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Appendix CCorrections and Additionsto Volume 1 There is no 100% guarantee in the world;whoever wants 100% guarantee should not build a thing.Eng. Isidor Goldreich (1906{1995)In this appendix we list a few corrections and additions to the previous chaptersof this work (which appeared in [135]).C.1 Enhanced Trapdoor PermutationsRecall that a collection of trapdoor permutations, as de�ned in De�nition 2.4.5, isa collection of permutations, ff�g�, armed with four probabilistic polynomial-time algorithms, denoted here by I; S; F and B (for index, sample, forward andbackward), such that the following (syntactic) conditions hold1. On input 1n, algorithm I selects a random n-bit long index � of a permu-tation f�, along with a corresponding trapdoor � ;2. On input �, algorithm S samples the domain of f�, returning a randomelement in it;3. For x in the domain of f�, given � and x, algorithm F returns f�(x) (i.e.,F (�; x) = f�(x));4. For y in the range of f� if (�; �) is a possible output of I(1n) then, given� and y, algorithm B returns f�1� (y) (i.e., B(�; y) = f�1� (y)).The hardness condition in De�nition 2.4.5 refers to the di�culty of invertingf� on a random element of its range, when given only the range-element and�. That is, let I1(1n) denote the �rst element in the output of I(1n) (i.e., the759
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760 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1index), then for every probabilistic polynomial-time algorithm A (resp., everynon-uniform family of polynomial-size circuit A = fAngn), every polynomial pand all su�ciently large n'sPr[A(I1(1n); fI1(1n)(S(I1(1n))) = S(I1(1n))] < 1p(n) (C.1)Namely, A (resp., An) fails to invert f� on f�(x), where � and x are selected byI and S as above. An equivalent way of writing Eq. (C.1) isPr[A(I1(1n); S0(I1(1n); Rn)) = fI1(1n)(S0(I1(1n)); Rn)] < 1p(n) (C.2)where S0 is the residual two-input (deterministic) algorithm obtained from Swhen treating the coins of the latter as an auxiliary input, and Rn denote thedistribution of the coins of S on n-bit inputs.Although the above de�nition su�ces for many applications, in some caseswe will need an enhanced hardness condition. Speci�cally, we will require thatit is hard to invert f� on a random input x (in the domain of f�) even whengiven the coins used by S in the generation of x. (Note that given these coins(and the index �), the resulting domain element x is easily determined.)De�nition C.1.1 (enhanced trapdoor permutations): Let ff� : D� ! D�g bea collection of trapdoor permutations as in De�nition 2.4.5. We say that thiscollection is enhanced (and call it an enhanced collection of trapdoor permutations)if for every probabilistic polynomial-time algorithm A every polynomial p and allsu�ciently large n'sPr[A(I1(1n); Rn) = fI1(1n)(S0(I1(1n)); Rn)] < 1p(n) (C.3)where S0 is as above. The non-uniform version is de�ned analogously.We comment that the RSA collection (presented in Section 2.4.3.1 and fur-ther discussed in Section 2.4.4.2) is in fact an enhanced collection of trapdoorpermutations,1 provided that RSA is hard to invert in the same sense as as-sumed in Section 2.4.3.1. In contrast, the Rabin Collection (as de�ned in Sec-tion 2.4.3), does not satisfy De�nition C.1.1 (because the coins of the samplingalgorithm give away a modular square root of the domain element). Still, theRabin Collection can be easily modify to yield an enhanced collection of trapdoorpermutations, provided that factoring is hard (in the same sense as assumed inSection 2.4.3). Actually, we present two such possible modi�cations:1 Here and below we assume that sampling Z�N , for a composite N , is trivial. However,sampling Z�N (or even ZN ) by using a sequence of unbiased coins is not that trivial. Thestraightforward sampler may take ` def= 2blog2 Nc random bits, view them as an integer ini 2 f0; 1; :::;2` � 1g, and output i mod N . This yields an almost uniform sample in ZN . Alsonote that given an element e 2 ZN , one can uniformly sample an i 2 f0; 1; :::;2` � 1g suchthat i � e (mod N). Thus, the actual sampler does not cause trouble with respect to theenhanced hardness requirement.
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C.2. ON VARIANTS OF PSEUDORANDOM FUNCTIONS 7611. Modifying the functions. Rather than squaring modulo the composite N ,we consider the function of raising to the power of 4 modulo N . It canbe shown that the resulting permuations over the quadratic residues mod-ulo N satisfy De�nition C.1.1, provided that factoring is hard. Speci�cally,given N and a random r 2 ZN , ability to extract the 4th root of r2 mod N(modulo N), yields ability to factor N , where the algorithm is similar tothe one used in order to establish the intractability of extracting squareroots.2. Changing the domains. Rather than considering the permutation induced(by the modoluar squaring function) on the setQn of the quadratic residuesmodulo N , we consider the permulations induced on the set Mn, whereMn contains all integers is f1; :::; N=2g that have Jacobi symbol modulo Nthat equals 1. Note that, as in case of Qn, each quadratic residue has aunique square root in Mn (because exactly two square roots have Jacobisymbol that equals 1 and their sum equals N).2 However, unlike QN ,membership in MN can be determined in polynomial-time (when given Nwithout its factorization). Thus, samplingMN can be done in probabilisticpolynomial-time.Actually, squaring modulo N is a 1-1 mapping of MN to QN . In order toobtain a permutation overMN , we modify the function a little such that ifthe result of modular squaring is bigger than N=2 then we use its additiveinverse (i.e., rather than outputting y > N=2, we output N � y).We comment that the special case of De�nition 2.4.5 in which the domain off� equals f0; 1gj�j is a special case of De�nition C.1.1 (because, without loss ofgenerality, the sampling algorithm may satisfy S0(�; r) = r). Clearly, the aboveexamples can be slightly modi�ed to �t this special case.Correction to Volume 1: Theorems 4.10.10, 4.10.14 and 4.10.16 (which inturn are based on Remark 4.10.6) refer to the existence of certain non-interactivezero-knowledge proofs. The claimed non-interactive zero-knowledge proof sys-tems can be constructed assuming the existence of an enhanced collection oftrapdoor permutations. However, in contrast to the original text, it is not knownhow to derive these proof systems based on the existence of a (regular) collectionof trapdoor permutations. See further discussion in Section C.4.2.C.2 On Variants of Pseudorandom FunctionsThe focus of Section 3.6 was on a special case of pseudorandom functions, here-after referred to as the �xed-length variant. For some function ` : N ! N (e.g.,`(n) = n), these functions map `(n)-bit long strings to `(n)-bit long strings,where n denotes the lengths of the function's seed. More general de�nitions2 As in case of Qn, we use the fact that �1 has Jacobi symbol 1.
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762 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1were presented in Section 3.6.4. In particular, functions mapping strings of arbi-trary length to `(n)-bit long strings were considered. Here we refer to the latteras to the variable-length variant.A natural question regarding these variants is how to directly (or e�ciently)transform functions of the �xed-length variant into functions of the variable-length variant.3 Exercises 30 and 31 in Chapter 3 implicitly sugggest such atransformation, and so does Proposition 6.3.7. Because of the interest in thequestion, we now state the actual result explicitly.Proposition C.2.1 Let ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs be a (�xed-length)pseudorandom function ensemble, and fhr : f0; 1g� ! f0; 1g`(jrj)gr be a gen-eralized hashing ensemble with a (t; 1=t)-collision property,4 for some super-polynomial function t : N ! N . Then fgs;r = fs � hrgs;r:jsj=jrj is a (variable-length) pseudorandom function ensemble.Proof: The proofs of Propositions 6.3.6 and 6.3.7 actually establish Proposi-tion C.2.1.Comment: Alternative constructions of variable-length pseudorandom func-tions based on �xed-length pseudorandom functions are presented in [32, 29, 21].In these works, the �xed-length pseudorandom functions is applied to each blockof the input, and so the number of applications is linearly-related to the inputlength (rather than being a single one). On the other hand, these works do notuse variable-length hashing. Indeed, these works presuppose that a �xed-lengthpseudorandom function (rather than a variable-length one) is non-expensive(and, in practice, is available as an o�-the-shelf product).C.3 On Strong Witness IndistinguishabilityUnfortunately, we have to withdraw two claims regarding strong witness in-distinguishable proofs as de�ned in De�nition 4.6.2.5 Speci�cally, in general,strong witness indistinguishability is not closed under parallel composition (andso Lemma 4.6.7 is wrong). Consequently, in contrary to what is stated in Theo-rem 4.6.8, we do not know whether there exist constant-round public-coin proofswith negligible error that are strong witness indistinguishable for languages outof BPP . Before discussing the reasons for withdrawing these claims and theconsequences of doing so, we stress that the aws pointed out here only refer tostrong witness indistinguishability and not to (regular) witness indistinguisha-bility. That is, as stated in Lemma 4.6.6, (regular) witness indistinguishability3 An indirect construction may use the �xed-length variant in order to obtain a one-wayfunction, and then construct the variable-length variant using this one-way function.4 Recall that the (t; 1=t)-collision property means that every n 2 N and every x 6= y suchthat jxj; jyj � t(n), the probability that hr(x) = hr(y) when r is uniformly selected in f0; 1gnis at most 1=t(n).5 We comment that the notion of strong witness indistinguishability was introduced by theauthor at a late stage of writing [135].
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C.3. ON STRONG WITNESS INDISTINGUISHABILITY 763is closed under parallel composition and thus the part of Theorem 4.6.8 thatrefers to regular witness indistinguishability is valid (i.e., providing constant-round public-coin proofs with negligible error that are witness indistinguishablefor NP).C.3.1 On parallel compositionA counter-example to Lemma 4.6.7 can be derived by using the protocol pre-sented at the end of Section 4.5.4.1 (and assuming the existence of one-way func-tions). In contrary to what is claimed in Section 4.6.2, the proof of Lemma 4.6.6(i.e., parallel composition of regular witness indistinguishability) cannot be ex-tended to the case of strong witness indistinguishability, because (in general)the simulating machine V � may not be given the NP-witnesses required for em-ulation of the other copies.6 For example, parallel composition may refer toparallel executions on the same common input while the prover is given thesame NP-witnesses. This point is further clari�ed below.Parallel composition of strong witness indistinguishable proofs does holdwhen restricted to input sequences that are identical independent copies of oneinput distribution. More generally, we can prove the following fact.Lemma C.3.1 (Parallel Composition for Strong Witness Indistinguishability,Revisited): Let L 2 NP, RL, (P; V ), Q, RQL and PQ be as in Lemma 4.6.6,and suppose that (P; V ) is strong witness indistinguishable. Then for everyprobabilistic polynomial-time machine V �Q and every two probability ensemblesf(X1n; Y 1n; Z1n)gn2N and f(X2n; Y 2n; Z2n)gn2N such that Xjn (resp., Y jn and Zjn)is a sequence of Q(n) independently distributed variables the following holdsif f(X1n; Z1n)gn2N and f(X2n; Z2n)gn2N are computationally indistinguishablethen so are fhPQ(Y 1n); V �Q(Z1n)i(X1n)gn2N and fhPQ(Y 2n); V �Q(Z2n)i(X2n)gn2N.We stress that the components of Y jn (resp., Zjn) may depend on the corre-sponding components of Xjn, but they are independent of the other componentsof Y jn and Zjn (as well as of Xjn). Lemma C.3.1 is proved by extending the proofof Lemma 4.6.6. Speci�cally, we consider hybrids as in the original proof, andconstruct a veri�er V � that interacts with P on the ith copy while emulating allthe other copies. Towards this emulation, we provide V � with the correspondingQ(n) � 1 components of both Y jn's (as well as of both Xjn's and Zjn's). Fixingthe best possible choice for these Q(n)� 1 components, we derive a veri�er thatinteracts with P and contradicts the hypothesis that (P; V ) is strong witnessindistinguishable. The key point is that revealing (or �xing) the other Q(n)� 16 The point is that indistinguishability of the transcripts of executions on di�erent commoninputs (as required in strong witness indistinguishability) may not hold when the veri�er V �is also given both corresponding NP-witnesses (i.e., the Y in's of De�nition 4.6.2). In contrast,indistinguishability of the transcripts of executions on the same common input (as required inregular witness indistinguishability) does hold also when the veri�er is given both NP-witnessesfor this input.
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764 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1components of both Y jn's does not allow to distinguish the ith component of X1nand Z1n from the ith component of X2n and Z2n.C.3.2 On Theorem 4.6.8 and an afterthoughtUnfortunately, Theorem 4.6.8 is proved by parallel composition that refers tothe same common input (and the same NP-witness). Thus, Lemma C.3.1 is notapplicable, and consequently we do not know whether the part of Theorem 4.6.8that refers to strong witness indistinguishable proofs is valid. This is indeed aninteresting open problem.We comment that one can reduce the construction of constant-round (public-coin) strong witness indistinguishable proofs with negligible error for NP to theconstruction of such proofs for the special case in which the Xjn's are identicallydistributed (and the Zjn's are only computationally indistinguishable). Consider,for example, the following protocol:1. The prover sends a commitment to the value 0.2. Using a (regular) witness indistinguishable proof (as provided by The-orem 4.6.8), the prover proves that either the common input is in thelangauge or the string sent at Step 1 is a commitment to 1.Let us denote by T jn the transcript of the execution of this step, whenthe common input is Xjn (and the parties use auxiliary inputs Y jn andZjn, respectively). It can be proven that the T jn's are computationallyindistinguishable (by considering what happens if at Step 1 the proversends a commitment to 1).3. Using a strong witness indistinguishable proof (which is indeed the missingcomponent or the subprotocol to which the current protocol is reduced),the prover proves that the string sent at Step 1 is a commitment to 0.Note that it su�ces to show that the veri�er cannot distinguish the pos-sible transcript distributions of the current step, where both transcriptdistributions refer to the same common input (i.e., the commitment), thesame prover's auxiliary input (i.e., the decommitment information), butto the veri�er's auxiliary inputs T 1n and T 2n , which are di�erent (but indis-tinguishable).The foregoing reduction demonstrates that the notion of strong witness indis-tinguishability actually refers to issues that are fundamentally di�erent fromwitness indistinguishability. Speci�cally, the issue is whether the interactionwith the prover helps to distinguish some auxiliary information (which is indis-tinguishable without such an interaction).C.3.3 ConsequencesIn view of the fact that we do not have constant-round public-coin strong witnessindistinguishable proofs with negligible error for NP , we suggest to replace the
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C.3. ON STRONG WITNESS INDISTINGUISHABILITY 765use of such proofs by some cumbersome patches. A typicaly example is theconstruction of non-oblivious commitment schemes (i.e., Theorem 4.9.4).Non-oblivious commitment schemes. We begin the discussion by notingthat the speci�c formulation as appearing in De�nition 4.9.3 is wrong. Oneshould partition the commit phase into two sub-phases such that the secondsub-phase is a proof-of-knowledge of the input and coins used by the sender atthe �rst sub-phase, which in turn should constitute a commitment scheme byitself. That is, the view in the relation displayed in De�nition 4.9.3 should be theview of the �rst sub-phase (rather than the view of the entire commit phase). Infact, for the current implementation we need a relaxed de�nition in which oneonly proves knowledge of the input (but not of the coins) used by the sender atthe �rst sub-phase. We stress that the input value proved to be known must besuch that it is impossible for the sender to later decommit to a di�erent value.Indeed, in this relaxed form, we do not require that a later decommitment isat all possible; we only require that if it takes place than the outcome matchesthe above value. Note that this relaxed form su�ces for the proof presented inSection 4.9.2.2.Next, we modify the construction used in the proof of Theorem 4.9.4 asfollows. First, rather than sending one ordinary commitment to the input, wesend many such (independent) commitments. Secondly, rather than using a(constant-round) proof-of-knowledge with negligible error, we use one that hasconstant error. The point is that such a (constant-round) proof-of-knowledgethat is zero-knowledge (and hence strong witness indistinguishable) is known.We invoke this proof systems many times, in parallel, where each invocationis applied to a di�erent commitment. Thus, we can apply Lemma C.3.1 andconclude that these executions are strong witness indistinguishable (where thewitnesses are the coins used in the ordinary commitments), and therefore theentire protocol constitutes a (complicated) commitment scheme. Finally, one canestablish the non-oblivious property by using the knowledge extractor associatedwith the proof system. Note that we can only extract the commited input andpart of the coins used at the �rst stage (i.e., the coin used in some of the ordinarycommitments but not necessarily the coins used in all of them). Furthermore,it may be that we accept also in case the sequence of strings sent at the �rststage does not correspond to any legitimate sequence (i.e., of commitments tothe same value). However, if we extract one value then it is impossible for thesender to later decommit to a di�erent value, because the extracted value does�t one of the individual commitments.Other applications. Fortunately, Theorem 4.9.4 is the only place where strongwitness indistinguishable proofs are used in this work. We believe that in manyother applications of strong witness indistinguishable proofs, a modi�cation anal-ogous to the above can be carried out (in order to salvaged the application). Atypical example appears in [15]. Indeed, the current situation is very unfortu-nate and we hope that it will be redeemed in the future. Speci�cally, we propose
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766 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1the following open problem:Open problem: Construct constant-round public-coin strong witness indis-tinguishable proofs (and proofs-of-knowledge) with negligible error for NP , orprove that this cannot be done. Recall that zero-knowledge arguments of theabove nature are known [13]. The challenge is in providing such proofs.C.4 On Non-Interactive Zero-KnowledgeC.4.1 On NIZK with e�cient prover strategiesIn continuation to Remark 4.10.6 and following [39], we briey discuss the issuesthat arise when wishing to extend Construction 4.10.4 to arbitrary trapdoorpermutations. Recall that Remark 4.10.6 focuses on a family of trapdoor per-mutations of the form ff� : f0; 1gj�j ! f0; 1gj�jg�2I , where I is e�cientlyrecognizable. Unfortunately, no such family is known, and thus we �rst extendthe treatment to the case in which I is not necessarily e�ciently recognizable.The problem we encounter is that the prover may select (and send along) afunction that is not in the family (i.e., an � not in I). In such a case, thefunction is not necessarily 1-1, and consequently, the soundness property maybe violated. This concern can be addressed by using a simple non-interactive(zero-knowledge) proof that the function is \typically 1-1" (or, equivalently, is\almost onto the designated range"). The proof proceeds by presenting inverses(under the function) of random elements speci�ed in the reference string. Notethat, for any �xed polynomial p, we can only prove that the function is 1-1on at least a 1� (1=p(n)) fraction of the designated range, but this su�ces formoderate soundness of the entire proof system (which in turn can be ampli�edby repetitions). For further details, consult [39].Although the known candidate trapdoor permutations can be modi�ed to �tthe above form, we wish to further generalize the result so that any enhancedtrapdoor permutation (as in De�nition C.1.1) can be used. This can be doneby letting the reference string consist of the coin-sequences used by the domain-sampling algorithm (rather than of elements of the function's domain). By virtueof the enhanced hardness condition (i.e., Eq. (C.3)), the security of the hardcoreis preserved, and so is the zero-knowledge property.As stated at the end of Section C.1, in contrast to what was claimed inRemark 4.10.6, we do not known how to extend the construction to arbitrary(rather than enhanced) trapdoor permutation.C.4.2 On Adaptive NIZKsIn De�nition 4.10.15, the adaptive zero-knowledge condition should be quan-ti�ed only over e�ciently computable input-selection strategies. Furthermore,it seems that also the witness-selection strategies should be restricted to ones
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C.5. SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 767implemented by polynomial-size circuits. The revised form is presented in De�-nition 5.4.22.A few words regarding the proof of Theorem 4.10.16 are in place. The (two-stage) simulation procedure itself is sketched in Footnote 29. Recall that atthe �rst stage, we generate matrices at random, and replace the useful matri-ces by all-zero matrices (i.e., matrices of f -images that have preimages withhard-core value equal to zero). In the second stage, when given an adaptivelychosen graph, we reveal all elements of all non-useful matrices and the requiredelements of the useful matrices, where revealing an element means revealing thecorresponding f -preimage. In establishing the quality of this simulation proce-dure, we rely on the fact that the input graph as well as a Hamiltonian cyclein it are determined by a polynomial-size circuit. Loosely speaking, assumingtowards the contradiction that the simulation can be distinguished from the realproof, we construct a circuit that distinguishes a sequence of random f(x)'s withb(x) = 0 from random f(x)'s with b(x) = 1. The \b-distinguisher" places thetested f -images in the suitable entries of useful matrices, �lls up the rest of theentries of the useful matrices with elements it generates in ff(x) : b(x) = 0g,and �lls the entries of non-useful by random f -images that it generates. Next, itdetermines the input graph and the corresponding Hamiltonian cycle (by usingthe above polynomial-size circuit), and acts as the real prover. Finally, it feedsthe original distinguisher with the corresponding output. Observe that in casethe given sequence of f(x)'s satis�es b(x) = 0 (resp. b(x) = 1) for each f(x), theb-distinguisher produces outputs distributed exactly as in the simulation (resp.,the real proof).C.5 Some developments regarding zero-knowledgeA recent result by Barak [13] calls for re-evaluation of the signi�cance of all nega-tive results regarding black-box zero-knowledge7 (as de�ned in De�nition 4.5.10).In particular, relying on standard intractability assumptions, Barak presentsround-e�cient public-coin zero-knowledge arguments for NP (using non-black-box simulators), whereas only BPP can have such black-box zero-knowledgearguments (see comment following Theorem 4.5.11). Interestingly, Barak's sim-ulator works in strict (rather than expected) probabilistic polynomial-time, ad-dressing an open problem mentioned in Section 4.12.3. Barak's result is furtherdescribed in Section C.5.2In Section C.5.1, we review some recent progress achieved with respect tothe preservation of zero-knowledge under concurrent composition. We seize theoppertunity to provide a wider perspective on the question of preservation ofzero-knowledge under various forms of protocol composition operations.We mention that the two problems discussed in this section (i.e., the \preser-vation of security under various forms of protocol composition" and the \use of of7 Speci�cally, one should reject the interpretation, o�ered in Section 4.5 (see Sections 4.5.0,4.5.4.0 and 4.5.4.2), by which such results regarding black-box zero-knowledge indicate inherentlimitations of zero-knowledge.
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768 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1the adversary's program within the proof of security") arise also with respect tothe security of other cryptographic primitives. Thus, the study of zero-knowledgeproofs serve as a good bench-mark for the study of various problems regardingcryptographic protocols.C.5.1 Composing zero-knowledge protocolsA natural question regarding zero-knowledge proofs (and arguments) is whetherthe zero-knowledge condition is preserved under a variety of composition oper-ations. Three types of composition operation were considered in the literature:sequential composition, parallel composition and concurrent composition. Wenote that the preservation of zero-knowledge under these forms of compositionis not only interesting on its own sake, but rather also sheds light of the preser-vation of the security of general protocols under these forms of composition.We stress that when we talk of composition of protocols (or proof systems)we mean that the honest users are supposed to follow the prescribed program(speci�ed in the protocol description) that refers to a single execution. That is,the actions of honest parties in each execution are independent of the messagesthey received in other executions. The adversary, however, may coordinate theactions it takes in the various executions, and in particular its actions in oneexecution may depend also on messages it received in other executions.Let us motivate the asymmetry between the independence of executions as-sumed of honest parties but not of the adversary. Coordinating actions in dif-ferent executions is typically di�cult but not impossible. Thus, it is desirableto use composition (as de�ned above) rather than to use protocols that includeinter-execution coordination-actions, which require users to keep track of all ex-ecutions that they perform. Actually, trying to coordinate honest executions iseven more problematic than it seems because one may need to coordinate exe-cutions of di�erent honest parties (e.g., all employees of a big cooperation or anagency under attack), which in many cases is highly unrealistic. On the otherhand, the adversary attacking the system may be willing to go into the extratrouble of coordinating its attack in the various executions of the protocol.For T 2 fsequential; parallel; concurrentg, we say that a protocol isT -zero-knowledge if it is zero-knowledge under a composition of type T . Thede�nitions of T -zero-knowledge are derived from the standard de�nition by con-sidering appropriate adversaries (i.e., adversarial veri�ers); that is, adversariesthat can initiate a polynomial number of interactions with the prover, wherethese interactions are scheduled according to the type T .8 The correspondingsimulator (which, as usual, interacts with nobody) is required to produce anoutput that is computationally indistinguishable from the output of such a typeT adversary.8 Without loss of generality, we may assume that the adversary never violates the schedul-ing condition; it may instead send an illegal message at the latest possible adequate time.Furthermore, without loss of generality, we may assume that all the adversary's messages aredelivered at the latest possible adequate time.
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C.5. SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 769C.5.1.1 Sequential CompositionIn this case, the protocol is invoked (polynomially) many times, where eachinvocation follows the termination of the previous one. At the very least, security(e.g., zero-knowledge) should be preserved under sequential composition, or elsethe applicability of the protocol is highly limited (because one cannot safely useit more than once).We mention that whereas the \simpli�ed" version (i.e., without auxiliary in-puts, as in De�nition 4.3.2) is not closed under sequential composition (see [142]),the actual version (i.e., with auxiliary inputs, as in De�nition 4.3.10) is closedunder sequential composition (see Section 4.3.4). We comment that the samephenomena arises when trying to use a zero-knowledge proof as a sub-protocolinside larger protocols. Indeed, it is for these reasons that the augmentation ofthe \most basic" de�nition by auxiliary inputs was adopted in all subsequentworks.9C.5.1.2 Parallel CompositionIn this case, (polynomially) many instances of the protocol are invoked at thesame time and proceed at the same pace. That is, we assume a synchronousmodel of communication, and consider (polynomially) many executions that aretotally synchronized so that the ith message in all instances is sent exactly (orapproximately) at the same time. (Natural variants on this model are discussedbelow as well as at the end of Section C.5.1.3.)It turns out that, in general, zero-knowledge is not closed under parallel com-position. A simple counter-example (to the \parallel composition conjecture")is depicted in Figure C.1. This counter-example, which is adapted from [142],consists of a simple protocol that is zero-knowledge (in a strong sense), but isnot closed under parallel composition (not even in a very weak sense).We comment that, at the 1980's, the study of parallel composition was inter-preted mainly in the context of round-e�cient error reduction (cf. [110, 142]);that is, the construction of full-edge zero-knowledge proofs (with negligiblesoundness error) by composing (in parallel) a basic zero-knowledge protocol ofhigh (but bounded away from 1) soundness error. Since alternative ways ofconstructing constant-round zero-knowledge proofs (and arguments) were found(cf. [141, 109, 61]), interest in parallel composition (of zero-knowledge protocols)has died. In retrospect, this was a conceptual mistake, because parallel compo-sition (and mild extensions of this notion) capture the preservation of security ina fully synchronous (or almost-fully synchronous) communication network. Wenote that the almost-fully synchronous communication model is quite realisticin many settings, although it is certainly preferable not to assume even weaksynchronism.9 Interestingly, the preliminary version of Goldwasser, Micali and Racko�'s work [164]used the \most basic" de�nition, whereas the �nal version of this work used the augmentedde�nition. In some works, the \most basic" de�nition is used for simplicity, but typically oneactually needs and means the augmented de�nition.
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770 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1
Consider a party P holding a random (or rather pseudorandom) function f :f0; 1g2n!f0; 1gn, and willing to participate in the following protocol (with respect to securityparameter n). The other party, called A for adversary, is supposed to send P a binaryvalue v 2 f1; 2g specifying which of the following cases to execute:Case v = 1: Party P uniformly selects � 2 f0; 1gn, and sends it to A, which issupposed to reply with a pair of n-bit long strings, denoted (�; ). Party Pchecks whether or not f(��) = . In case equality holds, P sends A some secretinformation.Case v = 2: Party A is supposed to uniformly select � 2 f0; 1gn, and sends it to P ,which selects uniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs): Intuitively,if the adversary A chooses the case v = 1, then it is infeasible for A to guess a passingpair (�; ) with respect to the random � selected by P . Thus, except with negligibleprobability (when it may get secret information), A does not obtain anything fromthe interaction. On the other hand, if the adversary A chooses the case v = 2, thenit obtains a pair that is indistinguishable from a uniformly selected pair of n-bit longstrings (because � is selected uniformly by P , and for any � the value f(��) looksrandom to A).In contrast, if the adversary A can conduct two concurrenta executions with P , thenit may learn the desired secret information: In one session, A sends v = 1 while in theother it sends v = 2. Upon receiving P 's message, denoted �, in the �rst session, Asends � as its own message in the second session, obtaining a pair (�; f(��)) from P 'sexecution of the second session. Now, A sends the pair (�; f(��)) to the �rst sessionof P , this pair passes the check, and so A obtains the desired secret.a Dummy messages may be added (in both cases) in order to obtain the following scheduling in theperfectly parallel case.Figure C.1: A counter-example (adapted from [142]) to the parallel repe-tition conjecture for zero-knowledge protocols.Although, in general, zero-knowledge is not closed under parallel composi-tion, under standard intractability assumptions (e.g., the intractability of fac-toring), there exists zero-knowledge protocols for NP that are closed underparallel composition. Furthermore, these protocols have a constant number ofrounds (cf. [136] for proofs and [100] for arguments).10 Both results extend alsoto concurrent composition in a synchronous communication model, where theextension is in allowing protocol invocations to start at di�erent (synchronous)times (and in particular executions may overlap but not run simultaneously).We comment that parallel composition is problematic also in the context ofreducing the soundness error of arguments (cf. [31]), but our focus here is onthe zero-knowledge aspect of protocols regardless if they are proofs, argumentsor neither.10 In case of parallel-zero-knowledge proofs, there is no need to specify the soundness errorbecause it can always be reduced via parallel composition. As mentioned below, this is notthe case with respect to arguments.
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C.5. SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 771C.5.1.3 Concurrent Composition (with and without timing)Concurrent composition generalizes both sequential and parallel composition.Here (polynomially) many instances of the protocol are invoked at arbitrarytimes and proceed at arbitrary pace. That is, we assume an asynchronous (ratherthan synchronous) model of communication.In the 1990's, when extensive two-party (and multi-party) computations be-came a reality (rather than a vision), it became clear that it is (at least) desirablethat cryptographic protocols maintain their security under concurrent compo-sition (cf. [94]). In the context of zero-knowledge, concurrent composition was�rst considered by Dwork, Naor and Sahai [100]. Actually, two models of concur-rent composition were considered in the literature, depending on the underlyingmodel of communication (i.e., a purely asynchronous model and an asynchronousmodel with timing). Both models cover sequential and parallel composition asspecial cases.Concurrent composition in the pure asynchronous model. Here we re-fer to the standard model of asynchronous communication. In comparison to thetiming model, the pure asynchronous model is a simpler model and using it re-quires no assumptions about the underlying communication channels. Howeverit seems harder to construct concurrent zero-knowledge protocols for this model.In particular, for a while it was not known whether concurrent zero-knowledgeproofs for NP exist at all (in this model). Under standard intractability as-sumptions (e.g., the intractability of factoring), this question was a�rmativelyresolved by Richardson and Kilian [246]. Following their work, research has fo-cused on determining the round-complexity of concurrent zero-knowledge proofsfor NP . Currently, this question is still opened, and the state of the art regard-ing it is as follows:� Under standard intractability assumptions, every language in NP has aconcurrent zero-knowledge proof with almost-logarithmically many rounds(cf. [238], building upon [188], which in turn builds over [246]). Further-more, the zero-knowledge property can be demonstrated using a black-boxsimulator (see de�nition in Section 4.5.4.2 and discussion in Section C.5.2).� Black-box simulator cannot demonstrated the concurrent zero-knowledgeproperty of non-trivial proofs (or arguments) having signi�cantly less thanlogarithmically-many rounds (cf. Canetti et. al. [73]).11� Recently, Barak [13] demonstrated that the \black-box simulation bar-rier" can be bypassed. With respect to concurrent zero-knowledge heonly obtained the following partial result: under standard intractabilityassumptions, every language in NP has a constant-round zero-knowledge11 By non-trivial proof systems we mean ones for languages outside BPP , whereas bysigni�cantly less than logarithmic we mean any function f : N ! N satisfying f(n) =o(log n= log log n). In contrast, by almost-logarithmic we mean any function f satisfyingf(n) = !(log n).
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772 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1argument (rather than proof) that maintain security as long as an a-prioribounded (polynomial) number of executions take place concurrently. (Thelength of the messages in his protocol grows linearly with this a-prioribound.)Thus, it is currently unknown whether or not constant-round arguments for NPmay be concurrent zero-knowledge (in the pure asynchronous model).Concurrent composition under the timing model: A model of naturally-limited asynchronousness (which certainly covers the case of parallel composi-tion) was introduced by Dwork, Naor and Sahai [100]. Essentially, they assumethat each party holds a local clock such that the relative clock rates are boundedby an a-priori known constant, and consider protocols that employ time-drivenoperations (i.e., time-out in-coming messages and delay out-going messages).The bene�t of the timing model is that it is known to construct concurrent zero-knowledge protocols for it. Speci�cally, using standard intractability assump-tions, constant-round arguments and proofs that are concurrent zero-knowledgeunder the timing model do exist (cf. [100] and [136], respectively). The disad-vantages of the timing model are discussed next.The timing model consists of the assumption that talking about the actualtiming of events is meaningful (at least in a weak sense) and of the introductionof time-driven operations. The timing assumption amounts to postulating thateach party holds a local clock and knows a global bound, denoted � � 1, on therelative rates of the local clocks.12 Furthermore, it is postulated that the partiesknow a (pessimistic) bound, denoted �, on the message-delivery time (whichalso includes the local computation and handling times). In our opinion, thesetiming assumptions are most reasonable, and are unlikely to restrict the scopeof applications for which concurrent zero-knowledge is relevant. We are moreconcerned about the e�ect of the time-driven operations introduced in the timingmodel. Recall that these operations are the time-out of in-coming messages andthe delay of out-going messages. Furthermore, typically the delay period is atleast as long as the time-out period, which in turn is at least � (i.e., the time-outperiod must be at least as long as the pessimistic bound on message-delivery timeso not to disrupt the proper operation of the protocol). This means that the useof these time-driven operations yields slowing down the execution of the protocol(i.e., running it at the rate of the pessimistic message-delivery time rather thanat the rate of the actual message-delivery time, which is typically much faster).Still, in absence of more appealing alternatives (i.e., a constant-round concurrentzero-knowledge protocol for the pure asynchronous model), the use of the timingmodel may be considered reasonable. (We comment than other alternatives tothe timing-model include various set-up assumptions; cf. [70, 89].)12 The rate should be computed with respect to reasonable intervals of time; for example,for � as de�ned below, one may assume that a time period of � units is measured as �0 unitsof time on the local clock, where �=� � �0 � ��.
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C.5. SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 773Back to parallel composition: Given our opinion about the timing model, itis not surprising that we consider the problem of parallel composition almost asimportant as the problem of concurrent composition in the timing model. Firstly,it is quite reasonable to assume that the parties' local clocks have approximatelythe same rate, and that drifting is corrected by occasional clock synchronization.Thus, it is reasonable to assume that the parties have approximately-good es-timate of some global time. Furthermore, the global time may be partitionedinto phases, each consisting of a constant number of rounds, so that each partywishing to execute the protocol just delays its invocation to the beginning of thenext phase. Thus, concurrent execution of (constant-round) protocols in thissetting amounts to a sequence of (time-disjoint) almost-parallel executions ofthe protocol. Consequently, proving that the protocol is parallel zero-knowledgesu�ces for concurrent composition in this setting.Relation to resettable zero-knowledge. Going to the other extreme, wemention that there exists a natural model of zero-knowledge that is even strongerthan concurrent zero-knowledge (even in the pure asynchronous model). Specif-ically, \resettable zero-knowledge" as de�ned in [70], implies concurrent zero-knowledge.C.5.2 Using the adversary's program in the proof of secu-rityRecall that the de�nition of zero-knowledge proofs states that whatever an e�-cient adversary can compute after interacting with the prover, can actually bee�ciently computed from scratch by a so-called simulator (which works withoutinteracting with the prover). Although the simulator may depend arbitrarily onthe adversary, the need to present a simulator for each feasible adversary seemsto require the presentation of a universal simulator that is given the adversary'sstrategy (or program) as another auxiliary input. The question addressed in thissection is how can the universal simulator use the adversary's program.The adversary's program (or strategy) is actually a function determiningfor each possible view of the adversary (i.e., its input, random choices and themessage it has received so far) which message will be sent next. Thus, we iden-tify the adversary's program with this next-message function. As stated above,until very recently, all universal simulators (constructed towards demonstrat-ing zero-knowledge properties) have used the adversary's program (or ratherits next-message function) as a black-box (i.e., the simulator invoked the next-message function on a sequence of arguments of its choice). Furthermore, inview of the presumed di�culty of \reverse engineering" programs, it was com-monly believed that nothing is lost by restricting attention to simulators, calledblack-box simulators, that only make black-box usage of the adversary's program.Consequently, Goldreich and Krawczyk conjectured that impossibility resultsregarding black-box simulation represent inherent limitations of zero-knowledgeitself, and studied the limitations of the former [142].
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774 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1In particular, they showed that parallel composition of the protocolof Construction 4.4.7 (as well as of any constant-round public-coinprotocol) cannot be proven to be zero-knowledge using a black-boxsimulator, unless the language (i.e., 3-Colorability) is in BPP. Infact their result refers to any constant-round public-coin protocolwith negligible soundness error, regardless of how such a protocolis obtained. This result was taken as strong evidence towards theconjecture that constant-round public-coin protocol with negligiblesoundness error cannot be zero-knowledge (unless the language is inBPP).Similarly, as mentioned in Section C.5.1.3, it was shown that pro-tocols of sub-logarithmic number of rounds cannot be proven to beconcurrent zero-knowledge via a black-box simulator [73], and thiswas taken as evidence towards the conjecture that such protocolscannot be concurrent zero-knowledge.In contrast to these conjectures and supportive evidence, Barak showed howto constructed non-black-box simulators and obtained several results that wereknown to be unachievable via black-box simulators [13]. In particular, un-der standard intractability assumption (see also [15]), he presented constant-round public-coin zero-knowledge arguments with negligible soundness error forany language in NP . (Moreover, the simulator runs in strict polynomial-time,which is impossible for black-box simulators of non-trivial constant-round proto-cols [17].) Furthermore, this protocol preserves zero-knowledge under a �xed13polynomial number of concurrent executions, in contrast to the result of [73](regarding black-box simulators) that holds also in that restricted case. Thus,Barak's result calls for the re-evaluation of many common believes. Most con-cretely, it says that results regarding black-box simulators do not reect inherentlimitations of zero-knowledge (but rather an inherent limitation of a natural wayof demonstrating the zero-knowledge property). Most abstractly, it says thatthere are meaningful ways of using a program other than merely invoking it asa black-box.Does this means that a method was found to \reverse engineer" programsor to \understand" them? We believe that the answer is negative. Barak [13]is using the adversary's program in a signi�cant way (i.e., more signi�cant thanjust invoking it), without \understanding" it. So how does he use the program?The key idea underlying Barak's protocol [13] is to have the prover prove thateither the original NP-assertion is valid or that he (i.e., the prover) \knows theveri�er's residual strategy" (in the sense that it can predict the next veri�er mes-sage). Indeed, in a real interaction (with the honest veri�er), it is infeasible forthe prover to predict the next veri�er message, and so computational-soundnessof the protocol follows. However, a simulator that is given the code of theveri�er's strategy (and not merely oracle access to that code), can produce a13 The protocol depends on the polynomial bounding the number of executions, and thusis not known to be concurrent zero-knowledge (because the latter requires to �x the protocoland then consider any polynomial number of concurrent executions).
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C.5. SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 775valid proof of the disjunction by properly executing the sub-protocol using itsknowledge of an NP-witness for the second disjunctive. The simulation is com-putational indistinguishable from the real execution, provided that one cannotdistinguish an execution of the sub-protocol in which one NP-witness (i.e., anNP-witness for the original assertion) is used from an execution in which thesecond NP-witness (i.e., an NP-witness for the auxiliary assertion) is use. Thatis, the sub-protocol should be a witness indistinguishable argument system (seeSections 4.6 and 4.8). We warn the reader that the actual implementation ofthe above idea requires overcoming several technical di�culties (cf. [13, 15]).Perspective. In retrospect, taking a wide perspective, it should not come asa surprise that the program's code yields extra power beyond black-box accessto it. Feeding a program with its own code (or part of it) is the essence ofthe diagonalization technique, and this too is done without \reverse engineer-ing". Furthermore, various non-black-box techniques have appeared before inthe cryptographic setting, but they were used in the more natural context ofdevising an attack on an (arti�cial) insecure scheme (e.g., towards proving thefailure of the \Random Oracle Methodology" [69] and the impossibility of soft-ware obfuscation [16]). In contrast, in [13] (and [14]) the code of the adversaryis being used within a sophisticated proof of security. What we wish to highlighthere is that non-black-box usage of programs is relevant also to proving (ratherthan to disproving) the security of systems.Digest: Witness Indistinguishability and the FLS-TechniqueThe above description (of [13]), as well as several other sophisticated construc-tions of zero-knowledge protocols (e.g., [108, 246]), makes crucial use of a tech-nique introduced by Feige, Lapidot and Shamir [108], which in turn is based onthe notion of witness indistinguishability (introduced by Feige and Shamir [110]).This technique, hereafter referred to as the FLS-technique, was used in Construc-tion 4.10.12, but we wish to further discuss it below.Following is a sketchy description of a special case of the FLS-technique,whereas the abovementioned application uses a more general version (whichrefers to proofs of knowledge, as de�ned in Section 4.7).14 In this special case,the technique consists of the following construction schema, which uses witnessindistinguishable protocols for NP in order to obtain zero-knowledge protocolsfor NP . On common input x 2 L, where L = LR is the NP-set de�ned by thewitness relation R, the following two steps are performed:1. The parties generate an instance x0 for an auxiliary NP-set L0, where L0is de�ned by a witness relation R0. The generation protocol in use mustsatisfy the following two conditions:14 In the general case, the generation protocol may generate an instance x0 in L0, but it isinfeasible for the prover to obtain a corresponding witness (i.e., a w0 such that (x0; w0) 2 R0). Inthe second step, the sub-protocol in use ought to be a proof of knowledge, and computational-soundness of the main protocol will follows (because otherwise the prover, using a knowledgeextractor, can obtain a witness for x0 2 L0).
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776 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1(a) If the veri�er follows its prescribed strategy then no matter whichfeasible strategy is used by the prover, with high probability, theprotocol's outcome is a no-instance of L0.(b) Loosely speaking, there exists an e�cient (non-interactive) procedurefor producing a (random) transcript of the generation protocol alongwith an NP-witness for the corresponding outcome (which is a yes-instance of L0) such that the procuded transcript is computationallyindistinguishable from the transcript of a real execution of the proto-col.2. The parties execute a witness indistinguishable protocol for the set L00 de-�ned by the witness relation R00 = f((u; u0); (v; v0)) : (u; v)2R _ (u0; v0)2R0g. The sub-protocol is such that the corresponding prover can be imple-mented in probabilistic polynomial-time given an NP-witness for (u; u0) 2L00. The sub-protocol is invoked on common input (x; x0), where x0 is theoutcome of Step 1, and the sub-prover is invoked with the correspondingNP-witness as auxiliary input (i.e., with (w; �), where w is the NP-witnessfor x given to the main prover).The computational-soundness of the above protocol follows by Property (a) ofthe generation protocol (i.e., with high probability x0 62 L0, and so x 2 L fol-lows by the soundness of the protocol used in Step 2). To demonstrate thezero-knowledge property, we �rst generate a simulated transcript of Step 1(with outcome x0 2 L0) along with an adequate NP-witness (i.e., w0 such that(x0; w0) 2 R0), and then emulates Step 2 by feeding the sub-prover strategywith the NP-witness (�;w0). Combining Property (b) of the generation protocoland the witness indistinguishability property of the protocol used in Step 2, thesimulation is indistinguishable from the real execution.C.6 MiscellaneousC.6.1 Additional Corrections1. Regarding Constriction 4.10.7 and the proof of Proposition 4.10.9: Thecurrent description in terms of two mappings �1; �2 is confusing and eveninaccurate. Instead one should identify the rows (resp., columns) ofH with[n] and use one permutation � over [n] (which supposedly maps the verticesof G to those of H). Alternatively, one may compose this permutation� with the two (1-1) mappings  i's (where  i : [n] ! [n3]), and obtainrelated �i's (i.e., �i(v) =  i(�(v))), which should be used as in the originaltext.C.6.2 Additional Comments1. In continuation to Sections 4.7 and 4.9.2, we mention that the round-e�cient argument system of [109] is actually an \argument of knowledge"
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C.6. MISCELLANEOUS 777(with negligible error). The interested reader is referred to [17] for fur-ther improvements regarding such proof systems. Essentially, using arelaxed but satisfactory de�nition of an argument-of-knowledge, the lat-ter work presents a constant-round zero-knowledge argument-of-knowledgewith strict (rather than expected) probabilistic polynomial-time simulatorand knowledge-extractor.2. The sequential composition lemma for zero-knowledge protocols (i.e., Lemma 4.3.11)is due to [153].3. We mention that the notions of strong witness indistinguishability (De�ni-tion 4.6.2) and strong proofs of knowledge (Section 4.7.6), and the HiddenBit Model (Section 4.10.2) have �rst appeared in early versions of thiswork.C.6.3 Typos etc1. In the guideline for Exercise 11 of Chapter 2, the term Ecycf (Un)] shouldbe E[cycf (Un)]. In the exercise itself, one should also address the case inwhich cycf (x) is unde�ned for some x's.Author's Note: First draft written mainly in 2002. Revised in January2003.
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778 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1
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