Note that this emulation is not perfect, since (typically) A invokesA02 withan illegal ciphertext, still we shall see that A02 cannot tell the di�erence.)In order to analyze the performance of A, we introduce the following hybridprocess as a mental experiment. The hybrid process behaves as A, with the onlyexception that (in Step 3) y1  Ee1(x) (rather than y1  Ee1 (0jxj)). Thus,unlike A, the hybrid process invokes A02 with a legal ciphertext. (The questionof how the hybrid process \knows" or gets this y1 is out of place; we merely34 See Section C.1.
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5.4. * BEYOND EAVESDROPPING SECURITY 447de�ne a mental experiment.) Let p(j)A = p(j)A (n) (resp., p(j)H = p(j)H (n)) denotethe probability that A (resp., the hybrid process) outputs 1 when x = x(j).Claim 5.4.27.1: For both j's the absolute di�erence between p(j)A (n) and p(j)H (n)is a negligible function in n.Proof: De�ne an auxiliary hybrid process that behaves as the hybrid processexcept that when emulating Dd, the auxiliary process answers according to Dd2(rather than according to Dd1). (Again, this is a mental experiment.) Letp(j)HH denote the probability that this auxiliary process outputs 1 when x =x(j). Similarly, de�ne another mental experiment that behaves as A except thatwhen emulating Dd, the auxiliary process answers according to Dd2 (rather thanaccording to Dd1), and let p(j)AA denote the probability that the latter processoutputs 1 when x = x(j). We stress that in Step 3 the latter mental experimentbehaves exactly like A; the only aspect in which this mental experiment di�ersfrom A is in its imaginary operations at Step 2. The various processes aretabulated next.answers the challenge nature of processdec-queries ciphertext for A0A by using Dd1 (Ee1(0jxj); Ee(x); �) a real (passive) attackon (G;E;D) (w.r.t key e)H by using Dd1 (Ee1(x); Ee(x); �) a mental experimentHH by using Dd2 (Ee1(x); Ee(x); �) a mental experimentAA by using Dd2 (Ee1(0jxj); Ee(x); �) a mental experimentWe establish the following facts regarding these processes:Fact 1. For both j's the absolute di�erence between p(j)H and p(j)HH is negligible.The reason is that the two processes di�er only in the way they an-swer the decryption queries: in the �rst process the decryption is accord-ing to Dd1 an in the second it is according to Dd2 . However, by weaksimulation-soundness, it is infeasible to produce triples (q1; q2; q3) suchthat (e1; e; q1; q2) 62 L and yet q3 is a valid proof (w.r.t r that (e1; e; q1; q2)is in L). Thus, except with negligible probability, either Dd1(q1) = Dd2(q2)or q3 is not valid, and so it does not matter whether one decrypts accordingto Dd1 or to Dd2 .35Fact 2. Similarly, for both j's the absolute di�erence between p(j)A and p(j)AA isnegligible.Fact 3. Finally, for both j's the absolute di�erence between p(j)HH and p(j)AA isnegligible.The reason is that the experiments AA and HH di�er only in the input(�; (y1; y; �)) that they feed to A02: whereas AA forms y1  Ee1 (0jxj)35 Here, we rely on the hypothesis that, except with negligible probability over the key-generation process, the decryption is error-less (i.e., always yields the original plaintext).
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448 CHAPTER 5. ENCRYPTION SCHEMES(and �  S2(s; (e1; e; y1; y))), the process HH forms y1  Ee1 (x) (and�  S2(s; (e1; e; y1; y))). However, A02 cannot distinguish the two casesbecause this would have violated the security of Ee1 .That is, to establish Fact 3, we construct a passive attack, denoted B,that behaves similarly to A except that it switches its reference to thetwo basic keys (i.e., the �rst two components of the encryption-key e)and acts very di�erently in Step 3 (e.g., B produces a di�erent challengetemplet). Speci�cally, given an attacked encryption-key e, adversary Bgenerates (e2; d2) G(1n), sets e = (e; e2; �), and emulates A0Dd1 (e) usingthe decryption-key d2 to answer queries. For a �xed j, when obtaining(from A01) the challenge templet ((x(1); x(2)); �), adversary B produces thechallenge templet ((0jx(j)j; x(j)); �), and invokes A02 on input (�; (y; y2; �)),where y = Ee(x) (x 2 f0jx(j)j; x(j)g) is the challenge ciphertext given to B,and B computes y2  Ee2 (x(j)) and �  S2(s; (e; e2; y; y2)). (Finally, Boutputs the output obtained from A02.) Note that when given the challengeciphertext Ee(x(j)), the adversary B behaves exactly as experiment HH ,whereas when given Ee(0jx(j)j) it behaves exactly as experiment AA. Thus,if p(j)HH and p(j)AA di�er in a non-negligible manner, then B violates thepassive security of the encryption scheme (G;E;D).Combining the above three facts, the current claim follows. 2Let us denote by p(j)cca(n) the probability that the CCA adversary (A01; A02) out-puts 1 when given a ciphertext corresponding to the jth plaintext in its challengetemplet (see De�nitions 5.4.14). Recall that by the contradiction hypothesisjp(1)cca(n)� p(2)cca(n)j is not negligible.Claim 5.4.27.2: For both j's the absolute di�erence between p(j)cca(n) and p(j)H (n)is a negligible function in n.Proof: The only di�erence between the output in a real attack of (A01; A02) andthe output of the hybrid process is that in the hybrid process a \simulated refer-ence string" and a \simulated proof" are used instead of a uniformly distributedreference string and a real NIZK proof. However, this di�erence is indistinguish-able. 2Combining Claims 5.4.27.1 and 5.4.27.2, we conclude that A violates the pas-sive security of (G;E;D). This contradicts the hypothesis, and so the theoremfollows.Step II: a-posteriori CCAIn order to use Construction 5.4.23 in the context of a-posteriori CCA security,we need to further strengthen the NIZK proof in use. The reason is that, inan a-posteriori CCA, the adversary may try to generate false proofs (as part ofthe ciphertext queries in the second stage) after being given a (single) proof (aspart of the challenge ciphertext). Speci�cally, when trying to extend the proof
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5.4. * BEYOND EAVESDROPPING SECURITY 449of Theorem 5.4.27, we need to argue that, given a simulated proof (to eithera false or a true statement), it is infeasible to generate a false proof to a falsestatement (as long as one does not just copy the given simulated proof (in caseit is to a false statement)). The notion of weak simulation-soundness does notsu�ce to bound the probability of success in such attempts, because the formernotion refers to what one can do when only given the simulated reference string(without a corresponding simulated proof). The following de�nition addressesthe situation in which one is given a single simulated proof (along with thesimulated reference string). (We comment that a more general notion that refersto a situation in which one is given many simulated proofs is not necessary forthe current application.)De�nition 5.4.28 (1-proof simulation-soundness): Let (P; V ) be an adaptiveNIZK for a language L, and (S1; S2) be a corresponding two-stage simulator. Wesay that 1-proof simulation-soundness holds if for every triplet of polynomial-sizecircuit families (�1;�2;�2), the probability of the following event is negligible:The event: for (x1; �1; x2; �2) generated as described below, the following threeconditions hold: x2 62 L, (x2; �2) 6= (x1; �1), and V (x2; r; �2) = 1.The generation process: First (r; s)  S1(1n), then x1  �1(r), next �1  S2(s; x1), and �nally (x2; �2) (�2(r; �1);�2(r; �1)).That is, the adversary is represented by three circuits, and the process consideredis as follows. Given a simulated reference string r, the adversary selects an inputx1, gets a corresponding simulated proof �1, and tries to form a (valid w.r.t r)proof �2 for some no-instance x2. Note that x1 is not required to be a yes-instance. In case x2 = x1, we consider only �2 6= �1 (and in case x2 6= x1 wealso consider �2 = �1). De�nition 5.4.28 requires that the success probability ofany such feasible adversary be negligible. Note that weak simulation-soundnessis obtained as a special case of De�nition 5.4.28 (by setting �(r) = �2(r; �) and�(r) = �2(r; �)).Theorem 5.4.29 Suppose that the adaptive NIZK (P; V ) used in Construc-tion 5.4.23 has the 1-proof simulation-soundness property and that the encryp-tion scheme (G;E;D) is as in Theorem 5.4.27. Then Construction 5.4.23 con-stitutes a public-key encryption scheme that is secure under a-posteriori CCA.Proof Sketch: The proof follows the structure of the proof of Theorem 5.4.27.Speci�cally, given an a-posteriori CCA adversary (A01; A02) (attacking (G0; E0; D0)),we �rst construct a passive adversary A (attacking (G;E;D)). The constructionis as in the proof of Theorem 5.4.27 with the exception that in Step 3 we needto emulate the decryption oracle (for A02). This emulation is performed exactlyas the one performed in Step 2 (for A01). Next, we analyze this passive adver-sary as in the proof of Theorem 5.4.27, while referring to an A02 that may makedecryption queries.36 The analysis of the handling of these (additional) queriesrelies on the 1-proof simulation-soundness property.36 Indeed, in the proof of Theorem 5.4.27, where (A01; A02) is an a-priori CCA, A02 makes nosuch queries.
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450 CHAPTER 5. ENCRYPTION SCHEMESIn particular, when proving a claim analogous to Claim 5.4.27.1, we have toestablish two facts (corresponding to Facts 1 and 2) that refer to the di�erencein the process's output when decrypting according to Dd1 and Dd2 , respectively.Both facts follow from the fact (established below) that, except with negligibleprobability, neither A01 nor A02 can produce a query (q1; q2; q3) such that q3 is avalid proof that q1 and q2 are consistent and yet Dd1(q1) 6= Dd2(q2). (We stressthat in the current context we refer also to A02, which may try to produce sucha query based on the challenge ciphertext given to it.)Fact 5.4.29.1: The probability that A01 produces a query (q1; q2; q3) such that q3 isa valid proof (w.r.t reference string r) that (supposedly) there exists x; s1; s2 suchthat qi = Eei(x; si) (for i = 1; 2), and yet Dd1(q1) 6= Dd2(q2) is negligible. Thesame holds for A02 as long as the query is di�erent from the challenge ciphertextgiven to it. This holds regardless of whether the challenge ciphertext (given toA02) is produced as in A (i.e., y1 = Ee1(0m)) or as in the hybrid process H (i.e.,y1 = Ee1(x)).Proof: Recall that one of our hypotheses is that the encryption (G;E;D) iserror-free (except for a negligible measure of the key-pairs). Thus, the cur-rent fact refers to a situation that either A01 or A02 produces a valid prooffor a false statement. The �rst part (i.e., referring to A01) follows from theweak simulation-soundness of the NIZK, which in turn follows from its 1-proofsimulation-soundness property. We focus on the second part, which refers to A02.Let (y1; y2; �) denote the challenge ciphertext given to A02 (i.e., y2 = y isthe challenge ciphertext given to A(e) (or to H(e)), which augments it with y1and �  S2(s; (e1; e2; y1; y2))). Recall that (r; s)  S1(1n) and that e2 =e. Suppose that A02 produces a query (q1; q2; q3) as in the claim; that is,(q1; q2; q3) 6= (y1; y2; �), the encryptions q1 and q2 are not consistent (w.r.t e1 ande2 respectively), and yet V ((e1; e2; q1; q2); r; q3) = 1. Speci�cally, it holds thatx2 def= (e1; e2; q1; q2) 62 LR, where LR is as in Construction 5.4.23 (see Eq. (5.13)),and yet V (x2; r; q3) = 1 (i.e., �2 def= q3 is a valid proof of the false statement re-garding x2). Since (y1; y2; �) is produced by letting �  S2(s; (e1; e2; y1; y2)),it follows that �1 def= � is a simulated proof (w.r.t the reference string r) forthe alleged membership of x1 def= (e1; e2; y1; y2) in LR, where (r; s)  S1(1n).Furthermore, given such a proof (along with the reference string r), A02 pro-duces a query (q1; q2; q3) that yields a pair (x2; �2), where �2 = q3, such thatx2 = (e1; e2; q1; q2) 62 LR and yet V (x2; r; �2) = 1 and (x2; �2) 6= (x1; �1). Thus,using A01 and A02 (along with (G;E;D)), we obtain circuits �1;�2;�2 that violatethe hypothesis that (S1; S2) is 1-proof simulation-sound.Details: On input a (simulated) reference string r, the circuit �1 selects(e1; d1) and (e2; d2) in the range of G(1n), and emulates the executionof A0Dd1 (e), where e = (e1; e2; r) and d = (d1; d2; r). (Indeed, we �x thebest possible choice of (e1; d1) and (e2; d2), rather than selecting both atrandom, and emulate the oracle Dd using d that is known to the circuit.)When A01 outputs a challenge templet, �1 emulates the selection of thechallenge x, sets y1  Ee1(x), y2  Ee2 (0jxj) (or y2  Ee2 (x) when
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5.4. * BEYOND EAVESDROPPING SECURITY 451we argue about the hybrid process H), and outputs x1 def= (e1; e2; y1; y2).(Again, we may �x the best choice of x1; y1 and y2, rather than generat-ing them at random.) The challenge ciphertext is formed by augmentingy1; y2 with �1  S2(s; x1), where s is the auxiliary information generatedby S(1n) (i.e., (r; s)  S(1n)). Next, we describe the circuits �2;�1.On input r; x1; �1 (as above), these circuits emulate A0Dd2 (�; (y1; y2; �1)),where � is the state information generated by A01. We consider a spe-ci�c decryption query (i.e., the ith one) made during the emulation (i.e.,we emulate the answers to previous queries by emulating Dd). Denot-ing this query by (q1; q2; q3), the circuit �2 outputs x2 def= (e1; e2; q1; q2)and �2 outputs �2 def= q3. Since (q1; q2; q3) 6= (y1; y2; �1), it follows that(x2; �2) = ((e1; e2; q1; q2); �2) 6= ((e1; e2; y1; y2); �1) = (x1; �1). The eventstated in the claim refers to the case that x2 62 LR and yet �2 is acceptedas a proof (w.r.t the reference string r). But this event and the aboveprocess are exactly as in the de�nition of 1-proof simulation soundness.We stress that the argument applies to the process de�ned by the actualattack as well as to the process de�ned by the hybrid H. In the �rst casex1 62 LR, whereas in the second case x1 2 LR, but 1-proof simulationsoundness applies to both cases.It follows that a query (q1; q2; q3) as in the claim can be produced only withnegligible probability. 2Fact 5.4.29.1 implies (adequate extension of) the �rst two facts in the proof ofa claim analogous to Claim 5.4.27.1. The third fact in that proof as well asthe proof of the analogue of Claim 5.4.27.2 do not refer to the soundness of theNIZK-proofs, and are established here exactly as in the proof of Theorem 5.4.27.The current theorem follows.Constructing adaptive NIZK with 1-proof simulation-soundness prop-erty. We construct the desired NIZK by using a standard (adaptive) NIZKproof, a weak form of a signature scheme, and a speci�c commitment scheme.Since all ingredients can be implemented using enhanced trapdoor permutations(see De�nition C.1.1), we obtain:Theorem 5.4.30 If there exist collections of (non-uniformly hard) enhancedtrapdoor permutations then every language in NP has an adaptive NIZK with1-proof simulation-soundness property.Proof Sketch: Let L 2 NP . We construct a suitable NIZK for L using thefollowing three ingredients:1. An adaptive Non-Interactive Witness-Indistinguishable (NIWI) proof, de-noted (Pwi; V wi), for a suitable language in NP . We stress that we meana proof system that operates with a reference string of length n and can beapplied to prove (adaptively chosen) statements of length poly(n), wherethe adaptivity refers both to the soundness and witness-indistinguishabilityrequirements.
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452 CHAPTER 5. ENCRYPTION SCHEMESAs shown in Section 4.10.3.2,37 the existence of enhanced trapdoor per-mutations implies that every language in NP has an adaptive NIZK thatoperates with a reference string of length n and can be applied to provestatements of length poly(n). Indeed, in analogy to discussions in Sec-tion 4.6, any NIZK is a NIWI.2. A super-secure one-time signature scheme, denoted (Got; Sot; V ot). Specif-ically, one-time security (see Section 6.4.1) means that we consider only at-tacks in which the adversary may obtain a signature to a single documentof its choice (rather than signatures to polynomially-many documents ofits choice). On the other hand, super-security (see Section 6.5.2) meansthat the adversary should fail to produce a valid document-signature thatis di�erent from the query-answer pair that appeared in the attack. (Westress that, unlike in ordinary security, the adversary may succeed even incase it produces a di�erent signature to the same document for which ithas obtained a signature during the attack.)By Theorem 6.5.2, super-secure one-time signature scheme can be con-structed based on any one-way function. (If we were willing to assumethe existence of collision-free hashing functions then we could have usedinstead the easier-to-establish Theorem 6.5.1.)3. A perfectly-binding commitment scheme, denoted C, as de�ned in Sec-tion 4.4.1, with the following two additional properties: The �rst addi-tional property is that the commitment strings are pseudorandom; that is,the ensembles fC(x)gx2f0;1g� and fUjC(x)jgx2f0;1g� are computationallyindistinguishable. The second property is that the support of C(Un) is anegligible portion of f0; 1gjC(Un)j.Using any collection of one-way permutations (e.g., the one in the hypoth-esis), we may obtain the desired commitment scheme. Speci�cally, Con-struction 4.4.2 constitutes a commitment scheme that satis�es the pseu-dorandomness property (but not the \negligible portion" property). Toobtain the additional \negligible portion" property, we merely let C(x)equal a pair of two independent commitments to x (and it follows that thesupport of C(Un) is at most a 2n �(2�n)2 = 2�n fraction of f0; 1gjC(Un)j).38We denote by C(x; r) the commitment produced to value x while usingcoins r; that is, C(x) = C(x; r), where r is uniformly chosen in f0; 1g`(jxj),for some polynomial `.Given the above ingredients, we construct an adaptive (1-proof simulation-sound) NIZK for L (with witness relation R) as follows. The NIZK proof uses a37 See Theorem 4.10.16 and comment following it as well as Sections C.1 and ??.38 This presupposes that in the original commitment scheme the support of C(x) is atmost a 2�jxj fraction of f0; 1gjC(x)j, which does hold for Construction 4.4.2. An alternativeconstruction of a commitment scheme satisfying both additional properties can be obtainedusing any one-way function. Speci�cally, Construction 4.4.4 will do, except that it uses twomessages. However, since the �rst message (i.e., sent by the receiver) is a random string, wemay incorporate it in the reference string (of the scheme presented below).
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5.4. * BEYOND EAVESDROPPING SECURITY 453reference string of the form r = (r1; r2), where n def= jr2j andm def= jr1j = poly(n).Prover P : On common input x 2 f0; 1gpoly(n) and auxiliary-input w (and refer-ence string r = (r1; r2)), where supposedly (x;w) 2 R, the prover behavesas follows1. Generates a key-pair for the one-time signature scheme; that is, (s; v) Got(1n).2. Compute a pre-proof p  Pwi((x; r1; v); w; r2), where (V wi; V wi) isa proof system (using r2 as reference string) for the following NP-language L0:L0 def= f(x; y; v) : (x 2 L) _ (9w0 y = C(v; w0))g (5.16)The corresponding NP-relation isR0 def= f((x; y; v); w0) : ((x;w0) 2 R) _ (y = C(v; w0))g (5.17)Note that P indeed feeds Pwi with an adequate NP-witness (i.e.,((x; r1; v); w) 2 R0 since (x;w) 2 R). The �rst part of the referencestring of P is part of the statement fed to Pwi, whereas the secondpart of P 's reference string serves as a reference string for Pwi. Thebehavior of V (w.r.t V wi) will be analogous.3. The prover computes a signature � to (x; p) relative to the signing-keys (generated in Step 1). That is, P computes �  Sots (x; p).The prover outputs the triplet (v; p; �).Veri�er V : On common input x and an alleged proof (v; p; �) (and referencestring r = (r1; r2)), the veri�er accepts if and only if the following twoconditions hold1. � is a valid signature with respect to the veri�cation-key v to the pair(x; p). That is, V otv ((x; p); �) = 1.2. p is a valid proof with respect to the reference string r2 to the state-ment (x; r1; v) 2 L0. That is, V wi((x; r1; v); r2; p) = 1.Simulator's �rst stage S1: On input 1m+n (from which S1 determines n and m),the �rst stage produces a reference string and auxiliary information asfollows.1. Like the real prover, S1(1m+n) starts by generating a key-pair for theone-time signature scheme; that is, (s; v) Got(1n).2. Unlike in the real setting, S1(1m+n) selects s1 uniformly in f0; 1g`(jvj),and set r1 = C(v; s1). (Note that in the real setting, r1 is uniformlydistributed independently of v, and thus in the real setting r1 is un-likely to be in the support of C(v).)
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454 CHAPTER 5. ENCRYPTION SCHEMES3. Like in the real setting, S1(1m+n) selects r2 uniformly in f0; 1gn.S1(1m+n) outputs the pair (r; s), where r = (r1; r2) is a simulated referencestring and s = (v; s; s1; r2) is auxiliary information to be passed to S2.Simulator's second stage S2: On input a statement x and auxiliary input s =(v; s; s1; r2) (as generated by S1), S2 proceeds as follows:1. Using (the NP-witness) s1, the simulator computes a pre-proof p  Pwi((x;C(v; s1); v); s1; r2). Note that indeed, ((x;C(v; s1); v); s1) 2R0.2. Using (the signing-key) s, the simulator computes a signature � to(x; p) relative to s, where p is as computed in the �rst step. That is,�  Sots (x; p).S2(s; x) outputs (v; p; �) as a simulated proof (with respect to r) for mem-bership of x in L.As we will show below, the above (two-stage) simulator produces output thatis indistinguishable from the output of the real execution. Intuitively, the �rststage of the simulator enables cheating by entities (such as the second stage ofthe simulator) that can produce signatures with respect to the veri�cation-keycommitted to in the string r1 (which is part of the reference string generatedby S1). This allows the simulation (which gets the signing-key) to cheat, butdoes not allow cheating by an adversary that sees only the veri�cation-key aswell as a single valid signature (which are both part of the single proof givento the adversary in the de�nition of 1-proof simulation-soundness). Thus, one-time signatures yield 1-proof simulation-soundness, and indeed using generalsignature schemes (as well as some technical modi�cations) yield \many-proofssimulation-soundness" (which is none of our concern here). We now turn to theactual proof of the above properties.Claim 5.4.30.1: (P; V ) satis�es completeness and adaptive soundness.Proof: Completeness follows by combining the syntactic properties of the one-time signature scheme, the completeness property of the proof system (Pwi; V wi)and the de�nition of R0. Adaptive soundness follows by combining the (adaptive)soundness of (Pwi; V wi) with the fact that r1 is unlikely to be a commitmentto any string. Speci�cally, using the additional property by which C(Got2 (1n))covers a negligible portion of f0; 1gm, it follows that for a uniformly selectedr1 2 f0; 1gm there exist no v such that r1 is in the support of C(v). Thus, ex-cept with negligible probability (over the random choice of r1), if (x; r1; v) 2 L0holds for some v then x 2 L. On the other hand, using the (adaptive) sound-ness of (Pwi; V wi), except with negligible probability (over the random choiceof r2), the existence of a valid proof (v; p; �) for some x 2 f0; 1gpoly(n) im-plies that (x; r1; v) 2 L0. Thus, for a uniformly distributed reference stringr = (r1; rn) 2 f0; 1gm+n, except with negligible probability, there exists nox 2 f0; 1gpoly(n) nL and � such that V (x; r; �) = 1. The claim follows. 2
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5.4. * BEYOND EAVESDROPPING SECURITY 455Claim 5.4.30.2 (adaptive zero-knowledge): For every e�cient way of selectinginputs �, the output produced by the two-stage simulator (S1; S2) is indistin-guishable from the one produced by P . That is, the ensembles fS�(1m+n)g andR�;W def= f(Um+n;�(Um+n); P (�(Um+n);W (Um+n); Um+n))g are computation-ally indistinguishable, where S� is de�ned as in De�nition 5.4.22.Proof: Consider a hybrid distribution H�(1m+n), in which everything exceptthe pre-proof is produced as by S�(1m+n), and the pre-proof is computed asby the real prover. That is, (r; s)  S1(1m+n) (where r = (r1; r2) and s =(v; s; s1; r2)) is produced as by S�, but then for (x;w) = (�(r);W (r)), the pre-proof is computed using the witness w (i.e., p  Pwi((x; r1; v); w; r2) ratherthan p  Pwi((x; r1; v); s1; r2)). The �nal proof � = (v; p; �) is obtained (asin both cases) by letting �  Sots (x; p). We now relate the hybrid ensemble toeach of the two ensembles referred to in the claim.1. By the (adaptive) witness indistinguishability of Pwi, the ensembles H�and S� are computationally indistinguishable. (Recall that these ensem-bles di�er only in the way the pre-proof is produced; speci�cally, they di�eronly in the NP-witness used by Pwi to prove the very same claim.)2. By the pseudorandomness of the commitments produced for any �xedvalue, H� and R�;W are computationally indistinguishable. (Recall thatthese ensembles di�er only in the way the �rst part of the reference string(i.e., r1) is produced.)The claim follows. 2Claim 5.4.30.3 (1-proof simulation-soundness): For every triplet of polynomial-size circuit families (�1;�2;�2), consider the following process: First (r; s)  S1(1m+n), then x1  �1(r), next �1  S2(s; x1), and �nally (x2; �2)  (�2(r; �1);�2(r; �1)). Then, the probability that the following three condi-tions hold simultaneously is negligible: (1) x2 62 L, (2) (x2; �2) 6= (x1; �1),and (3) V (x2; r; �2) = 1.Proof: Recall that r = (r1; r2) and s = (v; s; s1; r2), where (s; v)  Got(1n)and r1 = C(v; s1) for a uniformly chosen s1 2 f0; 1g`(jvj) (and r2 is selecteduniformly in f0; 1gn). Also recall that �1 = (v1; p1; �1), where v1 = v, p1  Pwi((x;C(v; s1); v); s1; r2) and �1  Sots (x1; p1). Let us denote (v2; p2; �2) def=�2. We need to upper bound the followingPr �(x2 62 L) ^ ((x2; �2) 6= (x1; �1)) ^ (V (x2; r; �2) = 1)�= Pr24 (x2 62 L) ^ ((x2; �2) 6= (x1; �1))^ (V otv2 ((x2; p2); �2) = 1)^ (V wi((x2; r1; v2); r2; p2) = 1) 35 (5.18)where the equality is due to the de�nition of V . We consider two cases (in whichthe event in Eq. (5.18) may hold):
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456 CHAPTER 5. ENCRYPTION SCHEMESv2 = v1: In this case, either (x2; p2) 6= (x1; p1) or �2 6= �1 must hold (becauseotherwise (x2; �2) = (x2; (v2; p2; �2)) = (x1; (v1; p1; �1)) = (x1; �1) fol-lows). But this means that (�2;�2), given a single valid signature �1 (tothe document (x1; p1)) with respect to a randomly generated veri�cation-key v = v1 = v2, is able to produce a valid document-signature pair((x2; p2); �2) (with respect to the same veri�cation-key) such that ((x2; p2); �2) 6=((x1; p1); �1), in contradiction to the super-security of the one-time signa-ture scheme.Details: It su�ces to upper boundPr � (v2 = v1) ^ ((x2; �2) 6= (x1; �1))^ (V otv2 ((x2; p2); �2) = 1) � (5.19)As explained above, the �rst two conditions in Eq. (5.19) imply that((x2; p2); �2) 6= ((x1; p1); �1). Using (S1; S2) and (�1;�2;�2), we de-rive an attacker, A, that violates the super-security of the (one-time)signature scheme. The attacker just emulates the process described inthe claim's hypothesis, except that it obtains v as input (rather thangenerating the pair (s; v) by invoking Got) and uses oracle access toSots in order to produce the signature �1. Speci�cally, on input v, theattacker A �rst selects s1 2 f0; 1g` and r2 2 f0; 1gn uniformly, setsr1 = C(v; s1) and r = (r1; r2), and obtains x1  �1(r). Next, A com-putes p1  Pwi((x1; r1; v); s1; r2) and queries Sots on (x1; p1), obtain-ing the answer �1  Sots (x1; p1) and setting �1 = (v; p1; �1). Finally,A sets (x2; �2)  (�2(r; �1);�2(r; �1)), and outputs ((x2; p2); �2),where �2 = (v2; p2; �2). Note that A queries its oracle only onceand that the probability that A produces a valid document-signaturepair (w.r.t the veri�cation-key v) that is di�erent from the (single)query-answer pair it makes (i.e., ((x2; p2); �2) 6= ((x1; p1); �1) andV otv ((x2; p2); �2) = 1) is lower bounded by Eq. (5.19), which thusmust be negligible.v2 6= v1: Since r1 = C(v1; s1), it follows (by the perfect binding property ofC) that r1 6= C(v2; w0) for every w0. Thus, if x2 62 L then (x2; r1; v2) 62L0. Now, by the adaptive soundness of (Pwi; V wi) and the fact that r2was selected uniformly in f0; 1gn it follows that, except with negligibleprobability, p2 is not a valid proof (w.r.t the reference string r2) of thefalse statement \(x2; r1; v2) 2 L0".Details: It su�ces to upper boundPr � (v2 6= v1) ^ (x2 62 L)^ (Vwi((x2; r1; v2); r2; p2) = 1) � (5.20)As explained above, the �rst two conditions in Eq. (5.20) imply (x2; r1; v2) 62L0. The key observation is that r2 (generated by S1) is uniformly dis-tributed in f0; 1gn, and thus the adaptive soundness of the NIWIsystem applies. We conclude that Eq. (5.20) is upper bounded by
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5.4. * BEYOND EAVESDROPPING SECURITY 457the (negligible) soundness error of the NIWI system, and the claimfollows also in this case.Combining both cases, the claim follows. 2Combining Claims 5.4.30.1{5.4.30.3, the current theorem follows.Conclusion: Combining Theorems 5.4.6, 5.4.30 and 5.4.29, we get:Theorem 5.4.31 If there exist collections of (non-uniformly hard) enhancedtrapdoor permutations then there exist public-key encryption schemes that aresecure under a-posteriori chosen ciphertext attacks.(See Section C.1 for a discussion of the notion of enhanced trapdoor permuta-tions.)5.4.5 Non-malleable encryption schemesSo far, our treatment has referred to an adversary that, when given a ciphertext,tries to gain explicit information about the plaintext. A less explicit gain, cap-tured by the so-called notion of malleability, is the ability to generate an encryp-tion of a related plaintext (possibly without learning anything about the origi-nal plaintext). Loosely speaking, an encryption scheme is called non-malleableif given a ciphertext it is infeasible (for an adversary) to produce a (di�erent)valid ciphertext for a related plaintext. For example, given a ciphertext of aplaintext of the form 1x, for an unknown x, it should be infeasible to produce aciphertext to the plaintext 0x.Non-malleability may relate to any of the types of attacks considered above(e.g., passive attacks, chosen ciphertext attacks, etc). Thus, we have a \matrix"of adversaries, with one dimension (parameter) being the type of attack and thesecond being its purpose. So far, we have discussed the �rst dimension (i.e., thetype of the attack), when focusing on a particular purpose (i.e., of violating thesecrecy of the plaintext). We now turn to the second dimension (i.e., the purposeof the attack), and consider also the purpose of malleability. That is, we makea distinction between the following two notions (or purposes of attack):1. Standard security: the infeasibility of obtaining information regarding theplaintext. As de�ned above, such information is captured by a functionof the bare plaintext,39 and it may not depend on the encryption-key (ordecryption-key).2. In contrast, the notion of non-malleability refers to generating a stringdepending on both the plaintext and the current encryption-key. Specif-ically, one requires that it should be infeasible for an adversary, given aciphertext, to produce a valid ciphertext (under the same encryption-key)for a related plaintext.39 Note that considering a randomized process applied to the plaintext does not make thede�nition stronger.
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458 CHAPTER 5. ENCRYPTION SCHEMESWe shall show below that, with the exception of passive attacks on private-keyschemes, non-malleability always implies security against attempts to obtain in-formation on the plaintext. We shall also show that security and non-malleabilityare equivalent under a-posteriori chosen ciphertext attack. Thus, the resultsof the previous sections imply that non-malleable (under a-posteriori chosenciphertext attack) encryption schemes can be constructed based on the sameassumptions used to construct passively-secure encryption schemes.5.4.5.1 De�nitionsFor sake of brevity, we present only a couple of de�nitions. Speci�cally, focusingon the public-key model, we consider only the simplest and strongest types ofattacks; that is, we �rst consider (key-oblivious) passive attacks and then weturn to chosen ciphertext attacks. The de�nitions refer to an adversary thatgiven a ciphertext tries to generate a di�erent ciphertext to a plaintext relatedto the original one. That is, given Ee(x), the adversary tries to output Ee(y)such that (x; y) 2 R with respect to some (e�ciently recognizable)40 relationR. Loosely speaking, the adversary's success probability in such an attemptis compared to the success probability of generating such Ee(y) when given ebut not Ee(x). In fact, we prefer an equivalent formulation in which the latteralgorithm is required to output the plaintext y itself.41 As in case of semanticsecurity, we strengthen the de�nition by consider all possible partial informationfunctions h.De�nition 5.4.32 (passive non-malleability) A public-key encryption scheme(G;E;D) is said to be non-malleable under passive attacks if for every proba-bilistic polynomial-time algorithm A there exists a probabilistic polynomial-timealgorithm A0 such that for every ensemble fXngn2N, with jXnj = poly(n), everypolynomially-bounded h :f0; 1g�!f0; 1g�, every polynomially-bounded relation Rthat is recognizable by a (non-uniform) family of polynomial-size circuits, everypolynomial p(�) and all su�ciently large n, it holds thatPr2664 (x; y) 2 R where(e; d) G(1n) and x Xnc Ee(x) and c0  A(e; c; 1jxj; h(x))y  Dd(c0) if c0 6= c and y  0jxj otherwise 3775< Pr24 (x; y) 2 R wherex Xny  A0(1n; 1jxj; h(x)) 35+ 1p(n)We stress that the de�nition e�ectively prevents the adversary A from just out-putting the ciphertext given to it (because in this case its output is treated as if40 The computational restriction on R is essential here; see Exercise 16 that refers to arelated de�nition of semantic security.41 Potentially, this can only make the de�nition stronger, because the ability to produceplaintexts implies the ability to produce corresponding ciphertexts (with respect to a given ora randomly chosen encryption-key).
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5.4. * BEYOND EAVESDROPPING SECURITY 459it were Ee(0jxj)). This provision is important because otherwise no encryptionscheme could have satis�ed the de�nition (see Exercise 38). Note that A0 cancertainly produce plaintexts, but its information regarding Xn is restricted toh(Xn) (and 1jXnj). Thus, if given h(Xn) and 1jXnj it is infeasible to generatey such that (Xn; y) 2 R then A0 as above may produce such a y only withnegligible probability. Consequently, De�nition 5.4.32 implies that in this case,given Ee(Xn) (and e; h(Xn); 1jXnj), it is infeasible to produce Ee(y) such that(Xn; y) 2 R.De�nition 5.4.32 cannot be satis�ed by encryption schemes in which one canmodify bits in the ciphertext without changing the corresponding plaintext (i.e.,consider the identity relation). We stress that such encryption schemes maybe semantically secure under passive attacks (e.g., given a semantically secureencryption scheme (G;E;D), consider E0e(x) = Ee(x)�, for randomly chosen� 2 f0; 1g). However, such encryption schemes may not be (semantically) secureunder a-posteriori-CCA.Turning to the de�nition of non-malleability under chosen ciphertext attacks,we adopt the de�nitional framework of Section 5.4.4.1. Speci�cally, analogouslyto De�nition 5.4.13, the challenge templet produced by A1 (and A01) is a tripletof circuits representing a distribution S (represented by a sampling circuit), afunction h (represented by an evaluation circuit), and a relation R (representedby an membership recognition circuit). The goal of A2 (and A02) will be toproduce a ciphertext of a plaintext that is R-related to the challenge plaintextS(Upoly(n)).De�nition 5.4.33 (non-malleability under chosen ciphertext attacks): A public-key encryption scheme is said to be non-malleable under a-priori chosen ciphertextattacks if for every pair of probabilistic polynomial-time oracle machines, A1 andA2, there exists a pair of probabilistic polynomial-time algorithms, A01 and A02,such that the following two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n and z 2f0; 1gpoly(n):Pr26666664 (x; y) 2 R where(e; d) G(1n)((S; h;R); �) AEe;Dd1 (e; z)(c; v) (Ee(x); h(x)) ;where x S(Upoly(n))c0  AEe2 (�; c; v)y  Dd(c0) if c0 6= c and y  0jxj otherwise.
37777775< Pr2664 (x; y) 2 R where((S; h;R); �) A01(1n; z)x S(Upoly(n))y  A02(�; 1jxj; h(x)) 3775+ 1p(n)2. For every n and z, the �rst element (i.e., the (S; h;R) part) in the ran-dom variables A01(1n; z) and AEG1(1n);DG2(1n)1 (G1(1n); z) are identically dis-tributed.
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460 CHAPTER 5. ENCRYPTION SCHEMESNon-malleability under a-posteriori chosen ciphertext attacks is de�ned analogously,except that A2 is given oracle access to both Ee and Dd with the restriction thatwhen given the challenge (c; v), machine A2 is not allowed to make the query cto the oracle Dd.5.4.5.2 Relation to semantic securityWith the exception of passive attacks on private-key schemes, for any type ofattack, non-malleability under this type of attack implies semantic security underthe same type. For example, we show the following:Proposition 5.4.34 Let (G;E;D) be a public-key encryption scheme that isnon-malleable under passive attacks (resp., under a-posteriori chosen ciphertextattacks). Then, (G;E;D) is semantically secure under passive attacks (resp.,under a-posteriori chosen ciphertext attacks).Proof Sketch: For clarity, the reader may consider the case of passive attacks,but the same argument holds also for each of the other types of attacks consideredabove.Suppose (towards the contradiction) that (G;E;D) is not semantically secure(under the relevant type of attacks). Using the equivalence to indistinguishabilityof encryptions, it follows that under such attacks one can distinguish encryptionto xn from encryption to yn. Consider the relation R = f(x; �x) : x 2 f0; 1g�g),where �x is the complement of x, and the uniform distribution Zn on fxn; yng.We construct an algorithm than given a ciphertext (as well as an encryption-keye) runs the above distinguisher, and produces Ee(�xn) in case the distinguisher\votes" for xn (and produces Ee(�yn) otherwise). Indeed, given Ee(Zn), ouralgorithm outputs Ee( �Zn) (and so hit R) with probability that is non-negligiblyhigher than 1=2. This performance cannot be met by any algorithm that is notgiven Ee(Zn). Thus, we derive a contradiction to the hypothesis that (G;E;D)is non-malleable.We stress that the above argument only relies on the fact that, in the public-key model, we can produce the encryption of any string, since we are explicitlygiven the encryption-key. In fact, it su�ces to have access to an encryptionoracle, and thus the argument extends also to active attacks in the private-key model (in which the attacker is allowed encryption queries). On the otherhand, under most types of attacks considered above, non-malleability is strictlystronger than semantic security. Still, in the special case of a-posteriori chosenciphertext attacks, the two notions are equivalent. Speci�cally, we prove that,in case of a-posteriori-CCA, semantic security implies non-malleability.Proposition 5.4.35 Let (G;E;D) be a public-key encryption scheme that is se-mantically secure under a-posteriori chosen ciphertext attacks. Then, (G;E;D)is non-malleable under a-posteriori chosen ciphertext attacks. The same holdsfor private-key encryption schemes.
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5.5. MISCELLANEOUS 461Proof Sketch: Suppose towards the contradiction that (G;E;D) is not non-malleable under a-posteriori chosen ciphertext attacks, and let A = (A1; A2)be an adversary demonstrating this. We construct a (semantic security) adver-sary B = (B1; B2) that invokes A, and at the very end uses its own decryptionoracle to decrypt the ciphertext output by A, and outputs the response. Intu-itively, B violates semantic security (with respect to relations, as can be de�nedanalogously to Exercise 16). Details follow.Given an encryption-key e, algorithm B1 invokes A1(e), while answering A1'squeries by querying its own oracles, and obtains the challenge templet (S; h;R)(and state �), which it outputs. Algorithm B2, is given a ciphertext c alongwith some auxiliary information, and invokes A2 on the very same input, whileanswering A2's queries by querying its own oracles. When A2 halts with outputc0 6= c, algorithm B2 forwards c0 to its decryption oracle, and outputs the answer.Thus, the plaintext output by B hits the relation R with the same probabilitythat the plaintext corresponding to (the decryption of) A's output hits R. Wehave to show that this hitting probability cannot be met by an algorithm thatdoes not get the ciphertext; but this follows from the hypothesis regardingA (andthe fact that in both cases the corresponding algorithm (i.e., A0 or B0) outputs aplaintext (rather than a ciphertext)). Finally, we have to establish, analogouslyto Exercise 16, that semantic security with respect to relations holds (in ourcurrent context of chosen ciphertext attacks) if and only if semantic security(with respect to functions) holds. The latter claim follows as in Exercise 16by relying on the fact that in the current context the relevant relations havepolynomial-size circuits. (A similar argument holds for private-key schemes.)Conclusion: Combining Theorem 5.4.31 and Proposition 5.4.35 we get:Theorem 5.4.36 If there exist collections of (non-uniformly hard) enhancedtrapdoor permutations then there exist public-key encryption schemes that arenon-malleable under a-posteriori chosen ciphertext attacks.Analogously, using Theorem 5.4.21, we get:Theorem 5.4.37 If there exist (non-uniformly hard) one-way functions thenthere exist private-key encryption schemes that are non-malleable under a-posteriorichosen ciphertext attacks.5.5 Miscellaneous5.5.1 On Using Encryption SchemesOnce de�ned and constructed, encryption schemes may be (and actually are)used as building blocks towards various goals that are di�erent from the original
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462 CHAPTER 5. ENCRYPTION SCHEMESmotivation. Still, the original motivation (i.e., secret communication of infor-mation) is of great importance, and in this section we discuss several issuesregarding the use of encryption schemes towards achieving this goal.Using private-key schemes { the key exchange problem. As discussedin Section 5.1.1, using a private-key encryption scheme requires the communi-cating parties to share a secret key. This key can be generated by one partyand secretly communicated to the other party by an alternative (expensive) se-cure channel. Often, a preferable solution consists of employing a key-exchange(or rather key-generation) protocol, which is executed over the standard (inse-cure) communication channel. An important distinction refers to the question ofwhether the insecure communication channel, connecting the legitimate parties,is tapped by a passive adversary or may even be subject to active attacks inwhich an adversary may modify the messages sent over the channel (and evendelete and insert such messages). Protocols secure against passive (resp., ac-tive) adversaries are often referred to by the term authenticated key-exchange(resp., unauthenticated key-exchange), because in the passive case one refers tothe messages received over the channel as being authentic (rather than possiblymodi�ed by the adversary).A simple (generic) authenticated key-exchange protocol consists of using apublic-key encryption scheme in order to secretly communicate a key (for theprivate-key encryption scheme, which is used in the actual communication).42Speci�cally, one party generates a random instance of a public-key encryptionscheme, sends the encryption-key to the other party, which generates a randomkey (for the private-key encryption scheme), and sends an encryption (usingthe received encryption-key) of the newly generated key to the �rst party. Afamous alternative is the so-called Di�e-Hellman Key-Exchange [91]: for a (large)prime P and primitive element g, which are universal or generated on-the-
y(by one party that openly communicates them to the other), the �rst (resp.,second) party uniformly selects x 2 ZP (resp., y 2 ZP ) and sends gx mod P(resp., gy mod P ) to the other party, and both parties determined gxy mod P astheir common key, relying on the fact that gxy � (gx mod P )y � (gy mod P )x(mod P ). (The security of this protocol relies on the assumption that givena prime P , a primitive element g, and the triplet (P; g; (gx mod P ); (gy modP ); (gz mod P )), it is infeasible to decide whether or not z � xy (mod P � 1),for x; y; z 2 ZP .) The construction of unauthenticated key-exchange protocolsis far more complex, and the interested reader is referred to [35, 36, 22].Using state-dependent private-key schemes. In many communicationsettings it is reasonable to assume that the encryption device may maintain (andmodify) a state (e.g., a counter). In such a case, the stream ciphers discussedin Section 5.3.1 become relevant. Furthermore, using a stream cipher is particu-larly appealing in applications where decryption is performed in the same order42 One reason not to use the public-key encryption scheme itself for the actual (encrypted)communication is that private-key encryption schemes tend to be much faster.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.5. MISCELLANEOUS 463as encryption (e.g., in fifo communication). In such applications, the streamcipher of Construction 5.3.3 is preferable to the (pseudorandom function based)encryption scheme of Construction 5.3.9 for a couple of reasons. First, applyingan on-line pseudorandom generator is likely to be more e�cient than applyinga pseudorandom function. Second, for a `-bit long counter (or random value),Construction 5.3.3 allows to securely encrypt 2` messages (or bits), whereasConstruction 5.3.9 de�nitely becomes insecure when p2` messages (or bits) areencrypted. For small values of ` (e.g., ` = 64), this di�erence is crucial.Using public-key schemes { public-key infrastructure. As in the case ofprivate-key schemes, an important distinction refers to the question of whetherthe insecure communication channel between the legitimate parties is tappedby a passive adversary or may even be subject to active attacks. In typicalapplications of public-key encryption schemes, the parties communicate througha communication network (and not via a point-to-point channel), in which caseactive attacks are very realistic (e.g., it is easy to send mail over the internetpretending to be somebody else). Thus, the standard use of public-key en-cryption schemes in real-life communication requires a mechanism for providingthe sender with the receiver's authentic encryption-key (rather than trusting an\unauthenticated" incoming message to specify an encryption-key). In smallsystems, one may assume that each user holds a local record of the encryption-keys of all other users. However, this is not realistic in large-scale systems, andso the sender must obtain the relevant encryption-key on-the-
y in a \reliable"way (i.e., typically, certi�ed by some trusted authority). In most theoreticalwork, one assumes that the encryption-keys are posted and can be retrievedfrom a public-�le that is maintained by a trusted party (which makes sure thateach user can post only encryption-keys bearing its own identity). Alternatively,such trusted party may provide each user with a (signed) certi�cate stating theauthenticity of the user's encryption-key. In practice, maintaining such a public-�le (and/or handling such certi�cates) is a major problem, and mechanisms thatimplement this abstraction are typically referred to by the generic term \public-key infrastructure (PKI)". For a discussion of the practical problems regardingPKI deployment see, e.g., [205, Chap. 13].5.5.2 On Information Theoretic SecurityIn contrast to the bulk of our treatment, which focuses on computationally-bounded adversaries, in this section we consider computationally-unboundedadversaries. We stress that also in this case the length (and number) of theplaintexts is bounded. The resulting notion of security is the one suggested byShannon: a (private-key or public-key) encryption scheme is called perfectly-secure (or information-theoretically secure) if the ciphertext yields no informationregarding the plaintext. That is, perfect-security is derived from De�nitions 5.2.1and 5.2.2 by allowing computationally-unbounded algorithms (in the roles of Aand A0).
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464 CHAPTER 5. ENCRYPTION SCHEMESIt is easy to see that no public-key encryption scheme may be perfectly-secure:a computationally-unbounded adversary that is given a encryption-key can �nda corresponding decryption-key, which allows it to decrypt any ciphertext.In contrast, restricted types of private-key encryption schemes may be perfectly-secure. Speci�cally, the traditional \one-time pad" yields such a (private-key)scheme that can be used to securely communicate an a-priori bounded number ofbits. Furthermore, multiple-messages may be handled provided that their totallength is a-priori bounded and that we use a state (as in Construction 5.3.3).We stress that this state-based private-key perfectly-secure encryption schemeuses a key of length equal to the total length of plaintexts to be encrypted. In-deed, the key must be at least that long (to allow perfect-security), and a stateis essential for allowing several plaintexts to be securely encrypted.Partial information models. Note that, in case of private-key encryptionscheme, the limitation of perfect-security hold only if the adversary has full in-formation of the communication over the channel. On the other hand, perfectly-secure private channels can be implemented on top of channels to which theadversary has limited access. We mention three types of channels of the lattertype, which have received a lot of attention.� The bounded-storage model, where the adversary can freely tap the com-munication channel(s) but is restricted in the amount of data it can store(cf., [204, 62, 262]).43� The noisy channel model (which generalizes the wiretap channel of [266])where both the communication between the legitimate parties and thetapping channel of the adversary are subjected to noise (cf., [204, 84] andthe references therein).� Quantum Channels where an adversary is (supposedly) prevented fromobtaining full information by the (currently believed) laws of quantummechanics (cf., [57] and the references therein).Following are the author's subjective opinions regarding these models (as a pos-sible basis for actual secure communication). The bounded-storage model is veryappealing, because it clearly states its reasonable assumptions regarding the theabilities of the adversary. In contrast, making absolute assumptions about thenoise level at any point in time seems (overly) optimistic, and thus not adequatein the context of cryptography. Basing cryptography on quantum mechanicssounds as a very appealing idea, but attempts to implement this idea have oftenstumbled over unjusti�ed hidden assumptions (which are to be expected giventhe confusing nature of quantum mechanics and the discrepancy between itsscienti�c culture and cryptography).43 Typically, this model postulates the existence of an auxiliary (uni-directional) publicchannel on which a trusted party (called a beacon) transmits a huge amount of random bits.
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5.5. MISCELLANEOUS 4655.5.3 On Popular SchemesThe reader may note that we have avoided the presentation of several popularencryption schemes. We regret to say that most of these schemes are proposedwithout any reference to a satisfactory notion of security.44 Thus, it is notsurprising that we have nothing to say about the contents of such proposals.In contrast, we highlight a few things that we have said about other popularschemes and common practices:� The common practice of using \pseudorandom generators" as a basis forprivate-key stream ciphers (i.e., Construction 5.3.3) is sound, provided thatone actually uses pseudorandom generators (rather than programs that arecalled \pseudorandom generators" but actually produce sequences that areeasy to predict).45� Whereas the plain RSA public-key encryption scheme (which employs adeterministic encryption algorithm) is not secure, the randomized RSAencryption scheme (i.e., Construction 5.3.16) is secure, provided that thelarge hard-core conjecture holds (see Section 5.3.4.1). Some support forthe latter (clearly stated) conjecture may be derived from the fact thata related function (i.e., much fewer least signi�cant bits) constitutes ahard-core of the RSA.� Assuming the intractability of factoring, there exists a secure public-keyencryption scheme with e�ciency comparable to that of plain RSA: werefer to the Blum-Goldwasser public-key encryption scheme (i.e., Con-struction 5.3.20).Finally, we warn that encryption schemes proved to be secure in the randomoracle model are not necessarily secure (in the standard sense). For further dis-cussion of the Random Oracle Methodology, we refer the reader to Section 6.6.3.5.5.4 Historical NotesThe notion of private-key encryption scheme seems almost as ancient as the al-phabet itself. Furthermore, it seems that the development of encryption methodswent along with the development of communication media. As the amounts ofcommunication grow, more e�cient and sophisticated encryption methods wererequired. Computational complexity considerations were explicitly introducedinto the arena by Shannon [254]: In his work, Shannon considered the classicalsetting where no computational considerations are present. He showed that in44 Typically, these schemes are not (semantically) secure. Furthermore, these proposals failto suggest a weaker de�nition of security that is supposedly satis�ed by the proposed schemes.45 The linear congruential generator is easy to predict [55]. The same holds for some modi�-cations of it that output a constant fraction of the bits of each resulting number [113]. We warnthat sequences having large linear-complexity (LFSR-complexity) are not necessarily hard topredict.
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466 CHAPTER 5. ENCRYPTION SCHEMESthis information theoretic setting, secure communication of information is pos-sible only as long as its entropy is lower than the entropy of the key. He thusconcluded that if one wishes to have an encryption scheme that is capable ofhandling messages with total entropy exceeding the length of the key then onemust settle for a computational relaxation of the secrecy condition. That is,rather than requiring that the ciphertext yields no information on the plaintext,one has to require that such information cannot be e�ciently computed fromthe ciphertext. The latter requirement indeed coincides with the de�nition ofsemantic security.The notion of public-key encryption scheme was introduced by Di�e andHellman [91]. First concrete candidates were suggested by Rivest, Shamir andAdleman [243] and by Merkle and Hellman [210]. However, satisfactory de�-nitions of security were presented only a few years afterwards, by Goldwasserand Micali [160]. The two de�nitions presented in Section 5.2 originate in [160],where it was shown that ciphertext-indistinguishability implies semantic secu-rity. The converse direction is due to [211].Regarding the seminal paper of Goldwasser and Micali [160], a few additionalcomments are in place. Arguably, this paper is the basis of the entire rigorousapproach to cryptography (presented in the current work): It introduced generalnotions such as computational indistinguishability, de�nitional approaches suchas the simulation paradigm, and techniques such as the hybrid argument. Thepaper's title (\Probabilistic Encryption") is due to the authors' realization thatpublic-key encryption schemes in which the encryption algorithm is deterministiccannot be secure in the sense de�ned in their paper. Indeed, this led the authorsto (explicitly) introduce and justify the paradigm of \randomizing the plaintext"as part of the encryption process. Technically speaking, the paper only presentssecurity de�nitions for public-key encryption schemes, and furthermore someof these de�nitions are syntactically di�erent from the ones we have presentedabove (yet, all these de�nitions are equivalent). Finally, the term \ciphertext-indistinguishability" used here replaces the (generic) term \polynomial-security"used in [160]. Many of our modi�cations (to the de�nitions in [160]) are dueto Goldreich [125], which is also the main source of our uniform-complexitytreatment.The �rst construction of a secure public-key encryption scheme based ona simple complexity assumption was given by Goldwasser and Micali [160].46Speci�cally, they constructed a public-key encryption scheme assuming that de-ciding Quadratic Residiousity modulo composite numbers is intractable. Thecondition was weaken by Yao [267] who prove that any trapdoor permutationwill do. The e�cient public-key encryption scheme of Construction 5.3.20 isdue to Blum and Goldwasser [52]. The security is based on the fact that theleast signi�cant bit of the modular squaring function is a hard-core predicate,provided that factoring is intractable, a result mostly due to [5].46 Recall that plain RSA is not secure, whereas Randomized RSA is based on the LargeHard-Core Conjecture for RSA (which is less appealing that the standard conjecture referringto the intractability of inverting RSA).
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5.5. MISCELLANEOUS 467For decades, it has been common practice to use \pseudorandom generators"in the design of stream ciphers. As pointed out by Blum and Micali [53], thispractice is sound provided that one uses pseudorandom generators (as de�nedin Chapter 3). The construction of private-key encryption schemes based onpseudorandom functions is due to [136].We comment that it is indeed peculiar that the rigorous study of (the securityof) private-key encryption schemes has legged behind the corresponding studyof public-key encryption schemes. This historical fact may be explained by thevery thing that makes it peculiar; that is, private-key encryption schemes areless complex than public-key ones, and hence the problematics of their security(when applied to popular candidates) is less obvious. In particular, the need fora rigorous study of (the security of) public-key encryption schemes arose fromobservations regarding some of their concrete applications (e.g., doubts raisedby Lipton concerning the security of the \mental poker" protocol of [253], whichused \plain RSA" as an encryption scheme). In contrast, the need for a rigorousstudy of (the security of) private-key encryption schemes arose later and byanalogy to the public-key case.Credits for the advanced section (i.e., Section 5.4)De�nitional issues. The original de�nitional treatment of Goldwasser andMicali [160] actually refers to key-dependent passive attacks (rather than tokey-oblivious passive attacks). Chosen ciphertext attacks (of the a-priori anda-posteriori type) were �rst considered in [224] (and [240], respectively). How-ever, these papers focused on the formulation in terms of indistinguishability ofencryptions, and formulations in terms of semantic security have not appearedbefore. Section 5.4.4.2 is based on [145]. The study of the non-malleability ofthe encryption schemes was initiated by Dolev, Dwork and Naor [92].Constructions. The framework for constructing public-key encryption schemesthat withstand Chosen Ciphertext Attacks (i.e., Construction 5.4.23) is due toNaor and Yung [224], who used it to construct public-key schemes that with-stand a-priori CCA (under suitable assumptions). This framework was appliedto the setting of a-posteriori CCA by Sahai [246, 247], who followed and im-proved ideas of Dolev, Dwork and Noar [92] (which were the �rst to constructpublic-key schemes that withstand a-posteriori CCA and prove Theorem 5.4.31).Our presentation of the proof of Theorem 5.4.31 follows subsequent simpli�ca-tion due to [196]. The key role of non-interactive zero-knowledge proofs in thiscontext was suggested by Blum, Feldman and Micali [51]. The fact that securityand non-malleability are equivalent under a-posteriori chosen ciphertext attackwas proven in [92, 23].5.5.5 Suggestion for Further ReadingFor discussion of Non-Malleable Cryptography, which actually transcends thedomain of encryption, see [92]. Speci�cally, we wish to highlight the notion
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468 CHAPTER 5. ENCRYPTION SCHEMESof non-malleable commitment scheme, which is arguably the most appealinginstantiation of the \non-malleability paradigm": it is infeasible for a party thatis given a non-malleable commitment to produce a commitment to a relatedstring. Note that ability to produce related commitments may endanger someapplications (see, e.g., [144]) even if this ability is not decoupled with the abilityto properly decommit (to the produced commitment) once a decommitment tothe original commitment is obtained.Recall that there is a gap between the assumptions currently required forthe construction of private-key and public-key encryption schemes: whereas theformer can be constructed based on any one-way functions, the latter seem torequire a trapdoor permutation (or, actually, a \trapdoor predicate" [160]). Apartial explanation to this gap was provided by Impagliazzo and Rudich, whoshowed that generic (black-box) constructions of public-key encryption schemescannot rely on one-way functions [172] (or even on one-way permutations [179]).For a detailed discussion of the relationship among the various notions ofsecure private-key and public-key encryption schemes, the reader is referredto [181] and [23], respectively.5.5.6 Open ProblemsSecure public-key encryption schemes exist if there exist collections of (non-uniformly hard) trapdoor permutations (cf. Theorem 5.3.15). It is not knownwhether the converse holds (although secure public-key encryption schemes eas-ily imply one-way function). (The few-to-1 feature of the function collection isimportant; see [29].)Randomized RSA (i.e., Construction 5.3.16) is commonly believed to be asecure public-key encryption scheme. It would be of great practical importanceto gain additional support for this belief. As shown in Proposition 5.3.17, thesecurity of Randomized RSA follows from the Large Hard-Core Conjecture forRSA, but the latter is not known to follow from a more standard assumption suchas that RSA is hard to invert. This is indeed the third place in the current workwhere we suggest the establishment of the latter implication as an importantopen problem.The constructions of public-key encryption schemes (secure against chosenciphertext attacks) that are presented in Section 5.4 should be considered plau-sibility results (which also o�er some useful construction paradigms). Present-ing \reasonably-e�cient" public-key encryption schemes that are secure against(a-posteriori) chosen ciphertext attacks, under general widely-believed assump-tions, is an important open problem.475.5.7 Exercises47 We comment that the \reasonably-e�cient" scheme of [83] is based on a strong assump-tion regarding a speci�c computational problem related to the Di�e-Hellman Key Exchange.Speci�cally, it is assumed that for a prime P and primitive element g, given (P; g; (gx modP ); (gy mod P ); (gz mod P )), it is infeasible to decide whether z � xy (mod P � 1).
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5.5. MISCELLANEOUS 469Exercise 1: Encryption schemes imply secure communication protocols. A se-cure communication protocol is a two-party protocol that allows the partiesto communicate in secrecy (i.e., as in De�nition 5.2.1). We stress that thesender enters such a protocol with input that equals the message to bedelivered and the receiver enters with no input (or with input equals thesecurity parameter).1. Show that any public-key encryption scheme yields a (two-message)secure communication protocol.2. De�ne secure communication protocol with initial set-up, and showthat any private-key encryption scheme yields such a (one-message)protocol. (Here, the communicating parties obtain an (equal) auxil-iary input that is generated at random according to some predeter-mined process.)Advanced: Show that a secure communication protocol (even with initialset-up but with a-priori unbounded messages) implies the existence of one-way functions.Guideline (Advanced part): See guideline for Exercise 2.Exercise 2: Encryption schemes imply one-way function [170]. Show that theexistence of a secure private-key encryption scheme (i.e., as in De�ni-tion 5.2.1) implies the existence of one-way functions.Guideline: Recall that, by Exercise 11 of Chapter 3, it su�ces to provethat the former implies the existence of a pair of polynomial-time con-structible probability ensembles that are statistically far apart and stillare computationally indistinguishable. To prove the existence of such en-sembles consider the encryption of (n + 1)-bit plaintexts relative to a ran-dom n-bit long key, denoted Kn. Speci�cally, let the �rst ensemble bef(Un+1; E(Un+1))gn2N, where E(x) = EKn(x), and the second ensem-ble be f(U(1)n+1; E(U(2)n+1))gn2N , where U(1)n+1 and U(2)n+1 are independentlydistributed. It is easy to show that these ensembles are computationallyindistinguishable and are both polynomial-time constructible. The moreinteresting part is to show that these ensembles are statistically far apart.Note that the correct decryption condition implies that (Kn; EKn(Un+1))contains n+ 1� o(1) bits of information about Un+1. On the other hand,if the above ensembles are statistically close then EKn(Un+1) contains o(1)bits of information about Un+1. Contradiction follows, because Kn maycontain at most n bits of information.Exercise 3: Encryption schemes with unbounded-length plaintexts. Supposethat the de�nition of semantic security is modi�ed so that no bound isplaced on the length of plaintexts. Prove that in such a case there existsno semantically secure encryption scheme.Guideline: A plaintext of length exponential in the security parameterallows the adversary, which runs in time polynomial in its input, to �nd
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470 CHAPTER 5. ENCRYPTION SCHEMESthe decryption-key by exhaustive search. In case of public-key schemes, wemerely search for a coins that make the key-generator algorithm output akey-pair with an encryption-key that �ts the one given to us. In case ofprivate-key schemes, we assume that we are given all but the �rst bit of theplaintext (i.e., we refer to h(1n; �x) = x where � 2 f0; 1g), and search foran adequate key as well as the value of �.Exercise 4: Encryption schemes must leak information about the length of theplaintext. Suppose that the de�nition of semantic security is modi�ed sothat the algorithms are not given the length of the plaintext. Prove thatin such a case there exists no semantically secure encryption scheme.Guideline: First show that for some polynomial p, jE(1n)j < p(n) (alwaysholds), whereas for some x 2 f0; 1gp(n) it must hold that Pr[jE(x)j<p(n)] <1=2.Exercise 5: Hiding partial information about the length of the plaintext. Us-ing an arbitrary secure encryption scheme, construct a correspondinglysecure encryption scheme that hides the exact length of the plaintext. Inparticular, construct an encryption scheme that reveals only the followingfunction h0 of the length of the plaintext:1. h0(m) = dm=ne � n, where n is the security parameter.2. h0(m) = 2dlog2me(Hint: Just use an adequate padding convention, making sure that it always allowscorrect decryption.)Exercise 6: Length parameters. Assuming the existence of a secure public-key(resp., private-key) encryption scheme, prove the existence of such schemein which the length of the keys equal the security parameter. Furthermore,show that (without loss of generality) the length of ciphertexts may be a�xed polynomial in the length of the plaintext and the security parameter.Exercise 7: On the distribution of public-keys. Let (G;E;D) be a secure public-key encryption scheme. Prove that for every polynomial p, and all su�-ciently large n, it holds that maxefPr[G1(1n)=e]g < 1=p(n).Guideline: Show that for any encryption-key e in the range ofG1(1n), onecan �nd a corresponding decryption-key in expected time 1=Pr[G1(1n)=e].Exercise 8: Deterministic encryption schemes. Prove that a semantically se-cure public-key encryption scheme must employ a probabilistic encryptionalgorithm. (Hint: Otherwise, one can distinguish the encryptions of two candidateplaintexts by computing the unique ciphertext for each of them.)Exercise 9: An alternative formulation of De�nition 5.2.1. Prove that the fol-lowing de�nition, in which we use non-uniform families of polynomial-sizecircuits (rather than probabilistic polynomial-time algorithms) is equiva-lent to De�nition 5.2.1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.5. MISCELLANEOUS 471There exists a probabilistic polynomial-time transformation Tsuch that for every polynomial-size circuit family fCngn2N, andfor every fXngn2N, f; h : f0; 1g� ! f0; 1g�, p(�) and n as inDe�nition 5.2.1Pr hCn(EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< Pr hC 0n(1jXnj; h(1n; Xn))=f(1n; Xn)i+ 1p(n)where C 0n  T (Cn) and the probability is also taken over theinternal coin tosses of T .Same for public-key encryption.Guideline: The alternative view of non-uniformity, discussed in Sec-tion 1.3, is useful here. That is, we can view a circuit family as a sequence ofadvices given to a universal machine. Thus, the above de�nition states thatadvices for a machine that gets the ciphertext can be e�ciently transformedinto advices for a machine that does not get the ciphertext. However, wecan incorporate the (probabilistic) transformation program into the seconduniversal algorithm (which then become probabilistic). Consequently, theadvices are identical for both machines (and can be incorporated in the aux-iliary input h(1n; Xn) used in De�nition 5.2.1). Viewed this way, the abovede�nition is equivalent to asserting that for some (universal) deterministicpolynomial-time algorithm U there exists a probabilistic polynomial-timealgorithm U 0 and for every fXngn2N, f; h : f0; 1g� ! f0; 1g�, p(�) and nas in De�nition 5.2.1Pr �U(1n; EG1(1n)(Xn); 1jXnj; h(1n;Xn))=f(1n ;Xn)�< Pr �U 0(1n; 1jXnj; h(1n; Xn))=f(1n; Xn)�+ 1p(n)Still, a gap remains between the above de�nition and De�nition 5.2.1:the above condition refers only to one possible deterministic algorithmU , whereas De�nition 5.2.1 refers to all probabilistic polynomial-time al-gorithms. To close the gap, we �rst observe that (by Propositions 5.2.7and 5.2.6) De�nition 5.2.1 is equivalent to a form in which one only quan-ti�es over deterministic polynomial-time algorithms A. We conclude byobserving that one can code any algorithm A (and polynomial time-bound)referred to by De�nition 5.2.1 in the auxiliary input (i.e., h(1n; Xn)) givento U .Exercise 10: In continuation to Exercise 9, consider a de�nition in which thetransformation T (of the circuit family fCngn2N to the circuit familyfC 0ngn2N) is not required to (even) be computable.48 Clearly, the newde�nition is not stronger than the one in Exercise 9. Show that the twode�nitions are in fact equivalent.Guideline: Use the furthermore-clause of Proposition 5.2.7 to show thatthe new de�nition implies indistinguishability of encryptions, and concludeby applying Proposition 5.2.6 and invoking Exercise 9.48 Equivalently, one may require that for any polynomial-size circuit family fCngn2N thereexists a polynomial-size circuit family fC0ngn2N satisfying the above inequality.
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472 CHAPTER 5. ENCRYPTION SCHEMESExercise 11: An alternative formulation of De�nition 5.2.3. Prove that De�-nition 5.2.3 remains unchanged when supplying the circuit with auxiliary-input. That is, an encryption scheme satis�es the modi�ed De�nition 5.2.3if and only iffor every polynomial-size circuit family fCng, every polynomialp, all su�ciently large n and every x; y 2 f0; 1gpoly(n) (i.e., jxj =jyj) and z 2 f0; 1gpoly(n),jPr �Cn(z; EG1(1n)(x))=1�� Pr �Cn(z; EG1(1n)(y))=1� j < 1p(n)(Hint: incorporate z in the circuit Cn.)Exercise 12: Equivalence of the security de�nitions in the public-key model.Prove that a public-key encryption scheme is semantically secure if andonly if it has indistinguishable encryptions.Exercise 13: The technical contents of semantic security. The following ex-plains the lack of computational requirements regarding the function f ,in De�nition 5.2.1. Prove that an encryption scheme, (G;E;D), is (se-mantically) secure (in the private-key model) if and only if the followingholds:There exists a probabilistic polynomial-time algorithm A00 suchthat for every fXngn2N and h as in De�nition 5.2.1, the followingtwo ensembles are computationally indistinguishable.1. fEG1(1n)(Xn); 1jXnj; h(1n; Xn)gn2N.2. fA00(1n; 1jXnj; h(1n; Xn))gn2N.Formulate and prove an analogous claim for the public-key model.Guideline: We care mainly about the fact that the above de�nition im-plies semantic security. The other direction can be proven analogously tothe proof of Proposition 5.2.7.Exercise 14: Equivalent formulations of semantic security.1. Prove that De�nition 5.2.1 remains unchanged if we restrict the func-tion h to depend only on the length of its input or alternativelyh(1n; x) = h0(n) for some h0 : N ! f0; 1g�.2. Prove that De�nition 5.2.1 remains unchanged if we may restrict thefunction h and the probability ensemble fXngn2N such that they arecomputable (resp., sampleable) by polynomial-size circuits.Guideline (Part 1): Prove that this special case (i.e., obtained by therestriction on h) is equivalent to the general one. This follows by combin-ing Propositions 5.2.7 and 5.2.6. Alternatively, this follows by consideringall possible probability ensembles fX0ngn2N obtained from fXngn2N byconditioning that h(1n;Xn) = an (for every possible sequence of an's).
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5.5. MISCELLANEOUS 473Guideline (Part 2): The claim regarding h follows from Part 1. To es-tablish the claim regardingXn, observe that (by Propositions 5.2.7 and 5.2.6)we may consider the case in which Xn ranges over two strings.Exercise 15: A variant on Exercises 13 and 14.1. Prove that an encryptionscheme, (G;E;D), is (semantically) secure (in the private-key model) ifand only if the following holds:For every probabilistic polynomial-time algorithm A there existsa probabilistic polynomial-time algorithm A0 such that for ev-ery ensemble fXngn2N, with jXnj = poly(n), and polynomially-bounded h0 the following two ensembles are computationally in-distinguishable.1. fA(1n; EG1(1n)(Xn); 1jXnj; h0(1n))gn2N.2. fA0(1n; 1jXnj; h0(1n))gn2N.An equivalent form is obtained by replacing h0(1n) with a poly(n)-bit longstring vn.Formulate and prove an analogous claim for the public-key model.Guideline: Again, we care mainly about the fact that the above im-plies semantic security. The easiest proof of this direction is by applyingPropositions 5.2.7 and 5.2.6. A more interesting proof is obtained by usingExercise 13: Indeed, the current formulation is a special case of the formu-lation in Exercise 13, and so we need to prove that it implies the generalcase. The latter is proven by observing that otherwise { using an averag-ing argument { we derive a contradiction in one of the residual probabilityspaces de�ned by conditioning on h(1n; Xn) (i.e., (Xnjh(1n;Xn) = v) forsome v).Exercise 16: Semantic security with respect to relations. The formulation ofsemantic security in De�nition 5.2.1 refers to computing a function of theplaintext. Here we present a (related) de�nition that refers to �ndingstrings that are in a certain relation to the plaintext. Note that, unlikein De�nition 5.2.1, here we consider only e�ciently recognizable relations.Speci�cally, we require the following:For every probabilistic polynomial-time algorithm A there existsa probabilistic polynomial-time algorithm A0 such that for everyensemble fXngn2N, with jXnj = poly(n), every polynomially-bounded function h, every polynomially-bounded relationR thatis recognizable by a (non-uniform) family of polynomial-size cir-cuits, every polynomial p(�) and all su�ciently large nPr h(Xn; A(1n; EG1(1n)(Xn); 1jXnj; h(1n; Xn))) 2 Ri< Pr h(Xn; A0(1n; 1jXnj; h(1n; Xn))) 2 Ri+ 1p(n)
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474 CHAPTER 5. ENCRYPTION SCHEMES1. Prove that the above de�nition is in fact equivalent to the standardde�nition of semantic security.2. Show that if the computational restriction on the relation R is re-moved then no encryption scheme can satisfy the resulting de�nition.Formulate and prove analogous claims for the public-key model.Guideline (for Part 1): Show that the new de�nition is equivalent toindistinguishability of encryptions. Speci�cally, follow the proofs of Propo-sitions 5.2.6 and 5.2.7, using the circuits guaranteed for R in the �rst proof,and noting that the second proof holds intact.Guideline (for Part 2): Consider the relation R = f(x;Ee(x)) : jxj =2jejg, and the distribution Xn = U2n. (Note that if the encryption schemeis semantically secure then this R is not recognizable by small circuits.)Exercise 17: Semantic security with a randomized h. The following syntacticstrengthening of semantic security is important in some applications. Itsessence is in considering information related to the plaintext, in the formof a related random variable, rather than partial information about theplaintext (in the form of a function of it). Prove that an encryption scheme,(G;E;D), is (semantically) secure (in the private-key model) if and onlyif the following holds:For every probabilistic polynomial-time algorithm A there ex-ists a probabilistic polynomial-time algorithm A0 such that forevery f(Xn; Zn)gn2N, with j(Xn; Zn)j = poly(n), where Zn maydependent arbitrarily on Xn, and f , p(�) and n as in De�ni-tion 5.2.1Pr hA(1n; EG1(1n)(Xn); 1jXnj; Zn)=f(1n; Xn)i< Pr hA0(1n; 1jXnj; Zn)=f(1n; Xn)i+ 1p(n)That is, the auxiliary input h(1n; Xn) of De�nition 5.2.1 is replaced bythe random variable Zn. Formulate and prove an analogous claim for thepublic-key model.Guideline: De�nition 5.2.1 is clearly a special case of the above. Onthe other hand, the proof of Proposition 5.2.6 extends easily to the above(seemingly stronger) formulation of semantic security.Exercise 18: Semantic Security w.r.t Oracles (suggested by Boaz Barak): Con-sider an extended de�nition of semantic security in which, in additionto the regular inputs, the algorithms have oracle access to a functionH1n;x : f0; 1g� ! f0; 1g� (instead of being given the value h(1n; x)). TheH1n;x's have to be restricted to have polynomial (in n + jxj) size circuit.That is, an encryption scheme, (G;E;D), is extended-semantically secure(in the private-key model) if the following holds:
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5.5. MISCELLANEOUS 475For every probabilistic polynomial-time algorithm A there existsa probabilistic polynomial-time algorithm B such that for everyensemble fXngn2N, with jXnj = poly(n), every polynomially-bounded function f , every family of polynomial-sized circuitsfH1n;xgn2N;x2f0;1g� , every polynomial p(�) and all su�cientlylarge nPr hAH1n;Xn (1n; EG1(1n)(Xn); 1jXnj)=f(1n; Xn)i< Pr hBH1n;Xn (1n; 1jXnj)=f(1n; Xn)i+ 1p(n)The de�nition of public-key security is analogous.1. Show that if (G;E;D) has indistinguishable encryptions then it isextended-semantically secure.2. Show that if no restriction are placed on the H1n;x's then no schemecan be extended-semantically secure (in this unrestricted sense).Guideline (for Part 1): The proof is almost identical to the proof ofProposition 5.2.6: The algorithm B forms an encryption of 1jXnj, and in-vokes A on it. Indistinguishability of encryptions is used in order to establishthat BH1n;Xn (1n; 1jXnj) performs essentially as well as AH1n;Xn (1n; 1jXnj; E(Xn)).Otherwise, we obtain a distinguisher of E(xn) from E(1jxnj), for some in�-nite sequence of xn's. In particular, the oracleH1n;xn (being implementableby a small circuit) can be incorporated into a distinguisher.Guideline (for Part 2): In such a case, H1n;x may be de�ned suchthat, when queried about a ciphertext, it reveals the decryption-key in use.49Such an oracle allows A (which is given a ciphertext) to recover the corre-sponding plaintext, but does not help A0 (which is only given 1n; 1jXnj) to�nd any information about the value of Xn.Exercise 19: Another equivalent de�nition of security. The following exerciseis interesting mainly for historical reasons. In the de�nition of semanticsecurity appearing in [160], the term maxu;vfPr[f(1n; Xn)=vjh(1n; Xn)=u]g appears instead of the term Pr[A0(1jXnj; h(1n; Xn)) = f(1n; Xn)]. Thatis, it is required that the following holds:For every probabilistic polynomial-time algorithm A every en-semble fXngn2N, with jXnj = poly(n), every pair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomial p(�)and all su�ciently large nPr hA(EG1(1n)(Xn); 1jXnj; h(1n; Xn))=f(1n; Xn)i< maxu;v fPr [f(1n; Xn)=vjh(1n; Xn)=u]g+ 1p(n)49 The above refers to the private-key case, whereas in the public-key case H1n;x may bede�ned such that, when queried about an encryption-key, it reveals the decryption-key in use.
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476 CHAPTER 5. ENCRYPTION SCHEMESProve that the above formulation is in fact equivalent to De�nition 5.2.1.Guideline: First, note that the above de�nition is implied by De�ni-tion 5.2.1 (because maxu;vfPr[f(1n; Xn)=vjh(1n;Xn)=u]g � Pr[A0(h(1n ;Xn); 1n; jXnj) =f(1n;Xn)], for every algorithm A0). Next note that in the special case,in which Xn satis�es Pr[f(1n;Xn) = 0jh(1n;Xn) = u] = Pr[f(1n;Xn) =1jh(1n;Xn) = u] = 12 , for all u's, the above terms are equal (since A0can easily achieve success probability 1=2 by simply always outputting 1).Finally, combining Propositions 5.2.7 and 5.2.6. infer that it su�ces toconsider only the latter special case.Exercise 20: Multiple messages of varying lengths. In continuation to Sec-tion 5.2.4, generalize the treatment to encryption of multiple messagesof varying lengths. That is, provide adequate de�nitions and analogousresults.Guideline: For example, a generalization of the �rst item of De�ni-tion 5.2.8 postulates that for every probabilistic polynomial-time algorithmA, there exists a probabilistic polynomial-time algorithm A0 such that forevery ensemble fXn = (X(1)n ; :::;X(t(n))n )gn2N, with t(n) � poly(n) andjX(i)n j � poly(n), every pair of polynomially-bounded functions f; h : f0; 1g� !f0; 1g�, every polynomial p(�) and all su�ciently large nPr hA(1n; EG1(1n)(Xn); (1jX(1)n j; :::; 1jX(t(n))n j); h(1n; Xn))=f(1n; Xn)i< Pr hA0(1n; (1jX(1)n j; :::;1jX(t(n))n j); h(1n; Xn))=f(1n ; Xn)i + 1p(n)Exercise 21: Private-key encryption secure w.r.t exactly t messages. In con-tinuation to Proposition 5.2.12, show that if secure private-key encryptionschemes exist then for every t there are such scheme that are secure withrespect to the encryption of t messages but not with respect to the encryp-tion of t+ 1 messages.Guideline: Given an arbitrary private-key encryption scheme (G;E;D),consider the following private-key encryption scheme (G0; E0;D0):� G0(1n) = (k; k), where k = (k0; k1; :::; kt) such that (k0; k0)  G(1n)and k1; :::; kt are uniformly and independently selected in f0; 1gn (w.l.o.g.,n = jk0j);� E0(k0;k1;:::;kt)(x) = (Ek0 (x); r;Pti=0 kiri), where r is uniformly se-lected in f0; 1gn, and the arithmetics is of the �eld GF (2n);� and D0(k0;k1;:::;kt)(y; r; v) = Dk0(y).Essentially, the original scheme is augmented with a (t+1)-out-of-2n secretsharing scheme (see De�nition 7.5.34) such that a share of the original keyis revealed by each encryption.Exercise 22: Known plaintext attacks. Loosely speaking, in a known plaintextattack on a private-key (resp., public-key) encryption scheme the adver-sary is given some plaintext/ciphertext pairs in addition to some extraciphertexts (without corresponding plaintexts). Semantic security in thissetting means that whatever can be e�ciently computed about the missing
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5.5. MISCELLANEOUS 477plaintexts, can be also e�ciently computed given only the length of theseplaintexts.1. Provide formal de�nitions of security under known plaintext attackstreating both the private-key and public-key models and referring toboth the single-message and multiple-message settings.2. Prove that any secure public-key encryption scheme is also secure inthe presence of known plaintext attacks.3. Prove that any private-key encryption scheme that is secure in themultiple-message setting is also secure in the presence of known plain-text attacks.Guideline (for Part 3): Consider a function h in the multiple-messagesetting that reveals some of the plaintexts.Exercise 23: On the standard notion of block-cipher. A standard block-cipheris a triple, (G;E;D), of probabilistic polynomial-time algorithms that sat-is�es De�nition 5.3.5 as well as jEe(�)j = `(n) for every pair (e; d) in therange of G(1n) and every � 2 f0; 1g`(n).1. Prove that a standard block-cipher cannot be semantically secure (inthe multiple-message model). Furthermore, show that any seman-tically secure encryption scheme must employ ciphertexts that arelonger than the corresponding plaintexts.2. Present a state-based version of the de�nition of a (secure) standardblock-cipher, and note that Construction 5.3.3 satis�es it.Guideline (for Part 1): Consider the encryption of a pair of two iden-tical messages versus the encryption of a pair of two di�erent messages,and use the fact that Ee must be a permutation of f0; 1g`(n). Extend theargument to any encryption scheme in which plaintexts of length `(n) areencrypted by ciphertexts of length `(n) + O(logn), observing that in thiscase most plaintexts have only poly(n)-many ciphertexts under Ee.Exercise 24: A secure private-key encryption scheme. Assuming that F ispseudorandom with respect to polynomial-size circuits, prove that Con-struction 5.3.12 constitutes a private-key encryption scheme.Guideline: Adapt the proof of Proposition 5.3.10. This requires bound-ing the probability that for t uniformly selected r(j)'s there exists j1; j2 2f1; :::; tg and i1; i2 2 f1; :::;poly(n)g such that r(j1) + i1 � r(j2) + i2(mod 2n).Exercise 25: The Blum-Goldwasser public-key encryption scheme was presentedin Construction 5.3.20 as a block-cipher (with arbitrary block length). Pro-vide an alternative presentation of this scheme as a full-
edged encryptionscheme (rather than a block-cipher), and prove its security (under thefactoring assumption).
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478 CHAPTER 5. ENCRYPTION SCHEMESGuideline: In the alternative presentation, the values of dP and dQ can-not be determined at key-generation time, but are rather computed by thedecryption process. (This means that decryption requires two additionalmodular exponentiations.)Exercise 26: On the importance of restricting the ensembles fhege2f0;1g� andfXege2f0;1g� in De�nition 5.4.1.1. Show that if one allows arbitrary function ensembles fhege2f0;1g� inDe�nition 5.4.1 then no encryption scheme can satisfy it.2. Show that if one allows arbitrary probability ensembles fXege2f0;1g�in De�nition 5.4.1 then no encryption scheme can satisfy it, even ifone uses only a single function h that is polynomial-time computable.Guideline: For Part 1, consider the functions he(x) = d, where d is adecryption-key corresponding to the encryption-key e. For Part 2, considerthe random variable Xe = (d; Ujej), where d is as before, and the functionh(x0; x00) = x0.Exercise 27: An alternative formulation of De�nition 5.4.1. Show that thefollowing formulation of the de�nition of admissible ensembles fhege andfXege is equivalent to the one in De�nition 5.4.2:� There is a non-uniform family of polynomial-size circuits fTng thattransform encryption-keys (i.e., e in G1(1n)) into circuits that com-pute the corresponding functions (i.e., he). That is, on input e  G1(1n), the circuit Tn outputs a circuit Ce such that Ce(x) = he(x)holds for all strings of adequate length (i.e., � poly(jej)).� There is a non-uniform family of polynomial-size circuits fTng thattransform encryption-keys (i.e., e in G1(1n)) into circuits that sam-ple the corresponding distributions (i.e., Xe). That is, on inpute  G1(1n), the circuit Tn outputs a circuit Se such that Se(Um)is distributed identically to Xe, where Um denotes the uniform dis-tribution over the set of strings of length m = m(e).Note that the above formulation is in greater agreement with the moti-vating discussion preceding De�nition 5.4.2. The formulation in De�ni-tion 5.4.2 was preferred because of its relative simplicity.Guideline: Consider, for example, the condition regarding fheg. Theformulation in De�nition 5.4.2 is shown to imply the one above by consid-ering the circuit family fTng such that on input e (in the range of G1(1n))the circuit Tn outputs the circuit Ce(�) def= Hn(e; �), where Hn is the cir-cuit guaranteed by De�nition 5.4.2. That is, Tn has the description of Hnhard-wired, and outputs the description of the circuit obtained from Hn by�xing its �rst input to be e. On the other hand, given a circuit family fTngthat transforms e 7! Ce as above, we obtain a circuit Hn as required inthe formulation of De�nition 5.4.2 as follows. The circuit Hn has Tn hard-wired, and so, on input (e; x), the circuit Hn �rst reconstructs the circuitCe  Tn(e), and then emulates the computation of the value Ce(x).
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5.5. MISCELLANEOUS 479Exercise 28: Multiple-message security in the context of key-dependent passiveattacks on public-key schemes. Formulate multiple-message generalizationsof De�nitions 5.4.1 and 5.4.2, and prove that both are equivalent (in thepublic-key model) to the single-message de�nitions.Guideline: Note that admissibility for the multiple-message generaliza-tion of De�nition 5.4.2 means that, given an encryption-key e, one cancompute (via a polynomial-size circuit that depends only on jej) a cor-responding pair of sequences ((x(1)e ; :::; x(t(jej))e ); (y(1)e ; :::; y(t(jej))e )). Thus,ability to distinguish corresponding sequences of encryptions yields abilityto distinguish, for some i, the encryption of x(i)e from the encryption ofy(i)e , where the latter distinguisher generates the corresponding x-y hybrid(by using the circuit guaranteed by the admissibility condition and the in-put encryption-key e), and invokes the former distinguisher on the resultingsequence of encryptions.Exercise 29: Key-oblivious versus key-dependent passive attacks. Assumingthe existence of secure public-key encryption schemes, show that thereexist one that satis�es the basic de�nition (i.e., as in De�nition 5.2.2) butis insecure under key-dependent passive attacks (i.e., as in De�nition 5.4.1).Guideline: Given a scheme (G;E;D), de�ne (G;E0;D0) such that E0e(x) =(1; Ee(x)) if x 6= e and E0e(x) = (0; x) otherwise (i.e., for x = e). UsingExercise 7 (which establishes that each encryption-key is generated withnegligible probability), show that (G;E0;D0) satis�es De�nition 5.2.2. Al-ternatively, use G0(1n) = ((r;G1(1n)); G2(1n)), where r is uniformly dis-tributed in f0; 1gn, which immediately implies that each encryption-key isgenerated with negligible probability.Exercise 30: Passive attacks versus Chosen Plaintext Attacks. Assuming theexistence of secure private-key encryption schemes, show that there existone that is secure in the standard (multi-message) sense (i.e., as in Def-inition 5.2.8) but is insecure under a chosen plaintext attack (i.e., as inDe�nition 5.4.8).Guideline: Given a scheme (G;E;D), de�ne (G0; E0;D0) such that1. G0(1n) = ((k; r); (k; r)), where (k; k)  G(1n) and r is selected uni-formly in f0; 1gn.2. E0(k;r)(x) = (1; r;Ek(x)) if x 6= r and E0(k;r)(x) = (0; k; x) otherwise(i.e., for x = r).Show that (G0; E0; D0) is secure in the standard sense, and present a (simplebut very \harmful") chosen plaintext attack on it.Exercise 31: Chosen Plaintext Attacks versus Chosen Ciphertext Attacks. As-suming the existence of secure private-key (resp., public-key) encryptionschemes that are secure under a chosen plaintext attack, show that thereexist one that is secure in the former sense but is not secure under a chosenciphertext attack (not even in the a-priori sense).Guideline: Given a scheme (G;E;D), de�ne (G0; E0;D0) such that G0 =G and
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480 CHAPTER 5. ENCRYPTION SCHEMES1. E0e(x) = (1; Ee(x)) with probability 1� 2�jej and E0e(x) = (0; x) oth-erwise.2. D0d(1; y) = Dd(y) and D0d(0; y) = (d; y).Recall that decryption is allowed to fail with negligible probability, andnote that the construction is adequate for both public-key and private-keyschemes. Alternatively, to obtain error-free decryption, de�ne E0e(x) =(1; Ee(x)), D0d(1; y) = Dd(y) and D0d(0; y) = (d; y). In case of private-keyschemes, we may de�ne E0k(k) = (0; 1jkj) and E0k(x) = (1; Ek(x)) for x 6= k.Exercise 32: Chosen Ciphertext Attacks: a-priori versus a-posteriori. As-suming the existence of secure private-key (resp., public-key) encryptionschemes that are secure under an a-priori chosen plaintext attack, showthat there exist one that is secure in the former sense but is not secureunder an a-posteriori chosen ciphertext attack.Guideline: Given a scheme (G;E;D), de�ne (G0; E0;D0) such that G0 =G and1. E0e(x) (b; Ee(x)), where b is uniformly selected in f0; 1g.2. D0d(b; y) = Dd(y).Exercise 33: Multiple-challenge CCA security implies a-posteriori-CCA secu-rity. Show that De�nition 5.4.16 implies security under a-posteriori CCA.Guideline: It is tempting to claim that De�nition 5.4.13 is a specialcase of De�nition 5.4.16 (obtained when allowing only one challenge query).However, things are not so simple: in De�nition 5.4.13 the challenges arerequired to be identically distributed (in the two cases), whereas in De�-nition 5.4.16 only computational indistinguishability is required. Instead,we suggest to show that De�nition 5.4.14 (which is equivalent to De�ni-tion 5.4.13) is implied by the (very) restricted case of De�nition 5.4.16discussed following the de�nition (i.e., a canonical adversary that makes asingle challenge query).50Exercise 34: Equivalent forms of multiple-challenge CCA security.1. Consider a modi�cation of De�nition 5.4.16 in which challenge queriesof the form (S; h) are answered by (Ee(S(r)); h(r)), rather than by(Ee(S(r)); h(S(r))). Prove that the original de�nition is equivalentto the modi�ed one.2. Consider a modi�cation of De�nition 5.4.16 in which the challengequeries of the form (S; h) are replaced by two type of queries: partial-information queries of the form (leak; h) that are answered by h(r),and partial-encryption queries of the form (enc; S) that are answeredby Ee(S(r)). Prove that the original de�nition is equivalent to themodi�ed one.50 Furthermore, we may even restrict this challenge query to be of the form (S; 0), where 0is the all-zero function (which yields no information).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.5. MISCELLANEOUS 481Guideline: Show how the modi�ed model of Part 1 can emulate theoriginal model (that's easy), and how the original model can emulate themodi�ed model of Part 1 (e.g., replace the query (S; h) by the pair of queries(S; 0) and (id; h)). Next relate the models in Parts 1 and 2.Exercise 35: On the computational restriction on the choice of input in thede�nition of adaptive NIZK. Show that if De�nition 5.4.22 is strengthenedby waiving the computational bounds on � then only trivial NIZKs (i.e.,for languages in BPP) can satisfy it.Guideline: Show that allowing a computationally-unbounded � forcesthe simulator to generate a reference string that is statistically close to theuniform distribution. Thus, soundness implies weak simulation-soundnessin the strong sense of Exercise 36 (i.e., w.r.t a computationally-unbounded� as in De�nition 5.4.22), and applying Exercise 36 we are done.Exercise 36: Weak simulation-soundness can hold only with respect to computationally-bounded cheating provers. Show that if De�nition 5.4.24 is strengthenedby waiving the computational bounds on � then only trivial NIZKs (i.e.,for languages in BPP) can satisfy it.Guideline: Show that otherwise the two-stage simulation procedure, S =(S1; S2), can be used to distinguish inputs in the language L from inputsoutside the language, because in the �rst case it produces a valid proofwhereas in the second case it cannot do so. The latter fact is proved byshowing that if S2 (which also gets an auxiliary input s produced by S1along with the reference string) produces a valid proof for some x 62 L thena computationally-unbounded prover may do the same by �rst generatings according to the conditional distribution induced by the reference string(and then invoking S2).Exercise 37: Does weak simulation-soundness hold for all adaptive NIZKs?1. Detect the 
aw in the following argument towards an a�rmative an-swer: If weak simulation-soundness does not hold then we can dis-tinguish a uniformly selected reference string (for which soundnessholds) from a reference string generated by S1 (for which soundnessdoes not hold).2. Assuming the existence of one-way permutations (and adaptive NIZKs),show an adaptive NIZK with a suitable simulator such that weaksimulation-soundness does not hold.3. (Suggested by Boaz Barak and Yehuda Lindell): Consider languagescontaining pairs (�; x) such that one can generate �'s along with suit-able trapdoors t(�)'s that allow to determine whether or not inputsof the form (�; �) are in the language. For such languages, de�ne aweaker notion of simulation-soundness which refers to the setting inwhich a random � is generated and then one attempts to producevalid proofs for a no-instance of the form (�; �) with respect to a
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482 CHAPTER 5. ENCRYPTION SCHEMESreference-string generated by S1. (The weaker notion asserts that inthis setting it is infeasible to produce a valid proof for such a no-instance.) Provide a clear de�nition, prove that it is satis�ed by anyadaptive NIZK for the corresponding language, and show that thisde�nition su�ces for proving Theorem 5.4.27.Guideline (Part 1): The existence of an e�cient C = (�;�) that vio-lates weak simulation-soundness only means that for reference string gener-ated by S1 the cheating � generates a valid proof for a no-instance selectedby �. When C is given a uniformly selected reference string it may eitherfail to produce a valid proof or may produce a valid proof for a yes-instance.However, we cannot necessarily distinguish no-instances from yes-instances(see, for example, Part 2). This gap is eliminated in Part 3.Guideline (Part 2): Given a one-way permutation f with a correspond-ing hard-core predicate b, consider the pseudorandom generator G(s) def=(G0(s); f2jsj(s)), where G0(s) def= b(s)b(f(s)) � � � b(f2jsj�1(s)) (see proof ofProposition 5.3.19). Let L denote the set of strings that are not imagesof G, and note that L is in NP (because L = f(�; �) : 9s s.t. � =f2jsj(s)) ^ � 6=G0(s)g). Given any adaptive NIZK for L, denoted (P; V ),consider the modi�cation (P 0; V 0) such that P 0(x;w; (r1; r2)) = P (x;w; r1)and V 0(x; (r1; r2); �) = 1 if either V (x; �; r1) = 1 or x = r2. The modi-�ed simulator is derived by S01(1n)  ((r1; r2); s), where (r1; s)  S1(1n)and r2  G(Un) (and S02(x; s) = S2(x; s)). Verify that the modi�ed al-gorithms satisfy the de�nition of an adaptive NIZK, and note that weaksimulation-soundness is easily violated by �(r1; r2) = r2 62 L (and any �).Exercise 38: On de�ning non-malleability. Show that when de�ning non-malleability(i.e., in De�nitions 5.4.32 and 5.4.33) it is essential to prevent A from out-putting the ciphertext that is given to it.Guideline: Consider the identity relation, a constant function h, and letXn be uniform over f0; 1gn. Note that A gets (e; Ee(Xn); 1n), whereas A0only gets 1n.
Author's Note: First draft written mainly in 1997. Major revisioncompleted and posted in Dec. 1999. Second major revision completedand posted in June 2001. Third major revision completed and postedin Feb. 2002. Last revision completed and posted in Dec. 2002.
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