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tThe purpose of this note is to 
orre
t the ina

urate a

ount of this subje
t that is providedin our two-volume work Foundation of Cryptography. Spe
i�
ally, as pointed out by JonathanKatz, it seems that the 
onstru
tion of Non-Intera
tive Zero-Knowledge proofs for NP requiresthe existen
e of a doubly-enhan
ed 
olle
tion of trapdoor permutations (to be de�ned below).We stress that the popular 
andidate 
olle
tions of trapdoor permutations do satisfy this doubly-enhan
ed 
ondition. In fa
t, any 
olle
tion of trapdoor permutations that has dense and easilyre
ognizable domain satis�es this 
ondition.1 Introdu
tionThe purpose of this note is to 
orre
t the ina

urate a

ount of the 
onstru
tion of Non-Intera
tiveZero-knowledge proofs (NIZK) for NP that is provided in [G1, Se
. 4.10.2℄ and modi�ed in [G2,Apdx. C.4.1℄. We brie
y re
all the relevant fa
ts.In [G1, Rem. 4.10.6℄, a 
onstru
tion of NIZK for NP is sket
hed based on a 
olle
tion oftrapdoor permutations in whi
h ea
h permutation f� has domain f0; 1gj�j. This des
ription is
orre
t, but the problem is with the unsupported 
laim (at the end of [G1, Rem. 4.10.6℄) by whi
hthe 
onstru
tion 
an be extended to arbitrary 
olle
tions of trapdoor permutations (in whi
h thedomain of the permutation f� may be a sparse subset of f0; 1gj�j and may not be easy to re
ognize(although it is easy to sample from)).In [G2, Apdx. C.4.1℄ it was 
laimed that su
h a 
onstru
tion (of NIZK for NP) 
an be obtainedbased on any enhan
ed 
olle
tions of trapdoor permutations, where the enhan
ement is as de�nedin [G2, Apdx. C.1℄. But again, this 
laim was not fully supported. Furthermore, as pointed out byJonathan Katz, it seems that this 
onstru
tion requires an additional enhan
ement. In this note wede�ne the resulting notion of a doubly-enhan
ed 
olle
tion of trapdoor permutations, and providefull details to the 
laim that using su
h permutations one 
an 
onstru
t NIZK for NP . We stressthat the popular 
andidate 
olle
tions of trapdoor permutations do satisfy this doubly-enhan
ed
ondition. In fa
t, any 
olle
tion of trapdoor permutations that has dense and easily re
ognizabledomain satis�es this 
ondition. More generally, if the domain-sampler S0 of an enhan
ed 
olle
tion�Partially supported by the Israel S
ien
e Foundation (grant No. 1041/08).1



of trapdoor permutations has a \reversed sampler" (whi
h given �; y generates a random r su
hthat S0(�; r) = y), then this 
olle
tion is doubly-enhan
ed.On the non-te
hni
al level, we believe that this unfortunate line of events demonstrates theimportan
e of not being tempted by hand-waving arguments and working out detailed proofs.Indeed, we believe that the sour
e of trouble is that the basi
 idea is presented in [G1, Rem. 4.10.6℄as a pat
h, and further modi�
ations are also presented as pat
hes (see [G2, Apdx. C.4.1℄).2 Ba
kgroundIn this se
tion we re
all the standard de�nition of non-intera
tive zero-knowledge proof systems aswell as the 
onstru
tion of su
h systems based on proof systems in the hidden-bits model. Sin
eproof systems for NP in the hidden-bits model are known to exists (un
onditionally, see [G1,Se
. 4.10.2℄), our fo
us in this note is on transforming su
h systems into standard NIZK systems.We stress that intra
tability assumptions are used in the latter transformation.The rest of this se
tion is essentially reprodu
ed from [G1, Se
. 4.10.1&4.10.2℄.2.1 The Basi
 De�nitionRe
all that the model of non-intera
tive (zero-knowledge) proof systems 
onsists of three entities:a prover, a veri�er and a uniformly sele
ted sequen
e of bits (whi
h 
an be thought of as beingsele
ted by a trusted third party). Both veri�er and prover 
an read the random sequen
e, andea
h 
an toss additional 
oins. The intera
tion 
onsists of a single message sent from the proverto the veri�er, who is then left with the de
ision (whether to a

ept or not). Here we present onlythe basi
 de�nition that supports the 
ase of proving a single assertion of a-priori bounded length.Various extensions are presented in [G1, Se
. 4.10.3℄ and in [G2, Se
. 5.4.4.4℄; we re
all that the
onstru
tion of su
h stronger NIZKs 
an be redu
ed to the 
onstru
tion of basi
 NIZKs (as de�nedbelow).The model of non-intera
tive proofs seems 
loser in spirit to the model of NP-proofs than togeneral intera
tive proofs. In a sense, the NP-proof model is extended by allowing the prover andveri�er to refer to a 
ommon random string, as well as toss 
oins by themselves. Otherwise, as in
ase of NP-proofs, the intera
tion is minimal (i.e., unidire
tional: from the prover to the veri�er).Thus, in the de�nition below both the prover and veri�er are ordinary probabilisti
 ma
hines that,in addition to the 
ommon-input, also get a uniformly distributed (
ommon) referen
e-string. Westress that, in addition to the above 
ommon input and 
ommon referen
e-string, both the proverand veri�er may toss 
oins and get auxiliary inputs. However, for sake of simpli
ity, we present ade�nition for the 
ase in whi
h none of these ma
hines gets an auxiliary input (yet, they may bothtoss additional 
oins). The veri�er also gets as input the output produ
ed by the prover.De�nition 1 (non-intera
tive proof system): A pair of probabilisti
 ma
hines, (P; V ), is 
alled anon-intera
tive proof system for a language L if V is polynomial-time and the following two 
onditionshold� Completeness: For every x 2 L Pr [V (x;R; P (x;R))=1℄ � 23where R is a random variable uniformly distributed in f0; 1gpoly(jxj).2



� Soundness: For every x 62 L and every algorithm B,Pr [V (x;R;B(x;R))=1℄ � 13where R is a random variable uniformly distributed in f0; 1gpoly(jxj).The uniformly 
hosen string R is 
alled the 
ommon referen
e-string.As usual, the error probability in both 
onditions 
an be redu
ed (from 13) up to 2�poly(jxj), byrepeating the pro
ess suÆ
iently many times (using a sequen
e of many independently 
hosenreferen
e-strings). In stating the soundness 
ondition, we have deviated from the standard for-mulation that allows x 62 L to be adversarially sele
ted after R is �xed; the latter \adaptive"formulation of soundness is used in [G1, Se
. 4.10.3℄, and it is easy to transform a system satis-fying the above (\non-adaptive") soundness 
ondition into one satisfying the adaptive soundness
ondition (see [G1, Se
. 4.10.3℄).Every language in NP has a non-intera
tive proof system (in whi
h no randomness is used).However, this NP-proof system is unlikely to be zero-knowledge (as de�ned next). The de�nition ofzero-knowledge for the non-intera
tive model is simpli�ed by the fa
t that, sin
e the veri�er 
annota�e
t the prover's a
tions, it suÆ
es to 
onsider the simulatability of the view of a single veri�er(i.e., the pres
ribed one). A
tually, we 
an avoid 
onsidering the veri�er at all (sin
e its view 
anbe generated from the 
ommon referen
e-string and the message sent by the prover).De�nition 2 (non-intera
tive zero-knowledge): A non-intera
tive proof system, (P; V ), for a lan-guage L is zero-knowledge if there exist a polynomial p and a probabilisti
 polynomial-time algorithmM su
h that the ensembles f(x;Up(jxj); P (x;Up(jxj)))gx2L and fM(x)gx2L are 
omputationally in-distinguishable, where Um is a random variable uniformly distributed over f0; 1gm.This de�nition too is \non-adaptive" (i.e., the 
ommon input may not depend on the 
ommonreferen
e-string). An adaptive formulation of zero-knowledge is presented and dis
ussed in [G1,Se
. 4.10.3℄.2.2 The Hidden-Bits ModelA �
titious abstra
tion, whi
h is nevertheless very helpful for the design of non-intera
tive zero-knowledge proof systems, is the hidden bits model. In this model the 
ommon referen
e-string isuniformly sele
ted as before, but only the prover 
an see all of it. The `proof' that the prover sendsto the veri�er 
onsists of two parts; a `
erti�
ate' and the spe
i�
ation of some bit positions in the
ommon referen
e-string. The veri�er may only inspe
t the bits of the 
ommon referen
e-stringthat reside in the lo
ations that have been spe
i�ed by the prover. Needless to say, in addition, theveri�er inspe
ts the 
ommon input and the `
erti�
ate'.De�nition 3 (proof systems in the Hidden Bits Model): A pair of probabilisti
 ma
hines, (P; V ),is 
alled a hidden-bits proof system for L if V is polynomial-time and the following two 
onditionshold� Completeness: For every x 2 L Pr [V (x;RI ; I; �)=1℄ � 233



where (I; �) def= P (x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) andRI is the substring of R at positions I � f1; 2; :::;poly(jxj)g. That is, RI = ri1 � � � rit, whereR = r1 � � � rt and I = (i1; :::; it).� Soundness: For every x 62 L and every algorithm B,Pr [V (x;RI ; I; �)=1℄ � 13where (I; �) def= B(x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) and RIis the substring of R at positions I � f1; 2; :::;poly(jxj)g.In both 
ases, I is 
alled the set of revealed bits and � is 
alled the 
erti�
ate. Zero-knowledge isde�ned as before, with the ex
eption that we need to simulate (x;RI ; P (x;R)) = (x;RI ; I; �) ratherthan (x;R; P (x;R)).As stated above, we do not suggest the Hidden-Bits Model as a realisti
 model. The importan
e ofthe model stems from two fa
ts. Firstly, it is a `
lean' model whi
h fa
ilitates the design of proofsystems (in it), and se
ondly proof systems in the Hidden-Bits Model 
an be easily transformedinto non-intera
tive proof systems (i.e., the realisti
 model). The transformation (whi
h utilizes aone-way permutation f with hard-
ore b) follows.Constru
tion 4 (from Hidden Bits proof systems to non-intera
tive ones): Let (P; V ) be a hidden-bits proof system for L, and suppose that f :f0; 1g�!f0; 1g� and b :f0; 1g�!f0; 1g are polynomial-time 
omputable. Furthermore, let m = poly(n) denote the length of the 
ommon referen
e-stringfor 
ommon inputs of length n, and suppose that f is 1-1 and length preserving. Following is aspe
i�
ation of a non-intera
tive system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Common Referen
e-String: s = (s1; :::; sm), where ea
h si is in f0; 1gn.� Prover (denoted P 0):1. Computes ri = b(f�1(si)), for i = 1; 2; :::;m.2. Invokes P to obtain (I; �) = P (x; r1 � � � rm).P 0 outputs (I; �; pI), where pI def= (f�1(si1) � � � f�1(sit)) for I = (i1; :::; it).That is, P 0 augments the proof (I; �), obtained from P , with the f -preimages of the blo
ksof the referen
e string that are indi
ated in I. These preimages reveal the values of the
orresponding \revealed" bits in the hidden-bits model, while the values of the other bits remainessentially hidden.� Veri�er (denoted V 0) given prover's output (I; �; (p1 � � � pt)):1. Che
ks that sij = f(pj), for ea
h ij 2 I.In 
ase a mismat
h is found, V 0 halts and reje
ts.2. Computes ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.3. Invokes V on (x; r; I; �), and a

epts if and only if V a

epts.4



That is, using the pj's, the veri�er V 0 re
onstru
ts the the values of the 
orresponding \re-vealed" bits in the hidden-bits model, and invokes V on these values.We 
omment that P 0 is not perfe
t (or statisti
al) zero-knowledge even in 
ase P is. Furthermore(and more 
entral to this note), the prover P 0 may not be implemented in polynomial-time even ifP is (and even with the help of auxiliary inputs). See further dis
ussion in next se
tion.Proposition 5 Let (P; V ), L, f , b and (P 0; V 0) be as in Constru
tion 4. Then, (P 0; V 0) is a non-intera
tive proof system for L, provided that Pr[b(Un)=1℄ = 12 . Furthermore, if P is zero-knowledgeand b is a hard-
ore of f then P 0 is zero-knowledge too.Proof: To see that (P 0; V 0) is a non-intera
tive proof system for L we note that uniformly 
hosenstrings si 2 f0; 1gn indu
e uniformly distributed bits ri 2 f0; 1g. This follows by ri = b(f�1(si)),the fa
t that f is one-to-one, and the fa
t that b(f�1(Un)) � b(Un) is unbiased. Thus, the a
tionsof P 0 and V 0 perfe
tly emulate the a
tions of P and V , respe
tively.Note that if b is a hard-
ore of f , then b is almost unbiased (i.e., Pr[b(Un) = 1℄ = 12 � �(n),where � is a negligible fun
tion), and the said emulation is only guaranteed to be almost-perfe
t(i.e., deviates negligibly from the original). Thus, saying that b is a hard-
ore for f essentiallysuÆ
es for 
on
luding that (P 0; V 0) is a non-intera
tive proof system for L.To see that P 0 is zero-knowledge note that we 
an 
onvert an eÆ
ient simulator for P into aneÆ
ient simulator for P 0. Spe
i�
ally, we �rst invoke the P -simulator and obtain the sequen
e ofrevealed bits, whi
h 
orrespond to the set I, as well as the simulated 
erti�
ate, denoted �. Next,for ea
h revealed bit of value �, we uniformly sele
t a string r 2 f0; 1gn su
h that b(r) = � andput f(r) in the 
orresponding position in the 
ommon referen
e-string. That is, if the said bit
orresponds to position i 2 I, then we set the ith blo
k of the referen
e string to f(r). For ea
hunrevealed bit (i.e., bit position i =2 I), we uniformly sele
t a string s 2 f0; 1gn and put it in the
orresponding position in the 
ommon referen
e-string (i.e., set the ith blo
k of the referen
e stringto s). The output of the P 0-simulator 
onsists of the 
ommon referen
e-string generated as above,the sequen
e of all r's generated by the P 0-simulator for bits revealed by the P -simulator (i.e., bitin I), and the pair (I; �) as in the output of the P -simulator. Following is a rigorous des
ription ofthe P 0-simulator, when invoked on input x 2 f0; 1gn and using the P -simulator, denoted M .1. Obtain (x; (�1; :::; �t); (i1; :::; it); �) M(x).2. For every j = 1; ::; t, sele
t uniformly pj 2 f0; 1gn su
h that b(pj) = �j and set sij = f(pj).3. For every i 2 [m℄ n fij : j = 1; ::; tg, sele
t si uniformly in f0; 1gn.4. Output (x; (s1; :::; sm); ((i1; :::; it); �; (p1; :::; pt))).That is (s1; :::; sm) is the simulated \
ommon referen
e string" whereas ((i1; :::; it); �; (p1; :::; pt))is the simulated proof.Using the hypothesis that b is a hard-
ore of f , it follows that the output of the P 0-simulator is
omputationally indistinguishable from the veri�er's view (when re
eiving a proof from P 0). Notethat the only di�eren
e between the simulation and the real view is that in the former the valueson the a
tual referen
e strings do not ne
essarily mat
h the values of the 
orresponding hidden bitsseen by P . However, this di�eren
e is 
omputationally indistinguishable (by the hypothesis that bis a hard-
ore of f). 5



3 EÆ
ient Implementations of the Prover of Constru
tion 4As hinted above, in general, P 0 may not be eÆ
iently implemented given bla
k-box a

ess to P .What is needed for su
h an eÆ
ient implementation is the ability (of P 0) to invert f . On the otherhand, for P 0 to be zero-knowledge f must be one-way. The obvious solution is to use a 
olle
tionof trapdoor permutations and let the prover know the trapdoor.The basi
 
onstru
tion is presented based on a 
olle
tion of trapdoor permutations that havesimple domains (i.e., the domain of ea
h permutation is the set of all strings of some �xed string).Furthermore, the 
olle
tion should have the property that its members 
an be eÆ
iently re
ognized(i.e., given a des
ription of a fun
tion one 
an eÆ
iently de
ide whether it is in the 
olle
tion).3.1 The basi
 
onstru
tionUsing su
h a 
olle
tion of trapdoor permutations, P 0 starts by sele
ting a permutation f over f0; 1gnsu
h that it knows its trapdoor, and pro
eeds as in Constru
tion 4, ex
ept that it also appendsthe des
ription of f to the `proof'. Indeed, the knowledge of the trapdoor allows P 0 to invert f onany element in f 's domain. The veri�er a
ts as in Constru
tion 4 with respe
t to the fun
tion fspe
i�ed in the proof. In addition the veri�er also 
he
ks that f is indeed in the 
olle
tion.Both the 
ompleteness and the zero-knowledge 
onditions follow exa
tly as in the proof ofProposition 5. For the soundness 
ondition we need to 
onsider all possible members of the 
olle
tion(w.l.o.g., there are at most 2n su
h permutations). For ea
h su
h permutation, the argument is asbefore, and our soundness 
laim thus follows by a 
ounting argument (as applied in [G1, Se
. 4.10.3℄).A
tually, we also need to repeat the (P; V ) system for O(n) times, so to �rst redu
e the soundnesserror to 13 � 2�n.The foregoing text is reprodu
ed from [G1, Rem. 4.10.6℄ and is indeed valid. The only problemis that it refers to a restri
ted notion of a 
olle
tion of trapdoor permutations. Spe
i�
ally, when
ompared with the general de�nition of su
h 
olle
tions (as provided in [G1, Def. 2.4.5℄), theforegoing des
ription 
orresponds to the spe
ial 
ase in whi
h for every index � the domain of thepermutation f� (i.e., the permutation des
ribed by �) equals f0; 1gj�j. In 
ontrast, in general, thedomain of f� may be an arbitrary subset of f0; 1gj�j (as long as this subset is easy to sample from).The fo
us of this note is on trying to extend the foregoing 
onstru
tion by using more general formsof trapdoor permutations.3.2 Extending the basi
 
onstru
tionWe start by re
alling the de�nition of a 
olle
tion of trapdoor permutations, and 
onsidering a
ouple of enhan
ements.3.2.1 Enhan
ed 
olle
tions of trapdoor permutationsRe
all that a 
olle
tion of trapdoor permutations, as de�ned in [G1, Def. 2.4.5℄, is a 
olle
tion of�nite permutations, denoted ff� : D� ! D�g, a

ompanied by four probabilisti
 polynomial-time algorithms, denoted I; S; F and B (for index, sample, forward and ba
kward), su
h that thefollowing (synta
ti
) 
onditions hold:1. On input 1n, algorithm I sele
ts a random n-bit long index � of a permutation f�, along witha 
orresponding trapdoor � ; 6



2. On input �, algorithm S samples the domain of f�, returning an almost uniformly distributedelement in it;3. For x in the domain of f�, given � and x, algorithm F returns f�(x) (i.e., F (�; x) = f�(x));4. For y in the range of f� if (�; �) is a possible output of I(1n) then, given � and y, algorithmB returns f�1� (y) (i.e., B(�; y) = f�1� (y)).The hardness 
ondition in [G1, Def. 2.4.5℄ refers to the diÆ
ulty of inverting f� on a uniformlydistributed element of its range, when given only the range-element and �. That is, letting I1(1n)denote the �rst element in the output of I(1n) (i.e., the index), it is required that for every prob-abilisti
 polynomial-time algorithm A (resp., every non-uniform family of polynomial-size 
ir
uitA = fAngn), every positive polynomial p and all suÆ
iently large n's it holds thatPr[A(I1(1n); fI1(1n)(S(I1(1n))) = S(I1(1n))℄ < 1p(n) : (1)Namely, A (resp., An) fails to invert f� on f�(x), where � and x are sele
ted by I and S as above.An equivalent way of writing Eq. (1) isPr[A(I1(1n); S0(I1(1n); Rn)) = f�1I1(1n)(S0(I1(1n); Rn))℄ < 1p(n) : (2)where S0 is the residual two-input (deterministi
) algorithm obtained from S when treating the
oins of the latter as an auxiliary input, and Rn denote the distribution of the 
oins of S on n-bitlong inputs. That is, A fails to invert f� on x, where � and x are sele
ted as above.Enhan
ed trapdoor permutations. Although the above de�nition suÆ
es for many appli
a-tions, in some 
ases we will need an enhan
ed hardness 
ondition. Spe
i�
ally, we will require thatit is hard to invert f� on a random input x (in the domain of f�) even when given the 
oins usedby S in the generation of x. (Note that given these 
oins (and the index �), the resulting domainelement x is easily determined.)De�nition 6 (enhan
ed trapdoor permutations): Let ff� : D� ! D�g be a 
olle
tion of trapdoorpermutations as in [G1, Def. 2.4.5℄. We say that this 
olle
tion is enhan
ed (and 
all it an enhan
ed
olle
tion of trapdoor permutations) if for every probabilisti
 polynomial-time algorithm A everypositive polynomial p and all suÆ
iently large n'sPr[A(I1(1n); Rn) = f�1I1(1n)(S0(I1(1n)); Rn))℄ < 1p(n) (3)where S0 is as above. The non-uniform version is de�ned analogously.Note that the spe
ial 
ase of [G1, Def. 2.4.5℄ in whi
h the domain of f� equals f0; 1gj�j satis�esDe�nition 6 (be
ause, without loss of generality, the sampling algorithm may satisfy S0(�; r) = r).This implies that modi�ed versions of the RSA and Rabin 
olle
tions satisfy De�nition 6. Morenatural versions of both 
olle
tions 
an also be shown to satisfy De�nition 6. For further dis
ussionsee the Appendix.
7



Doubly-enhan
ed trapdoor permutations. Although 
olle
tion of enhan
ed trapdoor per-mutations suÆ
e for the 
onstru
tion of Oblivious Transfer (see [G2, Se
. 7.3.2℄), it seems thatthey do not suÆ
e for our 
urrent purpose of providing an eÆ
ient implementation of the prover ofConstru
tion 4.1 Thus, we further enhan
e De�nition 6 so to provide for su
h an implementation.Spe
i�
ally, we will require that, given �, it is feasible to generate a random pair (x; r) su
h that ris uniformly distributed in f0; 1gpoly(j�j) and x is a preimage of S0(�; r) under f�; that is, we shouldgenerate a random x 2 D� along with 
oins that �t the generation of f�(x) (rather than 
oins that�t the generation of x).De�nition 7 (doubly-enhan
ed trapdoor permutations): Let ff� : D� ! D�g be an enhan
ed
olle
tion of trapdoor permutations (as in Def. 6). We say that this 
olle
tion is doubly-enhan
ed(and 
all it a doubly-enhan
ed 
olle
tion of trapdoor permutations) if there exists a probabilisti
polynomial-time algorithm that on input � outputs a pair (x; r) su
h that r is distributed identi
allyto Rj�j and f�(x) = S0(�; r).We note that De�nition 7 is satis�ed by any 
olle
tion of trapdoor permutations that has a reverseddomain-sampler (i.e., a probabilisti
 polynomial-time algorithm that on input (�; y) outputs a stringthat is uniformly distributed in fr : S0(�; r) = yg).A useful relaxation of De�nition 7 allows r to be distributed almost-identi
ally (rather thanidenti
ally) to Rj�j, where by almost-identi
al distributions we mean that the 
orresponding vari-ation distan
e is negligible (i.e., the distributions are statisti
ally 
lose). Needless to say, in this
ase the de�nition of a reversed domain-sampler should be relaxed a

ordingly.We stress that adequate implementations of the popular 
andidate 
olle
tions of trapdoor per-mutations (e.g., the RSA and Rabin 
olle
tions) do satisfy the foregoing doubly-enhan
ed 
ondition.In fa
t, any 
olle
tion of trapdoor permutations that has dense and easily re
ognizable domain sat-is�es this 
ondition. For further details see the Appendix.3.2.2 A
tually implementing the proverRe
all that the basi
 
onstru
tion presented in Se
tion 3.1 relies on two extra properties of the
olle
tion of trapdoor permutations.1. It was assumed that the set of possible des
riptions of the possible permutations, denoted I,is easily re
ognizable (i.e., the support of I(1n) is re
ognizable in poly(n)-time).2. It was assumed that the domain of every permutation f� equals f0; 1gj�j.The �rst assumption was waived by Bellare and Yung [BY℄, and we brie
y sket
h their underlyingidea �rst. This relaxation is 
ru
ial sin
e no 
andidate 
olle
tion of trapdoor permutations thatsatis�es this assumption is known (i.e., for all popular 
andidates, the 
orresponding index set I isnot known to be eÆ
iently re
ognizable).The problem that arises is that the prover may sele
t (and send) a fun
tion that is not in the
olle
tion (i.e., an index � that is not in I). In su
h a 
ase, the fun
tion is not ne
essarily 1-1, and,
onsequently, the soundness property may be violated. This 
on
ern 
an be addressed by usinga (simple) non-intera
tive (zero-knowledge) proof for 
onvin
ing the veri�er that the fun
tion is\typi
ally 1-1" (or, equivalently, is \almost onto the designated range"). The proof pro
eeds by1We note that the enhan
ement of De�nition 6 was intended to suÆ
e for both purposes. Furthermore, in [G2,Apdx. C.4℄ it was 
laimed that enhan
ed trapdoor permutations do suÆ
e for providing an eÆ
ient implementationof the prover of Constru
tion 4. Needless to say, we retra
t this 
laim here.8



presenting preimages (under the fun
tion) of random elements that are spe
i�ed in the referen
estring. Note that, for any �xed polynomial p, we 
an only prove that the fun
tion is 1-1 on atleast a 1 � (1=p(n)) fra
tion of the designated range (i.e., f0; 1gn), yet this suÆ
es for moderatesoundness of the entire proof system (whi
h in turn 
an be ampli�ed by repetitions). For furtherdetails, 
onsult [BY℄.Note that this solution extends to the 
ase that the 
olle
tion of permutations ff� : D� !D�g�2I does not satisfy D� = f0; 1gj�j, but is rather an arbitrary 
olle
tion of doubly-enhan
edtrapdoor permutations. In this 
ase the referen
e string will 
ontain a sequen
e of 
oin-sequen
esto be used by the domain-sampling algorithm (rather than 
onsisting of elements of the fun
tion'sdomain). By virtue of the extra 
ondition in De�nition 7, we 
an simulate the inverting of ea
hdomain element by generating a pair (x; r), pla
ing r on the referen
e string, and providing x asthe inverse of S0(�; r) under f�. (See an analogous dis
ussion in next paragraph.)We now turn to the se
ond aforementioned assumption; that is, the assumption that the domainof f� equals f0; 1gj�j (i.e., D� = f0; 1gj�j). We would have liked to waive this assumption 
ompletely,but are only able to do so in the 
ase that the 
olle
tion of trapdoor permutations is doubly-enhan
ed.The basi
 idea is letting the referen
e string 
onsist of 
oin-sequen
es to be used by the domain-sampling algorithm (rather than of elements of the fun
tion's domain). The 
orresponding domainelements, whi
h depend on the 
hoi
e of the index �, are then obtained by applying the domain-sampling algorithm to these 
oin-sequen
es. The enhan
ed hardness property (stated in Def. 6)is used in order to note that the 
orresponding preimages under f� is not revealed by these 
oin-sequen
es, whereas the additional enhan
ement (stated in Def. 7) is used for arguing that revealingsu
h preimages does not reveal additional knowledge. That is, the two additional properties (statedin Def. 6 and Def. 7) are used in the simulation and not in the proof system itself. For sake ofsimpli
ity, in the following exposition, we again use the (problemati
) assumption by whi
h I iseÆ
iently re
ognizable.Constru
tion 8 (Constru
tion 4, revised): Let (P; V ) be a zero-knowledge hidden-bits proof sys-tem for L with exponentially vanishing soundness error (i.e., soundness error at most 2�n�2), andlet m = poly(n) denote the length of the 
ommon referen
e-string for 
ommon inputs of lengthn. Suppose that ff� : D� ! D�g�2I is a doubly-enhan
ed 
olle
tion of trapdoor permutations,where I is eÆ
iently re
ognizable, and b : f0; 1g� ! f0; 1g is a 
orresponding hard-
ore predi
ate(i.e., b(f�1� (S(�;U`))) is infeasible to predi
t when given (�;U`)).2 Following is a spe
i�
ation ofa non-intera
tive system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Prover's auxiliary input: w.� Common Referen
e-String: s = (s1; :::; sm), where ea
h si is in f0; 1g` and ` is the numberof 
oins used by the domain-sampler when given an n-bit long index of a permutation.� Prover (denoted P 0):1. Sele
t at random an n-bit long index � and a 
orresponding trapdoor � ; i.e., (�; �)  I(1n).2. Using the trapdoor � , 
ompute ri = b(f�1� (S0(�; si))), for i = 1; 2; :::;m.2Su
h a hard-
ore predi
ate is obtained by applying the te
hniques of [GL℄ (see [G1, Se
. 2.5.2℄ or better [G3,Se
. 7.1.3℄) to any (doubly-)enhan
ed 
olle
tion of trapdoor permutations.9



3. Invokes P to obtain (I; �) = P (x;w; r1 � � � rm).P 0 outputs (�; I; �; pI ), where pI def= (f�1� (S0(�; si1)) � � � f�1� (S0(�; sit))) for I = (i1; :::; it).� Veri�er (denoted V 0) given prover's output (�; I; �; (p1 � � � pt)):1. Che
k if � 2 I, otherwise halts and reje
ts.2. Che
k that S0(�; sij ) = f�(pj), for ea
h ij 2 I.In 
ase a mismat
h is found, V 0 halts and reje
ts.3. Compute ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.4. Invoke V on (x; r; I; �), and a

epts if and only if V a

epts.Clearly, the foregoing strategy P 0 is eÆ
ient, provided that so is P .Proposition 9 (Proposition 5, revised) Let (P; V ), L, f , b and (P 0; V 0) be as in Constru
tion 8.Then, (P 0; V 0) is a zero-knowledge non-intera
tive proof system for L.Proof: Following the proof of Proposition 5, we note that for any �xed 
hoi
e � 2 I \ f0; 1gnthe soundness error is at most 2�n�2. Taking a union bound over all possible � 2 I \ f0; 1gn anddis
arding all � 62 I (by virtue of the expli
it 
he
k), we establish that (P 0; V 0) is a non-intera
tiveproof system for L.To show that P 0 is zero-knowledge we 
onvert any (eÆ
ient) simulator for P into an (eÆ
ient)simulator for P 0. First, the new simulator sele
ts at random an index � (of a permutation) just as P 0does. We stress that although P 0 obtains the 
orresponding trapdoor (just as P 0 does), we will notuse this fa
t in the simulation. Next, we pro
eed as in the proof of Proposition 5, modulo adequateadaptations that address the 
ru
ial di�eren
e between Constru
tion 4 and Constru
tion 8. Re
allthat the di�eren
e is that in Constru
tion 4 the referen
e string is viewed as a sequen
e of images ofthe permutation, whereas in Constru
tion 8 the referen
e string is viewed as a sequen
e of `-bit longrandom-sequen
es that may be used to generate su
h images. Following is a rigorous des
riptionof the 
urrent P 0-simulator, when invoked on input x 2 f0; 1gn and using the P -simulator, denotedM .1. Obtain (�; �) I(1n).2. Obtain ((�1; :::; �t); (i1; :::; it); �) M(x).3. For every j = 1; ::; t, generate a random pair (pj ; sij ) 2 D� � f0; 1g` su
h that f�(pj) =S0(�; sij ) and b(pj) = �j.Note that this operation 
an be eÆ
iently implemented by either relying on the additionalenhan
ement introdu
ed in Def. 7 or by merely relying on the fa
t that the simulator knowsthe trapdoor � and 
an thus invert f�. (The \for
ed" use of the additional enhan
ement ofDef. 7 arises in the proof of indistinguishabilitry provided below.)4. For every i 2 [m℄ n fij : j = 1; ::; tg, sele
t si uniformly in f0; 1g`.5. Output (x; (s1; :::; sm); (�; (i1; :::; it); �; (p1; :::; pt))).
10



Using the hypothesis that b is a hard-
ore of the 
olle
tion ff�g and the doubly-enhan
ed hardnessof this 
olle
tion, it follows that the output of the P 0-simulator is 
omputationally indistinguishablefrom the veri�er's view (when re
eiving a proof from P 0). Again, the only di�eren
e between thesimulation and the real view is that in the former the values on the a
tual referen
e strings do notne
essarily mat
h the values of the 
orresponding hidden bits seen by P . However, this di�eren
eis 
omputationally indistinguishable by the hypothesis that b(f�1� (S(�;U`))) is infeasible to predi
twhen given (�;U`). Spe
i�
ally, we need to show that, for H def= [m℄nfij : j = 1; ::; tg, it is infeasibleto distinguish a sequen
e of jHj uniformly sele
ted n-bit strings (representing the sequen
e (si)i2Hprodu
ed in the simulation) from a 
orresponding sequen
e of si's that �ts a (partially) givensequen
e of b(f�1� (S(�; si))) values (as in the real intera
tion). At this point, we en
ounter adiÆ
ulty that seems to require the doubly-enhan
ed hypothesis.The point is that the indistinguishability of the two sequen
es is demonstrated by showing that,given a pre�x of the se
ond sequen
e, it is infeasible to predi
t the b(f�1� (S(�; �)))-value of the nextelement. That is, we wish to show that, for every i, given a randomly sele
ted � and a uniformlysele
ted sequen
e s1; :::; si�1; si along with the values b(f�1� (S(�; s1))); :::; b(f�1� (S(�; si�1))), it isinfeasible to predi
t the value of b(f�1� (S(�; si))). Re
all that the standard approa
h toward thistask is to use a redu
ibility argument in order to derive a 
ontradi
tion to the hard-
ore hypothesis(whi
h refers to a single s = si for whi
h b(f�1� (S(�; s))) is unpredi
table), by generating theauxiliary pre�x s1; :::; si�1 along with b(f�1� (S(�; s1))); :::; b(f�1� (S(�; si�1))). Thus, given only� (and s = si), we need to be able to generate a random sequen
e s1; :::; si�1 along with the
orresponding b(f�1� (S(�; sj)))'s. But this is easy to do given the doubly-enhan
ed hypothesis.Open Problem: Under what intra
tability assumptions is it possible to 
onstru
t non-intera
tivezero-knowledge proofs (NIZKs) with eÆ
ient prover strategies for any set in NP? In parti
ular,does the existen
e of arbitrary 
olle
tions of trapdoor permutations suÆ
e? We mention that theassumption used in 
onstru
ting su
h NIZKs e�e
ts the assumption used in (general) 
onstru
tionsof publi
-key en
ryption s
hemes that are se
ure under 
hosen 
iphertext atta
ks (see, e.g., [G2,Thm. 5.4.31℄).A
knowledgmentsWe are grateful to Jonathan Katz for pointing out the gap in [G2, Apdx. C.4.1℄. While beingembarrassed about su
h 
aws, we feel deeply indebted to those dis
overing them and bringingthem to our attention.We thank Ron Rothblum for pointing out that a previous version of this write-up failed todeliver the 
ru
ial point, whi
h is 
urrently spelled out at the end of the proof of Proposition 9.Appendix: On the RSA and Rabin Colle
tionsIn this appendix we show that adequate versions of the RSA and Rabin 
olle
tions satisfy thetwo aforementioned enhan
ements (presented in De�nitions 6 and 7, respe
tively). Establishingthis 
laim is quite straightforward for the RSA 
olle
tion, whereas for the Rabin 
olle
tion somemodi�
ations (of the straightforward version) seem ne
essary. In order to establish this 
laim wewill 
onsider a variant of the Rabin 
olle
tion in whi
h the 
orresponding domains are dense andeasy to re
ognize, and will show that having su
h domains suÆ
es for establishing the 
laim.11



A.1 The RSA 
olle
tion satis�es both enhan
ementsWe start our treatment by 
onsidering the RSA 
olle
tion (as presented in [G1, Se
. 2.4.3.1℄ andfurther dis
ussed in [G1, Se
. 2.4.3.2℄). Note that in order to dis
uss the enhan
ed hardness 
on-dition (of Def. 6) it is ne
essary to spe
ify the domain sampler, whi
h is not entirely trivial (sin
esampling Z�N (or even ZN ) by using a sequen
e of unbiased 
oins is not that trivial).A natural sampler for Z�N (or ZN ) generates random elements in the domain by using a regularmapping from a set of suÆ
iently long strings to Z�N (or to ZN ). Spe
i�
ally, the sampler uses` def= 2blog2N
 random bits, views them as an integer in i 2 f0; 1; :::; 2` � 1g, and outputs i mod N .This yields an almost uniform sample in ZN , and an almost uniform sample in Z�N 
an be obtainedby dis
arding the few elements in ZN n Z�N .The fa
t that the foregoing implementation of the RSA 
olle
tion satis�es De�nition 6 (as wellas De�nition 7) follows from the fa
t that it has an eÆ
ient reversed-sample (whi
h eliminates thepotential gap between having a domain element and having a random sequen
e of 
oins that makesthe domain-sample output this element). Spe
i�
ally, given an element e 2 ZN , the reversed-sampler outputs an almost uniformly distributed element of fi2f0; 1; :::; 2` � 1g : i � e (mod N)gby sele
ting uniformly j 2 f0; 1; :::; b2`=N
 � 1g and outputting i j �N + e.A.2 Versions of the Rabin 
olle
tion that satisfy both enhan
ementsIn 
ontrast to the 
ase of the RSA, the Rabin Colle
tion (as de�ned in [G1, Se
. 2.4.3.3℄), does notsatisfy De�nition 6 (be
ause the 
oins of the sampling algorithm give away a modular square root ofthe domain element). Still, the Rabin Colle
tion 
an be easily modify to yield an doubly-enhan
ed
olle
tion of trapdoor permutations, provided that fa
toring is hard (in the same sense as assumedin [G1, Se
. 2.4.3℄).The modi�
ation is based on modifying the domain of these permutations (following [ACGS℄).Spe
i�
ally, rather than 
onsidering the permutation indu
ed (by the modular squaring fun
tion)on the set QN of the quadrati
 residues modulo N , we 
onsider the permutations indu
ed onthe set MN , where MN 
ontains all integers in f1; :::; N=2g that have Ja
obi symbol modulo Nthat equals 1. Note that, as in 
ase of QN , ea
h quadrati
 residue has a unique square root in MN(be
ause exa
tly two square roots have Ja
obi symbol that equals 1 and their sum equals N ; indeed,as in 
ase of QN , we use the fa
t that �1 has Ja
obi symbol 1). However, unlike QN , membershipin MN 
an be determined in polynomial-time (when given N without its fa
torization). A
tually,squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain a permutation over MN ,we modify the fun
tion a little su
h that if the result of modular squaring is bigger than N=2 thenwe use its additive inverse (i.e., rather than outputting y > N=2, we output N � y).Using the fa
t that MN is dense (w.r.t f0; 1gblog2N
+1) and easy to re
ognize, we may pro
eedin one of two ways, whi
h are a
tually generi
. Thus, let us assume that we are given an arbitrary
olle
tion of trapdoor permutations, denoted ff� : D� ! D�g�2I , su
h that D� � f0; 1gj�j isdense (i.e., jD�j > 2j�j=poly(j�j))3 and easy to re
ognize (i.e., there exists an eÆ
ient algorithmthat given (�; x) de
ides whether or not x 2 D�).1. The natural way to pro
eed is showing that the 
olle
tion ff�g itself is doubly-enhan
ed. Thisis shown by presenting a rather straightforward domain-sampler that satis�es the enhan
edhardness 
ondition (of Def. 6), and noting that this sampler has an eÆ
ient reversed sampler(whi
h implies that Def. 7 is satis�ed).3A
tually, a more general 
ase, whi
h is used for the Rabin 
olle
tion, is one in whi
h D� � f0; 1g`(j�j) satis�esjD�j > 2`(j�j)=poly(j�j), where ` : N! N is a �xed fun
tion.12



The domain-sampler that we have in mind repeatedly sele
ts random (i.e., uniformly dis-tributed) j�j-bit long strings and output the �rst su
h string that resides in D� (and a spe
ialfailure symbols if j�j � 2j�j=jD�j attempts have failed). This sampler has an eÆ
ient reversed-sampler that, given x 2 D�, generates a random sequen
e of j�j-bit long strings and repla
esthe �rst string that resides in D� by x.2. An alternative way of obtaining a doubly-enhan
ed 
olle
tion is to �rst de�ne a (ratherarti�
ial) 
olle
tion of weak trapdoor permutations, ff 0� : f0; 1gj�j ! f0; 1gj�jg�2I , su
h thatf 0�(x) = f�(x) if x 2 D� and f 0�(x) = x otherwise. Using the ampli�
ation of a weak one-wayproperty to a standard one-way property (as in [G1, Se
. 2.3&2.6℄), we are done.(Indeed, in the �rst alternative we ampli�ed the trivial domain-sampler that su

eeds with noti
e-able probability, whereas in the se
ond alternative we ampli�ed the one-way property of the trivialextension of f� to the domain f0; 1gj�j.) Either way we obtain a doubly-enhan
ed 
olle
tion oftrapdoor permutations, provided that ff�g is an ordinary 
olle
tion of trapdoor permutations.We mention that the foregoing modi�
ations of the Rabin 
olle
tion follows the outline of these
ond modi�
ation that is presented in [G2, Apdx. C.1℄. In 
ontrast, as pointed out by JonathanKatz, the �rst implementation (of an enhan
ed trapdoor permutation based on fa
toring) that ispresented in [G2, Apdx. C.1℄ is not doubly-enhan
ed.Referen
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