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Preface

The current manuscript is a preliminary draft of the chapter on gen-
eral protocols (Chapter 7) of the second volume of the work Foun-
dations of Cryptography.

The bigger picture. The current manuscript is part of a working draft of
Part 2 of the three-part work Foundations of Cryptography (see Figure 0.1). The
three parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-
sics. The first part (containing Chapters 1-4) has been published by Cambridge
University Press (in June 2001). The second part, counsists of Chapters 5-7 (re-
garding Encryptioni Schemes, Signatures Schemes, and General Cryptographic
Protocols, respectively). We hope to publish the second part with Cambridge
University Press within a few years.

Part 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proofs
Part 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols
Part 3: Beyond the Basics

Figure 0.1: Organization of this work
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The partition of the work into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple of years, and publish it without waiting for the third part.

Prerequisites. The most relevant background for this text is provided by
basic knowledge of algorithms (including randomized ones), computability and
elementary probability theory. Background on (computational) number theory,
which is required for specific implementations of certain constructs, is not really
required here.

Using this text. The text is intended as part of a work that is aimed to serve
both as a textbook and a reference text. That is, it is aimed at serving both the
beginner and the expert. In order to achieve this aim, the presentation of the
basic material is very detailed so to allow a typical CS-undergraduate to follow
it. An advanced student (and certainly an expert) will find the pace (in these
parts) way too slow. However, an attempt was made to allow the latter reader
to easily skip details obvious to him/her. In particular, proofs are typically
presented in a modular way. We start with a high-level sketch of the main ideas,
and only later pass to the technical details. Passage from high-level descriptions
to lower level details is typically marked by phrases such as details follow.

In a few places, we provide straightforward but tedious details in in-
dented paragraphs as this one. In some other (even fewer) places such
paragraphs provide technical proofs of claims that are of marginal rele-
vance to the topic of the book.

More advanced material is typically presented at a faster pace and with less
details. Thus, we hope that the attempt to satisfy a wide range of readers will
not harm any of them.

Teaching. The material presented in the full (three-volume) work is, on one
hand, way beyond what one may want to cover in a course, and on the other
hand falls very short of what one may want to know about Cryptography in
general. To assist these conflicting needs we make a distinction between basic
and advanced material, and provide suggestions for further reading (in the last
section of each chapter). In particular, sections, subsections, and subsubsections
marked by an asterisk (*) are intended for advanced reading.
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Chapter 7

General Cryptographic
Protocols

The design of secure protocols that implement arbitrary desired functionalities
is a major part of modern cryptography. Taking the opposite perspective, the
design of any cryptographic scheme may be viewed as the design of a secure
protocol for implementing a suitable functionality. Still, we believe that it make
sense to differentiate between basic cryptographic primitives (which involve little
interaction) like encryption and signature schemes on one hand, and general
cryptographic protocols on the other hand.

In this chapter we consider general results concerning secure multi-party
computations, where the two-party case is an important special case. In a nut-
shell, these results assert that one can construct protocols for securely computing
any desirable multi-party functionality (see terminology below). Indeed, what is
striking about these results is their generality, and we believe that the wonder is
not diminished by the (various alternative) conditions under which these results
hold.

Our focus on the general study of secure multi-party computation (rather
than on protocols for solving specific problems) is natural in the context of the
theoretical treatment of the subject matter. We wish to highlight the importance
of this general study to practice. Firstly, this study clarifies fundamental issues
regarding security in a multi-party environment. Secondly, it draws the lines
between what is possible in principle and what is not. Thirdly, it develops
general techniques for design of secure protocols. And last, sometimes, it may
even yield schemes (or modules) that may be incorporated in practical systems.
Thus, we believe that the current chapter is both of theoretical and practical
importance.

Terminology: The notion of a (multi-party) functionality is central to the
current chapter. By an m-ary functionality we mean a random process that maps
m inputs to m outputs, where functions mapping m inputs to m outputs are

575
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a special case (also referred to as deterministic functionalities). Thus, func-
tionalities are randomized extensions of ordinary functions. One may think of a
functionality F' as being a probability distribution over (corresponding) functions
(ie., F equals the function f(*) with probability p;). Alternatively, we think of
F(x1,...,x.) as selecting at random a string 7, and outputting F'(r, 1, ..., Tm ),
where F’ is a function mapping m + 1 inputs to m outputs.

Teaching Tip: The contents of the current chapter is quite complex. We sug-
gest to cover in class only the overview section (i.e., Section 7.1), and consider
the rest of this chapter to be advanced material. Furthermore, we assume that
the reader is familiar with the material in all the previous chapters. This fa-
miliarity is important not only because we use some of the notions and results
presented in these chapters, but rather because we use similar proof techniques
(and do so while assuming that this is not the reader’s first encounter with these
techniques).

Organization: In addition to the overview section (i.e., Section 7.1), the cur-
rent chapter consists of two main parts.

The first part (i.e., Sections 7.2-7.4) consists of a detailed treatment of general
secure two-party protocols.

Our ultimate goal in this part is to design two-party protocols that with-
stand any feasible adversarial behavior. We proceed in two steps. First we
consider a benign type of adversary, called semi-honest, and construct pro-
tocols that are secure with respect to such an adversary (cf. Section 7.3).
Next, we show how to force parties to behave in a semi-honest manner
(cf. Section 7.4). That is, we show how to transform any protocol, secure
in the semi-honest model, into a protocol that is secure against any fea-
sible adversarial behavior. But before presenting these constructions, we
present the relevant definitions (cf. Section 7.2).

The second part (i.e., Sections 7.5 and 7.6) deals with general secure multi-party
protocols. Specifically, in Section 7.5 we extend the treatment presented in
the first part to multi-party protocols, whereas in Section 7.6 we consider
the “private channels” model and present alternative constructions for it.

Although it is possible to skip some of the earlier sections of this chapter before
reading a later section, we recommend not to do so. In particular, we recommend
to read the overview section (i.e., Section 7.1), before reading any later section.

7.1 Overview

A general framework for casting (m-party) cryptographic (protocol) problems
consists of specifying a random process that maps m inputs to m outputs. The
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inputs to the process are to be thought of as local inputs of m parties, and
the m outputs are their corresponding (desired) local outputs. The random
process describes the desired functionality. That is, if the m parties were to
trust each other (or trust some external party), then they could each send their
local input to the trusted party, who would compute the outcome of the process
and send to each party the corresponding output. A pivotal question in the area
of cryptographic protocols is to what extent can this (imaginary) trusted party
be “emulated” by the mutually distrustful parties themselves.

The results mentioned above and surveyed below describe a variety of models
in which such an “emulation” is possible. The models vary by the underlying
assumptions regarding the communication channels, numerous parameters re-
lating to the extent of adversarial behavior, and the desired level of emulation
of the trusted party (i.e., level of “security”). We stress that unless stated dif-
ferently, the two-party case is an important special case of the treatment of the
multi-party setting (i.e., we consider any m > 2).

7.1.1 The Definitional Approach and Some Models

Before describing the abovementioned results, we further discuss the notion of
“emulating a trusted party”, which underlies the definitional approach to secure
multi-party computation. The approach can be traced back to the definition of
zero-knowledge (see Section 4.3), and even to the definition of semantic security
(see Section 5.2.1). The underlying paradigm (called the simulation paradigm) is
that a scheme is secure if whatever a feasible adversary can obtain after attacking
it, is also feasibly attainable in an “ideal setting”. In case of zero-knowledge this
amounts to saying that whatever a (feasible) verifier can obtain after interacting
with the prover on a prescribed valid assertion, can be (feasibly) computed from
the assertion itself. In case of multi-party computation we compare the effect
of adversaries that participate in the execution of the actual protocol to the ef-
fect of adversaries that participate in an imaginary ezecution of a trivial (ideal)
protocol for computing the desired functionality with the help of a trusted party.
If whatever adversaries can feasibly obtain in the former real setting can also
be feasibly obtained in the latter ideal setting then the protocol “emulates the
ideal setting” (i.e., “emulates a trusted party”), and so is deemed secure. This
means that properties that are satisfied in the ideal setting are also satisfied
by a secure protocol that is executed in the real setting. For example, security
typically implies the preservation of the privacy of the parties’ local inputs (be-
yond whatever is revealed by the local outputs provided to the adversary), and
correctness of the honest parties’ local outputs (i.e., their consistency with the
functionality).

The approach outlined above can be applied in a variety of models, and is
used to define the goals of security in these models.! We first discuss some

L A few technical comments are in place. Firstly, we assume that the inputs of all parties
are of the same length. We comment that as long as the lengths of the inputs are polynomially
related, the above convention can be enforced by padding. On the other hand, some length
restriction is essential for the security results, because (in general) it is impossible to hide
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of the parameters used in defining various models, and next demonstrate the
application of this approach to a couple of important cases (cf. Sections 7.1.1.2
and 7.1.1.3).

7.1.1.1 Some parameters used in defining security models

The following parameters are described in terms of the actual (or real) computa-
tion. In some cases, the corresponding definition of security is obtained by some
restrictions or provisions applied to the ideal model. In all cases, the desired
notion of security is defined by requiring that for any adequate adversary in
the real model, there exist a corresponding adversary in the corresponding ideal
model that obtains essentially the same impact (as the real-model adversary).

o The communication channels: The standard assumption in the area is
that the adversary may tap all communication channels (between honest
parties). In contrast, one may postulate that the adversary cannot obtain
messages sent between honest parties, yielding the so-called private-channel
model. In addition, one may postulate the existence of a broadcast channel.
Each of these postulates may be justified in some settings. Furthermore,
each postulate may be viewed as a useful abstraction that provide a clean
model for study and development of secure protocols. In this respect, it is
important to mention that, in a variety of settings of the other parameters,
both types of channels can be easily emulated by ordinary (i.e., “tapped”
point-to-point) channels.

The standard assumption in the area is that the adversary cannot omit,
modify, duplicate, or generate messages sent over the communication chan-
nels (between honest parties). Again, this assumption can be justified in
some settings and emulated in others.

Most work in the area assume that communication is synchronous and
that point-to-point channels exist between every pair of processors. How-
ever, one may also consider asynchronous communication, and arbitrary
networks of point-to-point channels.

o Set-up assumptions: Unless differently stated, we make no set-up assump-
tions (except for the obvious assumption that all parties have copies of
the protocol’s program). However, in some cases it is assumed that each
party knows some information (e.g., a verification-key) corresponding to
each of the other parties (or, one may assume the existence of a public-key
infrastructure). Another assumption, made more rarely, is that all parties
have access to some common (trusted) random string.

all information regarding the length of the inputs to a protocol. Secondly, we assume that
the desired functionality is computable in probabilistic polynomial-time, because we wish
the secure protocol to run in probabilistic polynomial-time (and a protocol cannot be more
efficient than the corresponding centralized algorithm). Clearly, the results can be extended
to functionality that are computable within any given (time-constructible) time bound, using
adequate padding.
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o Computational limitations: Typically, we consider computationally-bounded
adversaries (e.g., probabilistic polynomial-time adversaries). However, the
private-channel model allows also to (meaningfully) consider computationally-
unbounded adversaries.

We stress that, also in the latter case, security should be defined by re-
quiring that, for every real adversary, whatever the adversary can com-
pute after participating in the execution of the actual protocol is com-
putable within comparable time by an imaginary adversary participating
in an imaginary execution of the trivial ideal protocol (for computing the
desired functionality with the help of a trusted party). Thus, results in
the computationally-unbounded adversary model trivially imply results for
computationally-bounded adversaries.

e Restricted adversarial behavior: The most general type of an adversary
considered in the literature is one that may corrupt parties to the protocol
while the execution goes on, and decide which parties to corrupt based on
partial information it has gathered so far. A somewhat more restricted
model, which seems adequate in many setting, postulates that the set of
dishonest parties is fixed (arbitrarily) before the execution starts (but this
set is, of course, not known to the honest parties). The latter model is
called non-adaptive as opposed to the adaptive adversary mentioned first.

An orthogonal parameter of restriction refers to whether a dishonest party
takes active steps to disrupt the execution of the protocol (i.e., sends mes-
sages that differ from those specified by the protocol), or merely gathers
information (which it may latter share with the other dishonest parties).
The latter adversary has been given a variety of names such as semi-honest,
passive, and honest-but-curious. This restricted model may be justified in
certain settings, and certainly provides a useful methodological locus (cf.
Section 7.1.3). Below we refer to the adversary of the unrestricted model
as to active; another commonly used name is malicious.

e Restricted notions of security: One example is the willingness to tolerate
“unfair” protocols in which the execution can be suspended (at any time)
by a dishonest party, provided that it is detected doing so. We stress that
in case the execution is suspended, the dishonest party does not obtain
more information than it could have obtained when not suspending the
execution. What may happen is that some honest parties will not obtain
their desired outputs (although other parties did obtain their correspond-
ing outputs), but will rather detect that the execution was suspended.
We will say that this restricted notion of security allows abort (or allows
premature suspension of the execution).

e Upper bounds on the number of dishonest parties: In some models, secure
multi-party computation is possible only if a strict majority of the parties
are honest.? Sometimes even a special majority (e.g., 2/3) is required.

2 Indeed, requiring an honest majority in the two-party case yields a meaningless model.
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General “resilient adversary-structures” have been considered too.

e Mobile adversary: In most works, once a party is said to be dishonest it
remains so throughout the execution. More generally, one may consider
transient adversarial behavior (e.g., an adversary seizes control of some
site and later withdraws from it). This model, which will not be further
discussed in this work, allows to construct protocols that remain secure
even in case the adversary may seize control of all sites during the execution
(but never control concurrently, say, more than 10% of the sites). We
comment that schemes secure in this model were later termed “proactive”.

In the rest of this chapter we will consider a few specific settings of the above pa-

rameters. Specifically, we will focus on non-adaptive, active, and computationally-
bounded adversary, and will not assume the existence of private channels. In

Section 7.1.1.2 we consider this setting while restricting the dishonest parties to

a strict minority, whereas in Section 7.1.1.3 we consider a restricted notion of

security for two-party protocols that allows “unfair suspension” of execution (or

“allows abort”).

7.1.1.2 Example: Multi-party protocols with honest majority

We consider a non-adaptive, active, computationally-bounded adversary, and do
not assume the existence of private channels. Our aim is to define multi-party
protocols that remain secure provided that the honest parties are in majority.
(The reason for requiring a honest majority will be discussed at the end of this
subsection.) For more details about this model, see Section 7.5.1.

Consider any multi-party protocol. We first observe that each party may
change its local input before even entering the execution of the protocol. Fur-
thermore, this is unavoidable also when the parties utilize a trusted party. Con-
sequently, such an effect of the adversary on the real execution (i.e., modification
of its own input prior to entering the actual execution) is not considered a breach
of security. In general, whatever cannot be avoided (even) when the parties uti-
lize a trusted party, is not considered a breach of security. We wish secure
protocols (in the real model) to suffer only from whatever is unavoidable also
when the parties utilize a trusted party. Thus, the basic paradigm underlying
the definitions of secure multi-party computations amounts to saying that the
only situations that may occur in the real execution of a secure protocol, are
those that can also occur in a corresponding ideal model (where the parties may
employ a trusted party). In other words, the “effective malfunctioning” of par-
ties in secure protocols is restricted to what is postulated in the corresponding
ideal model.

When defining secure multi-party protocols (with honest majority), we need
to pin-point what cannot be avoided in the ideal model (i.e., when the parties
utilize a trusted party). This is easy, because the ideal model is very simple.
Since we are interested in executions in which the majority of parties are honest,
we consider an ideal model in which any minority group (of the parties) may
collude as follows:
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1. Firstly the dishonest minority parties share their original inputs and de-
cided together on replaced inputs to be sent to the trusted party. (The
other parties send their respective original inputs to the trusted party.)

2. Upon receiving inputs from all parties, the trusted party determines the
corresponding outputs and sends them to the corresponding parties. (We
stress that the communication between the honest parties and the trusted
party is not seen by the dishonest colluding minority parties.)

3. Upon receiving the “output message” from the trusted party, each honest
party outputs it locally, whereas the dishonest colluding minority parties
may determine their outputs based on all they know (i.e., their initial
inputs and their received outputs).

Note that the above behavior of the minority group is unavoidable in any execu-
tion of any protocol (even in presence of trusted parties). This is the reason that
the ideal model was defined as above. Now, a secure multi-party computation
with honest majority is required to emulate this ideal model. That is, the effect
of any feasible adversary that controls a minority of the parties in a real execu-
tion of the actual protocol, can be essentially simulated by a (different) feasible
adversary that controls the corresponding parties in the ideal model. That is:

Definition 7.1.1 (secure protocols — a sketch): Let f be an m-ary functionality
and II be an m-party protocol operating in the real model.

e For a real-model adversary A, controlling some minority of the parties (and
tapping all communication channels), and an m-sequence T, we denote by
REALm 4(T) the sequence of m outputs resulting from the execution of II
on input T under attack of the adversary A.

e For an ideal-model adversary A’, controlling some minority of the parties,
and an m-sequence T, we denote by IDEALy 4/ (T) the sequence of m outputs
resulting from the ideal process described above, on input T under attack
of the adversary A’.

We say that II securely implements f with honest majority if for every feasible
real-model adversary A, controlling some minority of the parties, there exists
a feasible ideal-model adversary A', controlling the same parties, so that the
probability ensembles {REALn a(T)}z and {IDEALy a/(T)}z are computationally
indistinguishable (as in Part 2 of Definition 3.2.2).

Thus, security means that the effect of each minority group in a real execution
of a secure protocol is “essentially restricted” to replacing its own local inputs
(independently of the local inputs of the majority parties) before the protocol
starts, and replacing its own local outputs (depending only on its local inputs
and outputs) after the protocol terminates. (We stress that in the real execution
the minority parties do obtain additional pieces of information; yet in a secure
protocol they gain nothing from these additional pieces of information.)
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The fact that Definition 7.1.1 refers to a model without private channels
is due to the fact that our (sketchy) definition of the real-model adversary al-
lowed it to tap the channels, which in turn effects the set of possible ensembles
{REAL[ 4(T)}z. When defining security in the private-channel model, the real-
model adversary is not allowed to tap channels between honest parties, and this
again effects the possible ensembles {REAL 4(T)}z. On the other hand, when
we wish to define security with respect to passive adversaries, both the scope of
the real-model adversaries and the scope of the ideal-model adversaries changes.
In the real-model execution, all parties follow the protocol but the adversary
may alter the output of the dishonest parties arbitrarily depending on all their
intermediate internal stated (during the execution). In the corresponding ideal-
model, the adversary is not allowed to modify the inputs of dishonest parties (in
Step 1), but is allowed to modify their outputs (in Step 3).

We comment that a definition analogous to Definition 7.1.1 can be presented
also in case the dishonest parties are not in minority. In fact, such a definition
seems more natural, but the problem is that such a definition cannot be satisfied.
That is, most natural functionalities do not have a protocol for computing them
securely in case at least half of the parties are dishonest and employ an adequate
(active) adversarial strategy. This follows from an impossibility result regarding
two-party computation, which essentially asserts that there is no way to prevent
a party from prematurely suspending the execution. On the other hand, secure
multi-party computation with dishonest majority is possible if (and only if)
premature suspension of the execution is not considered a breach of security.

7.1.1.3 Another example: Two-party protocols allowing abort

In light of the last paragraph, we now consider multi-party computations in
which premature suspension of the execution is not considered a breach of secu-
rity. For concreteness, we focus here on the special case of two-party computations.
For more details about this model, see Section 7.2.3.

Intuitively, in any two-party protocol, each party may suspend the execu-
tion at any point in time, and furthermore it may do so as soon as it learns
the desired output. Thus, in case the output of each parties depends on both
inputs, it is always possible for one of the parties to obtain the desired output
while preventing the other party from fully-determining its own output. The
same phenomenon occurs even in case the two parties just wish to generate a
common random value. Thus, when considering active adversaries in the two-
party setting, we do not consider such premature suspension of the execution as
a breach of security. Consequently, we consider an ideal model where each of the
two parties may “shut-down” the trusted (third) party at any point in time. In
particular, this may happen after the trusted party has supplied the outcome of
the computation to one party but before it has supplied it to the second. That
is, an execution in the ideal model proceeds as follows:

3

3 As in Section 7.1.1.2, we consider a non-adaptive, active, computationally-bounded
adversary.
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1. Each party sends its input to the trusted party, where the dishonest party
may replace its input or sends no input at all (which may be viewed as
aborting).

2. Upon receiving inputs from both parties, the trusted party determines the
corresponding outputs, and sends the first output to the first party.

3. In case the first party is dishonest, it may instruct the trusted party to halt,
otherwise it always instructs the trusted party to proceed. If instructed to
proceed, the trusted party sends the second output to the second party.

4. Upon receiving the output-message from the trusted party, the honest
party outputs it locally, whereas the dishonest party may determine its
outputs based on all it know (i.e., its initial input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal
model. That is, as in Definition 7.1.1, security is defined by requiring that for ev-
ery feasible real-model adversary A, there exists a feasible ideal-model adversary
A’, controlling the same party, so that the probability ensembles representing the
corresponding (real and ideal) executions are computationally indistinguishable.
This means that each party’s “effective malfunctioning” in a secure protocol is
restricted to supplying an initial input of its choice and aborting the computa-
tion at any point in time. (Needless to say, the choice of the initial input of each
party may NOT depend on the input of the other party.)

We mention that an alternative way of dealing with the problem of prema-
ture suspension of execution (i.e., abort) is to restrict attention to single-output
functionalities; that is, functionalities in which only one party is supposed to
obtain an output. The definition of secure computation of such functionalities
can be identical to the Definition 7.1.1, with the exception that no restriction
is made on the set of dishonest parties (and in particular one may consider a
single dishonest party in case of two-party protocols). For further details, see
Section 7.2.3.2.

7.1.2 Some Known Results

We briefly mention some of the models for which general secure multi-party com-
putation is known to be attainable; that is, models in which one can construct
secure multi-party protocols for computing any desired functionality.

7.1.2.1 The main results presented in this chapter

We start with results that refer to secure two-party protocols as well as to secure
multi-party protocols in the standard model (where the adversary may tap the
communication lines).

Theorem 7.1.2 (the main feasibility results — a sketch): Assuming the exis-
tence of enhanced trapdoor permutations (as in Definition C.1.1), general secure
multi-party computation is possible in the following three models:
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1. Passive adversary, for any number of dishonest parties.
2. Active adversary that may control only a strict minority of the parties.

3. Active adversary, for any number of bad parties, provided that suspension
of execution is not considered a violation of security.

In all these cases, the adversary is computationally-bounded and non-adaptive.
On the other hand, the adversary may tap the communication lines between
honest parties (i.e., we do not assume the existence of private channels). The
results for active adversaries assume a broadcast channel.

Recall that a broadcast channel can be implemented (while tolerating any num-
ber of bad parties) using a signature scheme and assuming a public-key infras-
tructure (i.e., each party knows the verification-key corresponding to each of the
other parties).*

Most of the current chapter will be devoted to proving Theorem 7.1.2. In
Sections 7.3 and 7.4 we prove Theorem 7.1.2 for the special case of two parties:
In that case, Part 2 is not relevant, Part 1 is proved in Section 7.3, and Part 3
is proved in Section 7.4. The general case (i.e., of multi-party computation) is
treated in Section 7.5.

7.1.2.2 Other results

We next list some other models in which general secure multi-party computation
is attainable:

e Making no computational assumptions and allowing computationally-unbounded
adversaries, but assuming the existence of private channels, general secure
multi-party computation is possible in the following models:

1. Passive adversary that may control only a (strict) minority of the
parties.

2. Active adversary that may control only less than one third of the
parties. (Fault-tolerance can be increased to a regular minority if
broadcast channels exists.)

In both cases the adversary may be adaptive. For details, see Section 7.6.

e General secure multi-party computation is possible against an active, adap-
tive and mobile adversary that may control a small constant fraction of
the parties at any point in time. This result makes no computational
assumptions, allows computationally-unbounded adversaries, but assumes
the existence of private channels.

4 Note that the implementation of a broadcast channel can be cast as a cryptographic
protocol problem (i.e., for the functionality (v, A, ...,A) — (v,v,...,v), where v € {0,1}* and
A denotes the empty string). Thus, it is not surprising that the results regarding active
adversaries either assume the existence of such a channel or a setting in which such a channel
can be implemented (e.g., either that less than a third of the parties are faulty or that a
public-key infrastructure exists). (This reasoning fails if the definition of secure protocols is
relaxed such that it does not imply agreement; see [162].)
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o Assuming the existence of trapdoor permutations, general secure multi-
party computation is possible in a model allowing an adaptive and active
computationally-bounded adversary that may control only less than one
third of the parties. We stress that this result does not assume the existence
of private channels.

Results for asynchronous communication and arbitrary networks of point-to-
point channels are also known. For further details, see Section 7.7.4.

7.1.2.3 An extension and efficiency considerations

Secure reactive computation: All the above results extend (easily) to a
reactive model of computation in which each party interacts with a high-level
process (or application). The high-level process adaptively supplies each party
with a sequence of inputs, one at a time, and expect to receive corresponding
outputs from the parties. That is, a reactive system goes through (a possibly
unbounded number of) iterations of the following type:
e Parties are given inputs for the current iteration.
e Depending on the current inputs, the parties are supposed to compute
outputs for the current iteration. That is, the outputs in iteration j are
determined by the inputs of the jth iteration.

A more general formulation allows the outputs of each iteration to depend also
on a global state, which is possibly updated at each iteration. The global state
may include all inputs and outputs of previous iterations, and may only be
partially known to individual parties. (In a secure reactive computation such
a global state may be maintained by all parties in a “secret sharing” manner.)
For further discussion, see Section 7.7.1.3.

Efficiency considerations: One important efficiency measure regarding pro-
tocols is the number of communication rounds in their execution. The results
mentioned above were originally obtained using protocols that use an unbounded
number of rounds. In some cases, subsequent works obtained secure comstant-
round protocols. Other important efficiency considerations include the total
number of bits sent in the execution of a protocol, and the local computation
time. The (communication and computation) complexities of the protocols es-
tablishing the above results are related to the computational complexity of the
computation, but alternative relations (e.g., referring to the (insecure) commu-
nication complexity of the computation) may be possible.

7.1.3 Construction Paradigms

We briefly sketch three paradigms used in the construction of secure multi-
party protocols. We focus on the construction of secure protocols for the model
of computationally-bounded and non-adaptive adversaries. These constructions
proceed in two steps: First a secure protocol is presented for the model of passive
adversaries (for any number of dishonest parties), and next such a protocol is
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“compiled” into a protocol that is secure in one of the two models of active
adversaries (i.e., either in a model allowing the adversary to control only a
minority of the parties or in a model in which premature suspension of the
execution is not considered a violation of security).

Recall that in the model of passive adversaries, all parties follow the pre-
scribed protocol, but at termination the adversary may alter the output of the
dishonest parties depending on all their intermediate internal states (during the
execution). Below, we refer to protocols that are secure in the model of passive
(resp., general or active) adversaries by the term passively-secure (resp., actively-
secure).

7.1.3.1 From passively-secure protocols to actively-secure ones

We show how to transform any passively-secure protocol into a corresponding
actively-secure protocol. The communication model in both protocols consists
of a single broadcast channel. Note that the messages of the original (passively-
secure) protocol may be assumed to be sent over a broadcast channel, because
the adversary may see them anyhow (by tapping the point-to-point channels).
As for the resulting actively-secure protocol, the broadcast channel it uses can be
implemented via an (authenticated) Byzantine Agreement protocol, thus provid-
ing an emulation of this model on the standard point-to-point model (in which a
broadcast channel does not exist). Recall that authenticated Byzantine Agree-
ment is typically implemented using a signature scheme (and assuming that each
party knows the verification-key corresponding to each of the other parties).

Turning to the transformation itself, the main idea is to use zero-knowledge
proofs in order to force parties to behave in a way that is consistent with the
(passively-secure) protocol. Actually, we need to confine each party to a unique
consistent behavior (i.e., according to some fixed local input and a sequence of
coin tosses), and to guarantee that a party cannot fix its input (and/or its coins)
in a way that depends on the inputs of honest parties. Thus, some preliminary
steps have to be taken before the step-by-step emulation of the original proto-
col can take place. Specifically, the compiled protocol (which like the original
protocol is executed over a broadcast channel) proceeds as follows:

1. Prior to the emulation of the original protocol, each party commits to its
input (using a commitment scheme). In addition, using a zero-knowledge
proof-of-knowledge (cf. Section 4.7), each party also proves that it knows
its own input; that is, that it can properly decommit to the commitment
it sent. (These zero-knowledge proof-of-knowledge are conducted sequen-
tially to prevent dishonest parties from setting their inputs in a way that
depends on inputs of honest parties.)

2. Next, all parties jointly generate a sequence of random bits for each party
such that only this party knows the outcome of the random sequence gen-
erated for it, but everybody gets a commitment to this outcome. These
sequences will be used as the random-inputs (i.e., sequence of coin tosses)
for the original protocol. Each bit in the random-sequence generated for
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Party X is determined as the exclusive-or of the outcomes of instances of
an (augmented) coin-tossing protocol that Party X plays with each of the
other parties.

3. In addition, when compiling (the passively-secure protocol to an actively-
secure protocol) for the model that allows the adversary to control only
a minority of the parties, each party shares its input and random-input
with all other parties using a Verifiable Secret Sharing protocol (cf. Sec-
tion 7.5.5). This will guarantee that if some party prematurely suspends
the execution, then all the parties can together reconstruct all its secrets
and carry-on the execution while playing its role.

4. After all the above steps were completed, we turn to the main step in
which the new protocol emulates the original one. In each step, each party
augments the message determined by the original protocol with a zero-
knowledge that asserts that the message was indeed computed correctly.
Recall that the next message (as determined by the original protocol) is
a function of the sender’s own input, its random-input, and the messages
it has received so far (where the latter are known to everybody because
they were sent over a broadcast channel). Furthermore, the sender’s input
is determined by its commitment (as sent in Step 1), and its random-
input is similarly determined (in Step 2). Thus, the next message (as
determined by the original protocol) is a function of publicly known strings
(i.e., the said commitments as well as the other messages sent over the
broadcast channel). Moreover, the assertion that the next message was
indeed computed correctly is an NP-assertion, and the sender knows a
corresponding NP-witness (i.e., its own input and random-input as well
as the corresponding decommitment information). Thus, the sender can
prove (to each of the other parties) in zero-knowledge that the message it
is sending was indeed computed according to the original protocol.

A detailed description is provided in Section 7.4 (see also Section 7.5.4).

7.1.3.2 Passively-secure computation with “scrambled circuits”

The following technique refers mainly to two-party computation. Suppose that
two parties, each having a private input, wish to obtain the value of a prede-
termined two-argument function evaluated at their corresponding inputs (i.e.,
we consider only functionalities of the form (z,y) — (f(z,y), f(z,y))). Further
suppose that the two parties hold a circuit that computes the value of the func-
tion on inputs of the adequate length. The idea is to have one party construct an
“scrambled” form of the circuit so that the other party can propagate encrypted
values through the “scrambled gates” and obtain the output in the clear (while
all intermediate values remain secret). Note that the roles of the two parties are
not symmetric, and recall that we are describing a protocol that is secure (only)
with respect to passive adversaries. An implementation of this idea proceeds as
follows:
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e The the first party constructs a “scrambled” form of the original circuit.
The “scrambled” circuit consists of pairs of encrypted secrets that corre-
spond to the wires of the original circuit and gadgets that correspond to
the gates of the original circuit. The secrets associated with the wires
entering a gate are used (in the gadget that corresponds to this gate) as
keys in the encryption of the secrets associated with the wire exiting this
gate. Furthermore, there is a random correspondence between each pair of
secrets and the Boolean values (of the corresponding wire). That is, wire

w is assigned a pair of secrets, denoted (s!,,s”), and there is a random

wI Tw

1-1 mapping, denoted v,,, between this pair and the pair of Boolean values
(ie., {ruw(sy), vulsy)t =1{0,1}).

Each gadget is constructed such that knowledge of a secret that corre-
spond to each wire entering the corresponding gate (in the circuit) yields
a secret corresponding to the wire that exits this gate. Furthermore, the
reconstruction of secrets using each gadget respects the functionality of
the corresponding gate. For example, if one knows the secret that corre-
sponds to the 1-value of one entry-wire and the secret that corresponds to
the O-value of the other entry-wire, and the gate is an OR-gate, then one
obtains the secret that corresponds to the 1-value of exit-wire.

Specifically, each gadget consists of 4 templets that are presented at a ran-
dom order, where each templet corresponds to one of the 4 possible values
of the two entry-wires. A templet may be merely a double encryption of the
secret that corresponds to the appropriate output value, where the double
encryption uses as keys the two secrets that correspond to the input values.
That is, suppose a gate computing f : {0,1}? — {0, 1} has input wires w;
and w2, and output wire ws. Then, each of the four templets of this gate
has the form E;, (Es,, (Sws)), where f(vuw, (Sw,)s Vs (8ws)) = Vs (Sws)-

e In addition to the “scrambled” circuit, the first party sends to the second
party the secrets that correspond to its own (i.e., the first party’s) input
bits (but not the values of these bits). The first party also reveals the
correspondence between the pair of secrets associated with each output
(i.e., circuit-output wire) and the Boolean values.”> We stress that the
random correspondence between the pair of secrets associated with each
other wire and the Boolean values is kept secret (by the first party).

e In addition, the first party uses a (1-out-of-2) Oblivious Transfer protocol
in order to hand the second party the secrets corresponding to the second
party’s input bits (without the first party learning anything about these
bits).

Loosely speaking, a 1-out-of-k Oblivious Transfer is a protocol enabling
one party to obtain one of k secrets held by another party, without the
second party learning which secret was obtained by the first party. That

5 This can be done by providing, for each output wire, a succinct 2-partition (of all strings)
that separates the two secrets associated with this wire.
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is, we refer to the two-party functionality

(2, (51,5 8%)) 7 (53, A) (7.1)
where A denotes the empty string.

e Finally, the second party “evaluates” the “scrambled” circuit gate-by-gate,
starting from the top (circuit-input) gates (for which it knows one secret
per each wire) and ending at the bottom (circuit-output) gates (for which,
by counstruction, the correspondence of secrets to values is known). Thus,
the second party obtains the output value of the circuit (but nothing else),
and sends it to the first party.

For further details, see Section 7.7.4.

7.1.3.3 Passively-secure computation with shares

For any m > 2, suppose that m parties, each having a private input, wish
to obtain the value of a predetermined m-argument function evaluated at their
sequence of inputs. Further suppose that the parties hold a circuit that computes
the value of the function on inputs of the adequate length, and that the circuit
contains only AND and NOT gates. Again, the idea is to propagate information
from the top (circuit-input) gates to the bottom (circuit-output) gates, but this
time the information is different, and the propagation is done simultaneously by
all parties. The idea is to share the value of each wire in the circuit such that
all shares yield the value, whereas lacking even one of the shares keeps the value
totally undetermined. That is, we use a simple secret sharing scheme such that
a bit b is shared by a random sequence of m bits that sum-up to b mod 2. First,
each party shares each of its input bits with all parties (by secretly sending each
party a random value and setting its own share accordingly). Next, all parties
jointly scan the circuit from its input wires to the output wires, processing each
gate as follows:

e When encountering a gate, the parties already hold shares of the values of
the wires entering the gate, and their aim is to obtain shares of the value
of the wire exiting the gate.

e For a NOT-gate this is easy: the first party just flips the value of its share,
and all other parties maintain their shares.

e Since an AND-gate corresponds to multiplication modulo 2, the parties need
to securely compute the following randomized functionality (in which the
x;’s denote shares of one entry-wire, the y;’s denote shares of the second
entry-wire, the z;’s denote shares of the exit-wire, and the shares indexed
by i belongs to Party 4):

((x1,91), oo, (Tm,ym)) — (21, 22) (7.2)
where

ZZZ' = Zﬂfi'zyi (73)
=1 =1 =1
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That is, the z;’s are random subject to Eq. (7.3).

Thus, securely evaluating the entire (arbitrary) circuit “reduces” to securely
conducting a specific (very simple) multi-party computation. But things get
even simpler: the key observation is that

(Z%) : (Z?h) = Ziﬂz‘yi+ Z CATREID) (7.4)

1<i<j<m

Thus, the m-ary functionality of Eq. (7.2) & (7.3) can be computed as follows
(where all arithmetic operations are mod 2):

1. Each Party ¢ locally computes z; ; def Tili-

2. Next, each pair of parties (i.e., Parties ¢ and j) securely compute random
shares of z;y; +;y;. That is, Parties ¢ and j (holding (x;,y;) and (z;,y;),
respectively), need to securely compute the randomized two-party func-
tionality ((z;,v:), (z;,v;)) — (2i,;,%j,:), where the z’s are random subject
to z; ; + 2j,i = x;y; +yix;. The latter (simple) two-party computation can
be securely implemented using (a 1-out-of-4) Oblivious Transfer. Specifi-
cally, Party ¢ uniformly selects z; ; € {0,1}, and defines its four secrets as

follows:
index of corresponding | value of the secret
the secret | value of (x;,y;) | (output of Party j)
1 (O, O) zi,j
2 (0, 1) Zij + &4
3 (1,0) Zij + Yi
4 (1,1) Zij + i+ Ya

Party j sets its input to 2z;+y;+1, and obtains the secret z; ; +z;y; +y;x;.

(Indeed, for “small” B, any two-party functionality f : AxB — {A}x{0,1}
can be securely implemented by a single invocation of a 1-out-of-| B| Obliv-
ious Transfer, where the first party defines its | B| secrets in correspondence
to the |B| possible values of the input to the second party.)

3. Finally, for every i = 1,...,m, the sum 377", z; ; yields the desired share
of Party 1.

A detailed description is provided in Section 7.3 (see also Section 7.5.2).

A related construction: We mention that an analogous construction has
been subsequently used in the private channel model and withstands compu-
tationally unbounded active (resp., passive) adversaries that control less than
one third (resp., a minority) of the parties. The basic idea is to use a more
sophisticated secret sharing scheme; specifically, via a low degree polynomials.
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That is, the Boolean circuit is viewed as an arithmetic circuit over a finite field
having more than m elements, and a secret element s in the field is shared
by selecting uniformly a polynomial of degree d = |(m —1)/3| (resp., degree
d = [(m —1)/2]) having a free-term equal to s, and handing each party the
value of this polynomial evaluated at a different (fixed) point (e.g., party ¢ is
given the value at point ). Addition is emulated by (local) point-wise addi-
tion of the (secret sharing) polynomials representing the two inputs (using the
fact that for polynomials p and ¢, and any field element e (and in particular
e =0,1,...,m), it holds that p(e) + g(e) = (p + ¢q)(e)). The emulation of mul-
tiplication is more involved and requires interaction (because the product of
polynomials yields a polynomial of higher degree, and thus the polynomial rep-
resenting the output cannot be the product of the polynomials representing the
two inputs). Indeed, the aim of the interaction is to turn the shares of the prod-
uct polynomial into shares of a degree d polynomial that has the same free-term
as the product polynomial (which is of degree 2d). This can be done using the
fact that the coefficients of a polynomial are a linear combination of its values
at sufficiently many arguments (and the other way around), and the fact that
one can privately-compute any linear combination (of secret values). For further
details, see Section 7.6.

7.2 * The Two-Party Case: Definitions

In this section we define security for two models of adversaries for two-party
protocols. In both models the adversary is non-adaptive and computationally-
bounded (i.e., restricted to probabilistic polynomial-time with (non-uniform)
auxiliary inputs). In the first model, presented in Section 7.2.2, we consider a
restricted adversary called semi-honest, whereas the general case of malicious
adversary is considered in Section 7.2.3. In addition to being of independent
interest, the semi-honest model will play a major role in the constructions of
protocols for the malicious model (see Sections 7.3 and 7.4).

7.2.1 The syntactic framework

A two-party protocol problem is cast by specifying a random process that maps
pairs of inputs (one input per each party) to pairs of outputs (one per each
party). We refer to such a process as the desired functionality, denoted f :
{0,1}* x {0,1}* — {0,1}* x {0,1}*. That is, for every pair of inputs (z,y), the
desired output-pair is a random variable, f(z,y), ranging over pairs of strings.
The first party, holding input x, wishes to obtain the first element in f(z,y);
whereas the second party, holding input vy, wishes to obtain the second element
in f(x,y). A few interesting special cases are highlight next.

o Symmetric deterministic functionalities: This is the simplest general case
often considered in the literature. In this case, for some predetermined
function, g, both parties wish to obtain the value of g evaluated at the
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input pair. That is, the functionality they wish to (securely) compute

is f(z,y) Lef (9(z,v),9(x,y)). For example, they may be interested in

determining whether their local inputs are equal (i.e., g(z,y) = liff z = y)
or whether their local inputs viewed as sets are disjoint (i.e., g(z,y) = 1
iff for every ¢ either z; = 0 or y; = 0).

o Input oblivious randomized functionalities: Whereas input-oblivious deter-
ministic functionalities are trivial, some input-oblivious randomized func-
tionalities are very interesting. Suppose, for example, that the two parties
wish to toss a fair coin (i.e., such that no party can “influence the outcome”
by itself). This task can be cast by requiring that, for every input pair
(x,y), the output pair f(z,y) is uniformly distributed over {(0,0),(1,1)}.

o Asymmetric functionalities: The general case of asymmetric functionalities

def

is captured by functionalities of the form f(z,y) = (f'(z,y),A), where
f'{0,1}* x {0,1}* — {0,1}* is a randomized process and A denotes the
empty string. A special case of interest is when one party wishes to reveal
to the other party some predetermined partial information regarding its

secret, where the secret (if given) is verifiable by the second party. This

task is captured by a functionality f such that f(x,y) Lef (R(x), ) if

V(z,y) =1and f(z,y) def (L, A) otherwise, where R represents the partial

information to be revealed and V represents the verification procedure.’

We stress that whenever we consider a protocol for securely computing f, it is
implicitly assumed that the protocol correctly computes f when both parties
follow the prescribed program. That is, the joint output distribution of the
protocol, played by honest parties, on input pair (z,y), equals the distribution

of f(z,y)-

Notation: We let A denote the empty string and L denote a special error
symbol. That is, whereas A € {0,1}* (and |A| = 0), we postulate that L ¢ {0,1}*
(and is thus distinguishable from any string in {0,1}*).

7.2.1.1 Simplifying conventions

To simplify the exposition we make the following three assumptions:

1. The protocol problem has to be solved only for inputs of the same length
(ie., [z = [y]).

2. The functionality is computable in time polynomial in the length of the
nputs.

3. Security is measured in terms of the length of the inputs.

6 One may also consider the “non-verifiable” case (i.e., V' = 1), but in this case nothing
can prevent the first party from acting as if its secret is different from the “actual” one.
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As discussed next, the above conventions (or assumptions) can be greatly re-
laxed, yet each represents an essential issue that must be addressed.

We start with the first convention (or assumption). Observe that making no
restriction on the relationship among the lengths of the two inputs, disallows the
existence of secure protocols for computing any “non-degenerate” functionality.
The reason is that the program of each party (in a protocol for computing the
desired functionality) must either depend only on the length of the party’s input
or obtain information on the counterpart’s input length. In case information
of the latter type is not implied by the output value, a secure protocol “cannot
afford” to give it away.” By using adequate padding, any “natural” functionality
can be cast as one satisfying the equal length convention.®

We now turn to the second convention. Certainly, the total running-time of
a secure two-party protocol for computing the functionality cannot be smaller
than the time required to compute the functionality (in the ordinary sense).
Arguing as in the case of input lengths, one can see that we need an a-priori
bound on the complexity of the functionality. A more general approach would
be to let such a bound be given explicitly to both parties as an auxiliary input.
In such a case, the protocol can be required to run for time bounded by a fixed
polynomial in this auxiliary parameter (i.e., the time-complexity bound of f).
Assuming that a good upper bound of the complexity of f is time-constructible
and using standard padding techniques, we can reduce this general case to the
special case discussed above: That is, given a general functionality, g, and a
time-bound t : N — N, we introduce the functionality

F(@,17), (y,17) = { ?ixj/)) ;fﬂll:rvglsze t(]) = t(ly])

where L is a special error symbol. Now, the problem of securely computing g
reduces to the problem of securely computing f, which in turn is polynomial-time
computable.

Finally, we turn to the third convention. Indeed, a more general convention
would be to have an explicit security parameter that determines the security of
the protocol. This general alternative is essential for allowing “secure” computa-
tion of finite functionalities (i.e., functionalities defined on finite input domains).
We may accommodate the general convention using the special case, postulated
above, as follows. Suppose that we want to compute the functionality f, on in-
put pair (z,y) with security (polynomial in) the parameter s. Then we introduce

the functionality
def

f((2,1°),(,1°) = f(z,9),
and consider secure protocols for computing f'. Indeed, this reduction corre-
sponds to the realistic setting where the parties first agree on the desired level

7 The situation is analogous to the definition of secure encryption, where it is required that
the message length be polynomially-related to the key length. Actually, things become even
worst in the current setting, because of the possible malicious behavior of parties.

8 In the sequel, we sometimes take the liberty of presenting functionalities in a form that
violates the equal length convention (e.g., in case of Oblivious Transfer). Indeed, these formu-
lations can be easily modified to fit the equal length convention.
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of security, and only then proceed to compute the function (using this level of
security).

Partial functionalities. The first convention postulates that we are actually
not considering mapping from the set of all pairs of bit strings, but rather map-
pings from a certain (general) set of pairs of strings (i.e., U,en{0,1}" x {0,1}7).
Taking this convention one step further, one may consider functionalities that
are defined only over a set R C U, cn{0,1}" x {0,1}". Clearly, securely com-

puting such a functionality f’ can be reduced to computing any of its extensions

to U,en{0,1}" x {0,1}" (e.g., computing f such that f(z,y) = f'(z,y) for
(x,y) € R and f(x,y) Lef (L, L) otherwise). With one exception (to be dis-
cussed explicitly), our exposition only refers to functionalities that are defined

over the set of all pairs of strings of equal length.

An alternative set of conventions. An alternative way of addressing all
three concerns discussed above is to introduce an explicit security parameter,
denoted n, and consider the following sequence of functionalities (f™),ecn. Each
f" is defined over the set of all pairs of bit strings, but typically one considers only
the value of f™ on strings of poly(n) length. In particular, for a functionality f as

in our main conventions, one may consider f™(x,y) def f(z,y)if |z| = Jy| = n and

f(z,y) def (L, L) otherwise. When following the alternative convention, one

typically postulates that there exists a poly(n)-time algorithm for computing f™
(for a generic n), and security is also evaluated with respect to the parameter n.
We stress that in this case the protocol’s running-time and its security guarantee
are only related to the parameter n, and are independent of the length of the
input.®

7.2.1.2 Computational indistinguishability: conventions and nota-
tion

As in Definition 7.1.1, we will often talk of the computational indistinguishabil-
ity of probability ensembles indexed by strings (as in Part 2 of Definition 3.2.2).
Whenever we do so, we refer to computational indistinguishability by (non-

uniform) families of polynomial-size circuits. That is, we say that the ensem-

bles, X < {Xylwes and V % {V,, }ues, are computationally indistinguishable,

denoted X = Y, if the following holds:

For every polynomial-size circuit family, {Cy},cn, every positive
polynomial p(-), every sufficiently large n and every w € SN {0,1}",

|Pr{Cn(Xw)=1] = Pr[Cn(Yy)=1]| < m (7.5)

9 Consequently, the value of f™(z,y) may depend only on poly(n)-long prefixes of z and y.
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Note that an infinite sequence of w’s may be incorporated in the family, hence
the definition is not strengthened by providing the circuit C,, with w as an
additional input.

Recall that computational indistinguishability is a relaxation of statistical in-

distinguishability, where here the ensembles X < {X, }wes and Y < {V, Jues
are statistically indistinguishable, denoted X = Y, if for every positive polynomial
p(+), every sufficiently large n and every w € SN {0,1}",

[PrXw=a] —PriY,=q]| < — (7.6)
ae{zo;l}* p(n)

In case the differences are all equal to zero, we say that the ensembles are
identically distributed (and denote this by X =Y).

7.2.1.3 Representation of parties’ strategies

In Chapter 4, the parties’ strategies for executing a given protocol (e.g., a proof
system) were represented by interactive Turing machines. In this chapter we
prefer an equivalent formulation, which is less formal and less cumbersome.
Specifically, the parties’ strategies are presented as functions mapping the party’s
current view of the interactive execution to the next message to be sent. Recall
that the party’s view consists of its initial input, an auxiliary initial input (which
is relevant only for modeling adversarial strategies), its random-tape, and the
sequence of messages it has received so far. A strategy will be called feasible if it
is implementable in probabilistic polynomial-time (i.e., the function associated
with it is computable in polynomial-time).

As in Chapter 4, it is typically important to allow the adversaries to ob-
tain (non-uniformly generated) auxiliary inputs (cf. Section 4.3.3). Recall that
auxiliary inputs play a key role in guaranteeing that zero-knowledge is closed
under sequential composition (see Section 4.3.4). Similarly, auxiliary inputs to
the adversaries will play a key role in composition theorems for secure protocols,
which are pivotal to our exposition and very important in general. Nevertheless,
for sake of simplicity, we often omit the auxiliary inputs from our notations and
discussions (especially in places where they do not play an “active” role).

Recall that considering auxiliary inputs (as well as ordinary inputs) without
introducing any restrictions (other than on their length) means that we are
actually presenting a treatment in terms of non-uniform complexity. Thus, all
our assumptions will refer to non-uniform complexity.

7.2.2 The semi-honest model

Loosely speaking, a semi-honest party is one who follows the protocol properly
with the exception that it keeps a record of all its intermediate computations.
Actually, it suffices to keep the internal coin tosses and all messages received from
the other party. In particular, a semi-honest party tosses fair coins (as instructed
by its program), and sends messages according to its specified program (i.e., as
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a function of its input, outcome of coin tosses, and incoming messages). Note
that a semi-honest party corresponds to the “honest verifier” in the definitions
of zero-knowledge (cf. Section 4.3.1.7).

In addition to the methodological role of semi-honest parties in our exposi-
tion, they do constitute a model of independent interest. In particular, deviating
from the specified program, which may be invoked inside a complex software
application, is more difficult than merely recording the contents of some com-
munication registers. Furthermore, records of these registers may be available
through some standard activities of the operating system. Thus, whereas general
malicious behavior may be infeasible for many users, semi-honest behavior may
be feasible for them (and one cannot assume that they just behave in a totally-
honest way). Consequently, in many settings, one may assume that although
the users may wish to cheat, they actually behave in a semi-honest way. (We
mention that the “augmented semi-honest” model, introduced in Section 7.4.4.1,
may be more appealing and adequate for more settings.)

Below, we present two equivalent formulations of security in the semi-honest
model. The first formulation capitalizes on the simplicity of the current model
and defines security in it by a straightforward extension of the definition of zero-
knowledge. The second formulation applies the general methodology outlined in
Section 7.1.1. Indeed, both formulations follow the simulation paradigm, but the
first does so by extending the definition of zero-knowledge, whereas the second
does so by degenerating the general “real-vs-ideal” methodology.

7.2.2.1 The simple formulation of privacy

Loosely speaking, a protocol privately computes f if whatever can be obtained
from a party’s view of a (semi-honest) execution, could be essentially obtained
from the input and output available to that party. This extends the formula-
tion of (honest-verifier) zero-knowledge by providing the simulator also with the
(proper) output. The essence of the definition is captured by the simpler special
case of deterministic functionalities, highlighted below.

Definition 7.2.1 (privacy w.r.t semi-honest behavior): Let f : {0,1}*x{0,1}* —
{0,1}* x {0,1}* be a functionality, and fi(x,y) (resp., f2(x,y)) denotes the first
(resp., second) element of f(x,y). Let II be a two-party protocol for comput-
ing f.1° The view of the first (resp., second) party during an ezecution of II
on (z,y), denoted VIEWL(z,y) (resp., VIEWL (z,v)), is (z,7,m1,...,m;) (resp.,
(y,r,m1,...,m¢)), where r represent the outcome of the first (resp., second)
party’s internal coin tosses, and m; represent the it" message it has received.
The output of the first (resp., second) party after an ezecution of Il on (z,y),
denoted OUTPUTY (z,y) (resp., OUTPUTY (z,v)), is implicit in the party’s own
view of the execution, and oUTPUT! (x,y) = (oUuTPUTi (2, 5), ouTPUTH (7, ¥)).

10 By saying that II computes (rather than privately computes) f, we mean that the output
distribution of the protocol (when played by honest or semi-honest parties) on input pair (z,y)
is distributed identically to f(z,y).
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e (deterministic case) For a deterministic functionality f, we say that II
privately computes f if there exist probabilistic polynomial-time algorithms,
denoted S1 and Ss, such that

{Sl(wafl(way))}nyE{O,l}* {VIEwll_I(xay)}a:,yE{O,l}* (7'7)
{S2(y, f2(z,4)) }2,yeq0,13+ = {VIEWE (7,9) }a,yefo,1} (7.8)

e

where |z| = |y|. (Recall that = denotes computational indistinguishability
by (non-uniform) families of polynomial-size circuits.)

e (general case) We say that II privately computes f if there ezist probabilistic
polynomial-time algorithms, denoted S1 and Ss, such that

{(Sl(wa fl(way)); f(x;y))}:c,y
{(Sz(ya fZ(way)); f(x;y))}:c,y

We stress that above ViEwi(z,y), viewil(z, y), outputi(z,y) and outPuri(z,y),
are related random variables, defined as a function of the same random ex-
ecution. In particular, OUTPUTH (x,y) is fully determined by VIEWY (z,y).

{(view;' (z,3), ouTPUT' (2, 9)) }o y (7.9)

llle lle

{(view! (2, 9), ouTPUT™ (2,9)) }2, (7.10)

Consider first the deterministic case: Eq. (7.7) (resp., Eq. (7.8)) asserts that the
view of the first (resp., second) party, on each possible pair of inputs, can be
efficiently simulated based solely on its own input and output. Thus, all that this
party learns from the full transcript of the proper execution, is effectively implied
by its own output from this execution (and its own input to it). In other words,
all that the party learns from the (semi-honest) execution is essentially implied
by the output itself. Next, note that the formulation for the deterministic case
coincides with the general formulation as applied to deterministic functionalities
(because, in any protocol II that computes a deterministic functionality f, it
must hold that ouTPUT! (z,y) = f(z,y), for each pair of inputs (z,y)).

In contrast to the deterministic case, augmenting the view of the semi-honest
party by the output of the other party is essential when randomized functional-
ities are concerned. Note that in this case, for any protocol II that computes a
randomized functionality f, it does not necessarily hold that ouTpuT™(z,y) =
f(z,y), because each of the two objects is a random variable. Indeed, these two
random variables must be identically (or similarly) distributed, but this does
not suffice for asserting, for example, that Eq. (7.7) implies Eq. (7.9). Two
disturbing counter-examples follow:

1. Consider the functionality (1™,1") +— (r,A), where r is uniformly dis-
tributed in {0,1}", and a protocol in which Party 1 uniformly selects
r € {0,1}", sends it to Party 2, and outputs r. Clearly, this protocol
computes the above functionality, alas intuitively we should not consider
this computation private (because Party 2 learns the output of Party 2 al-
though it is not supposed to learn anything about that output). However,
a simulator S2(1™) that outputs a uniformly chosen r € {0,1}™ satisfies
Eq. (7.8) (but does not satisty Eq. (7.10)).
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The point is that Eq. (7.9) & (7.10) refer to the relation between a party’s
output and the other party’s view, and require that this relation be main-
tained in the simulation.

2. Furthermore, Eq. (7.9) & (7.10) require that the party’s simulated view fits
its actual output (which is given to the simulator). To demonstrate the
importance of this issue, consider the foregoing functionality, and a proto-
col in which Party 1 uniformly selects s € {0,1}", and outputs 7 «— F(s),
where F' is a one-way permutation. Again, this protocol computes the
above functionality, but we should not consider this computation private
(because Party 1 learns the preimage of its output under F', something it
could not have obtained if a trusted party were to give it the output). Note
that a simulator S;(1",7) that uniformly selects s € {0,1}"™ and outputs
(s, F(s)) satisfies Eq. (7.7) (but does not satisfy Eq. (7.9)).

What about auxiliary inputs? Auxiliary inputs are implicit in Definition 7.2.1.
They are represented by the fact that the definition asks for computational
indistinguishability by non-uniform families of polynomial-size circuits (rather
than computational indistinguishability by probabilistic polynomial-time algo-
rithms). In other words, indistinguishability holds also with respect to prob-
abilistic polynomial-time machines that obtain (non-uniform) auxiliary inputs.

Private computation of partial functionalities. For functionalities that
are defined only for inputs pairs in some set R C {0,1}* x {0,1}* (see Sec-
tion 7.2.1.1), private computation is defined as in Definition 7.2.1, except that
the ensembles are indexed by pairs in R.

7.2.2.2 The alternative formulation

It is instructive to recast the above definition in terms of the general (“real-vs-
ideal”) framework discussed in Section 7.1.1 (and used extensively in the case
of arbitrary malicious behavior). In this framework one first consider an ideal
model in which the (two) parties are joined by a (third) trusted party, and
the computation is performed via this trusted party. Next, one considers the
real model in which a real (two-party) protocol is executed (and there exist no
trusted third parties). A protocol in the real model is said to be secure with
respect to certain adversarial behavior if the possible real executions with such
an adversary can be “simulated” in the corresponding ideal model. The notion
of simulation used here is different than the one used in Section 7.2.2.1: The
simulation is not of the view of one party via a traditional algorithm, but rather
a simulation of the joint view of both parties by the execution of an ideal-model
protocol.

According to the general methodology (framework), we should first specify
the ideal-model protocol. In case of semi-honest adversaries, the ideal model
cousists of each party sending its input to the trusted party (via a secure private
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channel), the third party computing the corresponding output-pair and sending
each output to the corresponding party. The only adversarial behavior allowed
here is for one of the parties to determine its own output based on its input and
the output it has received (from the trusted party).!* This adversarial behavior
represents the attempt to learn something from the party’s view of a proper
execution (which in the ideal model consists only of its local input and output).
The other (i.e., honest) party merely outputs the output that it has received
(from the trusted party).

Next, we turn to the real model. Here, there is a real two-party protocol and
the adversarial behavior is restricted to be semi-honest. That is, the protocol is
executed properly, but one party may produce its output based on (an arbitrary
polynomial-time computation applied to) its view of the execution (as defined
above). We stress that the only adversarial behavior allowed here is for one of
the parties to determine its own output based on its entire view of the proper
execution of the protocol.

Finally, we define security in the semi-honest model. A secure protocol for the
real (semi-honest) model is such that for every feasible semi-honest behavior of
one of the parties, we can simulate the joint outcome (of their real computation)
by an execution in the ideal model (where also one party is semi-honest and the
other is honest). Actually, we need to augment the definition so to account for
a-priori information available to semi-honest parties before the protocol starts.
This is done by supplying these parties with auxiliary inputs.

Note that in both (ideal and real) models, the (semi-honest) adversarial be-
havior only takes place after the proper execution of the corresponding protocol.
Thus, in the ideal model this behavior is captured by a computation applied to
the local input-output pair, whereas in the real model this behavior is captured
by a computation applied to the party’s local view (of the execution).

Definition 7.2.2 (security in the semi-honest model): Let f : {0,1}*x{0,1}* —
{0,1}* x {0,1}* be a functionality, where fi(z,y) (resp., fo(x,y)) denotes the
first (resp., second) element of f(x,y), and II be a two-party protocol for com-
puting f.

e Let B = (By,By) be a pair of probabilistic polynomial-time algorithms
representing parties’ strategies for the ideal model. Such a pair is admis-
sible (in the ideal model) if for at least one B; we have B;(u,v,z) = v,
where u demotes the party’s local input, v its local output, and z its aux-
iliary input. The joint execution of f under B in the ideal model on input
pair (z,y) and auxiliary input z, denoted IDEALfE(Z)(x,y), is defined as

(Bl(wafl(x;y)7Z)aBZ(y;fZ(m;y)rz))'

(That is, if B; is honest then it just outputs the value f;(x, y) obtained from
the trusted party, which is implicit in this definition. Thus, our peculiar

11 We stress that unlike in the malicious model, discussed in Section 7.2.3, here the dishonest
(or rather semi-honest) party is not allowed to modify its input (but must hand its actual input
to the trusted party).
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choice to feed both parties with the same auxiliary input is immaterial,
because the honest party ignores its auxiliary input.)

o Let A= (A1, Ay) be a pair of probabilistic polynomial-time algorithms rep-
resenting parties’ strategies for the real model. Such a pair is admissible (in
the real model) if for at least one i € {1,2} we have A;(view,aux) = out
for every view and aux, where out is the output implicit in view. The joint
execution of IT under A in the real model on input pair (z,y) and auxiliary in-
put z, denoted REALH,Z(Z)(:E’ y), is defined as (A (VIEW! (z,y), 2), Ao (VIEWS (2, 9), 2)),
where VIEW(x,y) is as in Definition 7.2.1.

(Again, if A; is honest then it just outputs the value f;(x,y) obtained from
the execution of II, and we may feed both parties with the same auxiliary
input.)

Protocol 11 is said to securely compute f in the semi-honest model (secure w.r.t
f and semi-honest behavior) if for every of probabilistic polynomial-time pair
A = (A1, A2) that is admissible for the real model there exists a probabilistic
polynomial-time pair B = (By, By) that is admissible for the ideal model such
that

{IDEAL, 5. (#,9) }e,y,- = {REALy 7 (@,9) b,y - (7.11)

where z,y,z € {0,1}* such that |z| = |y| and |z| = poly(|z|).

Observe that the definition of the joint execution in the real model prohibits both
parties (honest and semi-honest) to deviate from the strategies specified by II.
The difference between honest and semi-honest parties is merely in their actions
on the corresponding local views of the execution: An honest party outputs only
the output-part of the view (as specified by II), whereas a semi-honest party may
output an arbitrary (feasibly computable) function of the view.

We comment that, as will become clear in the proof of Proposition 7.2.3,
omitting the auxiliary input does not weaken Definition 7.2.2.

7.2.2.3 Equivalence of the two formulation

It is not hard to see that Definitions 7.2.1 and 7.2.2 are equivalent. That is,

Proposition 7.2.3 Let II be a protocol for computing f. Then, II privately
computes f if and only if II securely computes f in semi-honest model.

Proof Sketch: Suppose first that II securely computes f in semi-honest model
(i-e., satisfies Definition 7.2.2). Without loss of generality, we show how to sim-
ulate the first party view. Towards this end, we define the following admissible
pair A = (A, Ay) for the real model: A; is merely the identity transformation
(i.e., it outputs the view given to it), whereas A, maps its view to the corre-
sponding output (as required by definition of an admissible pair). We stress
that we consider an adversary that does not get an auxiliary input (or alterna-
tively ignores it). Let B = (By, By) be the ideal-model adversary guaranteed by
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Definition 7.2.2. Then, B; (in role of S;) satisfies Eq. (7.9). (Note that Defini-
tion 7.2.2 guarantees that the simulated view fits the output, and so Eq. (7.9),
rather than only Eq. (7.7), holds.)

Now, suppose that II privately computes f, and let S; and S; be as guar-
anteed in Definition 7.2.1. Let A = (A;, A3) be an admissible pair for the real-
model adversaries. Without loss of generality, we assume that As merely maps
the view (of the second party) to the corresponding output (i.e., fo(x,y)); that
is, Party 2 is honest (and Party 1 is semi-honest). Then, we define an ideal-model
pair B = (By, By) such that By (z,v,z2) e A1(S1(z,v),2) and Bs(y,v,z) <.
The following holds (for an infinite sequence of (x,y, z)’s):

A (VIEW! (2, 9), 2), A2 (VIEWY (2,7), 2))

REALp 7, (2,9)

llle

(Ax(

(A (view!(z,y), z), output (2, ))
(Al(Sl(w7 fl(way )a Z), fZ(x;y))
(Bl(wa fl(x;y)7 Z); B2(y; fZ(w7y)a Z))
IDEAL 5, (x,y)

where the computational indistinguishability (i.e., é) is due to the guarantee re-
garding S (in its general form); i.e., Eq. (7.9). Indeed, the latter only guarantees
(ViBwll(z,y), OUTPUTY (5, )) = (S1(2, f1 (2,)), fo(, 1)), but by incorporating
A; and z in the distinguisher the above soft-equality follows. Wl

Conclusion: The above proof demonstrates that the alternative formulation
of Definition 7.2.2 is merely a cumbersome form of the simpler Definition 7.2.1.
We stress that the reason we have presented the cumbersome form is the fact
that it follows the general framework of definitions of security that is used for the
malicious adversarial behavior. In the rest of this chapter, whenever we deal with
the semi-honest model (for two-party computation), we will used Definition 7.2.1.
Furthermore, since much of the text focuses on deterministic functionalities, we
will be able to use the simpler case of Definition 7.2.1.

7.2.3 The malicious model

We now turn to consider arbitrary feasible deviation from the specified program
of a two-party protocol. A few preliminary comments are in place. Firstly, there
is no way to force parties to participate in the protocol. That is, a possible
malicious behavior may consists of not starting the execution at all, or, more
generally, suspending (or aborting) the execution at any desired point in time.
In particular, a party can abort at the first moment when it obtains the desired
result of the computed functionality. We stress that our model of communica-
tion does not allow to condition the receipt of a message by one party on the
concurrent sending of a proper message by this party. Thus, no two-party proto-
col can prevent one of the parties to abort when obtaining the desired result and
before its counterpart also obtains the desired result. In other words, it can be
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shown that perfect fairness — in the sense of both parties obtaining the outcome
of the computation concurrently — is not achievable in two-party computation.
We thus give up on such fairness altogether. (We comment that partial fairness
is achievable, see Section 7.7.1.1).

Secondly, observe that when considering malicious adversaries it is not clear
what is their input to the protocol. That is, a malicious party can enter the
protocol with arbitrary input, which may not equal its “true” local input. There
is no way for a protocol to tell the “true” local input from the one claimed by a
party (or, in other words, to prevent a malicious party from modifying its input).
(We stress that these phenomena did not occur in the semi-honest model, for the
obvious reason that parties were postulated not to deviate from the protocol.)

In view of the above, there are three things we cannot hope to avoid (no
matter what protocol we use).

1. Parties refusing to participate in the protocol (when the protocol is first
invoked).

2. Parties substituting their local input (and entering the protocol with an
input other than the one provided to them).

3. Parties aborting the protocol prematurely (e.g., before sending their last
message).

Thus, we shall consider a two-party protocol to be secure if the adversary’s
behavior in it is essentially restricted to the above three actions. Following the
“real-vs-ideal” methodology (of Section 7.1.1), this means that we should define
an ideal model that corresponds to these possible actions, and define security
such that the execution of a secure protocol in the real model can be simulated
by the ideal model.

7.2.3.1 The actual definition

We start with a straightforward implementation of the above discussion. An
alternative approach, which is simpler alas partial, is presented in Section 7.2.3.2.
(Specifically, the alternative approach is directly applicable only to one-output
functionalities, in which case the complications introduced by aborting do not
arise. The interested reader may proceed directly to Section 7.2.3.2, which is
mostly self-contained.)

The ideal model. We first translate the above discussion into a definition
of an ideal model. That is, we will allow in the ideal model whatever cannot
be possibly prevented in any real execution. An alternative way of looking at
things is that we assume that the the two parties have at their disposal a trusted
third party, but even such a party cannot prevent certain malicious behavior.
Specifically, we allow a malicious party in the ideal model to refuse to participate
in the protocol or to substitute its local input. (Clearly, neither can be prevent
by a trusted third party.) In addition, we postulate that the first party has the
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option of “stopping” the trusted party just after obtaining its part of the output,
and before the trusted party sends the other output-part to the second party.
Such an option is not given to the second party.'? Thus, an execution in the
ideal model proceeds as follows (where all actions of the both the honest and
the malicious parties must be feasible to implement):

Inputs: Each party obtains an input, denoted u.

Sending inputs to trusted party: An honest party always sends u to the trusted
party. A malicious party may, depending on u (as well as on an auxiliary
input and its coin tosses), either abort or sends some u’ € {0,1}/*l to the
trusted party.'3

The trusted party answers the first party: In case it has obtained an input pair,
(z,y), the trusted party (for computing f), first replies to the first party
with fi(z,y). Otherwise (i.e., in case it receives only one input), the
trusted party replies to both parties with a special symbol, denoted L.

The trusted party answers the second party: In case the first party is malicious
it may, depending on its input and the trusted party’s answer, decide to
stop the trusted party. In this case the trusted party sends L to the second
party. Otherwise (i.e., if not stopped), the trusted party sends fo(z,y) to
the second party.

Outputs: An honest party always outputs the message it has obtained from the
trusted party. A malicious party may output an arbitrary (polynomial-
time computable) function of its initial input (auxiliary input and random-
tape) and the message it has obtained from the trusted party.

In fact, without loss of generality, we may assume that both parties send inputs
to the trusted party (rather than allowing the malicious party not to enter the
protocol). This assumption can be justified by letting the trusted party use
some default value (or a special abort symbol) in case it does not get an input
from one of the parties.!* Thus, the ideal model (computation) is captured by
the following definition, where the algorithms B; and Bs represent all possible

12 This asymmetry is due to the non-concurrent nature of communication in the model.
Since we postulate that the trusted party sends the answer first to the first party, the first
party (but not the second) has the option to stop the trust party after obtaining its part of
the output. The second party, can only stop the trust party before obtaining its output, but
this is the same as refusing to participate. See further discussion at the end of the current
subsection.

13 We comment that restricting the ideal-model adversary (to replacing u by u' of the
same length) only strengthens the definition of security. This restriction is essential to our
formulation, because (by our convention) the functionality f is defined only for pairs of strings
of equal length.

14 Both options (i.e., default value or a special abort symbol) are useful, and the choice
depends on the protocol designer. In case a special abort symbol is used, the functionality
should be modified accordingly such that if one of the inputs equals the special abort symbol
then the output is a special abort symbol.
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actions in the model.!® In particular, By(z,z,r) (resp., B2(y, 2,7)) represents
the input handed to the trusted party by Party 1 (resp., Party 2) having local-
input x (resp., y), auxiliary input z and using random-tape r. Indeed, if Party 1
(resp., Party 2) is honest then B;(x,z,r) = x (resp., Ba2(y, z,7) = y). Likewise,
Bi(x,z,r,v) = L represents a decision of Party 1 to stop the trusted party, on
input z (auxiliary input z and random-tape r), after receiving the (output) value
v from the trusted party. In this case By (z, z,r, v, L) represents the party’s local-
output. Otherwise (i.e., Bi(x, z,r,v) # L), we let Bi(x,z,r,v) itself represent
the party’s local-output. The local output of Party 2 is always represented by
Bs(y, z,7,v), where y is the party’s local input (z is the auxiliary input, r is
the random-tape) and v is the value received from the trusted party. Indeed, if
Party 1 (resp., Party 2) is honest then By (z, z,r,v) = v (resp., Ba(y, z,7,v) = v).

Definition 7.2.4 (malicious adversaries, the ideal model): Let f : {0,1}* x
{0,1}* — {0,1}* x {0,1}* be a functionality, where fi(x,y) (resp., fa(z,y))
denotes the first (resp., second) element of f(x,y). Let B = (By, By) be a pair
of probabilistic polynomial-time algorithms representing strategies in the ideal
model. Such a pair is admissible (in the ideal malicious model) if for at least one
i € {1,2}, called honest, we have B;(u,z,7) = u and B;(u,z,r,v) = v, for every
possible value of u, z,r and v. Furthermore, |B;(u,z,7)| = |u| must hold for both
i’s. The joint execution of f under B in the ideal model (on input pair (z,y) and
auxiliary input z), denoted IDEALfE(Z)(a:,y), is defined by uniformly selecting a

random-tape r for the adversary, and letting IDEALfE(Z)(a:,y) def Y(z,y,2,7),
where Y(x,y, z,7) is defined as follows:

e In case Party 1 is honest, Y(x,y,z,7) equals
(Fi(2,y), Baly, 2,7, fo(w,y)), where y < Ba(y,z,r).  (7.12)

e In case Party 2 is honest, Y(x,y,z,7) equals

(B]_(Q?, Z,T, fl(wla y)a J—) ) J‘) if Bl(x; Z,T, fl(x’; y)) =1 (713)
(By(z,z,7, fi(z",y)), fa(2',y)) otherwise (7.14)

. def
where, in both cases, x' = By(x,z,r).

Eq. (7.13) & (7.14) refer to the case that Party 2 is honest (and Party 1 may
be malicious). Specifically, Eq. (7.13) represents the sub-case where Party 1
invokes the trusted party with a possibly substituted input, denoted Bj(z, z,r),

15 As in Definition 7.2.2, we make the peculiar choice of feeding both B;’s with the same
auxiliary input z (and the same random-tape r). However, again, the honest strategy ignores
this auxiliary input, which is only used by the malicious strategy. Note that unlike in previous
definitions, we make the random-tape (of the adversary) explicit in the notation. The reason
being that the same strategy is used to describe two different actions of the adversary (rather
than a single action, as in Definition 7.2.2). Since these actions may be probabilistically related,
it is important that they are determined based on the same random-tape.
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and aborts while stopping the trusted party right after obtaining the output,
fi(Bi(z,2,7),y). In this sub-case, Party 2 obtains no output (from the trusted
party). Eq. (7.14) represents the sub-case where Party 1 invokes the trusted
party with a possibly substituted input, and allows the trusted party to answer
Party 2. In this sub-case, Party 2 obtains and output f2(A4:(z,2,7),y). In both
sub-cases, the trusted party computes f(A;(z,z,7),y), and Party 1 outputs a
string that depends on both z,z,7 and fi(4;(z,2,7),y). Likewise, Eq. (7.12)
represent possible malicious behavior of Party 2; however, in accordance to the
above discussion, the trusted party first supplies output to Party 1 and so Party 2
does not have a “real” aborting option (analogous to Eq. (7.13)).

Execution in the real model. We next consider the real model in which a
real (two-party) protocol is executed (and there exist no trusted third parties).
In this case, a malicious party may follow an arbitrary feasible strategy; that
is, any strategy implementable by a probabilistic polynomial-time algorithm
(which gets an auxiliary input). In particular, the malicious party may abort
the execution at any point in time, and when this happens prematurely, the other
party is left with no output. In analogy to the ideal case, we use algorithms to
define strategies in a protocol, where these strategies (or algorithms implementing
them) map partial execution histories to the next message.

Definition 7.2.5 (malicious adversaries, the real model): Let f be as in Defini-
tion 7.2.4, and II be a two-party protocol for computing f. Let A = (A;, As) be
a pair of probabilistic polynomial-time algorithms representing strategies in the
real model. Such a pair is admissible (w.r.t II) (for the real malicious model) if
at least one A; coincides with the strategy specified by 1. (In particular, this A;
ignores the auziliary input.) The joint execution of IT under A in the real model
(on input pair (z,y) and auxiliary input z), denoted REALHE(Z)(:C,y), is defined
as the output pair resulting from the interaction between Ai(x,z) and As(y, z).
(Recall that the honest A; ignores the auxiliary input z, and so our peculiar
choice of providing both A;’s with the same z is immaterial.)

In some places (in Section 7.4), we will assume that the algorithms representing
the real-model adversaries (i.e., the algorithm A; that does not follow II) are
deterministic. This is justified by observing that one may just (consider and) fix
the “best” possible choice of coins for a randomized adversary and incorporate
this choice in the auxiliary input of a deterministic adversary (cf. Section 1.3.3).

Security as emulation of real execution in the ideal model. Having
defined the ideal and real models, we obtain the corresponding definition of
security. Loosely speaking, the definition asserts that a secure two-party protocol
(in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that admissible adversaries in the ideal-model are
able to simulate (in the ideal-model) the execution of a secure real-model protocol
under any admissible adversaries.
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Definition 7.2.6 (security in the malicious model): Let f and II be as in Defi-
nition 7.2.5. Protocol 11 is said to securely compute f (in the malicious model) if
for every probabilistic polynomial-time pair A = (Ay, As) that is admissible for
the real model (of Definition 7.2.5) there exists a probabilistic polynomial-time
pair B = (By, Bs) that is admissible for the ideal model (of Definition 7.2.4)
such that

{IDEALfE(Z) (@, 9)}e,y,- = {REALHJ(Z) (@, y)}a,y,=

where @y, z € {0,1}* such that |z| = |y| and |z| = poly(|z]). (Recall that = de-
notes computational indistinguishability by (non-uniform) families of polynomial-
size circuits.) When the context is clear, we sometimes refer to Il as an secure
implementation of f.

One important property that Definition 7.2.6 implies is privacy with respect to
malicious adversaries. That is, all that an adversary can learn by participating
in the protocol, while using an arbitrary (feasible) strategy, can be essentially
inferred from the corresponding output alone. Another property that is implied
by Definition 7.2.6 is correctness, which means that the output of the honest
party must be consistent with an input pair in which the element corresponding
to the honest party equals the party’s actual input. Furthermore, the element
corresponding to the adversary must be chosen obliviously of the honest party’s
input. We stress that both properties are easily implied by Definition 7.2.6, but
the latter is not implied by combining the two properties. For further discussion,
see Exercise 3.

We wish to highlight another property that is implied by Definition 7.2.6:
Loosely speaking, this definition implies that at the end of the (real) execution
of a secure protocol, each party “knows” the value of the corresponding input
for which the output is obtained. That is, when a malicious Party 1 obtains the
output v, it knows an z' (which does not necessarily equal to its initial local-
input z) such that v = fi(2',y) for some y (i.e., the local-input of the honest
Party 2). This “knowledge” is implied by the equivalence to the ideal model,
in which the party explicitly hands the (possibly modified) input to the trusted
party. For example, say Party 1 uses the malicious strategy A;. Then the output
values (in REALp 7(,y)) correspond to the input pair (Bi(z),y), where B is
the ideal-model adversary derived from the real-model adversarial strategy A;.

We comment that although Definition 7.2.6 does not talk about transform-
ing admissible A’s to admissible B’s, we will often use such phrases. Further-
more, although the definition does not even guarantees that such a transfor-
mation is effective (i.e., computable), the transformations used in this work are
all polynomial-time computable. Moreover, these transformation consists of a
generic program for B; that uses subroutine (or oracle) calls to the corresponding
A;. Consequently, we sometimes describe these transformation without referring
to the auxiliary input, and the description can be completed by having B; pass
its auxiliary input to A; (in each of its invocations).
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Further discussion. As explained above, it is unavoidable that one party
can abort the real execution after it (fully) learns its output but before the
other party (fully) learns its own output. However, the convention by which
this ability is designated to Party 1 (rather than to Party 2) is quite arbitrary.
More general conventions may be more appealing, but the current one seems
simplest and suffices for the rest of our exposition. Finally, we comment that
the definitional treatment can be extended to partial functionalities.

Remark 7.2.7 (security for partial functionalities): For functionalities that
are defined only for inputs pairs in some set R C {0,1}* x {0,1}* (see Sec-
tion 7.2.1.1), security is defined as in Definition 7.2.6 with the following two
exceptions:

1. When defining the ideal model, the adversary is allowed to modify its input
arbitrarily as long as the modified input pair is in R.

2. The ensembles considered are indezed by triplets (z,y, z) that satisfy (x,y) €
R as well as |z| = |y| and |z| = poly(|z]).

7.2.3.2 An alternative approach

A simpler definition of security may be used in the special case of single-output
functionalities (i.e., functionalities in which only one party obtains an output).
Assume, without loss of generality, that only the first party obtains an output
(from the functionality f); that is, f(z,y) = (f1(z,v),)).!® In this case, we need
not be concerned of what happens after the first party obtains its output (because
the second party’s has no output), and thus the complications arising from the
issue of aborting the execution can be eliminated. Consequently, computation
in the ideal model takes the following form:

Inputs: Each party obtains an input, denoted u.

Sending inputs to trusted party: An honest party always sends u to the trusted
party. A malicious party may, depending on u (as well as on an auxiliary
input and its coin tosses), either abort or sends some u’ € {0,1}/*l to the
trusted party. However, without loss of generality, aborting at this stage
may be treated as supplying the trusted party with a special symbol.

The answer of trusted party: Upon obtained an input pair, (z,y), the trusted
party (for computing f), replies to the first party with fi(z,y). Without
loss of generality, the trusted party only answers the first party, because
the second party has no output (or, alternatively, should always output
A).

16 Actually, the treatment of the case in which only the second party obtains an output (i-e.,
f(z,y) = (A, f2(z,y))) is slightly different. However, also in this case, the event in which the
first party aborts after obtaining its (empty) output can be discarded. In this case, this event
(of obtaining an a-priori fixed output) is essentially equivalent to the party aborting before
obtaining output, which in turn can be viewed as replacing its input by a special symbol.
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Outputs: An honest party always outputs the message it has obtained from the
trusted party. A malicious party may output an arbitrary (polynomial-
time computable) function of its initial input (auxiliary input and its coin
tosses) and the message it has obtained from the trusted party.

Thus, the ideal model (computation) is captured by the following definition,
where the algorithms B; and B, represent all possible actions in the model.
In particular, By (z,z,7) (resp., Ba(y, z,7)) represents the input handed to the
trusted party by Party 1 (resp., Party 2) having local-input x (resp., y), auxiliary
input z and random-tape r. Indeed, if Party 1 (resp., Party 2) is honest then
Bi(z,z,7) = x (resp., Ba(y,z,7) = y). Likewise, By(z, z,r,v) represents the
output of Party 1, when having local-input z (auxiliary input z and random-
tape 7) and receiving the value v from the trusted party, whereas the output
of Party 2 is represented by Ba(y, z,r, A). Indeed, if Party 1 (resp., Party 2) is
honest then B;(x,z,7,v) = v (resp., Ba(y, z,7,A) = A).

Definition 7.2.8 (the ideal model): Let f: {0,1}* x {0,1}* — {0,1}* x {A} be
one-output functionality such that f(z,y) = (fi(z,y),)\). Let B = (By, By) be
a pair of probabilistic polynomial-time algorithms representing strategies in the
ideal model. Such a pair is admissible (in the ideal malicious model) if for at
least one i € {1,2}, called honest, we have B;(u,z,7) = u and B;(u,z,7,v) = v
for all possible u, z,7 and v. Furthermore, |B;(u, z,7)| = |u| must hold for both
i’s. The joint execution of f under B in the ideal model (on input pair (z,y) and
auxiliary input z), denoted IDEALfE(Z)(x,y), is defined by uniformly selecting a

random-tape T for the adversary, and letting IDEAL E(z)(x,y) def Y(x,y,z,7),
where

T(:C,y,z,r) dZEf (Bl(m,Z,T, fl(Bl(va;T)aBZ(yazar))) ) Bz(y,Z,T,)\)) (715)

That iS, IDEALf7§(z)(w7y) déf (Bl(iL",Z,’f',’U),Bz(y,Z,T,)\)), where v fl(Bl(x;Z;T)aB2(y;Z;T))

and v is uniformly distributed among the set of strings of adequate length.'”

We next consider the real model in which a real (two-party) protocol is executed
(and there exist no trusted third parties). In this case, a malicious party may
follow an arbitrary feasible strategy; that is, any strategy implementable by a
probabilistic polynomial-time algorithm. The definition is identical to Defini-
tion 7.2.5, and is reproduced below for sake of self-containment.

Definition 7.2.9 (the real model): Let f be as in Definition 7.2.8, and 11 be a
two-party protocol for computing f. Let A = (Ay, A3) be a pair of probabilistic
polynomial-time algorithms representing strategies in the real model. Such a pair
is admissible (w.r.t II) (for the real malicious model) if at least one A; coincides
with the strategy specified by II. The joint execution of IT under A in the real model

17 Recall that if B; is honest then it passes its input to the trusted party and outputs its
response. Thus, our peculiar choice to feed both parties with the same auxiliary input and
same random-tape is immaterial, because the honest party ignores both.
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(on input pair (x,y) and auxiliary input z), denoted REAL Z(Z)(:C,y), is defined
as the output pair resulting from the interaction between Ai(x,z) and As(y, z).
(Note that the honest A; ignores the auziliary input z.)

Having defined the ideal and real models, we obtain the corresponding definition
of security. Loosely speaking, the definition asserts that a secure two-party
protocol (in the real model) emulates the ideal model (in which a trusted party
exists). This is formulated by saying that admissible adversaries in the ideal-
model are able to simulate (in the ideal-model) the execution of a secure real-
model protocol under any admissible adversaries. The definition is analogous to
Definition 7.2.6.

Definition 7.2.10 (security): Let f and II be as in Definition 7.2.9. Protocol
IT is said to securely compute f (in the malicious model) if for every probabilistic
polynomial-time pair A = (A1, Ay) that is admissible for the real model (of
Definition 7.2.5) there ewists a probabilistic polynomial-time pair B = (By, By)
that is admissible for the ideal model (of Definition 7.2.4) such that

llle

{IDEALf7E(z) (357 y)}w7y7z {REALHE(Z) (357 y)}wﬂhz

where x,y,z € {0,1}* such that |z| = |y| and |z| = poly(|z]).

Clearly, as far as single-output functionalities are concerned, Definitions 7.2.6
and 7.2.10 are equivalent (because in this case the ideal-model definitions co-
incide). It is also clear from the above discussions that the two definitions are
not equivalent in general (i.e., with respect to two-output functionalities). Still,
it is possible to securely implement any (two-output) functionality by using a
protocol for securely computing a (related) single-output functionality. That
is, ability to construct secure protocols under Definition 7.2.10 yields ability to
construct secure protocols under Definition 7.2.6.

Proposition 7.2.11 Suppose that there exists one-way functions and that any
single-output functionality can be securely computed as per Definition 7.2.10.
Then any functionality can be securely computed as per Definition 7.2.6.

Proof Sketch: Suppose that the parties wish to securely compute the (two-
output) functionality (z,y) — (fi(z,y), f2(z,y)). The first idea that comes
to mind is to first let the parties (securely) compute the first output (i.e., by
securely computing (z,y) — (fi(z,y),\)) and next let them (securely) compute
the second output (i.e., by securely computing (z,y) — (A, f2(z,v))). This
solution is insecure, because a malicious party may enter different inputs in
the two invocations (not to mention that the approach will fail for randomized
functionalities even if both parties are honest). Instead, we are going to let the
first party obtain its output as well as an (authenticated and) encrypted version
of the second party’s output, which it will send to the second party (which
will be able to decrypt and verify the value). That is, we will use private-key
encryption and authentication schemes, which exist under the first hypothesis, as
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follows. First, the second party generates an encryption/decryption-key, denoted
e, and a signing/verification-key, denoted s. Next, the two parties securely
compute the randomized functionality ((x, (y,e,s)) — ((fi(z,y),¢,t), A), where
¢ is the ciphertext obtained by encrypting the plaintext v = fo(x,y) under the
encryption-key e, and ¢ is an authentication-tag of ¢ under the signing-key s.
Finally, the first party sends (c,t) to the second party, which verifies that c is
properly signed and (if so) recovers fo(z,y) from it. [l

7.3 * Privately Computing (2-Party) Function-
alities

Recall that our ultimate goal is to design (two-party) protocols that withstand
any feasible adversarial behavior. We proceed in two steps. In this section,
we show how to construct protocols for privately computing any functionality;
that is, protocols that are secure with respect to the semi-honest model. In
Section 7.4, we will show how to compile these protocols into ones that are
secure also in the malicious model.

Throughout the current section, we assume that the desired (two-party) func-
tionality (w.r.t the desired input length) is represented by a (two-input) Boolean
circuit. We show how to transform this circuit into a two-party protocol for eval-
uating the circuit on a given pair of local inputs. The transformation follows the
outline provided in in Section 7.1.3.3.18

The circuit-evaluation protocol, to be presented in Section 7.3.4, scans the
circuit from the input wires to the output wires, processing a single gate in
each basic step. When entering each basic step, the parties hold shares of the
values of the input wires of the gate, and when the step is completed they hold
shares of the output wire of the gate. The shares held by each party yield no
information about the corresponding values, but combining the two shares of
any value allows to reconstruct the value. Each basic step is performed without
yielding any additional information; that is, the generation of shares for all
wires (and in particular for the circuit’s output wires) is performed in a private
manner. Put in other words, we will show that privately evaluating the circuit
“reduces” to privately evaluating single gates on values shared by both parties.

Our presentation is modular, where the modularity is supported by an ap-
propriate notion of a reduction. Thus, we first define such notion, and show that
indeed it is suitable to our goals; that is, combining a reduction of (the private
computation of) g to (the private computation of) f and a protocol for privately
computing f, yields a protocol for privately computing g. Applying this notion
of a reduction, we reduce the private computation of general functionalities to
the private computation of deterministic functionalities, and thus focus on the
latter.

We next consider, without loss of generality, the evaluation of Boolean cir-

18 Indeed, the current section is mainly a detailed version of Section 7.1.3.3.
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cuits with AND and XOR gates of fan-in 2.1° Actually, we find it more convenient
to consider the corresponding arithmetic circuits over GF(2), where multiplica-
tion corresponds to AND and addition to XOR. A value v is shared by the two
parties in the natural manner (i.e., the sum of the shares equals v mod 2). We
show how to propagate shares of values through any given gate (operation).
Propagation through an addition gate is trivial, and we concentrate on propa-
gation through a multiplication gate. The generic case is that the first party
holds (a1,b1) and the second party holds (az,bs), where a; + a2 is the value of
one input wire and by + by is the value of the other input wire. What we want is
to provide each party with a random share of the value of the output wire; that
is, a share of the value (a; + az) - (by + b2). In other words we are interested in
privately computing the following randomized functionality

((a1,b1), (az,b2)) — (c1,c2) (7.16)
where ¢; + ¢ = (a1 + az2) - (b1 + b2). (7.17)

That is, (c1,c2) ought to be uniformly distributed among the pairs satisfying
c1 + ¢ = (a1 + a2) - (by + b2). The above functionality has a finite domain,
and as such it can be privately computed by reduction to a variant of Oblivious
Transfer (OT). This variant is defined in Section 7.3.2, where it is shown that
this variant can be privately implemented assuming the existence of (enhanced)
trapdoor one-way permutations.

The actual presentation proceeds bottom-up. We first define reductions be-
tween (two-party) protocol problems (in the semi-honest model). Next, we define
and implement OT, and show how to use OT for privately computing a single
multiplication gate. Finally, we show how to use the latter protocol to derive a
protocol for privately evaluating the entire circuit.

Teaching Tip: Some readers may prefer to see a concrete protocol (and its
privacy analysis) before coping with the abstract notion of a privacy reduction
(and a corresponding composition theorem). We advise such readers to read
Section 7.3.2 before reading Section 7.3.1.

7.3.1 Privacy reductions and a composition theorem

It is time to define what we mean by saying that the private computation of one
functionality reduces to the private computation of another functionality. Our
definition is a natural extension of the standard notion of a reduction as used
in the context of ordinary (i.e., one party) computation. Recall that standard
reductions are defined in terms of oracle machines. Thus, we need to consider
two-party protocols with oracle access. Here the oracle is invoked by both par-
ties, each supplying it with one input (or query), and it responses with a pair
of answers, one per each party. We stress that the answer-pair depends on the
(entire) query-pair.

19 Indeed, negation can be emulated by XORing the given bit with the constant true.
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Definition 7.3.1 (protocols with oracle access): A oracle-aided protocol is a
protocol augmented by pairs of oracle-tapes, one pair per each party, and oracle-
call steps defined as follows. FEach of the parties may send a special oracle request
message, to the other party. Such a message is typically sent after this party
writes a string, called its query, on its own write-only oracle-tape. In response,
the other party also writes a string, called its query, on its own oracle-tape and
responds to the requesting party with o oracle call message. At this point the
oracle is invoked and the result is that a string, not necessarily the same, is
written by the oracle on the read-only oracle-tape of each party. This pair of
strings is called the oracle answer.

We stress that the syntax of Definition 7.3.1 allows (only) sequential oracle calls
(but not parallel ones). We call the reader attention to the second item in
Definition 7.3.2 that requires that the oracle-aided protocol privately computes
the functionality rather than merely computes it.

Definition 7.3.2 (privacy reductions):

o An oracle-aided protocol is said to be using the oracle-functionality f if the
oracle answers are according to f. That is, when the oracle is invoked
such that the requesting party writes the query q and responding party
writes the query g2, the answer-pair is distributed as f(qi,q2), where the
requesting party gets the first part (i-e., f1((q1,q2)).

We require that the length of each query be polynomially related to the
length of the initial input.?°

o An oracle-aided protocol using the oracle-functionality f is said to privately
compute g if there exist polynomial-time algorithms, denoted Sy and Ss,
satisfying Eq. (7.9) and Eq. (7.10), respectively, where the corresponding
views of the execution of the oracle-aided protocol are defined in the natural
manner.

e An oracle-aided protocol is said to privately reduce g to f, if it privately
computes g when using the oracle-functionality f. In such a case we say
that g is privately reducible to f,

We are now ready to state a composition theorem for the semi-honest model.
Theorem 7.3.3 (Composition Theorem for the semi-honest model): Suppose
that g is privately reducible to f and that there exists a protocol for privately

computing f. Then there exists a protocol for privately computing g.

Theorem 7.3.3 can be generalized to assert that if g is privately-reducible to f,
and f is privately-reducible to e then g is privately-reducible to e. See Exercise 5.

20 This requirement guarantees that the security of the oracle calls be related to the security
of the high level protocol.
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Proof Sketch: Let IT9!/ be a oracle-aided protocol that privately reduces g to
f, and let II7 be a protocol that privately computes f. We construct a protocol
II for computing ¢ in the natural manner; that is, starting with 119!/ we replace
each invocation of the oracle (i.e., of f) by an execution of the protocol II7.
Clearly, II computes g. We need to show that IT privately computes g.

For each 1 = 1,2, let Sflf and Sif be the corresponding simulators for the
view of Party ¢ (i.e., in 91/ and II7, respectively). We construct a simulator
S;, for the view of Party ¢ in II, in the natural manner. That is, we first run
S7 7 and obtain the view of Party 4 in I19/. This view includes queries made
by Party 7 and corresponding answers. (Recall, we have only the part of Party ¢
in the query-answer pair.) Invoking S’Z-f on each such “partial query-answer” we
fill-in the view of Party ¢ for each of these invocations of II/.

A minor technicality: There is a minor inaccuracy in the above description,
which presupposes that Party ¢ is the party that plays the ith party in
117 (ie., Party 1 is the party in 119" that requests all oracle calls to -
But, in general, it may be that, in some invocations of I/, Party 2 plays
the first party in II7 (i.e., Party 1 is the party in 119 that requests this
particular oracle call). In this case, we should simulate the execution of
II' by using the simulator that simulates the view of the corresponding
party in I/ (rather than the corresponding party in II).

Advanced comment: Note that we capitalize on the fact that in the semi-
honest model, the execution of the steps of 119!/ (inside II) is independent
of the actual executions of 11/ (and may depend only on the outcomes of
Hf). This fact, allows us to first simulate a transcript of Hglf, and next
generate simulated transcripts of II7. In contrast, in the malicious model,
the adversary’s actions in 119/ may depend on the transcript of previous
executions of I/, and thus the above simulation strategy will not work
in the malicious model (and a more complex simulation strategy will be

used).

It is left to show that S; indeed generates a distribution that (augmented by
the value of g) is indistinguishable from the view of Party i (augmented by
the output of both parties) in actual executions of II. Towards this end, we
introduce a hybrid distribution, denoted H;. This hybrid distribution represents
the view of Party i (and the output of both parties) in an execution of 19!/ that
is augmented by corresponding invocations of S’Z-f . That is, for each query-answer
pair, (¢, a), viewed by Party 7 we augment its view with S;(¢,a). In other words,
H, represents the execution of II, with the exception that the invocations of II7
are replaced by simulated transcripts.

Comment: We stress that since g may be a randomized functionality,
we should establish that the protocol satisfies the general form of Defi-
nition 7.2.1 rather than its simplified form. That is, we consider the joint
distribution consisting of the view of Party i and the output of both parties
(rather than merely the former). This fact merely makes the phrases more
cumbersome, and the essence of the argument may be better captured by
assuming that g is deterministic and using the special (simpler) form of
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Definition 7.2.1. Likewise, in case f is randomized, we have to rely on
the general form of Definition 7.2.1 in order to show that the distributions
represented by H; and 1l are computationally indistinguishable.

Using the guarantees regarding Sif (resp., Siglf), we show that the distributions
corresponding to H; and II (resp., H; and S;) are computationally indistinguish-
able. Specifically:

1. The distributions represented by H; and II are computationally indistin-
guishable: The reason being that these distributions differ only in that the
invocations of IIf in II are replaced in H; by Sif-simulated transcripts.
Thus, the hypothesis regarding Sif implies that the two distributions are
computationally indistinguishable (where indistinguishability is measured
with respect to the length of the queries, and holds also when measured
with respect to the length of the initial inputs).?* Specifically, one may con-
sider hybrids of IT and H; such that in the jth hybrid the first j invocations
of II7 are real and the rest are simulated. Then distinguishability of neigh-
boring hybrids contradicts the hypothesis regarding S’Z-f (by incorporating
a possible transcript of the rest of the execution into the distinguisher).

2. The distributions represented by H; and S; are computationally indistin-
guishable: The reason being that these distributions are obtained, respec-
tively, from II9!/ and S’f‘f, by augmenting the latter with invocations of
Sif. Thus, indistinguishability follows by the hypothesis regarding Siglf.
Specifically, distinguishing H; and S; implies distinguishing II9 and S’f‘f
(by incorporating the program S’Z-f into the distinguisher).

The theorem follows. [}

Application: reducing private computation of general functionalities
to deterministic ones. Given a general functionality g, we first write it in
a way that makes the randomization explicit. That is, we let g(r,(z,y)) de-
note the value of g(z,y) when using coin tosses r € {0,1}P°¥=) (ie., g(x,y)
is the randomized process consisting of uniformly selecting r € {0, 1}POIY(|1|),
and deterministically computing ¢(r, (x,y))). Next, we privately reduce g to a
deterministic f, where f is defined as follows

F(@r,m), (@2,72)) € gl ® 72, (21, 22)) (7.18)

Applying Theorem 7.3.3 (while using a straightforward privacy-reduction of ¢
to f), we conclude that the existence of a protocol for privately computing the
deterministic functionality f implies the existence of a protocol for privately
computing the randomized functionality g. For sake of future reference, we
explicitly state the privacy reduction of g to f (i.e, the oracle-aided protocol for
g given f).

21 Here we use the hypothesis (made in the first item of Definition 7.3.2) that the length of
each query is polynomially related to the length of the initial input.
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Proposition 7.3.4 (privately reducing a randomized functionality to determin-

istic one): Let g be a randomized functionality, and f be as defined in Eq. (7.18).

Then the following oracle-aided protocol privately reduces g to f.

Inputs: Party i gets input x; € {0,1}™.

Step 1: Party i uniformly selects r; € {0, l}POIY(IwiD.

Step 2 — Reduction: Party i invokes the oracle with query (z;,r;), and records
the oracle response.

Outputs: Fach party outputs the oracle’s response.

We comment that the above construction is applicable also in case of malicious
adversaries; see Section 7.4.2.

Proof: Clearly, the above protocol, denoted II, computes g. To show that
II privately computes g we need to present a simulator for each party view.
The simulator for Party i, denoted S;, is the obvious one. On input (z;,v;),
where z; is the local input to Party ¢ and v, is its local output, the simulator
uniformly selects r; € {0,1}™, and outputs (z;,r;,v;), where m = poly(|z;|).
The main observation underlying the analysis of this simulator is that for every
fixed z1,z2 and r € {0,1}™, we have 7 = g(r,(z1,z2)) if and only if 7 =
fl(z1,71),(x2,72)), for every pair (r1,72) satisfying r1 @ ro = r. Now, let (;
be a random variable representing the random choice of Party ¢ in Step 1, and
¢! denote the corresponding choice made by the simulator S;. Then, referring
to the general form of Definition 7.2.1 (as we should since g is a randomized
functionality), we show that for every fixed z1,zs,7; and ¥ = (v1,v9) it holds

that
VIEW (21, 29) = (24,74, vi)
oUTPUTH (21, 32) = (v, v2)

= Pr{(Gi=m) A (f((z1,C1), (22, (2)) = D)

g = i ), o)) =)
_ om Hrrg(n (56217;562)) =}
= Pr[¢l = ri]-Prlg(x1,x2) = 7]
= Prl(¢ =mi) A (9(21,22) =7)]
_ pp | Sil@igi(@,22)) = (3,70, 0)
A g(w1,w2) = (v1,v2)

where the equalities are justified as follows: the 1st by definition of II, the 2nd by
independernce of the (;’s, the 3rd by definition of (; and f, the 4th by definition
of ¢! and g, the 5th by independence of (! and g, and the 6th by definition of
S;. The claim follows. [

7.3.2 The OT’lc protocol — definition and construction

The (following version of the) Oblivious Transfer functionality is a main ingredi-
ent of our construction. Let k be a fixed integer (k = 4 will do for our purpose),
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and let 01,09,...,0, € {0,1} and ¢ € {1,...,k}. Then, the (one-output) func-
tionality 1-out-of-k Oblivious Transfer, denoted OT’f, is defined as

OTY (01,00, ...,0%),7) = (A, 03) (7.19)

Indeed, 1-out-of-k Oblivious Transfer, is asymmetric. Traditionally, the first
player, holding input (o1,09,...,0k) is called the sender, whereas the second
player, holding the input ¢ € {1,...,k} is called the receiver. Intuitively, the
goal is to transfer the i*® bit to the receiver, without letting the receiver obtain
knowledge of any other bit and without letting the sender obtain knowledge of
the identity of the bit required by the receiver.

Using any enhanced trapdoor permutation, {f,:Dq — Do }aecr, we present
a protocol for privately computing OT’f. The description below refers to the
algorithms guaranteed by such a collection (see Definitions 2.4.5 and C.1.1),
and to a hard-core predicate b for such a collection (see Section 2.5). We denote
the sender (i.e., the first party) by S and the receiver (i.e., the second party) by
R. As discussed in Section 7.2.1, since we are dealing with a finite functionality,
we want the security to be stated in terms of an auxiliary security parameter,
n, presented to both parties in unary.

Construction 7.3.5 (Oblivious Transfer protocol for semi-honest model):

Inputs: The sender has input (o1,02,...,01) € {0,1}F, the receiver has input
i €{1,2,...,k}, and both parties have the auziliary security parameter 1™.

Step S1: The sender uniformly selects an index-trapdoor pair, («,t), by running
the generation algorithm, G, on input 1™. That is, it uniformly selects a
random-tape, r, for G and sets (a,t) = G(1™,r). It sends the index « to
the receiver.

Step R1: The receiver uniformly and independently selects @1, ...,z € Dy, sets
¥i = fa(zi) and y; = z; for every j # i, and sends (y1,¥Yz2,...,Yr) to the
sender. That is:

1. It uniformly and independently selects x1, ...,z € D, by invoking the
domain sampling algorithm k times, on input a.. Specifically, it selects
random tapes, r;’s, for D and sets x; = D(a,r;), forj =1,..,k.

2. Using the evaluation algorithm, the receiver sets y; = fo(x;).

3. For each j # 1, the receiver sets y; = x;.

4. The receiver sends (y1,yz, ---,Yr) to the sender.
(Thus, the receiver knows f;'(y;) = x;, but cannot predict b(f;*(y,)) for
any j #1.)

Step S2: Upon receiving (y1,Y2, ..., Yx), using the inverting-with-trapdoor algo-
rithm and the trapdoor t, the sender computes z; = f7(y;), for every
Jj€A{1,....,k}. It sends (o1 ®b(z1),02 B b(22), ..., 00 D b(21)) to the receiver.
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Step R2: Upon receiving (c1, ca, ..., ¢k ), the receiver locally outputs ¢; & b(x;).

We first observe that the above protocol correctly computes OT’f: This is the
case since the receiver’s local output (i.e., ¢; ® b(z;)) satisfies

ci ®b(z;) = (05 Db(2))® b(x;)
= 0 @b(f, (1) @ b(zs)
= 0 ®b(f7 (falz:))) & b(w:)

We show below that the protocol indeed privately computes OT’f. Intuitively,
the sender gets no information from the execution because, for any possible value
of 7, the senders sees the same distribution; specifically, a sequence of k uniformly
and independently distributed elements of D,. (Indeed, the key observation is
that applying f, to a uniformly distributed element of D, yields a uniformly
distributed element of D,.) Intuitively, the receiver gains no computational
knowledge from the execution since, for j # i, the only data it has regarding
o; is the triplet (a,7;,0; @ b(f,'(z;))), where z; = D(a,7;), from which it is
infeasible to predict o; better than by a random guess. Specifically, we rely on
the “enhanced one-way” hypothesis by which, given o and 7;, it is infeasible to
find f'(z;) (or guess b(f;'(z;)) better than at random). A formal argument
is indeed due and given next.

Proposition 7.3.6 Suppose that {f; : D; — D;},c; constitutes a collection of
enhanced trapdoor permutations (as in Definition C.1.1) and that b constitutes
a hard-core predicate for it. Then, Construction 7.3.5 constitutes a protocol for
privately computing OTY (in the semi-honest model).

We comment that the intractability assumption used in Proposition 7.3.6, will
propagate to all subsequent results in the current and next section (i.e., Sec-
tions 7.3 and 7.4). In fact, the implementation of OT} seems to be the bottleneck
of the intractability assumptions used in these sections.

Proof Sketch: Note that since we are dealing with a deterministic functionality,
we may use the special (simpler) form of Definition 7.2.1 (which only refers to
each party’s view). Thus, we will present a simulator for the view of each
party. Recall that these simulators are given the local input (which includes
also the security parameter) and the local output of the corresponding party.
The following schematic depiction of the information flow in Construction 7.3.5
may be useful towards the constructions of these simulators:
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Sender (.5) Receiver (R)
input (01, O) i
S1 (a,t) — G(1™)
— a —
R1 generates y;’s
— (y1,-0yyr) «—  (knows z;)
52 ¢ = 0; (f 1 (y;))
— (€1 ey ) —
R2 (output) | A ¢i ®b(z;)

We start by presenting a simulator to the sender’s view. On input (((o1, ..., 0%), 1), A),
this simulator randomly selects « (as in Step S1), and generates uniformly and
independently w1, ...,yr € Dy. That is, let 7 denote the sequence of coins used
to generate «, and assume without loss of generality that the inverting-with-
trapdoor algorithm is deterministic (which is typically the case anyhow). Then
the simulator outputs (((o1,-..,0%),1™),7, (y1, .-, Yx)), where the first element
represents the party’s input, the second its random choices, and the third the
(single) message that the party has received. Clearly, this output distribution
is identical to the view of the sender in the real execution. (This holds because
fa 18 a permutation, and thus applying it to a uniformly selected of D, yields a
uniformly distributed element of D,,.)

We now turn to the receiver. On input ((¢,1™),0;), the simulator (of the
receiver’s view) proceeds as follows.

1. Emulating Step S1, the simulator uniformly selects an index-trapdoor pair,
(, t), by running the generation algorithm on input 1™.

2. As in Step R1, it uniformly and independently selects rq,...,r for the
domain sampler D, and sets ; = D(a,r;) for j = 1,..., k. Next, it sets
¥ = fo(x;) and y; = x;, for each j # i.

3. It sets ¢; = 0; @ b(x;), and uniformly selects ¢; € {0, 1}, for each j # .

4. Finally, it outputs ((¢,1"), (r1,...,7%), (@, (c1,...,¢x))), where the first ele-
ment represents the party’s input, the second its random choices, and the
third represents the two messages that the party has received.

Note that, except for the sequence of c;’s, this output is distributed iden-
tically to the corresponding prefix of the receiver’s view in the real execu-
tion. Furthermore, the above holds even if we include the bit ¢; (which equals
o; ®b(f71(y:)) = 0 @ b(w;) in the real execution as well as in the simulation).
Thus, the two distributions differ only in the values of the other c;’s: For j # ¢,
in the simulation ¢; is uniform and independent of anything else, whereas in
the real execution ¢; equals b(f, *(y;)) = b(f, *(z;)) (and hence depends on 7;
which determines ;). However, it is impossible to distinguish the two cases,
because z; is uniformly distributed and the distinguisher is only given « and
rj (but not the trapdoor to f.). Here is where we use the hypothesis that b is
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a hard-core of an enhanced collection of trapdoor permutations (as in Defini-
tion C.1.1), rather than merely a standard collection of trapdoor permutations.

Other variants of Oblivious Transfer: A variety of different variants of
the Oblivious Transfer functionality were considered in the literature, but most
treatments refer to the (more challenging) problem of implementing these vari-
ants securely in the malicious model (rather than in the semi-honest model). We
briefly mention two of these other variants.

1. Extensions of 1-out-of-k Oblivious Transfer to k secrets that are bit strings
rather than single bits.

2. Oblivious Transfer of a single secret (denoted o) that is to be delivered
with probability 1/2. That is, the randomized functionality that maps
(0,) to (A, o) with probability 1/2 and to (A, \) otherwise.

Privacy reductions among these variants can be easily constructed (see Exer-
cise 6).

7.3.3 Privately computing ¢, + ¢, = (a, + a,) - (b, + b,)

We now turn to the functionality defined in Eq. (7.16)—(7.17). Recall that this
functionality is a randomized mapping ((a1,b1), (az,b2)) — (c1,c2) satistying
¢1 +¢x = (a1 + az) - (by + b2), where the arithmetics is in GF(2). We reduce the
private computation of this (finite) functionality to (the private computation of)
OT{.

Construction 7.3.7 (privately reducing the functionality of Eq. (7.16)—(7.17)
to OT}):

Inputs: Party i holds (a;,b;) € {0,1} x {0,1}, fori=1,2.
Step 1: The first party uniformly selects ¢; € {0,1}.
Step 2 — Reduction: The aim of this step is to privately compute the (residual)

deterministic functionality ((a1,b1,c¢1), (a2,b2)) — (A, fay b, (a1,b1,¢1)), where

fap(z,y,2) ot (z+a)-(y+b). The parties privately reduce the compu-
tation of this functionality to OT?T. Specifically, Party 1 plays the sender
and Party 2 plays the receiver. Using its input (a1,b1) and coin ¢y, Party 1
sets the sender’s input (in the OTY) to equal the {-tuple

(foo(a1,b1,c1), foilar,bi,c1), fio(ar,bi,c1), fii(ar,bi,e1)). (7.20)
Using its input (as,bs), Party 2 sets the receiver’s input (in the OTY) to
equal 1 4+ 2ay + by € {1,2,3,4}.

Thus, the receiver output will be the (1+ 2az +b2)™" element in Eq. (7.20),
which in turn equals fa, p,(a1,b1,c1). That is:



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

620 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS

input of Party 2 | receiver’s input in OT‘ll receiver’s output in OT‘l1
(i'e'a (a2; bz)) (i'e'a 1+ 2as + bZ) (i'e'; fambz (G’l: bl; cl))
(0, 0) 1 c1 + a1by
(O, ].) 2 c1 +ay- (bl + 1)
(1,0) 3 cl+(a1+1)-b1
(1,1) 4 1+ (a1 +1)- (b1 +1)

Recall that faz,bz (al, bl,Cl) =c1 + (a1 + (12) . (bl + bz)

Outputs: Party 1 outputs c¢1, whereas Party 2 output the result obtained from
the OTY invocation.

We first observe that the above reduction is valid; that is, when Party ¢ enters
with input (a;, b;), the output of Party 2 equals fq, p,(a1,b1,c1) = 1+ (a1 +a2)-
(b1 +b2), where ¢; is the output of Party 1. That is, the output pair is uniformly
distributed among the pairs (¢1, ¢2) for which ¢; +c2 = (a1 +a2) - (by + b2) holds.
Thus, each of the local outputs (i..e, of either Party 1 or Party 2) is uniformly
distributed, although the two local-outputs are dependent of one another (as in
Eq. (7.17)). It is also easy to see that the reduction is private. That is,

Proposition 7.3.8 Construction 7.3.7 privately reduces the computation of Eq. (7.16)—
(7.17) to OTY.

Proof Sketch: Simulators for the oracle-aided protocol of Construction 7.3.7
are easily constructed. Specifically, the simulator of the view of Party 1, has
input ((a1,b1),c1) (i-e., the input and output of Party 1), which is identical to
the view of Party 1 in the corresponding execution (where here ¢; serves as coins
to Party 1). Thus, the simulation is trivial (i.e., by the identity transformation).
The same holds also for the simulator of the view of Party 2: it gets input
((az,b2),c1 + (a1 + az) - (by + b2)) (i.e., the input and output of Party 2), which
is identical to the view of Party 2 in the corresponding execution (where here
c1+ (a1 +az)- (b1 +b2) serves as the oracle response to Party 2). Thus, again, the
simulation is trivial. We conclude that the view of each party can be perfectly
simulated (rather than just be simulated in a computationally indistinguishable
manner). The same holds when we also account for the parties’ outputs (as
required in the general form of Definition 7.2.1), and the proposition follows.?

On the generic nature of Construction 7.3.7: The idea underlying Step 2
of Construction 7.3.7 can be applied to reduce the computation of any deter-
ministic functionality of the form (z,y) — (X, f,(7)) to 1-out-of-2/¥/ Oblivious
Transfer. Indeed, this reduction is applicable only when y is short (i.e., the num-
ber of possible y’s is at most polynomial in the security parameter). Specifically,
consider the functions f, : {0,1}¥ — {0,1}, for y € {0,1}* (when in Construc-
tion 7.3.7 ¢ = 2 (and k = 3)). Then, privately computing (z,y) — (A, fy(x))

22 An alternative proof is presented in Exercise 9.
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is reduced to l-out-of-2¢ Oblivious Transfer by letting the first party play the
sender with input set the 2°-tuple (fye(z), ..., fie(z)) and the second party play
the receiver with input set to the index of y among the ¢-bit long strings.

7.3.4 The circuit evaluation protocol

We now show that the computation of any deterministic functionality, which is
represented by an arithmetic circuit over GF(2), is privately reducible to the
functionality of Eq. (7.16)—(7.17). Recall that the latter functionality corre-
sponds to a private computation of multiplication of inputs that are shared by
the two parties. We thus refer to this functionality as the multiplication-gate
emulation.

Our reduction follows the overview presented in the beginning of this section
(i.e., Section 7.3). In particular, the sharing of a bit-value v between the two
parties means a uniformly distributed pair of bits (v1,vs) such that v = v + ve,
where the first party holds v; and the second holds v,. Our aim is to propagate,
via private computation, shares of the input-wires of the circuit to shares of all
wires of the circuit, so that finally we obtain shares of the output-wires of the
circuit.

Arithmetic circuits — the basics: Recall that an arithmetic circuit over GF(2)
is a directed acyclic graph with internal vertices corresponding to gates,
where internal vertices are vertices having both in-coming and out-going
edges. Without loss of generality, we will consider two types of gates, called
addition and multiplication. We will assume that each internal vertex has
two in-coming edges, called its input wires, and several out-going edges
called its output wires. Boolean values are propagated through such gates
in the natural manner (i.e., each out-going wire holds the sum or multiple
of the values of the in-coming wires of the gate). Vertices with no in-
coming edges are called sources, and vertices with no out-going edges are
called sinks. Without loss of generality, each source has a single out-going
edge, which is called an input-wire of the circuit, and each sink has a single
in-coming edge, which is called an output-wire of the circuit. When placing
Boolean values on the input-wires of the circuit, the propagation of values
through the gates determines values to all output-wires. The function
from input values to output values defined this way is called the function
computed by the circuit.

A tedious comment: For sake of simplicity, we do not provide the circuit
with constant values (i.e., 0 and 1). The constant 0 can be easily pro-
duced by adding any GF(2) value to itself, but omitting the constant 1
weakens the power of such circuits (because this constant is essential to
the computation of non-monotone functions). However, the computation
of any circuit that uses the constant 1 can be privately reduced to the
computation of a corresponding circuit that does not use the constant 1.2

23 Given a circuit C' with constant inputs, we derive a circuit C’ that lacks constant inputs
by introducing auxiliary variables that are to be set to 1; i.e., C(z) = C'(z,1---1). Clearly,
the private evaluation of C' (on the input pair (z1,22)) is reducible to the private evaluation
of C' (by a single oracle call that asks for the evaluation of C' on input ziz2,1---1).
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We will consider an enumeration of all wires in the circuit. The input wires of
the circuit, n per each party, will be numbered 1, 2....,2n so that, for j =1, ..., n,
the 5" input of party 4 corresponds to the (i —1)-n+ j*! wire. The wires will be
numbered so that the output wires of each gate have a larger numbering than
its input wires. The output-wires of the circuit are clearly the last ones. For
sake of simplicity we assume that each party obtains n output bits, and that the
output bits of the second party correspond to the last n wires of the circuit.

Construction 7.3.9 (reducing the evaluation of any circuit to the emulation
of a multiplication-gate):

Inputs: Party i holds the bit string z}---z € {0,1}", fori=1,2.

Step 1 — Sharing the inputs: Each party (splits and) shares each of its input bits
with the other party. That is, for every i =1,2 and j = 1,...,n, Party i
uniformly selects a bit ] and sends it to the other party as the other party’s
share of the input wire (¢ — 1) -n + j. Party i sets its own share of the
(i — 1) -n+ 3" input wire to x! + 1.

Step 2 — Circuit Emulation: Proceeding by the order of wires, the parties use
their shares of the two input wires to a gate in order to privately compute
shares for the output wire(s) of the gate. Suppose that the parties hold
shares to the two input wires of a gate; that is, Party 1 holds the shares
a1,b1 and Party 2 holds the shares as,bs, where ay,as are the shares of
the first wire and by, by are the shares of the second wire. We consider two
cases.?*

Emulation of an addition gate: Party 1 just sets its share of the output
wire of the gate to be a1 + by, and Party 2 sets its share of the output
wire to be as + by.

Emulation of a multiplication gate: Shares of the output wire of the gate
are obtained by invoking the oracle for the functionality of Eq. (7.16)—
(7.17), where Party 1 supplies the input (query-part) (ai,b1), and
Party 2 supplies (az,bs). When the oracle responses, each party sets
its share of the output wire of the gate to equal its part of the oracle
answer. Recall that, by Eq. (7.17), the two parts of the oracle answer
sum-up to (a1 + b1) - (a2 + b2).

Step 3 — Recovering the output bits: Once the shares of the circuit-output wires
are computed, each party sends its share of each such wire to the party
with which the wire is associated. That is, the shares of the last n wires
are send by Party 1 to Party 2, whereas the shares of the preceding n wires

24 In the text, we implicitly assume that each gate has a single output wire, but this assump-
tion is immaterial and the treatment extends easily to the case that the gates have several
output wires. In case of multiplication gate both the natural possibilities (which follow) are
fine. The first (more natural) possibility is to invoke the oracle once per each multiplication
gate and have each party use the same share for all output wires. The second possibility is to
invoke the oracle once per each output wire (of a multiplication gate).
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are sent by Party 2 to Party 1. FEach party recovers the corresponding
output bits by adding-up the two shares; that is, the share it had obtained
in Step 2 and the share it has obtained in the current step.

Outputs: Each party locally outputs the bits recovered in Step 3.

For starters, let us verify that the output is indeed correct. This can be shown
by induction on the wires of the circuits. The induction claim is that the shares
of each wire sum-up to the correct value of the wire. The base case of the
induction are the input wires of the circuits. Specifically, the (i — 1) -n + jvth
wire has value z7 and its shares are r] and 7] + 27 (indeed summing-up to z?).
For the induction step we consider the emulation of a gate. Suppose that the
values of the input wires (to the gate) are a and b, and that their shares a;,as
and by, bs indeed satisfy a; + ax = a and b; + bo = b. In case of an addition
gate, the shares of the output wire were set to be a; + by and ay + by, indeed
satisfying

(a1 +b1)+ (a2 +b2) = (a1 +a2)+ (b1 +b2) = a+b

In case of a multiplication gate, the shares of the output wire were set to be ¢;
and ¢y such that ¢; +¢3 = (a1 + az) - (by + b2). Thus, ¢; + ¢ = a- b as required.

Privacy of the reduction. We now turn to show that Construction 7.3.9
indeed privately reduces the computation of a circuit to the multiplication-gate
emulation. That is,

Proposition 7.3.10 (privately reducing circuit evaluation to multiplication-
gate emulation): Construction 7.3.9 privately reduces the evaluation of arith-
metic circuits over GF(2) to the functionality of Eq. (7.16)—(7.17).

Proof Sketch: Note that since we are dealing with a deterministic functional-
ity, we may use the special (simpler) form of Definition 7.2.1 and only refer to
simulating the view of each party. Recall that these simulators should produce
the view of the party in an oracle-aided execution (i.e., an execution of Con-
struction 7.3.9, which is an oracle-aided protocol). Without loss of generality,
we present a simulator for the view of Party 1. This simulator gets the party’s
input zi,...,z7, as well as its output, denoted y*, ...,y™. It operates as follows.

1. The simulator uniformly selects 1, ...,77" and r3,...,r%, as in Step 1. (The
r1’s will be used as the coins of Party 1, which are part of the view of the
execution, whereas the rg’s will be used as the message Party 1 receives
at Step 1.) For each j < n, the simulator sets :C{ + r{ as the party’s share
of the value of the 5" wire. Similarly, for j < n, the party’s share of the
n + j' wire is set to 7.

This completes the computation of the party’s shares of all the 2n circuit-
input wires.
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2. The party’s shares for all other wires are computed, iteratively gate-by-
gate, as follows.

e The party’s share of the output-wire of an addition gate is set to be
the sum of the party’s shares of the input-wires of the gate.

e The party’s share of the output-wire of a multiplication gate is se-
lected uniformly in {0, 1}.

(The shares computed for output-wires of multiplication gates will be used
as the answers obtained, by Party 1, from the oracle.)

3. For each wire corresponding to an output, denoted 47, that is available to
Party 1, the simulator sets the value z7 to equal the sum of 3’ and the
party’s share of that wire.

4. The simulator outputs
((:I;%’""x?)’(yl""’yn)’(r]]:7"'7r?)7vl’vz7v3)

where V! = (rl, ..., r}') correspond to the view of Party 1 in Step 1 of the
protocol, the string V2 equals the concatenation of the bits selected for the
output-wires of multiplication gates (corresponding to the party’s view of
the oracle answers in Step 2 of a real execution), and V3 = (z!,...,2")
corresponds to the party’s view in Step 3 (i.e., the messages it would have
obtained from Party 2 in Step 3 of the execution).

We claim that the output of the simulation is distributed identically to the
view of Party 1 in the execution of the oracle-aided protocol. The claim clearly
holds with respect to the first four parts of the view; that is, the claim holds
with respect to the party’s input (i.e., zi,...,z7), its output (i.e., y*,...,y"),
its internal coin-tosses (i.e., 71,...,77), and the message obtained from Party 2
in Step 1 (i.e., (r3,...,7%) = V). Also, by definition of the functionality of
Eq. (7.16)—(7.17), the oracle-answers to each party are uniformly distributed
independently of (the parts of) the party’s queries. Thus, this part of the view
of Party 1 is uniformly distributed, identically to V2. It follows, that all shares
held by Party 1 are set by the simulator to have exactly the same distribution
as they have in a real execution. This holds, in particular, for the shares of
the output wires held by Party 1. Finally, we observe that both in the real
execution and in the simulation, adding the latter shares (i.e., the shares of
the output wires held by Party 1) to the messages sent by Party 2 in Step 3
(resp., to V3) yields the corresponding bits of the local-output of Party 1. Thus,
conditioned on the view so far, V3 is distributed identically to the messages
sent by Party 2 in Step 3. We conclude that the simulation is perfect (not only
computationally indistinguishable), and so the proposition follows. [l

Conclusion. Combining Propositions 7.3.4, 7.3.10 and 7.3.8 with the transi-
tivity of privacy-reductions (see Exercise 5), we obtain:
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Theorem 7.3.11 Any functionality is privately reducible to OT%.

Combining Theorem 7.3.11 and Proposition 7.3.6 with the Composition Theorem
(Theorem 7.3.3), we obtain:2®

Theorem 7.3.12 Suppose that there exist collections of enhanced trapdoor per-
mutations. Then any functionality can be privately computable (in the semi-
honest model).

For sake of future usage (in Section 7.4), we point out a property of the protocols
underlying the proof of Theorem 7.3.12.

Definition 7.3.13 (canonical semi-honest protocols): A protocol II for pri-
vately computing the functionality f is called canonical if it proceeds by executing
the following two stages.

Stage 1: The parties privately compute the functionality (z,y) — ((r1,72), (51, 52)),
where the ;’s and s;’s are uniformly distributed among all possibilities that
satisfy (r1 © s1,72 @ s2) = f(w,y).

Stage 2: Party 2 sends s; to Party 1, which responses with ro. FEach party
computes its own output; that is, Party i outputs r; B s;.

Indeed, the protocols underlying the proof of Theorem 7.3.12 are canonical.
Hence,

Theorem 7.3.14 Suppose that there exist collections of enhanced trapdoor per-
mutations. Then any functionality can be privately computable by a canonical
protocol.

Proof: Recall that the oracle-aided protocol claimed in Theorem 7.3.11 is ob-
tained by composing the reduction in Proposition 7.3.4 with Constructions 7.3.9
and 7.3.7. The high-level structure is induced by the circuit evaluation protocol
(of Construction 7.3.9), which is clearly canonical (with Step 3 fitting Stage 2
in Definition 7.3.13). This property is preserved also when replacing the OT?]
oracle by an adequate subprotocol.

Alternatively, using Theorem 7.3.12, we can first derive a protocol for pri-
vately computing the functionality of Stage 1 (in Definition 7.3.13). Augmenting
this protocol by the trivial Stage 2, we derive a canonical protocol for privately
computing the original functionality (i.e., f itself). [l

25 Alternatively, one may avoid relying on the transitivity of privacy-reductions by succes-
sively apply the Composition Theorem to derive private protocols first for the multiplication
functionality, then for any deterministic functionality, and finally for any functionality. That
is, in the first application we use Propositions 7.3.8 and 7.3.6, in the second we use Proposi-
tion 7.3.10 and the protocol resulting from the first application, and in the last application we
use Proposition 7.3.4 and the protocol resulting from the second application.
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7.4 * Forcing (2-party) Semi-Honest Behavior

Our aim is to use Theorem 7.3.12 (or rather Theorem 7.3.14) in order to establish
the main result of this chapter; that is,

Theorem 7.4.1 (main result for the two-party case): Suppose that there exist
collections of enhanced trapdoor permutations. Then any two-party functionality
can be securely computable (in the malicious model).

Theorem 7.4.1 will be established by compiling any protocol for the semi-honest
model into an “equivalent” protocol for the malicious model. The current section
is devoted to the construction of the said compiler, which was already outlined in
Section 7.1.3.1. Loosely speaking, the compiler works by replacing the original
instructions by macros that force each party to either effectively behave in a
semi-honest manner (hence the title of the current section) or be detected as
cheating (in which case, the protocol aborts).

Teaching Tip: Some readers may prefer to see a concrete protocol (and its
security analysis) before getting to the general protocol compiler (and coping
with the abstractions used in its exposition). We advise such readers to read
Section 7.4.3.1 before reading Sections 7.4.1 and 7.4.2.

7.4.1 The compiler — motivation and overview

We are given a protocol for the semi-honest model. In this protocol, each party
has a local input and uses a uniformly distributed local random-tape. Such a
protocol may be used to privately compute some functionality (either a determin-
istic or a probabilistic one), but the compiler does not refer to this functionality.
The compiler is supposed to produce an “equivalent protocol” for the malicious
model. That is, any input-output behavior that a malicious adversary can in-
duce by attacking the resulting protocol, can also be induced by a semi-honest
adversary that attacks the original protocol. To motivate the protocol complier,
let us start by considering what a malicious party may do (beyond whatever a
semi-honest party can do).

1. A malicious party may enter the actual execution of the protocol with an
input different from the one it is given (i.e., “substitute its input”). As
discussed in Section 7.2.3, this is unavoidable. What we need to guarantee
is that this substitution is done obliviously of the input of the other party;
that is, that the substitution only depends on the original input.

Jumping ahead, we mention that the input-commitment phase of the com-
piled protocol is aimed at achieving this goal. The tools used here are
commitment schemes (see Section 4.4.1) and strong zero-knowledge proofs
of knowledge (see Section 4.7.6). Sequential executions of these proofs of
knowledge guarantees the effective independence of the committed values.
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2. A malicious party may enter the actual execution of the protocol with a
random-tape that is not uniformly distributed. What we need to do is force
the party to use a random-tape (for the emulated semi-honest protocol)
that is uniformly distributed.

The coin-generation phase of the compiled protocol is aimed at achieving
this goal. The tool used here is an augmented coin-tossing into the well
protocol, which in turn uses tools as in Item 1.

3. A malicious party may try to send messages different than the ones speci-
fied by the original (semi-honest model) protocol. So we need to force the
party to send messages as specified by its (already committed) local-input
and random-tape.

The protocol emulation phase of the compiled protocol is aimed at achiev-
ing this goal. The tool used here is zero-knowledge proof systems (for NP-
statements). In fact, forcing parties to act consistently with some known
information is the archetypical application of zero-knowledge proofs.

In accordance with the above discussion, the protocols produced by the compiler
consist of three phases.

Input-commitment phase: Each of the parties commits to its input by using a se-
cure implementation of the input-commitment functionality (to be defined
in Section 7.4.3.6). The latter functionality guarantees that the commit-
ting party actually knows the value to which it has committed, and that
the secrecy of the committed value is preserved. It follows that each party
commits to a value that is essentially independent of the value committed
to by the other party. Furthermore, the input-commitment functionality
provides the committer with the corresponding decommitment information
(to be used in the protocol-emulation phase).

Coin-generation phase: The parties generate random-tapes for the emulation of
the original protocol. Each party obtains the value of the random-tape to
be held by it, whereas the other party obtains a commitment to this value.
The party holding the value also obtains the corresponding decommitment
information. All this is obtained by using a secure implementation of the
(augmented) coin-tossing functionality (to be defined in Section 7.4.3.5).
It follows that each party obtains a random-tape that is essentially random
and independent of anything else.

Protocol emulation phase: The parties use a secure implementation of the authenticated-
computation functionality (to be defined in Section 7.4.3.4) in order to em-
ulate each step of the original protocol. Specifically, each message trans-
mission in the original protocol is replaced by an invocation of the said
sub-protocol (implementing this functionality), where the current sender
and receiver provide this sub-protocol with the following inputs. The input
provided by the sender consists of its initial input (as committed in the first
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stage), its random-tape (as generated in the second stage), the decommit-
ment information provided to it in the two corresponding stages, and the
sequence of all in-coming messages (of the original protocol as emulated
so far). The input provided by the receiver consists of the commitments
it holds for the sender’s input and random-tape as well as the sequence of
all messages that it has previously sent to the sender. The functionality
guarantees that either the corresponding (next-step) message is delivered
or the designated receiver detects cheating.

In order to allow a modular presentation of the compiled protocols, we start by
defining an adequate notion of reducibility (where here the oracle-aided protocol
needs to be secure in the malicious model rather than in the semi-honest one).
We next turn to construct secure protocols for several basic functionalities, and
use the latter to construct secure protocols for the three main functionalities
mentioned above. Finally, we present and analyze the actual compiler.

7.4.2 Security reductions and a composition theorem

Analogously to Section 7.3.1, we now define what we mean by saying that one
functionality securely reduces to another functionality. We use the same def-
inition of an oracle-aided protocol (i.e., Definition 7.3.1), but require such a
protocol to be secure in the malicious model (rather than secure in the semi-
honest model, as required in Definition 7.3.2). Recall that the basic syntax of
an oracle-aided protocol allows sequential (but not parallel) oracle calls. For
simplicity of our exposition, we require that the length of each oracle query can
be determined from the length of the initial input to the oracle-aided protocol.

Definition 7.4.2 (security reductions):

o As in Definition 7.3.2, an oracle-aided protocol is said to be using the
oracle-functionality f, if the oracle answers are according to f. However,
in accordance with the behavior of ideal-model adversaries (of the invoked
functionality), the oracle does not answer both parties concurrently, but
rather answer first the a real-model adversary that requested this specific
oracle call (in the oracle-aided protocol). When receiving its part of the
oracle answer, the real-model adversary that requested the oracle call in-
structs the oracle whether or not to respond to the other party.

We consider only protocols in which the length of each oracle query is a
polynomial-time computable function of the length of the initial input to
the protocol. Furthermore, as in Definition 7.3.2, the length of each query
must be polynomially related to the length of the initial input.

We consider executions of such a protocol by a pair of parties, with strate-
gies represented by probabilistic polynomial-time algorithms A; and As,
such that one of the parties follow the oracle-aided protocol. Such a pair is
called admissible. Analogously to Definition 7.2.5, the joint execution of an
oracle-aided protocol IT with oracle f under A = (A;, As) in the real model
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(on input pair (z,y) and auxiliary input z), denoted REAL{; Z(Z)(a:,y), is

defined as the output pair resulting of the interaction between Aj(zx,z) and

As(y, z), where oracle calls are answered using f. We stress that here the
real model corresponds to an execution of an oracle-aided protocol.

o An oracle-aided protocol 11 using the oracle-functionality f is said to se-
curely compute g if a condition analogous to the one in Definition 7.2.6
holds. That is, the effect of any admissible real-model strategies as above
can be simulated by admissible strategies for the ideal model, where the
ideal model for computing g is exactly as in Definition 7.2.4.

More specifically, the oracle-aided protocol II (using oracle f) is
said to securely compute g (in the malicious model) if for every prob-
abilistic polynomial-time pair A = (A, A») that is admissible for the
real model of the oracle-aided computation there exists a probabilistic
polynomial-time pair B = (B1, Bz) that is admissible for the ideal
model (of Definition 7.2.4) such that

{0BAL, 5y (2 ) oee = {RBAL] 1 (@,9) b

where z,y,z € {0,1}* such that |z| = |y| and |z| = poly(|z|).

o An oracle-aided protocol is said to securely reduce g to f, if it securely
computes g when using the oracle-functionality f. In such a case we say
that g is securely reducible to f,

We are now ready to state a composition theorem for the malicious model.

Theorem 7.4.3 (Composition Theorem for the malicious model): Suppose that
g 1s securely reducible to f and that there exists a protocol for securely computing
f. Then there exists a protocol for securely computing g.

Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls,
and thus Theorem 7.4.3 is actually a sequential composition theorem. As in
the semi-honest case, the Composition Theorem can be generalized to yield
transitivity of secure-reductions; that is, if g is securely reducible to f and f is
securely reducible to e then g is securely reducible to e (see Exercise 13).

As hinted in Section 7.3.1, the proof of Theorem 7.4.3 is significantly more
complex than the proof of Theorem 7.3.3. This does not refer to the construction
of the resulting protocol, but rather to establishing its security.

Proof Sketch: Analogously to the proof of Theorem 7.3.3, we are given an
oracle-aided protocol, denoted I19!/ | that securely reduces g to f, and an ordinary
protocol II/ that securely computes f. Again, we construct a protocol II for
computing ¢ in the natural manner; that is, starting with I19!, we replace each
invocation of the oracle (i.e., of f) by an execution of the protocol I1/.

Clearly, II computes g, and we need to show that II securely computes g.
Specifically, we should present a transformation of real-model adversaries for II
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into ideal-model adversaries for g. We have at our disposal two transformations
of real-model adversaries (for I19/ and for II7) into corresponding ideal-model
adversaries (for g and f, respectively). So the first thing we should do is derive,
from the real-model adversaries of II, real-model adversaries for II9 and for
1.

We assume, without loss of generality, that all real-model adversaries output
their view of the execution. (Recall that any other output can be efficiently
computed from the view, and that any adversary can be easily modified to
output its view.)

Let A = (A, A2) be an admissible pair of real-model strategies of II. We
first derive from it a pair of strategies A = (A, AS) that represent the behavior
of A during (each of) the invocations of II7. Since the honest A; just behaves
according to II, it follows that the induced A’ just behaves according to II7,
which means that A} is honest. Thus, we focus on the other (i.e., dishonest)
A;. In this case, the derived A! is a real-model adversary of I/ that gets as
auxiliary input the history of the execution of II up to the current invocation
of I/, Formally, A’ takes two inputs, one representing (as usual) the history
of the current execution of II7, and the other (i.e., an auxiliary one) being the
history of the execution of II up to the current invocation of II/. When A!
completes (or aborts) the current execution of IT/, it outputs its view of that
execution. Loosely speaking, we derive the corresponding ideal-model adversary
for f, denoted B = (B, BS), by employing the guaranteed transformation. A
few technical difficulties arise and are resolved as follows:

e Party i (i.e., A}) is not necessarily the party that plays the ith party in
II7 (i.e., Party 1 is not necessarily the party in II9!/ that requests this
particular oracle call to f). Furthermore, the identity of the party (in
II7) played by A! is not fixed, but is rather determined by the history of
the execution of II (which is given to Al as auxiliary input). In contrast,
our definitions refer to adversaries that play a predetermined party. This
technical discrepancy can be overcome by considering two versions of Al
denoted Aj ; and Aj ,, such that A; ; in used (instead of A;) in case Party i
is the party that plays the jth party in II/. Indeed, Aj ; is always used to
plays the jth party in II7.

e A minor problem is that A; may have its own auxiliary input, in which case
the resulting A} will have two auxiliary inputs (i.e., the first identical to the
one of A;, and the second representing a partial execution transcript of IT).
Clearly, these two auxiliary inputs can be combined into a single auxiliary
input. (This fact hold generically, but more so in this specific setting in
which it is anyhow natural to incorporate the inputs to an adversary in its
view of the execution transcript.)

e The last problem is that it is not clear what is the “real input” given to
the adversary A’ towards its current execution of IT/ (i.e., the input that
is supposed to be used for computing f). However, this problem (which
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is more confusing than real) has little impact on our argument, because
what matters is the actual actions of A, during the current execution of
I/, and these are determined based on its (actual) auxiliary input (which
represent the history of the execution of IT). Still, the “real inputs” for
the executions of II7 have to be defined so that they can be passed to
the ideal-model adversary that we derive from A!. We may almost set
these “real inputs” arbitrarily, except that (by our conventions regarding
functionalities) we must set them to strings of correct length (i.e., equal to
the length of the other party’s f-input). Here we use the hypothesis that
this length can be determined from the length of the input to II itself.2®

Thus, we have obtained an (admissible) ideal-adversary pair B = (B, B})
corresponding to f such that

C
{IDEALLE’(Zr) (xla yl)}w’yy’yz’ = {REALHfE’(Z/) (xla yl)}w’yy’yz’ (7.21)

We comment that when applying Eq. (7.21), we set the input of the honest party
to equal the value on which the subprotocol (or functionality) was invoked, and
set the auxiliary input to equal the current execution transcript of the high-
level protocol (as seen by the adversary). (As explained above, the setting
of the primary input to the dishonest party is immaterial, because the latter
determines its actions according to its auxiliary input.)

Our next step is to derive from A = (A;, As) a pair of strategies 4 =
(AY, AY) that represent the behavior of A during the I19/-part of II. Again,
the honest A; induces a corresponding AY that just behaves according to 917,
Turning to the dishonest A;, we derive A by replacing the (real) actions of Al
that take place in A; by simulated actions of the ideal-model B}. That is, the
adversary AY runs machine A; locally, while interacting with the actual other
party of IT9!7 | obtaining the messages that A; would have sent in a real execution
of II, and feeding A; with messages that it expects to receive. The handling of
Ay’s messages depend on whether they belong to the I/ -part or to one of the
invocations of II/. The key point is the handling of the latter messages.

Handling messages of I19/: These messages are forwarded to/from the other
party without change. That is, A uses A; in order to determine the next
message to be sent, and does so by feeding A; with the history of the
execution so far (which contains II9/ -part messages that A’ has received
before as well as the II/-parts that it has generated so far by itself). In
particular, if A; aborts then so does AY.

26 We comment that when using the alternative conventions discussed at the end of Sec-
tion 7.2.1.1, we may waive the requirement that the query length be determined by the input
length. Instead, we postulate that all oracle calls made by the oracle-aided program use the
same security parameter as the one with which the program is invoked. On the other hand,
under the current conventions, when trying to extend the composition theorem to partial
functionalities (or when removing the “length determination” hypothesis), we run into trouble
because we need to determine some f-input that fits the unknown f-input of the other party.
(This problem can be resolved by introducing adequate interface to oracle calls.)
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Handling messages of IIY: Upon entering a new invocation of I/, the adversary
Al sets h; to record the history of the execution so far. Now, rather
than executing 1/ using A’(h;) (as A; would have done), the adversary
AY invokes B](h;), where B] is the ideal-model adversary for f (derived
above). Recall that B} sends no messages and makes a single oracle query
(which it views as sending a message to its imaginary trusted party). The
real-model adversary A? (for the oracle-aided protocol II9!/) forwards this
query to its own oracle (i.e., f), and feeds B! with the oracle answer. At
some point B! terminates, and A? uses its output to update the simulated
history of the execution of II. In particular, oracle-stopping events caused
by Bl(h;) (in case Party i requested this specific oracle call) and L-answers
of the oracle (in the other case) are handled in the straightforward manner.

On stopping the oracle and _L-answers: Suppose first that Party ¢ has
requested this specific oracle call. In this case, after receiving the
oracle answer (which it views as the answer of its trusted party), the
ideal-model adversary B, may stop its trusted party. If this happens
then machine A} instructs its own oracle (i.e., f) not to respond to
the other party. Next, suppose that Party i is the party responding
to this specific oracle call (rather than requesting it). In this case, it
may happen that the oracle is stopped by the other party (i.e., the
oracle is not allowed to answer Party 7). When notified of this event
(i.e., receiving a L-answer from its oracle), machine A} feeds L as
answer to Bi.

This completes the handling of the current invocation of I1/.

When A; halts with some output, A halts with the same output. Note that
A" = (AY, A}) is admissible as a real-model adversary for the oracle-aided pro-
tocol II9/7 (which computes g with oracle to f). Thus, we can derive from
A" a corresponding ideal-model adversary for g, denoted B' = (BY, BY), by

employing the second guaranteed transformation, such that

{REAL{_‘Ig‘f7le(Z) (I,y)}z,y,z (722)

e

{IDEALgE”(z) (x, y)}wyyyz

Thus, given a real-model adversary A for II, we have derived an ideal-model
adversary B LB for g. It is left to show that indeed the following holds

{IDEALgE(Z) (@, 9) ey - = {REALH,Z(Z) (@, 9)}e,y,: (7.23)

Note that the Lh.s of Eq. (7.23) equals the Lh.s of Eq. (7.22), so it suffices to
show that their corresponding r.h.s are computationally indistinguishable. But
I

REALHE(Z)(:C,y) differs from REALHglf,Z”(z)(x’y) only in that the II invoca-

tions in the former are replaced in the latter by ideal calls to f. However,
by Eq. (7.21), each II/ invocation is computationally indistinguishable from an
ideal call to f, where computational indistinguishability holds also with respect
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to auxiliary inputs (which are used here to represent the execution transcript up-
to the point of the current invocation). Using a hybrid argument (corresponding
to a gradual substitution of I/ invocations by ideal calls to f), one can show

f .
that {REALHg‘f7Z,,(Z)($,y)},;,%Z and {REALp 7.)(%,Y)}e,y,- are computationally

indistinguishable.?” This establishes Eq. (7.23), and the theorem follows. [l

Security reduction of general functionalities to deterministic ones.
The following reduction will not be used in our compiler, because the com-
piler refers to protocols (rather to functionalities) and we have already obtained
protocols for privately computing general functionalities (by privately-reducing
them to deterministic ones). Still, we consider it of interest to state that the
reduction presented in Proposition 7.3.4 is in fact secure in the malicious model.

Proposition 7.4.4 (securely reducing a randomized functionality to a deter-
ministic one): Let g be a randomized functionality, f be as defined in Eq. (7.18),
and I be the oracle-aided protocol for g using the oracle f as presented in Propo-
sition 7.3.4. Then II securely computes g.

Proof Sketch: Suppose, without loss of generality, that Party 1 is malicious,
and denote by (z},r]) the query it makes to f. Denoting by z; the initial
input of Party 7 (in II), it follows that the oracle answer is f((z], 7)), (z2,72)),
where ro is uniformly distributed (because Party 2 is honest). Recalling that
fl(2h,r)), (x2,72)) = g(r] @ ra, (2}, z2)), it follows that the oracle answer is
distributed identically to g(z, z2). Furthermore, by the definition of II, all that
Party 1 gets is fi((z},71), (22, U}r))) = g1(2], z2). This is easily simulated by a
corresponding ideal-model adversary, which sets 2] according to the real-model
adversary, and makes the oracle call z} (to g).

Remark 7.4.5 (reductions to a set of functionalities): We extend the
notion of security reductions to account for protocols that use several oracles
rather than one. Specifically, g is securely reducible to a set of functionalities
F = {f', ..., f'} if there exists an oracle-aided protocol that securely computes
g when given oracles f,..., fi. Theorem 7.4.3 also extends to assert that if g is
securely reducible to F', and each functionality in F' can be securely computed

then so can g. We comment that the entire remark is a matter of semantics,

because one can “pack” the set F' in one functionality f (e.g., f((i,z),(i,y)) def

fi(z,y)).

27 Here we use the hypothesis that the query lengths are polynomially-related to the length
of the input. The issue is that in Eq. (7.21), computational indistinguishability is with respect
to the length of the queries (to f), whereas we need computational indistinguishability with
respect to the length of the initial inputs. We also highlight the key role of the auxiliary inputs
to A and B in this argument (cf. the analysis of the sequential composition of zero-knowledge
(i.e., proof of Lemma 4.3.11)).
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7.4.3 The compiler — functionalities in use

As stated in Section 7.4.1, the protocols produced by our compiler make exten-
sive use of protocols that securely compute three functionalities that are the core
of the three corresponding phases of the compiled protocols. In the current sec-
tion, we explicitly define these functionalities and present protocols for securely
computing them.

We start by considering three natural functionalities that are related to the
functionalities used by the compiler. Specifically, we first consider the coin-
tossing functionality (see Section 7.4.3.1), a restricted notion of the authenticated-
computation functionality (Section 7.4.3.2), and an “unauthenticated-computation
functionality” (called image transmission in Section 7.4.3.3). Next, using these
three functionalities, we present secure protocols for a general notion of authenticated-
computation functionality (see Section 7.4.3.4), for an augmented notion of
coin tossing (Section 7.4.3.5), and for the input-commitment functionality (Sec-
tion 7.4.3.6). The latter three functionalities will be used directly in the compiled
protocols (see Figure 7.1, where solid arrows indicate direct and essential use).
We comment that although the material in Section 7.4.3.2 is not used directly
in the rest of this work, it is instructive to the rest of the current section.

c it t -l
e ZK proofs ---__.| ZK POKs TOOLS
restricted
AUTH. C._J)--___ 3
R

NOIIVINGSAYd 40 §4aq0

THE COMPILED PROTOCOL

Figure 7.1: The functionalities used in the compiled protocol.

We comment that it is easy to present protocols for privately computing all
the abovementioned functionalities (in the semi-honest model; see Exercise 11).
Our aim, however, is to present (for later use in the compiler) protocols for
securely computing these functionalities in the malicious model.

Basic tools and conventions regarding them. Let us recall some facts
and notations regarding three tools that we will use.

e Commitment schemes (as defined in Definition 4.4.1). For sake of sim-
plicity, we will use a non-interactive commitment scheme (as in Construc-
tion 4.4.2). We assume, for simplicity, that on security parameter n the
commitment scheme utilizes exactly n random bits. We denote by C,.(b)
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the commitment to the bit b using (security parameter n and) randomness
r € {0,1}", and by C(b) the value of C,(b) for a uniformly distributed
r € {0,1}" (where n is understood from the context).

e Zero-knowledge proofs of NP-assertions. We rely on the fact (cf. Theo-
rem 4.4.11) that there exists such proof systems in which the prover strat-
egy can be implemented in probabilistic polynomial-time, when given an
NP-witness as auxiliary input. We stress that by the above we mean proof
systems with negligible soundness error. Furthermore, we rely on the fact
that these proof systems have perfect completeness (i.e., the verifier ac-
cepts a valid statement with probability 1).

e Zero-knowledge proofs of knowledge of NP-witnesses. We will use the def-
inition of a strong proof of knowledge (see Definition 4.7.13). We again
rely on the analogous fact regarding the complexity of adequate prover
strategies: That is, strong proofs-of-knowledge that are zero-knowledge
exists for any NP-relation, and furthermore, the prover strategy can be
implemented in probabilistic polynomial-time, when given an NP-witness
as auxiliary input (see Construction 4.7.14).

All these tools are known to exist assuming the existence of one-way 1-1 func-
tions. In fact, the 1-1 requirement can be avoided at the cost of using an inter-
active commitment scheme.

On the adversaries being considered. For sake of simplicity, in all the
proofs of security presented in this section, we only refer to malicious (real-
model) adversaries with no auxiliary input. Furthermore, we will assume that
these malicious (real-model) adversaries are deterministic. As discussed in Sec-
tion 7.2.3.1 (see text following Definition 7.2.5), the treatment of randomized
adversaries (with auxiliary inputs) can be reduced to the treatment of determin-
istic adversaries with auxiliary inputs, so the issue here is really the fact that we
ignore auxiliary inputs. However, in all cases, the extension of our treatment
to malicious adversaries with auxiliary input is straightforward. Specifically,
in all cases, we construct ideal-model adversaries by using the real-model ad-
versaries as subroutines. This black-box usage easily supports the extension
to adversaries with auxiliary inputs, because all that is needed is to pass the
auxiliary-input (given to the ideal-model adversary) to the real-model adversary
(which is invoked as a subroutine).

Comments regarding the following exposition. All protocols are pre-
sented by specifying the behavior of honest parties, while keeping in mind that
dishonest parties may deviate from the specified behavior. Thus, we may in-
struct one party to send a specific message that satisfies some property and next
instruct the other party to check that the message received indeed satisfies this
property. When transforming real-model adversaries to ideal-model adversaries,
we sometimes allow the latter to halt before invoking the trusted party. As dis-
cussed in Section 7.2.3.1 (see text preceding Definition 7.2.4), this can be viewed



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

636 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS

as invoking the trusted party with a special abort symbol, where in this case the
latter responses to all parties with a special abort symbol.

7.4.3.1 Coin Tossing

We start our assembly of functionalities that are useful for the compiler by
presenting and implementing a very natural functionality which is of independent
interest. Specifically, we refer to the coin tossing functionality (1™,1") — (b, b),
where b is uniformly distributed in {0,1}. This functionality allows a pair of
distrustful parties to agree on a common random value.?8

Definition 7.4.6 (coin-tossing into the well, basic version): A coin-tossing into
the well protocol is a two-party protocol for securely computing (in the malicious
model) the randomized functionality (1™,1™) — (b,b), where b is uniformly dis-
tributed in {0,1}.

That is, in spite of malicious behavior by any one party, a non-aborting execution
of a coin-tossing-into-the-well protocol ends with both parties holding the same
uniformly distributed bit, b. Recall that our definition of security allows (b, L)
to appear as output in case Party 1 aborts. (It would have been impossible
to securely implement the coin-tossing functionality if the definition had not
allowed this slackness; see Section 7.7.1.1.) The coin-tossing functionality will
not be used directly in the compiled protocols, but it will be used to implement
an augmented notion of coin tossing (see Section 7.4.3.5), which in turn will be
used directly in these protocols.

Construction 7.4.7 (a coin-tossing-into-the-well protocol): For every r, let

C,:{0,1} — {0,1}"*.

Inputs: Both parties get security parameter 1™.

Step Cl: Party 1 uniformly selects o € {0,1} and s € {0,1}", and sends c def
Cs(o) to Party 2.

To simplify the exposition, we adopt the convention by which failure of
Party 1 to send a message (i.e., aborting) is interpreted as an arbitrary bit
string, say Con (0).

Step C2: Party 2 uniformly selects o' € {0,1}, and sends o' to Party 1.

Similarly, any possible response of Party 2, including abort, will be inter-
preted by Party 1 as a bit.?°

Step C3: Party 1 outputs the value o ® o', and sends (o, s) to Party 2.

28 Actually, in order to conform with the convention that the functionality has to be defined
for any input pair, we may consider the formulation (z,y) — (b,b).
29 These two conventions, prevent the parties from aborting the execution before Step C3.
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Step C4: Party 2 checks whether or not ¢ = Cs(0). It outputs cdo' if c = Cs(o)
and halts with output L otherwise.

In contrast to Steps C1-C2, here any illegal answer is interpreted as abort.

Outputs: Party 1 always outputs b e o', whereas Party 2 either outputs b
or L.

Intuitively, Steps C1-C2 may be viewed as “tossing a coin into the well”. At this
point the value of the coin is determined (essentially as a random value), but
only one party knows (“can see”) this value. Clearly, if both parties are honest
then they both output the same uniformly chosen bit, recovered in Steps C3
and C4, respectively.

Proposition 7.4.8 Suppose that C is a bit commitment scheme. Then, Con-
struction 7.4.7 constitutes a coin-tossing-into-the-well protocol.

Proof Sketch: We need to transform any admissible pair, (A, A2), for the
real model into a corresponding pair, (Bi, Bz), for the ideal model. We treat
separately each of the two cases corresponding to the identity of the honest party.
Recall that we may assume, for simplicity, that the adversary is deterministic
(see discussion above). Also, for simplicity, we omit the input 1™ in some places.
The following schematic depiction of the information flow in Construction 7.4.7
may be useful towards the following analysis:

Party 1 Party 2
C1 selects (o, s)
¢ Cy(0) — ¢ —
C2 selects o' € {0,1}
«— 0', —
C3 b—odo
— (0,8) —
output | b bor L
(depending on whether ¢ = C,(0))

We start with the case that the first party is honest. In this case B is
determined (by the protocol), and we transform the real-model adversary Ao
into an ideal-model adversary B;. Machine B, will run machine A, locally,
obtaining the single message that As would have sent in a real execution of the
protocol (i.e., ¢’ € {0,1}) and feeding A, with the messages that it expects to
receive. Recall that A, expects to see the messages Cs(o) and (o, s) (and that
Bs gets input 1™).

1. By send 1™ to the trusted party and obtain an answer (bit), denoted b,
which is uniformly distributed. (Recall that b is also handed to Party 1.)

2. B, tries to generate an execution view (of As) ending with output b. This
is done by repeating the following steps at most n times:
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(a) By uniformly select o € {0,1} and s € {0,1}", and feeds A, with

= Cs(0). Recall that Ao always responds with a bit, denoted o,

which may depend on ¢ (i.e., o' — Ax(c)).

(b) If 0 ® ¢’ = b then Bs feed A2 with the execution view (¢, (o, s)),
and outputs whatever A, does. Otherwise, it continues to the next
iteration.

In case all n iterations were completed unsuccessfully (i.e., without out-
put), By outputs a special failure symbol.

We need to show that for the coin-tossing functionality, denoted f, and for
Construction 7.4.7, denoted II, it holds that

{IEAL, 5(1",1")},en = {REALy 7(17,17)},eN

In fact, we will show that the two ensembles are statistically indistinguishable.
We start by showing that the probability that By outputs failure is exponen-
tially small. This is shown by proving that for every b € {0, 1}, each iteration of
Step 2 succeeds with probability approximately 1/2. Such an iteration succeeds if
and only if c @0’ = b; that is, if A>(Cs(0)) = bDo, where (o,s) € {0,1} x{0,1}"
is uniformly chosen. We have

Prms[AZ(Cs(a—)) = b D U]
= 5 PA(C(0) = ] 4 5 - PrlAx(C(1) = b 1]
= 5+ (PrA(C(0) = ] — PrlAa(C(1) = B)

Using the hypothesis that C is a commitment scheme, the second term above
is a negligible function in n, and so our claim regarding the probability that
B> outputs failure follows. Next, we show that conditioned on By not out-
putting failure, the distribution IDEAL, 5(1",1") is statistically indistinguish-
able from the distribution REAL;; 5(1",1"). Both distributions have the form
(b, Ay(Cs(0),(0,5))), with b = 0 ® A3(Cs(0)), and thus both are determined by
the (o, s)-pairs. In REALHE(I", 1™), all (o, s)-pairs are equally likely (i.e., each
appears with probability 2=("*1)); whereas (as proven below) in IDEAL, 5(17,1")
each pair (o, s) appears with probability

1 1

2 |SU@A2(CS(U))| (724)
where S, {(z,y) € {0,1} x {0,1}" : = & A2(Cy(z)) = b} is the set of pairs
that pass the condition in Step 2b (w.r.t the value b obtained in Step 1). To
justify Eq. (7.24), observe that the pair (o,s) appears as output if and only
if it is selected in Step 2a and the trusted party answers with o ® A2(Cs(0)),
where the latter event occurs with probability 1/2. Furthermore, the successful
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pairs, selected in Step 2a and passing the condition in Step 2b, are uniformly
distributed in S, a,(0.(s)), Which justifies Eq. (7.24). We next show that |S;| ~
2", for every b € {0,1}. Observe that (by the above), for every fixed b € {0, 1}
and uniformly distributed (o,s) € {0,1} x {0,1}", the event (0,s) € Sy (i.e.,
0@ A3(Cs(0)) = b) occurs with probability that is negligibly close to 1/2, and so
|Ss] = (1£p(n))- -2, where p is a negligible function. Thus, |S,ea,(c. ()] €
{|Sol,|S51|}, which reside in the interval (1 £ p(n)) - 2™. It follows that the value
of Eq. (7.24) is (1£p(n))-27" 1), and so REALy %(1",1") and IDEAL  5(1",17)
are statistically indistinguishable.

We now turn to the case where the second party is honest. In this case B is
determined, and we transform A; into B; (for the ideal model). On input 17,
machine B; runs machine A; locally, obtaining the messages that A; would have
sent in a real execution of the protocol and feeding A; with the single message
(i.e., o' € {0,1}) that it expects to receive.

1. B invokes A; (on input 1™). Recall that by our conventions, 4; always
sends a message in Step C1l. Let us denote this messages (which is sup-
posedly a commitment using C') by c¢. Recall that ¢ may be in the range
of C(o) for at most one o € {0,1}.

2. Machine By tries to obtain the answers of A; (in Step C3) to both possible
messages that could be sent in Step C2.

(a) By feeds A; with the (Step C2) message 0 and records the answer
which is either abort or (¢, sp). The case in which ¢ # C,(09) is
treated as if A; has aborted.

(b) Rewinding A; to the beginning of Step C2, machine B; feeds A; with
the message 1 and records the answer which is either abort or (o1, s1).
(Again, the case in which ¢ # Cs, (07) is treated as abort.)

If A; aborts in both cases, then machine B; aborts with output A;(1",0"),
for a uniformly chosen ¢’ € {0, 1} (and does so without invoking the trusted
party, which means that the honest Party 2 receives | from the latter).3°
Otherwise, By proceed as follows, distinguishing two cases.

Case 1: A; answers properly (in the above experiment) for a single 0-1

. def
value, denoted o'. In this case, we define o = o,.

Case 2: A; answers properly for both values. In this case the values oy
and o (defined in Step 1) must be identical, because Cs, (o) = ¢ =
Cs, (01) whereas the ranges of C(0) and C(1) are disjoint. In this

def
case, we define 0 = oy (= 07).

30 We comment that whenever Bj is determined to abort, it needs not invoke the trusted
party at all, because it (i.e., B1) can simulate the trusted party’s answer by itself. The only
reason to invoke the trusted party is to provide Party 2 with an answer that is related to the
output of Bj.
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3. Machine B; sends 1™ to the trusted party, which responses with a uniformly
selected value b € {0,1}. Recall that the trusted party has not responded
to Party 2 yet, and that B; still has the option of stopping the trusted
party before it responds to Party 2.

4. In Case 1, machine B; stops the trusted party if b # o @ o' (where o'
is as defined in Case 1), and otherwise allows it to send b to Party 2. In
Case 2, machine B; sets ¢/ = b ® o, and allows the trusted party to send
b to Party 2. Next, in both cases, B; feeds o’ to A;, which responds with
the Step C3 message (o, s,). Note that indeed o @ ¢’ = b holds (in both
cases).

5. Finally, By feed A; with the execution view, (1™, ¢"), and outputs whatever
A; does.

We now show that IDEAL, 5(17,1") and REALy z(1",17) are actually identically
distributed. Consider first the case where A; (and so B;) never aborts. In this
case, we have

IDEAL, 5(1",1") (A1(1™,0® D), b)

REALE 7(1",1") = (Ai(1",0"), 0 Do)

where ¢’ and b are uniformly distributed in {0,1}, and o is determined by
c= A1 (1") (i.e.,, 0 = CY(c)). Observe that o' is distributed uniformly inde-
pendently of o, and so o @ ¢’ is uniformly distributed over {0,1}. We conclude
that (A1(1",0 ®b), b) and (A1(1",0 ® (0  ¢')), 0 & ¢') are identically dis-
tributed.

Next, consider the case that By always aborts (due to improper A; behavior
in Step C3). In this case, By aborts before invoking the trusted party, and so
both ensembles are identical (i.e., both equal (4;(1",0'), L) for a random o).
Since A; is deterministic (see above), the only case left to consider is where A,
respounses properly (in Step C3) to a single value, denoted o'. In this case, the
real execution of I is completed only if Party 2 sends ¢’ as its Step C2 message
(which happens with probability 1/2), and is aborted otherwise. Similarly, in
the ideal model, the execution is completed (without By aborting) if the trusted
party answers with b = o @ o’ (which happens with probability 1/2).3! In both
models, the joint non-aborted execution equals (41(1™,0"), o @ 0c'), whereas the
joint aborted execution equals (4;(1",0'®1), 1). N

7.4.3.2 Authenticated Computation (Partial Version)

We continue our assembly of functionalities that are useful for the compiler
by presenting and implementing another natural functionality which is of inde-
pendent interest. Specifically, we refer to the archetypical application of zero-
knowledge proofs (cf. Section 4.4.3), which is to solve the following problem. For

31 Recall that, in this case, 0 and ¢’ are determined by the Step C1 message.
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two predetermined (polynomial-time computable) functions, f and h, a party
holding a secret a should send the correct value of f(«a) to the other party, which
holds h(«a), while not revealing anything else to the other party. That is, we are
talking about securely computing the functionality («, h(a)) — (A, f(«)), where
typically h is 1-1 (and so the value of its image uniquely determine its preimage).

We stress that the functionality described above has a partial domain; that
is, it is not defined over all pairs of inputs (of equal length), but rather only
for pairs of the form («, h(a)). This restriction (i.e., definability over a partial
domain) coincides with the standard archetypical application of zero-knowledge
proofs, and is easier to implement. However, this restriction does not suffice for
a modular exposition of the compiled protocols (because composition of partial
functionalities is more complex than the composition result captured by The-
orem 7.4.3). Indeed, in Section 7.4.3.4 we waive the restriction (to the partial
domain) and consider an extension of the authenticated computation function-
ality to arbitrary pairs of (equal length) strings.

Definition 7.4.9 (authenticated computation, partial version): Let f : {0,1}*x
{0,1}* — {0,1}* and h : {0,1}* — {0,1}* be polynomial-time computable. The
h-authenticated f-computation functionality is defined by

(@, h(a)) = (A, f(a)) (7.25)

We assume, for simplicity, that h is length preserving. Otherwise, the defini-
tion may be modified to consider the functionality ((cr, 11"(®)) | (h(a),1!*)) —
(A, f(a)). To facilitate the implementation, we assume that the function h is
one-to-one, as is the case in typical applications. This allows us to use (ordinary)
zero-knowledge proofs, rather than strong (zero-knowledge) proofs-of-knowledge.
The issue is further discussed in Section 7.4.3.3.

The functionality of Eq. (7.25) is implemented by having Party 1 send f(«)
to Party 2, and then prove in zero-knowledge the correctness of the value sent
(with respect to the common input h(«)). Note that this statement is of the NP-
type and that Party 1 has the corresponding NP-witness. Actually, the following
protocol is the archetypical application of zero-knowledge proof systems.

Construction 7.4.10 (authenticated computation protocol, partial version):
Let L be the set of pairs satisfying Eq. (7.26), and (P,V) be an interactive
proof for L. Furthermore, suppose that P can be implemented in probabilistic
polynomial-time when given an adequate auziliary-input (i.e., an NP-witness for
membership of the common input in L).

Inputs: Party 1 gets input « € {0,1}*, and Party 2 gets input u = h(a).
Step C1: Party 1 sends v def f(a) to Party 2.

Step C2: The parties invoke the proof system (P,V') such that Party 1 plays
the prover and Party 2 plays the verifier. The common input to the proof
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system is (u,v), the prover gets auziliary inputs «, and its objective is to
prove that
Az s.t. (uw=h(x)) A(v=f(x)) (7.26)

(Each party locally determines the common input (u,v) according to its
own view of the ezecution so far.)>? In case the verifier rejects the proof,
Party 2 halts with output L (otherwise the output will be v).

(Any possible response — including abort — of Party 2 during the execu-
tion of this step, will be interpreted by Party 1 as a canonical legitimate
message.)

Outputs: In case Party 2 has not halted with output L (indicating improper
behavior of Party 1), Party 2 sets its local output to v. (Party 1 has no
output (or, alternatively, always outputs \).)

Observe that the specified strategies are indeed implementable in polynomial-
time. In particular, in Step C2, Party 1 supplies the prover subroutine with
the NP-witness a such that Eq. (7.26) is satisfied with z = a. Also, using the
perfect completeness condition of the proof system it follows that if both parties
are honest then neither aborts and the output is as required.

Proposition 7.4.11 Suppose that the function h is one-to-one and that (P, V')
is a zero-knowledge interactive proof (with negligible soundness error) for L.
Then, Construction 7.4.10 securely computes (in the malicious model) the h-
authenticated f-computation functionality of Eq. (7.25).

We stress that Proposition 7.4.11 refers to the security of a protocol for comput-
ing a partial functionality, as discussed in Remark 7.2.7. In case of Eq. (7.25)
this means that the ideal-model adversary is not allowed to “modify its input”
(i.e., it must pass its initial input to the trusted party), because its initial input
is the unique value that fits the other party’s input.

Proof Sketch: Again, we need to transform any admissible pair, (A;, As), for
the real model into a corresponding pair, (By, Bs), for the ideal model. We treat
separately each of the two cases, corresponding to the identity of the honest
party.

We start with the case that the first party is homest. In this case B is
determined, and we transform (the real-model adversary) A, into (an ideal-
model adversary) Bs, which uses Az as a subroutine. Recall that By gets input
u = h(«), where « is the input of the honest Party 1.

1. By send u to the trusted party and obtain the value v, which equals f(«)
for o handed by (the honest) Party 1 to the trusted party. Thus, indeed
B, does not modify its input and (u,v) € L. (Recall that Party 1 always
obtains A from the trusted party.)

32 In particular, Party 1 sets (u,v) = (h(a), f(«)), whereas Party 2 sets u according to its
own input and v according to the message received in Step Cl1.
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2. Bs invokes the simulator guaranteed for the zero-knowledge proof system
(P, V), on input (u,v), using (the residual) A, as a possible malicious
verifier.3®> Note that we are simulating the actions of the prescribed prover
P, which in the real protocol is played by the honest Party 1. Denote
the obtained simulation transcript by S = S(u,v), where (indeed) Ao is
implicit in the notation.

3. Finally, By feed A, with the alleged execution view (v, S), and outputs
whatever As does.

We need to show that for the functionality, denoted F, of Eq. (7.25) and for
Construction 7.4.10, denoted II, it holds that

{IDBAL 50 h(@)) }ac oy = {REALY (00 h(@) }ac o)+ (7.27)

Let R(a) denote the verifier view of the real interaction with P on common
input (h(«), f(«)) and prover’s auxiliary input «, where the verifier is played by
A2. Then,

REALy 7(a, (@) = (X, Az(h(a), f(a), R(@)))
IDEAL, (o, h(a)) = (A, Az2(h(a), f(a), S(h(a), f(@))))

However, by the standard formulation of zero-knowledge, it follows that { R(a) }ac 0,1}
and {S(h(a), f(@))}ae{o,1}+ are computationally indistinguishable (also when
given « as auxiliary input), and so Eq. (7.27) follows.

We now turn to the case where the second party is honest. In this case Bs
is determined, and we transform (real-model) A; into (ideal-model) B;, which
uses A; as a subroutine. Recall that By gets input o € {0,1}".

1. By invokes A; on input a. As (implicit) in the protocol, any action of
A; in Step C1 (including abort) is interpreted as sending a string. Let us
denote by v the message sent by A; (i.e., v «— A;()).

2. Intuitively, machine B; checks whether or not v = f(«), where « is as
above (i.e., the input to By). Actually, By checks whether or not a honest
verifier would have been convinced by (the residual) A; that v = f(a)
holds, which is equivalent to being convinced that (h(a),v) € L. Specifi-
cally, B; emulates the execution of Step C2 (i.e., the execution of the proof
system (P, V) on common input (h(«),v)), while using the strategy A; to
determine the moves of the (possibly cheating) prover (and playing the
honest verifier in a straightforward manner).3*

Recall that this proof system has negligible soundness error, and so if
(h(ar),v) does not satisfy Eq. (7.26) this fact is detected with probability

33 The case in which As executes Step C2 with respect to a different common input is just
a special case of a malicious behavior.

34 In particular, if A; aborts the execution of Step C2 then the honest verifier will not be
convinced.
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1—p(n), where u is some negligible function. If the verifier (played by B it-
self) rejects then machine By aborts (without invoking the trusted party).3®
Otherwise, we proceed assuming that (h(«),v) satisfies Eq. (7.26). Note
that since h is 1-1 and Eq. (7.26) is satisfied it must be the case that

v=f(h7H(h(a))) = f(a)*®

3. Assuming that machine B; has not aborted, it sends « to the trusted party,
and allows the latter to respond to Party 2. (The trusted party’s response
will be f(«) =v. Again, note that indeed B; does not modify its input.)

4. Finally, B; feed A; with the execution view, which consists of the prover’s
view of the emulation of Step C2 (produced in Step 2 above), and outputs
whatever A; does.

We now show that

{IDBAL 50 h(0)) }ac oy = {REALY (00 h(@) }ac o)+ (7.28)

Actually, we will show that these two ensembles are statistically indistinguish-
able, where the statistical difference is due to the case where the real adversary
A; succeeds to convince the verifier (played by the honest Party 2) that (u,v)
satisfies Eq. (7.26), and yet this claim is false. By soundness of the proof system,
this event happens only with negligible probability. On the other hand, in case
(u, v) satisfies Eq. (7.26), we show that IDEAL , 5(a, h(a)) and REALy 7(cv, h(a))
are identically distributed. Details follow. One key observation is that the emu-
lation of the proof systemn (with prover strategy Aj(«)) performed in Step 2 by
By is distributed identically to the real execution of the proof system that takes
place in Step C2 of 1.

def

Fixing any «, recall that v def Aj(a) need not equal f(«), and that v =
h(a) uniquely determines « (because h is 1-1). We denote by p the probability
that A;(a) (playing a possibly cheating prover) convinces the verifier (played in
Step C2 by Party 2) that (u,v) satisfies Eq. (7.26). (Since A; is deterministic,
v = Aj(a) is fixed and the probability is only taken over the moves of Party 2.)
We consider two cases corresponding to the relation between p and the soundness
error-bound function p associated with the proof system (P, V).%7

1. Suppose p > p(n). In this case, by the soundness condition, it must be the
case that A;(a) =v = f(a), because in this case (u,v) satisfies Eq. (7.26)

35 Alternatively, machine B; may invoke the trusted party but prevent it from answering
Party 2. The difference is immaterial, because Party 1 gets nothing from the trusted party.
What matters is that (in either case) Party 2 will get an abort symbol (i.e., L).

36 We comment that even if h were not 1-1 but a strong proof-of-knowledge (rather than an
ordinary proof system) was used in Step C2 then one could have inferred that Party 1 knows
an o so that h(a') = u and v = f(a'), whereas o' does not necessarily equal . Sending o'
to the trusted party in the next (emulation) step, we would have been fine, as it would have
(also) meant that the trusted party’s respond to Party 2 is v.

37 We stress that an explicit error-bound can be associated with all standard zero-knowledge

proof systems, and that here we use a system for which g is negligible. Furthermore, we may

. def
use a proof system with error bound pu(n) = 277,
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and so v = f(h (u)) = f(h t(h(a))) = f(). Thus, in both the real and
the ideal model, with probability p, the joint execution view is non-aborting
and equals (41 (o, T), A1 («)) = (4A1(a, T), f(«)), where T represents the
prover’s view of the execution of Step C2 (on common input (h(«), f(«)),
where the prover is played by A;(«) and the verifier is honest). On the
other hand, in both models, with probability 1 — p, the joint execution is
aborting and equals (A4 (o, T), L), where T is as above (except that here
it is a rejecting execution transcript). Thus, in this case, the distributions
in Eq. (7.28) are identical.

We highlight the extensive use (above and below) of the fact that the
emulation of the proof system (with prover A;(«a)) that is performed in
Step 2 by B, is distributed identically to the real execution of the proof
system that takes place in Step C2 of II.

2. Suppose that p < p(n). Again, in both models, aborting executions are
identical and occur with probability 1—p. However, in this case, we have no
handle on the non-aborting executions in the ideal model (because it is no
longer guaranteed that A;(a) = f(h~!(u)) holds in the real non-aborting
execution, whereas in the ideal Party 2 outputs f(h~!(u))). But we do
not care, because (in this case) these non-aborting executions occur with
negligible probability (i.e., p < u(n)). Thus, in this case, the distribution
ensembles in Eq. (7.28) are statistically indistinguishable.

The proposition follows. Il

We comment that the above treatment can be extended to the case that & is a
randomized process rather than a function (as long as the image of h uniquely
determines its preimage). Details are omitted in view of of the fact that a much
more general treatment will be provided in Section 7.4.3.4

7.4.3.3 Image Transmission

We now consider the following functionality, called image transmission (or unau-
thenticated computation):

(a, 119) = (A, f(e) (7.29)

where (as in Section 7.4.3.2) the function f is polynomial-time computable.?®
In contrast to Section 7.4.3.2, the value f(«) is not verifiable (with respect to
a value h(«a) that is known to the second party and uniquely determines «). In
other words, the value output by Party 2 is only required to be an image of
f (corresponding to a preimage of a given length). Thus, at first glance, one
may think that securely computing Eq. (7.29) should be easier than securely
computing Eq. (7.25), especially in case f is onto (in which case any string is
an f-image). This impression is wrong, because securely computing Eq. (7.29)

38 Actually, in order to conform with the convention that the functionality has to be defined
for any input pair, we may consider the formulation (o, 8) — (X, f(@)).
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means emulating an ideal model in which Party 1 knows the string it sends to
the trusted party. That is, in a secure protocol for Eq. (7.29), whenever Party 2
outputs some image (of f), Party 1 must know a corresponding preimage (under
£).3% Still proving knowledge of a preimage (and doing so in zero-knowledge)
is what a zero-knowledge proof-of-knowledge is all about. Actually, in order to
avoid expected probabilistic polynomial-time adversaries, we use zero-knowledge
strong-proof-of-knowledge (as defined and constructed in Section 4.7.6). We will
show that Construction 7.4.10 can be easily adapted to yield a secure implemen-
tation of Eq. (7.29). Specifically, all that is needed is to use (in Step C2) a zero-
knowledge strong-proof-of-knowledge (rather than an ordinary zero-knowledge
proof), and set h to be a constant function.

Proposition 7.4.12 Suppose that (P,V) is a zero-knowledge strong-proof-of-

knowledge for the relation R Lef {(vyw) : v = f(w)}, and let h be a constant
function. Then, Construction 7.4.10 securely computes (in the malicious model)
the functionality of Eq. (7.29).

Proof Sketch: Recall that P is postulated to be implemented in probabilistic
polynomial-time when given an adequate auxiliary-input (i.e., a preimage un-
der f of the common input). For clarity, we reproduce the modified protocol,
omitting all mention of the (constant) function h.

Inputs: Party 1 gets input o € {0,1}*, and Party 2 gets input 1/%I.

Step C1: Party 1 sends v def f(a) to Party 2.

Step C2: Analogously to Construction 7.4.10, the parties invoke the zero-knowledge
strong-proof-of-knowledge (for R) such that Party 1 plays the prover and
Party 2 plays the verifier. The common input to the proof system is v, the
prover gets « as auxiliary input and its objective is to prove that it knows
a w such that (v,w) € R (i.e.,, v = f(w)). In case the verifier rejects the
proof, Party 2 halts with output L (otherwise the output will be v).

Outputs: In case Party 2 did not output L, it halts with output v. (Party 1 has
no output.)

The analysis of this protocol, denoted II, follows the ideas underlying the proof
of Proposition 7.4.11. The only significant modification is in the construction of
ideal-model adversaries for Party 1.

Let us first justify why the treatment of the case in which Party 1 is honest
is exactly as in the proof of Proposition 7.4.11. In this case, we can use exactly
the same transformation of the real-model adversary A into an ideal-model
adversary Bs, because what this transformation does is essentially invoke the
simulator associated with (the residual prover) A, on input the string v = f(a)

39 We comment that the same holds also with respect to Eq. (7.25). But there the knowledge
of a preimage (of the output v under f) is guaranteed by the fact that security implies that
the preimage of v under f must be consistent with h(«), whereas the only such preimage is «
itself, which in turn is the initial input of Party 1 and thus known to it.
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that it obtains from the trusted party. Furthermore, the adequateness of this
transformation is established by only referring to the adequateness of the (zero-
knowledge) simulator, which holds also here.

We now turn to the case where the second party is honest. In this case Bs
is determined, and we transform (real-model) A; into (ideal-model) B;, which
uses A; as a subroutine. Recall that B; gets input « € {0, 1}".

1. By invokes A; on input «. As (implicit) in the protocol, any action of
A in Step C1 (including abort) is interpreted as sending a string. Let us
denote by v the message sent by A; (i.e., v — A;(«)).

2. Machine B; tries to obtain the a preimage of v under f. Towards this
end, B; uses the (strong) knowledge-extractor associated with the proof
system of Step C2. Specifically, providing the strong knowledge-extractor
with oracle access to (the residual prover) A;(«), machine Bj tries to
extract (from A;) a string w such that f(w) = v. In case the extractor

def . def
succeeds, By sets o = w. Otherwise, By sets o = L.

3. Machine B; now emulates an execution of Step C2. Specifically, it lets
A;(a) play the prover and emulates by itself the (honest) verifier interact-
ing with A;(a) (i-e., By behaves like As).

e In case the emulated verifier rejects, machine B; aborts (without
invoking the trusted party), and outputs whatever A; does (when fed
with this emulated proof transcript).

e Otherwise (i.e., the emulated verifier accepts), if ' # L then B
sends o to the trusted party, and allows it to respond to Party 2.
(The response will be f(a'), which by Step 2 must equal v.) In case
o' = L this sub-step will fail, and B; aborts as in case that the

emulated verifier rejects.

4. Finally, B; feed A; with the execution view, which consists of the prover’s
view of the emulation of Step C2 (produced in Step 3 above), and outputs
whatever A; does.

Denoting the functionality of Eq. (7.29) by F', we now show that

{pEAL, 5(a, e )}Yaefo,1}+ = {REAL (o, e )Yaefo,1}+ (7.30)

Actually, we will show that these two ensembles are statistically indistinguish-
able, where the statistical difference is due to the case where the real-model
adversary A; succeeds to convince the knowledge-verifier (played by the honest
As) that it knows a preimage of v under f, and yet the knowledge-extractor
failed to find such a preimage. By definition of strong knowledge-verifiers, such
an event may occur only with negligible probability. Loosely speaking, ignoring
the rare case in which extraction fails although the knowledge-verifier (played
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by A;) is convinced, it can be shown that the distributions IDEAL, 5((o,7),1")
and REALp z((o,7),1™) are identical. Details follow.

Fixing any «, recall that v def Aj(a) need not be an image of f (let alone
that it may not equal f(«)). We denote by p the probability that A;(«), playing
a possibly cheating prover, convinces the knowledge-verifier (played in Step C2
by Party 2) that it knows a preimage of v under f. We consider two cases
corresponding to the relation between p and the error-bound function p referred
to in Definition 4.7.13.

1. Suppose that p > p(n). In this case, by Definition 4.7.13, with probability
at least 1 — u(n), machine B; has successfully extracted a preimage o'
(of v under f). In the real model, with probability p, the joint execution
ends up non-aborting. By the above, in the ideal model, a joint execution
is non-aborting with probability p + u(n) (actually, the probability is at
least p — pu(n) and at most p). Thus, in both models, with probability
p+£ p(n) a joint execution is non-aborting and equals (4 (o, T), 41 (a)) =
(A1(,T), f(a)), where T represents the prover’s view of an execution of
Step C2 (on common input f(«), where the prover is played by A; («) and
the verifier is honest). On the other hand, in both models, with probability
1—p=£p(n), the joint execution is aborting and equals (A;(«,T'), L), where
T is as above (except that here it is a rejecting execution transcript).
Thus, the statistical difference between the two models is only due to the
difference in the probability of producing an aborting execution in the two
models, which in turn is negligible.

We highlight the extensive use (above and below) of the fact that the
emulation of the proof system (with prover A; («)) performed in Step 2 by
B, is distributed identically to the real execution of the proof system that
takes place in Step C2 of II.

2. Suppose that p < p(n). Again, in the real model the non-aborting proba-
bility is p, which in this case is negligible. Thus, we ignore these executions
and focus on the aborting executions, which occur with probability at least
1—p>1-pu(n)in both models. Recalling that aborting executions are
identically distributed in both models, we conclude that the statistical
difference between the two models is at most u(n).

Thus, in both case, the distribution ensembles in Eq. (7.30) are statistically
indistinguishable. The proposition follows. [l

7.4.3.4 Authenticated Computation, Revisited

We now generalize the image transmission functionality to treat the case that
Party 2 has some partial information of the input of Party 1. In the extreme case,
the information available to Party 2 uniquely determines the input of Party 1
(although obtaining the latter from the former may be infeasible). Thus, is a
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sense, we revisit the authenticated computation functionality, which was consid-
ered in Section 7.4.3.2. The important aspect of the current treatment is that
we consider a functionality that is defined on all pairs of (equal length) strings,
rather than a partial functionality (as treated in Section 7.4.3.2).

Definition 7.4.13 (authenticated computation, revisited): Let f : {0,1}* x
{0,1}* — {0,1}* and h : {0,1}* — {0,1}* be polynomial-time computable. The
h-authenticated f-computation functionality is redefined by

(A, fla)) if 8= h()
() = { (A, (h(a), f(a))) otherwise (7.31)

In the intended applications of the h-authenticated f-computation functionality,
Party 2 is supposed to input 8 = h(a), and so the first case in Eq. (7.31) holds
provides that both parties are honest. Indeed, if Party 2 is honest then either
it gets the correct value of f(«) (i.e., which fits h(a) known to it) or it gets an
indication that Party 1 is cheating. The specific form of the second case was
designed to facilitate the implementation, while not causing any harm.*® What
matters is that the outputs in the two cases are different, and so Party 2 can
tell whether or not it received the correct value of f(a). We stress that in the
intended applications, Party 2 knows h(a) and is supposed to obtain f(«a), and
so it causes no harm to provide Party 2 with both of them (even in case Party 2
misbehaves and enters an input other than h(a)).

We assume again, for simplicity, that A is length preserving (which again
can be “enforced” by considering o/ = (a,1*®) and b'(a/) = (h(a),1%1)).
However, we make no further assumptions concerning the function h, and thus
Eq. (7.29) is essentially a special case (obtained by setting h(a) = 111).

The functionality of Eq. (7.31) is implemented by having Party 1 use the
image transmission functionality to send the pair (h(c, f(«)) to Party 2, which
compares the first element to its own input and acts accordingly. That is, we
use the following (oracle-aided) protocol.

Construction 7.4.14 (authenticated computation protocol, general version):
Inputs: Party 1 gets input o € {0,1}*, and Party 2 gets input 3 € {0,1}°1,

Step C1: Party 1 uses the image transmission functionality to send the pair

(u,v) Lef (h(w), f()) to Party 2. That is, the parties invoke the function-

ality of Eq. (7.29) with respect to the function g(a) def (h(@), f()), where

Party 1 enters the input o and Party 2 is to obtain g(a).

Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party 2
receives the pair (u,v) in Step C1, Party 2 outputs v if u = 3 and (u,v)
otherwise.

40 In contrast, even privately-computing the more natural functionality (a, 8) — (A, v),
where v = f(a) if 8 = h(a) and v = X otherwise, is significantly harder than (securely or
privately) implementing Eq. (7.31); see Exercise 12. The difference is that Eq. (7.31) allows to
reveal h(a) to Party 2 (specifically in case h(a) # (), whereas the more natural functionality
does not allow this.
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Outputs: If not aborted (with output L), Party 2 sets its local output as directed
in Step C2. (Party 1 has no output.)

We stress that in the oracle invocation (of Step C1), Party 4 plays the ith party
(w.r.t the oracle call). Recall that (unlike Party 2), Party 1 may abort and in
particular do so during Step C1. Since Step C1 consists of an oracle invocation,
aborting during Step C1 means instructing the oracle not to answer Party 2.

Proposition 7.4.15 Construction 7.4.14 securely reduces the h-authenticated
f-computation functionality of Eq. (7.31) to the image transmission functionality
of Eq. (7.29).

Proof Sketch: We need to transform any admissible pair, (41, As), for the real
oracle-aided model into a corresponding pair, (B;, Bz), for the ideal model. We
start by assuming that the first party is honest, and transforming the real-model
adversary A, (for the oracle-aided execution) into a corresponding ideal-model
adversary Bs. On input 3, the latter proceeds as follows:

1. Machine B> sends [ to the trusted party, and obtains the answer which

equals v &' fla) if B = h(a) and (u,v) def (h(w), f(«)) otherwise, where

« is the (unknown to Bz) input of Party 1.' In the first case, Bs sets
vt B, and so in both cases (u,v) = (h(a), f(a)).

2. Machine B; emulates the protocol, by feeding A, with the pair (u,v),
which Ay expects to get in Step C1, and outputting whatever the latter
outputs (in Step C2).

Note that both the ideal execution under (By, B2) and the real execution (in the
oracle-aided model) under (A4;, A) yield the output pair (A, Ax(h(a), f(@)).
Thus, the ideal and real ensembles are identical.

We now turn to the case that the second party is honest, and transform the
real-model adversary A; into a corresponding ideal-model adversary B;. On
input «, the latter proceeds as follows:

1. Machine B; emulates Step C1 of the protocol, by obtaining from A; the
input o «— A;(«) (that A; wishes to transmit via Eq. (7.29)) and feeding
Ay with the expected answer A.

2. If A; instructs the oracle not to answer Party 2 then B; halts without
invoking the trusted party. Otherwise, B; sends o' to the trusted party,
and lets it answer Party 2. In both cases, B; halts with output equal to
the corresponding output of A;.

Note that if h(a') = 3, where 3 is the (unknown to B;) input of Party 2,
then the trusted party answers Party 2 with f(«') and otherwise it answers
Party 2 with (h(d), f(&')).

41 Recall that, in either case, the trusted party will send Party 1 the answer A. Also note
that the emulation will remain valid regardless which |3|-bit long string B2 sends to the trusted
party (because, for any such choice, By will (explicitly) receive f(a) as well as (explicitly or
implicitly) receive h(a)).
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Note that both the ideal execution under (B;, Bs) and the real execution (in
the oracle-aided model) under (A4;, As) yield the output pair (A4; (e, A, L), L)
it Aj(a,\) = L and (A1(a, A), F(A1(a),3) otherwise, where F(o/, () is as in
Eq. (7.31); ie., F(d,8) = f() if h(a') = 8 and F(/,8) = (h(d), f(a'))
otherwise. Thus, also here the ideal and real ensembles are identical. [l

7.4.3.5 Augmented coin-tossing

In this section, we generalize the coin-tossing functionality (of Section 7.4.3.1)
in two ways. Firstly, we consider the generation of a random £(n)-bit long
string rather than a single bit. Secondly, we provide the second party with a
function of the coin-outcomes obtained by the first party, rather than providing
it with the outcomes themselves. That is, for any positive polynomial £ : N —
N and a polynomial-time computable function g, we consider the randomized
functionality

(1",1™) + (1, g(r)), where r is uniformly distributed in {0,1}*(™.  (7.32)

Indeed, Definition 7.4.6 is a special case (obtained by setting £(n) < 1 and

g(r) Lef r). The augmented coin-tossing functionality (mentioned in Section 7.4.1)

will be derived as a special case (see below). But first we show that Eq. (7.32)
can be securely reduced to the set of functionalities presented above (see dis-
cussion of this notion of a reduction in Remark 7.4.5). That is, we present an
oracle-aided protocol that uses two of the latter functionalities (i.e., basic coin-
tossing and general authenticated computation) as well as a commitment scheme
C'. The protocol can be viewed as a “robust” version of Construction 7.4.7 (i.e.,
simple operations such as sending a commitment to a value and tossing a coin
are replaced by corresponding functionalities which prevent various abuses).

Construction 7.4.16 (an oracle-aided protocol for Eq. (7.32)):  Forry,...,r; €
{0,1}" and 01, ...,0¢ € {0,1}, we let C',,._,,(01,...,00) = (Cyy (01), ..., Crp(00))-

Inputs: Both parties get security parameter 1™, and set { def L(n).

Step C1: Party 1 uniformly selects o1,...,00 € {0,1} and s1,...,s, € {0,1}",
and letsr' =01 ---0¢ and 5= 51+ 5.

Step C2: Party 1 uses the image transmission functionality to send ¢ def C+(r')
to Party 2. Actually, since image transmission functionality is a special
case of the general authenticated computation functionality, we use the

latter. That is, Party 1 enters Eq. (7.31) with input (r',3), Party 2 enters
_\ def =

with input 147" and Party 2 is supposed to obtain f°»(r',3) = Cz(r').
Recall that, by definition, a party cannot abort the execution of an ora-
cle call that was not initiated (requested) by it, and so Party 2 cannot
abort Steps C2-C4. For simplicity, we assume that Party 1 does not abort
Steps C2 and C3, but it may abort Step C4.
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Step C3: The parties invoke the basic coin tossing functionality £ times to gen-
erate a common random string v € {0,1}*. That is, in the i*® invocation
of the functionality of Definition 7.4.6, the parties obtain the it™ bit of r'".

Step C4: Party 1 sets r ef g r", and uses the authenticated computation
functionality to send g(r) to Party 2. Specifically, Party 1 enters Eq. (7.31)
with input (r',35,r"), Party 2 enters with input (¢,r""), where (c,r'") is
supposed to equal R (r',35,r") def (C3(r"),r"), and Party 2 is supposed
to obtain f©V(r',s,1r") et g(r' @ r'"). In case Party 1 aborts or Party 2
obtains an answer of a different format, which happens if the inputs to the
functionality do not match, Party 2 halts with output L (indicating that
Party 1 misbehaved).

We comment that v =r' ®r" is uniquely determined by ¢ and 1.

Outputs: Party 1 outputs T, and Party 2 outputs the value determined in Step C4,
which is either g(r) or L.

We stress that, in all oracle calls, Party 1 is the party initiating (requesting)
the call. We comment that more efficient alternatives to Construction 7.4.16 do
exist, it is just that we find the above easiest to analyze.

Proposition 7.4.17 Let F be the set of functionalities defined in Definition 7.4.6
and Eq. (7.31), respectively. Then Construction 7.4.16 constitutes a security re-
duction from the generalized coin tossing functionality of Eq. (7.32) to F'.

Proof Sketch: We start by assuming that the first party is honest, and trans-
forming the real-model adversary A, (for the oracle-aided execution) into a corre-
sponding ideal-model adversary Bs. On input 1™, the latter proceeds as follows:

1. Machine B; emulates the local actions of the honest Party 1 in Step C1 of
the protocol, by uniformly selecting 7' € {0,1}* and 3 € {0,1}*".

2. Machine B, emulates Step C2 of the protocol, by feeding A, with © def
C3(r"). (Recall, that by our convention A, never aborts.)

3. Machine B, emulates Step C3 of the protocol, by uniformly selecting r” €
{0,1}*, and feeding A, with it.

4. Machine B, invokes the trusted party with input 1™ and obtains the
answer ¢(r), for a uniformly distributed » € {0,1}* that is handed to
Party 1.2 Next, machine By obtains the input (or query) of A, to the
functionality of Step C4. If this input (i.e., Ax(X\,C5(r"),r")) does not
equal the pair of values (C3(r'),r") fed to Ay in Steps 2-3 then By halts
with output As(\, €, 7", ((¢,r"),g(r))). Otherwise, By halts with output

AZ()‘a E; ’f'”, g(’f‘))

42 Indeed, this part of the current step could take place also at an earlier stage.
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Note that in both cases the output of B, corresponds to the output

of A; when fed with the corresponding emulation of Steps C1-C4. In

particular, By emulates Step C4 by feeding A, with either g(r) or with

(b4 (r',5,7"), g(r)), where the decision depends on whether or not Ay(A, C5(r'),r") =
(C5(r"),r"). (Recall that (Cs(r'),r") = hH(+'",5,7").) Indeed, By is

cheating (in the emulation of Step C4), because A, expects to get either

fer 5" =g @ r'") or (U (r',35,7"),g(r" @ ")) but (as we shall

see) this cheating is undetectable.

Let us first assume that the input entered by A, to the functionality of Step C4
does fit its view of Steps C2 and C3, an event that occurs with equal probability
in both models (because the emulation of Steps C2—C3 is perfect). In this case,
the ideal-model execution under (By, Bs) yields the pair (7, As(X, C(r'), ", g(r))),
where 7', 1" r are uniformly and independently distributed. On the other hand,
the real-model execution (in the oracle-aided model) under (Aj, As) yields the
pair (r'@r'", Ao(X\, C(r'), 7", g(r'®r"))), where ', r'" are as above, which (for r =
' @r") is distributed identically to (7, Ax(A,C(r@®r"), 7", g(r))). However, due
to the hiding property of C, the two ensembles are computationally indistinguish-
able. In case the input entered by As to the functionality of Step C4 does not fit
its view of Steps C2 and C3, the ideal-model execution under (B;, Bs) yields the
pair (r, Az(A, C(r"),r", ((C(r'),r"),9(r)))), whereas the real-model execution

under (A;, As) yields the pair (' ®7", Az()\_,a(r’),r”, ((UQ’),T”),g(T’ ®r'"))),

which is distributed identically to (r, As(X, C(ror"),r", ((C(rer"),r""), g(r)))).
Again, the two ensembles are computationally indistinguishable.

We now turn to the case that the second party is honest, and transform the
real-model adversary A; into a corresponding ideal-model adversary B;. On
input 1™, the latter proceeds as follows:

1. Machine B; emulates Step C1 of the protocol, by obtaining (r',s) «
A;(1™), which is the query that A; will use in Step C2.

2. Machine B; emulates Step C2 by doing nothing.

Note that the real-model adversary A; would have made the oracle query
(r',5) and would have obtained A as an answer.

3. Machine B; invokes the trusted party (on input 1™), and obtains a uni-
formly distributed 7 € {0,1}*. We stress that at this time B; does not
instruct the trusted party whether or not to answer Party 2. Machine B;

emulates Step C3, by feeding 7" L@ to Ay

4. Machine B; starts its emulation of Step C4, by checking whether or not the

query that A; wishes to make (i.e., A1 (1™, A, ")) fits the tuple (+/,5,7"") in
the sense that it yields the same value (C5(r'),7"). That is, let (¢, 7, ¢") =

A (1 X "), If (Cq(q'),q") = (Cs(r'),r") then By instruct the trusted
party to answer Party 2 else B; instruct the trusted party to stop (with-
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out answering Party 2).*3 Finally, B; outputs whatever 4; does (i.e.,

A (1™, A, 7", A), where the four inputs of A; correspond to its view in each
of the four steps).

Note that the output of Party 1 in both the real-model (under the A;’s) and
the ideal-model (under the B;’s) equals A; (1™, A, 7", \), where r" is uniformly
distributed (in both models). The issue is the correlation of this output to the
output of Party 2, which is relevant only if Party 2 does have an output. Recall
that Party 2 obtains an output (in both models) only if the corresponding Party 1

does not abort (or stops the trusted party). Furthermore, in both models, an

output is obtained if and only if (C7(q'), ¢") = (Cs(r'), ") holds, where (1, 5) &

A (1), and (¢',,¢") = A1 (1", A, 7). In particular, (C(¢'),¢") = (C5(r"), ")

implies that (¢',¢") = (+',7") and that the inputs entered in Step C4 do match
(i-e., h°Y(q',q,q") = (C5(r'),r")). This means that in the real-model the output
of Party 2 is f°“(¢',q,q") = f°¥(r',q,7") = g(r' & r""), whereas in the ideal-
model it equals g(r) = g(r’ @ r""). We conclude that the ideal model perfectly
emulates the real model, and the proposition follows. [l

An important special case. An important special case of Eq. (7.32) is when
g(r,s) = Cs(r), where |s| = n-|r|. This special case will be called the augmented
coin tossing functionality.

Definition 7.4.18 (coin-tossing into the well, augmented): An augmented coin-
tossing into the well protocol is a two-party protocol for securely computing the fol-
lowing randomized functionality with respect to some fixed commitment scheme,
C, and a positive polynomial £:

(1",17) = ((r,5),Cs(r)) (7.33)
where (r, s) is uniformly distributed in {0,1}4™) x {0,1}¢(?)™,

An augmented coin-tossing protocol is exactly what is needed for the implemen-
tation of the coin-generation phase of the compiler. In particular, the string s,
included in the output of Party 1, allows it to (later) prove in zero-knowledge
statements regarding the actual value, r, committed (to Party 2). This fact will
be used in the protocol emulation phase of the compiler.

Proposition 7.4.19 Let F be as in Proposition 7.4.17, and suppose that C is
a commitment scheme. Then Construction 7.4.16, when applied to g = C, con-
stitutes a secure reduction of the augmented coin-tossing functionality Eq. (7.33)
to the set of functionalities F .

43 In particular, if (in contrary to our simplifying asiumption) Aj aborts before Step C4
then the sequence (q',q,q"") equals L and does not fit (C5(r'),r"").
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7.4.3.6 Input Commitment

The last component needed for the compiler is a functionality that captured what
is required in the input-commitment phase of the compiler. Specifically, we want
to force Party 1 to make a random commitment to an input of its choice, while
knowing the committed value and the corresponding decommitment. Knowledge
of the latter will allow the party to (later) prove in zero-knowledge statements
regarding the actual committed value, and this fact will be used in the protocol
emulation phase of the compiler.

Let C be a commitment scheme, and let C' be defined as in Section 7.4.3.5.
We consider the input commitment functionality

(z,11%1) = (r,C,(x)), where r is uniformly distributed in {0, 1}""”‘2 (7.34)

Certainly, the naive protocol of just letting Party 1 send Party 2 a commitment
to = does not constitute a secure implementation of Eq. (7.34): This naive
suggestion does not guarantee that the output is in the range of the commitment
scheme, let alone that it is a random commitment for which Party 1 knows a
corresponding decommitment. Thus, the naive protocol must be augmented by
mechanisms that address all these concerns. We show that Eq. (7.34) can be
securely reduced to the set of functionalities presented above.

Construction 7.4.20 (an oracle-aided protocol for Eq. (7.34)):

Inputs: Party 1 has input € {0,1}", whereas Party 2 gets input 1™.
Step C1: Party 1 selects uniformly v’ € {0, 1}"

Step C2: Party 1 uses the image transmission functionality to send ¢’ def Cyi(x)
to Party 2. Again, we actually use the authenticated computation func-

tionality, where Party 1 enters Eq. (7.31) with input (z,r"), Party 2 inputs

1”*”2, and Party 2 is supposed to obtain f©(z,r'") def C(x). Thus,

Steps C1-C2 yield an initial commitment to the input.

As in Construction 7.4.16, we recall that Party 2 cannot abort Steps C2—
C4, and assume that Party 1 does not abort Steps C2 and C3.

Step C3: Generating coins for the final commitment. The parties use the aug-

mented coin tossing functionality to obtain the outputs (r,r") and " def
C., (1), respectively, where r € {0,1}"2 and v € {0,1}"3 are uniformly
and independently distributed. That is, Party 1 gets (r,r"), while Party 2
gets ¢,

Step C4: Sending the final commitment. Party 1 uses the authenticated compu-
tation functionality to send C,(z) to Party 2, where (z,7) is uniquely
determined by (c',c"). Specifically, Party 1 enters Eq. (7.31) with input
(z,r,r",7"), Party 2 enters with input (¢',c"), where (¢',c") is supposed
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to equal b (z,r, 1" ') ef (Cri(z),Cri (1)), and Party 2 is supposed to
def —

obtain f©°O (x,r,r',r") = C.(z).

In case Party 1 aborts or Party 2 obtains an answer of a different format,
which happens if the inputs to the functionality do not match, Party 2 halts
with output L (indicating that Party 1 misbehaved).

Outputs: Party 1 outputsr, and Party 2 outputs the value determined in Step C4,
which is either C,.(z) or L.

Again, more efficient alternatives to the above construction do exist, but we
prefer to analyze the one above.

Proposition 7.4.21 Construction 7.4.20 constitutes a security reduction from
Eq. (7.34) to the set of two functionalities defined in Eq. (7.33) and Eq. (7.31),
respectively.

Proof Sketch: We start by assuming that the first party is honest, and trans-
forming the real-model adversary A, (for the oracle-aided execution) into a corre-
sponding ideal-model adversary Bs. On input 1™, the latter proceeds as follows:

1. Machine B, emulates (the actions of the honest Party 1 in) Step C1 of the

protocol, by uniformly selecting r' € {0, 1}"
2. Machine B, emulates Step C2 of the protocol, by feeding A, with ¢ ¥
C,(0"). (Clearly, By is cheating, because Ay is supposed to be fed with

C(z), where z is the (unknown to Bj) input of Party 1. However, A,
cannot detect this cheating.)

3. Machine B, emulates Step C3 of the protocol, by uniformly selecting s €
{0, 1}”2 and r"" € {0, 1}”3, and feeding A, with ¢ def Crn(s).

4. Machine B, invokes the trusted party with input 1™ and obtains the answer

C,(z), for a uniformly distributed r € {0,1}"" that is handed to Party 1.44
Next, machine Bs obtains the input (or query) of A to the functionality
of Step C4. If this input (i.e., A2(\ ¢, ")) does not equal the pair of
values (c',c¢") = (C,(0"),C,n(s)) fed to Ay in Steps 2-3 then B halts
with output A (A, ¢, ¢’ ((c',¢"),C(x))). Otherwise, By halts with output
AZ()‘a C’, C”,UT(Z')).

Note that in both cases the output of By corresponds to the output of
A, when fed with the corresponding emulation of Steps C1-C4. In par-
ticular, B, emulates Step C4 by feeding A, with either C,(x) or with

((_U(O"), C(s)),Cr(x)), where the decision depends on whether or not Ay (X, C(0™),C i (s)) =
(C(0™),Crn(s)). (Recall that (C.(0™),Crri(s)) = RCY(0™, s,7",r").) In-
deed, on top of cheating in the emulation of Step C2, machine B, cheats

in the emulation of Step C4, firstly because the decision is supposed

44 Indeed, this part of the current step could take place also at an earlier stage.
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to depend on whether or not Ay(\, Cr(z),Cri(r)) = (Cr(x),Crr(r)),
where (C,(z),Cri (1)) = R (z,r,7',7"), and secondly because Ay ex-
pects to get either C,.(z) = f(x,r,7",r") or ((C(z),C(r)),C,(z)) =
(RO (z,r, v "), [ (x,r, 7", r")). However, as we shall see, this cheating
is undetectable.

Let us first assume that the input entered by A, to the functionality of Step C4
does fit its view of Steps C2 and C3. In this case, the ideal-model execution
under (B, By) yields the pair (r, A>(X,C(0"),C(s),C,(x))), where r and s
are uniformly and independently distributed. On the other hand, the cor-
responding real-model execution (in the oracle-aided model) under (A4;, A»)
yields the pair (r, As(A, C(x),C(r),C.(x))), where r is as above. However,
due to the hiding property of C, the two ensembles are computationally indis-
tinguishable. In case the input entered by A, to the functionality of Step C4
does not fit its view of Steps C2 and C3, the ideal-model execution under
(B17 BZ) yields the pair the pair (Ta AZ()‘aa(On)aa(s)a ((U(On)aa(s));ér(w))))a
whereas the corresponding real-model execution under (A, As) yields the pair
(r, As(\,C(z),C(r), ((C(x),C(r)),C,(x)))). Again, the two ensembles are com-
putationally indistinguishable. Since the two cases occur with almost the same
probability in both models (because the decision depends on As(A, ', "), where
(¢, c") is either (C(0™),C(s)) or (C(z),C(r))), the outputs in the two models
are indistinguishable.

We now turn to the case that the second party is honest, and transform the
real-model adversary A; into a corresponding ideal-model adversary B;. On
input x, the latter proceeds as follows:

1. Machine B; emulates Step C1 of the protocol, by obtaining 7' from A (x).
Actually, B; obtains (z',r") < A;(x), which is the query that A; will use
in Step C2.

2. Machine B; emulates Step C2 by doing nothing.

Note that the real-model adversary A; would have made the oracle query
(«',7") and would have obtained \ as an answer.

3. Machine B; invokes thg trusted party on input z’, and obtains a uniformly
distributed 7 € {0,1}™". We stress that at this time B; does not instruct
the trusted party whether or not to answer Party 2. Machine B; emulates
Step C3, by uniformly selecting r"" € {0, 1}”3 and feeding (r,r") to A;.

4. Machine Bj starts its emulation of Step C4, by checking whether or not
the query that A; wishes to make (i.e., Ai(z,A,(r,r"))) fits the tuple

(z',r,r',7"") in the sense that it yields the same value (C,/(z'),C.n(7)).
That is, let (q1,q2,51,82) = Ai(w, A, (r,"). I (Csy(q1), Canl(qz) =
(Cri(z"),Cri(r)) then B; instruct the trusted party to answer Party 2
else B; instruct the trusted party to stop (without answering Party 2).
Finally, B; outputs whatever A; does (i.e., Ai(z, A, (r,7""), A), where the
four inputs of A; correspond to its view in each of the four steps).



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

658 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS

Note that the output of Party 1 in both the real-model (under the A;’s) and
the ideal-model (under the B;’s) equals A;(x, A, (r,r'"),\), where r € {0, 1}"2
and r" € {0, 1}”3 are uniformly and independently distributed (in both mod-
els). The issue is the correlation of this output to the output of Party 2, which
is relevant ounly if Party 2 does have an output. Recall that Party 2 obtains
an output (in both models) only if the corresponding Party 1 does not abort
(or stops the trusted party). Furthermore, in both models, an output is ob-

tained if and only if (Cy,(q1),Cs,(g2)) = (Cr(z"),Cri (7)), where (2',7") =
‘4_1(1') a‘ni (Q1,Q2,31,S2) = Al(x;)‘a (’f', T”))' In particular, (Cs1 (Q1);Csz (qz)) =
(Cri(x"),Cri(r)) implies that (g1,¢92) = (2',7) and that the inputs entered in
Step C4 do match (i.e., h‘°*(q1,q2,51,52) = (Cp(x'),Cpn(r))), which means
that in the real-model the output of Party 2is f°* (q1, ¢2, 51, s2) = f 9 (a', 1, 81, 82) =
C.(z") (exactly as in the ideal-model). We conclude that the ideal model per-

fectly emulates the real model, and the proposition follows. [l

7.4.3.7 Summary

Combining Proposition 7.4.8 (resp., Proposition 7.4.12) with suitable results
about the underlying primitives, we conclude that coin tossing (resp., image
transmission as in Eq. (7.29)) can be securely implemented based on any 1-1 one-
way function. Combining Proposition 7.4.15 (resp., Proposition 7.4.19) [resp.,
Proposition 7.4.21] with the previous results, by using the Composition Theorem
(i.e., Theorem 7.4.3 or Remark 7.4.5), we obtain secure implementations of the
authenticated-computation functionality (resp., augmented coin-tossing) [resp.,
input-commitment functionality]. The 1-1 restriction can be waived by using
a slightly more cumbersome construction that utilizes the commitment scheme
of Construction 4.4.4 (instead of the simple scheme of Construction 4.4.2). We
thus state the following for future reference:

Proposition 7.4.22 Assuming the ezistence of (non-uniformly strong) one-way
functions, the following three functionalities can be securely computed.

1. The input-commitment functionality as defined in Eq. (7.34).
2. The augmented coin-tossing functionality as defined in Eq. (7.33).

3. The authenticated-computation functionality as defined in Eq. (7.31).

7.4.4 The compiler itself

We are now ready to present the compiler. Recall that we are given a protocol,
II, for the semi-honest model, and we want to generate an “equivalent” protocol
IT' for the malicious model. The meaning of the term ‘equivalent’ will be clarified
in Section 7.4.4.1. We start by compiling II into an oracle-aided protocol II' that
uses the three functionalities referred to in Proposition 7.4.22.

We assume, without loss of generality, that on any input of length n, each
party to II tosses £(n) = poly(n) coins. Recall that C is a (non-interactive)



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 659

(string) commitment scheme, derived from the bit commitment scheme C, and
that C(v) denotes the commitment to value v using the random-tape r.

Construction 7.4.23 (the compiled protocol, oracle-aided version): Given a
protocol, 1L, for the semi-honest model, we consider the following oracle-aided
protocol, I', for the malicious model.

Inputs: Party 1 gets input « € {0,1}" and Party 2 gets input y € {0,1}™.

Input-commitment phase: Each of the two parties commits to its input by using
the input-commitment functionality of Eq. (7.34). Recall that Eq. (7.34)
maps the input pair (u, 1) to the output pair (s,C,(u)), where s is uni-
formly distributed in {0, 1}”2. Thus, each of the parties obtains decom-
mitment information that will allow it to perform its role in the protocol
emulation phase.

Specifically, we are talking about two invocations of Eq. (7.34). In the first
invocation, Party 1 wishing to commit to x, plays the role of the first party
in Eq. (7.34), and obtains a uniformly distributed p* € {0,1}™, whereas
Party 2 (which plays the role of the second party in Eq. (7.34)) obtains
7t ef 6p1 (z). Likewise, in the second invocation, Party 2 wishing to
commit to y, plays the role of the first party in Eq. (7.34), and obtains a
uniformly distributed p? € {0, 1}”2, whereas Party 1 (which plays the role

of the second party in Eq. (7.34)) obtains v* def Upz (y).

Coin-generation phase: Fach of the parties generate a random-tape for the emula-
tion of I, by invoking the augmented coin-tossing functionality of Eq. (7.33).
Recall that this functionality maps the input pair (1™,1™) to the output
pair ((r,s),C4(r)), where (r,s) is uniformly distributed in {0,1}*™) x
{0,1}”'“"). Thus, each party obtains the random-tape to be held by it,
whereas the other party obtains a commitment to this value. The party
holding the random-tape also obtains the randomization used in the cor-
responding commitment, which it will use in performing its role in the
protocol emulation phase.

Specifically, we are talking about two invocations of Eq. (7.33). In the first
(resp., second) invocation, Party 1 (resp., Party 2) plays the role of the
first party in Eq. (7.33), and obtains a uniformly distributed (r',w!) €
{0,134 x {0, 134 (resp., (1?2, w?) € {0,1}4™) x {0,1}4™), whereas
Party 2 (resp., Party 1) which plays the other role obtains &* ef Cur(rh)
(resp., 6 = C2(r?)).

Protocol emulation phase: The parties use the authenticated-computation func-
tionality of Eq. (7.31) in order to emulate each step of protocol II. Recall
that, for predetermined functions h and f, this functionality maps the input
pair («, B) to the output pair (A, f(«)) if B = h(a) and to (X, (h(a), f(a)))
otherwise, where the second case is treated as abort.
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The party that is supposed to send a message plays the role of the first
(i.e., initiating) party in Eq. (7.31) and the party that is supposed to receive
the message plays the role of the second party. Suppose that the current

message in I is to be sent by Party 7, and let u def ifj=1andu def Y
otherwise. Then the functions h, f and the inputs «, B, for the functionality
of Eq. (7.31), are set as follows:

e The string « is set to equal (a1, s, az3), where ay = (u,p’) is the

query and answer of Party j in the oracle call that it initiated in the
input-commitment phase, as = (r7,w’) is the answer that Party j ob-
tained in the oracle call that it initiated in the coin-generation phase,
and ag is the sequence of messages that Party j obtained so far in the
emulation of IL. The string B equals (v7, 87, a3), where 47 and &7 are
the answers that the other party obtained in the same oracle calls in
the first two phases (and as is as above).
In particular, u is the input to which Party j committed in the input-
commitment phase and 77 is the random-tape generated for it in the
coin-generation phase. Together with as, they determine the message
that is to be sent by Party j in II. The auziliary strings p and w?
will be used to authenticate w and 17, as reflected in the following
definition of h.

o The function h is defined such that h((vy, s1), (v, 82),v3) equals (C, (v1), Cs, (v2),v3).

Indeed, it holds that h(ay, sz, as) = (C,i(uw),Ci(r7),as) = 6.

e The function f equals the computation that determines the message
to be sent in II. Note that this message is computable in polynomial-
time from the party’s input (denoted u and being part of ay), its
random-tape (denoted 77 and being part of az), and the messages it
has received so far (i-e., ag). Indeed, it holds that f(an, asz,as) is the
message that Party j should send in II.

Recall that the party that play the receiver in the current oracle call, obtains
either f(a) or (h(a), f(a)). It treats the second case as if the other party
has aborted, which is also possible per se.

Aborting: In case any of the functionalities invoked in any of the above phases
terminates in an abort state, the party (or parties) obtaining this indication
aborts the execution, and sets its output to L. Otherwise, outputs are as
follows.

Outputs: At the end of the emulation phase, each party holds the corresponding
output of the party in protocol I1. The party just locally outputs this value.

Clearly, in case both parties are honest, the input-output relation of IT’ is identi-
cal to that of II. (We will show that essentially the same holds also in general.)
We note that the transformation of II to II' can be implemented in polynomial-
time. Finally, replacing the oracle calls by the subprotocols provided in Propo-
sition 7.4.22 yields a standard protocol for the malicious model.
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7.4.4.1 The effect of the compiler

As will be shown below, given a protocol as underlying the proof of Theo-
rem 7.3.12, the compiler produces a protocol that securely computes the same
functionality. Thus, for any functionality f, the compiler transforms a specific
protocol for privately computing f (in the semi-honest model) into a protocol
for securely computing f (in the malicious model). This suffices to establish our
main result (i.e., Theorem 7.4.1), yet it does not say what the compiler does
when given an arbitrary protocol (i.e., one not produced as above). In order to
analyze the action of the compiler, in general, we introduce the following model
that is a hybrid of the semi-honest and the malicious models.*> We call this new
model, which is of independent interest, the augmented semi-honest model.

Definition 7.4.24 (the augmented semi-honest model): Let IT be a two-party
protocol. An augmented semi-honest behavior (w.r.t II) is a (feasible) strategy
that satisfies the following conditions:

Entering the execution: Depending on its initial input, denoted u, the party may
abort before taking any step in the execution of II. Otherwise, again de-
pending on w, it enter the erecution with any input ' € {0,1}1* of its
choice. From this point on, u' is fized.

Proper selection of a random-tape: The party selects the random-tape to be used
in IT uniformly among all strings of the length specified by II. That is, the
selection of the random-tape is exactly as specified by II.

Proper message transmission or abort: In each step of I1, depending on its view
of the execution so far, the party may either abort or send a message as
instructed by II. We stress that the message is computed as II instructs
based on input u', the random-tape selected above, and all messages received
so far.

Output: At the end of the interaction, the party produces an output depending
on its entire view of the interaction. We stress that the view consists of the
initial input u, the random-tape selected above, and all messages received
so far.

A pair of probabilistic polynomial-time strategies, C = (Cy,Cs), is admissible
w.r.t II in the augmented semi-honest model if one strategy implements I1 and
the other implements an augmented semi-honest behavior w.r.t I1.

The augmented semi-honest model extends the ordinary semi-honest model in
allowing adversaries to modify their initial input and to abort the execution at
arbitrary time. The augmented semi-honest model is arguably more appealing
than the semi-honest model, because in many settings input-modification and
aborting can also be performed at a high-level, without modifying the prescribed

45 Indeed, Theorem 7.4.1 will follow as a special case of the general analysis of the compiler
(as provided below). See further discussion following the statement of Proposition 7.4.25.
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program. In contrast, implementing an effective malicious adversary may require
some insight into the original protocol and typically requires substitution of the
program’s code.

Intuitively, the compiler transforms any protocol II into an (oracle-aided)
protocol II" such that executions of I’ in the malicious model correspond to
executions of II in the augmented semi-honest model. That is:

Proposition 7.4.25 (general analysis of the two-party compiler): Let IT' be the
(oracle-aided) protocol produced by Construction 7.4.23 when given the protocol
II, and let G denote the set of the three oracle functionalities that are used
by protocol II'. Then, for every pair of probabilistic polynomial-time strategies
A = (A1, Ay) that are admissible (w.r.t II') for the (real) malicious model (of
Definition 7.4.2)¢ there exists a pair of probabilistic polynomial-time strategies
B = (B1, Bs) that are admissible w.r.t II for the augmented semi-honest model
(of Definition 7.4.24) such that

{REALH,E(Z)(%?J)}L%Z = {REAL§r7Z(z)(way)}w7y7z
where x,y,z € {0,1}* such that |z| = |y| and |z| = poly(|z|).

Proposition 7.4.25 will be applied to protocols as underlying the proof of Theo-
rem 7.3.12. Actually, we will apply Proposition 7.4.25 to Theorem 7.3.14 (which
provides canonical protocols for privately computing any functionality). As we
shall see (in Section 7.4.4.2), for these specific protocols, the augmented semi-
honest model (of Definition 7.4.24) can be emulated by the ideal malicious model
(of Definition 7.2.4). Thus, we obtain secure (oracle-aided) protocols (with
oracle to G) for any functionality, because (schematically speaking) for every
functionality f there exist II and II' such that IDEAL equals

REALH,aug—semi—honest(x’ Y); gmalicious(m’ y)- (Or-
dinary secure protocols are obtained by using secure implementations of the
oracles in G (which are provided by Proposition 7.4.22).) Thus, Theorem 7.4.1
is proven by combining the properties of the compiler, as stated in Proposi-
tion 7.4.25, with the properties of specific protocols to be compiled by it. We
start by establishing Proposition 7.4.25.

#malicious (%> ¥)
which in turn equals REALg

Proof Sketch: Given a pair of strategies, (A1, A2), which is admissible w.r.t
IT' for the real malicious model, we present a corresponding pair, (By, Bz), that
admissible w.r.t II for the augmented semi-honest model. Denote by hon the
identity of the honest party and by mal the identity of the malicious party (i.e.,
{hon,mal} = {1,2}). Then, Byp is determined by II, and we transform (the
malicious adversary) Aps1 into (an augmented semi-honest adversary) Bpai,
which uses Ap 57 as a subroutine. Machine By, will emulate the various oracles,
which are used in I but not in II. On input u € {0,1}", machine By, behaves
as follows.

46 Recall the definition of real-model adversaries for an oracle-aided protocol (i.e., Defini-
tion 7.4.2) extends the definition of real-model adversaries for ordinary protocols (i.e., Defini-
tion 7.2.5).
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Entering the execution: Machine Bp,7 invokes Ap,7 on input u, and decides
whether to enter the protocol, and if so — with what input. Towards
this end, machine Bp57 emulates the input-committing phase of IT', using
Apai (as subroutine). Machine By,7 obtains from Ay .7 the oracle query
that it makes to the input-committing functionality (initiated by it), and
uses this query to determine the replaced input «’ (to be used in the rest of
the execution). It also provides Ap57 with the oracle answers that Apaq
expects to get. Details follow.

Recall that the the input-committing phase consists of two invocations
of the input-committing functionality, one by Partyy o and the other by
Partypa1- In each invocation one party supplies an input and the other
party gets a commitment to it (while the first party gets the corresponding
commitment coins).

¢ In the invocation of the input-committing functionality in which Partyyon
commits to its input, machine By 57 generates a dummy commitment
(supposedly to the input of Partyy o) and feeds it to Ap 57, which ex-
pects to get a commitment (as answer from the oracle). Specifically,
Bpa1 uniformly selects phon € {0, 1}”2, and computes the commit-

ment yhon ' Ephon(on): where 0™ is an arbitrary (dummy) value

(which replaces the unknown input of Partyy o). Machine By, feeds

hon ( hon

Apal with v as if were the oracle answer).

¢ In the invocation of the input-committing functionality in which Partyps1

commits to its input, machine Bpg7 tries to obtain the committed
value (provided by Partyps1) and feeds Apgq with decommitment
information (which it expects to get). Specifically, By, obtains the
query, denoted w', that Ay, makes to the input-committing func-
tionality, and feeds it with a uniformly selected pL € {0,1}"°. We
stress that Bpgq will use this «’ as its modified input in its (aug-
mented semi-honest) execution of II.

In case Apg7 has aborted this oracle call, machine Bpg7 aborts (i.e.,
does not enter the execution of IT).

In case Bpaq did not abort, it enters protocol II with input «’. Note that
this entire step is implemented in polynomial-time, and the resulting u'
depends only on u (the initial input of Bpa7).

Selection of random-tape: Bpgq selects its random-tape uniformly in {0,1}4(™)
(as specifies by IT), and emulates the execution of the coin-generation phase
of II" ending with this outcome, so as to place Aya7 in the appropriate
state towards the protocol-emulation phase. To achieve the latter goal,
machine Bp,7 supplies Apgq with the oracle answers that it expects to
see. Again, we distinguish between the two oracle calls (to the augmented
coin-tossing functionality) made during the coin-generation phase of II':
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e In the invocation of the augmented coin-tossing functionality in which
Partynon obtains the outcome of the coin-toss, machine By, gen-
erates a dummy commitment (supposedly to the random-tape of
Partypon) and feeds it to Apaj, which expects to get a commit-
ment (as answer from the oracle). Specifically, Bp,7 uniformly se-

lects whon ¢ {0,134 and computes the commitment §2O% def
thon(Ol(”)), where 0“™) is an arbitrary (dummy) value (which re-
places the unknown random-tape of Partyy o). Machine Bpa7 feeds

Apay with 6090 (as if 190 were the oracle answer).

e In the invocation of the augmented coin-tossing functionality in which
Partypa1 obtains the outcome of the coin-toss, machine By, first
selects uniformly 21 € {0,1}4" and w™@1 € {0,1}™ ™) and feeds
Apa1 with the pair (F2L wmaLl) Machine By will use r1 as its
random-tape in its (augmented semi-honest) execution of II. If Ap.q
aborts this oracle call then Bp,7 aborts.

In case Bpa1 did not abort, it will use rmal 4 its random-tape in its the
subsequent steps of protocol II. Note that this entire step is implemented
in polynomial-time, and that 21 is selected uniformly in {0, 1} inde-
pendent of anything else.

Subsequent steps — message transmission: Machine Bp;7 now enters the actual
execution of II. It proceeds in this real execution along with emulating
the corresponding oracle answers of the authenticated-computation func-
tionality. In a message-transmission step by Partypopn (in II), machine
Bpa1 obtains from Partypon (in the real execution of II) a message, and
emulates the answer given to Partyp,1 by the authenticated-computation
functionality. In a message-transmission step by Partypg7 in 1I, machine
Bpa1 computes the message to be sent to Partynop (in II) as instructed
by II, based on the input u’ determined above, the random-tape rmal o
lected above, and the messages obtained so far from Partypon (in II). It
then checks if Ap,7 makes the correct oracle query, in which case it sends
Partynon the message just computed and otherwise its aborts. Details
follow.

e In a message-transmission step by Partypopn (in II), machine Bpzq
first obtains from Partypopn (in the real execution of IT) a message,
denoted msg. Next, machine By 57 obtains from Ap5q the query that
Apa1 makes to the authenticated-computation functionality. Let us
denote this query by 8 = (q1,q2,q3). If (q1,q2) = (y2°0,6%°1) and
g3 equals the sequence of messages sent so far (by Bpa1 to Partypon)

then Bp,q feeds Apyq with the received message msg. Otherwise,

Bpa feeds Apap with ((420 6890 .) msg), where as is the se-

quence of messages sent so far (by Bpgj to Partyngn)- (The lat-
ter case means that Ap,7 is cheating, but Partyyon does not de-
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tect this fact (because it obtains no answer from the authenticated-
computation functionality).)

e In a message-transmission step by Partypa1 (in II), machine Bpzq
first computes the message, denoted msg, that it should send (accord-
ing to IT) on input u' (as determined above), random-tape r®l (as
recorded above), and the messages received so far (from Partypon
in execution of II). Next, machine By, obtains from Ap,q the
query that Ap57 makes to the authenticated-computation functional-
ity. Let us denote this query by ((u”, p"), (r",w"), ). If C v (u") =
épmal (u"), Cor(r") = 6Wmal(rma1) and o} equals the sequence of
messages received so far (from Partyyop) then Bpay sends the mes-
sage msg to Partynon. Otherwise, By aborts. (The latter case
means that Ap,q is cheating, and Partyy op detect this fact and treats
it as if Partyya1 has aborted in II'.)

Output: Machine By 47 just outputs whatever machine Ap,q outputs given the
execution history (in II') emulated above.

Clearly, machine Bp57 (described above) implements an augmented semi-honest
behavior with respect to II. It is left to show that

g/ ,Z(z) (33, y)}:c,y,z

llle

{REAL {REALY 5, (2, 9) o,z (7.35)

There is only one difference between the two ensembles referred to in Eq. (7.35):
In the first distribution (i.e., REALS, Z(Z)(ats,y)), the commitments obtained by
Apa1 in the input-commitment and coin-generation phases are to the true input
and true random-tape of Partypon. On the other hand, in the second distribution

(i.e., REALHE(Z)(:C,y)), the emulated machine Ap,7 is given commitments to
dummy values (and the actions of Bya7 are determined accordingly). We stress
that, other than this difference, By perfectly emulates Ap,7. However, the
difference is “undetectable” (i.e., computationally indistinguishable) due to the
hiding property of the commitment scheme. [

Composing the oracle-aided protocols produced by the compiler with secure
implementations of these oracles (as provided by Proposition 7.4.22), and using
the Composition Theorem and Proposition 7.4.25, we obtain:

Corollary 7.4.26 (compilation of two-party protocols): Assuming the ewis-
tence of (non-uniformly strong) one-way functions, any two-party protocol II
can be efficiently transformed into a two-party protocol II' such that the follow-
ing holds. For every pair of probabilistic polynomial-time strategies A = (A1, As)
that are admissible (w.r.t II') for the (real) malicious model (of Definition 7.2.5)
there exists a pair of probabilistic polynomial-time strategies B = (B, By) that
are admissible w.r.t II for the augmented semi-honest model (of Definition 7.4.24)
such that

{REALH,F(Z) (Z,9)}ay.2 = {REALH’,Z(Z) (Z,9)}ay.2

where x,y,z € {0,1}* such that |z| = |y| and |z| = poly(|z|).
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7.4.4.2 Canonical protocols and the augmented semi-honest model

Recall that a protocol for privately computing some functionality is guaranteed
to be secure with respect to semi-honest behavior. Thus, a real semi-honest
ezecution of this protocol can be emulated by an ideal semi-honest computation
of the functionality. The question is what happens to such a protocol when it is
run under the augmented-semi-honest model. We now show that for canonical
protocols (e.g., the protocols underlying the proof of Theorem 7.3.12), a real
augmented-semi-honest execution of such a protocol can be emulated by an ideal
malicious computation of the functionality. That is, these protocol have the
salient property of allowing to emulate the (wider) class of real augmented-
semi-honest executions by the (wider) class of ideal malicious computations.
Combined with Corollary 7.4.26, this fact means that if one applies the compiler
to a canonical protocol II that privately computes f then the resulting protocol
IT" securely computes f (because malicious executions of II' can be emulated by
augmented-semi-honest executions of I, which in turn can be emulated by the
ideal malicious model for f).

Recall that the augmented semi-honest model allows two things that go be-
yond the semi-honest model: (1) oblivious substitution of inputs, and (2) abort.
The first type of behavior has a correspondence in the malicious ideal-model,
and so poses no problem. To account for the second type of behavior, we need
to match an aborting execution in the augmented semi-honest model with an
aborting execution in the ideal malicious model. Here is where the extra prop-
erty of the specific protocols, underlying the proof of Theorem 7.3.12, comes to
help. Specifically, we refer to the fact that these protocols are canonical, which
means that the output of each party is determined only after it receives the very
last message (and no knowledge of the output is obtained before). Thus, abort-
ing before this stage is essentially equivalent to not entering the execution at all,
whereas aborting at the last stage is accounted for by the malicious ideal-model.

Proposition 7.4.27 (on canonical protocols): Let II be a canonical protocol
that privately computes the functionality f. Then, for every probabilistic polynomial-
time pair B = (By, Bs) that is admissible for the (real) augmented semi-honest
model (of Definition 7.4.24) there ewists a probabilistic polynomial-time pair

C = (C1,Cy) that is admissible for the ideal malicious model (of Definition 7.2.4)
such that

{REALY ) (2,9) } o y,- = {IDEAL; 7. (%, ) Yoy,

where x,y,z € {0,1}* such that |z| = |y| and |z| = poly(|z|).

We comment that the statement of Proposition 7.4.27 implicitly introduces a
notion of security in the augmented semi-honest model. Indeed, if the real-
model adversary is allowed augmented semi-honest behavior then it is natural
to allow a corresponding behavior in the ideal model, which then coincides with
the ideal malicious model. Viewed in these terms, Proposition 7.4.27 asserts
that canonical protocols are secure in the augmented semi-honest model.
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Proof Sketch: Recall that canonical protocols (cf. Definition 7.3.13) proceed
in two stages, where the first stage yield no information at all (to any semi-
honest party) and the second phase consists of the exchange of a single pair of
messages (i.e., each party sends a single message). We use the fact that canonical
protocols admit a two-stage simulation procedure (for the view of a semi-honest
party). Such two-stage simulators acts as follows:

Input to simulator: A pair (u,v), where u is the initial input of the semi-honest
party and v the corresponding local output.

Simulation Stage 1: Based (only) on w, the simulator generates a transcript cor-
responding to the view of the semi-honest party in the first stage of the
canonical protocol II.

Recall that this is a truncated execution of II, where the execution is
truncated just before the very last message is received by the semi-honest
party. We stress that this truncated view, denoted 7', is produced without
using v.

Simulation Stage 2: Based on T and v, the simulator produces a string cor-
responding to the last message received by the semi-honest party. The
simulator then outputs the concatenation of 7" and this (last) message.

The reader may easily verify that any canonical protocol has two-stage simu-
lators. Loosely speaking, a simulator as required in Stage 1 is implicit in the
definition of a canonical protocol (cf. Definition 7.3.13), and the simulation of
Stage 2 is trivial (because Stage 1 in a canonical protocol ends with the parties
holding shares of the desired outputs and Stage 2 consists of each party sending
the share required by the other party).

Next, for any protocol having two-stage simulators, given a pair (B;, B2) that
is admissible w.r.t II for the augmented semi-honest model, we construct a pair,
(C1,C>), that is admissible for the ideal malicious model. We distinguish two
cases, corresponding to the identity of the honest party. The difference between
these cases amount to the possibility of (meaningfully) aborting the execution
after receiving the last message (and just before sending the last message). This
possibility exists for a dishonest Party 1 but not for a dishonest Party 2 (see
Figure 7.2).

We start with the case that Party 1 is honest (and Party 2 is dishonest).
In this case C; is determined (by II), and we need to transform the augmented
semi-honest real adversary Bs into a malicious ideal-model adversary C5. The
latter operates as follows, using the two-stage simulator, denoted S5, provided
for the view of Party 2 in semi-honest executions of IT (which privately computes
f). Recall that C, gets input y € {0,1}".

1. Machine Cs first determines the input 3’ to be sent to the trusted party,
where 3’ is determined according to the behavior of By during the entire
emulation of the (canonical) protocol II. In addition, C5 emulates the
messages sent and received by Bs during the first phase of II, and also
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Figure 7.2: Schematic depiction of a canonical protocol.

determines the last message of By (i.e., its single Stage 2-message). This
is done as follows:

(a) First, Cy computes the substituted input with which (the augmented
semi-honest adversary) Bs enters II. That is, y' « B2(y). In case B
aborts, machine Cs sets y' = L (so to conform with the (simplifying)
convention that the ideal-model adversary always sends input to the
trusted party).

(b) Next, Cy invokes the first stage of the simulator S, to obtain the view
of the execution of the first stage of II as seen by a semi-honest party
having input y’. Denote this view by 7', and note that 7" includes y'.
Machine C; extracts from 7' the random-tape, denoted r, of Party 2.
This random-tape will be fixed for the use of Bs.

(¢) Using T, machine Cy emulates the execution of By on input y" and
random-tape 7, up to the point where Party 2 is to receive the last
message (in IT). We stress that this point is just after Party 2 has
sent its last message. Thus, the last message of Party 2 (in II) is
determined at this step. To perform the emulation, C, feeds B,
with input ¥’ and random-tape r, and iteratively feeds By with the
sequence of (incoming) messages as appearing in the corresponding
locations in 7. We stress that although 7' is only the transcript of
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Stage 1 in II, it determines all messages of Party 2 in II (including its
single Stage 2 message).

Note that the augmented-semi-honest strategy B. may abort in such
an execution, but in case it does not abort the messages it sends fit the
transcript 7. Consequently, the view of (the augmented semi-honest
adversary) B, in an execution of the first stage of II is emulated
by a prefix of T' (which in turn represents the simulated view of a
semi-honest party on input y').

In case Bs has aborted the execution (even just before sending the
last message, which belongs to Stage 2), machine Cy resets y' to L.

We stress that ¢’ is determined based only on y, and that Cs never aborts.

2. Machine C5 invokes the trusted party with input 3’, and obtains a response,
denoted v.

(Since the trusted party answers Party 1 first, Party 2 does not have the
option of stopping the trusted party before it answers Party 1. But this
option is not needed because Party 2 cannot meaningfully abort II after
receiving the last message in it. That is, if By has not aborted so far then
it cannot (meaningfully) abort now, because it has already sent (or rather
determined) its last message.)

3. Finally, C5 determines its output as follows:

(a) Cs invokes the second stage of the simulator Ss, in order to obtain
the last message sent to Party 2. That is, Cy supplies the simulator
with the first-stage transcript 7" and the output v, and obtains the
last message, denoted msg.

(b) C3 now emulates the last step of Bs (i.e., its output computation) by
supplying it with the message msg.
(Note that the last message of By was already determined in Step 1,
and so the execution of Cy ends here.)

The output of Cs is set to be the output of Bs, regardless if B; has aborted
or completed the execution.

We need to show that

llle

{REALH7§(Z)(CC,y)}I7y7z {IDEALfE(Z)(:c,y)}I,y,Z (7.36)

Abusing notation, we replace the final value of y’' by By(y), and get:

{(outruty (2, Ba(y)), B2(VIEWS (2, B2(y))))} e,y

{(f1(z, B2(y)) , Ba(S2(y; f2(2, B2(y))))) }a,y
{(Fi(z, Ca(y)) , Caly, fo(z, C2(y)))) }ay

{IDEAL, 5(2,9)}

{rEALL B(2,9)}ey

llle
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where S»(y,v) denotes the result of the two-stage simulation. Eq. (7.36) follows.

We now turn to the case where Party 2 is totally honest (and Party 1 possibly
dishonest). In this case C, is determined, and we need to transform the aug-
mented semi-honest real adversary B; into a malicious ideal-model adversary
C1. The latter operates as follows, using the simulator, denoted S;, provided
for the view of Party 1. Recall that C; gets input « € {0,1}".

1. Machine C; first determines the input z' to be sent to the trusted party,
where 2’ is determined according to the behavior of B; during Stage 1 of
the (canonical) protocol II. This is done as in the previous transformation
of By to Cy, except that here the last message of B; (i.e., its Stage 2
message) is still undetermined at this step (and can be determined only
when given the last message of Party 2, which in turn is obtained only at
Step 3).

2. Machine C invokes the trusted party with input 2’, and obtains a response,
denoted v.

We stress that, unlike in case Party 2 is dishonest, Party 1 (i.e., C;) still
has the option of stopping the trusted party before it answers Party 2.

3. Next, C; invokes the second stage of the simulator S7, to obtain the last
message sent (by Party 2) to Party 1. It supplies the simulator with the
transcript of the first-stage and the output v, and obtains the last message,
denoted msg.

4. Machine C; now emulates the last step of By by supplying it with the
message msg. In case Bj aborts, machine Cy prevents the trusted party
from answering Party 2, and aborts. Otherwise, machine C; allows the
trusted party to answer Party 2. We stress that C; does not abort in any
prior step.

The output of C is set to be the output of By, regardless if B; has aborted
or completed the execution.

We again need to show that Eq. (7.36) holds. The argument is analogous to the
one applied for a dishonest Party 2. Suppose first, for simplicity, that machine
B, never aborts. In such a case, by definition of Sy,

[llo

{rEALy 5(2,9)}ey = {(Bi(viEW] (Bi(2),9)), outPuTy (Bi(2),9))} ey
)

{(B1(S1(B1(2), f1(Bi(x),v))), f2(B1(2),9))}ey
{(Cr(z, f1(C1(2),y)), f2(Cr(®),¥))} ey

{IDEAL; 5(2,9) 2y

Next, suppose that B; always aborts after receiving the last message, and before
sending its last message to Party 2. In this case, we have

{REALL 5(7,9)}ey = {(Bi(VIEW](Bi(2),9)), L)}y
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= {(Bi(Si(Bi(x), [1(Bi(2),))), L)}y
{(Cl(wa fl(cl(x)a y)7 -L) ) J—)}w7y
{IDEAL, =(2,Y) }ay

In the general case, machine B; may abort in certain executions just after ob-
taining the last message (and before sending its last message). The abort event
depends also on the last message that B; receives (which is supposed to deter-
mine its output). However both the decision of whether or not to abort and the
output at such a case are determined by B; based on its view of the execution
so far. Thus, Eq. (7.36) follows.

7.4.4.3 Conclusion — Proof of Theorem 7.4.1

Essentially, Theorem 7.4.1 follow by combining the following three results: (1) The-
orem 7.3.14 providing canonical protocols for privately computing any function-
ality, (2) the general analysis of the compiler (i.e., Corollary 7.4.26), and (3) the
special properties of canonical protocols (i.e., Proposition 7.4.27). Specifically,
let f be an arbitrary functionality, II be a canonical protocol for privately com-
puting f (guaranteed by Theorem 7.3.14), and II' be the protocol compiled from
IT by Construction 7.4.23 (using secure implementations of the functionalities in
G). Now, let A be admissible for the real malicious model (w.r.t II'), let B be the
real-model adversary (which is admissible w.r.t II in the augmented semi-honest
model) derived by Corollary 7.4.26, and C be the ideal-model adversary (which
is admissible for the malicious model) derived by Proposition 7.4.27. Then

llle

{REALHI,Z(Z) (xa y)}:c,y,z {REALH,E(Z) (357 y)}wﬂhz

{IDEAL, =, (%,9)}a.y.2

llle

Theorem 7.4.1 follows. [}
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7.5 * Extension to the Multi-Party Case

In this section we extend the treatment of general secure protocols from the two-
party case to the multi-party case. Again, our ultimate goal is to design protocols
that withstand any feasible adversarial behavior, and again we proceed in two
steps. First we consider a benign type of adversary, called semi-honest, and
construct protocols that are secure with respect to such an adversary. The defi-
nition of this type of adversary is very much the same as in the two-party case.
However, in case of general adversary behavior, we consider two different mod-
els. The first model of malicious behavior mimics the treatment of adversaries
in the two-party case; it allows the adversary to control even a majority of the
parties, but does not view the (unavoidable) early abort phenomena as a viola-
tion of security. In the second model of malicious behavior, we assume that the
adversary can control only a strict minority of the parties. In this model, which
would have been vacuous in the two-party case, the early abort phenomena can
be effectively prevented. We show how to transform protocols secure in the
semi-honest model into protocols secure in each of the two malicious-behavior
models. As in the two-party case, this is done by forcing parties (in each of the
latter models) to behave in an effectively semi-honest manner.

The constructions are obtained by suitable modifications of the constructions
used in the two-party case. In fact, the construction of multi-party protocols
for the semi-honest model is a minor modification of the construction used in
the two-party case. The same holds for the compilation of protocols for the
semi-honest model into protocols for the first malicious model. When compil-
ing protocols for the semi-honest model into protocols for the second malicious
model, we will use a new primitive, called Verifiable Secret Sharing (VSS), in
order to “effectively prevent” minority parties from aborting the protocol prema-
turely. Actually, we shall compile protocols secure in the first malicious model
into protocols secure in the second malicious model.

Our treatment touches upon a variety of issues, which were ignored (or are
inapplicable) in the two-party case. These issues include the communication
model (i.e., the type of communication channels), the consideration of an ex-
ternal adversary, and the way the latter selects dishonest parties (or corrupts
parties). In particular, in some models (i.e., postulating private channels and a
majority of honest participants), it is possible to obtain secure protocols without
relying on any intractability assumptions: See Section 7.6.

Teaching Tip: We strongly recommend to read Sections 7.2-7.4 before read-
ing the current section.

7.5.1 Definitions

A multi-party protocol problem is cast by specifying a random process that
maps sequences of inputs (one input per each party) to corresponding sequences
of outputs. Let m denote the number of parties. It will be convenient to think
of m as being fixed, yet one can certainly think of it as an additional parameter.
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An me-ary functionality, denoted f : ({0,1}*)™ — ({0,1}*)™, is thus a random
process mapping sequences of the form T = (zy,...,Z,,) into sequences of ran-
dom variables, f(T) = (f1(T), ..., fm(T)). The semantics is that, for every i, the
i*? party, initially holds an input z;, and wishes to obtain the i*" element in
f(x1,...;xm), denoted f;(x1, ..., %, ). For example, consider deterministic func-
tionalities for computing the maximum, average or any other statistics of the
individual values held by the parties (and see more examples in Exercises 14
and 15). The discussions and simplifying conventions made in Section 7.2.1 ap-
ply in the current context too. Most importantly, we assume throughout this
section that all parties hold inputs of equal length; that is, |z;| = |z;].

Conventions regarding the number of parties. For simplicity of exposi-
tion, we assume throughout our exposition that m is fixed. From time to time,
we comment on what is needed in order to derive definitions (and constructions)
for the case that m is a parameter. We comment that it is natural to discuss
multi-party functionalities that are “uniform” in the sense that there exists an
algorithm for uniformly computing them for each value of m (and of course
each m-sequence). One such functionality is the “universal functionality” that
is given a description of a circuit as well as a corresponding sequence of inputs.
(For example, the circuit may be part of the input of each party, and in case
these circuits are not identical the value of the functionality is defined as a se-
quence of L’s.) Indeed, a universal functionality is natural to consider also in
the two-party case, but here (in view of the extra parameter m) its appeal is
enhanced.

7.5.1.1 The communication model and external adversaries

In the definitional treatment of two-party case, we viewed one of the communi-
cating parties as an adversary and considered its effect on the protocol’s execu-
tion. This approach can be extended to the multi-party case, except that here
we may consider coalitions of dishonest parties and its effect on the execution.
Alternatively, we may consider an (external) adversary that controls a subset
of the parties that participate in the execution. A variety of issues that arise
include the size of this subset, the way it is selected (by the adversary), and
possible effect of the adversary on the communication channels.

The number of parties controlled by the adversary. In the two-party
case, we have focus on the case in which the adversary is identified with one of the
participants in the execution. Clearly, the case in which the adversary controls
both participants is of no interest, but the case in which the adversary controls
none of the participants may be of interest in case the adversary can wire-tap
the communication line (as discussed below). In the multi-party case, we will
consider adversaries that control any number of participants.*” (Of course, when

47 Indeed, the case in which the adversary controls all parties is of no interest, and is often
ignored.
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defining security following the “ideal-vs-real” paradigm, we should insist that the
corresponding ideal adversary controls the same set of participants.)

The selection of parties controlled by the adversary. The notion of an
external adversary naturally leads to the issue of how this adversary selects the
set of parties that it controls. The basic (and simpler) model postulates that
this set is determined before the execution starts (and is, of course, not known to
the honest parties). This model is called non-adaptive as opposed to the adaptive
model in which the adversary may select the set of parties that it controls adap-
tively, during the execution of the protocol and depending on information it has
gathered so far. In this section we only consider the non-adaptive model, and
defer the treatment of the adaptive model to Section 7.7.1.2. We comment that
the difference between the non-adaptive model and the adaptive model becomes
crucial when the number of parties (i.e., m) is treated as a parameter, rather
than being fixed.

The communication channels. It is natural to assume that the external
adversary may tap all communication channels (i.e., specifically, the channels
between honest parties). In such a case, even an adversary that control none
of the participants is of interest, because it may potentially gain information
about the execution by wire-tapping. However, for sake of simplicity, we some-
times prefer to present and use definitions that presuppose that honest parties
may communicate in secrecy (i.e., or put differently, we sometimes assume that
adversaries do not tap communication lines between honest parties). We com-
ment that in the non-adaptive model, the issue of providing secret communica-
tion is well understood, and can be easily decoupled from the main treatment.
Specifically, protocols secure in the “secret communication” model can be easily
compiled to withstand wire-tapping adversaries (by using encryption schemes).
Similarly, we assume that messages sent between honest parties arrive intact,
whereas one may want to consider adversaries that may inject messages on the
communication line between honest parties. Again, this can be counteracted by
use of well-understood paradigms; in this case, the use of signature schemes.

7.5.1.2 The semi-honest model

This model is defined exactly as in the two-party case (see Section 7.2.2.1).
Recall that a semi-honest party is one who follows the protocol properly with
the exception that it keeps a record of all its intermediate computations. Loosely
speaking, a multi-party protocol privately computes f if whatever a set (or a
coalition) of semi-honest parties can obtain after participating in the protocol,
could be essentially obtained from the input and output of these very parties.
Thus, the only difference between the current definition and the one used in the
two-party case is that we consider the gain of a coalition (rather than of a single
party) from participating in the protocol.
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Definition 7.5.1 (privacy w.r.t semi-honest behavior, without wire-tapping):
Let f: ({0,1}*)™ — ({0,1}*)™ be an m-ary functionality, where fi(x1,...,Tm),
denotes the i'" element of f(x1,..,%m). For I = {iy,...,i;} C [m] def {1,...,m},
we let fi(z1, ..., xm) denote the subsequence fi, (T1,..c;Tm), ey fi, (T1,erry Tim). Let
II be an m-party protocol for computing f.*® The view of the i** party during

an execution of Il on T = (w1, ..., Tm ), denoted VIEW(T), is defined as in Defini-

tion 7.2.1, and for I = {i1,...,is}, we let VIEWY(T) e (1, VIEW (), ..., VIEW] (T)).

~—

e (deterministic case) In case f is a deterministic m-ary functionality, we
say that II privately computes f if there exist polynomial-time algorithm,
denoted S, such that for every I C [m] it holds that

(S, (wiys s w2,), F1(@))}me(ronyyn = {VIEWHE) }ze(roayeym  (7.37)

e (general case) We say that IT privately computes f if there exist polynomial-
time algorithm, denoted S, such that for every I C [m] it holds that

{0, (iys i), f1(T)) 5 £(T)) }zeqo,13)m

= {(view} (@), outPuT(T)) }ze(f0,1}+)m (7.38)

n

where ouTPUT(Z) denote the output sequence of all parties during the
ezecution represented in VIEW(T).

Eq. (7.38) asserts that the view of the parties in I can be efficiently simulated
based solely on their inputs and outputs. The definition refers to the case that
the semi-honest parties do not (or cannot) wire-tap the channels between hon-
est parties (and thus is labeled “without wire-tapping”), which is equivalent
to assuming the existence of “private channels”. To deal with the case of wire-
tapping, one just needs to augment VIEW (Z) with the transcript of the messages
sent between all the pairs of honest parties. In this case, it is more natural to
consider an external adversary that obtains the views of all parties in I as well
as all messages sent over all channels.

Definition 7.5.1 can be easily adapted to deal with a varying parameter m,
by taking advantage on the current order of quantifiers (i.e., “there exists an
algorithm S such that for every 7). We also note that the simulator can
certainly handle the trivial cases in which either I = [m] or I = (. (The case
I = [m] is always trivial, whereas the case I = ) is trivial only because here we
consider the case of no wire-tapping.)

As in the two-party case, Definition 7.5.1 is equivalent to a definition that
can be derived by following the “real-vs-ideal” paradigm (analogously to the
treatment in Section 7.2.2.2).

48 Asin Section 7.2, by saying that IT computes (rather than privately computes) f, we mean
that the output distribution of the protocol (when played by honest or semi-honest parties)
on the input sequence (z1,...,zm) is distributed identically to f(z1,...,Zm).

49 Note that, for a fixed m, it may make as much sense to reverse the order of quantifiers
(i.e., require that “for every I there exists an algorithm S;”).
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7.5.1.3 The two malicious models

We now turn to consider arbitrary feasible deviation of parties from a specified
multi-party protocol. As mentioned above, one may consider two alternative
models:

1. A model in which the number of parties that deviate from the protocol
is arbitrary. The treatment of this case extends the treatment given in
the two-party case. In particular, in this model one cannot prevent ma-
licious parties from aborting the protocol prematurely, and the definition
of security has to account for this fact (if it is to have a chance of being
met).

2. A model in which the number of parties that deviate from the protocol
is strictly less than half the total number of parties. The definitional
treatment of this case is simpler than the treatment given in the two-
party case. In particular, one may — in some sense — (effectively) prevent
malicious parties from aborting the protocol prematurely.’® Consequently,
the definition of security is “freed” from the need to account for early
stopping, and thus is simpler.

We further assume (towards achieving a higher level of security) that malicious
parties may communicate (without being detected by the honest parties), and
may thus coordinate their malicious actions. Actually, it will be instructive to
think of all malicious parties as being controlled by one (external) adversary.
Our presentation follows the ideal-vs-real emulation paradigm introduced and
used in the previous sections. The difference between the two malicious models
is reflected in a difference in the corresponding ideal models, which captures the
different types of benign behaviors that a secure protocol is aimed at achieving.
Another difference is in the number of malicious parties considered in each model.

The first malicious model: Following the discussion in Section 7.2.3, we
conclude that three things cannot be avoided in the first malicious model:

1. Malicious parties may refuse to participate in the protocol (when the pro-
tocol is first invoked). Actually, as explained in Section 7.2.3, this behavior
may be viewed as a special case of input-substitution (as discussed in the
next item).

2. Malicious parties may substitute their local inputs (and enter the protocol
with inputs other than the ones provided to them from the outside).

3. Malicious parties may abort the protocol prematurely (e.g., before sending
their last message).

50 As we shall see, the assumption that malicious parties are in minority opens the door to
effectively preventing them from aborting the protocol immaturely. This will be achieved by
letting the majority parties have (together!) enough information so to be able to emulate the
minority parties in case the latter abort.
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Accordingly, the ideal model is derived by a straightforward generalization of
Definition 7.2.4. In light of this similarity, we allow ourselves to be quite terse.
To simplify the exposition, we assume that, for every I, first the trusted party
supplies the adversary with the I-part of the output (i.e., the value of fr), and
only next is it possibly allowed (at the adversary’s discretion) to answer the
other parties. Actually, as in the two-party case, the adversary has the ability
to prevent the trusted party from answering all parties only in case it controls
Party 1.°!

Definition 7.5.2 (the ideal model —first malicious model): Let f : ({0,1}*)™ —

({0,1}*)™ be an m-ary functionality. For I = {iy,...,i:} C [m] Lef {1,...,m},

let I =[m]\I and (x1,-.sTm)1 = (Tiy, -y xi,)- A pair (I, B), where I C [m]
and B is probabilistic polynomial-time algorithm, represents an adversary in the
ideal model. The joint execution of f under (I, B) in the ideal model (on in-

(1)

put T = (z1,...,%,) and auxiliary input z), denoted IDEAL (Z)(f), is de-

f,1,B
fined by uniformly selecting a random-tape r for the adversary, and letting
IDEAL?} B(z)(f) def Y(Z,I,z,1r), where Y(T,I,z,r) is defined as follows:

e In case Party 1 is honest (i.e., 1 & I),
T(@.1,70) E (&), B@ELL 2 r f1(T)), (7.:39)

_ def _ .
where T = (), ..., a") such that ' = B(T1,1,2,7); fori € I and o', = x;
otherwise.

e In case Party 1 is not honest (i.e., 1 € I), Y(T,I,z,r) equals

(LT, B Lzr fi(@), 1) i B@:,1Lzr fi@) = L (740)

(f+(x'), B(z,I,z,7, f1(T"))) otherwise (7.41)

where, in both cases, T = (2], ..,zh,) such that «) = B(Tr1,1,z,7); for
i €I and z}, = x; otherwise.

In all cases the trusted party is invoked with possibly substituted inputs, denoted
7' = (xf,...,2],), where z} # z; only if i € I. Eq. (7.40) represents the case
where the trusted party is stopped right after supplying the adversary with the
I-part of the output (i.e., f;(Z')). This case is allowed only when 1 € I, and
so Party 1 can always be “blamed” when this happens.’? Equations (7.39)
and (7.41) represent the cases where the trusted party is invoked with possibly
substituted inputs (as above), but is allowed to answer all parties. We stress

that either all honest parties get their output or all are notified that the trusted

51 As in the two-party case, this convention is rather arbitrary; see discussion at the end of
Section 7.2.3.1.

52 In fact, in the protocols presented below, early abort is always due to malicious behavior
of Party 1. By Definition 7.5.3 (below), this translates to malicious behavior of Party 1 in the
ideal model.
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party was stopped by the adversary. As usual, the definition of security is
obtained by requiring that for every feasible adversary in the real model there
exists a corresponding adversary in the ideal model that achieves the same effect.
Specifically, in the real model, the adversary may tap all communication lines
and determine (adaptively) all the outgoing messages of all dishonest parties.

Definition 7.5.3 (security in the first malicious model): Let f be as in Defi-
nition 7.5.2, and IL be an m-party protocol for computing f.

e The joint execution of II under (I, A) in the real model (on input sequence
T = (71, ..., Try) and auxiliary input z), denoted REALL, 1 (=) (), is defined
as the output sequence resulting of the interaction between the m parties,
where the messages of parties in I are computed according to A(Tr,I,z)

and the messages of parties in I def [m] \ I are computed according to
I1.°3 Specifically, the messages of malicious parties (i.e., parties in I) are
determined by the adversary A based on the initial inputs of the parties
in I, the auziliary input z, and all messages sent so far by all parties
(including messages received by the honest parties (i.e., parties in I)).

e Protocol 11 is said to securely compute f (in the first malicious model) if for
every probabilistic polynomial-time algorithm A (representing a real-model
adversary strategy) there exists a probabilistic polynomial-time algorithm
B (representing an ideal-model adversary strategy) such that for every
IC[m]

1

{IDEALgc,},B(Z)(E)}f,Z = {REALL 1 a(2)(T) }z,-

When the context is clear, we sometimes refer to II as an implementation

of f.

We stress that the ideal-model adversary (i.e., B) controls exactly the same set
of parties (i.e., I) as the the real-model adversary (i.e., A). Definition 7.5.3 (as
well as the following Definition 7.5.4) refers to an adversary that may wire-tap all
communication channels. This is reflected in the definition of REALy 1 (=) (),
which allows A to determine its actions based on all messages communicated so
far. (Thus, for m = 2, Definition 7.5.3 is stronger than Definition 7.2.6, because
(unlike the latter) the former refers also to the case I = (), which is non-trivial
because it refers to an adversary that may wire-tap the communication channel.)
In order to derive a definition for the private channel model, one should modify
the definition of REALy 1 a(-)(T) such that A’s actions may depend only on the
messages received by parties in I.

The second malicious model: In the second model, where malicious parties
are in strict minority, the early-abort phenomena can be effectively prevented.
Thus, in this case, there is no need to “tolerate” early-abort and consequently

53 To fit the format used in Definition 7.5.2, the outputs of the parties (in REAL 1, 4(2)(T))
are arranged such that the outputs of the honest parties appear on the lLh.s.
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our definition of security requires “proper termination” of executions. This is
reflected in the definition of the ideal model, which actually becomes simpler.5*

Definition 7.5.4 (security in the second malicious model, assuming honest ma-
jority): Let f and II be as in Definition 7.5.5.

o The ideal-model adversary is defined as in Definition 7.5.2, except that the

abort case captured by Eq. (7.40) is not allowed. The corresponding joint
(2)

computation in the ideal model, under (I, B), is denoted by IDEAL B(z)(f).

o The real-model adversary is defined exactly as in Definition 7.5.3. How-
ever, we will only consider the case that such adversary controls strictly
less than m/2 parties.

e Protocol 11 is said to securely compute f (in the second malicious model)
if for every probabilistic polynomial-time algorithm A (representing a real-
model adversary strategy) there ezists a probabilistic polynomial-time al-
gorithm B (representing an ideal-model adversary strategy) such that for
every I C [m] such that |I| < m/2 it holds that

{IDEALf 1,5 (@)}z,: = = {REALf 4 () @)}z,

When the context is clear, we sometimes refer to Il as an implementation

of f.

We stress that in Definition 7.5.4 we consider only adversaries that control a
strict minority of the parties.

Discussion. The two alternative malicious models gives rise to two appealing
and yet fundamentally incomparable notions of security. Put in other words,
there is a trade-off between the willingness to put-up with early-abort (i.e., not
consider it a breach of security), and requiring the protocol to be robust also
against malicious coalitions controlling a majority of all parties. The question
of which notion of security is preferable depends on the application (or on the
setting). In some settings one may prefer to be protected from malicious ma-
jorities, while giving-up the guarantee that parties cannot abort the protocol
prematurely (while being detected doing so). On the other hand, in settings in
which a strict majority of the parties can be trusted to follow the protocol, one
may obtain the benefit of effectively preventing parties to abort the protocol
prematurely. We stress that all definitions are easily adapted to deal with a
varying parameter m.

7.5.2 Security in the Semi-Honest Model

Our construction of private multi-party protocols (i.e., secure versus semi-honest
behavior) for any given multi-argument functionality follows the presentation of

54 In this case, the definition extends the one presented in Section 7.2.3.2.
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the two-party case. For simplicity, we think of the number of parties m as being
fixed. The reader may verify that the dependence of our constructions on m is
at most polynomial.

Our protocol construction adapts the one used in the two-party case (see
Section 7.3). That is, we consider a GF(2) circuit for evaluating the (deter-
ministic) m-ary functionality f, and start by letting each party share its input
bits with all other parties such that the sum of all shares equals the input bit.
Next, scanning the circuit from its input wires to its output wires, we propagate
shares through the circuit gates, by using a suitable private computation. As
in the two-party case, we focus on the propagation of shares through multipli-
cation gates. That is, for Party ¢ holding bits a; and b;, we wish to conduct
a private computation such that this party ends-up with a random bit ¢; and
(O a) - (X0, bi) = > ¢; holds. More precisely, we are interested in pri-
vately computing the following randomized m-ary functionality

((a1,b1), ..., (@m, b)) +— (c1y.-.s Cpp) uniformly in {0,1}™ (7.42)

subject to i c = i a; - i b;. (7.43)
=1 =1

=1

Thus, all that we need to do on top of Section 7.3 is to provide a private m-
party computation of the above functionality. This is done by privately reduc-
ing, for arbitrary m, the computation of Eq. (7.42)—(7.43) to the computation
of the same functionality for the case case m = 2, which in turn coincides with
Eq. (7.16)—(7.17). But first we need to define an appropriate notion of a reduc-
tion. Indeed, the new notion of a reduction is merely a generalization of the
notion presented in Section 7.3.1.

7.5.2.1 A composition theorem

We wish to generalize the notion of privacy reduction presented in Section 7.3.1
(in the context of two-party (semi-honest) computation). Here the reduction
is an m-party protocol that may invoke a k-ary functionality in its oracle calls,
where £ < m. In case k < m, an oracle call needs to specify also the set of parties
who are to provide the corresponding k inputs. Actually, the oracle call needs to
specify the order of these parties (i.e., which party should supply which input,
etc.). (We note that the ordering of parties needs to be specified also in case
k = m, and indeed this was done implicitly in Section 7.3.1, where the convention
was that the party who makes the oracle request is the one supplying the first
input. In case k > 2 such a convention does not determine the correspondence
between parties and roles, and thus below we use an explicit mechanism for
defining the correspondence.)

Definition 7.5.5 (m-party protocols with k-ary oracle access): As in the two-
party case, a oracle-aided protocol is a protocol augmented by a pair of oracle-
tapes, per each party, and oracle-call steps defined as follows. FEach of the m
parties may send a special oracle request message, to all other parties. The
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oracle request message contains a sequence of k distinct parties, called the request
sequence, that are to supply queries in the current oracle call. In response, each
party specified in the request sequence writes a string, called its query, on its own
write-only oracle-tape, and responds to the requesting party with an oracle call
message. At this point the oracle is invoked and the result is that a string, not
necessarily the same, is written by the oracle on the read-only oracle-tape of each
of the k specified parties. This k-sequence of strings is called the oracle answer.

One may assume, without loss of generality, that the party who invokes the
oracle is the one who plays the role of the first party in the reduction (i.e., the
first element in the request sequence is always the identity of the party that
requests the current oracle call).

Definition 7.5.6 (multi-party privacy reductions):

o An m-party oracle-aided protocol is said to be using the k-ary oracle-functionality
f if the oracle answers are according to f. That is, when the oracle is in-
voked with request sequence (i1, ...,1), and the query-sequence qi, ..., qx 1S
supplied by parties iy, ..., iy, the answer-sequence is distributed as f(q1, ..., ).
Specifically, party i; in the m-party protocol (the one which supplied ¢;), is
the one which obtains the answer part f;(q1,...,qx). As in Definition 7.3.2,
we require that the length of each query be polynomially related to the length
of the initial input.

o An m-party oracle-aided protocol using the k-ary oracle-functionality f is
satd to privately compute g if there ewists a polynomial-time algorithm,
denoted S, satisfying Eq. (7.38), where the corresponding views are defined
in the natural manner.

o An m-party oracle-aided protocol is said to privately reduce the m-ary func-
tionality g to the k-ary functionality f, if it privately computes g when
using the oracle-functionality f. In such a case we say that g is privately
reducible to f,

We are now ready to generalize Theorem 7.3.3:

Theorem 7.5.7 (Composition Theorem for the multi-party semi-honest model):
Suppose that the m-ary functionality g is privately reducible to the k-ary func-
tionality f, and that there exists a k-party protocol for privately computing f.
Then there exists an m-party protocol for privately computing g.

As in the two-party case, the Composition Theorem can be generalized to yield
transitivity of privacy-reductions; that is, if g is privately reducible to f and f
is privately reducible to e then g is privately reducible to e.

Proof Sketch: The construction supporting the theorem is identical to the one
used in the proof of Theorem 7.3.3: Let I19!/ be a oracle-aided protocol that
privately reduces ¢ to f, and let II/ be a protocol that privately computes f.
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Then, a protocol II for computing g is derived by starting with 19!/, and replac-
ing each invocation of the oracle by an execution of II/. Clearly, IT computes g.
We need to show that it privately computes g (as per Definition 7.5.1).

We consider an arbitrary (non-trivial) set I C [m] of semi-honest parties in
the execution of IT, where the trivial cases (i.e., I = 0 and I = [m]) are treated
(differently) in a straightforward manner. Note that, for k¥ < m (unlike the
situation in the two-party case), the set I may induce different sets of semi-
honest parties in the different executions of I/ (replacing different invocations
of the oracle). Still our “uniform” definition of simulation (i.e., uniform over all
possible sets of semi-honest parties) keeps us away from trouble. Specifically,
let S9!/ and S’ be the simulators guaranteed for 119!/ and II7, respectively. We
construct a simulation S, for II, in the natural manner. Ou input (I,Z, f1(7)),
we first run S9/ (I, %1, f1(Z)), and obtain the view of the semi-honest coalition
I # (0 in I19. This view includes the sequence of all oracle-call requests made
during the execution, which in turn consists of the sequence of parties that supply
query-parts in each such call. The view also contains the query-parts supplied
by the parties in I as well as the corresponding answer-parts. For each such
oracle-call, we denote by J the subset of I that supplied query-parts in this call,
and invoke S7 providing it with the subset J as well as with the corresponding
J-parts of the queries and answers. Thus, we fill-up the view of I in the current
execution of IT7. (Recall that S/ can also handle the trivial cases in which either
|J| =k or |J|=0.)

It is left to show that S indeed generates a distribution indistinguishable
from the view of semi-honest parties in actual executions of II. As in the proof
of Theorem 7.3.3, this is done by introducing a hybrid distribution, denoted H.
This hybrid distribution represents the view of the parties in I (and output of all
parties) in an execution of 197 that is augmented by corresponding invocations
of S7. In other words, H represents the execution of II, with the exception that
the invocations of IT/ are replaced by simulated transcripts. Using the guarantees
regarding S7 (resp., S9), we show that the distributions corresponding to H
and II (resp., H and S) are computationally indistinguishable. The theorem
follows.

7.5.2.2 Privately computing ). ¢; = (3, a;) - (3, bi)

We now turn to the m-ary functionality defined in Eq. (7.42)—(7.43). Recall that
the arithmetic is that of GF(2), and so —1 = +1, etc. The key observation is
that

(5] (52

Z a;b; + Z (aibj + ajbi) (7.44)
=1

1<i<j<m

A=(m=1)- 3 jabit > (ai+a) (Gi+d)

1<i<j<m
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= m- iaibi + Z (ai + aj) . (bi + bj) (7.45)

1<i<j<m

where the last equality relies on the specifics of GF(2). Now, looking at Eq. (7.45),
we observe that each party, ¢, can compute (by itself) the term m - a;b;, whereas
each 2-subset, {i, 7}, can privately compute shares to the term (a; +a;)-(b; +b;),
by invoking the two-party functionality of Eq. (7.16)—(7.17). This leads to the
following construction.

Construction 7.5.8 (privately reducing the m-party computation of Eq. (7.42)—
(7.43) to the two-party computation of Eq. (7.16)—(7.17)):

Inputs: Party i holds (a;,b;) € {0,1} x {0,1}, fori=1,...,m.

Step 1 — Reduction: Each pair of parties, (i,7), where i < j, invokes the 2-ary
functionality of Eq. (7.16)—(7.17). Party i provides the input pair, (a;,b;),
whereas Party j provides (aj,b;). Let us denote the oracle response to

{i,5} {i.5}

Party i by ¢; ", and the response to Party j by c;

Step 2: Party i sets c; = ma;b; + Z#i c;-{i’j}.
Indeed, ma;b; = 0 if m is even and ma;b; = a;b; otherwise.

Outputs: Party © outputs c;.

We first observe that the above reduction is valid; that is, the output of all parties
indeed sum-up to what they should. It is also easy to see that the reduction is
private. That is,

Proposition 7.5.9 Construction 7.5.8 privately reduces the computation of the
m-ary functionality given by Eq. (7.42)—(7.43) to the computation of the 2-ary
functionality given by Eq. (7.16)—(7.17).

Proof Sketch: We construct a simulator, denoted S, for the view of parties
in the oracle-aided protocol, denoted II, of Construction 7.3.7. Given a set of
semi-honest parties, I = {iy,...,i;} (with ¢ < m), and a sequence of inputs
(@iy, b4y )y ooy (a4, , b;, ) and outputs ¢;,, ..., ¢;,, the simulator proceeds as follows.

1. For each pair, (i,7) € I x I where ¢ < j, the simulator uniformly selects
cz{”} € {0,1} and sets c}Z’J} = cz{”} + (a; +a;) - (bi + b;).

2. Let T &' [m] \ I, and let ¢ be the largest element in I. (Such an £ € [m)]

exists since |I| < m).

(a) For each i € I and each j € I'\ {¢}, the simulator uniformly selects
it € {0,1}.

(b) For each i € I, the{ .si;nulator sets c;.{i’z} = ¢; + ma;b; + Zje{il} c

VAR

i

{i.}

where the latter ¢ s are as generated in Steps 1 and 2a.
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3. The simulator outputs all cz{i’j}’
{id}>

)

s generated above. That is, it outputs the

sequence of ¢ s corresponding to all ¢ € I and j € [m] \ {¢}.

We claim that the output of the simulator is distributed identically to the view
of the parties in I during the execution of the oracle-aided protocol. Further-
more, we claim that for every such I, every T = ((ay,b1), ..., (@m, b)) and every
possible outcome (c1, ..., ¢, ) of the functionality f of Eq. (7.42)—(7.43), it holds
that the conditional distribution of S(I,Zy, f1(¥)) is distributed identically to
the conditional distribution of VIEWH(Z).

To prove the above claim, we first note that f;(Z) is uniformly distributed
over {0,1}!. The same holds also for the II-outputs of the parties in I (by looking
at the contribution of the c;-{i’z}’s to the output of each Party ¢ € I). Turning
to the conditional distributions (i.e., conditioning on f;(Z) = (ciy,...,¢,) =
ouTPUTH (7)), we show that the sequence of c;"’'’s is distributed identically in
both distributions. Specifically, for ¢, j € I, the oracle answer on ((a;, b;), (a;,b;))
(i.e., (cz{”}, c}Z’J})) is uniformly and independently distributed over the pairs of
bits summing-up to (a; + a;) - (b; + b;) (which is exactly what happens in the
simulation). Similarly, for every i € I, the i-parts of the answers obtained in
the m — 1 oracle invocations is uniformly and independently distributed over the

;.{i’j}’s and summing-up to ¢; + ma;b;. The

sequences agreeing with the above ¢
proposition follows.

7.5.2.3 The multi-party circuit evaluation protocol

For sake of completeness, we explicitly present the m-party analogue of the
protocol of Section 7.3.4. Specifically, we show that the computation of any de-
terministic functionality, which is expressed by an arithmetic circuit over GF(2),
is privately reducible to the functionality of Eq. (7.42)—(7.43).

Our reduction follows the overview presented in the beginning of this section.
In particular, the sharing of a bit-value v between m parties means a uniformly
selected m-sequence of bits (vi,...,v,,) satisfying v = > v;, where the i*}
party holds v;. Our aim is to propagate, via private computation, shares of the
input wires of the circuit to shares of all wires of the circuit, so that finally we
obtain shares of the output wires of the circuit.

We will consider an enumeration of all wires in the circuit. The input wires
of the circuit, n per each party, will be numbered 1,2....,m - n such that, for
j =1,..,n, the j*" input of Party ¢ corresponds to the (i — 1) - n + ;" wire.
The wires will be numbered so that the output wires of each gate have a larger
numbering than its input wires. The output-wires of the circuit are the last ones.
For sake of simplicity we assume that each party obtains n output bits, and that
the j*® output bit of the i*" party corresponds to wire N — (m + 1 —i)-n + 7,
where N denotes the size of the circuit.

Construction 7.5.10 (privately reducing any deterministic m-ary functional-
ity to the functionality of Eq. (7.42)—(7.43), for any m > 2):
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Inputs: Party i holds the bit string z; =z} ---z? € {0,1}", fori=1,...,m.

it

Step 1 — Sharing the inputs: Each party splits and shares each of its input bits
with all other parties. That is, for every i = 1,....m and j = 1,...,n,
and every k # 1, Party © uniformly selects a bit r,izil)nﬂ and sends it to
Party k as the party’s share of input wire (i — 1) -n + j. Party i sets its
own share of the (i — 1) - n+ j* input wire to &} + 3, ,, 7",(;_1)"-'_].

Step 2 — Circuit Emulation: Proceeding by the order of wires, the parties use
their shares of the two input wires to a gate in order to privately com-
pute shares for the output wire of the gate. Suppose that the parties hold
shares to the two input wires of some gate; that is, fort =1,...,m, Party i
holds the shares a;,b;, where ay, ..., an, are the shares of the first wire and
b1, ..., bm are the shares of the second wire. We consider two cases.

Emulation of an addition gate: Fach party, t, just sets its share of the out-
put wire of the gate to be a; + b;.

Emulation of a multiplication gate: Shares of the output wire of the gate
are obtained by invoking the oracle for the functionality of Eq. (7.42)—
(7.43), where Party i supplies the input (query-part) (a;,b;). When
the oracle responses, each party sets its share of the output wire of
the gate to equal its part of the oracle answer.

Step 3 — Recovering the output bits: Once the shares of the circuit-output wires
are computed, each party sends its share of each such wire to the party
with which the wire is associated. That is, fori=1,...m and j =1,...,n,
each party sends its share of wire N —(m+1—1i)-n+j to Party i. Fach
party recovers the corresponding output bits by adding-up the corresponding
m shares; that is, it adds the share it had obtained in Step 2 to the m — 1
shares it has obtained in the current step.

Outputs: Each party locally outputs the bits recovered in Step 3.

As in the two-party case, one can easily verify that the output of the protocol
is indeed correct. Specifically, by using induction on the wires of the circuits,
one can show that the shares of each wire sum-up to the correct value of the
wire. Indeed, for m = 2, Construction 7.5.10 coincides with Construction 7.3.9.
The privacy of Construction 7.5.10 is also shown by extending the analysis of
the two-party case; that is, analogously to Proposition 7.3.10, one can show
that Construction 7.5.10 privately reduces the computation of a circuit to the
multiplication-gate emulation.

Proposition 7.5.11 Construction 7.5.10 privately reduces the evaluation of
arithmetic circuits over GF(2), representing an m-ary deterministic function-
ality, to the functionality of Eq. (7.42)—(7.43).

Proof Sketch: Just follow the proof of Proposition 7.3.10, treating the parties
in I analogously to the way that Party 1 is treated there. In treating the output
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wires of parties in I (i.e., Step 3 in the simulation), note that the shares of
parties in I and the known output value uniquely determines the shares received
in Step 3 of the protocol only if |[I| = m — 1 (as was the case in the proof of
Proposition 7.3.10). Otherwise (i.e., for [I| < m — 1), the shares sent (in Step 3
of the protocol) by parties in I should be selected uniformly among all sequences
that (together with the shares of parties in I') add-up to the given output value.

7.5.2.4 Conclusion: Private computation of any functionality

As in Section 7.3, we may privately reduce the computation of a general (ran-
domized) m-ary functionality, g, to the computation of the deterministic m-ary
functionality, f, defined by

FU@1,71),s ooy @y ) = g(@T 75, (1, ooy T )) (7.46)

where g(r,Z) denote the value of g(Z) when using coin tosses r € {0, 1}Pe(zD)

(i.e., g(T) is the randomized process consisting of uniformly selecting r € {0, 1}Pe(Z)
and deterministically computing ¢(r,Z)). Combining this fact with Proposi-
tions 7.5.11, 7.5.9 and 7.3.8 (and using the transitivity of privacy-reductions),

we obtain:

Theorem 7.5.12 Any functionality is privately reducible to OT%.

Combining Theorem 7.5.12 and Proposition 7.3.6 with the Composition Theorem
(Theorem 7.5.7), we obtain that if enhanced trapdoor permutation exist then
any m-ary functionality is privately computable. As in the two-party case, we
wish to highlight a useful property of the protocols underlying the latter fact.
Indeed, we refer to a notion of canomnical m-party computation that extends
Definition 7.3.13.

Definition 7.5.13 (canonical semi-honest multi-party protocols): A protocol I1
for privately computing the m-ary functionality f is called canonical if it proceeds
by executing the following two stages.

Stage 1: The parties privately compute the functionality T — ((r},...,71), .., (X, ...,r™)),

where the ré ’s are uniformly distributed among all possibilities that satisfy

(@i, .., B 7y,) = f(@).

Stage 2: For i = 2,...m and j € [m]\ {i}, Party i sends 7‘;— to Party j. Next,
Party 1 sends 1"]1- to Party j, for j = 2...,m. Finally, each party computes
its own output; that is, for 7 = 1...,m, Party j outputs 69?;11";.

Indeed, the protocols underlying the proof of Theorem 7.5.12 are essentially
canonical.’® Hence,

55 This assertion depends on the exact implementation of Step 3 of Construction 7.5.10, and
holds provides that Party 1 is the last party to send its shares to all other parties.
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Theorem 7.5.14 Suppose that there exist collections of enhanced trapdoor per-
mutations. Then any functionality can be privately computable by a canonical
protocol.

We comment that the said protocols happen to maintain their security even if the
adversary can wire-tap all communication lines. This follows from the fact that
privacy w.r.t wire-tapping adversaries hold for all privacy reductions presented
in the current section as well as for the protocols presented in Section 7.3.

7.5.3 The Malicious Models — Overview and Preliminaries

Our aim is to use Theorem 7.5.14 in order to establish the main result of this
section; that is,

Theorem 7.5.15 (main result for the multi-party case): Suppose that enhanced
trapdoor permutation exist. Then any m-ary functionality can be securely com-
putable in each of the two malicious models, provided that a public-key infras-
tructure exists in the network.>®

The theorem will be established in two steps. First, we compile any protocol
for the semi-honest model into an “equivalent” protocol for the first malicious
model. This compiler is very similar to the one used in the two-party case.
Next, we compile any protocol for the first malicious model into an “equivalent”
protocol for the second malicious model. The heart of the second compiler is a
primitive, which is alien to the two-party case, called Verifiable Secret Sharing
(VSS). For simplicity, we again think of the number of parties m as being fixed.
The reader may again verify that the dependence of our constructions on m is
at most polynomial.

To simplify the exposition of the multi-party compilers, we describe them as
producing protocols for a communication model consisting of a single broadcast
channel (and no point-to-point links). In this model, in each communication
round, only one (predetermined) party may send a message and this message
arrives to all parties. Such a broadcast channel can be implemented via an
(authenticated) Byzantine Agreement protocol, thus providing an emulation of
the broadcast model on the standard point-to-point model (in which a broadcast
channel does not exist).

Recall that our goal is to transform protocols that are secure in the semi-
honest point-to-point model into protocols that are secure in the two malicious
broadcast models. Starting with (semi-honestly secure) protocols that operates
in the point-to-point communication model, we first derive equivalent proto-
cols for the broadcast-channel model, and only next we apply the two compil-
ers, where each compiler takes and produces protocols in the broadcast-channel
model (which are secure with respect to a corresponding type of adversaries).

56 That is, we assume that each party has generated a pair of keys for a signature scheme,
and has publicized its verification-key (so that it is known to all other parties). This set-up
assumption can be avoided if the network is augmented with a broadcast channel.
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Thus, the full sequence of transformations establishing Theorem 7.5.15 (based
on Theorem 7.5.14) is as follows:

e We first use the pre-compiler (of Section 7.5.3.1) to transform a protocol I,
that privately computes a functionality f in the (private channel) point-to-
point model into a protocol IIj; that privately computes f in the broadcast
model (where no private point-to-point channels exist).

Note that, since we refer to semi-honest behavior, we do not gain by having
a broadcast channel and we may only lose by the elimination of the private
point-to-point channels (because this allows the adversary to obtain all
messages sent). However, the protocols presented in Section 7.5.2 happen
to be secure in the semi-honest broadcast model, and so this pre-compiler is
actually not needed (provided we start with these specific protocols rather
than with arbitrary semi-honestly secure protocols).

e Using the first compiler (of Section 7.5.4), we transform IIj (which is
secure in the semi-honest model) into a protocol II] that is secure in the
first malicious model.

We stress that both ITj, and II} operate and are evaluated for security in a
communication model consisting of a single broadcast channel. The same
holds also for IT!, mentioned next.

e Using the second compiler (of Section 7.5.5) to transform II} (which is
secure in the first malicious model) into a protocol IT that is secure in the
second malicious model.

e Finally, we use the post-compiler (of Section 7.5.3.2) to transform each of
the protocols I1} and IIS, which are secure in the first and second malicious
models when communication is via a broadcast channel, into corresponding
protocols, IT; and Ils, for the standard point-to-point model. That is, IT;
(resp., II5) securely computes f in the first (resp., second) malicious model
in which communication is via standard point-to-point channels.

We stress that security holds even if the adversary is allowed to wire-tap
the (point-to-point) communication lines between honest parties.

We start by discussing the security definitions for the broadcast communication
model, and presenting the pre-compiler and the post-compiler mentioned above.
Once this is done, we turn to the real core of this section: the two compilers
(which are applied to protocols that operate in the broadcast model).

Definitions. Indeed, security in the broadcast model was not defined so far.
However, the three relevant definitions for the broadcast communication model
are easily derived from the corresponding definitions given in Section 7.5.1, where
a point-to-point communication model was used. Specifically, in defining secu-
rity in the semi-honest model one merely includes the entire transcript of the
communication over the (single) broadcast channel in each party’s view. Simi-
larly, when defining security in the two malicious models one merely notes that
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the “real execution model” (i.e., REAL[ 1 4) changes (since the protocol is now
executed over a different communication media), whereas the “ideal model” (i.e.,

(1) (2) S
IDEAL; ) 5 O IDEAL ) ) remains intact.

7.5.3.1 Precompiler (emulating private channels)

It is easy to (securely) emulate a set of (private) point-to-point communication
channels over a (single) broadcast channel. All that one needs to do is use a
secure public-key encryption scheme. Specifically, a protocol II that operates in
the (private) point-to-point communication model is emulated as follows. First,
each party randomly generates a pair of encryption/decryption keys, posts the
encryption-key on the broadcast channel, and keeps the decryption-key secret.
Next, any party instructed (by II) to send a message, msg, to Party ¢, encrypts
msg using the encryption-key posted by Party ¢, and places the resulting ci-
phertext on the broadcast channel (indicating that it is intended for Party 7).
Party ¢ recovers msg by using its decryption-key, and proceeds as directed by
IT. Denote the resulting protocol by II'. Below, we merely consider the effect of
this transformation in the semi-honest model.

Proposition 7.5.16 (pre-compiler): Suppose that enhanced trapdoor permuta-
tion exist. Then any m-ary functionality is privately computable in the broadcast
communication model. Furthermore, the protocol is canonical.

Proof Sketch: Let f be an m-ary functionality, and II be a protocol (guaran-
teed by Theorem 7.5.14) for privately computing f in the point-to-point commu-
nication model. Given a trapdoor permutation, we construct a secure public-key
encryption scheme and use it to transform II into II' as described above.

To simulate the view of parties in an execution of II' (taking place in the
broadcast communication model), we first simulate their view in an execution of
IT (taking place in the point-to-point communication model). We then encrypt
each message sent by a party that belongs to the semi-honest coalition, as this
would be done in an execution of II'. Note that we know both the message
and the corresponding encryption-key. We do the same for messages received by
semi-honest parties. All that remain is to deal with messages, which we may not
know, sent between two honest parties. Here we merely place an encryption of
an arbitrary message. This concludes the description of the “broadcast-model”
simulator.

The analysis of the latter simulator combines the guarantee given for the
“point-to-point simulator” and the guarantee that the encryption scheme is se-
cure. That is, ability to distinguish the output of the “broadcast-model” simu-
lator from the execution view (in the broadcast model) yields either (1) ability
to distinguish the output of the “point-to-point” simulator from the execution
view (in the point-to-point model) or (2) ability to distinguish encryptions under
the above public-key encryption scheme. In both cases we reach contradiction
to our hypothesis. [l
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7.5.3.2 Postcompiler (emulating a broadcast channel)

Here we go the other way around (i.e., from the broadcast model to the point-
to-point model). We are given a protocol that securely computes (in one of the
two malicious models) some functionality, where the protocol uses a broadcast
channel. We wish to convert this protocol into an equivalent one that works
in a point-to-point communication model. (Actually, we do not go all the way
back, because we do not assume these point-to-point lines to provide private
communication.) Thus, all we need to do is emulate a broadcast channel over
a point-to-point network and do so in the presence of malicious parties, which
reduces to solving the celebrated Byzantine Agreement problem. However, we
have signature schemes at our disposal and so we merely need to solve the much
easier problem known as authenticated Byzantine Agreement. For sake of self-
containment we define the problem and present a solution.

Authenticated Byzantine Agreement: We presuppose a synchronous point
to-point model of communication and a signature scheme infrastructure. That
is, each party knows the verification-key of all other parties. Party 1 has an
input bit, denoted o, and its objective is to let all honest parties agree on the
value of this bit. In case Party 1 is honest, the other parties must agree on its
actual input, but otherwise they may agree on any value (as long as they agree).

Construction 7.5.17 (Authenticated Byzantine Agreement): Let m denote
the number of parties. We assume that the signature scheme in use has sig-
nature of length that depends only on the security parameter, and not on the
length of the message to be signed.>”

Phase 1: Party 1 sign its input and sends the resulting input-signature pair to
all parties. Party 1 may terminate at this point.

Definition: A message is called (v,i)-authentic if it has the form (v, Sp,, ..., Sp.),
where p1 = 1, all p;’s are distinct, and for every j = 1,...,1, the string s,
is accepted as a signature to (v, sp,,...,5p,_,) relative to the verification
key of party p;.

Observe that when Party 1 follows the protocol with input v, at Phase 1
it sends a (v,1)-authentic message to each party. For every i > 2, if
(V, Spy s -er Spy ) 18 (0, 0)-authentic then (v, Sp, , ..., Sp,_, ) is (v, i—1)-authentic.

Phase i = 2,...,m: Each honest party (other than Party 1) inspects the messages
it has received at Phase i — 1, and forwards signed versions of the (-,i—1)-
authentic messages that it has received. Specifically, for every v € {0,1},
if Party j has received a (v, — 1)-authentic message (v, Sp,, ..., Sp,_,) such

57 Such a signature scheme can be constructed given any one-way function. In particular,
one may use Construction 6.4.30. Maintaining short signatures is important in this application,
because we are going to iteratively sign messages consisting of (the concatenation of an original
message and) prior signatures.
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that all py’s are different from j then it appends its signature to the mes-
sage, and sends the resulting (v,1)-authentic message to all parties.

We stress that, for each wvalue of v, Party j sends at most one (v,1)-
authentic message to all parties. Actually, it may refrain from sending
(v,1)-authentic messages if it has already sent (v,i’)-authentic messages
for some i’ < i.

Termination: Each honest party (other than Party 1) evaluates the situation as
follows:

1. If, for some ip,i1 € [m] (which are not necessarily different), it has
received both an (0,149)-authentic message and a (1,11)-authentic mes-
sage then it decides that Party 1 is malicious, and outputs an error
symbol, say L.

2. If, for a singlev € {0, 1} and some i, it has received an (v,1)-authentic
message then it outputs the value v.

3. If it has never received a (v,i)-authentic message, for any v € {0, 1}
and 1, then it decides that Party 1 is malicious and outputs an error
symbol, say L.

We comment that in the Distributed Computing literature, an alternative
presentations is preferred in which when a party detect cheating by Party 1
(i.e., in Cases 1 and 8) the party outputs a default value, say 0, rather
than the error symbol L.

The protocol can be easily adapted to handle non-binary input values. For sake
of efficiency, one may instruct honest parties to forward at most two authentic
messages that refer to different values (because this suffices to establish that
Party 1 is malicious).

Proposition 7.5.18 Assuming that the signature scheme in use is unforgeable,
Construction 7.5.17 satisfies the following two conditions:

1. It is infeasible to make any two honest parties output different values.

2. If Party 1 is honest then it is infeasible to make any honest party output
a value different from the input of Party 1.

The claim holds regardless of the number of dishonest parties and even if dis-
honest parties abort the execution.

In other words, Proposition 7.5.18 asserts that Construction 7.5.17 is essen-
tially a secure implementation of the (“broadcast”) functionality (v, A, ..., A) —
(v,v,...,v). In particular, the case in which the honest parties output L can
be accounted by the abort of an ideal-model adversary playing Party 1. We
note that security as used here is incomparable to security in either of the two
malicious models. On one hand, we do not provide security with respect to an
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external adversary that only taps the communication lines while not controlling
any of the parties. That is, we do not provide secrecy with respect to an ex-
ternal adversary, and indeed this feature is not required by the post-compiler
(presented below). On the other hand, we do provide security in the (stronger)
sense of the second malicious model but do so without limiting the number of
dishonest parties. That is, for any number of dishonest parties, the protocol
effectively prevent dishonest parties from aborting (because abort is treated as
sending some illegal message).

Proof Sketch: Fixing any j and v, suppose that in Phase ¢ — 1, Party j receives
an (v,i—1)-authentic message, and assume that ¢ is the smallest integer for which
this happens. For this to happen it must be that + < m, because the message
must contain ¢ — 1 signatures from different parties (other than Party j itself).
In such a case, if Party j is honest then it will send an authentic (v,7)-message
in Phase i (i < m), and so all parties will receive an authentic (v, ¢)-message in
Phase ¢. Thus, for every v, if an honest party see a (v, -)-authentic message then
so do all other honest parties, and Part 1 follows. Part 2 follows by observing
that if Party 1 is honest and has input v then all honest parties see an authentic
(v, 1)-message. Furthermore, none can see a (v',7)-authentic message, for v’ # v
and any .. W

Proposition 7.5.19 (post-compiler): Suppose that one-way functions exist. Then
any m-ary functionality that is securely computabdle in the first (resp., second)
malicious broadcast model is also securely computable in the first (resp., second)
malicious point-to-point model, provided that a public-key infrastructure exists
in the network.

Proof Sketch: The idea is to replace any broadcast message sent in the original
protocol by an execution of Authenticated Byzantine Agreement (AuthBA).
This idea needs to be carefully implemented because it is not clear that the
security of AuthBA is preserved under multiple executions, and thus applying
Proposition 7.5.18 per se will not do. The problem is that the adversary may
use authenticated messages sent in one execution of the protocol in order to
fool some parties in a different execution. This attack can be avoided in the
current context, by using identifiers (which can be assigned consistently by the
higher-level protocol) for each of the executions of the AuthBA protocol. That is,
authentic messages will be required to bear the distinct execution identifier (and
all signatures will be applied to that identifier as well), and so authentic messages
of one AuthBA execution will not be authentic in any other AuthBA execution.
Thus, the proof of Proposition 7.5.18 can be extended to our context, where
sequential executions of AuthBA (with externally-assigned distinct identifiers)
take place.

The proof of security transforms any real-model adversary for the point-to-
point protocol to a real-model adversary for the broadcast channel protocol. In
the transformation we assume that each instance of the AuthBA sub-protocol
has delivered the same value to all honest parties and that this value equals the
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one entered by the honest sender. In case the assumption does not hold, we
derive a forger for the underlying signature scheme. |l

7.5.4 The first complier — Forcing Semi-Honest Behavior

We follow the basic structure of the compiler presented in Section 7.4 for the two-
party case. Adapting that compiler to the multi-party setting merely requires
generalizing the implementation of each of the three phases (of the compiled
two-party protocols). Following is a high-level description of the multi-party pro-
tocols generated by the corresponding compiler. Recall that all communication,
both in the input protocol as well as in the one resulting from the compilation,
is conducted merely by posting messages on a single broadcast channel.

Input-commitment phase: Each of the parties commits to its input bits.
This will be done using a multi-party version of the input-commitment
functionality of Eq. (7.34).

Intuitively, malicious parties may (abort or) substitute their inputs during
this phase, but they may do so depending only on the value of the inputs
held by malicious parties.

Coin-generation phase: The parties generate random-tapes for each of the
parties. These random-tapes are intended to serve as the coins of the
corresponding parties in their emulation of the semi-honest protocol. Each
party obtains the random-tape to be held by it, whereas the other parties
obtain commitments to this value. This will be done using a multi-party
version of the augmented coin-tossing functionality of Eq. (7.33).

Intuitively, malicious parties may abort during this phase, but otherwise
they end-up with a uniformly distributed random-tape.

Protocol emulation phase: The parties emulate the execution of the semi-
honest protocol with respect to the inputs committed in the first phase and
the random-tapes selected in the second phase. This will be done using
a multi-party version of the authenticated-computation functionality of
Eq. (7.31). The fact that the original protocol is executed over a broadcast
channel is used here.

Intuitively, malicious parties may abort during this phase, but otherwise
they end-up sending messages as directed by the semi-honest protocol.

In order to implement the above phases, we define natural generalizations of
the input-commitment, coin-tossing, and authenticated-computation function-
alities (of the two-party case), and present secure implementations of them in
the current (first malicious) multi-party model. The original definitions and
constructions are obtained by setting m = 2. We start again by defining an ade-
quate notion of reducibility, which allows a modular presentation of the compiled
protocols.
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7.5.4.1 Security reductions and a composition theorem

Analogously to Section 7.5.2.1, we now define what we mean by saying that
one functionality is securely reducible to another functionality. We use the same
definition of an oracle-aided protocol (i.e., Definition 7.5.5), but require such a
protocol to be secure in the first malicious model (rather than be secure in the
semi-honest model). As in the two-party case, we require that the length of
each oracle query can be determined from the length of the initial input to the
oracle-aided protocol.

Definition 7.5.20 (security reductions in the first malicious model):

e As in Definition 7.5.6, an m-party oracle-aided protocol is said to be us-
ing the k-party oracle-functionality f if the oracle answers are according to
f. Howewver, in accordance with the behavior of ideal-model adversaries,
the oracle does not answer all parties concurrently, but rather answer first
the party that requested this specific oracle call (in the oracle-aided proto-
col). When receiving its part of the oracle answer, the party that requested
the oracle call instructs the oracle whether or not to respond to the other
parties.

We consider only protocols in which the length of each oracle query is a
polynomial-time computable function of the length of the initial input to
the protocol. Furthermore, the length of each query must be polynomially
related to the length of the initial input.

Analogously to Definition 7.5.3, the joint execution of an oracle-aided pro-
tocol II with oracle f under (I, A) in the real model ((on input sequence
T = (1, .-, Tmm ) and auxiliary input z), denoted REALIJ;LA(Z)(E), is defined
as the output sequence resulting of the interaction between the m parties,
where the messages of parties in I are computed according to A(Ty, z), the
messages of parties not in I are computed according to 11, and the oracle
calls are answered according to f.

o An oracle-aided protocol 11, using the oracle-functionality f, is said to
securely compute ¢ (in the first malicious model) if a condition analogous
to the one in Definition 7.5.8 holds. That is, the effect of any efficient
real-model adversary as above can be simulated by a corresponding ideal-
model adversary, where the ideal model for computing g is exactly as in
Definition 7.5.2.

More specifically, the oracle-aided protocol II (using oracle f) is
sald to securely compute g (in the first malicious model) if for every
probabilistic polynomial-time A there exists a probabilistic polynomial-
time B such that for every I C [m]

1 — c _
{IDEALE]’I)’B(Z)(I)}EZ = {REALﬁ,I,A(Z)(w)}az

e An oracle-aided protocol is said to securely reduce g to f (in the first mali-
cious model), if it securely computes g (in the first malicious model) when
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using the oracle-functionality f. In such a case we say that g is securely
reducible to f,

Indeed, when clear from the context, we often omit the qualifier “in the first
malicious model”.

We are now ready to state a composition theorem for the first multi-party ma-
licious model.

Theorem 7.5.21 (Composition Theorem for the first multi-party malicious
model): Suppose that the m-ary functionality g is securely reducible to the k-ary
functionality f and that there exists a k-party protocol for securely computing f.
Then there exists an m-party protocol for securely computing g.

Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls,
and thus Theorem 7.5.21 is actually a sequential composition theorem. As in the
two-party case, the Composition Theorem can be generalized to yield transitivity
of secure-reductions and to account for reductions that use several oracles rather
than one.

Proof Sketch: Analogously to the proof of previous composition theorems, we
are given an oracle-aided protocol, denoted I19! | that securely reduces g to f,
and an ordinary protocol I/ that securely computes f. Again, we construct a
protocol II for computing g in the natural manner; that is, starting with 19!/, we
replace each invocation of the oracle (i.e., of f) by an execution of the protocol
II/. Clearly, II computes g, and we need to show that II securely computes g.
This is proven by merely generalizing the proof of Theorem 7.4.3 (i.e., the two-
party case). The only point that is worthwhile stressing is that the real-model
adversary for II7, derived from the real-model adversary for II, is constructed
obliviously of the set of parties I that the adversary controls.’® As in the proof
of Theorem 7.5.7, we determine the set of parties for every such invocation of IT/,
and rely on the fact that security holds with respect to adversaries controlling
any subset of the k parties participating in an execution of II7. In particular,
the security of an invocation of I/ by parties P = {py, ..., px } holds also in case
In P =0, where it means that a real-model adversary (which control no party
in P) learns nothing by merely tapping the broadcast channel.’® |l

7.5.4.2 Secret broadcast

In order to facilitate the implementation of some functionalities, we introduce
the following secret broadcast functionality:

(a, 1101 11l o (0, .., @) (7.47)

58 Unlike in the two-party case, here we cannot afford to consider a designated adversary
for each subset of parties.

59 Security holds also in the other extreme case, where I N P = P, but is not meaningful in
that case.
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At first glance, it seems that Eq. (7.47) is trivially implementable by Party 1
posting a on the broadcast channel. This solution is “secure” as long as the
(real-model) adversary controls a non-empty set of parties, but fails in case the
adversary controls none of the parties and yet can tap the broadcast channel.
That is, the trivial solution does not provide secrecy with respect to an external
adversary (which taps the channel but controls none of the parties and thus is
not supposed to learn the value sent by Party 1 to all other parties). Note that
secrecy with respect to an external adversary arises in a subtle way also when
we do not care about it a-priori (e.g., see the proof of Theorem 7.5.21).

Proposition 7.5.22 Assuming the existence of trapdoor permutations, there ex-
ist a secure implementation of Eq. (7.47) in the first malicious model.

Proof Sketch: The first idea that comes to mind is to let each party generate
a pair of keys for a public-key encryption scheme and broadcast the encryption-
key, and then let Party 1 broadcast the encryption of its input under each of
these encryption-keys. The problem with this protocol is that it is no longer
guaranteed that all parties receive the same value. One solution is to let Party 1
provide zero-knowledge proofs (to each of the parties) that the posted ciphertexts
are consistent (i.e., encrypt the same value), but the implementation of this
solution is not straightforward (cf. Construction 7.5.24). An alternative solution,
adopted here, is to use the encryption scheme in order to emulate a set of private
(point-to-point) channels, as in Section 7.5.3.1, and run authenticated Byzantine
Agreement on this network. Since we have an ordinary broadcast channel at our
disposal, we do not need to assume an initial set-up that corresponds to a public-
key infrastructure, but can rather generate it on the fly. The resulting protocol
is as follows.

1. Each party generates a pair of keys for a signature scheme, and posts the
verification-key on the broadcast channel. This establishes the public-key
infrastructure as relied upon in Construction 7.5.17.

2. Each party generates a pair of keys for a public-key encryption scheme,
and posts the encryption-key on the broadcast channel. This effectively
establishes a network of private (point-to-point) channels to be used in
Step 3.

3. The parties invoke the authenticated Byzantine Agreement protocol of
Construction 7.5.17 in order to let Party 1 broadcast its input to all other
parties. All messages of this protocol are sent in encrypted form, where
each message is encrypted using the encryption-key posted in Step 2 by
the designated receiver.

Combining the ideas underlying the proofs of Propositions 7.5.16 and 7.5.18, the
current proposition follows. Il
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7.5.4.3 Multi-party authenticated computation

We start our assembly of multi-party functionalities by presenting and imple-
menting a multi-party generalization of the authenticated computation function-
ality of Eq. (7.31).

Definition 7.5.23 (authenticated computation, multi-party version): Let f :
{0,1}* x {0,1}* — {0,1}* and h : {0,1}* — {0,1}* be polynomial-time com-
putable. The h-authenticated f-computation m-party functionality is defined by

(a7ﬂ27"'7/8m) = (>‘7U27"'7U’m) (748)
where v; < f(a) if B; = h(a) and v; = (h(a), f(a)) otherwise, for each i.5°

Note that the obvious reduction of Eq. (7.48) to the two-party case (i.e., to
Eq. (7.31)) does not work (see Exercise 16). As in the two-party case, we
will securely-reduce Eq. (7.48) to an adequate multi-party generalization of the
image-transmission functionality, and provide a secure implementation of the
latter. We start by implementing the adequate multi-party generalization of the
image transmission functionality, defined as follows:

(a,1lel o 1lely s (X f(a), ..., f(a) (7.49)

Indeed, Eq. (7.49) is essentially a special case of Eq. (7.48). We stress that in a
secure implementation of Eq. (7.49) either all parties obtain the same f-image
or they all obtain an indication that Party 1 has misbehaved. Thus, the honest
parties must be in agreement regarding whether or not Party 1 has misbehaved,
which makes the generalization of the two-party protocol less obvious than it may
seem. In particular, the fact that we use a proof system of perfect completeness
plays a central role in the analysis of the multi-party protocol. The same holds
with respect to the fact that all messages are sent over a broadcast channel (and
so the honest parties agree on their value). Together these two facts imply that
any party can determine whether some other party has “justifiably rejected”
some claim, and this ability enables the parties to reach agreement regarding
whether or not Party 1 has misbehaved.

Construction 7.5.24 (image transmission protocol, multi-party version): Let

R {(v,w) : v = f(w)}. For simplicity, we assume that f is length-regular;

that is, | f(z)| = |f(y)| for every |z| = |y|.

Inputs: Party 1 gets input « € {0,1}*, and each other party gets input 1™, where
n=|al.

Step C1: Party 1 secretly broadcasts v Lef f(a). That is, Party 1 invokes Eq. (7.47)
with input v, whereas each other party enters the input 17 and receives
the output v.

60 Indeed, an alternative multi-party generalization may require that all v;’s equal f(«) if
B2 = -+ = fBm = h(a) and equal (h(e), f(a)) otherwise. However, this alternative generaliza-
tion seems harder to implement, whereas Eq. (7.48) suffices for our application.
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Step C2: Fori = 2,...,m, Parties 1 and i invoke a zero-knowledge strong-proof-
of-knowledge system for R such that Party 1 plays the prover and Party i
plays the verifier. The common input to the proof system is v, the prover
gets a as auziliary input and its objective is to prove that it knows a w
such that (v,w) € R (i.e., v = f(w)). In case the verifier rejects the proof,
Party i sends the coins used by the verifier so that all other parties can
be convinced of its justifiable rejection, where the latter corresponds to the
view of the verifier in a rejecting interaction. All messages of the proof
system are sent using the secret broadcast functionality.

Outputs: Fori = 2,...,m, if Party i sees some justifiable rejection then it output
1 else it output v. (Party 1 has no output.)

Agreement on whether or not Party 1 has misbehaved is obtained by the decision
whether or not some verifier has justifiably rejected in Step C2, where this
decision depends on information available to all parties. A key observation is
that if Party 1 is honest then no party can justifiably reject its proof in Step C2,
because the proof system has perfect completeness (which means that there exist
no random-tape that makes the verifier reject a claim by an honest prover). Note
that Construction 7.5.24 is actually an oracle-aided protocol, using the secret
broadcast oracle. Consequently, if the real-model adversary controls none of the
parties, then it learns nothing (as opposed to what might have happened if we
were to use ordinary broadcast in Steps C1 or C2).

Proposition 7.5.25 Suppose that the proof system, (P,V), used in Step C2
is indeed a zero-knowledge strong-proof-of-knowledge for the relation R. Then,
Construction 7.5.24 securely reduces Eq. (7.49) to Eq. (7.47).

Proof Sketch: The proof extends the two-party case treated in Proposition 7.4.12.
Here, we transform any real-model adversary A into a corresponding ideal-model
adversary B, where both get the set I as auxiliary input. The case I = () is han-
dled by relying on the secret broadcast functionality (which implies that in this
case the real-model adversary, which refers to an oracle-aided protocol in which
all messages are sent using Eq. (7.47), gets nothing). Otherwise, the operation
of B depends on whether or not 1 € I, which corresponds to the cases handled
in the two-party case.

As in the two party case, when transforming real-model adversaries to ideal-
model adversaries, we sometimes allow the latter to halt before invoking the
trusted party. This can be viewed as invoking the trusted party with a special
abort symbol, where in this case the latter responses to all parties with a special
abort symbol.

We start with the case that the first party is honest, which means here that
1 ¢ I. In this case the input to B consist essentially of 1™, where n = |a|, and
it operates as follows (assuming I # 0):

1. Acting on behalf of each party in I, the ideal-model adversary B sends
11el to the trusted party and obtains the answer v, which equals f(a) for
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a handed (to the trusted party) by (the honest) Party 1. Thus, indeed
(v,a) € R. (Recall that Party 1 always obtains A from the trusted party,
but the other parties in I = [m] \ I obtain v).)

2. For ¢ = 2, ..., m, machine B invokes the simulator guaranteed for the zero-
knowledge proof system (P, V'), on input v, using (the residual) A as a
possible malicious verifier. Note that we are simulating the actions of
the prescribed prover P, which in the real protocol is played by the honest
Party 1. Once one simulation is finished, its transcript becomes part of the
history fed to A in subsequent simulations. Denote the obtained sequence
of simulation transcripts by S = S(v).

3. Finally, B feed A with the alleged execution view (v,S), and outputs
whatever A does.

The computational indistinguishability of the output of the real-model adversary
under (A, ) and the output of the ideal-model adversary under (B, I) follows
from the guaranteed quality of the zero-knowledge simulator. In addition, we
need to consider the outputs of the honest parties (i.e., the parties in I), and
specifically the outputs of parties in 7\ {1} (since Party 1 has no output).
(Indeed, this is an issue only if 7\ {1} # 0, which is the reason that this issue
did not arise in two two-party case.) In the ideal-model execution, each party
in I'\ {1} output v = f(a), and we have to prove that the same occurs in the
real-model execution (when Party 1 is honest). This follows from the perfect
completeness of (P, V), as discussed above.

We now turn to the case where the first party is dishonest (i.e., 1 € I). In
this case the input to B includes «, and it operates as follow (ignoring the easy
case I = [m]):

1. B invokes A on input a, and obtains the Step C1 message, denoted v, that
A instruct Party 1 to send (i.e., v = A(a)). As (implicit) in the protocol,
any action of A in Step C1 (including abort) is interpreted as sending a
string.

2. B tries to obtain a preimage of v under f. Towards this end, B uses
the (strong) knowledge-extractor associated with (P, V'). Specifically, pro-
viding the strong knowledge-extractor with oracle access to (the residual
prover) A(a), machine B tries to extract (from A) a string w such that
f(w) = v. This is done per each of the |I| executions of the proof system
in which the verifier is played by a honest party, while updating the his-
tory of A accordingly.%? In case the extractor succeeds (in one of these |I|

attempts), machine B sets o/ def . Otherwise, B sets o def )

3. B now emulates an execution of Step C2. Specifically, for each i € I,
machine B lets the adequate residual A play the prover, and emulates by

61 If necessary (i.e., |I| # {2,...,|I| + 1}), we also emulate the interleaved proofs that are
given to parties in I. This is performed in the straightforward manner (i.e., by letting A
emulate both parties in the interaction).
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itself the (honest) verifier interacting with A (i.e., B behaves as a honest
Party 7). (The emulation of the proofs given to parties in I is performed
in the straightforward manner.) Next, B decides whether or not to invoke
the trusted party and let it respond the honest parties. This decision is
based on all the m — 1 emulated proofs.

e In case any of the m — 1 emulated verifiers rejects justifiably, machine
B aborts (without invoking the trusted party), and outputs whatever
A does (when fed with these emulated proof transcripts).

e Otherwise (i.e., no verifier rejects justifiably), we consider two sub-
cases:

(a) If o/ # L then B sends o (on behalf of Party 1) to the trusted
party, and allows it to respond the honest parties. (The response
will be f(«'), which by Step 2 must equal v.)

(b) Otherwise (i.e., @' = L indicating that extraction has failed),
B fails. (Note that this means that in Step 3 the verifier was
convinced, while in Step 2 the extraction attempt has failed.)

4. Finally, B feed A with the execution view, which contains the prover’s
view of the emulation of Step C2 (produced in Step 3 above), and outputs
whatever A does.

As in the two-party case (see proof of Proposition 7.4.12), the real-model execu-
tion differs from the ideal-model execution only in case the real-model adversary
A succeeds to convince the knowledge-verifier (which is properly emulated for
any i € I) that it knows a preimage of v under f, and yet the knowledge-extractor
failed to find such a preimage. By definition of strong knowledge-verifiers, such
an event may occur only with negligible probability. W

Securely-reducing authenticated computation to image-transmission.
Analogously to the two-party case, we securely-reduce Eq. (7.48) to Eq. (7.49).

Construction 7.5.26 (multi-party authenticated computation, oracle-aided pro-
tocol):

Inputs: Party 1 gets input o € {0,1}*, and Party i # 1 gets input 3; € {0,1}1°],

Step C1: Party 1 uses the (multi-party) image transmission functionality to send

ef

the pair (u,v) = (h(w), f(a)) to the other parties. That is, the parties
invoke the functionality of Eq. (7.49), where Party 1 enters the input a

and Party i is to obtain g(«) ef (h(w), f(a)).

Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party i
receives the pair (u,v) in Step C2, Party i outputs v if w = B; and (u,v)
otherwise.
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Outputs: If not aborted (with output L), Party i # 1 sets its local output as
directed in Step C2. (Party 1 has no output.)

Extending the proof of Proposition 7.4.15 (to apply to Construction 7.5.26), and
using Propositions 7.5.25 and 7.5.22, we obtain:

Proposition 7.5.27 Assuming the existence of trapdoor permutations, the h-
authenticated f-computation m-party functionality of Eq. (7.48) can be securely
implemented in the first malicious model.

Proof Sketch: We focus on the analysis of Construction 7.5.26, which extends
the proof of Proposition 7.4.15. As in the proof of Proposition 7.5.25, when
extending the proof of the two-party setting, the two cases (in the proof) cor-
respond to whether or not Party 1 is honest (resp., 1 ¢ I or 1 € I). Again, we
discard the case I = ), where here the justification is that the oracle-aided proto-
col does not use the broadcast channel at all (and so no information is available
to the real-model adversary in this case). The case 1 ¢ I # ) is handled exactly
as the case that Party 1 is honest in the proof of Proposition 7.4.15 (i.e., B sends
the 8;’s it holds to the trusted party, obtains h(«) and f(«) (either explicitly
or implicitly), where « is the input of Party 1, and uses (h(a), f(a)) to emulate
the real execution). In case 1 € I, we need to extend the two-party treatment
a little, because we also have to emulate the oracle-answer given (in Step C1) to
dishonest parties (different than Party 1, which gets no answer). However, this
answer is determined by the query o' made in Step C1 by Party 1, and indeed
we merely need to feed A with the corresponding oracle answer (h(ca'), f(a')).
The rest of the treatment is exactly as in the two-party case. The proposition
follows.

Comment: pure oracle-aided protocols. Note that Construction 7.5.26
makes no direct use of its communication channel, but is rather confined to the
invocation of oracles and local computations. Such an oracle-aided protocol is
called pure. Note that most oracle-aided protocols presented in Section 7.4 are
pure. An important property of pure oracle-aided protocols is that an adversary
that controls none of the parties and only wire-taps the communication channel
gets no information, and so this case can be discarded (as done in the proof of
Proposition 7.5.27).%2 In fact, Construction 7.5.24 is also a pure oracle-aided
protocol (by virtue of its use of the secret broadcast functionality).

7.5.4.4 Multi-party augmented coin-tossing

In this section, we generalize the augmented coin-tossing functionality (of Sec-
tion 7.4.3.5) to the multi-party setting. More generally, for any positive polyno-
mial £ : N — N and a polynomial-time computable function ¢, we consider the

62 Recall that in Section 7.4 we did not consider such external adversaries, and thus the
notion of pure oracle-aided protocols was neither discussed nor used.
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randomized m-ary functionality

(1%, 1) = (1, 9(7), 0, (7)), (7.50)

where 7 is uniformly distributed in {0,1}*™). We securely-reduce Eq. (7.50)
to the multi-party authenticated computation functionality. We note that the
following construction is different from the one used in the two-party case.

Construction 7.5.28 (an oracle-aided protocol for Eq. (7.50)): Let C be a
commitment scheme and Cy, . r,(01,...;00) = (Cp (01),...,Cr,(07)) be as in
Construction 7.4.16.

. def
Inputs: Fach party gets input 1™, and sets £ = £(n).

Step C1: Fori=1,..,m, Party i uniformly selectsr; € {0,1}* and s; € {0,1}*".

Step C2: For i =1,..,m, Party ¢ uses the image transmission functionality to

send ¢; C,, (i) to all parties. Actually, Party i enters Eq. (7.48) with

input (r;, s;), each other party enters with input 174" which is supposed

to equal h'°®(r;, s;) def Lriltlsil - and is supposed to obtain £ (r;,s;) def

ési(ri). Abusing notation, let us denote by c¢; the answer received by each
party, where ¢; may equal L in case Party i has aborted the i oracle call.

Thus, in Steps C1-C2, each party commits to a random string. Without
loss of generality, we assume that no party abort these steps (i.e., we treat
abort as if it were some legitimate default action).

Step C3: For i = 2,..,m (but not for i = 1), Party i uses the authenticated

computation functionality to send r; to all parties. That is, Party © enters
Eq. (7.48) with input (1, s;), each other party enters with input ¢;, where
ci is supposed to equal h'°®(r;, s;) def C,,(r;), and is supposed to obtain
F(rs, 8i) L If Party i aborts the oracle call (that it has invoked)
or some Party j obtains an answer of a different format, which happens
if the inputs of these two parties do not match, then Party j halts with
output L. Otherwise, Party j obtains f°*(r;,s;) = r; and sets r] = r,.
(For simplicity, let 7"; Lef T;.)
Thus, in this step, each party (except Party 1), reveals the £-bit long string
to which it has committed in Step C2. The correctness of the revealed value
is guaranteed by the definition of the authenticated computation function-
ality, which is used here instead of the straightforward way of disclosing the
decommitment information. It follows that, for every j € [m], if Party j
is honest and did not halt then 1! =r; for every i € [m]\ {1}, where r; is
the value committed by Party @ in Step C3.

Step C4: This step is executed only by the parties that did not halt; thus, effec-
tively, it takes place only if Party 1 did not halt.

Forj=1,....m, Party j setsr’ def @?;27‘{.
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Party 1 sets r et = e i, and uses the authenticated computa-
tion functionality to send g(r) to all parties. Specifically, Party 1 enters
Eq. (7.48) with input (r1,s1,7"), each (other) Party j enters with input
(c1,77), where (c1,17) is supposed to equal h°Y (ry,s1,11) e (Cs,(r1),7),
and is supposed to obtain f*(ry,s;,rh) def g(ry ®rl), which equals g(r).
In case Party 1 aborts or Party j obtains an answer of a different format,

which happens if the inputs to the functionality do not match, Party 7 halts
with output L (indicating that Party 1 misbehaved).

Outputs: Unless halted in Step C3 (with output L), Party 1 outputs r, and
Party j # 1 outputs the value determined in Step C4, which is either g(r)
or L.

In case m = 2, Construction 7.5.28 yields an alternative protocol for Eq. (7.32);
that is, a protocol that is fundamentally different from the one in Construc-
tion 7.4.16.

Proposition 7.5.29 Construction 7.5.28 securely reduces Eq. (7.50) to Eq. (7.48).

Proof Sketch:%3 We transform any real-model adversary A (for the oracle-
aided execution) into a corresponding ideal-model adversary B. The operation
of B depends on whether or not Party 1 is honest (i.e., 1 € I), and we ignore
the trivial cases of I = @ and I = [m]. In case 1 € I (i.e., Party 1 is honest),
machine B proceeds as follows:

1. Machine B emulates the local actions of the honest parties in Step C1. In
particular, it uniformly selects (r;, s;) for each ¢ € I (including i = 1).

2. For every i € I, machine B emulates the i" sub-step of Step C2, by feeding
A with the corresponding ¢; = C. (r;) (as if it were the answer of the *!
oracle call). For every i € I, machine B obtains the input (r;,s;) that A
enters (on behalf of Party ) to the i*! oracle call of Step C2, and feeds A
with adequate emulations of the oracle answers.

3. For every i € I\ {1}, machine B emulates the i*® sub-step of Step C3, by
feeding A with a sequence in {r;, (c;,7;)}/! that corresponds to whether
or not each Party j € I has entered the input ¢; (defined in Step 2).
For every i € I, machine B obtains the input (r},s)) that A enters (on
behalf of Party i) to the i*" oracle call of Step C3, records whether or
not C,(r;) = 651 (r}), and feeds A with adequate emulations of the oracle
answers. '

For every i € f_, machine B sets rt = r;. For every i € I, machine B
sets 1 = r; if Cy,(r;) = Cy(r]) and aborts otherwise (while outputting

k2

63 As in the proof of Proposition 7.5.25, we sometimes present ideal-model adversaries that
halt before invoking the trusted party. This can be viewed as invoking the trusted party with
a special abort symbol.
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whatever A outputs (when Party 1 halts in Step C3)). Note that, for
every i, this setting of r} agrees with the setting of r! in the protocol. In
particular, B aborts if and only if (the honest) Party 1 would have halted
in the corresponding (emulated) execution of Step C3. We stress that B’s
decision of whether or not to abort is oblivious of the possible outcome of
the (emulated) execution.

4. In case B did not abort, it invokes the trusted party with input 1™ and
obtains the answer g(r), where r is the uniformly distributed ¢-bit string
handed to Party 1. Next, machine B emulates Step C4, by feeding each

dishonest party with either g(r) or ((c1,71),g(r)), where r! % @m i,

The choice is determine by whether or not (in Step C4) this party has
enter the input (c;,7t). (Note that we cheat in the emulation of the oracle
answer in Step C4; specifically, we use g(r) rather than g(r; ®7').) Finally,
machine B outputs whatever A does.

We stress that, in this case (i.e., 1 ¢ I), B may only aborts before invoking
the trusted party (which satisfies the security definition). Observe that the
only difference between the ideal-model execution under B and the real-model
execution under A is that in the ideal-model execution an independently and
uniformly distributed 7 € {0,1}¢ is used (in the emulation of Step C4), whereas
in the real-model execution r (as used in Step C4) is set to & 1} = ry & rl.
Furthermore, ¢; « C(ry) is the only part of the joint-view that depends on r;
in the ideal-model (and in particular Pr[r ® 7! = r1] = 27¢), whereas in the
real-model r always equals r; ® r! (i.e., 1y = r @ r!). Thus, the joint-views
differ only in whether or not ¢; is a commitment to r @ r!, where r and r' are
explicit in the joint-view. However, by the hiding property of C, this difference
is undetectable.

We now turn to the case that ¢ € I (i.e., Party 1 is dishonest). The treat-
ment of this case differs in two main aspects. First, unlike in the previous case,
here the real-model adversary (which controls Party 1) obtains all r;’s and so
we must guarantee that in the ideal-model execution the trusted-party’s answer
(to Party 1) equals ©™,7;. Second, unlike in the previous case, here the real-
model adversary may effectively abort Step C4 (i.e., abort after obtaining the
outcome), but this is easy to handle using the ideal-model adversary’s ability to
instruct the trusted party not to respond the honest parties. Returning to the
first issue, we present a different way of emulating the real-model execution.%*
Specifically, we will cheat in our emulation of the honest parties and use (in
Step 1-2) commitments to the value 0 rather than commitments to the cor-
responding r;’s, which will be determined only at the end of Step 2. Details
follow.

1. Machine B starts by invoking the trusted party, and obtains a uniformly
distributed 7 € {0,1}%. At this time, B does not decide whether or not to

64 We comment that the alternative emulation strategy can be used also in case Party 1 is
honest.
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allow the trusted party to answer the honest parties.

In addition, B emulates the local actions of the honest parties in Step C1
by uniformly selecting only the s;’s, for each i € I.

2. For every i € I, machine B emulates the i*® sub-step of Step C2, by
feeding A with ¢; = C,,(0%). For every i € I, machine B obtains the
input (r;,s;) that A enters (on behalf of Party i) to the i*" oracle call of
Step C2. Finally, B uniformly selects all other r;’s (i.e., for i’s in I) such
that & ,r; = r holds; e.g., for each € I'\ {1}, select r; € {0, 1}* uniformly,
and set 1y =7 ® (B ,1;).

3. For every i € I, machine B emulates the i*! sub-step of Step C3, by
feeding A with a sequence in {r;, (¢;,7;)}/! that corresponds to whether
or not each Party 7 € I has entered the input ¢;. Note that the fact that
¢; is unlikely to be a commitment to r; is irrelevant here. The rest of this
step (i.e., the determination of the r}’s) is as in the case that Party 1 is
honest. In particular, we let B halt if some Party 7 € I behaves improperly
(i.e., invokes the corresponding oracle with input that does not fit ¢; as
recorded in the emulation of Step C2).

The next step is performed only in case B did not abort. In this case,
1

r! =r; holds for every i = 2,...,m, and r = r1 & (B ,r!) follows.

4. Next, machine B emulates Step C4, and determines whether or not A
instructs Party 1 to abort its oracle call (in Step C4). The decision is
based on whether or not the oracle query (¢1, g2, g3) of Party 1 (in Step C4)
matches the oracle query (r;,s;) it made in Step C2 and the value of
em,r} as determined in Step 3 (i.e., whether or not Cy,(q1) = Cj, (1)
and g3 = @©™,rl). If Party 1 aborts then B prevents the trusted party
from answering the honest parties, and otherwise B allows the trusted
party to answer. (Indeed, in case the trusted party answers Party ¢ # 1,
the answer is g(r)). In addition, B emulates the answers of the Step C4
oracle-call to the dishonest parties (as in the case that Party 1 is honest).
Finally, machine B outputs whatever A does.

Observe that the only difference between of the ideal-model execution under B
and the real-model execution under A is that in the former commitments to 0°
(rather than to the 7;’s, for i € I) are delivered in Step C2. However, by the
hiding property of C, this difference is undetectable.

An important special case. An important special case of Eq. (7.50) is when
g(r,s) = C,(r), where |s| = n-|r|. This special case will be called the augmented
(m-party) coin-tossing functionality. That is, for some fized commitment scheme,
C, and a positive polynomial ¢, we consider the m-ary functionality:

(1", ...,1™) — ((r,s),Cs(r),...,Cy(r)) (7.51)
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where (7, s) is uniformly distributed in {0, 1}*(") x {0, 1}*(™)*, Combining Propo-
sitions 7.5.27 and 7.5.29, we get:

Proposition 7.5.30 Assuming the existence of trapdoor permutations, the aug-
mented coin-tossing functionality of Eq. (7.51) can be securely implemented in
the first malicious model.

7.5.4.5 Multi-party input-commitment

The last functionality needed for the first multi-party compiler is a multi-party
generalization of the input-commitment functionality of Section 7.4.3.6. Specifi-
cally, for C and C as in Section 7.5.4.4, we consider the m-party input-commitment
functionality

(z, 1% 11y = (r,Cr(2), ..., Cr()), (7.52)

where r is uniformly distributed in {0, 1}"”‘2. By combining a straightforward
generalization of Construction 7.4.20 with Propositions 7.5.27 and 7.5.30, we
get:

Proposition 7.5.31 Assuming the existence of trapdoor permutations, the input-
commitment functionality of Eq. (7.52) can be securely implemented in the first
malicious model.

Proof Sketch: Starting from Construction 7.4.20, we replace each oracle call
to a two-party functionality by a call to the corresponding multi-party func-

tionality. That is, in Step C2 Party 1 uses the image transmission (or rather

the authenticated computation) functionality to send ¢’ LT, (z) to all other

parties, in Step C3 an augmented coin-tossing is used to provide Party 1 with a

random pair (r,7"") whereas each other party gets ¢’ def C,(r), and in Step C4
Party 1 uses the authenticated computation functionality to send C,.(z) to all
other parties. Each of the other parties acts exactly as Party 2 acts in Construc-
tion 7.4.20.

The security of the resulting multi-party oracle-aided protocol is established
as in the two-party case (treated in Proposition 7.4.21). As in the previous
analysis of multi-party protocols that generalize two-party ones, the two cases
here are according to whether or not Party 1 is honest (resp., 1 ¢ I or 1 € I).
Finally, composing the above oracle-aided protocol with secure implementations
of the adequate multi-party functionalities (as provided by Propositions 7.5.27
and 7.5.30), the proposition follows. i

7.5.4.6 The compiler itself

We are now ready to present the first multi-party compiler. Given a multi-party
protocol, II, for the semi-honest model, we want to generate an “equivalent”
protocol II' for the first malicious model. Recall that the given protocol oper-
ates in a communication model counsisting of a single broadcast channel. The
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compiled protocol will operate in the same communication model. As in the
two-party case, we first present an oracle-aided version of the compiled protocol
(which will actually be a pure oracle-aided protocol and thus the communication
model is irrelevant for discussing its own operation). The compiled protocol is a
generalization of the one presented in Construction 7.4.23 (for m = 2), and the
reader is referred there for additional clarifications.

Construction 7.5.32 (The first multi-party compiler, oracle-aided version):
Given an m-party protocol, I, for the semi-honest model, the compiler produces
the following oracle-aided m-party protocol, denoted II', for the first malicious
model.

Inputs: Party i gets input x* € {0,1}".

Input-commitment phase: Each of the parties commits to its input by using the
input-commitment functionality of Eq. (7.52). That is, for i = 1,...,m,
Party i invokes Eq. (7.52), playing the role of the first party with input x*,

and obtains the output p*, whereas each other party obtains v def Upi (x%).

Coin-generation phase: The parties generate random-tapes for the emulation of
II. FEach party obtains the random-tape to be held by it, whereas each
other party obtains a commitment to this value. This is done by invoking
the augmented coin-tossing functionality of Eq. (7.51). That is, for i =
1,...,m, Party i invokes Eq. (7.51), playing the role of the first party, and

obtains the output (r',w*), whereas each other party obtains & def Cui(r?).

Protocol emulation phase: The parties use the authenticated-computation func-
tionality of Eq. (7.48) in order to emulate each step of protocol II. The
party that is supposed to send a message plays the role of the first party
in Eq. (7.48) and the other parties play the other roles. Suppose that the
current message in 11 is to be sent by Party j. Then the functions h, f
and the inputs a, B2, ..., Bm, for the functionality of Eq. (7.48), are set as
follows (analogously to their setting in Construction 7.4.23):

e The string a is set to equal (a1, sz, az), where ay = (27, p7) is the
query and answer of Party j in the oracle call that it initiated in the
input-commitment phase, as = (r7,w’) is the answer that Party j ob-
tained in the oracle call that it initiated in the coin-generation phase,
and s is the sequence of messages that Party j obtained so far in
the emulation of II. FEach (3; equals (3 def (7,87, a3), where 47 and
87 are the answers that the other parties obtained in the same oracle
calls in the first two phases (and a3 is as above).

e The function h is defined such that h((vy, s1), (v, 82),v3) equals (C, (v1), Cs, (v2),v3).
Indeed, it holds that h(ay, a2, a3) = 3.
o The function f equals the computation that determines the message

to be sent in I1. Note that this message is computable in polynomial-
time from the party’s input (denoted z? and being part of ay), its
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random-tape (denoted r/ and being part of ay), and the messages it
has received so far (i.e., as). Indeed, it holds that f(ai, s, as) is the
message that Party j should send in II.

Recall that each party that play a receiver in the current oracle call, obtains
either f(a) or (h(a), f(«)). It treats the second case as if the sending party
has aborted, which is also possible per se.

Aborting: In case any of the functionalities invoked in any of the above phases
terminates in an abort state, the parties obtaining this indication abort the
evecution, and sets their output to L. Otherwise, outputs are as follows.

Outputs: At the end of the emulation phase, each party holds the corresponding
output of the party in protocol II. The party just locally outputs this value.

We note that both the compiler and the protocols produced by it are efficient,
and that their dependence on m is polynomially bounded.

7.5.4.7 Analysis of the compiler

The effect of Construction 7.5.32 is analyzed analogously to the effect of Con-
struction 7.4.23. In view of this similarity we combine the two main steps (in
the analysis), and state only the end result:

Theorem 7.5.33 (Restating half of Theorem 7.5.15): Suppose that enhanced
trapdoor permutation exist. Then any m-ary functionality can be securely com-
putable in the first malicious model (using only point-to-point communication
lines), provided that a public-key infrastructure exists in the network. Further-
more, security holds even if the adversary can read all communication among
honest parties.

Proof Sketch: We start by noting that the definition of the augmented semi-
honest model (i.e., Definition 7.4.24) applies without any change to the multi-
party context (also in case the communication is via a single broadcast channel).
Recall that the augmented semi-honest model allows parties to enter the protocol
with modified inputs (rather than the original ones), and abort the execution
at any point in time. We stress that in the multi-party augmented semi-honest
model, an adversary controls all non-honest parties and coordinates their input
modifications and abort decisions. As in the two-party case, other than these
non-proper actions, the non-honest parties follow the protocol (as in the semi-
honest model).

The first significant part of the proof is showing that the compiler of Con-
struction 7.5.32 transforms any protocol II into a protocol II' such that execu-
tions of IT" in the first malicious real model can be emulated by executions of IT in
the augmented semi-honest model. This part is analogous to Proposition 7.4.25,
and its proof is analogous to the proof presented in the two-party case. That
is, we transform any real-model adversary (A,I) for II' into a corresponding
augmented semi-honest adversary, (B, I), for II. The construction of B out of A
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in analogous to the construction of Bpg7 out of Apa7 (carried out in the proof
of Proposition 7.4.25): Specifically, B modifies inputs according to the queries
that A makes in the input-committing phase, uniformly selects random-tape (in
accordance to the coin-generation phase), and aborts in case the emulated ma-
chine does so. Thus, B, which is an augmented semi-honest adversary, emulates
the malicious adversary A.

The second significant part of the proof is showing that canonical protocols
(as provided by Theorem 7.5.14) have the property that their execution in the
augmented semi-honest model can be emulated in the (first) malicious ideal-
model of Definition 7.5.2. This part is analogous to Proposition 7.4.27, and its
proof is analogous to the proof presented in the two-party case.

Thus, given any m-ary functionality f, we first (use Theorem 7.5.14 to) ob-
tain a canonical protocol IT that privately computes f. Combining the above two
parts, we conclude that when feeding II to the compiler of Construction 7.5.32,
the result is an oracle-aided protocol II' such that executions of II' in the (first)
malicious real-model can be emulated in the ideal model of Definition 7.5.2.
Thus, I’ securely computes f in the first malicious model.

We are almost done, but there are two relatively minor issues to address.
First, II' is an oracle-aided protocol rather than an ordinary one. However,
an ordinary protocol that securely computes f can be derived by using secure
implementations of the oracles used by II' (as provided by Propositions 7.5.27,
7.5.30 and 7.5.31). Second, II' operates in the broadcast-channel communica-
tion model, whereas we claimed a protocol in the point-to-point communication
model. This gap is bridged by using the post-compiler (i.e., Proposition 7.5.19).

7.5.5 The second complier — Effectively Preventing Abort

We now show how to transform any protocol for securely computing some func-
tionality in the first malicious model into a protocol that securely computes the
same functionality in the second malicious model. We stress that again all com-
munication, both in the input protocol as well as in the one resulting from the
compilation, is conducted by posting messages on a single broadcast channel.
The current compiler has little to do with anything done in the two-party
case. The only similarity is at a technical level; that is, in using a secure imple-
mentation of the authenticated computation functionality. The main novelty is
in the use of a new ingredient, called Verifiable Secret Sharing (VSS).
Interestingly, we use implementations of the authenticated computation func-
tionality (of Eq. (7.48)) and of VSS that are (“only”) secure in the first malicious
model. It is what we add on top of these implementations that makes the result-
ing protocol secure in the second malicious model. Following is a high-level de-
scription of the multi-party protocols generated by the current compiler. Recall
that the input to the compiler is a protocol secure in the first malicious model,
and so the random-tape and actions mentioned below refer to this protocol.%?

65 In our application, we feed the current compiler with a protocol generated by the first
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The sharing phase: Each party shares its input and random-tape with all the
parties such that any strict majority of parties can retrieve their value,
whereas no minority group can obtain any knowledge of these values. This
is done by using Verifiable Secret Sharing (VSS).

Intuitively, the malicious parties (which are in strict minority) are effec-
tively prevented from aborting the protocol by the following conventions:

e If a party aborts the execution prior to completion of the sharing
phase, then the honest parties (which are in majority) will set its
input and random-tape to some default value, and will carry out the
execution (“on its behalf”).

e If a party aborts the execution after the completion of the sharing
phase, then the honest (majority) parties will reconstruct its input
and random-tape, and will carry out the execution (“on its behalf”).
The ability of the majority parties to reconstruct the party’s input
and random-tape relies on the properties of VSS.

The fact that communication is conducted over a broadcast channel and
the abovementioned conventions guarantee that the (honest) majority par-
ties will always be in consensus as to which parties have aborted (and what
messages were sent).

Protocol emulation phase: The parties emulate the execution of the original pro-
tocol with respect to the input and random-tapes shared in the first phase.
This will be done using a secure (in the first malicious model) implemen-
tation of the authenticated-computation functionality of Eq. (7.48).

We start by defining and implementing the only new tool needed; that is, Veri-
fiable Secret Sharing.

7.5.5.1 Verifiable Secret Sharing

Loosely speaking, a Verifiable Secret Sharing scheme is (merely) a secure (in the
first malicious model) implementation of a secret sharing functionality. Thus,
we first define the latter functionality.

Definition 7.5.34 (secret sharing schemes): Let t < m be positive integers. A
t-out-of-m secret sharing scheme is a pair of algorithms, G, s and Ry, +, satisfying
the following conditions.

syntax: The share-generation algorithm, G, ¢, is a probabilistic mapping of secret
bits to m-sequences of shares; that is, for every o € {0,1}, the random
variable G, (o) is distributed over ({0,1}*)™. The recovering algorithm,
Ry, maps t-sequences of pairs in [m] x {0,1}* into a single bit, where
def
[m] = {1,...,m}.

compiler. Still the random-tape and protocol actions below refer to the compiled protocol, not
the the semi-honest protocol from which it was derived.
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The recovery condition: For any o € {0,1}, any sequence (s1,...,5m) in the
range of G (o), and any t-subset {i1,...,5.} C [m], it holds that

Rm,t((ila Sil)a ey (ita Sit)) =0

The secrecy condition: For any (t — 1)-subset I C [m], the distribution of the
I-components of G, (o) is independent of o. That is, for any I =
{ila "'7Z’t71} C [m]’ let g[(U) be deﬁned to equal ((i1;3i1)7 ey (itflasit—l))’
where (S1,...,5m) — Gm(0). Then, we require that for any such I the
random variables gr(0) and gr(1) are identically distributed.

Indeed, an m-out-of-m secret sharing scheme is implicit in the construction
presented in Section 7.5.2: To share a bit o, one just generates m random bits
that sum-up to o (mod 2). Efficient t-out-of-m secret sharing schemes do exists
for any value of t < m. The most popular one, which uses low-degree polynomials
over finite fields, is presented next.

Construction 7.5.35 (Shamir’s t-out-of-m secret sharing scheme): Find the
smallest prime number, denoted p, that is bigger than m, and consider arith-
metic over the finite field GF(p).°® The share generating algorithm consists of
uniformly selecting a degree t — 1 polynomial over GF(p) with free term equal
to o, and setting the it" share to be the value of this polynomial at i. The re-
covering algorithm consists of finding (by interpolation) the unique degree t — 1
polynomial that fits the given values, and outputting its free term.

Construction 7.5.35 is analyzed in Exercise 17. Getting back to our subject
matter, we derive the basic definition of verifiable secret sharing.

Definition 7.5.36 (Verifiable Secret Sharing, basic version): A verifiable secret
sharing (VSS) scheme with parameters (m,t) is an m-party protocol that imple-
ments (i.e., securely computes in the first malicious model) the share-generation
functionality of some t-out-of-m secret sharing scheme. That is, let Gy, be a
share-generation algorithm of some t-out-of-m secret sharing scheme. Then, the
corresponding share-generation functionality that the VSS securely computes (in
the first malicious model) is

((0,1™),1",..,1™) > G (o) (7.53)

Actually, it will be more convenient to use an augmented notion of Verifiable
Secret Sharing. The augmentation provides each party with an auxiliary input
that determines the secret o (as in a commitment scheme), and allows Party 1 to
later conduct authenticated computations relative to the auxiliary inputs given
to the other parties. Furthermore, each party is provided with a certificate of
the validity of its own share (relative to the auxiliary inputs given to the other
parties). We seize the opportunity to generalize the definition such that it refers

66 By the Fundamental Theorem of Number Theory, p < 2m. Thus, p can be found by
merely (brute-force) factoring all integers between m + 1 and 2m.
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to the sharing of strings (of a-priori known length) rather than to the sharing
of single bits. From this point on, when we say Verifiable Secret Sharing (or
VSS), we mean the notion defined next (rather the the weaker form in Defini-
tion 7.5.36).

Definition 7.5.37 (Verifiable Secret Sharing, revised): Given a share-generation

algorithm G, + of some t-out-of-m secret sharing scheme, we extend it to handle

. . . def
n-bit long strings; that is, Gm (01, ...,00) = (51,-..,Sm), where s; = S;1 - Sin

and (51,5, 8m,;) — Gm(o;) for every i = 1,...,m and j = 1,...,n. Sup-
pose that G, (@) € ({0,1}0eD)y™ “and let C be a commitment scheme, and C
be as in Construction 7.5.28. Consider the corresponding (augmented) share-
generation functionality

(aal‘ala"'al‘al) = ((Eaﬁ)7(527p276)7"'7(5m7pm76)) (754)
where 5 % (8150, 8m) — Gut(@), (7.55)
_ def 2(la])?
is uniformly distributed,
and ¢ (C,,(s1),...,C,, (5m))- (7.57)

Then any m-party protocol that securely computes Eq. (7.54)—(7.57) in the first
malicious model is called a verifiable secret sharing (VSS) scheme with parameters
(m, t).

Observe that each party may demonstrate (to each other party) the validity of
its “primary” share (i.e., the s;) with respect to the globally held €, by revealing
the corresponding p;. We shall be particularly interested in VSS schemes with
parameters (m, [m/2]); i.e., t = [m/2]. The reason for this focus is that we
assume throughout this section that the malicious parties are in strict minority.
Thus, by the secrecy requirement, setting ¢ > m/2 guarantees that the (less than
m/2) dishonest parties are not able to obtain any information about the secret
from their shares. On the other hand, by the recovery requirement, setting
t < [m/2] guarantees that the (more than m/2) honest parties are able to
efficiently recover the secret from their shares. Thus, in the sequel, whenever
we mention VSS without specifying the parameters, we mean the VSS with
parameters (m, [m/2]), where m is understood from the context.

Clearly, by Theorem 7.5.33, Verifiable Secret Sharing schemes exist, provided
that enhanced trapdoor permutation exist. Actually, to establish this result we
merely need to apply the first compiler to the straightforward protocol that
privately computes Eq. (7.54)—(7.57); see Exercise 10. For sake of subsequent
reference we state the latter result.

Proposition 7.5.38 Suppose that trapdoor permutation exist. Then, for every
t < m, there exists a verifiable secret sharing scheme with parameters (m,t).

Note that the assumption used in Proposition 7.5.38 is only the one needed for
the operation of the first compiler, which amounts to the assumption needed for
implementing the functionalities used in Construction 7.5.32.
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7.5.5.2 The compiler itself

We are now ready to present the second compiler. Recall that we are given a
multi-party protocol, II, that is secure the first malicious model, and we want to
generate an “equivalent” protocol IT' for the second malicious model. Also recall
that both the given protocol and the one generated by the compiler operate in
a communication model consisting of a single broadcast channel. Finally, we
note that the generated protocol uses subprotocols that are secure with respect
to the first malicious model (and yet the entire protocol will be analyzed with
respect to the second malicious model).%”

Construction 7.5.39 (The second multi-party compiler): Let ¢ Lef [m/2].
Given an m-party protocol, II, for the first malicious model, the compiler pro-
duces the following m-party protocol, denoted II', for the second malicious model.

Inputs: Party i gets input x* € {0,1}".

Random-tape: Party i uniformly selects a random-tape, denoted r* € {0,1}¢(™),
for the emulation of I1.

The sharing phase: Each party shares its input and random-tape with all the par-
ties, using a Verifiable Secret Sharing scheme. That is, for i = 1,....m,
Party i invokes the VSS scheme playing the first party with input z'r?,
while the other parties play the roles of the other parties in Eq. (7.54)—
(7.57) with input 17+,

Regarding the i“_‘ VSS invocation,’® we denote the output that Party i
obtains by (El,ﬁ’),_and the outputs that each other Party j obtains by
(s1,05,2), where 5 = (s}, %) = Grua(@'1), B = (e ply) i uni-

formly distributed, ¢ = (ci,...,ct,) and ci, = 61’1 (si). Note that either

all honest parties get the correct outcome or they all detect that Party i is
cheating and set their outcome to L.

Handling Abort: If Party i aborts the it" VSS invocation, which means that
all honest parties received the outcome L, then the honest parties set its
input and random-tape to some default value; that is, they set their record
of the input and random-tape of Party ¢ (which are otherwise unknown to

67 For this reason, we cannot utilize a composition theorem for the second malicious model.
We comment that such a composition theorem would anyhow be more restricted than Theo-
rem 7.5.21. One issue is that the second malicious model depends on a bound on the fraction
of dishonest parties. Thus, if the m-party oracle-aided protocol invokes a k-ary functionality
with k& < m then the bound (on the fraction of dishonest parties) may be violated in the
sub-protocol that replaces the latter. For this reason, when dealing with the second malicious
model, one should confine the treatment to m-party oracle-aided protocols that use m-ary
(rather than k-ary) functionalities.

68 Indeed this notation is slightly inconsistent with the one used in Definition 7.5.37. Here
Party ¢ plays the first party in the VSS, and being consistent with Definition 7.5.37 would
required calling its share sli rather than sz Consequently, the share of Party j in this invocation
would have been denoted siri(j),

However, such notation would have made our exposition more cumbersome.

where 7;(7) is the role that Party j plays in this invocation.
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them) to some default value. Note that by definition, the VSS scheme is
secure in the first malicious model, and thus all honest parties agree on
whether or not the VSS initiator (i.e., Party i) has aborted.%®

We stress that in case Party i aborts the i'" VSS invocation, its (default)
input and random-tape become known to all parties. Since the entire exe-
cution takes place over a broadcast channel, each party can determine by
itself what messages Party i should send in a corresponding execution of
II. Thus, there is actually no need to send actual messages on behalf of
Party 1.

Protocol emulation phase: The parties emulate the execution of the protocol I1
with respect to the input and random-tapes shared in the first phase. This
will be done by using a secure (in the first malicious model) implementation
of the authenticated-computation functionality of Eq. (7.48).

That is, Party i, which is supposed to send a message in II, plays the
role of the first party in Eq. (7.48) and the other parties play the other
roles. The inputs «, Bs, ..., Bm and the functions h, f, for the functionality
of Eq. (7.48), are set as follows:

e The string a = (a1, az) is set such that a; = (z'r',5,7") and
equals the concatenation of all previous messages sent in the emula-
tion of previous steps of I1. Recall that (x'r?, (3',p")) is the input-
output pair of Party i in the it" invocation of the VSS.

e The string B; equals (3 def (¢',az), where ay is as above. Recall that
T is part of the output that each other party got in the i invocation
of the VSS.

o The function h is defined such that h((z, (51, .-, $m), (71, -, Tm)),7) =
((Cri(81), -, Cr,, (8m)), 7). Indeed, h(ay,az) = B.

e The function f is set to be the computation that determines the mes-
sage to be sent in II. Note that this message is computable in polynomial-
time from the party’s input (denoted x* above), its random-tape (de-
noted 1), and the previous messages posted so far (i.e., as).

As a result of the execution of the authenticated computation subprotocol,
each party either gets an indication that Party ¢ aborted or determines the
message that Party i should have sent in a corresponding execution of II.
By definition of security in the first malicious model, all honest parties
agree on whether or Party i aborted and in case it did not abort they also
agree on the message it sent.

Handling Abort: If a party aborts when playing the role of the first party
in an invocation of Eq. (7.48) during the emulation phase then the major-
ity parties recover its (actual) input and random-tape, and carry out the

69 This is reflected in the corresponding ideal-model adversary that makes all honest parties
output either L or the same valid share.
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execution on its behalf. Specifically, if Party j detects that Party i has
aborted then it broadcasts the pair (sj—, pz) that it has obtained in the shar-
ing phase, and each party uses the correctly decomitted shares (i.e., the
sj-’s) to reconstruct x'rt.

We note that the completion of the sharing phase (and the definition of
VSS) guarantee that the majority parties hold shares that yield the input
and random-tape of any party. Furthermore, the correct shares are verifi-
able by each of the other parties, and so reconstruction of the initial secret
is efficiently implementable whenever a majority of parties wishes to do so.

Outputs: At the end of the emulation phase, each party holds the corresponding
output of the party in protocol I1. The party just locally outputs this value.

Note that the VSS scheme is implicitly used as a commitment scheme for the
value of z'r; that is, ¢ = (ct, ..., ¢!, ) serves as a commitment to the sequence of
shares (s}, ..., s?,), which in turn determine z‘r’. Actually, the main steps in the
emulation phase only refer to this aspect of the VSS, whereas only the abort-
handling procedure refers to the additional aspects (e.g., the fact that Party j
holds the value of the share s% that is determined by the commitment ¢ as well

as the corresponding decommitment information).

Comments: We stress that when one applies the two (multi-party) compilers
one after the other, the random-tape to which the second compiler refers is the
one of the protocol for the first malicious model (and not the one of the original
protocol for the semi-honest model). Applying the two compilers one after the
other is indeed wasteful. For example, we enforce proper emulation (via the
authenticated-computation functionality) twice; first with respect to the semi-
honest protocol, and next with respect to the protocol resulting from the first
compiler. Indeed, more efficient protocols for the second malicious model could
be derived by omitting the authenticated-computation protocols generated by
the first compiler (and have the second compiler refer to the actions of the semi-
honest protocol). Similarly, one can omit the input-commit phase in the first
compiler. In general, feeding the second compiler with protocols that are secure
in the first malicious model is an overkill; see further discussion subsequent to
Proposition 7.5.42.

7.5.5.3 Analysis of the compiler

Our aim is to establish the following:

Theorem 7.5.40 (Restating the second half of Theorem 7.5.15): Suppose that
enhanced trapdoor permutation exist. Then any m-ary functionality can be se-
curely computable in the second malicious model (using only point-to-point com-
munication lines), provided that a public-key infrastructure exists in the network.
Furthermore, security holds even if the adversary can read all communication
among honest parties.
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As will be shown below, given a protocol as guaranteed by Theorem 7.5.33,
the second compiler produces a protocol that securely computes (in the second
malicious model) the same functionality. Thus, for any functionality f, the
compiler transforms protocols for securely computing f in the first malicious
model into protocols for securely computing f in the second malicious model.
This suffices to establish Theorem 7.5.40, yet it does not say what the compiler
does when given an arbitrary protocol (i.e., one not provided by Theorem 7.5.33).
In order to analyze the action of the second compiler, in general, we introduce
the following model that is a hybrid of the semi-honest and the two malicious
models. We call this new model, the second-augmented semi-honest model.
Unlike the (first) augmented semi-honest model (used in the analysis of the first
compiler (see proof of Theorem 7.5.33)), the new model allows a dishonest party
to select its random-tape arbitrarily, but does not allow it to abort.

Definition 7.5.41 (the second-augmented semi-honest model): Let I be a multi-
party protocol. A coordinated strategy for parties I is admissible as a second-
augmented semi-honest behavior (w.r.t II) if the following holds.

Entering the execution: Depending on their initial inputs and in coordination
with each other, the parties in I may enter the execution of II with any
input of their choice.

Selection of random-tape: Depending on the above and in coordination with each
other, the parties in I may arbitrarily select their random-tapes for the
execution of 11.

Here and in the previous step, the parties in I may employ randomized
procedures, but the randomization in their procedures is not to be confused
with the random-tapes for I1 selected in the current step.

Proper message transmission: In each step of II, depending on its view so far,
the designated (by II) party sends a message as instructed by II. We stress
that the message is computed as Il instructs based on the party’s (possibly
modified) input, its (possibly non-uniformly selected) random-tape, and
the messages received so far, where the input and random-tape are as set
in the previous two steps.

Output: At the end of the interaction, the parties in I produce outputs depending
on their entire view of the interaction. We stress that the view contains
their initial inputs and all messages they received.

Intuitively, the compiler transforms any protocol II into a protocol II' so that
executions of IT" in the second malicious model correspond to executions of II in
the second augmented semi-honest model. That is:

Proposition 7.5.42 (general analysis of the second multi-party compiler): Let
IT" be the m-party protocol produced by the compiler of Construction 7.5.39, when
given the protocol I1. Then, for every probabilistic polynomial-time adversary
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A for the second malicious model there exists a probabilistic polynomial-time
strategy that is admissible (w.r.t II) in the second-augmented semi-honest model
(of Definition 7.5.41) such that for every I C [m] with |I| < m/2

{REALH,I,B(Z) (f)}f,z é {REALHI7[7A(Z) (f)}57z

Proposition 7.5.42 can be viewed as asserting that if I is secure in the second-
augmented semi-honest model then II' is secure in the second malicious model,
where by the former term we mean that for every real-model adversary B that is
admissible (w.r.t II) in the second-augmented semi-honest model there exists an
ideal-model adversary C as per Definition 7.5.4 such that {IDEAL%;C(Z)(E) Yz- =
{REALp 1,B(:)(T)}z,. (for every I). Proposition 7.5.42 will be applied to proto-
cols that securely compute a functionality in the first malicious model. As we
shall see below, for such protocols, the second augmented semi-honest model
(of Definition 7.5.41) can be emulated by the second ideal malicious model (of
Definition 7.5.4). Thus, Theorem 7.5.40 will follow. We start by establishing
Proposition 7.5.42.

Proof Sketch: Given a real-model adversary A (for II'), we present a cor-
responding adversary B that is admissible w.r.t II for the second augmented
semi-honest model. We stress two points. First, whereas A may abort some
parties, the adversary B may not do so (as per Definition 7.5.41). Second, we
may assume that the number of parties controlled by A (and thus by B) is less
than m/2 (because nothing is required otherwise).

Machine B will use A as well as the ideal-model adversaries derived (as per
Definition 7.5.3) from the behavior of A in the various subprotocols invoked
by II'. We stress that these ideal-model adversaries are of the first malicious
model. Furthermore, machine B will also emulate the behavior of the trusted
party in these ideal-model emulations (without communicating with any trusted
party; there is no trusted party in the augmented semi-honest model). Thus, the
following description contains an implicit special-purpose composition theorem
(in which subprotocols that are secure in the first malicious model are used to
implement the oracles of an oracle-aided protocol that is secure in the second
malicious model).

Entering the execution and selecting a random-tape: B invokes A (on the very
input supplied to it), and decides with what input and random-tape to
enter the execution of II. Towards this end, machine B emulates the
execution of the sharing phase of IT', using A (as subroutine). Machine B
supplies A with the messages it expects to see, thus emulating the honest
parties in II', and obtains the messages sent by the parties in I (i.e., those
controlled by A). We stress that this activity is internal to B, and involves
no real interaction (of B in II).

Specifically, B emulates the executions of the VSS protocol, in attempt
to obtain the values that the parties in I share with all parties. The
emulation of each such VSS-execution is done by using the ideal-model
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adversary derived from (the residual real-model malicious adversary) A.
We stress that in accordance with the definition of VSS (i.e., security in
the first malicious model), the ideal-model adversary derived from (the
residual) A is in the first malicious model, and may abort some parties.
Note that (by Definitions 7.5.3 and 7.5.2) this may happen only if the
initiator of the VSS is dishonest. In case the execution initiated by some
party aborts, its input and random-tape are set to the default value (as in
the corresponding abort-handling of II'). Details follow.

e In an execution of VSS initiated by an honest party (i.e., in which

an honest party plays the role of the first party in VSS), machine B
obtains the corresponding augmented shares (available to I).7% Ma-
chine B will use an arbitrary value, say 071" as the first party’s
input for the current emulation of the VSS (because the real value is
unknown to B). In emulating the VSS, machine B will use the ideal-
model adversary, denoted A’, that emulates the behavior of A in this
VSS (in II'), when given the history so far. We stress that since the
initiating party of the VSS is honest, this ideal-model adversary (i.e.,
A'") cannot abort any party.
Invoking the ideal-model adversary A’, and emulating both the honest
(ideal-model) parties and the trusted party, machine B obtains the
outputs of all parties (i.e., and in particular the output of the initiat-
ing party). That is, machine B emulates the sharing of value onte(n)
by the initiating party, and emulates the response of the trusted oracle
(i.e., by setting 5 « Gm7t(0”+c(”)), uniformly selecting p of adequate
length, and computing the outputs as in Eq. (7.54) —(7.57)).

e In an execution of VSS initiated by a party in I (i.e., a dishonest
party plays the role of the first party in VSS), machine B obtains the
corresponding input and random-tape of the initiator as well as the
randomization used in the commitment to it. As before, machines B
uses the derived ideal-model adversary, denoted A’, to emulate the
execution of the VSS. Recall that A’ emulates the behavior of A in
the corresponding execution of the VSS.

Suppose that we are currently emulating the instance of VSS initiated
by Party i, where i € I. Then, B invokes A’ on input z'r® (i.e.,
the initial input and random-tape of Party i), and emulating both
the honest (ideal-model) parties and the trusted party, machine B
obtains the outputs of all parties (including the commitment handed
to parties not in I'). A key point is that machine B has obtained, while
emulating the trusted party, the input handed by A’ to the trusted
party. This value is recorded as the modified input and random-tape
of Party i.

In case the emulated machine did not abort the initiator (i.e., Party 7),
machine B records the above value as well as the randomization used

70 These will be used in the emulation of future message-transmission steps.
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by VSS in committing to it. Otherwise (i.e., A aborts Party ¢ in
the invocation of VSS initiated by it), the input and random-tape
of Party ¢ are set to the default value (as in II'). In either case, B
concatenates the emulation of the VSS to the history of the execution
of A.

Thus, inputs and random-tapes are determined for all parties in I, depend-
ing only on their initial inputs. (All this is done before entering the actual
execution of II.) Furthermore, the view of machine A in the sharing phase
of IT" has been emulated, and the randomizations used in the sharing of all
values have been recorded by B. (It suffices to record the randomization
used by honest parties, and the commitments made by dishonest ones;
these will be used in the emulation of the message-transmission steps of
Ir'.)

Subsequent steps — message transmission: Machine B now enters the actual ex-
ecution of IT (with inputs and random-tapes for I-parties as determined
above). It proceeds in this real execution of II, along with emulating the
corresponding executions of the authenticated-computation of Eq. (7.48)
(which are invoked in IT").

In a message-transmission step by an honest party in II, machine B obtains
from this honest party (in the real execution of IT) a message, and emulates
an execution of the authenticated-computation protocol resulting in this
message as output. In a message-transmission step by dishonest party in II,
machine B computes the message to be sent as instructed by II, based on
the input and random-tape determined above, and the messages obtained
so far (in II). In addition, B emulates an execution of the authenticated-
computation protocol resulting in this message as output. The emulation
of each execution of the authenticated-computation protocol, which se-
curely computes (in the first malicious model) the functionality Eq. (7.48),
is done by using the malicious ideal-model adversary derived from A. The
fact that in these emulations machine B also emulates the trusted party
allows it to set the outcome of the authenticated-computation protocol to
fit the message being delivered. We stress that the fact that a (dishonest)
party may abort some parties in these emulations of II" does not result in
aborting the real execution of IT (and is merely reflected in the transcript
of these emulations). Details follow.

e In a message-transmission step by a honest party in II, machine B
first obtains from this party (in the real execution of II) a message,
denoted msg. This completes all that is done in this step with respect
to communication in II.

Next, machine B proceeds in emulating the corresponding message-
transmission subprotocol of IT'. Firstly, machine B derives the ideal-
model adversary, denoted A’, which corresponds to the behavior of
A in the corresponding execution of the authenticated-computation
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subprotocol (executed by protocol IT'). Invoking the ideal-model ad-
versary A, and emulating both the honest (ideal-model) parties and
the trusted party, machine B sets the trusted-party reply to equal
msg. When emulating the initiator, machine B provides the trusted
party with the same dummy values for the input and random-tape (as
in the emulation of the sharing phase in II') but with correct values
for the publicly available values (i.e., the previous message posted in
the execution of II').

The emulation is carried out so to produce the output msg, which does
not necessarily equal the output of the authenticated-computation
functionality of Eq. (7.48) on the corresponding inputs. However, the
machine A’ used in the emulation cannot detect that we are cheat-
ing because the inputs that A’ gets (i.e., commitments to dummy
values) are computationally indistinguishable from the correct inputs
(i.e., commitments to values that correspond to the unknown input
and random-tape of the corresponding honest party). Finally, B con-
catenates the emulation of the authenticated-computation protocol
to the history of the execution of A. (Note that since the initiator
of the authenticated-computation subprotocol is honest, abort is not
possible here, by definition of the first ideal model.)

e In a message-transmission step by a dishonest party in II, machine B
first computes the message to be sent according to II. This message
is computed based on the input and random-tape determined (and
recorded) in the emulation of the sharing phase of II', and the mes-
sages received so far (in the execution of II). Denote the resulting
message by msg. Machine B completes the execution of this step in
IT by posting msg on the broadcast channel.

Next, machine B proceeds in emulating the corresponding authenticated-
computation subprotocol of II'. Firstly, machine B derives the ideal-
model adversary, denoted A’. Invoking A’ and emulating both the
honest (ideal-model) parties and the trusted party, machine B pro-
duces an emulation of the corresponding execution of the authenticated-
computation protocol. The input used by B in this emulation equals
the value recorded in the emulation of (the corresponding VSS in) the
sharing phase of IT'.

Note that this emulation (of the the corresponding authenticated-
computation subprotocol of IT') either produces the very same mes-
sage msg or aborts the sender. In the latter case, we emulate the
abort-handling procedure of II'. In both cases, B concatenates the
emulation of the authenticated-computation protocol (and possibly
also the abort-handling procedure) to the history of the execution of

A.

Note that each message-transmission step is implemented in polynomial-
time, and each message posted is computed exactly as instructed by II.
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(We stress again that the emulation of an aborting event in II' does not
result in aborting the execution of any party in II.)

Output: Machine B just outputs whatever machine A outputs given the execu-
tion history composed (or actually emulated) as above.

Clearly, machine B (described above) implements a second-augmented semi-
honest behavior with respect to II. It is left to show that

{REAL[ 1 A(T)}7 = {REAL 1 5(T)}7 (7.58)

There are two differences between the two ensembles referred to in Eq. (7.58):

1. In the first distribution (i.e., REALy: (4, 1)(T)), secure (in first malicious
model) protocols implementing VSS and authenticated-computation (of
Eq. (7.54)—(7.57) and Eq. (7.48), respectively) are executed; whereas in
the second distribution (i.e., REALy (p, 1)(T)) these executions are emulated
using the corresponding ideal-model adversaries.

2. The emulation of Eq. (7.48) in REALy (g 1)(Z) is performed with a poten-
tially wrong input; specifically, with commitments to dummy values rather
than to the correct values.

However, these differences are computationally undetectable. [l

Proof of Theorem 7.5.40: Given an m-ary functionality f, let II be an m-
party protocol, as guaranteed by Theorem 7.5.33, for securely computing f in
the first malicious model. (Actually, we merely need a protocol operating in the
broadcast-channel (rather than point-to-point) communication-model.) We now
apply the compiler of Construction 7.5.39 to II and derive a protocol II'. By
Proposition 7.5.42, for any efficient real-model adversary A (for II') there exists
an efficient admissible behavior (w.r.t II) in the second-augmented semi-honest
model, denoted B, such that for every I C [m] with |I]| < m/2

{REALH/7[7A(E)}5 é {REALHJ,B(E)}; (759)

One key observation is that B constitutes a benign form of a real-model ad-
versarial behavior w.r.t II (which is certainly allowed by the first malicious
model). Specifically, the malicious behavior of B amounts to replacing inputs
and random-tapes arbitrarily, and executing II with these replaced values and
without aborting any party. Thus, by the security of II (in the first malicious
model), the real-model adversary B can be emulated by an ideal-model ad-
versary C that operates in the first ideal-model (and so may potentially abort
parties). However, since B does not abort parties, then neither does C (except
with negligible probability). It follows that C' is essentially an admissible ideal-
model adversary for the second malicious party, or, more accurately, C behaves
in a way that is statistically close to a second ideal-model adversary C’ (which
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behaves as C except that it never aborts). Combining Eq. (7.59) with the latter
observations, we obtain (for every |I| < m/2)

{REALN 1 B(T)}z
{ipBALY) (7))}

{IDEAL;?) o @)}z

{rREALI 1,4 (%)}

llle lle
&l

[]e

We are almost done. The only problem is that IT' operates in the communication
model of a single broadcast channel. As in the proof of Theorem 7.5.33, this
problem is resolved by applying the post-compiler (i.e., Proposition 7.5.19).

7.6 * The Private Channel Model and Perfect
Security

In this section we present an alternative treatment of general secure multi-party
protocols. Specifically, we assume the existence of private channels between each
pair of parties, and present protocols that are “perfectly secure” (i.e., perfectly
emulate a trusted party) and do so without relying on any intractability as-
sumptions. However, security holds only in case the honest parties are in strict
majority, and thus the current treatment is not meaningful for the two-party
case. Let us summarize the Pros and Cons of the current treatment in compar-
ison to the treatment offered in Section 7.5.

PROS: Abstracting away computational issues. In particular:
1. Making no intractability assumptions.
2. Emulating a trusted party in a perfect sense (rather than in a computationally-
indistinguishable sense).

CONS: Limited applicability. In particular:

1. A strict majority of honest parties is required (even for withstanding
semi-honest adversaries). Thus, inapplicable to the two-party case.
2. Perfectly-private channels are postulated to exist.

Again, our ultimate goal is to design protocols that withstand any feasible ad-
versarial behavior, and again we proceed in two steps: first dealing with the
semi-honest model and next with the malicious model. However, here, protocols
for the malicious model are derived by extending the ideas that underlie the
semi-honest protocols, rather than by compiling the latter.

7.6.1 Definitions

We consider both the semi-honest and the malicious models, where in both cases
we refer to explicit bounds on the number of dishonest parties. Furthermore, in
both cases, we consider a communication network consisting of point-to-point
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channels that cannot be wire-taped by the adversary. Finally, in both models,
we require the relevant probability ensembles to be statistically indistinguishable
rather than (only) computationally indistinguishable.

Security in the semi-honest model. The following definition is derived
from Definition 7.5.1 by restricting the number of dishonest parties and strength-
ening the indistinguishability requirement.

Definition 7.6.1 (¢-privacy of m-party protocols): Let f be an m-ary function-
ality, and 11 be an m-party protocol for computing f. As in Definition 7.5.1, we
denote the joint view of the parties in I C [m] by VIEWX(T), and the correspond-
ing output sequence of all parties by oUTPUT!(T). We say that II t-privately
computes f if there exist polynomial-time algorithm, denoted S, such that for
every I C [m] of cardinality at most t it holds that

{08, 7y, f1(T)), f(T))}ze{o,1}+)m

{(viEW} (Z), ouTPUT(Z)) }ze({0,13+)m (7.60)

[]e

where T; and f; denote projections of the corresponding m-ary sequence on the
coordinates in I. In case the ensembles in Eq. (7.60) are identically distributed,
we say that the emulation is perfect.

We stress that Eq. (7.60) requires statistical indistinguishability, whereas the
analogue requirement in Definition 7.5.1 is of computational indistinguishability.
As in Definition 7.5.1, the view of parties in I does not include messages sent

among parties in I < [m] \ 1.

Security in the malicious model. Analogously, the following definition is
derived from Definition 7.5.4 by restricting the number of dishonest parties, dis-
allowing wire-tapping, and strengthening the indistinguishability requirement.
Recall that Definition 7.5.4 refers to security in the second malicious model,
which is reflected in the choice of the ideal model.

Definition 7.6.2 (t-security of m-party protocols): Let f, II, and IDEAL%}7B(Z)(E)
be exactly as in Definition 7.5.4. The real-model adversary is defined as in Defi-
nitions 7.5.8 and 7.5.4, except that here the real-model adversary A does not see
messages sent among honest parties (i.e., parties in I). We say that II t-securely
computes f if for every probabilistic polynomial-time algorithm A (representing
a real-model adversary strategy) there exists a probabilistic polynomial-time al-
gorithm B (representing an ideal-model adversary strategy) such that for every

I C [m] of cardinality at most t it holds that

{(DEALT) 4 @)}z - = {REAL 14(:) (@)}7 - (7.61)

In case the ensembles in Eq. (7.61) are identically distributed, we say that the
emulation is perfect.
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We stress that Eq. (7.61) requires statistical indistinguishability, whereas the
analogue requirement in Definition 7.5.4 is of computational indistinguishability.

7.6.2 Security in the Semi-Honest Model

The following construction of ¢-private m-party protocols, for ¢ < m/2, is a mod-
ification of the construction presented in Section 7.5.2 (which in turn generalized
the construction presented in the two-party case (i.e., Section 7.3)). Recall that
the core of these constructions is the privately-computed propagation of shares
of bits through a circuit that represents the desired computation. In the previ-
ous cases (see Sections 7.3 and 7.5.2), we used a very simple m-out-of-m secret
sharing scheme (i.e., a bit was shared by m random bits that sum-up to the
value of the secret bit). Here, we use the more sophisticated (¢ 4+ 1)-out-of-m
secret sharing scheme of Construction 7.5.35 (i.e., a bit is shared by the values
of a random degree ¢ polynomial with free-term that equals the value of the
secret bit). Thus, our focus is on propagating these types of shares through the
circuit, and on doing so via a t-private computation. Again, the heart of the
construction is performing the propagation through a single multiplication gate.

Let us clarify the above discussion by being more specific about the details.
We fix some prime p > m, and consider polynomials of degree t over GF(p).”
Recall that the value of such a polynomial at t+1 arbitrary (known) points allows
to recover the polynomial and specifically its free term. On the other hand, the
value of a random (degree t) polynomial at ¢ arbitrary (known) points does not
reveal information about the value of the free term of the polynomial. Thus,
each party will share each of its input bits with all other parties, by uniformly
selecting a random (degree t) polynomial with free-term equal the value of this
bit, and hand to Party ¢ the value of this polynomial at point .

Suppose that the parties hold the shares of two GF(p) values and wish to
derive shares of the sum of these values, where all arithmetic operations refer to
GF(p). Then, letting each party add the two shares it holds, yields the desired
shares. That is, suppose that the values « and v are shared using the (degree t)
polynomials a() and b(), such that v = a(0) and v = b(0), and Party 7 holds the
shares a; = a(¢) and b; = b(¢). Then the a; + b;’s are shares of a polynomial ¢()
that has free term u+w (i.e., letting ¢(z) = a(z)+b(z), it holds that ¢(i) = a; +b;
and ¢(0) = u+wv). Furthermore, the degree of ¢() is at most ¢t. Thus, we are able
to propagate shares through an addition gate, and we do so in a totally private
manner (because only local computations are used).

It is appealing to try to do the same in case of multiplication (rather than
addition). Indeed, the entire argument goes through, except that the corre-
sponding polynomial ¢ may have degree greater than ¢ (but not more than 2t).
Thus, we need a more sophisticated way of propagating shares through multi-
plication gates. Using the same notations (as above), we consider the following

71 Here and below, when we say a degree d polynomial we actually mean a polynomial of
degree at most d.
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(randomized) process:

Construction 7.6.3 (t-private m-party protocol for propagating shares through
a multiplication gate): Recall thatt < m/2, and so 2t < m — 1.

Input: Party i enters with (a;,b;), where a; = a(i) and b; = b(i) for degree t
polynomials a() and b().

The protocol itself proceeds as follows.
1. For every i, Party i (locally) computes ¢; «— a; - b;.

Indeed, these ¢;’s are the values of the polynomial c(z) Lef a(z)-b(z) at the
corresponding i’s, and ¢(0) = u-v. However, ¢ may have degree 2t (rather
than at most t).

2. For every i, Party i shares c¢; with all other parties. That is, Party v selects
uniformly a polynomial q; of degree t such that g;(0) = ¢;, and sends ¢;(j)
to Party j, for every j.

Motivation: Eztrapolation of the ¢;’s yields the value of ¢(0) = u-v. Below,
we will let each party perform the corresponding operation on the shares it
obtained. We will show that this will yield shares with the desired proper-
ties.

Recall that by the Extrapolation Theorem, there exist constants v1, ..., Ym
such that for every polynomial q of degree m — 1 it holds that

100) = 3> a(i) (7.62)

(Specifically, 7 = —(1)"** - (7))

3. For every j, Party j (locally) computes d; — Y 1" 7iqi(j), where 1, ...; Ym
are the extrapolation constants satisfying Eq. (7.62), and ¢;(j) is the share
that Party 7 received from Party i in Step 2.

Output: Party © exists with d;.

It is quite clear that Construction 7.6.3 yields no information about u and v
to any coalition of ¢ (or less) parties. The reason being that the only new in-
formation obtained by ¢ parties (i.e., ¢ shares of each of the other ¢;’s) yields
no information about the polynomials ¢ and b (because it yields no information
about these ¢;’s). It is also clear that every sequence of ¢ of the d;’s is uni-
formly distributed (because the values of the g¢;’s at any ¢ points are uniformly
distributed). What is less clear is that the d;’s are indeed admissible shares of
the desired value (i.e., d; = d(7) for some degree ¢ polynomial d having free term
w - v). This fact will be established next.
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Fact 7.6.4 Let the d;’s be defined as in Construction 7.6.3, and t < m/2. Then
there exist a degree t polynomial, d, such that d(0) = a(0) - b(0) and d(i) = d;
fori=1,...,m.

Proof: Consider the formal polynomial ¢(z) def > 7igi(z), where the g;’s are
the polynomials selected at Step 2. Since each g; has degree ¢, this holds also for
g. For every j = 1,...,m, by Step 3, we have d; = > viq:(j) = ¢(j), where
the second equality is due to the definition of ¢. Finally, note that

q(0) = Z%Qi(o)
= Z%‘Ci

= Z%‘ ~a(i) - b(i)

= a(0) - b(0)

where the second equality is by Step 2, the third equality is by Step 1, and the
last equality is by the Extrapolation Theorem (applied to the 2t <m — 1 degree
polynomial a(z2) - b(z)). W

Conclusion: Using Fact 7.6.4, for t < m/2, one can show (see Exercise 21)
that Construction 7.6.3 constitute a ¢-private computation of the (partial) m-ary
functionality

((a(1),b(1)), ..., (a(m),b(m))) +— (r(1),....7(m)) (7.63)

where a and b are degree ¢ polynomials and r is a uniformly distributed degree ¢
polynomial with free term equal a(0) - b(0). By a straightforward adaptation of
Construction 7.5.10 and its analysis, it follows that any m-ary functionality can
be t-privately reduced to Eq. (7.63). Finally, by using a suitable Composition
Theorem, we obtain:

Theorem 7.6.5 For t < m/2, any m-ary functionality is t-privately com-
putable. Furthermore, the emulation is perfect.

In contrast, very few m-ary functionalities are ¢-privately computable for ¢ >
m/2. In particular, the only m-ary Boolean-valued functions that are m/2-
privately computable are linear combinations of Boolean-valued functions of the
individual inputs (i.e., f(1,....;zm) = 31, ¢ fP(z;) mod 2).
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7.6.3 Security in the Malicious Model

In order to deal with the malicious model, we replace Construction 7.6.3 by a
more robust protocol that t¢-securely computes Eq. (7.63). In particular, the
protocol should withstand a possible modification of ¢ of the inputs (which in
particular may not fit the domain of the functionality as partially defined above).
This turns out to be possible, provided ¢ < m/3, and so we get:

Theorem 7.6.6 Fort < m/3, any m-ary functionality is t-securely computable.
Furthermore, the emulation is perfect.

We briefly sketch the ideas that underlie the proof of Theorem 7.6.6. Let us first
assume that ¢ < m/4, and note that Steps 2-3 of Construction 7.6.3 constitute
a t-private computation of the (partial) m-ary functionality

(c(1),...,c(m)) — (r(1),...,r(m)) (7.64)

where ¢ is a degree 2¢ polynomial and r is a uniformly distributed degree t poly-
nomial with free term equal ¢(0). We wish to t-securely compute Eq. (7.64).
Let us first consider the related task of ¢-securely computing ¢(0). Construc-
tion 7.5.10 suggests that ¢(0) can be computed by extrapolation of the ¢(7)’s,
and that extrapolation is a linear function, which (as such) can be t-privately
computed (see Exercise 18). However, when some parties are malicious, simple
extrapolation will fail. What we need is a “robust extrapolation” procedure,
which corresponds to error-correction of Reed-Solomon codes, which in turn is
a linear function of the given sequence. Specifically, this task is to find the free
term of the unique degree 2t polynomial (i.e., ¢) that fits at least m — ¢ of the
inputs (i.e., the correct ¢(¢)’s), and we can perform this task in a t-secure man-
ner. (The desired polynomial is indeed unique, because otherwise we get two
different degree 2t polynomials that agree on m — 2t > 2t + 1 of the inputs.) Fi-
nally, observe that the parties can t-securely generate shares of a random degree
t polynomial with free term equal zero. Combining the two linear computations,
one obtains the desired ¢-secure implementation of Eq. (7.64), provided that
t<m/4.

In order to handle the case m/4 <t < m/3, we have to work directly with
Eq. (7.63), rather than with Eq. (7.64); that is, we use the fact that the parties
actually hold the shares of two degree ¢ polynomials rather than only the product
of these shares (which corresponds to shares of a degree 2¢ polynomial).

7.7 Miscellaneous

7.7.1 * Three deferred issues

In this section we briefly discuss three important issues that were avoided (for
sake of simplicity) in previous sections.
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7.7.1.1 Partial fairness or on exchanging secrets

As commented in Section 7.2.3, in general, no two-party protocol can guaranteed
perfect fairness; that is, it cannot be guaranteed that one party obtains its
desired output if and only if the other party obtains its own desired output.
Intuitively, an adversary may always abort at the first possible time at which
it obtains its output, and this means that one of the parties may obtain the
desired output while the other party does not quite get its own output. In fact,
in the specific (two-party and multi-party) protocols that we have presented, this
phenomenon occurs in an extreme sense; that is, Party 1 gets the output before
any other party gains any knowledge regarding its own output. As we will show
below, the severity of this phenomenon can be reduced (but, as shown in [81],
can not be totally eliminated). That is, “partial fairness” (alas not “perfect
fairness”) may be achieved in some sense. In the rest of this section, we focus
on two-party protocols, but similar treatment can be applied to multi-party
protocols (lacking a honest majority).

A general framework for obtaining “partial fairness” consists of first com-
puting shares of both desired outputs, and next gradually revealing pieces of
these shares such that a party reveals the next piece only if its counterpart has
revealed the previous piece. The parties should be able to verify the correctness
of the revealed pieces, which can be achieved by generating also commitments
to these pieces (and asking the revealing party to also provide the corresponding
decommitment information). Thus, for a functionality f, which without loss of
generality satisfies | f1(z,y)| = |f2(x,y)|, we may proceed in two stages:

1. The parties securely compute shares of the desired outputs of f. Specifi-
cally, the parties securely compute the functionality

(z,y) = ((v1 ® 51,52,71,¢), (51,V2 D 52,72,¢))

where (v1,v2) « f(x,y), the s;’s are uniformly distributed in {0, 1}"“‘,
and ¢ < C, o, (v1,v3), for uniformly distributed r,,7, € {0, 1}|”1’”2‘2.
Note that, at this stage, each individual party obtain no knowledge of the
desired outputs, but together they hold (verifiable) secrets (i.e., the v;®s;’s
and s;’s) that yield both outputs.

2. The parties gradually exchange the secrets that they hold. That is, Party 1
reveals pieces of s in exchange for pieces of s; (revealed by Party 2), where
one piece of sy is revealed per one piece of s;. The pieces are revealed by
using a secure computation of an adequate functionality. Suppose that
Party ¢ is supposed to obtain the piece m;(s;), where m; may be a (prede-
termined) Boolean function or a randomized process. Then the parties se-
curely compute the functionality that maps ((a1, a2, p1,71), (b1, b2, p2,72))
to (71'1(()1),71’2(0/2)) if Y1 = Y2 = Cpl@pz(al D bl,az D bz) and to ()\,)\) oth-
erwise. Indeed, each party enters this secure computation with the input
it has received in the first stage; that is, Party 1 (resp., Party 2) enters

with input (v1 ® s1,82,71,¢) (resp., (s1,vs B $2,72,¢)).
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The entire approach (and in particular the gradual exchange of secrets) depends
on a satisfactory definition of a piece of a secret. Such a definition should satisfy
two properties: (1) given sufficiently many pieces of a secret, one should be
able to recover the secret, whereas (2) getting yet another piece of the secret
contributes little to the knowledge of the secret. We admit that we do not know
of a definition (of a piece of a secret) that is “uncontroversially satisfactory”,
still some suggestions (for what these pieces of information may be) seem quite
appealing. For example, consider the randomized process w that maps the n-bit
long secret oy ---0, to the m-bit long string 7 ---7, such that 7, = o; with
probability £ + ¢ and 7, = 1 — o; otherwise, for every 7, independently.”® Then,
each piece carries O(ne?) bits of information, whereas after seeing ¢ such pieces
of the secret one can guess it with success probability at least 1 — n - exp(—te?),
which for t+ = O(n/e?) means practically obtaining the secret. However, if
Party 1 knows that s; € {0™,1"} whereas Party 2 only knows that s; € {0,1}",
then 7(s1) seems more meaningful to Party 1 than 7(s2) is to Party 2. Is it really
so or is the proposed erchange actually fair? Note that things are even more
complex (than they seem), because the uncertainty of the parties is actually not
information-theoretic but rather computational.

7.7.1.2 The adaptive model

The definitions presented in Section 7.5.1 referred to adversaries, called non-
adaptive, that control a predetermine set of parties (which, of course, is not
known to the honest parties).” In this section we consider a stronger type of
adversaries, called adaptive, that can select the parties that they control as the
execution proceeds. To demonstrate the power of adaptive adversaries, consider
an m-party protocol in which Party 1 uniformly selects an m/3-subset J of the
parties, publicizes J, and shares its own input with the parties in J as a whole
(i.e., it hands each Party j in J a random r; such that Zjej r; equals its own
input). Treating m as a parameter, this protocol (for computing nothing) is
secure with respect to Definition 7.5.4, essentially because for every set I of less
than m/2 parties it holds that the probability that a random m/3-subset J is
contained in [ is exponentially vanishing in m. However, an adaptive adversary
that selects the set of parties that in controls to equal the publicized set J,
obtained the input of Party 1 without controlling it (and hence demonstrates
that the protocol is insecure with respect to adaptive adversaries).

To actually define security with respect to adaptive adversaries, we should
first define an adequate ideal model, which corresponds to what is unavoidable
when considering adaptive adversaries. The crucial point is that even in an ideal-
model execution, the adversary may select the parties that it controls adaptively,

72 An alternative randomized process m maps the n-bit string s to the random pair (r,b)
such that r is uniformly distributed in {0,1}"™ and b € {0, 1} equals the inner-product (mod 2)
of s and r with probability % + ¢ (and the complementary value otherwise). In this case, each
piece carries O(g2) bits of information about s, whereas after seeing O(n/e?) such pieces one
practically obtains s.

73 The issue of adaptivity also arises, but in a more subtle way, in case of two-party protocols.
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and based on the information it has gathered so far (i.e., the inputs of the parties
controlled so far).” We stress that once the adversary seizes control of a party,
it knows the party’s initial input (and in the real model it also knows its random-
tape and the messages that this party has received so far).

When defining the result of such an ideal-model execution, we include in it
also the set of parties that the adversary controls. The same is done when defin-
ing the result of the real-model execution. Consequently, when we require that
the ideal-model execution can emulate the real-model execution, the executions
must refer to the same (or computationally indistinguishable) sets of controlled
parties. Actually, one should also consider the order in which the controlled
parties are selected. To clarify this discussion, let use consider an extension of
Definition 7.5.4 (i.e., the second malicious model) to the adaptive model.

Definition 7.7.1 (security in the malicious adaptive model, a sketch): Let f
and II be as in Section 7.5.1, and t be a bound on the number of parties that the
adversaries are allowed to control (e.g., t < m/2).

e A t-adaptive ideal-model adversary is a randomized process that operates in
up-to t + 1 steps, which are partitioned into two main phases. In each step
of the first phase, based on the information available to it, the adversary
decides whether to seize control of another party or to move to the second
phase. In the first case, the adversary also determines the identity of the
new party to be controlled, and obtains its local input. In the second case,
the adversary invokes the trusted party, and supplies the trusted party with
inputs of its choice corresponding to the parties that it currently controls.
At this point the other parties supply the trusted party with their original in-
puts, the trusted party determines the corresponding outputs, and provides
each party with its corresponding output, where the adversary receives all
the outputs of parties that it controls.”™

In each step of the second phase, based on the information available to it,
the adversary decides whether or not to seize control of another party and
if so also determines its identity. Consequently, the adversary receives the
local input and output of this party. The joint computation in the ideal
model, under an adaptive adversary, is defined as the concatenation of
the outputs of the uncontrolled parties, the adversary’s output, and the
sequence of the parties on which the adversary gained control.

e A t-adaptive real-model adversary is a randomized strategy that corresponds
to an attack on the actual execution of the protocol. Such an adversary

74 The non-adaptive model can be viewed as a special case in which the adversary selects
the parties that it controls up-front, before learning any information regarding the current
execution. But in general (in the adaptive model), only the choice of the first controlled party
is oblivious of the execution.

75 As in Definition 7.5.4 (and unlike in Definition 7.5.2), the trusted party always answers
all parties; that is, the adversary has no option of preventing the trusted party from answering
the honest parties. Recall that here the trusted party is invoked (by the adversary) at the
time the adversary decides that it controls enough parties.
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may adaptively select up-to t parties it wishes to control, obtain their cur-
rent view of the execution (as per Definition 7.2.1), and determine their
actions. The adversary may select some parties before the actual execu-
tion starts, some parties during the actual execution, and some after it has
terminated, as long as the total number of selected parties is at most t.
The joint computation in the real model, under an adaptive adversary, is
defined as the concatenation of the outputs of the uncontrolled parties, the
adversary’s output, and the sequence of the parties on which the adversary
gained control.

e Protocol I1 for computing f is called t-adaptively secure if for every efficient
t-adaptive real-model adversary A there exists an efficient t-adaptive ideal-
model adversary B such that the joint computation in the real model under
A is computationally indistinguishable from the joint computation in the
ideal model under B.

We stress that in the real model, when the adversary seizes control of a party,
it gets the party’s view of the execution so far (where the party’s view is as
defined in Definition 7.2.1). In particular, the protocol’s possible instructions
to erase certain data does not effect the party’s view, which always contains
its input, its random-tape and all messages it has received so far. A weaker
notion of security postulates that when the adversary seizes control of a party,
it only gets the current values of the party’s local variables as determined by the
protocol (in which case the adversary does not obtain data that was explicitly
erase by an instruction of the protocol). Our definitional choice is motivated by
the fear that the past values of the party’s local variables (i.e., the party’s view
as per Definition 7.2.1) may be available somewhere on its computing system;
see analogous discussion in Section 7.2.2 (regarding the semi-honest model).

Theorem 7.7.2 (main results regarding adaptively secure protocols):

1. In the private channel model, any m-ary functionality can be computed in a
|(m — 1)/3]-adaptively secure manner. Furthermore, as in Theorem 7.6.6,
the emulation is perfect.

2. Assuming the ezistence of trapdoor permutations, any m-ary functionality
can be computed in a | (m — 1)/3]-adaptively secure manner, even when
the adversary can tap all communication lines.

Part 1 follows by extending the proof of Theorem 7.6.6; that is, by observing
that the protocols used towards proving the latter result are in fact adaptively
secure. Proving Part 2 is more problematic. In particular, a straightforward
application of the pre-compiler described in Section 7.5.3.1 seems to fail. The
source of trouble is that standard encryption schemes, which may be used to
emulate private channels over ordinary channels, effectively “commit” to the
single value that was sent (which must be consistent with the view of parties
on which the adversary later seizes control). Intuitively, the solution is to use
non-standard encryption schemes (i.e., “non-committing” ones).
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7.7.1.3 Reactive systems

Our treatment so far has focused on functionalities that represent standard
(multi-party) computations, mapping (sequences of) inputs to (sequences of)
outputs. A more general treatment may refer to (multi-party) reactive systems
that iteratively respond to inputs presented from the outside. Furthermore, the
functionalities of these reactive systems may depend on a (global) state that
they maintain and update. This global state may not be known to any individ-
ual party (but is rather the concatenation of the local states that the individual
parties maintain and update). Thus, we view (multi-party) reactive systems as

iterating the following steps (for an a-priori unbounded number of times):"®

e Parties are given inputs for the current iteration; that is, in the 7t iteration
Party ¢ is given input mE]). In addition, there is a global state: The global
state at the beginning of the j*" iteration is denoted s(), where the initial

global state is empty (i.e., s() = A).

e Depending on the current inputs and the global state, the parties are
supposed to compute outputs for the current iteration as well as update
the global state. That is, the outputs in iteration j are determined by
the :CE])’S, for all 4’s, and s(9). The new global state, sU+1), is determined

similarly (i.e., also based on z\)’s and s()).

Being an abstraction, one may think of the global state as being held by a trusted
party. In other words, reactive systems are captured by reactive functionalities
in which the trusted party maintains a state and interacts with the actual par-
ties in iterations. Indeed, in each iteration, the trusted party obtains an input
from each party, responds (as directed by the reactive functionality) with cor-
responding outputs, depending also on its state, and updates its state. Note
that the latter formulation fits a definition of an ideal model (for computing the
reactive functionality), whereas a (real-model) reactive protocol must emulate
this augmented notion of a trusted party. Thus, the reactive protocol should
emulate the iterative computation of outputs while maintaining the state of the
imaginary trusted party. Indeed, it is natural to have the real-model parties
use a secret sharing scheme in order to maintain the latter state (such that the
state remains unknown to individual parties and even to a bounded number of
dishonest parties). In fact, we need to use a verifiable secret sharing scheme
(see Section 7.5.5.1), because dishonest parties should be prevented from (ille-
gally) modifying the (system’s) state (except from the predetermined effect of
the choice of their own inputs).

The above discussion suggests that the secure implementation of reactive
functionalities can be reduced to the secure implementation of ordinary (i.e.,
non-reactive) functionalities. For example, we refer to security in the second

76 As usual, the number of iterations (and the length of the inputs) must be polynomial in
the security parameter. Furthermore, the length of the global state (at any time) must also
be polynomial in the security parameter.
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malicious model, as defined in Definition 7.5.4 (for ordinary functionalities).
That is, we postulate that a majority of the parties are honest and require that
the dishonest parties cannot (effectively) abort the execution. In such a case, we
use a verifiable secret sharing scheme in which only a majority of the pieces yields
the secret. Once a verifiable secret sharing scheme is fixed and the (system’s)
state is shared using it, the computation of each iteration of the reactive system
can be cast as an ordinary functionality. The latter maps sequences of the
form ((z1,$1), . (Tm, Sm)), where z; denotes the current input of Party i and
s; denotes its share of the current state, to the sequence ((y1,71), -, (Ym,7m)),
where y; denotes the next output of Party ¢+ and r; denotes its share of the
updated state.

We conclude that the results regarding secure computation of ordinary (i.e.,
non-reactive) computations, can be extended to reactive systems (thus obtaining
secure implementations of the latter).

7.7.2 * Concurrent Executions

A natural problem regarding cryptographic protocol is whether (or to what ex-
tent) they preserve their security when executed concurrently. The problems
that arise with respect to the preservation of zero-knowledge (see Section C.5.1)
are merely an indication to the type of problems that we may encounter. The
lesson to be learned (even from that brief discussion) is that an adversary attack-
ing several concurrent executions of the same protocol may be able to cause more
harm than by attacking a single execution (or several sequential executions) of
the same protocol.

7.7.2.1 Definitions

One may say that a protocol is concurrently secure if whatever the adversary
may obtain by invoking and controlling parties in real concurrent executions of
the protocol is also obtainable by a corresponding adversary that controls corre-
sponding parties making concurrent functionality calls to a trusted party (in a
corresponding ideal model). More generally, one may consider concurrent exe-
cutions of many sessions of several protocols, and say that a set of protocols is
concurrently secure if whatever the adversary may obtain by invoking and con-
trolling such real concurrent executions is also obtainable by a corresponding
adversary that invokes and controls concurrent calls to a trusted party (in a
corresponding ideal model). Consequently, a protocol is said to be secure with
respect to concurrent compositions if adding this protocol to any set of concur-
rently secure protocols yields a set of concurrently secure protocols.

A much more appealing approach has been recently suggested by Canetti [66].
Loosely speaking, he suggests to consider a protocol to be secure (hereafter re-
ferred to as environmentally-secure)”” only if it remains secure when executed

77 The term used in [66] is Universally Composeable, but we believe that a reasonable sense
of “universal composeability” is only a corollary of the suggested definition.
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within any (feasible) environment. The notion of an environment is a gener-
alization of the notion of an auxiliary-input; in a sense, the environment is an
auxiliary oracle (or rather a state-dependent oracle) that the adversary may ac-
cess. In particular, the environment may represent other executions of various
protocols that are taking place concurrently (to the execution that we consider).
We stress that the environment is not supposed to assist the proper execution of
the protocol (and in fact honest parties merely obtain their inputs from it and
return their outputs to it). In contrast, potentially, the environment may assist
the adversary in attacking the execution. Following the simulation paradigm,
we say that a protocol is environmentally-secure if any feasible real-model ad-
versary attacking the protocol, with the assistance of any feasible environment,
can be emulated by a corresponding ideal-model adversary that uses the same
environment, while making similar queries to the environment. In the follow-
ing formulation, the environment is implemented by a (non-uniform) family of
polynomial-size circuits, and is also responsible for providing the parties with in-
puts and for trying to distinguish the real-model execution from the ideal-model
execution.

Definition 7.7.3 (environmentally-secure protocols, a rough sketch): Let f be
an m-ary functionality and II be an m-party protocol, and consider the following
real and ideal models:

o As usual, a real-model adversary controls some of the parties in an execu-
tion of the protocol 1. In addition to executing I1, all parties can commu-
nicate with an arbitrary interactive process, which is called an environment.
Honest parties only communicate with the environment before the execution
starts and when it ends; they merely obtain their inputs from the environ-
ment and pass their outputs to it. In contrast, dishonest parties (controlled
by the adversary) may communicate freely with the environment, and do
so concurrently to the entire execution of 11.

e Anideal-model adversary controls some of the parties in an ideal computa-
tion assisted by a trusted-party that behaves according to the functionality
f- In addition, all parties can communicate with an environment (as in the
real model). Indeed, the dishonest parties may communicate extensively
with the environment before and after their single communication with the
trusted party, whereas the honest parties merely obtain their inputs from
the environment and pass their outputs to it.

We say that IT is an environmentally-secure protocol for computing f if for every
probabilistic polynomial-time real-model adversary A there exists a probabilistic
polynomial-time ideal-model adversary B such that for any subset I C [m] of
adequate cardinality”™ no family of polynomial-size circuits E = {En}nen can
distinguish the case in which it interacts with parties in the real-model execution

78 Thus, the definition should actually specify an additional parameter bounding the number
of parties that may be controlled by the adversary.
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of II under adversary (I, A) from the case it interacts with parties in the ideal-
model computation of f under adversary (I, B). Schematically,

{IDEALf7I7B(1n.)7En }reN = {REALH7I7A(171.)7E" }reN

where IDEALy 1 p(1n),E, (r€Sp., REALI 1 a(1n),E,) denotes the output of E, after
interacting with the ideal-model (resp., real-model) execution under (I, B) (resp.,
(1,4)).

As hinted above, the environment may account for other executions of various
protocols that are taking place concurrently to the main execution being con-
sidered. Definition 7.7.3 implies that such environments cannot distinguish the
real execution from an ideal one. This means that anything that the real-model
adversary gains from the execution of the protocol and any environment (rep-
resenting other concurrent executions), can be also obtained by an adversary
operating in the ideal model and having access to the same environment. Thus,
each single execution of an environmentally-secure protocol can be replaced by
an ideal oracle call to the corresponding functionality, without affecting the
other concurrent executions. Furthermore, one can simultaneously replace all
these concurrent executions by ideal oracle calls, and use a hybrid argument
to show that the behavior is maintained. (One needs to use the fact that a
single replacement does not affect the other concurrent executions even in case
some of the other executions are in the real model and the rest are in the ideal
model.) It follows that environmentally-secure protocols are secure with respect
to concurrent composition [66]. We wonder whether the reverse direction holds.

7.7.2.2 Constructions

The main positive result currently known is that environmentally-secure proto-
cols for any functionality can be constructed for settings in which more than
two-thirds of the active parties are honest (cf. [66]). This holds unconditionally
for the private channel model, and under standard assumptions (e.g., allowing
the construction of public-key encryption schemes) for the standard model (i.e.,
without private channel). The immediate consequence of this result is that gen-
eral environmentally-secure multi-party computation is possible, provided that
more than two-thirds of the parties are honest.

In contrast, general environmentally-secure two-party computation is not
possible (in the standard sense).”™ Still, one can salvage general environmentally-
secure two-party computation in the following reasonable model: Consider a
network that contains servers that are willing to participate (as “helpers”, pos-
sibly for a payment) in computations initiated by a set of (two or more) users.
Now, suppose that two users wishing to conduct a secure computation can agree
on a set of servers such that each user believes that more than two-thirds of the

790f course, some specific two-party computations do have environmentally-secure protocols.
See [66] for several important examples (e.g., key exchange).
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servers (in this set) are honest. Then, with the active participation of this set
of servers, the two users can compute any functionality in an environmentally-
secure manner.

Another reasonable model where general environmentally-secure two-party
computation is possible is the shared random-string model [74]. In this model,
all parties have access to a universal random string (of length related to the
security parameter). We stress that the entity trusted to post this universal
random string is not required to take part in any execution of any protocol, and
that all executions of all protocols may use the same universal random string.

7.7.3 Historical Notes

The main results presented in this chapter (i.e., Theorems 7.4.1 and 7.5.15) are
due to Yao [272] and to Goldreich, Micali and Wigderson [150, 151], treating
the two-party and multi-party cases, respectively. Unfortunately, the original
papers do not provide a satisfactory presentation of these results. In particular,
these papers lack adequate definitions of security (which were only developed
later), and provide only rough sketches of the constructions and no proofs of
their security. Still, the conference version of [150] provides a rough sketch
of the compilation of protocols for the semi-honest model into protocols for
the malicious model, by using zero-knowledge proofs (which are the main focus
of [150]) to “force” malicious parties to behave in a semi-honest manner. Yao’s
work [272] presents a construction that can be used to derive two-party protocols
for privately-computing any desirable functionality, whereas the second paper of
Goldreich et. al. [151] presents a different construction for the multi-party case.

Our presentation reverses the chronological order (in which these results
were discovered). Firstly, our treatment of the two-party case is derived, via
some degeneration, from the treatment of the multi-party case (in [150, 151]).
Secondly, we start by treating the semi-honest models, and only next compile
protocols for this model into protocols for the malicious models. We note that
our treatment is essentially symmetric, whereas Yao’s original treatment of the
two-party case [272] is asymmetric (with respect to the two parties). The latter
asymmetry has its own merits as demonstrated in [34, 233, 200].

In treating the semi-honest model, we follow the framework of Goldreich, Mi-
cali and Wigderson [151], while adapting important simplifications due to [169]
and [159]. In presenting the “semi-honest to malicious” compilers (or the paradigm
of “forcing” semi-honest behavior), we follow the outline provided in [150, FOCS Ver-
sion, Sec. 4] and [151, Sec. 5. We comment that the original sources (i.e.,
[150, 151]) are very terse, and that full details were only provided in [132]. Our
treatment differs from [132] in using a higher level of modularity, which is sup-
ported by composition theorems for the malicious models.

As stated above, a satisfactory definitional treatment of secure multi-party
computation was provided after the presentation of the constructions of [150,
151, 272]. The basic approach was developed by Micali and Rogaway [216] and
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Beaver [18, 19],3° and reached maturity in Canetti’s work [65], which provides a
relatively simple, flexible and comprehensive treatment of the (basic) definitions
of secure multi-party computation. In particular, the composition theorems that
we use are essentially taken from [65].

A variety of cryptographic tools is used in establishing the main results of
this chapter. Firstly, we mention the prominent role of Oblivious Transfer in the
protocols developed for the semi-honest model.8' An Oblivious Transfer protocol
was first suggested by Rabin [243], but our actual definition and implementation
follow the ideas of Even, Goldreich and Lempel [102] (as further developed in
the proceedings version of [150]). Several ingredients play a major role in the
compilation of protocols secure in the semi-honest model into generally secure
protocols (for the malicious models). These include commitment schemes, zero-
knowledge proofs-of-knowledge, verifiable secret sharing (introduced by Chor,
Goldwasser, Micali and Awerbuch [79]), and secure coin-flipping (introduced by
Blum [49]).

The private channel model: As opposed to the bulk of this chapter (as
well as the bulk of the entire work), the private channel model (treated in Sec-
tion 7.6) allows to present results that do not rely on intractability assumptions.
These results (e.g., Theorem 7.6.6), were obtained by Ben-Or, Goldwasser and
Wigderson [44] and Chaum, Crépeau and Damgard [78]. These works were done
after the results of Yao [272] and Goldreich, Micali and Wigderson [150, 151]
were known, with the explicit motivation of obtaining results that do not rely
on intractability assumptions. Our presentation is based on [44] (cf. [120]). The
essential role of the bound on the number of dishonest parties (even in the semi-
honest model) was studied in [80] and subsequent works.

7.7.4 Suggestion for Further Reading

As hinted above, Yao’s alternative treatment of the two-party case offers some
advantages over the treatment presented in Section 7.3. A sketch of Yao’s con-
struction is provided in Section 7.1.3.2. For more details, see [248].

The results mentioned above were originally obtained using protocols that use
a polynomial number of rounds. In some cases, subsequent works obtained secure
constant-round protocols (e.g., in case of multi-party computations with honest
majority [34], and in case of two-party computations allowing abort [200]).

We have mentioned (e.g., in Section 7.7.1.1) the impossibility of obtaining
fairness in secure computations without a honest majority. These statements
are backed by the impossibility of implementing a fair two-party coin-toss, as
proven in [81].

80 The approach of Goldwasser and Levin [161] is more general: it avoids the definition
of security (w.r.t a given functionality) and defines instead a notion of protocol robustness.
Loosely speaking, a protocol is robust if whatever an arbitrary malicious adversary can obtain
by attacking it, can also be obtained by a very benign adversarial behavior.

81 Subsequent results by Kilian [185] further demonstrate the importance of Oblivious Trans-
fer in this context.
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We have briefly discussed the notion of adaptive adversaries. A more detailed
discussion of the definitions is provided in [65], which builds on [64]. For a proof
of Theorem 7.7.2, the reader is referred to [64, 68]. For a study of adaptive
versus non-adaptive security, the reader is referred to [67].

Our treatment of multi-party protocols assumes a synchronous network with
point-to-point channels between every pair of parties. Results for asynchronous
communication and arbitrary networks of point-to-point channels were presented
in [41, 64] and [95], respectively.

General secure multi-party computation in a model of transient adversarial
behavior was considered in [235]. In this model the adversary may seize control
of each party during the protocol’s execution, but can never control more than
(say) 10% of the parties at any point in time. We comment that schemes secure
in this model were later termed “proactive” (cf., [72]).

Whenever we have restricted the adversary’s control of parties, we have done
so by bounding the cardinality of the set of controlled parties. It is quite natural
to consider arbitrary restrictions on the set of controlled parties (i.e., that this set
belongs to a family of sets against which security is guaranteed). The interested
reader is referred to [172].

For further discussion of Byzantine Agreement, see any standard textbook
on Distributed Computing (e.g., [9, 207]). We mention that whereas plain m-
party Byzantine Agreement can tolerate at most |(m — 1)/3| malicious parties,
Authenticated Byzantine Agreement can tolerate any number of malicious par-
ties (see Construction 7.5.17, which follows [97]). The problems arising when
composing Authenticated Byzantine Agreement are investigated in [201].

7.7.5 Open Problems

Recall that by Theorem 7.5.12 one can privately-reduce any functionality to
Oblivious Transfer. Furthermore, the compilation of protocols that are secure
in the semi-honest model into protocols that are secure in the malicious models
only requires one-way functions and private channels, whereas the latter can
be emulated using secure communication protocols (e.g., secure public-key en-
cryption schemes). Since Oblivious Transfer implies the existence of the latter
(see Exercise 7), general secure computation is reducible to Oblivious Transfer.
Thus, determining the complexity assumptions required for the implementation
of Oblivious Transfer seems to be of key importance. In particular, we have
shown that Oblivious Transfer can be implemented using enhanced trapdoor
permutations (see Proposition 7.3.6). We wonder whether the enhanced require-
ment can be omitted (i.e., whether ordinary trapdoor permutations may suffice).
For further discussion of enhanced trapdoor permutations, see Section C.1.

7.7.6 Exercises

Exercise 1: Oblivious sampling: Suppose that both parties hold a function
(or circuit) that defines a distribution in the natural way, and wish to
obtain a sample from this distribution without letting any party learn the
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corresponding pre-image. Cast this problem as one of securely computing
a corresponding functionality, treating differently the case in which the
function (or circuit) is fixed and the case in which it is given as input to
both parties. Consider also the case in which only the first party is to
obtain the output.

Exercise 2: Oblivious signing: In continuation to Exercise 1, consider the case
that the distribution to be sampled is determined by the inputs of both
parties. For example, consider the task of oblivious signing in which one
party wishes to obtain the signature of the second party to some document
without revealing the document to the signer (i.e., the document is the
input of the first party whereas the signing-key is the input of the second

party).

Exercise 3: Privacy and Correctness: Following the discussion that proceeds
Definition 7.2.6, consider the following definitions of (partial) privacy and
correctness (with respect to malicious adversaries). Partial privacy is de-
fined as a restriction of Definition 7.2.6 to the adversary’s component of
the random variables REALH,Z(z)(x’ y) and IDEALfE(Z)(a:, y), whereas par-
tial correctness coincides with a restriction of Definition 7.2.6 to the honest
party’s component of these random variables.

1. Show that both properties are implied by Definition 7.2.6, but even
their combination does not imply Definition 7.2.6.

2. Why were both properties qualified by the term ‘partial’?

Guideline (Item 1): Note that computational indistinguishability of
ensembles of pairs implies computational indistinguishability of the ensem-
bles resulting by projection to each coordinate, but the converse does not

necessarily hold.

Guideline (Item 2): This is related to the need to use the general formu-
lation of Definition 7.2.1 for randomized functionalities; see the discussion
that proceeds Definition 7.2.1.

Exercise 4: On the importance of the length convention: Show that if the equal-
length convention is omitted from definitions like Definition 7.2.1 and 7.2.6
then they cannot be satisfied for many natural functionalities. That is,
consider these definitions when the ensembles are indexed by the set of all
pairs of strings, rather than by the set of pairs of equal-length strings.

Guideline: (Here, privacy and security refer to the notions obtained when
omitting the equal-length convention.) Show that the functionality (z,y) —
(f(z,y), f(z,y)), where f(z,y) i |z| = |y| and f(=,y) ) otherwise,
cannot be privately computed. Show that (x,y) — (|y|, |z|) can be privately
computed but the simple protocol in which Party 1 sends |z| to Party 2 fails
to securely compute it. Challenge: Try to show that the latter functionality
cannot be securely computed.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

740 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS

Exercise 5: Transitivity of privacy reductions: Show that if f is privately-
reducible to f’, and f’ is privately-reducible to f” then f is privately-
reducible to f”. Note that Theorem 7.3.3 is obtained as a special case
(e.g., by setting f” to be the identity mapping).

Guideline: Generalize the proof of Theorem 7.3.3. Specifically, let ITf1/’
(resp., Hf"f”) be an oracle-aided protocol for f (resp., f') using oracle f’
(resp., f'"). Composing these two protocols, obtain and analyze the oracle-
aided protocol II = EAEA

Exercise 6: Variants of Oblivious Transfer: In continuation to Section 7.3.2,
consider the following two variants of Oblivious Transfer.

1. For functions %k, : N — N, consider the extension of 1-out-of-k
Oblivious Transfer to k(n) secrets each of length ¢(n), where n is the
security parameter.

2. For a function ¢ : N — N, consider the Oblivious Transfer of a
single ¢(n)-bit long secret (denoted o) that is to be delivered with
probability 1/2. That is, the randomized functionality that maps
(0,) to (A, o) with probability 1/2 and to (A, \) otherwise.

Assuming that k£ and ¢ are polynomially-bounded and efficiently com-
putable, present privacy reductions between all these variants. Specifically,
show a privacy reduction of the extended 1-out-of-k Oblivious Transfer to
the original 1-out-of-2 Oblivious Transfer of bits, and between 1-out-of-2
Oblivious Transfer of ¢-bit long secrets and Oblivious Transfer of a single
£(n)-bit long secret.

Guideline: Note that you are only asked to present oracle-aided protocols
that are secure in the semi-honest model. The only non-obvious reduction is
from 1-out-of-2 Oblivious Transfer to single-secret Oblivious Transfer (OT),
presented next. The first party randomly selects 71,72 € {0, 1}2("), and the
parties invoke OT twice where the first party inputs r1 in the first time and
r9 in the second time. If the second party wishes to obtain the #*® secret,
for ¢ € {1, 2}, then it says OK if and only if it has obtained r; but not r3_;.
Otherwise, the parties repeat the experiment. Once the second party says
OK, the first party sends it the pair (o1 @ 71,02 @ r2), where the o;’s are
the actual secrets.

Exercise 7: Oblivious Transfer implies secure communication protocols: A se-
cure communication protocol is a two-party protocol that allows the parties
to communicate in secrecy even when the communication line is tapped
by an adversary (see Exercise 7?7 of Chapter 5). Show that any 1-out-of-2
Oblivious Transfer (with security with respect to the semi-honest model)
implies the existence of a secure communication protocol. Recall that the
latter implies the existence of one-way functions.

Guideline: To transmit a bit o the sender invokes the 1-out-of-2 Oblivious

Transfer with input (o, 0) while the receiver sets its input to 1, and gets o
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(i.e., the sender’s first bit in the OT). Show that if a wire-tapping adversary
violates the security condition then either the sender can distinguish the
case that the receiver enters 1 from the case it entered 2 or the receiver can

approximate ¢ also in case it set its input to 2.

Exercise 8: Privately reducing OT to the functionality of Eq. (7.16)—(7.17).
Show that 1-out-of-2 Oblivious Transfer can be privately reduced to the
functionality of Eq. (7.16)—(7.17).

Guideline: Reduce 1-out-of-2 OT to ((s1, s2), (r1,72)) — (A, s171+s272),
and reduce the latter to Eq. (7.16)—(7.17).

Exercise 9: Alternative analysis of Construction 7.3.7. The said construc-
tion can be decoupled into two reductions. First, the functionality of

Eq. (7.16)—(7.17) is reduced to the deterministic functionality ((a, b1, c1), (az,b2)) —

(A, fasps(a1,01,¢1)), where fop(z,9,2) < 2+ (¢ +a) - (y + b)), and next

the latter is reduced to OT7. Present each of these reductions and prove
that each is a privacy reduction.

Guideline: When analyzing the second reduction, use the fact that it is
used to compute a deterministic functionality and thus the simpler form of
Definition 7.2.1 can be used.

Exercise 10: Some functionalities that are trivial to privately compute: Show
that each of the following types of functionalities has a trivial protocol for
privately-computing it (i.e., using a single message).

1. Each deterministic functionality that only depends on the input of
one party (i.e., (z,11%l) — (fi(z), f2(x)), for arbitrary functions f;
and fo).

2. Each randomized functionality of the form (z,11l) — (g(), f(z, g(z))),
where g is any randomized process and f is a function.

Generalize the above to the multi-party case.

Exercise 11: In continuation to Exercise 10, show that all six functionalities
introduced in Section 7.4.3 are trivial to compute in a private manner.

Guideline: Note that the restricted authenticated computation function-
ality of Eq. (7.25) and the image transmission functionality of Eq. (7.29) fit
Item 1, whereas the basic and augmented coin-tossing functionalities as well
as the input-commitment functionality fit Item 2. What about Eq. (7.31)?

Exercise 12: On the difficulty of implementing more natural versions of au-
thenticated computation: Consider the functionality (a, ) — (A, v), where
v = f(a) if B = h(a) and v = X otherwise.

1. Show that the equality functionality (i.e., (a,3) — (x, Xx), where
x = 1if 8 = « and x = 0 otherwise) is privately-reducible to a
special case of the above functionality.

See copyright notice.
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2. Show that Oblivious Transfer is privately-reducible to a special case of
the above functionality. Conclude that there can be no trivial protocol
for privately-computing the latter (e.g., a protocol that privately-
computes the above functionality implies the existence of one-way
functions).

Guideline (Part 2): Privately-reduce the single secret (bit) version of
Oblivious Transfer to the special case of the above functionality in which
h(a) (resp., f(a)) equals the first (resp., second) bit of a. On input a secret
bit o, Party 1 sets its oracle-query to lo and Party 2 sets its query to a
uniformly selected bit (and so if the latter equals h(lo) = 1 then Party 2
gets f(lo) = o and otherwise it gets A).

Exercise 13: Transitivity of security reductions: Show that if f is securely-
reducible to f’, and f' is securely-reducible to f” then f is securely-
reducible to f”. Note that Theorem 7.4.3 is obtained as a special case
(e.g., by setting f” to be the identity mapping).

Guideline: See Exercise 5.

Exercise 14: Voting, FElections, and Lottery: Write a specification for some
social procedure (e.g., voting, elections or lottery), and cast it as a multi-
party functionality. Note that allowing appeals and various forms of inter-
action requires a reactive functionality (see Section 7.7.1.3), which in turn
can be reduced to a standard (non-reactive) functionality.

Exercise 15: Threshold Cryptography: Loosely speaking, Threshold Cryptog-
raphy is concerned with allowing a set of parties to share the ability to
perform certain (cryptographic) operations (cf. [92, 119]). For example,
suppose that we wish m parties to hold shares of a signing-key (w.r.t some
signature scheme) such that every ¢ of these parties (but not less) can
generate signatures to documents of their choice. Cast this example as a
multi-party functionality. (The same holds for other versions of Threshold

Cryptography.)

Exercise 16: Fuilure of a simple protocol for multi-party authenticated compu-
tation. Consider the m-party oracle-aided protocol for computing Eq. (7.48)
in which, for i = 2,...,m, Parties 1 and ¢ invoke Eq. (7.31) with Party 1
entering the input « and and Party ¢ entering the input ;. Show that
this oracle-aided protocol does not constitute a secure implementation of
Eq. (7.48).

Exercise 17: Analysis of Shamir’s Secret Sharing Scheme: Prove that Con-
struction 7.5.35 satisfies the conditions of Definition 7.5.34.

Guideline: For every sequence (u1,v1),...,(ug,ve), where the u;’s are
distinct, consider the set of degree d > ¢ — 1 polynomials g that satisfy
q(u;) = v; for i = 1,...,£. Denoting the unknown coefficients of ¢ by g¢;’s,

observe that each equality g(u;) = v; yields a linear equation for the g¢;’s
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(i.e., Z?:o u{ - qj = v;). Furthermore, the equations are linearly inde-
pendent, and so the solution space has cardinality p¢t1—¢. Indeed, it is
important to consider these equations as referring to the variables ¢;’s and
the constants w;’s, rather than the other way around.

Exercise 18: Private computation of linear functions. For any fixed m-by-m
matrix M, over a finite field, show that the m-ary functionality T — TM
can be m-privately computed (as per Definition 7.6.1).

Guideline: For starters, consider first the functionality (z1,...,2m) —
(ZT:I ¢iz;,0,...,0), where the ¢;’s are fixed constants. Show that the fol-
lowing protocol is m-private: First, each party shares its input with all other
parties (by uniformly selecting shares that sum-up to its input, and sending
a share to each party). Next, each party computes the linear combination
of the shares it has received. Finally, each party sends the result to Party 1.
Note that this computation would be t-private if we were to use sharing via

a degree t polynomial.

Exercise 19: Private generation of vectors in a linear subspace. For M as in
Exercise 18, show that the m-ary functionality (A, ..., A) — T such that T is
a random m-ary vector satisfying 7 = 0™ can be m-privately computed
(as per Definition 7.6.1).

Guideline: Consider the generating matrix of the subspace, denoted G.
Suppose that G has rank k. Show that, without loss of generality, the k-by-k
upper part of G equals the identity matrix. Privately reduce the generation
task to the functionality of Exercise 18.

Exercise 20: Alternative presentation of t-private computation of Eq. (7.64).

1.

In continuation to Exercises 18 and 19, given M; and M,, consider
the m-ary functionality T — TM; + T such that 7 is a random m-
ary vector satisfying 7My = 0™. Show that this functionality can be
m-privately computed.

. Show that the functionality of Eq. (7.64) is a special case of the class

of functionalities considered in Item 1.

Guideline (Item 1): Note that privately compute each of the two terms
of TM + T, separately, will not do. One has to combine these two compu-
tations such that not to yield information about the value of the individual

terms.

Guideline (Item 2): Show that the computation of the free term of the
polynomial ¢ can be captured by an adequate Mj, whereas the generation
of the values of a random degree t polynomial with free-term equal zero can

be captured by an adequate Mo>.

Exercise 21: Analysis of Construction 7.6.3. For t < m/2, show that Con-
struction 7.6.3 constitutes a protocol that ¢-privately computes Eq. (7.63).

See copyright notice.
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Guideline: Consider, without loss of generality, I = {1,...,t}. The simu-
lator is given an input sequence ((a1,b1), ..., (at, b)) and an output sequence
(r1,...,7¢), and needs to emulate the messages that the parties in I obtain
at Step 2. This can be done by randomly selecting degree ¢ polynomials q}’s
that are consistent with the above sequences, and letting the messages that
Party ¢ obtain equal ¢/ (%), ..., q,(¢). Specifically, for i =1, ..,t, the polyno-
mial qg is selected like g; (i.e., uniformly among the t polynomials having
free-term a;b;); for i = t41,..,m—1, the polynomial ¢} is selected uniformly
among all ¢ polynomials; and ¢/, is selected such that Z?:l ;i q} (2) =r;
holds for all ¢ € [¢].

Author's Note: First draft written mainly in 2002. Revised in January
2003.
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