
Fragments of a chapter onSignature Schemes(revised, second posted version)Extracts from a working draftfor Volume 2 of Foundations of CryptographyOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.February 10, 2002

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Ito Dana

cCopyright 2002 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for pro�t orcommercial advantage and that new copies bear this notice and the full citation on the�rst page. Abstracting with credit is permitted.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

PrefaceThe current manuscript is a preliminary draft of the chapter onsignature schemes (Chapter 6) of the second volume of the workFoundations of Cryptography. This manuscript subsumes a previousversion posted in May 2000.The bigger picture. The current manuscript is part of a working draft ofPart 2 of the three-part work Foundations of Cryptography (see Figure 0.1). Thethree parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-sics. The �rst part (containing Chapters 1{4) has been published by CambridgeUniversity Press (in June 2001). The second part, consists of Chapters 5{7 (re-garding Encryptioni Schemes, Signatures Schemes, and General CryptographicProtocols, respectively). We hope to publish the second part with CambridgeUniversity Press within a couple of years.Part 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsPart 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsPart 3: Beyond the Basics� � �Figure 0.1: Organization of this work
III

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IV The partition of the work into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple of years, and publish it without waiting for the third part.Prerequisites. The most relevant background for this text is provided bybasic knowledge of algorithms (including randomized ones), computability andelementary probability theory. Background on (computational) number theory,which is required for speci�c implementations of certain constructs, is not reallyrequired here.Using this text. The text is intended as part of a work that is aimed to serveboth as a textbook and a reference text. That is, it is aimed at serving both thebeginner and the expert. In order to achieve this aim, the presentation of thebasic material is very detailed so to allow a typical CS-undergraduate to followit. An advanced student (and certainly an expert) will �nd the pace (in theseparts) way too slow. However, an attempt was made to allow the latter readerto easily skip details obvious to him/her. In particular, proofs are typicallypresented in a modular way. We start with a high-level sketch of the main ideas,and only later pass to the technical details. Passage from high-level descriptionsto lower level details is typically marked by phrases such as details follow.In a few places, we provide straightforward but tedious details in in-dented paragraphs as this one. In some other (even fewer) places suchparagraphs provide technical proofs of claims that are of marginal rele-vance to the topic of the book.More advanced material is typically presented at a faster pace and with lessdetails. Thus, we hope that the attempt to satisfy a wide range of readers willnot harm any of them.Teaching. The material presented in the full (three-volume) work is, on onehand, way beyond what one may want to cover in a course, and on the otherhand falls very short of what one may want to know about Cryptography ingeneral. To assist these conicting needs we make a distinction between basicand advanced material, and provide suggestions for further reading (in the lastsection of each chapter). In particular, sections, subsections, and subsubsectionsmarked by an asterisk (*) are intended for advanced reading.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Table of Contents
Preface III6 Signatures and Message Authentication 4796.1 De�nitional Issues : 4796.1.1 Message authentication versus signature schemes : : : : : 4806.1.2 Basic mechanism : 4816.1.3 Attacks and security : 4826.1.4 Comments : 4846.1.4.1 Augmenting the attack with a veri�cation oracle 4856.1.4.2 Inessential generalities : : : : : : : : : : : : : : : 4856.1.4.3 Weaker notions of security and some popular schemes4866.2 Length-restricted signature scheme : : : : : : : : : : : : : : : : : 4866.2.1 De�nition : 4866.2.2 The power of length-restricted signature schemes : : : : : 4876.2.2.1 Signing (augmented) blocks : : : : : : : : : : : : 4886.2.2.2 Signing a hash value : : : : : : : : : : : : : : : : 4926.2.3 * Constructing collision-free hashing functions : : : : : : 4956.2.3.1 A construction based on claw-free permutations 4966.2.3.2 Collision-free hashing via block-chaining : : : : : 4976.2.3.3 Collision-free hashing via tree-hashing : : : : : : 5006.3 Constructions of Message Authentication Schemes : : : : : : : : 5026.3.1 Applying a pseudorandom function to the document : : : 5026.3.1.1 A simple construction and a plausibility result : 5026.3.1.2 * Using the hash-and-sign paradigm : : : : : : : 5046.3.1.3 * A variation on the hash-and-sign paradigm : : 5056.3.2 * More on Hash-and-Hide and state-based MACs : : : : : 5096.3.2.1 The de�nition of state-based MACs : : : : : : : 5106.3.2.2 State-based hash-and-hide MACs : : : : : : : : 5126.4 Constructions of Signature Schemes : : : : : : : : : : : : : : : : 5156.4.1 One-time signature schemes : : : : : : : : : : : : : : : : : 5156.4.1.1 De�nitions : 5166.4.1.2 Constructing length-restricted one-time signatureschemes : 5176.4.1.3 From length-restricted schemes to general ones : 520V

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

16.4.2 From one-time signature schemes to general ones : : : : : 5216.4.2.1 The refreshing paradigm : : : : : : : : : : : : : 5216.4.2.2 Authentication{trees : : : : : : : : : : : : : : : : 5236.4.2.3 The actual construction : : : : : : : : : : : : : : 5336.4.2.4 Conclusions and comments : : : : : : : : : : : : 5366.4.3 * Universal One-Way Hash Functions and using them : : 5376.4.3.1 De�nition : 5386.4.3.2 Constructions : : : : : : : : : : : : : : : : : : : 5396.4.3.3 One-time signature schemes based on UOWHF : 5476.4.3.4 Conclusions and comments : : : : : : : : : : : : 5506.5 * Additional Properties : 5516.5.1 Unique signatures : 5516.5.2 Super-secure signature schemes : : : : : : : : : : : : : : : 5526.5.3 O�-line/on-line signing : 5566.5.4 Incremental signatures : 5576.5.5 Fail-stop signatures : 5596.6 Miscellaneous : 5606.6.1 On Using Signature Schemes : : : : : : : : : : : : : : : : 5606.6.2 On Information Theoretic Security : : : : : : : : : : : : : 5616.6.3 On Popular Schemes : 5626.6.4 Historical Notes : 5636.6.4.1 Signature Schemes : : : : : : : : : : : : : : : : : 5636.6.4.2 Message Authentication Schemes : : : : : : : : : 5646.6.5 Suggestion for Further Reading : : : : : : : : : : : : : : : 5656.6.6 Open Problems : 5666.6.7 Exercises : 566

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

478
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 6Digital Signatures andMessage AuthenticationMessage authentication and (digital) signatures were the �rst tasks that joinedencryption to form modern cryptography. Both message authentication and dig-ital signatures are concerned with the \authenticity" of data, and the di�erencebetween them is analogous to the di�erence between private-key and public-keyencryption schemes.In this chapter, we de�ne message authentication and digital signatures, andthe security notions associated to them. We show how to construct message au-thentication schemes using pseudorandom functions, and how to construct signa-ture schemes using one-way permutations. We stress that the latter constructionemploy one-way permutations that do not necessarily have a trapdoor. Towardspresenting the latter constructions, we discuss restricted types of message au-thentication and signature schemes, which are of independent interest, such aslength-restricted schemes (see Section 6.2) and one-time signature schemes (seeSection 6.4.1).Teaching Tip: Indeed, do not skip Section 6.2, since it does play an importantrole in the following sections. As in Chapter 5, we assume that the reader isfamiliar with the material in Chapters 2 and 3 (and speci�cally with Sections 2.2,2.4, and 3.6). This familiarity is important not only because we use some ofthe notions and results presented in these sections, but rather because we usesimilar proof techniques (and do it while assuming that this is not the reader's�rst encounter with these techniques).6.1 De�nitional IssuesLoosely speaking, message authentication and signature schemes are supposedto enable reliable transmission of data between parties. That is, the basic setting479

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

480 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONconsists of a sender and a receiver, where the receiver may be either predeter-mined or determined only after the data was sent. Loosely speaking, the receiverwishes to be guaranteed that the data received was actually sent by the sender,rather than modi�ed (or even concocted) by a third party. The receiver maybe a party sharing an unreliable point-to-point communication line with thesender (which is indeed the typical setting in which message authentication isemployed). However, in other cases (i.e., when signature schemes are employed),the receiver may be any party that obtains the data in the future and wishes toverify that it was indeed sent by the declared sender. In both cases, the reliabil-ity (or authenticity) of the data is established by an authentication process thatconsists of two main processes:1. A signing process that is employed by the alleged sender in order to producesignatures to data of its choice.2. A veri�cation process that is employed by the receiver in order to determinethe authenticity of the data using the provided signature.As in case of encryption schemes, the authentication process presupposes also athird (implicit) process called key-generation that allows the sender to generatea signing-key (to be used in the signing process), along with a veri�cation-key (to be used in the veri�cation process). The possession of the signing-keyconstitutes the sender's advantage over the adversary (see analogous discussionin Chapter 5).6.1.1 Message authentication versus signature schemesThe di�erence between message authentication and signature schemes arisesfrom the di�erence in the settings to which they are intended, which amounts toa di�erence in the identity of the receiver and in the level of trust that the senderhas in the receiver. Typically, message authentication schemes are employed incases where the receiver is predetermined (at the time of message transmission)and is fully trusted by the sender, whereas signature schemes allow veri�cationof the authenticity of the data by anybody (which is certainly not trusted bythe sender). In other words, signature schemes allow for universal veri�cation,whereas message authentication schemes may only allow predetermine parties toverify the authenticity of the data. Thus, in signature schemes the veri�cation-key must be known to anybody, and in particular is known to the adversary. Incontrast, in message-authentication schemes, the veri�cation-key is only given toa set of predetermined receivers that are all trusted not to abuse this knowledge;that is, in such schemes it is postulated that the veri�cation-key is not (a-priori)known to the adversary.Summary and terminology: Message authentication and signature schemesdi�er in the question of whether the veri�cation-key is secret (i.e., unknownto the adversary) or public (and also known to the adversary). Thus, in asense, these are private-key and public-key versions of a task that lacks a goodname (since both authentication and signatures are already taken by one of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 481type veri�cation-key known veri�cation possibleMessage auth. to designated for designatedschemes (trusted) receiver(s) only (trusted) receiver(s) onlySignature to everybody for anybodyschemes (including adversary) (including adversary)Figure 6.1: Message authentication versus signature schemes.the versions). Still, seeking a uniform terminology, we shall sometimes refer tomessage authentication schemes (also known as message authentication codes(mac)) as to private-key signature schemes. Analogously, we shall sometimesrefer to signature schemes as to public-key signature schemes.6.1.2 Basic mechanismWe start by de�ning the basic mechanism of message-authentication and sig-nature schemes. Recall that there will be private-key and public-key versions,but the di�erence between the two version is only reected in the de�nition ofsecurity. In contrast, the de�nition of the basic mechanism says nothing aboutthe security of the scheme (which is the subject of the next section), and thusis the same for both the private-key and public-key versions. In both cases,the scheme consists of three e�cient algorithms: key generation, signing (orauthenticating) and veri�cation. The basic requirement is that signatures thatare produced by the signing algorithm be accepted as valid by the veri�cationalgorithm, when fed a veri�cation-key corresponding to the signing-key used bythe signing algorithm.De�nition 6.1.1 (signature scheme): A signature scheme is a triple, (G;S; V),of probabilistic polynomial-time algorithms satisfying the following two condi-tions1. On input 1n, algorithm G (called the key generator) outputs a pair of bitstrings.2. For every pair (s; v) in the range of G(1n), and for every � 2 f0; 1g�,algorithms S (signing) and V (veri�cation) satisfyPr[V (v; �; S(s; �))=1] = 1where the probability is taken over the internal coin tosses of algorithms Sand V .The integer n serves as the security parameter of the scheme. Each (s; v) inthe range of G(1n) constitutes a pair of corresponding signing/veri�cation keys.The string S(s; �) is a signature to the document � 2 f0; 1g� using the signingkey s.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

482 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONWe stress that De�nition 6.1.1 says nothing about security, and so trivial (i.e.,insecure) algorithms may satisfy it (e.g., S(s; �) def= 0 and V (v; �; �) def= 1, forall s; v; � and �). Furthermore, De�nition 6.1.1 does not distinguish private-keysignature schemes from public-key ones. The di�erence between the two typesis introduced in the security de�nitions: In a public-key scheme the \forgingalgorithm" gets the veri�cation key (i.e., v) as an additional input (and thusv 6= s follows), whereas in private-key schemes v is not given to the \forgingalgorithm" (and thus one may assume, without loss of generality, that v = s).Notation: In the rest of this book, we write Ss(�) instead of S(s; �) andVv(�; �) instead of V (v; �; �). Also, we let G1(1n) (resp., G2(1n)) denote the �rst(resp., second) element in the pair G(1n). That is, G(1n) = (G1(1n); G2(1n)).Without loss of generality, we may assume that jG1(1n)j and jG2(1n)j are poly-nomially related to n, and that each of these integers can be e�ciently computedfrom the other.Comments: The above de�nition may be relaxed in several ways without sig-ni�cantly harming its usefulness. For example, we may relax Condition (2) andallow a negligible veri�cation error (e.g., Pr[Vv(�; Ss(�)) 6= 1] < 2�n). Alter-natively, one may postulate that Condition (2) holds for all but a negligiblemeasure of the key-pairs generated by G(1n). At least one of these relaxationsis essential for many suggestions of (public-key) signature schemes.Another relaxation consists of restricting the domain of possible documents.However, unlike the situation with respect to encryption schemes, such a restric-tion is non-trivial in the current context, and is discussed at length in Section 6.2.6.1.3 Attacks and securityWe consider very powerful attacks on the signature scheme as well as a veryliberal notion of breaking it. Speci�cally, the attacker is allowed to obtain signa-tures to any document of its choice. One may argue that in many applicationssuch a general attack is not possible (as documents to be signed must havea speci�c format). Yet, our view is that it is impossible to de�ne a general(i.e., application-independent) notion of admissible documents, and thus a gen-eral/robust de�nition of an attack seems to have to be formulated as suggestedhere. (Note that at worst, our approach is overly cautious.) Likewise, the adver-sary is said to be successful if it can produce a valid signature to any documentfor which it has not asked for a signature during its attack. Again, this de�nesthe ability to form signatures to possibly \nonsensical" documents as a breakingof the scheme. Yet, again, we see no way to have a general (i.e., application-independent) notion of \meaningful" documents (so that only forging signaturesto them will be consider a breaking of the scheme). The above discussion leadsto the following (slightly informal) formulation.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 483� A chosen message attack is a process that can obtain signatures to stringsof its choice, relative to some �xed signing-key that is generated by G. Wedistinguish two cases.The private-key case: Here the attacker is given 1n as input, and the sig-natures are produced relative to s, where (s; v) G(1n).The public-key case: Here the attacker is given v as input, and the signa-tures are produced relative to s, where (s; v) G(1n).� Such an attack is said to succeeds (in existential forgery) if it outputs a validsignature to a string for which it has not requested a signature during theattack. That is, the attack is successful if it outputs a pair (�; �) so that �is di�erent from all strings for which a signature has been required duringthe attack, and Pr[Vv(�; �) = 1] � 12 , where v is as above.1� A signature scheme is secure (or unforgeable) if every probabilistic polynomial-time chosen message attack succeeds with at most negligible probability.Formally, a chosen message attack is modeled by a probabilistic oracle machinethat is given oracle access to a \keyed signing process" (i.e., the signing algorithmcombined with the signing-key). Depending on the version (i.e., public-key ornot), the attacker may get the corresponding veri�cation-key as input. Westress that this is the only di�erence between the two cases (i.e., private-keyand public-key) that are spelled out in De�nition 6.1.2. We refer the reader tothe clarifying discussion that follows De�nition 6.1.2; in fact, some readers mayprefer that discussion over the technical formulations.De�nition 6.1.2 (unforgeable signatures):Common notation: Let M be a probabilistic oracle machine. We denote byQOM (x) the set of queries made by M on input x and access to oracleO, and let MO1 (x) denote the �rst string in the pair of strings output byM on input x and access to oracle O.The private-key case: A private-key signature scheme is secure if for every prob-abilistic polynomial-time oracle machine M , every polynomial p and allsu�ciently large n, it holds thatPr hVG2(1n)(MSG1(1n)(1n))=1 &MSG1(1n)1 (1n) 62 QSG1(1n)M (1n)i < 1p(n)where the probability is taken over the coin tosses of algorithms G, S andV as well as over the coin tosses of machine M .1 The threshold of 1=2 used above is quite arbitrary. The de�nition is essentially robustunder the replacement of 1=2 by either 1=poly(n) or 1 � 2�poly(n), by ampli�cation of theveri�cation algorithm. For example, given V as above, one may consider V 0 that applies V tothe tested pair for a linear number of times and accepting if and only if V has accepted in alltries.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

484 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONThe public-key case: A public-key signature scheme is secure if for every prob-abilistic polynomial-time oracle machine M , every polynomial p and allsu�ciently large n, it holds thatPr24 VG2(1n)(MSG1(1n)(G2(1n)))=1andMSG1(1n)1 (G2(1n)) 62 QSG1(1n)M (G2(1n)) 35 < 1p(n)where the probability is taken over the coin tosses of algorithms G, S andV as well as over the coin tosses of machine M .The de�nition refers to the following experiment. First a pair of keys, (s; v), isgenerated by invoking G(1n), and is �xed for the rest of the discussion.2 Next,an attacker is invoked on input 1n or v, depending if we are in the private-key orpublic-key case. In both cases, the attacker is given oracle access to Ss, wherethe latter may be a probabilistic oracle rather than a standard deterministic one(e.g., if queried twice for the same value then the signing oracle may answerin di�erent ways). Finally, the attacker outputs a pair of strings (�; �). Theattacker is deemed successful if and only if the following two conditions hold:1. The string � is di�erent than all queries (i.e., requests for signatures)made by the attacker; that is, MSs1 (x) 62 QSsM (x), where x = 1n or x = vdepending on whether we are in the private-key or public-key case.We stress that both MSs1 (x) and QSsM (x) are random variables that arede�ned based on the same random execution of M (on input x and oracleaccess to Ss).2. The pair (�; �) corresponds to a valid document-signature pair relativeto the veri�cation key v. In case V is deterministic (which is typicallythe case) this means that Vv(�; �) = 1. The same applies also in caseV is probabilistic, and when viewing Vv(�; �) = 1 as a random variable.(Alternatively, in the latter case, a condition such as Pr[Vv(�; �) = 1] � 1=2may replace the condition Vv(�; �) = 1.)6.1.4 CommentsClearly, any signature scheme that is secure in the public-key model is also securein the private-key model. The converse is not true: consider, for example,the private-key scheme presented in Construction 6.3.1 (as well as any other\natural" message authentication scheme). Following are a few other commentsregarding the de�nitions.2 We stress that G1(1n) and G2(1n) represent related random variables. Thus, given oracleaccess to SG1(1n) means given oracle access to Gs, where s is selected and �xed according toG1(1n).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 4856.1.4.1 Augmenting the attack with a veri�cation oracleIndeed, it is natural to augment De�nition 6.1.2 by providing the adversary withunlimited access to the corresponding veri�cation oracle Vv . We stress that (inthis augmented de�nition) the documents that (only) appear in the veri�cationqueries are not added to the set QSsM ; that is, the output (�; �) is considered asuccessful forgery even if the adversary made the veri�cation-query (�; �), butprovided (as before) that the adversary did not make the signing-query � (andthat Vv(�; �) = 1).Indeed, in the public-key case, the veri�cation-oracle adds no power to theadversary, since the adversary (which is given the veri�cation-key) can emulatethe veri�cation-oracle by itself. Furthermore, typically, also in the private-keymodel, the veri�cation-oracle does not add much power. Speci�cally, as discussedin Section 6.5.1 (see also Exercises 1 and 2), any secure private-key signaturescheme can be transformed into one having a deterministic veri�cation algorithmand unique valid signatures (i.e., for every veri�cation-key v and document �,there exists a unique � such that Vs(�; �) = 1). In fact, all private-key signatureschemes presented in Section 6.3 have unique valid signatures. Considering anarbitrary combined attack on such a private-key signature scheme, we emulatethe veri�cation-queries (in the original model) as follows.� For a veri�cation-query (�; �) if � equals a previous signing-query, thenwe can emulate the answer by ourselves. Speci�cally, if the signing-query� was answered with � then we we answer the veri�cation-query positivelyelse we answer it negatively.� Otherwise (i.e., for a veri�cation-query (�; �) such that � does not equalany previous signing-query), we may choose either to output (�; �) asa candidate forgery (gambling on Vv(�; �) = 1) or emulate a negativeanswer by ourselves (gambling on Vv(�; �) = 0). Speci�cally, for everysuch veri�cation-query, we may choose the �rst possibility with probability1=t(n) and the second possibility otherwise, where t(n) is a bound on thenumber of veri�cation-queries performed by the original augmented attack(which we emulate).For further discussion see Exercise 3.6.1.4.2 Inessential generalitiesThe de�nitions presented above (speci�cally, De�nition 6.1.1) were aimed at gen-erality and exibility. We comment that several levels of freedom can be elimi-nated without loss of generality (but with some loss of convenience). Firstly, asin the case of encryption schemes, one may modify the key-generation algorithmso that on input 1n it outputs a pair of n-bit long keys. Two more fundamentalrestrictions, which actually do not a�ect the existence of secure schemes, follow.Randomization in the signing process: In contrast to the situation withrespect to encryption schemes (see Sections 5.2 and 5.3), randomization is not

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

486 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONessential to the actual signing and verifying processes (but is, as usual, essentialto key generation). That is, without loss of generality (but with possible loss ine�ciency), the signing algorithm may be deterministic, and in all schemes wepresent (in the current chapter) the veri�cation algorithm is indeed deterministic.For details, see Exercise 1.Canonical veri�cation in the private-key version: As hinted above, inthe private-key case, we may just identify the signing and veri�cation keys (i.e.,k def= s = v). Furthermore (following the comment about deterministic signing),without loss of generality, veri�cation may amount to comparing the allegedsignature against the one produced by the veri�cation algorithm (as done by thesigning algorithm). That is, we may let Vk(�; �) def= 1 if and only if � = Sk(�).For details, see Exercise 2.6.1.4.3 Weaker notions of security and some popular schemesWeaker notion of security have been considered in the literature. The variousnotions refer to two parameters: (1) the type of attack, and (2) when is theadversary considered to be a success. Indeed, De�nition 6.1.2 refers to the mostsevere type of attacks (i.e., unrestricted chosen message attacks) and to the mostliberal notion of success (i.e., ability to produce a valid signature to any newmessage). The interested reader is referred to Section 6.6.5.We note that plain RSA as well as plain versions of Rabin's scheme andthe DSS are not secure under De�nition 6.1.2. However, these schemes sat-isfy weaker notions of security, provided that some (standard) intractabilityassumptions hold. Furthermore, variants of these signature schemes (in whichthe function is not applied directly to the document itself) may be secure (underDe�nition 6.1.2).6.2 Length-restricted signature schemeRestricted types of (public-key and private-key) signature schemes play an im-portant role in our exposition. The �rst restriction we consider is the one ofschemes yielding secure signatures only to documents of a certain predeterminedlength. The e�ect of the length-restriction is more dramatic here (in the contextof signature schemes) than it was in the context of encryption schemes; comparethe following to Section 5.3.2. Nevertheless, as we shall show (see Theorem 6.2.2below), if the length restriction is not too low then the full power of signatureschemes can be regained.6.2.1 De�nitionThe essence of the length-restriction is in that security is guaranteed only withrespect to documents of the predetermined length. Note that the question of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 487what is the result of invoking the signature algorithm on a document of im-proper length is immaterial. What is important is that an attacker (of a length-restricted scheme) is deemed successful only if it produces a signature to a (dif-ferent) document of proper length. Still, for sake of concreteness (and simplicityof subsequent treatment), we de�ne the basic mechanism only for documents ofproper length.De�nition 6.2.1 (signature scheme for �xed length documents): Let ` : N !N . An `-restricted signature scheme is a triple, (G;S; V), of probabilistic polynomial-time algorithms satisfying the following two conditions1. As in De�nition 6.1.1, on input 1n, algorithm G outputs a pair of bitstrings.2. Analogously to De�nition 6.1.1, for every n and every pair (s; v) in therange of G(1n), and for every � 2 f0; 1g`(n), algorithms S and D satisfyPr[V (v; �; S(s; �))=1] = 1.Such a scheme is called secure (in the private-key or public-key model) if the(corresponding) requirements of De�nition 6.1.2 hold when restricted to attack-ers that only make queries of length `(n) and output a pair (�; �) with j�j = `(n).We stress that the essential modi�cation is presented in the security conditionis that considers an adversary to be successful only it case it forges a signatureto a (di�erent) document � of the proper length (i.e., j�j = `(n)).6.2.2 The power of length-restricted signature schemesWe comment that `-restricted private-key signature schemes for `(n) = O(log n)are trivial (since the signing and veri�cation keys may contain a table look-upassociating a secret with each of the 2`(n) = poly(n) possible documents).3 Incontrast, this triviality does not hold for public-key signature schemes. (For bothclaims, see Exercise 5.) On the other hand, in both (private-key and public-key)cases, `-restricted signature schemes for super-logarithmic ` (e.g., `(n) = n oreven `(n) = log22 n will do) are as powerful as ordinary signature schemes:Theorem 6.2.2 Suppose that ` is a super-logarithmically growing function. Then,given an `-restricted signature scheme that is secure in the private-key (resp.,public-key) model, one can construct a full-edged signature scheme that is se-cure in the same model.Results of the above avor can be established in two di�erent ways, correspond-ing to two methods of converting an `-restricted signature scheme into a full-edged one. Both methods are applicable both to private-key and public-key sig-nature schemes. The �rst method (presented in Section 6.2.2.1) consists of pars-ing the original document into blocks (with proper \linkage" between blocks!),3 Recall, that such triviality does not hold in the context of encryption schemes; not evenin the private-key case. See Section 5.3.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

488 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONand applying the `-restricted scheme to each block. The second method (pre-sented in Section 6.2.2.2) consists of hashing the document into an `(n)-bit longvalue (via an adequate hashing scheme!), and applying the restricted scheme tothe resulting value. Thus, the second method requires an additional assumption(i.e., the existence of \collision-free" hashing), and so Theorem 6.2.2 (as stated)is actually proved using the �rst method. The second method is presented be-cause it o�ers other bene�ts; in particular, it will play an important role insubsequent sections (e.g., in Sections 6.3.1.2 and 6.4.1.3).6.2.2.1 Signing (augmented) blocksIn this subsection we present a simple method for constructing general signa-ture schemes out of length-restricted ones, and doing so we establish Theo-rem 6.2.2. Loosely speaking, the method consists of parsing the original doc-ument into blocks (with proper \linkage" between blocks!), and applying thelength-restricted scheme to each (augmented) block.Let ` and (G;S; V) be as in Theorem 6.2.2. We construct a general signaturescheme, (G0; S0; V 0), with G0 = G, by viewing documents as sequences of strings,each of length `0(n) = `(n)=O(1). That is, we associate � = �1 � � ��t with thesequence (�1; :::; �t), where each �i has length `0(n). (At this point, the readermay think of `0(n) = `(n), but actually we will use `0(n) = `(n)=4 in order tomake room for further information.)To motivate the following construction, consider the following simpler schemesaimed at producing secure signatures for sequences of `0(n)-bit long strings. Thesimplest idea is to just sign each of the strings in the sequence. That is, the sig-nature to the sequence (�1; :::; �t), is a sequence of �i's each being a signature(w.r.t the length-restricted scheme) to the corresponding �i. This will not dosince an adversary, given a single signature (�1; �2) to the sequence (�1; �2) with�1 6= �2, can present (�2; �1) as a signature to (�2; �1). So how about signingthe sequence (�1; :::; �t) by applying the restricted scheme to each pair (i; �i), soto foil the above attack? This will not do either, since an adversary, given a sig-nature to the sequence (�1; �2; �3) can easily present a signature to the sequence(�1; �2). So we need to include in each `(n)-bit string also the total number of�i's in the sequence. But even this is not enough, since an adversary given sig-natures to the sequences (�1; �2) and (�01; �02), with �1 6= �01 and �2 6= �02, caneasily generate a signature to (�1; �02). Thus, we have to prevent the formingof new sequences of basic signatures by combination of elements from di�erentsignature sequences. This can be done by associating (say at random) an iden-ti�er with each sequence and incorporating this identi�er in each `(n)-bit stringto which the restricted scheme is applied. This yields the following signaturescheme:Construction 6.2.3 (signing augmented blocks): Let ` and (G;S; V) be asin Theorem 6.2.2. We construct a general signature scheme, (G0; S0; V 0), withG0 = G, by considering documents as sequences of strings. We construct S0 andV 0 as follows, using G0 = G and `0(n) = `(n)=4.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 489signing with S0: On input a signing-key s 2 G1(1n) and a document � 2 f0; 1g�,algorithm S0 �rst parses � into �1; :::; �t so that � is uniquely reconstructedfrom the �i's and each �i is an `0(n)-bit long string.4 Next, S0 uniformlyselects r 2 f0; 1g`0(n). For i = 1; :::; t, algorithm S0 computes�i Ss(r; t; i; �i)where i and t are represented as `0(n)-bit long strings. That is, �i is asignature to the statement \�i is the ith block, out of t blocks, in a sequenceassociate with identi�er r". Finally, S0 outputs as signature the sequence(r; t; �1; ::::; �t)veri�cation with V 0: On input a verifying-key v 2 G2(1n), a document � 2f0; 1g�, and a sequence (r; t; �1; ::::; �t), algorithm V 0 �rst parses � into�1; :::; �t0 , using the same parsing rule as S0. Algorithm V 0 accepts if andonly if the following two conditions hold:1. t0 = t, where t0 is obtained in the parsing of � and t is part of thealleged signature.2. For i = 1; :::; t, it holds that Vv((r; t; i; �i); �i), where �i is obtainedin the parsing of � and the rest are as in the corresponding parts ofthe alleged signature.Clearly, the triplet (G0; S0; V 0) satis�es De�nition 6.1.1. We need to show thatis also inherits the security of (G;S; V). That is,Proposition 6.2.4 Suppose that (G;S; V) is an `-restricted signature schemethat is secure in the private-key (resp., public-key) model. Then (G0; S0; V 0), asde�ned in Construction 6.2.3 is a full-edged signature scheme that is secure inthe private-key (resp., public-key) model.Theorem 6.2.2 follows immediately from Proposition 6.2.4.Proof: The proof is by a reducibility argument, and holds for both the private-key and the public-key models.Given an adversary A0 attacking the complex scheme (G0; S0; V 0), we con-struct an adversary A that attacks the `-restricted scheme, (G;S; V). In partic-ular, A invokes A0 with input identical to its own input (which is the securityparameter or the veri�cation-key depending on the model), and uses its own ora-cle in order to emulate the oracle S0s for A0. This can be done in a straightforwardmanner; that is, algorithm A will act as S0s does by using the oracle Ss. Specif-ically, A parses each query �0 of A0 into a corresponding sequence (�01; :::; �0t0),uniformly selects an identi�er r0, and obtains Ss signatures to (r0; t0; j; �0j), forj = 1; :::; t0. When A0 outputs a document-signature pair relative to the com-plex scheme (G0; S0; V 0), algorithm A tries to use this pair in order to form adocument-signature pair relative to the `-restricted scheme, (G;S; V).4 For example, we may require that � � 10j = �1 � � ��t and j < `0(n).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

490 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONWe stress that from the point of view of adversary A0, the distribution ofkeys and oracle answers that A provides it with is exactly as in a real attackon (G0; S0; V 0). This is a crucial point since we use the fact that events thatoccur in a real attack of A0 on (G0; S0; V 0), occur with the same probability inthe emulation of (G0; S0; V 0) by A.Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). We consider the following cases regarding the forging event:1. The identi�er supplied in the forged signature is di�erent from the randomidenti�ers supplied (by A) as part of the signatures given to A0. In thiscase, each `-restricted signature supplied as part of the forged (complex)signature, yields existential forgery relative to the `-restricted scheme.Formally, let �(1); :::; �(m) be the sequence of queries made by A0, and let(r(1); t(1); �(1)); :::; (r(m); t(m); �(m)) be the corresponding (complex) signa-tures supplied to A0 byA (using Ss to form the �(i)'s). Let (�; (r; t; �1; ::::; �t))be the output of A0, and suppose that applying V 0v to it yields 1 (i.e., it isa valid document-signature pair for the complex scheme). It follows thateach �(i) consists of a sequence of Ss-signatures to `(n)-bit strings startingwith r(i) 2 f0; 1g`(n)=4, and that the oracle Ss was invoked (by A) only onstrings of this form. The case hypothesis states that r 6= r(i), for all i's.It follows that each of the �j 's is an Ss-signature to a string starting withr 2 f0; 1g`(n)=4, and thus di�erent from all queries made to the oracle Ss.Thus, each pair ((r; t; i; �i); �i) is a valid document-signature pair (sinceV 0v(�; (r; t; �1; ::::; �t)) = 1 implies Vv((r; t; i; �i); �i) = 1), with a documentdi�erent than all queries made to Ss. This yields a successful forgery withrespect to the `-restricted scheme.2. The identi�er supplied in the forged signature equals the random identi�ersupplied (by A) as part of exactly one of the signatures given to A0.Formally, let �(1); :::; �(m) be the sequence of queries made by A0, and let(r(1); t(1); �(1)); :::; (r(m); t(m); �(m)) be the corresponding (complex) signa-tures supplied to A0 byA (using Ss to form the �(i)'s). Let (�; (r; t; �1; ::::; �t))be the output of A0, and suppose that applying V 0v to it yields 1 (i.e., it isa valid document-signature pair for the complex scheme). The hypothesisof the current case is that there exists a unique i so that r = r(i).We consider two subcases regarding the relation between t and t(i):� t 6= t(i). In this subcase, each `-restricted signature supplied as partof the forged (complex) signature, yields existential forgery relativeto the `-restricted scheme. The argument is analogous to the oneemployed in the previous case. Speci�cally, here each of the �j 'sis an Ss-signature to a string starting with (r; t), and thus di�erentfrom all queries made to the oracle Ss (since these queries eitherstart with r(i0) 6= r or start with (r(i); t(i)) 6= (r; t)). Thus, each pair

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 491((r; t; j; �j); �j) is a valid document-signature pair with a documentdi�erent than all queries made to Ss.� t = t(i). In this case we use the hypothesis � 6= �(i), which impliesthat there exists a j so that �j 6= �(i)j , where �(i)j is the jth blockin the parsing of �(i). In this subcase, �j (supplied as part of theforged complex-signature), yields existential forgery relative to the`-restricted scheme. Speci�cally, we have Vv((r; t; j; �j); �j) = 1, and(r; t; j; �j) is di�erent from each query (r(i0); t(i0); j0; �(i0)j0) made by Ato Ss.Justi�cation for (r; t; j; �j) 6= (r(i0); t(i0); j0; �(i0)j0). If i0 6= i then(by the case hypothesis regarding uniqueness of i s.t. r(i) 6= r)it holds that r(i0) 6= r. Otherwise (i.e., i0 = i) either j0 6= j or�j 6= �(i0)j0 = �(i)j .Thus, ((r; t; j; �j); �j) is a valid document-signature pair with a doc-ument di�erent than all queries made to Ss.3. The identi�er supplied in the forged signature equals the random identi�erssupplied (by A) as part of at least two signatures given to A0. In particular,it follows that two signatures given to A use the same random identi�er.The probability that this event occurs is at most�m2� � 2�`0(n) < m2 � 2�`(n)=4However, m = poly(n) (since A0 runs in polynomial-time), and 2�`(n)=4 isnegligible (since ` is super-logarithmic). So this case occurs with negligibleprobability, and may be ignored.Note that A can easily determine which of the cases occurs and act accordingly.5Thus, assuming that A0 forges relative to the complex scheme with non-negligibleprobability "0(n), it follows that A forges relative to the length-restricted schemewith non-negligible probability "(n) � "0(n)�poly(n) �2�`(n)=4, in contradictionto the proposition's hypothesis.Comment: We call the reader's attention to the essential role of the hypothesisthat ` is super-logarithmic in the proof of Proposition 6.2.4. Indeed, Construc-tion 6.2.3 is insecure in case `(n) = O(log n). The reason being that, by askingfor polynomially-many signatures, the adversary may obtain two S0s-signaturesthat use the same (random) identi�er. Furthermore, with some care, these sig-natures yield existential forgery (see Exercise 6).5 This observation only saves us a polynomial factor in the forging probability. That is, ifA did not know which part of the forged complex-signature to use in its own forgery, it couldhave selected one at random (and be correct with probability 1=poly(n) because there are onlypoly(n)-many possibilities).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

492 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION6.2.2.2 Signing a hash valueIn this subsection we present an alternative method for constructing generalsignature schemes out of length-restricted ones. Loosely speaking, the methodconsists of hashing the document into a short (�xed-length) string (via an ade-quate hashing scheme), and applying the length-restricted signature scheme tothe resulting hash-value. This two-stage process is referred to as the hash andsign paradigm.Let ` and (G;S; V) be as in Theorem 6.2.2. The second method of construct-ing a general signature scheme out of (G;S; V) is based on the hash then signparadigm. That is, �rst the document is hashed to an `(n)-bit long value, andthen the `-restricted scheme is applied to the hashed value. Thus, in additionto an `-restricted scheme, this method employs an adequate hashing scheme.In particular, one way of implementing this method is based on \collision-freehashing" (de�ned next). An alternative implementation, based on \universalone-way hashing" is deferred to Section 6.4.3.Collision-free hashing functions. Loosely speaking, a collision-free hashingscheme consists of a collection of functions fhs : f0; 1g� ! f0; 1gjsjgs2f0;1g� sothat given s and x it is easy to compute hs(x), but given a random s it is hardto �nd x 6= x0 such that hs(x) = hs(x0).De�nition 6.2.5 (collision-free hashing functions): Let ` : N ! N . A collec-tion of functions fhs : f0; 1g� ! f0; 1g`(jsj)gs2f0;1g� is called collision-free hashingif there exists a probabilistic polynomial-time algorithm I so that the followingholds1. (admissible indexing { technical):6 For some polynomial p, all su�cientlylarge n's and every s in the range of I(1n) it holds that n � p(jsj). Fur-thermore, n can be computed in polynomial-time from s.2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x, returns hs(x).3. (hard to form collisions): We say that the pair (x; x0) forms a collisionunder the function h if h(x) = h(x0) but x 6= x0. We require that everyprobabilistic polynomial-time algorithm, given I(1n) as input, outputs acollision under hI(1n) with negligible probability. That is, for every proba-bilistic polynomial-time algorithm A, every polynomial p and all su�cientlylarge n's, Pr �A(I(1n)) is a collision under hI(1n)� < 1p(n)where the probability is taken over the internal coin tosses of algorithms Iand A.6 This condition is made merely to avoid annoying technicalities. In particular, it allows thecollision-forming adversary to run for poly(n)-time (since by this condition poly(n) = poly(jsj))as well as allows to determine n from s. Note that jsj = poly(n) holds by de�nition of I.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 493The function ` is called the range speci�er of the collection.Note that the range speci�er must be super-logarithmic (or else one may easily�nd a collisions by selecting 2`(n) + 1 di�erent preimages and computing theirimage under the function). In Section 6.2.3, we show how to construct collision-free hashing functions using claw-free collections. But �rst, we show how touse the former in order to convert a length-restricted signature scheme into afull-edged one.Construction 6.2.6 (hash and sign): Let ` and (G;S; V) be as in Theorem 6.2.2,and let fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� be as in De�nition 6.2.5. We con-struct a general signature scheme, (G0; S0; V 0), as follows:key-generation with G0: On input 1n, algorithm G0 �rst invokes G to obtain(s; v) G(1n). Next it invokes I, the indexing algorithm of the collision-free hashing collection, to obtain r I(1n). Finally, G0 outputs the pair((r; s); (r; v)), where (r; s) serves as a signing-key and (r; v) serves as averi�cation-key.signing with S0: On input a signing-key (r; s) 2 G01(1n) and a document � 2f0; 1g�, algorithm S0 invokes S once to produce and output Ss(hr(�)).veri�cation with V 0: On input a verifying-key (r; v) 2 G02(1n), a document � 2f0; 1g�, and a alleged signature �, algorithm V 0 invokes V , and outputsVv(hr(�); �).Proposition 6.2.7 Suppose that (G;S; V) is an `-restricted signature schemethat is secure in the private-key (resp., public-key) model. Suppose that fhr :f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� is indeed a collision-free hashing collection. Then(G0; S0; V 0), as de�ned in Construction 6.2.6 is a full-edged signature schemethat is secure in the private-key (resp., public-key) model.Proof: Intuitively, the security of (G0; S0; V 0) follows from the security of(G;S; V) and the collision-freeness property of the collection fhrg. Speci�cally,forgery relative to (G0; S0; V 0) can be obtained by either a forged S-signatureto a hash-value di�erent from all hash-values that appeared in the attack or byforming a collision under the hash function. That is, the actual proof is by areducibility argument. Given an adversary A0 attacking the complex scheme(G0; S0; V 0), we construct an adversary A that attacks the `-restricted scheme,(G;S; V), as well as an algorithm B forming collisions under the hashing col-lection fhrg. Both A and B will have running-time related to that of A0. Weshow if A0 is successful with non-negligible probability than the same holdsfor either A or B. Thus, in either case, we reach a contradiction. We startwith the description of algorithm A, which is designed to attack the `-restrictedscheme (G;S; V). We stress that almost the same description applies both inthe private-key and public-key case.On input x, which equals the security parameter 1n in the private-key caseand a veri�cation-key v otherwise (i.e., in the public-key case), the adversary

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

494 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONA operates as follows. First A uses I (the indexing algorithm of the collision-free hashing collection) to obtain r I(1n), exactly as done in the second stepof G0. Next, A invokes A0 (on input 1n or (r; v) depending on the case), anduses r as well as its own oracle Ss in order to emulate the oracle S0r;s for A0.The emulation is done in a straightforward manner; that is, algorithm A willact as S0r;s does by using the oracle Ss (i.e., to answer query q, algorithm Amakes the query hr(q)). When A0 outputs a document-signature pair relativeto the complex scheme (G0; S0; V 0), algorithm A tries to use this pair in orderto form a document-signature pair relative to the `-restricted scheme, (G;S; V).That is, if A0 outputs the document-signature pair (�; �), then A will outputthe document-signature pair (hr(�); �).We stress (again) that from the point of view of adversaryA0, the distributionof keys and oracle answers that A provides it with is exactly as in a real attackof A0 on (G0; S0; V 0). This is a crucial point since we use the fact that eventsthat occur in a real attack of A0 on (G0; S0; V 0), occur with the same probabilityin the emulation of (G0; S0; V 0) by A.Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). We consider the following two cases regarding the forg-ing event, letting (�(i); �(i)) denote the ith query and answer pair made by A0,and (�; �) denote the forged document-signature pair that A0 outputs (in caseof success):Case 1: hr(�) 6= hr(�(i)) for all i's. (That is, the hash value used in the forgedsignature is di�erent from all hash values used in the queries to Ss.) In thiscase, the pair (hr(�); �) constitutes a success in existential forgery relativeto the `-restricted scheme.Case 2: hr(�) = hr(�(i)) for some i. (That is, the hash value used in the forgedsignature equals the hash value used in the ith query to Ss, although� 6= �(i).) In this case, the pair (�; �(i)) forms a collision under hr (andwe do not obtain success in existential forgery relative to the `-restrictedscheme).Thus, if Case 1 occurs with probability at least "0(n)=2 then A succeeds inits attack on (G;S; V) with probability at least "0(n)=2, which contradicts thesecurity of the `-restricted scheme (G;S; V). On the other hand, if Case 2 occurswith probability at least "0(n)=2 then we derive a contradiction to the collision-freeness of the hashing collection fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g�. Details(regarding the second case) follow.We construct an algorithm, denoted B, that given r I(1n), attempts toform collisions under hr as follows. On input r, algorithm B generates (s; v) G(1n), and emulates the attack of A on this instance of the `-restricted scheme,with the exception that B does not invoke algorithm I to obtain an index of ahash function but rather uses the index r (given to it as input). Recall that A,in turn, emulates an attack of A0 on the signing oracle S0r;s, and that A answersthe query q0 made by A0 by forwarding the query q = hr(q0) to Ss. Thus, B

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 495actually emulates the attack of A0 (on the signing oracle S0r;s), and does so ina straightforward manner; that is, to answer query q0 made by A0, algorithm B�rst obtains q = hr(q0) (using its knowledge of r) and then answers with Ss(q)(using its knowledge of s). Finally, when A0 outputs a forged document-signaturepair, algorithm B checks whether Case 2 occurs (i.e., whether hr(�) = hr(�(i))holds for some i), in which case it obtains (and outputs) a collision under hr.(Note that in the public-key case B invokes A0 on input (r; v), whereas in theprivate-key case B invokes A0 on input 1n. Thus, in the private-key case, Bactually does not use r but rather an oracle access to hr.)We stress that from the point of view of the emulated adversary A, theexecution is distributed exactly as in its attack on (G;S; V). Thus, since thesecond case above occurs with probability at least "0(n)=2 in a real attack, itfollows that B succeeds to form a collision under hI(1n) with probability at least"0(n)=2. This contradicts the collision-freeness of the hashing functions, and theproposition follows.Comment: For the private-key case, the proof of Proposition 6.2.7 actuallyestablished a stronger claim than stated. The proof holds even for a weaker def-inition of collision-free hashing in which the adversary is not given a descriptionof the hashing function, but can rather obtain its values at any preimage of itschoice. This observation is further pursued in Section 6.3.1.3.On using the hash and sign paradigm in practice. The hash-and-signparadigm, underlying Construction 6.2.6, is often used in practice. Speci�cally, adocument is signed using a two-stage process: �rst the document is hashed intoa (relatively) short bit string, and next a basic signature scheme is applied to theresulting string. We stress that this process yields a secure signature scheme onlyif the hashing scheme is collision-free (as de�ned above). In Section 6.2.3, wepresent one way of constructing collision-free hashing functions. Alternatively,one may indeed postulate that certain o�-the-shelf products (such as MD5 orSHA) are collision-free, but such assumptions need to be seriously examined(and indeed may turn out false). We stress that using a hashing scheme, inthe above two-stage process, without seriously evaluating whether or not it iscollision-free is a very dangerous practice.6.2.3 * Constructing collision-free hashing functionsIn view of the relevance of collision-free hashing to signature schemes, we nowtake a small detour from the main topic and consider the construction of collision-free hashing. We show how to construct collision-free hashing functions using aclaw-free collection of permutations, and how restricted notions of collision-freehashing may be used to obtain full-edged collision-free hashing.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

496 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION6.2.3.1 A construction based on claw-free permutationsIn this subsection we show how to construct collision-free hashing functions usinga claw-free collection of permutations as de�ned in Section 2.4.5. Recall thatsuch a collection consists of pairs of permutations, (f0s ; f1s), so that both f�s 'sare permutations over a set Ds and of a probabilistic polynomial-time indexselection algorithm I so that1. The domain is easy to sample: there exists a probabilistic polynomial-timealgorithm that given s outputs a string uniformly distributed over Ds.2. The permutations are easy to evaluate: there exists a polynomial-timealgorithm that given s; � and x 2 Ds, outputs f�s (x).3. Hard to form claws: every probabilistic polynomial-time algorithm, givens I(1n) outputs a pair (x; y) so that f0s (x) = f1s (y) with at most neg-ligible probability. That is, a pair (x; y) satisfying f0s (x) = f1s (y) is calleda claw for index s, and Cs denote the set of claws for index s. Then, it isrequired that for every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(I(1n)) 2 CI(1n)� < 1p(n)Note that since f0s and f1s are permutations over the same set, many claws doexists (i.e., jCsj = jDsj). However, the third item above postulates that fors generated by I(1n) such claws are hard to �nd. We may assume, withoutloss of generality, that for some ` : N ! N and all s's it holds that Ds �f0; 1g`(jsj). Indeed, ` must be polynomially bounded. For simplicity we assumethat I(1n) 2 f0; 1gn. Recall that such collections of permutation pairs can beconstructed based on the standard DLP or factoring intractability assumptions(see Section 2.4.5).Construction 6.2.8 (collision-free hashing based on claw-free permutationspairs): Given an index selecting algorithm I for a collection of permutationpairs f(f0s ; f1s)gs as above, we construct a collection of hashing functions fh(s;r) :f0; 1g� ! f0; 1gjrjg(s;r)2f0;1g��f0;1g� as follows:index selection algorithm: On input 1n, we �rst invoke I to obtain s I(1n),and next use the domain sampler to obtain a string r that is uniformlydistributed in Ds. We output the index (s; r), de�ning a hashing functionh(s;r)(x) def= fy1s fy2s � � � fyts (r)where y1 � � � yt is a pre�x-free encoding of x; that is, for any x 6= x0 thecoding of x is not a pre�x of the coding of x0. For example, code x1x2 � � �xmby x1x1x2x2 � � �xmxm01.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 497evaluation algorithm: Given an index (s; r) and a string x, we compute h(s;r)(x)in a straightforward manner. That is, �rst we compute the pre�x-freeencoding of x, denoted y1 � � � yt. Next, we use the evaluation algorithm ofthe claw-free collection to compute fy1s fy2s � � � fyts (r), which is the desiredoutput.Actually, as will become evident from the proof of Proposition 6.2.9, we donot need an algorithm that given an index s generates a uniformly distributedelement in Ds; any e�cient algorithm that generates elements in Ds (under anydistribution) will do.Proposition 6.2.9 Suppose that the collection of permutation pairs f(f0s ; f1s)gstogether with the index selecting algorithm I constitute a claw-free collection.Then, the function ensemble fh(s;r) : f0; 1g� ! f0; 1gjrjg(s;r)2f0;1g��f0;1g� asde�ned in Construction 6.2.8 constitute a collision-free hashing with a rangespecifying function `0 satisfying `0(n+ `(n)) = `(n).Proof: The proof is by a reducibility argument. Given an algorithm A0 that,on input (s; r), forms a collision under h(s;r), we construct an algorithm A thaton input s forms a claw for index s.On input s (supposedly generated by I(1n)), algorithm A selects r uniformlyin Ds, and invokes algorithm A0 on input (s; r). Suppose that A0 outputs a pair(x; x0) so that h(s;r)(x) = h(s;r)(x0) but x 6= x0. Without loss of generality,7assume that the coding of x equals y1 � � � yi�10zi+1 � � � zt, and that the coding ofx0 equals y1 � � � yi�11z0i+1 � � � z0t0 . By the de�nition of h(s;r), it follows thatfy1s � � � fyi�1s f0s fzi+1s � � � fzts (r) = fy1s � � � fyi�1s f1s fz0i+1s � � � fz0t0s (r) (6.1)Since each of the f�s 's is 1-1, Eq. (6.1) implies thatf0s fzi+1s � � � fzts (r) = f1s fz0i+1s � � � fz0t0s (r) (6.2)Computing w def= fzi+1s � � � fzts (r) and w0 def= fz0i+1s � � � fz0t0s (r), algorithm A obtainsa pair (w;w0) so that f0s (w) = f1s (w0). Thus, algorithm A forms claws for indexI(1n) with probability that is bounded below by the probability that A0 formsa collision under hI0(1n), where I 0 is the index selection algorithm as de�ned inConstruction 6.2.8. Using the hypothesis that the collection of pairs (togetherwith I) is claw-free, the proposition follows.6.2.3.2 Collision-free hashing via block-chainingIn this subsection we show how a restricted type of collision-free hashing (CFH)can be used to obtain full-edge collision-free hashing (CFH). Speci�cally, werefer to the following restriction of De�nition 6.2.5.7 Let C(x) (resp., C(x0)) denote the pre�x-free coding of x (resp., x0). Then C(x) is not apre�x of C(x0), and C(x0) is not a pre�x of C(x). It follows that C(x) = uv and C(x0) = uv0,where v and v0 di�er in their leftmost bit. Without loss of generality, we may assume that theleftmost bit of v is is 0, and the leftmost bit of v0 is 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

498 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONDe�nition 6.2.10 (length-restricted collision-free hashing functions): Let `0; ` :N ! N . A collection of functions fhs : f0; 1g`0(jsj) ! f0; 1g`(jsj)gs2f0;1g� iscalled `0-restricted collision-free hashing if there exists a probabilistic polynomial-time algorithm I such that the following holds1. (admissible indexing { technical): As in De�nition 6.2.5.2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x 2 f0; 1g`0(jsj), returns hs(x).3. (hard to form collisions): As in De�nition 6.2.5, we say that the pair(x; x0) forms a collision under the function h if h(x) = h(x0) but x 6= x0.We require that every probabilistic polynomial-time algorithm, given I(1n)as input, outputs a pair in f0; 1g`0(jsj) � f0; 1g`0(jsj) that forms a collisionunder hI(1n) with negligible probability. That is, for every probabilisticpolynomial-time algorithm A, every polynomial p and all su�ciently largen's,Pr hA(I(1n)) 2 f0; 1g2�`0(jI(1n)j) is a collision under hI(1n)i < 1p(n)where the probability is taken over the internal coin tosses of algorithms Iand A.Indeed, we focus on the case `0(n) = poly(n), or else the hardness conditionholds vacuously (since no polynomial-time algorithm can print a pair of stringsof super-polynomial length). On the other hand, we only care about the case`0(n) > `(n) (or else the functions may be 1-1). Finally, recall that ` must besuper-logarithmic.Construction 6.2.11 (from 2`-restricted CFH to full-edged CFH): Let fh0s :f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� be a collection of functions. Consider the col-lection fhs : f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� , where hs(x) is de�ned by the follow-ing process, which we call block chaining:1. Break x into t def= djxj=`(jsj)e consecutive blocks, while possibly padding thelast block with 0's, such that each block has length `(jsj). Denote these`(jsj)-bit long blocks by x1; :::; xt. That is, x1 � � �xt = x0t�`(jsj)�jxj.For sake of uniformity, in case jxj � `(jsj), we let t = 2 and x1x2 =x02`(jsj)�jxj. On the other hand, we may assume that jxj < 2`(jsj), and sojxj can be represented by an `(jsj)-bit long string.82. Let y1 def= x1. For i = 2; :::; t, compute yi = h0s(yi�1xi).3. Set hs(x) to equal (yt; jxj).8 The adversary trying to form collisions with respect to hs runs in poly(jsj)-time. Using`(jsj) = !(log jsj), it follows that such an adversary cannot output a string of length 2`(jsj).(The same holds, of course, also for legitimate usage of the hashing function.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 499An interesting property of Construction 6.2.11 is that it allows to compute thehash-value of an input string while processing the input in an on-line fashion;that is, the implementation of the hashing process may process the input x in ablock-by-block manner, while storing only the current block and a small amountof state information (i.e., the current yi and the number of blocks encounteredso far). This property is important in applications in which one wishes to hasha long stream of input bits.Proposition 6.2.12 Let fh0s : f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� and fhs :f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� be as in Construction 6.2.11, and suppose thatthe former is a collection of 2`-restricted collision-free hashing functions. Thenthe latter constitute a (full edged) collection of collision-free hashing functions.Proof: Forming a collision under hs means �nding x 6= x0 such that hs(x) =hs(x0). By the de�nition of hs, this means that (yt; jxj) = hs(x) = hs(x0) =(y0t0 ; jx0j), where t; t0 and yt; y0t0 are determined by hs(x) and hs(x0). In particular,it follows that jxj = jx0j and so t = t0 (where, except when jxj � `(jsj), it holdsthat t = djxj=`(jsj)e = djx0j=`(jsj)e = t0). Recall that yt = y0t and consider twocases:Case 1: If (yt�1; xt) 6= (y0t�1; x0t) then we obtain a collision under h0s (sinceh0s(yt�1xt) = yt = y0t = h0s(y0t�1x0t)), and derive a contradiction to itscollision-free hypothesis.Case 2: Otherwise (yt�1; xt) = (y0t�1; x0t), and we consider the two correspondingcases with respect to the relation of (yt�2; xt�1) to (y0t�2; x0t�1).Eventually, since x 6= x0, we get to a situation in which yi = y0i and(yi�1; xi) 6= (y0i�1; x0i), which is handled as in the �rst case.We now provide a formal implementation of the above intuitive argument. Sup-pose towards the contradiction that there exist a probabilistic polynomial-timealgorithm A that on input s attempts to forms a collision under hs. Then, weconstruct an algorithm that will, with similar probability, succeeds to form asuitable (i.e., length restricted) collision under h0s. Algorithm A0(s) operates asfollows:1. Invokes A(s) and obtains (x; x0) A(s).If hs(x) 6= hs(x0) then A failed, and A0 halts without output. In the sequel,we assume that hs(x) = hs(x0).2. A0(s) computes t; x1; :::; xt and y1; :::; yt (resp., t0; x01; :::; x0t and y01; :::; y0t)as in Construction 6.2.11. Note that (since hs(x) = hs(x0)) it holds thatt = t0 and yt = y0t. Next, A0(s) determines i 2 f2; :::; tg such that yi = y0iand (yi�1; xi) 6= (y0i�1; x0i), and outputs the pair (yi�1xi; y0i�1x0i)As argued above and elaborated below, such an i must exist, and the out-put forms a collision under h0s (because h0s(yi�1xi) = yi = y0i = h0s(y0i�1x0i)and yi�1xi 6= y0i�1x0i).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

500 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONPending on the existence of a suitable i, whenever A(s) forms a collision underhs, it holds that A0(s) outputs a pair of 2`(s)-bit long strings that form a collisionunder h0s, and so the proposition follows. Thus, it is left to prove the existenceof a suitable i (i.e., an i such that yi = y0i and (yi�1; xi) 6= (y0i�1; x0i)).On the existence of a suitable i: Starting with j = t and decrementingj at each step, we prove that either the current j is suitable (i.e., yj =y0j and (yj�1; xj) 6= (y0j�1; x0j)) or both yj�1 = y0j�1 and x1 � � �xj�1 6=x01 � � �x0j�1. This claim certainly holds for j = t, because yt = y0t andx1 � � �xt = x0t`(jsj)�jxj 6= x00t`(jsj)�jxj = x01 � � �x0t (which implies that either(yt�1; xt) 6= (y0t�1; x0t) or both yt�1 = y0t�1 and x1 � � � xt�1 6= x01 � � �x0t�1).More generally, suppose that yj = y0j and x1 � � �xj 6= x01 � � �x0j , then eitherj is suitable (i.e., (yj�1; xj) 6= (y0j�1; x0j)) or (yj�1; xj) = (y0j�1; x0j), whichimplies that both yj�1 = y0j�1 and x1 � � �xj�1 6= x01 � � �x0j�1. It follows thatsome i must be suitable (or else for j = 1 we have x1 � � �xj�1 6= x01 � � �x0j�1,which is impossible).The proposition follows.6.2.3.3 Collision-free hashing via tree-hashingUsing 2`-restricted collision-free hashing functions, we now present an alternativeconstruction of (full edged) collision-free hashing functions. The alternativeconstruction will have the extra property of supporting veri�cation of a bit inthe input (with respect to the hash value) within complexity that is independentof the length of the input (see below).Construction 6.2.13 (from 2`-restricted CFH to full-edged CFH { an alter-native construction): Let fh0s : f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� be a collectionof functions. Consider the collection fhs : f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� , wherehs(x) is de�ned by the following process, called tree hashing:1. Break x into t def= 2dlog2(jxj=`(jsj))e consecutive blocks, while possibly addingdummy 0-blocks and padding the last block with 0's, such that each blockhas length `(jsj). Denote these `(jsj)-bit long blocks by x1; :::; xt. That is,x1 � � �xt = x0t�`(jsj)�jxj.Let d = log2 t, and note that d is a positive integer.Again, for sake of uniformity, in case jxj � `(jsj), we let t = 2 and x1x2 =x02`(jsj)�jxj. On the other hand, again, we assume that jxj < 2`(jsj), andso jxj can be represented by an `(jsj)-bit long string.2. Let i = 1; :::; t, let yd;i def= xi.3. For j = d�1; :::; 1; 0 and i = 1; :::; 2j, compute yj;i = h0s(yj+1;2i�1yj+1;2i).4. Set hs(x) to equal (y0;1; jxj).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 501That is, hashing is performed by placing the `(jsj)-bit long blocks of x at theleaves of a binary tree of depth d, and computing the values of internal nodesby applying h0s to the values associated with the two children (of the node).The �nal hash-value consists of the value associated with the root (i.e., the onlylevel-0 node) and the length of x.Proposition 6.2.14 Let fh0s : f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� and fhs :f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� be as in Construction 6.2.13, and suppose thatthe former is a collection of 2`-restricted collision-free hashing functions. Thenthe latter constitute a (full edged) collection of collision-free hashing functions.Proof Sketch: Forming a collision under hs means �nding x 6= x0 such thaths(x) = hs(x0). By the de�nition of hs, this means that (y0;1; jxj) = hs(x) =hs(x0) = (y00;1; jx0j), where (t; d; t0; d0), y0;1 and y00;1 are determined by hs(x) andhs(x0). In particular, it follows that jxj = jx0j and so d = d0 (since 2d = t = t0 =2d0). Recall that y0;1 = y00;1, and let us state this fact by saying that for j = 0and for every i 2 f1; :::; 2jg it holds that yj;i = y0j;i. Starting with j = 0, weconsider two cases (for level j + 1 in the tree):Case 1: If for some i 2 f1; :::; 2j+1g it holds that yj+1;i 6= y0j+1;i then we obtaina collision under h0s, and derive a contradiction to its collision-free hypothe-sis. Speci�cally, the collision is obtained because z def= yj+1;2di=2e�1yj+1;2di=2eis di�erent from z0 def= y0j+1;2di=2e�1y0j+1;2di=2e, whereas h0s(z) = yj;di=2e =y0j;di=2e = h(z0).Case 2: Otherwise for every i 2 f1; :::; 2j+1g it holds that yj+1;i = y0j+1;i. Inthis case, we consider the next level.Eventually, since x 6= x0, we get to a situation in which for some j 2f1; :::; d�1g and some i 2 f1; :::; 2j+1g it holds that z def= yj+1;2di=2e�1yj+1;2di=2eis di�erent from z0 def= y0j+1;2di=2e�1y0j+1;2di=2e, whereas h0s(z) = yj;di=2e =y0j;di=2e = h(z0). This situation is handled as in the �rst case.The actual argument proceeds as in the proof of Proposition 6.2.12.A local veri�cation property. Construction 6.2.13 has the extra property ofsupporting e�cient veri�cation of bits in x with respect to the hash value. Thatis, suppose that for a randomly selected hs, one party holds x and the otherparty holds hs(x). Then, for every i, the �rst party may provide a short (e�-ciently veri�able) certi�cate that xi is indeed the ith block of x. The certi�cateconsists of the sequence of pairs (yd;2di=2e�1; yd;2di=2e); :::; (y1;2di=2de�1; y1;2di=2de),where d and the yj;k's are computed as in Construction 6.2.13 (and (y0;1; jxj) =hs(x)). The certi�cate is veri�ed by checking whether or not yj�1;di=2d�j+1e =h0s(yj;2di=2d�j+1e�1yj;2di=2d�j+1e), for every j 2 f1; :::; dg. Note that if the �rst

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

502 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONparty can present two di�erent values for the ith block of x along with cor-responding certi�cates then it can also form collisions under h0s. Construc-tion 6.2.13 and its local-veri�cation property were already used in this work(i.e., in the construction of highly-e�cient argument systems, presented in Sec-tion 4.8.4). Finally, we note the similarity between the local-veri�cation propertyof Construction 6.2.13 and the authentication-tree of Section 6.4.2.2.6.3 Constructions of Message AuthenticationSchemesIn this section we present several constructions of secure message authenticationschemes (referred to above as secure private-key signature schemes). Below, wesometimes refer to such a scheme by the popular abbreviation MAC (which ac-tually abbreviates the more traditional term of a Message Authentication Code).6.3.1 Applying a pseudorandom function to the documentA scheme for message authentication can be obtained by applying a pseudoran-dom function (speci�ed by the key) to the message (which one wishes to authen-ticate). The simplest implementation of this idea is presented in Section 6.3.1.1,whereas more sophisticated implementations are presented in Sections 6.3.1.2and 6.3.1.3.6.3.1.1 A simple construction and a plausibility resultMessage authentication schemes can be easily constructed using pseudorandomfunctions (as de�ned in Section 3.6). Speci�cally, by Theorem 6.2.2, it suf-�ces to construct an `-restricted message authentication scheme, for any super-logarithmically growing `. Indeed, this is our starting point.Construction 6.3.1 (an `-restricted MAC based on pseudorandom functions):Let ` be a super-logarithmically growing function, and ffs : f0; 1g`(jsj)! f0; 1g`(jsj)gs2f0;1g�be as in De�nition 3.6.4. We construct an `-restricted message authenticationscheme, (G;S; V), as follows:key-generation with G: On input 1n, we uniformly select s 2 f0; 1gn, and outputthe key-pair (s; s). (Indeed, the veri�cation-key equals the signing-key.)signing with S: On input a signing-key s 2 f0; 1gn and an `(n)-bit string �, wecompute and output fs(�) as a signature of �.veri�cation with V : On input a veri�cation-key s 2 f0; 1gn, an `(n)-bit string�, and an alleged signature �, we accept if and only if � = fs(�).Indeed, signing amounts to applying fs to the given document string, and veri-�cation amounts to comparing a given value to the result of applying fs to thedocument. Analogous constructions can be presented by using the generalized

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES503notions of pseudorandom functions de�ned in De�nitions 3.6.9 and 3.6.12 (seefurther comments in the following subsections). In particular, using a pseu-dorandom function ensemble of the form ffs : f0; 1g� ! f0; 1gjsjgs2f0;1g� , weobtain a general message authentication scheme (rather than a length-restrictedone). Below, we only prove the security of the `-restricted message authen-tication scheme of Construction 6.3.1. (The security of the general messageauthentication scheme can be established analogously; see Exercise 7.)Proposition 6.3.2 Suppose that ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g� is apseudorandom function, and that ` is a super-logarithmically growing function,Then Construction 6.3.1 constitutes a secure `-restricted message authenticationscheme.Proof: The proof follows the general methodology suggested in Section 3.6.3.Speci�cally, we consider the security of an ideal scheme in which the pseudo-random function is replaced by a truly random function (mapping `(n)-bit longstrings to `(n)-bit long strings). Clearly, an adversary that obtains the valuesof this random function at arguments of its choice, cannot predict its value ata new point with probability greater than 2�`(n). Thus, an adversary attackingthe ideal scheme may succeed in existential forgery with at most negligible prob-ability. The same must hold for any e�cient adversary that attacks the actualscheme, since otherwise such an adversary yields a violation of the pseudoran-domness of ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g� . Details follow.The actual proof is by a reducibility argument. Given a probabilistic polynomial-time A attacking the scheme (G;S; V), we consider what happens when A isattacking an ideal scheme in which a random function is used instead of a pseu-dorandom one. That is, we refer to two experiments:1. Machine A attacks the actual scheme: On input 1n, machine A is givenoracle access to (the signing process) fs : f0; 1g`(n) ! f0; 1g`(n), where sis uniformly selected in f0; 1gn. After making some queries of its choice, Aoutputs a pair (�; �), where � is di�erent from all its queries. A is deemsuccessful if and only if � = fs(�).2. Machine A attacks the ideal scheme: On input 1n, machine A is givenoracle access to a function F : f0; 1g`(n) ! f0; 1g`(n), uniformly selectedamong all such possible functions. After making some queries of its choice,A outputs a pair (�; �), where � is di�erent from all its queries. Again, Ais deem successful if and only if � = F (�).Clearly, A's success probability in this experiment is at most 2�`(n), whichis a negligible function (since ` is super-logarithmic).Assuming that A's success probability in the actual attack is non-negligible, wederive a contradiction to the pseudorandomness of the function ensemble ffsg.Speci�cally, we consider a distinguisher D that on input 1n and oracle access toa function f : f0; 1g`(n) ! f0; 1g`(n), behaves as follows: First D emulates theactions of A, while answering A's queries using its oracle f . When A outputs a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

504 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONpair (�; �), the distinguisher makes one additional oracle query to f and outputs1 if and only if f(�) = �.Note that when f is selected uniformly among all possible f0; 1g`(n) !f0; 1g`(n) functions, D emulates an attack of A on the ideal scheme, and thusoutputs 1 with negligible probability (as explained above). On the other hand,if f is uniformly selected in ffsgs2f0;1gn then D emulates an attack of A on theactual scheme, and thus (due to the contradiction hypothesis) outputs 1 withnon-negligible probability. We reach a contradiction to the pseudorandomnessof ffsgs2f0;1gn . The proposition follows.A plausibility result: Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-lary 3.6.7, it follows that the existence of one-way functions implies the existenceof message authentication schemes. The converse also holds; see Exercise 8.Thus, we have:Theorem 6.3.3 Secure message authentication schemes exist if and only if one-way functions exist.In contrast the the feasibility result stated in Theorem 6.3.3, we now presentalternative ways of using pseudorandom functions to obtain secure message au-thentication schemes (MACs). These alternatives yield more e�cient schemes,where e�ciency is measures it terms of the length of the signatures and the timeit takes to produce and verify them.6.3.1.2 * Using the hash-and-sign paradigmTheorem 6.3.3 was proved by combining the length-restricted MAC of Construc-tion 6.3.1 with the simple but wasteful idea of providing signatures (authentica-tion tags) for each block of the document (i.e., Construction 6.2.3). In particular,the signature produced this way is longer than the document. Instead, here wesuggest to use the second method of converting length-restricted MACs into full-edged ones; that is, the hash-and-sign method of Construction 6.2.6. This willyield signatures of a �xed length (i.e., independent of the length of the docu-ment). Combining the hash-and-sign method with a length-restricted MAC ofConstruction 6.3.1 (which is based on pseudorandom functions), we obtain thefollowing construction.Construction 6.3.4 (hash and sign using pseudorandom functions): Let ffs :f0; 1gjsj ! f0; 1gjsjgs2f0;1g� be a pseudorandom function ensemble and fhr :f0; 1g� ! f0; 1gjrjgr2f0;1g� be a collection of collision-free hashing functions.Furthermore, for simplicity we assume that, when invoked on input 1n, the in-dexing algorithm I of the collision-free hashing collection outputs an n-bit longindex. The general message authentication scheme, (G;S; V), is as follows:key-generation with G: On input 1n, algorithm G selects uniformly s 2 f0; 1gn,and invokes the indexing algorithm I to obtain r I(1n). The key-pairoutput by G is ((r; s); (r; s)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES505signing with S: On input a signing-key (r; s) in the range of G1(1n) and a doc-ument � 2 f0; 1g�, algorithm S outputs the signature/tag fs(hr(�)).veri�cation with V : On input a veri�cation-key (r; s) in the range of G2(1n), adocument � 2 f0; 1g�, and a alleged signature �, algorithm outputs 1 ifand only if fs(hr(�)) = �.Combining Propositions 6.2.7 and 6.3.2, it follows that Construction 6.3.4 con-stitutes a secure message authentication scheme (MAC), provided that the ingre-dients are as postulated. In particular, this means that Construction 6.3.4 yieldsa secure MAC, provided that collision-free hashing functions exist (and are usedin Construction 6.3.4). While this result uses a seemingly stronger assumptionthan the existence of one-way functions (used to establish the Theorem 6.3.3),it yields more e�cient MACs both in terms of signature length (as discussedabove) and authentication time (to be discussed next).Construction 6.3.4 yields faster signing and veri�cation algorithms than theconstruction resulting from combining Constructions 6.2.3 and 6.3.1, providedthat hashing a long string is less time-consuming than applying a pseudorandomfunction to it (or to all its blocks). The latter assumption is consistent with thecurrent state-of-art regarding the implementation of both primitives. Furtherspeed improvements are discussed in Section 6.3.1.3.An alternative presentation: Construction 6.3.4 was analyzed by invokingthe hash-and-sign paradigm (i.e., Proposition 6.2.7), while referring to the �xed-length MAC arising from the pseudorandom function ensemble ffs : f0; 1gjsj !f0; 1gjsjgs2f0;1g� . An alternative analysis may proceed by �rst establishing thatfgs;r = fs � hrgs2f0;1g�;r I(1jsj) is a generalized pseudorandom function (as inDe�nition 3.6.12), and next observing that any such ensemble yields a full-edged MAC (see Exercise 7).6.3.1.3 * A variation on the hash-and-sign paradigmor using non-cryptographic hashing plus hidingConstruction 6.3.4 combines the use of a collision-free hashing function with theapplication of a pseudorandom function. Here we take another step towardsspeeding-up message authentication by showing that the collision-free hashingcan be replaced with ordinary (i.e., non-cryptographic) hashing, provided thata pseudorandom function is applied to the result. Before getting into details, letus explain why we can use non-cryptographic hashing and why this may lead toe�ciency improvements.� Since we are in the private-key setting, the adversary does not get thedescription of the hash function used in the hash-and-sign process. Fur-thermore, applying the pseudorandom function to the hash-value hides itfrom the adversary. Thus, when trying to form collisions under the hashfunction, the adversary is in \total darkness" and may only rely on thecollision probability of the hashing function (as de�ned below). (Recall

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

506 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONthat in case the adversary fails to form collision, it must succeed in forg-ing with respect to the length-restricted scheme if it wishes to forge withrespect to the full-edged scheme.)� The reason that applying an ordinary hashing, rather than a collision-free hash function, may yield an e�ciency improvement is that the for-mer may be more e�cient than the latter. This is to be expected giventhat ordinary hashing needs only satisfy a weak (probabilistic) condition,whereas collision-free hashing refers to a more complicated (intractability)condition.9By ordinary hashing we mean function ensembles as de�ned in Section 3.5.1.1.For starters, recall that these are collections of functions mapping `(n)-bit stringsto m(n)-bit strings. These collections are associated with a set of strings, de-noted Sm(n)`(n) , and we may assume that Sm(n)`(n) � f0; 1gn. Speci�cally, we callfSm(n)`(n) gn2N a hashing ensemble if it satis�es the following three conditions:1. Succinctness: n = poly(`(n) +m(n)).2. E�cient evaluation: there exists a polynomial-time algorithm that, on in-put a representation of a function, h (in Sm(n)`(n)), and a string x2f0; 1g`(n),returns h(x).3. Pairwise independence: for every x 6= y 2 f0; 1g`(n), if h is uniformlyselected in Sm(n)`(n) then h(x) and h(y) are independent and uniformly dis-tributed in f0; 1gm(n). That is, for every �; � 2 f0; 1gm(n),Prh[h(x) = � ^ h(y) = �] = 2�2m(n)In fact, for the current application, we can replace the third condition by thefollowing weaker condition, parameterized by a function cp : N ! [0; 1] (s.t.cp(n) � 2�m(n)): for every x 6= y 2 f0; 1g`(n),Prh[h(x) = h(y)] � cp(n) (6.3)Indeed, the pairwise independence condition implies that Eq. (6.3) is satis�edwith cp(n) = 2�m(n). Note that Eq. (6.3) asserts that the collision probability ofSm(n)`(n) is at most cp(n), where the collision probability refers to the probabilitythat h(x) = h(y) when h is uniformly selected in Sm(n)`(n) and x 6= y 2 f0; 1g`(n)are arbitrary �xed strings.Hashing ensembles with n � `(n) + m(n) and cp(n) = 2�m(n) can beconstructed (for a variety of functions `;m : N ! N , e.g., `(n) = 2n=3 andm(n) = n=3); see Exercise 18. Using such ensembles, we �rst present a con-struction of length-restricted message authentication schemes.9 This intuition may not hold when comparing a construction of ordinary hashing thatis rigorously analyzed with an ad-hoc suggestion of a collision-free hashing. But it certainlyholds when comparing the former to the constructions of collision-free hashing that are basedon a well-established intractability assumption.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES507Construction 6.3.5 (Construction 6.3.4, revisited { length-restricted version):Let fhr : f0; 1g`(jrj)! f0; 1gm(jrj)gr2f0;1g� and ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g�be e�ciently computable function ensembles. We construct the following `-restricted scheme, (G;S; V):key-generation with G: On input 1n, algorithm G selects independently and uni-formly r; s 2 f0; 1gn. The key-pair output by G is ((r; s); (r; s)).signing with S: On input a signing-key (r; s) in the range of G1(1n) and a doc-ument � 2 f0; 1g`(n), algorithm S outputs the signature/tag fs(hr(�)).veri�cation with V : On input a verifying-key (r; s) in the range of G2(1n), adocument � 2 f0; 1g`(n), and a alleged signature �, algorithm outputs 1 ifand only if fs(hr(�)) = �.Proposition 6.3.6 Suppose that ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g� isa pseudorandom function, and that the collision probability of the collectionfhr : f0; 1g`(jrj)! f0; 1gm(jrj)gr2f0;1g� is a negligible function of jrj. Then Con-struction 6.3.5 constitutes a secure `-restricted message authentication scheme.In particular, the second hypothesis implies that 2�m(n) is a negligible functionin n. By the above discussion, adequate collections of hashing functions exists for`(n) = 2n=3 (and m(n) = n=3). We comment that, under the above hypothesis,the collection fgs;r : fs�hrgjsj=jrj constitutes a pseudorandom function ensemble:This is implicitly shown in the following proof, and is related to Exercise 31 inChapter 3.Proof Sketch: As in the proof of Proposition 6.3.2, we �rst consider the secu-rity of an ideal scheme in which the pseudorandom function is replaced by a trulyrandom function (mapping m(n)-bit long strings to m(n)-bit long strings). Con-sider any (probabilistic polynomial-time) adversary attacking the ideal scheme.Such an adversary may obtain the signatures to polynomially-many `(n)-bit longstrings of its choice. However, except with negligible probability, these stringsare hashed to di�erent m(n)-bit long strings, which in turn are mapped by therandom function to totally independent and uniformly distributed m(n)-bit longstrings. Furthermore, except with negligible probability, the `(n)-bit long string� contained in the adversary's (alleged message-signature) output pair is hashedto an m(n)-bit long string that is di�erent from all the previous hash-values, andso the single valid signature corresponding to � is a uniformly distributed m(n)-bit long string that is independent of all previously seen signatures.On the distribution of signatures in the ideal scheme: Suppose that thehashing collection fhr : f0; 1g`(jrj) ! f0; 1gm(jrj)gr2f0;1gn has collisionprobability cp(n), and F : f0; 1gm(n) ! f0; 1gm(n) is a random function.Then, we claim that an adversary that obtains signatures to t(n) � 1strings of its choice, succeeds in forging a signature to a new string withprobability at most t(n)2 � cp(n) + 2�m(n), regardless of its computationalpowers. The claim is proved by showing that, except with probability atmost t(n)2 � cp(n), the t(n) strings selected by the adversary are mapped

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

508 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONby hr to distinct strings. The latter claim is proved by induction on thenumber of selected strings, denoted i, where the base case (i.e., i = 1)holds vacuously. Let s1; :::; si denote the strings selected so far, and recallthat with probability at least 1� i2 � cp(n) the i hash-values hr(sj)'s aredistinct. The adversary only sees the corresponding F (hr(sj))'s, whichare uniformly and independently distributed (in a way independent of thevalues of the hr(sj)'s). Thus, loosely speaking, the adversary's selection ofthe next string, denoted si+1, is independent of the values of the hr(sj)'s,and so a collision of hr(si+1) with one of the previous hr(sj)'s occurs withprobability at most i � cp(n). The induction step follows (since 1 � i2 �cp(n)� i � cp(n) < 1� (i+ 1)2 � cp(n)).It follows that any adversary attacking the ideal scheme may succeed in exis-tential forgery with at most negligible probability (provided it makes at mostpolynomially-many queries). The same must hold for any e�cient adversary thatattacks the actual scheme, since otherwise such an adversary yields a violationof the pseudorandomness of ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g� . The exactimplementation of the above argument follows the details given in the proof ofProposition 6.3.2.Obtaining full-edged MACs. Construction 6.3.5 can be generalized to ob-tain full-edged MACs by using generalized hashing families that map arbitrarystrings (rather than �xed-length ones) to �xed length strings. Speci�cally, for` : N ! N and cp : N ! [0; 1], we call fhr : f0; 1g� ! f0; 1gm(jrj)gn2N a gener-alized hashing ensemble with a (`; cp)-collision property if it satis�es the followingtwo conditions:1. E�cient evaluation: there exists a polynomial-time algorithm that, oninput r (representing the function hr) and a string x 2 f0; 1g�, returnshr(x).2. Collision probability:10 For every n 2 N and x 6= y such that jxj; jyj � `(n),the probability that hr(x) = hr(y) when r is uniformly selected in f0; 1gnis at most cp(n).For our construction of a full-edged MAC, we need a generalized hashing en-semble with a (`; cp)-collision property for some super-polynomial `(n) and neg-ligible cp(n) (e.g., `(n) = 1=cp(n) = 2�"n" for some constant " > 0). Theexistence of such ensembles will be discussed below.Proposition 6.3.7 (Construction 6.3.4, revisited { full-edged version): Sup-pose that ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g� is a pseudorandom functionensemble. For some super-polynomial ` : N ! N and negligible cp : N ! [0; 1],suppose that fhr : f0; 1g� ! f0; 1gm(jrj)gr2f0;1g� is a generalized hashing ensem-ble with a (`; cp)-collision property. Then the following (G;S; V) constitute asecure MAC:10 Note that it is essential to restrict the collision condition to strings of bounded length.In contrast, for every �nite family of functions H, there exists two di�erent strings that aremapped to the same image by each function in H. For details, see Exercise 17.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES509key-generation with G: On input 1n, algorithm G selects independently and uni-formly r; s 2 f0; 1gn, and outputs ((r; s); (r; s)).signing with S: On input a signing-key (r; s) and a document � 2 f0; 1g�, algo-rithm S outputs the signature/tag fs(hr(�)).veri�cation with V : On input a verifying-key (r; s), a document � 2 f0; 1g`(n),and a alleged signature �, algorithm outputs 1 if and only if fs(hr(�)) = �.Proof Sketch: The proof is identical to the proof of Proposition 6.3.6, exceptthat here the (polynomial-time) adversary attacking the scheme may query forthe signatures of strings of various lengths. Still, all these queries (as well asthe �nal output) are of polynomial length and thus shorter than `(n). Thus,the (`; cp)-collision property implies that, except with negligible probability, allthese queries (as well as the relevant part of the output) are hashed to di�erentvalues.On constructing adequate hashing ensembles. For some " > 0 andf(n) = 2"n" , generalized hashing ensembles with a (f; 1=f)-collision propertycan be constructed is several ways. One way is by applying a tree-hashingscheme as in Construction 6.2.13; see Exercise 19. For further details aboutconstructions of generalized hashing ensembles, see Section 6.6.5.An alternative presentation: The proofs of Propositions 6.3.6 and 6.3.7actually establish that fgs;r = fs � hrgs2f0;1g�;r I(1jsj) is a generalized pseu-dorandom function (as in De�nition 3.6.12). Hence, the actual claim of thesepropositions (i.e., the security of the constructed MAC) can be derived from thefact that any generalized pseudorandom function yields a full-edged MAC (seeExercise 7).6.3.2 * More on Hash-and-Hide and state-based MACsThe basic idea underlying Construction 6.3.5 (as well as Proposition 6.3.7) is tocombine a \weak tagging scheme" with an adequate \hiding scheme". Speci�-cally, the \weak tagging scheme" should be secure against forgery provided thatthe adversary does not have access to the scheme's outcome, and the \hidingscheme" implements the latter provision in a setting in which the actual adver-sary does obtain the value of the MAC. In Construction 6.3.5 (and in Propo-sition 6.3.7), hiding was obtained by applying a pseudorandom function to thestring that one wishes to hide. (Although this process is not 1-1, its result looksrandom and thus is hard to predict.)One more natural \hiding scheme" (which can also be implemented usingpseudorandom functions) is obtained by using certain private-key encryptionschemes. For example, we may use Construction 5.3.9 (in which the plaintextx is encrypted/hidden by the pair (y; x� fs(y)), where y is uniformly selected),instead of hiding x by the value fs(x) (as above). Alternative implementations

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

510 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONof this underlying idea are more popular, especially in the context of state-basedMACs. We start by de�ning state-based MACs, and then show how to constructthem based on the hash-and-hide (or rather tag-and-hide) paradigm.6.3.2.1 The de�nition of state-based MACsAs in the case of steam-ciphers discussed in Section 5.3.1, we extend the mech-anism of message-authentication schemes (MACs) by allowing the signing andveri�cation processes to maintain and update a state. Formally, both the signingand the veri�cation algorithms take an additional input and emit an additionaloutput, corresponding to their state before and after the operation. The lengthof the state is not allowed to grow by too much during each application of thealgorithm (see Item 3 below), or else e�ciency of the entire \repeated signing"process can not be guaranteed. For sake of simplicity, we incorporate the key inthe state of the corresponding algorithm. Thus, the initial state of each of thealgorithms is set to equal its corresponding key. Furthermore, one may think ofthe intermediate states as of updated values of the corresponding key.In the following de�nition, we follow similar conventions to those used inde�ning state-based ciphers (i.e., De�nition 5.3.1). Speci�cally, for simplicity,we assume that the veri�cation algorithm (i.e., V) is deterministic (otherwisethe formulation would be more complex). Intuitively, the main part of theveri�cation condition (i.e., Item 2) is that the (proper) iterative signing-verifyingprocess always accepts. The additional requirement in Item 2 is that the state ofthe veri�cation algorithm is updated correctly as long as it is fed with strings oflength equal to the length of the valid document-signature pairs. The importanceof this condition was discussed in Section 5.3.1 and is further discussed below.De�nition 6.3.8 (state-based MAC { the mechanism): A state-based message-authentication scheme is a triple, (G;S; V), of probabilistic polynomial-time al-gorithms satisfying the following three conditions1. On input 1n, algorithm G outputs a pair of bit strings.2. For every pair (s(0); v(0)) in the range of G(1n), and every sequence of�(i)'s, the following holds: if (s(i); �(i)) S(s(i�1); �(i)) and (v(i); (i)) V (v(i�1); �(i); �(i)) for i = 1; 2; :::, then (i) = 1 for every i. Further-more, for every i and every (�; �) 2 f0; 1gj�(i)j � f0; 1gj�(i)j, it holds thatV (v(i�1); �; �) = (v(i); �).3. There exists a polynomial p such that for every pair (s(0); v(0)) in the rangeof G(1n), and every sequence of �(i)'s and s(i)'s as above, it holds thatjs(i)j � js(i�1)j+ j�(i)j � p(n). Similarly for the v(i)'s.That is, as in De�nition 6.1.1, the signing-veri�cation process operates prop-erly provided that the corresponding algorithms get the corresponding keys(states). Note that in De�nition 6.3.8 the keys are modi�ed by the signing-veri�cation process, and so correct veri�cation requires holding the correctly-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES511updated veri�cation-key. We stress that the furthermore clause in Item 2 guar-antees that the veri�cation-key is correctly updated as long as the veri�cationprocess is fed with strings of the correct lengths (but not necessarily with thecorrect document-signature pairs). This extra requirement implies that giventhe initial veri�cation-key and the current document-signature pair as well asthe lengths of all previous pairs (which may be actually incorporated in the cur-rent signature), one may correctly decide whether or not the current document-signature pair is valid. As in case of state-based ciphers (cf. Section 5.3.1), thisfact is interesting for two reasons:A theoretical reason: It implies that, without loss of generality (alas with possi-ble loss in e�ciency), the veri�cation algorithm may be stateless. Further-more, without loss of generality (alas with possible loss in e�ciency), thestate of the signing algorithm may consist of the initial signing-key andthe lengths of the messages signed so far. (We assume here and below thatthe length of the signature is determined by the length of the message andthe length of the signing-key.)A practical reason: It allows to recover from the loss of some of the message-signature pairs. That is, assuming that all messages have the same length(which is typically the case in MAC applications), if the receiver knows(or is given) the total number of messages sent so far then it can verifythe authenticity of the current message-signature pair, even if some of theprevious message-signature pairs were lost.We stress that De�nition 6.3.8 refers to the signing of multiple messages(and is meaningless when considering the signing of a single message). However,De�nition 6.3.8 (by itself) does not explain why one should sign the ith messageusing the updated signing-key s(i�1), rather than by reusing the initial signing-key s(0) (where all corresponding veri�cations are done by reusing the initialveri�cation-key v(0)). Indeed, the reason for updating these keys is provided bythe following security de�nition that refers to the signing of multiple messages,and holds only in case the signing-keys in use are properly updated (in themultiple-message authentication process).De�nition 6.3.9 (security of state-based MACs):� A chosen message attack on a state-based MAC, (G;S; V), is an interactiveprocess that is initiated with (s(0); v(0)) G(1n), and proceed as follows:In the ith iteration, based on the information gathered so far, the attackerselects a string �(i), and obtains �(i), where (s(i); �(i)) S(s(i�1); �(i)).� Such an attack is said to succeeds if it outputs a valid signature to a stringfor which it has not requested a signature during the attack. That is, theattack is successful if it outputs a pair (�; �) such that � is di�erent from

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

512 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONall signature-queries made during the attack, and V (v(i�1); �; �) = (�; 1)holds for some intermediate state (veri�cation-key) v(i�1) (as above).11� A state-based MAC is secure if every probabilistic polynomial-time chosenmessage attack as above succeeds with at most negligible probability.Note that De�nition 6.3.9 (only) di�ers from De�nition 6.1.2 in the way thatthe signatures �(i)'s are produced (i.e., using the updated signing-key s(i�1)rather than the initial signing-key s(0)). Furthermore, De�nition 6.3.9 guaranteesnothing regarding a signing process in which the signature to the ith message isobtained by invoking S(s(0); �) (as in De�nition 6.1.2).6.3.2.2 State-based hash-and-hide MACsWe are now ready to present alternative implementations of the hash-and-hideparadigm. Recall that in Section 6.3.1.3, the document was hashed (by using anadequate hashing function) and the resulting hash-value was (authenticated and)hidden by applying a pseudorandom function to it. In the current subsection,hiding will be obtained in a more natural (and typically more e�cient) way;that is, by XORing the hash-value with a new portion of a (pseudorandom) one-time pad. Indeed, the state is used in order to keep track of what part of the(one-time) pad was already used (and should not be used again). Furthermore,to obtain improved e�ciency, we let the state encode information that allowsfast generation of the next portion of the (pseudorandom) one-time pad. This isobtained using (on-line) pseudorandom generator (see Sections 3.3.3 and 5.3.1).Recall that on-line pseudorandom generators are a special case of variable-output pseudorandom generators (see Section 3.3.3), in which a hidden stateis maintained and updated so to allow generation of the next output bit intime polynomial in the length of the initial seed, regardless of the number ofbits generated so far. Speci�cally, the next (hidden) state and output bit areproduced by applying a (polynomial-time computable) function g : f0; 1gn !f0; 1gn+1 to the current state (i.e., (s0; �) g(s), where s is the current state, s0is the next state and � is the next output bit). Analogously to Construction 5.3.3,the suggested state-based MAC will use an on-line pseudorandom generator inorder to generate the required pseudorandom one-time pad, and the latter will beused to hide (and authenticate) the hash-value (obtained by hashing the originaldocument).Construction 6.3.10 (a state-based MAC): Let g : f0; 1g�!f0; 1g� such that11 In fact, one may strengthen the de�nition by using a weaker notion of success in which itis only required that � 6= �(i) (rather than requiring that � 62 f�(j)gj). That is, the attack issuccessful if, for some i, it outputs a pair (�; �) such that � 6= �(i) and V (v(i�1); �; �) = (�; 1),where the �(j)'s and v(j)'s are as above. The stronger de�nition provides \replay protection"(i.e., even if the adversary obtains a valid signature that authenticates � as the jth messageit cannot produce a valid signature that authenticates � as the ith message, unless � wasactually authenticated as the ith message).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES513jg(s)j = jsj+ 1, for every s2f0; 1g�. Let fhr : f0; 1g� ! f0; 1gm(jrj)gr2f0;1g� bea family of functions having an e�cient evaluation algorithm.key-generation and initial state: Uniformly select s; r 2 f0; 1gn, and output thekey-pair ((s; r); (s; r)). The initial state of each algorithm is set to (s; r; 0; s).(We maintain the initial key (s; r) and a step-counter in order to allowrecovery from loss of message-signature pairs.)signing message x with state (s; r; t; s0): Let s0 def= s0. For i = 1; :::;m(n), com-pute si�i = g(si�1), where jsij = n and �i 2 f0; 1g. Output the signaturehr(x) � �1 � � ��m(n), and set the new state to (s; r; t+m(n); sm(n)).veri�cation of the pair (x; y) with respect to the state (s; r; t; s0): Compute �1 � � ��m(n)and sm(n) as in the signing process; that is, for i = 1; :::;m(n), computesi�i = g(si�1), where s0 def= s0. Set the new state to (s; r; t+m(n); sm(n)),and accept if and only if y = hr(x)� �1 � � ��m(n).When noti�ed that some message-signature pairs may have been lost andthat the current message-signature pair has index t0, one �rst recovers thecorrect current state, which as above will be denoted s0. This is done bysetting s�t0 def= s and computing si�t0�i�t0 = g(si�t0�1), for i = 1; :::; t0.Note that both the signing and veri�cation algorithms are deterministic, and thatthe state after authentication of t messages has length 3n+ log2(t �m(n)) < 4n(for t < 2n=m(n)).We now turn to analyze the security of Construction 6.3.10. The hashingproperty of the collection of hr's should be slightly stronger than the one usedin Section 6.3.1.3. Speci�cally, rather than a bound on the collision probability(i.e., the probability that hr(x) = hr(y) for any relevant �xed x; y and a randomr), we need a bound on the probability that hr(x)�hr(y) equals any �xed string(again, for any relevant �xed x; y and a random r). This property is commonlyreferred to by the name Almost-Xor-Universal (AXU). That is, fhr : f0; 1g� !f0; 1gm(jrj)gr2f0;1g� is called a (`; ")-AXU family if for every n 2 N , every x 6= ysuch that jxj; jyj � `(n), and every z, it holds thatPr[hUn(x)� hUn(y) = z] � "(n) (6.4)References to constructions of such families are provided in Section 6.6.5.Proposition 6.3.11 Suppose that g is a pseudorandom generator, and thatfhrg is a (`; ")-AXU family, for some super-polynomial ` and negligible ". ThenConstruction 6.3.10 constitutes a secure state-based MAC. Furthermore, securityholds even with respect to the stronger notion discussed in Footnote 11.Proof Sketch: By Exercise 21 of Chapter 3, if g is a pseudorandom generatorthen for every polynomial p the ensemble fGpngn2N is pseudorandom, where Gpnis de�ned by the following random process:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

514 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONUniformly select s0 2 f0; 1gn;For i = 1 to p(n), let si�i g(si�1), where �i 2 f0; 1g (and si 2 f0; 1gn);Output �1�2 � � ��p(n).Recall that, in such a case, we said that g is a next-step function of an on-linepseudorandom generator.As in previous cases, it su�ces to establish the security of an ideal scheme inwhich the sequence (ofm(n)-bit long blocks) produced by iterating the next-stepfunction g is replaced by a truly random sequence (of m(n)-bit long blocks). Inthe ideal scheme, all that the adversary may obtain via a chosen message attackis a sequence of m(n)-bit long blocks, which is uniformly distributed among allsuch possible sequences. Note that each of the signatures obtained during theattack as well as the forged signature refers to a single block in this sequence(e.g., the ith obtained signature refers to the ith block). We consider two typesof forgery attempts:1. In case the adversary tries to forge a signature referring to an unused(during the attack) block, it may succeed with probability at most 2�m(n),because we may think of this block as being chosen after the adversarymakes its forgery attempt. Note that 2�m(n) is negligible, because "(n) �2�m(n) must hold (since 2�m(n) lower-bounds the collision probability).2. The more interesting case is when the adversary tries to forge a signaturereferring to a block, say the ith one, that was used (to answer the ithquery) during the attack. Denote the jth query by �(j), the (random)jth block by b(j), and the forged document by �. Then, at the timeof outputting the forgery attempt (�; �), the adversary only knows thesequence of b(j) � hr(�(j))'s, which yields no information on r. Note thatthe adversary succeeds if and only if b(i) � hr(�) = �, where �(i) def=b(i) � hr(�(i)) is known to it. Thus, the adversary succeeds if and onlyif hr(�(i)) � hr(�) = �(i) � �, where �(i); �(i); �; � are �xed and r isuniformly distributed. Hence, by the AXU property, the probability thatthe adversary succeeds is at most "(n).The security of the real scheme follows (or else one could have distinguished thesequence produced by iterating the next-step function g from a truly randomsequence).Construction 6.3.10 versus the constructions of Section 6.3.1.3. Re-call that all these schemes are based on the hash-and-hide paradigm. The dif-ference between the schemes is that in Section 6.3.1.3 a pseudorandom functionis applied to the hash-value (i.e., the signature to x is fs(hr(x))), whereas inConstruction 6.3.10 the hash-value is XORed with a pseudorandom value (i.e.,we may view the signature as consisting of (c; hr(x)�fs(c)), where c is a countervalue and fs(c) is the cth block produced by iterating the next-step function gstarting with the initial seed s). We note two advantages of the state-basedMAC over the MACs presented in Section 6.3.1.3: First, applying an on-line

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 515pseudorandom generator is likely to be more e�cient than applying a pseudoran-dom function. Second, a counter allows to securely authenticate more messagesthan can be securely authenticated by applying a pseudorandom function to thehashed value. Speci�cally, the use of an a m-bit long counter allows to securelyauthenticate 2m messages, whereas using an m-bit long hash-value su�ers fromthe \birthday e�ect" (i.e., collisions are likely to occur when p2m messages areauthenticated). Indeed, these advantages are relevant only in applications inwhich using state-based MACs is possible, and are most advantageous in ap-plications where veri�cation is performed in the same order as signing (e.g., infifo communication).6.4 Constructions of Signature SchemesIn this section we present several constructions of secure public-key signatureschemes. Here we refer to such schemes as signature schemes, which is indeedthe traditional term.Two central paradigms in the construction of signature schemes are the \re-freshing" of the \e�ective" signing-key, and the usage of an \authenticationtree". In addition, the \hashing paradigm" (employed also in the constructionof message authentication schemes), plays a even more crucial role in the fol-lowing presentation. In addition to the above, we use the notion of one-timesignature scheme de�ned in Section 6.4.1.The current section is organized as follows. In Section 6.4.1 we de�ne andconstruct various types of one-time signature schemes. The \hashing paradigm"plays a crucial role in one of these constructions, which in turn is essential forSection 6.4.2. In Section 6.4.2 we show how to use one-time signature schemes toconstruct general signature schemes. This construction utilizes the \refreshingparadigm" (as employed to one-time signature schemes) and an \authenticationtree". In Section 6.4.3, we de�ne Universal One-Way Hashing and show how touse it (in the previous constructions) instead of collision-free hashing. The gainin using Universal One-Way Hashing (rather than collision-free hashing) is thatthe former can be constructed based on any one-way function (whereas this isnot known for collision-free hashing). Thus, we obtain:Theorem 6.4.1 Secure signature schemes exist if and only if one-way functionsexist.The di�cult direction is to show that the existence of one-way functions impliesthe existence of signature schemes. For the other direction, see Exercise 8.6.4.1 One-time signature schemesIn this section we de�ne and construct various types of one-time signatureschemes. Speci�cally, we �rst de�ne one-time signature schemes, next de�nea length-restricted version of this notion (analogous to De�nition 6.2.1), then

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

516 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONpresent a simple construction of the latter, and �nally we show how such a con-struction combined with collision-free hashing yields a general one-time signaturescheme.6.4.1.1 De�nitionsLoosely speaking, one-time signature schemes are signature schemes for whichthe security requirement is restricted to attacks in which the adversary asks forat most one string to be signed. That is, the mechanics of one-time signatureschemes are as of ordinary signature schemes (see De�nition 6.1.1), but thesecurity requirement is relaxed as follows.� A chosen one-message attack is a process that can obtain a signature to atmost one string of its choice. That is, the attacker is given v as input, andobtains a signature relative to s, where (s; v) G(1n) for an adequate n.(Note that in this section we focus on public-key signature schemes andthus we present only the de�nition for this case.)� Such an attack is said to succeeds (in existential forgery) if it outputsa valid signature to a string for which it has not requested a signatureduring the attack.(Indeed, the notion of success is exactly as in De�nition 6.1.2.)� A one-time signature scheme is secure (or unforgeable) if every probabilisticpolynomial-time chosen one-message attack succeeds with at most negli-gible probability.Moving to the formal de�nition, we again model a chosen message attack as aprobabilistic oracle machine; however, since here we only care about one-messageattacks, we consider only oracle machines that make at most one query. Let Mbe such a machine. As before, we denote by QOM (x) the set of queries made byM on input x and access to oracle O, and let MO1 (x) denote the �rst string inthe output of M on input x and access to oracle O. Note that here jQOM (x)j � 1(i.e., M may either make no queries or a single query).De�nition 6.4.2 (security for one-time signature schemes): A one-time signa-ture scheme is secure if for every probabilistic polynomial-time oracle machineM that makes at most one query, every polynomial p and all su�ciently largen, it holds thatPr24 VG2(1n)(MSG1(1n)(G2(1n)))=1andMSG1(1n)1 (G2(1n)) 62 QSG1(1n)M (G2(1n)) 35 < 1p(n)where the probability is taken over the coin tosses of algorithms G, S and V aswell as over the coin tosses of machine M .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 517We now de�ne a length-restricted version of one-time signature schemes. Thede�nition is indeed analogous to De�nition 6.2.1:De�nition 6.4.3 (length-restricted one-time signature schemes): Let ` : N !N . An `-restricted one-time signature scheme is a triple, (G;S; V), of probabilis-tic polynomial-time algorithms satisfying the the mechanics of De�nition 6.2.1.That is, it satis�es the following two conditions1. As in De�nition 6.1.1, on input 1n, algorithm G outputs a pair of bitstrings.2. Analogously to De�nition 6.1.1, for every n and every pair (s; v) in therange of G(1n), and for every � 2 f0; 1g`(n), algorithms S and D satisfyPr[V (v; �; S(s; �))=1] = 1.Such a scheme is called secure (in the one-time model) if the requirement ofDe�nition 6.4.2 holds when restricted to attackers that only make queries oflength `(n) and output a pair (�; �) with j�j = `(n). That is, we consider onlyattackers that make at most one query, this query has to be of length `(n), andthe output (�; �) must satisfy j�j = `(n).Note that even the existence of secure 1-restricted one-time signature schemesimplies the existence of one-way functions: see Exercise 11.6.4.1.2 Constructing length-restricted one-time signature schemesWe now present a simple construction of length-restricted one-time signatureschemes. The construction works for any length restriction function `, but thekeys will have length greater than `. The latter fact limits the applicability ofsuch schemes, and will be removed in the next subsection. But �rst, we construct`-restricted one-time signature schemes based on any one-way function f . Wemay assume for simplicity that f is length preserving.Construction 6.4.4 (an `-restricted one-time signature scheme): Let ` : N !N be polynomially-bounded and polynomial-time computable, and f : f0; 1g� !f0; 1g� be polynomial-time computable and length-preserving. We construct an`-restricted one-time signature scheme, (G;S; V), as follows:key-generation with G: On input 1n, we uniformly select s01; s11; ::::; s0̀(n); s1̀(n) 2f0; 1gn, and compute vji = f(sji), for i = 1; :::; `(n) and j = 0; 1. Welet s = ((s01; s11); ::::; (s0̀(n); s1̀(n))), and v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))), andoutput the key-pair (s; v).(Note that jsj = jvj = 2 � `(n) � n.)signing with S: On input a signing-key s = ((s01; s11); ::::; (s0̀(n); s1̀(n))) and an`(n)-bit string � = �1 � � ��`(n), we output (s�11 ; ::::; s�`(n)`(n)) as a signature of�.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

518 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONveri�cation with V : On input a veri�cation-key v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))),an `(n)-bit string � = �1 � � ��`(n), and an alleged signature � = (�1; :::; �`(n)),we accept if and only if v�ii = f(�i), for i = 1; :::; `(n).Proposition 6.4.5 If f is a one-way function then Construction 6.4.4 consti-tutes a secure `-restricted one-time signature scheme.Note that Construction 6.4.4 does not constitute a (general) `-restricted sig-nature scheme: An attacker that obtains signatures to two strings (e.g., to thestrings 0`(n) and 1`(n)), can present a valid signature to any `(n)-bit long string(and thus totally break the system). However, here we consider only attackersthat may ask for at most one string (of their choice) to be signed. As a corollaryto Proposition 6.4.5, we obtain:Corollary 6.4.6 If there exist one-way functions then, for every polynomially-bounded and polynomial-time computable ` :N!N , there exist secure `-restrictedone-time signature schemes.Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing atmost one signature to a di�erent message) requires inverting f on some randomimage (corresponding to a bit location on which the two `(n)-bit long messagesdi�er). The actual proof is by a reducibility argument. Given an adversary Aattacking the scheme (G;S; V), while making at most one query, we constructan algorithm A0 for inverting f .As a warm-up, let us �rst deal with the case in which A makes no queriesat all. In this case, on input y (supposedly in the range of f), algorithm A0proceeds as follows. First A0 selects uniformly and independently a positionp in f1; :::; `(n)g, a bit b, and a sequence of (2`(n) many) n-bit long stringss01; s11; ::::; s0̀(n); s1̀(n). (Actually, sbp is not used and needs not be selected.) Forevery i 2 f1; :::; `(n)g n fpg, and every j 2 f0; 1g, algorithm A0 computes vji =f(sji). Algorithm A0 also computes v1�bp = f(s1�bp), and sets vbp = y and v =((v01 ; v11); ::::; (v0̀(n); v1̀(n))). Note that if y = f(x), for a uniformly distributedx 2 f0; 1gn, then for each possible choice of p and b, the sequence v is distributedidentically to the public-key generated by G(1n). Next, A0 invokes A on inputv, hoping that A will forge a signature, denoted � = �1 � � � �`(n), to a message� = �1 � � ��`(n) so that �p = b. If this event occurs, A0 obtains a preimage of yunder f , since the validity of the signature implies that f(�p) = v�pp = vbp = y.Observe that conditioned on the value of v and the internal coin tosses of A, thevalue b is uniformly distributed in f0; 1g. Thus, A0 inverts f with probability"(n)=2, where "(n) denotes the probability that A succeeds in forgery.We turn back to the actual case in which A may make a single query. (With-out loss of generality, we may assume that A always makes a single query; seeExercise 9.) In this case, on input y (supposedly in the range of f), algorithmA0 selects p; b and the sji 's, and forms the vji 's and v exactly as in the warm-up

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 519above.12 Recall that if y = f(x), for a uniformly distributed x 2 f0; 1gn, thenfor each possible choice of p and b, the sequence v is distributed identically tothe public-key generated by G(1n). Also note that for each vji other than vbp = y,algorithm A0 holds a random preimage (of vji) under f . Next, A0 invokes A oninput v, and tries to answer its query, denoted � = �1 � � ��`(n). We consider twocases regarding this query:1. If �p = b then A0 can not supply the desired signature since it lacks apreimage of sbp = y under f . Thus, in this case A0 aborts. However, thiscase occurs with probability 12 , independently of the actions of A (since vyields no information on either p or b).(That is, conditioned on the value of v and the internal coin tosses of A,this case occurs with probability 12 .)132. If �p = 1 � b then A0 can supply the desired signature since it holds allthe relevant sji 's (i.e., random preimages of the relevant vji 's under f). Inparticular, A0 holds both sji 's, for i 6= p, as well as s1�bp . Thus, A0 answerswith (s�11 ; ::::; s�`(n)`(n)).Note that conditioned on the value of v, the internal coin tosses of A and on thesecond case occuring, p is uniformly distributed in f1; :::; `(n)g. When the secondcase occurs, A obtains a signature to � and this signature is distributed exactlyas in a real attack. We stress that since A asks at most one query, no additionalquery will be asked by A. Also note that, in this case (i.e., �p = 1�b), algorithmA outputs a forged message{signature pair, denoted (�0; �0), with probabilityexactly as in a real attack.For simplicity we assume below that A has indeed made a single query �(otherwise one may consider � and the �i's to be some non-boolean dummy val-ues and apply the following reasoning nevertheless).14 Let �0 = �01 � � �� 0̀(n) and�0 = s01 � � � s0̀ (n), where (�0; �0) is the forged message{signature pair output by A.By our hypothesis (that this is a forgery-success event) it follows that �0 6= � andthat f(s0i) = v�0ii for all i's. Since (conditioned on all the above) p is uniformlydistributed in f1; :::; `(n)g, it follows that with probability jfi:�0i 6=�igj`(n) � 1`(n)it holds that �0p 6= �p, and then A0 obtains a preimage of y under f (since s0psatis�es f(s0p) = v�0pp , which in turn equals v1��pp = vbp = y).12 That is, �rst A0 selects p uniformly in f1; :::; `(n)g, b uniformly in f0; 1g, ands01; s11; ::::; s0̀(n); s1̀(n) each independently and uniformly in f0; 1gn. For every i 2 f1; :::; `(n)gnfpg, and every j 2 f0; 1g, algorithm A0 computes vji = f(sji). Algorithm A0 also computesv1�bp = f(s1�bp), and sets vbp = y and v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))).13 This follows from an even stronger statement by which conditioned on the value of v, theinternal coin tosses of A and on the value of p, the current case happens with probability 12 .The stronger statement holds since conditioned on all the above, b is uniformly distributed inf0; 1g (and so �p = b happens with probability exactly 12).14 Alternatively, recall that, without loss of generality, we may assume that A always makesa single query; see Exercise 9.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

520 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONTo summarize, assuming that A succeeds in a single-message attack on(G;S; V) with probability "(n), algorithm A0 inverts f on a random image (i.e.,on f(Un)) with probability"(n) � 12 � jfi : �0i 6= �igj`(n) � "(n)2`(n)Thus, if A is a probabilistic polynomial-time chosen one-message attack thatforges signatures with non-negligible probability then A0 is a probabilistic polynomial-time algorithm that inverts f with non-negligible probability (in violation of thehypothesis that f is a one-way function). The proposition follows.6.4.1.3 From length-restricted schemes to general onesWe now combine a length-restricted one-time signature scheme with collision-free hashing to obtain a general one-time signature scheme. The construction isidentical to Construction 6.2.6, except that here (G;S; V) is an `-restricted one-time signature scheme rather than an `-restricted (general) signature scheme.Analogously to Proposition 6.2.7, we obtain.Proposition 6.4.7 Suppose that (G;S; V) is a secure `-restricted one-time sig-nature scheme, and that fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� is a collision-freehashing collection. Then (G0; S0; V 0), as de�ned in Construction 6.2.6 is a se-cure one-time signature scheme.Proof: The proof is identical to the proof of Proposition 6.2.7; we merely no-tice that if the adversary A0, attacking (G0; S0; V 0), makes at most one querythen the same holds for the adversary A that we construct (in that proof) toattack (G;S; V). In general, the adversary A constructed in the proof of Propo-sition 6.2.7 makes a single query per each query of the adversary A0.Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-freehashing collections imply one-way functions (see Exercise 12), we obtain:Corollary 6.4.8 If there exist collision-free hashing collections then there existsecure one-time signature schemes.Comments: We stress that when using Construction 6.2.6, signing each docu-ment under the (general) scheme (G0; S0; V 0) only requires signing a single stringunder the `-restricted scheme (G;S; V). This is in contrast to Construction 6.2.3in which signing a document under the (general) scheme (G0; S0; V 0) requiressigning many strings under the `-restricted scheme (G;S; V), where the numberof such strings depends (linearly) on the length of the original document.Construction 6.2.6 calls for the use of collision-free hashing. The latter can beconstructed using any claw-free permutation collection (see Proposition 6.2.9),however it is not know whether collision-free hashing can be constructed basedon any one-way function. Wishing to construct signature schemes based on

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 521any one-way function, we later avoid (in Section 6.4.3) the use of collision-freehashing. Instead, we use \universal one-way hashing functions" (to be de�ned),and present a variant of Construction 6.2.6 that uses these functions rather thancollision-free ones.6.4.2 From one-time signature schemes to general onesIn this section we show how to construct general signature schemes using one-time signature schemes. That is, we shall prove:Theorem 6.4.9 If there exist secure one-time signature schemes then secure(general) signature schemes exist as well.Actually, we can use length-restricted one-time signature schemes, provided thatthe length of the strings being signed is at least twice the length of the veri�cation-key. Unfortunately, Construction 6.4.4 does not satisfy this condition. Neverthe-less, Corollary 6.4.8 does provide one-time signature schemes. Thus, combiningTheorem 6.4.9 and Corollary 6.4.8, we obtain:Corollary 6.4.10 If there exist collision-free hashing collections then there existsecure signature schemes.Note that Corollary 6.4.10 asserts the existence of secure (public-key) signatureschemes, based on an assumption that does not mention trapdoors. We stressthis point because of the contrast to the situation with respect to public-key en-cryption schemes, where a trapdoor property seem necessary for the constructionof secure schemes.6.4.2.1 The refreshing paradigmThe so-called \refreshing paradigm" plays a central role in the proof of Theo-rem 6.4.9. Loosely speaking, the \refreshing paradigm" suggests to reduce thedangers of a chosen message attack on the signature scheme by using \fresh"instances of the scheme for signing each new document. Of course, these freshinstances should be authenticated by the original instance (corresponding to theveri�cation-key that is publically known), but such an authentication refers toa string selected by the legitimate signer rather than by the adversary.Example: To demonstrate the refreshing paradigm, consider a basic signaturescheme (G;S; V) used as follows. Suppose that the user U has generated a key-pair, (s; v) G(1n), and has placed the veri�cation-key v on a public-�le. Whena party asks U to sign some document �, the user U generates a new (fresh)key-pair, (s0; v0) G(1n), signs v0 using the original signing-key s, signs � usingthe new (fresh) signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as a signatureto �. An alleged signature, (�1; v0; �2), is veri�ed by checking whether bothVv(v0; �1) = 1 and Vv0 (�; �2) = 1. Intuitively, the gain in terms of security isthat a full-edged chosen message attack cannot be launched on (G;S; V). All

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

522 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONthat an attacker may obtain (via a chosen message attack on the new scheme)is signatures, relative to the original signing-key s, to randomly chosen strings(taken from the distributionG2(1n)) as well as additional signatures each relativeto a random and independently chosen signing-key.We refrain from analyzing the features of the signature scheme presented inthe above example. Instead, as a warm-up to the actual construction used inthe next section (in order to establish Theorem 6.4.9), we present and analyze asimilar construction (which is, in some sense, a hybrid of the two constructions).The reader may skip this warm-up, and proceed directly to Section 6.4.2.2.Construction 6.4.11 (a warm-up): Let (G;S; V) be a signature scheme and(G0; S0; V 0) be a one-time signature scheme. Consider a signature scheme, (G00; S00; V 00),with G00 = G, as follows:signing with S00: On input a signing-key s and a document � 2 f0; 1g�, �rstinvoke G0 to obtain (s0; v0) G0(1n). Next, invoke S to obtain �1 Ss(v0), and S0 to obtain �2 S0s0(�). The �nal output is (�1; v0; �2).veri�cation with V 00: On input a verifying-key v, a document � 2 f0; 1g�, and aalleged signature � = (�1; v0; �2), we output 1 if and only if both Vv(v0; �1) =1 and V 0v0(�; �2) = 1.Construction 6.4.11 di�ers from the above example only in that a one-timesignature scheme is used to generate the \second signature" (rather than usingthe same ordinary signature scheme). The use of a one-time signature schemeis natural here, since it is unlikely that the same signing-key s0 will be selectedin two invocations of S00.Proposition 6.4.12 Suppose that (G;S; V) is a secure signature scheme, andthat (G0; S0; V 0) is a secure one-time signature scheme. Then (G00; S00; V 00), asde�ned in Construction 6.4.11 is a secure signature scheme.We comment that the proposition holds even if (G;S; V) is only secure againstattackers that select queries according to the distribution G02(1n). Furthermore,(G;S; V) need only be `-restricted, for some suitable function ` : N ! N .Proof Sketch: Consider an adversary A00 attacking the scheme (G00; S00; V 00).We may ignore the case in which two queries of A00 are answered by tripletscontaining the same one-time veri�cation-key v0 (since if this event occurs withnon-negligible probability then the one-time scheme (G0; S0; V 0) cannot be se-cure). We consider two cases regarding the relation of the one-time veri�cation-keys included in the signatures provided by S00s and the one-time veri�cation-keyincluded in the signature forged by A00.1. In case, for some i, the one-time veri�cation-key v0 contained in the forgedmessage equals the one-time veri�cation-key v(i) contained in the answerto the ith query, we derive violation to the security of the one-time scheme(G0; S0; V 0).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 523Speci�cally, consider an adversary A0 that on input a veri�cation-key v0for the one-time scheme (G0; S0; V 0), generates (s; v) G(1n) at ran-dom, selects i at random (among polynomially many possibilities), in-vokes A00 on input v, and answers its queries as follows. The ith query ofA00, denoted �(i), is answered by making the only query to S0s0 , obtaining�0 = S0s0(�(i)), and returning (Ss(v0); v0; �0) to A00. (Note that A0 holdss.) Each other query of A00, denoted �(j), is answered by invoking G0to obtain (s(j); v(j)) G0(1n), and returning (Ss(v(j)); v(j); S0s(j) (�(j)) toA00. If A00 answers with a forged signature and v0 is the veri�cation-keycontained in it, then A0 obtains a forged signature relative to the one-timescheme (G0; S0; V 0) (i.e., a signature to a message di�erent from �(i), whichis valid w.r.t the veri�cation-key v0). Furthermore, conditioned on the casehypothesis and a forgery event, the second event (i.e., v0 is the veri�cation-key contained in the forged signature) occurs with 1=poly(n) probability.Note that indeed A0 makes at most one query to S0s0 , and that the distri-bution seen by A00 is exactly as in an actual attack on (G00; S00; V 00).2. In case, for all i, the one-time veri�cation-key v0 contained in the forgedmessage is di�erent from the one-time veri�cation-key v(i) contained in theanswer to the ith query, we derive violation to the security of the scheme(G;S; V).Speci�cally, consider an adversary A that on input a veri�cation-key v forthe scheme (G;S; V), invokes A00 on input v, and answers its queries asfollows. To answer the jth query of A00, denoted �(j), algorithm A invokesG0 to obtain (s(j); v(j)) G0(1n), queries Ss for a signature to v(j), andreturns (Ss(v(j)); v(j); S0s(j) (�(j)) to A00. When A00 answers with a forgedsignature and v0 62 fv(j) : j = 1; :::; poly(n)g is the one-time veri�cation-key contained in it, A obtains a forged signature relative to the scheme(G;S; V) (i.e., a signature to a string v0 di�erent from all v(j)'s, which isvalid w.r.t the veri�cation-key v). (Note again that the distribution seenby A00 is exactly as in an actual attack on (G00; S00; V 00).)15Thus in both cases we derive a contradiction to some hypothesis, and the propo-sition follows. 26.4.2.2 Authentication{treesThe refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) doesnot seem to be enough for establishing Theorem 6.4.9. Recall that our aim isto construct a general signature scheme based on a one-time signature scheme.The refreshing paradigm suggests to use a fresh instance of a one-time signaturescheme in order to sign the actual document; however, whenever we do so (asin Construction 6.4.11), we must authenticate this fresh instance relative to thesingle veri�cation-key that is public. A straightforward implementation of this15 Furthermore, all queries to Ss are distributed according to G2(1n), justifying the commentmade just before the proof sketch.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

524 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONscheme (as presented in Construction 6.4.11) calls for many signatures to besigned relative to the single veri�cation-key that is public, and so a one-time sig-nature scheme cannot be used (for this purpose). Instead, a more sophisticatedmethod of authentication is required.Let us try to sketch the basic idea underlying the new authentication method.The idea is to use the public veri�cation-key (of a one-time signature scheme) inorder to authenticate several (e.g., two) fresh instances (of the one-time signaturescheme), use each of these instances to authenticate several fresh instances, andso on. We obtain a tree of fresh instances of the one-time signature, where eachinternal node authenticates its children. See Figure 6.2 (below). We can nowuse the leaves of this tree in order to sign actual documents, where each leaveis used at most once. We stress that each instance of the one-time signaturescheme is used to sign at most one string (i.e., a sequence of veri�cation-keys ifthe instance resides in an internal node, and an actual document if the instanceresides in a leaf).

v

+ auth
x1 x1

v

+ auth
x x

s

s

v

+ auth
x0 x0s

x

x0 x1

x0 x1

x

Figure 6.2: A node labeled x authenticates its children, labeled x0 and x1,respectively. The authentication is via a one-time signature of the text vx0vx1using signing-key sx.The above description may leave the reader wondering as to how one actuallysigns (and veri�es signatures) using the suggested signature scheme. We startwith a description that does not �t our de�nition of a signature scheme, becauseit requires the signer to keep a record of its actions during all previous invocationsof the signing process.16 We refer to such a scheme as memory dependent.De�nition 6.4.13 (memory-dependent signature schemes):16 This (memory) requirement will be removed in the next section.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 525mechanics: Item 1 of De�nition 6.1.1 stays as it is, and the initial state (ofthe signing algorithm) is de�ned to equal the output of the key-generator.Item 2 is modi�ed so that the signing algorithm is given a state, denoted, as auxiliary input and returns a modi�ed state, denoted �, as auxiliaryoutput. It is required that for every pair (s; v) in the range of G(1n),and for every �; 2 f0; 1g�, if Ss(�;) = (�; �) then Vv(�; �) = 1 andj�j � jj+ j�j � poly(n).(That is, the veri�cation algorithm accepts the signature � and the statedoes not grow by too much.)security: The notion of a chosen message attack is modi�ed so that the oracleSs now maintains a state that it updates in the natural manner; that is,when in state and faced with query �, the oracle sets (�; �) Ss(�;),returns � and updates its state to �. The notions of success and securityare de�ned as in De�nition 6.1.2, except that they now refer to the modi�ednotion of an attack.The de�nition of memory-dependent signature schemes (i.e., De�nition 6.4.13) isrelated to the de�nition of state-based MACs (i.e., De�nition 6.3.9). However,there are two di�erences between the two de�nitions: First, De�nition 6.4.13refers to (public-key) signature schemes, whereas De�nition 6.3.9 refers to MACs.Second, in De�nition 6.4.13 only the signing algorithm is state-based (or memory-dependent), whereas in De�nition 6.3.9 also the veri�cation algorithm is state-based. The latter di�erence reects the di�erence in the applications envisionedfor both types of schemes. (Typically, MACs are indented for communicationbetween a predetermined set of \mutually synchronized" parties, whereas signa-ture schemes are intended for production of signatures that may be universallyveri�er at any time.)We note that memory-dependent signature schemes may su�ce in manyapplications of signature schemes. Still, it is preferable to have memoryless (i.e.,ordinary) signature schemes. Below we use any one-time signature schemes toconstruct a memory-dependent signature scheme. The memory requirement willbe removed in the next section, so to obtain a (memoryless) signature scheme(as in De�nition 6.1.1).Construction 6.4.14 (a memory-dependent signature scheme): Let (G;S; V)be a one-time signature scheme. Consider the following memory-dependent sig-nature scheme, (G0; S0; V 0), with G0 = G. On security parameter n, the schemeuses a full binary tree of depth n. Each of the nodes in this tree is labeled by abinary string so that the root is labeled by the empty string, denoted �, and theleft (resp., right) child of a node labeled by x is labeled by x0 (resp., x1). Belowwe refer to the current state of the signing process as to a record.initiating the scheme: To initiate the scheme, on security parameter n, we in-voke G(1n) and let (s; v) G(1n). We record (s; v) as the key-pair asso-ciated with the root, and output v as the (public) veri�cation-key.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

526 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONIn the rest of the description, we denote by (sx; vx) the key-pair associatedwith the node labeled x; thus, (s�; v�) = (s; v).signing with S0 using the current record: Recall that the current record containsthe signing-key s = s�, which is used to produce auth� (de�ned below).To sign a new document, denoted �, we �rst allocate an unused leaf. Let�1 � � ��n be the label of this leaf. For example, we may keep a counter ofthe number of documents signed, and determine �1 � � ��n according to thecounter value (e.g., if the counter value is c then we use the cth string inlexicographic order).Next, for every i = 1; :::; n and every � 2 f0; 1g, we try to retrieve from ourrecord the key-pair associated with the node labeled �1 � � ��i�1� . In casesuch a pair is not found, we generate it by invoking G(1n) and store it (i.e.,add it to our record) for future use; that is, we let (s�1����i�1� ; v�1����i�1�) G(1n).For every i = 1; :::; n, we try to retrieve from our record a signature tothe string v�1����i�10 v�1����i�11 relative to the signing-key s�1����i�1 . In casesuch a signature is not found, we generate it by invoking Ss�1����i�1 , andstore it for future use; that is, we obtain Ss�1����i�1 (v�1 ����i�10 v�1����i�11).(The ability to retrieve this signature from memory for repeated use is themost important place in which we rely on the memory-dependence of oursignature scheme.)17We letauth�1����i�1 def= �v�1����i�10 ; v�1����i�11 ; Ss�1����i�1 (v�1����i�10 v�1����i�11)�(Intuitively, via auth�1����i�1 the node labeled �1 � � ��i�1 authenticates theveri�cation-keys associated with its children.)Finally, we sign � by invoking Ss�1����n , and output(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�))veri�cation with V 0: On input a veri�cation-key v, a document �, and an allegedsignature � we accept if and only if the following conditions hold:1. � has the form(�1 � � ��n; (v0;0; v0;1; �0); (v1;0; v1;1; �1); :::; (vn�1;0; vn�1;1; �n�1); �n)where the �i's are bits and all other symbols represent strings.(Jumping ahead, we mention that vi;� is supposed to equal v�1����i�1� ,the veri�cation-key associated by the signing process with the nodelabeled �1 � � ��i�1� . In particular, vi;�i is supposed to equal v�1����i .)17 This allows the signing process S0s to use each (one-time) signing-key sx for producing asingle Ssx -signature. In contrast, the use of a counter for determining a new leaf can be easilyavoided, by selecting a leaf at random.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 5272. Vv(v0;0v0;1; �0) = 1.(That is, the public-key (i.e., v) authenticates the two strings v0;0 andv0;1 claimed to correspond to the instances of the one-time signaturescheme associated with the nodes labeled 0 and 1, respectively.)3. For i = 1; :::; n� 1, it holds that Vvi�1;�i (vi;0vi;1; �i) = 1.(That is, the veri�cation-key vi�1;�i , which is already believed to beauthentic and supposedly corresponds to the instance of the one-timesignature scheme associated with the node labeled �1 � � ��i, authen-ticates the two strings vi;0 and vi;1 that are supposed to correspondto the instances of the one-time signature scheme associated with thenodes labeled �1 � � ��i0 and �1 � � ��i1, respectively.)4. Vvn�1;�n (�; �n) = 1.(That is, the veri�cation-key vn�1;�n , which is already believed to beauthentic, authenticates the actual document �.)Regarding the veri�cation algorithm, note that Conditions 2 and 3 establish thatvi;�i+1 is authentic (i.e., equals v�1����i;�i+1). That is, v = v� authenticates v�1 ,which authenticates v�1�2 , and so on up-to v�1����n . The fact that the vi;1��i+1 'sare proven to be authentic (i.e., equal the v�1����i;1��i+1 's) is not really useful(when signing a message using the leaf associated with �1 � � ��n). This excess ismerely an artifact of the need to use s�1����i only once during the entire operationof the memory-dependent signature scheme: In the currently (constructed) S0s-signature we may not care about the authenticity of some v�1����i;1��i+1 , butwe may care about it in some other S0s-signature. For example, if we use theleaf labeled 0n to sign the �rst document and the leaf labeled 0n�11 to sign thesecond, then in the �rst S0s-signature we only care about the authenticity of v0n ,whereas in the second S0s-signature we care about the authenticity of v0n�11.Proposition 6.4.15 If (G;S; V) is a secure one-time signature scheme thenConstruction 6.4.14 constitutes a secure memory-dependent signature scheme.Proof: Recall that a S0s� -signature to a document � has the form(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�)) (6.5)where the authx's, vx's and sx's satisfyauthx = (vx0 ; vx1 ; Ssx(vx0 vx1)) (6.6)(See Figure 6.2.) In this case we say that this S0s-signature uses the leaf labeled�1 � � ��n. For every i = 1; :::; n, we call the sequence (auth�; auth�1 ; :::; auth�1����i�1)an authentication path for v�1����i . (Note that the above sequence is also an au-thentication path for v�1 ����i�1�i , where � = 1��.) Thus, a valid S0s-signature toa document � consists of an n-bit string �1 � � ��n, authentication paths for eachv�1����i (i = 1; :::; n), and a signature to � with respect to the one-time scheme(G;S; V) using the signing-key s�1����n .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

528 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONIntuitively, forging an S0s-signature requires either using an authenticationpath supplied by the signer (i.e., supplied by S0s as part of an answer to a query)or producing an authentication path di�erent from all paths supplied by thesigner. In both cases, we reach a contradiction to the security of the one-timesignature scheme (G;S; V). Speci�cally, in the �rst case, the forged S0s-signaturecontains a signature relative to (G;S; V) using the signing-key s�1����n . The lat-ter Ss�1����n -signature is veri�able using the veri�cation-key v�1����n , which is au-thentic by the case hypothesis. This yields forgery with respect to the instanceof the one-time signature scheme associated with the leaf labeled �1 � � ��n (sincethe document S0s-signed by the forger must be di�erent from all S0s-signed doc-uments, and thus the forged document is di�erent from all strings to which aone-time signature was applied).18 We now turn to the second case (i.e., forgerywith respect to (G0; S0; V 0) is obtained by producing an authentication path dif-ferent from all paths supplied by the signer). In this case there must exists ani 2 f1; :::; ng and an i-bit long string �1 � � ��i so that auth�; :::; auth�1����i�1 isthe shortest pre�x of the authentication path produced by the forger that is nota pre�x of any authentication path supplied by the signer. (Note that i > 0 musthold, since empty sequences are equal, whereas i � n by the case hypothesis.)In this case auth�1����i�1 (produced by the forge), contains a signature relativeto (G;S; V) using the signing-key s�1����i�1 . The latter signature is veri�ableusing the veri�cation-key v�1����i�1 , which is authentic by the minimality of i.Furthermore, by de�nition of i, the latter signature is to a string di�erent fromthe string to which the S0s-signer has applied Ss�1����i�1 . This yields forgery withrespect to the instance of the one-time signature scheme associated with thenode labeled �1 � � ��i�1.The actual proof is by a reducibility argument. Given an adversaryA0 attack-ing the complex scheme (G0; S0; V 0), we construct an adversary A that attacksthe one-time signature scheme, (G;S; V). In particular, the adversary A will useits oracle access Ss in order to emulate the memory-dependent signing oracle forA0. Recall that the adversary A can make at most one query to its Ss-oracle.Below is a detailed description of the adversary A. Since we care only aboutprobabilistic polynomial-time adversaries, we may assume that A0 makes at mostt = poly(n) many queries, where n is the security parameter.The construction of adversary A: Suppose that (s; v) is in the range ofG(1n). On input v and one-query oracle access to Ss, adversary A proceeds asfollows:1. Initial choice: A uniformly selects j 2 f1; :::; (2n+ 1) � tg.(The integer j speci�es an instance of (G;S; V) generated during the attackof A0. This instance will be attacked by A. Note that since 2n+1 instancesof (G;S; V) are referred to in each signature relative to (G0; S0; V 0), the18 Note that what matter is merely that the document S0s-signed by the forger is di�erentfrom the (single) document to which Ss�1����n was applied by the S0s-signer, in case Ss�1����nwas ever applied by the S0s-signer.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 529quantity (2n+1)�t upper bounds the total number of instances of (G;S; V)that appear during the entire attack of A0. This upper bound is not tight.)2. Invoking A0: If j = 1 then A sets v� = v and invokes A0 on input v. Inthis case A does not know s�, which is de�ned to equal s, but can obtaina single signature relative to it by making a (single) query to oracle Ss.Otherwise (i.e., j > 1), machine A invokes G, obtains (s0; v0) G(1n),sets (s�; v�) = (s0; v0) and invokes A0 on input v0. We stress that in thiscase A knows s�.In fact, in both case, A0 is invoked on input v�. Also, in both cases, theone-time instance associated with the root (i.e., the node labeled �) iscalled the �rst instance.3. Emulating the memory-dependent signing oracle for A0: The emulation isanalogous to the operation of the signing procedure as speci�ed in Con-struction 6.4.14. The only exception refers to the jth instance of (G;S; V)that occurs in the memory-dependent signing process. Here, A uses theveri�cation key v, and if an Ss-signature needs to be produced then Aqueries Ss for it. We stress that at most one signature needs ever beproduced with respect to each instance of (G;S; V) that occurs in thememory-dependent signing process, and therefore Ss is queried at mostonce. Details follow.A maintains a record of all key-pairs and one-time signatures it has gen-erated and/or obtained from Ss. When A is asked to supply a signatureto a new document, denoted �, it proceeds as follows:(a) A allocates a new leaf-label, denoted �1 � � ��n, exactly as done by thesigning process.(b) For every i = 1; :::; n and every � 2 f0; 1g, machine A tries to retrievefrom its record the one-time instance associated with the node labeled�1 � � ��i�1� . If such an instance does not exist in the record (i.e., theone-time instance associated with the node labeled �1 � � ��i�1� didnot appear so far) then A distinguishes two cases:i. If the record so far contains exactly j�1 one-time instances (i.e.,the current instance is the jth one to be encountered) then A setsv�1����i�1� v, and adds it to its record. In this case, A doesnot know s�1����i�1� , which is de�ned to equal s, but can obtain asingle signature relative to it by making a (single) query to oracleSs.From this point on, the one-time instance associated with thenode labeled �1 � � ��i�1� will be called the jth instance.ii. Otherwise (i.e., the current instance is not the jth one to be en-countered), A acts as the signing process: It invokes G(1n), ob-tains (s�1����i�1� ; v�1����i�1�) G(1n), and adds it to the record.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

530 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(Note that in this case A knows s�1����i�1� , and can generate byitself signatures relative to it.)The one-time instance just generated is given the next serial num-ber. That is, the one-time instance associated with the node la-beled �1 � � ��i�1� will be called the kth instance if the currentrecord (i.e., after the generation of the one-time key-pair asso-ciated with the node labeled �1 � � ��i�1�) contains exactly k in-stances.(c) For every i = 1; :::; n, machine A tries to retrieve from its record a(one-time) signature to the string v�1����i�10 v�1����i�11, relative to thesigning-key s�1����i�1 . If such a signature does not exist in the recordthen A distinguishes two cases:i. If the one-time signature instance associated with the node la-beled �1 � � ��i�1 is the jth such instance then A obtains the one-time signature Ss�1����i�1 (v�1����i�10 v�1����i�11) by querying Ss,and adds this signature to the record.Note that by the previous steps (i.e., Step 3(b)i as well as Step 2),s is identi�ed with s�1����i�1 , and that the instance associatedwith a node labeled �1 � � ��i�1 is only used to produce a singlesignature; that is, to the string v�1����i�10 v�1����i�11. Thus, in thiscase, A queries Ss at most once.We stress that the above makes crucial use of the fact that, forevery � , the veri�cation-key associated with the node labeled�1 � � ��i�1� is identical in all executions of the current step, re-gardless of whether it is generated in Step 3(b)ii or �xed to equalv (in Step 3(b)i). This fact guarantees that A only needs a singlesignature relative to the instance associated with a node labeled�1 � � ��i�1, and thus queries Ss at most once (and retrieves thissignature from memory if it ever needs it again).ii. Otherwise (i.e., the one-time signature instance associated withthe node labeled �1 � � ��i�1 is not the jth such instance), A actsas the signing process: It invokes Ss�1����i�1 , obtains the one-timesignature Ss�1����i�1 (v�1 ����i�10 v�1����i�11)v�1����i�1�), and adds itto the record. (Note that in this case A knows s�1����i�1 , and cangenerate by itself signatures relative to it.)Thus, A obtains auth�1����i�1 .(d) Machine A now obtains a one-time signature of � relative to Ss�1����n .(Recall that since A0 never makes the same query twice,19 we needto generate at most one signature relative to the one-time instanceSs�1����n .) This is done analogously to the previous step (i.e., Step 3c).Speci�cally:19 This assertion can be justi�ed, without loss of generality. Otherwise, we may modify A0so that retrieves from its own memory the answer to a query that it wishes to ask for thesecond time.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 531i. If the one-time signature instance associated with the leaf labeled�1 � � ��n is the jth instance (associated with any node) then Aobtains the one-time signature Ss�1����n (�) by querying Ss.Note that, in this case, s is identi�ed with s�1����n , and that aninstance associated with a leaf is only used to produce a singlesignature. Thus, also in this case (which is disjoint of Case 3(c)i),A queries Ss at most once.ii. Otherwise (i.e., the one-time signature instance associated withthe node labeled �1 � � ��n is not the jth instance), A acts as thesigning process: It invokes Ss�1����n , obtains the one-time signa-ture Ss�1����n (�), and adds it to the record. (Again, in this caseA knows s�1����n , and can generate by itself signatures relative toit.)Thus, A obtains �n = Ss�1����n (�).(e) Finally, A answers the query � with(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; �n)4. Using the output of A0: When A0 halts with output (�0; �0), machine Achecks whether this is a valid document-signature pair with respect toV 0v� and whether the document �0 did not appear as a query of A0. Ifboth conditions hold then A tries to obtain forgery with respect to Ss.To explain how this is done, we need to take a closer look at the validdocument-signature pair, (�0; �0), output by A0. Speci�cally, suppose that�0 has the form(�01 � � ��0n; (v00;0; v00;1; �00); (v01;0; v01;1; �01); :::; (v0n�1;0; v0n�1;1; �0n�1); �0n)and that the various components satisfy all conditions stated in the veri�ca-tion procedure. (In particular, the sequence (v00;0; v00;1; �00); :::; (v0n�1;0; v0n�1;1; �0n�1)is the authentication path (for v0n�1;�0n) output by A0.) Let i be maximalso that for some �0; :::; �i�1 (which may but need not equal �00; :::; �0i�1)the sequence (v00;0; v00;1; �0); :::; (v0i�1;0; v0i�1;1; �i�1) is a pre�x of some au-thentication path (for some v�01����0i�i+1����n) supplied to A0 by A. Note thati 2 f0; :::; ng, where i = 0 means that (v00;0; v00;1) di�ers from (v0; v1), andi = n means that the sequence ((v00;0; v00;1); :::; (v0n�1;0; v0n�1;1)) equals thesequence ((v0; v1); :::; (v�01����0n�10; v�01����0n�11)).Recall that the v0k;� s are strings included in the output of A0, and thatthe vxs are veri�cation-keys as recorded by A. In general, the sequence((v00;0; v00;1); :::; (v0i�1;0; v0i�1;1)) equals the sequence ((v0; v1); :::; (v�01 ����0i�10; v�01����0i�11)).In particular, for i � 1, it holds that v0i�1;�0i = v�01����0i , whereas for i = 0we shall only refer to v� (which is the veri�cation-key attacked by A0).In both cases, the output of A0 contains a one-time signature relative tov�01����0i , and this signature is to a string di�erent from the (possibly) onlyone to which a signature was supplied to A0 by A. Analogously to themotivating discussion above, we distinguish the cases i = n and i < n:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

532 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(a) In case i = n, the output of A0 contains the (one-time) signature �0nthat satis�es Vv�01����0n (�0; �0n) = 1. Furthermore, �0 is di�erent fromthe (possibly) only document to which Ss�01����0n was applied during theemulation of the S0-signer by A, since by our hypothesis the document�0 did not appear as a query of A0. (Recall that, by the construction ofA, instances of the one-time signature scheme associated with leavesare only applied to the queries of A0.)(b) In case i < n, the output of A0 contains the (one-time) signature �0ithat satis�es Vv�01����0i (v0i;0v0i;1; �0i) = 1. Furthermore, v0i;0v0i;1 is di�er-ent from v�01����0i0 v�01 ����0i0, which is the (possibly) only string to whichSs�01����0i was applied during the emulation of the S0-signer by A, wherethe last assertion is due to the maximality of i (and the constructionof A).Thus, in both cases, A obtains from A0 a valid (one-time) signature rela-tive to the (one-time) instance associated with the node labeled �01 � � ��0i.Furthermore, in both cases, this (one-time) signature is to a string thatdid not appear in the record of A. The question is whether the instanceassociated with the node labeled �01 � � ��0i is the jth instance, for which Aset v = v�01����0i . In case the answer is yes, A obtains forgery with respectto the (one-time) veri�cation-key v (which it attacks).In view of the above discussion, A acts as follows. It determines i as in thediscussion, and checks whether v = v�01����0i (almost equivalently, whetherthe jth instance is the one associated with the node labeled �01 � � ��0i). Incase i = n, machine A outputs the string-signature pair (�0; �0n), otherwise(i.e., i < n) it outputs the string-signature pair (v0i;0v0i;1; �0i).This completes the (admittingly long) description of adversary A. We repeatagain some obvious observations regarding this construction. Firstly, A makesat most one query to its (one-time) signature oracle Ss. Secondly, assuming thatA0 is probabilistic polynomial-time, so is A. Thus, all that remains is to relatethe success probability of A (when attacking a random instance of (G;S; V)) tothe success probability of A0 (when attacking a random instance of (G0; S0; V 0)).As usual the main observation is that the view of A0, during the emulation (ofthe memory-dependent signing process) by A, is identically distributed to itsview in an actual attack on (G0; S0; V 0). Furthermore, this holds conditionedon any possible �xed value of j (selected in the �rst step of A). It followsthat if A0 succeeds to forge signatures in an actual attack on (G0; S0; V 0) withprobability "0(n) then A succeeds to forge signatures with respect to (G;S; V)with probability at least "0(n)(2n+1)�t , where the (2n + 1) � t factor is due to theprobability that the choice of j is a good one (i.e., so that the jth instance isthe one associated with the node labeled �01 � � ��0i, where �01 � � ��0n and i are asde�ned in Step 4).We conclude that if (G0; S0; V 0) can be broken by a probabilistic polynomial-time chosen message attack with non-negligible probability then (G;S; V) can

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 533be broken by a probabilistic polynomial-time single-message attack with non-negligible probability, in contradiction to the proposition's hypothesis. Theproposition follows.6.4.2.3 The actual constructionIn this section, we remove the memory-dependency of Construction 6.4.14, andobtain an ordinary (rather than memory-dependent) signature scheme. Towardsthis end, we use pseudorandom functions (as de�ned in De�nition 3.6.4). Thebasic idea is that the record maintained in Construction 6.4.14 can be determined(on-the-y) by an application of a pseudorandom function to certain strings. Forexample, instead of generating and storing an instance of a (one-time) signaturescheme for each node that we encounter, we can determine the randomness forthe key-generation algorithm as a function of the label of that node. Thus,there is no need to store the key-pair generated, since if we ever need it againthen re-generating it (in the very same way) will yield exactly the same result.The same idea applies also to the generation of (one-time) signatures. In fact,the construction is simpli�ed, since we need not check whether or not we aregenerating an object for the �rst time.For simplicity, let us assume that, on security parameter n, both the key-generation and signing algorithms (of the one-time signature scheme (G;S; V))use exactly n internal coin tosses. (This assumption can be justi�ed by us-ing pseudorandom generators, which exist anyhow under the assumptions usedhere.) For r 2 f0; 1gn, we denote by G(1n; r) the output of G on input 1n andinternal coin-tosses r. Likewise, for r 2 f0; 1gn, we denote by Ss(�; r) the outputof S, on input a signing-key s and a document �, when using internal coin-tossesr. For simplicity, we shall be actually using generalized pseudorandom functionsas in De�nition 3.6.12 (rather than pseudorandom functions as de�ned in De�ni-tion 3.6.4).20 Furthermore, for simplicity, we shall consider applications of suchpseudorandom functions to sequences of characters containing f0; 1g as well asa few additional special characters.Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):Let (G;S; V) be a one-time signature scheme, and ffr : f0; 1g� ! f0; 1gjrjgr2f0;1g�be a generalized pseudorandom function ensemble as in De�nition 3.6.12. Con-sider the following signature scheme, (G0; S0; V 0), which refers to a full binarytree of depth n as in Construction 6.4.14.key-generation algorithm G0: On input 1n, algorithm G0 obtains (s; v) G(1n)and selects uniformly r 2 f0; 1gn. Algorithm G0 outputs the pair ((r; s); v),where (r; s) is the signing-key and v is the veri�cation-key.2120 We shall make comments regarding the minor changes required in order to use ordinarypseudorandom functions. The �rst comment is that we shall consider an encoding of stringsof length up-to n + 2 by strings of length n + 3 (e.g., for i � n + 2, the string x 2 f0; 1gi isencoded by x10n+2�i).21 In case we use ordinary pseudorandom functions, rather than generalized ones, we select

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

534 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONsigning algorithm S0: On input a signing-key (r; s) and a document �, the algo-rithm proceeds as follows.1. It selects uniformly �1 � � ��n 2 f0; 1gn.(Algorithm S0 will use the leaf labeled �1 � � ��n 2 f0; 1gn to sign thecurrent document. Indeed, with exponentially-vanishing probabilitythe same leaf may be used to sign two di�erent documents, and thiswill lead to forgery (but only with negligible probability).)(Alternatively, to obtain a deterministic signing algorithm, one mayset �1 � � ��n fr(select-leaf; �), where select-leaf is a specialcharacter.)222. Next, for every i = 1; :::; n and every � 2 f0; 1g, the algorithm invokesG and sets(s�1����i�1� ; v�1����i�1�) G(1n; fr(key-gen; �1 � � ��i�1�))where key-gen is a special character.233. For every i = 1; :::; n, the algorithm invokes Ss�1����i�1 and setsauth�1����i�1 def= �v�1����i�10 ; v�1����i�11 ;Ss�1����i�1 (v�1 ����i�10 v�1����i�11; fr(sign; �1 � � ��i�1))�where sign is a special character.244. Finally, the algorithm invokes Ss�1����n and outputs25(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�; fr(sign; �1 � � ��n)))veri�cation algorithm V 0: On input a veri�cation-key v, a document �, and analleged signature � algorithm V 0 behaves exactly as in Construction 6.4.14.Speci�cally, assuming that � has the form(�1 � � ��n; (v0;0; v0;1; �0); (v1;0; v1;1; �1); :::; (vn�1;0; vn�1;1; �n�1); �n)algorithm V 0 accepts if and only if the following three conditions hold:r uniformly in f0; 1gn+3 so that fr : f0; 1gn+3 ! f0; 1gn+3. Actually, we shall be using thefunction fr : f0; 1gn+3 ! f0; 1gn derived from the above by dropping the last 3 bits of thefunction value.22 In case we use ordinary pseudorandom functions, rather than generalized ones, this alter-native can be (directly) implemented only if it is guaranteed that j�j � n. In such a case, weapply the fr to the (n+ 3)-bit encoding of 00�.23 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 10�1 � � ��i�1� .24 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 11�1 � � ��i�1.25 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 11�1 � � ��n.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 535� Vv(v0;0v0;1; �0) = 1.� For i = 1; :::; n� 1, it holds that Vvi�1;�i (vi;0vi;1; �i) = 1.� Vvn�1;�n (�; �n) = 1.Proposition 6.4.17 If (G;S; V) is a secure one-time signature scheme andffr : f0; 1g� ! f0; 1gjrjgr2f0;1g� is a generalized pseudorandom function ensem-ble then Construction 6.4.16 constitutes a secure (general) signature scheme.Proof: Following the general methodology suggested in Section 3.6.3, we con-sider an ideal version of Construction 6.4.16 in which a truly random functionis used (rather than a pseudorandom one). The ideal version is almost identicalto Construction 6.4.14, with the only di�erence being the way in which �1 � � ��nis selected. Speci�cally, applying a random function to determine (one-time)key-pairs and (one-time) signatures is equivalent to generating these keys andsignatures at random (on-the-y) and re-using the stored values whenever nec-essary. Regarding the way in which �1 � � ��n is selected, observe that the proofof Proposition 6.4.15 is oblivious of this way, except for the assumption that thesame leaf is never used to sign two di�erent documents. However, the probabil-ity that the same leaf is used twice by the (memoryless) signing algorithm, whenserving polynomially-many signing requests, is exponentially-vanishing and thuscan be ignored in our analysis. We conclude that the ideal scheme (in which atruly random function is used instead of fr) is secure. It follows that also theactual signature scheme (as in Construction 6.4.16) is secure, or else one cane�ciently distinguish a pseudorandom function from a truly random one (whichis impossible). Details follow.Assume towards the contradiction that there exists a probabilistic polynomial-time adversary A0 that succeeds to forge signatures with respect to (G0; S0; V 0)with non-negligible probability, but succeeds only with negligible probabilitywhen attacking the ideal scheme. We construct a distinguisher D that on input1n and oracle access to f : f0; 1g� ! f0; 1gn behaves as follows. Machine Dgenerates ((r0; s); v) G0(1n), and invokes A0 on input v. Machine D answersthe queries of A0 by running the signing process, using the signing-key (r0; s),with the exception that it replaces the values fr0(x) by f(x). That is, wheneverthe signing process calls for the computation of the value of the function fr0 onsome string x, machine D queries its oracle (i.e., f) on the string x, and usesthe respond f(x) instead of fr0(x). When A0 outputs an alleged signature to anew document, machineM evaluates whether or not the signature is valid (withrespect to Vv) and output 1 if and only if A0 has indeed succeeded (i.e., thesignature is valid). Observe that if D is given oracle access to a truly randomfunction then the emulated A0 attacks the ideal scheme, whereas if D is givenoracle access to a pseudorandom function fr then the emulated A0 attacks thereal scheme. It follows that D distinguishes the two cases, in contradiction tothe pseudorandomness of the ensemble ffrg.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

536 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION6.4.2.4 Conclusions and commentsTheorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that theexistence of secure one-time signature schemes implies the existence of one-way functions (see Exercise 11), which in turn imply the existence of (general-ized) pseudorandom functions. Recall that combining Theorem 6.4.9 and Corol-lary 6.4.8, we obtain Corollary 6.4.10 that states that the existence of collision-free hashing collections implies the existence of secure signature schemes.We comment that Constructions 6.4.14 and 6.4.16 can be generalized asfollows. Rather than using a depth n full binary tree, one can use any tree thathas a super-polynomial (in n) number of leaves, provided that one can enumeratethe leaves (resp., uniformly select a leaf), and generate the path from the rootto a given leaf. We consider a few possibilities:� For any d : N!N bounded by a polynomial in n (e.g., d � 2 or d(n) = nare indeed \extreme" cases), we may consider a full d(n)-ary tree of depthe(n) so that d(n)e(n) is greater than any polynomial in n. The choice ofparameters in Constructions 6.4.14 and 6.4.16 (i.e., d � 2 and e(n) = n) isprobably the simplest one as well as the most e�cient one (from a genericperspective).Natural complexity measures for a signature scheme include the length ofsignatures and the signing and veri�cation times. In a generalized con-struction, the length of the signatures is linear in d(n) � e(n), and the num-ber of applications of the underlying one-time signature scheme (per eachgeneral signature) is linear in e(n), where in internal nodes the one-timesignature scheme is applied to string of length linear in d(n). Assumingthat the complexity of one-time signatures is linear in the document length,all complexity measures are linear in d(n) � e(n), and so d � 2 is the bestgeneric choice. However, the above assumption may be wrong when somespeci�c one-time signatures are used. For example, the complexity of pro-ducing a signature to an `-bit long string in a one-time signature schememay be of the form p(n) + p0(n) � `, where p0(n)� p(n). In such (special)cases, one may prefer to use larger d : N!N (see Section 6.6.5).� For the memory-dependent construction, it may be preferable to use un-balanced trees (i.e., having leaves at various levels). The advantage is thatif one utilizes �rst the leaves closer to the root then one can obtain a savingon the cost of signing the �rst documents.For example, consider using a ternary tree of super-logarithmic depth(i.e., d � 3 and e(n) = !(logn)) in which each internal node of leveli 2 f0; 1; :::; e(n) � 2g has a two children that are internal nodes and asingle child that is a leaf (and the internal nodes of level e(n)�1 have onlyleaves as children). Thus, for i � 1, there are 3i�1 leaves at level i. If weuse all leaves of level i before using any leave of level i+1 then the lengthof the jth signature in this scheme is linear in log3 j (and so is the numberof applications of the underlying one-time signature scheme).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 537In actual applications, one should observe that in variants of Construction 6.4.14the size of the tree determines the total number of documents that can be signed,whereas in variants of Construction 6.4.16 the tree size has even a more dras-tic e�ect on the number of documents that can be signed.26 In some casesa hybrid of Constructions 6.4.14 and 6.4.16 may be preferable: We refer to amemory-dependent scheme in which leaves are assigned as in Construction 6.4.14(i.e., according to a counter), but the rest of the operation is done as in Con-struction 6.4.16 (i.e., the one-time instances are re-generated on-the-y, ratherthan being generated and recorded). In some applications, the introduction of adocument-counter may be tolerated, and the gain is the ability to use a smallertree (i.e., of size merely greater than the total number of documents that shouldbe ever signed).More generally, we wish to stress that each of the following ingredients of theabove constructions, is useful in a variety of related and unrelated settings. Werefer speci�cally to the refreshing paradigm, the authentication tree construction,and the notion (and constructions) of one-time signatures. For example:� It is common practice to authenticate messages sent during a \commu-nication session" via a session-key that is typically authenticated by amaster-key. One of the reasons for this practice is the prevention of achosen message attack on the (more valuable) master-key. (Other reasonsinclude allowing the use of a faster alas less secure authentication schemefor the actual communication, introducing independence between sessions,etc.)� Observe the analogy between the tree-hashing (of Construction 6.2.13)and the authentication tree (of Construction 6.4.14). Despite the manydi�erences, in both cases, the value of internal nodes essentially determinesthe values that may be claimed for their children.� Recall the application of one-time signatures in the construction of CCA-secure public-key encryption schemes (cf. proof of Theorem 5.4.30).6.4.3 * Universal One-Way Hash Functions and using themSo far, we have established that the existence of collision-free hashing collectionsimplies the existence of secure signature schemes (cf. Corollary 6.4.10). We seekto weaken the assumption under which secure signature schemes can be con-structed, and bear in mind that the existence of one-way functions is certainly anecessary condition (cf., for example, Exercise 11). In view of Theorem 6.4.9, wemay focus on constructing secure one-time signature schemes. Furthermore, re-call that secure length-restricted one-time signature schemes can be constructed26 In particular, the number of documents that can be signed should de�nitely be smallerthan the square root of the size of the tree (or else two documents are likely to be assigned thesame leaf). Furthermore, we cannot use a small tree (e.g., of size 1000) even if we know thatthe total number of documents that will ever be signed is small (e.g., 10), since otherwise theprobability that two documents are assigned the same leaf is too big (e.g., 1=20).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

538 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONbased on any one-way function (cf. Corollary 6.4.6). Thus, the only bottleneckwe face (with respect to the assumption used) is Proposition 6.4.7, which refersto Construction 6.2.6 and utilizes collision-free hashing. Our aim in this section,is to replace this component in the construction. We use a variant of Construc-tion 6.2.6 in which, instead of using collision-free hashing, we use a seeminglyweaker notion called Universal One-Way Hash Functions.6.4.3.1 De�nitionA collection of universal one-way hash functions is de�ned analogously to acollection of collision-free hash functions. The only di�erence is that the hard-ness (to form collisions) requirement is relaxed. Recall that for a collection ofcollision-free hash functions it was required that given the function's descriptionit is hard to form an arbitrary collision under the function. For a collectionof universal one-way hash functions we only require that given the function'sdescription h and a preimage x it is hard to �nd an x0 6= x so that h(x0) = h(x).We refer to this requirement as to hardness to form designated collisions.Our formulation of the hardness to form designated collisions is actuallyseemingly stronger. Rather than being supplied with a (random) preimage x,the collision-forming algorithm is allowed to select x by itself, but must do sobefore being presented with the function's description. That it, the attack of thecollision-forming algorithm proceeds in three stages: �rst the algorithm selects apreimage x, next it is given a description of a randomly selected function h, and�nally it is required to output x0 6= x such that h(x0) = h(x). We stress that thethird stage in the attack is also given the random choices made while producingthe preimage in the �rst stage. This yields the following de�nition, where the�rst stage is captured by a deterministic polynomial-time algorithm A0 (whichmaps a sequence of coin tosses, denoted Uq(n), to a preimage of the function)and the third stage is captured by algorithm A (which is given the very sameUq(n) as well as the function's description).De�nition 6.4.18 (universal one-way hash functions { UOWHF): Let ` : N !N . A collection of functions fhs : f0; 1g� ! f0; 1g`(jsj)gs2f0;1g� is called uni-versal one-way hashing (UOWHF) if there exists a probabilistic polynomial-timealgorithm I so that the following holds1. (admissible indexing { technical):27 For some polynomial p, all su�cientlylarge n's and every s in the range of I(1n) it holds that n � p(jsj). Fur-thermore, n can be computed in polynomial-time from s.2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x, returns hs(x).3. (hard to form designated collisions): For every polynomial q, every deter-ministic polynomial-time algorithm A0, every probabilistic polynomial-time27 This condition is made merely to avoid annoying technicalities. Note that jsj = poly(n)holds by de�nition of I.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 539algorithm A, every polynomial p and all su�ciently large n'sPr � hI(1n)(A(I(1n); Uq(n))) = hI(1n)(A0(Uq(n)))and A(I(1n); Uq(n)) 6= A0(Uq(n)) � < 1p(n) (6.7)where the probability is taken over Uq(n) and the internal coin tosses ofalgorithms I and A.The function ` is called the range speci�er of the collection.We stress that the hardness to form designated collisions condition refers to thefollowing three-stage process: �rst, using a uniformly distributed r 2 f0; 1gq(n),the (initial) adversary generates a preimage x = A0(r); next, a function h isselected; and, �nally, the (residual) adversaryA is given h (as well as r used in the�rst stage), and tries to �nd a preimage x0 6= x such that h(x0) = h(x). Indeed,Eq. (6.7) refers to the probability that x0 def= A(h; r) 6= x and yet h(x0) = h(x).Note that the range speci�er must be super-logarithmic (or else, given s andx Un, one is too likely to �nd an x0 6= x so that hs(x) = hs(x0), by uniformlyselecting x0 in f0; 1gn). Also note that any UOWHF collection yields a collectionof one-way functions (see Exercise 15). Finally, note that any collision-freehashing is universally one-way hashing, but the converse is false (see Exercise 16).Furthermore, it is not known whether collision-free hashing can be constructedbased on any one-way functions (in contrast to Theorem 6.4.29 below).6.4.3.2 ConstructionsWe construct UOWHF collections in several steps, starting with a related butrestricted notion, and relaxing the restriction gradually (until we reach the un-restricted notion of UOWHF collections). The abovementioned restriction refersto the length of the arguments to the function. Most importantly, the hardness(to form designated collisions) requirement will refer only to argument of thislength. That is, we refer to the following technical de�nition.De�nition 6.4.19 ((d; r)-UOWHFs): Let d; r : N ! N . A collection of func-tions fhs : f0; 1gd(jsj) ! f0; 1gr(jsj)gs2f0;1g� is called (d; r)-UOWHF if thereexists a probabilistic polynomial-time algorithm I so that the following holds1. For all su�ciently large n's and every s in the range of I(1n) it holds thatjsj = n.282. There exists a polynomial-time algorithm that given s and x 2 f0; 1gd(jsj),returns hs(x).28 Here we chose to make a more stringent condition, requiring that jsj = n rather thann � poly(jsj). In fact, one can easily enforce this more stringent condition by modifying I intoI0 so that I0(1l(n)) = I(1n) for a suitable function l : N!N satisfying l(n) � poly(n) andn � poly(l(n)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

540 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION3. For every polynomial q, every deterministic polynomial-time algorithm A0mapping q(n)-bit long strings to d(jsj)-bit long strings, every probabilisticpolynomial-time algorithm A, every polynomial p and all su�ciently largen's Eq. (6.7) holds.O� course, we care only of (d; r)-UOWHF for functions d; r : N ! N satisfyingd(n) > r(n). (The case d(n) � r(n) is trivial since collisions can be avoidedaltogether; say by the identity map.) The \minimal" non-trivial case is whend(n) = r(n)+1. Indeed, this is our starting point. Furthermore, the constructionof such a minimal (d; d� 1)-UOWHF (undertaken in the �rst step) is the mostinteresting step to be taken on our entire way towards the construction of full-edged UOWHF.Step I: constructing (d; d�1)-UOWHFs. We show how to construct length-restricted UOWHFs that shrink their input by a single bit. Our constructioncan be carried out using any one-way permutation. In addition, we use a familyof hashing functions, Sn�1n , as de�ned in Section 3.5.1.1. Recall that a functionselected uniformly in Sn�1n maps f0; 1gn to f0; 1gn�1 in a pairwise independentmanner, that the functions in Sn�1n are easy to evaluate, and that for somepolynomial p it holds that log2 jSn�1n j = p(n).Construction 6.4.20 (a (d; d�1)-UOWHF): Let f : f0; 1g� ! f0; 1g� be a 1-1and length preserving function, and let Sn�1n be a family of hashing functionssuch that log2 jSn�1n j = p(n), for some polynomial p. (Speci�cally, suppose thatlog2 jSn�1n j 2 f3n�2; 2ng, as in Exercises 22.2 and 23 of Chapter 3.) Then, forevery s 2 Sn�1n � f0; 1gp(n) and every x 2 f0; 1gn, we de�ne h0s(x) def= hs(f(x)).In case jsj 62 fp(n) : n 2 Ng, we de�ne h0s def= h0s0 where s0 is the longest pre�xof s satisfying js0j 2 fp(n) : n 2 Ng. We refer to an index selection algorithmthat, on input 1m, uniformly selects s 2 f0; 1gm.That is, h0s : f0; 1gd(jsj) ! f0; 1gd(jsj)�1, where d(m) is the largest integer nsatisfying p(n) � m. Note that d is monotonically non-decreasing, and that for1-1 p's the corresponding d is onto (i.e., d(p(n)) = n for every n).The analysis presented below uses, in an essential way, an additional prop-erty of the above-mentioned families of hashing functions; speci�cally, we assumethat give two preimage{image pairs it is easy to uniformly generate a hashingfunction (in the family) that is consistent with these two mapping conditions.Furthermore, to facilitate the analysis we use a speci�c family of hashing func-tions, presented in Exercise 23 of Chapter 3: functions in Sn�1n are described bya pair of elements of the �nite �eld GF(2n) so that the pair (a; b) describes thefunction ha;b that maps x 2 GF(2n) to the (n� 1)-bit pre�x of the n-bit repre-sentation of ax + b, where the arithmetics is of the �eld GF(2n). This speci�cfamily satis�es all the additional properties required in the next proposition (seeExercise 20).Proposition 6.4.21 Suppose that f is a one-way permutation, and that log2 jSn�1n j =2n. Furthermore, suppose that Sn�1n satis�es the following two conditions

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 541C1 All but a negligible fraction of the functions in Sn�1n are 2-to-1.C2 There exists a probabilistic polynomial-time algorithm that given y1; y2 2f0; 1gn and z1; z2 2 f0; 1gn�1, outputs a uniformly distributed element offs 2 Sn�1n : hs(yi) = zi 8i 2 f1; 2gg.Then fh0sgs2f0;1g� as in Construction 6.4.20 is a (d; d�1)-UOWHF, for d(m) =bm=2c.Proof Sketch: Intuitively, forming designated collisions under h0s � hs�f yieldsability to invert f , because the collision is due to hs, which may be selected suchthat hs(y) = hs(f(x0)) for any given y and x0. We stress that typically there areonly two preimages of h0s(x0) under h0s, one being x0 itself (which is given to thecollision-�nder) and the other being f�1(y) such that hs(y) = h0s(x0). Thus, ifwe wish to invert f on a random image y, then we may invoke a collision-�nder,which �rst outputs some x0, supply it with a random s satisfying hs(y) = h0s(x0),and hope that it forms a collision (i.e., �nds a di�erent preimage x satisfyingh0s(x) = h0s(x0)). Indeed, the di�erent preimage must be f�1(y), which meansthat whenever the collision-�nder succeed we also succeed (i.e., invert f on y).The actual proof is by a reducibility argument. Suppose that we are givena probabilistic polynomial-time algorithm A0 that forms designated collisionsunder fh0sg, with respect to preimages produced by a deterministic polynomial-time algorithm A00, which maps p(n)-bit strings to n-bit strings. Then, weconstruct an algorithm A that inverts f . On input y = f(x), where n = jyj = jxj,algorithm A proceeds as follows:(1) Select r0 uniformly in f0; 1gp(n), and compute x0 = A00(r0) and y0 = f(x0).(2) Select s uniformly in fs 2 Sn�1n : hs(y0) = hs(y)g.(Recall that y is the input to A, and y0 is generated by A in Step (1).)(3) Invoke A0 on input (s; r0), and output whatever A0 does.By Condition C2, Step (2) can be implemented in probabilistic polynomial-time.Turning to the analysis of algorithm A, we consider the behavior of A oninput y = f(x) for a uniformly distributed x 2 f0; 1gn (which implies that yis uniformly distributed over f0; 1gn). We �rst observe that for every �xed r0selected in Step (1), if y is uniformly distributed in f0; 1gn then s as determinedin Step (2) is uniformly distributed in Sn�1n . Using Condition C1, it follows thatthe probability that hs is not 2-to-1 is negligible. By the construction of A, theprobability that f(x0) = y is also negligible (but we could have taken advantageof this case too, by augmenting Step (1) so that if y0 = y then A halts withoutput x0). We now claim that, in case f(x0) 6= y and hs is 2-to-1, if A0 returnsx00 such that x00 6= x0 and h0s(x00) = h0s(x0) then f(x00) = y.Proving the Claim: By the de�nitions of h0s and A (i.e., its Step (2)), wehave h0s(x) = hs(f(x)) = hs(y) = hs(y0) = hs(f(x0)) = h0s(x0), whichequals h0s(x00) by one of the claim's hypotheses. Thus, x0; x00 and x are allpreimages of h0s(x) = hs(y) under h0s, but they are not necessarily distinct.By other two hypotheses x0 6= x00 and h0s = hs � f is 2-to-1 (since hs is2-to-1 and f is 1-to-1). Thus, x 2 fx0; x00g. Using the last of the claim's

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

542 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONhypotheses (i.e., y = f(x) 6= f(x0)) and the hypothesis that f is 1-1, itfollows that x 6= x0, which in turn implies that x = x00 and y = f(x00).We conclude that if A0 forms designated collisions with probability "0(n)then A inverts f with probability "0(n)� �(n), where � is a negligible function(accounting for the negligible probability that hs is not 2-to-1). The propositionfollows. 2Step II: constructing (d0; d0=2)-UOWHFs. We now take the second stepon our way, and use any (d; d � 1)-UOWHF in order to construct a (d0; d0=2)-UOWHF. That is, we construct length-restricted UOWHFs that shrink theirinput by a factor of 2. The construction is obtained by composing a sequenceof (di�erent) (d; d � 1)-UOWHFs. For simplicity, we assume that the functiond : N!N is onto and monotonically non-decreasing. In such a case we denoteby d�1(m) the smallest natural number n satisfying d(n) = m.Construction 6.4.22 (a (d0; d0=2)-UOWHF): Let fhs : f0; 1gd(jsj) ! f0; 1gd(jsj)�1gs2f0;1g�,where d : N!N is onto and non-decreasing. Then, for every s1; :::; sbd(n)=2c,where each si 2 f0; 1gd�1(d(n)+1�i), and every x 2 f0; 1gd(n), we de�neh0s1;:::;sbd(n)=2c(x) def= hsbd(n)=2c(� � �hs2(hs1(x)) � � �)That is, we let x0 def= x, and xi hsi(xi�1), for i = 1; :::; bd(n)=2c. (Note thatd(jsij) = d(n) + 1� i and jxij = d(n) + 1� i indeed hold.)We refer to an index selection algorithm that, on input 1m, determines thelargest integer n such that m � m0 def= Pbd(n)=2ci=1 d�1(d(n) + 1 � i), uniformlyselects s1; :::; sbd(n)=2c so that si 2 f0; 1gd�1(d(n)+1�i), and s0 2 f0; 1gm�m0, andlets h0s0;s1;:::;sbd(n)=2c def= h0s1;:::;sbd(n)=2c .That is, m = jsj and h0s : f0; 1gd(n) ! f0; 1gbd(n)=2c, where n is largest so thatm �Pbd(n)=2ci=1 d�1(d(n) + 1� i). Thus, d0(m) = d(n), where n is as above; thatis, we have h0s : f0; 1gd0(jsj) ! f0; 1gbd0(jsj)=2c, with d0(jsj) = d(n). Note that,for d(n) =
(n) (as in Construction 6.4.20), it holds that d0(O(n2)) � d(n) andd0(m) =
(pm) follows. More generally, if for some polynomial p it holds thatp(d(n)) � n (for all n's) then for some polynomial p0 it holds that p0(d0(m)) � m(for all m's), since d0(p(n) � d(n)) � d(n). We call such a function su�ciently-growing; that is, d : N!N is su�ciently-growing if there exists a polynomial pso that for every n it holds that p(d(n)) � n. (E.g., for every �xed "; "0 > 0, thefunction d(n) = "0n" is su�ciently-growing.)Proposition 6.4.23 Suppose that fhsgs2f0;1g� is a (d; d � 1)-UOWHF, whered : N!N is onto, non-decreasing and su�ciently-growing. Then, for somesu�ciently-growing function d0 : N!N , Construction 6.4.22 is a (d0; bd0=2c)-UOWHF.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 543Proof Sketch: Intuitively, a designated collision under h0s1;:::;sd=2 yields a desig-nated collision under one of the hsi 's. That is, let x0 def= x, and xi hsi(xi�1),for i = 1; :::; bd(n)=2c. Then if given x and s = (s1; :::; sd=2), one can �nd anx0 6= x so that h0s(x) = h0s(x0), then there exists an i so that xi�1 6= x0i�1 andhsi(xi�1) = hsi(x0i�1), where the x0i's are de�ned analogously to the xi's. Thus,we obtain a designated collision under hsi .The actual proof uses the hypothesis that it is hard to form designated col-lisions when one is also given the coins used in the generation of the preimage(and not merely the preimage itself). Speci�cally, we construct an algorithmthat forms designated collision under one of the hsi 's, when given not only xi�1but rather also x0 (which yields xi�1 as above). The following details are quitetedious, and merely provide an implementation of the above idea.As stated, the proof is by a reducibility argument. We are given a prob-abilistic polynomial-time algorithm A0 that forms designated collisions underfh0sg, with respect to preimages produced by a deterministic polynomial-timealgorithm A00 that maps p0(n)-bit strings to n-bit strings. We construct al-gorithms A0 and A such that A forms designated collisions under fhsg withrespect to preimages produced by algorithm A0, which maps p(n)-bit stringsto n-bit strings, for a suitable polynomial p. Speci�cally, p : N!N is 1-1 andp(n) � p0(d�1(2d(n))) + n+ n � d�1(2d(n)).We start with the description of A0; that is, the algorithm that generatespreimages of fhsg. Intuitively, A0 selects a random j, uses A00 to obtain apreimage x0 of fh0sg, generates random s0; :::; sj�1, and outputs a preimage xj�1of fhsjg, computed by xi = hsi(xi�1) for i = 1; :::; j � 1. (Algorithm A will begiven xj�1 and a random hsj�1 and will try to form a collision with xj�1 underhsj�1 .) Speci�cally, on input r 2 f0; 1gp(n), algorithm A0 proceeds as follows,where q(n) def= d�1(2d(n)).Write r = r1r2r3 so that jr1j = n and jr3j = p0(q(n)).(1) Using r1, determine m in fn+ 1; :::; n � q(n)g and j 2 f1; :::; q(n)g so thatboth m and j are almost uniformly distributed in the corresponding sets.(2) Compute the largest integer n0 so that m �Pbd(n0)=2ci=1 d�1(d(n0) + 1� i).(3) If d�1(d(n0) + 1� j) 6= n then output the d(n)-bit long su�x of r3.(Comment: the output in this case is immaterial to our proof.)(4) Otherwise (i.e., n = d�1(d(n0) + 1� j), which is the case we care about), do:(4.1) Let s0s1 � � � sj�1 be a pre�x of r2 so thatjs0j = m�Pbd(n0)=2ci=1 d�1(d(n0) + 1� i),and jsij = d�1(d(n0) + 1� i), for i = 1; :::; j � 1.(4.2) Let x0 A00(r0), where r0 is the p0(d�1(d(n0)))-bit long su�x of r3.(4.3) For i = 1; :::; j � 1, compute xi hsi(xi�1).Output xj�1.As stated above, we only care about the case in which Step (4) is applied. Thiscase occurs with noticeable probability, and the description of the followingalgorithm A refers to it. Algorithm A will be given xj�1 as produced above

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

544 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(along with (or actually only) the coins used in its generation) as well as arandom hsj�1 and will try to form a collision with xj�1 under hsj�1 . On inputs 2 f0; 1gn and r 2 f0; 1gp(n), algorithm A proceeds as follows.(1{2) Using r, determine m, j and n0 exactly as done by A0.(3) If d�1(d(n0) + 1� j) 6= n then abort.(4) Otherwise (i.e., n = d�1(d(n0) + 1� j)), do:(4.1) Determine s0; s1; :::; sj�1 and r0 exactly as A0 does in Step (4).(4.2) Uniformly select sj+1; :::; sbd(n0)=2c so that si 2 f0; 1gd�1(d(n0)+1�i),and set s0 = s0; s1; :::; sj�1; s; sj+1; :::; sbd(n0)=2c.(4.3) Invoke A0 on input (s0; r0), and output whatever A0 does.Clearly, if algorithmsA0 and A00 run in polynomial-time then so do A and A0. Wenow lower bound the probability that A succeeds to form designated collisionsunder fhsg, with respect to preimages produced by A0. We start from thecontradiction hypothesis by which the corresponding probability for A0 (w.r.tA00) is non-negligible.Let use denote by "0(m) the success probability of A0 on uniformly distributedinput (s0; r0) 2 f0; 1gm � f0; 1gp0(m). Let n0 be the largest integer so that m �Pbd(n0)=2ci=1 d�1(d(n0) + 1� i). Then, there exists a j 2 f1; :::; d(n0)g so that withprobability at least "0(m)=d0(n0) on input (s0; r0), where s0 = s0; s1; :::; sbd(n0)=2cas above, A0 outputs an x0 6= x def= A00(r0) so that hsj�1(� � � (hs1(x0) � � �) 6=hsj�1 (� � � (hs1(x0) � � �) and hsj (� � � (hs1(x0) � � �) = hsj (� � � (hs1(x0) � � �). Fixing thism, j and n0, let n = d�1(d(n0) + 1 � j), consider what happens when A isinvoked on uniformly distributed (s; r) 2 f0; 1gn � f0; 1gp(n). With probabil-ity at least 1=m2 over the possible r's, the values of m and j are determinedto equal the above. Conditioned on this case, A0 is invoked on uniformly dis-tributed input (s0; r0) 2 f0; 1gm�f0; 1gp0(m), and so a collision at the jth hashingfunction occurs with probability at least "0(m)=d0(n0). Note that m = poly(n)and d0(n0) = poly(n). This implies that A succeeds with probability at least"(n) def= "0(m)m2�d0(n0) = "0(poly(n))poly(n) , with respect to preimages produced by A0. Thus,if "0 is non-negligible then so is ", and the proposition follows. 2Step III: Constructing (length-unrestricted) quasi-UOWHFs that shrinktheir input by a factor of two. The third step on our way consists of usingany (d; d=2)-UOWHF in order to construct \quasi UOWHFs" that are applicableto any input length but shrink each input to half its length (rather than to a �xedlength that only depends on the function description). The resulting constructdoes not �t De�nition 6.4.19, since the function's output length depends on thefunction's input length, but the function can be applied to any input length(rather than only to a single length determined by the function's description).Yet, the resulting construct yields a (d0; d0=2)-UOWHF for any polynomially-bounded function d0 (e.g., d0(n) = n2), whereas in Construction 6.4.22 the func-tion d0 is �xed and satis�es d0(n) � n. The construction itself amounts toparsing the input into blocks and applying the same (d; d=2)-UOWHF to eachblock.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 545Construction 6.4.24 (a (d0; d0=2)-UOWHF for any d0): Let fhs : f0; 1gd(jsj)!f0; 1gbd(jsj)=2cgs2f0;1g� , where d : N!N is onto and non-decreasing. Then, forevery s 2 f0; 1gn and every x 2 f0; 1g�, we de�neh0s(x) def= hs(x1) � � �hs(xt10d(n)�jxtj�1)where x = x1 � � �xt, 0 � jxtj < d(n) and jxij = d(n) for i = 1; :::; t � 1. Theindex selection algorithm of fh0sg is identical to the one of fhsg.Clearly, Construction 6.4.24 satis�es Conditions 1 and 2 of De�nition 6.4.18,provided that fhsg satis�es the corresponding conditions of De�nition 6.4.19.We thus focus of the hardness to form designated collisions property.Proposition 6.4.25 Suppose that fhsgs2f0;1g� is a (d; d=2)-UOWHF, whered : N!N is onto, non-decreasing and su�ciently-growing. Then Construc-tion 6.4.22 satis�es Condition 3 of De�nition 6.4.18.Proof Sketch: Intuitively, a designated collision under h0s yields a designatedcollision under hs. That is, consider the parsing of each string into blocks oflength d(n), as in the above construction. Then if given x = x1 � � �xt and s, onecan �nd an x0 = x01 � � �x0t0 6= x so that h0s(x) = h0s(x0), then t0 = t and thereexists an i such that xi 6= x0i and hs(xi) = hs(x0i).The actual proof is by a reducibility argument. Given a probabilistic polynomial-time algorithm A0 that forms designated collisions under fh0sg, with respect topreimages produced by a deterministic polynomial-time algorithm A00, we con-struct algorithms A0 and A such that A forms designated collisions under fhsgwith respect to preimages produced by algorithm A0. Speci�cally, algorithmA0 invokes A00, and uses extra randomness (supplied in its input) to uniformlyselect one of the d(n)-bit long blocks in the standard parsing of the output ofA00. That is, the random-tape used by algorithm A0 has the form (r0; i), andA0 outputs the ith block in the parsing of the string A00(r0). Algorithm A isobtained analogously. That is, given s 2 f0; 1gn and coins r = (r0; i) used byA0, algorithm A invokes A0 on input s and r0, obtains the output x0, and outputsthe ith block in the standard parsing of x0.Note that whenever we have a collision under h0s (i.e., a pair x 6= x0 suchthat h0s(x) 6= h0s(x0)), we obtain at least one collision under the correspondinghs (i.e., for some i, the ith blocks of x 6= x0 di�er, and yet both are mapped byhs to the same image). Thus, if algorithm A0 succeeds (in forming designatedcollisions w.r.t fh0sg) with probability "0(n) then algorithm A succeeds (in form-ing designated collisions w.r.t fhsg) with probability at least "0(n)=t(n), wheret(n) is a bound on the running-time of A0 (which also upper-bounds the lengthof the output of A0, and so 1=t(n) is a lower bound on the probability that thecolliding strings di�er in a certain uniformly selected block). The propositionfollows. 2Step IV: Full-edged UOWHFs. The last step on our way consists of usingany quasi-UOWHFs as constructed (in Step III) above to obtain full-edged

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

546 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONUOWHFs. That is, we use quasi-UOWHFs that are applicable to any inputlength but shrink each input to half its length (rather than to a �xed length thatonly depends on the function description). The resulted construct is a UOWHF(as de�ned in De�nition 6.4.18). The construction is obtained by composinga sequence of (di�erent) quasi-UOWHFs; that is, the following construction isanalogous to Construction 6.4.22.Construction 6.4.26 (a UOWHF): Let fhs : f0; 1g� ! f0; 1g�gs2f0;1g�, sothat jhs(x)j � jxj=2, for all x's. Then, for every s1; :::; sn 2 f0; 1gn, every t 2 Nand x 2 f0; 1g2t�n, we de�neh0s1;:::;sn(x) def= hst(� � �hs2(hs1(x)) � � �)That is, we let x0 def= x, and xi hsi(xi�1), for i = 1; :::; t. Strings x oflength that is not of the form 2t � n are padded into such strings in a standardmanner. We refer to an index selection algorithm that, on input 1m, determinesn = bpmc, uniformly selects s1; :::; sn 2 f0; 1gn and s0 2 f0; 1gm�n2, and letsh0s0;s1;:::;sn def= h0s1;:::;sn.Note that h0s0;s1;:::;sn : f0; 1g� ! f0; 1gn, and that js0; s1; :::; snj = m < (n+1)2.Proposition 6.4.27 Suppose that fhsgs2f0;1g� satis�es the conditions of De�-nition 6.4.18, except that it maps arbitrary input strings to outputs having halfthe length (rather than a length determined by jsj). Then Construction 6.4.26constitutes a collection of UOWHFs.The proof of Proposition 6.4.27 is omitted because it is almost identical to theproof of Proposition 6.4.23.Conclusion: Combining the above four steps, we obtain a construction of (full-edged) UOWHFs (based on any one-way permutation). That is, combiningProposition 6.4.21, 6.4.23, 6.4.25 and 6.4.27, we obtain:Theorem 6.4.28 If one-way permutations exist then universal one-way hashfunctions exist.Note that the only barrier towards constructing UOWHF based on arbitraryone-way functions is Proposition 6.4.21, which refers to one-way permutations.Thus, if we wish to construct UOWHF based on any one-way function thenwe need to present an alternative construction of (d; d � 1)-UOWHF (i.e., analternative to Construction 6.4.20, which fails in case f is 2-to-1).29 Such aconstruction is actually known, and so the following result is known to hold (butis not proven here):29 For example, if f(�; x0) = (0; f 0(x0)), for � 2 f0; 1g, then forming designated collisionsunder Construction 6.4.20 is easy: Given (0; x0), one outputs (1; x0), and indeed a collision isformed already under f .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 547Theorem 6.4.29 Universal one-way hash functions exist if and only if one-wayfunctions exist.We stress that the di�cult direction is the one referred to above (i.e., fromone-way functions to UOWHF collections). For the much easier converse, seeExercise 15.6.4.3.3 One-time signature schemes based on UOWHFUsing universal one-way hash functions, we present an alternative construc-tion of one-time signature schemes based on length-restricted one-time signatureschemes. Speci�cally, we replace Construction 6.2.6 in which collision-free hash-ings were used by the following construction in which universal one-way hashfunctions are used instead. The di�erence between the two constructions is thathere the (description of the) hashing function is not a part of the signing andveri�cation keys, but is rather selected on the y by the signing algorithm (andappears as part of the signature). Furthermore, the description of the hashfunction is being authenticated (by the signer) together with the hash value. Itfollows that the forging adversary, which is unable to break the length-restrictedone-time signature scheme, must form a designated collision (rather than anarbitrary one). However, the latter is infeasible too (by virtue of the UOWHFcollection in use). We comment that the same (new) construction is applicableto length-restricted signature schemes (rather than to one-time ones): we stressthat, in this case, a new hashing function is selected at random each time thesigning algorithm is applied. In fact, we present the more general construction.Construction 6.4.30 (the hash and sign paradigm, revisited): Let `; `0 : N!Nsuch that `(n) = `0(n) + n. Let (G;S; V) be an `-restricted signature scheme asin De�nition 6.2.1, and fhr : f0; 1g� ! f0; 1g`0(jrj)gr2f0;1g� be a collection offunctions with an indexing algorithm I (as in De�nition 6.4.18). We constructa general signature scheme, (G0; S0; V 0), with G0 identical to G, as follows:signing with S0: On input a signing-key s 2 G01(1n) and a document � 2 f0; 1g�,algorithm S0 proceeds in two steps:1. Algorithm S0 invokes I to obtain �1 I(1n).2. Algorithm S0 invokes S to produce �2 Ss(�1; h�1(�)).Algorithm S0 outputs the signature (�1; �2).veri�cation with V 0: On input a verifying-key v 2 G02(1n), a document � 2f0; 1g�, and a alleged signature (�1; �2), algorithm V 0 invokes V , and out-puts Vv((�1; h�1(�)); �2).Recall that secure `-restricted one-time signature schemes exist for any poly-nomial `, provided that one-way function exist. Thus, the fact that Construc-tion 6.4.30 requires `(n) > n is not a problem. In applying Construction 6.4.30,one should �rst choose a family of UOWHFs fhr : f0; 1g� ! f0; 1g`0(jrj)gr2f0;1g� ,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

548 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONthen determine `(n) = `0(n)+n, and use a corresponding secure `-restricted one-time signature scheme.Let us pause to compare Construction 6.2.6 with Construction 6.4.30. Re-call that in Construction 6.2.6 the function description �1 I(1n) is produced(and �xed as part of both keys) by the key-generation algorithm. Thus, thefunction description �1 is trivially authenticated (i.e., by merely being part ofthe veri�cation-key). Consequently, in Construction 6.2.6, the S0-signature (of�) equals Ss(h�1(�)). In contrast, in Construction 6.4.30 a fresh new (functiondescription) �1 is selected per each signature, and thus �1 needs to be authen-ticated. Hence, the S0-signature equals the pair (�1; Ss(�1; h�1(�))). Since wewant to be able to use (length-restricted) one-time signatures, we let the signingalgorithm authenticate both �1 and h�1(�) via a single signature. (Alterna-tively, we could have used two instances of the signature scheme (G;S; V), onefor signing the function description �1, and the other for signing the hash valueh�1(�).)Proposition 6.4.31 Suppose that (G;S; V) is a secure `-restricted signaturescheme and that fhr : f0; 1g� ! f0; 1g`(jrj)�jrjgr2f0;1g� is a collection of UOWHFs.Then (G0; S0; V 0), as de�ned in Construction 6.4.30, is a secure (full-edged) sig-nature scheme. Furthermore, if (G;S; V) is only a secure `-restricted one-timesignature scheme then (G0; S0; V 0) is a secure one-time signature scheme.Proof Sketch: The proof follows the underlying principles of the proof ofProposition 6.2.7. That is, forgery with respect to (G0; S0; V 0) yields eitherforgery with respect to (G;S; V) or a collision under the hash function, where inthe latter case a designated collision is formed (in contradiction to the hypothesisregarding the UOWHF). For the furthermore-part, the observation underlyingthe proof of Proposition 6.4.7 still holds (i.e., the number of queries made bythe forger constructed for (G;S; V) equals the number of queries made by theforger assumed (towards the contradiction) for (G0; S0; V 0)). Details follow.Given an adversary A0 attacking the complex scheme (G0; S0; V 0), we con-struct an adversary A that attacks the `-restricted scheme, (G;S; V). The ad-versary A uses I (the indexing algorithm of the UOWHF collection) and itsoracle Ss in order to emulate the oracle S0s for A0. This is done in a straightfor-ward manner; that is, algorithm A emulates S0s by using the oracle Ss (exactlyas S0s actually does). Speci�cally, to answer query q, algorithm A generatesa1 I(1n), forwards (a1; ha1(q)) to its own oracle (i.e., Ss), and answers with(a1; a2), where a2 = Ss(a1; ha1(q)). (We stress that A issues a single Ss-query pereach S0s-query made by A0.) When A0 outputs a document-signature pair relativeto the complex scheme (G0; S0; V 0), algorithm A tries to use it in order to forma document-signature pair relative to the `-restricted scheme, (G;S; V). Thatis, if A0 outputs the document-signature pair (�; �), where � = (�1; �2), then Awill output the document-signature pair (�2; �2), where �2 def= (�1; h�1(�)).Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). Let (�(i); �(i)) denote the ith query and answer pair made

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 549by A0, and (�; �) be the forged document-signature pair that A0 outputs (in caseof success), where �(i) = (�(i)1 ; �(i)2) and � = (�1; �2). We consider the followingtwo cases regarding the forging event:Case 1: (�1; h�1(�)) 6= (�(i)1 ; h�(i)1 (�(i))) for all i's. (That is, the Ss-signed valuein the forged signature (i.e., (�1; h�1(�))) is di�erent from all queries madeto Ss.) In this case, the document-signature pair ((�1; h�1(�)); �2) consti-tutes a success in existential forgery relative to the `-restricted scheme(G;S; V).Case 2: (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i))) for some i. (That is, the Ss-signed valueused in the forged signature equals the ith query made to Ss, although� 6= �(i).) Thus, �1 = �(i)1 and h�1(�) = h�(i)1 (�(i)), although � 6= �(i). Inthis case, the pair (�; �(i)) forms a designated collision under h�(i)1 (andwe do not obtain success in existential forgery relative to the `-restrictedscheme). We stress that A0 selects �(i) before it is given the description ofthe function h�(i)1 , and thus its ability to later produce � 6= �(i) such thath�1(�) = h�(i)1 (�(i)) yields a violation of the UOWHF property.Thus, if Case 1 occurs with probability at least "0(n)=2 then A succeeds inits attack on (G;S; V) with probability at least "0(n)=2, which contradicts thesecurity of the `-restricted scheme (G;S; V). On the other hand, if Case 2 occurswith probability at least "0(n)=2 then we derive a contradiction to the di�cultyof forming designated collision with respect to fhrg. Details regarding Case 2follow.We start with a sketch of the construction of an algorithm that attemptsto form designated collisions under a randomly selected hash function. Looselyspeaking, we construct an algorithm B0 that tries to form designated collisionsby emulating the attack of A0 on an random instance of (G0; S0; V 0) that B0selects by itself. Thus, B0 can easily answer any signing-query referred to itby A0, but in one of these queries (the index of which B selects at random)algorithm B0 will use a hash function given to it by the outside (rather thangenerating such a function at random by itself). In case A0 forges a signaturewhile using this speci�c function-value pair (as in Case 2), algorithm B0 obtainsand outputs a designated collision.We now turn to the actual construction of algorithm B0 (which attemptsto form designated collisions under a randomly selected hash function). Recallthat such an algorithm operates in three stages (see discussion preceding De�ni-tion 6.7): �rst the algorithm selects a preimage x, next it is given a description ofa function h, and �nally it is required to output x0 6= x such that h(x0) = h(x).We stress that the third stage in the attack is also given the random choicesmade while producing the preimage x in the �rst stage. Indeed, on input 1n,algorithm B0 proceeds in three stages:Stage 1: Algorithm B0 selects uniformly i 2 f1; :::; t(n)g, where t(n) bounds therunning-time of A0(G01(1n)) (and thus the number of queries it makes).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

550 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONNext B0 selects (s; v) G0(1n), and emulate the attack of A0(v) on S0s,while answering the queries of S0s as follows. All queries except the ith oneare emulated in the straightforward manner (i.e., by executing the programof S0s as stated). That is, for j 6= i, the jth query, denoted �(j), is answeredby producing �(j)1 I(1n), computing �(j)2 Ss(�(j)1 ; h�(j)1 (�(j))) (usingthe knowledge of s), and answering with the pair (�(j)1 ; �(j)2). The ith queryof A0, denoted �(i), will be used as the designated preimage. Once �(i) isissued (by A0), algorithm B0 completes its �rst stage (without answeringthis query), and the rest of the emulation of A0 will be conducted by thethird stage of B0.Stage 2: At this point (i.e., after B0 has selected the designated preimage �(i)),B0 obtains a description of a random hashing function hr (thus completingits second operation stage). That is, this stage consists of B0 being givenr I(1n).Stage 3: Next, algorithm B0 answers the ith query (i.e., �(i)) by applying Ssto the pair (r; hr(�(i))). Subsequent queries are emulated in the straight-forward manner (as explained above). When A0 halts, B0 checks whetherA0 has output a valid document-signature pair (�; �) as in Case 2 (i.e.,hr(�) = hr(�(j)) for some j), and whether the collision formed is indeedon the ith query (i.e., hr(�) = hr(�(i))). When this happens, B0 outputs�, and doing so it succeeded in forming a designated collision (with �(i)under hr).Now, if Case 2 occurs with probability at least "0(n)2 (and A0 makes at most t(n)queries) then B0 succeeded in forming a designated collision with probability atleast 1t(n) � "0(n)2 , which contradicts the hypothesis that fhrg is UOWHF.The furthermore part of the proposition follows by observing that if theforging algorithm A0 makes at most one query then the same holds for thealgorithm A constructed above. Thus, if (G0; S0; V 0) can be broken via a single-message attack that either (G;S; V) can be broken via a single-message attackor one can form designated collisions (w.r.t fhrg). In both cases, we reach acontradiction.Conclusion: Combining the furthermore-part of Proposition 6.4.31, Corol-lary 6.4.6, and the fact that UOWHF collections imply one-way functions (seeExercise 15), we obtain:Theorem 6.4.32 If there exist universal one-way hash functions then secureone-time signature schemes exist too.6.4.3.4 Conclusions and commentsCombining Theorems 6.4.28, 6.4.32 and 6.4.9, we obtain:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 551Corollary 6.4.33 If one-way permutations exists then there exist secure signa-ture schemes.Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-key) signature schemes, based on an assumption that does not mention trap-doors. Furthermore, the assumption made in Corollary 6.4.33 seems weakerthan the one made in Corollary 6.4.10. We can further weaker the assump-tion by using Theorem 6.4.29 (which was stated without a proof) rather thanTheorem 6.4.28. Speci�cally, combining Theorems 6.4.29, 6.4.32 and 6.4.9, weestablish Theorem 6.4.1. That is, secure signature schemes exist if and only ifone-way functions exist.Comment: the hash-and-sign paradigm, revisited. We wish to high-light the revised version of the hash-and-sign paradigm as underlying Construc-tion 6.4.30. Similar to the original instantiation of the hash-and-sign paradigm(i.e., Construction 6.2.6), Construction 6.4.30 is useful in practice. We warnthat using the latter construction requires verifying that (G;S; V) is a secure`-restricted signature scheme and that fhrg is a UOWHF (rather than collision-free). The advantage of Construction 6.4.30 over Construction 6.2.6 is that theformer relies on a seemingly weaker construct; that is, hardness of forming desig-nated collisions (as in UOWHF) is a seemingly weaker condition than hardnessof forming any collision (as in collision-free hashing). On the other hand, Con-struction 6.2.6 is simpler and more e�cient (e.g., one need not generate a newhashing function per each signature).6.5 * Additional PropertiesWe briey discuss several properties of interest that some signature schemesenjoy. We �rst discuss properties that seem unrelated to the original purposeof signature schemes, but are useful towards utilizing signature scheme as abuilding block towards constructing other primitives (e.g., see Section 5.4.4.4).These (related) properties are having unique valid signatures and being super-secure, where the latter term indicates the infeasibility of �nding a di�erentsignature even to a document for which a signature was obtained by the attack.We next turn to properties that o�er some advantages in the originally-intendedapplications of signature schemes. Speci�cally, we consider properties that allowsaving real time in some settings (see Sections 6.5.3 and 6.5.4), and a propertysupporting legitimate revoking of forged signatures (see Section 6.5.5).6.5.1 Unique signaturesLoosely speaking, we say that a signature scheme (G;S; V) (either a private-keyor a public-key one) has unique signatures if for every possible veri�cation-key vand every document � there is a unique � such that Vv(�; �) = 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

552 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONNote that this property is related, but not equivalent, to the question ofwhether or not the signing algorithm is deterministic (which is considered inExercise 1). Indeed, if the signing algorithm is deterministic then, for every keypair (s; v) and document �, the result of applying Ss to � is unique (and indeedVv(�; Ss(�)) = 1). Still, this does not mean that there is no other � (which isnever produced by applying Ss to �) such that Vv(�; �) = 1. On the other hand,the unique signature property may hold even in case the signing algorithm israndomized, but indeed in this case the randomization can be eliminated fromthe latter (e.g., by replacing it with a �xed sequence in case the signing algorithmalways succeeds, or incorporating the coins in the signing-key (and possibly usinga pseudorandom function) otherwise).Can secure signature schemes have unique signatures? The answeris de�nitely a�rmative, and in fact we have seen several such schemes in theprevious sections. Speci�cally, all private-key signature schemes presented inSection 6.3 have unique signatures. Furthermore, every secure private-key sig-nature scheme can be transformed into one having unique signatures (e.g., bycombining deterministic signing as in Exercise 1 with canonical veri�cation asin Exercise 2). Turning to public-key signature schemes, we observe that if theone-way function f used in Construction 6.4.4 is 1-1, then the resulting securelength-restricted one-time (public-key) signature scheme has unique signatures(because each f -image has a unique preimage). In addition, Construction 6.2.6(i.e., the basic hash-and-sign) preserves the unique signature property. Let usesummarize all these observations.Theorem 6.5.1 (secure schemes with unique signatures):1. Assuming the existence of one-way functions, there exist secure messageauthentication schemes having the unique signature property.2. Assuming the existence of 1-1 one-way functions, there exist secure length-restricted one-time (public-key) signature schemes having the unique sig-nature property.3. Assuming the existence of 1-1 one-way functions and collision-free hash-ing collections, there exist secure one-time (public-key) signature schemeshaving the unique signature property.Still, this leaves open the question of whether or not there exist secure (full-edged) signature schemes having the unique signature property.6.5.2 Super-secure signature schemesIn case the signature scheme does not posses the unique signature property,it makes sense to ask whether given a message-signature pair it is feasible toproduce a di�erent signature to the same message. More generally, we mayask whether it is feasible for a chosen message attack to produce a di�erentsignature to any of the messages to which it has obtained signatures. Such

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 553ability may be of concern in some applications (but, indeed, not in the mostnatural applications). Combining the new concern with the standard notion ofsecurity, we derive the following notion, which we call super-security. A signaturescheme is called super-secure if it is infeasible for a chosen message attack toproduce a valid message-signature pair that is di�erent from all query-answerpairs obtained during the attack, regardless of whether or not the message usedin the new pair equals one of the previous queries. (Recall that ordinary securityonly requires the infeasibility of producing a valid message-signature pair suchthat the message part is di�erent from all queries made in the attack.)Do super-secure signature schemes exist? Indeed, every secure signaturescheme that has unique signatures is super-secure, but the question is whethersuper-security may hold for a signature scheme that does not posses the uniquesignature property. We answer this question a�rmatively.Theorem 6.5.2 (super-secure signature schemes): Assuming the existence ofone-way functions, there exist super-secure (public-key) signature schemes.In other words, super-secure signature schemes exist if and only if secure signa-ture schemes exist. We comment that the signature scheme constructed in thefollowing proof does not have the unique signature property.Proof: Starting from (Part 2 of) Theorem 6.5.1, we can use any 1-1 one-wayfunction to obtain super-secure length-restricted one-time signature schemes.However, wishing to use arbitrary one-way functions, we will �rst show that uni-versal one-way hashing functions can be used (instead of 1-1 one-way functions)to obtain super-secure length-restricted one-time signature schemes. Next, wewill show that super-security is preserved by two transformations presented inSection 6.4: speci�cally, the transformation of length-restricted one-time signa-ture schemes into one-time signature schemes (speci�cally, Construction 6.4.30),and the transformation of the latter to (full-edged) signature schemes (i.e.,Construction 6.4.16). Applying these transformations (to the �rst scheme),we obtained the desired super-secure signature scheme. Recall that Construc-tion 6.4.30 also uses universal one-way hashing functions, but the latter can beconstructed using any one-way function (cf. Theorem 6.4.29).30Claim 6.5.2.1: If there exist universal one-way hashing functions then, for everypolynomially-bounded ` :N! N , there exist super-secure `-restricted one-timesignature schemes.Proof sketch: We modify Construction 6.4.4 by using universal one-way hashingfunctions (UOWHFs) instead of one-way functions. Speci�cally, for each preim-age placed in the signing-key, we select at random and independently a UOWHF,and place its description both in the signing and veri�cation keys. That is,30 We comment that a simpler proof su�ces in case we are willing to use a one-way permu-tation (rather than an arbitrary one-way function). In this case, we can start from (Part 2of) Theorem 6.5.1 (rather than prove Claim 6.5.2.1), and use Theorem 6.4.28 (rather thanTheorem 6.4.29, which has a more complicated proof).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

554 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONon input 1n, we uniformly select s01; s11; ::::; s0̀(n); s1̀(n) 2 f0; 1gn and UOWHFsh01; h11; ::::; h0̀(n); h1̀(n), and compute vji = hji (sji), for i = 1; :::; `(n) and j = 0; 1.We let s = ((s01; s11); ::::; (s0̀(n); s1̀(n))), h = ((h01; h11); ::::; (h0̀(n); h1̀(n))), and v =((v01 ; v11); ::::; (v0̀(n); v1̀(n))), and output the key-pair (s; v) = ((h; s); (h; v)) (or,actually, we may set (s; v) = (s; (h; v))). Signing and veri�cation are modi�edaccordingly; that is, signing �1 � � ��` amounts to handing (s�11 ; :::; s�``), whereas(�1; :::; �`) is accepted as a valid signature of �1 � � ��` (w.r.t the veri�cation-keyv) if and only of h�ii (�i) = v�ii for every i. In order to show that the resultingscheme is super-secure under a chosen one-message attack, we adapt the proof ofProposition 6.4.5. Speci�cally, �xing such an attacker A, we consider the eventin which A violated the super-security of the scheme. There are two cases toconsider:1. The valid signature formed by A is to the same document for which Ahas obtained a di�erent signature (via its single query). In this case, forat least one of the UOWHFs contained in the veri�cation-key, we obtaina preimage that is di�erent from the one contained in the signing-key.Adapting the construction presented in the proof of Proposition 6.4.5, weobtain (in this case) ability to form designated collisions (in contradictionto the UOWHF property). We stress that the preimages contained in thesigning-key are selected independently of the description of the UOWHFs(because both are selected independently by the key-generation process).In fact, we obtain a designated collision for a uniformly selected preimage.2. The valid signature formed by A is to a document that is di�erent fromthe one for which A has obtained a signature (via its single query). Inthis case, the proof of Proposition 6.4.5 yields ability to invert a randomlyselected UOWHF (on a randomly selected image), which contradicts theUOWHF property (as shown in Exercise 15).Thus, in both cases we derive a contradiction, and the claim follows. 2Claim 6.5.2.2: Construction 6.4.30, when applied to a super-secure length-restrictedsignature scheme yields a super-secure signature scheme. In case the length-restricted scheme is only super-secure under a chosen one-message attack, thesame holds for the the resulting (length-unrestricted) scheme.Proof sketch: We follow the proof of Proposition 6.4.31, and use the same con-struction of a forger for the length-restricted scheme (based on the forger for thecomplex scheme). Furthermore, we consider the two forgery cases analyzed inthe proof of Proposition 6.4.31:3131 Recall that (�; �) denotes the document-signature pair output by the original forger(i.e., for the complex scheme), whereas (�(i); �(i)) denotes the ith query-answer pair (to thatscheme). The document-signature pair that we output (as a candidate forgery w.r.t length-restricted scheme) is (�2; �2), where �2 def= (�1; h�1(�)) and � = (�1; �2). Recall that a genericvalid document-signature for the complex scheme has the form (�0; �0), where �0 = (�01; �02)satis�es Vv((�01; h�01(�0)); �02) = 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 555Case 1: (�1; h�1(�)) 6= (�(i)1 ; h�(i)1 (�(i))) for all i's. In this case, the analysis isexactly as in the original proof. Note that it does not matter whether ornot � 6= �(i), since in both subcases we obtain a valid signature for a newstring with respect to the length-restricted signature scheme. Thus, in thiscase, we derive a violation of the (ordinary) security of the length-restrictedscheme.Case 2: (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i))) for some i. The case � 6= �(i) was han-dled in the original proof (by showing that it yields a designated collision(under h�(i)1 which is supposedly a UOWHF)), so here we only handle thecase � = �(i). Now, suppose that super-security of the complex schemewas violated; that is, (�1; �2) 6= (�(i)1 ; �(i)2). Then, by the case hypothesis(which implies �1 = �(i)1), it must be that �2 6= �(i)2 . This means that wederive a violation of the super-security of length-restricted scheme, because�2 is a di�erent valid Ss-signature of (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i))).Actually, we have to consider all i's for which (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i)))holds, and observe that violation of super-security for the complexscheme means that �2 must be di�erent from each of the correspond-ing �(i)2 's. Alternatively, we may �rst prove that, with overwhelminglyhigh probability, all �(i)1 's must be distinct.Thus, in both cases we reach a contradiction to the super-security of the length-restricted signature scheme, which establishes our claim that the general signa-ture scheme must be super-secure. We stress that, like in Proposition 6.4.31,the above proof establishes that super-security for one-time attacks is preservedtoo (because the constructed forger makes a single query per each query madeby the original forger). 2Claim 6.5.2.3: Construction 6.4.16, when applied to super-secure one-time sig-nature schemes yields super-secure signature schemes.Proof sketch: We follow the proof of Proposition 6.4.17, which actually meansfollowing the proof of Proposition 6.4.15. Speci�cally, we use the same construc-tion of a forger for the one-time scheme (based on the forger for the complexscheme). Furthermore, we consider the two forgery cases analyzed in the proofof Proposition 6.4.15:321. The �rst case is when the forged signature for the complex (general sig-nature) scheme (G0; S0; V 0) contains a signature relative to an instance ofthe one-time scheme (G;S; V) associated with a leaf that has been au-thenticated in an answer given to some signing-query. If no oracle answerhas used the instance associated with this leaf then (as in the proof of32 Recall that forging a signature for the general scheme requires either using an authen-tication path supplied by the (general) signing-oracle or producing an authentication pathdi�erent from all paths supplied by the (general) signing-signer.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

556 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONProposition 6.4.15) we obtain (ordinary) forgery with respect to the in-stance of (G;S; V) associated with the leaf (without making any query tothat instance of the one-time scheme). Otherwise, by the case hypothesis,the forged document-signature pair di�ers from the query-answer pair thatused the same leaf. The di�erence is either in the document part or in thepart of the complex-signature that corresponds to the one-time signatureproduced at the leaf. In both subcases this yields violation of the super-security of the instance of (G;S; V) associated with that leaf. Speci�cally,in the �rst subcase we obtain a one-time signature to a di�erent docu-ment (i.e., violation of ordinary security), whereas in the second subcasewe obtain a di�erent one-time signature to the same document (i.e., onlya violation of super-security). We stress that, in both subcases, the vio-lating signature is obtained after making a single query to the instance of(G;S; V) associated with that leaf.2. We now turn to the second case (i.e., forgery with respect to (G0; S0; V 0)is obtained by producing an authentication path di�erent from all pathssupplied by the signer). In this case, we obtain violation of the ordinary(one-time) security of the scheme (G;S; V), exactly as in the original proofof Proposition 6.4.15. We stress that in this case (regardless of whichdocument is authenticated by the leaf), an internal node authenticatesdata that is di�erent from the data authenticated by the signing-oracle,and thus we obtain forgery via a one-message attack on the instance of(G;S; V) associated with this internal node.Thus, in both cases we reach a contradiction to the super-security of the one-time signature scheme, which establishes our claim that the general signaturescheme must be super-secure. 2Combining the three claims (and recalling that universal one-way hashing func-tions can be constructed using any one-way function (cf. Theorem 6.4.29)), thetheorem follows.6.5.3 O�-line/on-line signingLoosely speaking, we say that a signature scheme (G;S; V) (either a private-key or a public-key one) has an o�-line/on-line signing process if signatures areproduced in two steps, where the �rst step is independent of the actual mes-sage to be signed. That is, the computation of Ss(�) can be decoupled intotwo steps, performed by randomized algorithms that are denoted So� and Sonrespectively such that Ss(�) Sons (�; So�(s)). Thus, one may prepare (orprecompute) So�(s) before the document is known (i.e., o�-line), and producethe actual signature (on-line) once the document � is presented is produced(by invoking algorithm Son on input �; So�(s)). This yields improvement inon-line response-time to signature requests, provided that Son is signi�cantly

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 557faster that S itself. This improvement is worthwhile in many natural settings inwhich on-line response-time is more important than o�-line processing time.We stress that So� must be randomized (as otherwise So�(s) can be incorpo-rated in the signing-key). Indeed, one may view algorithm So� as an extensionof the key-generation algorithm that produces random extensions of the signing-key on the y (i.e., after the veri�cation-key was already determined). We stressthat algorithm So� is invoked once per each document to be signed, but thisinvocation can take place at any time and even before the document to be signedis even determined. (In contrast, it may be insecure to re-use the result obtainedfrom So� for two di�erent signatures.)Can secure signature schemes employ meaningful o�-line/on-line sign-ing algorithms? Of course, any algorithm can be vacuously decoupled intotwo steps, but we are only interested in meaningful decouplings in which theo�-line step takes most of the computational load. Interestingly, schemes basedon the refreshing paradigm (cf. Section 6.4.2.1) lend themselves to such a de-coupling. Speci�cally, in Construction 6.4.16, only the last step in the signingprocess depends on the actual document (and needs to be performed on-line).Furthermore, this last step amounts to applying the signing algorithm of a one-time signature scheme, which is typically much faster than all the other steps(which can be performed o�-line).336.5.4 Incremental signaturesLoosely speaking, we say that a signature scheme (G;S; V) (either a private-keyor a public-key one) has an incremental signing process if the signing process canbe sped-up when given a valid signature to a (textually) related document. Theactual de�nition refers to a set of text editing operations such as delete wordand insert word (where more powerful operations like cutting a document intotwo parts and pasting two documents may be supported two). Speci�cally, onemay require that given a document-signature pair, (�; �), a sequence of editoperations (i.e., specifying the operation type and its location), and the signing-key one may modify � into a valid signature for the modi�ed document in timeproportional to the number of edit operations (and not to j�j). Indeed, heretime is measured in a direct-access model of computation. Of course, the timesaving on the signing side should not come at the expense of a signi�cant increasein veri�cation time. In particular, veri�cation time should only depend on thelength of the �nal document (and not on the number of edit operations).An incremental signing process is bene�cial in settings where one needs tosign many textually related documents (e.g., in simple contracts much of the text33 When plugging-in the one-time signature scheme suggested in Proposition 6.4.7, produc-ing one-time signatures amounts to applying a collision-free hashing function and outputtingcorresponding parts of the signing-key. This is all that needs to be performed in the on-linestep. In contrast, the o�-line steps calls for n applications of a pseudorandom function, n ap-plications of the key-generation algorithm of the one-time signature scheme, and n applicationsof the signing algorithm of the one-time signature scheme.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

558 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONis almost identical and edit changes refer to the party's speci�c details as well asto speci�c clauses that are modi�ed from their standard form in order to meetthe party's speci�c needs). In some cases the privacy of the edit sequence maybe of concern; that is, one may require that the �nal signature be distributedin a way that only depends on the �nal document (rather than depend also ondocuments that \contributed" signatures to the process of generating the �nalsignature).Can secure signature schemes employ a meaningful incremental sign-ing process? Here meaningful refers to the set of supported text-modi�cationoperations. The answer is a�rmative, and furthermore these schemes may evenprotect the privacy of the edit sequence. Below, we refer to edit operations thatdelete/insert �x-length bit-strings called blocks from/to a document (as well asto the cut and paste operations mentioned above).Theorem 6.5.3 (secure schemes with incremental signing process):1. Assuming the existence of one-way functions, there exist secure messageauthentication schemes having an incremental signing process that supportsblock deletion and insertion. Furthermore, the scheme uses a �xed-lengthauthentication tag.2. Assuming the existence of one-way functions, there exist secure (private-key and public-key) signature schemes having an incremental signing pro-cess that supports block deletion and insertion as well as cut and paste.Furthermore, in both parts, the resulting schemes protect the privacy of the editsequence.Part 1 is proved by using a variant on an e�cient message authentication schemethat is related to the schemes presented in Section 6.3.1. Part 2 is proved by usingan arbitrary secure (private-key or public-key) signature scheme that produces n-bit long signatures to O(n)-bit long strings, where n is the security parameter.(Indeed, the scheme need only be secure in the O(n)-restricted sense.) Thedocument is stored in the leaves of a 2{3 tree,34 and the signature essentiallyconsists of the tags of all internal nodes, where each internal node is tagged byapplying the basic signature scheme to the tags of its children. One importantobservation is that a 2{3 tree supports the said operations while incurring only34 A 2{3 tree is a balanced tree in which each internal node has either 2 or 3 children. Suchtrees support insert and delete (of a single symbol/leaf) in logarithmically many operations.To insert a leaf (in a depth d tree), add it as a child to the suitable level d� 1 vertex, denotedv. In case the resulting children-degree of v is 4, split v (evenly) into two vertices such thatboth the resulting vertices are children of v's parent. The parent may be split so too, andso on until one gets to the root. If the root needs to be split then the height of the tree isincremented. To delete a leaf, we apply an analogous procedure. Namely, if the resultingparent and its siblings have total children-degree at least 4 then we rearrange these childrenso that each of the resulting parent nodes has children-degree either 2 or 3. In case the totalchildren-degree is at most 3, we merge the parent and its sibling to one vertex and turn to itsparent. Cutting and pasting of (sub)trees can be performed analogously.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 559a logarithmic (in its size) cost; that is, modifying only the links of logarithmicmany nodes in the tree. Thus, only the tags of these nodes and their ancestorsin the tree needs to be modi�ed in order to form the correspondingly modi�edsignature. (Privacy of the edit sequence is obtained by randomizing the standardmodi�cation procedure for 2{3 trees.) By analogy to Construction 6.2.13 (andProposition 6.2.14), the incremental signature scheme is secure.6.5.5 Fail-stop signaturesLoosely speaking, a fail-stop signature scheme is a signature scheme augmentedby a (non-interactive) proof system that allows the legitimate signer to proveto anybody that a particular (document,signature)-pair was not generated byhim/her. Actually, key-generation involves interaction with an administratingentity (which publicizes the resulting veri�cation-keys), rather than just hav-ing the user publicize his/her veri�cation-key. In addition, we allow memory-dependent signing procedures (as in De�nition 6.4.13).35 The system guaranteesthe following four properties, where the �rst two properties are the standardones:1. Proper operation: In case the user is honest, the signatures produced byit will pass the veri�cation procedure (with respect to the correspondingveri�cation-key).2. Infeasibility of forgery: In case the user is honest, forgery is infeasible inthe standard sense. That is, every feasible chosen message attack may suc-ceed (to generate a valid signature to a new message) only with negligibleprobability.3. Revocation of forged signatures: In case the user is honest, it can prove thatforgery has been committed (in case it was indeed committed). That is, forevery chosen message attack (even a computationally-unbounded one)36that produces a valid signature to a new message, except for with negligibleprobability, the user can convince anyone (which knows the veri�cation-key) that this valid signature was forged (i.e., produced by somebodyelse). The probability is taken over the actions of the (computationally-unbounded) adversary committing forgery.4. Infeasibility of revoking unforged signatures: It is infeasible for a user tocreate a valid signature and later convince anybody that this signaturewas forged (i.e., produced by somebody else). Indeed, it is possible (butnot feasible) for a user to cheat here.Furthermore, Property 3 (i.e., revocation of forged signatures) holds also incase the administrating entity participates in the forgery and even if it behaves35 Allowing memory-dependent signing is essential to the existence of secure fail-stop signa-ture schemes; see Exercise 21.36 It seems reasonable to restrict such adversaries to polynomially-many signing requests.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

560 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONimproperly at the key-generation stage. (In contrast, the other items hold onlyif the administrating entity behaves properly during the key-generation stage.)To summarize, fail-stop signature schemes allow to prove that forgery has oc-curred, and so o�er an information-theoretic security guarantee to the potentialsigners (yet the guarantee to potential signature-recipients is only a computa-tional one).37 In contrast, when following the standard semantics of signatureschemes, the potential signers have only a computational security guarantee andthe signature recipients have an absolute guarantee: whenever the veri�cationalgorithm accepts a signature, it is by de�nition an unrevocable one.Do secure fail-stop signature schemes exist? Assuming the intractabilityof either the Discrete Logarithm Problem or of integer factorization, the answeris a�rmative. Indeed, in fail-stop signature schemes, each document must havesuper-polynomially many possible valid signatures (with respect to the publicallyknown veri�cation-key), but only a negligible fraction of these will be (properly)produced by the legitimate signer (who knows a corresponding signing-key, whichis not uniquely determined by the veri�cation-key). Furthermore, any strategy(even an infeasible one), is unlikely to generate signatures corresponding to thesigning-key. On the other hand, it is infeasible given one signing-key to producevalid signatures (i.e., w.r.t the veri�cation-key) that do not correspond to theproper signing with this signing-key.6.6 Miscellaneous6.6.1 On Using Signature SchemesOnce de�ned and constructed, signature schemes may be (and are actually)used as building blocks towards various goals that are di�erent from the originalmotivation. Still, the original motivation (i.e., reliable communication of infor-mation) is of great importance, and in this subsection we discuss several issuesregarding the use of signature schemes towards achieving it. The discussion isanalogous to a similar discussion conducted in Section 5.5.1, but the analogousissues discussed here are even more severe.Using private-key schemes { the key exchange problem. As discussedin Section 6.1, using a private-key signature scheme (i.e., a message authentica-tion scheme) requires the communicating parties to share a secret key. This keycan be generated by one party and secretly communicated to the other partyby an alternative (expensive) secure and reliable channel. Often, a preferablesolution consists of employing a key-exchange (or rather key-generation) proto-col, which is executed over the standard (unreliable) communication channel.37 The above refers to the natural convention by which a proof of forgery frees the signer ofany obligations implied by the document. In this case, when accepting a valid signature therecipient is only guaranteed that it is infeasible for the signer to revoke the signature.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 561We stress that here (unlike in Section 5.5.1) we must consider active adver-saries. Consequently, the focus should be on key-exchange protocols that aresecure against active adversaries and are called unauthenticated key-exchangeprotocols (because the messages received over the channel are not necessarilyauthentic). Such protocols are too complex to be treated in this section, andthe interested reader is referred to [30, 31, 18].Using state-dependent message authentication schemes. In many com-munication settings it is reasonable to assume that the authentication device maymaintain (and modify) a state (e.g., a counter or a clock). Furthermore, in manyapplications, a changing state (e.g., a clock) must be employed anyhow in orderto prevent reply of old messages (i.e., each message will be authenticated alongwith its transmission time). In such cases, state-dependent schemes as discussedin Section 6.3.2 may be preferable. (See further discussion in Section 6.3.2 andanalogous discussion in Section 5.5.1.)Using signature schemes { public-key infrastructure. The standard useof (public-key) signature schemes in real-life applications requires a mechanismfor providing the veri�ers with the signer's authentic veri�cation-key. In smallsystems, one may assume that each user holds a local record of the veri�cation-keys of all other users. However, this is not realistic in large-scale systems, and sothe veri�er must obtain the relevant veri�cation-key on-the-y in a \reliable" way(i.e., typically, certi�ed by some trusted authority). In most theoretical work,one assumes that the veri�cation-keys are posted and can be retrieved from apublic-�le that is maintained by a trusted party (which makes sure that eachuser can post only veri�cation-keys bearing its own identity). In abstract terms,such trusted party may provide each user with a (signed) certi�cate stating theauthenticity of the user's veri�cation-key. In practice, maintaining such a public-�le (and handling such certi�cates) is a major problem, and mechanisms thatimplement this abstraction are typically referred to by the generic term \public-key infrastructure (PKI)". For a discussion of the practical problems regardingPKI deployment see, e.g., [180, Chap. 13].6.6.2 On Information Theoretic SecurityIn contrast to the bulk of our treatment, which focuses on computationally-bounded adversaries, in this section we consider computationally-unbounded ad-versaries. Speci�cally, we consider computationally-unbounded chosen messageattacks, but do bound (as usual, by an unknown polynomial) the total numberof bits in the signing-queries made by such attackers. We call a (private-key orpublic-key) signature scheme perfectly-secure (or information-theoretically secure)if even such computationally-unbounded attackers may succeed (in forgery) onlywith negligible probability.It is easy to see that no (public-key) signature scheme may be perfectly-secure, not even in a length-restricted one-time sense. The reason is that a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

562 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONcomputationally-unbounded adversary that is given a veri�cation-key can �nd(without making any queries) a corresponding signing-key, which allows it toforge signatures to any message of its choice.In contrast, restricted types of message authentication schemes (i.e., private-key signature schemes) may be perfectly-secure. Speci�cally, given any poly-nomial bound on the total number of messages to be authenticated, one mayconstruct a corresponding state-based perfectly-secure message authenticationscheme. In fact, a variant of Construction 6.3.10 will do, where a truly randomone-time pad is used instead of the pseudorandom sequence generated using thenext-step function g. Indeed, this one-time pad will be part of the key, whichin turn must be longer than the total number of messages to be authenticated.We comment that the use of a state is essential for allowing several messages tobe authenticated (in a perfectly-secure manner). (Proofs of both statements canbe derived following the ideas underlying Exercise 8.2.)6.6.3 On Popular SchemesThe reader may note that we have avoided the presentation of several popularsignature schemes (i.e., public-key ones). As noted in Section 6.1.4.3, some ofthese schemes (e.g., RSA [216] and DSS [192]) seem to satisfy some weak (i.e.,weaker than De�nition 6.1.2) notions of security. Variants of these schemesare proven to be secure in the random oracle model, provided some standardintractability assumptions hold (cf, e.g., [32]). However, we are not satis�edwith either of these types of results, and articulate our opinion next.On using weaker de�nitions. We distinguish between weak de�nitions thatmake clear reference to the abilities of the adversary (e.g., one-message attacks,length-restricted message attacks) and weak notions that make hidden and un-speci�ed assumptions regarding what may be bene�cial to the adversary (e.g.,\forgery of signatures for meaningful documents"). In our opinion, the fact thatthe hidden assumptions often \feel right" makes them even more dangerous,because it means that they are never seriously considered (and not even formu-lated). For example, it is often said that existential forgery (see Section 6.1.3)is \merely of theoretical concern", but these claims are never supported by anyevidence or by a speci�cation of the types of forgery that are of \real practicalconcern". Furthermore, a few years later, one learns that this \merely theoret-ical" issue yields a real security breach in some important applications. Still,weak de�nition of security may make sense, provided that they are clearly statedand that one realizes their limitations (i.e., \non-generality"). Since this bookfocuses on generally-applicable de�nitions, we chose not to discuss such weakernotions of security and not to present schemes that can be evaluated only withrespect to these weak notion.On the Random Oracle Methodology. The Random Oracle Methodol-ogy [95, 29] consists of two steps: First, one designs an ideal system in which all

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 563parties (including the adversary) have oracle access to a truly random function,and proves this ideal system to be secure (i.e., one typically says that the systemis secure in the random oracle model). Next, one replaces the random oracle bya \good cryptographic hashing function", providing all parties (including theadversary) with the succinct description of this function, and hopes that the re-sulting (actual) scheme is secure.38 We warn that this hope has no justi�cation.Furthermore, there exist encryption and signature schemes that are secure inthe Random Oracle Model, but replacing the random function (used in them)by any function ensemble yields a totally insecure scheme (cf., [59]).6.6.4 Historical NotesAs in case of encryption schemes, the rigorous study of the security of private-key signature schemes (i.e., message authentication schemes) has legged behindthe corresponding study of public-key signature schemes. The current section isorganized accordingly.6.6.4.1 Signature SchemesThe notion of a (public-key) signature scheme was introduced by Di�e andHellman [78], who also suggested to implement it using trapdoor permutations.Concrete implementations were suggested by Rivest, Shamir and Adleman [216]and by Rabin [211]. However, de�nitions of security for signature schemes werepresented only a few years afterwards.A �rst rigorous treatment of security notions for signature schemes was sug-gested by Goldwasser, Micali and Yao [145], but their de�nition is weaker thanthe one followed in our text. (Speci�cally, the adversary's queries in the de�ni-tion of [145] are determined non-adaptively and obliviously of the public-key.)Assuming the intractability of factoring, they also presented a signature schemethat is secure under their de�nition. We stress that the security de�nition of [145]is signi�cantly stronger than all security notions considered before [145].A comprehensive treatment of security notions for signature schemes, whichculminates in the notion used in our text, was presented by Goldwasser, Micaliand Rivest [143]. Assuming the intractability of factoring, they also presented asignature scheme that is secure (in the sense of De�nition 6.1.2). This was the�rst time that a signature scheme was proven secure under a simple intractabilityassumption such as the intractability of factoring. Their proof has refuted a folk-lore (attributed to Ron Rivest) by which no such \constructive proof" may exist(as its mere existence was believed to yield a forging procedure). Whereas the(two) schemes of [145] were inherently memory-dependent, the scheme of [143]has a \memoryless" variant (cf. [105] and [143]).38 Recall that, in contrast, the methodology of Section 3.6.3 (which is applied often in thecurrent chapter) refers to a situation in which the adversary does not have direct oracle accessto the random function, and does not obtain the description of the pseudorandom functionused in the latter implementation.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

564 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONFollowing Goldwasser, Micali and Rivest [143], research has focused on con-structing secure signature schemes under weaker assumptions. In fact, as notedin [143], their construction of secure signature schemes can be carried out usingany collection of claw-free, trapdoor permutation pairs. The claw-free require-ment was omitted in [28], whereas the seemingly more fundamental trapdoorrequirement was omitted by Naor and Yung [198]. Finally, Rompel showed thatone may use arbitrary one-way functions rather one-way permutations [217], andthus established Theorem 6.4.1. The progress briey summarized above was en-abled by the use of many important ideas and paradigms, some of them wereintroduced in that body of work and some were \only" revisited and properlyformalized. Speci�cally, we refer to the introduction of the refreshing paradigmin [143], the use of authentication trees (cf., [182, 183] and [143]), the use of thehash-and-sign paradigm (rigorously analyzed in [72]), the introduction of Univer-sal One-Way Hash Functions (and the adaptation of the hash-and-sign paradigmto them) in [198], and the use of one-time signature schemes (cf., [210]).We comment that our presentation of the construction of signature schemesis di�erent from the one given in any of the above cited papers. Speci�cally, themain part of Section 6.4 (i.e., Sections 6.4.1 and 6.4.2) is based on a variant ofthe signature scheme of [198], in which collision-free hashing (cf. [72]) are usedinstead of universal one-way hashing (cf. [198]).6.6.4.2 Message Authentication SchemesMessage authentication schemes were �rst discussed in the information theo-retic setting, where a one-time pad was used. Such schemes were �rst suggestedin [104], and further developed in [236]. The one-time pad can be implementedby a pseudorandom function (or a on-line pseudorandom generator), yieldingonly computational security, as we have done in Section 6.3.2. Speci�cally, Con-struction 6.3.10 is based on [163, 164]. In Section 6.3.1 we have followed adi�erent paradigm that amounts to applying a pseudorandom function to themessage (or its hashed-value), rather than using a pseudorandom function (ora on-line pseudorandom generator) to implement a one-time pad. This alter-native paradigm is due to [119], and is followed in works such as [27, 24, 16].Indeed, following this paradigm (and similarly to [27, 24, 16]), we have actuallyfocused (in Section 6.3.1) on constructing generalized pseudorandom functionensembles (as in De�nition 3.6.12), based on ordinary pseudorandom functions(as in De�nition 3.6.4).Collision-free hashingCollision-free hashing was �rst de�ned in [72]. Construction 6.2.8 is also dueto [72], with underlying principles that can be traced to [143]. Construction 6.2.11is due to [73]. Construction 6.2.13 is due to [184].

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 565On the additional propertiesUnique signatures and super-security have been used in several works, but neverextensively treated before. The notion of o�ine/online signature scheme was in-troduced (and �rst instantiated) in [86]. The notion of incremental cryptographicschemes (and in particular incremental signature schemes) was introduced andinstantiated in [21, 22]. In particular, the incremental MAC of [22] (i.e., Part 1 ofTheorem 6.5.3) builds on the message authentication scheme of [24], and the in-cremental signature scheme that protects the privacy of the edit sequence is dueto [188] (building upon [22]). Fail-stop signatures were de�ned and constructedin [206].6.6.5 Suggestion for Further ReadingAs mentioned above, the work of Goldwasser, Micali and Rivest contains acomprehensive treatment of security notions for signature schemes [143]. Theirtreatment refers to two parameters: (1) the type of attack, and (2) the typeof forgery that follows from it. The most severe type of attack allows the ad-versary to adaptively select the documents to be signed (as in De�nition 6.1.2).The most liberal notion of forgery refers to producing a signature to any doc-ument for which a signature was not obtained during the attack (again, as inDe�nition 6.1.2). Thus, the notion of security presented in De�nition 6.1.2 isthe strongest among the notions discussed in [143]. (Still, in some applications,weaker notions of security may su�ce.) We stress that one may still bene�tfrom the de�nitional part of [143], but the constructive part of [143] should beignored since it is superseded by later work (on which our presentation is based).P�tzmann's book [207] contains a comprehensive discussion of many aspectsinvolved in the integration of signature schemes in real-life systems. In addition,her book surveys variants and augmentations of the notion of signature schemes,viewing the one treated in the current book as \ordinary". The focus is on fail-stop signature schemes [207, Chap. 7{11], but much attention is given to thepresentation of a general framework [207, Chap. 5] and to review of other \non-ordinary" schemes [207, Sec. 2.7 & 6.1].As hinted in Section 6.6.4.2, our treatment of the construction of messageauthentication schemes is merely the tip of an iceberg. The interested reader isreferred to [230, 163, 164, 40] for details on the \one-time pad" approach, andto [27, 24, 16, 17, 23, 7] for alternative approaches. Constructions and discussionof AXU hashing functions can be found in [163, 164].The constructions of universal one-way hash functions presented in Sec-tion 6.4.3 use any one-way permutation, and do so in a generic way. The numberof applications of the one-way permutation in these constructions is linearly re-lated to the di�erence between the number of input and output bits in the hashfunction. In [103], it is shown that as far as generic (black-box) constructionsgo, this is essentially the best performance that one can hope for.In continuation to the discussion in Section 6.4.2.4, we refer to reader to [82,69], in which speci�c implementations (of a generalization) of Constructions 6.4.14

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

566 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONand 6.4.16 are presented. Speci�cally, these works utilize an authentication treeof large degree (rather than binary trees as in Section 6.4.2.2).6.6.6 Open ProblemsThe known construction of signature schemes from arbitrary one-way func-tions [217] is merely a feasibility result. It is indeed an important open problemto provide an alternative construction that may be practical and still utilize anarbitrary one-way function. We believe that providing such a construction mayrequire the discovery of important new paradigms.6.6.7 ExercisesExercise 1: Deterministic Signing and Veri�cation algorithms:1. Using a pseudorandom function ensembles, show how to transformany (private-key or public-key) signature scheme into one employinga deterministic signing algorithm.2. Using a pseudorandom function ensembles, show how to transformany message authentication scheme into one employing deterministicsigning and verifying algorithms.3. Verify that all signature schemes presented in the current chapteremploy a deterministic veri�cation algorithm.Guideline (for Part 1): Augment the signing-key with a description ofa pseudorandom function, and apply this function to the string to be signedin order to extract the randomness used by the original signing algorithm.Guideline (for Part 2): Analogous to Part 1. (Highlight your use ofthe private-key hypothesis.) Alternatively, see Exercise 2.Exercise 2: Canonical veri�cation in the private-key version: Show that, with-out loss of generality, the veri�cation algorithm of a private-key signaturescheme may consist of comparing the alleged signature to one producedby the veri�cation algorithm itself (which does so exactly as the signingalgorithm).Why does this claim fail with respect to public-key schemes?Guideline: Use Part 1 of Exercise 1, and conclude that the on a �xedinput the signing algorithm always produces the same output. Use thefact that (by Exercise 8.2) the existence of message authentication schemesimplies the existence of pseudorandom functions.Exercise 3: Augmented attacks in the private-key case: In continuation to thediscussion in Section 6.1.4.1, consider the de�nition of an augmented at-tack (on a private-key signature scheme) in which the adversary is allowedveri�cation-queries.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 5671. Show that in case the signature scheme has (a deterministic veri�-cation algorithm and) unique valid signatures, it is secure againstaugmented attacks if and only if it is secure against ordinary attacks(as in De�nition 6.1.2).2. Assuming the existence of secure private-key signature schemes (as inDe�nition 6.1.2), present such a secure scheme that is insecure underaugmented attacks.Guideline (Part 1): Analyze the emulation outlined in Section 6.1.4.1.Speci�cally, ignoring the redundant veri�cation-queries (for which the an-swer is determined by previous answers), consider the probability that theemulation has gambled correctly on all the veri�cation-queries up-to (andincluding) the �rst such query that should be answered a�rmatively.Guideline (Part 2): Given any secure MAC (G;S; V), assume withoutloss of generality that in the key-pairs output by G the veri�cation-keyequals the signing-key. Consider the scheme (G0; S0; V) (with G0 = G),where S0s(�) = (Ss(�); 0), V 0v(�; (�; 0)) = Vv(�; �) and V 0v(�; (�; i; �)) = 1if both Vv(�; �) = 1 and the ith bit of s = v is �. Prove that (G0; S0; V)is secure under ordinary attacks, and present an augmented attack thattotally breaks it (i.e., obtains the signing-key).Exercise 4: The signature may reveal the document: Both for private-key andpublic-key signature schemes, show that if such secure schemes exist thenthere exist secure signature schemes in which any valid signature to amessage allows to e�ciently recover the entire message.Exercise 5: On the triviality of some length-restricted signature schemes:1. Show that for logarithmically bounded `, secure `-restricted private-key signature schemes (i.e., message authentication schemes) can betrivially constructed (without relying on any assumption).2. In contrast, show that the existence of a secure `-restricted public-key signature scheme, even for ` � 1, implies the existence of one-wayfunctions.Guideline (Part 1): On input 1n, the key generator uniformly selectss 2 f0; 1g2`(n) �n, and outputs the key pair (s; s). View s = s1 � � � s2`(n) ,where each si is an n-bit long string, and consider any �xed ordering of the2`(n) strings of length `(n). The signature to � 2 f0; 1g`(n) is de�ned as si,where i is the index of � in the latter ordering.Guideline (Part 2): Let (G;S; V) be a 1-restricted public-key signaturescheme. De�ne f(1n; r) = v if on input 1n and coins r, algorithm G gen-erates the key-pair of the form (�; v). Assuming that algorithm A invertsf with probability "(n), we construct a forger that attacks (G;S; V) as fol-lows. On input a veri�cation key v, the forger invokes A on input v. Withprobability "(n), the forger obtains r so that f(1n; r) = v. In such a case,the forger obtains a matching signing-key s (i.e., (s; v) is output by G(1n)on coins r), and so can produce valid signatures to any string of its choice.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

568 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONExercise 6: Failure of Construction 6.2.3 in case `(n) = O(log n): Show thatif Construction 6.2.3 is used with logarithmically bounded ` then the re-sulting scheme is insecure.Guideline: Note that by asking for polynomially-many signatures, the ad-versary may obtain two S0s-signatures that use the same (random) identi�er.Speci�cally, consider making the queries ��, for all possible � 2 f0; 1g`(n),and note that if �� and �0�0 are S0s-signed using the same identi�er thenwe can derive a valid S0s-signature to ��0.Exercise 7: Using a pseudorandom function ensemble of the form ffs : f0; 1g� !f0; 1gjsjgs2f0;1g� , construct a general secure message authentication scheme(rather than a length-restricted one).Guideline: The construction is identical to Construction 6.3.1, exceptthat here we use a general pseudorandom function ensemble rather thanthe one used there. The proof of security is analogous to the proof ofProposition 6.3.2.Exercise 8: Prove that the existence of secure message authentication schemesimplies the existence of one-way functions. Speci�cally, let (G;S; V) be asin the hypothesis.1. To simplify the following two items, show that, without loss of gen-erality, G(1n) uses n coins and outputs a signing-key of length n andthat jSs(�)j is determined by jsj+ j�j.2. Assume �rst that S is a deterministic signing algorithm. Prove thatf(r; �1; :::; �m) def= (Ss(�1); :::; Ss(�m); �1; :::; �m) is a one-way func-tion, where s = G1(r) is the signing-key generated with coins r, all�i's are of length n = jrj and m = �(n).Extend the proof to handle randomized signing algorithms.3. Using the relation between pseudorandom functions (as in De�ni-tion 3.6.12) and one-way functions, the following provides an alter-native proof for the special case of deterministic signing.39(Based on [197]): Consider the Boolean function ensemble ffs;rgs;r,where s is selected according to G1(1n) and r is uniformly distributedover strings of length jSs(1n)j, de�ned such that fs;r(�) equals theinner-product mod 2 of r and Ss(�). Prove that this ensemble ispseudorandom (as de�ned in De�nition 3.6.12 for the case r(n) = 1).Guideline (Part 2): Note that the m signatures determine an r0, whichin turn determines a signing-key s0 = G1(r0) such that Ss(�) = Ss0 (�)for most � 2 f0; 1gn . (Note that s0 does not necessarily equal s.) Showthat this implies that ability to invert f yields ability to forger (under achosen message attack). (Hint: use m random signing-queries to produce a39 Note that the functions in the ensemble have a su�ciently large domain. Thus, thispseudorandom function ensemble gives rise to a pseudorandom generator (analogously to Ex-ercise 28 of Chapter 3), which in turn implies the existence of one-way functions.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 569random image of f .) The extension to randomized signing is obtained byaugmenting the argument of the one-way function with the coins used bythe m invocations of the signing algorithm.Guideline (Part 3): Consider hybrid experiments such that in the ithhybrid the �rst i queries are answered by a truly random Boolean func-tion and the rest are answered by a uniformly distributed fs;r. (Note thatit seems important to use this non-standard order of random versus pseu-dorandom answers.) Show that distinguishability of the ith and i + 1sthybrids implies that a probabilistic polynomial-time machine can have anon-negligible advantage in the following game in which the machine isasked to select �, next fs;r is uniformly selected and the machine is given ras well as oracle access to Ss (but is not allowed the query �) and is askedto guess fs;r(�). (Note that the particular order used allows to producethe rest of the hybrid when given this oracle access. On the other hand,it is important to hand r only after the machine has selected �; see [197].)At this point, one may apply the proof of Theorem 2.5.2, and deduce thatthe said machine can construct Ss(�) with non-negligible probability, incontradiction to the security of the MAC.Exercise 9: Prove that, without loss of generality, one can always assume thata chosen message attack makes at least one query. (This holds for generalsignature schemes as well as for length-restricted and/or one-time ones.)Guideline: Given an adversary A0 that outputs a message-signature pair(�; �) without making any query, modify it so that it makes an arbitraryquery �0 2 f0; 1gj�j n f�g just before producing that output.Exercise 10: On perfectly-secure one-time message authentication (MAC) schemes:By perfect (or information-theoretic) securitywe mean that even computationally-unbounded chosen message attacks may succeed (in forgery) only withnegligible probability.De�ne perfect (or information-theoretic) security for one-time MACs andlength-restricted one-time MACs. (Be sure to bound the length of docu-ments (e.g., by some super-polynomial function) also in the unrestrictedcase.)Prove the following, without relying on any (intractability) assumptions(which are anyhow useless in the information-theoretic context):1. For any polynomially-bounded and polynomial-time computable func-tion ` : N ! N , perfectly-secure `-restricted one-time MACs can betrivially constructed.2. Using a suitable AXU family of hashing functions, present a construc-tion of a perfectly-secure one-time MAC. Furthermore, present sucha MAC in which the authentication-tags have �xed length (i.e., de-pending on the length of the key but not on the length of the messagebeing authenticated).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

570 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION3. Show that any perfectly-secure one-time MAC that utilizes �xed lengthauthentication-tags and a deterministic signing algorithm yields ageneralized hashing ensembles with negligible collision probability.Speci�cally, for any polynomial p, this ensembles has a (p; 1=p)-collisionproperty.Guideline: For Part 1, combine the ideas underlying Exercise 5 and Con-struction 6.4.4. For Part 2, use the ideas underlying Construction 6.3.10and the proof of Proposition 6.3.11. For Part 3, given a MAC (G;S; V) asin the claim, consider the functions hs(x) def= Ss(x), where s G1(1n).Exercise 11: In contrast to Exercise 10, prove that the existence of secureone-time signature schemes implies the existence of one-way functions.Furthermore, prove that this holds even for 1-restricted signature schemesthat are secure (only) under attacks that make no signing-queries.Guideline: See guideline for Item 2 in Exercise 5.Exercise 12: Prove that the existence of collision-free hashing collections im-plies the existence of one-way functions.Guideline: Given a collision-free hashing collection, fhr : f0; 1g� !f0; 1g`(jrj)gr2f0;1g� , consider the function f(r; x) = (r; hr(x)), where (say)jxj = `(jrj) + jrj. Prove that f is a one-way function, by assuming towardsthe contradiction that f can be e�ciently inverted with non-negligible prob-ability, and deriving an e�cient algorithm that forms collisions on randomhr's. Given r, form a collision under the function hr, by uniformly se-lecting x 2 f0; 1g`(jrj)+jrj, and feeding the inverting algorithm with input(r; hr(x)). Observe that with non-negligible probability a preimage is ob-tained, and that with exponentially vanishing probability this preimage is(r; x) itself. Thus, with non-negligible probability, we obtain a preimage(r; x0) 6= (r; x) and it holds that hr(x0) = hr(x).Exercise 13: In contrast to Exercise 4, show that if secure message authenti-cation schemes exist then there exist such schemes in which it is infeasible(for a party not knowing the key) to extract from the signature any partialinformation about the message (except for the message length). (Indeed,privacy of the message is formulated as the de�nition of semantic securityof encryption schemes; see Chapter 5.)Guideline: Combine a message authentication scheme with an adequateprivate-key encryption scheme. Refer to issues such as the type of secu-rity required of the encryption scheme, and why the hypothesis yields theexistence of the ingredients used in the construction.Exercise 14: In continuation to Exercise 13, show that if there exist collision-free hashing functions then there exist message authentication schemes inwhich it is infeasible (for a party not knowing the key) to extract fromthe signature any partial information about the message (including the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 571message length). How come we can hide the message length in this context,whereas we cannot do this in the context of encryption schemes?Guideline: Combine a message authentication scheme having �xed lengthsignatures with an adequate private-key encryption scheme. Again, refer toissues as in Exercise 13.Exercise 15: Prove that the existence of collections of UOWHF implies theexistence of one-way functions. Furthermore, show that uniformly chosenfunctions in any collection of UOWHFs are hard to invert (in the sense ofDe�nition 2.4.3).Guideline: Note that the guidelines provided in Exercise 12 can be mod-i�ed to �t the current context. Speci�cally, the collision-forming algorithmis given uniformly distributed r and x, and invokes the inverter on input(r; hr(x)). Note that the furthermore clause is implicit in the proof.Exercise 16: Assuming the existence of one-way functions, show that there ex-ists a collection of universal one-way hashing functions that is not collision-free. Guideline: Given a collection of universal one-way hashing functions,ffs : f0; 1g� ! f0; 1gjsjg, consider the collection F 0 = ff 0s : f0; 1g� !f0; 1gjsjg de�ned so that f 0s(x) = (0; fs(x)) if the jsj-bit long pre�x of x isdi�erent from s, and f 0s(sx0) = (1; s) otherwise. Clearly, F 0 is not collision-free. Show that F 0 remains universal one-way hashing.Exercise 17: Show that for every �nite family of functions H , there existsx 6= y such that h(x) = h(y) for every h 2 H . Furthermore, for H = fh :f0; 1g� ! f0; 1gmg, show that this holds for jxj; jyj � m � jH j.Guideline: Consider the mapping x 7! (h1(x); :::; ht(x)), where H =fhigti=1. Since the number of possible images is at most (2m)t, we get acollision as soon as we consider more than 2mt preimages.Exercise 18: Constructions of Hashing Families with Bounded Collision Prob-ability: In continuation to Exercise 22.2 in Chapter 3, consider the set offunctions Sm̀ associated with `-by-m Toeplitz matrix; that is hT (x) = Tx,where T = (Ti;j) is a Toeplitz matrix (i.e., Ti;j = Ti+1;j+1 for all i; j).Show that this family has collision probability 2�m. (Note that each `-by-m Toeplitz matrix is speci�ed using `+m� 1 bits.)Guideline: Note that we have eliminated the shifting vector b used inExercise 22.2 of Chapter 3, but this does not e�ect the relevant analysis.Exercise 19: Constructions of Generalized Hashing Families with Bounded Col-lision Property: (See de�nition in Section 6.3.1.3.)1. Using a tree-hashing scheme as in Construction 6.2.13, construct ageneralized hashing ensemble with a (f; 1=f)-collision property, wheref(n) = 2"n" for some " > 0.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

572 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION2. (By Hugo Krawczyk): Show that the block-chaining method (as inConstruction 6.2.11) fails in the current context. That is, there existsa hashing ensemble fhr : f0; 1g2m(jrj) ! f0; 1gm(jrj)g with negligiblecollision probability such that applying Construction 6.2.11 to it (evenwith three blocks) yields an ensemble with high collision probability.Guideline (Part 1): Let fhr : f0; 1g2m(jrj) ! f0; 1gm(jrj)g, be a hash-ing ensemble with collision probability cp. Recall that such ensembleswith m(n) = n=3 and cp(n) = 2�m(n) can be constructed (see Exer-cise 18). Then, consider the function ensemble fhr1;:::;rm(n) : f0; 1g� !f0; 1g2m(n)gn2N, where all ri's are of length n, such that hr1;:::;rm(n)(x) isde�ned as follows1. As in Construction 6.2.13, break x into t def= 2dlog2(jxj=m(n))e consec-utive blocks, denoted x1; :::; xt, and let d = log2 t.2. Let i = 1; :::; t, let yd;i def= xi. For j = d � 1; :::; 1; 0 and i = 1; :::;2j ,let yj;i = hrj (yj+1;2i�1yj+1;2i). The hash value equals (y0;1; jxj).The above functions have description length N def= m(n) � n and mapstrings of length smaller than 2m(n) to strings of length 2m(n). It iseasy to bound the collision probability (for strings of equal length) bythe probability of collision occuring in each of the levels of the tree. Infact, for x1 � � �xt 6= x01 � � �x0t such that xi 6= x0i, it su�ces to bound thesum of the probabilities that yj;di=2d�je = y0j;di=2d�je holds (given thatyj+1;di=2d�(j+1)e 6= y0j+1;di=2d�(j+1)e) for j = d � 1; :::;1; 0. Thus, thisgeneralized hashing ensemble has a (`; �)-collision property, where `(N) =2m(n)�1 and �(N) = m(n) �cp(n). Recalling that we may use m(n) = n=3and cp(n) = 2�m(n), we obtain (using N = n2=3), `(N) = 2(N=3)1=2 � 1 >2(N=4)1=2 and �(N) < (N=`(N)) < 2�(N=4)1=2 (as desired).Guideline (Part 2): Given a hashing family as in the hypothesis, modifyit into fh0r;s : f0; 1g2m ! f0; 1gmg, such that h0r;s(02m) = s, h0r;s(s�m) =0m for both � 2 f0; 1g, and h0r;s(x) = hr(x) for all other x's. Note that thenew family maintains the collision probability of the original one up-to anadditive term of O(2�m). On the other hand, for both � 2 f0; 1g, it holdsthat h0r;s(h0r;s(02m)�m) = h0r;s(s�m) = 0m.Exercise 20: Additional properties required in Proposition 6.4.21: In continu-ation to Exercise 23 of Chapter 3, show that the said function ensemblesatis�es the following two properties:1. All but a negligible fraction of the functions in Sn�1n are 2-to-1.2. There exists a probabilistic polynomial-time algorithm that giveny1; y2 2 f0; 1gn and z1; z2 2 f0; 1gn�1, outputs a uniformly dis-tributed element of fs 2 Sn�1n : hs(yi) = zi 8i 2 f1; 2gg.Guideline: Recall that functions in Sn�1n are described by a pair of ele-ments of the �nite �eld GF(2n) so that the pair (a; b) describes the functionha;b that maps x 2 GF(2n) to the (n � 1)-bit pre�x of the n-bit represen-tation of ax + b, where the arithmetics is of the �eld GF(2n). The �rstcondition follows by observing that the function ha;b is 2-to-1 if and only if

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 573a 6= 0. The second condition follows by observing that ha;b(yi) = zi if andonly if ayi + b = vi for some vi that is a single-bit extension of zi. Thus,generating a pair (a; b) such that ha;b(yi) = zi for both i's, amounts toselecting random single-bit extensions vi's, and (assuming y1 6= y2) solvingthe system fayi + b = vigi=1;2 (for the variables a and b).Exercise 21: Fail-stop signatures require a memory-dependent signing process:In continuation to Section 6.5.5, prove that a secure fail-stop signaturescheme must employ a memory-dependent signing process (as in De�ni-tion 6.4.13).Guideline: Suppose towards the contradiction that there exist a securememoryless fail-stop signature scheme. For every signing-key s 2 f0; 1gn,consider the randomized process Ps in which one �rst selects uniformlyx 2 f0; 1gn, produces a (random) signature y Ss(x), and outputs thepair (x; y). Show that, given polynomially-many samples of Ps, one can�nd (in exponential time) a string s0 2 f0; 1gn such that with probabilityat least 0:99 the statistical distance between Ps and Ps0 is at most 0:01.Thus, a computationally unbounded adversary making polynomially-manysigning queries, can �nd a signing-key that typically produces the samesignatures as the true signer. It follows that either these signatures cannotbe revoked or that the user may also revoke its own signatures.Author's Note: First draft written mainly in May 2000. Major revi-sion completed in Feb. 2002.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

