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Chapter 2Computational Di�cultyIn this chapter we present several variants of the de�nition of one-way functions. In par-ticular, we de�ne strong and weak one-way functions. We prove that the existence of weakone-way functions imply the existence of strong ones. The proof provides a simple exampleof a case where a computational statement is much harder to prove than its \informationtheoretic analogue". Next, we de�ne hard-core predicates, and prove that every one-wayfunction \has" a hard-core predicate.Organizaton: In Section 2.1 we motivate the de�nition of one-way functions by arguingimformally that it is implict in various natural cryptographic primitives. The basic de�-nitions are given in Section 2.2 and in Section 2.3 we show that weak one-way functionscan be used to construct strong ones. A more e�cient construction, for certain cases, ispostponed to Section 2.6. In Section 2.5 we de�ne hard-core predicates and show how toconstruct them from one-way functions.2.1 One-Way Functions: MotivationAs stated in the introduction chapter, modern cryptography is based on a gap betweene�cient algorithms guaranteed for the legitimate user versus the computational infeasibilityof retrieving protected information for an adversary. To illustrate this, we concentrate onthe cryptographic task of secure data communication, namely encryption schemes.In secure encryption schemes, the legitimate user should be able to easily decipher themessages using some private information available to him, yet an adversary (not having thisprivate information) should not be able to decrypt the ciphertext e�ciently (i.e., in prob-abilistic polynomial-time). On the other hand, a non-deterministic machine can quicklydecrypt the ciphertext (e.g., by guessing the private information). Hence, the existence ofsecure encryption schemes implies that there are tasks (e.g., \breaking" encryption schemes)that can be performed by non-deterministic polynomial-time machines, yet cannot be per-formed by deterministic (or even randomized) polynomial-time machines. In other words,27
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28 CHAPTER 2. COMPUTATIONAL DIFFICULTYa necessary condition for the existence of secure encryption schemes is that NP is notcontained in BPP (and thus P 6= NP).Although P 6= NP is a necessary condition it is not a su�cient one. P 6= NP impliesthat the encryption scheme is hard to break in the worst case. It does not rule-out thepossibility that the encryption scheme is easy to break almost always. Indeed, one canconstruct \encryption schemes" for which the breaking problem is NP-complete, and yetthere exist an e�cient breaking algorithm that succeeds 99% of the time. Hence, worst-case hardness is a poor measure of security. Security requires hardness on most cases or atleast \average-case hardness". A necessary condition for the existence of secure encryptionschemes is thus the existence of languages in NP which are hard on the average. It is notknown whether P 6= NP implies the existence of languages in NP which are hard on theaverage.The mere existence of problems (in NP) which are hard on the average does not su�ceeither. In order to be able to use such hard-on-the-average problems we must be able togenerate hard instances together with auxiliary information which enable to solve theseinstances fast. Otherwise, these hard instances will be hard also for the legitimate users,and consequently the legitimate users gain no computational advantage over the adversary.Hence, the existence of secure encryption schemes implies the existence of an e�cient way(i.e. probabilistic polynomial-time algorithm) of generating instances with correspondingauxiliary input so that1. it is easy to solve these instances given the auxiliary input; and2. it is hard on the average to solve these instances (when not given the auxiliary input).The above requirement is captured by the de�nition of one-way functions presented inthe next subsection. For further details see Exercise 1.2.2 One-Way Functions: De�nitionsIn this section, we present several de�nitions of one-way functions. The �rst version, here-after referred to as strong one-way function (or just one-way function), is the most popularone. We also present weak one-way functions, non-uniformly one-way functions, and plau-sible candidates for such functions.2.2.1 Strong One-Way FunctionsLoosely speaking, a one-way function is a function which is easy to compute but hard toinvert. The �rst condition is quite clear: saying that a function f is easy to compute meansthat there exists a polynomial-time algorithm that on input x outputs f(x). The secondcondition requires more elaboration. Saying that a function f is hard to invert meansthat every probabilistic polynomial-time algorithm trying, on input y to �nd an inverse ofy under f , may succeed only with negligible (in jyj) probability. A sequence fsngn2N is
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS 29called negligible in n if for every polynomial p(�) and all su�ciently large n's it holds thatsn < 1p(n) . Further discussion proceeds the de�nition.De�nition 2.2.1 (strong one-way functions): A function f : f0; 1g� 7! f0; 1g� is called(strongly) one-way if the following two conditions hold1. easy to compute: There exists a (deterministic) polynomial-time algorithm, A, so thaton input x algorithm A outputs f(x) (i.e., A(x) = f(x)).2. hard to invert: For every probabilistic polynomial-time algorithm, A0, every polynomialp(�), and all su�ciently large n'sPr �A0(f(Un); 1n)2f�1f(Un)� < 1p(n)Recall that Un denotes a random variable uniformly distributed over f0; 1gn. Hence, theprobability in the second condition is taken over all the possible values assigned to Un andall possible internal coin tosses of A0, with uniform probability distribution. In additionto an input in the range of f , the inverting algorithm is also given the desired length ofthe output (in unary notation). The main reason for this convention is to rule out thepossibility that a function is consider one-way merely because the inverting algorithm doesnot have enough time to print the output. Consider for example the function flen de�ned byflen(x) = y where y is the binary representation of the length of x (i.e., flen(x) = jxj). Sincejflen(x)j = log2 jxj no algorithm can invert flen(x) in time polynomial in jflen(x)j, yet thereexists an obvious algorithm which inverts flen(x) in time polynomial in jxj. In general,the auxiliary input 1jxj, provided in conjunction to the input f(x), allows the invertingalgorithm to run in time polynomial in the total length of the input and the desired output.Note that in the special case of length preserving functions f (i.e., jf(x)j = jxj for all x's),the auxiliary input is redundant.Hardness to invert is interpreted as an upper bound on the success probability of e�cientinverting algorithms. The probability is measured with respect to both the random choicesof the inverting algorithm and the distribution of the (main) input to this algorithm (i.e.,f(x)). The input distribution to the inverting algorithm is obtained by applying f to auniformly selected x 2 f0; 1gn. If f induces a permutation on f0; 1gn then the input tothe inverting algorithm is uniformly distributed over f0; 1gn. However, in the general casewhere f is not necessarily a one-to-one function, the input distribution to the invertingalgorithm may di�er substantially from the uniform one. In any case, it is required that thesuccess probability, de�ned over the above probability space, is negligible (as a function ofthe length of x), where negligible means being bounded above by all functions of the form1poly(n) . To further clarify the condition made on the success probability, we consider thefollowing examples.
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30 CHAPTER 2. COMPUTATIONAL DIFFICULTYConsider, an algorithm A1 that on input (y; 1n) randomly selects and outputs a stringof length n. In case f is a 1-1 function, we havePr �A1(f(Un); 1n)2f�1f(Un)� = 12nsince for every x the probability that A1(f(x)) equals x is exactly 2�n. Hence, the successprobability of A1 on any 1-1 function A1 is negligible. On the other hand, for every functionf , the success probability of A1 on input f(Un) is never zero (speci�cally it is at least 2�n).In case f is constant over strings of the same length (e.g., f(x) = 0jxj), we havePr �A1(f(Un); 1n)2f�1f(Un)� = 1since every x 2 f0; 1gn is a preimage of 0n under f . It follows that a one-way functioncannot be constant on strings of the same length. Another trivial algorithm, denoted A2,is one that computes a function which is constant on all inputs of the same length (e.g.,A2(y; 1n) = 1n). For every function f we havePr �A2(f(Un); 1n)2f�1f(Un)� � 12n(with equality in case f(1n) has a single preimage under f). Hence, the success probabilityof A2 on any 1-1 function is negligible. On the other hand, if Pr(f(Un) = f(1n)) is non-negligible then so is the success probability of algorithm A2.A few words, concerning the notion of negligible probability, are in place. The abovede�nition and discussion considers the success probability of an algorithm to be negligibleif, as a function of the input length, the success probability is bounded above by everypolynomial fraction. It follows that repeating the algorithm polynomially (in the inputlength) many times yields a new algorithm that also has a negligible success probability. Inother words, events which occur with negligible (in n) probability remain negligible even ifthe experiment is repeated for polynomially (in n) many times. Hence, de�ning negligiblesuccess as \occurring with probability smaller than any polynomial fraction" is naturallycoupled with de�ning feasible as \computed within polynomial time".A \strong negation" of the notion of a negligible fraction/probability is the notion of anon-negligible fraction/probability. We say that a function � is non-negligible if there existsa polynomial p(�) such that for all su�ciently large n's it holds that �(n) > 1p(n) . Note thatfunctions may be neither negligible nor non-negligible.2.2.2 Weak One-Way FunctionsOne-way functions as de�ned above, are one-way in a very strong sense. Namely, anye�cient inverting algorithm has negligible success in inverting them. A much weaker de�-nition, presented below, only requires that all e�cient inverting algorithm fails with somenon-negligible probability.
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS 31De�nition 2.2.2 (weak one-way functions): A function f :f0; 1g� 7!f0; 1g� is called weaklyone-way if the following two conditions hold1. easy to compute: as in the de�nition of strong one-way function.2. slightly-hard to invert: There exists a polynomial p(�) such that for every probabilisticpolynomial-time algorithm, A0, and all su�ciently large n'sPr �A0(f(Un); 1n) 62f�1f(Un)� > 1p(n)2.2.3 Two Useful Length ConventionsIn the sequel it will be convenient to use the following two conventions regarding the lengthof the of the preimages and images of a one-way function. In the current subsection wejustify the used of these conventions.2.2.3.1 One-way functions de�ned only for some lengthsIn many cases it is more convenient to consider one-way functions with domain partial tothe set of all strings. In particular, this facilitates the introduction of some structure inthe domain of the function. A particularly important case, used throughout the rest of thissection, is that of functions with domain [n2N f0; 1gp(n), where p(�) is some polynomial. LetI � N, and denote by sI(n) the successor of n with respect to I ; namely, sI(n) is the smallestinteger that is both greater than n and in the set I (i.e., sI(n) def= minfi2I : i>ng). A setI � N is called polynomial-time enumerable if there exists an algorithm that on input n, haltswithin poly(n) steps and outputs 1sI (n). (The unary output forces sI(n) = poly(n).) Let Ibe a polynomial-time enumerable set and f be a function with domain [n2If0; 1gn. We callf strongly (resp. weakly) one-way on lengths in I if f is polynomial-time computable andis hard to invert over n's in I . Such one-way functions can be easily modi�ed into functionwith the set of all strings as domain, while preserving one-wayness and some other propertiesof the original function. In particular, for any function f with domain [n2If0; 1gn, we canconstruct a function g : f0; 1g� 7!f0; 1g� by lettingg(x) def= f(x0)where x0 is the longest pre�x of x with length in I . (In case the function f is lengthpreserving, see de�nition below, we can preserve this property by modifying the constructionso that g(x) def= f(x0)x00 where x = x0x00, and x0 is the longest pre�x of x with length in I .The following proposition remains valid also in this case, with a minor modi�cation in theproof.)Proposition 2.2.3 : Let I be a polynomial-time enumerable set, and f be strongly (resp.weakly) one-way on lengths in I. Then g (constructed above) is strongly (resp. weakly)one-way (in the ordinary sense).
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32 CHAPTER 2. COMPUTATIONAL DIFFICULTYAlthough the validity of the above proposition is very appealing, we urge the reader not toskip the following proof. The proof, which is indeed quite simple, uses for the �rst time inthis book an argument that is used extensively in the sequel. The argument used to prove the\hardness to invert" property of the function g proceeds by assuming, to the contradiction,that g can be e�ciently inverted with unallowable success probability. Contradiction isderived by deducing that f can be e�ciently inverted with unallowable success probability.In other words, inverting f is \reduced" to inverting g. The term \reduction" is used herein a non-standard sense, which preserves the success probability of the algorithms. Thiskind of an argument is called a reducibility argument.Proof: We �rst prove that g can be computed in polynomial-time. To this end we use thefact that I is a polynomial-time enumerable set. It follows that on input x one can �ndin polynomial-time the largest m � jxj that satis�es m 2 I . Computing g(x) amounts to�nding this m, and applying the function f to the m-bit pre�x of x.We next prove that g maintains the \hardness to invert" property of f . For sake ofconcreteness we present here only the proof for the case that f is strongly one-way. Theproof for the case that f is weakly one-way is analogous.The prove proceeds by contradiction. We assume, on contrary to the claim (of theproposition), that there exists an e�cient algorithm that inverts g with success probabil-ity that is not negligible. We use this inverting algorithm (for g) to construct an e�cientalgorithm that inverts f with success probability that is not negligible, hence deriving acontradiction (to the hypothesis of the proposition). In other words, we show that invertingf (with unallowable success probability) is e�ciently reducible to inverting g (with unallow-able success probability), and hence conclude that the latter is not feasible. The reductionis based on the observation that inverting g on images of arbitrary length yields invertingg also on images of length in I , and that on such lengths g collides with f . Details follow.Given an algorithm, B0, for inverting g we construct an algorithm, A0, for inverting fso that A0 has complexity and success probability related to that of B0. Algorithm A0 usesalgorithm B0 as a subroutine and proceeds as follows. On input y and 1n (supposedly y is inthe range of f(Un) and n 2 I) algorithm A0 �rst computes sI(n) and sets k def= sI(n)�n� 1.For every 0 � i � k, algorithm A0 initiates algorithm B0, on input (y; 1n+i), obtainingzi  B0(y; 1n+i), and checks if g(zi) = y. In case one of the zi's satis�es the above condition,algorithm A0 outputs the n-bit long pre�x of zi. This pre�x is in the preimage of y underf (since g(x0x00) = f(x0) for all x0 2 f0; 1gn and jx00j � k). Clearly, if B0 is a probabilisticpolynomial-time algorithm then so is A0. We now analyze the success probability of A0(showing that if B0 inverts g with unallowable success probability then A0 inverts f withunallowable success probability).Suppose now, on the contrary to our claim, that g is not strongly one-way, and letB0 be an algorithm demonstrating this contradiction hypothesis. Namely, there exists apolynomial p(�) so that for in�nitely many m's the probability that B0 inverts g on g(Um)is at least 1p(m) . Let us denote the set of these m's by M . De�ne a function `I :N 7! I so
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS 33that `I(m) is the largest lower bound of m in I (i.e., `I(m) def= maxfi2I : i�mg). Clearly,m � sI(`I(m))� 1 for every m. The following two claims relate the success probability ofalgorithm A0 with that of algorithm B0.Claim 2.2.3.1: Let m be an integer and n = `I(m). ThenPr �A0(f(Un); 1n)2f�1f(Un)� � Pr �B0(g(Um); 1m)2g�1g(Um)�(Namely, the success probability of algorithm A0 on f(U`I(m)) is bounded below by thesuccess probability of algorithm B0 on g(Um).)Proof: By construction of A0, on input (f(x0); 1n), where x02f0; 1gn, algorithm A0 obtainsthe value B0(f(x0); 1t), for every t � sI(n) � 1. In particular, since m � sI(`I(m))� 1 =sI(n) � 1, it follows that algorithm A0 obtains the value B0(f(x0); 1m). By de�nition of g,for all x002f0; 1gm�n, it holds that f(x0) = g(x0x00). The claim follows. 2Claim 2.2.3.2: There exists a polynomial q(�) such that m < q(`I(m)), for all m's.Hence, the set S def= f`I(m) :m2Mg is in�nite.Proof: Using the polynomial-time enumerability of I , we get sI(n) < poly(n), for every n.Therefore, for every m, we have m < sI(`I(m)) < poly(`I(m)). Furthermore, S must bein�nite, otherwise for n upper-bounding S we get m < q(n) for every m2M .2Using Claims 2.2.3.1 and 2.2.3.2, it follows that, for every n = `I(m) 2 S, the probabilitythat A0 inverts f on f(Un) is at least 1p(m) > 1p(q(n)) = 1poly(n) . It follows that f is not stronglyone-way, in contradiction to the proposition's hypothesis.2.2.3.2 Length-regular and length-preserving one-way functionsA second useful convention is to assume that the function, f , we consider is length regularin the sense that, for every x; y 2 f0; 1g�, if jxj = jyj then jf(x)j = jf(y)j. We pointout that the transformation presented above preserves length regularity. A special case oflength regularity, preserved by a the modi�ed transformation presented above, is of lengthpreserving functions.De�nition 2.2.4 (length preserving functions): A function f is length preserving if forevery x 2 f0; 1g� it holds that jf(x)j = jxj.Given a strongly (resp. weakly) one-way function f , we can construct a strongly (resp.weakly) one-way function h which is length preserving, as follows. Let p be a polynomialbounding the length expansion of f (i.e., jf(x)j � p(jxj)). Such a polynomial must existsince f is polynomial-time computable. We �rst construct a length regular function g byde�ning g(x) def= f(x)10p(jxj)�jf(x)j(We use a padding of the form 10� in order to facilitate the parsing of g(x) into f(x) andthe \leftover" padding.) Next, we de�ne h only on strings of length p(n) + 1, for n 2 N, by
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34 CHAPTER 2. COMPUTATIONAL DIFFICULTYletting h(x0x00) def= g(x0) , where jx0x00j = p(jx0j) + 1Clearly, h is length preserving.Proposition 2.2.5 : If f is a strongly (resp. weakly) one-way function then so are g andh (constructed above).Proof Sketch: It is quite easy to see that both g and h are polynomial-time computable.Using \reducibility arguments" analogous to the one used in the previous proof, we canestablish the hardness-to-invert of both g and h. For example, given an algorithm B0 forinverting g, we construct an algorithm A0 for inverting f as follows. On input y and 1n (sup-posedly y is in the range of f(Un)), algorithm A0 halts with output B0(y10p(n)�jyj; 1p(n)+1).The reader can easily verify that if f is length preserving then it is redundant to providethe inverting algorithm with the auxiliary input 1jxj (in addition to f(x)). The same holdsif f is length regular and does not shrink its input by more than a polynomial factor (i.e.,there exists a polynomial p(�) such that p(jf(x)j) � jxj for all x). In the sequel, we willonly deal with one-way functions that are length regular and does not shrink their its inputby more that a polynomial factor. Furthermore, we will mostly deal with length preservingfunctions. Hence, in these cases, we assume, without loss of generality, that the invertingalgorithm is only given f(x) as input.Functions which are length preserving are not necessarily 1-1. Furthermore, the assump-tion that 1-1 one-way functions exist seems stronger than the assumption that arbitrary (andhence length preserving) one-way functions exist. For further discussion see Section 2.4.2.2.4 Candidates for One-Way FunctionsFollowing are several candidates for one-way functions. Clearly, it is not known whetherthese functions are indeed one-way. This is only a conjecture supported by extensive researchwhich has so far failed to produce an e�cient inverting algorithm (having non-negligiblesuccess probability).2.2.4.1 Integer factorizationIn spite of the extensive research directed towards the construction of e�cient (integer)factoring algorithms, the best algorithms known for factoring an integer N , run in timeL(P ) def= 2O(plogP log logP ), where P is the second biggest prime factor of N . Hence it isreasonable to believe that the function fmult, which partitions its input string into two partsand returns the (binary representation of the) integer resulting by multiplying (the integersrepresented by) these parts, is one-way. Namely, letfmult(x; y) = x � y
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS 35where jxj= jyj and x � y denotes (the string representing) the integer resulting by multiply-ing the integers (represented by the strings) x and y. Clearly, fmult can be computed inpolynomial-time. Assuming the intractability of factoring and using the \density of primes"theorem (which guarantees that at least Nlog2 N of the integers smaller than N are primes)it follows that fmult is at least weakly one-way. Using a more sophisticated argument, onecan show that fmult is strongly one-way. Other popular functions (e.g. the RSA) related tointeger factorization are discussed in Subsection 2.4.3.2.2.4.2 Decoding of random linear codesOne of the most outstanding open problems in the area of error correcting codes is that ofpresenting e�cient decoding algorithms for random linear codes. Of particular interest arerandom linear codes with constant information rate which can correct a constant fractionof errors. An (n; k; d)-linear-code is a k-by-n binary matrix in which the vector sum (mod2) of any non-empty subset of rows results in a vector with at least d one-entries. (A k-bit long message is encoded by multiplying it with the k-by-n matrix, and the resultingn-bit long vector has a unique preimage even when 
ipping up to d2 of its entries.) TheGilbert-Varshanov Bound for linear codes guarantees the existence of such a code, providedthat kn < 1�H2( dn), where H2(p) def= �p log2 p� (1� p) log2(1� p) if p < 12 and H2(p) def= 1otherwise (i.e., H2(�) is a modi�cation of the binary entropy function). Similarly, if for some� > 0 it holds that kn < 1 � H2( (1+�)dn ) then almost all k-by-n binary matrices constitute(n; k; d)-linear-codes. Consider three constants �; �; � > 0 satisfying � < 1 �H2((1 + �)�).The function fcode, hereafter de�ned, seems a plausible candidate for a one-way function.fcode(C; x; i) def= (C; xC + e(i))where C is an �n-by-n binary matrix, x is a �n-dimensional binary vector, i is the index of ann-dimensional binary vector having at most �n2 one-entries (the string itself is denoted e(i)),and the arithmetic is in the n-dimensional binary vector space. Clearly, fcode is polynomial-time computable. An e�cient algorithm for inverting fcode would yield an e�cient algorithmfor inverting a non-negligible fraction of the linear codes (an earthshaking result in codingtheory).2.2.4.3 The subset sum problemConsider the function fss de�nes as follows.fss(x1; :::; xn; I) = (x1; :::; xn;Xi2I xi)where jx1j= � � �= jxnj=n, and I�f1; 2; :::; ng. Clearly, fss is polynomial-time computable.The fact that the subset-sum problem is NP-complete cannot serve as evidence to the one-wayness of fss. On the other hand, the fact that the subset-sum problem is easy for special
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36 CHAPTER 2. COMPUTATIONAL DIFFICULTYcases (such as having \hidden structure" and/or \low density") can not serve as evidencefor the weakness of this proposal. The conjecture that fss is one-way is based on the failureof known algorithm to handle random \high density" instances (i.e., instances in which thelength of the elements is not greater than their number). Yet, one has to admit that theevidence in favour of this candidate is much weaker than the evidence in favour of the twoprevious ones.2.2.5 Non-Uniformly One-Way FunctionsIn the above two de�nitions of one-way functions the inverting algorithm is probabilisticpolynomial-time. Stronger versions of both de�nitions require that the functions cannot beinverted even by non-uniform families of polynomial-size circuits. We stress that the \easyto compute" condition is still stated in terms of uniform algorithms. For example, followingis a non-uniform version of the de�nition of strong (length-preserving) one-way functions.De�nition 2.2.6 (non-uniformly strong one-way functions): A function f : f0; 1g� 7!f0; 1g� is called non-uniformly one-way if the following two conditions hold1. easy to compute: There exists a (deterministic) polynomial-time algorithm, A, so thaton input x algorithm A outputs f(x) (i.e., A(x) = f(x)).2. hard to invert: For every (even non-uniform) family of polynomial-size circuits,fCngn2N , every polynomial p(�), and all su�ciently large n'sPr �Cn(f(Un))2f�1f(Un)� < 1p(n)The probability in the second condition is taken only over all the possible values of Un.It can be shown that if f is non-uniformly one-way then it is one-way (i.e., in theuniform sense). The proof follows by converting any (uniform) probabilistic polynomial-timeinverting algorithm into a non-uniform family of polynomial-size circuits, without decreasingthe success probability. Details follow. Let A0 be a probabilistic polynomial-time (inverting)algorithm. Let rn denote a sequence of coin tosses for A0 maximizing the success probabilityof A0. Namely, rn satis�es Pr(A0rn(f(Un)2f�1f(Un)) � Pr(A(f(Un)2f�1f(Un)), where the�rst probability is taken only over all possible values of Un and the second probability isalso over all possible coin tosses for A0. (Recall that A0r(y) denotes the output of algorithmA0 on input y and internal coin tosses r.) The desired circuit Cn incorporates the code ofalgorithm A0 and the sequence rn (which is of length polynomial in n).It is possible that one-way functions exist (in the uniform sense) and yet there areno non-uniformly one-way functions. However, such a possibility is considered not veryplausible.
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2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES 372.3 Weak One-Way Functions Imply Strong OnesWe �rst remark that not every weak one-way function is necessarily a strong one. Considerfor example a one-way function f (which without loss of generality is length preserving).Modify f into a function g so that g(x; p) = (f(x); p) if p starts with log2 jxj zeros andg(x; p) = (x; p) otherwise, where (in both cases) jxj= jpj. We claim that g is a weak one-way function but not a strong one. Clearly, g can not be a strong one-way function (sincefor all but a 1n fraction of the strings of length 2n the function g coincides with the identityfunction). To prove that g is weakly one-way we use a \reducibility argument". Detailsfollow.Proposition 2.3.1 Let f be a one-way function (even in the weak sense). Then g, con-structed above, is a weakly one-way function.Proof: Intuitively, inverting g on inputs on which it does not e�ect the identity transforma-tion is related to inverting f . If g is inverted, on inputs of length 2n, with probabiliy whichis noticeablly greater than 1� 1n then it must be inverted on inputs as above with noticeableprobability. Thus, if g is not weakly one-way then so is f . The full, straightforward andtedious proof follows.Given a probabilistic polynomial-time algorithm, B0, for inverting g, we construct aprobabilistic polynomial-time algorithm A0 which inverts f with \related" success proba-bility. Following is the description of algorithm A0. On input y, algorithm A0 sets n def= jyjand l def= log2 n, selects p0 uniformly in f0; 1gn�l, computes z def= B0(y; 0lp0), and halts withoutput the n-bit pre�x of z. Let S2n denote the sets of all 2n-bit long strings which startwith log2 n zeros (i.e., s2n def= f0log2 n� : � 2 f0; 1g2n�log2 ng). Then, by construction of A0and g, we havePr �A0(f(Un))2f�1f(Un)� � Pr �B0(f(Un); 0lUn�l)2(f�1f(Un); 0lUn�l)�= Pr �B0(g(U2n))2g�1g(U2n) jU2n2S2n�� Pr (B0(g(U2n))2g�1g(U2n))� Pr (U2n 62S2n)Pr (U2n2S2n)= 1n � �Pr �B0(g(U2n))2g�1g(U2n)�� �1� 1n��= 1� n � �1� Pr �B0(g(U2n))2g�1g(U2n)��(For the second inequality, we used Pr(AjB) = Pr(A\B)Pr(B) and Pr(A \ B) � Pr(A) � Pr(B).)It should not come as a surprise that the above expression is meaningful only in casePr(B0(g(U2n))2g�1g(U2n)) > 1� 1n .It follows that, for every polynomial p(�) and every integer n, if B0 inverts g on g(U2n)with probability greater than 1� 1p(2n) then A0 inverts f on f(Un) with probability greaterthan 1� np(2n) . Hence, if g is not weakly one-way (i.e., for every polynomial p(�) there exist
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38 CHAPTER 2. COMPUTATIONAL DIFFICULTYin�nitely many m's such that g can be inverted on g(Um) with probability � 1 � 1=p(m))then also f is not weakly one-way (i.e., for every polynomial q(�) there exist in�nitely manyn's such that f can be inverted on f(Un) with probability � 1� 1=q(n)). This contradictsour hypothesis (that f is one-way).We have just shown that, unless no one-way functions exist, there exist weak one-wayfunctions which are not strong ones. Fortunately, we can rule out the possibility that allone-way functions are only weak ones. In particular, the existence of weak one-way functionsimplies the existence of strong ones.Theorem 2.3.2 : Weak one-way functions exist if and only if strong one-way functionsexist.We strongly recommend to the reader not to skip the following proof, since we believe thatthe proof is very instructive to the rest of the book. In particular, the proof demonstratesthat ampli�cation of computational di�culty is much more involved than ampli�cation ofan analogous probabilistic event.Proof: Let f be a weak one-way function, and let p be the polynomial guaranteed bythe de�nition of a weak one-way function. Namely, every probabilistic polynomial-timealgorithm fails to invert f on f(Un) with probability at least 1p(n) . We assume, for simplicity,that f is length preserving (i.e. jf(x)j = jxj for all x's). This assumption, which is notreally essential, is justi�ed by Proposition 2.2.5. We de�ne a function g as followsg(x1; :::; xt(n)) def= f(x1); :::; f(xt(n))where jx1j = jxt(n)j = n and t(n) def= n � p(n). Namely, the n2p(n)-bit long input of g ispartitioned into t(n) blocks each of length n, and f is applied to each block.Clearly, g can be computed in polynomial-time (by an algorithm which breaks the inputinto blocks and applies f to each block). Furthermore, it is easy to see that inverting g ong(x1; :::; xt(n)) requires �nding a preimage to each f(xi). One may be tempted to deduce thatit is also clear that g is a strongly one-way function. An naive argument, assumes implicitly(with no justi�cation) that the inverting algorithm works separately on each f(xi). If thiswere indeed the case then the probability that an inverting algorithm successfully invertsall f(xi)'s is at most (1� 1p(n))n�p(n) < 2�n (which is negligible also as a function of n2p(n)).However, the assumption that an algorithm trying to invert g works independently on eachf(xi) cannot be justi�ed. Hence, a more complex argument is required.Following is an outline of our proof. The proof that g is strongly one-way proceedsby a contradiction argument. We assume on the contrary that g is not strongly one-way; namely, we assume that there exists a polynomial-time algorithm that inverts g withprobability which is not negligible. We derive a contradiction by presenting a polynomial-time algorithm which, for in�nitely many n's, inverts f on f(Un) with probability greaterthan 1 � 1p(n) (in contradiction to our hypothesis). The inverting algorithm for f uses the
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2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES 39inverting algorithm for g as a subroutine (without assuming anything about the manner inwhich the latter algorithm operates). Details follow.Suppose that g is not strongly one-way. By de�nition, it follows that there exists aprobabilistic polynomial-time algorithm B0 and a polynomial q(�) so that for in�nitely manym's Pr �B0(g(Um))2g�1g(Um)� > 1q(m)Let us denote by M 0, the in�nite set of integers for which the above holds. Let N 0 denotethe in�nite set of n's for which n2 � p(n) 2M 0 (note that all m's considered are of the formn2 � p(n), for some integer n).We now present a probabilistic polynomial-time algorithm, A0, for inverting f . On inputy (supposedly in the range f) algorithm A0 proceeds by applying the following probabilisticprocedure, denoted I , on input y for a(jyj) times, where a(�) is a polynomial depends onthe polynomials p and q (speci�cally, we set a(n) def= 2n2 � p(n) � q(n2p(n))).Procedure IInput: y (denote ndef= jyj).For i = 1 to t(n) do begin1. Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.2. Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)3. If f(zi) = y then halt and output y.(This is considered a success).endWe now present a lower bound on the success probability of algorithm A0. To this end wede�ne a set Sn, which contains all n-bit strings on which the procedure I succeeds withnon-negligible probability (speci�cally greater than na(n)). (The probability is taken onlyover the coin tosses of algorithm A0). Namely,Sn def= �x : Pr �I(f(x))2f�1f(x)�> na(n)�In the next two claims we shall show that Sn contains all but a 12p(n) fraction of the stringsof length n 2 N 0, and that for each string x 2Sn the algorithm A0 inverts f on f(x) withprobability exponentially close to 1. It will follow that A0 inverts f on f(Un), for n 2N 0,with probability greater than 1� 1p(n) , in contradiction to our hypothesis.
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40 CHAPTER 2. COMPUTATIONAL DIFFICULTYClaim 2.3.2.1: For every x 2SnPr �A0(f(x)2f�1f(x)� > 1� 12nProof: By de�nition of the set Sn, the procedure I inverts f(x) with probability at leastna(n) . Algorithm A0 merely repeats I for a(n) times, and hencePr �A0(f(x) 62f�1f(x)� < �1� na(n)�a(n) < 12nThe claim follows. 2Claim 2.3.2.2: For every n 2 N 0, jSnj > �1� 12p(n)� � 2nProof: We assume, to the contrary, that jSnj � (1� 12p(n))�2n. We shall reach a contradictionto our hypothesis concerning the success probability of B0. Recall that by this hypothesiss(n) def= Pr �B0(g(Un2p(n)))2g�1g(Un2p(n))� > 1q(n2p(n))Let U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n) (i.e., theseU (i)n 's are independent random variables each uniformly distributed in f0; 1gn). Clearly,s(n) is the sum of s1(n) and s2(n) de�ned bys1(n) def= Pr �B0(g(Un2p(n)))2g�1g(Un2p(n)) ^ �9i s.t. U (i)n 62Sn��and s2(n) def= Pr �B0(g(Un2p(n)))2g�1g(Un2p(n)) ^ �8i : U (i)n 2Sn��(Use Pr(A) = Pr(A ^ B) + Pr(A ^ :B).) We derive a contradiction to the lower bound ons(n) by presenting upper bounds for both s1(n) and s2(n) (which sum up to less).First, we present an upper bound on s1(n). By the construction of algorithm I it followsthat, for every x2f0; 1gn and every 1� i�n � p(n), the probability that I inverts f on f(x)in the ith iteration equals the probability that B0 inverts g on g(Un2p(n)) when U (i)n = x. Itfollows that, for every x2f0; 1gn and every 1� i�n � p(n),Pr �I(f(x))2f�1f(x)� � Pr �B0(g(Un2p(n)))2g�1g(Un2p(n)) jU (i)n =x�
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2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES 41Using trivial probabilistic inequalities (such as Pr(9i Ai) � Pi Pr(Ai) and Pr(A ^ B) �Pr(A jB)), it follows thats1(n) � n�p(n)Xi=1 Pr �B0(g(Un2p(n)))2g�1g(Un2p(n)) ^ U (i)n 62Sn�� n�p(n)Xi=1 Pr �B0(g(Un2p(n)))2g�1g(Un2p(n)) jU (i)n 62Sn�� n�p(n)Xi=1 Pr �I(f(Un))2f�1f(Un) jUn 62Sn�� n � p(n) � na(n)(The last inequality uses the de�nition of Sn.)We now present an upper bound on s2(n). Recall that by the contradiction hypothesis,jSnj � (1� 12p(n)) � 2n. It follows thats2(n) � Pr �8i : U (i)n 2Sn�� �1� 12p(n)�n�p(n)< 12n2Hence, on one hand s1(n) + s2(n) < 2n2�p(n)a(n) = 1q(n2p(n)) (equality by de�nition of a(n)).Yet, on the other hand s1(n) + s2(n) = s(n) > 1q(n2p(n)) . Contradiction is reached and theclaim follows. 2Combining Claims 2.3.2.1 and 2.3.2.2, It follows that the probabilistic polynomial-timealgorithm, A0, inverts f on f(Un), for n 2N 0, with probability greater than 1 � 1p(n) , incontradiction to our hypothesis (that f cannot be e�ciently inverted with such successprobability). The theorem follows.Let us summarize the structure of the proof of Theorem 2.3.2. Given a weak one-wayfunction f , we �rst constructed a polynomial-time computable function g. This was donewith the intention of later proving that g is strongly one-way. To prove that g is stronglyone-way we used a \reducibility argument". The argument transforms e�cient algorithmswhich supposedly contradict the strong one-wayness of g into e�cient algorithms whichcontradict the hypothesis that f is weakly one-way. Hence g must be strongly one-way. Westress that our algorithmic transformation, which is in fact a randomized Cook reduction,makes no implicit or explicit assumptions about the structure of the prospective algorithmsfor inverting g. Such assumptions, as the \natural" assumption that the inverter of g
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42 CHAPTER 2. COMPUTATIONAL DIFFICULTYworks independently on each block, cannot be justi�ed (at least not at the current state ofunderstanding of the nature of e�cient computations).Theorem 2.3.2 has a natural information theoretic (or \probabilistic") analogue whichasserts that repeating an experiment, which has a non-negligible success probability, su�-ciently many times yields success with very high probability. The reader is probably con-vinced at this stage that the proof of Theorem 2.3.2 is much more complex that the proof ofthe information theoretic analogue. In the information theoretic context the repeated eventsare independent by de�nition, whereas in our computational context no such independencecan be guaranteed. Another indication to the di�erence between the two settings follows.In the information theoretic setting the probability that none of the events occur decreasesexponentially in the number of repetitions. However, in the computational setting we canonly reach a negligible bounds on the inverting probabilities of polynomial-time algorithms.Furthermore, it may be the case that g constructed in the proof of Theorem 2.3.2 can be e�-ciently inverted on g(Un2p(n)) with success probability which is subexponentially decreasing(e.g., with probability 2� log32m), whereas the analogous information theoretic experimentfails with probability at most 2�n.By Theorem 2.3.2, whenever assuming the existence of one-way functions, there is noneed to specify whether we refer to weak or strong ones. Thus, as far as the mere existenceof one-way function goes, the notions of weak and strong one-way functions are equivalent.However, as far as e�ciency considerations are concerned the two notions are not reallyequivalent, since the above transformation of weak one-way functions into strong ones isnot practical. An alternative transformation which is much more e�cient does exist forthe case of one-way permutations and other speci�c classes of one-way functions. Furtherdetails are presented in Section 2.6.2.4 One-Way Functions: VariationsIn this section, we discuss several issues concerning one-way functions. In the �rst sub-section, we present a function that is (strongly) one-way, provided that one-way functionsexist. The construction of this function is of strict abstract interest. In contrast, the issuesdiscussed in the other subsections are of practical importance. First, we present a formu-lation which is better suited for describing many natural candidates for one-way functions,and use it in order to describe popular candidates for one-way functions. Next, we use thisformulation to present one-way functions with additional properties; speci�cally, (one-way)trapdoor permutations, and clawfree functions. We remark that these additional propertiesare used in several constructions (e.g., trapdoor permutations are used in the constructionof public-key encryption schemes whereas clawfree permutations are used in the construc-tion of collision-free hashing). We conclude this section with remarks addressing the \art"of proposing candidates for one-way functions.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS 432.4.1 * Universal One-Way FunctionUsing the result of the previous section and the notion of a universal machine it is possibleto prove the existence of a universal one-way function.Proposition 2.4.1 There exists a polynomial-time computable function which is (strongly)one-way if and only if one-way functions exist.Proof: A key observation is that there exist one-way functions if and only if there existone-way functions which can be evaluated by a quadratic time algorithm. (The choice ofthe speci�c time bound is immaterial, what is important is that such a speci�c time boundexists.) This statement is proven using a padding argument. Details follow.Let f be an arbitrary one-way function, and let p(�) be a polynomial bounding the timecomplexity of an algorithm for computing f . De�ne g(x0x00) def= f(x0)x00, where jx0x00j =p(jx0j). An algorithm computing g �rst parses the input into x0 and x00 so that jx0x00j =p(jx0j), and then applies f on x0. The parsing and the other overhead operations canbe implemented in quadratic time (in jx0x00j), whereas computing f(x0) is done within timep(jx0j) = jx0x00j (which is linear in the input length). Hence, g can be computed (by a Turingmachine) in quadratic time. The reader can verify that g is one-way using a \reducibilityargument" analogous to the one used in the proof of Proposition 2.2.5.We now present a (universal one-way) function, denoted funi .funi(desc(M); x) def= (desc(M);M(x))where desc(M) is a description of Turing machine M , and M(x) is de�ned as the outputof M on input x if M runs at most quadratic time on x, and as x otherwise. Clearly, funican be computed in polynomial-time by a universal machine which uses a step counter. Toshow that funi is one-way we use a \reducibility argument". By the above observation, weknow that there exist a one-way function g which is computed in quadratic time. LetMg bethe quadratic time machine computing g. Clearly, an (e�cient) algorithm inverting funi oninputs of the form funi(desc(Mg); Un), with probability �(n), can be easily modi�ed into an(e�cient) algorithm inverting g on inputs of the form g(Un), with probability �(n). It followsthat an algorithm inverting funi with probability �(n), on strings of length jdesc(Mg)j+ n,yields an algorithm inverting g with probability �(n)2jdesc(Mg)j on strings of length n. Hence, iffuni is not weakly one-way then also g cannot be weakly one-way.Using Theorem 2.3.2, the proposition follows.The observation, that it su�ces to consider one-way functions which can be evaluatedwithin a speci�c time bound, is crucial to the construction of funi. The reason being,that it is not possible to construct a polynomial-time machine which is universal for theclass of polynomial-time machines (i.e., a polynomial-time machine that can \simulate" allpolynomial-time machines). It is however possible to construct, for every polynomial p(�),
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44 CHAPTER 2. COMPUTATIONAL DIFFICULTYa polynomial-time machine that is universal for the class of machines with running-timebounded by p(�).The impracticality of the suggestion to use funi as a one-way function stems from thefact that funi is likely to be hard to invert only on huge input lengths.2.4.2 One-Way Functions as CollectionsThe formulation of one-way functions, used in so far, is suitable for an abstract discussion.However, for describing many natural candidates for one-way functions, the following for-mulation (although being more cumbersome) is more adequate. Instead of viewing one-wayfunctions as functions operating on an in�nite domain (i.e., f0; 1g�), we consider in�nitecollections of of functions each operating on a �nite domain. The functions in the collec-tion share a single evaluating algorithm, that given as input a succint representation of afunction and an element in its domain, return the value of the speci�ed function at thegiven point. The formulation of a collection of functions is also useful for the presentationof trapdoor permutations and clawfree functions (see the next two subsections). We startwith the following de�nition.De�nition 2.4.2 (collection of functions): A collection of functions consists of an in�niteset of indices, denoted I, a �nite set Di, for each i 2 I, and a function fi de�ned over Di.We will only be interested in collections of functions that can be applied. As hintedabove, a necessary condition for applying a collection of functions is the existence of ane�cient function-evaluating algorithm (denoted F ) that, on input i 2 I and x, returnsfi(x). Yet, this condition by itself does not su�ce. We need to be able to (randomly) selectan index, specifying a function over a su�ciently large domain, as well as to be able to(randomly) select an element of the domain (when given the domain's index). The samplingproperty of the index set is captured by an e�cient algorithm (denoted I) that on inputan integer n (presented in unary) randomly selects an poly(n)-bit long index, specifyinga function and its associated domain. (As usual unary presentation is used to enhencethe standard association of e�cient algorithms with those running in time polynomial intheir length.) The sampling property of the domains is captured by an e�cient algorithm(denoted D) that on input an index i randomly selects an element in Di. The one-wayproperty of the collection is captured by requiring that every e�cient algorithm, whengiven an index of a function and an element in its range, fails to invert the function, exceptfor with negligible probability. The probability is taken over the distribution induced bythe sampling algorithms I and D.De�nition 2.4.3 (collection of one-way functions): A collection of functions, ffi :Di 7!f0; 1g�gi2I, is called strongly (resp., weakly) one-way if there exists three probabilistic polynomial-time algorithms, I, D and F , so that the following two conditions hold
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2.4. ONE-WAY FUNCTIONS: VARIATIONS 451. easy to sample and compute: The output distribution of algorithm I, on input 1n, isa random variable assigned values in the set I \ f0; 1gn. The output distribution ofalgorithm D, on input i 2 I, is a random variable assigned values in Di. On inputi 2 I and x 2 Di, algorithm F always outputs fi(x).2. hard to invert (version for strongly one-way): For every probabilistic polynomial-timealgorithm, A0, every polynomial p(�), and all su�ciently large n'sPr �A0(fIn(Xn); In)2f�1In fIn(Xn)� < 1p(n)where In is a random variable describing the output distribution of algorithm I oninput 1n, and Xn is a random variable describing the output of algorithm D on input(random variable) In.(The version for weakly one-way collections is analogous.)We may relate to a collection of one-way functions by indicating the corresponding tripletof algorithms. Hence, we may say that a triplet of probabilistic polynomial-time algorithms,(I;D; F ), constitutes a collection of one-way functions if there exists a collection of functionsfor which these algorithms satisfy the above two conditions.We stress that the output of algorithm I , on input 1n, is not necessarily distributeduniformly over I \ f0; 1gn. Furthermore, it is not even required that I(1n) is not entirelyconcentrated on one single string. Likewise, the output of algorithm D, on input i, is notnecessarily distributed uniformly overDi. Yet, the hardness-to-invert condition implies thatD(i) cannot be mainly concentrated on polynomially many (in jij) strings. We stress thatthe collection is hard to invert with respect to the distribution induced by the algorithms Iand D (in addition to depending as usual on the mapping induced by the function itself).Clearly, a collection of one-way functions can be represented as a one-way function and viceversa (see Exercise 12), yet each formulation has its advantages. In the sequel we use theformulation of a collection of one-way functions in order to present popular candidates ofone-way functions.To allow less cumbersome presentation of natural candidates of one-way collections(of functions), we relax De�nition 2.4.3 in two ways. First, we allow the index samplingalgorithm to output, on input 1n, indices of length p(n), where p(�) is some polynomial.Secondly, we allow all algorithms to fail with negligible probability. Most importantly,we allow the index sampler I to output strings not in I as long as the probability thatI(1n) 62 I \f0; 1gp(n) is a negligible function in n. (The same relaxations can be made whendiscussing trapdoor permutations and clawfree functions.)2.4.3 Examples of One-way Collections (RSA, Factoring, DLP)In this subsection we present several popular collections of one-way functions, based oncomputation number theory (e.g., RSA and Discrete Exponentiation). In the exposition
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46 CHAPTER 2. COMPUTATIONAL DIFFICULTYwhich follows, we assume some knowledge of elementary number theory and some famil-iarity with simple number theoretic algorithms. Further discussion of the relevant numbertheoretic material is presented in Appendix [missing(app-cnt)]2.4.3.1 The RSA functionThe RSA collection of functions has an index set consisting of pairs (N; e), where N is aproduct of two (12 � log2N)-bit primes, denoted P and Q, and e is an integer smaller than Nand relatively prime to (P �1) �(Q�1). The function of index (N; e), has domain f1; :::; Ngand maps the domain element x to xe mod N . Using the fact that e is relatively prime to(P � 1) � (Q� 1), it can be shown that the fuction is in fact a permutation over its domain.Hence, the RSA collection is a collection of permutations.We �rst substantiate the fact that the RSA collection satis�es the �rst condition of thede�nition of a one-way collection (i.e., that it is easy to sample and compute). To this end,we present the triplet of algorithms (IRSA; DRSA; FRSA).On input 1n, algorithm IRSA selects uniformly two primes, P and Q, such that 2n�1�P < Q<2n, and an integer e such that e is relatively prime to (P � 1) � (Q� 1). AlgorithmIRSA terminates with output (N; e), where N = P � Q. For an e�cient implementationof IRSA, we need a probabilistic polynomial-time algorithms for generating uniformly dis-tributed primes. Such an algorithm does exist. However, it is more e�cient to generatetwo primes by selecting two integers uniformly in the interval [2n�1; 2n � 1] and checkingvia a fast randomized primality test whether these are indeed primes (this way we get,with exponentially small probability, an output which is not of the desired form). For moredetails concerning the uniform generation of primes see Appendix [missing(app-cnt)].As for algorithm DRSA, on input (N; e), it selects (almost) uniformly an element in theset DN;e def= f1; :::; Ng. The output of FRSA, on input ((N; e); x), isRSAN;e(x) def= xe mod NIt is not known whether factoring N can be reduced to inverting RSAN;e, and in fact thisis a well-known open problem. We remark that the best algorithms known for invertingRSAN;e proceed by (explicitly or implicitly) factoring N . In any case it is widely believedthat the RSA collection is hard to invert.In the above description DN;e corresponds to the additive group mod N (and hencecontain N elements). Alternatively, the domain DN;e can be restricted to the elements ofthe multiplicative group modulo N (and hence contain (P � 1) � (Q� 1) � N � 2pN � Nelements). A modi�ed domain sampler may work by selecting an element in f1; :::; Ngand discarding the unlikely cases in which the selected element is not relatively prime toN . The function RSAN;e de�ned above indues a permutation on the multiplicative groupmodulo N . The resulting collection is as hard to invert as the original one. (A proof of thisstatement is left as an exercise to the reader.) The question which formulation to preferseems to be a matter of personal taste.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS 472.4.3.2 The Rabin functionThe Rabin collection of functions is de�ned analogously to the RSA collection, except thatthe function is squaring modulo N (instead of raising to the power e mod N). Namely,RabinN(x) def= x2 mod NThis function, however, does not induces a permutation on the multiplicative group moduloN , but is rather a 4-to-1 mapping on the multiplicative group modulo N .It can be shown that extracting square roots modulo N is computationally equivalentto factoring N (i.e., the two tasks are reducible to one another via probabilistic polynomial-time reductions). For details see Exercise 15. Hence, squaring modulo a composite is acollection of one-way functions if and only if factoring is intractable. We remind the readerthat it is generally believed that integer factorization is intractable.2.4.3.3 The Factoring PermutationsFor a special subclass of the integers, known by the name of Blum Integers, the functionRabinN(�) de�ned above induces a permutation on the quadratic residues modulo N . Wesay that r is a quadratic residue mod N if there exists an integer x such that r � x2 mod N .We denote by QN the set of quadratic residues in the multiplicative group mod N . Forpurposes of this paragraph, we say thatN is a Blum Integer if it is the product of two primes,each congruent to 3 mod 4. It can be shown that when N is a Blum integer, each element inQN has a unique square root which is also in QN , and it follows that in this case the functionRabinN(�) induces a permutation over QN . This leads to the introduction of the followingcollection, SQR def= (IBI ; DQR; FSQR), of permutations. On input 1n, algorithm IBI selectsuniformly two primes, P and Q, such that 2n�1�P < Q< 2n and P � Q � 3 mod 4, andoutputs N = P � Q. It is assumed that the density of such primes is non-negligible andthus that this step can be e�ciently implemented. On input N , algorithm DQR, uniformlyselects an element of QN , by uniformly selecting an element of the multiplicative groupmodulo N , and squaring it mod N . Algorithm FSQR is de�ned exactly as in the Rabincollection. The resulting collection is one-way, provided that factoring is intractable alsofor the set of Blum integers (de�ned above).2.4.3.4 Discrete LogarithmsAnother computational number theoretic problem which is widely believed to be intractableis that of extracting discrete logarithms in a �nite �eld (and in particular of prime cardi-nality). The DLP collection of functions, borrowing its name (and one-wayness) from theDiscrete Logarithm Problem, is de�ned by the triplet of algorithms (IDLP; DDLP; FDLP).On input 1n, algorithm IDLP selects uniformly a prime, P , such that 2n�1�P <2n, anda primitive element G in the multiplicative group modulo P (i.e., a generator of this cyclicgroup), and terminates with output (P;G). There exists a probabilistic polynomial-time
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48 CHAPTER 2. COMPUTATIONAL DIFFICULTYalgorithm for uniformly generating primes together with the prime factorization of P � 1,where P is the prime generated (see Appendix [missing(app-cnt)]). Alternatively, onemay uniformly generate a prime P of the form 2Q+1, where Q is also a prime. (In the lattercase, however, one has to assume the intractability of DLP with respect to such primes.We remark that such primes are commonly believed to be the hardest for DLP.) Using thefactorization of P � 1 one can �nd a primitive element by selecting an element of the groupat random and checking whether it has order P �1 (by raising to powers which non-triviallydivide P � 1).Algorithm DDLP, on input (P;G), selects uniformly a residue modulo P � 1. AlgorithmFDLP, on input ((P;G); x), halts outputtingDLPP;G(x) def= Gx mod PHence, inverting DLPP;G amounts to extracting the discrete logarithm (to base G) moduloP . For every (P;G) of the above form, the function DLPP;G induces a 1-1 and onto mappingfrom the additive group mod P � 1 to the multiplicative group mod P . Hence, DLPP;Ginduces a permutation on the the set f1; :::; P � 1g.Exponentiation in other groups is also a reasonable candidate for a one-way function,provided that the discrete logarithm problem for the group is believed to be hard. Forexample, it is believed that the logarithm problem is hard in the group of points on anElliptic curve.Author's Note: �ll-in more details2.4.4 Trapdoor one-way permutations2.4.4.1 The De�nitionThe formulation of collections of one-way functions is convenient as a starting point tothe de�nition of trapdoor permutations. Loosely speaking, these are collections of one-waypermutations, ffig, with the extra property that fi is e�ciently inverted once given asauxiliary input a \trapdoor" for the index i. The trapdoor of index i, denoted by t(i),can not be e�ciently computed from i, yet one can e�ciently generate corresponding pairs(i; t(i)).De�nition 2.4.4 (collection of trapdoor permutations): Let I be a probabilistic algorithm,and let I1(1n) (resp. I2(1n)) denote the �rst (resp. second) half of the output of I(1n).A triple of algorithms, (I;D; F ), is called a collection of strong (resp. weak) trapdoorpermutations if the following two conditions hold1. the algorithms induce a collection of one-way permutations: The triple (I1; D; F )constitutes a collection of one-way permutations.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS 492. easy to invert with trapdoor: There exists a (deterministic) polynomial-time algo-rithm, denoted F�1, so that for every (i; t) in the range of I and for every x 2Di, itholds that F�1(t; F (i; x)) = x.A useful relaxation of the above conditions is to require that they are satis�ed with over-whelmingly high probability. Namely, the index generating algorithm, I , is allowed tooutput, with negligible probability, pairs (i; t) for which either fi is not a permutation orF�1(t; F (i; x)) = x does not hold for all x 2 Di. On the other hand, one typically requiresthat the domain sampling algorithm (i.e., D), produces almost uniform distribution on thecorresponding domain. Putting all these modi�cations together, we obtain the followingversion. (We also take the oppertunity to present a slightly di�erent formulation.)De�nition 2.4.5 (collection of trapdoor permutations, revisited): Let I � f0; 1g�. Acollection of permutations with indices in I, is a set ffi : Di 7! Digi2I so that each fi is 1-1on the corresponding Di. Such a collection is called a trapdoor permutation if there exists4 probabilistic polynomial-time algorithms I;D; F; F�1 so that the following �ve conditionshold.1. (index and trapdoor selection): For every n,Pr(I(1n) 2 I � f0; 1g�) > 1� 2�n2. (selection in domain): For every i 2 I,(a) Pr(D(i) 2 Di) > 1� 2�n. Thus, without loss of generality, Di � f0; 1gpoly(jij).(b) Conditioned on D(i) 2 Di, the output is uniformly distributed in Di. That is,for every x 2 Di, Pr(D(i) = x jD(i) 2 Di) = 1jDij3. (e�cient evaluation): For every i 2 I and x 2 Di,Pr(F (i; x) = fi(x)) > 1� 2�n4. (hard to invert): For every family of polynomial-size circuits, fCngn2N , every positivepolynomial p(�), and all su�ciently large n'sPr (Cn(fIn(Xn); In) = Xn) < 1p(n)where In is a random variable describing the distribution of the �rst element in theoutput of I(1n), and Xn def= D(In).5. (inverting with trapdoor): For every pair (i; t) in the range of I, and every x 2 Di,Pr(F�1(t; fi(x)) = x) > 1� 2�n
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50 CHAPTER 2. COMPUTATIONAL DIFFICULTY2.4.4.2 The RSA (or factoring) TrapdoorThe RSA collection presented above can be easily modi�ed to have the trapdoor property.To this end algorithm IRSA should be modi�ed so that it outputs both the index (N; e) andthe trapdoor (N; d), where d is the multiplicative inverse of e modulo (P � 1)�(Q� 1) (notethat e has such inverse since it has been chosen to be relatively prime to (P � 1)�(Q� 1)).The inverting algorithm F�1RSA is identical to the algorithm FRSA (i.e., F�1RSA((N; d); y) =yd mod N). The reader can easily verify thatFRSA ((N; d); FRSA ((N; e); x)) = xed mod Nindeed equals x for every x in the multiplicative group modulo N . In fact, one can showthat xed � x (mod N) for every x (even in case x is not relatively prime to N).We remark that the Rabin collection presented above can be easily modi�ed in ananalogous manner, enabling to e�ciently compute all 4 square roots of a given quadraticresidue (mod N). The square roots mod N can be computed by extracting a square rootmodulo each of the primes factors ofN and combining the result using the Chinese ReminderTheorem. E�cient algorithms for extracting square root modulo a given prime are known.Furthermore, in case the prime, P , is congruent to 3 mod 4, the square roots of x mod Pcan be computed by raising x to the power P+14 (while reducing the intermediate resultsmod P ). Furthermore, in case N is a Blum integer, the collection SQR, presented above,forms a collection of trapdoor permutations (provided of course that factoring is hard).2.4.5 * Clawfree Functions2.4.5.1 The De�nitionLoosely speaking, a clawfree collection consists of a set of pairs of functions which are easyto evaluate, both have the same range, and yet it is infeasible to �nd a range elementtogether with preimages of it under each of these functions.De�nition 2.4.6 (clawfree collection): A collection of pairs of functions consists of anin�nite set of indices, denoted I, two �nite sets D0i and D1i , for each i 2 I, and two functionsf0i and f1i de�ned over D0i and D1i , respectively. Such a collection is called clawfree if thereexists three probabilistic polynomial-time algorithms, I, D and F , so that the followingconditions hold1. easy to sample and compute: The random variable I(1n) is assigned values in the setI \ f0; 1gn. For each i 2 I and � 2 f0; 1g, the random variable D(�; i) is distributedover D�i and F (�; i; x) = f�i (x).2. identical range distribution: For every i in the index set I, the random variablesf0i (D(0; i)) and f1i (D(1; i)) are identically distributed.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS 513. hard to form claws: A pair (x; y) satisfying f0i (x) = f1i (y) is called a claw for indexi. Let Ci denote the set of claws for index i. It is required that for every probabilisticpolynomial-time algorithm, A0, every polynomial p(�), and all su�ciently large n'sPr (A0(In) 2 CIn) < 1p(n)where In is a random variable describing the output distribution of algorithm I oninput 1n.The �rst requirement in De�nition 2.4.6 is analogous to what appears in De�nition 2.4.3.The other two requirements (in De�nition 2.4.6) are kind of con
icting. On one hand,it is required that that claws do exist (to say the least), whereas on the other hand it isrequired that calws cannot be e�ciently found. Clearly, a clawfree collection of functionsyields a collection of strong one-way functions (see Exercise 16). A special case of interestis when both domains are identical (i.e., Di def= D0i = D1i ), the random variable D(�; i)is uniformly distributed over Di, and the functions, f0i and f1i , are permutations over Di.Such a collection is called a collection of (clawfree) permutations.Again, a useful relaxation of the conditions of De�nition 2.4.6 is obtained by allowingthe algorithms (i.e., I , D and F ) to fail with negligible probability.An additional property that a (clawfree) collection may (or may not) have is an e�cientlyrecognizable index set (i.e., an probabilistic polynomial-time algorithm for determiningwhether a give string is I). This property is useful in some applications of clawfree collections(hence this discussion). E�cient recognition of the index set may be important since thefunction-evaluating algorithm F may induce functions also in case its second input (whichis supposedly an index) is not in I . In this case it is no longer guaranteed that the inducedpair of functions has identical range distribution. In some applications (e.g., see section 4.8),dishonest parties may choose, on purpose, an illegal index and try to capitalize on the inducefunctions having di�erent range distributions.2.4.5.2 The DLP Clawfree CollectionWe now turn to show that clawfree collections do exists under speci�c reasonable intractabil-ity assumptions. We start by presenting such a collection under the assumption that theDiscrete Logarithm Problem (DLP) for �elds of prime cardinality is intractable.Following is the description a collection of clawfree permutations (based on the aboveassumption). The index sets consists of triples, P;G; Z), where P is a prime, G is a primitiveelement mod P , and Z is an element in the �eld (of residues mod P ). The index samplingalgorithm, selects P and G as in the DLP collection presented in Subsection 2.4.3, and Zis selected uniformly among the residues mod P . The domain of both functions with index(P;G; Z) is identical, and equals the set f1; :::; P � 1g, and the domain sampling algorithmselects uniformly from this set. As for the functions themselves, we setf�P;G;Z(x) def= Z� �Gx mod P
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52 CHAPTER 2. COMPUTATIONAL DIFFICULTYThe reader can easily verify that both functions are permutations over f1; :::; P � 1g. Also,the ability to form a claw for the index (P;G; Z) yields the ability to �nd the discretelogarithm of Z mod P to base G (since Gx � Z � Gy mod P yields Gx�y � Z mod P ).Hence, ability to form claws for a non-negligible fraction of the index set translates to acontradiction to the DLP intractability assumption.The above collection does not have the additional property of having an e�ciently rec-ognizable index set, since it is not known how to e�ciently recognize primitive elementsmodulo a prime. This can be amended by making a slightly stronger assumption concern-ing the intractability of DLP. Speci�cally, we assume that DLP is intractable even if oneis given the factorization of the size of the multiplicative group (i.e., the factorization ofP � 1) as additional input. Such an assumption allows to add the factorization of P � 1into the description of the index. This makes the index set e�ciently recognizable (sinceone can �rst test P for primality, as usual, and next test whether G is a primitive elementby raising it to powers of the form (P � 1)=Q where Q is a prime factor of P � 1). If DLPis hard also for primes of the form 2Q+ 1, where Q is also a prime, life is even easier. Totest whether G is a primitive element mod P one just computes G2 (mod P ) and G(P�1)=2(mod P ), and checks whether either of them equals 1.2.4.5.3 The Factoring Clawfree CollectionWe now show that a clawfree collection (of functions) does exists under the assumptionthat integer factorization is infeasible for integers which are the product of two primes eachcongruent to 3 mod 4. Such composite numbers, hereafter referred to as Blum integers,have the property that the Jacobi symbol of �1 (relative to them) is 1 and half of thesquare roots of each quadratic residue, in the corresponding multiplicative group (modulothis composite), have Jacobi symbol 1 (see Appendix [missing(app-cnt)]).The index set of the collection consists of all Blum integers which are composed oftwo primes of equal length. The index selecting algorithm, on input 1n, uniformly selectsuch an integers, by uniformly selecting two (n-bit) primes each congruent to 3 mod 4,and outputting their product, denoted N . Let J+1N (respectively, J�1N ) denote the set ofresidues in the multiplicative group modulo N with Jacobi Symbol +1 (resp., �1). Thefunctions of index N , denoted f0N and f1N , consist both of squaring modulo N , but theircorresponding domains are disjoint. The domain of function f�N equals the set J (�1)�N . Thedomain sampling algorithm, denoted D, uniformly selects an element of the correspondingdomain as follows. Speci�cally, on input (�;N) algorithm D uniformly selects polynomiallymany residues mod N , and outputs the �rst residue with Jacobi Symbol (�1)�.The reader can easily verify that both f0N (D(0; N)) and f1N(D(1; N)) are uniformlydistributed over the set of quadratic residues mod N . The di�cult of forming claws followsfrom the fact that a claw yield two residues, x 2 J+1N and y 2 J�1N such that x2 � y2(mod N). Since �1 2 J+1N , it follows that x 6= �y and the gcd of x � y and N yields afactorization of N .The above collection does not have the additional property of having an e�ciently rec-
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2.5. HARD-CORE PREDICATES 53ognizable index set, since it is not even known how to e�ciently distinguish products of twoprimes from products of more than two primes.2.4.6 On Proposing CandidatesAlthough we do believe that one-way functions exist, their mere existence does not su�cefor practical applications. Typically, an application which is based on one-way functionsrequires the speci�cation of a concrete (candidate one-way) function. As explained above,the observation concerning the existence of a universal one-way function is of little practicalsigni�cance. Hence, the problem of proposing reasonable candidates for one-way functionsis of great practical importance. Everyone understands that such a reasonable candidate(for a one-way function) should have a very e�cient algorithm for evaluating the func-tion. (In case the \function" is presented as a collection of one-way functions, especiallythe domain sampler and function-evaluation algorithm should be very e�cient.) However,people seem less careful in seriously considering the di�culty of inverting the candidatesthat they propose. We stress that the candidate has to be di�cult to invert on \the av-erage" and not only on the worst case, and that \the average" is taken with respect tothe instance-distribution determined by the candidate function. Furthermore, \hardness onthe average" (unlike worst case analysis) is extremely sensitive to the instance-distribution.Hence, one has to be extremely careful in deducing average-case complexity with respectto one distribution from the average-case complexity with respect to another distribution.The short history of the �eld contains several cases in which this point has been ignoredand consequently bad suggestions has been made.Consider for example the following suggestion to base one-way functions on the con-jectured di�culty of the Graph Isomorphism problem. Let fGI(G; �) = (G; �G), where Gis an undirected graph, � is a permutation on its vertex set, and �G denotes the graphresulting by renaming the vertices of G using � (i.e., (�(u); �(v)) is an edge in �G i� (u; v)is an edge in G). Although it is indeed believed that Graph Isomorphism cannot be solvedin polynomial-time, it is easy to see that FGI is easy to invert on most instances (e.g., usevertex degree statistics to determine the isomorphism).2.5 Hard-Core PredicatesLoosely speaking, saying that a function f is one-way means that given y it is infeasibleto �nd a preimage of y under f . This does not mean that it is infeasible to �nd outpartial information about the preimage of y under f . Speci�cally it may be easy to retrievehalf of the bits of the preimage (e.g., given a one-way function f consider the function gde�ned by g(x; r) def= (f(x); r), for every jxj= jrj). The fact that one-way functions do notnecessarily hide partial information about their preimage limits their \direct applicability"to tasks as secure encryption. Fortunately, assuming the existence of one-way functions, it ispossible to construct one-way functions which hide speci�c partial information about their
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54 CHAPTER 2. COMPUTATIONAL DIFFICULTYpreimage (which is easy to compute from the preimage itself). This partial information canbe considered as a \hard core" of the di�culty of inverting f .2.5.1 De�nitionA polynomial-time predicate b, is called a hard-core of a function f if all e�cient algorithm,given f(x), can guess b(x) only with success probability which is negligibly better than half.De�nition 2.5.1 (hard-core predicate): A polynomial-time computable predicate b : f0; 1g� 7!f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithmA0, every polynomial p(�), and all su�ciently large n'sPr (A0(f(Un))=b(Un)) < 12 + 1p(n)It follows that if b is a hard-core predicate (for any function) then b(Un) should bealmost unbiased (i.e., jPr(b(Un) = 0) � Pr(b(Un) = 1)j must be a negligible function in n).As b itself is polynomial-time computable the failure of e�cient algorithms to approximateb(x) from f(x) (with success probability signi�cantly more than half) must be due to eitheran information loss of f (i.e., f not being one-to-one) or to the di�culty of inverting f .For example, the predicate b(��) = � is a hard-core of the function f(��) def= 0�, where�2f0; 1g and �2f0; 1g�. Hence, in this case the fact that b is a hard-core of the functionf is due to the fact that f losses information (speci�cally the �rst bit �). On the otherhand, in case f losses no information (i.e., f is one-to-one) hard-cores for f exist only if fis one-way (see Exercise 19). Finally, we note that for every b and f , there exist obviousalgorithms which guess b(Un) from f(Un) with success probability at least half (e.g., eitheran algorithm A1 that regardless of its input answers with a uniformly chosen bit, or, in caseb is not biased towards 0, the constant algorithm A2(x) def= 1).Simple hard-core predicates are known for the RSA, Rabin, and DLP collections (pre-sented in Subsection 2.4.3), provided that the corresponding collections are one-way. Specif-ically, the least signi�cant bit is a hard-core for the RSA collection, provided that the RSAcollection is one-way. Namely, assuming that the RSA collection is one-way, it is infeasibleto guess (with success probability signi�cantly greater than half) the least signi�cant bitof x from RSAN;e(x) = xe mod N . Likewise, assuming that the DLP collection is one-way,it is infeasible to guess whether x < P2 when given DLPP;G(x) = Gx mod P . In the nextsubsection we present a general result of the kind.2.5.2 Hard-Core Predicates for any One-Way FunctionActually, the title is inaccurate, as we are going to present hard-core predicates only for(strong) one-way functions of special form. However, every (strong) one-way function canbe easily transformed into a function of the required form, with no substantial loss in either\security" or \e�ciency".
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2.5. HARD-CORE PREDICATES 55Theorem 2.5.2 Let f be an arbitrary strong one-way function, and let g be de�ned byg(x; r) def= (f(x); r), where jxj= jrj. Let b(x; r) denote the inner-product mod 2 of the binaryvectors x and r. Then the predicate b is a hard-core of the function g.In other words, the theorem states that if f is strongly one-way then it is infeasible toguess the exclusive-or of a random subset of the bits of x when given f(x) and the subsetitself. We stress that the theorem requires that f is strongly one-way and that the conclusionis false if f is only weakly one-way (see Exercise 19). We point out that g maintainsproperties of f such as being length-preserving and being one-to-one. Furthermore, ananalogous statement holds for collections of one-way functions with/without trapdoor etc.Proof: The proof uses a \reducibility argument". This time inverting the function fis reduced to predicting b(x; r) from (f(x); r). Hence, we assume (for contradiction) theexistence of an e�cient algorithm predicting the inner-product with advantage which is notnegligible, and derive an algorithm that inverts f with related (i.e. not negligible) successprobability. This contradicts the hypothesis that f is a one-way function.Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and r tries topredict the inner-product (mod 2) of x and r. Denote by "G(n) the (overall) advantage ofalgorithm G in predicting b(x; r) from f(x) and r, where x and r are uniformly chosen inf0; 1gn. Namely, "G(n) def= Pr (G(f(Xn); Rn) = b(Xn; Rn))� 12where here and in the sequel Xn and Rn denote two independent random variables, eachuniformly distributed over f0; 1gn. Assuming, to the contradiction, that b is not a hard-coreof g means that exists an e�cient algorithm G, a polynomial p(�) and an in�nite set N sothat for every n2N it holds that "G(n) > 1p(n) . We restrict our attention to this algorithmG and to n's in this set N . In the sequel we shorthand "G by ".Our �rst observation is that, on at least an "(n)2 fraction of the x's of length n, algorithmG has an "(n)2 advantage in predicting b(x;Rn) from f(x) and Rn. Namely,Claim 2.5.2.1: there exists a set Sn � f0; 1gn of cardinality at least "(n)2 � 2n such that forevery x 2Sn, it holds thats(x) def= Pr(G(f(x); Rn)=b(x;Rn)) � 12 + "(n)2This time the probability is taken over all possible values of Rn and all internal coin tossesof algorithm G, whereas x is �xed.Proof: The observation follows by an averaging argument. Namely, write E(s(Xn)) =12 + "(n), and apply Markov Inequality.2In the sequel we restrict our attention to x's in Sn. We will show an e�cient algorithmthat on every input y, with y = f(x) and x 2 Sn, �nds x with very high probability.Contradiction to the (strong) one-wayness of f will follow by noting that Pr(Un2Sn) � "(n)2 .
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56 CHAPTER 2. COMPUTATIONAL DIFFICULTYThe next three paragraphs consist of a motivating discussion. The inverting algorithm,that uses algorithm G as subroutine, will be formally described and analyzed later.A motivating discussionConsider a �xed x2Sn. By de�nition s(x) � 12+"(n)2 > 12+ 12p(n) . Suppose, for a moment,that s(x) > 34+ 12p(n) . Of course there is no reason to believe that this is the case, we are justdoing a mental experiment. In this case (i.e., of s(x) > 34 + 1poly(jxj)) retrieving x from f(x)is quite easy. To retrieve the ith bit of x, denoted xi, we randomly select r 2 f0; 1gn, andcompute G(f(x); r) and G(f(x); r�ei), where ei is an n-dimensional binary vector with 1 inthe ith component and 0 in all the others, and v�u denotes the addition mod 2 of the binaryvectors v and u. Clearly, if both G(f(x); r) = b(x; r) and G(f(x); r� ei) = b(x; r� ei), thenG(f(x); r)�G(f(x); r� ei) = b(x; r)� b(x; r� ei)= b(x; ei)= xisince b(x; r)� b(x; s) � Pni=1 xiri +Pni=1 xisi � Pni=1 xi(ri + si) � b(x; r� s) mod 2. Theprobability that both equalities hold (i.e., both G(f(x); r)= b(x; r) and G(f(x); r � ei) =b(x; r�ei)) is at least 1�2 �(14� 1poly(jxj)) > 1� 1poly(jxj) . Hence, repeating the above proceduresu�ciently many times and ruling by majority we retrieve xi with very high probability.Similarly, we can retrieve all the bits of x, and hence invert f on f(x). However, the entireanalysis was conducted under (the unjusti�able) assumption that s(x) > 34+ 12p(jxj) , whereaswe only know that s(x) > 12+ 12p(jxj) .The problem with the above procedure is that it doubles the original error probabilityof algorithm G on inputs of form (f(x); �). Under the unrealistic assumption, that the G'serror on such inputs is signi�cantly smaller than 14 , the \error-doubling" phenomenon raisesno problems. However, in general (and even in the special case where G's error is exactly14) the above procedure is unlikely to invert f . Note that the error probability of G cannot be decreased by repeating G several times (e.g., G may always answer correctly onthree quarters of the inputs, and always err on the remaining quarter). What is requiredis an alternative way of using the algorithm G, a way which does not double the originalerror probability of G. The key idea is to generate the r's in a way which requires applyingalgorithm G only once per each r (and i), instead of twice. Speci�cally, we used algorithmG to obtain a \guess" for b(x; r�ei) and obtain b(x; r) in a di�erent way. The good news arethat the error probability is no longer doubled, since we only need to use G to get a \guess"of b(x; r�ei). The bad news are that we still need to know b(x; r), and it is not clear how wecan know b(x; r) without applying G. The answer is that we can guess b(x; r) by ourselves.This is �ne if we only need to guess b(x; r) for one r (or logarithmically in jxj many r's),but the problem is that we need to know (and hence guess) b(x; r) for polynomially manyr's. An obvious way of guessing these b(x; r)'s yields an exponentially vanishing successprobability. The solution is to generate these polynomially many r's so that, on one handthey are \su�ciently random" whereas on the other hand we can guess all the b(x; r)'s with
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2.5. HARD-CORE PREDICATES 57non-negligible success probability. Speci�cally, generating the r's in a particular pairwiseindependent manner will satisfy both (seemingly contradictory) requirements. We stressthat in case we are successful (in our guesses for the b(x; r)'s), we can retrieve x with highprobability. Hence, we retrieve x with non-negligible probability.A word about the way in which the pairwise independent r's are generated (and thecorresponding b(x; r)'s are guessed) is indeed in place. To generate m = poly(n) manyr's, we uniformly (and independently) select l def= log2(m + 1) strings in f0; 1gn. Let usdenote these strings by s1; :::; sl. We then guess b(x; s1) through b(x; sl). Let use denotethese guesses, which are uniformly (and independently) chosen in f0; 1g, by �1 through �l.Hence, the probability that all our guesses for the b(x; si)'s are correct is 2�l = 1poly(n) .The di�erent r's correspond to the di�erent non-empty subsets of f1; 2; :::; lg. We computerJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwise independent and eachis uniformly distributed in f0; 1gn. The key observation is thatb(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj)Hence, our guess for the b(x; rJ)'s is �j2J�j , and with non-negligible probability all ourguesses are correct.Back to the formal argumentFollowing is a formal description of the inverting algorithm, denoted A. We assume,for simplicity that f is length preserving (yet this assumption is not essential). On input y(supposedly in the range of f), algorithm A sets n def= jyj, and l def= dlog2(2n�p(n)2+1)e, wherep(�) is the polynomial guaranteed above (i.e., �(n) > 1p(n) for the in�nitely many n's in N).Algorithm A uniformly and independently select s1; :::; sl 2 f0; 1gn, and �1; :::; �l 2 f0; 1g.It then computes, for every non-empty set J � f1; 2; :::; lg, a string rJ  �j2Jsj and abit �J  �j2J�j. For every i2 f1; :::; ng and every non-empty J � f1; ::; lg, algorithm Acomputes zJi  �J �G(y; rJ � ei). Finally, algorithm A sets zi to be the majority of the zJivalues, and outputs z = z1 � � �zn. (Remark: in an alternative implementation of the ideas,the inverting algorithm, denoted A0, tries all possible values for �1; :::; �l, and outputs onlyone of resulting strings z, with an obvious preference to a string z satisfying f(z) = y.)Following is a detailed analysis of the success probability of algorithm A on inputs ofthe form f(x), for x 2 Sn, where n 2 N . We start by showing that, in case the �j's arecorrect, then the with constant probability, zi = xi for all i2 f1; :::; ng. This is proven bybounding from below the probability that the majority of the zJi 's equals xi.Claim 2.5.2.2: For every x 2 Sn and every 1� i�n,Pr�jfJ : b(x; rJ)�G(f(x); rJ � ei) = xigj > 12 � (2l � 1)� > 1� 12nwhere rJ def= �j2Jsj and the sj 's are independently and uniformly chosen in f0; 1gn.Proof: For every J , de�ne a 0-1 random variable �J , so that �J equals 1 if and only ifb(x; rJ)�G(f(x); rJ � ei) = xi. The reader can easily verify that each rJ is uniformly
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58 CHAPTER 2. COMPUTATIONAL DIFFICULTYdistributed in f0; 1gn. It follows that each �J equals 1 with probability s(x), which byx2Sn, is at least 12+ 12p(n) . We show that the �J 's are pairwise independent by showing thatthe rJ 's are pairwise independent. For every J 6= K we have, without loss of generality,j 2 J and k 2 K � J . Hence, for every �; � 2 f0; 1gn, we havePr �rK=� j rJ=�� = Pr �sk=� j sj=��= Pr �sk=��= Pr �rK=��and pairwise independence of the rJ 's follows. Let m def= 2l� 1. Using Chebyshev's Inequal-ity, we getPr XJ �J � 12 �m! � Pr jXJ �J � (12+ 12p(n)) �mj � 12p(n) �m!< Var(�f1g)( 12p(n))2 � (2n � p(n)2)< 14( 12p(n))2 � (2n � p(n)2)= 12nThe claim now follows. 2Recall that if �j = b(x; sj), for all j's, then �J = b(x; rJ) for all non-empty J 's. In this case zoutput by algorithm A equals x, with probability at least half. However, the �rst event hap-pens with probability 2�l = 12n�p(n)2 independently of the events analyzed in Claim 2.5.2.2.Hence, in case x2Sn, algorithm A inverts f on f(x) with probability at least 14p(jxj) (whereas,the modi�ed algorithm, A0, succeeds with probability � 12). Recalling that jSnj > 12p(n) � 2n,we conclude that, for every n 2 N , algorithm A inverts f on f(Un) with probability at least18p(n)2 . Noting that A is polynomial-time (i.e., it merely invokes G for 2n � p(n)2 = poly(n)times in addition to making a polynomial amount of other computations), a contradiction,to our hypothesis that f is strongly one-way, follows.2.5.3 * Hard-Core FunctionsWe have just seen that every one-way function can be easily modi�ed to have a hard-corepredicate. In other words, the result establishes one bit of information about the preimagewhich is hard to approximate from the value of the function. A stronger result may saythat several bits of information about the preimage are hard to approximate. For example,we may want to say that a speci�c pair of bits is hard to approximate, in the sense thatit is infeasible to guess this pair with probability signi�cantly larger than 14 . In general, a
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2.5. HARD-CORE PREDICATES 59polynomial-time function, h, is called a hard-core of a function f if no e�cient algorithmcan distinguish (f(x); h(x)) from (f(x); r), where r is a random string of length jh(x)j.For further discussion of the notion of e�cient distinguishability the reader is referred toSection 3.2. We assume for simplicity that h is length regular (see below).De�nition 2.5.3 (hard-core function): Let h : f0; 1g� 7! f0; 1g� be a polynomial-timecomputable function, satisfying jh(x)j = jh(y)j for all jxj = jyj, and let l(n) def= jh(1n)j. Thefunction h : f0; 1g� 7! f0; 1g� is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm D0, every polynomial p(�), and all su�ciently large n'sjPr (D0(f(Xn); h(Xn))=1)� Pr �D0(f(Xn); Rl(n))=1� j < 1p(n)where Xn and Rl(n) are two independent random variables the �rst uniformly distributedover f0; 1gn, and the second uniformly distributed over f0; 1gl(n),Theorem 2.5.4 Let f be an arbitrary strong one-way function, and let g2 be de�ned byg2(x; s) def= (f(x); s), where jsj= 2jxj. Let c > 0 be a constant, and l(n) def= dc log2 ne. Letbi(x; s) denote the inner-product mod 2 of the binary vectors x and (si+1; :::; si+n), wheres = (s1; :::; s2n). Then the function h(x; s) def= b1(x; s) � � �bl(jxj)(x; s) is a hard-core of thefunction g2.The proof of the theorem follows by combining a proposition concerning the structureof the speci�c function h with a general lemma concerning hard-core functions. Looselyspeaking, the proposition \reduces" the problem of approximating b(x; r) given g(x; r) tothe problem of approximating the exclusive-or of any non-empty set of the bits of h(x; s)given g2(x; s), where b and g are the hard-core and the one-way function presented in theprevious subsection. Since we know that the predicate b(x; r) cannot be approximated fromg(x; r), we conclude that no exclusive-or of the bits of h(x; s) can be approximated fromg2(x; s). The general lemma states that, for every \logarithmically shrinking" function h0(i.e., h0 satisfying jh0(x)j = O(log jxj)), the function h0 is a hard-core of a function f 0 if andonly if the exclusive-or of any non-empty subset of the bits of h0 cannot be approximatedfrom the value of f 0.Proposition 2.5.5 Let f , g2 and bi's be as above. Let I(n) � f1; 2; :::; l(n)g, n2N, be anarbitrary sequence of non-empty subsets, and let bI(jxj)(x; s) def= �i2I(jxj)bi(x; s). Then, forevery probabilistic polynomial-time algorithm A0, every polynomial p(�), and all su�cientlylarge n's Pr �A0(g2(U3n)) = bI(n)(U3n)� < 12 + 1p(n)Proof: The proof is by a \reducibility" argument. It is shown that the problem of ap-proximating b(Xn; Rn) given (f(Xn); Rn) is reducible to the problem of approximating
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60 CHAPTER 2. COMPUTATIONAL DIFFICULTYbI(n)(Xn; S2n) given (f(Xn); S2n), where Xn, Rn and S2n are independent random vari-able and the last is uniformly distributed over f0; 1g2n. The underlying observation is that,for every jsj = 2 � jxj, bI(x; s) = �i2Ibi(x; s) = b(x;�i2Isubi(s)where subi(s1; :::; s2n) def= (si+1; :::; si+n). Furthermore, the reader can verify that for everynon-empty I � f1; :::; ng, the random variable �i2Isubi(S2n) is uniformly distributed overf0; 1gn, and that given a string r 2 f0; 1gn and such a set I one can e�ciently select astring uniformly in the set fs : �i2Isubi(s) = rg. (Veri�cation of both claims is left as anexercise.)Now, assume to the contradiction, that there exists an e�cient algorithm A0, a polyno-mial p(�), and an in�nite sequence of sets (i.e., I(n)'s) and n's so thatPr �A0(g2(U3n)) = bI(n)(U3n)� � 12 + 1p(n)We �rst observe that for n's satisfying the above inequality we can �nd in probabilisticpolynomial time (in n) a set I satisfyingPr (A0(g2(U3n)) = bI(U3n)) � 12 + 12p(n)(i.e., by going over all possible I 's and experimenting with algorithm A0 on each of them).Of course we may be wrong here, but the error probability can be made exponentially small.We now present an algorithm for approximating b(x; r), from y def= f(x) and r. On inputy and r, the algorithm �rst �nds a set I as described above (this stage depends only onjxj which equals jrj). Once I is found, the algorithm uniformly select a string s so that�i2Isubi(s) = r, and return A0(y; s). Evaluation of the success probability of this algorithmis left as an exercise.Lemma 2.5.6 (Computational XOR Lemma): Let f and h be arbitrary length regularfunctions, and let l(n) def= jh(1n)j. Let D be an algorithm. Denotep def= Pr (D(f(Xn); h(Xn)) = 1) and q def= Pr �D(f(Xn); Rl(n)) = 1�where Xn and Rl are as above. Let G be an algorithm that on input y, S (and l(n)), selects runiformly in f0; 1gl(n), and outputs D(y; r)�1�(�i2Sri), where r = r1 � � �rl and ri 2 f0; 1g.Then, Pr (G(f(Xn); Il; l(n))=�i2Il(hi(Xn))) = 12 + p� q2l(n) � 1where Il is a randomly chosen non-empty subset of f1; :::; l(n)g and hi(x) denotes the ith bitof h(x).
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2.5. HARD-CORE PREDICATES 61It follows that, for logarithmically shrinking h's, the existence of an e�cient algorithm thatdistinguishes (with a gap which is not negligible in n) the random variables (f(Xn); h(Xn))and (f(Xn); Rl(n)) implies the existence of an e�cient algorithm that approximates theexclusive-or of a random non-empty subset of the bits of h(Xn) from the value of f(Xn)with an advantage that is not negligible. On the other hand, it is clear that any e�cientalgorithm, which approximates an exclusive-or of an non-empty subset of the bits of h fromthe value of f , can be easily modi�ed to distinguish (f(Xn); h(Xn)) from (f(Xn); Rl(n)).Hence, for logarithmically shrinking h's, the function h is a hard-core of a function f if andonly if the exclusive-or of any non-empty subset of the bits of h cannot be approximatedfrom the value of f .Proof: All that is required is to evaluate the success probability of algorithm G. Westart by �xing an x 2 f0; 1gn and evaluating Pr(G(f(x); Il; l) = �i2Il(hi(x)), where Il is auniformly chosen non-empty subset of f1; :::; lg and l def= l(n). Let B denote the set of allnon-empty subsets of f1; :::; lg. De�ne, for every S 2 B, a relation �S so that y �S z if andonly if �i2Syi = �i2Szi, where y=y1 � � �yl and z=z1 � � �zl. By the de�nition of G, it followsthat on input (f(x); S; l) and random choice r 2 f0; 1gl, algorithm G outputs �i2S(hi(x))if and only if either \D(f(x); r) = 1 and r �S h(x)" or \D(f(x); r) = 0 and r 6�S h(x)".By elementary manipulations, we gets(x) def= Pr(G(f(x); Il; l) = �i2Il(hi(x)))= XS2B 1jBjPr(G(f(x); S; l) = �i2S(hi(x))= XS2B 12 � jBj (Pr(D(f(x); Rl)=1 jRl �S h(x)) + Pr(D(f(x); Rl)=0 jRl 6�S h(x)))= 12 + 12jBj XS2B (Pr(D(f(x); Rl)=1 jRl �S h(x))� Pr(D(f(x); Rl)=1 jRl 6�S h(x)))= 12 + 12jBj � 12l�1 �0@XS2B Xr�Sh(x)Pr(D(f(x); r)=1)�XS2B Xr 6�Sh(x)Pr(D(f(x); x)=1)1A= 12 + 12l � jBj �0@Xr XS2E(r;h(x)) Pr(D(f(x); r)=1)�Xr XS2N(r;h(x)) Pr(D(f(x); r)=1)1Awhere E(r; z) def= fS 2 B : r �S zg and N(r; z) def= fS 2 B : r 6�S zg. Observe that forevery r 6= z it holds that jN(r; z)j = 2l�1 (and jE(r; z)j = 2l�1 � 1). On the other hand,E(z; z) = B (and N(z; z) = ;). Hence, we gets(x) = 12 + 12ljBj Xr 6=h(x) �(2l�1 � 1) � Pr(D(f(x); r) = 1)� 2n�1 � Pr(D(f(x); r) = 1)�+ 12ljBj � jBj � Pr(D(f(x); h(x)) = 1)
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62 CHAPTER 2. COMPUTATIONAL DIFFICULTY= 12 + 1jBj � (Pr(D(f(x); h(x)) = 1)� Pr(D(f(x); Rn) = 1))Thus E(s(Xn)) = 12 + 1jBj � (Pr(D(f(Xn); h(Xn)) = 1)� Pr(D(f(Xn); Rn) = 1))and the lemma follows.2.6 * E�cient Ampli�cation of One-way FunctionsThe ampli�cation of weak one-way functions into strong ones, presented in Theorem 2.3.2,has no practical value. Recall that this ampli�cation transforms a function f which is hard toinvert on a non-negligible fraction (i.e., 1p(n)) of the strings of length n into a function g whichis hard to invert on all but a negligible fraction of the strings of length n2p(n). Speci�cally,it is shown that an algorithm running in time T (n) which inverts g on a �(n) fraction of thestrings of length n2p(n) yields an algorithm running in time poly(p(n); n; 1�(n)) �T (n) whichinverts f on a 1� 1p(n) fraction of the strings of length n. Hence, if f is \hard to invert inpractice on a 11000 fraction of the strings of length 100" then all we can say is that g is \hardto invert in practice on a 9991000 fraction of the strings of length 1,000,000". In contrast, ane�cient ampli�cation of one-way functions, as given below, should relate the di�culty ofinverting the (weak one-way) function f on strings of length n to the di�culty of invertingthe (strong one-way) function g on the strings of length O(n) (rather than relating it to theto the di�culty of inverting the function g on the strings of length poly(n)). The followingde�nition is natural for a general discussion of ampli�cation of one-way functions.De�nition 2.6.1 (quantitative one-wayness): Let T :N 7!N and � :N 7!R be polynomial-time computable functions. A polynomial-time computable function f : f0; 1g� 7! f0; 1g� iscalled �(�)-one-way with respect to time T (�) if for every algorithm, A0, with running-timebounded by T (�) and all su�ciently large n'sPr �A0(f(Un)) 62 f�1f(Un)� > �(n)Using this terminology we review what we know already about ampli�cation of one-way functions. A function f is weakly one-way if there exists a polynomial p(�) so that fis 1p(�) -one-way with respect to polynomial time. A function f is strongly one-way if, forevery polynomial p(�), the f is (1 � 1p(�))-one-way with respect to polynomial time. Theampli�cation result of Theorem 2.3.2 can be generalized and restated as follows. If thereexist a polynomial-time computable function f which is 1poly(�)-one-way with respect to timeT (�) then there exist a polynomial-time computable function g which is (1� 1poly(�))-one-way
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2.6. * EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS 63with respect to time T 0(�), where T 0(poly(n)) = T (n) (i.e., in other words, T 0(n) = T (n�)for some � > 0). In contrast, an e�cient ampli�cation of one-way functions, as given below,should state that the above should hold with respect to T 0(O(n)) = T (n) (i.e., in otherwords, T 0(n) = T (� � n) for some � > 0). Such a result can be obtained for regular one-way functions. A function f is called regular if there exists a polynomial-time computablefunction m :N 7!N and a polynomial p(�) so that, for every y in the range of f , the numberof preimages (of length n) of y under f , is between m(n)p(n) and m(n) � p(n). In this book weonly review the result for one-way permutations (i.e., length preserving 1-1 functions).Theorem 2.6.2 (E�cient ampli�cation of one-way permutations): Let p(�) be a polynomialand T :N 7!N be a polynomial-time computable function. Suppose that f is a polynomial-time computable permutation which is 1p(�) -one-way with respect to time T (�). Then, thereexists a polynomial-time computable permutation F so that, for every polynomial-time com-putable function � :N 7! [0; 1], the function F is (1� �(�))-one-way with respect to time T 0�(�),where T 0�(O(n))def= �(n)2poly(n) � T (n).The constants, in the O-notation and in the poly-notation, depend on the polynomial p(�).The key to the ampli�cation of a one-way permutation f is to apply f on many di�erentarguments. In the proof of Theorem 2.3.2, f is applied to unrelated arguments (whichare disjoint parts of the input). This makes the proof relatively easy, but also makes theconstruction very ine�cient. Instead, in the construction presented in the proof of thecurrent theorem, we apply the one-way permutation f on related arguments. The �rst ideawhich comes to mind is to apply f iteratively many times, each time on the value resultingfrom the previous application. This will not help if easy instances for the inverting algorithmkeep being mapped, by f , to themselves. We cannot just hope that this will not happen.The idea is to use randomization between successive applications. It is important thatwe use only a small amount of randomization,, since the \randomization" will be encodedinto the argument of the constructed function. The randomization, between successiveapplications of f , takes the form of a random step on an expander graph. Hence a fewwords about these graphs and random walks on them are in place.A graph G=(V;E) is called an (n; d; c)-expander if it has n vertices (i.e., jV j=n), everyvertex in V has degree d (i.e., G is d-regular), and G has the following expansion property(with expansion factor c > 0): for every subset S � V if jSj � n2 then jN(S)j � c � jSj,where N(S) denotes the vertices in V � S which have neighbour in S (i.e., N(S) def= fu2V �S : 9v 2 S s.t. (u; v) 2Eg). By explicitly constructed expanders we mean a family ofgraphs fGngn2N so that Gn is a (22n; d; c) expander (d and c are the same for all graphsin the family) having a polynomial-time algorithm that on input a description of a vertexin an expander outputs its adjacency list (vertices in Gn are represented by binary stringsof length 2n). Such expender families do exist. By a random walk on a graph we meanthe sequence of vertices visited by starting at a uniformly chosen vertex and randomlyselecting at each step one of the neighbouring vertices of the current vertex, with uniform
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64 CHAPTER 2. COMPUTATIONAL DIFFICULTYprobability distribution. The expanding property implies (via a non-trivial proof) that thevertices along random walks on an expander have surprisingly strong \random properties".In particular, for every l, the probability that vertices along an O(l)-step long randomwalk hit a subset, S, is approximately the same as the probability that at least one of lindependently chosen vertices hits S.We remind the reader that we are interested in successively applying the permutationf , while interleaving randomization steps between successive applications. Hence, beforeapplying permutation f , to the result of the previous application, we take one random stepon an expender. Namely, we associate the domain of the given one-way permutation withthe vertex set of the expander. Our construction alternatively applies the given one-waypermutation, f , and randomly moves from the vertex just reached to one of its neighbours.A key observation is that the composition of an expander with any permutation on itsvertices yields an expander (with the same expansion properties). Combining the propertiesof random walks on expanders and a \reducibility" argument, the construction is showedto amplify the one-wayness of the given permutation in an e�cient manner.Construction 2.6.3 Let fGngn2N be a family of d-regular graphs, so that Gn has vertexset f0; 1gn and self-loops at every vertex. Consider a labeling of the edges incident to eachvertex (using the labels 1; 2; :::; d). De�ne gl(x) be the vertex reachable from vertex x byfollowing the edge labeled l. Let f :f0; 1g� 7!f0; 1g� be a 1-1 length preserving function. Forevery k � 0, x 2 f0; 1gn, and �1; �2; :::; �k 2 f1; 2; :::; dg, de�neF (x; �1�2:::�k) = �1; F (g�1(f(x)); �2; :::; �k)(with F (x; �) = x). For every k :N 7!N, de�ne Fk(�)(�) def= F (x; �1; ::; �t), where t = k(jxj)and �i2f1; 2; :::; dg.Proposition 2.6.4 Let fGng, f , k :N 7!N, and Fk(�) be as in Construction 2.6.3 (above),and suppose that fGngn2N is an explicitly constructed family of d-regular expander graphs,and f is polynomial-time computable. Suppose that � :N 7!R and T :N 7!N are polynomial-time computable, and f is �(�)-one-way with respect to time T :N!N. Then, for everypolynomial-time computable " :N 7!R, the function Fk(�) is polynomial-time computable aswell as (1 � "(�))�(�)-one-way with respect to time T 0 : N! N, where �(n) def= (1 � (1 ��(n))k(n)=2) and T 0(n+ k(n)�log2 d) def= "(n)2�(n)k(n)�n � T (n).Theorem 2.6.2 follows by applying the proposition � + 1 times, where � is the degree ofthe polynomial p(�) (speci�ed in the hypothesis that f is 1p(�) -one-way). In all applicationsof the proposition we use k(n) def= 3n. In the �rst � applications we use any "(n) < 17 . Thefunction resulting from the ith application of the proposition, for i � �, is 12n��i -one-way.In particular, after � applications, the resulting function is 12 -one-way. (It seems that the
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2.6. * EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS 65notion of 12-one-wayness is worthy of special attention, and deserves a name as mostly one-way.) In the last (i.e., �+1st) application we use "(n) = �(n). The function resulting of thelast (i.e., � + 1st) application of the proposition satis�es the statement of Theorem 2.6.2.The proposition itself is proven as follows. First, we use the fact that f is a per-mutation to show, that the graph Gf = (V;Ef), obtained from G = (V;E) by lettingEf def= f(u; f(v)) : (u; v) 2 Eg, has the same expansion property as the graph G. Next,we use the known relation between the expansion constant of a graph and the ratio of thetwo largest eigenvalues of its adjacency matrix to prove that with appropriate choice of thefamily fGng we can have this ratio bounded below by 1p2 . Finally, we combine the followingtwo Lemmata.Lemma 2.6.5 (RandomWalk Lemma): Let G be a d-regular graph having a normalized (byfactor 1d) adjacency matrix for which the ratio of the �rst and second eigenvalues is smallerthan 1p2 . Let � � 1=2 and S be a subset of measure � of the expender's nodes. Then arandom walk of length 2k on the expander hits S with probability at least 1� (1� �)k.The proof of the Random Walk Lemma regards probability distributions oven the ex-pander vertex-set as linear combinations of the eigenvectors of the adjacency matrix. It canbe shown that the largest eigenvalue is 1, and the eigenvector associated to it is the uniformdistribution. Going step by step, we bound from above the probability mass assigned torandom walks which do not pass through the set S. At each step, the component of thecurrent distribution, which is in the direction of the �rst eigenvector, losses a factor � ofits weight (this represents the fraction of the paths which enter S in the current step). Theproblem is that we cannot make a similar statement with respect to the other components.Yet, using the bound on the second eigenvalue, it can be shown that in each step thesecomponents are \pushed" towards the direction of the �rst eigenvector. The details, beingof little relevance to the topic of the book, are omitted.Lemma 2.6.6 (Reducibility Lemma): Let �; � :N 7! [0; 1], and Gf;n be a d-regular graph on2n vertices satisfying the following random path property: for every measure �(n) subset,S, of Gf;n's nodes, at least a fraction �(n+ k(n) � log2 d) of the paths of length k(n) passesthrough a node in S (typically �(n+k(n) log2 d) > �(n)). Suppose that f is (�(�)+ exp(�))-one-way with respect to time T (�). Then, for every polynomial-time computable " :N 7!R,the function Fk(�), de�ned above, is (1� "(�))�(�)-one-way with respect to time T 0 :N!N,where �(n+ k(n) log2 d) def= (1� (1� �(n))k(n)=2) and T 0(n+ k(n) log2 d) def= "(n)2�(n)k(n)n � T (n).Proof Sketch: The proof is by a \reducibility argument". Assume for contradiction thatFk(�) de�ned as above can be inverted in time T 0(�) with probability at least 1 � (1 �"(m)) � �(m) on inputs of length m def= n + k(n) log2 d. Amplify A to invert Fk(�) withoverwhelming probability on a 1 � �(m) fraction of the inputs of length m (originally Ainverts each such point with probability > "(m), as we can ignore inputs inverted withprobability smaller than "(m)). Note that inputs to A correspond to k(n)-long paths on
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66 CHAPTER 2. COMPUTATIONAL DIFFICULTYthe graph Gn. Consider the set, denoted Bn, of paths (x; p) such that A inverts Fk(n)(x; p)with overwhelming probability.In the sequel, we use the shorthands k def= k(n), m def= n + k log2 d, " def= "(m), � def= �(m),�def= �(n), and B def=Bn. Let Pv be the set of all k-long paths which pass through v, and Bvbe the subset of B containing paths which pass through v (i.e., Bv = B \ Pv). De�ne v asgood if jBvj=jPvj � "�=k (and bad otherwise). Intuitively, a vertex v is called good if at leasta "�=k fraction of the paths going through v can be inverted by A. Let B0 = B �[v badBv;namely B0 contain all \invertible" paths which pass solely through good nodes. Clearly,Claim 2.6.6.1: The measure of B0 in the set of all paths is greater than 1� �.Proof: Denote by �(S) the measure of the set S in the set of all paths. Then�(B0) = �(B) � �([v badBv)� 1� (1� �)� � Xv bad�(Bv)> 1� � + �� �Xv (��=k)�(Pv)> 1� � 2Using the random path property, we haveClaim 2.6.6.2: The measure of good nodes is at least 1� �.Proof: Otherwise, let S be the set of bad nodes. If S has measure � then, by the randompath property, it follows the fraction of path which pass through vertices of S is at least �.Hence, B0, which cannot contain such paths can contain only a 1� � fraction of all pathsin contradiction to Claim 2.6.6.1. 2The following algorithm for inverting f , is quite natural. The algorithm uses as subroutinean algorithm, denoted A, for inverting Fk(�). Inverting f on y is done by placing y on arandom point along a randomly selected path p, taking a walk from y according to the su�xof p, and asking A for the preimage of the resulting pair under Fk.Algorithm for inverting f :On input y, repeat kn�� times:1. Select randomly i2f1; 2; :::; kg, and �1; �2; :::; �k2f1; 2; :::; dg;2. Compute y0 = F (g�i(y); �i+1:::�k);3. Invoke A to get x0  A(�1�2; :::; �k; y0);4. Compute x = F (x0; �1:::�i�1);5. If f(x) = y then halt and output x.Analysis of the inverting algorithm (for a good x):Since x is good, a random path going through it (selected above) corresponds to an\invertible path" with probability at least ��=k. If such a path is selected then we obtain
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2.7. MISCELLANEOUS 67the inverse of f(x) with overwhelming probability. The algorithm for inverting f repeatsthe process su�ciently many times to guarantee overwhelming probability of selecting an\invertible path".By Claim 2.6.6.2, the good x's constitute a 1 � � fraction of all n-bit strings. Hence, theexistence of an algorithm inverting Fk(�), in time T 0(�) with probability at least 1 � (1 �"(�))�(�), implies the existence of an algorithm inverting f , in time T (�) with probability atleast 1��(�)�exp(�). This constitutes a contradiction to the hypothesis of the lemma, andhence the lemma follows.2.7 Miscellaneous2.7.1 Historical NotesThe notion of a one-way function originates from the paper of Di�e and Hellman [DH76].Weak one-way functions were introduced by Yao [Y82]. The RSA function was introducedby Rivest, Shamir and Adleman [RSA78], whereas squaring modulo a composite was in-troduced and studied by Rabin [R79]. The suggestion for basing one-way functions on thebelieved intractability of decoding random linear codes is taken from [BMT78,GKL88], andthe suggestion to base one-way functions on the subset sum problem is taken from [IN89].The equivalence of existence of weak and strong one-way functions is implicit in Yao'swork [Y82]. The existence of universal one-way functions is stated in Levin's work [L85].The e�cient ampli�cation of one-way functions, presented in Section 2.6, is taken fromGoldreich el. al. [GILVZ], which in turn uses ideas originating in [AKS].Author's Note: GILVZ = Goldreich, Impagliazzo, Levin, Venkatesan and Zuck-erman (FOCS90); AKS = Ajtai, Komolos and Szemeredi (STOC87).The concept of hard-core predicates originates from the work of Blum andMicali [BM82].That work also proves that a particular predicate constitutes a hard-core for the \DLPfunction" (i.e., exponentiation in a �nite �eld), provided that this function is one-way.Consequently, Yao proved that the existence of one-way functions implies the existenceof hard-core predicates [Y82]. However, Yao's construction, which is analogous to thecontraction used for the proof of Theorem 2.3.2, is of little practical value. The fact that theinner-product mod 2 is a hard-core for any one-way function (of the form g(x; r)=(f(x); r))was proven by Goldreich and Levin [GL89]. The proof presented in this book, which followsideas originating in [ACGS84], is due to Charles Racko�.Hard-core predicates and functions for speci�c collections of permutations were sug-gested in [BM82,LW,K88,ACGS84,VV84]. Speci�cally, Kalisky [K88], extending ideas of[BM82,LW], proves that the intractability of various discrete logarithm problems yieldshard-core functions for the related exponentiation permutations. Alexi el. al. [ACGS84],building on work by Ben-Or et. al. [BCS83], prove that the intractability of factoring yieldshard-core functions for permutations induced by squaring modulo a composite number.
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68 CHAPTER 2. COMPUTATIONAL DIFFICULTY2.7.2 Suggestion for Further ReadingOur exposition of the RSA and Rabin functions is quite sparse in details. In particular,the computational problems of generating uniformly distributed \certi�ed primes" and of\primality checking" deserve much more attention. A probabilistic polynomial-time algo-rithm for generating uniformly distributed primes together with corresponding certi�catesof primality has been presented by Bach [BachPhd]. The certi�cate produced, by this algo-rithm, for a prime P consists of the prime factorization of P � 1, together with certi�catesfor primality of these factors. This recursive form of certi�cates for primality originates invon-Pratt's proof that the set of primes is in NP (cf. [vP]). However, the above procedureis not very practical. Instead, when using the RSA (or Rabin) function in practice, one islikely to prefer an algorithm that generates integers at random and checks them for primalityusing fast primality checkers such as the algorithms presented in [SSprime,Rprime]. Oneshould note, however, that these algorithms do not produce certi�cates for primality, andthat with some (small) probability may assert that a composite number is a prime. Proba-bilistic polynomial-time algorithms (yet not practical ones) that, given a prime, produce acerti�cate for primality, are presented in [GKprime,AHprime]Author's Note: SSprime = Solovay and Strassen, Rprime = Rabin, GKprime =Goldwasser and Kilian, AHprime = Adleman and Haung.The subset sum problem is known to be easy in two special cases. One case is the case inwhich the input sequence is constructed based on a simple \hidden sequence". For example,Merkle and Hellman [MH78], suggested to construct an instance of the subset-sum problembased on a \hidden super increasing sequence" as follows. Let s1; :::; sn;M def= sn+1 be asequence satisfying, si > Pi�1j=1 sj, for every i, and let w be relatively prime to M . Sucha sequence is called super increasing. The instance consists of (x1; :::; xn) and Pi2I xi, forI�f1; :::; ng, where xi def= w � si mod M . It can be shown that knowledge of both w and Mallows easy solution of the subset sum problem for the above instance. The hope was that,when w and M are not given, solving the subset-sum problem is hard even for instancesgenerated based on a super increasing sequence (and this would lead to a trapdoor one-wayfunction). However, the hope did not materialize. Shamir presented an e�cient algorithmfor solving the subset-sum problem for instances with a hidden super increasing sequence[S82]. Another case for which the subset sum problem is known to be easy is the case oflow density instances. In these instances the length of the elements in binary representationis considerably larger than the number of elements (i.e. jx1j= � � � = jxnj = (1 + �)n forsome constant � > 0). For further details consult the original work of Lagarias and Odlyzko[LO85] and the later survey of Brickell and Odlyzko [BO88].For further details on hard-core functions for the RSA and Rabin functions the reader isdirected to Alexi el. al. [ACGS84]. For further details on hard-core functions for the \DLPfunction" the reader is directed to Kalisky's work [K88].The theory of average-case complexity, initiated by Levin [L84], is somewhat related tothe notion of one-way functions. For a survey of this theory we refer the reader to [BCGL].
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2.7. MISCELLANEOUS 69Loosely speaking, the di�erence is that in our context it is required that the (e�cient)\generator" of hard (on-the-average) instances can easily solve them himself, whereas inLevin's work the instances are hard (on-the-average) to solve even for the \generator".However, the notion of average-case reducibility introduced by Levin is relevant also in ourcontext.Author's Note: BCGL = Ben-David, Chor, Goldreich and Luby (JCSS, April1992).Readers interested in further details about the best algorithms known for the factoringproblem are directed to Pomerance's survey [P82]. Further details on the best algorithmsknown for the discrete logarithm problem (DLP) can be found in Odlyzko's survey [O84].In addition, the reader is referred to Bach and Shalit's book on computational numbertheory [BS92book]. Further details about expander graphs, and random walks on them,can be found in the book of Alon and Spencer [AS91book].Author's Note: Updated versions of the surveys by Pomerance and Odlyzko doexist.2.7.3 Open ProblemsThe e�cient ampli�cation of one-way functions, originating in [GILVZ], is only known towork for special types of functions (e.g., regular ones). We believe that presenting (andproving) an e�cient ampli�cation of arbitrary one-way functions is a very important openproblem. It may also be instrumental for more e�cient constructions of pseudorandomgenerators based on arbitrary one-way functions (see Section 3.5).An open problem of more practical importance is to try to present hard-core functionswith larger range for the RSA and Rabin functions. Speci�cally, assuming that squaringmod N is one-way, is the function which returns the �rst half of x a hard-core of squaringmod N? Some support to a positive answer is provided by the work of Shamir and Shrift[SS90]. A positive answer would allow to construct extremely e�cient pseudorandomgenerators and public-key encryption schemes based on the conjectured intractability of thefactoring problem.2.7.4 ExercisesExercise 1: Closing the gap between the motivating discussion and the de�nition of one-way functions: We say that a function h :f0; 1g� 7!f0; 1g� is hard on the average buteasy with auxiliary input if there exists a probabilistic polynomial-time algorithm, G,such that1. There exists a polynomial-time algorithm, A, such that A(x; y) = h(x) for every(x; y) in the range of G (i.e., for every (x; y) so that (x; y) is a possible output ofG(1n) for some input 1n).
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70 CHAPTER 2. COMPUTATIONAL DIFFICULTY2. for every probabilistic polynomial-time algorithm, A0, every polynomial p(�), andall su�ciently large n's Pr(A0(Xn)=h(Xn)) < 1p(n)where (Xn; Yn) def= G(1n) is a random variable assigned the output of G.Prove that if there exist \hard on the average but easy with auxiliary input" functionsthen one-way functions exist.Exercise 2: One-way functions and the P vs. NP question (part 1): Prove that theexistence of one-way functions implies P 6= NP.Guideline: For every function f de�ne Lf 2 NP so that if Lf 2 P then there exists apolynomial-time algorithm for inverting f .Exercise 3: One-way functions and the P vs. NP question (part 2): Assuming thatP 6= NP, construct a function f so that the following three claims hold:1. f is polynomial-time computable;2. there is no polynomial-time algorithm that always inverts f (i.e., successfullyinverts f on every y in the range of f); and3. f is not (even weakly) one-way. Furthermore, there exists a polynomial-timealgorithm which inverts f with exponentially small failure probability, where theprobability space is (again) of all possible choices of input (i.e., f(x)) and internalcoin tosses for the algorithm.Guideline: Consider the function fsat de�ned so that fsat(�;�) = (�; 1) if � is a satis-fying assignment to propositional formulae �, and fsat(�; �) = (�; 0) otherwise. Modifythis function so that it is easy to invert on most instances, yet inverting fsat is reducibleto inverting its modi�cation.Exercise 4: Let f be a strongly one-way function. Prove that for every probabilisticpolynomial-time algorithm A, and for every polynomial p(�) the setBA;p def= fx : Pr(A(f(x))2f�1f(x)) � 1p(jxj)ghas negligible density in the set of all strings (i.e., for every polynomial q(�) and allsu�ciently large n it holds that jB\f0;1gn2n < 1q(n)).Exercise 5: Another de�nition of non-uniformly one-way functions: Consider the de�ni-tion resulting from De�nition 2.2.6 by allowing the circuits to be probabilistic (i.e.,have an auxiliary input which is uniformly selected). Prove that the resulting newde�nition is equivalent to the original one.
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2.7. MISCELLANEOUS 71Exercise 6: De�ne fadd : f0; 1g� 7! f0; 1g� so that fadd(xy) = prime(x) + prime(y), wherejxj = jyj and prime(z) is the smallest prime which is larger than z. Prove that fadd isnot a one-way function.Guideline: Don't try to capitalize on the possibility that prime(N) is too large, e.g.,larger than N + poly(logN). It is unlikely that such a result, in number theory, can beproven. Furthermore, it is generally believed that there exists a constant c such that, forall integer N � 2, it holds that prime(N) < N + logc2 N . Hence, it is likely that fadd ispolynomial-time computable.Exercise 7: (Suggested by Bao Feng): Refute the following conjecture.For every (length preserving) one-way function f , the function f 0(x) def=f(x)� x is one-way too.Guideline: Let g be a (length preserving) one-way function, and consider f de�ned onpairs of strings of the same length so that f(y; z) def= (g(y) � z; z).Exercise 8: Prove that one-way functions cannot have a polynomial-size range. Namely,prove that if f is (even weakly) one-way then for every polynomial p(�) and all su�-ciently large n's it holds jff(x) : x2f0; 1gngj > p(n).Exercise 9: Prove that one-way functions cannot have polynomially bounded cycles. Namely,for every function f de�ne cycf(x) to be the smallest positive integer i such that ap-plying f for i times on x yields x. Prove that if f is (even weakly) one-way then forevery polynomial p(�) and all su�ciently large n's it holds E(cycf (Un)) > p(n), whereUn is a random variable uniformly distributed over f0; 1gn.Exercise 10: on the improbability of strengening Theorem 2.3.2 (part 1): Suppose thatthe de�nition of weak one-way function is further weakened so that it is required thatevery probabilistic polynomial-time algorithm fails to inverts the function with non-negligible probability. That is, the order of quanti�ers in De�nition 2.2.2 is reversed(we now have \for every algorithm there exists a polynomial" rather than \there existsa polynomial so that for every algorithm"). Demonstrate the di�culty of extendingthe proof of Theorem 2.3.2 to this case.Guideline: Suppose that there exists a family of algorithms, one per each polynomialt(�), so that an algorithm with time bound t(n) fails to invert the function with probability1=t(n). Demonstrate the plausibility of such a family.Exercise 11: on the improbability of strengening Theorem 2.3.2 (part 2) (due to S. Rudich):Suppose that the de�nition of a strong one-way function is further strengthen so thatit is required that every probabilistic polynomial-time algorithm fails to inverts thefunction with some speci�ed negligible probability (e.g., 2�pn). Demonstrate the dif-�culty of extending the proof of Theorem 2.3.2 to this case.
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72 CHAPTER 2. COMPUTATIONAL DIFFICULTYGuideline: Suppose that that we construct the strong one-way function g as in theoriginal proof. Note that you can prove that any algorithm that works separately on eachblock of the function g, can invert it only with exponentially low probability. However,there may be an inverting algorithm, A, that inverts the function g with probability �.Show that any inverting algorithm for the weakly one-way function f that uses algorithmA as a black-box \must" invoke it at least 1� times.Exercise 12: collections of one-way functions and one-way functions: Represent a collec-tion of one-way functions, (I;D; F ), as a single one-way function. Given a one-wayfunction f , represent it as a collection of one-way functions.(Remark: the second direction is quite trivial.)Exercise 13: a convention for collections of one-way functions: Show that without loss ofgenerality, algorithms I and D of a collection (of one-way functions) can be modi�edso that each of them uses a number of coins which exactly equals the input length.(Hint: Apply padding �rst on 1n, next on the coin tosses and output of I, and �nally to the cointosses of D.)Exercise 14: justi�cation for a convention concerning one-way collections: Show that giv-ing the index of the function to the inverting algorithm is essential for a meaningfulde�nition of a collection of one-way functions. (Hint: Consider a collection ffi : f0; 1gjij 7!f0; 1gjijg where fi(x) = x� i.)Exercise 15: Rabin's collection and factoring: Show that the Rabin collection is one-wayif and only if factoring integers which are the product of two primes of equal binaryexpsansion is intractable in a strong sense (i.e., every e�cient algorithm succeeds withnegligible probability).Guideline: For one direction use the Chinese Reminder Theorem and an e�cient algo-rithm for extracting square roots modulo a prime. For the other direction observe thatan algorithm for extracting square roots modulo a composite N can be use to get twointegers x and y such that x2 � y2 mod N and yet x 6� �y mod N . Also, note that sucha pair, (x; y), yields a split of N (i.e., two integers a; b 6= 1 such that N = a � b).Exercise 16: clawfree collections imply one-way functions: Let (I;D; F ) be a clawfreecollection of functions (see Subsection 2.4.5). Prove that, for every �f0; 1g, the triplet(I;D; F�), where F�(i; x) def= F (�; i; x), is a collection of strong one-way functions.Repeat the exercise when replacing the word `functions' by `permutations'. (I;D; F )be a clawfree collection of functionsExercise 17: more on the inadequacy of graph isomorphism as a basis for one-way func-tions: Consider another suggestion to base one-way functions on the conjectureddi�culty of the Graph Isomorphism problem. This time we present a collection offunctions, de�ned by the algorithmic triplet (IGI; DGI; FGI). On input 1n, algorithmIGI selects uniformly a d(n)-regular graph on n vertices (i.e., each of the n vertices in
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2.7. MISCELLANEOUS 73the graph has degree d(n)). On input a graph on n vertices, algorithm DGI randomlyselects a permutation in the symmetric group of n elements (i.e., the set of permuta-tions of n elements). On input a (n-vertex) graph G and a (n-element) permutation�, algorithm FGI returns fG(�) def= �G.1. Present a polynomial-time implementation of IGI.2. In light of the known algorithms for the Graph Isomorphism problem, whichvalues of d(n) should be de�nitely avoided?3. Using a known algorithm, prove that the above collection does not have a one-way property, no matter which function d(�) one uses.(A search into the relevant literature is indeed required for items (2) and (3).)Exercise 18: Assuming the existence of one-way functions, prove that there exist a one-way function f so that no single bit of the preimage constitutes a hard-core predicate.Guideline: Given a one-way function f construct a function g so that g(x; I; J) def=(f(xI\J); xI[J ; I; J), where I;J � f1; 2; :::jxjg, and xS denotes the string resulting bytaking only the bits of x with positions in the set S (i.e., xi1;:::;is def= xi1 � � �xis , wherex = x1 � � �xjxj).Exercise 19: hard-core predicate for a 1-1 function implies that the function is one-way:Let f be a 1-1 function (you may assume for simplicity that it is length preserving)and let b be a hard-core for f .1. Prove that if f is polynomial-time computable then it is strongly one-way.2. Prove that (regardless of whether f is polynomial-time computable or not) fmust be weakly one-way. Furthermore, for every � > 12 , the function f cannotbe inverted on a � fraction of the instances.Exercise 20: An unbiased hard-core predicate (suggested by Erez Petrank): Assuming theexistence of one-way functions, prove the existence of hardcore predicates which areunbiased (i.e., the predicate b satis�es Pr(b(Un)=1) = 12).Guideline: Slightly modify the predicate de�ned in Theorem 2.5.2.Exercise 21: In continuation to the proof of Theorem 2.5.2, we present guidelines for amore e�cient inverting algorithm. In the sequel it will be more convenient to usearithmetic of reals instead of that of Boolean. Hence, we denote b0(x; r) = (�1)b(r;x)and G0(y; r) = (�1)G(y;r).1. Prove that for every x it holds that E(b0(x; r) �G0(f(x); r+ ei)) = s0(x) � (�1)xi,where s0(x) def= 2 � (s(x)� 12).
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74 CHAPTER 2. COMPUTATIONAL DIFFICULTY2. Let v be an l-dimensional Boolean vector, and let R be a uniformly chosen l-by-nBoolean matrix. Prove that for every v 6= u 2 f0; 1gl it holds that vR and uRare pairwise independent and uniformly distributed in f0; 1gn.3. Prove that b0(x; vR) = b0(xRT ; v), for every x 2 f0; 1gn and v 2 f0; 1gl.4. Prove that, with probability at least 12 , there exists � 2 f0; 1gl so that for every1� i�n the sign of Pv2f0;1gl b0(�; v)G0(f(x); vR+ ei)) equals the sign of (�1)xi.(Hint: � def= xRT .)5. Let B be an 2l-by-2l matrix with the (�; v)-entry being b0(�; v), and let gi be an2l-dimensional vector with the vth entry equal G0(f(x); vR+ ei). The invertingalgorithm computes zi  Bgi, for all i's, and forms a matrix Z in which thecolumns are the zi's. The output is a row that when applying f to it yields f(x).Evaluate the success probability of the algorithm. Using the special structure ofmatrix B, show that the product Bgi can be computed in time l � 2l.Hint: B is the Sylvester matrix, which can be written recursively asSk =  Sk�1Sk�1Sk�1Sk�1 !where S0 = +1 and M means 
ipping the +1 entries of M to �1 and vice versa.
Author's Note: First draft written mainly in Summer of 1991.
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