
Draft of a chapteron General Protocols(revised, posted version Nr. 3.1)Extracts from a working draft forVolume 2 of Foundations of CryptographyOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.June 29, 2003

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Ito Dana

cCopyright 2002 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for pro�t orcommercial advantage and that new copies bear this notice and the full citation on the�rst page. Abstracting with credit is permitted.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

PrefaceThe current manuscript is a preliminary draft of the chapter on gen-eral protocols (Chapter 7) of the second volume of the work Foun-dations of Cryptography.The bigger picture. The current manuscript is part of a working draft ofPart 2 of the three-part work Foundations of Cryptography (see Figure 0.1). Thethree parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-sics. The �rst part (containing Chapters 1{4) has been published by CambridgeUniversity Press (in June 2001). The second part, consists of Chapters 5{7 (re-garding Encryptioni Schemes, Signatures Schemes, and General CryptographicProtocols, respectively). We hope to publish the second part with CambridgeUniversity Press within a few years.Part 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsPart 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsPart 3: Beyond the Basics� � �Figure 0.1: Organization of this work
III

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IV The partition of the work into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple of years, and publish it without waiting for the third part.Prerequisites. The most relevant background for this text is provided bybasic knowledge of algorithms (including randomized ones), computability andelementary probability theory. Background on (computational) number theory,which is required for speci�c implementations of certain constructs, is not reallyrequired here.Using this text. The text is intended as part of a work that is aimed to serveboth as a textbook and a reference text. That is, it is aimed at serving both thebeginner and the expert. In order to achieve this aim, the presentation of thebasic material is very detailed so to allow a typical CS-undergraduate to followit. An advanced student (and certainly an expert) will �nd the pace (in theseparts) way too slow. However, an attempt was made to allow the latter readerto easily skip details obvious to him/her. In particular, proofs are typicallypresented in a modular way. We start with a high-level sketch of the main ideas,and only later pass to the technical details. Passage from high-level descriptionsto lower level details is typically marked by phrases such as details follow.In a few places, we provide straightforward but tedious details in in-dented paragraphs as this one. In some other (even fewer) places suchparagraphs provide technical proofs of claims that are of marginal rele-vance to the topic of the book.More advanced material is typically presented at a faster pace and with lessdetails. Thus, we hope that the attempt to satisfy a wide range of readers willnot harm any of them.Teaching. The material presented in the full (three-volume) work is, on onehand, way beyond what one may want to cover in a course, and on the otherhand falls very short of what one may want to know about Cryptography ingeneral. To assist these conicting needs we make a distinction between basicand advanced material, and provide suggestions for further reading (in the lastsection of each chapter). In particular, sections, subsections, and subsubsectionsmarked by an asterisk (*) are intended for advanced reading.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Table of Contents
Preface III7 General Cryptographic Protocols 5957.1 Overview : 5967.1.1 The De�nitional Approach and Some Models : : : : : : : 5977.1.1.1 Some parameters used in de�ning security models 5987.1.1.2 Example: Multi-party protocols with honest ma-jority : 6007.1.1.3 Another example: Two-party protocols allowingabort : 6027.1.2 Some Known Results : 6047.1.2.1 The main results presented in this chapter : : : 6047.1.2.2 Other results : 6047.1.2.3 An extension and e�ciency considerations : : : 6057.1.3 Construction Paradigms : : : : : : : : : : : : : : : : : : : 6067.1.3.1 From passively-secure protocols to actively-secureones : 6067.1.3.2 Passively-secure computation with \scrambled cir-cuits" : 6087.1.3.3 Passively-secure computation with shares : : : : 6097.2 * The Two-Party Case: De�nitions : : : : : : : : : : : : : : : : : 6127.2.1 The syntactic framework : : : : : : : : : : : : : : : : : : : 6127.2.1.1 Simplifying conventions : : : : : : : : : : : : : : 6137.2.1.2 Computational indistinguishability: conventionsand notation : 6157.2.1.3 Representation of parties' strategies : : : : : : : 6167.2.2 The semi-honest model : : : : : : : : : : : : : : : : : : : 6167.2.2.1 The simple formulation of privacy : : : : : : : : 6177.2.2.2 The alternative formulation : : : : : : : : : : : : 6197.2.2.3 Equivalence of the two formulation : : : : : : : : 6217.2.3 The malicious model : 6227.2.3.1 The actual de�nition : : : : : : : : : : : : : : : 6237.2.3.2 An alternative approach : : : : : : : : : : : : : : 6287.3 * Privately Computing (2-Party) Functionalities : : : : : : : : : 631V

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VI 7.3.1 Privacy reductions and a composition theorem : : : : : : 6337.3.2 The OTk1 protocol { de�nition and construction : : : : : : 6377.3.3 Privately computing c1 + c2 = (a1 + a2) � (b1 + b2) : : : 6407.3.4 The circuit evaluation protocol : : : : : : : : : : : : : : : 6427.4 * Forcing (2-party) Semi-Honest Behavior : : : : : : : : : : : : : 6477.4.1 The compiler { motivation and overview : : : : : : : : : : 6487.4.2 Security reductions and a composition theorem : : : : : : 6497.4.3 The compiler { functionalities in use : : : : : : : : : : : : 6557.4.3.1 Coin Tossing : 6577.4.3.2 Authenticated Computation (Partial Version) : : 6627.4.3.3 Image Transmission : : : : : : : : : : : : : : : : 6677.4.3.4 Authenticated Computation, Revisited : : : : : 6707.4.3.5 Augmented coin-tossing : : : : : : : : : : : : : : 6737.4.3.6 Input Commitment : : : : : : : : : : : : : : : : 6767.4.3.7 Summary : 6807.4.4 The compiler itself : 6807.4.4.1 The e�ect of the compiler : : : : : : : : : : : : : 6827.4.4.2 Canonical protocols and the augmented semi-honest model : 6887.4.4.3 Conclusion { Proof of Theorem 7.4.1 : : : : : : : 6937.5 * Extension to the Multi-Party Case : : : : : : : : : : : : : : : : 6947.5.1 De�nitions : 6957.5.1.1 The communication model and external adver-saries : 6957.5.1.2 The semi-honest model : : : : : : : : : : : : : : 6977.5.1.3 The two malicious models : : : : : : : : : : : : : 6987.5.2 Security in the Semi-Honest Model : : : : : : : : : : : : : 7027.5.2.1 A composition theorem : : : : : : : : : : : : : : 7027.5.2.2 Privately computing Pi ci = (Pi ai) � (Pi bi) : 7057.5.2.3 The multi-party circuit evaluation protocol : : : 7077.5.2.4 Conclusion: Private computation of any func-tionality : 7087.5.3 The Malicious Models { Overview and Preliminaries : : : 7097.5.3.1 Precompiler (emulating private channels) : : : : 7117.5.3.2 Postcompiler (emulating a broadcast channel) : 7127.5.4 The �rst compiler { Forcing Semi-Honest Behavior : : : : 7167.5.4.1 Security reductions and a composition theorem : 7167.5.4.2 Secret broadcast : : : : : : : : : : : : : : : : : : 7187.5.4.3 Multi-party authenticated computation : : : : : 7197.5.4.4 Multi-party augmented coin-tossing : : : : : : : 7247.5.4.5 Multi-party input-commitment : : : : : : : : : : 7297.5.4.6 The compiler itself : : : : : : : : : : : : : : : : : 7307.5.4.7 Analysis of the compiler : : : : : : : : : : : : : : 7317.5.5 The second compiler { E�ectively Preventing Abort : : : 7327.5.5.1 Veri�able Secret Sharing : : : : : : : : : : : : : 734

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

17.5.5.2 The compiler itself : : : : : : : : : : : : : : : : : 7367.5.5.3 Analysis of the compiler : : : : : : : : : : : : : : 7397.6 * The Private Channel Model and Perfect Security : : : : : : : : 7457.6.1 De�nitions : 7467.6.2 Security in the Semi-Honest Model : : : : : : : : : : : : : 7477.6.3 Security in the Malicious Model : : : : : : : : : : : : : : : 7507.7 Miscellaneous : 7517.7.1 * Three deferred issues : 7517.7.1.1 Partial fairness or on exchanging secrets : : : : : 7517.7.1.2 The adaptive model : : : : : : : : : : : : : : : : 7537.7.1.3 Reactive systems : : : : : : : : : : : : : : : : : : 7557.7.2 * Concurrent Executions : : : : : : : : : : : : : : : : : : : 7577.7.2.1 De�nitions : 7577.7.2.2 Constructions : : : : : : : : : : : : : : : : : : : 7597.7.3 Historical Notes : 7607.7.4 Suggestion for Further Reading : : : : : : : : : : : : : : : 7617.7.5 Open Problems : 7627.7.6 Exercises : 762

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 7General CryptographicProtocolsThe design of secure protocols that implement arbitrary desired functionalitiesis a major part of modern cryptography. Taking the opposite perspective, thedesign of any cryptographic scheme may be viewed as the design of a secureprotocol for implementing a suitable functionality. Still, we believe that it makessense to di�erentiate between basic cryptographic primitives (which involve littleinteraction) like encryption and signature schemes on one hand, and generalcryptographic protocols on the other hand.In this chapter we consider general results concerning secure multi-partycomputations, where the two-party case is an important special case. In a nut-shell, these results assert that one can construct protocols for securely computingany desirable multi-party functionality (see terminology below). Indeed, what isstriking about these results is their generality, and we believe that the wonder isnot diminished by the (various alternative) conditions under which these resultshold.Our focus on the general study of secure multi-party computation (ratherthan on protocols for solving speci�c problems) is natural in the context of thetheoretical treatment of the subject matter. We wish to highlight the importanceof this general study to practice. Firstly, this study clari�es fundamental issuesregarding security in a multi-party environment. Secondly, it draws the linesbetween what is possible in principle and what is not. Thirdly, it developsgeneral techniques for designing secure protocols. And last, sometimes, it mayeven yield schemes (or modules) that may be incorporated in practical systems.Thus, we believe that the current chapter is both of theoretical and practicalimportance.Terminology: The notion of a (multi-party) functionality is central to thecurrent chapter. By an m-ary functionality we mean a random process that mapsm inputs to m outputs, where functions mapping m inputs to m outputs are595

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

596 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSa special case (also referred to as deterministic functionalities). Thus, func-tionalities are randomized extensions of ordinary functions. One may think of afunctionality F as being a probability distribution over (corresponding) functions(i.e., F equals the function f (i) with probability pi). Alternatively, we think ofF (x1; :::; xm) as selecting at random a string r, and outputting F 0(r; x1; :::; xm),where F 0 is a function mapping m+ 1 inputs to m outputs.Teaching Tip: The contents of the current chapter are quite complex. Wesuggest to cover in class only the overview section (i.e., Section 7.1), and con-sider the rest of this chapter to be advanced material. Furthermore, we assumethat the reader is familiar with the material in all the previous chapters. Thisfamiliarity is important not only because we use some of the notions and resultspresented in these chapters, but rather because we use similar proof techniques(and do so while assuming that this is not the reader's �rst encounter with thesetechniques).Organization: In addition to the overview section (i.e., Section 7.1), the cur-rent chapter consists of two main parts.The �rst part (i.e., Sections 7.2{7.4) consists of a detailed treatment of generalsecure two-party protocols.Our ultimate goal in this part is to design two-party protocols that with-stand any feasible adversarial behavior. We proceed in two steps. First weconsider a benign type of adversary, called semi-honest, and construct pro-tocols that are secure with respect to such an adversary (cf. Section 7.3).Next, we show how to force parties to behave in a semi-honest manner(cf. Section 7.4). That is, we show how to transform any protocol, securein the semi-honest model, into a protocol that is secure against any fea-sible adversarial behavior. But before presenting these constructions, wepresent the relevant de�nitions (cf. Section 7.2).The second part (i.e., Sections 7.5 and 7.6) deals with general securemulti-partyprotocols. Speci�cally, in Section 7.5 we extend the treatment presented inthe �rst part to multi-party protocols, whereas in Section 7.6 we considerthe \private channel model" and present alternative constructions for it.Although it is possible to skip some of the earlier sections of this chapter beforereading a later section, we recommend not to do so. In particular, we recommendto read the overview section (i.e., Section 7.1), before reading any later section.7.1 OverviewA general framework for casting (m-party) cryptographic (protocol) problemsconsists of specifying a random process that maps m inputs to m outputs. Theinputs to the process are to be thought of as local inputs of m parties, and

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 597the m outputs are their corresponding (desired) local outputs. The randomprocess describes the desired functionality. That is, if the m parties were totrust each other (or trust some external party), then they could each send theirlocal input to the trusted party, who would compute the outcome of the processand send to each party the corresponding output. A pivotal question in the areaof cryptographic protocols is to what extent can this (imaginary) trusted partybe \emulated" by the mutually distrustful parties themselves.The results mentioned above and surveyed below describe a variety of modelsin which such an \emulation" is possible. The models vary by the underlyingassumptions regarding the communication channels, numerous parameters re-lating to the extent of adversarial behavior, and the desired level of emulationof the trusted party (i.e., level of \security"). We stress that unless stated dif-ferently, the two-party case is an important special case of the treatment of themulti-party setting (i.e., we consider any m � 2).7.1.1 The De�nitional Approach and Some ModelsBefore describing the abovementioned results, we further discuss the notion of\emulating a trusted party", which underlies the de�nitional approach to securemulti-party computation. The approach can be traced back to the de�nition ofzero-knowledge (see Section 4.3), and even to the de�nition of semantic security(see Section 5.2.1). The underlying paradigm (called the simulation paradigm) isthat a scheme is secure if whatever a feasible adversary can obtain after attackingit, is also feasibly attainable in an \ideal setting". In case of zero-knowledge thisamounts to saying that whatever a (feasible) veri�er can obtain after interactingwith the prover on a prescribed valid assertion, can be (feasibly) computed fromthe assertion itself. In case of multi-party computation we compare the e�ectof adversaries that participate in the execution of the actual protocol to the ef-fect of adversaries that participate in an imaginary execution of a trivial (ideal)protocol for computing the desired functionality with the help of a trusted party.If whatever adversaries can feasibly obtain in the former real setting can alsobe feasibly obtained in the latter ideal setting then the protocol \emulates theideal setting" (i.e., \emulates a trusted party"), and so is deemed secure. Thismeans that properties that are satis�ed in the ideal setting are also satis�edby a secure protocol that is executed in the real setting. For example, securitytypically implies the preservation of the privacy of the parties' local inputs (be-yond whatever is revealed by the local outputs provided to the adversary), andcorrectness of the honest parties' local outputs (i.e., their consistency with thefunctionality).The approach outlined above can be applied in a variety of models, and isused to de�ne the goals of security in these models.1 We �rst discuss some1 A few technical comments are in place. Firstly, we assume that the inputs of all partiesare of the same length. We comment that as long as the lengths of the inputs are polynomiallyrelated, the above convention can be enforced by padding. On the other hand, some lengthrestriction is essential for the security results, because (in general) it is impossible to hideall information regarding the length of the inputs to a protocol. Secondly, we assume that

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

598 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSof the parameters used in de�ning various models, and next demonstrate theapplication of this approach to a couple of important cases (cf. Sections 7.1.1.2and 7.1.1.3).7.1.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) compu-tation. In some cases, the corresponding de�nition of security is obtained bysome restrictions or provisions applied to the ideal model. In all cases, the de-sired notion of security is de�ned by requiring that for any adequate adversaryin the real model, there exists a corresponding adversary in the correspondingideal model that obtains essentially the same impact on the computation of thefunctionality (as the real-model adversary).� Set-up assumptions: Unless di�erently stated, we make no set-up assump-tions (except for the obvious assumption that all parties have copies ofthe protocol's program). However, in some cases it is assumed that eachparty knows some information (e.g., a veri�cation-key) corresponding toeach of the other parties (or, one may assume the existence of a public-keyinfrastructure). Another assumption, made more rarely, is that all partieshave access to some common (trusted) random string.� The communication channels: Here we refer to issues like the privacy andreliablity of data sent over the channels as well as to the availability andthe communication features of the channels.The standard assumption in the area is that the adversary can tap allcommunication channels (between honest parties); that is, the channelsper se do not provide privacy (i.e., privacy of the data sent over them).In contrast, one may postulate that the adversary cannot obtain messagessent between honest parties, yielding the so-called private-channel model.This postulate may be justi�ed in some settings. Furthermore, it may beviewed as a useful abstraction that provide a clean model for study anddevelopment of secure protocols. In this respect, it is important to mentionthat, in a variety of settings of the other parameters, the private-channelmodel can be easily emulated by ordinary (i.e., \tapped" point-to-point)channels.The standard assumption in the area is that the adversary cannot omit,modify, duplicate, or generate messages sent over the communication chan-nels (between honest parties); that is, the channels are postulated to bereliable (in the sense that they guarantee the authenticity of the data sentover them). Furthermore, one may postulate the existence of a broadcastthe desired functionality is computable in probabilistic polynomial-time, because we wishthe secure protocol to run in probabilistic polynomial-time (and a protocol cannot be moree�cient than the corresponding centralized algorithm). Clearly, the results can be extended tofunctionalities that are computable within any given (time-constructible) time bound, usingadequate padding.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 599channel. Again, these assumptions can be justi�ed in some settings andemulated in others.Most work in the area assume that communication is synchronous andthat point-to-point channels exist between every pair of processors. How-ever, one may also consider asynchronous communication, and arbitrarynetworks of point-to-point channels.� Computational limitations: Typically, we consider computationally-boundedadversaries (e.g., probabilistic polynomial-time adversaries). However, theprivate-channel model allows also to (meaningfully) consider computationally-unbounded adversaries.We stress that, also in the latter case, security should be de�ned by re-quiring that, for every real adversary, whatever the adversary can computeafter participating in the execution of the actual protocol is computablewithin comparable time (e.g., in polynomially-related time) by an imagi-nary adversary participating in an imaginary execution of the trivial idealprotocol (for computing the desired functionality with the help of a trustedparty). Thus, results in the computationally-unbounded adversary modeltrivially imply results for computationally-bounded adversaries.� Restricted adversarial behavior: The most general type of an adversaryconsidered in the literature is one that may corrupt parties to the protocolwhile the execution goes on, and decide which parties to corrupt based onpartial information it has gathered so far. A somewhat more restrictedmodel, which seems adequate in many settings, postulates that the set ofdishonest parties is �xed (arbitrarily) before the execution starts (but thisset is, of course, not known to the honest parties). The latter model iscalled non-adaptive as opposed to the adaptive adversary mentioned �rst.An orthogonal parameter of restriction refers to whether a dishonest partytakes active steps to disrupt the execution of the protocol (i.e., sends mes-sages that di�er from those speci�ed by the protocol), or merely gathersinformation (which it may latter share with the other dishonest parties).The latter adversary has been given a variety of names such as semi-honest,passive, and honest-but-curious. This restricted model may be justi�ed incertain settings, and certainly provides a useful methodological locus (cf.Section 7.1.3). Below we refer to the adversary of the unrestricted modelas to active; another commonly used name is malicious.� Restricted notions of security: One example is the willingness to tolerate\unfair" protocols in which the execution can be suspended (at any time)by a dishonest party, provided that it is detected doing so. We stress thatin case the execution is suspended, the dishonest party does not obtainmore information than it could have obtained when not suspending theexecution. What may happen is that some honest parties will not obtaintheir desired outputs (although other parties did obtain their correspond-ing outputs), but will rather detect that the execution was suspended.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

600 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSWe will say that this restricted notion of security allows abort (or allowspremature suspension of the execution).� Upper bounds on the number of dishonest parties: In some models, securemulti-party computation is possible only if a strict majority of the partiesare honest.2 Sometimes even a special majority (e.g., 2/3) is required.General \resilient adversary-structures" have been considered too (i.e., se-curity is guaranteed in the case that the set of dishonest parties equals oneof the sets speci�ed in a predetermined family of sets).� Mobile adversary: In most works, once a party is said to be dishonest itremains so throughout the execution. More generally, one may considertransient adversarial behavior (e.g., an adversary seizes control of somesite and later withdraws from it). This model, which will not be furtherdiscussed in this work, allows to construct protocols that remain secureeven in case the adversary may seize control of all sites during the execution(but never control concurrently, say, more than 10% of the sites). Wecomment that schemes secure in this model were later termed \proactive".In the rest of this chapter we will consider a few speci�c settings of the above pa-rameters. Speci�cally, we will focus on non-adaptive, active, and computationally-bounded adversary, and will not assume the existence of private channels. InSection 7.1.1.2 we consider this setting while restricting the dishonest parties toa strict minority, whereas in Section 7.1.1.3 we consider a restricted notion ofsecurity for two-party protocols that allows \unfair suspension" of execution (or\allows abort").7.1.1.2 Example: Multi-party protocols with honest majorityWe consider a non-adaptive, active, computationally-bounded adversary, and donot assume the existence of private channels. Our aim is to de�ne multi-partyprotocols that remain secure provided that the honest parties are in majority.(The reason for requiring a honest majority will be discussed at the end of thissubsection.) For more details about this model, see Section 7.5.1.Consider any multi-party protocol. We �rst observe that each party maychange its local input before even entering the execution of the protocol. Fur-thermore, this is unavoidable also when the parties utilize a trusted party. Con-sequently, such an e�ect of the adversary on the real execution (i.e., modi�cationof its own input prior to entering the actual execution) is not considered a breachof security. In general, whatever cannot be avoided (even) when the parties uti-lize a trusted party, is not considered a breach of security. We wish secureprotocols (in the real model) to su�er only from whatever is unavoidable alsowhen the parties utilize a trusted party. Thus, the basic paradigm underlyingthe de�nitions of secure multi-party computations amounts to saying that theonly situations that may occur in the real execution of a secure protocol, are2 Indeed, requiring an honest majority in the two-party case yields a meaningless model.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 601those that can also occur in a corresponding ideal model (where the parties mayemploy a trusted party). In other words, the \e�ective malfunctioning" of par-ties in secure protocols is restricted to what is postulated in the correspondingideal model.When de�ning secure multi-party protocols (with honest majority), we needto pin-point what cannot be avoided in the ideal model (i.e., when the partiesutilize a trusted party). This is easy, because the ideal model is very simple.Since we are interested in executions in which the majority of parties are honest,we consider an ideal model in which any minority group (of the parties) maycollude as follows:1. Firstly the dishonest minority parties share their original inputs and de-cided together on replaced inputs to be sent to the trusted party. (Theother parties send their respective original inputs to the trusted party. Westress that the communication between the honest parties and the trustedparty is not seen by the dishonest colluding minority parties.)2. Upon receiving inputs from all parties, the trusted party determines thecorresponding outputs and sends them to the corresponding parties.3. Upon receiving the \output message" from the trusted party, each honestparty outputs it locally, whereas the dishonest colluding minority partiesmay determine their outputs based on all they know (i.e., their initialinputs and their received outputs).Note that the above behavior of the minority group is unavoidable in any exe-cution of any protocol (even in presence of trusted parties). This is the reasonthat the ideal model was de�ned as above. Now, a secure multi-party computa-tion with honest majority is required to emulate this ideal model. That is, thee�ect of any feasible adversary that controls a minority of the parties in a realexecution of the actual protocol, can be essentially simulated by a (di�erent)feasible adversary that controls the same parties in the ideal model. That is:De�nition 7.1.1 (secure protocols { a sketch): Let f be an m-ary functionalityand � be an m-party protocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (andtapping all communication channels), and an m-sequence x, we denote byreal�;A(x) the sequence of m outputs resulting from the execution of �on input x under attack of the adversary A.� For an ideal-model adversary A0, controlling some minority of the parties,and an m-sequence x, we denote by idealf;A0(x) the sequence of m outputsresulting from the ideal process described above, on input x under attackof the adversary A0.We say that � securely implements f with honest majority if for every feasiblereal-model adversary A, controlling some minority of the parties, there existsa feasible ideal-model adversary A0, controlling the same parties, so that the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

602 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSprobability ensembles freal�;A(x)gx and fidealf;A0(x)gx are computationallyindistinguishable (as in Part 2 of De�nition 3.2.7).Thus, security means that the e�ect of each minority group in a real executionof a secure protocol is \essentially restricted" to replacing its own local inputs(independently of the local inputs of the majority parties) before the protocolstarts, and replacing its own local outputs (depending only on its local inputsand outputs) after the protocol terminates. (We stress that in the real executionthe minority parties do obtain additional pieces of information; yet in a secureprotocol they gain nothing from these additional pieces of information.)The fact that De�nition 7.1.1 refers to a model without private channels isreected in the set of possible ensembles freal�;A(x)gx that is determined bythe (sketchy) de�nition of the real-model adversary (which is allowed to tap allthe communication channels). When de�ning security in the private-channelmodel, the real-model adversary is not allowed to tap channels between honestparties, which in turn restricts the set of possible ensembles freal�;A(x)gx.Thus, the di�erence between the two models is only reected in the de�nition ofthe real-model adversary. On the other hand, when we wish to de�ne securitywith respect to passive adversaries, both the scope of the real-model adversariesand the scope of the ideal-model adversaries change. In the real-model execution,all parties follow the protocol but the adversary may alter the output of thedishonest parties arbitrarily depending on all their intermediate internal states(during the execution). In the corresponding ideal-model, the adversary is notallowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We comment that a de�nition analogous to De�nition 7.1.1 can be presentedalso in case the dishonest parties are not in minority. In fact, such a de�nitionseems more natural, but the problem is that such a de�nition cannot be satis�ed.That is, most natural functionalities do not have a protocol for computing themsecurely in case at least half of the parties are dishonest and employ an adequate(active) adversarial strategy. This follows from an impossibility result regardingtwo-party computation, which essentially asserts that there is no way to preventa party from prematurely suspending the execution. On the other hand, securemulti-party computation with dishonest majority is possible if (and only if)premature suspension of the execution is not considered a breach of security.7.1.1.3 Another example: Two-party protocols allowing abortIn light of the last paragraph, we now consider multi-party computations inwhich premature suspension of the execution is not considered a breach of secu-rity. For concreteness, we focus here on the special case of two-party computations.3For more details about this model, see Section 7.2.3.Intuitively, in any two-party protocol, each party may suspend the execu-tion at any point in time, and furthermore it may do so as soon as it learns3 As in Section 7.1.1.2, we consider a non-adaptive, active, computationally-boundedadversary.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 603the desired output. Thus, in case the output of each parties depends on bothinputs, it is always possible for one of the parties to obtain the desired outputwhile preventing the other party from fully-determining its own output. Thesame phenomenon occurs even in case the two parties just wish to generate acommon random value. Thus, when considering active adversaries in the two-party setting, we do not consider such premature suspension of the execution abreach of security. Consequently, we consider an ideal model where each of thetwo parties may \shut-down" the trusted (third) party at any point in time. Inparticular, this may happen after the trusted party has supplied the outcome ofthe computation to one party but before it has supplied it to the second. Thatis, an execution in the ideal model proceeds as follows:1. Each party sends its input to the trusted party, where the dishonest partymay replace its input or send no input at all (which may be viewed asaborting).2. Upon receiving inputs from both parties, the trusted party determines thecorresponding outputs, and sends the �rst output to the �rst party.3. In case the �rst party is dishonest, it may instruct the trusted party to halt,otherwise it always instructs the trusted party to proceed. If instructed toproceed, the trusted party sends the second output to the second party.4. Upon receiving the output-message from the trusted party, the honestparty outputs it locally, whereas the dishonest party may determine itsoutput based on all it knows (i.e., its initial input and its received output).A secure two-party computation allowing abort is required to emulate this idealmodel. That is, as in De�nition 7.1.1, security is de�ned by requiring that for ev-ery feasible real-model adversary A, there exists a feasible ideal-model adversaryA0, controlling the same party, so that the probability ensembles representing thecorresponding (real and ideal) executions are computationally indistinguishable.This means that each party's \e�ective malfunctioning" in a secure protocol isrestricted to supplying an initial input of its choice and aborting the computa-tion at any point in time. (Needless to say, the choice of the initial input of eachparty may not depend on the input of the other party.)We mention that an alternative way of dealing with the problem of prema-ture suspension of execution (i.e., abort) is to restrict attention to single-outputfunctionalities; that is, functionalities in which only one party is supposed toobtain an output. The de�nition of secure computation of such functionalitiescan be identical to the De�nition 7.1.1, with the exception that no restrictionis made on the set of dishonest parties (and in particular one may consider asingle dishonest party in case of two-party protocols). For further details, seeSection 7.2.3.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

604 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.1.2 Some Known ResultsWe briey mention some of the models for which general secure multi-party com-putation is known to be attainable; that is, models in which one can constructsecure multi-party protocols for computing any desired functionality.7.1.2.1 The main results presented in this chapterWe start with results that refer to secure two-party protocols as well as to securemulti-party protocols in the standard model (where the adversary may tap thecommunication lines).Theorem 7.1.2 (the main feasibility results { a sketch): Assuming the exis-tence of enhanced trapdoor permutations (as in De�nition C.1.1), general securemulti-party computation is possible in the following three models:1. Passive adversary, for any number of dishonest parties.2. Active adversary that may control only a strict minority of the parties.3. Active adversary, for any number of bad parties, provided that suspensionof execution is not considered a violation of security.In all these cases, the adversary is computationally-bounded and non-adaptive.On the other hand, the adversary may tap the communication lines betweenhonest parties (i.e., we do not assume the existence of private channels). Theresults for active adversaries assume a broadcast channel.Recall that a broadcast channel can be implemented (while tolerating any num-ber of bad parties) using a signature scheme and assuming a public-key infras-tructure (i.e., each party knows the veri�cation-key corresponding to each of theother parties).4Most of the current chapter will be devoted to proving Theorem 7.1.2. InSections 7.3 and 7.4 we prove Theorem 7.1.2 for the special case of two parties:In that case, Part 2 is not relevant, Part 1 is proved in Section 7.3, and Part 3is proved in Section 7.4. The general case (i.e., of multi-party computation) istreated in Section 7.5.7.1.2.2 Other resultsWe next list some other models in which general secure multi-party computationis attainable:4 Note that the implementation of a broadcast channel can be cast as a cryptographicprotocol problem (i.e., for the functionality (v; �; :::; �) 7! (v; v; :::; v), where v 2 f0; 1g� and� denotes the empty string). Thus, it is not surprising that the results regarding activeadversaries either assume the existence of such a channel or a setting in which such a channelcan be implemented (e.g., either that less than a third of the parties are faulty or that apublic-key infrastructure exists). (This reasoning fails if the de�nition of secure protocols isrelaxed such that it does not imply agreement; see [164].)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 605� Making no computational assumptions and allowing computationally-unboundedadversaries, but assuming the existence of private channels, general securemulti-party computation is possible in the following models:1. Passive adversary that may control only a (strict) minority of theparties.2. Active adversary that may control only less than one third of theparties. (Fault-tolerance can be increased to a regular minority ifbroadcast channels exists.)In both cases the adversary may be adaptive. For details, see Section 7.6.� General secure multi-party computation is possible against an active, adap-tive and mobile adversary that may control a small constant fraction ofthe parties at any point in time. This result makes no computationalassumptions, allows computationally-unbounded adversaries, but assumesthe existence of private channels.� Assuming the intractability of inverting RSA (or of the DLP), generalsecure multi-party computation is possible in a model allowing an adaptiveand active computationally-bounded adversary that may control only lessthan one third of the parties. We stress that this result does not assumethe existence of private channels.Results for asynchronous communication and arbitrary networks of point-to-point channels are also known. For further details, see Section 7.7.4.7.1.2.3 An extension and e�ciency considerationsSecure reactive computation: All the above results extend (easily) to areactive model of computation in which each party interacts with a high-levelprocess (or application). The high-level process adaptively supplies each partywith a sequence of inputs, one at a time, and expect to receive correspondingoutputs from the parties. That is, a reactive system goes through (a possiblyunbounded number of) iterations of the following type:� Parties are given inputs for the current iteration.� Depending on the current inputs, the parties are supposed to computeoutputs for the current iteration. That is, the outputs in iteration j aredetermined by the inputs of the jth iteration.A more general formulation allows the outputs of each iteration to depend alsoon a global state, which is possibly updated at each iteration. The global statemay include all inputs and outputs of previous iterations, and may only bepartially known to individual parties. (In a secure reactive computation sucha global state may be maintained by all parties in a \secret sharing" manner.)For further discussion, see Section 7.7.1.3.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

606 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSE�ciency considerations: One important e�ciency measure regarding pro-tocols is the number of communication rounds in their execution. The resultsmentioned above were originally obtained using protocols that use an unboundednumber of rounds. In some cases, subsequent works obtained secure constant-round protocols. Other important e�ciency considerations include the totalnumber of bits sent in the execution of a protocol, and the local computationtime. The communication and computation complexities of the aforementionedprotocols are related to the computational complexity of the desired functional-ities, but alternative relations (e.g., referring to the communication complexityof the latter) may be possible.7.1.3 Construction ParadigmsWe briey sketch three paradigms used in the construction of secure multi-party protocols. We focus on the construction of secure protocols for the modelof computationally-bounded and non-adaptive adversaries. These constructionsproceed in two steps: First a secure protocol is presented for the model of passiveadversaries (for any number of dishonest parties), and next such a protocol is\compiled" into a protocol that is secure in one of the two models of activeadversaries (i.e., either in a model allowing the adversary to control only aminority of the parties or in a model in which premature suspension of theexecution is not considered a violation of security).Recall that in the model of passive adversaries, all parties follow the pre-scribed protocol, but at termination the adversary may alter the output of thedishonest parties depending on all their intermediate internal states (during theexecution). Below, we refer to protocols that are secure in the model of passive(resp., general or active) adversaries by the term passively-secure (resp., actively-secure).7.1.3.1 From passively-secure protocols to actively-secure onesWe show how to transform any passively-secure protocol into a correspondingactively-secure protocol. The communication model in both protocols consistsof a single broadcast channel. Note that the messages of the original (passively-secure) protocol may be assumed to be sent over a broadcast channel, becausethe adversary may see them anyhow (by tapping the point-to-point channels).As for the resulting actively-secure protocol, the broadcast channel it uses canbe implemented via an (authenticated) Byzantine Agreement protocol (cf. Sec-tion 7.5.3.2), thus providing an emulation of this model on the standard point-to-point model (in which a broadcast channel does not exist). We mention thatauthenticated Byzantine Agreement is typically implemented using a signaturescheme (and assuming that each party knows the veri�cation-key correspondingto each of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledgeproofs in order to force parties to behave in a way that is consistent with the(passively-secure) protocol. Actually, we need to con�ne each party to a unique

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 607consistent behavior (i.e., according to some �xed local input and a sequence ofcoin tosses), and to guarantee that a party cannot �x its input (and/or its coins)in a way that depends on the inputs of honest parties. Thus, some preliminarysteps have to be taken before the step-by-step emulation of the original proto-col can take place. Speci�cally, the compiled protocol (which like the originalprotocol is executed over a broadcast channel) proceeds as follows:1. Prior to the emulation of the original protocol, each party commits to itsinput (using a commitment scheme). In addition, using a zero-knowledgeproof-of-knowledge (cf. Section 4.7), each party also proves that it knowsits own input; that is, that it can properly decommit to the commitmentit sent. (These zero-knowledge proof-of-knowledge are conducted sequen-tially to prevent dishonest parties from setting their inputs in a way thatdepends on inputs of honest parties.)2. Next, all parties jointly generate a sequence of random bits for each partysuch that only this party knows the outcome of the random sequence gen-erated for it, but everybody gets a commitment to this outcome. Thesesequences will be used as the random-inputs (i.e., sequence of coin tosses)for the original protocol. Each bit in the random-sequence generated forParty X is determined as the exclusive-or of the outcomes of instances ofan (augmented) coin-tossing protocol that Party X plays with each of theother parties.3. In addition, when compiling (the passively-secure protocol to an actively-secure protocol) for the model that allows the adversary to control onlya minority of the parties, each party shares its input and random-inputwith all other parties using a Veri�able Secret Sharing protocol (cf. Sec-tion 7.5.5). This will guarantee that if some party prematurely suspendsthe execution, then all the parties can together reconstruct all its secretsand carry-on the execution while playing its role.4. After all the above steps were completed, we turn to the main step inwhich the new protocol emulates the original one. In each step, each partyaugments the message determined by the original protocol with a zero-knowledge that asserts that the message was indeed computed correctly.Recall that the next message (as determined by the original protocol) isa function of the sender's own input, its random-input, and the messagesit has received so far (where the latter are known to everybody becausethey were sent over a broadcast channel). Furthermore, the sender's inputis determined by its commitment (as sent in Step 1), and its random-input is similarly determined (in Step 2). Thus, the next message (asdetermined by the original protocol) is a function of publicly known strings(i.e., the said commitments as well as the other messages sent over thebroadcast channel). Moreover, the assertion that the next message wasindeed computed correctly is an NP-assertion, and the sender knows acorresponding NP-witness (i.e., its own input and random-input as well

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

608 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSas the corresponding decommitment information). Thus, the sender canprove (to each of the other parties) in zero-knowledge that the message itis sending was indeed computed according to the original protocol.A detailed description is provided in Section 7.4 (see also Section 7.5.4).7.1.3.2 Passively-secure computation with \scrambled circuits"The following technique refers mainly to two-party computation. Suppose thattwo parties, each having a private input, wish to obtain the value of a prede-termined two-argument function evaluated at their corresponding inputs (i.e.,we consider only functionalities of the form (x; y) 7! (f(x; y); f(x; y))). Furthersuppose that the two parties hold a circuit that computes the value of the func-tion on inputs of the adequate length. The idea is to have one party construct an\scrambled" form of the circuit so that the other party can propagate encryptedvalues through the \scrambled gates" and obtain the output in the clear (whileall intermediate values remain secret). Note that the roles of the two parties arenot symmetric, and recall that we are describing a protocol that is secure (only)with respect to passive adversaries. An implementation of this idea proceeds asfollows:� Constructing a \scrambled" circuit: The �rst party constructs a \scram-bled" form of the original circuit. The \scrambled" circuit consists of pairsof encrypted secrets that correspond to the wires of the original circuit andgadgets that correspond to the gates of the original circuit. The secretsassociated with the wires entering a gate are used (in the gadget that corre-sponds to this gate) as keys in the encryption of the secrets associated withthe wire exiting this gate. Furthermore, there is a random correspondencebetween each pair of secrets and the Boolean values (of the correspondingwire). That is, wire w is assigned a pair of secrets, denoted (s0w; s00w), andthere is a random 1-1 mapping, denoted �w, between this pair and the pairof Boolean values (i.e., f�w(s0w); �w(s00w)g = f0; 1g).Each gadget is constructed such that knowledge of a secret that corre-spond to each wire entering the corresponding gate (in the circuit) yieldsa secret corresponding to the wire that exits this gate. Furthermore, thereconstruction of secrets using each gadget respects the functionality ofthe corresponding gate. For example, if one knows the secret that corre-sponds to the 1-value of one entry-wire and the secret that corresponds tothe 0-value of the other entry-wire, and the gate is an or-gate, then oneobtains the secret that corresponds to the 1-value of exit-wire.Speci�cally, each gadget consists of 4 templets that are presented in a ran-dom order, where each templet corresponds to one of the 4 possible valuesof the two entry-wires. A templet may be merely a double encryption of thesecret that corresponds to the appropriate output value, where the doubleencryption uses as keys the two secrets that correspond to the input values.That is, suppose a gate computing f : f0; 1g2 ! f0; 1g has input wires w1

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 609and w2, and output wire w3. Then, each of the four templets of this gatehas the form Esw1 (Esw2 (sw3)), where f(�w1(sw1); �w2(sw2)) = �w3(sw3).� Sending the \scrambled" circuit: The �rst party sends the \scrambled"circuit to the second party. In addition, the �rst party sends to the secondparty the secrets that correspond to its own (i.e., the �rst party's) inputbits (but not the values of these bits). The �rst party also reveals thecorrespondence between the pair of secrets associated with each output(i.e., circuit-output wire) and the Boolean values.5 We stress that therandom correspondence between the pair of secrets associated with eachother wire and the Boolean values is kept secret (by the �rst party).� Oblivious Transfer of adequate secrets: Next, the �rst party uses a (1-out-of-2) Oblivious Transfer protocol in order to hand the second party thesecrets corresponding to the second party's input bits (without the �rstparty learning anything about these bits).Loosely speaking, a 1-out-of-k Oblivious Transfer is a protocol enablingone party to obtain one of k secrets held by another party, without thesecond party learning which secret was obtained by the �rst party. Thatis, we refer to the two-party functionality(i; (s1; :::; sk)) 7! (si; �) (7.1)where � denotes the empty string.� Locally evaluating the \scrambled" circuit: Finally, the second party \eval-uates" the \scrambled" circuit gate-by-gate, starting from the top (circuit-input) gates (for which it knows one secret per each wire) and ending atthe bottom (circuit-output) gates (for which, by construction, the corre-spondence of secrets to values is known). Thus, the second party obtainsthe output value of the circuit (but nothing else), and sends it to the �rstparty.For further details, see Section 7.7.4.7.1.3.3 Passively-secure computation with sharesFor any m � 2, suppose that m parties, each having a private input, wishto obtain the value of a predetermined m-argument function evaluated at theirsequence of inputs. Further suppose that the parties hold a circuit that computesthe value of the function on inputs of the adequate length, and that the circuitcontains only and and not gates. Again, the idea is to propagate informationfrom the top (circuit-input) gates to the bottom (circuit-output) gates, but thistime the information is di�erent, and the propagation is done jointly by allparties. The idea is to share the value of each wire in the circuit such that all5 This can be done by providing, for each output wire, a succinct 2-partition (of all strings)that separates the two secrets associated with this wire.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

610 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSshares yield the value, whereas lacking even one of the shares keeps the valuetotally undetermined. That is, we use a simple secret sharing scheme such thata bit b is shared by a random sequence of m bits that sum-up to b mod 2. First,each party shares each of its input bits with all parties (by sending each party arandom value and setting its own share accordingly).6 Next, all parties jointlyscan the circuit from its input wires to the output wires, processing each gateas follows:� When encountering a gate, the parties already hold shares of the values ofthe wires entering the gate, and their aim is to obtain shares of the valueof the wire exiting the gate.� For a not-gate, propagating shares through the gate is easy: the �rst partyjust ips the value of its share, and all other parties maintain their shares.� For an and-gate, propagating shares through the gate requires a secure(i.e., passively-secure) multi-party protocol. Since an and-gate corre-sponds to multiplication modulo 2, the parties need to securely computethe following randomized functionality (in which the xi's denote shares ofone entry-wire, the yi's denote shares of the second entry-wire, the zi'sdenote shares of the exit-wire, and the shares indexed by i belongs toParty i): ((x1; y1); :::; (xm; ym)) 7! (z1; :::; z2) (7.2)wheremXi=1 zi = mXi=1 xi � mXi=1 yi (7.3)That is, the zi's are random subject to Eq. (7.3).At the end, each party holds a share of each output wire. The desired output isobtained by letting each party send its share of each output wire to all parties.Thus, securely evaluating the entire (arbitrary) circuit \reduces" to securelyconducting a speci�c (very simple) multi-party computation. But things geteven simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (7.4)Thus, the m-ary functionality of Eq. (7.2)& (7.3) can be computed as follows(where all arithmetic operations are mod 2):1. Each Party i locally computes zi;i def= xiyi.6 For simplicity, we may assume the private channel model, in which case a value sent toan honest party cannot be read by the adversary.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 6112. Next, each pair of parties (i.e., Parties i and j) securely compute randomshares of xiyj+xjyi. That is, Parties i and j (holding (xi; yi) and (xj ; yj),respectively), need to securely compute the randomized two-party func-tionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are random subjectto zi;j + zj;i = xiyj + yixj . The latter (simple) two-party computation canbe securely implemented using (a 1-out-of-4) Oblivious Transfer. Speci�-cally, Party i uniformly selects zi;j 2 f0; 1g, and de�nes its four secrets asfollows: index of corresponding value of the secretthe secret value of (xj ; yj) (output of Party j)1 (0; 0) zi;j2 (0; 1) zi;j + xi3 (1; 0) zi;j + yi4 (1; 1) zi;j + xi + yiParty j sets its input to 2xj+yj+1, and obtains the secret zi;j+xiyj+yixj .(Indeed, for \small"B, any two-party functionality f : A�B ! f�g�f0; 1gcan be securely implemented by a single invocation of a 1-out-of-jBj Obliv-ious Transfer, where the �rst party de�nes its jBj secrets in correspondenceto the jBj possible values of the input to the second party.)3. Finally, for every i = 1; :::;m, the sum Pmj=1 zi;j yields the desired shareof Party i.A detailed description is provided in Section 7.3 (see also Section 7.5.2).A related construction: We mention that an analogous construction hasbeen subsequently used in the private channel model and withstands compu-tationally unbounded active (resp., passive) adversaries that control less thanone third (resp., a minority) of the parties. The basic idea is to use a moresophisticated secret sharing scheme; speci�cally, via a low degree polynomials.That is, the Boolean circuit is viewed as an arithmetic circuit over a �nite �eldhaving more than m elements, and a secret element s in the �eld is sharedby selecting uniformly a polynomial of degree d = b(m� 1)=3c (resp., degreed = b(m� 1)=2c) having a free-term equal to s, and handing each party thevalue of this polynomial evaluated at a di�erent (�xed) point (e.g., party i isgiven the value at point i). Addition is emulated by (local) point-wise addi-tion of the (secret sharing) polynomials representing the two inputs (using thefact that for polynomials p and q, and any �eld element e (and in particulare = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of mul-tiplication is more involved and requires interaction (because the product ofpolynomials yields a polynomial of higher degree, and thus the polynomial rep-resenting the output cannot be the product of the polynomials representing thetwo inputs). Indeed, the aim of the interaction is to turn the shares of the prod-uct polynomial into shares of a degree d polynomial that has the same free-term

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

612 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSas the product polynomial (which is of degree 2d). This can be done using thefact that the coe�cients of a polynomial are a linear combination of its valuesat su�ciently many arguments (and the other way around), and the fact thatone can privately-compute any linear combination (of secret values). For furtherdetails, see Section 7.6.7.2 * The Two-Party Case: De�nitionsIn this section we de�ne security for two models of adversaries for two-partyprotocols. In both models the adversary is non-adaptive and computationally-bounded (i.e., restricted to probabilistic polynomial-time with (non-uniform)auxiliary inputs). In the �rst model, presented in Section 7.2.2, we consider arestricted adversary called semi-honest, whereas the general case of maliciousadversary is considered in Section 7.2.3. In addition to being of independentinterest, the semi-honest model will play a major role in the constructions ofprotocols for the malicious model (see Sections 7.3 and 7.4).7.2.1 The syntactic frameworkA two-party protocol problem is cast by specifying a random process that mapspairs of inputs (one input per each party) to pairs of outputs (one per eachparty). We refer to such a process as the desired functionality, denoted f :f0; 1g��f0; 1g� ! f0; 1g��f0; 1g�. That is, for every pair of inputs (x; y), thedesired output-pair is a random variable, f(x; y), ranging over pairs of strings.The �rst party, holding input x, wishes to obtain the �rst element in f(x; y);whereas the second party, holding input y, wishes to obtain the second elementin f(x; y). A few interesting special cases are highlighted next.� Symmetric deterministic functionalities: This is the simplest general caseoften considered in the literature. In this case, for some predeterminedfunction, g, both parties wish to obtain the value of g evaluated at theinput pair. That is, the functionality they wish to (securely) computeis f(x; y) def= (g(x; y); g(x; y)). For example, they may be interested indetermining whether their local inputs are equal (i.e., g(x; y) = 1 i� x = y)or whether their local inputs viewed as sets are disjoint (i.e., g(x; y) = 1i� for every i either xi = 0 or yi = 0).� Input oblivious randomized functionalities: Whereas input-oblivious deter-ministic functionalities are trivial, some input-oblivious randomized func-tionalities are very interesting. Suppose, for example, that the two partieswish to toss a fair coin (i.e., such that no party can \inuence the outcome"by itself). This task can be cast by requiring that, for every input pair(x; y), the output pair f(x; y) is uniformly distributed over f(0; 0); (1; 1)g.� Asymmetric functionalities: The general case of asymmetric functionalitiesis captured by functionalities of the form f(x; y) def= (f 0(x; y); �), where

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 613f 0 : f0; 1g� � f0; 1g� ! f0; 1g� is a randomized process and � denotes theempty string. A special case of interest is when one party wishes to obtainsome predetermined partial information regarding the secret input of theother party, where the latter secret is veri�able with respect to the inputof the �rst party. This task is captured by a functionality f such thatf(x; y) def= (R(y); �) if V (x; y) = 1 and f(x; y) def= (?; �) otherwise, whereR represents the partial information to be revealed and V represents theveri�cation procedure.7We stress that whenever we consider a protocol for securely computing f , it isimplicitly assumed that the protocol correctly computes f when both partiesfollow the prescribed program. That is, the joint output distribution of theprotocol, played by honest parties, on input pair (x; y), equals the distributionof f(x; y).Notation: We let � denote the empty string and ? denote a special errorsymbol. That is, whereas � 2 f0; 1g� (and j�j = 0), we postulate that ? 62 f0; 1g�(and is thus distinguishable from any string in f0; 1g�).7.2.1.1 Simplifying conventionsTo simplify the exposition we make the following three assumptions:1. The protocol problem has to be solved only for inputs of the same length(i.e., jxj = jyj).2. The functionality is computable in time polynomial in the length of theinputs.3. Security is measured in terms of the length of the inputs.As discussed next, the above conventions (or assumptions) can be greatly re-laxed, yet each represents an essential issue that must be addressed.We start with the �rst convention (or assumption). Observe that making norestriction on the relationship among the lengths of the two inputs, disallows theexistence of secure protocols for computing any \non-degenerate" functionality.The reason is that the program of each party (in a protocol for computing thedesired functionality) must either depend only on the length of the party's inputor obtain information on the counterpart's input length. In case informationof the latter type is not implied by the output value, a secure protocol \cannota�ord" to give it away.8 By using adequate padding, any \natural" functionality7 One may also consider the \non-veri�able" case (i.e., V � 1), but in this case nothing canprevent the second party from acting as if its input is di�erent from its \actual" secret input.8 The situation is analogous to the de�nition of secure encryption, where it is required thatthe message length be polynomially-related to the key length. Actually, things become evenworst in the current setting, because of the possible malicious behavior of parties.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

614 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLScan be cast as one satisfying the equal length convention.9We now turn to the second convention. Certainly, the total running-time ofa secure two-party protocol for computing the functionality cannot be smallerthan the time required to compute the functionality (in the ordinary sense).Arguing as in the case of input lengths, one can see that we need an a-prioribound on the complexity of the functionality. A more general approach wouldbe to let such a bound be given explicitly to both parties as an auxiliary input.In such a case, the protocol can be required to run for time bounded by a �xedpolynomial in this auxiliary parameter (i.e., the time-complexity bound of f).Assuming that a good upper bound of the complexity of f is time-constructibleand using standard padding techniques, we can reduce this general case to thespecial case discussed above: That is, given a general functionality, g, and atime-bound t : N ! N , we introduce the functionalityf((x; 1i); (y; 1j)) def= � g(x; y) if i = j = t(jxj) = t(jyj)(?;?) otherwisewhere ? is a special error symbol. Now, the problem of securely computing greduces to the problem of securely computing f , which in turn is polynomial-timecomputable.Finally, we turn to the third convention. Indeed, a more general conventionwould be to have an explicit security parameter that determines the security ofthe protocol. This general alternative is essential for allowing \secure" computa-tion of �nite functionalities (i.e., functionalities de�ned on �nite input domains).We may accommodate the general convention using the special case, postulatedabove, as follows. Suppose that we want to compute the functionality f , on in-put pair (x; y) with security (polynomial in) the parameter s. Then we introducethe functionality f 0((x; 1s); (y; 1s)) def= f(x; y) ;and consider secure protocols for computing f 0. Indeed, this reduction corre-sponds to the realistic setting where the parties �rst agree on the desired levelof security, and only then proceed to compute the function (using this level ofsecurity).Partial functionalities. The �rst convention postulates that we are actuallynot considering mapping from the set of all pairs of bit strings, but rather map-pings from a certain (general) set of pairs of strings (i.e., [n2Nf0; 1gn�f0; 1gn).Taking this convention one step further, one may consider functionalities thatare de�ned only over a set R � [n2Nf0; 1gn � f0; 1gn. Clearly, securely com-puting such a functionality f 0 can be reduced to computing any of its extensionsto [n2Nf0; 1gn � f0; 1gn (e.g., computing f such that f(x; y) def= f 0(x; y) for9 In the sequel, we sometimes take the liberty of presenting functionalities in a form thatviolates the equal length convention (e.g., in case of Oblivious Transfer). Indeed, these formu-lations can be easily modi�ed to �t the equal length convention.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 615(x; y) 2 R and f(x; y) def= (?;?) otherwise). With one exception (to be dis-cussed explicitly), our exposition only refers to functionalities that are de�nedover the set of all pairs of strings of equal length.An alternative set of conventions. An alternative way of addressing allthree concerns discussed above is to introduce an explicit security parameter,denoted n, and consider the following sequence of functionalities hfnin2N. Eachfn is de�ned over the set of all pairs of bit strings, but typically one considers onlythe value of fn on strings of poly(n) length. In particular, for a functionality f asin our main conventions, one may consider fn(x; y) def= f(x; y) if jxj = jyj = n andfn(x; y) def= (?;?) otherwise. When following the alternative convention, onetypically postulates that there exists a poly(n)-time algorithm for computing fn(for a generic n), and security is also evaluated with respect to the parameter n.We stress that in this case the protocol's running-time and its security guaranteeare only related to the parameter n, and are independent of the length of theinput.107.2.1.2 Computational indistinguishability: conventions and nota-tionAs in De�nition 7.1.1, we will often talk of the computational indistinguishabil-ity of probability ensembles indexed by strings (as in Part 2 of De�nition 3.2.7).Whenever we do so, we refer to computational indistinguishability by (non-uniform) families of polynomial-size circuits. That is, we say that the ensem-bles, X def= fXwgw2S and Y def= fYwgw2S, are computationally indistinguishable,denoted X c� Y , if the following holds:For every polynomial-size circuit family, fCngn2N, every positivepolynomial p(�), every su�ciently large n and every w 2 S \ f0; 1gn,jPr [Cn(Xw)=1]� Pr [Cn(Yw)=1] j < 1p(n) (7.5)Note that an in�nite sequence of w's may be incorporated in the family, hencethe de�nition is not strengthened by providing the circuit Cn with w as anadditional input.Recall that computational indistinguishability is a relaxation of statistical in-distinguishability, where here the ensembles X def= fXwgw2S and Y def= fYwgw2Sare statistically indistinguishable, denoted X s� Y , if for every positive polynomialp(�), every su�ciently large n and every w 2 S \ f0; 1gn,X�2f0;1g� jPr [Xw=�]� Pr [Yw=�]j < 1p(n) (7.6)10 Consequently, the value of fn(x; y) may depend only on poly(n)-long pre�xes of x and y.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

616 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSIn case the di�erences are all equal to zero, we say that the ensembles areidentically distributed (and denote this by X � Y).7.2.1.3 Representation of parties' strategiesIn Chapter 4, the parties' strategies for executing a given protocol (e.g., a proofsystem) were represented by interactive Turing machines. In this chapter weprefer an equivalent formulation, which is less formal and less cumbersome.Speci�cally, the parties' strategies are presented as functions mapping the party'scurrent view of the interactive execution to the next message to be sent. Recallthat the party's view consists of its initial input, an auxiliary initial input (whichis relevant only for modeling adversarial strategies), its random-tape, and thesequence of messages it has received so far. A strategy will be called feasible if itis implementable in probabilistic polynomial-time (i.e., the function associatedwith it is computable in polynomial-time).As in Chapter 4, it is typically important to allow the adversaries to ob-tain (non-uniformly generated) auxiliary inputs (cf. Section 4.3.3). Recall thatauxiliary inputs play a key role in guaranteeing that zero-knowledge is closedunder sequential composition (see Section 4.3.4). Similarly, auxiliary inputs tothe adversaries will play a key role in composition theorems for secure protocols,which are pivotal to our exposition and very important in general. Nevertheless,for sake of simplicity, we often omit the auxiliary inputs from our notations anddiscussions (especially in places where they do not play an \active" role).Recall that considering auxiliary inputs (as well as ordinary inputs) withoutintroducing any restrictions (other than on their length) means that we areactually presenting a treatment in terms of non-uniform complexity. Thus, allour assumptions will refer to non-uniform complexity.7.2.2 The semi-honest modelLoosely speaking, a semi-honest party is one who follows the protocol properlywith the exception that it keeps a record of all its intermediate computations.Actually, it su�ces to keep the internal coin tosses and all messages received fromthe other party. In particular, a semi-honest party tosses fair coins (as instructedby its program), and sends messages according to its speci�ed program (i.e., asa function of its input, outcome of coin tosses, and incoming messages). Notethat a semi-honest party corresponds to the \honest veri�er" in the de�nitionsof zero-knowledge (cf. Section 4.3.1.7).In addition to the methodological role of semi-honest parties in our exposi-tion, they do constitute a model of independent interest. In particular, deviatingfrom the speci�ed program, which may be invoked inside a complex softwareapplication, is more di�cult than merely recording the contents of some com-munication registers. Furthermore, records of these registers may be availablethrough some standard activities of the operating system. Thus, whereas generalmalicious behavior may be infeasible for many users, semi-honest behavior may

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 617be feasible for them (and one cannot assume that they just behave in a totally-honest way). Consequently, in many settings, one may assume that althoughthe users may wish to cheat, they actually behave in a semi-honest way. (Wemention that the \augmented semi-honest" model, introduced in Section 7.4.4.1,may be more appealing and adequate for more settings.)Below, we present two equivalent formulations of security in the semi-honestmodel. The �rst formulation capitalizes on the simplicity of the current modeland de�nes security in it by a straightforward extension of the de�nition of zero-knowledge. The second formulation applies the general methodology outlined inSection 7.1.1. Indeed, both formulations follow the simulation paradigm, but the�rst does so by extending the de�nition of zero-knowledge, whereas the seconddoes so by degenerating the general \real-vs-ideal" methodology.7.2.2.1 The simple formulation of privacyLoosely speaking, a protocol privately computes f if whatever can be obtainedfrom a party's view of a (semi-honest) execution, could be essentially obtainedfrom the input and output available to that party. This extends the formula-tion of (honest-veri�er) zero-knowledge by providing the simulator also with the(proper) output. The essence of the de�nition is captured by the simpler specialcase of deterministic functionalities, highlighted below.De�nition 7.2.1 (privacy w.r.t semi-honest behavior): Let f : f0; 1g��f0; 1g� !f0; 1g��f0; 1g� be a functionality, and f1(x; y) (resp., f2(x; y)) denotes the �rst(resp., second) element of f(x; y). Let � be a two-party protocol for comput-ing f .11 The view of the �rst (resp., second) party during an execution of �on (x; y), denoted view�1 (x; y) (resp., view�2 (x; y)), is (x; r;m1; :::;mt) (resp.,(y; r;m1; :::;mt)), where r represent the outcome of the �rst (resp., second)party's internal coin tosses, and mi represent the ith message it has received.The output of the �rst (resp., second) party after an execution of � on (x; y),denoted output�1 (x; y) (resp., output�2 (x; y)), is implicit in the party's ownview of the execution, and output�(x; y) = (output�1 (x; y);output�2 (x; y)).� (deterministic case) For a deterministic functionality f , we say that �privately computes f if there exist probabilistic polynomial-time algorithms,denoted S1 and S2, such thatfS1(x; f1(x; y))gx;y2f0;1g� c� fview�1 (x; y)gx;y2f0;1g� (7.7)fS2(y; f2(x; y))gx;y2f0;1g� c� fview�2 (x; y)gx;y2f0;1g� (7.8)where jxj = jyj. (Recall that c� denotes computational indistinguishabilityby (non-uniform) families of polynomial-size circuits.)11 By saying that � computes (rather than privately computes) f , we mean that the outputdistribution of the protocol (when played by honest or semi-honest parties) on input pair (x; y)is distributed identically to f(x; y).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

618 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� (general case)We say that � privately computes f if there exist probabilisticpolynomial-time algorithms, denoted S1 and S2, such thatf(S1(x; f1(x; y)); f(x; y))gx;y c� f(view�1 (x; y);output�(x; y))gx;y (7.9)f(S2(y; f2(x; y)); f(x; y))gx;y c� f(view�2 (x; y);output�(x; y))gx;y (7.10)We stress that above view�1 (x; y), view�2 (x; y), output�1 (x; y) and output�2 (x; y),are related random variables, de�ned as a function of the same random ex-ecution. In particular, output�i (x; y) is fully determined by view�i (x; y).Consider �rst the deterministic case: Eq. (7.7) (resp., Eq. (7.8)) asserts that theview of the �rst (resp., second) party, on each possible pair of inputs, can bee�ciently simulated based solely on its own input and output. Thus, all that thisparty learns from the full transcript of the proper execution, is e�ectively impliedby its own output from this execution (and its own input to it). In other words,all that the party learns from the (semi-honest) execution is essentially impliedby the output itself. Next, note that the formulation for the deterministic casecoincides with the general formulation as applied to deterministic functionalities(because, in any protocol � that computes a deterministic functionality f , itmust hold that output�(x; y) = f(x; y), for each pair of inputs (x; y)).In contrast to the deterministic case, augmenting the view of the semi-honestparty by the output of the other party is essential when randomized functional-ities are concerned. Note that in this case, for any protocol � that computes arandomized functionality f , it does not necessarily hold that output�(x; y) =f(x; y), because each of the two objects is a random variable. Indeed, these tworandom variables must be identically (or similarly) distributed, but this doesnot su�ce for asserting, for example, that Eq. (7.7) implies Eq. (7.9). Twodisturbing counter-examples follow:1. Consider the functionality (1n; 1n) 7! (r; �), where r is uniformly dis-tributed in f0; 1gn, and a protocol in which Party 1 uniformly selectsr 2 f0; 1gn, sends it to Party 2, and outputs r. Clearly, this protocolcomputes the above functionality, alas intuitively we should not considerthis computation private (because Party 2 learns the output of Party 1although Party 2 is not supposed to learn anything about that output).However, a simulator S2(1n) that outputs a uniformly chosen r 2 f0; 1gnsatis�es Eq. (7.8) (but does not satisfy Eq. (7.10)).The point is that Eq. (7.9)& (7.10) refer to the relation between a party'soutput and the other party's view in the same execution of the protocol,and require that this relation be maintained in the simulation.2. Furthermore, Eq. (7.9)& (7.10) require that the party's simulated view �tsits actual output (which is given to the simulator). To demonstrate theimportance of this issue, consider the foregoing functionality, and a proto-col in which Party 1 uniformly selects s 2 f0; 1gn, and outputs r F (s),where F is a one-way permutation. Again, this protocol computes the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 619above functionality, but we should not consider this computation private(because Party 1 learns the preimage of its output under F , something itcould not have obtained if a trusted party were to give it the output). Notethat a simulator S1(1n; r) that uniformly selects s 2 f0; 1gn and outputs(s; F (s)) satis�es Eq. (7.7) (but does not satisfy Eq. (7.9)).What about auxiliary inputs? Auxiliary inputs are implicit in De�nition 7.2.1.They are represented by the fact that the de�nition asks for computationalindistinguishability by non-uniform families of polynomial-size circuits (ratherthan computational indistinguishability by probabilistic polynomial-time algo-rithms). In other words, indistinguishability holds also with respect to prob-abilistic polynomial-time machines that obtain (non-uniform) auxiliary inputs.Private computation of partial functionalities. For functionalities thatare de�ned only for inputs pairs in some set R � f0; 1g� � f0; 1g� (see Sec-tion 7.2.1.1), private computation is de�ned as in De�nition 7.2.1, except thatthe ensembles are indexed by pairs in R.7.2.2.2 The alternative formulationIt is instructive to recast the above de�nition in terms of the general (\real-vs-ideal") framework discussed in Section 7.1.1 (and used extensively in the caseof arbitrary malicious behavior). In this framework one �rst consider an idealmodel in which the (two) parties are joined by a (third) trusted party, andthe computation is performed via this trusted party. Next, one considers thereal model in which a real (two-party) protocol is executed (and there exist notrusted third parties). A protocol in the real model is said to be secure withrespect to certain adversarial behavior if the possible real executions with suchan adversary can be \simulated" in the corresponding ideal model. The notionof simulation used here is di�erent than the one used in Section 7.2.2.1: Thesimulation is not of the view of one party via a traditional algorithm, but rathera simulation of the joint view of both parties by the execution of an ideal-modelprotocol.According to the general methodology (framework), we should �rst specifythe ideal-model protocol. In case of semi-honest adversaries, the ideal modelconsists of each party sending its input to the trusted party (via a secure privatechannel), the third party computing the corresponding output-pair and sendingeach output to the corresponding party. The only adversarial behavior allowedhere is for one of the parties to determine its own output based on its input andthe output it has received (from the trusted party).12 This adversarial behaviorrepresents the attempt to learn something from the party's view of a proper12 We stress that unlike in the malicious model, discussed in Section 7.2.3, here the dishonest(or rather semi-honest) party is not allowed to modify its input (but must hand its actual inputto the trusted party).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

620 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSexecution (which in the ideal model consists only of its local input and output).The other (i.e., honest) party merely outputs the output that it has received(from the trusted party).Next, we turn to the real model. Here, there is a real two-party protocol andthe adversarial behavior is restricted to be semi-honest. That is, the protocol isexecuted properly, but one party may produce its output based on (an arbitrarypolynomial-time computation applied to) its view of the execution (as de�nedabove). We stress that the only adversarial behavior allowed here is for one ofthe parties to determine its own output based on its entire view of the properexecution of the protocol.Finally, we de�ne security in the semi-honest model. A secure protocol for thereal (semi-honest) model is such that for every feasible semi-honest behavior ofone of the parties, we can simulate the joint outcome (of their real computation)by an execution in the ideal model (where also one party is semi-honest andthe other is honest). Actually, we need to augment the de�nition to account fora-priori information available to semi-honest parties before the protocol starts.This is done by supplying these parties with auxiliary inputs.Note that in both (ideal and real) models, the (semi-honest) adversarial be-havior only takes place after the proper execution of the corresponding protocol.Thus, in the ideal model this behavior is captured by a computation applied tothe local input-output pair, whereas in the real model this behavior is capturedby a computation applied to the party's local view (of the execution).De�nition 7.2.2 (security in the semi-honest model): Let f : f0; 1g��f0; 1g�!f0; 1g� � f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the�rst (resp., second) element of f(x; y), and � be a two-party protocol for com-puting f .� Let B = (B1; B2) be a pair of probabilistic polynomial-time algorithmsrepresenting parties' strategies for the ideal model. Such a pair is admis-sible (in the ideal model) if for at least one Bi we have Bi(u; v; z) = v,where u demotes the party's local input, v its local output, and z its aux-iliary input. The joint execution of f under B in the ideal model on inputpair (x; y) and auxiliary input z, denoted idealf;B(z)(x; y), is de�ned as(B1(x; f1(x; y); z); B2(y; f2(x; y); z)).(That is, if Bi is honest then it just outputs the value fi(x; y) obtained fromthe trusted party, which is implicit in this de�nition. Thus, our peculiarchoice to feed both parties with the same auxiliary input is immaterial,because the honest party ignores its auxiliary input.)� Let A = (A1; A2) be a pair of probabilistic polynomial-time algorithms rep-resenting parties' strategies for the real model. Such a pair is admissible (inthe real model) if for at least one i 2 f1; 2g we have Ai(view; aux) = outfor every view and aux, where out is the output implicit in view. The jointexecution of � under A in the real model on input pair (x; y) and auxiliary in-put z, denoted real�;A(z)(x; y), is de�ned as (A1(view�1 (x; y); z); A2(view�2 (x; y); z)),where view�i (x; y) is as in De�nition 7.2.1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 621(Again, if Ai is honest then it just outputs the value fi(x; y) obtained fromthe execution of �, and we may feed both parties with the same auxiliaryinput.)Protocol � is said to securely compute f in the semi-honest model (secure w.r.tf and semi-honest behavior) if for every probabilistic polynomial-time pair ofalgorithms A = (A1; A2) that is admissible for the real model there exists aprobabilistic polynomial-time pair of algorithms B = (B1; B2) that is admissiblefor the ideal model such thatfidealf;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;z (7.11)where x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).Observe that the de�nition of the joint execution in the real model prohibits bothparties (honest and semi-honest) to deviate from the strategies speci�ed by �.The di�erence between honest and semi-honest parties is merely in their actionson the corresponding local views of the execution: An honest party outputs onlythe output-part of the view (as speci�ed by �), whereas a semi-honest party mayoutput an arbitrary (feasibly computable) function of the view.We comment that, as will become clear in the proof of Proposition 7.2.3,omitting the auxiliary input does not weaken De�nition 7.2.2. Intuitively, sincethe adversary is passive, the only a�ect of the auxiliary input is that it appears aspart of the adversary's view. However, since Eq. (7.11) refers to the non-uniformformulation of computational indistinguishability, augmenting the ensembles byauxiliary inputs has no a�ect.7.2.2.3 Equivalence of the two formulationIt is not hard to see that De�nitions 7.2.1 and 7.2.2 are equivalent. That is,Proposition 7.2.3 Let � be a protocol for computing f . Then, � privatelycomputes f if and only if � securely computes f in semi-honest model.Proof Sketch: We �rst show that De�nition 7.2.2 implies De�nition 7.2.1.Suppose that � securely computes f in semi-honest model (i.e., satis�es De�ni-tion 7.2.2). Without loss of generality, we show how to simulate the �rst party'sview. Towards this end, we de�ne the following admissible pair A = (A1; A2)for the real model: A1 is merely the identity transformation (i.e., it outputs theview given to it), whereas A2 outputs the output of Party 2 as determined by itsview. We stress that we consider an adversary A1 that does not get an auxiliaryinput (or alternatively ignores it). Let B = (B1; B2) be the ideal-model adver-sary guaranteed by De�nition 7.2.2. We claim that B1 (in role of S1) satis�esEq. (7.9), rather than only Eq. (7.7). The claim holds because De�nition 7.2.2guarantees that the relation between the view of Party 1 and the output ofParty 2 in an real execution is preserved in the ideal-model. Furthermore, sinceA1 and B1 are passive adversaries (and � computes f), the output of Party 1

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

622 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSin a real execution �ts its output in the ideal-model, which in turn equals thevalue provided by the trusted party. (Put in other words, using B1 in role ofS1 guarantees that the simulated view �ts the output given to the simulator (aswell as the output not given to it).)We now show that De�nition 7.2.1 implies De�nition 7.2.2. Suppose that �privately computes f , and let S1 and S2 be as guaranteed in De�nition 7.2.1. LetA = (A1; A2) be an admissible pair for the real-model adversaries. Without lossof generality, we assume that A2 merely maps the view (of the second party) tothe corresponding output (i.e., f2(x; y)); that is, Party 2 is honest (and Party 1is semi-honest). Then, we de�ne an ideal-model pair B = (B1; B2) such thatB1(x; v; z) def= A1(S1(x; v); z) and B2(y; v; z) def= v. The following holds (for anin�nite sequence of (x; y; z)'s):real�;A(z)(x; y) = (A1(view�1 (x; y); z); A2(view�2 (x; y); z))= (A1(view�1 (x; y); z);output�2 (x; y))c� (A1(S1(x; f1(x; y)); z); f2(x; y))= (B1(x; f1(x; y); z); B2(y; f2(x; y); z))= idealf;B(z)(x; y)where the computational indistinguishability (i.e., c�) is due to the guarantee re-garding S1 (in its general form); i.e., Eq. (7.9). Indeed, the latter only guarantees(view�1 (x; y);output�2 (x; y)) c� (S1(x; f1(x; y)); f2(x; y)), but by incorporatingA1 and z in the distinguisher the above soft-equality follows.Conclusion: The above proof demonstrates that the alternative formulationof De�nition 7.2.2 is merely a cumbersome form of the simpler De�nition 7.2.1.We stress that the reason we have presented the cumbersome form is the factthat it follows the general framework of de�nitions of security that is used for themalicious adversarial behavior. In the rest of this chapter, whenever we deal withthe semi-honest model (for two-party computation), we will use De�nition 7.2.1.Furthermore, since much of the text focuses on deterministic functionalities, wewill be able to use the simpler case of De�nition 7.2.1.7.2.3 The malicious modelWe now turn to consider arbitrary feasible deviation from the speci�ed programof a two-party protocol. A few preliminary comments are in place. Firstly, thereis no way to force parties to participate in the protocol. That is, a possiblemalicious behavior may consist of not starting the execution at all, or, moregenerally, suspending (or aborting) the execution at any desired point in time.In particular, a party can abort at the �rst moment when it obtains the desiredresult of the computed functionality. We stress that our model of communica-tion does not allow to condition the receipt of a message by one party on the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 623concurrent sending of a proper message by this party. Thus, no two-party proto-col can prevent one of the parties to abort when obtaining the desired result andbefore its counterpart also obtains the desired result. In other words, it can beshown that perfect fairness { in the sense of both parties obtaining the outcomeof the computation concurrently { is not achievable in two-party computation.We thus give up on such fairness altogether. (We comment that partial fairnessis achievable, see Section 7.7.1.1).Secondly, observe that when considering malicious adversaries it is not clearwhat their input to the protocol is. That is, a malicious party can enter theprotocol with arbitrary input, which may not equal its \true" local input. Thereis no way for a protocol to tell the \true" local input from the one claimed by aparty (or, in other words, to prevent a malicious party from modifying its input).(We stress that these phenomena did not occur in the semi-honest model, for theobvious reason that parties were postulated not to deviate from the protocol.)In view of the above, there are three things we cannot hope to avoid (nomatter what protocol we use).1. Parties refusing to participate in the protocol (when the protocol is �rstinvoked).2. Parties substituting their local input (and entering the protocol with aninput other than the one provided to them).3. Parties aborting the protocol prematurely (e.g., before sending their lastmessage).Thus, we shall consider a two-party protocol to be secure if the adversary'sbehavior in it is essentially restricted to the above three actions. Following the\real-vs-ideal" methodology (of Section 7.1.1), this means that we should de�nean ideal model that corresponds to these possible actions, and de�ne securitysuch that the execution of a secure protocol in the real model can be simulatedby the ideal model.7.2.3.1 The actual de�nitionWe start with a straightforward implementation of the above discussion. Analternative approach, which is simpler alas partial, is presented in Section 7.2.3.2.(Speci�cally, the alternative approach is directly applicable only to single-outputfunctionalities, in which case the complications introduced by aborting do notarise. The interested reader may proceed directly to Section 7.2.3.2, which ismostly self-contained.)The ideal model. We �rst translate the above discussion into a de�nitionof an ideal model. That is, we will allow in the ideal model whatever cannotbe possibly prevented in any real execution. An alternative way of looking atthings is that we assume that the the two parties have at their disposal a trustedthird party, but even such a party cannot prevent certain malicious behavior.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

624 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSSpeci�cally, we allow a malicious party in the ideal model to refuse to participatein the protocol or to substitute its local input. (Clearly, neither can be preventedby a trusted third party.) In addition, we postulate that the �rst party has theoption of \stopping" the trusted party just after obtaining its part of the output,and before the trusted party sends the other output-part to the second party.Such an option is not given to the second party.13 Thus, an execution in theideal model proceeds as follows (where all actions of both the honest and themalicious parties must be feasible to implement):Inputs: Each party obtains an input, denoted u.Sending inputs to trusted party: An honest party always sends u to the trustedparty. A malicious party may, depending on u (as well as on an auxiliaryinput and its coin tosses), either abort or send some u0 2 f0; 1gjuj to thetrusted party.14The trusted party answers the �rst party: In case it has obtained an input pair,(x; y), the trusted party (for computing f), �rst replies to the �rst partywith f1(x; y). Otherwise (i.e., in case it receives only one input), thetrusted party replies to both parties with a special symbol, denoted ?.The trusted party answers the second party: In case the �rst party is maliciousit may, depending on its input and the trusted party's answer, decide tostop the trusted party. In this case the trusted party sends ? to the secondparty. Otherwise (i.e., if not stopped), the trusted party sends f2(x; y) tothe second party.Outputs: An honest party always outputs the message it has obtained from thetrusted party. A malicious party may output an arbitrary (polynomial-time computable) function of its initial input (auxiliary input and random-tape) and the message it has obtained from the trusted party.In fact, without loss of generality, we may assume that both parties send inputsto the trusted party (rather than allowing the malicious party not to enter theprotocol). This assumption can be justi�ed by letting the trusted party usesome default value (or a special abort symbol) in case it does not get an inputfrom one of the parties.15 Thus, the ideal model (computation) is captured by13 This asymmetry is due to the non-concurrent nature of communication in the model.Since we postulate that the trusted party sends the answer �rst to the �rst party, the �rstparty (but not the second) has the option to stop the trust party after obtaining its part ofthe output. The second party, can only stop the trust party before obtaining its output, butthis is the same as refusing to participate. See further discussion at the end of the currentsubsection.14 We comment that restricting the ideal-model adversary (to replacing u by u0 of thesame length) only strengthens the de�nition of security. This restriction is essential to ourformulation, because (by our convention) the functionality f is de�ned only for pairs of stringsof equal length.15 Both options (i.e., default value or a special abort symbol) are useful, and the choicedepends on the protocol designer. In case a special abort symbol is used, the functionalityshould be modi�ed accordingly such that if one of the inputs equals the special abort symbolthen the output is a special abort symbol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 625the following de�nition, where the algorithms B1 and B2 represent all possibleactions in the model.16 In particular, B1(x; z; r) (resp., B2(y; z; r)) representsthe input handed to the trusted party by Party 1 (resp., Party 2) having local-input x (resp., y), auxiliary input z and using random-tape r. Indeed, if Party 1(resp., Party 2) is honest then B1(x; z; r) = x (resp., B2(y; z; r) = y). Likewise,B1(x; z; r; v) = ? represents a decision of Party 1 to stop the trusted party, oninput x (auxiliary input z and random-tape r), after receiving the (output) valuev from the trusted party. In this case B1(x; z; r; v;?) represents the party's local-output. Otherwise (i.e., B1(x; z; r; v) 6= ?), we let B1(x; z; r; v) itself representthe party's local-output. The local output of Party 2 is always represented byB2(y; z; r; v), where y is the party's local input (z is the auxiliary input, r isthe random-tape) and v is the value received from the trusted party. Indeed, ifParty 1 (resp., Party 2) is honest then B1(x; z; r; v) = v (resp., B2(y; z; r; v) = v).De�nition 7.2.4 (malicious adversaries, the ideal model): Let f : f0; 1g� �f0; 1g� ! f0; 1g� � f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y))denotes the �rst (resp., second) element of f(x; y). Let B = (B1; B2) be a pairof probabilistic polynomial-time algorithms representing strategies in the idealmodel. Such a pair is admissible (in the ideal malicious model) if for at least onei 2 f1; 2g, called honest, we have Bi(u; z; r) = u and Bi(u; z; r; v) = v, for everypossible value of u; z; r and v. Furthermore, jBi(u; z; r)j = juj must hold for bothi's. The joint execution of f under B in the ideal model (on input pair (x; y) andauxiliary input z), denoted idealf;B(z)(x; y), is de�ned by uniformly selecting arandom-tape r for the adversary, and letting idealf;B(z)(x; y) def= �(x; y; z; r),where �(x; y; z; r) is de�ned as follows:� In case Party 1 is honest, �(x; y; z; r) equals(f1(x; y0) ; B2(y; z; r; f2(x; y0)), where y0 def= B2(y; z; r). (7.12)� In case Party 2 is honest, �(x; y; z; r) equals(B1(x; z; r; f1(x0; y);?) ; ?) if B1(x; z; r; f1(x0; y)) = ? (7.13)(B1(x; z; r; f1(x0; y)) ; f2(x0; y)) otherwise (7.14)where, in both cases, x0 def= B1(x; z; r).Eq. (7.13)& (7.14) refer to the case that Party 2 is honest (and Party 1 maybe malicious). Speci�cally, Eq. (7.13) represents the sub-case where Party 116 As in De�nition 7.2.2, we make the peculiar choice of feeding both Bi's with the sameauxiliary input z (and the same random-tape r). However, again, the honest strategy ignoresthis auxiliary input, which is only used by the malicious strategy. Note that unlike in previousde�nitions, we make the random-tape (of the adversary) explicit in the notation. The reasonbeing that the same strategy is used to describe two di�erent actions of the adversary (ratherthan a single action, as in De�nition 7.2.2). Since these actions may be probabilistically related,it is important that they are determined based on the same random-tape.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

626 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSinvokes the trusted party with a possibly substituted input, denoted B1(x; z; r),and aborts while stopping the trusted party right after obtaining the output,f1(B1(x; z; r); y). In this sub-case, Party 2 obtains no output (from the trustedparty). Eq. (7.14) represents the sub-case where Party 1 invokes the trustedparty with a possibly substituted input, and allows the trusted party to answerParty 2. In this sub-case, Party 2 obtains and output f2(B1(x; z; r); y). In bothsub-cases, the trusted party computes f(B1(x; z; r); y), and Party 1 outputs astring that depends on both x; z; r and f1(B1(x; z; r); y). Likewise, Eq. (7.12)represent possible malicious behavior of Party 2; however, in accordance to theabove discussion, the trusted party �rst supplies output to Party 1 and so Party 2does not have a \real" aborting option (analogous to Eq. (7.13)).Execution in the real model. We next consider the real model in which areal (two-party) protocol is executed (and there exist no trusted third parties).In this case, a malicious party may follow an arbitrary feasible strategy; thatis, any strategy implementable by a probabilistic polynomial-time algorithm(which gets an auxiliary input). In particular, the malicious party may abortthe execution at any point in time, and when this happens prematurely, the otherparty is left with no output. In analogy to the ideal case, we use algorithms tode�ne strategies in a protocol, where these strategies (or algorithms implementingthem) map partial execution histories to the next message.De�nition 7.2.5 (malicious adversaries, the real model): Let f be as in De�ni-tion 7.2.4, and � be a two-party protocol for computing f . Let A = (A1; A2) bea pair of probabilistic polynomial-time algorithms representing strategies in thereal model. Such a pair is admissible (w.r.t �) (for the real malicious model) ifat least one Ai coincides with the strategy speci�ed by �. (In particular, this Aiignores the auxiliary input.) The joint execution of � under A in the real model(on input pair (x; y) and auxiliary input z), denoted real�;A(z)(x; y), is de�nedas the output pair resulting from the interaction between A1(x; z) and A2(y; z).(Recall that the honest Ai ignores the auxiliary input z, and so our peculiarchoice of providing both Ai's with the same z is immaterial.)In some places (in Section 7.4), we will assume that the algorithms representingthe real-model adversaries (i.e., the algorithm Ai that does not follow �) aredeterministic. This is justi�ed by observing that one may just (consider and) �xthe \best" possible choice of coins for a randomized adversary and incorporatethis choice in the auxiliary input of a deterministic adversary (cf. Section 1.3.3).Security as emulation of real execution in the ideal model. Havingde�ned the ideal and real models, we obtain the corresponding de�nition ofsecurity. Loosely speaking, the de�nition asserts that a secure two-party protocol(in the real model) emulates the ideal model (in which a trusted party exists).This is formulated by saying that admissible adversaries in the ideal-model areable to simulate (in the ideal-model) the execution of a secure real-model protocolunder any admissible adversaries.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 627De�nition 7.2.6 (security in the malicious model): Let f and � be as in Def-inition 7.2.5. Protocol � is said to securely compute f (in the malicious model)if for every probabilistic polynomial-time pair of algorithms A = (A1; A2) thatis admissible for the real model (of De�nition 7.2.5) there exists a probabilisticpolynomial-time pair of algorithms B = (B1; B2) that is admissible for the idealmodel (of De�nition 7.2.4) such thatfidealf;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj). (Recall that c� de-notes computational indistinguishability by (non-uniform) families of polynomial-size circuits.) When the context is clear, we sometimes refer to � as an secureimplementation of f .One important property that De�nition 7.2.6 implies is privacy with respect tomalicious adversaries. That is, all that an adversary can learn by participatingin the protocol, while using an arbitrary (feasible) strategy, can be essentiallyinferred from the corresponding output alone. Another property that is impliedby De�nition 7.2.6 is correctness, which means that the output of the honestparty must be consistent with an input pair in which the element correspondingto the honest party equals the party's actual input. Furthermore, the elementcorresponding to the adversary must be chosen obliviously of the honest party'sinput. We stress that both properties are easily implied by De�nition 7.2.6, butthe latter is not implied by combining the two properties. For further discussion,see Exercise 3.We wish to highlight another property that is implied by De�nition 7.2.6:Loosely speaking, this de�nition implies that at the end of the (real) executionof a secure protocol, each party \knows" the value of the corresponding inputfor which the output is obtained.17 That is, when a malicious Party 1 obtainsthe output v, it knows an x0 (which does not necessarily equal to its initial local-input x) such that v = f1(x0; y) for some y (i.e., the local-input of the honestParty 2). This \knowledge" is implied by the equivalence to the ideal model,in which the party explicitly hands the (possibly modi�ed) input to the trustedparty. For example, say Party 1 uses the malicious strategy A1. Then the outputvalues (in real�;A(x; y)) correspond to the input pair (B1(x); y), where B1 isthe ideal-model adversary derived from the real-model adversarial strategy A1.We comment that although De�nition 7.2.6 does not talk about transform-ing admissible A's to admissible B's, we will often use such phrases. Further-more, although the de�nition does not even guarantee that such a transforma-tion is e�ective (i.e., computable), the transformations used in this work are allpolynomial-time computable. Moreover, these transformations consist of generic17 One concrete case where this property plays a central role is in the input-commitmentfunctionality (of Section 7.4.3.6). Speci�cally, if a secure implementation of this functionalityis �rst used in order to let Party 1 commit to its input, and next Party 2 uses it in order tocommit to its own input, then the above property implies that Party 2 cannot just copy the\commitment" made by Party 1 (unless Party 2 knows the input of Party 1).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

628 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSprograms for Bi that use subroutine (or oracle) calls to the corresponding Ai.Consequently, we sometimes describe these transformations without referring tothe auxiliary input, and the description can be completed by having Bi pass itsauxiliary input to Ai (in each of its invocations).Further discussion. As explained above, it is unavoidable that one party canabort the real execution after it (fully) learns its output but before the otherparty (fully) learns its own output. However, the convention by which this abilityis designated to Party 1 (rather than to Party 2) is quite arbitrary. More generalconventions (and corresponding de�nitions of security) may be more appealing,but the current one seems simplest and su�ces for the rest of our exposition.18Finally, we comment that the de�nitional treatment can be extended to partialfunctionalities.Remark 7.2.7 (security for partial functionalities): For functionalities thatare de�ned only for inputs pairs in some set R � f0; 1g� � f0; 1g� (see Sec-tion 7.2.1.1), security is de�ned as in De�nition 7.2.6 with the following twoexceptions:1. When de�ning the ideal model, the adversary is allowed to modify its inputarbitrarily as long as the modi�ed input pair is in R.2. The ensembles considered are indexed by triplets (x; y; z) that satisfy (x; y) 2R as well as jxj = jyj and jzj = poly(jxj).7.2.3.2 An alternative approachA simpler de�nition of security may be used in the special case of single-outputfunctionalities (i.e., functionalities in which only one party obtains an output).Assume, without loss of generality, that only the �rst party obtains an output(from the functionality f); that is, f(x; y) = (f1(x; y); �).19 In this case, we neednot be concerned of what happens after the �rst party obtains its output (becausethe second party has no output), and thus the complications arising from theissue of aborting the execution can be eliminated. Consequently, computationin the ideal model takes the following form:Inputs: Each party obtains an input, denoted u.18 One alternative convention is to associate with each protocol a binary value indicatingwhich of the two parties is allowed to meaningfully abort. This convention yields a moregeneral (or less restrictive) de�nition of security, where De�nition 7.2.6 is obtained as a specialcase (in which this value is always required to equal 1). Yet, the protocols presented in thiswork are shown to be secure under the more restrictive de�nition.19 Actually, the treatment of the case in which only the second party obtains an output (i.e.,f(x; y) = (�; f2(x; y))) is slightly di�erent. However, also in this case, the event in which the�rst party aborts after obtaining its (empty) output can be discarded. In this case, this event(of obtaining an a-priori �xed output) is essentially equivalent to the party aborting beforeobtaining output, which in turn can be viewed as replacing its input by a special symbol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 629Sending inputs to trusted party: An honest party always sends u to the trustedparty. A malicious party may, depending on u (as well as on an auxiliaryinput and its coin tosses), either abort or send some u0 2 f0; 1gjuj to thetrusted party. However, without loss of generality, aborting at this stagemay be treated as supplying the trusted party with a special symbol.The answer of trusted party: Upon obtaining an input pair, (x; y), the trustedparty (for computing f), replies to the �rst party with f1(x; y). Withoutloss of generality, the trusted party only answers the �rst party, becausethe second party has no output (or, alternatively, should always output�).Outputs: An honest party always outputs the message it has obtained from thetrusted party. A malicious party may output an arbitrary (polynomial-time computable) function of its initial input (auxiliary input and its cointosses) and the message it has obtained from the trusted party.Thus, the ideal model (computation) is captured by the following de�nition,where the algorithms B1 and B2 represent all possible actions in the model.In particular, B1(x; z; r) (resp., B2(y; z; r)) represents the input handed to thetrusted party by Party 1 (resp., Party 2) having local-input x (resp., y), auxiliaryinput z and random-tape r. Indeed, if Party 1 (resp., Party 2) is honest thenB1(x; z; r) = x (resp., B2(y; z; r) = y). Likewise, B1(x; z; r; v) represents theoutput of Party 1, when having local-input x (auxiliary input z and random-tape r) and receiving the value v from the trusted party, whereas the outputof Party 2 is represented by B2(y; z; r; �). Indeed, if Party 1 (resp., Party 2) ishonest then B1(x; z; r; v) = v (resp., B2(y; z; r; �) = �).De�nition 7.2.8 (the ideal model): Let f : f0; 1g��f0; 1g�! f0; 1g��f�g bea single-output functionality such that f(x; y) = (f1(x; y); �). Let B = (B1; B2)be a pair of probabilistic polynomial-time algorithms representing strategies inthe ideal model. Such a pair is admissible (in the ideal malicious model) if for atleast one i 2 f1; 2g, called honest, we have Bi(u; z; r) = u and Bi(u; z; r; v) = vfor all possible u; z; r and v. Furthermore, jBi(u; z; r)j = juj must hold for bothi's. The joint execution of f under B in the ideal model (on input pair (x; y) andauxiliary input z), denoted idealf;B(z)(x; y), is de�ned by uniformly selecting arandom-tape r for the adversary, and letting idealf;B(z)(x; y) def= �(x; y; z; r),where�(x; y; z; r) def= (B1(x; z; r; f1(B1(x; z; r); B2(y; z; r))) ; B2(y; z; r; �)) (7.15)That is, idealf;B(z)(x; y) def= (B1(x; z; r; v); B2(y; z; r; �)), where v f1(B1(x; z; r); B2(y; z; r))and r is uniformly distributed among the set of strings of adequate length.2020 Recall that if Bi is honest then it passes its input to the trusted party and outputs itsresponse. Thus, our peculiar choice to feed both parties with the same auxiliary input andsame random-tape is immaterial, because the honest party ignores both.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

630 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSWe next consider the real model in which a real (two-party) protocol is executed(and there exist no trusted third parties). In this case, a malicious party mayfollow an arbitrary feasible strategy; that is, any strategy implementable by aprobabilistic polynomial-time algorithm. The de�nition is identical to De�ni-tion 7.2.5, and is reproduced below for sake of self-containment.De�nition 7.2.9 (the real model): Let f be as in De�nition 7.2.8, and � be atwo-party protocol for computing f . Let A = (A1; A2) be a pair of probabilisticpolynomial-time algorithms representing strategies in the real model. Such a pairis admissible (w.r.t �) (for the real malicious model) if at least one Ai coincideswith the strategy speci�ed by �. The joint execution of � under A in the real model(on input pair (x; y) and auxiliary input z), denoted real�;A(z)(x; y), is de�nedas the output pair resulting from the interaction between A1(x; z) and A2(y; z).(Note that the honest Ai ignores the auxiliary input z.)Having de�ned the ideal and real models, we obtain the corresponding de�nitionof security. Loosely speaking, the de�nition asserts that a secure two-partyprotocol (in the real model) emulates the ideal model (in which a trusted partyexists). This is formulated by saying that admissible adversaries in the ideal-model are able to simulate (in the ideal-model) the execution of a secure real-model protocol under any admissible adversaries. The de�nition is analogous toDe�nition 7.2.6.De�nition 7.2.10 (security): Let f and � be as in De�nition 7.2.9. Protocol� is said to securely compute f (in the malicious model) if for every probabilisticpolynomial-time pair of algorithms A = (A1; A2) that is admissible for the realmodel (of De�nition 7.2.5) there exists a probabilistic polynomial-time pair of al-gorithms B = (B1; B2) that is admissible for the ideal model (of De�nition 7.2.4)such that fidealf;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).Clearly, as far as single-output functionalities are concerned, De�nitions 7.2.6and 7.2.10 are equivalent (because in this case the ideal-model de�nitions co-incide). It is also clear from the above discussions that the two de�nitions arenot equivalent in general (i.e., with respect to two-output functionalities). Still,it is possible to securely implement any (two-output) functionality by using aprotocol for securely computing a (related) single-output functionality. Thatis, ability to construct secure protocols under De�nition 7.2.10 yields ability toconstruct secure protocols under De�nition 7.2.6.Proposition 7.2.11 Suppose that there exist one-way functions and that anysingle-output functionality can be securely computed as per De�nition 7.2.10.Then any functionality can be securely computed as per De�nition 7.2.6.Proof Sketch: Suppose that the parties wish to securely compute the (two-output) functionality (x; y) 7! (f1(x; y); f2(x; y)). The �rst idea that comes

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 631to mind is to �rst let the parties (securely) compute the �rst output (i.e., bysecurely computing (x; y) 7! (f1(x; y); �)) and next let them (securely) computethe second output (i.e., by securely computing (x; y) 7! (�; f2(x; y))). Thissolution is insecure, because a malicious party may enter di�erent inputs inthe two invocations (not to mention that the approach will fail for randomizedfunctionalities even if both parties are honest). Instead, we are going to let the�rst party obtain its output as well as an (authenticated and) encrypted versionof the second party's output, which it will send to the second party (whichwill be able to decrypt and verify the value). That is, we will use private-keyencryption and authentication schemes, which exist under the �rst hypothesis, asfollows. First, the second party generates an encryption/decryption-key, denotede, and a signing/veri�cation-key, denoted s. Next, the two parties securelycompute the randomized functionality ((x; (y; e; s)) 7! ((f1(x; y); c; t) ; �), wherec is the ciphertext obtained by encrypting the plaintext v = f2(x; y) under theencryption-key e, and t is an authentication-tag of c under the signing-key s.Finally, the �rst party sends (c; t) to the second party, which veri�es that c isproperly signed and (if so) recovers f2(x; y) from it.7.3 * Privately Computing (2-Party) Function-alitiesRecall that our ultimate goal is to design (two-party) protocols that withstandany feasible adversarial behavior. We proceed in two steps. In this section,we show how to construct protocols for privately computing any functionality;that is, protocols that are secure with respect to the semi-honest model. InSection 7.4, we will show how to compile these protocols into ones that aresecure also in the malicious model.Throughout the current section, we assume that the desired (two-party) func-tionality (w.r.t the desired input length) is represented by a (two-input) Booleancircuit. We show how to transform this circuit into a two-party protocol for eval-uating the circuit on a given pair of local inputs. The transformation follows theoutline provided in in Section 7.1.3.3.21The circuit-evaluation protocol, to be presented in Section 7.3.4, scans thecircuit from the input wires to the output wires, processing a single gate ineach basic step. When entering each basic step, the parties hold shares of thevalues of the input wires of the gate, and when the step is completed they holdshares of the output wire of the gate. The shares held by each party yield noinformation about the corresponding values, but combining the two shares ofany value allows to reconstruct the value. Each basic step is performed withoutyielding any additional information; that is, the generation of shares for allwires (and in particular for the circuit's output wires) is performed in a privatemanner. Put in other words, we will show that privately evaluating the circuit\reduces" to privately evaluating single gates on values shared by both parties.21 Indeed, the current section is mainly a detailed version of Section 7.1.3.3.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

632 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSOur presentation is modular, where the modularity is supported by an ap-propriate notion of a reduction. Thus, we �rst de�ne such notion, and show thatindeed it is suitable to our goals; that is, combining a reduction of (the privatecomputation of) g to (the private computation of) f and a protocol for privatelycomputing f , yields a protocol for privately computing g. Applying this notionof a reduction, we reduce the private computation of general functionalities tothe private computation of deterministic functionalities, and thus focus on thelatter.We next consider, without loss of generality, the evaluation of Boolean cir-cuits with and and xor gates of fan-in 2.22 Actually, we �nd it more convenientto consider the corresponding arithmetic circuits over GF(2), where multiplica-tion corresponds to and and addition to xor. A value v is shared by the twoparties in the natural manner (i.e., the sum of the shares equals v mod 2). Weshow how to propagate shares of values through any given gate (operation).Propagation through an addition gate is trivial, and we concentrate on propa-gation through a multiplication gate. The generic case is that the �rst partyholds (a1; b1) and the second party holds (a2; b2), where a1 + a2 is the value ofone input wire and b1+ b2 is the value of the other input wire. What we want isto provide each party with a random share of the value of the output wire; thatis, a share of the value (a1 + a2) � (b1 + b2). In other words we are interested inprivately computing the following randomized functionality((a1; b1); (a2; b2)) 7! (c1; c2) (7.16)where c1 + c2 = (a1 + a2) � (b1 + b2). (7.17)That is, (c1; c2) ought to be uniformly distributed among the pairs satisfyingc1+ c2 = (a1+a2) � (b1+ b2). As shown in Section 7.3.3, the above functionalitycan be privately computed by reduction to a variant of Oblivious Transfer (OT).This variant is de�ned in Section 7.3.2, where it is shown that this variantcan be privately implemented assuming the existence of (enhanced) trapdoorone-way permutations. We stress that the speci�c functionalities mentionedabove are relatively simple (e.g., they have a �nite domain). Thus, Section 7.3.4reduces the private computation of arbitrary (complex) functionalities to theconstruction of protocols for privately computing a speci�c simple functionality(e.g., the one of Eq. (7.16)& (7.17)).The actual presentation proceeds bottom-up. We �rst de�ne reductions be-tween (two-party) protocol problems (in the semi-honest model). Next, we de�neand implement OT, and show how to use OT for privately computing a singlemultiplication gate. Finally, we show how to use the latter protocol to derive aprotocol for privately evaluating the entire circuit.Teaching Tip: Some readers may prefer to see a concrete protocol (and itsprivacy analysis) before coping with the abstract notion of a privacy reduction(and a corresponding composition theorem). We advise such readers to readSection 7.3.2 before reading Section 7.3.1.22 Indeed, negation can be emulated by xoring the given bit with the constant true.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 6337.3.1 Privacy reductions and a composition theoremIt is time to de�ne what we mean by saying that the private computation of onefunctionality reduces to the private computation of another functionality. Ourde�nition is a natural extension of the standard notion of a reduction as usedin the context of ordinary (i.e., one party) computation. Recall that standardreductions are de�ned in terms of oracle machines. Thus, we need to considertwo-party protocols with oracle access. Here the oracle is invoked by both par-ties, each supplying it with one input (or query), and it responses with a pairof answers, one per each party. We stress that the answer-pair depends on the(entire) query-pair.De�nition 7.3.1 (protocols with oracle access): A oracle-aided protocol is anordinary protocol augmented by pairs of oracle-tapes, one pair per each party,and oracle-call steps de�ned as follows. Each of the parties may send a specialoracle request message, to the other party. Such a message is typically sent afterthis party writes a string, called its query, on its own write-only oracle-tape. Inresponse, the other party also writes a string, called its query, on its own oracle-tape and responds to the requesting party with a oracle call message. At this pointthe oracle is invoked and the result is that a string, not necessarily the same,is written by the oracle on the read-only oracle-tape of each party. This pair ofstrings is called the oracle answer.We stress that the syntax of De�nition 7.3.1 allows (only) sequential oracle calls(but not parallel ones). We call the reader attention to the second item inDe�nition 7.3.2 that requires that the oracle-aided protocol privately computesthe functionality rather than merely computes it.De�nition 7.3.2 (privacy reductions):� An oracle-aided protocol is said to be using the oracle-functionality f if theoracle answers are according to f . That is, when the oracle is invokedsuch that the requesting party writes the query q1 and responding partywrites the query q2, the answer-pair is distributed as f(q1; q2), where therequesting party gets the �rst part (i.e., f1(q1; q2)).23We require that the length of each query be polynomially related to thelength of the initial input.24� An oracle-aided protocol using the oracle-functionality f is said to privatelycompute g if there exist polynomial-time algorithms, denoted S1 and S2,satisfying Eq. (7.9) and Eq. (7.10), respectively, where the correspondingviews of the execution of the oracle-aided protocol are de�ned in the naturalmanner.23 The identity of the requesting party may be determined by the two parties (accordingto interaction prior to the request). In particular, as in all protocols used in this work, theidentity of the requesting party may �xed a-priori.24 This requirement guarantees that the security of the oracle calls be related to the securityof the high level protocol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

634 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� An oracle-aided protocol is said to privately reduce g to f , if it privatelycomputes g when using the oracle-functionality f . In such a case we saythat g is privately reducible to f ,We are now ready to state a composition theorem for the semi-honest model.Theorem 7.3.3 (Composition Theorem for the semi-honest model): Supposethat g is privately reducible to f and that there exists a protocol for privatelycomputing f . Then there exists a protocol for privately computing g.Theorem 7.3.3 can be generalized to assert that if g is privately-reducible to f ,and f is privately-reducible to e then g is privately-reducible to e. See Exercise 5.Proof Sketch: Let �gjf be a oracle-aided protocol that privately reduces g tof , and let �f be a protocol that privately computes f . We construct a protocol� for computing g in the natural manner; that is, starting with �gjf , we replaceeach invocation of the oracle (i.e., of f) by an execution of the protocol �f .Clearly, � computes g. We need to show that � privately computes g.For each i = 1; 2, let Sgjfi and Sfi be the corresponding simulators for theview of Party i (i.e., in �gjf and �f , respectively). We construct a simulatorSi, for the view of Party i in �, in the natural manner. That is, we �rst runSgjfi and obtain the (simulated) view of Party i in �gjf . This (simulated) viewincludes queries made by Party i and corresponding answers. (Recall, we haveonly the part of Party i in the query-answer pair.) Invoking Sfi on each such\partial query-answer" we �ll-in the view of Party i for each of these invocationsof �f .A minor technicality: There is a minor inaccuracy in the above description,which presupposes that Party i is the party that plays the ith party in�f (i.e., Party 1 is the party in �gjf that requests all oracle calls to f).But, in general, it may be that, in some invocations of �f , Party 2 playsthe �rst party in �f (i.e., Party 1 is the party in �gjf that requests thisparticular oracle call). In this case, we should simulate the execution of�f by using the simulator that simulates the view of the correspondingparty in �f (rather than the corresponding party in �).Advanced comment: Note that we capitalize on the fact that in the semi-honest model, the execution of the steps of �gjf (inside �) is independentof the actual executions of �f (and depends only on the outcomes of�f). This fact, allows us to �rst simulate a transcript of �gjf , and nextgenerate simulated transcripts of �f . In contrast, in the malicious model,the adversary's actions in �gjf may depend on the transcript of previousexecutions of �f , and thus the above simulation strategy will not workin the malicious model (and a more complex simulation strategy will beused).It is left to show that Si indeed generates a distribution that (augmented bythe value of g) is indistinguishable from the view of Party i (augmented bythe output of both parties) in actual executions of �. Towards this end, we

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 635introduce a hybrid distribution, denoted Hi. This hybrid distribution representsthe view of Party i (and the output of both parties) in an execution of �gjf thatis augmented by corresponding invocations of Sfi . That is, for each query-answerpair, (q; a), viewed by Party i we augment its view with Sfi (q; a). In other words,Hi represents the execution of �, with the exception that the invocations of �fare replaced by simulated transcripts.Comment: We stress that since g may be a randomized functionality,we should establish that the protocol satis�es the general form of De�-nition 7.2.1 rather than its simpli�ed form. That is, we consider the jointdistribution consisting of the view of Party i and the output of both parties(rather than merely the former). This fact merely makes the phrases morecumbersome, and the essence of the argument may be better captured byassuming that g is deterministic and using the special (simpler) form ofDe�nition 7.2.1. Likewise, in case f is randomized, we have to rely onthe general form of De�nition 7.2.1 in order to show that the distributionsrepresented by Hi and � are computationally indistinguishable.Using the guarantees regarding Sfi (resp., Sgjfi), we show that the distributionscorresponding to Hi and � (resp., Hi and Si) are computationally indistinguish-able. Speci�cally:1. The distributions represented by Hi and � are computationally indistin-guishable: The reason being that these distributions di�er only in that theinvocations of �f in � are replaced in Hi by Sfi -simulated transcripts.Thus, the hypothesis regarding Sfi implies that the two distributions arecomputationally indistinguishable (where indistinguishability is measuredwith respect to the length of the queries, and holds also when measuredwith respect to the length of the initial inputs).25 Speci�cally, one may con-sider hybrids of � and Hi such that in the jth hybrid the �rst j invocationsof �f are real and the rest are simulated. Then distinguishability of neigh-boring hybrids contradicts the hypothesis regarding Sfi (by incorporatinga possible transcript of the rest of the execution into the distinguisher).2. The distributions represented by Hi and Si are computationally indistin-guishable: The reason being that these distributions are obtained, respec-tively, from �gjf and Sgjfi , by augmenting the latter with invocations ofSfi . Thus, indistinguishability follows by the hypothesis regarding Sgjfi .Speci�cally, distinguishing Hi and Si implies distinguishing �gjf and Sgjfi(by incorporating the program Sfi into the distinguisher).The theorem follows.Application: reducing private computation of general functionalitiesto deterministic ones. Given a general functionality g, we �rst write it in25 Here we use the hypothesis (made in the �rst item of De�nition 7.3.2) that the length ofeach query is polynomially related to the length of the initial input.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

636 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSa way that makes the randomization explicit. That is, we let g(r; (x; y)) de-note the value of g(x; y) when using coin tosses r 2 f0; 1gpoly(jxj) (i.e., g(x; y)is the randomized process consisting of uniformly selecting r 2 f0; 1gpoly(jxj),and deterministically computing g(r; (x; y))). Next, we privately reduce g to adeterministic f , where f is de�ned as followsf((x1; r1); (x2; r2)) def= g(r1 � r2; (x1; x2)) (7.18)Applying Theorem 7.3.3 (while using a straightforward privacy-reduction of gto f), we conclude that the existence of a protocol for privately computing thedeterministic functionality f implies the existence of a protocol for privatelycomputing the randomized functionality g. For sake of future reference, weexplicitly state the privacy reduction of g to f (i.e, the oracle-aided protocol forg given f).Proposition 7.3.4 (privately reducing a randomized functionality to determin-istic one): Let g be a randomized functionality, and f be as de�ned in Eq. (7.18).Then the following oracle-aided protocol privately reduces g to f .Inputs: Party i gets input xi 2 f0; 1gn.Step 1: Party i uniformly selects ri 2 f0; 1gpoly(jxij).Step 2 { Reduction: Party i invokes the oracle with query (xi; ri), and recordsthe oracle response.Outputs: Each party outputs the oracle's response.We comment that the above construction is applicable also in case of maliciousadversaries; see Section 7.4.2.Proof: Clearly, the above protocol, denoted �, computes g. To show that� privately computes g we need to present a simulator for each party view.The simulator for Party i, denoted Si, is the obvious one. On input (xi; vi),where xi is the local input to Party i and vi is its local output, the simulatoruniformly selects ri 2 f0; 1gm, and outputs (xi; ri; vi), where m = poly(jxij).The main observation underlying the analysis of this simulator is that for every�xed x1; x2 and r 2 f0; 1gm, we have v = g(r; (x1; x2)) if and only if v =f((x1; r1); (x2; r2)), for every pair (r1; r2) satisfying r1 � r2 = r. Now, let �ibe a random variable representing the random choice of Party i in Step 1, and� 0i denote the corresponding choice made by the simulator Si. Then, referringto the general form of De�nition 7.2.1 (as we should since g is a randomizedfunctionality), we show that for every �xed x1; x2; ri and v = (v1; v2) it holdsthatPr � view�i (x1; x2) = (xi; ri; vi)^ output�(x1; x2) = (v1; v2) � = Pr[(�i = ri) ^ (f((x1; �1); (x2; �2)) = v)]= Pr[�i = ri] � jfr3�i : f((x1; r1); (x2; r2)) = vgj2m= 2�m � jfr : g(r; (x1; x2)) = vgj2m

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 637= Pr[� 0i = ri] � Pr[g(x1; x2) = v]= Pr[(� 0i = ri) ^ (g(x1; x2) = v)]= Pr � Si(xi; gi(x1; x2)) = (xi; ri; vi)^ g(x1; x2) = (v1; v2) �where the equalities are justi�ed as follows: the 1st by de�nition of �, the 2nd byindependence of the �i's, the 3rd by de�nition of �i and f , the 4th by de�nitionof � 0i and g, the 5th by independence of � 0i and g, and the 6th by de�nition of Si.Thus, the simulated view (and output) is distributed identically to the view (andoutput) in a real execution. The claim (which only requires these ensembles tobe computationally indistinguishable) follows.7.3.2 The OTk1 protocol { de�nition and constructionThe (following version of the) Oblivious Transfer functionality is a main ingredi-ent of our construction. Let k be a �xed integer (k = 4 will do for our purpose),and let �1; �2; :::; �k 2 f0; 1g and i 2 f1; :::; kg. Then, the (single-output) func-tionality 1-out-of-k Oblivious Transfer, denoted OTk1 , is de�ned asOTk1((�1; �2; :::; �k); i) = (�; �i) (7.19)Indeed, 1-out-of-k Oblivious Transfer, is asymmetric. Traditionally, the �rstplayer, holding input (�1; �2; :::; �k) is called the sender, whereas the secondplayer, holding the input i 2 f1; :::; kg is called the receiver. Intuitively, thegoal is to transfer the ith bit to the receiver, without letting the receiver obtainknowledge of any other bit and without letting the sender obtain knowledge ofthe identity of the bit required by the receiver.Using any enhanced trapdoor permutation, ff� :D�!D�g�2I , we presenta protocol for privately computing OTk1 . The description below refers to thealgorithms guaranteed by such a collection (see De�nitions 2.4.5 and C.1.1),and to a hard-core predicate b for such a collection (see Section 2.5). We denotethe sender (i.e., the �rst party) by S and the receiver (i.e., the second party) byR. As discussed in Section 7.2.1, since we are dealing with a �nite functionality,we want the security to be stated in terms of an auxiliary security parameter,n, presented to both parties in unary.Construction 7.3.5 (Oblivious Transfer protocol for semi-honest model):Inputs: The sender has input (�1; �2; :::; �k) 2 f0; 1gk, the receiver has inputi 2 f1; 2; :::; kg, and both parties have the auxiliary security parameter 1n.Step S1: The sender uniformly selects an index-trapdoor pair, (�; t), by runningthe generation algorithm, G, on input 1n. That is, it uniformly selects arandom-tape, r, for G and sets (�; t) = G(1n; r). It sends the index � tothe receiver.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

638 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSStep R1: The receiver uniformly and independently selects x1; :::; xk 2 D�, setsyi = f�(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk) to thesender. That is:1. It uniformly and independently selects x1; :::; xk 2 D�, by invoking thedomain sampling algorithm k times, on input �. Speci�cally, it selectsrandom tapes, rj 's, for D and sets xj = D(�; rj), for j = 1; :::; k.2. Using the evaluation algorithm, the receiver sets yi = f�(xi).3. For each j 6= i, the receiver sets yj = xj .4. The receiver sends (y1; y2; :::; yk) to the sender.(Thus, the receiver knows f�1� (yi) = xi, but cannot predict b(f�1� (yj)) forany j 6= i.)Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algo-rithm and the trapdoor t, the sender computes zj = f�1� (yj), for everyj 2 f1; :::; kg. It sends (�1� b(z1); �2� b(z2); :::; �k� b(zk)) to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(xi).We �rst observe that the above protocol correctly computes OTk1 : This is thecase since the receiver's local output (i.e., ci � b(xi)) satis�esci � b(xi) = (�i � b(zi))� b(xi)= �i � b(f�1� (yi))� b(xi)= �i � b(f�1� (f�(xi)))� b(xi)= �iWe show below that the protocol indeed privately computes OTk1 . Intuitively,the sender gets no information from the execution because, for any possible valueof i, the senders sees the same distribution; speci�cally, a sequence of k uniformlyand independently distributed elements of D�. (Indeed, the key observation isthat applying f� to a uniformly distributed element of D� yields a uniformlydistributed element of D�.) Intuitively, the receiver gains no computationalknowledge from the execution since, for j 6= i, the only data it has regarding�j is the triplet (�; rj ; �j � b(f�1� (xj))), where xj = D(�; rj), from which it isinfeasible to predict �j better than by a random guess. Speci�cally, we rely onthe \enhanced one-way" hypothesis by which, given � and rj , it is infeasible to�nd f�1� (xj) (or guess b(f�1� (xj)) better than at random). A formal argumentis indeed due and given next.Proposition 7.3.6 Suppose that ffi : Di ! Digi2I constitutes a collection ofenhanced trapdoor permutations (as in De�nition C.1.1) and that b constitutesa hard-core predicate for it. Then, Construction 7.3.5 constitutes a protocol forprivately computing OTk1 (in the semi-honest model).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 639We comment that the intractability assumption used in Proposition 7.3.6, willpropagate to all subsequent results in the current and next section (i.e., Sec-tions 7.3 and 7.4). In fact, the implementation of OTk1 seems to be the bottleneckof the intractability assumptions used in these sections.Proof Sketch: Note that since we are dealing with a deterministic functionality,we may use the special (simpler) form of De�nition 7.2.1 (which only refers toeach party's view). Thus, we will present a simulator for the view of eachparty. Recall that these simulators are given the local input (which includesalso the security parameter) and the local output of the corresponding party.The following schematic depiction of the information ow in Construction 7.3.5may be useful towards the constructions of these simulators:Sender (S) Receiver (R)input (�1; :::; �k) iS1 (�; t) G(1n) �! � �!R1 generates yj 's � (y1; :::; yk) � (knows xi)S2 cj = �j � b(f�1� (yj)) �! (c1; :::; ck) �!R2 (output) � ci � b(xi)We start by presenting a simulator for the sender's view. On input (((�1; :::; �k); 1n); �),this simulator randomly selects � (as in Step S1), and generates uniformly andindependently y1; :::; yk 2 D�. That is, let r denote the sequence of coins usedto generate �, and assume without loss of generality that the inverting-with-trapdoor algorithm is deterministic (which is typically the case anyhow). Thenthe simulator outputs (((�1; :::; �k); 1n); r; (y1; :::; yk)), where the �rst elementrepresents the party's input, the second its random choices, and the third the(single) message that the party has received. Clearly, this output distributionis identical to the view of the sender in the real execution. (This holds becausef� is a permutation, and thus applying it to a uniformly distributed element ofD� yields a uniformly distributed element of D�.)We now turn to the receiver. On input ((i; 1n); �i), the simulator (of thereceiver's view) proceeds as follows.1. Emulating Step S1, the simulator uniformly selects an index-trapdoor pair,(�; t), by running the generation algorithm on input 1n.2. As in Step R1, it uniformly and independently selects r1; :::; rk for thedomain sampler D, and sets xj = D(�; rj) for j = 1; :::; k. Next, it setsyi = f�(xi) and yj = xj , for each j 6= i.3. It sets ci = �i � b(xi), and uniformly selects cj 2 f0; 1g, for each j 6= i.4. Finally, it outputs ((i; 1n); (r1; :::; rk); (�; (c1; :::; ck))), where the �rst ele-ment represents the party's input, the second its random choices, and thethird represents the two messages that the party has received.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

640 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSNote that, except for the sequence of cj 's, this output is distributed iden-tically to the corresponding pre�x of the receiver's view in the real execu-tion. Furthermore, the above holds even if we include the bit ci (which equals�i � b(f�1� (yi)) = �i � b(xi) in the real execution as well as in the simulation).Thus, the two distributions di�er only in the values of the other cj 's: For j 6= i,in the simulation cj is uniform and independent of anything else, whereas inthe real execution cj equals b(f�1� (yj)) = b(f�1� (xj)) (and hence depends on rjwhich determines xj). However, it is impossible to distinguish the two cases,because xj is uniformly distributed and the distinguisher is only given � andrj (but not the trapdoor to f�). Here is where we use the hypothesis that b isa hard-core of an enhanced collection of trapdoor permutations (as in De�ni-tion C.1.1), rather than merely a standard collection of trapdoor permutations.Other variants of Oblivious Transfer: A variety of di�erent variants ofthe Oblivious Transfer functionality were considered in the literature, but mosttreatments refer to the (more challenging) problem of implementing these vari-ants securely in the malicious model (rather than in the semi-honest model). Webriey mention two of these other variants.1. Extensions of 1-out-of-k Oblivious Transfer to k secrets that are bit stringsrather than single bits.2. Oblivious Transfer of a single secret (denoted �) that is to be deliveredwith probability 1=2. That is, the randomized functionality that maps(�; �) to (�; �) with probability 1=2 and to (�; �) otherwise.Privacy reductions among these variants can be easily constructed (see Exer-cise 6).7.3.3 Privately computing c1 + c2 = (a1 + a2) � (b1 + b2)We now turn to the functionality de�ned in Eq. (7.16){(7.17). Recall that thisfunctionality is a randomized mapping ((a1; b1); (a2; b2)) 7! (c1; c2) satisfyingc1 + c2 = (a1 + a2) � (b1 + b2), where the arithmetics is in GF(2). We reduce theprivate computation of this (�nite) functionality to (the private computation of)OT41.Construction 7.3.7 (privately reducing the functionality of Eq. (7.16){(7.17)to OT41):Inputs: Party i holds (ai; bi) 2 f0; 1g� f0; 1g, for i = 1; 2.Step 1: The �rst party uniformly selects c1 2 f0; 1g.Step 2 { Reduction: The aim of this step is to privately compute the (residual)deterministic functionality ((a1; b1; c1); (a2; b2)) 7! (�; fa2;b2(a1; b1; c1)), where

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 641fa;b(x; y; z) def= z+(x+a) � (y+ b). The parties privately reduce the compu-tation of this functionality to OT41. Speci�cally, Party 1 plays the senderand Party 2 plays the receiver. Using its input (a1; b1) and coin c1, Party 1sets the sender's input (in the OT41) to equal the 4-tuple(f0;0(a1; b1; c1) ; f0;1(a1; b1; c1) ; f1;0(a1; b1; c1) ; f1;1(a1; b1; c1)) : (7.20)Using its input (a2; b2), Party 2 sets the receiver's input (in the OT41) toequal 1 + 2a2 + b2 2 f1; 2; 3; 4g.Thus, the receiver output will be the (1+2a2+ b2)th element in Eq. (7.20),which in turn equals fa2;b2(a1; b1; c1). That is:input of Party 2 receiver's input in OT41 receiver's output in OT41(i.e., (a2; b2)) (i.e., 1 + 2a2 + b2) (i.e., fa2;b2(a1; b1; c1))(0; 0) 1 c1 + a1b1(0; 1) 2 c1 + a1 � (b1 + 1)(1; 0) 3 c1 + (a1 + 1) � b1(1; 1) 4 c1 + (a1 + 1) � (b1 + 1)Recall that fa2;b2(a1; b1; c1) = c1 + (a1 + a2) � (b1 + b2).Outputs: Party 1 outputs c1, whereas Party 2 output the result obtained fromthe OT41 invocation.We �rst observe that the above reduction is valid; that is, when Party i enterswith input (ai; bi), the output of Party 2 equals fa2;b2(a1; b1; c1) = c1+(a1+a2) �(b1+b2), where c1 is the output of Party 1. That is, the output pair is uniformlydistributed among the pairs (c1; c2) for which c1+c2 = (a1+a2) � (b1+b2) holds.Thus, each of the local outputs (i..e, of either Party 1 or Party 2) is uniformlydistributed, although the two local-outputs are dependent of one another (as inEq. (7.17)). It is also easy to see that the reduction is private. That is,Proposition 7.3.8 Construction 7.3.7 privately reduces the computation of Eq. (7.16){(7.17) to OT41.Proof Sketch: Simulators for the oracle-aided protocol of Construction 7.3.7are easily constructed. Speci�cally, the simulator of the view of Party 1, hasinput ((a1; b1); c1) (i.e., the input and output of Party 1), which is identical tothe view of Party 1 in the corresponding execution (where here c1 serves as coinsto Party 1). Thus, the simulation is trivial (i.e., by the identity transformation).The same holds also for the simulator of the view of Party 2: it gets input((a2; b2); c1 + (a1 + a2) � (b1 + b2)) (i.e., the input and output of Party 2), whichis identical to the view of Party 2 in the corresponding execution (where herec1+(a1+a2) �(b1+b2) serves as the oracle response to Party 2). Thus, again, thesimulation is trivial. We conclude that the view of each party can be perfectlysimulated (rather than just be simulated in a computationally indistinguishablemanner). The same holds when we also account for the parties' outputs (asrequired in the general form of De�nition 7.2.1), and the proposition follows.2626 An alternative proof is presented in Exercise 9.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

642 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS
On the generic nature of Construction 7.3.7: The idea underlying Step 2of Construction 7.3.7 can be applied to reduce the computation of any deter-ministic functionality of the form (x; y) 7! (�; fy(x)) to 1-out-of-2jyj ObliviousTransfer. Indeed, this reduction is applicable only when y is short (i.e., the num-ber of possible y's is at most polynomial in the security parameter). Speci�cally,consider the functions fy : f0; 1gk ! f0; 1g, for y 2 f0; 1g` (when in Construc-tion 7.3.7 ` = 2 (and k = 3)). Then, privately computing (x; y) 7! (�; fy(x))is reduced to 1-out-of-2` Oblivious Transfer by letting the �rst party play thesender with input set the 2`-tuple (f0`(x); :::; f1`(x)) and the second party playthe receiver with input set to the index of y among the `-bit long strings.7.3.4 The circuit evaluation protocolWe now show that the computation of any deterministic functionality, which isrepresented by an arithmetic circuit over GF(2), is privately reducible to thefunctionality of Eq. (7.16){(7.17). Recall that the latter functionality corre-sponds to a private computation of multiplication of inputs that are shared bythe two parties. We thus refer to this functionality as the multiplication-gateemulation.Our reduction follows the overview presented in the beginning of this section(i.e., Section 7.3). In particular, the sharing of a bit-value v between the twoparties means a uniformly distributed pair of bits (v1; v2) such that v = v1 + v2,where the �rst party holds v1 and the second holds v2. Our aim is to propagate,via private computation, shares of the input-wires of the circuit to shares of allwires of the circuit, so that �nally we obtain shares of the output-wires of thecircuit.Arithmetic circuits { the basics: Recall that an arithmetic circuit over GF(2)is a directed acyclic graph with internal vertices corresponding to gates,where internal vertices are vertices having both in-coming and out-goingedges. Without loss of generality, we will consider two types of gates, calledaddition and multiplication. We will assume that each internal vertex hastwo in-coming edges, called its input wires, and several out-going edgescalled its output wires. Boolean values are propagated through such gatesin the natural manner (i.e., each out-going wire holds the sum or multipleof the values of the in-coming wires of the gate). Vertices with no in-coming edges are called sources, and vertices with no out-going edges arecalled sinks. Without loss of generality, each source has a single out-goingedge, which is called an input-wire of the circuit, and each sink has a singlein-coming edge, which is called an output-wire of the circuit. When placingBoolean values on the input-wires of the circuit, the propagation of valuesthrough the gates determines values to all output-wires. The functionfrom input values to output values de�ned this way is called the functioncomputed by the circuit.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 643A tedious comment: For sake of simplicity, we do not provide the circuitwith constant values (i.e., 0 and 1). The constant 0 can be easily pro-duced by adding any GF(2) value to itself, but omitting the constant 1weakens the power of such circuits (because this constant is essential tothe computation of non-monotone functions). However, the computationof any circuit that uses the constant 1 can be privately reduced to thecomputation of a corresponding circuit that does not use the constant 1.27We will consider an enumeration of all wires in the circuit. The input wires ofthe circuit, n per each party, will be numbered 1; 2::::; 2n so that, for j = 1; :::; n,the jth input of party i corresponds to the (i�1) �n+jth wire. The wires will benumbered so that the output wires of each gate have a larger numbering thanits input wires. The output-wires of the circuit are clearly the last ones. Forsake of simplicity we assume that each party obtains n output bits, and that theoutput bits of the second party correspond to the last n wires of the circuit.Construction 7.3.9 (reducing the evaluation of any circuit to the emulationof a multiplication-gate): For simplicity, we assume that the circuit is either�xed or can be determined in poly(n)-time as a function of n, which denotes thelength of the input to each party.28Inputs: Party i holds the bit string x1i � � �xni 2 f0; 1gn, for i = 1; 2.Step 1 { Sharing the inputs: Each party (splits and) shares each of its input bitswith the other party. That is, for every i = 1; 2 and j = 1; :::; n, Party iuniformly selects a bit rji and sends it to the other party as the other party'sshare of the input wire (i � 1) � n + j. Party i sets its own share of the(i� 1) � n+ jth input wire to xji + rji .Step 2 { Circuit Emulation: Proceeding by the order of wires, the parties usetheir shares of the two input wires to a gate in order to privately computeshares for the output wire(s) of the gate. Suppose that the parties holdshares to the two input wires of a gate; that is, Party 1 holds the sharesa1; b1 and Party 2 holds the shares a2; b2, where a1; a2 are the shares ofthe �rst wire and b1; b2 are the shares of the second wire. We consider twocases.2927 Given a circuit C with constant inputs, we derive a circuit C0 that lacks constant inputsby introducing auxiliary variables that are to be set to 1; i.e., C(x) = C0(x; 1 � � � 1). Clearly,the private evaluation of C (on the input pair (x1; x2)) is reducible to the private evaluationof C0 (by a single oracle call that asks for the evaluation of C0 on input x1x2; 1 � � � 1).28 Alternatively, we may let the circuit be part of the input to both parties, which essentiallymeans that the protocol is computing the \universal circuit-evaluation" function.29 In the text, we implicitly assume that each gate has a single output wire, but this assump-tion is immaterial and the treatment extends easily to the case that the gates have severaloutput wires. In case of multiplication gate both the natural possibilities (which follow) are�ne. The �rst (more natural) possibility is to invoke the oracle once per each multiplicationgate and have each party use the same share for all output wires. The second possibility is toinvoke the oracle once per each output wire (of a multiplication gate).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

644 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSEmulation of an addition gate: Party 1 just sets its share of the outputwire of the gate to be a1+ b1, and Party 2 sets its share of the outputwire to be a2 + b2.Emulation of a multiplication gate: Shares of the output wire of the gateare obtained by invoking the oracle for the functionality of Eq. (7.16) {(7.17), where Party 1 supplies the input (query-part) (a1; b1), andParty 2 supplies (a2; b2). When the oracle responses, each party setsits share of the output wire of the gate to equal its part of the oracleanswer. Recall that, by Eq. (7.17), the two parts of the oracle answersum-up to (a1 + b1) � (a2 + b2).Step 3 { Recovering the output bits: Once the shares of the circuit-output wiresare computed, each party sends its share of each such wire to the partywith which the wire is associated. That is, the shares of the last n wiresare send by Party 1 to Party 2, whereas the shares of the preceding n wiresare sent by Party 2 to Party 1. Each party recovers the correspondingoutput bits by adding-up the two shares; that is, the share it had obtainedin Step 2 and the share it has obtained in the current step.Outputs: Each party locally outputs the bits recovered in Step 3.For starters, let us verify that the output is indeed correct. This can be shownby induction on the wires of the circuits. The induction claim is that the sharesof each wire sum-up to the correct value of the wire. The base case of theinduction are the input wires of the circuits. Speci�cally, the (i � 1) � n + jthwire has value xji and its shares are rji and rji + xji (indeed summing-up to xji).For the induction step we consider the emulation of a gate. Suppose that thevalues of the input wires (to the gate) are a and b, and that their shares a1; a2and b1; b2 indeed satisfy a1 + a2 = a and b1 + b2 = b. In case of an additiongate, the shares of the output wire were set to be a1 + b1 and a2 + b2, indeedsatisfying (a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) = a+ bIn case of a multiplication gate, the shares of the output wire were set to be c1and c2 such that c1+ c2 = (a1 + a2) � (b1+ b2). Thus, c1 + c2 = a � b as required.Privacy of the reduction. We now turn to show that Construction 7.3.9indeed privately reduces the computation of a circuit to the multiplication-gateemulation. That is,Proposition 7.3.10 (privately reducing circuit evaluation to multiplication-gate emulation): Construction 7.3.9 privately reduces the evaluation of arith-metic circuits over GF(2) to the functionality of Eq. (7.16) { (7.17).Proof Sketch: Note that since we are dealing with a deterministic functional-ity, we may use the special (simpler) form of De�nition 7.2.1 and only refer to

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 645simulating the view of each party. Recall that these simulators should producethe view of the party in an oracle-aided execution (i.e., an execution of Con-struction 7.3.9, which is an oracle-aided protocol). Without loss of generality,we present a simulator for the view of Party 1. This simulator gets the party'sinput x11; :::; xn1 , as well as its output, denoted y1; :::; yn. It operates as follows.1. The simulator uniformly selects r11 ; :::; rn1 and r12 ; :::; rn2 , as in Step 1. (Therj1's will be used as the coins of Party 1, which are part of the view of theexecution, whereas the rj2's will be used as the message Party 1 receivesat Step 1.) For each j � n, the simulator sets xj1 + rj1 as the party's shareof the value of the jth wire. Similarly, for j � n, the party's share of then+ jth wire is set to rj2.This completes the computation of the party's shares of all the 2n circuit-input wires.2. The party's shares for all other wires are computed, iteratively gate-by-gate, as follows.� The party's share of the output-wire of an addition gate is set to bethe sum of the party's shares of the input-wires of the gate.� The party's share of the output-wire of a multiplication gate is se-lected uniformly in f0; 1g.(The shares computed for output-wires of multiplication gates will be usedas the answers obtained, by Party 1, from the oracle.)3. For each wire corresponding to an output, denoted yj , that is available toParty 1, the simulator sets the value zj to equal the sum of yj and theparty's share of that wire.4. The simulator outputs((x11; :::; xn1); (y1; :::; yn); (r11 ; :::; rn1); V 1; V 2; V 3)where V 1 = (r12 ; :::; rn2) correspond to the view of Party 1 in Step 1 of theprotocol, the string V 2 equals the concatenation of the bits selected for theoutput-wires of multiplication gates (corresponding to the party's view ofthe oracle answers in Step 2 of a real execution), and V 3 = (z1; :::; zn)corresponds to the party's view in Step 3 (i.e., the messages it would haveobtained from Party 2 in Step 3 of the execution).We claim that the output of the simulation is distributed identically to theview of Party 1 in the execution of the oracle-aided protocol. The claim clearlyholds with respect to the �rst four parts of the view; that is, the claim holdswith respect to the party's input (i.e., x11; :::; xn1), its output (i.e., y1; :::; yn),its internal coin-tosses (i.e., r11 ; :::; rn1), and the message obtained from Party 2in Step 1 (i.e., (r12 ; :::; rn2) = V 1). Also, by de�nition of the functionality ofEq. (7.16){(7.17), the oracle-answers to each party are uniformly distributed

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

646 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSindependently of (the parts of) the party's queries. Thus, this part of the viewof Party 1 is uniformly distributed, identically to V 2. It follows, that all sharesheld by Party 1 are set by the simulator to have exactly the same distributionas they have in a real execution. This holds, in particular, for the shares ofthe output wires held by Party 1. Finally, we observe that both in the realexecution and in the simulation, adding the latter shares (i.e., the shares ofthe output wires held by Party 1) to the messages sent by Party 2 in Step 3(resp., to V 3) yields the corresponding bits of the local-output of Party 1. Thus,conditioned on the view so far, V 3 is distributed identically to the messagessent by Party 2 in Step 3. We conclude that the simulation is perfect (not onlycomputationally indistinguishable), and so the proposition follows.Conclusion. Combining Propositions 7.3.4, 7.3.10 and 7.3.8 with the transi-tivity of privacy-reductions (see Exercise 5), we obtain:Theorem 7.3.11 Any functionality is privately reducible to OT41.Combining Theorem 7.3.11 and Proposition 7.3.6 with the Composition Theorem(Theorem 7.3.3), we obtain:30Theorem 7.3.12 Suppose that there exist collections of enhanced trapdoor per-mutations. Then any functionality can be privately computable (in the semi-honest model).For sake of future usage (in Section 7.4), we point out a property of the protocolsunderlying the proof of Theorem 7.3.12.De�nition 7.3.13 (canonical semi-honest protocols): A protocol � for pri-vately computing the functionality f is called canonical if it proceeds by executingthe following two stages.Stage 1: The parties privately compute the functionality (x; y) 7! ((r1; r2); (s1; s2)),where the ri's and si's are uniformly distributed among all possibilities thatsatisfy (r1 � s1; r2 � s2) = f(x; y).Stage 2: Party 2 sends s1 to Party 1, which responses with r2. Each partycomputes its own output; that is, Party i outputs ri � si.Indeed, the protocols underlying the proof of Theorem 7.3.12 are canonical.Hence,30 Alternatively, one may avoid relying on the transitivity of privacy-reductions by succes-sively apply the Composition Theorem to derive private protocols �rst for the multiplicationfunctionality, then for any deterministic functionality, and �nally for any functionality. Thatis, in the �rst application we use Propositions 7.3.8 and 7.3.6, in the second we use Proposi-tion 7.3.10 and the protocol resulting from the �rst application, and in the last application weuse Proposition 7.3.4 and the protocol resulting from the second application.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 647Theorem 7.3.14 Suppose that there exist collections of enhanced trapdoor per-mutations. Then any functionality can be privately computable by a canonicalprotocol.We present two alternative proofs of Theorem 7.3.14: The �rst proof dependson the structure of the protocols used to establish Theorem 7.3.11, whereas thesecond proof is generic and uses an additional reduction.First Proof of Theorem 7.3.14: Recall that the oracle-aided protocol claimedin Theorem 7.3.11 is obtained by composing the reduction in Proposition 7.3.4with Constructions 7.3.9 and 7.3.7. The high-level structure of the resulting pro-tocol is induced by the circuit evaluation protocol (of Construction 7.3.9), whichis clearly canonical (with Step 3 �tting Stage 2 in De�nition 7.3.13). Indeed,it is important that in Step 3 exactly two messages are sent and that Party 1sends the last message. The fact that the said oracle-aided protocol is canonicalis preserved also when replacing the OT41 oracle by an adequate subprotocol.Second Proof of Theorem 7.3.14: Using Theorem 7.3.12, we can �rst de-rive a protocol for privately computing the functionality of Stage 1 (in De�-nition 7.3.13). Augmenting this protocol by the trivial Stage 2, we derive acanonical protocol for privately computing the original functionality (i.e., f it-self).7.4 * Forcing (2-party) Semi-Honest BehaviorOur aim is to use Theorem 7.3.12 (or rather Theorem 7.3.14) in order to establishthe main result of this chapter; that is,Theorem 7.4.1 (main result for the two-party case): Suppose that there existcollections of enhanced trapdoor permutations. Then any two-party functionalitycan be securely computable (in the malicious model).Theorem 7.4.1 will be established by compiling any protocol for the semi-honestmodel into an \equivalent" protocol for the malicious model. The current sectionis devoted to the construction of the said compiler, which was already outlined inSection 7.1.3.1. Loosely speaking, the compiler works by replacing the originalinstructions by macros that force each party to either e�ectively behave in asemi-honest manner (hence the title of the current section) or be detected ascheating (in which case, the protocol aborts).Teaching Tip: Some readers may prefer to see a concrete protocol (and itssecurity analysis) before getting to the general protocol compiler (and copingwith the abstractions used in its exposition). We advise such readers to readSection 7.4.3.1 before reading Sections 7.4.1 and 7.4.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

648 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.4.1 The compiler { motivation and overviewWe are given a protocol for the semi-honest model. In this protocol, each partyhas a local input and uses a uniformly distributed local random-tape. Such aprotocol may be used to privately compute some functionality (either a determin-istic or a probabilistic one), but the compiler does not refer to this functionality.The compiler is supposed to produce an \equivalent protocol" for the maliciousmodel. That is, any input-output behavior that a malicious adversary can in-duce by attacking the resulting protocol, can also be induced by a semi-honestadversary that attacks the original protocol. To motivate the protocol compiler,let us start by considering what a malicious party may do (beyond whatever asemi-honest party can do).1. A malicious party may enter the actual execution of the protocol with aninput di�erent from the one it is given (i.e., \substitute its input"). Asdiscussed in Section 7.2.3, this is unavoidable. What we need to guaranteeis that this substitution is done obliviously of the input of the other party;that is, that the substitution only depends on the original input.Jumping ahead, we mention that the input-commitment phase of the com-piled protocol is aimed at achieving this goal. The tools used here arecommitment schemes (see Section 4.4.1) and strong zero-knowledge proofsof knowledge (see Section 4.7.6). Sequential executions of these proofs ofknowledge guarantee the e�ective independence of the committed values.2. A malicious party may enter the actual execution of the protocol with arandom-tape that is not uniformly distributed. What we need to do is forcethe party to use a random-tape (for the emulated semi-honest protocol)that is uniformly distributed.The coin-generation phase of the compiled protocol is aimed at achievingthis goal. The tool used here is an augmented coin-tossing into the wellprotocol, which in turn uses tools as in Item 1.3. A malicious party may try to send messages di�erent than the ones speci-�ed by the original (semi-honest model) protocol. So we need to force theparty to send messages as speci�ed by its (already committed) local-inputand random-tape.The protocol emulation phase of the compiled protocol is aimed at achiev-ing this goal. The tool used here is zero-knowledge proof systems (for NP-statements). In fact, forcing parties to act consistently with some knowninformation is the archetypical application of zero-knowledge proofs.In accordance with the above discussion, the protocols produced by the compilerconsist of three phases.Input-commitment phase: Each of the parties commits to its input by using a se-cure implementation of the input-commitment functionality (to be de�ned

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 649in Section 7.4.3.6). The latter functionality guarantees that the commit-ting party actually knows the value to which it has committed, and thatthe secrecy of the committed value is preserved. It follows that each partycommits to a value that is essentially independent of the value committedto by the other party. Furthermore, the input-commitment functionalityprovides the committer with the corresponding decommitment information(to be used in the protocol-emulation phase).Coin-generation phase: The parties generate random-tapes for the emulation ofthe original protocol. Each party obtains the value of the random-tape tobe held by it, whereas the other party obtains a commitment to this value.The party holding the value also obtains the corresponding decommitmentinformation. All this is obtained by using a secure implementation of the(augmented) coin-tossing functionality (to be de�ned in Section 7.4.3.5).It follows that each party obtains a random-tape that is essentially randomand independent of anything else.Protocol emulation phase: The parties use a secure implementation of the authenticated-computation functionality (to be de�ned in Section 7.4.3.4) in order to em-ulate each step of the original protocol. Speci�cally, each message trans-mission in the original protocol is replaced by an invocation of the saidsub-protocol (implementing this functionality), where the roles played andthe inputs fed to the sub-protocol are as follows. The party that is sup-posed to send the message in the original protocol enters the sub-protocolwith an input that consists of its initial input (as committed in the �rststage), its random-tape (as generated in the second stage), the decommit-ment information provided to it in the two corresponding stages, and thesequence of all in-coming messages (of the original protocol as emulated sofar). The input provided by the other party (i.e., the designated receiver)consists of the commitments it holds for the sender's input and random-tape (received in the �rst and second stage) as well as the sequence ofall messages that it has previously sent to the sender. The functionalityguarantees that either the corresponding (next-step) message is deliveredor the designated receiver detects cheating.In order to allow a modular presentation of the compiled protocols, we start byde�ning an adequate notion of reducibility (where here the oracle-aided protocolneeds to be secure in the malicious model rather than in the semi-honest one).We next turn to constructing secure protocols for several basic functionalities,and use the latter to construct secure protocols for the three main functionalitiesmentioned above. Finally, we present and analyze the actual compiler.7.4.2 Security reductions and a composition theoremAnalogously to Section 7.3.1, we now de�ne what we mean by saying that onefunctionality securely reduces to another functionality. We use the same def-inition of an oracle-aided protocol (i.e., De�nition 7.3.1), but require such a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

650 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSprotocol to be secure in the malicious model (rather than secure in the semi-honest model, as required in De�nition 7.3.2). Recall that the basic syntax ofan oracle-aided protocol allows sequential (but not parallel) oracle calls. Forsimplicity of our exposition, we require that the length of each oracle query canbe determined from the length of the initial input to the oracle-aided protocol.De�nition 7.4.2 (security reductions):� As in De�nition 7.3.2, an oracle-aided protocol is said to be using theoracle-functionality f , if the oracle answers are according to f . However,in accordance with the de�nition of the ideal-model (for the invoked func-tionality), the oracle does not answer both parties concurrently, but ratheranswers �rst the real-model party that requested this speci�c oracle call(in the oracle-aided protocol). When receiving its part of the oracle an-swer, this party (i.e., the real-model party that requested the oracle call)instructs the oracle whether or not to respond to the other party.We consider only protocols in which the length of each oracle query is apolynomial-time computable function of the length of the initial input tothe protocol. Furthermore, as in De�nition 7.3.2, the length of each querymust be polynomially related to the length of the initial input.We consider executions of such a protocol by a pair of parties, with strate-gies represented by probabilistic polynomial-time algorithms A1 and A2,such that one of the parties follows the oracle-aided protocol. Such a pairis called admissible. Analogously to De�nition 7.2.5, the joint execution ofan oracle-aided protocol � with oracle f under A = (A1; A2) in the real model(on input pair (x; y) and auxiliary input z), denoted realf�;A(z)(x; y), isde�ned as the output pair resulting of the interaction between A1(x; z) andA2(y; z), where oracle calls are answered using f . We stress that here thereal model corresponds to an execution of an oracle-aided protocol.� An oracle-aided protocol � using the oracle-functionality f is said to se-curely compute g if a condition analogous to the one in De�nition 7.2.6holds. That is, the e�ect of any admissible real-model strategies as abovecan be simulated by admissible strategies for the ideal model, where theideal model for computing g is exactly as in De�nition 7.2.4.More speci�cally, the oracle-aided protocol � (using oracle f) issaid to securely compute g (in the malicious model) if for every prob-abilistic polynomial-time pair A = (A1; A2) that is admissible for thereal model of the oracle-aided computation there exists a probabilisticpolynomial-time pair B = (B1; B2) that is admissible for the idealmodel (of De�nition 7.2.4) such thatfidealg;B(z)(x; y)gx;y;z c� frealf�;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 651� An oracle-aided protocol is said to securely reduce g to f , if it securelycomputes g when using the oracle-functionality f . In such a case we saythat g is securely reducible to f ,We are now ready to state a composition theorem for the malicious model.Theorem 7.4.3 (Composition Theorem for the malicious model): Suppose thatg is securely reducible to f and that there exists a protocol for securely computingf . Then there exists a protocol for securely computing g.Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls,and thus Theorem 7.4.3 is actually a sequential composition theorem. As inthe semi-honest case, the Composition Theorem can be generalized to yieldtransitivity of secure-reductions; that is, if g is securely reducible to f and f issecurely reducible to e then g is securely reducible to e (see Exercise 13).As hinted in Section 7.3.1, the proof of Theorem 7.4.3 is signi�cantly morecomplex than the proof of Theorem 7.3.3. This does not refer to the constructionof the resulting protocol, but rather to establishing its security.Proof Sketch: Analogously to the proof of Theorem 7.3.3, we are given anoracle-aided protocol, denoted �gjf , that securely reduces g to f , and an ordinaryprotocol �f that securely computes f . Again, we construct a protocol � forcomputing g in the natural manner; that is, starting with �gjf , we replace eachinvocation of the oracle (i.e., of f) by an execution of the protocol �f .Clearly, � computes g, and we need to show that � securely computes g.Speci�cally, we should present a transformation of real-model adversaries for �into ideal-model adversaries for g. We have at our disposal two transformationsof real-model adversaries (for �gjf and for �f) into corresponding ideal-modeladversaries (for g and f , respectively). So the �rst thing we should do is derive,from the real-model adversaries of �, real-model adversaries for �gjf and for�f .We assume, without loss of generality, that all real-model adversaries outputtheir view of the execution. (Recall that any other output can be e�cientlycomputed from the view, and that any adversary can be easily modi�ed tooutput its view.)Let A = (A1; A2) be an admissible pair of real-model strategies of �. We�rst derive from it a pair of strategies A0 = (A01; A02) that represent the behaviorof A during (each of) the invocations of �f . (We stress that we derive a singlepair of real-model strategies that represent the behavior of the adversary duringall the invocations of �f .)31 Since the honest Ai just behaves according to �,it follows that the induced A0i just behaves according to �f , which means thatA0i is honest. Thus, we focus on the other (i.e., dishonest) Ai. In this case,the derived A0i is a real-model adversary of �f that gets as auxiliary input the31 The simpler alternative of deriving a di�erent pair of (real-model) strategies for eachinvocation of �f would have su�ced for handling oracle-aided protocols that make a constantnumber of oracle calls. The point is that the corresponding ideal-model strategies (w.r.t. f)need to be combined into a single real-model strategy for �gjf .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

652 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLShistory of the execution of � up to the current invocation of �f . Formally, A0itakes two inputs, one representing (as usual) the history of the current executionof �f , and the other (i.e., an auxiliary one) being the history of the executionof � up to the current invocation of �f . When A0i completes (or aborts) thecurrent execution of �f , it outputs its view of that execution. Loosely speaking,we derive the corresponding ideal-model adversary for f , denoted B0 = (B01; B02),by employing the guaranteed transformation. A few technical di�culties ariseand are resolved as follows:� Party i (i.e., A0i) is not necessarily the party that plays the ith party in�f (i.e., Party 1 is not necessarily the party in �gjf that requests thisparticular oracle call to f). Furthermore, the identity of the party (in�f) played by A0i is not �xed, but is rather determined by the history ofthe execution of � (which is given to A0i as auxiliary input). In contrast,our de�nitions refer to adversaries that play a predetermined party. Thistechnical discrepancy can be overcome by considering two versions of A0i,denoted A0i;1 and A0i;2, such that A0i;j in used (instead of A0i) in case Party iis the party that plays the jth party in �f . Indeed, A0i;j is always used toplays the jth party in �f .� A minor problem is that Ai may have its own auxiliary input, in which casethe resulting A0i will have two auxiliary inputs (i.e., the �rst identical to theone of Ai, and the second representing a partial execution transcript of �).Clearly, these two auxiliary inputs can be combined into a single auxiliaryinput. (This fact holds generically, but more so in this speci�c setting inwhich it is anyhow natural to incorporate the inputs to an adversary in itsview of the execution transcript.)� The last problem is that it is not clear what \initial input" should be givento the adversaryA0i towards its current execution of �f (i.e., the input thatis supposed to be used for computing f). However, this problem (whichis more confusing than real) has little impact on our argument, becausewhat matters is the actual actions of A0i during the current execution of�f , and these are determined based on its (actual) auxiliary input (whichrepresent the history of the execution of �). Still, the \initial inputs"for the executions of �f have to be de�ned so that they can be passedto the ideal-model adversary that we derive from A0i. We may almost setthese \initial inputs" arbitrarily, except that (by our conventions regardingfunctionalities) we must set them to strings of correct length (i.e., equal tothe length of the other party's f -input). Here we use the hypothesis thatthis length can be determined from the length of the input to � itself.3232 We comment that when using the alternative conventions discussed at the end of Sec-tion 7.2.1.1, we may waive the requirement that the query length be determined by the inputlength. Instead, we postulate that all oracle calls made by the oracle-aided program use thesame security parameter as the one with which the program is invoked. On the other hand,under the current conventions, when trying to extend the composition theorem to partialfunctionalities (or when removing the \length determination" hypothesis), we run into trouble

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 653Thus, we have obtained an (admissible) ideal-adversary pair B0 = (B01; B02)corresponding to f such thatfidealf;B0(z0)(x0; y0)gx0;y0;z0 c� freal�f ;A0(z0)(x0; y0)gx0;y0;z0 (7.21)We comment that when applying Eq. (7.21), we set the input of the honest partyto equal the value on which the subprotocol (or functionality) was invoked, andset the auxiliary input to equal the current execution transcript of the high-level protocol (as seen by the adversary). (As explained above, the settingof the primary input to the dishonest party is immaterial, because the latterdetermines its actions according to its auxiliary input.)Our next step is to derive from A = (A1; A2) a pair of strategies A00 =(A001 ; A002) that represent the behavior of A during the �gjf -part of �. Again,the honest Ai induces a corresponding A00i that just behaves according to �gjf .Turning to the dishonest Ai, we derive A00i by replacing the (real) actions of A0ithat take place in Ai by simulated actions of the ideal-model B0i. That is, theadversary A00i runs machine Ai locally, while interacting with the actual otherparty of �gjf , obtaining the messages that Ai would have sent in a real executionof �, and feeding Ai with messages that it expects to receive (i.e., messages thatAi would have received in a real execution of �). The handling of Ai's messagesdepend on whether they belong to the �gjf -part or to one of the invocations of�f . The key point is the handling of the latter messages.Handling messages of �gjf : These messages are forwarded to/from the otherparty without change. That is, A00i uses Ai in order to determine the nextmessage to be sent, and does so by feeding Ai with the history of theexecution so far (which contains �gjf -part messages that A00i has receivedbefore as well as the �f -parts that it has generated so far by itself). Inparticular, if Ai aborts then so does A00i .Handling messages of �f : Upon entering a new invocation of �f , the adversaryA00i sets hi to record the history of the execution of � so far. Now, ratherthan executing �f using A0i(hi) (as Ai would have done), the adversaryA00i invokes B0i(hi), where B0i is the ideal-model adversary for f (derivedabove). Recall that B0i sends no messages and makes a single oracle query(which it views as sending a message to its imaginary trusted party). Thereal-model adversary A00i (for the oracle-aided protocol �gjf) forwards thisquery to its own oracle (i.e., f), and feeds B0i with the oracle answer. Atsome point B0i terminates, and A00i uses its output to update the simulatedhistory of the execution of �. In particular, oracle-stopping events causedby B0i(hi) (in case Party i requested this speci�c oracle call) and ?-answersof the oracle (in the other case) are handled in the straightforward manner.On stopping the oracle and ?-answers: Suppose �rst that Party i hasrequested this speci�c oracle call. In this case, after receiving thebecause we need to determine some f-input that �ts the unknown f-input of the other party.(This problem can be resolved by introducing adequate interface to oracle calls.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

654 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSoracle answer (which it views as the answer of its trusted party), theideal-model adversary B0i may stop its trusted party. If this happensthen machine A00i instructs its own oracle (i.e., f) not to respond tothe other party. Next, suppose that Party i is the party respondingto this speci�c oracle call (rather than requesting it). In this case, itmay happen that the oracle is stopped by the other party (i.e., theoracle is not allowed to answer Party i). When noti�ed of this event(i.e., receiving a ?-answer from its oracle), machine A00i feeds ? asanswer to B0i.This completes the handling of the current invocation of �f .When Ai halts with some output, A00i halts with the same output. Note thatA00 = (A001 ; A002) is admissible as a real-model adversary for the oracle-aided pro-tocol �gjf (which computes g with oracle to f). Thus, we can derive fromA00 a corresponding ideal-model adversary for g, denoted B00 = (B001 ; B002), byemploying the second guaranteed transformation, such thatfidealg;B00(z)(x; y)gx;y;z c� frealf�gjf ;A00(z)(x; y)gx;y;z (7.22)Thus, given a real-model adversary A for �, we have derived an ideal-modeladversary B def= B00 for g. It is left to show that indeed the following holdsfidealg;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;z (7.23)Note that the l.h.s of Eq. (7.23) equals the l.h.s of Eq. (7.22), so it su�ces toshow that their corresponding r.h.s are computationally indistinguishable. Butreal�;A(z)(x; y) di�ers from realf�gjf ;A00(z)(x; y) only in that the �f invoca-tions in the former are replaced in the latter by ideal calls to f . However,by Eq. (7.21), each �f invocation is computationally indistinguishable from anideal call to f , where computational indistinguishability holds also with respectto auxiliary inputs (which are used here to represent the execution transcript up-to the point of the current invocation). Using a hybrid argument (correspondingto a gradual substitution of �f invocations by ideal calls to f), one can showthat frealf�gjf ;A00(z)(x; y)gx;y;z and freal�;A(z)(x; y)gx;y;z are computationallyindistinguishable.33 This establishes Eq. (7.23), and the theorem follows.Security reduction of general functionalities to deterministic ones.The following reduction will not be used in our compiler, because the com-piler refers to protocols (rather to functionalities) and we have already obtained33 Here we use the hypothesis that the query lengths are polynomially-related to the lengthof the input. The issue is that in Eq. (7.21), computational indistinguishability is with respectto the length of the queries (to f), whereas we need computational indistinguishability withrespect to the length of the initial inputs. We also highlight the key role of the auxiliary inputsto A0 and B0 in this argument (cf. the analysis of the sequential composition of zero-knowledge(i.e., proof of Lemma 4.3.11)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 655protocols for privately computing general functionalities (by privately-reducingthem to deterministic ones). Still, we consider it of interest to state that thereduction presented in Proposition 7.3.4 is in fact secure in the malicious model.Proposition 7.4.4 (securely reducing a randomized functionality to a deter-ministic one): Let g be a randomized functionality, f be as de�ned in Eq. (7.18),and � be the oracle-aided protocol for g using the oracle f as presented in Propo-sition 7.3.4. Then � securely computes g.Proof Sketch: Suppose, without loss of generality, that Party 1 is malicious,and denote by (x01; r01) the query it makes to f . Denoting by xi the initialinput of Party i (in �), it follows that the oracle answer is f((x01; r01); (x2; r2)),where r2 is uniformly distributed (because Party 2 is honest). Recalling thatf((x01; r01); (x2; r2)) = g(r01 � r2; (x01; x2)), it follows that the oracle answer isdistributed identically to g(x01; x2). Furthermore, by the de�nition of �, all thatParty 1 gets is f1((x01; r01); (x2; Ujr01j)) � g1(x01; x2). This is easily simulated bya corresponding ideal-model adversary that sets x01 according to the real-modeladversary, and sends x01 to the trusted third party (which answers according tog).Remark 7.4.5 (reductions to a set of functionalities): We extend thenotion of security reductions to account for protocols that use several oraclesrather than one. Speci�cally, g is securely reducible to a set of functionalitiesF = ff1; :::; f tg if there exists an oracle-aided protocol that securely computesg when given oracles f1; :::; f t. Theorem 7.4.3 also extends to assert that if g issecurely reducible to F , and each functionality in F can be securely computedthen so can g. We comment that the entire remark is a matter of semantics,because one can \pack" the set F in one functionality f (e.g., f((i; x); (i; y)) def=f i(x; y)).7.4.3 The compiler { functionalities in useAs stated in Section 7.4.1, the protocols produced by our compiler make exten-sive use of protocols that securely compute three functionalities that are the coreof the three corresponding phases of the compiled protocols. In the current sec-tion, we explicitly de�ne these functionalities and present protocols for securelycomputing them.We start by considering three natural functionalities that are related to thefunctionalities used by the compiler. Speci�cally, we �rst consider the coin-tossing functionality (see Section 7.4.3.1), a restricted notion of the authenticated-computation functionality (Section 7.4.3.2), and an \unauthenticated-computationfunctionality" (called image transmission in Section 7.4.3.3). Next, using thesethree functionalities, we present secure protocols for a general notion of authenticated-computation functionality (see Section 7.4.3.4), for an augmented notion ofcoin tossing (Section 7.4.3.5), and for the input-commitment functionality (Sec-tion 7.4.3.6). The latter three functionalities will be used directly in the compiled

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

656 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSprotocols (see Figure 7.1, where solid arrows indicate direct and essential use).We comment that although the material in Section 7.4.3.2 is not used directlyin the rest of this work, it is instructive to the rest of the current section.
ZK proofs

THE COMPILED PROTOCOL

O
R

D
E

R
 O

F
 P

R
E

S
E

N
T

A
T

IO
N

Commitment
schemes ZK POKs

AUTH. C.

AUG.
COINCOMMIT

INPUT

COIN
TOSSING

TOOLS

2

1

3

4
5

6

restricted

AUTH.
Comput.

IMAGE
TRANS.

Figure 7.1: The functionalities used in the compiled protocol.We comment that it is easy to present protocols for privately computing allthe abovementioned functionalities (in the semi-honest model; see Exercise 11).Our aim, however, is to present (for later use in the compiler) protocols forsecurely computing these functionalities in the malicious model.Basic tools and conventions regarding them. Let us recall some factsand notations regarding three tools that we will use.� Commitment schemes (as de�ned in De�nition 4.4.1). For sake of sim-plicity, we will use a non-interactive commitment scheme (as in Construc-tion 4.4.2). We assume, for simplicity, that on security parameter n thecommitment scheme utilizes exactly n random bits. We denote by Cr(b)the commitment to the bit b using (security parameter n and) randomnessr 2 f0; 1gn, and by C(b) the value of Cr(b) for a uniformly distributedr 2 f0; 1gn (where n is understood from the context).� Zero-knowledge proofs of NP-assertions. We rely on the fact (cf. Theo-rem 4.4.11) that there exist such proof systems in which the prover strategycan be implemented in probabilistic polynomial-time, when given an NP-witness as auxiliary input. We stress that by the above we mean proofsystems with negligible soundness error. Furthermore, we rely on the factthat these proof systems have perfect completeness (i.e., the veri�er ac-cepts a valid statement with probability 1).� Zero-knowledge proofs of knowledge of NP-witnesses. We will use the def-inition of a strong proof of knowledge (see De�nition 4.7.13). We againrely on the analogous fact regarding the complexity of adequate proverstrategies: That is, strong proofs-of-knowledge that are zero-knowledge

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 657exists for any NP-relation, and furthermore, the prover strategy can beimplemented in probabilistic polynomial-time, when given an NP-witnessas auxiliary input (see Construction 4.7.14).All these tools are known to exist assuming the existence of one-way 1-1 func-tions. In fact, the 1-1 requirement can be avoided at the cost of using an inter-active commitment scheme.On the adversaries being considered. For sake of simplicity, in all theproofs of security presented in this section, we only refer to malicious (real-model) adversaries with no auxiliary input. Furthermore, we will assume thatthese malicious (real-model) adversaries are deterministic. As discussed in Sec-tion 7.2.3.1 (see text following De�nition 7.2.5), the treatment of randomizedadversaries (with auxiliary inputs) can be reduced to the treatment of determin-istic adversaries with auxiliary inputs, so the issue here is actually the fact thatwe ignore auxiliary inputs. However, in all cases, the extension of our treatmentto malicious adversaries with auxiliary input is straightforward. Speci�cally,in all cases, we construct ideal-model adversaries by using the real-model ad-versaries as subroutines. This black-box usage easily supports the extensionto adversaries with auxiliary inputs, because all that is needed is to pass theauxiliary-input (given to the ideal-model adversary) to the real-model adversary(which is invoked as a subroutine).Comments regarding the following exposition. All protocols are pre-sented by specifying the behavior of honest parties, while keeping in mind thatdishonest parties may deviate from the speci�ed behavior. Thus, we may in-struct one party to send a speci�c message that satis�es some property and nextinstruct the other party to check that the message received indeed satis�es thisproperty. When transforming real-model adversaries to ideal-model adversaries,we sometimes allow the latter to halt before invoking the trusted party. As dis-cussed in Section 7.2.3.1 (see text preceding De�nition 7.2.4), this can be viewedas invoking the trusted party with a special abort symbol, where in this case thelatter responses to all parties with a special abort symbol.7.4.3.1 Coin TossingWe start our assembly of functionalities that are useful for the compiler bypresenting and implementing a very natural functionality which is of independentinterest. Speci�cally, we refer to the coin tossing functionality (1n; 1n) 7! (b; b),where b is uniformly distributed in f0; 1g. This functionality allows a pair ofdistrustful parties to agree on a common random value.34De�nition 7.4.6 (coin-tossing into the well, basic version): A coin-tossing intothe well protocol is a two-party protocol for securely computing (in the malicious34 Actually, in order to conform with the convention that the functionality has to be de�nedfor any input pair, we may consider the formulation (x; y) 7! (b; b).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

658 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSmodel) the randomized functionality (1n; 1n) 7! (b; b), where b is uniformly dis-tributed in f0; 1g.That is, in spite of malicious behavior by any one party, a non-aborting executionof a coin-tossing-into-the-well protocol ends with both parties holding the sameuniformly distributed bit, b. Recall that our de�nition of security allows (b;?)to appear as output in case Party 1 aborts. (It would have been impossibleto securely implement the coin-tossing functionality if the de�nition had notallowed this slackness; see Section 7.7.1.1.) The coin-tossing functionality willnot be used directly in the compiled protocols, but it will be used to implementan augmented notion of coin tossing (see Section 7.4.3.5), which in turn will beused directly in these protocols.Construction 7.4.7 (a coin-tossing-into-the-well protocol): For every r, letCr : f0; 1g ! f0; 1g�.Inputs: Both parties get security parameter 1n.Step C1: Party 1 uniformly selects � 2 f0; 1g and s 2 f0; 1gn, and sends c def=Cs(�) to Party 2.To simplify the exposition, we adopt the convention by which failure ofParty 1 to send a message (i.e., aborting) is interpreted as an arbitrary bitstring, say C0n(0).Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1.Similarly, any possible response of Party 2, including abort, will be inter-preted by Party 1 as a bit.35Step C3: Party 1 outputs the value � � �0, and sends (�; s) to Party 2.Step C4: Party 2 checks whether or not c = Cs(�). It outputs ���0 if c = Cs(�)and halts with output ? otherwise.In contrast to Steps C1{C2, here any illegal answer is interpreted as abort.Outputs: Party 1 always outputs b def= � � �0, whereas Party 2 either outputs bor ?.Intuitively, Steps C1{C2 may be viewed as \tossing a coin into the well". At thispoint the value of the coin is determined (essentially as a random value), butonly one party knows (\can see") this value. Clearly, if both parties are honestthen they both output the same uniformly chosen bit, recovered in Steps C3and C4, respectively.Proposition 7.4.8 Suppose that C is a bit commitment scheme. Then, Con-struction 7.4.7 constitutes a coin-tossing-into-the-well protocol.35 These two conventions, prevent the parties from aborting the execution before Step C3.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 659Proof Sketch: We need to transform any admissible pair, (A1; A2), for thereal model into a corresponding pair, (B1; B2), for the ideal model. We treatseparately each of the two cases corresponding to the identity of the honest party.Recall that we may assume, for simplicity, that the adversary is deterministic(see discussion above). Also, for simplicity, we omit the input 1n in some places.The following schematic depiction of the information ow in Construction 7.4.7may be useful towards the following analysis:Party 1 Party 2C1 selects (�; s)c Cs(�) �! c �!C2 selects �0 2 f0; 1g � �0 �C3 b � � �0 �! (�; s) �!output b b or ?(depending on whether c = Cs(�))We start with the case where the �rst party is honest. In this case B1 isdetermined (by the protocol), and we transform the real-model adversary A2into an ideal-model adversary B2. Machine B2 will run machine A2 locally,obtaining the single message that A2 would have sent in a real execution of theprotocol (i.e., �0 2 f0; 1g) and feeding A2 with the messages that it expects toreceive. Recall that A2 expects to see the messages Cs(�) and (�; s) (and thatB2 gets input 1n).1. B2 send 1n to the trusted party and obtain an answer (bit), denoted b,which is uniformly distributed. (Recall that b is also handed to Party 1.)2. B2 tries to generate an execution view (of A2) ending with output b. Thisis done by repeating the following steps at most n times:(a) B2 uniformly select � 2 f0; 1g and s 2 f0; 1gn, and feeds A2 withc def= Cs(�). Recall that A2 always responds with a bit, denoted �0,which may depend on c (i.e., �0 A2(c)).(b) If � � �0 = b then B2 feeds A2 with the execution view (c; (�; s)),and outputs whatever A2 does. Otherwise, it continues to the nextiteration.In case all n iterations were completed unsuccessfully (i.e., without out-put), B2 outputs a special failure symbol.We need to show that for the coin-tossing functionality, denoted f , and forConstruction 7.4.7, denoted �, it holds thatfidealf;B(1n; 1n)gn2N c� freal�;A(1n; 1n)gn2N

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

660 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSIn fact, we will show that the two ensembles are statistically indistinguishable.We start by showing that the probability that B2 outputs failure is exponen-tially small. This is shown by proving that for every b 2 f0; 1g, each iteration ofStep 2 succeeds with probability approximately 1=2. Such an iteration succeeds ifand only if ���0 = b; that is, if A2(Cs(�)) = b��, where (�; s) 2 f0; 1g�f0; 1gnis uniformly chosen. We havePr�;s[A2(Cs(�)) = b� �]= 12 � Pr[A2(C(0)) = b] + 12 � Pr[A2(C(1)) = b� 1]= 12 + 12 � (Pr[A2(C(0)) = b]� Pr[A2(C(1)) = b])Using the hypothesis that C is a commitment scheme, the second term aboveis a negligible function in n, and so our claim regarding the probability that B2outputs failure follows. Letting � denote an appropriate negligible function,we state the following for future reference:Pr�;s[A2(Cs(�)) = b� �] = 12 � �(n) (7.24)Next, we show that conditioned on B2 not outputting failure, the distri-bution idealf;B(1n; 1n) is statistically indistinguishable from the distributionreal�;A(1n; 1n). Both distributions have the form (b ; A2(Cs(�); (�; s))), withb = � � A2(Cs(�)), and thus both are determined by the (�; s)-pairs. Inreal�;A(1n; 1n), all (�; s)-pairs are equally likely (i.e., each appears with prob-ability 2�(n+1)); whereas (as proven below) in idealf;B(1n; 1n) each pair (�; s)appears with probability 12 � 1jS��A2(Cs(�))j (7.25)where Sb def= f(x; y) 2 f0; 1g � f0; 1gn : x � A2(Cy(x)) = bg is the set of pairsthat pass the condition in Step 2b (w.r.t the value b obtained in Step 1). Tojustify Eq. (7.25), observe that the pair (�; s) appears as output if and onlyif it is selected in Step 2a and the trusted party answers with � � A2(Cs(�)),where the latter event occurs with probability 1=2. Furthermore, the successfulpairs, selected in Step 2a and passing the condition in Step 2b, are uniformlydistributed in S��A2(Cs(�)), which justi�es Eq. (7.25). We next show that jSbj �2n, for every b 2 f0; 1g. By Eq. (7.24), for every �xed b 2 f0; 1g and uniformlydistributed (�; s) 2 f0; 1g�f0; 1gn, the event (�; s) 2 Sb (i.e., ��A2(Cs(�)) = b)occurs with probability that is negligibly close to 1=2, and so jSbj = (1��(n))� 12 �2n+1, where � is a negligible function. Thus, jS��A2(Cs(�))j 2 fjS0j; jS1jg, whichreside in the interval (1 � �(n)) � 2n. It follows that the value of Eq. (7.25) is(1��(n))�2�(n+1), and so real�;A(1n; 1n) and idealf;B(1n; 1n) are statisticallyindistinguishable.We now turn to the case where the second party is honest. In this case B2 isdetermined, and we transform A1 into B1 (for the ideal model). On input 1n,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 661machine B1 runs machine A1 locally, obtaining the messages that A1 would havesent in a real execution of the protocol and feeding A1 with the single message(i.e., �0 2 f0; 1g) that it expects to receive.1. B1 invokes A1 (on input 1n). Recall that by our conventions, A1 alwayssends a message in Step C1. Let us denote this messages (which is sup-posedly a commitment using C) by c. Recall that c may be in the rangeof C(�) for at most one � 2 f0; 1g.2. Machine B1 tries to obtain the answers of A1 (in Step C3) to both possiblemessages that could be sent in Step C2.(a) B1 feeds A1 with the (Step C2) message 0 and records the answerwhich is either abort or (�0; s0). The case in which c 6= Cs0(�0) istreated as if A1 has aborted.(b) Rewinding A1 to the beginning of Step C2, machine B1 feeds A1 withthe message 1 and records the answer which is either abort or (�1; s1).(Again, the case in which c 6= Cs1 (�1) is treated as abort.)If A1 aborts in both cases, then machine B1 aborts with output A1(1n; �0),for a uniformly chosen �0 2 f0; 1g (and does so without invoking the trustedparty, which means that the honest Party 2 receives ? from the latter).36(Below, we refer to this case as to Case 0.) Otherwise, B1 proceed asfollows, distinguishing two cases.Case 1: A1 answers properly (in the above experiment) for a single 0-1value, denoted �0. In this case, we de�ne � def= ��0 .Case 2: A1 answers properly for both values. In this case the values �0and �1 (de�ned in Step 1) must be identical, because Cs0(�0) = c =Cs1(�1) whereas the ranges of C(0) and C(1) are disjoint. In thiscase, we de�ne � def= �0 (= �1).3. Machine B1 sends 1n to the trusted party, which responses with a uniformlyselected value b 2 f0; 1g. Recall that the trusted party has not respondedto Party 2 yet, and that B1 still has the option of stopping the trustedparty before it responds to Party 2.4. In Case 1, machine B1 stops the trusted party if b 6= �� �0 (where �0 is asde�ned in Case 1), and otherwise allows it to send b to Party 2 (in whichcase b = � � �0 holds). In Case 2, machine B1 sets �0 = b� �, and allowsthe trusted party to send b to Party 2. Next, in both cases, B1 feeds �0to A1, which responds with the Step C3 message (�; s�0). Note that ifthe trusted party sent b to Party 2 then indeed � � �0 = b holds (in bothCase 1 and Case 2).36 We comment that whenever B1 is determined to abort, it needs not invoke the trustedparty at all, because it (i.e., B1) can simulate the trusted party's answer by itself. The onlyreason to invoke the trusted party is to provide Party 2 with an answer that is related to theoutput of B1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

662 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS5. Finally, B1 feeds A1 with the execution view, (1n; �0), and outputs what-ever A1 does.We now show that idealf;B(1n; 1n) and real�;A(1n; 1n) are actually identicallydistributed. Consider �rst the case where A1 (and so B1) never aborts (i.e.,Case 2). In this case, we haveidealf;B(1n; 1n) = (A1(1n; � � b) ; b)real�;A(1n; 1n) = (A1(1n; �0) ; � � �0)where �0 and b are uniformly distributed in f0; 1g, and � is determined byc = A1(1n) (i.e., � = C�1(c)). Observe that �0 is distributed uniformly inde-pendently of �, and so � � �0 is uniformly distributed over f0; 1g. We concludethat (A1(1n; � � b) ; b) and (A1(1n; � � (� � �0)) ; � � �0) are identically dis-tributed.Next, consider the case that B1 always aborts (due to improper A1 behav-ior in Step C3). In this case (i.e., Case 0 above), B1 aborts before invoking thetrusted party, and so both ensembles are identical (i.e., both equal (A1(1n; �0);?)for a random �0). Since A1 is deterministic (see above), the only case left toconsider is where A1 responses properly (in Step C3) to a single value, denoted�0. In this case (i.e., Case 1), the real execution of � is completed only if Party 2sends �0 as its Step C2 message (which happens with probability 1=2), and isaborted otherwise. Similarly, in the ideal model, the execution is completed(without B1 aborting) if the trusted party answers with b = � � �0 (whichhappens with probability 1=2).37 In both models, the joint non-aborted exe-cution equals (A1(1n; �0) ; � � �0), whereas the joint aborted execution equals(A1(1n; �0 � 1) ; ?).7.4.3.2 Authenticated Computation (Partial Version)We continue our assembly of functionalities that are useful for the compilerby presenting and implementing another natural functionality which is of inde-pendent interest. Speci�cally, we refer to the archetypical application of zero-knowledge proofs (cf. Section 4.4.3), which is to solve the following problem. Fortwo predetermined (polynomial-time computable) functions, f and h, a partyholding a secret � should send the correct value of f(�) to the other party, whichholds h(�), while not revealing anything else to the other party. That is, we aretalking about securely computing the functionality (�; h(�)) 7! (�; f(�)), wheretypically h is 1-1 (and so the value of its image uniquely determine its preimage).We stress that the functionality described above has a partial domain; thatis, it is not de�ned over all pairs of inputs (of equal length), but rather onlyfor pairs of the form (�; h(�)). This restriction (i.e., de�nability over a partialdomain) coincides with the standard archetypical application of zero-knowledgeproofs, and is easier to implement. However, this restriction does not su�ce for37 Recall that, in this case, � and �0 are determined by the Step C1 message.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 663a modular exposition of the compiled protocols (because composition of partialfunctionalities is more complex than the composition result captured by The-orem 7.4.3). Indeed, in Section 7.4.3.4 we waive the restriction (to the partialdomain) and consider an extension of the authenticated computation function-ality to arbitrary pairs of (equal length) strings.De�nition 7.4.9 (authenticated computation, partial version): Let f : f0; 1g��f0; 1g� ! f0; 1g� and h : f0; 1g� ! f0; 1g� be polynomial-time computable. Theh-authenticated f -computation functionality is de�ned by(�; h(�)) 7! (�; f(�)) (7.26)We assume, for simplicity, that h is length preserving. Otherwise, the de�ni-tion may be modi�ed to consider the functionality ((�; 1jh(�)j) ; (h(�); 1j�j)) 7!(�; f(�)). To facilitate the implementation, we assume that the function h isone-to-one, as is the case in typical applications. This allows us to use (ordinary)zero-knowledge proofs, rather than strong (zero-knowledge) proofs-of-knowledge.The issue is further discussed in Section 7.4.3.3.The functionality of Eq. (7.26) is implemented by having Party 1 send f(�)to Party 2, and then prove in zero-knowledge the correctness of the value sent(with respect to the common input h(�)). Note that this statement is of the NP-type and that Party 1 has the corresponding NP-witness. Actually, the followingprotocol is the archetypical application of zero-knowledge proof systems.Construction 7.4.10 (authenticated computation protocol, partial version):Let L be the set of pairs (u; v) satisfying Eq. (7.27) below, and (P; V) be aninteractive proof for L. Furthermore, suppose that P can be implemented inprobabilistic polynomial-time when given an adequate auxiliary-input (i.e., anNP-witness for membership of the common input in L).Inputs: Party 1 gets input � 2 f0; 1g�, and Party 2 gets input u = h(�).Step C1: Party 1 sends v def= f(�) to Party 2.Step C2: The parties invoke the proof system (P; V) such that Party 1 playsthe prover and Party 2 plays the veri�er. The common input to the proofsystem is (u; v), the prover gets auxiliary input �, and its objective is toprove that 9x s.t. (u = h(x)) ^ (v = f(x)) (7.27)(Each party locally determines the common input (u; v) according to itsown view of the execution so far.)38 In case the veri�er rejects the proof,Party 2 halts with output ? (otherwise the output will be v).(Any possible response { including abort { of Party 2 during the execu-tion of this step, will be interpreted by Party 1 as a canonical legitimatemessage.)38 In particular, Party 1 sets (u; v) = (h(�); f(�)), whereas Party 2 sets u according to itsown input and v according to the message received in Step C1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

664 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSOutputs: In case Party 2 has not halted with output ? (indicating improperbehavior of Party 1), Party 2 sets its local output to v. (Party 1 has nooutput (or, alternatively, always outputs �).)Observe that the speci�ed strategies are indeed implementable in polynomial-time. In particular, in Step C2, Party 1 supplies the prover subroutine withthe NP-witness � such that Eq. (7.27) is satis�ed with x = �. Also, using theperfect completeness condition of the proof system it follows that if both partiesare honest then neither aborts and the output is as required.Proposition 7.4.11 Suppose that the function h is one-to-one and that (P; V)is a zero-knowledge interactive proof (with negligible soundness error) for L.Then, Construction 7.4.10 securely computes (in the malicious model) the h-authenticated f-computation functionality of Eq. (7.26).We stress that Proposition 7.4.11 refers to the security of a protocol for comput-ing a partial functionality, as discussed in Remark 7.2.7. In case of Eq. (7.26)this means that the ideal-model adversary is not allowed to \modify its input"(i.e., it must pass its initial input to the trusted party), because its initial inputis the unique value that �ts the other party's input.Proof Sketch: Again, we need to transform any admissible pair, (A1; A2), forthe real model into a corresponding pair, (B1; B2), for the ideal model. We treatseparately each of the two cases, corresponding to the identity of the honestparty.We start with the case where the �rst party is honest. In this case B1 isdetermined, and we transform (the real-model adversary) A2 into (an ideal-model adversary) B2, which uses A2 as a subroutine. Recall that B2 gets inputu = h(�), where � is the input of the honest Party 1.1. B2 send u to the trusted party and obtain the value v, which equals f(�)for � handed by (the honest) Party 1 to the trusted party. Thus, indeedB2 does not modify its input and (u; v) 2 L. (Recall that Party 1 alwaysobtains � from the trusted party.)2. B2 invokes the simulator guaranteed for the zero-knowledge proof system(P; V), on input (u; v), using (the residual) A2 as a possible maliciousveri�er.39 Note that we are simulating the actions of the prescribed proverP , which in the real protocol is played by the honest Party 1. Denotethe obtained simulation transcript by S = S(u; v), where (indeed) A2 isimplicit in the notation.3. Finally, B2 feeds A2 with the alleged execution view (v; S), and outputswhatever A2 does.39 The case in which A2 executes Step C2 with respect to a di�erent common input is justa special case of a malicious behavior.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 665We need to show that for the functionality, denoted F , of Eq. (7.26) and forConstruction 7.4.10, denoted �, it holds thatfidealF;B(�; h(�))g�2f0;1g� c� freal�;A(�; h(�))g�2f0;1g� (7.28)Let R(�) denote the veri�er's view of the real interaction with P on commoninput (h(�); f(�)) and prover's auxiliary input �, where the veri�er is played byA2. Then, real�;A(�; h(�)) = (� ; A2(h(�); f(�); R(�)))idealF;B(�; h(�)) = (� ; A2(h(�); f(�); S(h(�); f(�))))However, by the standard formulation of zero-knowledge, it follows that fR(�)g�2f0;1g�and fS(h(�); f(�))g�2f0;1g� are computationally indistinguishable (also whengiven � as auxiliary input), and so Eq. (7.28) follows.We now turn to the case where the second party is honest. In this case B2is determined, and we transform (real-model) A1 into (ideal-model) B1, whichuses A1 as a subroutine. Recall that B1 gets input � 2 f0; 1gn.1. B1 invokes A1 on input �. As (implicit) in the protocol, any action ofA1 in Step C1 (including abort) is interpreted as sending a string. Let usdenote by v the message sent by A1 (i.e., v A1(�)).2. Intuitively, machine B1 checks whether or not v = f(�), where � is asabove (i.e., the input to B1). Actually, B1 checks whether or not a honestveri�er would have been convinced by (the residual) A1 that v = f(�)holds, which is equivalent to being convinced that (h(�); v) 2 L. Speci�-cally, B1 emulates the execution of Step C2 (i.e., the execution of the proofsystem (P; V) on common input (h(�); v)), while using the strategy A1 todetermine the moves of the (possibly cheating) prover (and playing thehonest veri�er in a straightforward manner).40Recall that this proof system has negligible soundness error, and so if(h(�); v) does not satisfy Eq. (7.27) this fact is detected with probability1��(n), where � is some negligible function. If the veri�er (played byB1 it-self) rejects then machine B1 aborts (without invoking the trusted party).41Otherwise, we proceed assuming that (h(�); v) satis�es Eq. (7.27). Notethat since h is 1-1 and Eq. (7.27) is satis�ed it must be the case thatv = f(h�1(h(�))) = f(�).4240 In particular, if A1 aborts the execution of Step C2 then the honest veri�er will not beconvinced.41 Alternatively, machine B1 may invoke the trusted party but prevent it from answeringParty 2. The di�erence is immaterial, because Party 1 gets nothing from the trusted party.What matters is that (in either case) Party 2 will get an abort symbol (i.e., ?).42 We comment that even if h were not 1-1 but a strong proof-of-knowledge (rather than anordinary proof system) was used in Step C2 then one could have inferred that Party 1 knowsan �0 so that h(�0) = u and v = f(�0), whereas �0 does not necessarily equal �. Sending �0to the trusted party in the next (emulation) step, we would have been �ne, as it would have(also) meant that the trusted party's respond to Party 2 is v.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

666 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS3. Assuming that machine B1 has not aborted, it sends � to the trusted party,and allows the latter to respond to Party 2. (The trusted party's responsewill be f(�) = v. Again, note that indeed B1 does not modify its input.)4. Finally, B1 feeds A1 with the execution view, which consists of the prover'sview of the emulation of Step C2 (produced in Step 2 above), and outputswhatever A1 does.We now show thatfidealF;B(�; h(�))g�2f0;1g� c� freal�;A(�; h(�))g�2f0;1g� (7.29)Actually, we will show that these two ensembles are statistically indistinguish-able, where the statistical di�erence is due to the case where the real adversaryA1 succeeds to convince the veri�er (played by the honest Party 2) that (u; v)satis�es Eq. (7.27), and yet this claim is false. By soundness of the proof system,this event happens only with negligible probability. On the other hand, in case(u; v) satis�es Eq. (7.27), we show that idealF;B(�; h(�)) and real�;A(�; h(�))are identically distributed. Details follow. One key observation is that the emu-lation of the proof system (with prover strategy A1(�)) performed in Step 2 byB1 is distributed identically to the real execution of the proof system that takesplace in Step C2 of �.Fixing any �, recall that v def= A1(�) need not equal f(�), and that u def=h(�) uniquely determines � (because h is 1-1). We denote by p the probabilitythat A1(�) (playing a possibly cheating prover) convinces the veri�er (played inStep C2 by Party 2) that (u; v) satis�es Eq. (7.27). (Since A1 is deterministic,v = A1(�) is �xed and the probability is only taken over the moves of Party 2.)We consider two cases corresponding to the relation between p and the soundnesserror-bound function � associated with the proof system (P; V).431. Suppose p > �(n). In this case, by the soundness condition, it must be thecase that A1(�) = v = f(�), because in this case (u; v) satis�es Eq. (7.27)and so v = f(h�1(u)) = f(h�1(h(�))) = f(�). Thus, in both the real andthe ideal model, with probability p, the joint execution view is non-abortingand equals (A1(�; T); A1(�)) = (A1(�; T); f(�)), where T represents theprover's view of the execution of Step C2 (on common input (h(�); f(�)),where the prover is played by A1(�) and the veri�er is honest). On theother hand, in both models, with probability 1� p, the joint execution isaborting and equals (A1(�; T);?), where T is as above (except that hereit is a rejecting execution transcript). Thus, in this case, the distributionsin Eq. (7.29) are identical.We highlight the extensive use (above and below) of the fact that theemulation of the proof system (with prover A1(�)) that is performed in43 We stress that an explicit error-bound can be associated with all standard zero-knowledgeproof systems, and that here we use a system for which � is negligible. Furthermore, we mayuse a proof system with error bound �(n) def= 2�n.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 667Step 2 by B1 is distributed identically to the real execution of the proofsystem that takes place in Step C2 of �.2. Suppose that p � �(n). Again, in both models, aborting executions areidentical and occur with probability 1�p. However, in this case, we have nohandle on the non-aborting executions in the ideal model (because it is nolonger guaranteed that A1(�) = f(h�1(u)) holds in the real non-abortingexecution, whereas in the ideal model Party 2 outputs f(h�1(u))). But wedo not care, because (in this case) these non-aborting executions occur withnegligible probability (i.e., p � �(n)). Thus, in this case, the distributionensembles in Eq. (7.29) are statistically indistinguishable.The proposition follows.We comment that the above treatment can be extended to the case that h is arandomized process rather than a function (as long as the image of h uniquelydetermines its preimage). Details are omitted in view of the fact that a muchmore general treatment will be provided in Section 7.4.3.47.4.3.3 Image TransmissionWe now consider the following functionality, called image transmission (or unau-thenticated computation): (�; 1j�j) 7! (�; f(�)) (7.30)where (as in Section 7.4.3.2) the function f is polynomial-time computable.44In contrast to Section 7.4.3.2, the value f(�) is not veri�able (with respect toa value h(�) that is known to the second party and uniquely determines �). Inother words, the value output by Party 2 is only required to be an image off (corresponding to a preimage of a given length). Thus, at �rst glance, onemay think that securely computing Eq. (7.30) should be easier than securelycomputing Eq. (7.26), especially in case f is onto (in which case any string isan f -image). This impression is wrong, because securely computing Eq. (7.30)means emulating an ideal model in which Party 1 knows the string it sends tothe trusted party. That is, in a secure protocol for Eq. (7.30), whenever Party 2outputs some image (of f), Party 1 must know a corresponding preimage (underf).45 Still proving knowledge of a preimage (and doing so in zero-knowledge)is what a zero-knowledge proof-of-knowledge is all about. Actually, in order toavoid expected probabilistic polynomial-time adversaries, we use zero-knowledgestrong-proof-of-knowledge (as de�ned and constructed in Section 4.7.6). We will44 Actually, in order to conform with the convention that the functionality has to be de�nedfor any input pair, we may consider the formulation (�; �) 7! (�; f(�)).45 We comment that the same holds also with respect to Eq. (7.26). But there the knowledgeof a preimage (of the output v under f) is guaranteed by the fact that security implies thatthe preimage of v under f must be consistent with h(�), whereas the only such preimage is �itself, which in turn is the initial input of Party 1 and thus known to it.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

668 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSshow that Construction 7.4.10 can be easily adapted to yield a secure implemen-tation of Eq. (7.30). Speci�cally, all that is needed is to use (in Step C2) a zero-knowledge strong-proof-of-knowledge (rather than an ordinary zero-knowledgeproof), and set h to be a constant function.Proposition 7.4.12 Suppose that (P; V) is a zero-knowledge strong-proof-of-knowledge for the relation R def= f(v; w) : v = f(w)g, and let h be a constantfunction. Then, Construction 7.4.10 securely computes (in the malicious model)the functionality of Eq. (7.30).Proof Sketch: Recall that P is postulated to be implemented in probabilisticpolynomial-time when given an adequate auxiliary-input (i.e., a preimage un-der f of the common input). For clarity, we reproduce the modi�ed protocol,omitting all mention of the (constant) function h.Inputs: Party 1 gets input � 2 f0; 1g�, and Party 2 gets input 1j�j.Step C1: Party 1 sends v def= f(�) to Party 2.Step C2: Analogously to Construction 7.4.10, the parties invoke the zero-knowledgestrong-proof-of-knowledge (for R) such that Party 1 plays the prover andParty 2 plays the veri�er. The common input to the proof system is v, theprover gets � as auxiliary input and its objective is to prove that it knowsa w such that (v; w) 2 R (i.e., v = f(w)). In case the veri�er rejects theproof, Party 2 halts with output ? (otherwise the output will be v).Outputs: In case Party 2 did not output ?, it halts with output v. (Party 1 hasno output.)The analysis of this protocol, denoted �, follows the ideas underlying the proofof Proposition 7.4.11. The only signi�cant modi�cation is in the construction ofideal-model adversaries for Party 1.Let us �rst justify why the treatment of the case in which Party 1 is honestis exactly as in the proof of Proposition 7.4.11. In this case, we can use exactlythe same transformation of the real-model adversary A2 into an ideal-modeladversary B2, because what this transformation does is essentially invoke thesimulator associated with (the residual prover) A2 on input the string v = f(�)that it obtains from the trusted party. Furthermore, the adequateness of thistransformation is established by only referring to the adequateness of the (zero-knowledge) simulator, which holds also here.We now turn to the case where the second party is honest. In this case B2is determined, and we transform (real-model) A1 into (ideal-model) B1, whichuses A1 as a subroutine. Recall that B1 gets input � 2 f0; 1gn.1. B1 invokes A1 on input �. As (implicit) in the protocol, any action ofA1 in Step C1 (including abort) is interpreted as sending a string. Let usdenote by v the message sent by A1 (i.e., v A1(�)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 6692. Machine B1 tries to obtain a preimage of v under f . Towards this end, B1uses the (strong) knowledge-extractor associated with the proof systemof Step C2. Speci�cally, providing the strong knowledge-extractor withoracle access to (the residual prover) A1(�), machine B1 tries to extract(from A1) a string w such that f(w) = v. In case the extractor succeeds,B1 sets �0 def= w. Otherwise, B1 sets �0 def= ?.3. Machine B1 now emulates an execution of Step C2. Speci�cally, it letsA1(�) play the prover and emulates by itself the (honest) veri�er interact-ing with A1(�) (i.e., B1 behaves like A2).� In case the emulated veri�er rejects, machine B1 aborts (withoutinvoking the trusted party), and outputs whatever A1 does (when fedwith this emulated proof transcript).� Otherwise (i.e., the emulated veri�er accepts), if �0 6= ? then B1sends �0 to the trusted party, and allows it to respond to Party 2.(The response will be f(�0), which by Step 2 must equal v.) In case�0 = ? this sub-step will fail, and B1 aborts as in the case that theemulated veri�er rejects.4. Finally, B1 feeds A1 with the execution view, which consists of the prover'sview of the emulation of Step C2 (produced in Step 3 above), and outputswhatever A1 does.Denoting the functionality of Eq. (7.30) by F , we now show thatfidealF;B(�; 1j�j)g�2f0;1g� c� freal�;A(�; 1j�j)g�2f0;1g� (7.31)Actually, we will show that these two ensembles are statistically indistinguish-able, where the statistical di�erence is due to the case where the real-modeladversary A1 succeeds to convince the knowledge-veri�er (played by the honestA2) that it knows a preimage of v under f , and yet the knowledge-extractorfailed to �nd such a preimage. By de�nition of strong knowledge-veri�ers, suchan event may occur only with negligible probability. Loosely speaking, ignoringthe rare case in which extraction fails although the knowledge-veri�er (playedby A2) is convinced, it can be shown that the distributions idealf;B((�; r); 1n)and real�;A((�; r); 1n) are identical. Details follow.Fixing any �, recall that v def= A1(�) need not be an image of f (let alonethat it may not equal f(�)). We denote by p the probability that A1(�), playinga possibly cheating prover, convinces the knowledge-veri�er (played in Step C2by Party 2) that it knows a preimage of v under f . We consider two casescorresponding to the relation between p and the error-bound function � referredto in De�nition 4.7.13.1. Suppose that p > �(n). In this case, by De�nition 4.7.13, with probabil-ity at least 1 � �(n), machine B1 has successfully extracted a preimage�0 (of v = A1(�) under f). In the real model, with probability p, the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

670 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSjoint execution ends up non-aborting. By the above, in the ideal model,a joint execution is non-aborting with probability p � �(n) (actually, theprobability is at least p � �(n) and at most p). Thus, in both models,with probability p � �(n) a joint execution is non-aborting and equals(A1(�; T); A1(�)) = (A1(�; T); f(�0)), where T represents the prover'sview of an execution of Step C2 (on common input f(�0) = v = A1(�),where the role of the prover is played by the residual strategy A1(�) andthe veri�er is honest). On the other hand, in both models, with probabil-ity 1� p� �(n), the joint execution is aborting and equals (A1(�; T);?),where T is as above (except that here it is a rejecting execution transcript).Thus, the statistical di�erence between the two models is only due to thedi�erence in the probability of producing an aborting execution in the twomodels, which in turn is negligible.We highlight the extensive use (above and below) of the fact that theemulation of the proof system (with prover A1(�)) performed in Step 2 byB1 is distributed identically to the real execution of the proof system thattakes place in Step C2 of �.2. Suppose that p � �(n). Again, in the real model the non-aborting proba-bility is p, which in this case is negligible. Thus, we ignore these executionsand focus on the aborting executions, which occur with probability at least1� p � 1 � �(n) in both models. Recalling that aborting executions areidentically distributed in both models, we conclude that the statisticaldi�erence between the two models is at most �(n).Thus, in both case, the distribution ensembles in Eq. (7.31) are statisticallyindistinguishable. The proposition follows.7.4.3.4 Authenticated Computation, RevisitedWe now generalize the image transmission functionality to treat the case whereParty 2 has some partial information of the input of Party 1. In the extreme case,the information available to Party 2 uniquely determines the input of Party 1(although obtaining the latter from the former may be infeasible). Thus, in asense, we revisit the authenticated computation functionality, which was consid-ered in Section 7.4.3.2. The important aspect of the current treatment is thatwe consider a functionality that is de�ned on all pairs of (equal length) strings,rather than a partial functionality (as treated in Section 7.4.3.2).De�nition 7.4.13 (authenticated computation, revisited): Let f : f0; 1g� �f0; 1g� ! f0; 1g� and h : f0; 1g� ! f0; 1g� be polynomial-time computable. Theh-authenticated f -computation functionality is rede�ned by(�; �) 7! � (� ; f(�)) if � = h(�)(� ; (h(�); f(�))) otherwise (7.32)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 671In the intended applications of the h-authenticated f -computation functionality,Party 2 is supposed to input � = h(�), and so the �rst case in Eq. (7.32) holdsprovided that both parties are honest. Indeed, if Party 2 is honest then eitherit gets the correct value of f(�) (i.e., which �ts h(�) known to it) or it gets anindication that Party 1 is cheating. The speci�c form of the second case wasdesigned to facilitate the implementation, while not causing any harm.46 Whatmatters is that the outputs in the two cases are di�erent, and so Party 2 cantell whether or not it received the correct value of f(�). We stress that in theintended applications, Party 2 knows h(�) and is supposed to obtain f(�), andso it causes no harm to provide Party 2 with both of them (even in case Party 2misbehaves and enters an input other than h(�)).We assume again, for simplicity, that h is length preserving (which againcan be \enforced" by considering �0 = (�; 1jh(�)j) and h0(�0) = (h(�); 1j�j)).However, we make no further assumptions concerning the function h, and thusEq. (7.30) is essentially a special case (obtained by setting h(�) = 1j�j).The functionality of Eq. (7.32) is implemented by having Party 1 use theimage transmission functionality to send the pair (h(�); f(�)) to Party 2, whichcompares the �rst element to its own input and acts accordingly. That is, weuse the following (oracle-aided) protocol.Construction 7.4.14 (authenticated computation protocol, general version):Inputs: Party 1 gets input � 2 f0; 1g�, and Party 2 gets input � 2 f0; 1gj�j.Step C1: Party 1 uses the image transmission functionality to send the pair(u; v) def= (h(�); f(�)) to Party 2. That is, the parties invoke the function-ality of Eq. (7.30) with respect to the function g(�) def= (h(�); f(�)), whereParty 1 enters the input � and Party 2 is to obtain g(�).Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party 2receives the pair (u; v) in Step C1, Party 2 outputs v if u = � and (u; v)otherwise.Outputs: If not aborted (with output ?), Party 2 sets its local output as directedin Step C2. (Party 1 has no output.)We stress that in the oracle invocation (of Step C1), Party i plays the ith party(w.r.t the oracle call). Recall that (unlike Party 2), Party 1 may abort and inparticular do so during Step C1. Since Step C1 consists of an oracle invocation,aborting during Step C1 means instructing the oracle not to answer Party 2.Proposition 7.4.15 Construction 7.4.14 securely reduces the h-authenticatedf-computation functionality of Eq. (7.32) to the image transmission functionalityof Eq. (7.30).46 In contrast, even privately-computing the more natural functionality (�; �) 7! (� ; v),where v = f(�) if � = h(�) and v = � otherwise, is signi�cantly harder than (securely orprivately) implementing Eq. (7.32); see Exercise 12. The di�erence is that Eq. (7.32) allows toreveal h(�) to Party 2 (speci�cally in case h(�) 6= �), whereas the more natural functionalitydoes not allow this.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

672 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProof Sketch: We need to transform any admissible pair, (A1; A2), for the realoracle-aided model into a corresponding pair, (B1; B2), for the ideal model. Westart by assuming that the �rst party is honest, and transforming the real-modeladversary A2 (for the oracle-aided execution) into a corresponding ideal-modeladversary B2. On input �, the latter proceeds as follows:1. Machine B2 sends � to the trusted party, and obtains the answer whichequals v def= f(�) if � = h(�) and (u; v) def= (h(�); f(�)) otherwise, where� is the (unknown to B2) input of Party 1.47 In the �rst case, B2 setsu def= �, and so in both cases (u; v) = (h(�); f(�)).2. Machine B2 emulates the protocol, by feeding A2 with � and the pair(u; v), which A2 expects to get in Step C1, and outputting whatever thelatter outputs (in Step C2).Note that both the ideal execution under (B1; B2) and the real execution (in theoracle-aided model) under (A1; A2) yield the output pair (� ; A2(�; (h(�); f(�))).Thus, the ideal and real ensembles are identical.We now turn to the case where the second party is honest, and transformthe real-model adversary A1 into a corresponding ideal-model adversary B1. Oninput �, the latter proceeds as follows:1. Machine B1 emulates Step C1 of the protocol, by obtaining from A1 theinput �0 A1(�) (that A1 wishes to transmit via Eq. (7.30)) and feedingA1 with the expected answer �.2. If A1 instructs the oracle not to answer Party 2 then B1 halts withoutinvoking the trusted party. Otherwise, B1 sends �0 to the trusted party,and lets it answer Party 2. In both cases, B1 halts with output equal tothe corresponding output of A1.Note that if h(�0) = �, where � is the (unknown to B1) input of Party 2,then the trusted party answers Party 2 with f(�0) and otherwise it answersParty 2 with (h(�0); f(�0)).Note that both the ideal execution under (B1; B2) and the real execution (inthe oracle-aided model) under (A1; A2) yield the output pair (A1(�; �;?) ; ?)if A1(�; �) = ? and (A1(�; �) ; F (A1(�); �) otherwise, where F (�0; �) is as inEq. (7.32); i.e., F (�0; �) = f(�0) if h(�0) = � and F (�0; �) = (h(�0); f(�0))otherwise. Thus, also here the ideal and real ensembles are identical.47 Recall that, in either case, the trusted party will send Party 1 the answer �. Also notethat the emulation will remain valid regardless which j�j-bit long string B2 sends to the trustedparty (because, for any such choice, B2 will (explicitly) receive f(�) as well as (explicitly orimplicitly) receive h(�)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 6737.4.3.5 Augmented coin-tossingIn this section, we generalize the coin-tossing functionality (of Section 7.4.3.1)in two ways. Firstly, we consider the generation of a random `(n)-bit longstring rather than a single bit. Secondly, we provide the second party with afunction of the coin-outcomes obtained by the �rst party, rather than providingit with the outcomes themselves. That is, for any positive polynomial ` : N !N and a polynomial-time computable function g, we consider the randomizedfunctionality(1n; 1n) 7! (r; g(r)), where r is uniformly distributed in f0; 1g`(n). (7.33)Indeed, De�nition 7.4.6 is a special case (obtained by setting `(n) def= 1 andg(r) def= r). The augmented coin-tossing functionality (mentioned in Section 7.4.1)will be derived as a special case (see below). But �rst we show that Eq. (7.33)can be securely reduced to the set of functionalities presented above (see dis-cussion of this notion of a reduction in Remark 7.4.5). That is, we present anoracle-aided protocol that uses two of the latter functionalities (i.e., basic coin-tossing and general authenticated computation) as well as a commitment schemeC. The protocol can be viewed as a \robust" version of Construction 7.4.7 (i.e.,simple operations such as sending a commitment to a value and tossing a coinare replaced by corresponding functionalities which prevent various abuses).Construction 7.4.16 (an oracle-aided protocol for Eq. (7.33)): For r1; :::; r` 2f0; 1gn and �1; :::; �` 2 f0; 1g, we let Cr1;:::;r`(�1; :::; �`) = (Cr1(�1); :::; Cr`(�`)).Inputs: Both parties get security parameter 1n, and set ` def= `(n).Step C1: Party 1 uniformly selects �1; :::; �` 2 f0; 1g and s1; :::; s` 2 f0; 1gn,and lets r0 = �1 � � ��` and s = s1 � � � s`.Step C2: Party 1 uses the image transmission functionality to send c def= Cs(r0)to Party 2. Actually, since image transmission functionality is a specialcase of the general authenticated computation functionality, we use thelatter. That is, Party 1 enters Eq. (7.32) with input (r0; s), Party 2 enterswith input 1`+`�n, and Party 2 is supposed to obtain f (C2)(r0; s) def= Cs(r0).Recall that, by de�nition, a party cannot abort the execution of an ora-cle call that was not initiated (requested) by it, and so Party 2 cannotabort Steps C2{C4. For simplicity, we assume that Party 1 does not abortSteps C2 and C3, but it may abort Step C4.Step C3: The parties invoke the basic coin tossing functionality ` times to gen-erate a common random string r00 2 f0; 1g`. That is, in the ith invocationof the functionality of De�nition 7.4.6, the parties obtain the ith bit of r00.Step C4: Party 1 sets r def= r0 � r00, and uses the authenticated computationfunctionality to send g(r) to Party 2. Speci�cally, Party 1 enters Eq. (7.32)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

674 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwith input (r0; s; r00), Party 2 enters with input (c; r00), where (c; r00) issupposed to equal h(C4)(r0; s; r00) def= (Cs(r0); r00), and Party 2 is supposedto obtain f (C4)(r0; s; r00) def= g(r0 � r00). In case Party 1 aborts or Party 2obtains an answer of a di�erent format, which happens if the inputs to thefunctionality do not match, Party 2 halts with output ? (indicating thatParty 1 misbehaved).We comment that r = r0 � r00 is uniquely determined by c and r00.Outputs: Party 1 outputs r, and Party 2 outputs the value determined in Step C4,which is either g(r) or ?.We stress that, in all oracle calls, Party 1 is the party initiating (requesting)the call. We comment that more e�cient alternatives to Construction 7.4.16 doexist, it is just that we �nd the above easiest to analyze.Proposition 7.4.17 Let F be the set of functionalities de�ned in De�nition 7.4.6and Eq. (7.32), respectively. Then Construction 7.4.16 constitutes a security re-duction from the generalized coin tossing functionality of Eq. (7.33) to F .Proof Sketch: We start by assuming that the �rst party is honest, and trans-forming the real-model adversaryA2 (for the oracle-aided execution) into a corre-sponding ideal-model adversary B2. On input 1n, the latter proceeds as follows:1. Machine B2 emulates the local actions of the honest Party 1 in Step C1 ofthe protocol, by uniformly selecting r0 2 f0; 1g` and s 2 f0; 1g`�n.2. Machine B2 emulates Step C2 of the protocol, by feeding A2 with c def=Cs(r0). (Recall, that by our convention A2 never aborts.)3. Machine B2 emulates Step C3 of the protocol, by uniformly selecting r00 2f0; 1g`, and feeding A2 with it.4. Machine B2 invokes the trusted party with input 1n and obtains the answerg(r), for a uniformly distributed r 2 f0; 1g` that is handed to Party 1.48Next, machine B2 obtains the input (or query) of A2 to the functionalityof Step C4. If this input (i.e., A2(�;Cs(r0); r00), where � represents theStep 1 emulation of Step C1) does not equal the pair of values (Cs(r0); r00)fed to A2 in Steps 2{3 then B2 halts with output A2(�; c; r00; ((c; r00); g(r))).Otherwise, B2 halts with output A2(�; c; r00; g(r)).Note that in both cases the output of B2 corresponds to the outputof A2 when fed with the corresponding emulation of Steps C1{C4. Inparticular, B2 emulates Step C4 by feeding A2 either with g(r) or with(h(C4)(r0; s; r00); g(r)), where the decision depends on whether or notA2(�;Cs(r0); r00) =(Cs(r0); r00). (Recall that (Cs(r0); r00) = h(C4)(r0; s; r00).) Indeed, B2 ischeating (in the emulation of Step C4), because A2 expects to get eitherf (C4)(r0; s; r00) = g(r0 � r00) or (h(C4)(r0; s; r00); g(r0 � r00)) but (as we shallsee) this cheating is undetectable.48 Indeed, this part of the current step could take place also at an earlier stage.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 675Let us �rst assume that the input entered by A2 to the functionality of Step C4does �t its view of Steps C2 and C3, an event that occurs with equal probabilityin both models (because the emulation of Steps C2{C3 is perfect). In this case,the ideal-model execution under (B1; B2) yields the pair (r ; A2(�;C(r0); r00; g(r))),where r0; r00; r are uniformly and independently distributed. On the other hand,the real-model execution (in the oracle-aided model) under (A1; A2) yields thepair (r0�r00 ; A2(�;C(r0); r00; g(r0�r00))), where r0; r00 are as above, which (for r =r0�r00) is distributed identically to (r ; A2(�;C(r�r00); r00; g(r))). However, dueto the hiding property of C, the two ensembles are computationally indistinguish-able. In case the input entered by A2 to the functionality of Step C4 does not �tits view of Steps C2 and C3, the ideal-model execution under (B1; B2) yields thepair (r ; A2(�;C(r0); r00; ((C(r0); r00); g(r)))), whereas the real-model executionunder (A1; A2) yields the pair (r0�r00 ; A2(�;C(r0); r00; ((C(r0); r00); g(r0�r00)))),which is distributed identically to (r ; A2(�;C(r�r00); r00; ((C(r�r00); r00); g(r)))).Again, the two ensembles are computationally indistinguishable.We now turn to the case where the second party is honest, and transformthe real-model adversary A1 into a corresponding ideal-model adversary B1. Oninput 1n, the latter proceeds as follows:1. Machine B1 emulates Step C1 of the protocol, by obtaining (r0; s) A1(1n), which is the query that A1 will use in Step C2.2. Machine B1 emulates Step C2 by doing nothing.Note that the real-model adversary A1 would have made the oracle query(r0; s) and would have obtained � as an answer.3. Machine B1 invokes the trusted party (on input 1n), and obtains a uni-formly distributed r 2 f0; 1g`. We stress that at this time B1 does notinstruct the trusted party whether or not to answer Party 2. Machine B1emulates Step C3, by feeding r00 def= r � r0 to A1.4. Machine B1 starts its emulation of Step C4, by checking whether or not thequery that A1 wishes to make (i.e., A1(1n; �; r00)) �ts the tuple (r0; s; r00) inthe sense that it yields the same value (Cs(r0); r00). That is, let (q0; q; q00) def=A1(1n; �; r00). If (Cq(q0); q00) = (Cs(r0); r00) then B1 instructs the trustedparty to answer Party 2, else B1 instructs the trusted party to stop (with-out answering Party 2).49 Finally, B1 outputs whatever A1 does (i.e.,A1(1n; �; r00; �), where the four inputs of A1 correspond to its view in eachof the four steps).Note that the output of Party 1 in both the real-model (under the Ai's) andthe ideal-model (under the Bi's) equals A1(1n; �; r00; �), where r00 is uniformlydistributed (in both models). The issue is the correlation of this output to theoutput of Party 2, which is relevant only if Party 2 does have an output. Recall49 In particular, if (in contrary to our simplifying assumption) A1 aborts before Step C4then the sequence (q0; q; q00) equals ? and does not �t (Cs(r0); r00).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

676 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSthat Party 2 obtains an output (in both models) only if the corresponding Party 1does not abort (or stops the trusted party). Furthermore, in both models, anoutput is obtained if and only if (Cq(q0); q00) = (Cs(r0); r00) holds, where (r0; s) def=A1(1n), and (q0; q; q00) def= A1(1n; �; r00). In particular, (Cq(q0); q00) = (Cs(r0); r00)implies that (q0; q00) = (r0; r00) and that the inputs entered in Step C4 do match(i.e., h(C4)(q0; q; q00) = (Cs(r0); r00)). This means that in the real-model the outputof Party 2 is f (C4)(q0; q; q00) = f (C4)(r0; q; r00) = g(r0 � r00), whereas in the ideal-model it equals g(r) = g(r0 � r00). We conclude that the ideal model perfectlyemulates the real model, and the proposition follows.An important special case. An important special case of Eq. (7.33) is wheng(r; s) = Cs(r), where jsj = n � jrj. This special case will be called the augmentedcoin tossing functionality.De�nition 7.4.18 (coin-tossing into the well, augmented): An augmented coin-tossing into the well protocol is a two-party protocol for securely computing the fol-lowing randomized functionality with respect to some �xed commitment scheme,C, and a positive polynomial `:(1n; 1n) 7! ((r; s); Cs(r)) (7.34)where (r; s) is uniformly distributed in f0; 1g`(n) � f0; 1g`(n)�n.An augmented coin-tossing protocol is exactly what is needed for the implemen-tation of the coin-generation phase of the compiler. In particular, the string s,included in the output of Party 1, allows it to (later) prove in zero-knowledgestatements regarding the actual value, r, committed (to Party 2). This fact willbe used in the protocol emulation phase of the compiler.Proposition 7.4.19 Let F be as in Proposition 7.4.17, and suppose that C isa commitment scheme. Then Construction 7.4.16, when applied to g = C, con-stitutes a secure reduction of the augmented coin-tossing functionality Eq. (7.34)to the set of functionalities F .7.4.3.6 Input CommitmentThe last component needed for the compiler is a functionality that captured whatis required in the input-commitment phase of the compiler. Speci�cally, we wantto force Party 1 to make a random commitment to an input of its choice, whileknowing the committed value and the corresponding decommitment. Knowledgeof the latter will allow the party to (later) prove in zero-knowledge statementsregarding the actual committed value, and this fact will be used in the protocolemulation phase of the compiler.Let C be a commitment scheme, and let C be de�ned as in Section 7.4.3.5.We consider the input commitment functionality(x; 1jxj) 7! (r; Cr(x)), where r is uniformly distributed in f0; 1gjxj2 (7.35)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 677Certainly, the naive protocol of just letting Party 1 send Party 2 a commitmentto x does not constitute a secure implementation of Eq. (7.35): This naivesuggestion does not guarantee that the output is in the range of the commitmentscheme, let alone that it is a random commitment for which Party 1 knows acorresponding decommitment. Thus, the naive protocol must be augmented bymechanisms that address all these concerns. We show that Eq. (7.35) can besecurely reduced to the set of functionalities presented above.Construction 7.4.20 (an oracle-aided protocol for Eq. (7.35)):Inputs: Party 1 has input x 2 f0; 1gn, whereas Party 2 gets input 1n.Step C1: Party 1 selects uniformly r0 2 f0; 1gn2.Step C2: Party 1 uses the image transmission functionality to send c0 def= Cr0(x)to Party 2. Again, we actually use the authenticated computation func-tionality, where Party 1 enters Eq. (7.32) with input (x; r0), Party 2 inputs1n+n2 , and Party 2 is supposed to obtain f (C2)(x; r0) def= Cr0(x). Thus,Steps C1{C2 yield an initial commitment to the input.As in Construction 7.4.16, we recall that Party 2 cannot abort Steps C2{C4, and assume that Party 1 does not abort Steps C2 and C3.Step C3: Generating coins for the �nal commitment. The parties use the aug-mented coin tossing functionality to obtain the outputs (r; r00) and c00 def=Cr00(r), respectively, where r 2 f0; 1gn2 and r00 2 f0; 1gn3 are uniformlyand independently distributed. That is, Party 1 gets (r; r00), while Party 2gets c00.Step C4: Sending the �nal commitment. Party 1 uses the authenticated compu-tation functionality to send Cr(x) to Party 2, where (x; r) is uniquelydetermined by (c0; c00). Speci�cally, Party 1 enters Eq. (7.32) with input(x; r; r0; r00), Party 2 enters with input (c0; c00), where (c0; c00) is supposedto equal h(C4)(x; r; r0; r00) def= (Cr0(x); Cr00(r)), and Party 2 is supposed toobtain f (C4)(x; r; r0; r00) def= Cr(x).In case Party 1 aborts or Party 2 obtains an answer of a di�erent format,which happens if the inputs to the functionality do not match, Party 2 haltswith output ? (indicating that Party 1 misbehaved).Outputs: Party 1 outputs r, and Party 2 outputs the value determined in Step C4,which is either Cr(x) or ?.Again, more e�cient alternatives to the above construction do exist, but weprefer to analyze the one above.Proposition 7.4.21 Construction 7.4.20 constitutes a security reduction fromEq. (7.35) to the set of two functionalities de�ned in Eq. (7.34) and Eq. (7.32),respectively.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

678 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProof Sketch: We start by assuming that the �rst party is honest, and trans-forming the real-model adversaryA2 (for the oracle-aided execution) into a corre-sponding ideal-model adversary B2. On input 1n, the latter proceeds as follows:1. Machine B2 emulates (the actions of the honest Party 1 in) Step C1 of theprotocol, by uniformly selecting r0 2 f0; 1gn2 .2. Machine B2 emulates Step C2 of the protocol, by feeding A2 with c0 def=Cr0(0n). (Clearly, B2 is cheating, because A2 is supposed to be fed withC(x), where x is the (unknown to B2) input of Party 1. However, A2cannot detect this cheating.)3. Machine B2 emulates Step C3 of the protocol, by uniformly selecting s 2f0; 1gn2 and r00 2 f0; 1gn3, and feeding A2 with c00 def= Cr00(s).4. Machine B2 invokes the trusted party with input 1n and obtains the answerCr(x), for a uniformly distributed r 2 f0; 1gn2 that is handed to Party 1.50Next, machine B2 obtains the input (or query) of A2 to the functionalityof Step C4. If this input (i.e., A2(�; c0; c00)) does not equal the pair ofvalues (c0; c00) = (Cr0(0n); Cr00(s)) fed to A2 in Steps 2{3 then B2 haltswith output A2(�; c0; c00; ((c0; c00); Cr(x))). Otherwise, B2 halts with outputA2(�; c0; c00; Cr(x)).Note that in both cases the output of B2 corresponds to the output ofA2 when fed with the corresponding emulation of Steps C1{C4. In par-ticular, B2 emulates Step C4 by feeding A2 with either Cr(x) or with((C(0n); C(s)); Cr(x)), where the decision depends on whether or not A2(�;Cr0(0n); Cr00(s)) =(Cr0(0n); Cr00(s)). (Recall that (Cr0(0n); Cr00(s)) = h(C4)(0n; s; r0; r00).) In-deed, on top of cheating in the emulation of Step C2, machine B2 cheatsin the emulation of Step C4, �rstly because the decision is supposedto depend on whether or not A2(�;Cr0(x); Cr00(r)) = (Cr0(x); Cr00(r)),where (Cr0(x); Cr00(r)) = h(C4)(x; r; r0; r00), and secondly because A2 ex-pects to get either Cr(x) = f (C4)(x; r; r0; r00) or ((C(x); C(r)); Cr(x)) �(h(C4)(x; r; r0; r00); f (C4)(x; r; r0; r00)). However, as we shall see, this cheatingis undetectable.Let us �rst assume that the input entered by A2 to the functionality of Step C4does �t its view of Steps C2 and C3. In this case, the ideal-model executionunder (B1; B2) yields the pair (r ; A2(�;C(0n); C(s); Cr(x))), where r and s areuniformly and independently distributed. On the other hand, the correspondingreal-model execution (in the oracle-aided model) under (A1; A2) yields the pair(r ; A2(�;C(x); C(r); Cr(x))), where r is as above. However, due to the hidingproperty of C, the two ensembles are computationally indistinguishable.51 In50 Indeed, this part of the current step could take place also at an earlier stage.51 In fact, the said ensembles are computationally indistinguishable even when r and s are�xed (i.e., are part of their index, which is also given to the distinguisher) rather than beingrandom. That is, the ensembles f(C(0jxj); C(s); Cr(x))gx;r;s and f(C(x); C(r); Cr(x))gx;r;sare computationally indistinguishable. This follows from the computational indistinguisha-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 679case the input entered by A2 to the functionality of Step C4 does not �t its viewof Steps C2 and C3, the ideal-model execution under (B1; B2) yields the pair thepair (r ; A2(�;C(0n); C(s); ((C(0n); C(s)); Cr(x)))), whereas the correspondingreal-model execution under (A1; A2) yields the pair (r ; A2(�;C(x); C(r); ((C(x); C(r)); Cr(x)))).Again, the two ensembles are computationally indistinguishable. Since thetwo cases occur with almost the same probability in both models (becausethe decision depends on A2(�; c0; c00), where (c0; c00) is either (C(0n); C(s)) or(C(x); C(r))), the outputs in the two models are indistinguishable.We now turn to the case where the second party is honest, and transformthe real-model adversary A1 into a corresponding ideal-model adversary B1. Oninput x, the latter proceeds as follows:1. Machine B1 emulates Step C1 of the protocol, by obtaining r0 from A1(x).Actually, B1 obtains (x0; r0) A1(x), which is the query that A1 will usein Step C2.2. Machine B1 emulates Step C2 by doing nothing.Note that the real-model adversary A1 would have made the oracle query(x0; r0) and would have obtained � as an answer.3. Machine B1 invokes the trusted party on input x0, and obtains a uniformlydistributed r 2 f0; 1gn2. We stress that at this time B1 does not instructthe trusted party whether or not to answer Party 2. Machine B1 emulatesStep C3, by uniformly selecting r00 2 f0; 1gn3 and feeding (r; r00) to A1.4. Machine B1 starts its emulation of Step C4, by checking whether or notthe query that A1 wishes to make (i.e., A1(x; �; (r; r00))) �ts the tuple(x0; r; r0; r00) in the sense that it yields the same value (Cr0(x0); Cr00(r)).That is, let (q1; q2; s1; s2) def= A1(x; �; (r; r00)). If (Cs1(q1); Cs2(q2)) =(Cr0(x0); Cr00(r)) then B1 instruct the trusted party to answer Party 2else B1 instruct the trusted party to stop (without answering Party 2).Finally, B1 outputs whatever A1 does (i.e., A1(x; �; (r; r00); �), where thefour inputs of A1 correspond to its view in each of the four steps).Note that the output of Party 1 in both the real-model (under the Ai's) andthe ideal-model (under the Bi's) equals A1(x; �; (r; r00); �), where r 2 f0; 1gn2and r00 2 f0; 1gn3 are uniformly and independently distributed (in both mod-els). The issue is the correlation of this output to the output of Party 2, whichis relevant only if Party 2 does have an output. Recall that Party 2 obtainsan output (in both models) only if the corresponding Party 1 does not abort(or stops the trusted party). Furthermore, in both models, an output is ob-tained if and only if (Cs1(q1); Cs2(q2)) = (Cr0(x0); Cr00(r)), where (x0; r0) =A1(x) and (q1; q2; s1; s2) = A1(x; �; (r; r00)). In particular, (Cs1(q1); Cs2(q2)) =(Cr0(x0); Cr00(r)) implies that (q1; q2) = (x0; r) and that the inputs entered inbility of f(C(0jxj); C(s))gx;r;s and f(C(x); C(r))gx;r;s, which in turn follows from the hidingproperty of C.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

680 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSStep C4 do match (i.e., h(C4)(q1; q2; s1; s2) = (Cr0(x0); Cr00(r))), which meansthat in the real-model the output of Party 2 is f (C4)(q1; q2; s1; s2) = f (C4)(x0; r; s1; s2) =Cr(x0) (exactly as in the ideal-model). We conclude that the ideal model per-fectly emulates the real model, and the proposition follows.7.4.3.7 SummaryCombining Proposition 7.4.8 (resp., Proposition 7.4.12) with suitable resultsabout the underlying primitives, we conclude that coin tossing (resp., imagetransmission as in Eq. (7.30)) can be securely implemented based on any 1-1 one-way function. Combining Proposition 7.4.15 (resp., Proposition 7.4.19) [resp.,Proposition 7.4.21] with the previous results, by using the Composition Theorem(i.e., Theorem 7.4.3 or Remark 7.4.5), we obtain secure implementations of theauthenticated-computation functionality (resp., augmented coin-tossing) [resp.,input-commitment functionality]. The 1-1 restriction can be waived by usinga slightly more cumbersome construction that utilizes the commitment schemeof Construction 4.4.4 (instead of the simple scheme of Construction 4.4.2). Wethus state the following for future reference:Proposition 7.4.22 Assuming the existence of (non-uniformly strong) one-wayfunctions, the following three functionalities can be securely computed.1. The input-commitment functionality as de�ned in Eq. (7.35).2. The augmented coin-tossing functionality as de�ned in Eq. (7.34).3. The authenticated-computation functionality as de�ned in Eq. (7.32).7.4.4 The compiler itselfWe are now ready to present the compiler. Recall that we are given a protocol,�, for the semi-honest model, and we want to generate an \equivalent" protocol�0 for the malicious model. The meaning of the term `equivalent' will be clari�edin Section 7.4.4.1. We start by compiling � into an oracle-aided protocol �0 thatuses the three functionalities referred to in Proposition 7.4.22.We assume, without loss of generality, that on any input of length n, eachparty to � tosses `(n) = poly(n) coins. Recall that C is a (non-interactive)(string) commitment scheme, derived from the bit commitment scheme C, andthat Cr(v) denotes the commitment to value v using the random-tape r.Construction 7.4.23 (the compiled protocol, oracle-aided version): Given aprotocol, �, for the semi-honest model, we consider the following oracle-aidedprotocol, �0, for the malicious model.Inputs: Party 1 gets input x 2 f0; 1gn and Party 2 gets input y 2 f0; 1gn.Input-commitment phase: Each of the two parties commits to its input by usingthe input-commitment functionality of Eq. (7.35). Recall that Eq. (7.35)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 681maps the input pair (u; 1n) to the output pair (s; Cs(u)), where s is uni-formly distributed in f0; 1gn2. Thus, each of the parties obtains decom-mitment information that will allow it to perform its role in the protocolemulation phase.Speci�cally, we are talking about two invocations of Eq. (7.35). In the �rstinvocation, Party 1 wishing to commit to x, plays the role of the �rst partyin Eq. (7.35), and obtains a uniformly distributed �1 2 f0; 1gn2, whereasParty 2 (which plays the role of the second party in Eq. (7.35)) obtains1 def= C�1(x). Likewise, in the second invocation, Party 2 wishing tocommit to y, plays the role of the �rst party in Eq. (7.35), and obtains auniformly distributed �2 2 f0; 1gn2, whereas Party 1 (which plays the roleof the second party in Eq. (7.35)) obtains 2 def= C�2(y).Coin-generation phase: Each of the parties generates a random-tape for the emu-lation of �, by invoking the augmented coin-tossing functionality of Eq. (7.34).Recall that this functionality maps the input pair (1n; 1n) to the outputpair ((r; s); Cs(r)), where (r; s) is uniformly distributed in f0; 1g`(n) �f0; 1gn�`(n). Thus, each party obtains the random-tape to be held by it,whereas the other party obtains a commitment to this value. The partyholding the random-tape also obtains the randomization used in the cor-responding commitment, which it will use in performing its role in theprotocol emulation phase.Speci�cally, we are talking about two invocations of Eq. (7.34). In the �rst(resp., second) invocation, Party 1 (resp., Party 2) plays the role of the�rst party in Eq. (7.34), and obtains a uniformly distributed (r1; !1) 2f0; 1g`(n) � f0; 1gn�`(n) (resp., (r2; !2) 2 f0; 1g`(n) � f0; 1gn�`(n)), whereasParty 2 (resp., Party 1) which plays the other role obtains �1 def= C!1(r1)(resp., �2 def= C!2(r2)).Protocol emulation phase: The parties use the authenticated-computation func-tionality of Eq. (7.32) in order to emulate each step of protocol �. Recallthat, for predetermined functions h and f , this functionality maps the inputpair (�; �) to the output pair (�; f(�)) if � = h(�) and to (� ; (h(�); f(�)))otherwise, where the second case is treated as abort.The party that is supposed to send a message plays the role of the �rst(i.e., initiating) party in Eq. (7.32) and the party that is supposed to receivethe message plays the role of the second party. Suppose that the currentmessage in � is to be sent by Party j, and let u def= x if j = 1 and u def= yotherwise. Then the functions h; f and the inputs �; �, for the functionalityof Eq. (7.32), are set as follows:� The string � is set to equal (�1; �2; �3), where �1 = (u; �j) is thequery and answer of Party j in the oracle call that it initiated in theinput-commitment phase, �2 = (rj ; !j) is the answer that Party j ob-tained in the oracle call that it initiated in the coin-generation phase,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

682 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSand �3 is the sequence of messages that Party j obtained so far in theemulation of �. The string � equals (j ; �j ; �3), where j and �j arethe answers that the other party obtained in the same oracle calls inthe �rst two phases (and �3 is as above).In particular, u is the input to which Party j committed in the input-commitment phase and rj is the random-tape generated for it in thecoin-generation phase. Together with �3, they determine the messagethat is to be sent by Party j in �. The auxiliary strings �j and !jwill be used to authenticate u and rj , as reected in the followingde�nition of h.� The function h is de�ned such that h((v1; s1); (v2; s2); v3) equals (Cs1(v1); Cs2(v2); v3).Indeed, it holds that h(�1; �2; �3) = (C�j (u); C!j (rj); �3) = �.� The function f equals the computation that determines the messageto be sent in �. Note that this message is computable in polynomial-time from the party's input (denoted u and being part of �1), itsrandom-tape (denoted rj and being part of �2), and the messages ithas received so far (i.e., �3). Indeed, it holds that f(�1; �2; �3) is themessage that Party j should send in �.Recall that the party that plays the receiver in the current oracle call, ob-tains either f(�) or (h(�); f(�)). It treats the second case as if the otherparty has aborted, which is also possible per se.Aborting: In case any of the functionalities invoked in any of the above phasesterminates in an abort state, the party (or parties) obtaining this indicationaborts the execution, and sets its output to ?. Otherwise, outputs are asfollows.Outputs: At the end of the emulation phase, each party holds the correspondingoutput of the party in protocol �. The party just locally outputs this value.Clearly, in case both parties are honest, the input-output relation of �0 is identi-cal to that of �. (We will show that essentially the same holds also in general.)We note that the transformation of � to �0 can be implemented in polynomial-time. Finally, replacing the oracle calls by the subprotocols provided in Propo-sition 7.4.22 yields a standard protocol for the malicious model.7.4.4.1 The e�ect of the compilerAs will be shown below, given a protocol as produced by the proof of Theo-rem 7.3.12, the compiler produces a protocol that securely computes the samefunctionality. Thus, for any functionality f , the compiler transforms a speci�cprotocol for privately computing f (in the semi-honest model) into a protocolfor securely computing f (in the malicious model). This su�ces to establishour main result (i.e., Theorem 7.4.1), yet it does not say what the compilerdoes when given an arbitrary protocol (i.e., one not produced by the proof of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 683Theorem 7.3.12). In order to analyze the action of the compiler, in general,we introduce the following model that is a hybrid of the semi-honest and themalicious models.52 We call this new model, which is of independent interest,the augmented semi-honest model.De�nition 7.4.24 (the augmented semi-honest model): Let � be a two-partyprotocol. An augmented semi-honest behavior (w.r.t �) is a (feasible) strategythat satis�es the following conditions:Entering the execution: Depending on its initial input, denoted u, the party mayabort before taking any step in the execution of �. Otherwise, again de-pending on u, it enters the execution with any input u0 2 f0; 1gjuj of itschoice. From this point on, u0 is �xed.Proper selection of a random-tape: The party selects the random-tape to be usedin � uniformly among all strings of the length speci�ed by �. That is, theselection of the random-tape is exactly as speci�ed by �.Proper message transmission or abort: In each step of �, depending on its viewof the execution so far, the party may either abort or send a message asinstructed by �. We stress that the message is computed as � instructsbased on input u0, the random-tape selected above, and all messages receivedso far.Output: At the end of the interaction, the party produces an output dependingon its entire view of the interaction. We stress that the view consists of theinitial input u, the random-tape selected above, and all messages receivedso far.A pair of probabilistic polynomial-time strategies, C = (C1; C2), is admissiblew.r.t � in the augmented semi-honest model if one strategy implements � andthe other implements an augmented semi-honest behavior w.r.t �.The augmented semi-honest model extends the ordinary semi-honest model inallowing adversaries to modify their initial input and to abort the execution atarbitrary time. The augmented semi-honest model is arguably more appealingthan the semi-honest model, because in many settings input-modi�cation andaborting can also be performed at a high-level, without modifying the prescribedprogram. In contrast, implementing an e�ective malicious adversary may requiresome insight into the original protocol and typically requires substitution of theprogram's code.Intuitively, the compiler transforms any protocol � into an (oracle-aided)protocol �0 such that executions of �0 in the malicious model correspond toexecutions of � in the augmented semi-honest model. That is:52 Indeed, Theorem 7.4.1 will follow as a special case of the general analysis of the compiler(as provided below). See further discussion following the statement of Proposition 7.4.25.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

684 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProposition 7.4.25 (general analysis of the two-party compiler): Let �0 be the(oracle-aided) protocol produced by Construction 7.4.23 when given the protocol�, and let G denote the set of the three oracle functionalities that are usedby protocol �0. Then, for every pair of probabilistic polynomial-time strategiesA = (A1; A2) that are admissible (w.r.t �0) for the (real) malicious model (ofDe�nition 7.4.2)53 there exists a pair of probabilistic polynomial-time strategiesB = (B1; B2) that are admissible w.r.t � for the augmented semi-honest model(of De�nition 7.4.24) such thatfreal�;B(z)(x; y)gx;y;z c� frealG�0;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).Proposition 7.4.25 will be applied to protocols as produced by the proof of Theo-rem 7.3.12. Actually, we will apply Proposition 7.4.25 to Theorem 7.3.14 (whichprovides canonical protocols for privately computing any functionality). As weshall see (in Section 7.4.4.2), for these speci�c protocols, the augmented semi-honest model (of De�nition 7.4.24) can be emulated by the ideal malicious model(of De�nition 7.2.4). Thus, we obtain secure (oracle-aided) protocols (withoracle to G) for any functionality, because (schematically speaking) for everyfunctionality f there exist � and �0 such that idealf;malicious(x; y) equalsreal�;aug-semi-honest(x; y), which in turn equals realG�0;malicious(x; y). (Or-dinary secure protocols are obtained by using secure implementations of theoracles in G (which are provided by Proposition 7.4.22).) Thus, Theorem 7.4.1is proven by combining the properties of the compiler, as stated in Proposi-tion 7.4.25, with the properties of speci�c protocols to be compiled by it. Westart by establishing Proposition 7.4.25.Proof Sketch: Given a pair of strategies, (A1; A2), which is admissible w.r.t �0for the real malicious model, we present a corresponding pair, (B1; B2), that isadmissible w.r.t � for the augmented semi-honest model. In the current proof,the treatment of the two cases for the identity of the honest party is symmetric.Hence, we use a generic symbol for the said identity. (Alternatively, without lossof generality, one may assume that Party 1 is honest.)We denote by hon the identity of the honest party and by mal the identityof the malicious party (i.e., fhon; malg = f1; 2g). Thus, Bhon is determinedby �, and we transform (the malicious adversary) Amal into (an augmentedsemi-honest adversary) Bmal, which uses Amal as a subroutine. In particular,machine Bmal will emulate all the oracles that are used in �0 (which is an oracle-aided protocol compiled out of the ordinary protocol �). On input u 2 f0; 1gn,machine Bmal behaves as follows.Entering the execution: Machine Bmal invokes Amal on input u, and decideswhether to enter the protocol, and if so { with what input. Towards53 Recall the de�nition of real-model adversaries for an oracle-aided protocol (i.e., De�ni-tion 7.4.2) extends the de�nition of real-model adversaries for ordinary protocols (i.e., De�ni-tion 7.2.5).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 685this end, machine Bmal emulates the input-committing phase of �0, usingAmal (as subroutine). Machine Bmal obtains from Amal the oracle querythat it makes to the input-committing functionality (initiated by it), anduses this query to determine the replaced input u0 (to be used in the rest ofthe execution). It also provides Amal with the oracle answers that Amalexpects to get. Details follow.Recall that the the input-committing phase consists of two invocationsof the input-committing functionality, one by Partyhon and the other byPartymal. In each invocation one party supplies an input and the otherparty gets a commitment to it (while the �rst party gets the correspondingcommitment coins).� In the invocation of the input-committing functionality in which Partyhoncommits to its input, machine Bmal generates a dummy commitment(supposedly to the input of Partyhon) and feeds it to Amal, which ex-pects to get a commitment (as answer from the oracle). Speci�cally,Bmal uniformly selects �hon 2 f0; 1gn2 , and computes the commit-ment hon def= C�hon(0n), where 0n is an arbitrary (dummy) value(which replaces the unknown input of Partyhon). MachineBmal feedsAmal with hon (as if hon were the oracle answer).� In the invocation of the input-committing functionality in which Partymalcommits to its input, machine Bmal tries to obtain the committedvalue (provided by Partymal) and feeds Amal with decommitmentinformation (which it expects to get). Speci�cally, Bmal obtains thequery, denoted u0, that Amal makes to the input-committing func-tionality, and feeds it with a uniformly selected �mal 2 f0; 1gn2 . Westress that Bmal will use this u0 as its modi�ed input in its (aug-mented semi-honest) execution of �.In case Amal has aborted this oracle call, machine Bmal aborts (i.e.,does not enter the execution of �).In case Bmal did not abort, it enters protocol � with input u0. Note thatthis entire step is implemented in polynomial-time, and the resulting u0depends only on u (the initial input of Bmal).Selection of random-tape: Bmal selects its random-tape uniformly in f0; 1g`(n)(as speci�ed by �), and emulates the execution of the coin-generation phaseof �0 ending with this outcome, so as to place Amal in the appropriatestate towards the protocol-emulation phase. To achieve the latter goal,machine Bmal supplies Amal with the oracle answers that it expects tosee. Again, we distinguish between the two oracle calls (to the augmentedcoin-tossing functionality) made during the coin-generation phase of �0:� In the invocation of the augmented coin-tossing functionality in whichPartyhon obtains the outcome of the coin-toss, machine Bmal gen-erates a dummy commitment (supposedly to the random-tape of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

686 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSPartyhon) and feeds it to Amal, which expects to get a commit-ment (as answer from the oracle). Speci�cally, Bmal uniformly se-lects !hon 2 f0; 1gn�`(n), and computes the commitment �hon def=C!hon(0`(n)), where 0`(n) is an arbitrary (dummy) value (which re-places the unknown random-tape of Partyhon). Machine Bmal feedsAmal with �hon (as if �hon were the oracle answer).� In the invocation of the augmented coin-tossing functionality in whichPartymal obtains the outcome of the coin-toss, machine Bmal �rstselects uniformly rmal 2 f0; 1g`(n) and !mal 2 f0; 1gn�`(n), and feedsAmal with the pair (rmal; !mal). Machine Bmal will use rmal as itsrandom-tape in its (augmented semi-honest) execution of �. If Amalaborts this oracle call then Bmal aborts.In case Bmal did not abort, it will use rmal as its random-tape in its thesubsequent steps of protocol �. Note that this entire step is implementedin polynomial-time, and that rmal is selected uniformly in f0; 1g`(n) inde-pendent of anything else.Subsequent steps { message transmission: Machine Bmal now enters the actualexecution of �. It proceeds in this real execution along with emulatingthe corresponding oracle answers of the authenticated-computation func-tionality. In a message-transmission step by Partyhon (in �), machineBmal obtains from Partyhon (in the real execution of �) a message, andemulates the answer given to Partymal by the authenticated-computationfunctionality. In a message-transmission step by Partymal in �, machineBmal computes the message to be sent to Partyhon (in �) as instructedby �, based on the input u0 determined above, the random-tape rmal se-lected above, and the messages obtained so far from Partyhon (in �). Itthen checks if Amal makes the correct oracle query, in which case it sendsPartyhon the message just computed and otherwise it aborts. Details fol-low.� In a message-transmission step by Partyhon (in �), machine Bmal�rst obtains from Partyhon (in the real execution of �) a message,denoted msg. Next, machine Bmal obtains from Amal the query thatAmal makes to the authenticated-computation functionality. Let usdenote this query by � = (q1; q2; q3). If (q1; q2) = (hon; �hon) andq3 equals the sequence of messages sent so far (by Bmal to Partyhon)then Bmal feeds Amal with the received message msg. Otherwise,Bmal feeds Amal with ((hon; �hon; �3); msg), where �3 is the se-quence of messages sent so far (by Bmal to Partyhon). (The lat-ter case means that Amal is cheating, but Partyhon does not de-tect this fact (because it obtains no answer from the authenticated-computation functionality).)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 687� In a message-transmission step by Partymal (in �), machine Bmal�rst computes the message, denoted msg, that it should send (accord-ing to �) on input u0 (as determined above), random-tape rmal (asrecorded above), and the messages received so far (from Partyhonin execution of �). Next, machine Bmal obtains from Amal thequery that Amal makes to the authenticated-computation functional-ity. Let us denote this query by ((u00; �00); (r00; !00); �003). If C�00 (u00) =C�mal(u0), C!00(r00) = C!mal(rmal) and �003 equals the sequence ofmessages received so far (from Partyhon) then Bmal sends the mes-sage msg to Partyhon. Otherwise, Bmal aborts �. (The latter casemeans that Amal is cheating in �0, and Partyhon detects this factand treats it as if Partymal has aborted in �0.)Output: Machine Bmal just outputs whatever machine Amal outputs given theexecution history (in �0) emulated above.Clearly, machine Bmal (described above) implements an augmented semi-honestbehavior with respect to �. It is left to show thatfrealG�0;A(z)(x; y)gx;y;z c� freal�;B(z)(x; y)gx;y;z (7.36)There is only one di�erence between the two ensembles referred to in Eq. (7.36):In the �rst distribution (i.e., realG�0;A(z)(x; y)), the commitments obtained byAmal in the input-commitment and coin-generation phases are to the true inputand true random-tape of Partyhon. On the other hand, in the second distribution(i.e., real�;B(z)(x; y)), the emulated machine Amal is given commitments todummy values (and the actions of Bmal are determined accordingly). We stressthat, other than this di�erence, Bmal perfectly emulates Amal. However, thedi�erence is \undetectable" (i.e., computationally indistinguishable) due to thehiding property of the commitment scheme.Composing the oracle-aided protocols produced by the compiler with secureimplementations of these oracles (as provided by Proposition 7.4.22), and usingthe Composition Theorem and Proposition 7.4.25, we obtain:Corollary 7.4.26 (compilation of two-party protocols): Assuming the exis-tence of (non-uniformly strong) one-way functions, any two-party protocol �can be e�ciently transformed into a two-party protocol �0 such that the follow-ing holds. For every pair of probabilistic polynomial-time strategies A = (A1; A2)that are admissible (w.r.t �0) for the (real) malicious model (of De�nition 7.2.5)there exists a pair of probabilistic polynomial-time strategies B = (B1; B2) thatare admissible w.r.t � for the augmented semi-honest model (of De�nition 7.4.24)such that freal�;B(z)(x; y)gx;y;z c� freal�0;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

688 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.4.4.2 Canonical protocols and the augmented semi-honest modelRecall that a protocol for privately computing some functionality is guaranteedto be secure with respect to semi-honest behavior. Thus, a real semi-honestexecution of this protocol can be emulated by an ideal semi-honest computationof the functionality. The question is what happens to such a protocol when it isrun under the augmented-semi-honest model. We now show that for canonicalprotocols (e.g., the protocols produced by the proof of Theorem 7.3.12), a realaugmented-semi-honest execution of such a protocol can be emulated by an idealmalicious computation of the functionality. That is, these protocols have thesalient property of allowing to emulate the (wider) class of real augmented-semi-honest executions by the (wider) class of ideal malicious computations.Combined with Corollary 7.4.26, this fact means that if one applies the compilerto a canonical protocol � that privately computes f then the resulting protocol�0 securely computes f (because malicious executions of �0 can be emulated byaugmented-semi-honest executions of �, which in turn can be emulated by theideal malicious model for f).Recall that the augmented semi-honest model allows two things that go be-yond the semi-honest model: (1) oblivious substitution of inputs, and (2) abort.The �rst type of behavior has a correspondence in the malicious ideal-model,and so poses no problem. To account for the second type of behavior, we needto match an aborting execution in the augmented semi-honest model with anaborting execution in the ideal malicious model. Here is where the extra prop-erty of the speci�c protocols, produced by the proof of Theorem 7.3.12, comes tohelp. Speci�cally, we refer to the fact that these protocols are canonical, whichmeans that the output of each party is determined only after it receives the verylast message (and no knowledge of the output is obtained before). Thus, abort-ing before this stage is essentially equivalent to not entering the execution at all,whereas aborting at the last stage is accounted for by the malicious ideal-model.Proposition 7.4.27 (on canonical protocols): Let � be a canonical protocolthat privately computes the functionality f . Then, for every probabilistic polynomial-time pair B = (B1; B2) that is admissible for the (real) augmented semi-honestmodel (of De�nition 7.4.24) there exists a probabilistic polynomial-time pairC = (C1; C2) that is admissible for the ideal malicious model (of De�nition 7.2.4)such that freal�;B(z)(x; y)gx;y;z c� fidealf;C(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).We comment that the statement of Proposition 7.4.27 implicitly introduces anotion of security in the augmented semi-honest model. Indeed, if the real-model adversary is allowed augmented semi-honest behavior then it is naturalto allow a corresponding behavior in the ideal model, which then coincides withthe ideal malicious model. Viewed in these terms, Proposition 7.4.27 assertsthat canonical protocols are secure in the augmented semi-honest model.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 689Proof Sketch: Recall that canonical protocols (cf. De�nition 7.3.13) proceedin two stages, where the �rst stage yields no information at all (to any semi-honest party) and the second phase consists of the exchange of a single pair ofmessages (i.e., each party sends a single message). We use the fact that canonicalprotocols admit a two-stage simulation procedure (for the view of a semi-honestparty). Such two-stage simulators act as follows:Input to simulator: A pair (u; v), where u is the initial input of the semi-honestparty and v the corresponding local output.Simulation Stage 1: Based (only) on u, the simulator generates a transcript cor-responding to the view of the semi-honest party in the �rst stage of thecanonical protocol �.Recall that this is a truncated execution of �, where the execution istruncated just before the very last message is received by the semi-honestparty. We stress that this truncated view, denoted T , is produced withoutusing v.Simulation Stage 2: Based on T and v, the simulator produces a string cor-responding to the last message received by the semi-honest party. Thesimulator then outputs the concatenation of T and this (last) message.The reader may easily verify that any canonical protocol has two-stage simu-lators. Loosely speaking, a simulator as required in Stage 1 is implicit in thede�nition of a canonical protocol (cf. De�nition 7.3.13), and the simulation ofStage 2 is trivial (because Stage 1 in a canonical protocol ends with the partiesholding shares of the desired outputs and Stage 2 consists of each party sendingthe share required by the other party).Next, for any protocol having two-stage simulators, given a pair (B1; B2) thatis admissible w.r.t � for the augmented semi-honest model, we construct a pair,(C1; C2), that is admissible for the ideal malicious model. We distinguish twocases, corresponding to the identity of the honest party. The di�erence betweenthese cases amounts to the possibility of (meaningfully) aborting the executionafter receiving the last message (and just before sending the last message). Thispossibility exists for a dishonest Party 1 but not for a dishonest Party 2 (seeFigure 7.2).We start with the case where Party 1 is honest (and Party 2 is dishonest).In this case C1 is determined (by �), and we need to transform the augmentedsemi-honest real adversary B2 into a malicious ideal-model adversary C2. Thelatter operates as follows, using the two-stage simulator, denoted S2, providedfor the view of Party 2 in semi-honest executions of � (which privately computesf). Recall that C2 gets input y 2 f0; 1gn.1. Machine C2 �rst determines the input y0 to be sent to the trusted party,where y0 is determined according to the behavior of B2 during the entireemulation of the (canonical) protocol �. In addition, C2 emulates themessages sent and received by B2 during the �rst phase of �, and also

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

690 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS
Party 1 Party 2

Stage 2

(r1,r2) (s1,s2)

r1 + s1 r2+ s2

meaningful
abort

r2

s1

Stage 1

Figure 7.2: Schematic depiction of a canonical protocol.determines the last message of B2 (i.e., its single Stage 2-message). Thisis done as follows:(a) First, C2 computes the substituted input with which (the augmentedsemi-honest adversary) B2 enters �. That is, y0 B2(y). In case B2aborts, machine C2 sets y0 = ? (so to conform with the (simplifying)convention that the ideal-model adversary always sends input to thetrusted party).(b) Next, C2 invokes the �rst stage of the simulator S2, to obtain the viewof the execution of the �rst stage of � as seen by a semi-honest partyhaving input y0. Denote this view by T , and note that T includes y0.Machine C2 extracts from T the random-tape, denoted r, of Party 2.This random-tape will be �xed for the use of B2.(c) Using T , machine C2 emulates the execution of B2 on input y0 andrandom-tape r, up to the point where Party 2 is to receive the lastmessage (in �). We stress that this point is just after Party 2 hassent its last message. Thus, the last message of Party 2 (in �) isdetermined at this step. To perform the emulation, C2 feeds B2with input y0 and random-tape r, and iteratively feeds B2 with thesequence of (incoming) messages as appearing in the correspondinglocations in T . We stress that although T is only the transcript of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 691Stage 1 in �, it determines all messages of Party 2 in � (including itssingle Stage 2 message).Note that the augmented-semi-honest strategy B2 may abort in suchan execution, but in case it does not abort the messages it sends �t thetranscript T . Consequently, the view of (the augmented semi-honestadversary) B2 in an execution of the �rst stage of � is emulatedby a pre�x of T (which in turn represents the simulated view of asemi-honest party on input y0).In case B2 has aborted the execution (even just before sending thelast message, which belongs to Stage 2), machine C2 resets y0 to ?.We stress that y0 is determined based only on y, and that C2 never aborts.2. Machine C2 invokes the trusted party with input y0, and obtains a response,denoted v.(Since the trusted party answers Party 1 �rst, Party 2 does not have theoption of stopping the trusted party before it answers Party 1. But thisoption is not needed because Party 2 cannot meaningfully abort � afterreceiving the last message in it. That is, if B2 has not aborted so far thenit cannot (meaningfully) abort now, because it has already sent (or ratherdetermined) its last message.)3. Finally, C2 determines its output as follows:(a) C2 invokes the second stage of the simulator S2, in order to obtainthe last message sent to Party 2. That is, C2 supplies the simulatorwith the �rst-stage transcript T and the output v, and obtains thelast message, denoted msg.(b) C2 now emulates the last step of B2 (i.e., its output computation) bysupplying it with the message msg.(Note that the last message of B2 was already determined in Step 1,and so the execution of C2 ends here.)The output of C2 is set to be the output of B2, regardless if B2 has abortedor completed the execution.We need to show thatfreal�;B(z)(x; y)gx;y;z c� fidealf;C(z)(x; y)gx;y;z (7.37)Abusing notation, we replace the �nal value of y0 by B2(y), and get:freal�;B(x; y)gx;y � f(output�1 (x;B2(y)) ; B2(view�2 (x;B2(y))))gx;yc� f(f1(x;B2(y)) ; B2(S2(y; f2(x;B2(y)))))gx;y� f(f1(x;C2(y)) ; C2(y; f2(x;C2(y))))gx;y� fidealf;C(x; y)gx;y

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

692 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwhere S2(y; v) denotes the result of the two-stage simulation. Eq. (7.37) follows.We stress that the �rst stage of the simulator S2 is used to determine the valueof y0 = B2(y), but unfortunately this fact is not explicit in our notation. Ananalogous comment holds with respect to the case treated next (where Party 1is dishonest).We now turn to the case where Party 2 is totally honest (and Party 1 possiblydishonest). In this case C2 is determined, and we need to transform the aug-mented semi-honest real adversary B1 into a malicious ideal-model adversaryC1. The latter operates as follows, using the simulator, denoted S1, providedfor the view of Party 1. Recall that C1 gets input x 2 f0; 1gn.1. Machine C1 �rst determines the input x0 to be sent to the trusted party,where x0 is determined according to the behavior of B1 during Stage 1 ofthe (canonical) protocol �. In addition, C1 emulates the messages sentand received by B1 during the �rst phase of �. This is done as in theprevious transformation of B2 to C2, except that here the last message ofB1 (i.e., its Stage 2 message) is still undetermined at this step (and canbe determined only when given the last message of Party 2, which in turnis obtained only at Step 3).2. Machine C1 invokes the trusted party with input x0, and obtains a response,denoted v.We stress that, unlike in case Party 2 is dishonest, Party 1 (i.e., C1) stillhas the option of stopping the trusted party before it answers Party 2.3. Next, C1 invokes the second stage of the simulator S1, to obtain the lastmessage sent (by Party 2) to Party 1. It supplies the simulator with thetranscript of the �rst-stage and the output v, and obtains the last message,denoted msg.4. Machine C1 now emulates the last step of B1 by supplying it with themessage msg. In case B1 aborts, machine C1 prevents the trusted partyfrom answering Party 2, and aborts. Otherwise, machine C1 allows thetrusted party to answer Party 2. We stress that C1 does not abort in anyprior step.The output of C1 is set to be the output of B1, regardless if B1 has abortedor completed the execution.We again need to show that Eq. (7.37) holds. The argument is analogous to theone applied for a dishonest Party 2. Suppose �rst, for simplicity, that machineB1 never aborts. In such a case, by de�nition of S1,freal�;B(x; y)gx;y � f(B1(view�1 (B1(x); y)) ; output�2 (B1(x); y))gx;yc� f(B1(S1(B1(x); f1(B1(x); y))) ; f2(B1(x); y))gx;y� f(C1(x; f1(C1(x); y)) ; f2(C1(x); y))gx;y� fidealf;C(x; y)gx;y

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 693Next, suppose that B1 always aborts after receiving the last message, and beforesending its last message to Party 2. In this case, we havefreal�;B(x; y)gx;y � f(B1(view�1 (B1(x); y)) ; ?)gx;yc� f(B1(S1(B1(x); f1(B1(x); y))) ; ?)gx;y� f(C1(x; f1(C1(x); y);?) ; ?)gx;y� fidealf;C(x; y)gx;yIn the general case, machine B1 may abort in some executions and not abort inothers. Whenever B1 aborts, it does so before sending its last message (possiblyjust after receiving the last message). However, both the decision of whether ornot to abort and the output at such a case are determined by B1 based on its viewof the execution so far. This view can be simulated by S1(B1(x); f1(B1(x); y)),which in turn is invoked by C1 in two stages (in Steps 1 and 3, respectively).Thus, Eq. (7.37) holds in this case too.7.4.4.3 Conclusion { Proof of Theorem 7.4.1Essentially, Theorem 7.4.1 follow by combining the following three results: (1) The-orem 7.3.14 providing canonical protocols for privately computing any function-ality, (2) the general analysis of the compiler (i.e., Corollary 7.4.26), and (3) thespecial properties of canonical protocols (i.e., Proposition 7.4.27). Speci�cally,let f be an arbitrary functionality, � be a canonical protocol for privately com-puting f (guaranteed by Theorem 7.3.14), and �0 be the protocol compiled from� by Construction 7.4.23 (using secure implementations of the functionalities inG). Now, let A be admissible for the realmalicious model (w.r.t �0), let B be thereal-model adversary (which is admissible w.r.t � in the augmented semi-honestmodel) derived by Corollary 7.4.26, and C be the ideal-model adversary (whichis admissible for the malicious model) derived by Proposition 7.4.27. Thenfreal�0;A(z)(x; y)gx;y;z c� freal�;B(z)(x; y)gx;y;zc� fidealf;C(z)(x; y)gx;y;zTheorem 7.4.1 follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

694 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.5 * Extension to the Multi-Party CaseIn this section we extend the treatment of general secure protocols from the two-party case to the multi-party case. Again, our ultimate goal is to design protocolsthat withstand any feasible adversarial behavior, and again we proceed in twosteps. First we consider a benign type of adversary, called semi-honest, andconstruct protocols that are secure with respect to such an adversary. The de�-nition of this type of adversary is very much the same as in the two-party case.However, in case of general adversary behavior, we consider two di�erent mod-els. The �rst model of malicious behavior mimics the treatment of adversariesin the two-party case; it allows the adversary to control even a majority of theparties, but does not view the (unavoidable) early abort phenomena as a viola-tion of security. In the second model of malicious behavior, we assume that theadversary can control only a strict minority of the parties. In this model, whichwould have been vacuous in the two-party case, the early abort phenomena canbe e�ectively prevented. We show how to transform protocols secure in thesemi-honest model into protocols secure in each of the two malicious-behaviormodels. As in the two-party case, this is done by forcing parties (in each of thelatter models) to behave in an e�ectively semi-honest manner.The constructions are obtained by suitable modi�cations of the constructionsused in the two-party case. In fact, the construction of multi-party protocolsfor the semi-honest model is a minor modi�cation of the construction used inthe two-party case. The same holds for the compilation of protocols for thesemi-honest model into protocols for the �rst malicious model. When compil-ing protocols for the semi-honest model into protocols for the second maliciousmodel, we will use a new primitive, called Veri�able Secret Sharing (VSS), inorder to \e�ectively prevent" minority parties from aborting the protocol prema-turely. Actually, we shall compile protocols secure in the �rst malicious modelinto protocols secure in the second malicious model.Our treatment touches upon a variety of issues that were ignored (or areinapplicable) in the two-party case. These issues include the communicationmodel (i.e., the type of communication channels), the consideration of an ex-ternal adversary, and the way the latter selects dishonest parties (or corruptsparties). In particular, in some models (i.e., postulating private channels and amajority of honest participants), it is possible to obtain secure protocols withoutrelying on any intractability assumptions: See Section 7.6.Teaching Tip: We strongly recommend to read Sections 7.2{7.4 before read-ing the current section. In many places in the current section, motivating discus-sions and technical details are omitted while relying on the fact that analogueelaboration has appeared in the treatment of the two-party case (i.e., in Sec-tions 7.2{7.4).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 6957.5.1 De�nitionsA multi-party protocol problem is cast by specifying a random process thatmaps sequences of inputs (one input per each party) to corresponding sequencesof outputs. Let m denote the number of parties. It will be convenient to thinkof m as being �xed, yet one can certainly think of it as an additional parameter.An m-ary functionality, denoted f : (f0; 1g�)m ! (f0; 1g�)m, is thus a randomprocess mapping sequences of the form x = (x1; :::; xm) into sequences of ran-dom variables, f(x) = (f1(x); :::; fm(x)). The semantics is that, for every i, theith party, initially holds an input xi, and wishes to obtain the ith element inf(x1; :::; xm), denoted fi(x1; :::; xm). For example, consider deterministic func-tionalities for computing the maximum, average or any other statistics of theindividual values held by the parties (and see more examples in Exercises 14and 15). The discussions and simplifying conventions made in Section 7.2.1 ap-ply in the current context too. Most importantly, we assume throughout thissection that all parties hold inputs of equal length; that is, jxij = jxj j.Conventions regarding the number of parties. For simplicity of exposi-tion, we assume throughout our exposition that m is �xed. From time to time,we comment on what is needed in order to derive de�nitions (and construc-tions) for the case that m is a parameter. We comment that it is natural todiscuss multi-party functionalities that are \uniform" in the sense that there ex-ist (uniform) algorithms for computing them for each value of m (and of courseeach m-sequence). One such functionality is the \universal functionality" thatis given a description of a circuit as well as a corresponding sequence of inputs.(For example, the circuit may be part of the input of each party, and in casethese circuits are not identical the value of the functionality is de�ned as a se-quence of ?'s.) Indeed, a universal functionality is natural to consider also inthe two-party case, but here (in view of the extra parameter m) its appeal isenhanced.7.5.1.1 The communication model and external adversariesIn the de�nitional treatment of two-party case, we viewed one of the communi-cating parties as an adversary and considered its e�ect on the protocol's execu-tion. This approach can be extended to the multi-party case, except that herewe may consider coalitions of dishonest parties and their e�ect on the execution.Alternatively, we may consider an (external) adversary that controls a subsetof the parties that participate in the execution. A variety of issues that ariseincludes the size of this subset, the way it is selected (by the adversary), andpossible e�ect of the adversary on the communication channels.The number of parties controlled by the adversary. In the two-partycase, we have focused on the case in which the adversary is identi�ed with oneof the participants in the execution. Clearly, the case in which the adversary

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

696 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLScontrols both participants is of no interest, but the case in which the adver-sary controls none of the participants may be of interest in case the adversarycan wire-tap the communication line (as discussed below). In the multi-partycase, we will consider adversaries that control any number of participants.54(Of course, when de�ning security following the \ideal-vs-real" paradigm, weshould insist that the corresponding ideal adversary controls the same set ofparticipants.)The selection of parties controlled by the adversary. The notion of anexternal adversary naturally leads to the issue of how this adversary selects theset of parties that it controls. The basic (and simpler) model postulates thatthis set is determined before the execution starts (and is, of course, not known tothe honest parties). This model is called non-adaptive as opposed to the adaptivemodel in which the adversary may select the set of parties that it controls adap-tively, during the execution of the protocol and depending on information it hasgathered so far. In this section we only consider the non-adaptive model, anddefer the treatment of the adaptive model to Section 7.7.1.2. We comment thatthe di�erence between the non-adaptive model and the adaptive model becomescrucial when the number of parties (i.e., m) is treated as a parameter, ratherthan being �xed.The communication channels. It is natural to assume that the externaladversary may tap all communication channels (i.e., speci�cally, the channelsbetween honest parties). In such a case, even an adversary that controls none ofthe participants is of interest, because it may potentially gain information aboutthe execution by wire-tapping. However, for sake of simplicity, we sometimesprefer to present and use de�nitions that refer to the \private channel model"(see also Section 7.6); that is, we sometimes presuppose that honest parties maycommunicate in secrecy (or, put di�erently, we sometimes assume that adver-saries do not tap communication lines between honest parties). We commentthat in the non-adaptive model, the issue of implementing the \private chan-nel model" over the \standard model" (i.e., providing secret communication) iswell understood, and can be easily decoupled from the main treatment. Specif-ically, protocols secure in the \private channel model" can be easily compiledto withstand wire-tapping adversaries (by using encryption schemes). Similarly,we assume that messages sent between honest parties arrive intact, whereas onemay want to consider adversaries that may inject messages on the communi-cation line between honest parties. Again, this can be counteracted by use ofwell-understood paradigms; in this case, the use of signature schemes.54 Indeed, the case in which the adversary controls all parties is of no interest, and is oftenignored.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 6977.5.1.2 The semi-honest modelThis model is de�ned exactly as in the two-party case (see Section 7.2.2.1).Recall that a semi-honest party is one who follows the protocol properly withthe exception that it keeps a record of all its intermediate computations. Looselyspeaking, a multi-party protocol privately computes f if whatever a set (or acoalition) of semi-honest parties can obtain after participating in the protocol,could be essentially obtained from the input and output of these very parties.Thus, the only di�erence between the current de�nition and the one used in thetwo-party case is that we consider the gain of a coalition (rather than of a singleparty) from participating in the protocol.De�nition 7.5.1 (privacy w.r.t semi-honest behavior, without wire-tapping):Let f : (f0; 1g�)m ! (f0; 1g�)m be an m-ary functionality, where fi(x1; :::; xm),denotes the ith element of f(x1; ::; xm). For I = fi1; :::; itg � [m] def= f1; :::;mg,we let fI(x1; :::; xm) denote the subsequence fi1(x1; :::; xm); :::; fit(x1; :::; xm). Let� be an m-party protocol for computing f .55 The view of the ith party duringan execution of � on x = (x1; :::; xm), denoted view�i (x), is de�ned as in De�ni-tion 7.2.1, and for I = fi1; :::; itg, we let view�I (x) def= (I;view�i1(x); :::;view�it (x)).� (deterministic case) In case f is a deterministic m-ary functionality, wesay that � privately computes f if there exists a probabilistic polynomial-time algorithm, denoted S, such that for every I � [m] it holds thatfS(I; (xi1 ; :::; xit); fI(x))gx2(f0;1g�)m c� fview�I (x)gx2(f0;1g�)m (7.38)� (general case) We say that � privately computes f if there exists a proba-bilistic polynomial-time algorithm, denoted S, such that for every I � [m]it holds that f(S(I; (xi1 ; :::; xit); fI(x)) ; f(x))gx2(f0;1g�)mc� f(view�I (x) ; output�(x))gx2(f0;1g�)m (7.39)where output�(x) denotes the output sequence of all parties during theexecution represented in view�I (x).Eq. (7.39) asserts that the view of the parties in I can be e�ciently simulatedbased solely on their inputs and outputs. Note that view�I (x) includes only thelocal views of parties in I , and does not include the messages sent between pairsof honest parties. Thus, De�nition 7.5.1 refers to the case that the semi-honestparties do not (or cannot) wire-tap the channels between honest parties (andthus is labeled \without wire-tapping"), which is equivalent to assuming theexistence of \private channels". To deal with the case of wire-tapping, one just55 As in Section 7.2, by saying that � computes (rather than privately computes) f , we meanthat the output distribution of the protocol (when played by honest or semi-honest parties)on the input sequence (x1; :::; xm) is distributed identically to f(x1; :::; xm).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

698 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSneeds to augment view�I (x) with the transcript of the messages sent between allthe pairs of honest parties. In this case, it is more natural to consider an externaladversary that obtains the views of all parties in I as well as all messages sentover all channels.De�nition 7.5.1 can be easily adapted to deal with a varying parameter m,by taking advantage of the current order of quanti�ers (i.e., \there exists analgorithm S such that for every I").56 We also note that the simulator cancertainly handle the trivial cases in which either I = [m] or I = ;. (The caseI = [m] is always trivial, whereas the case I = ; is trivial only because here weconsider the case of no wire-tapping.)As in the two-party case, De�nition 7.5.1 is equivalent to a de�nition thatcan be derived by following the \real-vs-ideal" paradigm (analogously to thetreatment in Section 7.2.2.2).7.5.1.3 The two malicious modelsWe now turn to consider arbitrary feasible deviation of parties from a speci�edmulti-party protocol. As mentioned above, one may consider two alternativemodels:1. A model in which the number of parties that deviate from the protocolis arbitrary. The treatment of this case extends the treatment given inthe two-party case. In particular, in this model one cannot prevent ma-licious parties from aborting the protocol prematurely, and the de�nitionof security has to account for this fact (if it is to have a chance of beingmet).2. A model in which the number of parties that deviate from the protocolis strictly less than half the total number of parties. The de�nitionaltreatment of this case is simpler than the treatment given in the two-party case. In particular, one may { in some sense { (e�ectively) preventmalicious parties from aborting the protocol prematurely.57 Consequently,the de�nition of security is \freed" from the need to account for earlystopping, and thus is simpler.We further assume (towards achieving a higher level of security) that maliciousparties may communicate (without being detected by the honest parties), andmay thus coordinate their malicious actions. Actually, it will be instructive tothink of all malicious parties as being controlled by one (external) adversary.Our presentation follows the ideal-vs-real emulation paradigm introduced andused in the previous sections. The di�erence between the two malicious modelsis reected in a di�erence in the corresponding ideal models, which captures the56 Note that, for a �xed m, it may make as much sense to reverse the order of quanti�ers(i.e., require that \for every I there exists an algorithm SI").57 As we shall see, the assumption that malicious parties are in minority opens the door toe�ectively preventing them from aborting the protocol immaturely. This will be achieved byletting the majority parties have (together!) enough information so to be able to emulate theminority parties in case the latter abort.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 699di�erent types of benign behaviors that a secure protocol is aimed at achieving.Another di�erence is in the number of malicious parties considered in each model.The �rst malicious model: Following the discussion in Section 7.2.3, weconclude that three things cannot be avoided in the �rst malicious model:1. Malicious parties may refuse to participate in the protocol (when the pro-tocol is �rst invoked). Actually, as explained in Section 7.2.3, this behaviormay be viewed as a special case of input-substitution (as discussed in thenext item).2. Malicious parties may substitute their local inputs (and enter the protocolwith inputs other than the ones provided to them from the outside).3. Malicious parties may abort the protocol prematurely (e.g., before sendingtheir last message).Accordingly, the ideal model is derived by a straightforward generalization ofDe�nition 7.2.4. In light of this similarity, we allow ourselves to be quite terse.To simplify the exposition, we assume that, for every I , �rst the trusted partysupplies the adversary with the I-part of the output (i.e., the value of fI), andonly next is it possibly allowed (at the adversary's discretion) to answer theother parties. Actually, as in the two-party case, the adversary has the abilityto prevent the trusted party from answering all parties only in case it controlsParty 1.58De�nition 7.5.2 (the ideal model { �rst malicious model): Let f : (f0; 1g�)m !(f0; 1g�)m be an m-ary functionality. For I = fi1; :::; itg � [m] def= f1; :::;mg, letI = [m] n I and (x1; :::; xm)I = (xi1 ; :::; xit). A pair (I; B), where I � [m]and B is a probabilistic polynomial-time algorithm, represents an adversaryin the ideal model. The joint execution of f under (I; B) in the ideal model(on input x = (x1; :::; xm) and auxiliary input z), denoted ideal(1)f;I;B(z)(x), isde�ned by uniformly selecting a random-tape r for the adversary, and lettingideal(1)f;I;B(z)(x) def= �(x; I; z; r), where �(x; I; z; r) is de�ned as follows:� In case Party 1 is honest (i.e., 1 62 I),�(x; I; z; r) def= (fI(x0) ; B(xI ; I; z; r; fI(x0)); (7.40)where x0 def= (x01; :::; x0m) such that x0i = B(xI ; I; z; r)i for i 2 I and x0i = xiotherwise.� In case Party 1 is not honest (i.e., 1 2 I), �(x; I; z; r) equals(?jIj ; B(xI ; I; z; r; fI(x0);?)) if B(xI ; I; z; r; fI(x0)) = ? (7.41)(fI(x0) ; B(x; I; z; r; fI(x0))) otherwise (7.42)58 As in the two-party case, this convention is rather arbitrary; see discussion at the end ofSection 7.2.3.1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

700 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwhere, in both cases, x0 def= (x01; :::; x0m) such that x0i = B(xI ; I; z; r)i fori 2 I and x0i = xi otherwise.In all cases the trusted party is invoked with possibly substituted inputs, denotedx0 = (x01; :::; x0m), where x0i 6= xi only if i 2 I . Eq. (7.41) represents the casewhere the trusted party is stopped right after supplying the adversary with theI-part of the output (i.e., fI(x0)). This case is allowed only when 1 2 I , andso Party 1 can always be \blamed" when this happens.59 Equations (7.40)and (7.42) represent the cases where the trusted party is invoked with possiblysubstituted inputs (as above), but is allowed to answer all parties. We stressthat either all honest parties get their output or all are noti�ed that the trustedparty was stopped by the adversary. As usual, the de�nition of security isobtained by requiring that for every feasible adversary in the real model thereexists a corresponding adversary in the ideal model that achieves the same e�ect.Speci�cally, in the real model, the adversary may tap all communication linesand determine (adaptively) all the outgoing messages of all dishonest parties.De�nition 7.5.3 (security in the �rst malicious model): Let f be as in De�-nition 7.5.2, and � be an m-party protocol for computing f .� The joint execution of � under (I; A) in the real model (on input sequencex = (x1; :::; xm) and auxiliary input z), denoted real�;I;A(z)(x), is de�nedas the output sequence resulting of the interaction between the m parties,where the messages of parties in I are computed according to A(xI ; I; z)and the messages of parties in �I def= [m] n I are computed according to�.60 Speci�cally, the messages of malicious parties (i.e., parties in I) aredetermined by the adversary A based on the initial inputs of the partiesin I, the auxiliary input z, and all messages sent so far by all parties(including messages received by the honest parties (i.e., parties in �I)).� Protocol � is said to securely compute f (in the �rst malicious model) if forevery probabilistic polynomial-time algorithm A (representing a real-modeladversary strategy) there exists a probabilistic polynomial-time algorithmB (representing an ideal-model adversary strategy) such that for everyI � [m] fideal(1)f;I;B(z)(x)gx;z c� freal�;I;A(z)(x)gx;zWhen the context is clear, we sometimes refer to � as an implementationof f .We stress that the ideal-model adversary (i.e., B) controls exactly the same setof parties (i.e., I) as the the real-model adversary (i.e., A). De�nition 7.5.3 (as59 In fact, in the protocols presented below, early abort is always due to malicious behaviorof Party 1. By De�nition 7.5.3 (below), this translates to malicious behavior of Party 1 in theideal model.60 To �t the format used in De�nition 7.5.2, the outputs of the parties (in real�;I;A(z)(x))are arranged such that the outputs of the honest parties appear on the l.h.s.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 701well as the following De�nition 7.5.4) refers to an adversary that may wire-tap allcommunication channels. This is reected in the de�nition of real�;I;A(z)(x),which allows A to determine its actions based on all messages communicated sofar. (Thus, for m = 2, De�nition 7.5.3 is stronger than De�nition 7.2.6, because(unlike the latter) the former refers also to the case I = ;, which is non-trivialbecause it refers to an adversary that may wire-tap the communication channel.)In order to derive a de�nition for the private channel model, one should modifythe de�nition of real�;I;A(z)(x) such that A's actions may depend only on themessages received by parties in I .The second malicious model: In the second model, where malicious partiesare in strict minority, the early-abort phenomena can be e�ectively prevented.Thus, in this case, there is no need to \tolerate" early-abort and consequentlyour de�nition of security requires \proper termination" of executions. This isreected in the de�nition of the ideal model, which actually becomes simpler.61De�nition 7.5.4 (security in the second malicious model, assuming honest ma-jority): Let f and � be as in De�nition 7.5.3.� The ideal-model adversary is de�ned as in De�nition 7.5.2, except that theabort case captured by Eq. (7.41) is not allowed. The corresponding jointcomputation in the ideal model, under (I; B), is denoted by ideal(2)f;I;B(z)(x).� The real-model adversary is de�ned exactly as in De�nition 7.5.3. How-ever, we will only consider the case that such adversary controls strictlyless than m=2 parties.� Protocol � is said to securely compute f (in the second malicious model)if for every probabilistic polynomial-time algorithm A (representing a real-model adversary strategy) there exists a probabilistic polynomial-time al-gorithm B (representing an ideal-model adversary strategy) such that forevery I � [m] such that jI j < m=2 it holds thatfideal(2)f;I;B(z)(x)gx;z c� freal�;I;A(z)(x)gx;zWhen the context is clear, we sometimes refer to � as an implementationof f .We stress that in De�nition 7.5.4 we consider only adversaries that control astrict minority of the parties.Discussion. The two alternative malicious models give rise to two appealingand yet fundamentally incomparable notions of security. Put in other words,there is a trade-o� between the willingness to put-up with early-abort (i.e., notconsider it a breach of security), and requiring the protocol to be robust also61 In this case, the de�nition extends the one presented in Section 7.2.3.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

702 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSagainst malicious coalitions controlling a majority of all parties. The questionof which notion of security is preferable depends on the application (or on thesetting). In some settings one may prefer to be protected from malicious ma-jorities, while giving-up the guarantee that parties cannot abort the protocolprematurely (while being detected doing so). On the other hand, in settings inwhich a strict majority of the parties can be trusted to follow the protocol, onemay obtain the bene�t of e�ectively preventing parties to abort the protocolprematurely. We stress that all de�nitions are easily adapted to deal with avarying parameter m.7.5.2 Security in the Semi-Honest ModelOur construction of private multi-party protocols (i.e., secure versus semi-honestbehavior) for any given multi-argument functionality follows the presentation ofthe two-party case. For simplicity, we think of the number of parties m as being�xed. The reader may verify that the dependence of our constructions on m isat most polynomial.Our protocol construction adapts the one used in the two-party case (seeSection 7.3). That is, we consider a GF(2) circuit for evaluating the (deter-ministic) m-ary functionality f , and start by letting each party share its inputbits with all other parties such that the sum of all shares equals the input bit.Next, scanning the circuit from its input wires to its output wires, we propagateshares through the circuit gates, by using a suitable private computation. Asin the two-party case, we focus on the propagation of shares through multipli-cation gates. That is, for Party i holding bits ai and bi, we wish to conducta private computation such that this party ends-up with a random bit ci and(Pmi=1 ai) � (Pmi=1 bi) =Pmi=1 ci holds. More precisely, we are interested in pri-vately computing the following randomized m-ary functionality((a1; b1); :::; (am; bm)) 7! (c1; :::; cm) uniformly in f0; 1gm (7.43)subject to mXi=1 ci = mXi=1 ai � mXi=1 bi : (7.44)Thus, all that we need to do on top of Section 7.3 is to provide a private m-party computation of the above functionality. This is done by privately reduc-ing, for arbitrary m, the computation of Eq. (7.43){(7.44) to the computationof the same functionality for the case case m = 2, which in turn coincides withEq. (7.16){(7.17). But �rst we need to de�ne an appropriate notion of a reduc-tion. Indeed, the new notion of a reduction is merely a generalization of thenotion presented in Section 7.3.1.7.5.2.1 A composition theoremWe wish to generalize the notion of privacy reduction presented in Section 7.3.1(in the context of two-party (semi-honest) computation). Here the reductionis an m-party protocol that may invoke a k-ary functionality in its oracle calls,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 703where k � m. In case k < m, an oracle call needs to specify also the set of partieswho are to provide the corresponding k inputs. Actually, the oracle call needs tospecify the order of these parties (i.e., which party should supply which input,etc.). (We note that the ordering of parties needs to be speci�ed also in casek = m, and indeed this was done implicitly in Section 7.3.1, where the conventionwas that the party who makes the oracle request is the one supplying the �rstinput. In case k > 2 such a convention does not determine the correspondencebetween parties and roles, and thus below we use an explicit mechanism forde�ning the correspondence.)De�nition 7.5.5 (m-party protocols with k-ary oracle access): As in the two-party case, a oracle-aided protocol is an ordinary protocol augmented by a pair oforacle-tapes per each party, and oracle-call steps de�ned as follows. Each of them parties may send a special oracle request message, to all other parties. Theoracle request message contains a sequence of k distinct parties, called the requestsequence, that are to supply queries in the current oracle call. In response, eachparty speci�ed in the request sequence writes a string, called its query, on its ownwrite-only oracle-tape, and responds to the requesting party with an oracle callmessage. At this point the oracle is invoked and the result is that a string, notnecessarily the same, is written by the oracle on the read-only oracle-tape of eachof the k speci�ed parties. This k-sequence of strings is called the oracle answer.One may assume, without loss of generality, that the party who invokes theoracle is the one who plays the role of the �rst party in the reduction (i.e., the�rst element in the request sequence is always the identity of the party thatrequests the current oracle call).De�nition 7.5.6 (multi-party privacy reductions):� Anm-party oracle-aided protocol is said to be using the k-ary oracle-functionalityf if the oracle answers are according to f . That is, when the oracle is in-voked with request sequence (i1; :::; ik), and the query-sequence q1; :::; qk issupplied by parties i1; :::; ik, the answer-sequence is distributed as f(q1; :::; qk).Speci�cally, party ij in the m-party protocol (the one which supplied qj), isthe one which obtains the answer part fj(q1; :::; qk). As in De�nition 7.3.2,we require that the length of each query be polynomially related to the lengthof the initial input.� An m-party oracle-aided protocol using the k-ary oracle-functionality f issaid to privately compute g if there exists a polynomial-time algorithm,denoted S, satisfying Eq. (7.39), where the corresponding views are de�nedin the natural manner.� An m-party oracle-aided protocol is said to privately reduce the m-ary func-tionality g to the k-ary functionality f , if it privately computes g whenusing the oracle-functionality f . In such a case we say that g is privatelyreducible to f ,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

704 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSWe are now ready to generalize Theorem 7.3.3:Theorem 7.5.7 (Composition Theorem for the multi-party semi-honest model):Suppose that the m-ary functionality g is privately reducible to the k-ary func-tionality f , and that there exists a k-party protocol for privately computing f .Then there exists an m-party protocol for privately computing g.As in the two-party case, the Composition Theorem can be generalized to yieldtransitivity of privacy-reductions; that is, if g is privately reducible to f and fis privately reducible to e then g is privately reducible to e.Proof Sketch: The construction supporting the theorem is identical to the oneused in the proof of Theorem 7.3.3: Let �gjf be a oracle-aided protocol thatprivately reduces g to f , and let �f be a protocol that privately computes f .Then, a protocol � for computing g is derived by starting with �gjf , and replac-ing each invocation of the oracle by an execution of �f . Clearly, � computes g.We need to show that it privately computes g (as per De�nition 7.5.1).We consider an arbitrary (non-trivial) set I � [m] of semi-honest parties inthe execution of �, where the trivial cases (i.e., I = ; and I = [m]) are treated(di�erently) in a straightforward manner. Note that, for k < m (unlike thesituation in the two-party case), the set I may induce di�erent sets of semi-honest parties in the di�erent executions of �f (replacing di�erent invocationsof the oracle). Still our \uniform" de�nition of simulation (i.e., uniform over allpossible sets of semi-honest parties) keeps us away from trouble. Speci�cally,let Sgjf and Sf be the simulators guaranteed for �gjf and �f , respectively. Weconstruct a simulation S, for �, in the natural manner. On input (I; xI ; fI(x)),we �rst run Sgjf (I; xI ; fI(x)), and obtain the view of the semi-honest coalitionI 6= ; in �gjf . This view includes the sequence of all oracle-call requests madeduring the execution, which in turn consists of the sequence of parties that supplyquery-parts in each such call. The view also contains the query-parts suppliedby the parties in I as well as the corresponding answer-parts. For each suchoracle-call, we denote by J the subset of I that supplied query-parts in this call,and invoke Sf providing it with the subset J as well as with the correspondingJ-parts of the queries and answers. Thus, we �ll-up the view of I in the currentexecution of �f . (Recall that Sf can also handle the trivial cases in which eitherjJ j = k or jJ j = 0.)It is left to show that S indeed generates a distribution indistinguishablefrom the view of semi-honest parties in actual executions of �. As in the proofof Theorem 7.3.3, this is done by introducing a hybrid distribution, denoted H .This hybrid distribution represents the view of the parties in I (and output of allparties) in an execution of �gjf that is augmented by corresponding invocationsof Sf . In other words, H represents the execution of �, with the exception thatthe invocations of �f are replaced by simulated transcripts. Using the guaranteesregarding Sf (resp., Sgjf), we show that the distributions corresponding to Hand � (resp., H and S) are computationally indistinguishable. The theoremfollows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 7057.5.2.2 Privately computing Pi ci = (Pi ai) � (Pi bi)We now turn to the m-ary functionality de�ned in Eq. (7.43){(7.44). Recall thatthe arithmetic is that of GF(2), and so �1 = +1, etc. The key observation isthat mXi=1 ai! � mXi=1 bi! = mXi=1 aibi + X1�i<j�m (aibj + ajbi) (7.45)= (1� (m� 1)) � mXi=1 aibi + X1�i<j�m(ai + aj) � (bi + bj)= m � mXi=1 aibi + X1�i<j�m(ai + aj) � (bi + bj) (7.46)where the last equality relies on the speci�cs of GF(2). Now, looking at Eq. (7.46),we observe that each party, i, can compute (by itself) the term m �aibi, whereaseach 2-subset, fi; jg, can privately compute shares to the term (ai+aj) �(bi+bj),by invoking the two-party functionality of Eq. (7.16){(7.17). This leads to thefollowing construction.Construction 7.5.8 (privately reducing them-party computation of Eq. (7.43){(7.44) to the two-party computation of Eq. (7.16){(7.17)):Inputs: Party i holds (ai; bi) 2 f0; 1g� f0; 1g, for i = 1; :::;m.Step 1 { Reduction: Each pair of parties, (i; j), where i < j, invokes the 2-aryfunctionality of Eq. (7.16){(7.17). Party i provides the input pair, (ai; bi),whereas Party j provides (aj ; bj). Let us denote the oracle response toParty i by cfi;jgi , and the response to Party j by cfi;jgj .Step 2: Party i sets ci = maibi +Pj 6=i cfi;jgi .Indeed, maibi = 0 if m is even and maibi = aibi otherwise.Outputs: Party i outputs ci.We �rst observe that the above reduction is valid; that is, the output of all partiesindeed sum-up to what they should. It is also easy to see that the reduction isprivate. That is,Proposition 7.5.9 Construction 7.5.8 privately reduces the computation of them-ary functionality given by Eq. (7.43){(7.44) to the computation of the 2-aryfunctionality given by Eq. (7.16){(7.17).Proof Sketch: We construct a simulator, denoted S, for the view of partiesin the oracle-aided protocol, denoted �, of Construction 7.3.7. Given a set ofsemi-honest parties, I = fi1; :::; itg (with t < m), and a sequence of inputs(ai1 ; bi1); ::::; (ait ; bit) and outputs ci1 ; :::; cit , the simulator proceeds as follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

706 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS1. For each pair, (i; j) 2 I � I where i < j, the simulator uniformly selectscfi;jgi 2 f0; 1g and sets cfi;jgj = cfi;jgi + (ai + aj) � (bi + bj).2. Let �I def= [m] n I , and let ` be the largest element in �I . (Such an ` 2 [m]exists since jI j < m).(a) For each i 2 I and each j 2 �I n f`g, the simulator uniformly selectscfi;jgi 2 f0; 1g.(b) For each i 2 I , the simulator sets cfi;`gi = ci+maibi+Pj 62fi;`g cfi;jgi ,where the latter cfi;jgi 's are as generated in Steps 1 and 2a.3. The simulator outputs all cfi;jgi 's generated above. That is, it outputs thesequence of cfi;jgi 's corresponding to all i 2 I and j 2 [m] n fig.We claim that the output of the simulator is distributed identically to the viewof the parties in I during the execution of the oracle-aided protocol. Further-more, we claim that for every such I , every x = ((a1; b1); :::; (am; bm)) and everypossible outcome (c1; :::; cm) of the functionality f of Eq. (7.43){(7.44), it holdsthat the conditional distribution of S(I; xI ; fI(x)) is distributed identically tothe conditional distribution of view�I (x).To prove the above claim, we �rst note that f(x) is uniformly distributedover the m-bit long sequences that sum-up to c def= (Pi ai) � (Pi bi). Thesame holds also for the outputs of protocol �, because the sequence of theoutputs of Parties 1; :::;m � 1 is uniformly distributed over f0; 1gm�1 (duethe contribution of cfi;mgi to the output of Party i) whereas the sum of allm outputs equals c. Turning to the conditional distributions (i.e., condition-ing on f(x) = (c1; :::; cm) = output�(x)), we show that the sequence ofcfi;jgi 's (for i 2 I) is distributed identically in both distributions (i.e., in theexecution view and in the simulation). Speci�cally, in both cases, the se-quence (cfi;jgi)i2I;j2[m] is uniformly distributed among the sequences satisfy-ing cfi;jgi + cfi;jgj = (ai + aj) � (bi + bj) (for each i 2 I and j 6= i) andPj 6=i cfi;jgi = ci +maibi (for each i 2 I).Details: Consider the distribution of the sub-sequence (cfi;jgi)i2I;j2[m]nf`g,where ` 2 �I is as above. In both cases, the conditioning (on f(x) =(c1; :::; cm) = output�(x)) does not a�ect this distribution, because thecfi;`gi 's are missing. Thus, in both cases, this sub-sequence is uniformlydistributed among the sequences satisfying cfi;jgi +cfi;jgj = (ai+aj)�(bi+bj)(for each i 6= j 2 I). Furthermore, in both cases, the cfi;`gi 's are set suchthatPj 6=i cfi;jgi = ci +maibi holds.The proposition follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 7077.5.2.3 The multi-party circuit evaluation protocolFor sake of completeness, we explicitly present the m-party analogue of theprotocol of Section 7.3.4. Speci�cally, we show that the computation of any de-terministic functionality, which is expressed by an arithmetic circuit over GF(2),is privately reducible to the functionality of Eq. (7.43){(7.44).Our reduction follows the overview presented in the beginning of this section.In particular, the sharing of a bit-value v between m parties means a uniformlyselected m-sequence of bits (v1; :::; vm) satisfying v = Pmi=1 vi, where the ithparty holds vi. Our aim is to propagate, via private computation, shares of theinput wires of the circuit to shares of all wires of the circuit, so that �nally weobtain shares of the output wires of the circuit.We will consider an enumeration of all wires in the circuit. The input wiresof the circuit, n per each party, will be numbered 1; 2::::;m � n such that, forj = 1; :::; n, the jth input of Party i corresponds to the (i � 1) � n + jth wire.The wires will be numbered so that the output wires of each gate have a largernumbering than its input wires. The output-wires of the circuit are the last ones.For sake of simplicity we assume that each party obtains n output bits, and thatthe jth output bit of the ith party corresponds to wire N � (m+ 1� i) � n+ j,where N denotes the size of the circuit.Construction 7.5.10 (privately reducing any deterministic m-ary functional-ity to the functionality of Eq. (7.43){(7.44), for any m � 2): For simplicity, weassume that the circuit is either �xed or can be determined in poly(n+m)-timeas a function of n and m, where n denotes the length of the input to each party.Inputs: Party i holds the bit string xi = x1i � � �xni 2 f0; 1gn, for i = 1; :::;m.Step 1 { Sharing the inputs: Each party splits and shares each of its input bitswith all other parties. That is, for every i = 1; :::;m and j = 1; :::; n,and every k 6= i, Party i uniformly selects a bit r(i�1)n+jk and sends it toParty k as the party's share of input wire (i � 1) � n + j. Party i sets itsown share of the (i� 1) � n+ jth input wire to xji +Pk 6=i r(i�1)n+jk .Step 2 { Circuit Emulation: Proceeding by the order of wires, the parties usetheir shares of the two input wires to a gate in order to privately com-pute shares for the output wire of the gate. Suppose that the parties holdshares to the two input wires of some gate; that is, for i = 1; :::;m, Party iholds the shares ai; bi, where a1; :::; am are the shares of the �rst wire andb1; :::; bm are the shares of the second wire. We consider two cases.Emulation of an addition gate: Each party, i, just sets its share of the out-put wire of the gate to be ai + bi.Emulation of a multiplication gate: Shares of the output wire of the gateare obtained by invoking the oracle for the functionality of Eq. (7.43){(7.44), where Party i supplies the input (query-part) (ai; bi). When

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

708 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSthe oracle responses, each party sets its share of the output wire ofthe gate to equal its part of the oracle answer.Step 3 { Recovering the output bits: Once the shares of the circuit-output wiresare computed, each party sends its share of each such wire to the partywith which the wire is associated. That is, for i = 1; :::;m and j = 1; :::; n,each party sends its share of wire N � (m+1� i) � n+ j to Party i. Eachparty recovers the corresponding output bits by adding-up the correspondingm shares; that is, it adds the share it had obtained in Step 2 to the m� 1shares it has obtained in the current step.Outputs: Each party locally outputs the bits recovered in Step 3.As in the two-party case, one can easily verify that the output of the protocolis indeed correct. Speci�cally, by using induction on the wires of the circuits,one can show that the shares of each wire sum-up to the correct value of thewire. Indeed, for m = 2, Construction 7.5.10 coincides with Construction 7.3.9.The privacy of Construction 7.5.10 is also shown by extending the analysis ofthe two-party case; that is, analogously to Proposition 7.3.10, one can showthat Construction 7.5.10 privately reduces the computation of a circuit to themultiplication-gate emulation.Proposition 7.5.11 Construction 7.5.10 privately reduces the evaluation ofarithmetic circuits over GF(2), representing an m-ary deterministic function-ality, to the functionality of Eq. (7.43){(7.44).Proof Sketch: Just follow the proof of Proposition 7.3.10, treating the partiesin I analogously to the way that Party 1 is treated there. In treating the outputwires of parties in I (i.e., Step 3 in the simulation), note that the shares ofparties in I and the known output value uniquely determines the shares receivedin Step 3 of the protocol only if jI j = m � 1 (as was the case in the proof ofProposition 7.3.10). Otherwise (i.e., for jI j < m� 1), the shares sent (in Step 3of the protocol) by parties in �I should be selected uniformly among all sequencesthat (together with the shares of parties in I) add-up to the given output value.7.5.2.4 Conclusion: Private computation of any functionalityAs in Section 7.3, we may privately reduce the computation of a general (ran-domized) m-ary functionality, g, to the computation of the deterministic m-aryfunctionality, f , de�ned byf((x1; r1); :::; (xm; rm)) def= g(�mi=1ri; (x1; :::; xm)) (7.47)where g(r; x) denote the value of g(x) when using coin tosses r 2 f0; 1gpoly(jxj)(i.e., g(x) is the randomized process consisting of uniformly selecting r 2 f0; 1gpoly(jxj),and deterministically computing g(r; x)). Combining this fact with Proposi-tions 7.5.11, 7.5.9 and 7.3.8 (and using the transitivity of privacy-reductions),we obtain:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 709Theorem 7.5.12 Any functionality is privately reducible to OT41.Combining Theorem 7.5.12 and Proposition 7.3.6 with the Composition Theorem(Theorem 7.5.7), we obtain that if enhanced trapdoor permutation exist thenany m-ary functionality is privately computable. As in the two-party case, wewish to highlight a useful property of the protocols underlying the latter fact.Indeed, we refer to a notion of canonical m-party computation that extendsDe�nition 7.3.13.De�nition 7.5.13 (canonical semi-honest multi-party protocols): A protocol �for privately computing the m-ary functionality f is called canonical if it proceedsby executing the following two stages.Stage 1: The parties privately compute the functionality x 7! ((r11 ; :::; r1m); :::; (rm1 ; :::; rmm)),where the rij 's are uniformly distributed among all possibilities that satisfy(�mi=1ri1; :::;�mi=1rim) = f(x).Stage 2: For i = 2; :::;m and j 2 [m] n fig, Party i sends rij to Party j. Next,Party 1 sends r1j to Party j, for j = 2:::;m. Finally, each party computesits own output; that is, for j = 1:::;m, Party j outputs �mi=1rij .Indeed, the protocols underlying the proof of Theorem 7.5.12 are essentiallycanonical.62 Hence,Theorem 7.5.14 Suppose that there exist collections of enhanced trapdoor per-mutations. Then any functionality can be privately computable by a canonicalprotocol.We comment that the said protocols happen to maintain their security evenif the adversary can wire-tap all communication lines. This follows from thefact that privacy w.r.t wire-tapping adversaries happens to hold for all privacyreductions presented in the current section as well as for the protocols presentedin Section 7.3.7.5.3 The Malicious Models { Overview and PreliminariesOur aim is to use Theorem 7.5.14 in order to establish the main result of thissection; that is,Theorem 7.5.15 (main result for the multi-party case): Suppose that there ex-ist collections of enhanced trapdoor permutations. Then any m-ary functionalitycan be securely computable in each of the two malicious models, provided that apublic-key infrastructure exists in the network.6362 This assertion depends on the exact implementation of Step 3 of Construction 7.5.10, andholds provided that Party 1 is the last party to send its shares to all other parties.63 That is, we assume that each party has generated a pair of keys for a signature scheme,and has publicized its veri�cation-key (so that it is known to all other parties). This set-upassumption can be avoided if the network is augmented with a broadcast channel.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

710 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSThe theorem will be established in two steps. First, we compile any protocolfor the semi-honest model into an \equivalent" protocol for the �rst maliciousmodel. This compiler is very similar to the one used in the two-party case.Next, we compile any protocol for the �rst malicious model into an \equivalent"protocol for the second malicious model. The heart of the second compiler is aprimitive, which is alien to the two-party case, called Veri�able Secret Sharing(VSS). For simplicity, we again think of the number of parties m as being �xed.The reader may again verify that the dependence of our constructions on m isat most polynomial.To simplify the exposition of the multi-party compilers, we describe them asproducing protocols for a communication model consisting of a single broadcastchannel (and no point-to-point links). In this model, in each communicationround, only one (predetermined) party may send a message and this messagearrives to all parties. We stress that only this predetermined party may send amessage in the said round (i.e., the message is \authenticated" in the sense thateach other party can verify that indeed the message was sent by the designatedsender). Such a broadcast channel can be implemented via an (authenticated)Byzantine Agreement protocol, thus providing an emulation of the broadcastmodel on the standard point-to-point model (in which a broadcast channel doesnot exist).Recall that our goal is to transform protocols that are secure in the semi-honest point-to-point model into protocols that are secure in the two maliciousbroadcast models. Starting with (semi-honestly secure) protocols that operatesin the point-to-point communication model, we �rst derive equivalent proto-cols for the broadcast-channel model, and only next we apply the two compil-ers, where each compiler takes and produces protocols in the broadcast-channelmodel (which are secure with respect to a corresponding type of adversaries).Thus, the full sequence of transformations establishing Theorem 7.5.15 (basedon Theorem 7.5.14) is as follows:� We �rst use the pre-compiler (of Section 7.5.3.1) to transform a protocol �0that privately computes a functionality f in the (private channel) point-to-point model into a protocol �00 that privately computes f in the broadcastmodel (where no private point-to-point channels exist).Note that, since we refer to semi-honest behavior, we do not gain by havinga broadcast channel and we may only lose by the elimination of the privatepoint-to-point channels (because this allows the adversary to obtain allmessages sent). However, the protocols presented in Section 7.5.2 happento be secure in the semi-honest broadcast model,64 and so this pre-compileris actually not needed (provided we start with these speci�c protocolsrather than with arbitrary semi-honestly secure protocols).64 As noted at the very end of Section 7.5.2, these protocols happen to be secure also againstsemi-honest adversaries that do wire-tape all communication channels. These protocols canbe trivially converted to work in the broadcast model by letting the honest parties ignorebroadcast messages that are not intended for them. Indeed, in the resulting protocol, theadversary receives all messages (including those intended for other parties), but it could alsoobtain these messages in the original protocol by wire-tapping all point-to-point channels.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 711� Using the �rst compiler (of Section 7.5.4), we transform �00 (which issecure in the semi-honest model) into a protocol �01 that is secure in the�rst malicious model.We stress that both �00 and �01 operate and are evaluated for security in acommunication model consisting of a single broadcast channel. The sameholds also for �02 mentioned next.� Using the second compiler (of Section 7.5.5) to transform �01 (which issecure in the �rst malicious model) into a protocol �02 that is secure in thesecond malicious model.� Finally, we use the post-compiler (of Section 7.5.3.2) to transform each ofthe protocols �01 and �02, which are secure in the �rst and second maliciousmodels when communication is via a broadcast channel, into correspondingprotocols, �1 and �2, for the standard point-to-point model. That is, �1(resp., �2) securely computes f in the �rst (resp., second) malicious modelin which communication is via standard point-to-point channels.We stress that security holds even if the adversary is allowed to wire-tapthe (point-to-point) communication lines between honest parties.We start by discussing the security de�nitions for the broadcast communicationmodel, and presenting the pre-compiler and the post-compiler mentioned above.Once this is done, we turn to the real core of this section: the two compilers(which are applied to protocols that operate in the broadcast model).De�nitions. Indeed, security in the broadcast model was not de�ned so far.However, the three relevant de�nitions for the broadcast communication modelare easily derived from the corresponding de�nitions given in Section 7.5.1, wherea point-to-point communication model was used. Speci�cally, in de�ning secu-rity in the semi-honest model one merely includes the entire transcript of thecommunication over the (single) broadcast channel in each party's view. Simi-larly, when de�ning security in the two malicious models one merely notes thatthe \real execution model" (i.e., real�;I;A) changes (since the protocol is nowexecuted over a di�erent communication media), whereas the \ideal model" (i.e.,ideal(1)f;I;B or ideal(2)f;I;B) remains intact.7.5.3.1 Precompiler (emulating private channels)It is easy to (securely) emulate a set of (private) point-to-point communicationchannels over a (single) broadcast channel. All that one needs to do is use asecure public-key encryption scheme. Speci�cally, a protocol � that operates inthe (private) point-to-point communication model is emulated as follows. First,each party randomly generates a pair of encryption/decryption keys, posts theencryption-key on the broadcast channel, and keeps the decryption-key secret.Next, any party instructed (by �) to send a message, msg, to Party i, encrypts

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

712 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSmsg using the encryption-key posted by Party i, and places the resulting ci-phertext on the broadcast channel (indicating that it is intended for Party i).Party i recovers msg by using its decryption-key, and proceeds as directed by�. Denote the resulting protocol by �0. Below, we merely consider the e�ect ofthis transformation in the semi-honest model.Proposition 7.5.16 (pre-compiler): Suppose that there exist collections of en-hanced trapdoor permutations. Then any m-ary functionality is privately com-putable in the broadcast communication model. Furthermore, the protocol iscanonical.Proof Sketch: Let f be an m-ary functionality, and � be a protocol (guar-anteed by Theorem 7.5.14) for privately computing f in the (private channel)point-to-point communication model. Given a trapdoor permutation, we con-struct a secure public-key encryption scheme and use it to transform � into �0as described above.To simulate the view of parties in an execution of �0 (taking place in thebroadcast communication model), we �rst simulate their view in an execution of� (taking place in the point-to-point communication model). We then encrypteach message sent by a party that belongs to the semi-honest coalition, as thiswould be done in an execution of �0. Note that we know both the messageand the corresponding encryption-key. We do the same for messages received bysemi-honest parties. All that remain is to deal with messages, which we do notknow, sent between two honest parties. Here we merely place an encryption ofan arbitrary message. This concludes the description of the \broadcast-model"simulator.The analysis of the latter simulator combines the guarantee given for the\point-to-point simulator" and the guarantee that the encryption scheme is se-cure. That is, ability to distinguish the output of the \broadcast-model" simu-lator from the execution view (in the broadcast model) yields either (1) abilityto distinguish the output of the \point-to-point" simulator from the executionview (in the point-to-point model) or (2) ability to distinguish encryptions underthe above public-key encryption scheme. In both cases we reach contradictionto our hypothesis.7.5.3.2 Postcompiler (emulating a broadcast channel)Here we go the other way around (i.e., from the broadcast model to the point-to-point model). We are given a protocol that securely computes (in one of thetwo malicious models) some functionality, where the protocol uses a broadcastchannel. We wish to convert this protocol into an equivalent one that worksin a point-to-point communication model. (Actually, we do not go all the wayback, because we do not assume these point-to-point lines to provide privatecommunication.) Thus, all we need to do is emulate a broadcast channel overa point-to-point network and do so in the presence of malicious parties, whichreduces to solving the celebrated Byzantine Agreement problem. However, we

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 713have signature schemes at our disposal and so we merely need to solve the mucheasier problem known as authenticated Byzantine Agreement. For sake of self-containment we de�ne the problem and present a solution.Authenticated Byzantine Agreement: We presuppose a synchronous point-to-point model of communication and a signature scheme infrastructure. Thatis, each party knows the veri�cation-key of all other parties. Party 1 has aninput bit, denoted �, and its objective is to let all honest parties agree on thevalue of this bit. In case Party 1 is honest, the other parties must agree on itsactual input, but otherwise they may agree on any value (as long as they agree).Construction 7.5.17 (Authenticated Byzantine Agreement): Let m denotethe number of parties. We assume that the signature scheme in use has sig-nature of length that depends only on the security parameter, and not on thelength of the message to be signed.65Phase 1: Party 1 signs its input and sends the resulting input-signature pair toall parties. Party 1 may terminate at this point.De�nition: A message is called (v; i)-authentic if it has the form (v; sp1 ; :::; spi),where p1 = 1, all pj's are distinct, and for every j = 1; :::; i, the string spjis accepted as a signature to (v; sp1 ; :::; spj�1) relative to the veri�cationkey of party pj .Observe that when Party 1 follows the protocol with input v, at Phase 1it sends a (v; 1)-authentic message to each party. For every i � 2, if(v; sp1 ; :::; spi) is (v; i)-authentic then (v; sp1 ; :::; spi�1) is (v; i�1)-authentic.Phase i = 2; :::;m: Each honest party (other than Party 1) inspects the messagesit has received at Phase i�1, and forwards signed versions of the (�; i�1)-authentic messages that it has received. Speci�cally, for every v 2 f0; 1g,if Party j has received a (v; i� 1)-authentic message (v; sp1 ; :::; spi�1) suchthat all pk's are di�erent from j then it appends its signature to the mes-sage, and sends the resulting (v; i)-authentic message to all parties.We stress that, for each value of v, Party j sends at most one (v; i)-authentic message to all parties. Actually, it may refrain from sending(v; i)-authentic messages if it has already sent (v; i0)-authentic messagesfor some i0 < i.Termination: Each honest party (other than Party 1) evaluates the situation asfollows:65 Such a signature scheme can be constructed given any one-way function. In particular,one may use Construction 6.4.30. Maintaining short signatures is important in this application,because we are going to iteratively sign messages consisting of (the concatenation of an originalmessage and) prior signatures.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

714 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS1. If, for some i0; i1 2 [m] (which are not necessarily di�erent), it hasreceived both a (0; i0)-authentic message and a (1; i1)-authentic mes-sage then it decides that Party 1 is malicious, and outputs an errorsymbol, say ?.2. If, for a single v 2 f0; 1g and some i, it has received a (v; i)-authenticmessage then it outputs the value v.3. If it has never received a (v; i)-authentic message, for any v 2 f0; 1gand i, then it decides that Party 1 is malicious and outputs an errorsymbol, say ?.We comment that in the Distributed Computing literature, an alternativepresentation is preferred in which if a party detects cheating by Party 1(i.e., in Cases 1 and 3) then the party outputs a default value, say 0,rather than the error symbol ?.The protocol can be easily adapted to handle non-binary input values. For sakeof e�ciency, one may instruct honest parties to forward at most two authenticmessages that refer to di�erent values (because this su�ces to establish thatParty 1 is malicious).Proposition 7.5.18 Assuming that the signature scheme in use is unforgeable,Construction 7.5.17 satis�es the following two conditions:1. It is infeasible to make any two honest parties output di�erent values.2. If Party 1 is honest then it is infeasible to make any honest party outputa value di�erent from the input of Party 1.The claim holds regardless of the number of dishonest parties and even if dis-honest parties abort the execution.In other words, Proposition 7.5.18 asserts that Construction 7.5.17 is essen-tially a secure implementation of the (\broadcast") functionality (v; �; :::; �) 7!(v; v; :::; v). In particular, the case in which the honest parties output ? canbe accounted by the abort of an ideal-model adversary playing Party 1. Wenote that security as used here is incomparable to security in either of the twomalicious models. On one hand, we do not provide security with respect to anexternal adversary that only taps the communication lines while not controllingany of the parties. That is, we do not provide secrecy with respect to an ex-ternal adversary, and indeed this feature is not required by the post-compiler(presented below). On the other hand, we do provide security in the (stronger)sense of the second malicious model but do so without limiting the number ofdishonest parties. That is, for any number of dishonest parties, the protocole�ectively prevents dishonest parties from aborting (because abort is treated assending some illegal message). In particular, the case in which Party 1 does noteven enter the execution is treated as the case in which it sent illegal messages.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 715Proof Sketch: Fixing any j and v, suppose that in Phase i�1, Party j receives a(v; i� 1)-authentic message, and assume that i is the smallest integer for whichthis happens. For this event to happen it must be that i � m, because themessage must contain i� 1 signatures from di�erent parties (other than Party jitself).66 In such a case, if Party j is honest then it will send an authentic (v; i)-message in Phase i (i � m), and so all parties will receive an authentic (v; i)-message in Phase i. Thus, for every v, if an honest party see a (v; �)-authenticmessage then so do all other honest parties, and Part 1 follows. Part 2 follows byobserving that if Party 1 is honest and has input v then all honest parties see a(v; 1)-authentic message. Furthermore, none can see a (v0; i)-authentic message,for v0 6= v and any i.Proposition 7.5.19 (post-compiler): Suppose that one-way functions exist. Thenany m-ary functionality that is securely computable in the �rst (resp., second)malicious broadcast model is also securely computable in the �rst (resp., second)malicious point-to-point model, provided that a public-key infrastructure existsin the network.Proof Sketch: The idea is to replace any broadcast message sent in the originalprotocol by an execution of Authenticated Byzantine Agreement (AuthBA).This idea needs to be carefully implemented because it is not clear that thesecurity of AuthBA is preserved under multiple executions, and thus applyingProposition 7.5.18 per se will not do. The problem is that the adversary mayuse authenticated messages sent in one execution of the protocol in order tofool some parties in a di�erent execution. This attack can be avoided in thecurrent context, by using identi�ers (which can be assigned consistently by thehigher-level protocol) for each of the executions of the AuthBA protocol. Thatis, authentic messages will be required to bear the distinct identi�er of thecorresponding AuthBA execution (and all signatures will be applied to thatidenti�er as well). Thus, authentic messages of one AuthBA execution willnot be authentic in any other AuthBA execution. It follows that the proof ofProposition 7.5.18 can be extended to our context, where sequential executionsof AuthBA (with externally-assigned distinct identi�ers) take place.The proof of security transforms any real-model adversary for the point-to-point protocol to a real-model adversary for the broadcast-channel protocol. Inparticular, the latter determines the messages posted on the broadcast channelexactly as an honest party determines the values delivered by the various exe-cutions of AuthBA. In the transformation we assume that each instance of theAuthBA sub-protocol satis�es the conditions stated in Proposition 7.5.18 (i.e.,it delivers the same value to all honest parties and this value equals the oneentered by the honest sender). In case the assumption does not hold, we derivea forger for the underlying signature scheme.66 Note that the said message cannot contain a signature of Party j due to the minimalityof i: If the (v; i � 1)-authentic message had contained a signature of Party j then, for somei0 < i, Party j would have received a (v; i0 � 1)-authentic message in Phase i0 � 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

716 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.5.4 The �rst compiler { Forcing Semi-Honest BehaviorWe follow the basic structure of the compiler presented in Section 7.4 for the two-party case. Adapting that compiler to the multi-party setting merely requiresgeneralizing the implementation of each of the three phases (of the compiledtwo-party protocols). Following is a high-level description of the multi-party pro-tocols generated by the corresponding compiler. Recall that all communication,both in the input protocol as well as in the one resulting from the compilation,is conducted merely by posting messages on a single broadcast channel.Input-commitment phase: Each of the parties commits to its input bits.This will be done using a multi-party version of the input-commitmentfunctionality of Eq. (7.35).Intuitively, malicious parties may (abort or) substitute their inputs duringthis phase, but they may do so depending only on the value of the inputsheld by malicious parties.Coin-generation phase: The parties generate random-tapes for each of theparties. These random-tapes are intended to serve as the coins of thecorresponding parties in their emulation of the semi-honest protocol. Eachparty obtains the random-tape to be held by it, whereas the other partiesobtain commitments to this value. This will be done using a multi-partyversion of the augmented coin-tossing functionality of Eq. (7.34).Intuitively, malicious parties may abort during this phase, but otherwisethey end-up with a uniformly distributed random-tape.Protocol emulation phase: The parties emulate the execution of the semi-honest protocol with respect to the inputs committed in the �rst phase andthe random-tapes selected in the second phase. This will be done usinga multi-party version of the authenticated-computation functionality ofEq. (7.32). The fact that the original protocol is executed over a broadcastchannel is used here.Intuitively, malicious parties may abort during this phase, but otherwisethey end-up sending messages as directed by the semi-honest protocol.In order to implement the above phases, we de�ne natural generalizations ofthe input-commitment, coin-tossing, and authenticated-computation function-alities (of the two-party case), and present secure implementations of them inthe current (�rst malicious) multi-party model. The original de�nitions andconstructions are obtained by setting m = 2. We start again by de�ning an ade-quate notion of reducibility, which allows a modular presentation of the compiledprotocols.7.5.4.1 Security reductions and a composition theoremAnalogously to Section 7.5.2.1, we now de�ne what we mean by saying thatone functionality is securely reducible to another functionality. We use the same

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 717de�nition of an oracle-aided protocol (i.e., De�nition 7.5.5), but require such aprotocol to be secure in the �rst malicious model (rather than be secure in thesemi-honest model). As in the two-party case, we require that the length ofeach oracle query can be determined from the length of the initial input to theoracle-aided protocol.De�nition 7.5.20 (security reductions in the �rst malicious model):� As in De�nition 7.5.6, an m-party oracle-aided protocol is said to be usingthe k-party oracle-functionality f if the oracle answers are according to f .However, in accordance with the de�nition of the (�rst) ideal-model (for theinvoked functionality), the oracle does not answer all parties concurrently,but rather answers �rst the real-model party that requested this speci�coracle call (in the oracle-aided protocol). When receiving its part of theoracle answer, the party that requested the oracle call instructs the oraclewhether or not to respond to the other parties.We consider only protocols in which the length of each oracle query is apolynomial-time computable function of the length of the initial input tothe protocol. Furthermore, the length of each query must be polynomiallyrelated to the length of the initial input.Analogously to De�nition 7.5.3, the joint execution of an oracle-aided pro-tocol � with oracle f under (I; A) in the real model ((on input sequencex = (x1; :::; xm) and auxiliary input z), denoted realf�;I;A(z)(x), is de�nedas the output sequence resulting of the interaction between the m parties,where the messages of parties in I are computed according to A(xI ; z), themessages of parties not in I are computed according to �, and the oraclecalls are answered according to f .� An oracle-aided protocol �, using the oracle-functionality f , is said tosecurely compute g (in the �rst malicious model) if a condition analogousto the one in De�nition 7.5.3 holds. That is, the e�ect of any e�cientreal-model adversary as above can be simulated by a corresponding ideal-model adversary, where the ideal model for computing g is exactly as inDe�nition 7.5.2.More speci�cally, the oracle-aided protocol � (using oracle f) issaid to securely compute g (in the �rst malicious model) if for everyprobabilistic polynomial-timeA there exists a probabilistic polynomial-time B such that for every I � [m]fideal(1)g;I;B(z)(x)gx;z c� frealf�;I;A(z)(x)gx;z� An oracle-aided protocol is said to securely reduce g to f (in the �rst mali-cious model), if it securely computes g (in the �rst malicious model) whenusing the oracle-functionality f . In such a case we say that g is securelyreducible to f ,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

718 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSIndeed, when clear from the context, we often omit the quali�er \in the �rstmalicious model".We are now ready to state a composition theorem for the �rst multi-party ma-licious model.Theorem 7.5.21 (Composition Theorem for the �rst multi-party maliciousmodel): Suppose that the m-ary functionality g is securely reducible to the k-aryfunctionality f and that there exists a k-party protocol for securely computing f .Then there exists an m-party protocol for securely computing g.Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls,and thus Theorem 7.5.21 is actually a sequential composition theorem. As in thetwo-party case, the Composition Theorem can be generalized to yield transitivityof secure-reductions and to account for reductions that use several oracles ratherthan one.Proof Sketch: Analogously to the proof of previous composition theorems, weare given an oracle-aided protocol, denoted �gjf , that securely reduces g to f ,and an ordinary protocol �f that securely computes f . Again, we construct aprotocol � for computing g in the natural manner; that is, starting with �gjf , wereplace each invocation of the oracle (i.e., of f) by an execution of the protocol�f . Clearly, � computes g, and we need to show that � securely computes g.This is proven by merely generalizing the proof of Theorem 7.4.3 (i.e., the two-party case). The only point that is worthwhile stressing is that the real-modeladversary for �f , derived from the real-model adversary for �, is constructedobliviously of the set of parties I that the adversary controls.67 As in the proofof Theorem 7.5.7, we determine the set of parties for every such invocation of �f ,and rely on the fact that security holds with respect to adversaries controllingany subset of the k parties participating in an execution of �f . In particular,the security of an invocation of �f by parties P = fp1; :::; pkg holds also in caseI \P = ;, where it means that a real-model adversary (which controls no partyin P) learns nothing by merely tapping the broadcast channel.687.5.4.2 Secret broadcastIn order to facilitate the implementation of some functionalities, we introducethe following secret broadcast functionality:(�; 1j�j; :::; 1j�j) 7! (�; �; :::; �) (7.48)At �rst glance, it seems that Eq. (7.48) is trivially implementable by Party 1posting � on the broadcast channel. This solution is \secure" as long as the67 Unlike in the two-party case, here we cannot a�ord to consider a designated adversaryfor each subset of parties.68 Security holds also in the other extreme case, where I \ P = P , but is not meaningful inthat case.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 719(real-model) adversary controls a non-empty set of parties, but fails in case theadversary controls none of the parties and yet can tap the broadcast channel.That is, the trivial solution does not provide secrecy with respect to an externaladversary (which taps the channel but controls none of the parties and thus isnot supposed to learn the value sent by Party 1 to all other parties). Note thatsecrecy with respect to an external adversary arises in a subtle way also whenwe do not care about it a-priori (e.g., see the proof of Theorem 7.5.21).Proposition 7.5.22 Assuming the existence of trapdoor permutations, there ex-ists a secure implementation of Eq. (7.48) in the �rst malicious model.Proof Sketch: The �rst idea that comes to mind is to let each party generatea pair of keys for a public-key encryption scheme and broadcast the encryption-key, and then let Party 1 broadcast the encryption of its input under each ofthese encryption-keys. The problem with this protocol is that it is no longerguaranteed that all parties receive the same value. One solution is to let Party 1provide zero-knowledge proofs (to each of the parties) that the posted ciphertextsare consistent (i.e., encrypt the same value), but the implementation of thissolution is not straightforward (cf. Construction 7.5.24). An alternative solution,adopted here, is to use the encryption scheme in order to emulate a set of private(point-to-point) channels, as in Section 7.5.3.1, and run authenticated ByzantineAgreement on this network. Since we have an ordinary broadcast channel at ourdisposal, we do not need to assume an initial set-up that corresponds to a public-key infrastructure, but can rather generate it on the y. The resulting protocolis as follows.1. Each party generates a pair of keys for a signature scheme, and posts theveri�cation-key on the broadcast channel. This establishes the public-keyinfrastructure as relied upon in Construction 7.5.17.2. Each party generates a pair of keys for a public-key encryption scheme,and posts the encryption-key on the broadcast channel. This e�ectivelyestablishes a network of private (point-to-point) channels to be used inStep 3.3. The parties invoke the authenticated Byzantine Agreement protocol ofConstruction 7.5.17 in order to let Party 1 broadcast its input to all otherparties. All messages of this protocol are sent in encrypted form, whereeach message is encrypted using the encryption-key posted in Step 2 bythe designated receiver.Combining the ideas underlying the proofs of Propositions 7.5.16 and 7.5.18, thecurrent proposition follows.7.5.4.3 Multi-party authenticated computationWe start our assembly of multi-party functionalities by presenting and imple-menting a multi-party generalization of the authenticated computation function-ality of Eq. (7.32).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

720 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSDe�nition 7.5.23 (authenticated computation, multi-party version): Let f :f0; 1g� � f0; 1g� ! f0; 1g� and h : f0; 1g� ! f0; 1g� be polynomial-time com-putable. The h-authenticated f -computation m-party functionality is de�ned by(�; �2; :::; �m) 7! (�; v2; :::; vm) (7.49)where vi def= f(�) if �i = h(�) and vi def= (h(�); f(�)) otherwise, for each i.69Note that the obvious reduction of Eq. (7.49) to the two-party case (i.e., toEq. (7.32)) does not work (see Exercise 16). As in the two-party case, wewill securely-reduce Eq. (7.49) to an adequate multi-party generalization of theimage-transmission functionality, and provide a secure implementation of thelatter. We start by implementing the adequate multi-party generalization of theimage transmission functionality, de�ned as follows:(�; 1j�j; :::; 1j�j) 7! (�; f(�); :::; f(�)) (7.50)Indeed, Eq. (7.50) is essentially a special case of Eq. (7.49). We stress that in asecure implementation of Eq. (7.50) either all parties obtain the same f -imageor they all obtain an indication that Party 1 has misbehaved. Thus, the honestparties must be in agreement regarding whether or not Party 1 has misbehaved,which makes the generalization of the two-party protocol less obvious than it mayseem. In particular, the fact that we use a proof system of perfect completenessplays a central role in the analysis of the multi-party protocol. The same holdswith respect to the fact that all messages are sent over a broadcast channel (andso the honest parties agree on their value). Together these two facts imply thatany party can determine whether some other party has \justi�ably rejected"some claim, and this ability enables the parties to reach agreement regardingwhether or not Party 1 has misbehaved.Construction 7.5.24 (image transmission protocol, multi-party version): LetR def= f(v; w) : v = f(w)g. For simplicity, we assume that f is length-regular;that is, jf(x)j = jf(y)j for every jxj = jyj.Inputs: Party 1 gets input � 2 f0; 1g�, and each other party gets input 1n, wheren = j�j.Step C1: Party 1 secretly broadcasts v def= f(�). That is, Party 1 invokes Eq. (7.48)with input v, whereas each other party enters the input 1jf(1n)j and receivesthe output v.Step C2: For i = 2; :::;m, Parties 1 and i invoke a zero-knowledge strong-proof-of-knowledge system for R such that Party 1 plays the prover and Party iplays the veri�er. The common input to the proof system is v, the prover69 Indeed, an alternative multi-party generalization may require that all vi's equal f(�) if�2 = � � � = �m = h(�) and equal (h(�); f(�)) otherwise. However, this alternative generaliza-tion seems harder to implement, whereas Eq. (7.49) su�ces for our application.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 721gets � as auxiliary input and its objective is to prove that it knows a wsuch that (v; w) 2 R (i.e., v = f(w)). In case the veri�er rejects the proof,Party i sends the coins used by the veri�er so that all other parties canbe convinced of its justi�able rejection, where the latter corresponds to theview of the veri�er in a rejecting interaction. All messages of the proofsystem are sent using the secret broadcast functionality.Outputs: For i = 2; :::;m, if Party i sees some justi�able rejection then it outputs? else it outputs v. (Party 1 has no output.)Agreement on whether or not Party 1 has misbehaved is obtained by the decisionwhether or not some veri�er has justi�ably rejected in Step C2, where thisdecision depends on information available to all parties. A key observationis that if Party 1 is honest then no party can justi�ably reject its proof inStep C2, because the proof system has perfect completeness (which means thatthere exists no random-tape that makes the veri�er reject a claim by an honestprover). Note that Construction 7.5.24 is actually an oracle-aided protocol,using the secret broadcast oracle. Consequently, if the real-model adversarycontrols none of the parties, then it learns nothing (as opposed to what mighthave happened if we were to use ordinary broadcast in Steps C1 or C2).Proposition 7.5.25 Suppose that the proof system, (P; V), used in Step C2is indeed a zero-knowledge strong-proof-of-knowledge for the relation R. Then,Construction 7.5.24 securely reduces Eq. (7.50) to Eq. (7.48).Proof Sketch: The proof extends the two-party case treated in Proposition 7.4.12.Here, we transform any real-model adversaryA into a corresponding ideal-modeladversary B, where both get the set I as auxiliary input. The case I = ; is han-dled by relying on the secret broadcast functionality (which implies that in thiscase the real-model adversary, which refers to an oracle-aided protocol in whichall messages are sent using Eq. (7.48), gets nothing). Otherwise, the operationof B depends on whether or not 1 2 I , which corresponds to the cases handledin the two-party case.As in the two party case, when transforming real-model adversaries to ideal-model adversaries, we sometimes allow the latter to halt before invoking thetrusted party. This can be viewed as invoking the trusted party with a specialabort symbol, where in this case the latter responses to all parties with a specialabort symbol.We start with the case where the �rst party is honest, which means here that1 62 I . In this case the input to B consists essentially of 1n, where n = j�j, andit operates as follows (assuming I 6= ;):1. Acting on behalf of each party in I , the ideal-model adversary B sends1j�j to the trusted party and obtains the answer v, which equals f(�) for� handed (to the trusted party) by (the honest) Party 1. Thus, indeed(v; �) 2 R. (Recall that Party 1 always obtains � from the trusted party,but the other parties in �I = [m] n I obtain v).)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

722 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS2. For i = 2; :::;m, machine B invokes the simulator guaranteed for the zero-knowledge proof system (P; V), on input v, using (the residual) A as apossible malicious veri�er. Note that we are simulating the actions ofthe prescribed prover P , which in the real protocol is played by the honestParty 1. Once one simulation is �nished, its transcript becomes part of thehistory fed to A in subsequent simulations. Denote the obtained sequenceof simulation transcripts by S = S(v).3. Finally, B feeds A with the alleged execution view (v; S), and outputswhatever A does.The computational indistinguishability of the output of the real-model adversaryunder (A; I) and the output of the ideal-model adversary under (B; I) followsfrom the guaranteed quality of the zero-knowledge simulator. In addition, weneed to consider the outputs of the honest parties (i.e., the parties in �I), andspeci�cally the outputs of parties in �I n f1g (since Party 1 has no output).(Indeed, this is an issue only if �I n f1g 6= ;, which is the reason that this issuedid not arise in two two-party case.) In the ideal-model execution, each partyin �I n f1g output v = f(�), and we have to prove that the same occurs in thereal-model execution (when Party 1 is honest). This follows from the perfectcompleteness of (P; V), as discussed above.We now turn to the case where the �rst party is dishonest (i.e., 1 2 I). Inthis case the input to B includes �, and it operates as follow (ignoring the easycase I = [m]):1. B invokes A on input �, and obtains the Step C1 message, denoted v, thatA instruct Party 1 to send (i.e., v = A(�)). As (implicit) in the protocol,any action of A in Step C1 (including abort) is interpreted as sending astring.2. B tries to obtain a preimage of v under f . Towards this end, B usesthe (strong) knowledge-extractor associated with (P; V). Speci�cally, pro-viding the strong knowledge-extractor with oracle access to (the residualprover) A(�), machine B tries to extract (from A) a string w such thatf(w) = v. This is done for each of the j�I j executions of the proof systemin which the veri�er is played by a honest party, while updating the his-tory of A accordingly.70 In case the extractor succeeds (in one of these j�I jattempts), machine B sets �0 def= w. Otherwise, B sets �0 def= ?.3. B now emulates an execution of Step C2. Speci�cally, for each i 2 �I ,machine B lets the adequate residual A play the prover, and emulates byitself the (honest) veri�er interacting with A (i.e., B behaves as a honestParty i). (The emulation of the proofs given to parties in I is performedin the straightforward manner.) Next, B decides whether or not to invoke70 If necessary (i.e., j�Ij 6= f2; :::; j�Ij + 1g), we also emulate the interleaved proofs that aregiven to parties in I. This is performed in the straightforward manner (i.e., by letting Aemulate both parties in the interaction).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 723the trusted party and let it respond the honest parties. This decision isbased on all the m� 1 emulated proofs.� In case any of the m�1 emulated veri�ers rejects justi�ably, machineB aborts (without invoking the trusted party), and outputs whateverA does (when fed with these emulated proof transcripts).� Otherwise (i.e., no veri�er rejects justi�ably), we consider two sub-cases:(a) If �0 6= ? then B sends �0 (on behalf of Party 1) to the trustedparty, and allows it to respond the honest parties. (The responsewill be f(�0), which by Step 2 must equal v.)(b) Otherwise (i.e., �0 = ? indicating that extraction has failed),B fails. (Note that this means that in Step 3 the veri�er wasconvinced, while in Step 2 the extraction attempt has failed.)4. Finally, B feeds A with the execution view, which contains the prover'sview of the emulation of Step C2 (produced in Step 3 above), and outputswhatever A does.As in the two-party case (see proof of Proposition 7.4.12), the real-model execu-tion di�ers from the ideal-model execution only in case the real-model adversaryA succeeds to convince the knowledge-veri�er (which is properly emulated forany i 2 �I) that it knows a preimage of v under f , and yet the knowledge-extractorfailed to �nd such a preimage. By de�nition of strong knowledge-veri�ers, suchan event may occur only with negligible probability.Securely-reducing authenticated computation to image-transmission.Analogously to the two-party case, we securely-reduce Eq. (7.49) to Eq. (7.50).Construction 7.5.26 (multi-party authenticated computation, oracle-aided pro-tocol):Inputs: Party 1 gets input � 2 f0; 1g�, and Party i 6= 1 gets input �i 2 f0; 1gj�j.Step C1: Party 1 uses the (multi-party) image transmission functionality to sendthe pair (u; v) def= (h(�); f(�)) to the other parties. That is, the partiesinvoke the functionality of Eq. (7.50), where Party 1 enters the input �and Party i is to obtain g(�) def= (h(�); f(�)).Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party ireceives the pair (u; v) in Step C2, Party i outputs v if u = �i and (u; v)otherwise.Outputs: If not aborted (with output ?), Party i 6= 1 sets its local output asdirected in Step C2. (Party 1 has no output.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

724 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSExtending the proof of Proposition 7.4.15 (to apply to Construction 7.5.26), andusing Propositions 7.5.25 and 7.5.22, we obtain:Proposition 7.5.27 Assuming the existence of trapdoor permutations, the h-authenticated f-computation m-party functionality of Eq. (7.49) can be securelyimplemented in the �rst malicious model.Proof Sketch: We focus on the analysis of Construction 7.5.26, which extendsthe proof of Proposition 7.4.15. As in the proof of Proposition 7.5.25, whenextending the proof of the two-party setting, the two cases (in the proof) cor-respond to whether or not Party 1 is honest (resp., 1 62 I or 1 2 I). Again, wediscard the case I = ;, where here the justi�cation is that the oracle-aided proto-col does not use the broadcast channel at all (and so no information is availableto the real-model adversary in this case). The case 1 62 I 6= ; is handled exactlyas the case that Party 1 is honest in the proof of Proposition 7.4.15 (i.e., B sendsthe �i's it holds to the trusted party, obtains h(�) (either explicitly or implic-itly) and f(�), where � is the input of Party 1, and uses (h(�); f(�)) to emulatethe real execution). In case 1 2 I , we need to extend the two-party treatmenta little, because we also have to emulate the oracle-answer given (in Step C1) todishonest parties (di�erent than Party 1, which gets no answer). However, thisanswer is determined by the query �0 made in Step C1 by Party 1, and indeedwe merely need to feed A with the corresponding oracle answer (h(�0); f(�0)).The rest of the treatment is exactly as in the two-party case. The propositionfollows.Comment: pure oracle-aided protocols. Note that Construction 7.5.26makes no direct use of its communication channel, but is rather con�ned to theinvocation of oracles and local computations. Such an oracle-aided protocol iscalled pure. Note that most oracle-aided protocols presented in Section 7.4 arepure. An important property of pure oracle-aided protocols is that an adversarythat controls none of the parties and only wire-taps the communication channelgets no information, and so this case can be discarded (as done in the proof ofProposition 7.5.27).71 In fact, Construction 7.5.24 is also a pure oracle-aidedprotocol (by virtue of its use of the secret broadcast functionality).7.5.4.4 Multi-party augmented coin-tossingIn this section, we generalize the augmented coin-tossing functionality (of Sec-tion 7.4.3.5) to the multi-party setting. More generally, for any positive polyno-mial ` : N ! N and a polynomial-time computable function g, we consider therandomized m-ary functionality(1n; :::; 1n) 7! (r; g(r); :::; g(r)); (7.51)71 Recall that in Section 7.4 we did not consider such external adversaries, and thus thenotion of pure oracle-aided protocols was neither discussed nor used.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 725where r is uniformly distributed in f0; 1g`(n). We securely-reduce Eq. (7.51)to the multi-party authenticated computation functionality. We note that thefollowing construction is di�erent from the one used in the two-party case.Construction 7.5.28 (an oracle-aided protocol for Eq. (7.51)): Let C be acommitment scheme and Cr1;:::;r`(�1; :::; �`) = (Cr1(�1); :::; Cr`(�`)) be as inConstruction 7.4.16.Inputs: Each party gets input 1n, and sets ` def= `(n).Step C1: For i = 1; ::;m, Party i uniformly selects ri 2 f0; 1g` and si 2 f0; 1g`�n.Step C2: For i = 1; ::;m, Party i uses the image transmission functionality tosend ci def= Csi(ri) to all parties. Actually, Party i enters Eq. (7.49) withinput (ri; si), each other party enters with input 1`+`�n, which is supposedto equal h(C2)(ri; si) def= 1jrij+jsij, and is supposed to obtain f (C2)(ri; si) def=Csi(ri). Abusing notation, let us denote by ci the answer received by eachparty, where ci may equal ? in case Party i has aborted the ith oracle call.Thus, in Steps C1{C2, each party commits to a random string. Withoutloss of generality, we assume that no party aborts these steps (i.e., we treatabort as if it were some legitimate default action).Step C3: For i = 2; ::;m (but not for i = 1), Party i uses the authenticatedcomputation functionality to send ri to all parties. That is, Party i entersEq. (7.49) with input (ri; si), each other party enters with input ci, whereci is supposed to equal h(C3)(ri; si) def= Csi(ri), and is supposed to obtainf (C3)(ri; si) def= ri. If Party i aborts the oracle call (that it has invoked) orsome Party j obtains an answer of a di�erent format, which happens incase the inputs of these two parties do not match, then Party j halts withoutput ?. Otherwise, Party j obtains f (C3)(ri; si) = ri and sets rji = ri.(For simplicity, let rjj def= rj .)Thus, in this step, each party (except Party 1), reveals the `-bit long stringto which it has committed in Step C2. The correctness of the revealed valueis guaranteed by the de�nition of the authenticated computation function-ality, which is used here instead of the straightforward way of disclosing thedecommitment information. It follows that, for every j 2 [m], if Party jis honest and did not halt then rji = ri for every i 2 [m] n f1g, where ri isthe value committed by Party i in Step C3.Step C4: In case Party 1 did not halt (and so r1i = ri for every i 2 [m]), Party 1uses the authenticated computation functionality to send g(�mi=1r1i) to allparties. Details follow.For j = 1; :::;m, Party j sets rj def= �mi=2rji . Note that, in case Party j didnot halt, it holds that rji = ri (for every i 2 [m]) and so rj = �mi=2ri = r1.Thus, �mi=1r1i = r1 � r1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

726 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSParty 1 sets r def= r1�r1, and uses the authenticated computation function-ality to send g(r) to all parties. Speci�cally, Party 1 enters Eq. (7.49) withinput (r1; s1; r1), each (other) Party j enters with input (c1; rj), where(c1; rj) is supposed to equal h(C4)(r1; s1; r1) def= (Cs1(r1); r1), and is sup-posed to obtain f (C4)(r1; s1; r1) def= g(r1 � r1), which equals g(r). In caseParty 1 aborts or Party j obtains an answer of a di�erent format, whichhappens if the inputs to the functionality do not match, Party j halts withoutput ? (indicating that Party 1 misbehaved).Outputs: Unless halted in Step C3 (with output ?), Party 1 outputs r, andParty j 6= 1 outputs the value determined in Step C4, which is either g(r)or ?.In case m = 2, Construction 7.5.28 yields an alternative protocol for Eq. (7.33);that is, a protocol that is fundamentally di�erent from the one in Construc-tion 7.4.16.Proposition 7.5.29 Construction 7.5.28 securely reduces Eq. (7.51) to Eq. (7.49).Proof Sketch:72 We transform any real-model adversary A (for the oracle-aided execution) into a corresponding ideal-model adversary B. The operationof B depends on whether or not Party 1 is honest (i.e., 1 2 �I), and we ignorethe trivial cases of I = ; and I = [m]. In case 1 2 �I (i.e., Party 1 is honest),machine B proceeds as follows:1. Machine B emulates the local actions of the honest parties in Step C1. Inparticular, it uniformly selects (ri; si) for each i 2 �I (including i = 1).2. For every i 2 �I , machine B emulates the ith sub-step of Step C2, by feedingA with the corresponding ci = Csi(ri) (as if it were the answer of the ithoracle call). For every i 2 I , machine B obtains the input (ri; si) that Aenters (on behalf of Party i) to the ith oracle call of Step C2, and feeds Awith adequate emulations of the oracle answers (to other parties in I).3. For every i 2 �I n f1g, machine B emulates the ith sub-step of Step C3, byfeeding A with a sequence in fri; (ci; ri)gjIj that corresponds to whetheror not each Party j 2 I has entered the input ci (de�ned in Step 2).For every i 2 I , machine B obtains the input (r0i; s0i) that A enters (onbehalf of Party i) to the ith oracle call of Step C3, records whether ornot Csi(ri) = Cs0i(r0i), and feeds A with adequate emulations of the oracleanswers.For every i 2 �I , machine B sets r1i = ri. For every i 2 I , machine Bsets r1i = ri if Csi(ri) = Cs0i(r0i) and aborts otherwise (while outputting72 As in the proof of Proposition 7.5.25, we sometimes present ideal-model adversaries thathalt before invoking the trusted party. This can be viewed as invoking the trusted party witha special abort symbol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 727whatever A outputs (when Party 1 halts in Step C3)). Note that, forevery i, this setting of r1i agrees with the setting of r1i in the protocol. Inparticular, B aborts if and only if (the honest) Party 1 would have haltedin the corresponding (emulated) execution of Step C3.734. In case B did not abort, it invokes the trusted party with input 1n andobtains the answer g(r), where r is the uniformly distributed `-bit stringhanded to Party 1. Next, machine B emulates Step C4, by feeding eachdishonest party with either g(r) or ((c1; r1); g(r)), where r1 def= �mi=2r1i .The choice is determined by whether or not (in Step C4) this party hasentered the input (c1; r1). (Note that we cheat in the emulation of theoracle answer in Step C4; speci�cally, we use g(r) rather than g(r1 � r1).)Finally, machine B outputs whatever A does.We stress that, in this case (i.e., 1 62 I), machine B may possibly abort onlybefore invoking the trusted party (which satis�es the security de�nition). Ob-serve that the only di�erence between the ideal-model execution under B andthe real-model execution under A is that in the ideal-model execution an in-dependently and uniformly distributed r 2 f0; 1g` is used (in the emulation ofStep C4), whereas in the real-model execution r (as used in Step C4) is set to�mi=1r1i = r1 � r1. That is, in the ideal-model r1 is independent of r and r1,whereas in the real-model r1 = r � r1, where g(r) and r1 = ri (for every i) areknown to the adversary (and r appears in the joint-view). Thus, in additionto its possible a�ect on r (in the real-model), the only (other) a�ect that r1has on the joint-view is that the latter contains c1 = C(r1). In other words,the real-model and the ideal-model di�er only in whether c1 is a commitmentto r � r1 or to a uniformly and independently distributed string, where r andr1 are explicit in the joint-view. By the hiding property of C, this di�erence isundetectable.We now turn to the case that 1 2 I (i.e., Party 1 is dishonest). The treat-ment of this case di�ers in two main aspects. First, unlike in the previous case,here the real-model adversary (which controls Party 1) obtains all ri's and sowe must guarantee that in the ideal-model execution the trusted-party's answer(to Party 1) equals �mi=1ri. Second, unlike in the previous case, here the real-model adversary may e�ectively abort Step C4 (i.e., abort after obtaining theoutcome), but this is easy to handle using the ideal-model adversary's ability toinstruct the trusted party not to respond the honest parties. Returning to the�rst issue, we present a di�erent way of emulating the real-model execution.74Speci�cally, we will cheat in our emulation of the honest parties and use (in73 Indeed, in Step C3, Party 1 halts if and only if for some i the input that Party 1 entersto the ith sub-step (which in turn equals the value ci = Csi (ri) that Party 1 has obtained inthe ith sub-step of Step C2) does not �t the input (r0i; s0i) that is entered by Party i (i.e., i�ci 6= Cs0i (r0i)).74 We comment that the alternative emulation strategy can be used also in case Party 1 ishonest.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

728 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSStep 1-2) commitments to the value 0` rather than commitments to the cor-responding ri's, which will be determined only at the end of Step 2. Detailsfollow.1. Machine B starts by invoking the trusted party, and obtains a uniformlydistributed r 2 f0; 1g`. At this time, B does not decide whether or not toallow the trusted party to answer the honest parties.In addition, B emulates the local actions of the honest parties in Step C1by uniformly selecting only the si's, for each i 2 �I .2. For every i 2 �I , machine B emulates the ith sub-step of Step C2, byfeeding A with ci = Csi(0`). For every i 2 I , machine B obtains theinput (ri; si) that A enters (on behalf of Party i) to the ith oracle callof Step C2. Finally, B uniformly selects all other ri's (i.e., for i's in �I)such that �mi=1ri = r holds; e.g., for each i 2 �I n f1g, select ri 2 f0; 1g`uniformly, and set r1 = r � (�mi=2ri).3. For every i 2 �I , machine B emulates the ith sub-step of Step C3, byfeeding A with a sequence in fri; (ci; ri)gjIj that corresponds to whetheror not each Party j 2 I has entered the input ci. Note that the fact thatci is unlikely to be a commitment to ri is irrelevant here. The rest of thisstep (i.e., the determination of the r1i 's) is as in the case that Party 1 ishonest. In particular, we let B halt if some Party i 2 I behaves improperly(i.e., invokes the corresponding oracle with input that does not �t ci asrecorded in the emulation of Step C2).The next step is performed only in case B did not abort. In this case,r1i = ri holds for every i = 2; :::;m, and r = r1 � (�mi=2r1i) follows.4. Next, machine B emulates Step C4, and determines whether or not Ainstructs Party 1 to abort its oracle call (in Step C4). The decision isbased on whether or not the oracle query (q1; q2; q3) of Party 1 (in Step C4)matches the oracle query (ri; si) it made in Step C2 and the value of�mi=2r1i as determined in Step 3 (i.e., whether or not Cq2(q1) = Csi(ri)and q3 = �mi=2r1i). If Party 1 aborts then B prevents the trusted partyfrom answering the honest parties, and otherwise B allows the trustedparty to answer. (Indeed, in case the trusted party answers Party i 6= 1,the answer is g(r)). In addition, B emulates the answers of the Step C4oracle-call to the dishonest parties (as in the case that Party 1 is honest).Finally, machine B outputs whatever A does.Observe that the only di�erence between of the ideal-model execution under Band the real-model execution under A is that in the former commitments to 0`(rather than to the ri's, for i 2 �I) are delivered in Step C2. However, by thehiding property of C, this di�erence is undetectable.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 729An important special case. An important special case of Eq. (7.51) is wheng(r; s) = Cs(r), where jsj = n � jrj. This special case will be called the augmented(m-party) coin-tossing functionality. That is, for some �xed commitment scheme,C, and a positive polynomial `, we consider the m-ary functionality:(1n; :::; 1n) 7! ((r; s); Cs(r); :::; Cs(r)) (7.52)where (r; s) is uniformly distributed in f0; 1g`(n)�f0; 1g`(n)�n. Combining Propo-sitions 7.5.27 and 7.5.29, we get:Proposition 7.5.30 Assuming the existence of trapdoor permutations, the aug-mented coin-tossing functionality of Eq. (7.52) can be securely implemented inthe �rst malicious model.7.5.4.5 Multi-party input-commitmentThe last functionality needed for the �rst multi-party compiler is a multi-partygeneralization of the input-commitment functionality of Section 7.4.3.6. Speci�-cally, for C and C as in Section 7.5.4.4, we consider them-party input-commitmentfunctionality (x; 1jxj; :::; 1jxj) 7! (r; Cr(x); :::; Cr(x)); (7.53)where r is uniformly distributed in f0; 1gjxj2. By combining a straightforwardgeneralization of Construction 7.4.20 with Propositions 7.5.27 and 7.5.30, weget:Proposition 7.5.31 Assuming the existence of trapdoor permutations, the input-commitment functionality of Eq. (7.53) can be securely implemented in the �rstmalicious model.Proof Sketch: Starting from Construction 7.4.20, we replace each oracle callto a two-party functionality by a call to the corresponding multi-party func-tionality. That is, in Step C2 Party 1 uses the image transmission (or ratherthe authenticated computation) functionality to send c0 def= Cr0(x) to all otherparties, in Step C3 an augmented coin-tossing is used to provide Party 1 with arandom pair (r; r00) whereas each other party gets c00 def= Cr00(r), and in Step C4Party 1 uses the authenticated computation functionality to send Cr(x) to allother parties. Each of the other parties acts exactly as Party 2 acts in Construc-tion 7.4.20.The security of the resulting multi-party oracle-aided protocol is establishedas in the two-party case (treated in Proposition 7.4.21). As in the previousanalysis of multi-party protocols that generalize two-party ones, the two caseshere are according to whether or not Party 1 is honest (resp., 1 62 I or 1 2 I).Finally, composing the above oracle-aided protocol with secure implementationsof the adequate multi-party functionalities (as provided by Propositions 7.5.27and 7.5.30), the proposition follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

730 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.5.4.6 The compiler itselfWe are now ready to present the �rst multi-party compiler. Given a multi-partyprotocol, �, for the semi-honest model, we want to generate an \equivalent"protocol �0 for the �rst malicious model. Recall that the given protocol oper-ates in a communication model consisting of a single broadcast channel. Thecompiled protocol will operate in the same communication model. As in thetwo-party case, we �rst present an oracle-aided version of the compiled protocol(which will actually be a pure oracle-aided protocol, and thus the communica-tion model is actually irrelevant for discussing the oracle-aided version of thecompiled protocol). The compiled protocol is a generalization of the one pre-sented in Construction 7.4.23 (for m = 2), and the reader is referred there foradditional clari�cations.Construction 7.5.32 (The �rst multi-party compiler, oracle-aided version):Given an m-party protocol, �, for the semi-honest model (using a single broad-cast channel), the compiler produces the following oracle-aided m-party protocol,denoted �0, for the �rst malicious model.Inputs: Party i gets input xi 2 f0; 1gn.Input-commitment phase: Each of the parties commits to its input by using theinput-commitment functionality of Eq. (7.53). That is, for i = 1; :::;m,Party i invokes Eq. (7.53), playing the role of the �rst party with input xi,and obtains the output �i, whereas each other party obtains i def= C�i(xi).Coin-generation phase: The parties generate random-tapes for the emulation of�. Each party obtains the random-tape to be held by it, whereas eachother party obtains a commitment to this value. This is done by invokingthe augmented coin-tossing functionality of Eq. (7.52). That is, for i =1; :::;m, Party i invokes Eq. (7.52), playing the role of the �rst party, andobtains the output (ri; !i), whereas each other party obtains �i def= C!i(ri).Protocol emulation phase: The parties use the authenticated-computation func-tionality of Eq. (7.49) in order to emulate each step of protocol �. Theparty that is supposed to send (i.e., broadcast) a message plays the role ofthe �rst party in Eq. (7.49) and the other parties play the other roles. Sup-pose that the current message in � is to be sent by Party j. Then the func-tions h; f and the inputs �; �2; :::; �m, for the functionality of Eq. (7.49),are set as follows (analogously to their setting in Construction 7.4.23):� The string � is set to equal (�1; �2; �3), where �1 = (xj ; �j) is thequery and answer of Party j in the oracle call that it initiated in theinput-commitment phase, �2 = (rj ; !j) is the answer that Party j ob-tained in the oracle call that it initiated in the coin-generation phase,and �3 is the sequence of messages that Party j obtained so far inthe emulation of �. Each �i equals � def= (j ; �j ; �3), where j and

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 731�j are the answers that the other parties obtained in the same oraclecalls in the �rst two phases (and �3 is as above).Note that since � operates over a single broadcast channel, all partiesreceive exactly the same messages.� The function h is de�ned such that h((v1; s1); (v2; s2); v3) equals (Cs1(v1); Cs2(v2); v3).Indeed, it holds that h(�1; �2; �3) = �.� The function f equals the computation that determines the messageto be sent in �. Note that this message is computable in polynomial-time from the party's input (denoted xj and being part of �1), itsrandom-tape (denoted rj and being part of �2), and the messages ithas received so far (i.e., �3). Indeed, it holds that f(�1; �2; �3) is themessage that Party j should send in �.Recall that each party that plays a receiver in the current oracle call, obtainseither f(�) or (h(�); f(�)). It treats the second case as if the sending partyhas aborted, which is also possible per se.Aborting: In case any of the functionalities invoked in any of the above phasesterminates in an abort state, the parties obtaining this indication abort theexecution, and sets their output to ?. Otherwise, outputs are as follows.Outputs: At the end of the emulation phase, each party holds the correspondingoutput of the party in protocol �. The party just locally outputs this value.We note that both the compiler and the protocols produced by it are e�cient,and that their dependence on m is polynomially bounded.7.5.4.7 Analysis of the compilerThe e�ect of Construction 7.5.32 is analyzed analogously to the e�ect of Con-struction 7.4.23. In view of this similarity we combine the two main steps (inthe analysis), and state only the end result:Theorem 7.5.33 (Restating half of Theorem 7.5.15): Suppose that there existcollections of enhanced trapdoor permutations. Then any m-ary functionalitycan be securely computable in the �rst malicious model (using only point-to-point communication lines), provided that a public-key infrastructure exists inthe network. Furthermore, security holds even if the adversary can read allcommunication among honest parties.Proof Sketch: We start by noting that the de�nition of the augmented semi-honest model (i.e., De�nition 7.4.24) applies without any change to the multi-party context (also in case the communication is via a single broadcast channel).Recall that the augmented semi-honest model allows parties to enter the protocolwith modi�ed inputs (rather than the original ones), and abort the executionat any point in time. We stress that in the multi-party augmented semi-honestmodel, an adversary controls all non-honest parties and coordinates their input

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

732 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSmodi�cations and abort decisions. As in the two-party case, other than thesenon-proper actions, the non-honest parties follow the protocol (as in the semi-honest model).The �rst signi�cant part of the proof is showing that the compiler of Con-struction 7.5.32 transforms any protocol � into a protocol �0 such that execu-tions of �0 in the �rst malicious real model can be emulated by executions of� in the augmented semi-honest model (over a single broadcast channel). Thispart is analogous to Proposition 7.4.25, and its proof is analogous to the proofpresented in the two-party case. That is, we transform any real-model adversary(A; I) for �0 into a corresponding augmented semi-honest adversary, (B; I), for�. The construction of B out of A in analogous to the construction of Bmal outof Amal (carried out in the proof of Proposition 7.4.25): Speci�cally, B modi-�es inputs according to the queries that A makes in the input-committing phase,uniformly selects random-tape (in accordance to the coin-generation phase), andaborts in case the emulated machine does so. Thus, B, which is an augmentedsemi-honest adversary, emulates the malicious adversary A.The second signi�cant part of the proof is showing that canonical protocols(as provided by Theorem 7.5.14) have the property that their execution in theaugmented semi-honest model can be emulated in the (�rst) malicious ideal-model of De�nition 7.5.2. This part is analogous to Proposition 7.4.27, and itsproof is analogous to the proof presented in the two-party case.Thus, given any m-ary functionality f , we �rst (use Theorem 7.5.14 to)obtain a canonical protocol � that privately computes f . (Actually, we usethe version of � that operates over a single broadcast channel, as provided bythe pre-compiler (i.e., Proposition 7.5.16).) Combining the above two parts, weconclude that when feeding � to the compiler of Construction 7.5.32, the resultis an oracle-aided protocol �0 such that executions of �0 in the (�rst) maliciousreal-model can be emulated in the ideal model of De�nition 7.5.2. Thus, �0securely computes f in the �rst malicious model.We are almost done, but there are two relatively minor issues to address.First, �0 is an oracle-aided protocol rather than an ordinary one. However,an ordinary protocol that securely computes f can be derived by using secureimplementations of the oracles used by �0 (as provided by Propositions 7.5.27,7.5.30 and 7.5.31). Second, �0 operates in the broadcast-channel communica-tion model, whereas we claimed a protocol in the point-to-point communicationmodel. This gap is bridged by using the post-compiler (i.e., Proposition 7.5.19).7.5.5 The second compiler { E�ectively Preventing AbortWe now show how to transform any protocol for securely computing some func-tionality in the �rst malicious model into a protocol that securely computes thesame functionality in the second malicious model. We stress that again all com-munication, both in the input protocol as well as in the one resulting from thecompilation, is conducted by posting messages on a single broadcast channel.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 733The current compiler has little to do with anything done in the two-partycase. The only similarity is at a technical level; that is, in using a secure imple-mentation of the authenticated computation functionality. The main novelty isin the use of a new ingredient, called Veri�able Secret Sharing (VSS).Interestingly, we use implementations of the authenticated computation func-tionality (of Eq. (7.49)) and of VSS that are (\only") secure in the �rst maliciousmodel. It is what we add on top of these implementations that makes the re-sulting protocol secure in the second malicious model. Following is a high-leveldescription of the multi-party protocols generated by the current compiler. Re-call that the input to the compiler is a protocol secure in the �rst malicious model(and so the random-tape and actions mentioned below refer to this protocol).75The sharing phase: Each party shares its input and random-tape with all theparties such that any strict majority of parties can retrieve their value,whereas no minority group can obtain any knowledge of these values. Thisis done by using Veri�able Secret Sharing (VSS).Intuitively, the malicious parties (which are in strict minority) are e�ec-tively prevented from aborting the protocol by the following conventions:� If a party aborts the execution prior to completion of the sharingphase, then the honest parties (which are in majority) will set itsinput and random-tape to some default value, and will carry out theexecution (\on its behalf").� If a party aborts the execution after the completion of the sharingphase, then the honest (majority) parties will reconstruct its inputand random-tape, and will carry out the execution (\on its behalf").The ability of the majority parties to reconstruct the party's inputand random-tape relies on the properties of VSS.The fact that communication is conducted over a broadcast channel andthe abovementioned conventions guarantee that the (honest) majority par-ties will always be in consensus as to which parties have aborted (and whatmessages were sent).Protocol emulation phase: The parties emulate the execution of the original pro-tocol with respect to the input and random-tapes shared in the �rst phase.This will be done using a secure (in the �rst malicious model) implemen-tation of the authenticated-computation functionality of Eq. (7.49).We start by de�ning and implementing the only new tool needed; that is, Veri-�able Secret Sharing.75 In our application, we feed the current compiler with a protocol generated by the �rstcompiler. Still the random-tape and protocol actions mentioned below refer to the secureprotocol compiled by the �rst compiler, not the semi-honest protocol from which it was derived.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

734 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.5.5.1 Veri�able Secret SharingLoosely speaking, a Veri�able Secret Sharing scheme is (merely) a secure (in the�rst malicious model) implementation of a secret sharing functionality. Thus,we �rst de�ne the latter functionality.De�nition 7.5.34 (secret sharing schemes): Let t � m be positive integers. At-out-of-m secret sharing scheme is a pair of algorithms, Gm;t and Rm;t, satisfyingthe following conditions.76syntax: The share-generation algorithm, Gm;t, is a probabilistic mapping of secretbits to m-sequences of shares; that is, for every � 2 f0; 1g, the randomvariable Gm;t(�) is distributed over (f0; 1g�)m. The recovering algorithm,Rm;t, maps t-sequences of pairs in [m] � f0; 1g� into a single bit, where[m] def= f1; :::;mg.The recovery condition: For any � 2 f0; 1g, any sequence (s1; :::; sm) in therange of Gm;t(�), and any t-subset fi1; :::; itg � [m], it holds thatRm;t((i1; si1); :::; (it; sit)) = �The secrecy condition: For any (t � 1)-subset I � [m], the distribution of theI-components of Gm;t(�) is independent of �. That is, for any I =fi1; :::; it�1g � [m], let gI(�) be de�ned to equal ((i1; si1); :::; (it�1; sit�1)),where (s1; :::; sm) Gm;t(�). Then, we require that for any such I therandom variables gI(0) and gI(1) are identically distributed.Indeed, an m-out-of-m secret sharing scheme is implicit in the constructionpresented in Section 7.5.2: To share a bit �, one just generates m random bitsthat sum-up to � (mod 2). E�cient t-out-of-m secret sharing schemes do existfor any value of t � m. The most popular one, which uses low-degree polynomialsover �nite �elds, is presented next.Construction 7.5.35 (Shamir's t-out-of-m secret sharing scheme): Find thesmallest prime number, denoted p, that is bigger than m, and consider arith-metic over the �nite �eld GF(p).77 The share generating algorithm consists ofuniformly selecting a degree t � 1 polynomial over GF(p) with free term equalto �, and setting the ith share to be the value of this polynomial at i. The re-covering algorithm consists of �nding (by interpolation) the unique degree t� 1polynomial that �ts the given values, and outputting its free term.Construction 7.5.35 is analyzed in Exercise 17. Getting back to our subjectmatter, we derive the basic de�nition of veri�able secret sharing.76 At this point, we place no computational requirements on Gm;t and Rm;t. Typically,when m is treated as a parameter, these algorithms will operate in time that is polynomial inm.77 By the Fundamental Theorem of Number Theory, p � 2m. Thus, p can be found bymerely (brute-force) factoring all integers between m+ 1 and 2m.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 735De�nition 7.5.36 (Veri�able Secret Sharing, basic version): A veri�able secretsharing (VSS) scheme with parameters (m; t) is an m-party protocol that imple-ments (i.e., securely computes in the �rst malicious model) the share-generationfunctionality of some t-out-of-m secret sharing scheme. That is, let Gm;t be ashare-generation algorithm of some t-out-of-m secret sharing scheme. Then, thecorresponding share-generation functionality that the VSS securely computes (inthe �rst malicious model) is((�; 1n); 1n; :::; 1n) 7! Gm;t(�) (7.54)Actually, it will be more convenient to use an augmented notion of Veri�ableSecret Sharing. The augmentation provides each party with an auxiliary inputthat determines the secret � (as in a commitment scheme), and allows Party 1 tolater conduct authenticated computations relative to the auxiliary inputs givento the other parties. Furthermore, each party is provided with a certi�cate ofthe validity of its own share (relative to the auxiliary inputs given to the otherparties). We seize the opportunity to generalize the de�nition such that it refersto the sharing of strings (of a-priori known length) rather than to the sharingof single bits. From this point on, when we say Veri�able Secret Sharing (orVSS), we mean the notion de�ned next (rather the the weaker form in De�ni-tion 7.5.36).De�nition 7.5.37 (Veri�able Secret Sharing, revised): Given a share-generationalgorithm Gm;t of some t-out-of-m secret sharing scheme, we extend it to handlen-bit long strings; that is, Gm;t(�1; :::; �n) def= (s1; :::; sm), where si = si;1 � � � si;nand (s1;j ; :::; sm;j) Gm;t(�j) for every i = 1; :::;m and j = 1; :::; n. Sup-pose that Gm;t(�) 2 (f0; 1g`(j�j))m, and let C be a commitment scheme, and Cbe as in Construction 7.5.28. Consider the corresponding (augmented) share-generation functionality(�; 1j�j; :::; 1j�j) 7! ((s; �); (s2; �2; c); :::; (sm; �m; c)) (7.55)where s def= (s1; :::; sm) Gm;t(�), (7.56)� def= (�1; :::; �m) 2 f0; 1gm�`(j�j)2 (7.57)is uniformly distributed,and c def= (C�1(s1); :::; C�m(sm)). (7.58)Then any m-party protocol that securely computes Eq. (7.55) { (7.58) in the �rstmalicious model is called a veri�able secret sharing (VSS) scheme with parameters(m; t).Observe that each party may demonstrate (to each other party) the validity ofits \primary" share (i.e., the si) with respect to the globally held c, by revealingthe corresponding �i. We shall be particularly interested in VSS schemes withparameters (m; dm=2e); i.e., t = dm=2e. The reason for this focus is that weassume throughout this section that the malicious parties are in strict minority.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

736 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSThus, by the secrecy requirement, setting t � m=2 guarantees that the (less thanm=2) dishonest parties are not able to obtain any information about the secretfrom their shares. On the other hand, by the recovery requirement, settingt � dm=2e guarantees that the (more than m=2) honest parties are able toe�ciently recover the secret from their shares. Thus, in the sequel, wheneverwe mention VSS without specifying the parameters, we mean the VSS withparameters (m; dm=2e), where m is understood from the context.Clearly, by Theorem 7.5.33, Veri�able Secret Sharing schemes exist, providedthat enhanced trapdoor permutations exist. Actually, to establish the existenceof VSS we merely need to apply the �rst compiler to the straightforward pro-tocol that privately computes Eq. (7.55) { (7.58); see Exercise 10. For sake ofsubsequent reference we state the latter result.Proposition 7.5.38 Suppose that trapdoor permutations exist. Then, for everyt � m, there exists a veri�able secret sharing scheme with parameters (m; t).Note that the assumption used in Proposition 7.5.38 is (merely) the one neededfor the operation of the �rst compiler, which amounts to the assumption neededfor implementing the functionalities used in Construction 7.5.32.7.5.5.2 The compiler itselfWe are now ready to present the second compiler. Recall that we are given amulti-party protocol, �, that is secure the �rst malicious model, and we want togenerate an \equivalent" protocol �0 for the second malicious model. Also recallthat both the given protocol and the one generated by the compiler operate in acommunication model consisting of a single broadcast channel. Finally, we notethat the generated protocol uses subprotocols that are secure with respect to the�rst malicious model (and yet the entire protocol will be analyzed with respectto the second malicious model).78Construction 7.5.39 (The second multi-party compiler): Let t def= dm=2e.Given an m-party protocol, �, for the �rst malicious model, the compiler pro-duces the following m-party protocol, denoted �0, for the second malicious model.Inputs: Party i gets input xi 2 f0; 1gn.Random-tape: Party i uniformly selects a random-tape, denoted ri 2 f0; 1gc(n),for the emulation of �.78 For this reason, we cannot utilize a composition theorem for the second malicious model.We comment that such a composition theorem would anyhow be more restricted than Theo-rem 7.5.21. One issue is that the second malicious model depends on a bound on the fractionof dishonest parties. Thus, if the m-party oracle-aided protocol invokes a k-ary functionalitywith k < m then the bound (on the fraction of dishonest parties) may be violated in thesub-protocol that replaces the latter. For this reason, when dealing with the second maliciousmodel, one should con�ne the treatment to m-party oracle-aided protocols that use m-ary(rather than k-ary) functionalities.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 737The sharing phase: Each party shares its input and random-tape with all the par-ties, using a Veri�able Secret Sharing scheme. That is, for i = 1; :::;m,Party i invokes the VSS scheme playing the �rst party with input xiri,while the other parties play the roles of the other parties in Eq. (7.55) {(7.58) with input 1n+c(n).Regarding the ith VSS invocation,79 we denote the output that Party iobtains by (si; �i), and the outputs that each other Party j obtains by(sij ; �ij ; ci), where si = (si1; :::; sim) Gm;t(xiri), �i = (�i1; :::; �im) is uni-formly distributed, ci = (ci1; :::; cim) and cik = C�ik (sik). Note that eitherall honest parties get the correct outcome or they all detect that Party i ischeating and set their outcome to ?.Handling Abort: If Party i aborts the ith VSS invocation, which means thatall honest parties received the outcome ?, then the honest parties set itsinput and random-tape to some default value; that is, they set their recordof the input and random-tape of Party i (which are otherwise unknown tothem) to some default value. Note that by de�nition, the VSS scheme issecure in the �rst malicious model, and thus all honest parties agree onwhether or not the VSS initiator (i.e., Party i) has aborted.80We stress that in case Party i aborts the ith VSS invocation, its (default)input and random-tape become known to all parties. Since the entire exe-cution takes place over a broadcast channel, each party can determine byitself what messages Party i should send in a corresponding execution of�. Thus, there is actually no need to send actual messages on behalf ofParty i.Protocol emulation phase: The parties emulate the execution of the protocol �with respect to the input and random-tapes shared in the �rst phase. Thiswill be done by using a secure (in the �rst malicious model) implementationof the authenticated-computation functionality of Eq. (7.49).That is, Party i, which is supposed to send a message in �, plays therole of the �rst party in Eq. (7.49) and the other parties play the otherroles. The inputs �; �2; :::; �m and the functions h; f , for the functionalityof Eq. (7.49), are set as follows:� The string � = (�1; �2) is set such that �1 = (xiri; si; �i) and �2equals the concatenation of all previous messages sent in the emula-tion of previous steps of �. Recall that (xiri; (si; �i)) is the input-output pair of Party i in the ith invocation of the VSS.79 Indeed this notation is slightly inconsistent with the one used in De�nition 7.5.37. HereParty i plays the �rst party in the VSS, and being consistent with De�nition 7.5.37 wouldrequired calling its share si1 rather than sii. Consequently, the share of Party j in this invocationwould have been denoted si�i(j), where �i(j) is the role that Party j plays in this invocation.However, such notation would have made our exposition more cumbersome.80 This is reected in the corresponding ideal-model adversary that either makes all hon-est parties detect abort (i.e., output ?) or allows all of them to obtain (and output) thecorresponding entries in a valid m-sequence.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

738 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� The string �j equals � def= (ci; �2), where �2 is as above. Recall thatci is part of the output that each other party got in the ith invocationof the VSS.� The function h is de�ned such that h((z; (s1; :::; sm); (r1; :::; rm));) =((Cr1(s1); :::; Crm(sm));). Indeed, h(�1; �2) = �.� The function f is set to be the computation that determines the mes-sage to be sent in �. Note that this message is computable in polynomial-time from the party's input (denoted xi above), its random-tape (de-noted ri), and the previous messages posted so far (i.e., �2).As a result of the execution of the authenticated computation subprotocol,each party either gets an indication that Party i aborted or determines themessage that Party i should have sent in a corresponding execution of �.By de�nition of security in the �rst malicious model, all honest partiesagree on whether or Party i aborted and in case it did not abort they alsoagree on the message it sent.Handling Abort: If a party aborts when playing the role of the �rst partyin an invocation of Eq. (7.49) during the emulation phase then the major-ity parties recover its (actual) input and random-tape, and carry out theexecution on its behalf. Speci�cally, if Party j detects that Party i hasaborted then it broadcasts the pair (sij ; �ij) that it has obtained in the shar-ing phase, and each party uses the correctly decomitted shares (i.e., thesij 's) to reconstruct xiri.We note that the completion of the sharing phase (and the de�nition ofVSS) guarantee that the majority parties hold shares that yield the inputand random-tape of any party. Furthermore, the correct shares are veri�-able by each of the other parties, and so reconstruction of the initial secretis e�ciently implementable whenever a majority of parties wishes to do so.Outputs: At the end of the emulation phase, each party holds the correspondingoutput of the party in protocol �. The party just locally outputs this value.Note that the VSS scheme is implicitly used as a commitment scheme for thevalue of xiri; that is, ci = (ci1; :::; cim) serves as a commitment to the sequence ofshares (si1; :::; sim), which in turn determine xiri. Actually, the main steps in theemulation phase only refer to this aspect of the VSS, whereas only the abort-handling procedure refers to the additional aspects (e.g., the fact that Party jholds the value of the share sij that is determined by the commitment cij as wellas the corresponding decommitment information).Comment: Applying the two (multi-party protocol) compilers one after theother is indeed wasteful. For example, we enforce proper emulation (via theauthenticated-computation functionality) twice; �rst with respect to the semi-honest protocol, and next with respect to the protocol resulting from the �rstcompiler. Indeed, more e�cient protocols for the second malicious model could

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 739be derived by omitting the authenticated-computation protocols generated bythe �rst compiler (and have the second compiler refer to the actions of the semi-honest protocol). Similarly, one can omit the input-commit phase in the �rstcompiler. In general, feeding the second compiler with protocols that are securein the �rst malicious model is an overkill; see further discussion subsequent toProposition 7.5.42.7.5.5.3 Analysis of the compilerOur aim is to establish the following:Theorem 7.5.40 (Restating the second half of Theorem 7.5.15): Suppose thatthere exist collections of enhanced trapdoor permutations. Then any m-ary func-tionality can be securely computable in the second malicious model (using onlypoint-to-point communication lines), provided that a public-key infrastructureexists in the network. Furthermore, security holds even if the adversary canread all communication among honest parties.As will be shown below, given a protocol as guaranteed by Theorem 7.5.33,the second compiler produces a protocol that securely computes (in the secondmalicious model) the same functionality. Thus, for any functionality f , thecompiler transforms protocols for securely computing f in the �rst maliciousmodel into protocols for securely computing f in the second malicious model.This su�ces to establish Theorem 7.5.40, yet it does not say what the compilerdoes when given an arbitrary protocol (i.e., one not provided by Theorem 7.5.33).In order to analyze the action of the second compiler, in general, we introducethe following model that is a hybrid of the semi-honest and the two maliciousmodels. We call this new model, the second-augmented semi-honest model.Unlike the (�rst) augmented semi-honest model (used in the analysis of the �rstcompiler (see proof of Theorem 7.5.33)), the new model allows a dishonest partyto select its random-tape arbitrarily, but does not allow it to abort.De�nition 7.5.41 (the second-augmented semi-honest model): Let � be a multi-party protocol. A coordinated strategy for parties I is admissible as a second-augmented semi-honest behavior (w.r.t �) if the following holds.Entering the execution: Depending on their initial inputs and in coordinationwith each other, the parties in I may enter the execution of � with anyinput of their choice.Selection of random-tape: Depending on the above and in coordination with eachother, the parties in I may arbitrarily select their random-tapes for theexecution of �.Here and in the previous step, the parties in I may employ randomizedprocedures, but the randomization in their procedures is not to be confusedwith the random-tapes for � selected in the current step.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

740 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProper message transmission: In each step of �, depending on its view so far,the designated (by �) party sends a message as instructed by �. We stressthat the message is computed as � instructs based on the party's (possiblymodi�ed) input, its (possibly non-uniformly selected) random-tape, andthe messages received so far, where the input and random-tape are as setin the previous two steps.Output: At the end of the interaction, the parties in I produce outputs dependingon their entire view of the interaction. We stress that the view containstheir initial inputs and all messages sent over all channels.81Intuitively, the compiler transforms any protocol � into a protocol �0 so thatexecutions of �0 in the second malicious model correspond to executions of � inthe second augmented semi-honest model. That is:Proposition 7.5.42 (general analysis of the second multi-party compiler): Let�0 be the m-party protocol produced by the compiler of Construction 7.5.39, whengiven the protocol �. Then, for every probabilistic polynomial-time adversaryA for the second malicious model there exists a probabilistic polynomial-timestrategy B that is admissible (w.r.t �) in the second-augmented semi-honestmodel (of De�nition 7.5.41) such that for every I � [m] with jI j < m=2freal�;I;B(z)(x)gx;z c� freal�0;I;A(z)(x)gx;zProposition 7.5.42 can be viewed as asserting that if � is secure in the second-augmented semi-honest model then �0 is secure in the second malicious model,where by the former term we mean that for every real-model adversary B that isadmissible (w.r.t �) in the second-augmented semi-honest model there exists anideal-model adversaryC as per De�nition 7.5.4 such that fideal(2)f;I;C(z)(x)gx;z c�freal�;I;B(z)(x)gx;z (for every I). Proposition 7.5.42 will be applied to proto-cols that securely compute a functionality in the �rst malicious model. As weshall see below, for such protocols, the second augmented semi-honest model(of De�nition 7.5.41) can be emulated by the second ideal malicious model (ofDe�nition 7.5.4). Thus, Theorem 7.5.40 will follow. We start by establishingProposition 7.5.42.Proof Sketch: Given a real-model adversary A (for �0), we present a cor-responding adversary B that is admissible w.r.t � for the second augmentedsemi-honest model. We stress two points. First, whereas A may abort someparties, the adversary B may not do so (as per De�nition 7.5.41). Second, wemay assume that the number of parties controlled by A (and thus by B) is lessthan m=2 (because nothing is required otherwise).Machine B will use A as well as the ideal-model adversaries derived (as perDe�nition 7.5.3) from the behavior of A in the various subprotocols invoked81 This model is applicable both when the communication is via a single broadcast channeland when the communication is via point-to-point channels that can be wire-tapped by theadversary.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 741by �0. We stress that these ideal-model adversaries are of the �rst maliciousmodel. Furthermore, machine B will also emulate the behavior of the trustedparty in these ideal-model emulations (without communicating with any trustedparty; there is no trusted party in the augmented semi-honest model). Thus, thefollowing description contains an implicit special-purpose composition theorem(in which subprotocols that are secure in the �rst malicious model are used toimplement the oracles of an oracle-aided protocol that is secure in the secondmalicious model).Entering the execution and selecting a random-tape: B invokes A (on the veryinput supplied to it), and decides with what input and random-tape toenter the execution of �. Towards this end, machine B emulates theexecution of the sharing phase of �0, using A (as subroutine). Machine Bsupplies A with the messages it expects to see, thus emulating the honestparties in �0, and obtains the messages sent by the parties in I (i.e., thosecontrolled by A). We stress that this activity is internal to B, and involvesno real interaction (of B in �).Speci�cally, B emulates the executions of the VSS protocol, in attemptto obtain the values that the parties in I share with all parties. Theemulation of each such VSS-execution is done by using the ideal-modeladversary derived from (the residual real-model malicious adversary) A.We stress that in accordance with the de�nition of VSS (i.e., security inthe �rst malicious model), the ideal-model adversary derived from (theresidual) A is in the �rst malicious model, and may abort some parties.Note that (by De�nitions 7.5.3 and 7.5.2) this may happen only if theinitiator of the VSS is dishonest. In case the execution initiated by someparty aborts, its input and random-tape are set to the default value (as inthe corresponding abort-handling of �0). Details follow.� In an execution of VSS initiated by an honest party (i.e., in whichan honest party plays the role of the �rst party in VSS), machine Bobtains the corresponding augmented shares (available to I).82 Ma-chine B will use an arbitrary value, say 0n+c(n), as the �rst party'sinput for the current emulation of the VSS (because the real value isunknown to B). In emulating the VSS, machine B will use the ideal-model adversary, denoted A0, that emulates the behavior of A in thisVSS (in �0), when given the history so far. We stress that since theinitiating party of the VSS is honest, this ideal-model adversary (i.e.,A0) cannot abort any party.Invoking the ideal-model adversaryA0, and emulating both the honest(ideal-model) parties and the trusted party, machine B obtains theoutputs of all parties (i.e., and in particular the output of the initiat-ing party). That is, machine B emulates the sharing of value 0n+c(n)by the initiating party, and emulates the response of the trusted oracle82 These will be used in the emulation of future message-transmission steps.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

742 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS(i.e., by setting s Gm;t(0n+c(n)), uniformly selecting � of adequatelength, and computing the outputs as in Eq. (7.55) { (7.58)).� In an execution of VSS initiated by a party in I (i.e., a dishonestparty plays the role of the �rst party in VSS), machine B obtains thecorresponding input and random-tape of the initiator as well as therandomization used in the commitment to it. As before, machines Buses the derived ideal-model adversary, denoted A0, to emulate theexecution of the VSS. Recall that A0 emulates the behavior of A inthe corresponding execution of the VSS.Suppose that we are currently emulating the instance of VSS initiatedby Party i, where i 2 I . Then, B invokes A0 on input xiri (i.e., theinitial input and random-tape of Party i), and emulating both thehonest (ideal-model) parties and the trusted party, machine B obtainsthe outputs of all parties (including the \VSS-randomization" (i.e.,(si; �i)) handed to Party i (which is in I)). A key point is that machineB has obtained, while emulating the trusted party, the input handedby A0 to the trusted party. This value is recorded as the modi�edinput and random-tape of Party i.In case the emulated machine did not abort the initiator (i.e., Party i),machine B records the above value as well as the randomization usedby B (as trusted party) in the execution of VSS. Otherwise (i.e., Aaborts Party i in the invocation of VSS initiated by it), the inputand random-tape of Party i are set to the default value (as in �0). Ineither case, B concatenates the emulation of the VSS to the historyof the execution of A.Thus, inputs and random-tapes are determined for all parties in I , de-pending only on their initial inputs. (All this is done before entering theactual execution of �.) Furthermore, the view of machine A in the shar-ing phase of �0 has been emulated, and the VSS-randomizations (i.e., thepairs (si; �i)) used in the sharing of all values have been recorded by B.(Actually, it su�ces to record the VSS-randomization handed to dishonestparties and the commitments made on behalf of honest ones; these willbe used in the emulation of the message-transmission steps of �0, wherethe VSS-randomization will be used only in case the corresponding partyaborts.)Subsequent steps { message transmission: Machine B now enters the actual ex-ecution of � (with inputs and random-tapes for I-parties as determinedabove). It proceeds in this real execution of �, along with emulating thecorresponding executions of the authenticated-computation of Eq. (7.49)(which are invoked in �0).In a message-transmission step by an honest party in �, machine B obtainsfrom this honest party (in the real execution of �) a message, and emulatesan execution of the authenticated-computation protocol resulting in this

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 743message as output. In a message-transmission step by dishonest party in �,machine B computes the message to be sent as instructed by �, based onthe input and random-tape determined above, and the messages obtainedso far (in �). In addition, B emulates an execution of the authenticated-computation protocol resulting in this message as output. The emulationof each execution of the authenticated-computation protocol, which se-curely computes (in the �rst malicious model) the functionality Eq. (7.49),is done by using the malicious ideal-model adversary derived from A. Thefact that in these emulations machine B also emulates the trusted partyallows it to set the outcome of the authenticated-computation protocol to�t the message being delivered. We stress that the fact that a (dishonest)party may abort some parties in these emulations of �0 does not result inaborting the real execution of � (and is merely reected in the transcriptof these emulations). Details follow.� In a message-transmission step by a honest party in �, machine B�rst obtains from this party (in the real execution of �) a message,denoted msg. This completes all that is done in this step with respectto communication in �.Next, machine B proceeds in emulating the corresponding message-transmission subprotocol of �0. Firstly, machine B derives the ideal-model adversary, denoted A0, which corresponds to the behavior ofA in the corresponding execution of the authenticated-computationsubprotocol (executed by protocol �0). Invoking the ideal-model ad-versary A0, and emulating both the honest (ideal-model) parties andthe trusted party, machine B sets the trusted-party's replies (to par-ties in I) to equal either msg or (�; msg), where � is as in Construc-tion 7.5.39.83 The decision which reply to deliver to each party in Idepends on the input that this party hands to the trusted party (orrather the input that A0 hands on its behalf): if the party hands thecorrect value �, then it receives msg otherwise it receives (�; msg).Note that the emulation of the authenticated-computation subpro-tocol is carried out so to produce an output in fmsg; (�; msg)gjIj,where msg does not necessarily �t the output of the authenticated-computation functionality of Eq. (7.49) on the corresponding dummyinputs. However, the machine A0 used in the emulation cannot detectthat we are cheating because the inputs that A0 gets (i.e., commit-ments to dummy values) are computationally indistinguishable fromthe correct inputs (i.e., commitments to values that correspond to theunknown input and random-tape of the corresponding honest party).Finally, B concatenates the emulation of the authenticated-computationsub-protocol to the history of the execution of A. (Note that since83 Recall that � = (ci; �2), where ci is the commitment produced by the VSS that wasinvoked by Party i, which is assumed to be the sender in the current message-transmissionstep, and �2 equals the sequence of messages sent so far in the emulated execution of �.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

744 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSthe initiator of the authenticated-computation subprotocol is honest,abort is not possible here, by de�nition of the �rst ideal model.)� In a message-transmission step by a dishonest party in �, machine B�rst computes the message to be sent according to �. This messageis computed based on the input and random-tape determined (andrecorded) in the emulation of the sharing phase of �0, and the mes-sages received so far (in the execution of �). Denote the resultingmessage by msg. Machine B completes the execution of this step in� by posting msg on the broadcast channel.Next, machineB proceeds in emulating the corresponding authenticated-computation subprotocol of �0. Firstly, machine B derives the ideal-model adversary, denoted A0. Invoking A0 and emulating both thehonest (ideal-model) parties and the trusted party, machine B pro-duces an emulation of the corresponding execution of the authenticated-computation protocol. The input (for the transmitting party) usedby B in this emulation equals the value recorded in the emulation of(the corresponding VSS in) the sharing phase of �0.Note that this emulation (of the corresponding authenticated-computationsubprotocol of �0) either produces the very same message msg (ora pair (�; msg) as above) or aborts the sender. In the latter case,we emulate the abort-handling procedure of �0, by using the corre-sponding VSS-randomization (as recorded in the sharing phase of �0).In both cases, B concatenates the emulation of the authenticated-computation protocol (and possibly also the abort-handling proce-dure) to the history of the execution of A.Note that each message-transmission step is implemented in polynomial-time, and each message posted is computed exactly as instructed by �.(We stress again that the emulation of an aborting event in �0 does notresult in aborting the execution of any party in �.)Output: Machine B just outputs whatever machine A outputs given the execu-tion history composed (or actually emulated) as above.Clearly, machine B (described above) implements a second-augmented semi-honest behavior with respect to �. It is left to show thatfreal�0;I;A(x)gx c� freal�;I;B(x)gx (7.59)There are two di�erences between the two ensembles referred to in Eq. (7.59):1. In the �rst distribution (i.e., real�0;(A;I)(x)), secure (in �rst maliciousmodel) protocols implementing VSS and authenticated-computation (ofEq. (7.55) { (7.58) and Eq. (7.49), respectively) are executed; whereas inthe second distribution (i.e., real�;(B;I)(x)) these executions are emulatedusing the corresponding ideal-model adversaries.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.6. * THE PRIVATE CHANNEL MODEL AND PERFECT SECURITY 7452. The emulation of Eq. (7.49) in real�;(B;I)(x) is performed with a poten-tially wrong input; speci�cally, with commitments to dummy values ratherthan to the correct values.However, these di�erences are computationally undetectable.Proof of Theorem 7.5.40: Given an m-ary functionality f , let � be an m-party protocol, as guaranteed by Theorem 7.5.33, for securely computing f inthe �rst malicious model. (Actually, we merely need a protocol operating in thebroadcast-channel (rather than point-to-point) communication-model.) We nowapply the compiler of Construction 7.5.39 to � and derive a protocol �0. ByProposition 7.5.42, for any e�cient real-model adversary A (for �0) there existsan e�cient admissible behavior (w.r.t �) in the second-augmented semi-honestmodel, denoted B, such that for every I � [m] with jI j < m=2freal�0;I;A(x)gx c� freal�;I;B(x)gx (7.60)One key observation is that B constitutes a benign form of a real-model ad-versarial behavior w.r.t � (which is certainly allowed by the �rst maliciousmodel). Speci�cally, the malicious behavior of B amounts to replacing inputsand random-tapes arbitrarily, and executing � with these replaced values andwithout aborting any party. Thus, by the security of � (in the �rst maliciousmodel), the real-model adversary B can be emulated by an ideal-model ad-versary C that operates in the �rst ideal-model (and so may potentially abortparties). However, since B does not abort parties, then neither does C (exceptwith negligible probability). It follows that C is essentially an admissible ideal-model adversary for the second malicious party, or, more accurately, C behavesin a way that is statistically close to a second ideal-model adversary C 0 (whichbehaves as C except that it never aborts). Combining Eq. (7.60) with the latterobservations, we obtain (for every jI j < m=2)freal�0;I;A(x)gx c� freal�;I;B(x)gxc� fideal(1)f;I;C(x)gxs� fideal(2)f;I;C0(x)gxWe are almost done. The only problem is that �0 operates in the communicationmodel of a single broadcast channel. As in the proof of Theorem 7.5.33, thisproblem is resolved by applying the post-compiler (i.e., Proposition 7.5.19).7.6 * The Private Channel Model and PerfectSecurityIn this section we present an alternative treatment of general secure multi-partyprotocols. Speci�cally, we assume the existence of private channels between each

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

746 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSpair of parties, and present protocols that are \perfectly secure" (i.e., perfectlyemulate a trusted party) and do so without relying on any intractability as-sumptions. However, security holds only in case the honest parties are in strictmajority, and thus the current treatment is not meaningful for the two-partycase. Let us summarize the Pros and Cons of the current treatment in compar-ison to the treatment o�ered in Section 7.5.pros: Abstracting away computational issues. In particular:1. Making no intractability assumptions.2. Emulating a trusted party in a perfect sense (rather than in a computationally-indistinguishable sense), even with respect to computationally-unboundedadversaries.cons: Limited applicability. In particular:1. A strict majority of honest parties is required (even for withstandingsemi-honest adversaries). Thus, the currrent treatment is inapplicableto the two-party case.2. Perfectly-private channels are postulated to exist.Again, our ultimate goal is to design protocols that withstand any feasible ad-versarial behavior, and again we proceed in two steps: �rst dealing with thesemi-honest model and next with the malicious model. However, here, protocolsfor the malicious model are derived by extending the ideas that underlie thesemi-honest protocols, rather than by compiling the latter.7.6.1 De�nitionsWe consider both the semi-honest and the malicious models, where in both caseswe refer to explicit bounds on the number of dishonest parties. Furthermore, inboth cases, we consider a communication network consisting of point-to-pointchannels that cannot be wire-taped by the adversary. Finally, in both models,we require the relevant probability ensembles to be statistically indistinguishablerather than (only) computationally indistinguishable.Security in the semi-honest model. The following de�nition is derivedfrom De�nition 7.5.1 by restricting the number of dishonest parties and strength-ening the indistinguishability requirement.De�nition 7.6.1 (t-privacy of m-party protocols): Let f be an m-ary function-ality, and � be an m-party protocol for computing f . As in De�nition 7.5.1, wedenote the joint view of the parties in I � [m] by view�I (x), and the correspond-ing output sequence of all parties by output�(x). We say that � t-privatelycomputes f if there exists a polynomial-time algorithm, denoted S, such that forevery I � [m] of cardinality at most t it holds thatf(S(I; xI ; fI(x)) ; f(x))gx2(f0;1g�)ms� f(view�I (x) ; output�(x))gx2(f0;1g�)m (7.61)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.6. * THE PRIVATE CHANNEL MODEL AND PERFECT SECURITY 747where xI and fI denote projections of the corresponding m-ary sequence on thecoordinates in I. In case the ensembles in Eq. (7.61) are identically distributed,we say that the emulation is perfect.We stress that Eq. (7.61) requires statistical indistinguishability, whereas theanalogue requirement in De�nition 7.5.1 is of computational indistinguishability.As in De�nition 7.5.1, the view of parties in I does not include messages sentamong parties in �I def= [m] n I .Security in the malicious model. Analogously, the following de�nition isderived from De�nition 7.5.4 by restricting the number of dishonest parties, dis-allowing wire-tapping, and strengthening the indistinguishability requirement.Recall that De�nition 7.5.4 refers to security in the second malicious model,which is reected in the choice of the ideal model. We further strengthen thede�nition by allowing computationally-unbounded real-model adversaries, andby requiring the corresponding ideal-model adversaries to be of \comparablecomplexity" (i.e., have polynomially-related running-time). Speci�cally, we saythat algorithm B has comparable complexity to algorithm A if there exists a poly-nomial p such that for every y it holds that timeB(y) � p(timeA(y)), wheretimeA(y) (resp., timeB(y)) denotes the number of steps made by A (resp., B)on input y.De�nition 7.6.2 (t-security ofm-party protocols): Let f , �, and ideal(2)f;I;B(z)(x)be exactly as in De�nition 7.5.4. The real-model adversary is de�ned as in De�-nitions 7.5.3 and 7.5.4, except that here the real-model adversary A does not seemessages sent among honest parties (i.e., parties in �I). We say that � t-securelycomputes f if for every probabilistic algorithm A (representing a real-model ad-versary strategy) there exists a probabilistic algorithm of comparable complexityB (representing an ideal-model adversary strategy) such that for every I � [m]of cardinality at most t it holds thatfideal(2)f;I;B(z)(x)gx;z s� freal�;I;A(z)(x)gx;z (7.62)In case the ensembles in Eq. (7.62) are identically distributed, we say that theemulation is perfect.We stress that Eq. (7.62) requires statistical indistinguishability, whereas theanalogue requirement in De�nition 7.5.4 is of computational indistinguishability.More importantly, we make no computational restrictions regarding the real-model adversary, and require the corresponding ideal-model adversary to be ofcomparable complexity. The latter requirement is very important: it preventsobviously bad protocols (see Exercise 18) and it guarantees that De�nition 7.6.2is actually a strengthening of De�nition 7.5.4 (see Exercise 19).7.6.2 Security in the Semi-Honest ModelThe following construction of t-privatem-party protocols, for t < m=2, is a mod-i�cation of the construction presented in Section 7.5.2 (which in turn generalized

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

748 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSthe construction presented in the two-party case (i.e., Section 7.3)). Recall thatthe core of these constructions is the privately-computed propagation of sharesof bits through a circuit that represents the desired computation. In the previ-ous cases (see Sections 7.3 and 7.5.2), we used a very simple m-out-of-m secretsharing scheme (i.e., a bit was shared by m random bits that sum-up to thevalue of the secret bit). Here, we use the more sophisticated (t + 1)-out-of-msecret sharing scheme of Construction 7.5.35 (i.e., a bit is shared by the valuesof a random degree t polynomial with free-term that equals the value of thesecret bit). Thus, our focus is on propagating these types of shares through thecircuit, and on doing so via a t-private computation. Again, the heart of theconstruction is performing the propagation through a single multiplication gate.Let us clarify the above discussion by being more speci�c about the details.We �x some prime p > m, and consider polynomials of degree t over GF(p).84Recall that the value of such a polynomial at t+1 arbitrary (known) points allowsto recover the polynomial and speci�cally its free term. On the other hand, thevalue of a random (degree t) polynomial at t arbitrary (known) points does notreveal information about the value of the free term of the polynomial. Thus,each party will share each of its input bits with all other parties, by uniformlyselecting a random (degree t) polynomial with free-term equal the value of thisbit, and hand to Party i the value of this polynomial at point i.Suppose that the parties hold the shares of two GF(p) values and wish toderive shares of the sum of these values, where all arithmetic operations refer toGF(p). Then, letting each party add the two shares it holds, yields the desiredshares. That is, suppose that the values u and v are shared using the (degree t)polynomials a() and b(), such that u = a(0) and v = b(0), and Party i holds theshares ai = a(i) and bi = b(i). Then the ai + bi's are shares of a polynomial c()that has free term u+v (i.e., letting c(z) = a(z)+b(z), it holds that c(i) = ai+biand c(0) = u+v). Furthermore, the degree of c() is at most t. Thus, we are ableto propagate shares through an addition gate, and we do so in a totally privatemanner (because only local computations are used).It is appealing to try to do the same in case of multiplication (rather thanaddition). Indeed, the entire argument goes through, except that the corre-sponding polynomial c may have degree greater than t (but not more than 2t).Thus, we need a more sophisticated way of propagating shares through multi-plication gates. Using the same notations (as above), we consider the following(randomized) process:Construction 7.6.3 (t-privatem-party protocol for propagating shares througha multiplication gate): Recall that t < m=2, and so 2t � m� 1.Input: Party i enters with input (ai; bi), where ai = a(i) and bi = b(i) for degreet polynomials a() and b().The protocol itself proceeds as follows.84 Here and below, when we say a degree d polynomial we actually mean a polynomial ofdegree at most d.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.6. * THE PRIVATE CHANNEL MODEL AND PERFECT SECURITY 7491. For every i, Party i (locally) computes ci ai � bi.Indeed, these ci's are the values of the polynomial c(z) def= a(z) � b(z) at thecorresponding i's, and c(0) = u � v. However, c may have degree 2t (ratherthan at most t).2. For every i, Party i shares ci with all other parties. That is, Party i selectsuniformly a polynomial qi of degree t such that qi(0) = ci, and sends qi(j)to Party j, for every j.Motivation: Extrapolation of the ci's yields the value of c(0) = u�v. Below,we will let each party perform the corresponding operation on the shares itobtained. We will show that this will yield shares with the desired proper-ties.Recall that by the Extrapolation Theorem, there exist constants 1; :::; msuch that for every polynomial q of degree m� 1 it holds thatq(0) = mXi=1 iq(i) (7.63)(Speci�cally, i = �(1)i+1 � �mi �.)3. For every j, Party j (locally) computes dj Pmi=1 iqi(j), where 1; :::; mare the extrapolation constants satisfying Eq. (7.63), and qi(j) is the sharethat Party j received from Party i in Step 2.Output: Party i exits with output di.It is quite clear that Construction 7.6.3 yields no information about u and vto any coalition of t (or less) parties. The reason being that the only new in-formation obtained by t parties (i.e., t shares of each of the other ci's) yieldsno information about the polynomials a and b (because it yields no informationabout these ci's). It is also clear that every sequence of t of the di's is uni-formly distributed (because the values of the qi's at any t points are uniformlydistributed). What is less clear is that the di's are indeed admissible shares ofthe desired value (i.e., di = d(i) for some degree t polynomial d having free termu � v). This fact will be established next.Fact 7.6.4 Let the di's be de�ned as in Construction 7.6.3, and t < m=2. Thenthere exists a degree t polynomial, d, such that d(0) = a(0) � b(0) and d(i) = difor i = 1; :::;m.Proof: Consider the formal polynomial q(z) def= Pmi=1 iqi(z), where the qi's arethe polynomials selected at Step 2. Since each qi has degree t, this holds also forq. For every j = 1; :::;m, by Step 3, we have dj = Pmi=1 iqi(j) = q(j), wherethe second equality is due to the de�nition of q. Finally, note thatq(0) = mXi=1 iqi(0)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

750 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS= mXi=1 ici= mXi=1 i � a(i) � b(i)= a(0) � b(0)where the second equality is by Step 2, the third equality is by Step 1, and thelast equality is by the Extrapolation Theorem (applied to the 2t�m� 1 degreepolynomial a(z) � b(z)).Conclusion: Using Fact 7.6.4, for t < m=2, one can show (see Exercise 23)that Construction 7.6.3 constitute a t-private computation of the (partial)m-aryfunctionality ((a(1); b(1)); :::; (a(m); b(m))) 7! (r(1); :::; r(m)) (7.64)where a and b are degree t polynomials and r is a uniformly distributed degree tpolynomial with free term equal a(0) � b(0). By a straightforward adaptation ofConstruction 7.5.10 and its analysis, it follows that any m-ary functionality canbe t-privately reduced to Eq. (7.64). Finally, by using a suitable CompositionTheorem, we obtain:Theorem 7.6.5 For t < m=2, any m-ary functionality is t-privately com-putable. Furthermore, the emulation is perfect.In contrast, very few m-ary functionalities are t-privately computable for t �m=2. In particular, the only m-ary Boolean-valued functions that are m=2-privately computable are linear combinations of Boolean-valued functions of theindividual inputs (i.e., f(x1; :::; xm) =Pmi=1 cif (i)(xi) mod 2).7.6.3 Security in the Malicious ModelIn order to deal with the malicious model, we replace Construction 7.6.3 by amore robust protocol that t-securely computes Eq. (7.64). In particular, theprotocol should withstand a possible modi�cation of t of the inputs (which inparticular may not �t the domain of the functionality as partially de�ned above).This turns out to be possible, provided t < m=3, and so we get:Theorem 7.6.6 For t < m=3, any m-ary functionality is t-securely computable.Furthermore, the emulation is perfect.We briey sketch the ideas that underlie the proof of Theorem 7.6.6. Let us �rstassume that t < m=4, and note that Steps 2{3 of Construction 7.6.3 constitutea t-private computation of the (partial) m-ary functionality(c(1); :::; c(m)) 7! (r(1); :::; r(m)) (7.65)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 751where c is a degree 2t polynomial and r is a uniformly distributed degree t poly-nomial with free term equal c(0). We wish to t-securely compute Eq. (7.65).Let us �rst consider the related task of t-securely computing c(0). Construc-tion 7.5.10 suggests that c(0) can be computed by extrapolation of the c(i)'s,and that extrapolation is a linear function, which (as such) can be t-privatelycomputed (see Exercise 20). However, when some parties are malicious, simpleextrapolation will fail. What we need is a \robust extrapolation" procedure,which corresponds to error-correction of Reed-Solomon codes, which in turn isa linear function of the given sequence. Speci�cally, this task is to �nd the freeterm of the unique degree 2t polynomial (i.e., c) that �ts at least m � t of theinputs (i.e., the correct c(i)'s), and we can perform this task in a t-secure man-ner. (The desired polynomial is indeed unique, because otherwise we get twodi�erent degree 2t polynomials that agree on m� 2t � 2t+1 of the inputs.) Fi-nally, observe that the parties can t-securely generate shares of a random degreet polynomial with free term equal zero. Combining the two linear computations,one obtains the desired t-secure implementation of Eq. (7.65), provided thatt < m=4.In order to handle the case m=4 � t < m=3, we have to work directly withEq. (7.64), rather than with Eq. (7.65); that is, we use the fact that the partiesactually hold the shares of two degree t polynomials rather than only the productof these shares (which corresponds to shares of a degree 2t polynomial).7.7 Miscellaneous7.7.1 * Three deferred issuesIn this section we briey discuss three important issues that were avoided (forsake of simplicity) in previous sections.7.7.1.1 Partial fairness or on exchanging secretsAs commented in Section 7.2.3, in general, no two-party protocol can guaranteeperfect fairness; that is, it cannot be guaranteed that one party obtains itsdesired output if and only if the other party obtains its own desired output.Intuitively, an adversary may always abort at the �rst possible time at whichit obtains its output, and this means that one of the parties may obtain thedesired output while the other party does not quite get its own output. In fact,in the speci�c (two-party and multi-party) protocols that we have presented, thisphenomenon occurs in an extreme sense; that is, Party 1 gets the output beforeany other party gains any knowledge regarding its own output. As we will showbelow, the severity of this phenomenon can be reduced (but, as shown in [82],can not be totally eliminated). That is, \partial fairness" (alas not \perfectfairness") may be achieved in some sense. In the rest of this section, we focuson two-party protocols, but similar treatment can be applied to multi-partyprotocols (lacking a honest majority).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

752 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSA general framework for obtaining \partial fairness" consists of �rst com-puting shares of both desired outputs, and next gradually revealing pieces ofthese shares such that a party reveals the next piece only if its counterpart hasrevealed the previous piece. The parties should be able to verify the correctnessof the revealed pieces, which can be achieved by generating also commitmentsto these pieces (and asking the revealing party to also provide the correspondingdecommitment information). Thus, for a functionality f , which without loss ofgenerality satis�es jf1(x; y)j = jf2(x; y)j, we may proceed in two stages:1. The parties securely compute shares of the desired outputs of f . Speci�-cally, the parties securely compute the functionality(x; y) 7! ((v1 � s1; s2; r1; c) ; (s1; v2 � s2; r2; c))where (v1; v2) f(x; y), the si's are uniformly distributed in f0; 1gjvij,and c Cr1�r2(v1; v2), for uniformly distributed r1; r2 2 f0; 1gjv1;v2j2 .Note that, at this stage, each individual party obtains no knowledge ofthe desired outputs, but together they hold (veri�able) secrets (i.e., thevi � si's and si's) that yield both outputs.2. The parties gradually exchange the secrets that they hold. That is, Party 1reveals pieces of s2 in exchange for pieces of s1 (revealed by Party 2), whereone piece of s2 is revealed per one piece of s1. The pieces are revealed byusing a secure computation of an adequate functionality. Suppose thatParty i is supposed to obtain the piece �i(si), where �i may be a (prede-termined) Boolean function or a randomized process. Then the parties se-curely compute the functionality that maps ((a1; a2; �1; 1) ; (b1; b2; �2; 2))to (�1(b1); �2(a2)) if 1 = 2 = C�1��2(a1 � b1; a2 � b2) and to (�; �) oth-erwise. Indeed, each party enters this secure computation with the inputit has received in the �rst stage; that is, Party 1 (resp., Party 2) enterswith input (v1 � s1; s2; r1; c) (resp., (s1; v2 � s2; r2; c)).The entire approach (and in particular the gradual exchange of secrets) dependson a satisfactory de�nition of a piece of a secret. Such a de�nition should satisfytwo properties: (1) given su�ciently many pieces of a secret, one should beable to recover the secret, whereas (2) getting yet another piece of the secretcontributes little to the knowledge of the secret. We admit that we do not knowof a de�nition (of a piece of a secret) that is \uncontroversially satisfactory",still some suggestions (for what these pieces of information may be) seem quiteappealing. For example, consider the randomized process � that maps the n-bitlong secret �1 � � ��n to the n-bit long string �1 � � � �n such that �i = �i withprobability 12 + " and �i = 1� �i otherwise, for every i, independently.85 Then,85 An alternative randomized process � maps the n-bit string s to the random pair (r; b)such that r is uniformly distributed in f0; 1gn and b 2 f0; 1g equals the inner-product (mod 2)of s and r with probability 12 + " (and the complementary value otherwise). In this case, eachpiece carries O("2) bits of information about s, whereas after seeing O(n="2) such pieces onepractically obtains s.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 753each piece carries O(n"2) bits of information, whereas after seeing t such piecesof the secret one can guess it with success probability at least 1� n � exp(�t"2),which for t = O(n="2) means practically obtaining the secret. However, ifParty 1 knows that s1 2 f0n; 1ng whereas Party 2 only knows that s2 2 f0; 1gn,then �(s1) seems more meaningful to Party 1 than �(s2) is to Party 2. Is it reallyso or is the proposed exchange actually fair? Note that things are even morecomplex (than they seem), because the uncertainty of the parties is actually notinformation-theoretic but rather computational.7.7.1.2 The adaptive modelThe de�nitions presented in Section 7.5.1 referred to adversaries, called non-adaptive, that control a predetermined set of parties (which, of course, is notknown to the honest parties).86 In this section we consider a stronger type ofadversaries, called adaptive, that can select the parties that they control as theexecution proceeds. To demonstrate the power of adaptive adversaries, consideran m-party protocol in which Party 1 uniformly selects an m=3-subset J of theparties, publicizes J , and shares its own input with the parties in J as a whole(i.e., it hands each Party j in J a random rj such that Pj2J rj equals its owninput). Treating m as a parameter, this protocol (for computing nothing) issecure with respect to De�nition 7.5.4, essentially because for every set I of lessthan m=2 parties it holds that the probability that a random m=3-subset J iscontained in I is exponentially vanishing in m. However, an adaptive adversarythat selects the set of parties that it controls to equal the publicized set J ,obtained the input of Party 1 without controlling it (and hence demonstratesthat the protocol is insecure with respect to adaptive adversaries).Intuitively, one may think of an adaptive adversary as one that can decidewhich parties to corrupt (i.e., seize control of) during the course of the executionof the protocol. Security in the adaptive model means that even an adaptiveadversary cannot gain from the execution more than what is unavoidable (evenin the presence of a trusted party).To actually de�ne security with respect to adaptive adversaries, we should�rst de�ne an adequate ideal model, which corresponds to what is unavoidablewhen considering adaptive adversaries. The crucial point is that even in an ideal-model execution, the adversary may select the parties that it controls adaptively,and based on the information it has gathered so far (i.e., the inputs of the partiescontrolled so far).87 We stress that once the adversary seizes control of a party,it knows the party's initial input (and in the real model it also knows its random-tape and the messages that this party has received so far).When de�ning the result of such an ideal-model execution, we include in italso the set of parties that the adversary controls. The same is done when de�n-86 The issue of adaptivity also arises, but in a more subtle way, in case of two-party protocols.87 The non-adaptive model can be viewed as a special case in which the adversary selectsthe parties that it controls up-front, before learning any information regarding the currentexecution. But in general (in the adaptive model), only the choice of the �rst controlled partyis oblivious of the execution.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

754 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSing the result of the real-model execution. Consequently, when we require thatthe ideal-model execution can emulate the real-model execution, the executionsmust refer to the same (or computationally indistinguishable) sets of controlledparties. Actually, one should also consider the order in which the controlledparties are selected. To clarify this discussion, let use consider an extension ofDe�nition 7.5.4 (i.e., the second malicious model) to the adaptive model.De�nition 7.7.1 (security in the malicious adaptive model, a sketch): Let fand � be as in Section 7.5.1, and t be a bound on the number of parties that theadversary is allowed to control (e.g., t < m=2).� A t-adaptive ideal-model adversary is a randomized process that operates inup-to t+1 steps, which are partitioned into two main phases. In each stepof the �rst phase, based on the information available to it, the adversarydecides whether to seize control of another party or to move to the secondphase. In the �rst case, the adversary also determines the identity of thenew party to be controlled, and obtains its local input. In the second case,the adversary invokes the trusted party, and supplies the trusted party withinputs of its choice corresponding to the parties that it currently controls.At this point the other parties supply the trusted party with their original in-puts, the trusted party determines the corresponding outputs, and provideseach party with its corresponding output, where the adversary receives allthe outputs of parties that it controls.88In each step of the second phase, based on the information available to it,the adversary decides whether or not to seize control of another party andif so also determines its identity. Consequently, the adversary receives thelocal input and output of this party. The joint computation in the idealmodel, under an adaptive adversary, is de�ned as the concatenation ofthe outputs of the uncontrolled parties, the adversary's output, and thesequence of the parties on which the adversary gained control.� A t-adaptive real-model adversary is a randomized strategy that correspondsto an attack on the actual execution of the protocol. Such an adversarymay adaptively select up-to t parties it wishes to control, obtain their cur-rent view of the execution (as per De�nition 7.2.1), and determine theiractions. The adversary may select some parties before the actual execu-tion starts, some parties during the actual execution, and some after it hasterminated, as long as the total number of selected parties is at most t.The joint computation in the real model, under an adaptive adversary, isde�ned as the concatenation of the outputs of the uncontrolled parties, theadversary's output, and the sequence of the parties on which the adversarygained control.88 As in De�nition 7.5.4 (and unlike in De�nition 7.5.2), the trusted party always answersall parties; that is, the adversary has no option of preventing the trusted party from answeringthe honest parties. Recall that here the trusted party is invoked (by the adversary) at thetime the adversary decides that it controls enough parties.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 755� Protocol � for computing f is called t-adaptively secure if for every e�cientt-adaptive real-model adversary A there exists an e�cient t-adaptive ideal-model adversary B such that the joint computation in the real model underA is computationally indistinguishable from the joint computation in theideal model under B.We stress that in the real model, when the adversary seizes control of a party, itgets the party's view of the execution so far (where the party's view is as de�nedin De�nition 7.2.1). In particular, the protocol's possible instructions to erasecertain data does not a�ect the party's view, which always contains its input,its random-tape and all messages it has received so far. A weaker notion ofsecurity postulates that when the adversary seizes control of a party, it only getsthe current values of the party's local variables as determined by the protocol(in which case the adversary does not obtain data that was explicitly erasedby an instruction of the protocol). Our de�nitional choice is motivated by thefear that the past values of the party's local variables (i.e., the party's view asper De�nition 7.2.1) may be available somewhere on its computing system; seeanalogous discussion in Section 7.2.2 (regarding the semi-honest model).Theorem 7.7.2 (main results regarding adaptively secure protocols):1. In the private channel model, any m-ary functionality can be computed in ab(m� 1)=3c-adaptively secure manner. Furthermore, as in Theorem 7.6.6,the emulation is perfect.2. Assuming the intractability of inverting RSA (or of the DLP), any m-aryfunctionality can be computed in a b(m� 1)=3c-adaptively secure manner,even when the adversary can tap all communication lines.Part 1 follows by extending the proof of Theorem 7.6.6; that is, by observingthat the protocols used towards proving the latter result are in fact adaptivelysecure. Proving Part 2 is more problematic. In particular, a straightforwardapplication of the pre-compiler described in Section 7.5.3.1 seems to fail. Thesource of trouble is that standard encryption schemes, which may be used toemulate private (point-to-point) channels over ordinary (point-to-point) chan-nels, e�ectively \commit" to the single value that was sent (which is a problembecause of messages sent between honest parties that are later corrupted by theadversary). Intuitively, the solution is to use non-standard encryption schemes(i.e., \non-committing" ones). The latter can be constructed using trapdoorpermutations with certain additional properties.7.7.1.3 Reactive systemsOur treatment so far has focused on functionalities that represent standard(multi-party) computations, mapping (sequences of) inputs to (sequences of)outputs. A more general treatment may refer to (multi-party) reactive systemsthat iteratively respond to inputs presented from the outside. Furthermore, the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

756 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSfunctionalities of these reactive systems may depend on a (global) state thatthey maintain and update. This global state may not be known to any individ-ual party (but is rather the concatenation of the local states that the individualparties maintain and update). Thus, we view (multi-party) reactive systems asiterating the following steps (for an a-priori unbounded number of times):89� Parties are given inputs for the current iteration; that is, in the jth iterationParty i is given input x(j)i . In addition, there is a global state: The globalstate at the beginning of the jth iteration is denoted s(j), where the initialglobal state is empty (i.e., s(1) = �).� Depending on the current inputs and the global state, the parties aresupposed to compute outputs for the current iteration as well as updatethe global state. That is, the outputs in iteration j are determined bythe x(j)i 's, for all i's, and s(j). The new global state, s(j+1), is determinedsimilarly (i.e., also based on x(j)i 's and s(j)).Being an abstraction, one may think of the global state as being held by a trustedparty. In other words, reactive systems are captured by reactive functionalitiesin which the trusted party maintains a state and interacts with the actual par-ties in iterations. Indeed, in each iteration, the trusted party obtains an inputfrom each party, responds (as directed by the reactive functionality) with cor-responding outputs, depending also on its state, and updates its state. Notethat the latter formulation �ts a de�nition of an ideal model (for computing thereactive functionality), whereas a (real-model) reactive protocol must emulatethis augmented notion of a trusted party. Thus, the reactive protocol shouldemulate the iterative computation of outputs while maintaining the state of theimaginary trusted party. Indeed, it is natural to have the real-model partiesuse a secret sharing scheme in order to maintain the latter state (such that thestate remains unknown to individual parties and even to a bounded number ofdishonest parties). In fact, we need to use a veri�able secret sharing scheme(see Section 7.5.5.1), because dishonest parties should be prevented from (ille-gally) modifying the (system's) state (except from the predetermined e�ect ofthe choice of their own inputs).The above discussion suggests that the secure implementation of reactivefunctionalities can be reduced to the secure implementation of ordinary (i.e.,non-reactive) functionalities. For example, we refer to security in the secondmalicious model, as de�ned in De�nition 7.5.4 (for ordinary functionalities).That is, we postulate that a majority of the parties are honest and require thatthe dishonest parties cannot (e�ectively) abort the execution. In such a case, weuse a veri�able secret sharing scheme in which only a majority of the pieces yieldsthe secret. Once a veri�able secret sharing scheme is �xed and the (system's)state is shared using it, the computation of each iteration of the reactive system89 As usual, the number of iterations (and the length of the inputs) must be polynomial inthe security parameter. Furthermore, the length of the global state (at any time) must alsobe polynomial in the security parameter.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 757can be cast as an ordinary functionality. The latter maps sequences of theform ((x1; s1); :::; (xm; sm)), where xi denotes the current input of Party i andsi denotes its share of the current state, to the sequence ((y1; r1); :::; (ym; rm)),where yi denotes the next output of Party i and ri denotes its share of theupdated state.We conclude that the results regarding secure computation of ordinary (i.e.,non-reactive) computations, can be extended to reactive systems (thus obtainingsecure implementations of the latter).7.7.2 * Concurrent ExecutionsA natural problem regarding cryptographic protocol is whether (or to what ex-tent) they preserve their security when executed concurrently. The problemsthat arise with respect to the preservation of zero-knowledge (see Section C.5.1)are merely an indication to the type of problems that we may encounter. Thelesson to be learned (even from that brief discussion) is that an adversary attack-ing several concurrent executions of the same protocol may be able to cause moreharm than by attacking a single execution (or several sequential executions) ofthe same protocol.7.7.2.1 De�nitionsOne may say that a protocol is concurrently secure if whatever the adversarymay obtain by invoking and controlling parties in real concurrent executions ofthe protocol is also obtainable by a corresponding adversary that controls corre-sponding parties making concurrent functionality calls to a trusted party (in acorresponding ideal model). More generally, one may consider concurrent exe-cutions of many sessions of several protocols, and say that a set of protocols isconcurrently secure if whatever the adversary may obtain by invoking and con-trolling such real concurrent executions is also obtainable by a correspondingadversary that invokes and controls concurrent calls to a trusted party (in acorresponding ideal model). Consequently, a protocol is said to be secure withrespect to concurrent compositions if adding this protocol to any set of concur-rently secure protocols yields a set of concurrently secure protocols.A much more appealing approach has been recently suggested by Canetti [67].Loosely speaking, he suggests to consider a protocol to be secure (hereafter re-ferred to as environmentally-secure)90 only if it remains secure when executedwithin any (feasible) environment. The notion of an environment is a gener-alization of the notion of an auxiliary-input; in a sense, the environment is anauxiliary oracle (or rather a state-dependent oracle) that the adversary may ac-cess. In particular, the environment may represent other executions of variousprotocols that are taking place concurrently (to the execution that we consider).We stress that the environment is not supposed to assist the proper execution ofthe protocol (and in fact honest parties merely obtain their inputs from it and90 The term used in [67] is Universally Composable, but we believe that a reasonable senseof \universal composability" is only a corollary of the suggested de�nition.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

758 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSreturn their outputs to it). In contrast, potentially, the environment may assistthe adversary in attacking the execution. Following the simulation paradigm,we say that a protocol is environmentally-secure if any feasible real-model ad-versary attacking the protocol, with the assistance of any feasible environment,can be emulated by a corresponding ideal-model adversary that uses the sameenvironment, while making similar queries to the environment. In the follow-ing formulation, the environment is implemented by a (non-uniform) family ofpolynomial-size circuits, and is also responsible for providing the parties with in-puts and for trying to distinguish the real-model execution from the ideal-modelexecution.De�nition 7.7.3 (environmentally-secure protocols, a rough sketch): Let f bean m-ary functionality and � be an m-party protocol, and consider the followingreal and ideal models:� As usual, a real-model adversary controls some of the parties in an execu-tion of the protocol �. In addition to executing �, all parties can commu-nicate with an arbitrary interactive process, which is called an environment.Honest parties only communicate with the environment before the executionstarts and when it ends; they merely obtain their inputs from the environ-ment and pass their outputs to it. In contrast, dishonest parties (controlledby the adversary) may communicate freely with the environment, and doso concurrently to the entire execution of �.� An ideal-model adversary controls some of the parties in an ideal computa-tion assisted by a trusted-party that behaves according to the functionalityf . In addition, all parties can communicate with an environment (as in thereal model). Indeed, the dishonest parties may communicate extensivelywith the environment before and after their single communication with thetrusted party, whereas the honest parties merely obtain their inputs fromthe environment and pass their outputs to it.We say that � is an environmentally-secure protocol for computing f if for everyprobabilistic polynomial-time real-model adversary A there exists a probabilisticpolynomial-time ideal-model adversary B such that for any subset I � [m] ofadequate cardinality91 no family of polynomial-size circuits E = fEngn2N candistinguish the case in which it interacts with parties in the real-model executionof � under adversary (I; A) from the case it interacts with parties in the ideal-model computation of f under adversary (I; B). Schematically,fidealf;I;B(1n);Engn2N c� freal�;I;A(1n);Engn2Nwhere idealf;I;B(1n);En (resp., real�;I;A(1n);En) denotes the output of En afterinteracting with the ideal-model (resp., real-model) execution under (I; B) (resp.,(I; A)).91 Thus, the de�nition should actually specify an additional parameter bounding the numberof parties that may be controlled by the adversary.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 759As hinted above, the environment may account for other executions of variousprotocols that are taking place concurrently to the main execution being con-sidered. De�nition 7.7.3 implies that such environments cannot distinguish thereal execution from an ideal one. This means that anything that the real-modeladversary gains from the execution of the protocol and any environment (rep-resenting other concurrent executions), can be also obtained by an adversaryoperating in the ideal model and having access to the same environment. Thus,each single execution of an environmentally-secure protocol can be replaced byan ideal oracle call to the corresponding functionality, without a�ecting theother concurrent executions. Furthermore, one can simultaneously replace allthese concurrent executions by ideal oracle calls, and use a hybrid argumentto show that the behavior is maintained. (One needs to use the fact that asingle replacement does not a�ect the other concurrent executions even in casesome of the other executions are in the real model and the rest are in the idealmodel.) It follows that environmentally-secure protocols are secure with respectto concurrent composition [67]. We wonder whether the reverse direction holds.7.7.2.2 ConstructionsThe main positive result currently known is that environmentally-secure proto-cols for any functionality can be constructed for settings in which more thantwo-thirds of the active parties are honest (cf. [67]). This holds unconditionallyfor the private channel model, and under standard assumptions (e.g., allowingthe construction of public-key encryption schemes) for the standard model (i.e.,without private channel). The immediate consequence of this result is that gen-eral environmentally-secure multi-party computation is possible, provided thatmore than two-thirds of the parties are honest.In contrast, general environmentally-secure two-party computation is notpossible (in the standard sense).92 Still, one can salvage general environmentally-secure two-party computation in the following reasonable model: Consider anetwork that contains servers that are willing to participate (as \helpers", pos-sibly for a payment) in computations initiated by a set of (two or more) users.Now, suppose that two users wishing to conduct a secure computation can agreeon a set of servers such that each user believes that more than two-thirds of theservers (in this set) are honest. Then, with the active participation of this setof servers, the two users can compute any functionality in an environmentally-secure manner.Another reasonable model where general environmentally-secure two-partycomputation is possible is the shared random-string model [75]. In this model,all parties have access to a universal random string (of length related to thesecurity parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any execution of any protocol, andthat all executions of all protocols may use the same universal random string.92Of course, some speci�c two-party computations do have environmentally-secure protocols.See [67] for several important examples (e.g., key exchange).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

760 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.7.3 Historical NotesThe main results presented in this chapter (i.e., Theorems 7.4.1 and 7.5.15) aredue to Yao [277] and to Goldreich, Micali and Wigderson [152, 153], treatingthe two-party and multi-party cases, respectively. Unfortunately, the originalpapers do not provide a satisfactory presentation of these results. In particular,these papers lack adequate de�nitions of security (which were only developedlater), and provide only rough sketches of the constructions and no proofs oftheir security. Still, the conference version of [152] provides a rough sketchof the compilation of protocols for the semi-honest model into protocols forthe malicious model, by using zero-knowledge proofs (which are the main focusof [152]) to \force" malicious parties to behave in a semi-honest manner. Yao'swork [277] presents a construction that can be used to derive two-party protocolsfor privately-computing any desirable functionality, whereas the second paper ofGoldreich et. al. [153] presents a di�erent construction for the multi-party case.Our presentation reverses the chronological order (in which these resultswere discovered). Firstly, our treatment of the two-party case is derived, viasome degeneration, from the treatment of the multi-party case (in [152, 153]).Secondly, we start by treating the semi-honest models, and only next compileprotocols for this model into protocols for the malicious models. We note that(following [153]) our presentation of the main protocols is essentially symmet-ric, whereas Yao's original protocol for the two-party case [277] is asymmetric(with respect to the two parties). The latter asymmetry has its own merits asdemonstrated in [35, 237, 203].In treating the semi-honest model, we follow the framework of Goldreich, Mi-cali and Wigderson [153], while adapting important simpli�cations due to [172]and [161]. In presenting the \semi-honest to malicious" compilers (or the paradigmof \forcing" semi-honest behavior), we follow the outline provided in [152, FOCSVer-sion, Sec. 4] and [153, Sec. 5]. We comment that the original sources (i.e.,[152, 153]) are very terse, and that full details were only provided in [134]. Ourtreatment di�ers from [134] in using a higher level of modularity, which is sup-ported by composition theorems for the malicious models.As stated above, a satisfactory de�nitional treatment of secure multi-partycomputation was provided after the presentation of the constructions of [152,153, 277]. The basic approach was developed by Micali and Rogaway [220] andBeaver [18, 19],93 and reached maturity in Canetti's work [66], which provides arelatively simple, exible and comprehensive treatment of the (basic) de�nitionsof secure multi-party computation. In particular, the composition theorems thatwe use are essentially taken from [66].A variety of cryptographic tools is used in establishing the main results ofthis chapter. Firstly, we mention the prominent role of Oblivious Transfer in the93 The approach of Goldwasser and Levin [163] is more general: it avoids the de�nitionof security (w.r.t a given functionality) and de�nes instead a notion of protocol robustness.Loosely speaking, a protocol is robust if whatever an arbitrary malicious adversary can obtainby attacking it, can also be obtained by a very benign adversarial behavior.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 761protocols developed for the semi-honest model.94 An Oblivious Transfer protocolwas �rst suggested by Rabin [247], but our actual de�nition and implementationfollow the ideas of Even, Goldreich and Lempel [104] (as further developed inthe proceedings version of [152]). Several ingredients play a major role in thecompilation of protocols secure in the semi-honest model into generally secureprotocols (for the malicious models). These include commitment schemes, zero-knowledge proofs-of-knowledge, veri�able secret sharing (introduced by Chor,Goldwasser, Micali and Awerbuch [80]), and secure coin-ipping (introduced byBlum [50]).The private channel model: As opposed to the bulk of this chapter (aswell as the bulk of the entire work), the private channel model (treated in Sec-tion 7.6) allows to present results that do not rely on intractability assumptions.These results (e.g., Theorem 7.6.6), were obtained by Ben-Or, Goldwasser andWigderson [45] and Chaum, Cr�epeau and Damg�ard [79]. These works were doneafter the results of Yao [277] and Goldreich, Micali and Wigderson [152, 153]were known, with the explicit motivation of obtaining results that do not relyon intractability assumptions. Our presentation is based on [45] (cf. [122]). Theessential role of the bound on the number of dishonest parties (even in the semi-honest model) was studied in [81] and subsequent works.7.7.4 Suggestion for Further ReadingAs hinted above, Yao's alternative treatment of the two-party case o�ers someadvantages over the treatment presented in Section 7.3. A sketch of Yao's con-struction is provided in Section 7.1.3.2. For more details, see [252].The results mentioned above were originally obtained using protocols that usea polynomial number of rounds. In some cases, subsequent works obtained secureconstant-round protocols (e.g., in case of multi-party computations with honestmajority [35], and in case of two-party computations allowing abort [203]).We have mentioned (e.g., in Section 7.7.1.1) the impossibility of obtainingfairness in secure computations without a honest majority. These statementsare backed by the impossibility of implementing a fair two-party coin-toss, asproven in [82].We have briey discussed the notion of adaptive adversaries. A more detaileddiscussion of the de�nitions is provided in [66], which builds on [65]. For a proofof Theorem 7.7.2, the reader is referred to [65, 69]. For a study of adaptiveversus non-adaptive security, the reader is referred to [68].Our treatment of multi-party protocols assumes a synchronous network withpoint-to-point channels between every pair of parties. Results for asynchronouscommunication and arbitrary networks of point-to-point channels were presentedin [42, 65] and [97], respectively.94 Subsequent results by Kilian [188] further demonstrate the importance of Oblivious Trans-fer in this context.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

762 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSGeneral secure multi-party computation in a model of transient adversarialbehavior was considered in [239]. In this model the adversary may seize controlof each party during the protocol's execution, but can never control more than(say) 10% of the parties at any point in time. We comment that schemes securein this model were later termed \proactive" (cf., [73]).Whenever we have restricted the adversary's control of parties, we have doneso by bounding the cardinality of the set of controlled parties. It is quite naturalto consider arbitrary restrictions on the set of controlled parties (i.e., that this setbelongs to a family of sets against which security is guaranteed). The interestedreader is referred to [175].For further discussion of Byzantine Agreement, see any standard textbookon Distributed Computing (e.g., [9, 210]). We mention that whereas plain m-party Byzantine Agreement can tolerate at most b(m� 1)=3c malicious parties,Authenticated Byzantine Agreement can tolerate any number of malicious par-ties (see Construction 7.5.17, which follows [99]). The problems arising whencomposing Authenticated Byzantine Agreement are investigated in [204].7.7.5 Open ProblemsRecall that by Theorem 7.5.12 one can privately-reduce any functionality toOblivious Transfer. Furthermore, the compilation of protocols that are securein the semi-honest model into protocols that are secure in the malicious modelsonly requires one-way functions and private channels, whereas the latter canbe emulated using secure communication protocols (e.g., secure public-key en-cryption schemes). Since Oblivious Transfer implies the existence of the latter(see Exercise 7), general secure computation is reducible to Oblivious Transfer.Thus, determining the complexity assumptions required for the implementationof Oblivious Transfer seems to be of key importance. In particular, we haveshown that Oblivious Transfer can be implemented using enhanced trapdoorpermutations (see Proposition 7.3.6). We wonder whether the enhanced require-ment can be omitted (i.e., whether ordinary trapdoor permutations may su�ce).For further discussion of enhanced trapdoor permutations, see Section C.1.7.7.6 ExercisesExercise 1: Oblivious sampling: Suppose that both parties hold a function(or circuit) that de�nes a distribution in the natural way, and wish toobtain a sample from this distribution without letting any party learn thecorresponding pre-image. Cast this problem as one of securely computinga corresponding functionality, treating di�erently the case in which thefunction (or circuit) is �xed and the case in which it is given as input toboth parties. Consider also the case in which only the �rst party is toobtain the output.Exercise 2: Oblivious signing: In continuation to Exercise 1, consider the casethat the distribution to be sampled is determined by the inputs of both

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 763parties. For example, consider the task of oblivious signing in which oneparty wishes to obtain the signature of the second party to some documentwithout revealing the document to the signer (i.e., the document is theinput of the �rst party whereas the signing-key is the input of the secondparty).Exercise 3: Privacy and Correctness: Referring to the discussion that followsDe�nition 7.2.6, consider the following de�nitions of (partial) privacy andcorrectness (with respect to malicious adversaries). Partial privacy is de-�ned as a restriction of De�nition 7.2.6 to the adversary's component ofthe random variables real�;A(z)(x; y) and idealf;B(z)(x; y), whereas par-tial correctness coincides with a restriction of De�nition 7.2.6 to the honestparty's component of these random variables.1. Show that both properties are implied by De�nition 7.2.6, but eventheir combination does not imply De�nition 7.2.6.2. Why were both properties quali�ed by the term `partial'?Guideline (Item 1): Note that computational indistinguishability ofensembles of pairs implies computational indistinguishability of the ensem-bles resulting by projection to each coordinate, but the converse does notnecessarily hold.Guideline (Item 2): This is related to the need to use the general formu-lation of De�nition 7.2.1 for randomized functionalities; see the discussionthat follows De�nition 7.2.1.Exercise 4: On the importance of the length convention: Show that if the equal-length convention is omitted from de�nitions like De�nition 7.2.1 and 7.2.6then they cannot be satis�ed for many natural functionalities. That is,consider these de�nitions when the ensembles are indexed by the set of allpairs of strings, rather than by the set of pairs of equal-length strings.Guideline: (Here, privacy and security refer to the notions obtained whenomitting the equal-length convention.) Show that the functionality (x; y) 7!(f(x; y); f(x; y)), where f(x; y) def= 1 if jxj = jyj and f(x; y) def= 0 otherwise,cannot be privately computed. Show that (x; y) 7! (jyj; jxj) can be privatelycomputed but the simple protocol in which Party 1 sends jxj to Party 2(and Party 2 sends jyj to Party 1) fails to securely compute it. Challenge:Try to show that the latter functionality cannot be securely computed.Exercise 5: Transitivity of privacy reductions: Show that if f is privately-reducible to f 0, and f 0 is privately-reducible to f 00 then f is privately-reducible to f 00. Note that Theorem 7.3.3 is obtained as a special case(e.g., by setting f 00 to be the identity mapping).Guideline: Generalize the proof of Theorem 7.3.3. Speci�cally, let �f jf 0(resp., �f 0jf 00) be an oracle-aided protocol for f (resp., f 0) using oracle f 0(resp., f 00). Composing these two protocols, obtain and analyze the oracle-aided protocol � = �f jf 00 .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

764 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSExercise 6: Variants of Oblivious Transfer: In continuation to Section 7.3.2,consider the following two variants of Oblivious Transfer.1. For functions k; ` : N ! N , consider the extension of 1-out-of-kOblivious Transfer to k(n) secrets each of length `(n), where n is thesecurity parameter.2. For a function ` : N ! N , consider the Oblivious Transfer of asingle `(n)-bit long secret (denoted �) that is to be delivered withprobability 1=2. That is, the randomized functionality that maps(�; �) to (�; �) with probability 1=2 and to (�; �) otherwise.Assuming that k and ` are polynomially-bounded and e�ciently com-putable, present privacy reductions between all these variants. Speci�cally,show a privacy reduction of the extended 1-out-of-k Oblivious Transfer tothe original 1-out-of-2 Oblivious Transfer of bits, and between 1-out-of-2Oblivious Transfer of `-bit long secrets and Oblivious Transfer of a single`(n)-bit long secret.Guideline: Note that you are only asked to present oracle-aided protocolsthat are secure in the semi-honest model. The only non-obvious reduction isfrom 1-out-of-2 Oblivious Transfer to single-secret Oblivious Transfer (OT),presented next. The �rst party randomly selects r1; r2 2 f0; 1g`(n), and theparties invoke OT twice where the �rst party inputs r1 in the �rst time andr2 in the second time. If the second party wishes to obtain the ith secret,for i 2 f1; 2g, then it says OK if and only if it has obtained ri but not r3�i.Otherwise, the parties repeat the experiment. Once the second party saysOK, the �rst party sends it the pair (�1 � r1; �2 � r2), where the �j 's arethe actual secrets.Exercise 7: Oblivious Transfer implies secure communication protocols: A se-cure communication protocol is a two-party protocol that allows the partiesto communicate in secrecy even when the communication line is tappedby an adversary (see Exercise 1 of Chapter 5). Show that any 1-out-of-2Oblivious Transfer (with security with respect to the semi-honest model)implies the existence of a secure communication protocol. Recall that thelatter implies the existence of one-way functions.Guideline: To transmit a bit � the sender invokes the 1-out-of-2 Obliv-ious Transfer with input (�; 0) while the receiver sets its input to 1, andgets � (i.e., the sender's �rst bit in the OT). Observe that \privacy withrespect to the sender" implies that (the sender and thus also) the adversarycannot distinguish the case that the receiver enters 1 from the case it en-ters 2. Likewise, \privacy with respect to the receiver" implies that, in the(�ctitious) case that the receiver enters 2, the adversary (like the receiver)cannot tell whether the sender enters (0; 0) or (1; 0). Thus, also in the (real)case that the receiver enters 1, the adversary cannot tell whether the senderenters (0; 0) or (1; 0).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 765Exercise 8: Privately reducing OT to the functionality of Eq. (7.16){(7.17).Show that 1-out-of-2 Oblivious Transfer can be privately reduced to thefunctionality of Eq. (7.16){(7.17).Guideline: Reduce 1-out-of-2 OT to ((s1; s2); (r1; r2)) 7! (�; s1r1+s2r2),and reduce the latter to Eq. (7.16){(7.17).Exercise 9: Alternative analysis of Construction 7.3.7. The said construc-tion can be decoupled into two reductions. First, the functionality ofEq. (7.16){(7.17) is reduced to the deterministic functionality ((a1; b1; c1); (a2; b2)) 7!(�; fa2;b2(a1; b1; c1)), where fa;b(x; y; z) def= z + (x + a) � (y + b)), and nextthe latter is reduced to OT41. Present each of these reductions and provethat each is a privacy reduction.Guideline: When analyzing the second reduction, use the fact that it isused to compute a deterministic functionality and thus the simpler form ofDe�nition 7.2.1 can be used.Exercise 10: Some functionalities that are trivial to privately compute: Showthat each of the following types of functionalities has a trivial protocol forprivately-computing it (i.e., using a single message).1. Each deterministic functionality that only depends on the input ofone party (i.e., (x; 1jxj) 7! (f1(x); f2(x)), for arbitrary functions f1and f2).2. Each randomized functionality of the form (x; 1jxj) 7! (g(x); f(x; g(x))),where g is any randomized process and f is a function.Generalize the above to the multi-party case.Exercise 11: In continuation to Exercise 10, show that all six functionalitiesintroduced in Section 7.4.3 are trivial to compute in a private manner.Guideline: Note that the restricted authenticated computation function-ality of Eq. (7.26) and the image transmission functionality of Eq. (7.30) �tItem 1, whereas the basic and augmented coin-tossing functionalities as wellas the input-commitment functionality �t Item 2. What about Eq. (7.32)?Exercise 12: On the di�culty of implementing more natural versions of au-thenticated computation: Consider the functionality (�; �) 7! (� ; v), wherev = f(�) if � = h(�) and v = � otherwise.1. Show that the equality functionality (i.e., (�; �) 7! (� ; �), where� = 1 if � = � and � = 0 otherwise) is privately-reducible to aspecial case of the above functionality.2. Show that Oblivious Transfer is privately-reducible to a special case ofthe above functionality. Conclude that there can be no trivial protocolfor privately-computing the latter (e.g., a protocol that privately-computes the above functionality implies the existence of one-wayfunctions).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

766 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSGuideline (Part 2): Privately-reduce the single secret (bit) version ofOblivious Transfer to the special case of the above functionality in whichh(�) (resp., f(�)) equals the �rst (resp., second) bit of �. On input a secretbit �, Party 1 sets its oracle-query to 1� and Party 2 sets its query to auniformly selected bit (and so if the latter equals h(1�) = 1 then Party 2gets f(1�) = � and otherwise it gets �).Exercise 13: Transitivity of security reductions: Show that if f is securely-reducible to f 0, and f 0 is securely-reducible to f 00 then f is securely-reducible to f 00. Note that Theorem 7.4.3 is obtained as a special case(e.g., by setting f 00 to be the identity mapping).Guideline: See Exercise 5.Exercise 14: Voting, Elections, and Lottery: Write a speci�cation for somesocial procedure (e.g., voting, elections or lottery), and cast it as a multi-party functionality. Note that allowing appeals and various forms of inter-action requires a reactive functionality (see Section 7.7.1.3), which in turncan be reduced to a standard (non-reactive) functionality.Exercise 15: Threshold Cryptography: Loosely speaking, Threshold Cryptog-raphy is concerned with allowing a set of parties to share the ability toperform certain (cryptographic) operations (cf. [93, 121]). For example,suppose that we wish m parties to hold shares of a signing-key (w.r.t somesignature scheme) such that every t of these parties (but not less) cangenerate signatures to documents of their choice. Cast this example as amulti-party functionality. (The same holds for other versions of ThresholdCryptography.)Exercise 16: Failure of a simple protocol for multi-party authenticated compu-tation. Consider them-party oracle-aided protocol for computing Eq. (7.49)in which, for i = 2; :::;m, Parties 1 and i invoke Eq. (7.32) with Party 1entering the input � and and Party i entering the input �i. Show thatthis oracle-aided protocol does not constitute a secure implementation ofEq. (7.49).Exercise 17: Analysis of Shamir's Secret Sharing Scheme: Prove that Con-struction 7.5.35 satis�es the conditions of De�nition 7.5.34.Guideline: For every sequence (u1; v1); :::; (u`; v`), where the ui's aredistinct, consider the set of degree d � ` � 1 polynomials q that satisfyq(ui) = vi for i = 1; :::; `. Denoting the unknown coe�cients of q by qj 's,observe that each equality q(ui) = vi yields a linear equation for the qj 's(i.e., Pdj=0 uji � qj = vi). Furthermore, the equations are linearly inde-pendent, and so the solution space has cardinality pd+1�`. Indeed, it isimportant to consider these equations as referring to the variables qj 's andthe constants ui's, rather than the other way around.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 767Exercise 18: On the importance of comparable complexity in the de�nition ofperfect security. Consider a modi�cation of De�nition 7.6.2 such that theideal-model adversary is not required to be of comparable complexity tothe real-model adversary. Present protocols that are deemed \secure"under the modi�ed de�nition although they are insecure under the originalde�nition (as well as under De�nition 7.5.4).Guideline: Consider any protocol for computing the functionality (x; 1jxj; :::;1jxj) 7!(f(x); f(x); :::; f(x)), where f is a one-way permutation. Show that such aprotocol, even the trivial (and bad) one in which Party 1 sends its input (inthe clear) to everybody, is deemed \secure" under the modi�ed de�nition.In particular, an ideal-model adversary that does not control (resp., con-trols) Party 1 can recover the input of Party 1 (resp., the substituted inputof Party 1) in exponential time by inverting f on any party's output.Exercise 19: Perfect security implies ordinary security. Show that De�ni-tion 7.6.2 implies De�nition 7.5.4.Guideline: Observe that if A is polynomial-time and B has complexitycomparable to A then B is polynomial-time.Exercise 20: Private computation of linear functions. For any �xed m-by-mmatrix M , over a �nite �eld, show that the m-ary functionality x 7! xMcan be m-privately computed (as per De�nition 7.6.1).Guideline: For starters, consider �rst the functionality (x1; :::; xm) 7!(Pmi=1 cixi; 0; :::; 0), where the ci's are �xed constants. Show that the fol-lowing protocol ism-private: First, each party shares its input with all otherparties (by uniformly selecting shares that sum-up to its input, and sendinga share to each party). Next, each party computes the linear combinationof the shares it has received. Finally, each party sends the result to Party 1.Note that this computation would be t-private if we were to use sharing viaa degree t polynomial.Exercise 21: Private generation of vectors in a linear subspace. For M as inExercise 20, show that the m-ary functionality (�; :::; �) 7! r such that r isa random m-ary vector satisfying rM = 0m can be m-privately computed(as per De�nition 7.6.1).Guideline: Consider the generating matrix, denoted G, of the subspacede�ned by (the parity-check) matrix M . Suppose that G has rank k (i.e.,G is a full-rank k-by-m matrix). Show that, without loss of generality, thek-by-k left submatrix of G equals the identity matrix. Privately reduce thegeneration task to the functionality of Exercise 20.Exercise 22: Alternative presentation of t-private computation of Eq. (7.65).1. In continuation to Exercises 20 and 21, given M1 and M2, considerthe m-ary functionality x 7! xM1 + r such that r is a random m-ary vector satisfying rM2 = 0m. Show that this functionality can bem-privately computed.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

768 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS2. Show that the functionality of Eq. (7.65) is a special case of the classof functionalities considered in Item 1.Guideline (Item 1): Note that privately computing each of the twoterms of xM1 + r, separately, will not do. Instead, one has to combinethe ideas underlying these constructions. De�ning G as in Exercise 21,our aim is to privately compute x 7! xM1 + sG, where s is a uniformlydistributed k-element long sequence. Assuming, without loss of generality,that the k-by-k left submatrix of G is of full rank, we can re-write thefunctionality as x 7! xM 0 + sG0, where the k-by-k left submatrix of G0is the identity matrix and the m-by-k left submatrix of M 0 is the all-zeromatrix. Recall that we know how to privately compute each of the two termsof xM 0 + sG0, separately; but again this will not do. Instead, we combinethese two computations such that not to yield information about the valueof the individual terms. As a warm-up consider privately computing thefunctionality ((x1 ; y1); :::; (xm; ym)) 7! (x1; y1; :::; xm; ym)M , where M is a�xed 2m-by-m matrix.Guideline (Item 2): Show that the computation of the free term of thepolynomial c can be captured by an adequate M1, whereas the generationof the values of a random degree t polynomial with free-term equal zero canbe captured by an adequate M2.Exercise 23: Analysis of Construction 7.6.3. For t < m=2, show that Con-struction 7.6.3 constitutes a protocol that t-privately computes Eq. (7.64).Guideline: Consider, without loss of generality, I = f1; :::; tg. The simu-lator is given an input sequence ((a1; b1); :::; (at; bt)) and an output sequence(r1; :::; rt), and needs to emulate the messages that the parties in I obtainat Step 2. This can be done by randomly selecting degree t polynomials q0j 'sthat are consistent with the above sequences, and letting the messages thatParty i obtain equal q01(i); :::; q0m(i). Speci�cally, for i = 1; ::; t, the polyno-mial q0i is selected like qi (i.e., uniformly among the t polynomials havingfree-term aibi); for i = t+1; ::;m�1, the polynomial q0i is selected uniformlyamong all t polynomials; and q0m is selected such that Pmj=1 jq0j(i) = riholds for all i 2 [t].Author's Note: First draft written mainly in 2002. Revised in Januaryand June 2003.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Bibliography[1] L.M. Adleman and M. Huang. Primality Testing and Abelian VarietiesOver Finite Fields. Springer-Verlag Lecture Notes in Computer Science(Vol. 1512), 1992. Preliminary version in 19th ACM Symposium on theTheory of Computing, 1987.[2] W. Aiello and J. H�astad. Perfect Zero-Knowledge Languages can be Rec-ognized in Two Rounds. In 28th IEEE Symposium on Foundations ofComputer Science, pages 439{448, 1987.[3] M. Ajtai. Generating Hard Instances of Lattice Problems. In 28th ACMSymposium on the Theory of Computing, pages 99{108, 1996.[4] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140,1987.[5] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:Certain Parts are As Hard As the Whole. SIAM Journal on Computing,Vol. 17, April 1988, pages 194{209.[6] N. Alon and J.H. Spencer. The Probabilistic Method, John Wiley & Sons,Inc., 1992.[7] J.H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Mes-sage Authentication under Weakened Assumptions. In Crypto99, SpringerLecture Notes in Computer Science (Vol. 1666), pages 252{269.[8] T.M. Apostol. Introduction ot Analytic Number Theory. Springer, 1976.[9] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simula-tions and Advanced Topics. McGraw-Hill, 1998.[10] L. Babai. Trading Group Theory for Randomness. In 17th ACM Sympo-sium on the Theory of Computing, pages 421{420, 1985.[11] E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. ACM Distinguished Dissertation (1984), MIT Press,Cambridge MA, 1985. 779

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

780 BIBLIOGRAPHY[12] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: E�cientAlgorithms). MIT Press, 1996.[13] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42ndIEEE Symposium on Foundations of Computer Science, pages 106{115,2001.[14] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle orRealizing the Shared Random String Model. In 43th IEEE Symposium onFoundations of Computer Science, to appear, 2002.[15] B. Barak and O. Goldreich, Universal arguments and their applications. Inthe 17th IEEE Conference on Computational Complexity, pages 194{203,2002.[16] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,and K. Yang. On the (im)possibility of software obfuscation. In Crypto01,Springer-Verlag Lecture Notes in Computer Science (Vol. 2139), pages 1{18.[17] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Ex-traction. In 34th ACM Symposium on the Theory of Computing, pages484{493, 2002.[18] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91,Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 377{391.[19] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Sys-tems Tolerating a Faulty Minority. Journal of Cryptology, Vol. 4, pages75{122, 1991.[20] M. Bellare. A Note on Negligible Functions. Journal of Cryptology, Vol. 15,pages 271{284, 2002.[21] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revis-ited: The Cascade Construction and its Concrete Security. In 37th IEEESymposium on Foundations of Computer Science, pages 514{523, 1996.[22] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions forMessage Authentication. In Crypto96, Springer Lecture Notes in ComputerScience (Vol. 1109), pages 1{15.[23] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Designand Analysis of Authentication and Key Exchange Protocols. In 30th ACMSymposium on the Theory of Computing, pages 419{428, 1998.[24] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among no-tions of security for public-key encryption schemes. In Crypto98, SpringerLecture Notes in Computer Science (Vol. 1462), pages 26{45.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 781[25] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. InCrypto92, Springer-Verlag Lecture Notes in Computer Science (Vol. 740),pages 390{420.[26] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography:the Case of Hashing and Signing. In Crypto94, Springer-Verlag LectureNotes in Computer Science (Vol. 839), pages 216{233, 1994.[27] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptographyand Application to Virus Protection. In 27th ACM Symposium on theTheory of Computing, pages 45{56, 1995.[28] M. Bellare, O. Goldreich and H. Krawczyk. Stateless Evaluation of Pseu-dorandom Functions: Security beyond the Birthday Barrier. In Crypto99,Springer Lecture Notes in Computer Science (Vol. 1666), pages 270{287.[29] M. Bellare and S. Goldwasser. New Paradigms for Digital Signaturesand Message Authentication Based on Non-Interative Zero KnowledgeProofs. In Crypto89, Springer-Verlag Lecture Notes in Computer Science(Vol. 435), pages 194{211.[30] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methodsfor Message Authentication using Finite Pseudorandom Functions. InCrypto95, Springer-Verlag Lecture Notes in Computer Science (Vol. 963),pages 15{28.[31] M. Bellare, S. Halevi, A. Sahai and S. Vadhan. Trapdoor Functions andPublic-Key Cryptosystems. In Crypto98, Springer Lecture Notes in Com-puter Science (Vol. 1462), pages 283{298.[32] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lowerthe Error in Computationally Sound Protocols? In 38th IEEE Symposiumon Foundations of Computer Science, pages 374{383, 1997.[33] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chain-ing. In Crypto94, Springer-Verlag Lecture Notes in Computer Science(Vol. 839), pages 341{358.[34] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function.Journal of the ACM, Vol. 39, pages 214{233, 1992.[35] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of SecureProtocols. In 22nd ACM Symposium on the Theory of Computing, pages503{513, 1990.[36] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigmfor Designing E�cient Protocols. In 1st Conf. on Computer and Commu-nications Security, ACM, pages 62{73, 1993.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

782 BIBLIOGRAPHY[37] M. Bellare and P. Rogaway. Entity Authentication and Key Distribu-tion. In Crypto93, Springer-Verlag Lecture Notes in Computer Science(Vol. 773), pages 232{249, 1994.[38] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution:The Three Party Case. In 27th ACM Symposium on the Theory of Com-puting, pages 57{66, 1995.[39] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: Howto Sign with RSA and Rabin. In EuroCrypt96, Springer Lecture Notes inComputer Science (Vol. 1070).[40] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-Knowledge Based on Any Trapdoor Permutation. Journal of Cryptology,Vol. 9, pages 149-166, 1996.[41] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Av-erage Case Complexity. Journal of Computer and System Science, Vol. 44,No. 2, April 1992, pages 193{219.[42] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computa-tion. In 25th ACM Symposium on the Theory of Computing, pages 52{61,1993. See details in [65].[43] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micaliand P. Rogaway. Everything Provable is Probable in Zero-Knowledge. InCrypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),pages 37{56, 1990[44] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover In-teractive Proofs: How to Remove Intractability. In 20th ACM Symposiumon the Theory of Computing, pages 113{131, 1988.[45] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theoremsfor Non-Cryptographic Fault-Tolerant Distributed Computation. In 20thACM Symposium on the Theory of Computing, pages 1{10, 1988.[46] E.R. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathe-matics of Computation, Vol. 24, pages 713{735, 1970.[47] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inher-ent Intractability of Certain Coding Problems. IEEE Trans. on Inform.Theory, 1978.[48] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:Fast and Secure Message Authentication. In Crypto99, Springer LectureNotes in Computer Science (Vol. 1666), pages 216{233.[49] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys.,Vol. 1, pages 175{193, 1983.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 783[50] M. Blum. Coin Flipping by Phone. In the 24th IEEE Computer Confer-ence (CompCon), pages 133{137, February 1982. See also SIGACT News,Vol. 15, No. 1, 1983.[51] L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-Random Number Generator. SIAM Journal on Computing, Vol. 15, 1986,pages 364{383.[52] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6,pages 1084{1118, 1991. (Considered the journal version of [53].)[53] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge andits Applications. In 20th ACM Symposium on the Theory of Computing,pages 103{112, 1988. See [52].[54] M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key En-cryption Scheme which hides all partial information. In Crypto84, LectureNotes in Computer Science (Vol. 196) Springer-Verlag, pages 289{302.[55] M. Blum and S. Micali. How to Generate Cryptographically Strong Se-quences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13,pages 850{864, 1984. Preliminary version in 23rd IEEE Symposium onFoundations of Computer Science, 1982.[56] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short InteractiveProofs? Information Processing Letters, 25, May 1987, pp. 127-132.[57] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random NumberGenerators. Journal of the ACM, Vol. 36, pages 129{141, 1989.[58] G. Brassard. A Note on the Complexity of Cryptography. IEEE Trans.on Inform. Th., Vol. 25, pages 232{233, 1979.[59] G. Brassard. Quantum Information Processing: The Good, the Badand the Ugly. In Crypto97, Springer Lecture Notes in Computer Science(Vol. 1294), pages 337{341.[60] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs ofKnowledge. Journal of Computer and System Science, Vol. 37, No. 2,pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in27th IEEE Symposium on Foundations of Computer Science, 1986.[61] G. Brassard and C. Cr�epeau. Zero-Knowledge Simulation of Boolean Cir-cuits. In Crypto86, Springer-Verlag Lecture Notes in Computer Science(Vol. 263), pages 223{233, 1987.[62] G. Brassard, C. Cr�epeau and M. Yung. Constant-Round Perfect Zero-Knowledge Computationally Convincing Protocols. Theoretical ComputerScience, Vol. 84, pages 23{52, 1991.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

784 BIBLIOGRAPHY[63] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A Survey of Recent Re-sults. In Proceedings of the IEEE, Vol. 76, pages 578{593, 1988.[64] C. Cachin and U. Maurer. Unconditional security against memory-bounded adversaries. In Crypto97, Springer Lecture Notes in ComputerScience (Vol. 1294), pages 292{306.[65] R. Canetti. Studies in Secure Multi-Party Computation and Applications.Ph.D. Thesis, Department of Computer Science and Applied Mathematics,Weizmann Institute of Science, Rehovot, Israel, June 1995. Available fromfrom http://theory.lcs.mit.edu/�tcryptol/BOOKS/ran-phd.html.[66] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-tocols. Journal of Cryptology, Vol. 13, No. 1, pages 143{202, 2000.[67] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-tographic Protocols. In 42nd IEEE Symposium on Foundations of Com-puter Science, pages 136{145, 2001. Full version (with di�erent title) isavailable from Cryptology ePrint Archive, Report 2000/067.[68] R. Canetti, I. Damgard, S. Dziembowski, Y. Ishai and T. Malkin. Onadaptive versus non-adaptive security of multiparty protocols. Journal ofCryptology, to appear.[69] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-party Computation. In 28th ACM Symposium on the Theory of Comput-ing, pages 639{648, 1996.[70] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,Revisited. In 30th ACM Symposium on the Theory of Computing, pages209{218, 1998.[71] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In 32nd ACM Symposium on the Theory of Computing, pages235{244, 2000.[72] R. Canetti, S. Halevi and A. Herzberg. How to Maintain AuthenticatedCommunication in the Presence of Break-Ins. Journal of Cryptology,Vol. 13, No. 1, pages 61{106, 2000.[73] R. Canetti and A. Herzberg. Maintaining Security in the Presence ofTransient Faults. In Crypto94, Springer-Verlag Lecture Notes in ComputerScience (Vol. 839), pages 425{439.[74] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box ConcurrentZero-Knowledge Requires ~
(logn) Rounds. In 33rd ACM Symposium onthe Theory of Computing, pages 570{579, 2001.[75] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Com-posable Two-Party and Multi-Party Secure Computation. In 34th ACMSymposium on the Theory of Computing, pages 494{503, 2002.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 785[76] E.R. Can�eld, P. Erdos, and C. Pomerance. On a problem of Oppenheimconcerning \factorisatio numerorum". J. Number Theory, Vol. 17, pages1{28, 1983.[77] L. Carter and M. Wegman. Universal Hash Functions. Journal of Com-puter and System Science, Vol. 18, 1979, pages 143{154.[78] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82,Plenum Press, pages 199{203, 1983.[79] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally Se-cure Protocols. In 20th ACM Symposium on the Theory of Computing,pages 11{19, 1988.[80] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Veri�able SecretSharing and Achieving Simultaneity in the Presence of Faults. In 26thIEEE Symposium on Foundations of Computer Science, pages 383{395,1985.[81] B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privacy. SIAMJ. on Disc. Math., Vol. 4, pages 36{47, 1991.[82] R. Cleve. Limits on the Security of Coin Flips when Half the Processorsare Faulty. In 18th ACM Symposium on the Theory of Computing, pages364{369, 1986.[83] J.D. Cohen and M.J. Fischer. A Robust and Veri�able CryptographicallySecure Election Scheme. In 26th IEEE Symposium on Foundations ofComputer Science, pages 372{382, 1985.[84] A. Cohen and A. Wigderson. Dispensers, Deterministic Ampli�cation,and Weak Random Sources. 30th IEEE Symposium on Foundations ofComputer Science, 1989, pages 14{19.[85] R. Cramer and I. Damg�ard. New Generation of Secure and PracticalRSA-based Signatures. In Crypto96, Springer Lecture Notes in ComputerScience (Vol. 1109), pages 173{185.[86] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Prov-ably Secure Against Adaptive Chosen Ciphertext Attacks. In Crypto98,Springer-Verlag Lecture Notes in Computer Science (Vol. 1462), pages 13{25.[87] C. Cr�epeau. E�cient Cryptographic Protocols Based on Noisy Channels.In EuroCrypt97, Springer, Lecture Notes in Computer Science (Vol. 1233),pages 306{317.[88] I. Damg�ard. Collision Free Hash Functions and Public Key SignatureSchemes. In EuroCrypt87, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 304), pages 203{216.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

786 BIBLIOGRAPHY[89] I. Damg�ard. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 416{427.[90] I. Damgard. Concurrent Zero-Knowledge in Easy in Practice. Theoryof Cryptography Li-brary, 99-14, June 1999. http://philby.ucsd.edu/cryptolib. See also\E�cient Concurrent Zero-Knowledge in the Auxiliary String Model" (inEurocrypt'00, 2000).[91] I. Damg�ard, O. Goldreich, T. Okamoto and A. Wigderson. Honest Veri�ervs Dishonest Veri�er in Public Coin Zero-Knowledge Proofs. In Crypto95,Springer-Verlag Lecture Notes in Computer Science (Vol. 963), pages 325{338, 1995.[92] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai.Robust Non-interactive Zero-Knowledge. In Crypto01, Springer LectureNotes in Computer Science (Vol. 2139), pages 566{598.[93] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89,Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 307{315.[94] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEETrans. on Info. Theory, IT-22 (Nov. 1976), pages 644{654.[95] H. Dobbertin. The Status of MD5 after a Recent Attack. In CryptoBytes,RSA Lab., Vol. 2, No. 2, 1996.[96] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rdACM Symposium on the Theory of Computing, pages 542{552, 1991. Fullversion available from authors.[97] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure messagetransmission. Journal of the ACM, Vol. 40 (1), pages 17{47, 1993.[98] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEETrans. on Inform. Theory, Vol. 30, No. 2, pages 198{208, 1983.[99] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agree-ment. SIAM Journal on Computing, Vol. 12, pages 656{666, 1983.[100] C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra. Low CommunicationPerfect Zero Knowledge Two Provers Proof Systems. In Crypto92, SpringerVerlag, Lecture Notes in Computer Science (Vol. 740), pages 215{227.[101] C. Dwork, and M. Naor. An E�cient Existentially Unforgeable SignatureScheme and its Application. Journal of Cryptology, Vol. 11 (3), pages187{208, 1998[102] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30thSTOC, pages 409{418, 1998.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 787[103] S. Even and O. Goldreich. On the Security of Multi-party Ping-PongProtocols. In 24th IEEE Symposium on Foundations of Computer Science,pages 34{39, 1983.[104] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for SigningContracts. CACM, Vol. 28, No. 6, 1985, pages 637{647.[105] S. Even, O. Goldreich and S. Micali. On-line/O�-line Digital signatures.Journal of Cryptology, Vol. 9, 1996, pages 35{67.[106] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Prob-lems with Applications to Public-Key Cryptography. Inform. and Control,Vol. 61, pages 159{173, 1984.[107] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In proceed-ings of 7th ICALP, Springer-Verlag Lecture Notes in Computer Science(Vol. 85), pages 195{207, 1980. See [106].[108] U. Feige. Error reduction by parallel repetition { the state of the art. Tech-nical report CS95-32, Computer Science Department, Weizmann Instituteof Science, Rehovot, isreal, 1995.[109] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity.Journal of Cryptology, Vol. 1, 1988, pages 77{94.[110] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions. SIAM Journal on Com-puting, Vol. 29 (1), pages 1{28, 1999.[111] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in TwoRounds. In Crypto89, Springer-Verlag Lecture Notes in Computer Science(Vol. 435), pages 526{544.[112] U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd ACM Symposium on the Theory of Computing, pages416{426, 1990.[113] W. Feller. An Introduction to Probability Theory and Its Applications.John Wiley, New York, 1968.[114] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Iden-ti�cation and Signature Problems. In Crypto86, Springer-Verlag LectureNotes in Computer Science (Vol. 263), pages 186{189, 1987.[115] M. Fischer, S. Micali, C. Racko�, and D.K. Wittenberg. An Oblivi-ous Transfer Protocol Equivalent to Factoring. Unpublished manuscript,1986. Preliminary versions were presented in EuroCrypt84, and in the NSFWorkshop on Mathematical Theory of Security, Endicott House (1985).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

788 BIBLIOGRAPHY[116] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Ra-bin Bits. In EuroCrypt97, Springer Lecture Notes in Computer Science(Vol. 1233), pages 267{279, 1997.[117] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACMSymposium on the Theory of Computing, pages 204{209, 1987.[118] A.M. Frieze, J. H�astad, R. Kannan, J.C. Lagarias, and A. Shamir. Re-constructing Truncated Integer Variables Satisfying Linear Congruences.SIAM Journal on Computing, Vol. 17, pages 262{280, 1988.[119] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.[120] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide tothe Theory of NP-Completeness. W.H. Freeman and Company, New York,1979.[121] P.S. Gemmell. An Introduction to Threshold Cryptography. In Crypto-Bytes, RSA Lab., Vol. 2, No. 3, 1997.[122] R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fast-track Mul-tiparty Computations with Applications to Threshold Cryptography. In17th ACM Symposium on Principles of Distributed Computing, pages 101{112, 1998.[123] R. Gennaro and L. Trevisan. Lower bounds on the e�ciency of genericcryptographic constructions. ECCC, TR00-022, May 2000.[124] E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane. Codes which detectdeception. Bell Syst. Tech. J., Vol. 53, pages 405{424, 1974.[125] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. InCrypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),pages 104{110, 1987.[126] O. Goldreich. Towards a Theory of Software Protection and Simulation byOblivious RAMs. In 19th ACM Symposium on the Theory of Computing,pages 182{194, 1987.[127] O. Goldreich. Foundation of Cryptography { Class Notes. Preprint, Spring1989. Superseded by the current work.[128] O. Goldreich. Lecture Notes on Encryption, Signatures andCryptographic Protocol. Extracts from [127]. Available fromhttp://www.wisdom.weizmann.ac.il/�oded/foc.html Superseded bythe current work.[129] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 789[130] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journal of Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[131] O. Goldreich. Foundation of Cryptography { Fragments of a Book. Febru-ary 1995. Available fromhttp://www.wisdom.weizmann.ac.il/�oded/foc.html Superseded bythe current work.[132] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity.ECCC, TR97-058, Dec. 1997.[133] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudoran-domness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[134] O. Goldreich. Secure Multi-Party Computation. Unpublished manuscript,1998. Available fromhttp://www.wisdom.weizmann.ac.il/�oded/foc.html Superseded bythe current work.[135] O. Goldreich.Encryption Schemes { fragments of a chapter. December 1999. Avail-able from http://www.wisdom.weizmann.ac.il/�oded/foc-book.htmlSuperseded by the current work.[136] O. Goldreich. Signature Schemes { fragments of a chapter. May 2000.Avail-able from http://www.wisdom.weizmann.ac.il/�oded/foc-book.htmlSuperseded by the current work.[137] O. Goldreich. Foundation of Cryptography { Basic Tools. CambridgeUniversity Press, 2001.[138] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In34th ACM Symposium on the Theory of Computing, pages 332{340, 2002.[139] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing fromLattice Problems. ECCC, TR95-042, 1996.[140] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[141] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Appli-cations of Random Functions. In Crypto84, Springer-Verlag Lecture Notesin Computer Science (Vol. 263), pages 276{288, 1985.[142] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuck-erman. Security Preserving Ampli�cation of Hardness. In 31st IEEESymposium on Foundations of Computer Science, pages 318{326, 1990.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

790 BIBLIOGRAPHY[143] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 2,pages 167{189, 1996. Preliminary versions date to 1988.[144] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February1996, pages 169{192.[145] O. Goldreich and H. Krawczyk. On Sparse Pseudorandom Ensembles.Random Structures and Algorithms, Vol. 3, No. 2, (1992), pages 163{174.[146] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudo-random Generators. SIAM Journal on Computing, Vol. 22-6, pages 1163{1175, 1993.[147] O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for aDecision Problem Equivalent to Discrete Logarithm. Journal of Cryptol-ogy, Vol. 6 (2), pages 97{116, 1993.[148] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.[149] O. Goldreich and Y. Lindell. Session-Key Generation using Human Pass-words. In Crypto01, Springer-Verlag Lecture Notes in Computer Science(Vol. 2139), pages 408{432.[150] O. Goldreich, Y. Lustig and M. Naor. On Chosen Ciphertext Security ofMultiple Encryptions. Cryptology ePrint Archive, Report 2002/089, 2002.[151] O. Goldreich and B. Meyer. Computational Indistinguishability { Algo-rithms vs. Circuits. Theoretical Computer Science, Vol. 191, pages 215{218, 1998.[152] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothingbut their Validity or All Languages in NP Have Zero-Knowledge ProofSystems. Journal of the ACM, Vol. 38, No. 1, pages 691{729, 1991. Pre-liminary version in 27th IEEE Symposium on Foundations of ComputerScience, 1986.[153] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game{ A Completeness Theorem for Protocols with Honest Majority. In 19thACM Symposium on the Theory of Computing, pages 218{229, 1987.[154] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC,TR95-050, 1995.[155] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-KnowledgeProof Systems. Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 791[156] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Com-putational Complexity, Vol. 8, pages 50{98, 1999.[157] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials withqueries: the highly noisy case. To appear in SIAM Journal on DiscreteMathematics.[158] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Veri�er Statistical Zero-Knowledge equals general Statistical Zero-Knowledge. In 30th ACM Sym-posium on the Theory of Computing, pages 399{408, 1998.[159] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sam-ple Hierarchy. Journal of Computer and System Science, Vol. 59, pages253{269, 1999.[160] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-Knowledge with Applications to the Structure of SZK. In 14th IEEEConference on Computational Complexity, pages 54{73, 1999.[161] O. Goldreich and R. Vainish. How to Solve any Protocol Problem { AnE�ciency Improvement. In Crypto87, Springer Verlag, Lecture Notes inComputer Science (Vol. 293), pages 73{86.[162] S. Goldwasser and J. Kilian. Primality Testing Using Elliptic Curves.Journal of the ACM, Vol. 46, pages 450{472, 1999. Preliminary version in18th ACM Symposium on the Theory of Computing, 1986.[163] S. Goldwasser and L.A. Levin. Fair Computation of General Functionsin Presence of Immoral Majority. In Crypto90, Springer-Verlag LectureNotes in Computer Science (Vol. 537), pages 77{93.[164] S. Goldwasser and Y. Lindell. Secure Computation Without Agree-ment. In 16th International Symposium on Distributed Computing (DISC),Springer-Verlag (LNCS 2508), pages 17{32, 2002.[165] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Com-puter and System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminaryversion in 14th ACM Symposium on the Theory of Computing, 1982.[166] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity ofInteractive Proof Systems. SIAM Journal on Computing, Vol. 18, pages186{208, 1989. Preliminary version in 17th ACM Symposium on the Theoryof Computing, 1985.[167] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Se-cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Com-puting, April 1988, pages 281{308.[168] S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a PrivateCode in a Public Network. In 23rd IEEE Symposium on Foundations ofComputer Science, 1982, pages 134{144.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

792 BIBLIOGRAPHY[169] S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15thACM Symposium on the Theory of Computing, pages 431{439, 1983.[170] S. Goldwasser and R. Ostrovsky. Invariant Signatures and Non-InteractiveZero-Knowledge Proofs are Equivalent. In Crypto92, Springer-Verlag Lec-ture Notes in Computer Science (Vol. 740), pages 228{245, 1992.[171] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interac-tive Proof Systems. Advances in Computing Research: a research annual,Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 73{90, 1989.[172] S. Haber and S. Micali. Private communication, 1986.[173] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A PseudorandomGenerator from any One-way Function. SIAM Journal on Computing,Volume 28, Number 4, pages 1364{1396, 1999. Preliminary versions byImpagliazzo et. al. in 21st ACM Symposium on the Theory of Computing(1989) and H�astad in 22nd ACM Symposium on the Theory of Computing(1990).[174] J. H�astad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo aComposite Hides O(n) Bits. Journal of Computer and System Science,Vol. 47, pages 376{404, 1993.[175] M. Hirt and U. Maurer. Complete characterization of adversaries tolerablein secure multi-party computation. Journal of Cryptology, Vol. 13, No. 1,pages 31{60, 2000.[176] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Com-plexity Based Cryptography. In 30th IEEE Symposium on Foundations ofComputer Science, pages 230-235, 1989.[177] R. Impagliazzo and M. Naor. E�cient Cryptographic Schemes Provable asSecure as Subset Sum. Journal of Cryptology, Vol. 9, 1996, pages 199{216.[178] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences ofOne-Way Permutations. In 21st ACM Symposium on the Theory of Com-puting, pages 44{61, 1989.[179] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential cir-cuits: Derandomizing the XOR Lemma. In 29th ACM Symposium on theTheory of Computing, pages 220{229, 1997.[180] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In30th IEEE Symposium on Foundations of Computer Science, 1989, pages248{253.[181] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. InCrypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),pages 40{51, 1987.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 793[182] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures.In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294).[183] J. Justesen. A class of constructive asymptotically good alegbraic codes.IEEE Trans. Inform. Theory, Vol. 18, pages 652{656, 1972.[184] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, 1995.[185] J. Kahn, M. Saks, and C. Smyth. A Dual Version of Reimer's Inequalityand a Proof of Rudich's Conjecture. In 15th IEEE Conference on Compu-tational Complexity, 2000.[186] B.S. Kaliski. Elliptic Curves and Cryptography: A Pseudorandom BitGenerator and Other Tools. Ph.D. Thesis, LCS, MIT, 1988.[187] J. Katz and M. Yung. Complete Characterization of Security Notions forProbabilistic Private-Key Encryption. In 32nd ACM Symposium on theTheory of Computing, pages 245{254, 2000.[188] J. Kilian. Basing Cryptography on Oblivious Transfer. In 20th ACMSymposium on the Theory of Computing, pages 20{31, 1988.[189] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In24th ACM Symposium on the Theory of Computing, pages 723{732, 1992.[190] J. Kilian and E. Petrank. An E�cient Non-Interactive Zero-KnowledgeProof System for NP with General Assumptions. Journal of Cryptology,Vol. 11, pages 1{27, 1998.[191] J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge inPoly-logarithmic Rounds In 33rd ACM Symposium on the Theory of Com-puting, pages 560{569, 2001.[192] H. Krawczyk. LFSR-based Hashing and Authentication. In Crypto94,Lecture Notes in Computer Science (Vol. 839), Springer-Verlag, pages 129{139.[193] H. Krawczyk. New Hash Functions For Message Authentication. In Euro-Crypt95, Springer-Verlag, Lecture Notes in Computer Science (Vol. 921),pages 301{310.[194] J.C. Lagarias and A.M. Odlyzko. Solving Low-Density Subset Sum Prob-lems. Journal of the ACM, Vol. 32, pages 229{246, 1985.[195] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols forNEXP-time. Journal of Computer and System Science, Vol. 54 (2), pages215{220, April 1997.[196] A. Lempel. Cryptography in Transition. Computing Surveys, Dec. 1979.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

794 BIBLIOGRAPHY[197] A.K. Lenstra, H.W. Lenstra, L. Lov�asz. Factoring polynomials with ratio-nal coe�cients. Mathematische Annalen 261, pages 515{534, 1982.[198] L.A. Levin. Average Case Complete Problems. SIAM Journal on Com-puting, Vol. 15, pages 285{286, 1986.[199] L.A. Levin. One-Way Function and Pseudorandom Generators. Combina-torica, Vol. 7, pages 357{363, 1987.[200] L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3),pages 1102{1103, 1993.[201] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[202] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryp-tion Under General Assumptions. In EuroCrypt03, Springer Lecture Notesin Computer Science (Vol. 2656), pages 241{254, 2003.[203] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-PartyComputation. In Crypto01, Springer Lecture Notes in Computer Science(Vol. 2139), pages 171{189, 2001.[204] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authen-ticated Byzantine Agreement. In 34th ACM Symposium on the Theory ofComputing, pages 514{523, 2002.[205] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, GraduateTexts in Mathematics (#88), New York, 1982.[206] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[207] M. Luby. Pseudorandomness and Cryptographic Applications. PrincetonUniversity Press, 1996.[208] M. Luby and C. Racko�. How to Construct Pseudorandom Permutationsfrom Pseudorandom Functions. SIAM Journal on Computing, Vol. 17,1988, pages 373{386.[209] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods forInteractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages859{868, 1992.[210] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, SanMateo, CA, 1996.[211] U. Maurer. Secret Key Agreement by Public Discussion from CommonInformation. IEEE Trans. on Inform. Th. , Vol. 39 (No. 3), pages 733{742, May 1993.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 795[212] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of AppliedCryptography. CRC Press, 1996.[213] R.C. Merkle. Secure Communication over Insecure Channels. CACM,Vol. 21, No. 4, pages 294{299, 1978.[214] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980Symposium on Security and Privacy.[215] R.C. Merkle. A Digital Signature Based on a Conventional EncryptionFunction. In Crypto87, Springer-Verlag Lecture Notes in Computer Science(Vol. 293), 1987, pages 369-378.[216] R.C. Merkle. A Certi�ed Digital Signature Scheme. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 218{238.[217] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures inTrapdoor Knapsacks. IEEE Trans. Inform. Theory, Vol. 24, pages 525{530, 1978.[218] S. Micali, M.O. Rabin, and S. Vadhan. Veri�able Random Functions. In40th IEEE Symposium on Foundations of Computer Science, pages 120{130, 1999.[219] S. Micali, C. Racko�, and B. Sloan. The Notion of Security for ProbabilisticCryptosystems. SIAM Journal on Computing, Vol. 17, pages 412{426,1988.[220] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 392{404.[221] D. Micciancio. Oblivious Data Structures: Applications to Cryptography.In 29th ACM Symposium on the Theory of Computing, pages 456{464,1997.[222] G.L. Miller. Riemann's Hypothesis and Tests for Primality. Journal ofComputer and System Science, Vol. 13, pages 300{317, 1976.[223] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge Uni-versity Press, 1995.[224] National Bureau of Standards. Federal Information Processing Standards,Publ. 46 (DES 1977).[225] National Institute for Standards and Technology. Digital Signature Standard(dss), Federal Register, Vol. 56, No. 169, August 1991.[226] M. Naor. Bit Commitment using Pseudorandom Generators. Journal ofCryptology, Vol. 4, pages 151{158, 1991.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

796 BIBLIOGRAPHY[227] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-KnowledgeArguments for NP can be Based on General Assumptions. Journal ofCryptology, Vol. 11, pages 87{108, 1998.[228] M. Naor and O. Reingold. Synthesizers and their Application to the Paral-lel Construction of Pseudo-Random Functions. In 36th IEEE Symposiumon Foundations of Computer Science, pages 170{181, 1995.[229] M. Naor and O. Reingold. On the Construction of Pseudo-Random Per-mutations: Luby-Racko� Revisited. Journal of Cryptology, Vol. 12 (1),pages 29{66, 1999.[230] M. Naor and O. Reingold. From Unpredictability to Indistinguishabil-ity: A Simple Construction of Pseudorandom Functions from MACs. InCrypto98, Springer Lecture Notes in Computer Science (Vol. 1464), pages267{282.[231] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryp-tographic Application. 21st ACM Symposium on the Theory of Computing,1989, pages 33{43.[232] M. Naor and M. Yung. Public-Key Cryptosystems Provably SecureAgainst Chosen Ciphertext Attacks. In 22nd ACM Symposium on theTheory of Computing, pages 427-437, 1990.[233] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996.[234] A.M. Odlyzko. The future of integer factorization. CryptoBytes (Thetechnical newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12,1995. Available from http://www.research.att.com/�amo[235] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In FiniteFields: Theory, Applications and Algorithms, G. L. Mullen and P. Shiue,eds., Amer. Math. Soc., Contemporary Math. Vol. 168, pages 269{278,1994. Available from http://www.research.att.com/�amo[236] T. Okamoto. On relationships between statistical zero-knowledge proofs.In 28th ACM Symposium on the Theory of Computing, pages 649{658,1996.[237] R. Ostrovsky, R. Venkatesan and M. Yung, \Secure Commitment AgainstPowerful Adversary: A Security Primitive based on Average Intractability.In Proceedings of the 9th Symposium on Theoretical Aspects of ComputerScience (STACS92), pages 439{448.[238] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory of Computing andSystems, IEEE Comp. Soc. Press, pages 3{17, 1993.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 797[239] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.In 10th ACM Symposium on Principles of Distributed Computing, pages51{59, 1991.[240] T.P. Pedersen and B. P�tzmann. Fail-Stop Signatures. SIAM Journal onComputing, Vol. 26/2, pages 291{330, 1997. Based on several earlier work(see �rst footnote in the paper).[241] B. P�tzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures). Springer Lecture Notes in Computer Science (Vol. 1100),1996.[242] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-KnowledgeProofs in Logarithmic Number of Rounds. In 43rd IEEE Symposium onFoundations of Computer Science, 2002.[243] V. Pratt. Every Prime has a Succinct Certi�cate. SIAM Journal onComputing, Vol. 4, pages 214{220, 1975.[244] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal ofNumber Theory, Vol. 12, pages 128{138, 1980.[245] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computa-tion (R.A. DeMillo et. al. eds.), Academic Press, 1977.[246] M.O. Rabin. Digitalized Signatures and Public Key Functions as In-tractable as Factoring. MIT/LCS/TR-212, 1979.[247] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. MemoTR-81, Aiken Computation Laboratory, Harvard U., 1981.[248] C. Racko� and D.R. Simon. Non-Interactive Zero-Knowledge Proof ofKnowledge and Chosen Ciphertext Attack. In Crypto91, Springer Verlag,Lecture Notes in Computer Science (Vol.), pages 433{444.[249] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,Vol. 27 (3), pages 763{803, 1998.[250] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415{413.[251] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining DigitalSignatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978,pages 120{126.[252] P. Rogaway. TheRound Complexity of Secure Protocols. MIT Ph.D. Thesis, June 1991.Available from http://www.cs.ucdavis.edu/�rogaway/papers.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

798 BIBLIOGRAPHY[253] J. Rompel. One-way Functions are Necessary and Su�cient for SecureSignatures. In 22nd ACM Symposium on the Theory of Computing, 1990,pages 387{394.[254] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and AchievingChosen-Ciphertext Security. In 40th IEEE Symposium on Foundations ofComputer Science, pages 543{553, 1999.[255] A. Sahai. Improved Constructions Achieving Chosen-Ciphertext Security.In preparation, 2001. See [92].[256] A. Sahai and S. Vadhan. A Complete Promise Problem for StatisticalZero-Knowledge. In 38th IEEE Symposium on Foundations of ComputerScience, pages 448{457, 1997.[257] C.P. Schnorr and H.H. Horner, Attacking the Chor-Rivest Cryptosystemby Improved Lattice Reduction. In EuroCrypt95, Springer-Verlag LectureNotes in Computer Science (Vol. 921), pages 1{12.[258] A. Shamir. On the Cryptocomplexity of Knapsack systems. 11th ACMSymposium on the Theory of Computing, pages 118{129, 1979.[259] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages612{613.[260] A. Shamir. A Polynomial-Time Algorithm for Breaking the Merkle-Hellman Cryptosystem. In 23rd IEEE Symposium on Foundations of Com-puter Science, pages 145{152, 1982.[261] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages869{877, 1992.[262] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT/LCS ReportTM-125, 1979.[263] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.J., Vol. 28, pages 656{715, 1949.[264] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15thACM Symposium on the Theory of Computing, pages 330{335, 1983.[265] M. Sipser. Introduction to the Theory of Computation. PWS PublishingCompany, 1997.[266] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAMJournal on Computing, Vol. 6, pages 84{85, 1977. Addendum in SIAMJournal on Computing, Vol. 7, page 118, 1978.[267] D. Stinson Universal hashing and authentication codes. Designs, Codesand Cryptography, Vol. 4, pages 369{380, 1994.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 799[268] M. Sudan. Decoding of Reed-Solomon Codes beyond the error-correctionBound. Jour. of Complexity, Vol. 13 (1), pages 180{193, 1997.[269] M. Tompa and H. Woll, Random Self-Reducibility and Zero-KnowledgeInteractive Proofs of Possession of Information. In 28th IEEE Symposiumon Foundations of Computer Science, pages 472{482, 1987.[270] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis,Department of Mathematics, MIT, 1999.[271] S. Vadhan. On Constructing Locally Computable Extractors and Cryp-tosystems in the Bounded Storage Model. Cryptology ePrint Archive, Re-port 2002/162, 2002.[272] A. Vardi. Algorithmic Complexity in Coding Theory and the MinimunDistnace Problem. In 29th ACM Symposium on the Theory of Computing,pages 92{108, 1997.[273] U.V. Vazirani and V.V. Vazirani. E�cient and Secure Pseudo-RandomNumber Generation. 25th IEEE Symposium on Foundations of ComputerScience, pages 458{463, 1984.[274] M. Wegman and L. Carter. New Hash Functions and their Use in Au-thentication and Set Equality. Journal of Computer and System Science,Vol. 22, 1981, pages 265{279.[275] A. D. Wyner. The Wire-Tap Channel. Bell System Technical Journal,Vol. 54 (No. 8), pages 1355{1387, Oct. 1975.[276] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.[277] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Sympo-sium on Foundations of Computer Science, pages 162{167, 1986.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

