Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Foundations of Cryptography

(Volume 2 — Basic Applications)

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

August 4, 2002



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

to Dana

©Copyright 1999 by Oded Goldreich.

Permission to make copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and the full citation on the

first page. Abstracting with credit is permitted.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Preface

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906-1995)

Cryptography is concerned with the construction of schemes that withstand
any abuse: Such schemes are constructed so to maintain a desired functional-
ity, even under malicious attempts aimed at making them deviate from their
prescribed functionality.

The design of cryptography schemes is a very difficult task. One cannot rely
on intuitions regarding the typical state of the environment in which the system
operates. For sure, the adversary attacking the system will try to manipulate
the environment into untypical states. Nor can one be content with counter-
measures designed to withstand specific attacks, since the adversary (which acts
after the design of the system is completed) will try to attack the schemes in
ways that are typically different from the ones the designer had envisioned. The
validity of the above assertions seems self-evident, still some people hope that in
practice ignoring these tautologies will not result in actual damage. Experience
shows that these hopes rarely come true; cryptographic schemes based on make-
believe are broken, typically sooner than later.

In view of the above, we believe that it makes little sense to make assumptions
regarding the specific strategy that the adversary may use. The only assump-
tions that can be justified refer to the computational abilities of the adversary.
Furthermore, it is our opinion that the design of cryptographic systems has to
be based on firm foundations; whereas ad-hoc approaches and heuristics are a
very dangerous way to go. A heuristic may make sense when the designer has
a very good idea about the environment in which a scheme is to operate, yet
a cryptographic scheme has to operate in a maliciously selected environment
which typically transcends the designer’s view.

This book is aimed at presenting firm foundations for cryptography. The
foundations of cryptography are the paradigms, approaches and techniques used
to conceptualize, define and provide solutions to natural “security concerns”.
We will present some of these paradigms, approaches and techniques as well
as some of the fundamental results obtained using them. Owur emphasis is on

I11



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

v

the clarification of fundamental concepts and on demonstrating the feasibility of
solving several central cryptographic problems.

Solving a cryptographic problem (or addressing a security concern) is a two-
stage process consisting of a definitional stage and a constructive stage. First, in
the definitional stage, the functionality underlying the natural concern is to be
identified, and an adequate cryptographic problem has to be defined. Trying to
list all undesired situations is infeasible and prone to error. Instead, one should
define the functionality in terms of operation in an imaginary ideal model, and
require a candidate solution to emulate this operation in the real, clearly defined,
model (which specifies the adversary’s abilities). Once the definitional stage is
completed, one proceeds to construct a system that satisfies the definition. Such
a construction may use some simpler tools, and its security is proven relying on
the features of these tools. In practice, of course, such a scheme may need to
satisfy also some specific efficiency requirements.

This book focuses on several archetypical cryptographic problems (e.g., en-
cryption and signature schemes) and on several central tools (e.g., computa-
tional difficulty, pseudorandomness, and zero-knowledge proofs). For each of
these problems (resp., tools), we start by presenting the natural concern un-
derlying it (resp., its intuitive objective), then define the problem (resp., tool),
and finally demonstrate that the problem may be solved (resp., the tool can be
constructed). In the latter step, our focus is on demonstrating the feasibility
of solving the problem, not on providing a practical solution. As a secondary
concern, we typically discuss the level of practicality (or impracticality) of the
given (or known) solution.

Computational Difficulty

The specific constructs mentioned above (as well as most constructs in this area)
can exist only if some sort of computational hardness exists. Specifically, all these
problems and tools require (either explicitly or implicitly) the ability to generate
instances of hard problems. Such ability is captured in the definition of one-way
functions (see further discussion in Section 2.1). Thus, one-way functions is the
very minimum needed for doing most sorts of cryptography. As we shall see,
they actually suffice for doing much of cryptography (and the rest can be done by
augmentations and extensions of the assumption that one-way functions exist).

Our current state of understanding of efficient computation does not allow
us to prove that one-way functions exist. In particular, the existence of one-
way functions implies that AP is not contained in BPP 2 P (not even “on
the average”), which would resolve the most famous open problem of computer
science. Thus, we have no choice (at this stage of history) but to assume that
one-way functions exist. As justification to this assumption we may ounly offer
the combined believes of hundreds (or thousands) of researchers. Furthermore,
these believes concern a simply stated assumption, and their validity follows
from several widely believed conjectures which are central to some fields (e.g.,
the conjecture that factoring integers is hard is central to computational number
theory).



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

As we need assumptions anyhow, why not just assume what we want (i.e., the
existence of a solution to some natural cryptographic problem)? Well, first we
need to know what we want: as stated above, we must first clarify what exactly
we want; that is, go through the typically complex definitional stage. But once
this stage is completed, can we just assume that the definition derived can be
met? Not really: once a definition is derived how can we know that it can at all
be met? The way to demonstrate that a definition is viable (and so the intuitive
security concern can be satisfied at all) is to construct a solution based on a better
understood assumption (i.e., one that is more common and widely believed). For
example, looking at the definition of zero-knowledge proofs, it is not a-priori clear
that such proofs exist at all (in a non-trivial sense). The non-triviality of the
notion was first demonstrated by presenting a zero-knowledge proof system for
statements, regarding Quadratic Residuosity, which are believed to be hard to
verify (without extra information). Furthermore, in contrary to prior beliefs, it
was later shown in that the existence of one-way functions implies that any NP-
statement can be proven in zero-knowledge. Thus, facts which were not known
at all to hold (and even believed to be false), where shown to hold by reduction
to widely believed assumptions (without which most of modern cryptography
collapses anyhow). To summarize, not all assumptions are equal, and so reducing
a complex, new and doubtful assumption to a widely-believed simple (or even
merely simpler) assumption is of great value. Furthermore, reducing the solution
of a new task to the assumed security of a well-known primitive typically means
providing a construction that, using the known primitive, solves the new task.
This means that we do not only know (or assume) that the new task is solvable
but rather have a solution based on a primitive that, being well-known, typically
has several candidate implementations.

Structure and Prerequisites

Our aim is to present the basic concepts, techniques and results in cryptography.
As stated above, our emphasis is on the clarification of fundamental concepts
and the relationship among them. This is done in a way independent of the
particularities of some popular number theoretic examples. These particular
examples played a central role in the development of the field and still offer the
most practical implementations of all cryptographic primitives, but this does
not mean that the presentation has to be linked to them. On the contrary,
we believe that concepts are best clarified when presented at an abstract level,
decoupled from specific implementations. Thus, the most relevant background
for this book is provided by basic knowledge of algorithms (including random-
ized ones), computability and elementary probability theory. Background on
(computational) number theory, which is required for specific implementations
of certain constructs, is not really required here (yet, a short appendix presenting
the most relevant facts is included in this volume so to support the few examples
of implementations presented here).



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Volume 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proofs
Volume 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols
Volume 3: Beyond the Basics

Figure 0.1: Organization of this book

Organization of the book. The book is organized in three parts (see Fig-
ure 0.1): Basic Tools, Basic Applications, and Beyond the Basics. The first vol-
ume contains an introductory chapter as well as the first part (Basic Tools). This
part contains chapters on computational difficulty (one-way functions), pseudo-
randomness and zero-knowledge proofs. These basic tools will be used for the
Basic Applications of the second part, which consist of Encryption, Signatures,
and General Cryptographic Protocols.

The partition of the book into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple years, and publish it without waiting for the third part.

The current manuscript. The current manuscript consists of fragments of a
chapter on encryption schemes. These fragments provide a draft of the first three
sections of this chapter, covering the basic setting, definitions and constructions.
Also included is a plan of the fourth section (i.e., beyond eavesdropping security),
fragments for the Miscellaneous section of this chapter, and the above extracts
from the preface of Volume 1.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Part 11

Basic Applications

357



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Appendix C

Corrections and Additions
to Volume 1

In this appendix we list a few corrections and additions to the previous chapters
of this work, which appeared in [124].

C.1 Enhanced Trapdoor Permutations

Recall that a collection of trapdoor permutations, as defined in Definition 2.4.5, is
a collection of permutations, {py }«, armed with four probabilistic polynomial-
time algorithms, denoted here by I, S, F and B (for indez, sample, forward and
backward), such that the following (syntactic) conditions hold

1. On input 1", algorithm I selects a random n-bit long index « of a permu-
tation p,, along with a corresponding trapdoor ;

2. On input «, algorithm S samples the domain of p,, returning a random
element in it;

3. For z in the domain of p,, given « and z, algorithm F' returns p,(z) (i.e.,
F(a,z) = pa(z));

4. For y in the range of p, if («, 7) is a possible output of I(1™) then, given
7 and y, algorithm B returns p_(y) (i.e., B(1,y) = p,*(v)).

The hardness condition in Definition 2.4.5 refers to the difficulty of inverting
Po On a random element of its range, when given only the range-element and
a. That is, let I;(1™) denote the first element in the output of I(1™) (i.e., the
index), then for every probabilistic polynomial-time algorithm A (resp., every
non-uniform family of polynomial-size circuit A = {A,},), every polynomial p
and all sufficiently large n’s

PHAL (1), pry 1oy (S(L (1)) = S(L (™)) < % (1)

665



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

666 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

Namely, A (resp., 4,,) fails to invert p, on p,(x), where a and = are selected by
I and S as above. An equivalent way of writing Eq. (C.1) is

PrA(L(17), S'(1L(17), Bn)) = pr, 1) (' (1 (17)), Rn)] < o) (C.2)

where S’ is the residual two-input (deterministic) algorithm obtained from S
when treating the coins of the latter as an auxiliary input, and R,, denote the
distribution of the coins of S on n-bit inputs.

Although the above definition suffices for many applications, in some cases
we will need an enhanced hardness condition. Specifically, we will require that
it is hard to invert f, on a random input z (in the domain of f,) even when
given the coins used by S in the generation of x. (Note that given these coins
(and the index «), the resulting domain element x is easily determined.)

Definition C.1.1 (enhanced trapdoor permutations): Let {fy : Dy — Dy} be
a collection of trapdoor permutations as in Definition 2.4.5. We say that this
collection is enhanced (and call it an enhanced collection of trapdoor permuta-
tions) if for every probabilistic polynomial-time algorithm A every polynomial p
and all sufficiently large n’s

PrA(L(1"), Rn) = pry1m)(S' (1 (17)), Rn)] < ) (C.3)

where S’ is as above. The non-uniform version is defined analogously.

We comment that the RSA collection (presented in Section ?? and further dis-
cussed in Section ?7?) is in fact an enhanced collection of trapdoor permutations,
provided that RSA is hard to invert in the same sense as assumed in Section 77.
In contrast, the Rabin Collection (as defined in Section 2.4.3), does not satisfy
Definition C.1.1 (because the coins of the samling algorithm give away a modu-
lar square root of the domain element). Still, the Rabin Collection can be easily
modify to yield an enhanced collection of trapdoor permutations, provided that
factoring is hard (in the same sense as assumed in Section 2.4.3). Actually, we
present two such possible modifications:

1. Modifying the functions. Rather than squaring modulo the composite IV,
we consider the function of raising to the power of 4 modulo N. It can
be shown that the resulting permuations over the quadratic residues mod-
ulo N satisfy Definition C.1.1, provided that factoring is hard. Specifically,
given N and a random r € Zy, ability to extract the 4th root of 72 mod N
(modulo N), yields ability to factor N, where the algorithm is similar to
the one used in order to establish the intractability of extracting square
roots.

2. Changing the domains. Rather than considering the permutation induced
(by the modoluar squaring function) on the set @,, of the quadratic residues
modulo N, we consider the permulations induced on the set M,,, where



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 667

M,, contains all integers is {1, ..., N/2} that have Jacobi symbol modulo N
that equals 1. Note that, as in case of @),, each quadratic residue has a
unique square root in M,, (because exactly two square roots have Jacobi
symbol that equals 1 and their sum equals N).! However, unlike Qy,
membership in My can be determined in polynomial-time (when given N
without its factorization). Thus, sampling My can be done in probabilistic
polynomial-time.

Actually, squaring modulo IV is a 1-1 mapping of My to Q. In order to
obtain a permutation over My, we modify the function a little such that is
the result of modular squaring is bigger than N/2 then we use its additive
inverse (i.e., rather than y > N/2, we output N — y).

We comment that the special case of Definition 2.4.5 in which the domain of
fa equals {0,1}°l is a special case of Definition C.1.1 (because, without loss of
generality, the sampling algorithm may satisfy S’(a,r) = r). Clearly, the above
examples can be slightly modified to fit this special case.

Correction to Volume 1: Theorems 4.10.10, 4.10.14 and 4.10.16 (which in
turn are based on Remark 4.10.6) refer to the existence of certain non-interactive
zero-knowledge proofs. The claimed non-interactive zero-knowledge proof sys-
tems can be constructed assuming the existence of an enhanced collection of
trapdoor permutations. However, in contrast to the original text, it is not known
how to derive these proof systems based on the existence of a (regular) collection
of trapdoor permutations.

C.2 Recent developments regarding zero-knowledge

A recent result by Barak [12] calls for re-evaluation of the significance of all nega-
tive results regarding black-box zero-knowledge? (as defined in Definition 4.5.10).
In particular, relying on standard intractability assumptions, Barak presents
round-efficient public-coin zero-knowledge arguments for NP (using non-black-
box simulators), whereas only BPP can have such black-box zero-knowledge
arguments (see comment following Theorem 4.5.11). Interestingly, Barak’s sim-
ulator works in strict (rather than expected) probabilistic polynomial-time, ad-
dressing an open problem mentioned in Section 4.12.3. Barak’s result is further
described in Section C.2.2

In Section C.2.1, we report on recent progress achieved with respect to preser-
vation of zero-knowledge under concurrent composition. We seize the oppertu-
nity to provide a wider perspective on the question of preservation of zero-
knowledge under various forms of protocol composition operations.

LAs in case of @y, we use the fact that —1 has Jacobi symbol 1.

2 Specifically, one should reject the interpretations of these results, which were offered
in Sections 4.5.0, 4.5.4.0 and 4.5.4.2, by which such results indicate inherent limitations of
zero-knowledge.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

668 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

We mention that the two problems discussed in this section (i.e., the “preser-
vation of security under various forms of protocol composition” and the “use of of
the adversary’s program within the proof of security”) arise also with respect to
the security of other cryptographic primitives. Thus, the study of zero-knowledge
proofs serve as a good bench-mark for the study of various problems regarding
cryptographic protocols.

C.2.1 Composing zero-knowledge protocols

A natural question regarding zero-knowledge proofs (and arguments) is whether
the zero-knowledge condition is preserved under a variety of composition oper-
ations. Three types of composition operation were considered in the literature:
sequential composition, parallel composition and concurrent composition. We
note that the preservation of zero-knowledge under these forms of composition
is not only interesting on its own sake, but rather also sheds light of the preser-
vation of the security of general protocols under these forms of composition.

We stress that when we talk of composition of protocols (or proof systems)
we mean that the honest users are supposed to follow the prescribed program
(specified in the protocol description) that refers to a single execution. That is,
the actions of honest parties in each execution are independent of the messages
they received in other executions. The adversary, however, may coordinate the
actions it takes in the various executions, and in particular its actions in one
execution may depend also on messages it received in other executions.

Let us motivate the asymmetry between the independence of executions as-
sumed of honest parties but not of the adversary. Coordinating actions in dif-
ferent executions is typically difficult but not impossible. Thus, it is desirable
to use composition (as defined above) rather than to use protocols that include
inter-execution coordination-actions, which require users to keep track of all ex-
ecutions that they perform. Actually, trying to coordinate honest executions is
even more problematic than it seems because one may need to coordinate exe-
cutions of different honest parties (e.g., all employees of a big cooperation or an
agency under attack), which in many cases is highly unrealistic. On the other
hand, the adversary attacking the system may be willing to go into the extra
trouble of coordinating its attack in the various executions of the protocol.

For T € {sequential,parallel,concurrent}, we say that a protocol is
T'-zero-knowledge if it is zero-knowledge under a composition of type T'. The
definitions of T-zero-knowledge are derived from the standard definition by con-
sidering appropriate adversaries (i.e., adversarial verifiers); that is, adversaries
that can initiate a polynomial number of interactions with the prover, where
these interactions are scheduled according to the type T'.3 The corresponding
simulator (which, as usual, interacts with nobody) is required to produce an

3Without loss of generality, we may assume that the adversary never violates the schedul-
ing condition; it may instead send an illegal message at the latest possible adequate time.
Furthermore, without loss of generality, we may assume that all the adversary’s messages are
delivered at the latest possible adequate time.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 669

output that is computationally indistinguishable from the output of such a type
T adversary.

C.2.1.1 Sequential Composition

In this case, the protocol is invoked (polynomially) many times, where each
invocation follows the termination of the previous one. At the very least, security
(e.g., zero-knowledge) should be preserved under sequential composition, or else
the applicability of the protocol is highly limited (because one cannot safely use
it more than once).

We mention that whereas the “simplified” version (i.e., without auxiliary in-
puts, as in Definition 4.3.2) is not closed under sequential composition (cf. [131]),
the actual version (i.e., with auxiliary inputs, as in Definition 4.3.10) is closed
under sequential composition (see Section 4.3.4). We comment that the same
phenomena arises when trying to use a zero-knowledge proof as a sub-protocol
inside larger protocols. Indeed, it is for these reasons that the augmentation of
the “most basic” definition by auxiliary inputs was adopted in all subsequent
works.*

C.2.1.2 Parallel Composition

In this case, (polynomially) many instances of the protocol are invoked at the
same time and proceed at the same pace. That is, we assume a synchronous
model of communication, and consider (polynomially) many executions that are
totally synchronized so that the ith message in all instances is sent exactly (or
approximately) at the same time. (Natural variants on this model are discussed
below as well as at the end of Section C.2.1.3.)

It turns out that, in general, zero-knowledge is not closed under parallel com-
position. A simple counter-example (to the “parallel composition conjecture”)
is depicted in Figure C.1. This counter-example, which is adapted from [131],
consists of a simple protocol that is zero-knowledge (in a strong sense), but is
not closed under parallel composition (not even in a very weak sense).

We comment that, at the 1980’s, the study of parallel composition was inter-
preted mainly in the context of round-efficient error reduction (cf. [100, 131]);
that is, the construction of full-fledge zero-knowledge proofs (of negligible sound-
ness error) by composing (in parallel) a basic zero-knowledge protocol of high
(but bounded away from 1) soundness error. Since alternative ways of con-
structing constant-round zero-knowledge proofs (and arguments) were found
(ct. [130, 99, 58]), interest in parallel composition (of zero-knowledge protocols)
has died. In retrospect, this was a conceptual mistake, because parallel compo-
sition (and mild extensions of this notion) capture the preservation of security in
a fully synchronous (or almost-fully synchronous) communication network. We

4Interestingly, the preliminary version of Goldwasser, Micali and Rackoff’s work [151] used
the “most basic” definition, whereas the final version of this work used the augmented def-
inition. In some works, the “most basic” definition is used for simplicity, but typically one
actually needs the augmented definition.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

670 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

Consider a party P holding a random (or rather pseudorandom) function f:{0,1}?" —
{0,1}™, and willing to participate in the following protocol (with respect to security
parameter n). The other party, called A for adversary, is supposed to send P a binary
value v € {1, 2} specifying which of the following cases to execute:

For v = 1: Party P uniformly selects a € {0,1}™, and sends it to A, which is sup-
posed to reply with a pair of n-bit long strings, denoted (8,). Party P checks
whether or not f(afB) = 7. In case equality holds, P sends A some secret
information.

For v = 2: Party A is supposed to uniformly select a € {0,1}", and sends it to P,
which selects uniformly 3 € {0,1}", and replies with the pair (8, f(af3)).

Observe that P’s strategy is zero-knowledge (even w.r.t auxiliary-inputs): Intuitively,
if the adversary A chooses the case v = 1, then it is infeasible for A to guess a passing
pair (8,7) with respect to a random « selected by P. Thus, except with negligible
probability (when it may get secret information), A does not obtain anything from
the interaction. On the other hand, if the adversary A chooses the case v = 2, then
it obtains a pair that is indistinguishable from a uniformly selected pair of n-bit long
strings (because § is selected uniformly by P, and for any « the value f(af) looks
random to A).

In contrast, if the adversary A can conduct two concurrent® executions with P, then
it may learn the desired secret information: In one session, A sends v = 1 while in the
other it sends v = 2. Upon receiving P’s message, denoted «, in the first session, A
sends it as its own message in the second session, obtaining a pair (8, f(a8)) from P’s
execution of the second session. Now, A sends the pair (8, f(af)) to the first session
of P, this pair passes the check, and so A obtains the desired secret.

?Dummy messages may be added (in both cases) in order to obtain the above scheduling in the perfectly
parallel case.

Figure C.1: A counter-example (adapted from [131]) to the parallel repe-
tition conjecture for zero-knowledge protocols.

note that the almost-fully synchronous communication model is quite realistic
in many settings, although it is certainly preferable not to assume even weak
synchronism.

Although, in general, zero-knowledge is not closed under parallel composi-
tion, under standard intractability assumptions (e.g., the intractability of fac-
toring), there exists zero-knowledge proofs for AP that are closed under parallel
composition. Furthermore, these protocols have a constant number of rounds
(cf. [125] for proofs and [90] for arguments).> Both results extend also to concur-
rent composition in a synchronous communication model, where the extension
is in allowing protocol invocations to start at different (synchronous) times (and
in particular executions may overlap but not run simultaneously).

We comment that parallel composition is problematic also in the context of
reducing the soundness error of arguments (cf. [30]), but our focus here is on

5In case of parallel-zero-knowledge proofs, there is no need to specify the soundness error
because it can always be reduced via parallel composition. As mentioned above, this is not
the case with respect to arguments.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 671

the zero-knowledge aspect of protocols regardless if they are proofs, arguments
or neither.

C.2.1.3 Concurrent Composition (with and without timing)

Concurrent composition generalizes both sequential and parallel composition.
Here (polynomially) many instances of the protocol are invoked at arbitrary
times and proceed at arbitrary pace. That is, we assume an asynchronous (rather
than synchronous) model of communication.

In the 1990’s, when extensive two-party (and multi-party) computations be-
came a reality (rather than a vision), it became clear that it is (at least) desirable
that cryptographic protocols maintain their security under concurrent compo-
sition (cf. [86]). In the context of zero-knowledge, concurrent composition was
first considered by Dwork, Naor and Sahai [90]. Actually, two models of concur-
rent composition were considered in the literature, depending on the underlying
model of communication (i.e., a purely asynchronous model and an asynchronous
model with timing). Both models cover sequential and parallel composition as
special cases.

Concurrent composition in the pure asynchronous model. Here we re-
fer to the standard model of asynchronous communication. In comparison to
the timing model, the pure asynchronous model is a simpler model and using it
requires no assumptions about the underlying communication channels, but it
seems harder to construct concurrent zero-knowledge protocols for this model.
In particular, for a while it was not known whether concurrent zero-knowledge
proofs for NP exist at all (in this model). Under standard intractability as-
sumptions (e.g., the intractability of factoring), this question was affirmatively
resolved by Richardson and Kilian [226]. Following their work, research has fo-
cused on determining the round-complexity of concurrent zero-knowledge proofs
for N'P. This question is still opened, and the current state of the art regarding
it is as follows:

e Under standard intractability assumptions, every language in NP has a
concurrent zero-knowledge proof with almost-logarithmically many rounds
(ct. [218], building upon [172], which in turn builds over [226]). Further-
more, the zero-knowledge property can be demonstrated using a black-box
simulator (see definition in Section 4.5.4.2 and C.2.2).

e Black-box simulator cannot demonstrated the concurrent zero-knowledge
property of non-trivial proofs (or arguments) having significantly less than
logarithmically-many rounds (cf. Canetti et. al. [66]).5

6By mnon-trivial proof systems we mean ones for languages outside BPP, whereas by
significantly less than logarithmic we mean any function f : NN satisfying f(n) =
o(logn/loglogn). In contrast, by almost-logarithmically we mean any function f satisfying

J(n) = w(iogn).



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

672 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

e Recently, Barak [12] demonstrated that the “black-box simulation bar-
rier” can be bypassed. With respect to concurrent zero-knowledge he only
obtains partial results: constant-round zero-knowledge arguments (rather
than proofs) for NP that maintain security as long as an a-priori bounded
(polynomial) number of executions take place concurrently. (The length
of the messages in his protocol grows linearly with this a-priori bound.)

Thus, it is currently unknown whether or not constant-round arguments for N'P
may be concurrent zero-knowledge (in the pure asynchronous model).

Concurrent composition under the timing model: A model of naturally-
limited synchronousness (which certainly covers the case of parallel composition)
was introduced by Dwork, Naor and Sahai [90]. Essentially, they assume that
each party holds a local clock such that the relative clock rates are bounded
by an a-priori known constant, and consider protocols that employ time-driven
operations (i.e., time-out in-coming messages and delay out-going messages).
The benefit of the timing model is that it is known to construct concurrent zero-
knowledge protocols for it. Specifically, using standard intractability assump-
tions, constant-round arguments and proofs that are concurrent zero-knowledge
under the timing model do exist (cf. [90] and [125], respectively). The disadvan-
tages of the timing model are discussed next.

The timing model consists of the assumption that talking about the actual
timing of events is meaningful (at least in a weak sense) and of the introduction
of time-driven operations. The timing assumption amounts to postulating that
each party holds a local clock and knows a global bound, denoted p > 1, on the
relative rates of the local clocks.” Furthermore, it is postulated that the parties
know a (pessimistic) bound, denoted A, on the message-delivery time (which
also includes the local computation and handling times). In our opinion, these
timing assumptions are most reasonable, and are unlikely to restrict the scope
of applications for which concurrent zero-knowledge is relevant. We are more
concerned about the effect of the time-driven operations introduced in the timing
model. Recall that these operations are the time-out of in-coming messages and
the delay of out-going messages. Furthermore, typically the delay period is at
least as long as the time-out period, which in turn is at least A (i.e., the time-out
period must be at least as long as the pessimistic bound on message-delivery time
so not to disrupt the proper operation of the protocol). This means that the use
of these time-driven operations yields slowing down the execution of the protocol
(i.e., running it at the rate of the pessimistic message-delivery time rather than
at the rate of the actual message-delivery time, which is typically much faster).
Still, in absence of more appealing alternatives (i.e., a constant-round concurrent
zero-knowledge protocol for the pure asynchronous model), the use of the timing
model may be considered reasonable. (We comment than other alternatives to
the timing-model include various set-up assumptions; cf. [65, 81].)

"The rate should be computed with respect to reasonable intervals of time; for example,
for A as defined below, one may assume that a time period of A units is measured as A’ units
of time on the local clock, where A/p < A" < pA.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 673

Back to parallel composition: Given our opinion about the timing model, it
is not surprising that we consider the problem of parallel composition almost as
important as the problem of concurrent composition in the timing model. Firstly,
it is quite reasonable to assume that the parties’ local clocks have approximately
the same rate, and that drifting is corrected by occasional clock synchronization.
Thus, it is reasonable to assume that the parties have approximately-good es-
timate of some global time. Furthermore, the global time may be partitioned
into phases, each consisting of a constant number of rounds, so that each party
wishing to execute the protocol just delays its invocation to the beginning of the
next phase. Thus, concurrent execution of (constant-round) protocols in this
setting amounts to a sequence of (time-disjoint) almost-parallel executions of
the protocol. Consequently, proving that the protocol is parallel zero-knowledge
suffices for concurrent composition in this setting.

Relation to resettable zero-knowledge. Going to the other extreme, we
mention that there is a model of zero-knowledge that is even stronger than con-
current zero-knowledge (even in the pure asynchronous model). Specifically, “re-
settable zero-knowledge” as defined in [65], implies concurrent zero-knowledge.

C.2.2 Using the adversary’s program in the proof of secu-
rity

Recall that the definition of zero-knowledge proofs states that whatever an effi-
cient adversary can compute after interacting with the prover, can actually be
efficiently computed from scratch by a so-called simulator (which works without
interacting with the prover). Although the simulator may depend arbitrarily on
the adversary, the need to present a simulator for each feasible adversary seems
to require the presentation of a universal simulator that is given the adversary’s
strategy (or program) as another auxiliary input. The question addressed in this
section is how can the universal simulator use the adversary’s program.

The adversary’s program (or strategy) is actually a function determining
for each possible view of the adversary (i.e., its input, random choices and the
message it has received so far) which message will be sent next. Thus, we iden-
tify the adversary’s program with this next-message function. As stated above,
until very recently, all universal simulators (constructed towards demonstrat-
ing zero-knowledge properties) have used the adversary’s program (or rather
its next-message function) as a black-box (i.e., the simulator invoked the next-
message function on a sequence of arguments of its choice). Furthermore, in
view of the presumed difficulty of “reverse engineering” programs, it was com-
monly believed that nothing is lost by restricting attention to simulators, called
black-box simulators, that only make black-box usage of the adversary’s program.
Consequently, Goldreich and Krawczyk conjectured that impossibility results
regarding black-box simulation represent inherent limitations of zero-knowledge
itself, and studied the limitations of the former [131].

In particular, they showed that parallel composition of the protocol



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

674 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

of Construction 4.4.7 (as well as of any constant-round public-coin
protocol) cannot be proven to be zero-knowledge using a black-box
stmulator, unless the language (i.e., 3-Colorability) is in BPP. In
fact their result refers to any constant-round public-coin protocol
with negligible soundness error, regardless of how such a protocol
is obtained. This result was taken as strong evidence towards the
conjecture that constant-round public-coin protocol with negligible
soundness error cannot be zero-knowledge (unless the language is in

BPP).

Similarly, as mentioned in Section C.2.1.3, it was shown that pro-
tocols of sub-logarithmic number of rounds cannot be proven to be
concurrent zero-knowledge via a black-box simulator [66], and this
was taken as evidence towards the conjecture that such protocols
cannot be concurrent zero-knowledge.

In contrast to these conjectures and supportive evidence, Barak showed how
to constructed non-black-box simulators and obtained several results that were
known to be unachievable via black-box simulators [12]. In particular, un-
der standard intractability assumption (see also [14]), he presented constant-
round public-coin zero-knowledge arguments with negligible soundness error for
any language in A"P. (Moreover, the simulator runs in strict polynomial-time,
which is impossible for black-box simulators of non-trivial constant-round pro-
tocols [16].) Furthermore, this protocol preserves zero-knowledge under a fixed®
polynomial number of concurrent executions, in contrast to the result of [66]
(regarding black-box simulators) that holds also in that restricted case. Thus,
Barak’s result calls for the re-evaluation of many common believes. Most con-
cretely, it says that results regarding black-box simulators do not reflect inherent
limitations of zero-knowledge (but rather an inherent limitation of a natural way
of demonstrating the zero-knowledge property). Most abstractly, it says that
there are meaningful ways of using a program other than merely invoking it as
a black-box.

Does this means that a method was found to “reverse engineer” programs
or to “understand” them? We believe that the answer is negative. Barak [12]
is using the adversary’s program in a significant way (i.e., more significant than
just invoking it), without “understanding” it. So how does he use the program?

The key idea underlying Barak’s argument system [12] is to have the prover
prove that either the original NP-assertion is valid or that he (i.e., the prover)
“knows the verifier’s residual strategy” (in the sense that it can predict the next
verifier message). Indeed, in a real interaction (with the honest verifier), it is in-
feasible for the prover to predict the next verifier message, and so computational-
soundness of the protocol follows. However, a simulator that is given the code of
the verifier’s strategy (and not merely oracle access to that code), can produce
a valid proof of the disjunction by properly executing the sub-protocol using its

8The protocol depends on the polynomial bounding the number of executions, and thus
is not known to be concurrent zero-knowledge (because the latter requires to fix the protocol
and then consider any polynomial number of concurrent executions).



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 675

knowledge of an NP-witness for the second disjunctive. The simulation is com-
putational indistinguishable from the real execution, provided that one cannot
distinguish an execution of the sub-protocol in which one NP-witness (i.e., an
NP-witness for the original assertion) is used from an execution in which the
second NP-witness (i.e., an NP-witness for the auxiliary assertion) is use. That
is, the sub-protocol should be a witness indistinguishable argument system (see
Sections 4.6 and 4.8). We warn the reader that the actual implementation of
the above idea requires overcoming several technical difficulties (cf. [12, 14]).

Perspective. In retrospect, taking a wide perspective, it should not come as
a surprise that the program’s code yields extra power beyond black-box access
to it. Feeding a program with its own code (or part of it) is the essence of
the diagonalization technique, and this too is done without “reverse engineer-
ing”. Furthermore, various non-black-box techniques have appeared before in
the cryptographic setting, but they were used in the more natural context of
devising an attack on an (artificial) insecure scheme (e.g., towards proving the
failure of the “Random Oracle Methodology” [64] and the impossibility of soft-
ware obfuscation [15]). In contrast, in [12] (and [13]) the code of the adversary
is being used within a sophisticated proof of security. What we wish to highlight
here is that non-black-box usage of programs is relevant also to proving (rather
than to disproving) the security of systems.

Digest: Witness Indistinguishability and the FLS-Technique

The above description (of [12]), as well as several other sophisticated construc-
tions of zero-knowledge protocols (e.g., [98, 226]), makes crucial use of a tech-
nique introduced by Feige, Lapidot and Shamir [98], which in turn is based on
the notion of witness indistinguishability (introduced by Feige and Shamir [100]).
Below, we will refer to strong witness indistinguishable protocols as defined in
Definition 4.6.2. This technique, hereafter referred to as the FLS-technique, was
used in Construction 4.10.12, but we wish to further discuss it below.
Following is a sketchy description of a special case of the FLS-technique,
whereas the abovementioned application uses a more general version (which
refers to proofs of knowledge, as defined in Section 4.7).° In this special case,
the technique consists of the following construction schema, which uses (strong)
witness indistinguishable protocols for AP in order to obtain zero-knowledge
protocols for NP. On common input z € L, where L = Lg is the NP-set
defined by the witness relation R, the following two steps are performed:

1. The parties generate an instance x’ for an auxiliary NP-set L', where L'
is defined by the witness relation R’. The generation protocol in use must
satisfy two conditions:

9In the general case, the generation protocol may generate instances ' in L', but it is
infeasible for the prover to obtain a corresponding witness (i.e., a w’ such that (z/,w’) € R'). In
the second step, the sub-protocol in use ought to be a proof of knowledge, and computational-
soundness of the main protocol will follows (because otherwise the prover, using a knowledge
extractor, can obtain a witness for o’ € L').



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

676 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1

(a) If the verifier follows its prescribed strategy then no matter which
feasible strategy is used by the prover, with high probability, the
outcome z’ is a NO-instance of L'.

(b) Loosely speaking, it is feasible to generate a transcript of the genera-
tion protocol that is computationally indistinguishable from the real
interaction along with an NP-witness for the outcome of the protocol.

2. The parties execute a strong witness indistinguishable protocol for the
set L' defined by the witness relation R" = {((y,v'),(z,2")) : (y,2) €
RV (y',2")€ R'}. The sub-protocol is such that the corresponding prover
can be implemented in probabilistic polynomial-time given an NP-witness
for (y,y') € L". The sub-protocol is invoked on common input (z,z’),
where z’ is the outcome of Step 1, and the sub-prover is invoked with the
corresponding NP-witness as auxiliary input (i.e., with (w, \), where w is
the NP-witness for x given to the main prover).

The computational-soundness of the above protocol follows by Property (a) of
the generation protocol (i.e., with high probability «' € L', and so x € L by the
soundness of the protocol used in Step 2). To demonstrate the zero-knowledge
property, we first generate a simulated transcript of Step 1 (with outcome z' €
L’) along with an adequate NP-witness (i.e., w’ such that (2’,w') € L'), and
then emulates Step 2 by feeding the sub-prover strategy with the NP-witness
(A, w"). Combining Property (b) of the generation protocol and the witness
indistinguishability property of the protocol used in Step 2, the simulation is
indistinguishable from the real execution.

C.3 Miscellaneous

C.3.1 Additional Corrections

1. In Definition 4.10.15, the adaptive zero-knowledge condition should be
quantified only over efficiently computable input-selection strategies. The
revised form is presented in Definition 5.4.22.

2. Regarding Constriction 4.10.7 and the proof of Proposition 4.10.9: The
current description in terms of two mappings w1,y is confusing and even
inaccurate. Instead one should identify the rows (resp., columns) of H with
[n] and use one permutation m over [n] (which supposedly maps the vertices
of G to those of H). Alternatively, one may compose this permutation
7 with the two (1-1) mappings v;’s (where ¢; : [n] — [r3]), and obtain
related m;’s (i.e., m;(v) = v;(w(v))), which should be used as in the original
text.

C.3.2 More on Remark 4.10.6

In continuation to Remark 4.10.6 and following [37], we briefly discuss the issues
that arise when wishing to extend the construction to arbitrary trapdoor permu-



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.3. MISCELLANEOUS 677

tations. Recall that Remark 4.10.6 focuses on a family of trapdoor permutations
of the form {f, : {0,1}*l — {0, 1}‘“|}a€7, where T is efficiently recognizable.
Unfortunately, no such family is known, and thus we first extend the treatment
to the case in which 7 is not necessarily efficiently recognizable. The problem
we encounter is that the prover may select (and send along) a function that
is not in the family (i.e., an a not in I). In such a case, the function is not
necessarily 1-1, and consequently, the soundness property may be violated. This
concern can be addressed by using a simple non-interactive (zero-knowledge)
proof that the function is “typically 1-1” (or, equivalently, is “almost onto the
designated range”). The proof proceeds by presenting inverses (under the func-
tion) of random elements specified in the reference string. Note that, for any
fixed polynomial p, we can only prove that the function is 1-1 on at least a
1 —(1/p(n)) of the designated range, but this suffices for moderate soundness
of the entire proof system (which in turn can be amplified by repetitions). For
further details, consult [37].

Although the known candidate trapdoor permutations can be modified to fit
the above form, we wish to further generalize the result so that any enhanced
trapdoor permutation (as defined in Definition C.1.1) can be used. This can be
done by letting the reference string consist of the coin-sequences used by the
domain-sampling algorithm (rather than of elements of the function’s domain).
By virtue of the enhanced hardness condition (i.e., Eq. (C.3)), the security of
the hardcore is preserved, and so is the zero-knowledge property.

As stated at the end of Section C.1, in contrast to what was claimed in
Remark 4.10.6, we do not known how to extend the construction to arbitrary
(rather than enhanced) trapdoor permutation.

C.3.3 Additional Comments

1. In continuation to Sections 4.7 and 4.9.2, we mention that the round-
efficient argument system of [99] is actually an “argument of knowledge”
(with negligible error).

2. We mention that the notions of strong witness indistinguishability (Defini-
tion 4.6.2) and strong proofs of knowledge (Section 4.7.6), and the Hidden
Bit Model (Section 4.10.2) have first appeared in early versions of this
work.

C.3.4 Typos etc

L. In the guideline for Exercise 11 of Chapter 2, the term Ecyc;(U,)] should
be E[cyc;(Un)]. In the exercise itself, one should also address the case in
which cyc,(z) is undefined for some a’s.



Index

Author Index
Adleman, L., 412
Blum, M., 413
Diffie, W., 412
Goldwasser, S., 412, 413
Hellman, M.E., 412
Lipton, R., 413
Merkle, R.C., 412
Micali, S., 412, 413
Rivest, R.L., 412
Shamir, A., 412
Shannon, C.E., 369, 412
Yao, A.C., 413

Arguments, see Interactive Proofs
Averaging Argument, see Techniques

Chinese Reminder Theorem, 406

Claw-free Pairs, see One-Way Func-
tions

Collision-Free Hashing, see Hashing

Complexity classes

PCP, see Probabilistically Check-

able Proofs
Composite numbers
Blum integers, see Blum inte-
gers
Computational Difficulty, see One-
Way Functions
Computational Indistinguishability,
372, 412
by circuits, 372-383
Computational models
interactive machines, see inter-
active machines

non-determinism, see non-determinism

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

non-uniform, see non-uniform com-

plexity

oracle machines, see oracle ma-
chines

probabilistic machines, see prob-
abilistic machines

Discrete Logarithm Problem, see DLP
function
DLP, see DLP function

Encryption Schemes, 365421
active attacks, 408-411
asymmetric, 367
Basic Setting, 365-368
Block-Ciphers, 395405
Definitions, 369-391

indistinguishability of encryptions,

369, 372-373
multiple messages, 379-383
non-malleability, 408, 410411
passive attacks, 408—410
perfect privacy, 369
Private-Key, 366-368, 370, 371,
392, 396-399
Public-Key, 367-368, 371, 399—
407
Randomized RSA, 402-403
Semantic Security, 369-372
Stream-Ciphers, 392-395
symmetric, 367
the mechanism, 367-368
uniform-complexity treatment,
383-391

Factoring integers, 407
Fiat—Shamir Identification Scheme,
see Identification Schemes



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

INDEX

Hard-Core Predicates, see One-Way
Functions
Hashing
Universal, see Hashing functions
Hybrid Argument, see Techniques

Interactive Proofs

Zero-Knowledge, see Zero-Knowledge
P

as a class, see Complexity classes

the notion, see Interactive Proofs

Message authentication, 409

NIZK, see Zero-Knowledge
Noun-Interactive Zero-Knowledge, see
Zero-Knowledge
non-uniform complexity, 369-383, 391
NP
as a class, see Complexity classes
as a proof system, see Interac-
tive Proofs
versus P, see P vs NP Question

One-Way Functions, 409
non-uniform hardness, 391, 397
One-Way Permutations
hard-core, 399-407
modular squaring, 405-407
RSA, 402
with trapdoor, 391, 399-407, 409

PCP, see Probabilistically Checkable
Proofs
Probability ensembles, 370
efficiently constructible, 383—-391
Proofs of Identity, see Identification
Schemes
Proofs of Knowledge
Ability, see Proofs of Ability
Protocols, see Cryptographic Proto-
cols
Pseudorandom Functions, 397
non-uniform hardness, 397-398
Pseudorandom Generators, 392

23

Computational Indistinguishabil-
ity, see Computational In-
distinguishability

non-uniform hardness, 382

Rabin function
hard-core, 407
Random Oracle Model, see Random
Oracle Methodology
Reducibility Argument, see Techniques
RSA function
hard-core function, 402

Signatures, see Signature Schemes
Simulation paradigm, see Techniques

Techniques
Averaging Argument, 376
Hybrid Argument, 381, 390, 412
Reducibility Argument, 375, 377,
391, 396, 401
the simulation paradigm, 370,
412
Trapdoor Permutations, see One-Way
Permutations

Zero-Knowledge
Proofs of Knowledge, see Proofs
of Knowledge
Witness Hiding, see Witness Hid-
ing
Witness Indistinguishability, see
Witness Indistinguishabil-
ity
ZK
as a class, see Complexity classes
the notion, see Zero-Knowledge
ZKIP, see Zero-Knowledge

See copyright notice.



