Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

Draft of an Appendix

regarding
Corrections and Additions

(revised, third posted version)

Extracts from a working draft for

Volume 2 of Foundations of Cryptography

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

June 15, 2003

See copyright notice.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Appendix C

Corrections and Additions
to Volume 1

There is no 100% guarantee in the world;
whoever wants 100% guarantee should not build anything.

Eng. Isidor Goldreich (1906-1995)

In this appendix we list a few corrections and additions to the previous chapters
of this work (which appeared in [137]).

C.1 Enhanced Trapdoor Permutations

Recall that a collection of trapdoor permutations, as defined in Definition 2.4.5, is
a collection of permutations, { f, }«, accompanied by four probabilistic polynomial-
time algorithms, denoted I,S,F and B (for indez, sample, forward and back-
ward), such that the following (syntactic) conditions hold:

1. On input 17, algorithm I selects a random n-bit long index « of a permu-
tation f,, along with a corresponding trapdoor 7;

2. On input a, algorithm S samples the domain of f,, returning an almost
uniformly distributed element in it;

3. For z in the domain of f,, given « and z, algorithm F' returns f,(z) (i.e.,

Fla,z) = fa(2));

4. For y in the range of f, if (a,7) is a possible output of I(1™) then, given
7 and y, algorithm B returns f71(y) (i.e., B(1,y) = f71(y)).

The hardness condition in Definition 2.4.5 refers to the difficulty of inverting
fa on a uniformly distributed element of its range, when given only the range-
element and «. That is, let I;(1™) denote the first element in the output of
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I(1™) (i.e., the index), then for every probabilistic polynomial-time algorithm A
(resp., every non-uniform family of polynomial-size circuit A = {A4,},), every
positive polynomial p and all sufficiently large n’s

1
p(n)
Namely, A (resp., 4,,) fails to invert f, on f,(z), where a and = are selected by
I and S as above. An equivalent way of writing Eq. (C.1) is

PrlA(L(1"), fram (S(1(17))) = S(I.(17))] < (C.1)

PHAUL(17), S'(1,(1"). Ba) = Fi (S (A, )] < = (©2)
where S’ is the residual two-input (deterministic) algorithm obtained from S
when treating the coins of the latter as an auxiliary input, and R,, denote the
distribution of the coins of S on n-bit long inputs. That is, A fails to invert f,
on z, where a and x are selected as above.

Although the above definition suffices for many applications, in some cases
we will need an enhanced hardness condition. Specifically, we will require that
it is hard to invert f, on a random input x (in the domain of f,) even when
given the coins used by S in the generation of x. (Note that given these coins
(and the index «), the resulting domain element z is easily determined.)

Definition C.1.1 (enhanced trapdoor permutations): Let {fy : Doy — Dy} be
a collection of trapdoor permutations as in Definition 2.4.5. We say that this
collection is enhanced (and call it an enhanced collection of trapdoor permutations)
if for every probabilistic polynomial-time algorithm A every positive polynomial
p and all sufficiently large n’s

L
p(n)

where S’ is as above. The non-uniform version is defined analogously.

PrA(L (L"), Ba) = fi by (S'(L (M), Ra))] < (0.3)

We comment that the RSA collection (presented in Section 2.4.3.1 and fur-
ther discussed in Section 2.4.4.2) is in fact an enhanced collection of trapdoor
permutations,! provided that RSA is hard to invert in the same sense as as-
sumed in Section 2.4.3.1. In contrast, the Rabin Collection (as defined in Sec-
tion 2.4.3), does not satisfy Definition C.1.1 (because the coins of the sampling
algorithm give away a modular square root of the domain element). Still, the
Rabin Collection can be easily modify to yield an enhanced collection of trapdoor
permutations, provided that factoring is hard (in the same sense as assumed in
Section 2.4.3). Actually, we present two such possible modifications:

I Here and below we assume that sampling Zy, for a composite N, is trivial. However,
sampling Z3%, (or even Zy) by using a sequence of unbiased coins is not that trivial. The

straightforward sampler may take ¢ def 2|logy N| random bits, view them as an integer in
1€{0,1,..., 2t — 1}, and output ¢ mod N. This yields an almost uniform sample in Zy. Also
note that given an element e € Zy, one can uniformly sample an 7 € {0,1, 2t — 1} such
that ¢ = e (mod N). Thus, the actual sampler does not cause trouble with respect to the
enhanced hardness requirement.
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1. Modifying the functions. Rather than squaring modulo the composite NV,
we consider the function of raising to the power of 4 modulo N. It can be
shown that the resulting permutations over the quadratic residues mod-
ulo NV satisfy Definition C.1.1, provided that factoring is hard. Specifically,
given N and a random r € Zy, ability to extract the 4th root of 72 mod N
(modulo N), yields ability to factor N, where the algorithm is similar to
the one used in order to establish the intractability of extracting square
roots.

2. Changing the domains. Rather than considering the permutation induced
(by the modular squaring function) on the set @ x of the quadratic residues
modulo N, we consider the permutations induced on the set My, where
My contains all integers is {1, ..., N/2} that have Jacobi symbol modulo N
that equals 1. Note that, as in case of ), each quadratic residue has a
unique square root in My (because exactly two square roots have Jacobi
symbol that equals 1 and their sum equals N).2 However, unlike Qy,
membership in My can be determined in polynomial-time (when given N
without its factorization). Thus, sampling My can be done in a straight-
forward way, which satisfies Definition C.1.1.

Actually, squaring modulo IV is a 1-1 mapping of My to Q. In order to
obtain a permutation over My, we modify the function a little such that if
the result of modular squaring is bigger than N/2 then we use its additive
inverse (i.e., rather than outputting y > N/2, we output N — y).

We comment that the special case of Definition 2.4.5 in which the domain of
fa equals {0,1}°l is a special case of Definition C.1.1 (because, without loss of
generality, the sampling algorithm may satisfy S’(a,r) = r). Clearly, the above
examples can be slightly modified to fit this special case.

Correction to Volume 1: Theorems 4.10.10, 4.10.14 and 4.10.16 (which in
turn are based on Remark 4.10.6) refer to the existence of certain non-interactive
zero-knowledge proofs. The claimed non-interactive zero-knowledge proof sys-
tems can be constructed assuming the existence of an enhanced collection of
trapdoor permutations. However, in contrast to the original text, it is not known
how to derive these proof systems based on the existence of a (regular) collection
of trapdoor permutations. See further discussion in Section C.4.1.

Open Problem: Is it possible to convert any collection of trapdoor permuta-
tions into an enhanced one? An affirmative answer will resolve open problems
stated in Sections 7.7.5 and C.4.1, which refer to the assumptions required for
General Secure Multi-Party Computation and various types of Non-Interactive
Zero-Knowledge proofs, respectively.

2 As in case of Qu, we use the fact that —1 has Jacobi symbol 1.
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C.2 On Variants of Pseudorandom Functions

The focus of Section 3.6 was on a special case of pseudorandom functions, here-
after referred to as the fixed-length variant. For some function £: N — N (e.g.,
£(n) = n), these functions map ¢(n)-bit long strings to ¢(n)-bit long strings,
where n denotes the lengths of the function’s seed. More general definitions
were presented in Section 3.6.4. In particular, functions mapping strings of arbi-
trary length to £(n)-bit long strings were considered. Here we refer to the latter
as to the variable-length variant.

A natural question regarding these variants is how to directly (or efficiently)
transform functions of the fixed-length variant into functions of the variable-
length variant.> Exercises 30 and 31 in Chapter 3 implicitly suggest such a
transformation, and so does Proposition 6.3.7. Because of the interest in this
natural question, we next state the actual result explicitly.

Proposition C.2.1 Let {f, : {0,1}*IsD — {0,1}¥0sD}, be a (fixed-length)
pseudorandom function ensemble, and {h, : {0,1}* — {0,1}("D}, be a gen-
eralized hashing ensemble with a (t,1/t)-collision property,* for some super-
polynomial function t : N — N. Then {g, = fso hr} s rips|=|r| 18 a (variable-
length) pseudorandom function ensemble.

Proof Idea: The proofs of Propositions 6.3.6 and 6.3.7 actually establish Propo-
sition C.2.1. W

Comment: Alternative constructions of variable-length pseudorandom func-
tions based on fixed-length pseudorandom functions are presented in [33, 30, 21].
In these works, the fixed-length pseudorandom functions is applied to each block
of the input, and so the number of applications is linearly-related to the input
length (rather than being a single one). On the other hand, these works do not
use variable-length hashing. Indeed, these works presuppose that a fixed-length
pseudorandom function (rather than a variable-length one) is non-expensive
(and, in practice, is available as an off-the-shelf product).

C.3 On Strong Witness Indistinguishability

Unfortunately, we have to withdraw two claims regarding strong witness in-
distinguishable proofs as defined in Definition 4.6.2.> Specifically, in general,
strong witness indistinguishability is not closed under parallel composition (and

3 An indirect construction may use the fixed-length variant in order to obtain a one-way
function, and then construct the variable-length variant using this one-way function. Needless
to say, this indirect construction is very wasteful.

4 Recall that the (¢, 1/t)-collision property means that every n € N and every x # y such
that |z|, |y| < t(n), the probability that h,(z) = hr(y) is at most 1/t(n), where the probability
is taken over all possible choices of r € {0,1}™ with uniform probability distribution.

5 We comment that the notion of strong witness indistinguishability was introduced by the
author at a late stage of writing [137].
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so Lemma 4.6.7 is wrong). Consequently, in contrary to what is stated in Theo-
rem 4.6.8, we do not know whether there exist constant-round public-coin proofs
with negligible error that are strong witness indistinguishable for languages out
of BPP.5 Before discussing the reasons for withdrawing these claims and the
consequences of doing so, we stress that the flaws pointed out here only refer to
strong witness indistinguishability and not to (regular) witness indistinguisha-
bility. That is, as stated in Lemma 4.6.6, (regular) witness indistinguishability
is closed under parallel composition and thus the part of Theorem 4.6.8 that
refers to regular witness indistinguishability is valid (i.e., providing constant-
round public-coin proofs with negligible error that are witness indistinguishable
for N'P).

Notation: To facilitate the rest of the discussion, we let WI stand for “(reg-
ular) witness indistinguishability” and strong-WI stand for “strong witness in-
distinguishability”.

C.3.1 On parallel composition

A counter-example to Lemma 4.6.7 can be derived by using the protocol pre-
sented at the end of Section 4.5.4.1 (and assuming the existence of one-way
functions); that is, this protocol is (zero-knowledge and hence) strong-WI, but
executing it twice in parallel (on the same common input) is not strong-WI.
Tracing the error in the reasoning outlined in Section 4.6.2, we stress a funda-
mental difference between WI and strong-WI. Under the former (i.e., under the
definition of WI), the indistinguishability of executions, in which the prover uses
one out of two possible NP-witnesses (for the same common input), holds even
when the (adversary) verifier is given these two NP-witnesses. The analogous
claim does not necessarily hold for strong-WI, because these two NP-witnesses
(even presented in random order) may allow to distinguish one possible com-
mon input from the other (provided that these two possibilities are not iden-
tical, unlike in the case of WI). Now, observe that the single-session adversary
constructed in the proof of Lemma 4.6.6 needs to get the NP-witnesses that
correspond to the other sessions in order to emulate these sessions. However,
these other NP-witnesses may determine the two possible NP-witnesses for the
current session, and so the indistinguishability of the executions of the current
session is no longer guaranteed. Furthermore, the other NP-witnesses may even
uniquely determine the NP-witness (or the input triple) used in the current ses-
sion. Indeed, the source of trouble is in the possible dependence between the
NP-witnesses used in the various sessions. Consequently, we can resurrect par-
allel composition (of strong-WTI) for the special case in which the NP-witnesses
used in the various sessions are independently distributed. Actually, we need

6 Theorem 4.6.8 does not mention the public-coin condition, but the construction that is
supposed to support it is of the public-coin type. Note that constant-round zero-knowledge
protocols are presented in Section 4.9, but these are in relaxed models and are not of the
public-coin type.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

764 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

statistical independence between the (entire) input-triples used in the various
sessions.

Lemma C.3.1 (Parallel Composition for Strong Witness Indistinguishability,
Revisited): Let L € NP, Ry, (P,V), Q, R% and Pg be as in Lemma 4.6.6,
and suppose that (P,V) is strong witness indistinguishable. Then, for every
two probability ensembles {(Xi,?i,?i)}nd\; and {(Yiﬂ?i?Zi)}nEN such that

X=X XD o)y Yoo = (Vi1 Y )y and Z3 = (201500, 20 )
where (XZM-, erﬂ-, Zﬁ”) is independent of (X} 1, Y, 1, 2t 1 )krieefi 2y, the follow-
ing holds

if {(Yi,?,lz)}neN and {(Yi,?i)}neN are computationally indistinguishable
=2

=1 w7l L 2 % <2
then so are {<PQ(Yn)7 VQ(Zn))(Xn)}nEN and {<PQ(YTL)7 VQ(Zn))(Xn)}nGN;
for every probabilistic polynomial-time machine V.

We stress that the components of Y, (resp., Z,,) may depend on the corre-
sponding components of Yi, but they are independent of the other components

of Y (resp., Z7) as well as of the other components of X,,. Note that statis-
tical independence of this form holds vacuously in Lemma 4.6.6, which refers
to fixed sequences of strings. Lemma C.3.1 is proved by extending the proof
of Lemma 4.6.6. Specifically, we consider hybrids as in the original proof, and
construct a verifier V* that interacts with P on the ‘" session (or copy) while
emulating all the other sessions (resp., copies). Towards this emulation, we pro-

vide V* with the corresponding @(n) — 1 components of both 7{1’5 (as well as of

both Yﬁl’s and Z7’s). Fixing the best possible choice for these Q(n) — 1 compo-
nents, we derive a verifier that interacts with P and contradicts the hypothesis
that (P, V) is strong witness indistinguishable. The key point is that revealing

(or fixing) the other Q(n) — 1 components of both Y7’s does not allow to dis-
tinguish the i component of X, and Z. from the i component of X and
—2

VA

n*

C.3.2 On Theorem 4.6.8 and an afterthought

Unfortunately, Theorem 4.6.8 is proved by parallel composition that refers to
the same common input (and the same NP-witness). Thus, Lemma C.3.1 is not
applicable, and consequently we do not know whether the part of Theorem 4.6.8
that refers to strong witness indistinguishable proofs is valid (when referring to
public-coin proofs). This is indeed an interesting open problem.

We comment that one can reduce the construction of constant-round (public-
coin) strong witness indistinguishable proofs with negligible error for NP to the
construction of such proofs for the special case in which the two X/’s (and Y,/’s)
are identically distributed (and the Z7’s are only computationally indistinguish-
able). Consider, for example, the following protocol:

1. The prover sends a commitment to the value 0.
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2. Using a (regular) witness indistinguishable proof (as provided by The-
orem 4.6.8), the prover proves that either the common input is in the
language or the string sent at Step 1 is a commitment to 1.

Let us denote by 77 the transcript of the execution of this step, when
the common input is X7 (and the parties use auxiliary inputs Y/ and
ZJ respectively). It can be proven that the T7’s are computationally
indistinguishable (by considering what happens if at Step 1 the prover
sends a commitment to 1).

3. Using a strong witness indistinguishable proof (which is indeed the missing
component or the subprotocol to which the current protocol is reduced),
the prover proves that the string sent at Step 1 is a commitment to 0.

Note that it suffices to show that the verifier cannot distinguish the two
possible transcript distributions of the current step, where both possible
distributions refer to executions with the same common input (i.e., the
commitment) and the same prover’s auxiliary input (i.e., the decommit-
ment information). In contrast, these two distributions (of executions)
refer to two different distributions of the verifier’s auxiliary input (i.e.,
either T'! or T'?), which are indistinguishable.

The foregoing reduction demonstrates that the notion of strong witness indis-
tinguishability actually refers to issues that are fundamentally different from
witness indistinguishability. Specifically, the issue is whether or not the interac-
tion with the prover helps to distinguish between two possible distributions of
some auxiliary information (which are indistinguishable without such an inter-
action). Furthermore, this issue arises also in case the prover’s auxiliary inputs
(i.e., the “witnesses”) are identically distributed.

C.3.3 Consequences

In view of the fact that we do not have constant-round public-coin strong witness
indistinguishable proofs with negligible error for AP, we suggest to replace the
use of such proofs by some cumbersome patches. A typical example is the
construction of non-oblivious commitment schemes (i.e., Theorem 4.9.4).

Non-oblivious commitment schemes. We begin the discussion by noting
that the specific formulation as appearing in Definition 4.9.3 is wrong. One
should partition the commit phase into two sub-phases such that the second
sub-phase is a proof-of-knowledge of the input and coins used by the sender at
the first sub-phase, which in turn should constitute (by itself) a commitment
scheme. That is, the view in the relation displayed in Definition 4.9.3 should
be the view of the first sub-phase (rather than the view of the entire commit
phase). In fact, for the current implementation, we need a relaxed definition in
which one only proves knowledge of the input (but not of the coins) used by the
sender at the first sub-phase. We stress that the input value proved to be known
must be such that it is impossible for the sender to later decommit to a different
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value. Indeed, in the relaxed form, we do not require that a later decommitment
is at all possible; we only require that if decommitment takes place then the
outcome matches the above value. Note that this relaxed form suffices for the
proof presented in Section 4.9.2.2.

Next, we modify the construction used in the proof of Theorem 4.9.4 as
follows. First, rather than sending one ordinary commitment to the input, we
send many such (independent) commitments. Secondly, rather than using a
(constant-round) proof-of-knowledge with negligible error, we use one that has
constant error. The point is that such a (constant-round) proof-of-knowledge
that is zero-knowledge (and hence strong witness indistinguishable) is known.
We invoke this proof systems many times, in parallel, where each invocation
is applied to a different commitment. Thus, we can apply Lemma C.3.1 and
conclude that these executions are strong witness indistinguishable (where the
witnesses are the coins used in the ordinary commitments), and therefore the
entire protocol constitutes a (complicated) commitment scheme. Finally, one can
establish the non-oblivious property by using the knowledge extractor associated
with the proof system. Note that we can only extract the committed input and
part of the coins used at the first stage (i.e., the coin used in some of the ordinary
commitments but not necessarily the coins used in all of them). Furthermore,
it may be that we accept also in case the sequence of strings sent at the first
stage does not correspond to any legitimate sequence (i.e., of commitments to
the same value). However, if we extract one value then it is impossible for the
sender to later decommit to a different value, because the extracted value always
fits at least one of the individual commitments.

Other applications. Fortunately, Theorem 4.9.4 is the only place where strong
witness indistinguishable proofs are used in this work. We believe that in many
other applications of strong witness indistinguishable proofs, a modification anal-
ogous to the above can be carried out (in order to salvaged the application). A
typical example appears in [15]. Indeed, the current situation is very unfortu-
nate and we hope that it will be redeemed in the future. Specifically, we propose
the following open problem:

Open problem: Construct constant-round public-coin strong witness indis-
tinguishable proofs (and proofs-of-knowledge) with negligible error for NP, or
prove that this cannot be done. Recall that zero-knowledge arguments of the
above nature are known [13]. The challenge is in providing such proofs.

C.4 On Non-Interactive Zero-Knowledge

In retrospect, it appears that Section 4.10 is too laconic. As is usually the case,
laconic style gives rise to inaccuracies and gaps, which we wish to address here.
(See also Section C.6.)
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C.4.1 On NIZKs with efficient prover strategies

In continuation to Remark 4.10.6 and following [40], we briefly discuss the issues
that arise when wishing to implement Construction 4.10.4 by an efficient prover.
Recall that Remark 4.10.6 outlines such an implementation, while using a fam-
ily of trapdoor permutations of the form {f, : {0,1}/*l — {0,1}/*1} 5 where
the index-set I is efficiently recognizable. Unfortunately, no family of trapdoor
permutations of this particular form (and, in particular, with an efficiently rec-
ognizable I) is known. Thus, we first extend the treatment to the case in which T
is not necessarily efficiently recognizable. The problem we encounter is that the
prover may select (and send) a function that is not in the family (i.e., an « not
in I). In such a case, the function is not necessarily 1-1, and, consequently, the
soundness property may be violated. This concern can be addressed by using a
(simple) non-interactive (zero-knowledge) proof for establishing that the func-
tion is “typically 1-1” (or, equivalently, is “almost onto the designated range”).
The proof proceeds by presenting preimages (under the function) of random el-
ements specified in the reference string. Note that, for any fixed polynomial p,
we can only prove that the function is 1-1 on at least a 1 — (1/p(n)) fraction
of the designated range (i.e., {0,1}"), yet this suffices for moderate soundness
of the entire proof system (which in turn can be amplified by repetitions). For
further details, consult [40].

Although the known candidate trapdoor permutations can be modified to fit
the above form, we wish to further generalize the result such that any enhanced
trapdoor permutation (as in Definition C.1.1) can be used. This can be done
by letting the reference string consist of the coin-sequences used by the domain-
sampling algorithm (rather than of elements of the function’s domain). By virtue
of the enhanced hardness condition (i.e., Eq. (C.3)), the security of the hard-core
is preserved, and so is the zero-knowledge property.

As stated at the end of Section C.1, in contrast to what was claimed in
Remark 4.10.6, we do not known how to extend the construction to arbitrary
(rather than enhanced) trapdoor permutation. This leads to the following open
problem.

Open Problem: Under what intractability assumptions is it possible to con-
struct non-interactive zero-knowledge proofs with efficient prover strategies for
any set in N'P? In particular, does the existence of arbitrary collections of trap-
door permutations suffice? We comment that the assumption used here effects
the assumption used in (general) constructions of public-key encryption schemes
that are secure under chosen ciphertext attacks (see, e.g., Theorem 5.4.31).

C.4.2 On Unbounded NIZKs

The preliminary discussion is Section 4.10.3.1 reduces the general treatment to a
treatment of assertions of a-priori bounded length, but the former is not defined
formally. To close this gap, we note that a definition that covers assertions of
a-prior unbounded length can be derived from Definition 4.10.11 by considering



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

768 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

inputs in U?:Olly(")Li rather than in L,-. In view of the key role of efficient
provers in this setting, it is also adequate to present a definition that covers this
aspect. This can be done analogously to the formulations used in the following
Proposition C.4.1.

The proof of Proposition 4.10.13 relies on the fact that witness indistin-
guishability of non-interactive protocols is preserved under parallel composition
even if the same reference string is used in all copies. That is, we claim and use

the following result (where R is typically an NP-relation):

Proposition C.4.1 Let P be a probabilistic polynomial-time algorithm such
that for every infinite sequence of triples of the form t def (z,u,v), where (z,u),(z,v)€
R, it holds that {(Upoly(|z|)7 P(CE, U, Upoly(\z\)))}f and {(Upoly(|z|)7 P(CE, v, Upoly(|z|)))}f
are computationally indistinguishable.” Then, for every polynomial p and every

. . _ def
infinite sequence of sequences of the form 5 = (T1,..., T4, UL,y ey Ug, V1, .eey Vg),

where n = |z = = ||, ¢ et p(n) and (z;,u;),(x;,v;) €ER for j =1,..,t,

it holds that the ensembles {(Upoly(n), P(71,%1, Upoly(n))s s P(Tt, e, Upoly(n))) }5
and {(Upoly(n)s P(%1,1, Upoly(n))s -+ P(Tt, Ve, Upoly(n) ) }5 are computationally in-
distinguishable.

We stress that the same reference string (i.e., Upoiy(n))) is used in all invocations
of the prover P. Thus, Proposition C.4.1 does not refer to multiple samples
of computationally indistinguishable ensembles (nor even to independent sam-
ples from a sequence of computationally indistinguishable pairs of ensembles, as
would have been the case if the various invocations were to use independently
distributed reference strings). Still, Proposition C.4.1 can be established by us-
ing the hybrid technique. The key observation is that, given a single proof with
respect to some reference string along with the reference string (as well as the
relevant sequence ), one can efficiently generate all the other proofs (with re-
spect to the same reference string). Indeed, the internal coins used by P in each
of these proofs are independent.

C.4.3 On Adaptive NIZKs

In Definition 4.10.15, the adaptive zero-knowledge condition should be quan-
tified only over efficiently computable input-selection strategies. Furthermore,
it seems that also the witness-selection strategies should be restricted to ones
implemented by polynomial-size circuits. The revised form is presented in Defi-
nition 5.4.22.

A few words regarding the proof of Theorem 4.10.16 are in place. The (two-
stage) simulation procedure itself is sketched in Footnote 29. Recall that at
the first stage, we generate matrices at random, and replace the useful matri-
ces by all-zero matrices (i.e., matrices of f-images that have preimages with
hard-core value equal to zero). In the second stage, when given an adaptively

7 Recall that the distinguisher is given also the index of the distribution, which in this case
is the triple t.
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chosen graph, we reveal all elements of all non-useful matrices and the required
elements of the useful matrices (i.e., the non-edges), where revealing an element
means revealing the corresponding f-preimage. In establishing the quality of
this simulation procedure, we rely on the hypothesis that the input graph as
well as a Hamiltonian cycle in it are determined by a polynomial-size circuit.®
Loosely speaking, assuming towards the contradiction that the simulation can
be distinguished from the real proof, we construct a circuit that distinguishes
a sequence of random f(z)’s with b(z) = 0 from a sequence of random f(x)’s
with b(x) = 1. This “b-value distinguisher” places the tested f-images in the
suitable entries (i.e., those corresponding to the predetermined Hamiltonian cy-
cles) of useful matrices, fills-up the rest of the entries of the useful matrices with
elements it generates in {f(z) : b(z) = 0}, and fills the entries of non-useful
matrices with random f-images that it generates (conditioned on them yielding
non-useful matrices). We stress that the simulator generates f-images by se-
lecting random preimages and applying f to each of them, and so it knows the
preimages and can reveal them later. Next, the simulator determines the input
graph and the corresponding Hamiltonian cycle (by using the abovementioned
polynomial-size circuit), and acts as the real prover. Finally, it feeds the origi-
nal distinguisher with the corresponding output. Observe that in case the given
sequence of f(x)’s satisfies b(x) = 0 (resp., b(xz) = 1) for each f(z), the “b-value
distinguisher” produces outputs distributed exactly as in the simulation (resp.,
the real proof).

C.5 Some developments regarding zero-knowledge

A recent result by Barak [13] calls for re-evaluation of the significance of all nega-
tive results regarding black-box zero-knowledge® (as defined in Definition 4.5.10).
In particular, relying on standard intractability assumptions, Barak presents
round-efficient public-coin zero-knowledge arguments for NP (using non-black-
box simulators), whereas only BPP can have such black-bozx zero-knowledge
arguments (see comment following Theorem 4.5.11). Interestingly, Barak’s sim-
ulator works in strict (rather than expected) probabilistic polynomial-time, ad-
dressing an open problem mentioned in Section 4.12.3. Barak’s result is further
described in Section C.5.2

In Section C.5.1, we review some recent progress in the study of the preserva-
tion of zero-knowledge under concurrent composition. We seize the opportunity
to provide a wider perspective on the question of preservation of zero-knowledge
under various forms of protocol composition operations.

We mention that the two problems discussed in this section (i.e., the “preser-
vation of security under various forms of protocol composition” and the “use of

8 Indeed, here is where we use the fact that the corrected definition (see Definition 5.4.22)
refers only to input-selection and witness-selection strategies that can be implemented by
polynomial-size circuits.

9 Specifically, one should reject the interpretation, offered in Section 4.5 (see Sections 4.5.0,
4.5.4.0 and 4.5.4.2), by which negative results regarding black-box zero-knowledge indicate
inherent limitations of zero-knowledge.
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the adversary’s program within the proof of security”) arise also with respect to
the security of other cryptographic primitives. Thus, the study of zero-knowledge
protocols serve as a good bench-mark for the study of various problems regarding
cryptographic protocols.

C.5.1 Composing zero-knowledge protocols

A natural question regarding zero-knowledge proofs (and arguments) is whether
or not the zero-knowledge condition is preserved under a variety of composi-
tion operations. Three types of composition operation were considered in the
literature: sequential composition, parallel composition and concurrent compo-
sition. We note that the preservation of zero-knowledge under these forms of
composition is not only interesting on its own sake, but rather also sheds light
of the preservation of the security of general protocols under these forms of
composition.

We stress that when we talk of composition of protocols (or proof systems)
we mean that the honest users are supposed to follow the prescribed program
(specified in the protocol description) that refers to a single execution. That is,
the actions of honest parties in each execution are independent of the messages
they received in other executions. The adversary, however, may coordinate the
actions it takes in the various executions, and in particular its actions in one
execution may depend also on messages it received in other executions.

Let us motivate the asymmetry between the postulate that honest parties
act independently in different executions and the absence of such an assump-
tion with respect to the adversary’s actions. Typically, coordinating actions in
different executions is difficult but not impossible. Thus, it is desirable to use
stand-alone protocols that preserve security under “composition” (as defined
above) rather than to use protocols that include inter-execution coordination-
actions. Note that, at the very least, inter-execution coordination require users
to keep track of all executions that they perform. Actually, trying to coordinate
honest executions is even more problematic than it seems, because one may need
to coordinate executions of different honest parties (e.g., all employees of a big
cooperation or an agency under attack), which in many cases is highly unreal-
istic. On the other hand, the adversary attacking the system may be willing to
go into the extra trouble of coordinating its attack in the various executions of
the protocol.

For T € {sequential,parallel,concurrent}, we say that a protocol is
T'-zero-knowledge if it is zero-knowledge under a composition of type 7'. The
definitions of T'-zero-knowledge are derived from the standard definition by con-
sidering appropriate adversaries (i.e., adversarial verifiers); that is, adversaries
that can initiate a polynomial number of interactions with the prover, where
these interactions are scheduled according to the type T.1° The corresponding

10 Without loss of generality, we may assume that the adversary never violates the schedul-
ing condition; it may instead send an illegal message at the latest possible adequate time.
Furthermore, without loss of generality, we may assume that all the adversary’s messages are
delivered at the latest possible adequate time.
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simulator (which, as usual, interacts with nobody) is required to produce an
output that is computationally indistinguishable from the output of such a type
T adversary.

C.5.1.1 Sequential Composition

Sequential composition refers to a situation in which the protocol is invoked
(polynomially) many times, where each invocation follows the termination of
the previous one. At the very least, security (e.g., zero-knowledge) should be
preserved under sequential composition, or else the applicability of the protocol
is highly limited (because one cannot safely use it more than once).

We mention that whereas the “simplified” version of zero-knowledge (i.e.,
without auxiliary inputs, as in Definition 4.3.2) is not closed under sequential
composition (see [144]), the actual version (i.e., with auxiliary inputs, as in
Definition 4.3.10) is closed under sequential composition (see Section 4.3.4). We
comment that the same phenomena arises when trying to use a zero-knowledge
proof as a sub-protocol inside larger protocols. Indeed, it is for these reasons
that the augmentation of the “basic” definition by auxiliary inputs was adopted
in all subsequent works.!!

C.5.1.2 Parallel Composition

Parallel composition refers to a situation in which (polynomially) many instances
of the protocol are invoked at the same time and proceed at the same pace. That
is, we assume a synchronous model of communication, and consider (polynomi-
ally) many executions that are totally synchronized such that the ith message in
all instances is sent exactly (or approximately) at the same time. (Natural exten-
sions of this model are discussed below as well as at the end of Section C.5.1.3.)

It turns out that, in general, zero-knowledge is not closed under parallel com-
position. A simple counter-example (to the “parallel composition conjecture”)
is outlined in Section 4.5.4.1 (following [144]). This counter-example consists of
a simple protocol that is zero-knowledge (in a strong sense), but is not closed
under parallel composition (not even in a very weak sense).!?

We comment that in the 1980’s parallel composition was studied mainly in
the context of round-efficient error reduction (cf. [112, 144]); that is, the aim was
to construct full-fledge zero-knowledge proofs (with negligible soundness error)
by composing (in parallel) a basic zero-knowledge protocol of high (but bounded

11 The preliminary version of Goldwasser, Micali and Rackoff’s work [166] uses the “basic”
definition (i.e., Definition 4.3.2), whereas the final version of that work as well as most subse-
quent works use the augmented definition (i.e., Definition 4.3.10). In some works, the “basic”
definition is used for simplicity, but typically one actually needs and means the augmented
definition.

12 The presentation in Section 4.5.4.1 is in terms of two protocols, each being zero-knowledge,
such that executing them in parallel is not zero-knowledge. These two protocols can be easily
combined into one protocol (e.g., by letting the second party determine, in its first message,
which of the two protocols to execute).
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away from 1) soundness error. Since alternative ways of constructing constant-
round zero-knowledge proofs (and arguments) were found (cf. [143, 111, 62]),
interest in parallel composition (of zero-knowledge protocols) has died. In ret-
rospect, this was a conceptual mistake, because parallel composition (and mild
extensions of this notion) capture the preservation of security in a fully syn-
chronous (or almost-fully synchronous) communication network. We note that
the almost-fully synchronous communication model is quite realistic in many
settings, although it is certainly preferable not to assume even weak synchro-
nism.

Although, in general, zero-knowledge is not closed under parallel composi-
tion, under standard intractability assumptions (e.g., the intractability of fac-
toring), there exists zero-knowledge protocols for NP that are closed under
parallel composition. Furthermore, these protocols have a constant number of
rounds (cf. [138] for proofs and [102] for arguments).!® Both results extend also
to concurrent composition in a synchronous communication model, where the
extension is in allowing protocol invocations to start at different times (and in
particular executions may overlap but not run simultaneously).

We comment that parallel composition is problematic also in the context of
reducing the soundness error of arguments (cf. [32]), but our focus here is on
the zero-knowledge aspect of protocols regardless of whether they are proofs,
arguments or neither.

C.5.1.3 Concurrent Composition (with and without timing)

Concurrent composition generalizes both sequential and parallel composition.
Here (polynomially) many instances of the protocol are invoked at arbitrary
times and proceed at arbitrary pace. That is, we assume an asynchronous (rather
than synchronous) model of communication.

In the 1990’s, when extensive two-party (and multi-party) computations be-
came a reality (rather than a vision), it became clear that it is (at least) desirable
that cryptographic protocols maintain their security under concurrent compo-
sition (cf. [96]). In the context of zero-knowledge, concurrent composition was
first considered by Dwork, Naor and Sahai [102]. Actually, two models of concur-
rent composition were considered in the literature, depending on the underlying
model of communication (i.e., a purely asynchronous model and an asynchronous
model with timing).

Concurrent composition in the pure asynchronous model. Here we re-
fer to the standard model of asynchronous communication. In comparison to the
timing model, the pure asynchronous model is a simpler model and using it re-
quires no assumptions about the underlying communication channels. However
it seems harder to construct concurrent zero-knowledge protocols for this model.
In particular, for a while it was not known whether concurrent zero-knowledge

13 In case of parallel-zero-knowledge proofs, there is no need to specify the soundness error
because it can always be reduced via parallel composition. As mentioned below, this is not
the case with respect to arguments.
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proofs for NP exist at all (in this model). Under standard intractability as-
sumptions (e.g., the intractability of factoring), this question was affirmatively
resolved by Richardson and Kilian [250]. Following their work, research has fo-
cused on determining the round-complexity of concurrent zero-knowledge proofs
for N'P. Currently, this question is still opened, and the state of the art regard-
ing it is as follows:

e Under standard intractability assumptions, every language in NP has a
concurrent zero-knowledge proof with almost-logarithmically many rounds
(cf. [242], building upon [191], which in turn builds over [250]). Further-
more, the zero-knowledge property can be demonstrated using a black-box
simulator (see definition in Section 4.5.4.2 and discussion in Section C.5.2).

e Black-box simulators cannot demonstrated the concurrent zero-knowledge
property of non-trivial proofs (or arguments) having significantly less than
logarithmically-many rounds (cf. Canetti et. al. [74]).1%

e Recently, Barak [13] demonstrated that the “black-box simulation bar-
rier” can be bypassed. With respect to concurrent zero-knowledge he
only obtained the following partial result: under standard intractability
assumptions, every language in NP has a constant-round zero-knowledge
argument (rather than proof) that maintain security as long as an a-priori
bounded (polynomial) number of executions take place concurrently. (The
length of the messages in his protocol grows linearly with this a-priori
bound.)

Thus, it is currently unknown whether or not constant-round arguments for N'P
may be concurrent zero-knowledge (in the pure asynchronous model).

Concurrent composition under the timing model: A model of naturally-
limited asynchronousness (which certainly covers the case of parallel composi-
tion) was introduced by Dwork, Naor and Sahai [102]. Essentially, they assume
that each party holds a local clock such that the relative clock rates are bounded
by an a-priori known constant, and consider protocols that employ time-driven
operations (i.e., time-out in-coming messages and delay out-going messages).
The benefit of the timing model is that it seems easier to construct concur-
rent zero-knowledge protocols for it. Specifically, using standard intractability
assumptions, constant-round arguments and proofs that are concurrent zero-
knowledge under the timing model do exist (cf. [102] and [138], respectively).
The disadvantages of the timing model are discussed next.

The timing model consists of the assumption that talking about the actual
timing of events is meaningful (at least in a weak sense) and of the introduction
of time-driven operations. The timing assumption amounts to postulating that

14 By non-trivial proof systems we mean ones for languages outside BPP, whereas by
significantly less than logarithmic we mean any function f : NN satisfying f(n) =
o(logn/loglogn). In contrast, by almost-logarithmic we mean any function f satisfying

J(n) = w(logn).
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each party holds a local clock and knows a global bound, denoted p > 1, on the
relative rates of the local clocks.'® Furthermore, it is postulated that the parties
know a (pessimistic) bound, denoted A, on the message-delivery time (which
also includes the local computation and handling times). In our opinion, these
timing assumptions are most reasonable, and are unlikely to restrict the scope
of applications for which concurrent zero-knowledge is relevant. We are more
concerned about the effect of the time-driven operations introduced in the timing
model. Recall that these operations are the time-out of in-coming messages and
the delay of out-going messages. Furthermore, typically the delay period is at
least as long as the time-out period, which in turn is at least A (i.e., the time-out
period must be at least as long as the pessimistic bound on message-delivery time
so not to disrupt the proper operation of the protocol). This means that the use
of these time-driven operations yields slowing down the execution of the protocol
(i.e., running it at the rate of the pessimistic message-delivery time rather than
at the rate of the actual message-delivery time, which is typically much faster).
Still, in absence of more appealing alternatives (i.e., a constant-round concurrent
zero-knowledge protocol for the pure asynchronous model), the use of the timing
model may be considered reasonable. (We comment than other alternatives to
the timing-model include various set-up assumptions; cf. [71, 90].)

Back to parallel composition: Given our opinion about the timing model, it
is not surprising that we consider the problem of parallel composition almost as
important as the problem of concurrent composition in the timing model. Firstly,
it is quite reasonable to assume that the parties’ local clocks have approximately
the same rate, and that drifting is corrected by occasional clock synchronization.
Thus, it is reasonable to assume that the parties have approximately-good es-
timate of some global time. Furthermore, the global time may be partitioned
into phases, each consisting of a constant number of rounds, so that each party
wishing to execute the protocol just delays its invocation to the beginning of the
next phase. Thus, concurrent execution of (constant-round) protocols in this
setting amounts to a sequence of (time-disjoint) almost-parallel executions of
the protocol. Consequently, proving that the protocol is parallel zero-knowledge
suffices for concurrent composition in this setting.

Relation to resettable zero-knowledge. Going to the other extreme, we
mention that there exists a natural model of zero-knowledge that is even stronger
than concurrent zero-knowledge (even in the pure asynchronous model). Specif-
ically, “resettable zero-knowledge” as defined in [71], implies concurrent zero-
knowledge.

15 The rate should be computed with respect to reasonable intervals of time; for example,
for A as defined below, one may assume that a time period of A units is measured as A’ units
of time on the local clock, where A/p < A" < pA.
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C.5.2 Using the adversary’s program in the proof of secu-
rity

Recall that the definition of zero-knowledge proofs states that whatever an effi-
cient adversary can compute after interacting with the prover, can be efficiently
computed from scratch by a so-called simulator (which works without interact-
ing with the prover). Although the simulator may depend arbitrarily on the
adversary, the need to present a simulator for each feasible adversary seems to
require the presentation of a universal simulator that is given the adversary’s
strategy (or program) as another auxiliary input. The question addressed in
this section is how can the universal simulator use the adversary’s program.

The adversary’s program (or strategy) is actually a function determining
for each possible view of the adversary (i.e., its input, random choices and the
message it has received so far) which message will be sent next. Thus, we iden-
tify the adversary’s program with this next-message function. As stated above,
until very recently, all universal simulators (constructed towards demonstrat-
ing zero-knowledge properties) have used the adversary’s program (or rather
its next-message function) as a black-box (i.e., the simulator invoked the next-
message function on a sequence of arguments of its choice). Furthermore, in
view of the presumed difficulty of “reverse engineering” programs, it was com-
monly believed that nothing is lost by restricting attention to simulators, called
black-box simulators, that only make black-box usage of the adversary’s program.
Consequently, Goldreich and Krawczyk conjectured that impossibility results
regarding black-box simulation represent inherent limitations of zero-knowledge
itself, and studied the limitations of the former [144].

In particular, they showed that parallel composition of the protocol
of Construction 4.4.7 (as well as of any constant-round public-coin
protocol) cannot be proven to be zero-knowledge using a black-box
stmulator, unless the language (i.e., 3-Colorability) is in BPP. In
fact their result refers to any constant-round public-coin protocol
with negligible soundness error, regardless of how such a protocol
is obtained. This result was taken as strong evidence towards the
conjecture that a constant-round public-coin protocol with negligible
soundness error cannot be zero-knowledge (unless the language is in

BPP).

Similarly, as mentioned in Section C.5.1.3, it was shown that pro-
tocols of sub-logarithmic number of rounds cannot be proven to be
concurrent zero-knowledge via a black-box simulator [74]. Again, this
was taken as evidence towards the conjecture that such protocols
cannot be concurrent zero-knowledge.

In contrast to these conjectures (and to the reasoning underlying them), Barak
showed how to constructed non-black-box simulators and obtained several results
that were known to be unachievable via black-box simulators [13]. In particular,
under standard intractability assumption (see also [15]), he presented constant-
round public-coin zero-knowledge arguments with negligible soundness error for
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any language in A"P. (Moreover, the simulator runs in strict polynomial-time,
which is impossible for black-box simulators of non-trivial constant-round proto-
cols [17].) Furthermore, these protocols preserve zero-knowledge under a fixed'¢
polynomial number of concurrent executions, in contrast to the result of [74]
(regarding black-box simulators) that holds also in that restricted case. Thus,
Barak’s result calls for the re-evaluation of many common believes. Most con-
cretely, it says that results regarding black-box simulators do not reflect inherent
limitations of zero-knowledge (but rather an inherent limitation of a natural way
of demonstrating the zero-knowledge property). Most abstractly, it says that
there are meaningful ways of using a program other than merely invoking it as
a black-box.

Does this means that a method was found to “reverse engineer” programs
or to “understand” them? We believe that the answer is negative. Barak [13]
is using the adversary’s program in a significant way (i.e., more significant than
just invoking it), without “understanding” it. So, how does he use the program?

The key idea underlying Barak’s protocol [13] is to have the prover prove that
either the original NP-assertion is valid or that he (i.e., the prover) “knows the
verifier’s residual strategy” (in the sense that it can predict the next verifier mes-
sage). Indeed, in a real interaction (with the honest verifier), it is infeasible for
the prover to predict the next verifier message, and so computational-soundness
of the protocol follows. However, a simulator that is given the code of the
verifier’s strategy (and not merely oracle access to that code), can produce a
valid proof of the disjunction by properly executing the sub-protocol using its
knowledge of an NP-witness for the second disjunctive. The simulation is com-
putational indistinguishable from the real execution, provided that one cannot
distinguish an execution of the sub-protocol in which one NP-witness (i.e., an
NP-witness for the original assertion) is used from an execution in which the
second NP-witness (i.e., an NP-witness for the auxiliary assertion) is use. That
is, the sub-protocol should be a witness indistinguishable argument system (see
Sections 4.6 and 4.8). We warn the reader that the actual implementation of
the above idea requires overcoming several technical difficulties (cf. [13, 15]).

Perspective. In retrospect, taking a wide perspective, it should not come as
a surprise that the program’s code yields extra power beyond black-box access
to it. Feeding a program with its own code (or part of it) is the essence of
the diagonalization technique, and this too is done without “reverse engineer-
ing”. Furthermore, various non-black-box techniques have appeared before in
the cryptographic setting, but they were used in the more natural context of
devising an attack on an (artificial) insecure scheme (e.g., towards proving the
failure of the “Random Oracle Methodology” [70] and the impossibility of soft-
ware obfuscation [16]). In contrast, in [13] (and [14]) the code of the adversary

is being used within a sophisticated proof of security. What we wish to highlight

16 The protocol depends on the polynomial bounding the number of executions, and thus
is not known to be concurrent zero-knowledge (because the latter requires to fix the protocol
and then consider any polynomial number of concurrent executions).
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here is that non-black-bozx usage of programs is relevant also to proving (rather
than to disproving) the security of systems.

Digest: Witness Indistinguishability and the FLS-Technique

The above description (of [13]), as well as several other sophisticated construc-
tions of zero-knowledge protocols (e.g., [110, 250]), makes crucial use of a tech-
nique introduced by Feige, Lapidot and Shamir [110], which in turn is based on
the notion of witness indistinguishability (introduced by Feige and Shamir [112]).
This technique, hereafter referred to as the FLS-technique, was used in Construc-
tion 4.10.12, but we wish to further discuss it below.

Following is a sketchy description of a special case of the FLS-technique,
whereas the abovementioned application uses a more general version (which
refers to proofs of knowledge, as defined in Section 4.7).17 In this special case,
the technique consists of the following construction schema, which uses witness
indistinguishable protocols for NP in order to obtain zero-knowledge protocols
for N’P. On common input z € L, where L is the NP-set defined by the witness
relation R, the following two steps are performed:

1. The parties generate an instance x’ for an auxiliary NP-set L', where L'
is defined by a witness relation R’. The generation protocol in use must
satisfy the following two conditions:

(a) If the verifier follows its prescribed strategy then no matter which
feasible strategy is used by the prover, with high probability, the
protocol’s outcome is a NO-instance of L'.

(b) There exists an efficient (non-interactive) procedure for producing a
(random) transcript of the generation protocol along with an NP-
witness for the corresponding outcome (which is a YES-instance of L')
such that the produced transcript is computationally indistinguish-
able from the transcript of a real execution of the protocol.

2. The parties execute a witness indistinguishable protocol for the set L' de-
fined by the witness relation R" = {((u,u'), (v,v")) : (u,v) ERV (u',v") €
R'}. The sub-protocol is such that the corresponding prover can be imple-
mented in probabilistic polynomial-time given an NP-witness for (u,u’) €
L". The sub-protocol is invoked on common input (z,z'), where z' is the
outcome of Step 1, and the sub-prover is invoked with the corresponding
NP-witness as auxiliary input (i.e., with (w, A), where w is the NP-witness
for « given to the main prover).

17 In the general case, the generation protocol may generate an instance ' in L', but it is
infeasible for the prover to obtain a corresponding witness (i.e., a w’ such that (z/,w') € R'). In
the second step, the sub-protocol in use ought to be a proof of knowledge, and computational-
soundness of the main protocol will follows (because otherwise the prover, using a knowledge
extractor, can obtain a witness for o’ € L').
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The computational-soundness of the above protocol follows by Property (a) of
the generation protocol (i.e., with high probability =" ¢ L', and so z € L fol-
lows by the soundness of the protocol used in Step 2). To demonstrate the
zero-knowledge property, we first generate a simulated transcript of Step 1
(with outcome z' € L') along with an adequate NP-witness (i.e., w’ such that
(z',w') € R'), and then emulates Step 2 by feeding the sub-prover strategy
with the NP-witness (A, w'). Combining Property (b) of the generation protocol
and the witness indistinguishability property of the protocol used in Step 2, the
simulation is indistinguishable from the real execution.

C.6 Additional Corrections and Comments

Regarding Constriction 4.10.7 and the proof of Proposition 4.10.9:
The current description of the setting of the mapping of the input graph G to
the Hamiltonian matrix H (via the two mappings m; and 72) is confusing and
even inaccurate. Instead, one may identify the rows (resp., columns) of H with
[n] and use a single permutation 7 over [n] (which supposedly maps the vertices
of G to those of H).'® Alternatively, one may compose this permutation 7 with
the two (1-1) mappings ¢;’s (where ¢; : [n] — [n3] is as in the original text),
and obtain related m;’s (i-e., mi(v) = ¢i(7(v))), which should be used as in the
original text. We stress that the real prover determines = to be an isomorphism
between the Hamiltonian cycle of G and the Hamiltonian cycle of H, whereas
the simulator selects 7 at random.

In continuation to Sections 4.7 and 4.9.2, we mention that the round-
efficient argument system of [111] is actually an “argument of knowledge” (with
negligible error). The interested reader is referred to [17] for further improve-
ments regarding such proof systems. Essentially, using a relaxed (yet sat-
isfactory) definition of an argument-of-knowledge, the latter work presents a
constant-round zero-knowledge argument-of-knowledge with strict (rather than
expected) probabilistic polynomial-time simulator and knowledge-extractor.

Some missing credits: The sequential composition lemma for zero-knowledge
protocols (i.e., Lemma4.3.11) is due to [155]. The notions of strong witness indis-
tinguishability (Definition 4.6.2) and strong proofs of knowledge (Section 4.7.6),
and the Hidden Bit Model (Section 4.10.2) have first appeared in early versions
of this work.

Author's Note: First draft written mainly in 2002. Revised in January
and June 2003.

18 The identification is via the two mappings ¢#1 and ¢2 mentioned in the original text. We
stress that these mappings only depend on the matrix M that contains H.
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