
Foundations of Cryptography(Volume 2 { Basic Applications)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.August 4, 2002

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Ito Dana

cCopyright 1999 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for pro�t orcommercial advantage and that new copies bear this notice and the full citation on the�rst page. Abstracting with credit is permitted.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Preface It is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)Cryptography is concerned with the construction of schemes that withstandany abuse: Such schemes are constructed so to maintain a desired functional-ity, even under malicious attempts aimed at making them deviate from theirprescribed functionality.The design of cryptography schemes is a very di�cult task. One cannot relyon intuitions regarding the typical state of the environment in which the systemoperates. For sure, the adversary attacking the system will try to manipulatethe environment into untypical states. Nor can one be content with counter-measures designed to withstand speci�c attacks, since the adversary (which actsafter the design of the system is completed) will try to attack the schemes inways that are typically di�erent from the ones the designer had envisioned. Thevalidity of the above assertions seems self-evident, still some people hope that inpractice ignoring these tautologies will not result in actual damage. Experienceshows that these hopes rarely come true; cryptographic schemes based on make-believe are broken, typically sooner than later.In view of the above, we believe that it makes little sense to make assumptionsregarding the speci�c strategy that the adversary may use. The only assump-tions that can be justi�ed refer to the computational abilities of the adversary.Furthermore, it is our opinion that the design of cryptographic systems has tobe based on �rm foundations; whereas ad-hoc approaches and heuristics are avery dangerous way to go. A heuristic may make sense when the designer hasa very good idea about the environment in which a scheme is to operate, yeta cryptographic scheme has to operate in a maliciously selected environmentwhich typically transcends the designer's view.This book is aimed at presenting �rm foundations for cryptography. Thefoundations of cryptography are the paradigms, approaches and techniques usedto conceptualize, de�ne and provide solutions to natural \security concerns".We will present some of these paradigms, approaches and techniques as wellas some of the fundamental results obtained using them. Our emphasis is onIII

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IVthe clari�cation of fundamental concepts and on demonstrating the feasibility ofsolving several central cryptographic problems.Solving a cryptographic problem (or addressing a security concern) is a two-stage process consisting of a de�nitional stage and a constructive stage. First, inthe de�nitional stage, the functionality underlying the natural concern is to beidenti�ed, and an adequate cryptographic problem has to be de�ned. Trying tolist all undesired situations is infeasible and prone to error. Instead, one shouldde�ne the functionality in terms of operation in an imaginary ideal model, andrequire a candidate solution to emulate this operation in the real, clearly de�ned,model (which speci�es the adversary's abilities). Once the de�nitional stage iscompleted, one proceeds to construct a system that satis�es the de�nition. Sucha construction may use some simpler tools, and its security is proven relying onthe features of these tools. In practice, of course, such a scheme may need tosatisfy also some speci�c e�ciency requirements.This book focuses on several archetypical cryptographic problems (e.g., en-cryption and signature schemes) and on several central tools (e.g., computa-tional di�culty, pseudorandomness, and zero-knowledge proofs). For each ofthese problems (resp., tools), we start by presenting the natural concern un-derlying it (resp., its intuitive objective), then de�ne the problem (resp., tool),and �nally demonstrate that the problem may be solved (resp., the tool can beconstructed). In the latter step, our focus is on demonstrating the feasibilityof solving the problem, not on providing a practical solution. As a secondaryconcern, we typically discuss the level of practicality (or impracticality) of thegiven (or known) solution.Computational Di�cultyThe speci�c constructs mentioned above (as well as most constructs in this area)can exist only if some sort of computational hardness exists. Speci�cally, all theseproblems and tools require (either explicitly or implicitly) the ability to generateinstances of hard problems. Such ability is captured in the de�nition of one-wayfunctions (see further discussion in Section 2.1). Thus, one-way functions is thevery minimum needed for doing most sorts of cryptography. As we shall see,they actually su�ce for doing much of cryptography (and the rest can be done byaugmentations and extensions of the assumption that one-way functions exist).Our current state of understanding of e�cient computation does not allowus to prove that one-way functions exist. In particular, the existence of one-way functions implies that NP is not contained in BPP � P (not even \onthe average"), which would resolve the most famous open problem of computerscience. Thus, we have no choice (at this stage of history) but to assume thatone-way functions exist. As justi�cation to this assumption we may only o�erthe combined believes of hundreds (or thousands) of researchers. Furthermore,these believes concern a simply stated assumption, and their validity followsfrom several widely believed conjectures which are central to some �elds (e.g.,the conjecture that factoring integers is hard is central to computational numbertheory).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VAs we need assumptions anyhow, why not just assume what we want (i.e., theexistence of a solution to some natural cryptographic problem)? Well, �rst weneed to know what we want: as stated above, we must �rst clarify what exactlywe want; that is, go through the typically complex de�nitional stage. But oncethis stage is completed, can we just assume that the de�nition derived can bemet? Not really: once a de�nition is derived how can we know that it can at allbe met? The way to demonstrate that a de�nition is viable (and so the intuitivesecurity concern can be satis�ed at all) is to construct a solution based on a betterunderstood assumption (i.e., one that is more common and widely believed). Forexample, looking at the de�nition of zero-knowledge proofs, it is not a-priori clearthat such proofs exist at all (in a non-trivial sense). The non-triviality of thenotion was �rst demonstrated by presenting a zero-knowledge proof system forstatements, regarding Quadratic Residuosity, which are believed to be hard toverify (without extra information). Furthermore, in contrary to prior beliefs, itwas later shown in that the existence of one-way functions implies that any NP-statement can be proven in zero-knowledge. Thus, facts which were not knownat all to hold (and even believed to be false), where shown to hold by reductionto widely believed assumptions (without which most of modern cryptographycollapses anyhow). To summarize, not all assumptions are equal, and so reducinga complex, new and doubtful assumption to a widely-believed simple (or evenmerely simpler) assumption is of great value. Furthermore, reducing the solutionof a new task to the assumed security of a well-known primitive typically meansproviding a construction that, using the known primitive, solves the new task.This means that we do not only know (or assume) that the new task is solvablebut rather have a solution based on a primitive that, being well-known, typicallyhas several candidate implementations.Structure and PrerequisitesOur aim is to present the basic concepts, techniques and results in cryptography.As stated above, our emphasis is on the clari�cation of fundamental conceptsand the relationship among them. This is done in a way independent of theparticularities of some popular number theoretic examples. These particularexamples played a central role in the development of the �eld and still o�er themost practical implementations of all cryptographic primitives, but this doesnot mean that the presentation has to be linked to them. On the contrary,we believe that concepts are best clari�ed when presented at an abstract level,decoupled from speci�c implementations. Thus, the most relevant backgroundfor this book is provided by basic knowledge of algorithms (including random-ized ones), computability and elementary probability theory. Background on(computational) number theory, which is required for speci�c implementationsof certain constructs, is not really required here (yet, a short appendix presentingthe most relevant facts is included in this volume so to support the few examplesof implementations presented here).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1Volume 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsVolume 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsVolume 3: Beyond the Basics� � �Figure 0.1: Organization of this bookOrganization of the book. The book is organized in three parts (see Fig-ure 0.1): Basic Tools, Basic Applications, and Beyond the Basics. The �rst vol-ume contains an introductory chapter as well as the �rst part (Basic Tools). Thispart contains chapters on computational di�culty (one-way functions), pseudo-randomness and zero-knowledge proofs. These basic tools will be used for theBasic Applications of the second part, which consist of Encryption, Signatures,and General Cryptographic Protocols.The partition of the book into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple years, and publish it without waiting for the third part.The current manuscript. The current manuscript consists of fragments of achapter on encryption schemes. These fragments provide a draft of the �rst threesections of this chapter, covering the basic setting, de�nitions and constructions.Also included is a plan of the fourth section (i.e., beyond eavesdropping security),fragments for the Miscellaneous section of this chapter, and the above extractsfrom the preface of Volume 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Part IIBasic Applications

357

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Appendix CCorrections and Additionsto Volume 1In this appendix we list a few corrections and additions to the previous chaptersof this work, which appeared in [124].C.1 Enhanced Trapdoor PermutationsRecall that a collection of trapdoor permutations, as de�ned in De�nition 2.4.5, isa collection of permutations, fp�g�, armed with four probabilistic polynomial-time algorithms, denoted here by I; S; F and B (for index, sample, forward andbackward), such that the following (syntactic) conditions hold1. On input 1n, algorithm I selects a random n-bit long index � of a permu-tation p�, along with a corresponding trapdoor � ;2. On input �, algorithm S samples the domain of p�, returning a randomelement in it;3. For x in the domain of p�, given � and x, algorithm F returns p�(x) (i.e.,F (�; x) = p�(x));4. For y in the range of p� if (�; �) is a possible output of I(1n) then, given� and y, algorithm B returns p�1� (y) (i.e., B(�; y) = p�1� (y)).The hardness condition in De�nition 2.4.5 refers to the di�culty of invertingp� on a random element of its range, when given only the range-element and�. That is, let I1(1n) denote the �rst element in the output of I(1n) (i.e., theindex), then for every probabilistic polynomial-time algorithm A (resp., everynon-uniform family of polynomial-size circuit A = fAngn), every polynomial pand all su�ciently large n'sPr[A(I1(1n); pI1(1n)(S(I1(1n))) = S(I1(1n))] < 1p(n) (C.1)665

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

666 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1Namely, A (resp., An) fails to invert p� on p�(x), where � and x are selected byI and S as above. An equivalent way of writing Eq. (C.1) isPr[A(I1(1n); S0(I1(1n); Rn)) = pI1(1n)(S0(I1(1n)); Rn)] < 1p(n) (C.2)where S0 is the residual two-input (deterministic) algorithm obtained from Swhen treating the coins of the latter as an auxiliary input, and Rn denote thedistribution of the coins of S on n-bit inputs.Although the above de�nition su�ces for many applications, in some caseswe will need an enhanced hardness condition. Speci�cally, we will require thatit is hard to invert f� on a random input x (in the domain of f�) even whengiven the coins used by S in the generation of x. (Note that given these coins(and the index �), the resulting domain element x is easily determined.)De�nition C.1.1 (enhanced trapdoor permutations): Let ff� : D� ! D�g bea collection of trapdoor permutations as in De�nition 2.4.5. We say that thiscollection is enhanced (and call it an enhanced collection of trapdoor permuta-tions) if for every probabilistic polynomial-time algorithm A every polynomial pand all su�ciently large n'sPr[A(I1(1n); Rn) = pI1(1n)(S0(I1(1n)); Rn)] < 1p(n) (C.3)where S0 is as above. The non-uniform version is de�ned analogously.We comment that the RSA collection (presented in Section ?? and further dis-cussed in Section ??) is in fact an enhanced collection of trapdoor permutations,provided that RSA is hard to invert in the same sense as assumed in Section ??.In contrast, the Rabin Collection (as de�ned in Section 2.4.3), does not satisfyDe�nition C.1.1 (because the coins of the samling algorithm give away a modu-lar square root of the domain element). Still, the Rabin Collection can be easilymodify to yield an enhanced collection of trapdoor permutations, provided thatfactoring is hard (in the same sense as assumed in Section 2.4.3). Actually, wepresent two such possible modi�cations:1. Modifying the functions. Rather than squaring modulo the composite N ,we consider the function of raising to the power of 4 modulo N . It canbe shown that the resulting permuations over the quadratic residues mod-ulo N satisfy De�nition C.1.1, provided that factoring is hard. Speci�cally,given N and a random r 2 ZN , ability to extract the 4th root of r2 mod N(modulo N), yields ability to factor N , where the algorithm is similar tothe one used in order to establish the intractability of extracting squareroots.2. Changing the domains. Rather than considering the permutation induced(by the modoluar squaring function) on the setQn of the quadratic residuesmodulo N , we consider the permulations induced on the set Mn, where

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 667Mn contains all integers is f1; :::; N=2g that have Jacobi symbol modulo Nthat equals 1. Note that, as in case of Qn, each quadratic residue has aunique square root in Mn (because exactly two square roots have Jacobisymbol that equals 1 and their sum equals N).1 However, unlike QN ,membership in MN can be determined in polynomial-time (when given Nwithout its factorization). Thus, samplingMN can be done in probabilisticpolynomial-time.Actually, squaring modulo N is a 1-1 mapping of MN to QN . In order toobtain a permutation overMN , we modify the function a little such that isthe result of modular squaring is bigger than N=2 then we use its additiveinverse (i.e., rather than y > N=2, we output N � y).We comment that the special case of De�nition 2.4.5 in which the domain off� equals f0; 1gj�j is a special case of De�nition C.1.1 (because, without loss ofgenerality, the sampling algorithm may satisfy S0(�; r) = r). Clearly, the aboveexamples can be slightly modi�ed to �t this special case.Correction to Volume 1: Theorems 4.10.10, 4.10.14 and 4.10.16 (which inturn are based on Remark 4.10.6) refer to the existence of certain non-interactivezero-knowledge proofs. The claimed non-interactive zero-knowledge proof sys-tems can be constructed assuming the existence of an enhanced collection oftrapdoor permutations. However, in contrast to the original text, it is not knownhow to derive these proof systems based on the existence of a (regular) collectionof trapdoor permutations.C.2 Recent developments regarding zero-knowledgeA recent result by Barak [12] calls for re-evaluation of the signi�cance of all nega-tive results regarding black-box zero-knowledge2 (as de�ned in De�nition 4.5.10).In particular, relying on standard intractability assumptions, Barak presentsround-e�cient public-coin zero-knowledge arguments for NP (using non-black-box simulators), whereas only BPP can have such black-box zero-knowledgearguments (see comment following Theorem 4.5.11). Interestingly, Barak's sim-ulator works in strict (rather than expected) probabilistic polynomial-time, ad-dressing an open problem mentioned in Section 4.12.3. Barak's result is furtherdescribed in Section C.2.2In Section C.2.1, we report on recent progress achieved with respect to preser-vation of zero-knowledge under concurrent composition. We seize the oppertu-nity to provide a wider perspective on the question of preservation of zero-knowledge under various forms of protocol composition operations.1As in case of Qn, we use the fact that �1 has Jacobi symbol 1.2 Speci�cally, one should reject the interpretations of these results, which were o�eredin Sections 4.5.0, 4.5.4.0 and 4.5.4.2, by which such results indicate inherent limitations ofzero-knowledge.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

668 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1We mention that the two problems discussed in this section (i.e., the \preser-vation of security under various forms of protocol composition" and the \use of ofthe adversary's program within the proof of security") arise also with respect tothe security of other cryptographic primitives. Thus, the study of zero-knowledgeproofs serve as a good bench-mark for the study of various problems regardingcryptographic protocols.C.2.1 Composing zero-knowledge protocolsA natural question regarding zero-knowledge proofs (and arguments) is whetherthe zero-knowledge condition is preserved under a variety of composition oper-ations. Three types of composition operation were considered in the literature:sequential composition, parallel composition and concurrent composition. Wenote that the preservation of zero-knowledge under these forms of compositionis not only interesting on its own sake, but rather also sheds light of the preser-vation of the security of general protocols under these forms of composition.We stress that when we talk of composition of protocols (or proof systems)we mean that the honest users are supposed to follow the prescribed program(speci�ed in the protocol description) that refers to a single execution. That is,the actions of honest parties in each execution are independent of the messagesthey received in other executions. The adversary, however, may coordinate theactions it takes in the various executions, and in particular its actions in oneexecution may depend also on messages it received in other executions.Let us motivate the asymmetry between the independence of executions as-sumed of honest parties but not of the adversary. Coordinating actions in dif-ferent executions is typically di�cult but not impossible. Thus, it is desirableto use composition (as de�ned above) rather than to use protocols that includeinter-execution coordination-actions, which require users to keep track of all ex-ecutions that they perform. Actually, trying to coordinate honest executions iseven more problematic than it seems because one may need to coordinate exe-cutions of di�erent honest parties (e.g., all employees of a big cooperation or anagency under attack), which in many cases is highly unrealistic. On the otherhand, the adversary attacking the system may be willing to go into the extratrouble of coordinating its attack in the various executions of the protocol.For T 2 fsequential; parallel; concurrentg, we say that a protocol isT -zero-knowledge if it is zero-knowledge under a composition of type T . Thede�nitions of T -zero-knowledge are derived from the standard de�nition by con-sidering appropriate adversaries (i.e., adversarial veri�ers); that is, adversariesthat can initiate a polynomial number of interactions with the prover, wherethese interactions are scheduled according to the type T .3 The correspondingsimulator (which, as usual, interacts with nobody) is required to produce an3Without loss of generality, we may assume that the adversary never violates the schedul-ing condition; it may instead send an illegal message at the latest possible adequate time.Furthermore, without loss of generality, we may assume that all the adversary's messages aredelivered at the latest possible adequate time.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 669output that is computationally indistinguishable from the output of such a typeT adversary.C.2.1.1 Sequential CompositionIn this case, the protocol is invoked (polynomially) many times, where eachinvocation follows the termination of the previous one. At the very least, security(e.g., zero-knowledge) should be preserved under sequential composition, or elsethe applicability of the protocol is highly limited (because one cannot safely useit more than once).We mention that whereas the \simpli�ed" version (i.e., without auxiliary in-puts, as in De�nition 4.3.2) is not closed under sequential composition (cf. [131]),the actual version (i.e., with auxiliary inputs, as in De�nition 4.3.10) is closedunder sequential composition (see Section 4.3.4). We comment that the samephenomena arises when trying to use a zero-knowledge proof as a sub-protocolinside larger protocols. Indeed, it is for these reasons that the augmentation ofthe \most basic" de�nition by auxiliary inputs was adopted in all subsequentworks.4C.2.1.2 Parallel CompositionIn this case, (polynomially) many instances of the protocol are invoked at thesame time and proceed at the same pace. That is, we assume a synchronousmodel of communication, and consider (polynomially) many executions that aretotally synchronized so that the ith message in all instances is sent exactly (orapproximately) at the same time. (Natural variants on this model are discussedbelow as well as at the end of Section C.2.1.3.)It turns out that, in general, zero-knowledge is not closed under parallel com-position. A simple counter-example (to the \parallel composition conjecture")is depicted in Figure C.1. This counter-example, which is adapted from [131],consists of a simple protocol that is zero-knowledge (in a strong sense), but isnot closed under parallel composition (not even in a very weak sense).We comment that, at the 1980's, the study of parallel composition was inter-preted mainly in the context of round-e�cient error reduction (cf. [100, 131]);that is, the construction of full-edge zero-knowledge proofs (of negligible sound-ness error) by composing (in parallel) a basic zero-knowledge protocol of high(but bounded away from 1) soundness error. Since alternative ways of con-structing constant-round zero-knowledge proofs (and arguments) were found(cf. [130, 99, 58]), interest in parallel composition (of zero-knowledge protocols)has died. In retrospect, this was a conceptual mistake, because parallel compo-sition (and mild extensions of this notion) capture the preservation of security ina fully synchronous (or almost-fully synchronous) communication network. We4Interestingly, the preliminary version of Goldwasser, Micali and Racko�'s work [151] usedthe \most basic" de�nition, whereas the �nal version of this work used the augmented def-inition. In some works, the \most basic" de�nition is used for simplicity, but typically oneactually needs the augmented de�nition.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

670 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1
Consider a party P holding a random (or rather pseudorandom) function f :f0; 1g2n!f0; 1gn, and willing to participate in the following protocol (with respect to securityparameter n). The other party, called A for adversary, is supposed to send P a binaryvalue v 2 f1; 2g specifying which of the following cases to execute:For v = 1: Party P uniformly selects � 2 f0; 1gn, and sends it to A, which is sup-posed to reply with a pair of n-bit long strings, denoted (�;). Party P checkswhether or not f(��) = . In case equality holds, P sends A some secretinformation.For v = 2: Party A is supposed to uniformly select � 2 f0; 1gn, and sends it to P ,which selects uniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs): Intuitively,if the adversary A chooses the case v = 1, then it is infeasible for A to guess a passingpair (�;) with respect to a random � selected by P . Thus, except with negligibleprobability (when it may get secret information), A does not obtain anything fromthe interaction. On the other hand, if the adversary A chooses the case v = 2, thenit obtains a pair that is indistinguishable from a uniformly selected pair of n-bit longstrings (because � is selected uniformly by P , and for any � the value f(��) looksrandom to A).In contrast, if the adversary A can conduct two concurrenta executions with P , thenit may learn the desired secret information: In one session, A sends v = 1 while in theother it sends v = 2. Upon receiving P 's message, denoted �, in the �rst session, Asends it as its own message in the second session, obtaining a pair (�; f(��)) from P 'sexecution of the second session. Now, A sends the pair (�; f(��)) to the �rst sessionof P , this pair passes the check, and so A obtains the desired secret.aDummymessages may be added (in both cases) in order to obtain the above scheduling in the perfectlyparallel case.Figure C.1: A counter-example (adapted from [131]) to the parallel repe-tition conjecture for zero-knowledge protocols.note that the almost-fully synchronous communication model is quite realisticin many settings, although it is certainly preferable not to assume even weaksynchronism.Although, in general, zero-knowledge is not closed under parallel composi-tion, under standard intractability assumptions (e.g., the intractability of fac-toring), there exists zero-knowledge proofs for NP that are closed under parallelcomposition. Furthermore, these protocols have a constant number of rounds(cf. [125] for proofs and [90] for arguments).5 Both results extend also to concur-rent composition in a synchronous communication model, where the extensionis in allowing protocol invocations to start at di�erent (synchronous) times (andin particular executions may overlap but not run simultaneously).We comment that parallel composition is problematic also in the context ofreducing the soundness error of arguments (cf. [30]), but our focus here is on5In case of parallel-zero-knowledge proofs, there is no need to specify the soundness errorbecause it can always be reduced via parallel composition. As mentioned above, this is notthe case with respect to arguments.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 671the zero-knowledge aspect of protocols regardless if they are proofs, argumentsor neither.C.2.1.3 Concurrent Composition (with and without timing)Concurrent composition generalizes both sequential and parallel composition.Here (polynomially) many instances of the protocol are invoked at arbitrarytimes and proceed at arbitrary pace. That is, we assume an asynchronous (ratherthan synchronous) model of communication.In the 1990's, when extensive two-party (and multi-party) computations be-came a reality (rather than a vision), it became clear that it is (at least) desirablethat cryptographic protocols maintain their security under concurrent compo-sition (cf. [86]). In the context of zero-knowledge, concurrent composition was�rst considered by Dwork, Naor and Sahai [90]. Actually, two models of concur-rent composition were considered in the literature, depending on the underlyingmodel of communication (i.e., a purely asynchronous model and an asynchronousmodel with timing). Both models cover sequential and parallel composition asspecial cases.Concurrent composition in the pure asynchronous model. Here we re-fer to the standard model of asynchronous communication. In comparison tothe timing model, the pure asynchronous model is a simpler model and using itrequires no assumptions about the underlying communication channels, but itseems harder to construct concurrent zero-knowledge protocols for this model.In particular, for a while it was not known whether concurrent zero-knowledgeproofs for NP exist at all (in this model). Under standard intractability as-sumptions (e.g., the intractability of factoring), this question was a�rmativelyresolved by Richardson and Kilian [226]. Following their work, research has fo-cused on determining the round-complexity of concurrent zero-knowledge proofsfor NP. This question is still opened, and the current state of the art regardingit is as follows:� Under standard intractability assumptions, every language in NP has aconcurrent zero-knowledge proof with almost-logarithmically many rounds(cf. [218], building upon [172], which in turn builds over [226]). Further-more, the zero-knowledge property can be demonstrated using a black-boxsimulator (see de�nition in Section 4.5.4.2 and C.2.2).� Black-box simulator cannot demonstrated the concurrent zero-knowledgeproperty of non-trivial proofs (or arguments) having signi�cantly less thanlogarithmically-many rounds (cf. Canetti et. al. [66]).66By non-trivial proof systems we mean ones for languages outside BPP, whereas bysigni�cantly less than logarithmic we mean any function f : N ! N satisfying f(n) =o(log n= log log n). In contrast, by almost-logarithmically we mean any function f satisfyingf(n) = !(log n).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

672 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1� Recently, Barak [12] demonstrated that the \black-box simulation bar-rier" can be bypassed. With respect to concurrent zero-knowledge he onlyobtains partial results: constant-round zero-knowledge arguments (ratherthan proofs) for NP that maintain security as long as an a-priori bounded(polynomial) number of executions take place concurrently. (The lengthof the messages in his protocol grows linearly with this a-priori bound.)Thus, it is currently unknown whether or not constant-round arguments for NPmay be concurrent zero-knowledge (in the pure asynchronous model).Concurrent composition under the timing model: A model of naturally-limited synchronousness (which certainly covers the case of parallel composition)was introduced by Dwork, Naor and Sahai [90]. Essentially, they assume thateach party holds a local clock such that the relative clock rates are boundedby an a-priori known constant, and consider protocols that employ time-drivenoperations (i.e., time-out in-coming messages and delay out-going messages).The bene�t of the timing model is that it is known to construct concurrent zero-knowledge protocols for it. Speci�cally, using standard intractability assump-tions, constant-round arguments and proofs that are concurrent zero-knowledgeunder the timing model do exist (cf. [90] and [125], respectively). The disadvan-tages of the timing model are discussed next.The timing model consists of the assumption that talking about the actualtiming of events is meaningful (at least in a weak sense) and of the introductionof time-driven operations. The timing assumption amounts to postulating thateach party holds a local clock and knows a global bound, denoted � � 1, on therelative rates of the local clocks.7 Furthermore, it is postulated that the partiesknow a (pessimistic) bound, denoted �, on the message-delivery time (whichalso includes the local computation and handling times). In our opinion, thesetiming assumptions are most reasonable, and are unlikely to restrict the scopeof applications for which concurrent zero-knowledge is relevant. We are moreconcerned about the e�ect of the time-driven operations introduced in the timingmodel. Recall that these operations are the time-out of in-coming messages andthe delay of out-going messages. Furthermore, typically the delay period is atleast as long as the time-out period, which in turn is at least � (i.e., the time-outperiod must be at least as long as the pessimistic bound on message-delivery timeso not to disrupt the proper operation of the protocol). This means that the useof these time-driven operations yields slowing down the execution of the protocol(i.e., running it at the rate of the pessimistic message-delivery time rather thanat the rate of the actual message-delivery time, which is typically much faster).Still, in absence of more appealing alternatives (i.e., a constant-round concurrentzero-knowledge protocol for the pure asynchronous model), the use of the timingmodel may be considered reasonable. (We comment than other alternatives tothe timing-model include various set-up assumptions; cf. [65, 81].)7The rate should be computed with respect to reasonable intervals of time; for example,for � as de�ned below, one may assume that a time period of � units is measured as �0 unitsof time on the local clock, where �=� � �0 � ��.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 673Back to parallel composition: Given our opinion about the timing model, itis not surprising that we consider the problem of parallel composition almost asimportant as the problem of concurrent composition in the timing model. Firstly,it is quite reasonable to assume that the parties' local clocks have approximatelythe same rate, and that drifting is corrected by occasional clock synchronization.Thus, it is reasonable to assume that the parties have approximately-good es-timate of some global time. Furthermore, the global time may be partitionedinto phases, each consisting of a constant number of rounds, so that each partywishing to execute the protocol just delays its invocation to the beginning of thenext phase. Thus, concurrent execution of (constant-round) protocols in thissetting amounts to a sequence of (time-disjoint) almost-parallel executions ofthe protocol. Consequently, proving that the protocol is parallel zero-knowledgesu�ces for concurrent composition in this setting.Relation to resettable zero-knowledge. Going to the other extreme, wemention that there is a model of zero-knowledge that is even stronger than con-current zero-knowledge (even in the pure asynchronous model). Speci�cally, \re-settable zero-knowledge" as de�ned in [65], implies concurrent zero-knowledge.C.2.2 Using the adversary's program in the proof of secu-rityRecall that the de�nition of zero-knowledge proofs states that whatever an e�-cient adversary can compute after interacting with the prover, can actually bee�ciently computed from scratch by a so-called simulator (which works withoutinteracting with the prover). Although the simulator may depend arbitrarily onthe adversary, the need to present a simulator for each feasible adversary seemsto require the presentation of a universal simulator that is given the adversary'sstrategy (or program) as another auxiliary input. The question addressed in thissection is how can the universal simulator use the adversary's program.The adversary's program (or strategy) is actually a function determiningfor each possible view of the adversary (i.e., its input, random choices and themessage it has received so far) which message will be sent next. Thus, we iden-tify the adversary's program with this next-message function. As stated above,until very recently, all universal simulators (constructed towards demonstrat-ing zero-knowledge properties) have used the adversary's program (or ratherits next-message function) as a black-box (i.e., the simulator invoked the next-message function on a sequence of arguments of its choice). Furthermore, inview of the presumed di�culty of \reverse engineering" programs, it was com-monly believed that nothing is lost by restricting attention to simulators, calledblack-box simulators, that only make black-box usage of the adversary's program.Consequently, Goldreich and Krawczyk conjectured that impossibility resultsregarding black-box simulation represent inherent limitations of zero-knowledgeitself, and studied the limitations of the former [131].In particular, they showed that parallel composition of the protocol

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

674 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1of Construction 4.4.7 (as well as of any constant-round public-coinprotocol) cannot be proven to be zero-knowledge using a black-boxsimulator, unless the language (i.e., 3-Colorability) is in BPP. Infact their result refers to any constant-round public-coin protocolwith negligible soundness error, regardless of how such a protocolis obtained. This result was taken as strong evidence towards theconjecture that constant-round public-coin protocol with negligiblesoundness error cannot be zero-knowledge (unless the language is inBPP).Similarly, as mentioned in Section C.2.1.3, it was shown that pro-tocols of sub-logarithmic number of rounds cannot be proven to beconcurrent zero-knowledge via a black-box simulator [66], and thiswas taken as evidence towards the conjecture that such protocolscannot be concurrent zero-knowledge.In contrast to these conjectures and supportive evidence, Barak showed howto constructed non-black-box simulators and obtained several results that wereknown to be unachievable via black-box simulators [12]. In particular, un-der standard intractability assumption (see also [14]), he presented constant-round public-coin zero-knowledge arguments with negligible soundness error forany language in NP . (Moreover, the simulator runs in strict polynomial-time,which is impossible for black-box simulators of non-trivial constant-round pro-tocols [16].) Furthermore, this protocol preserves zero-knowledge under a �xed8polynomial number of concurrent executions, in contrast to the result of [66](regarding black-box simulators) that holds also in that restricted case. Thus,Barak's result calls for the re-evaluation of many common believes. Most con-cretely, it says that results regarding black-box simulators do not reect inherentlimitations of zero-knowledge (but rather an inherent limitation of a natural wayof demonstrating the zero-knowledge property). Most abstractly, it says thatthere are meaningful ways of using a program other than merely invoking it asa black-box.Does this means that a method was found to \reverse engineer" programsor to \understand" them? We believe that the answer is negative. Barak [12]is using the adversary's program in a signi�cant way (i.e., more signi�cant thanjust invoking it), without \understanding" it. So how does he use the program?The key idea underlying Barak's argument system [12] is to have the proverprove that either the original NP-assertion is valid or that he (i.e., the prover)\knows the veri�er's residual strategy" (in the sense that it can predict the nextveri�er message). Indeed, in a real interaction (with the honest veri�er), it is in-feasible for the prover to predict the next veri�er message, and so computational-soundness of the protocol follows. However, a simulator that is given the code ofthe veri�er's strategy (and not merely oracle access to that code), can producea valid proof of the disjunction by properly executing the sub-protocol using its8The protocol depends on the polynomial bounding the number of executions, and thusis not known to be concurrent zero-knowledge (because the latter requires to �x the protocoland then consider any polynomial number of concurrent executions).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.2. RECENT DEVELOPMENTS REGARDING ZERO-KNOWLEDGE 675knowledge of an NP-witness for the second disjunctive. The simulation is com-putational indistinguishable from the real execution, provided that one cannotdistinguish an execution of the sub-protocol in which one NP-witness (i.e., anNP-witness for the original assertion) is used from an execution in which thesecond NP-witness (i.e., an NP-witness for the auxiliary assertion) is use. Thatis, the sub-protocol should be a witness indistinguishable argument system (seeSections 4.6 and 4.8). We warn the reader that the actual implementation ofthe above idea requires overcoming several technical di�culties (cf. [12, 14]).Perspective. In retrospect, taking a wide perspective, it should not come asa surprise that the program's code yields extra power beyond black-box accessto it. Feeding a program with its own code (or part of it) is the essence ofthe diagonalization technique, and this too is done without \reverse engineer-ing". Furthermore, various non-black-box techniques have appeared before inthe cryptographic setting, but they were used in the more natural context ofdevising an attack on an (arti�cial) insecure scheme (e.g., towards proving thefailure of the \Random Oracle Methodology" [64] and the impossibility of soft-ware obfuscation [15]). In contrast, in [12] (and [13]) the code of the adversaryis being used within a sophisticated proof of security. What we wish to highlighthere is that non-black-box usage of programs is relevant also to proving (ratherthan to disproving) the security of systems.Digest: Witness Indistinguishability and the FLS-TechniqueThe above description (of [12]), as well as several other sophisticated construc-tions of zero-knowledge protocols (e.g., [98, 226]), makes crucial use of a tech-nique introduced by Feige, Lapidot and Shamir [98], which in turn is based onthe notion of witness indistinguishability (introduced by Feige and Shamir [100]).Below, we will refer to strong witness indistinguishable protocols as de�ned inDe�nition 4.6.2. This technique, hereafter referred to as the FLS-technique, wasused in Construction 4.10.12, but we wish to further discuss it below.Following is a sketchy description of a special case of the FLS-technique,whereas the abovementioned application uses a more general version (whichrefers to proofs of knowledge, as de�ned in Section 4.7).9 In this special case,the technique consists of the following construction schema, which uses (strong)witness indistinguishable protocols for NP in order to obtain zero-knowledgeprotocols for NP . On common input x 2 L, where L = LR is the NP-setde�ned by the witness relation R, the following two steps are performed:1. The parties generate an instance x0 for an auxiliary NP-set L0, where L0is de�ned by the witness relation R0. The generation protocol in use mustsatisfy two conditions:9In the general case, the generation protocol may generate instances x0 in L0, but it isinfeasible for the prover to obtain a corresponding witness (i.e., a w0 such that (x0; w0) 2 R0). Inthe second step, the sub-protocol in use ought to be a proof of knowledge, and computational-soundness of the main protocol will follows (because otherwise the prover, using a knowledgeextractor, can obtain a witness for x0 2 L0).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

676 APPENDIX C. CORRECTIONS AND ADDITIONS TO VOLUME 1(a) If the veri�er follows its prescribed strategy then no matter whichfeasible strategy is used by the prover, with high probability, theoutcome x0 is a no-instance of L0.(b) Loosely speaking, it is feasible to generate a transcript of the genera-tion protocol that is computationally indistinguishable from the realinteraction along with an NP-witness for the outcome of the protocol.2. The parties execute a strong witness indistinguishable protocol for theset L00 de�ned by the witness relation R00 = f((y; y0); (z; z0)) : (y; z) 2R _ (y0; z0)2R0g. The sub-protocol is such that the corresponding provercan be implemented in probabilistic polynomial-time given an NP-witnessfor (y; y0) 2 L00. The sub-protocol is invoked on common input (x; x0),where x0 is the outcome of Step 1, and the sub-prover is invoked with thecorresponding NP-witness as auxiliary input (i.e., with (w; �), where w isthe NP-witness for x given to the main prover).The computational-soundness of the above protocol follows by Property (a) ofthe generation protocol (i.e., with high probability x0 62 L0, and so x 2 L by thesoundness of the protocol used in Step 2). To demonstrate the zero-knowledgeproperty, we �rst generate a simulated transcript of Step 1 (with outcome x0 2L0) along with an adequate NP-witness (i.e., w0 such that (x0; w0) 2 L0), andthen emulates Step 2 by feeding the sub-prover strategy with the NP-witness(�;w0). Combining Property (b) of the generation protocol and the witnessindistinguishability property of the protocol used in Step 2, the simulation isindistinguishable from the real execution.C.3 MiscellaneousC.3.1 Additional Corrections1. In De�nition 4.10.15, the adaptive zero-knowledge condition should bequanti�ed only over e�ciently computable input-selection strategies. Therevised form is presented in De�nition 5.4.22.2. Regarding Constriction 4.10.7 and the proof of Proposition 4.10.9: Thecurrent description in terms of two mappings �1; �2 is confusing and eveninaccurate. Instead one should identify the rows (resp., columns) ofH with[n] and use one permutation � over [n] (which supposedly maps the verticesof G to those of H). Alternatively, one may compose this permutation� with the two (1-1) mappings i's (where i : [n] ! [n3]), and obtainrelated �i's (i.e., �i(v) = i(�(v))), which should be used as in the originaltext.C.3.2 More on Remark 4.10.6In continuation to Remark 4.10.6 and following [37], we briey discuss the issuesthat arise when wishing to extend the construction to arbitrary trapdoor permu-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

C.3. MISCELLANEOUS 677tations. Recall that Remark 4.10.6 focuses on a family of trapdoor permutationsof the form ff� : f0; 1gj�j ! f0; 1gj�jg�2I , where I is e�ciently recognizable.Unfortunately, no such family is known, and thus we �rst extend the treatmentto the case in which I is not necessarily e�ciently recognizable. The problemwe encounter is that the prover may select (and send along) a function thatis not in the family (i.e., an � not in I). In such a case, the function is notnecessarily 1-1, and consequently, the soundness property may be violated. Thisconcern can be addressed by using a simple non-interactive (zero-knowledge)proof that the function is \typically 1-1" (or, equivalently, is \almost onto thedesignated range"). The proof proceeds by presenting inverses (under the func-tion) of random elements speci�ed in the reference string. Note that, for any�xed polynomial p, we can only prove that the function is 1-1 on at least a1 � (1=p(n)) of the designated range, but this su�ces for moderate soundnessof the entire proof system (which in turn can be ampli�ed by repetitions). Forfurther details, consult [37].Although the known candidate trapdoor permutations can be modi�ed to �tthe above form, we wish to further generalize the result so that any enhancedtrapdoor permutation (as de�ned in De�nition C.1.1) can be used. This can bedone by letting the reference string consist of the coin-sequences used by thedomain-sampling algorithm (rather than of elements of the function's domain).By virtue of the enhanced hardness condition (i.e., Eq. (C.3)), the security ofthe hardcore is preserved, and so is the zero-knowledge property.As stated at the end of Section C.1, in contrast to what was claimed inRemark 4.10.6, we do not known how to extend the construction to arbitrary(rather than enhanced) trapdoor permutation.C.3.3 Additional Comments1. In continuation to Sections 4.7 and 4.9.2, we mention that the round-e�cient argument system of [99] is actually an \argument of knowledge"(with negligible error).2. We mention that the notions of strong witness indistinguishability (De�ni-tion 4.6.2) and strong proofs of knowledge (Section 4.7.6), and the HiddenBit Model (Section 4.10.2) have �rst appeared in early versions of thiswork.C.3.4 Typos etc1. In the guideline for Exercise 11 of Chapter 2, the term Ecycf (Un)] shouldbe E[cycf (Un)]. In the exercise itself, one should also address the case inwhich cycf (x) is unde�ned for some x's.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IndexAuthor IndexAdleman, L., 412Blum, M., 413Di�e, W., 412Goldwasser, S., 412, 413Hellman, M.E., 412Lipton, R., 413Merkle, R.C., 412Micali, S., 412, 413Rivest, R.L., 412Shamir, A., 412Shannon, C.E., 369, 412Yao, A.C., 413Arguments, see Interactive ProofsAveraging Argument, see TechniquesChinese Reminder Theorem, 406Claw-free Pairs, see One-Way Func-tionsCollision-Free Hashing, see HashingComplexity classesPCP, see Probabilistically Check-able ProofsComposite numbersBlum integers, see Blum inte-gersComputational Di�culty, see One-Way FunctionsComputational Indistinguishability,372, 412by circuits, 372{383Computational modelsinteractive machines, see inter-active machinesnon-determinism, see non-determinism

non-uniform, see non-uniform com-plexityoracle machines, see oracle ma-chinesprobabilistic machines, see prob-abilistic machinesDiscrete Logarithm Problem, see DLPfunctionDLP, see DLP functionEncryption Schemes, 365{421active attacks, 408{411asymmetric, 367Basic Setting, 365{368Block-Ciphers, 395{405De�nitions, 369{391indistinguishability of encryptions,369, 372{373multiple messages, 379{383non-malleability, 408, 410{411passive attacks, 408{410perfect privacy, 369Private-Key, 366{368, 370, 371,392, 396{399Public-Key, 367{368, 371, 399{407Randomized RSA, 402{403Semantic Security, 369{372Stream-Ciphers, 392{395symmetric, 367the mechanism, 367{368uniform-complexity treatment,383{391Factoring integers, 407Fiat{Shamir Identi�cation Scheme,see Identi�cation Schemes22

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

INDEX 23Hard-Core Predicates, see One-WayFunctionsHashingUniversal, see Hashing functionsHybrid Argument, see TechniquesInteractive ProofsZero-Knowledge, see Zero-KnowledgeIP as a class, see Complexity classesthe notion, see Interactive ProofsMessage authentication, 409NIZK, see Zero-KnowledgeNon-Interactive Zero-Knowledge, seeZero-Knowledgenon-uniform complexity, 369{383, 391NP as a class, see Complexity classesas a proof system, see Interac-tive Proofsversus P, see P vs NP QuestionOne-Way Functions, 409non-uniform hardness, 391, 397One-Way Permutationshard-core, 399{407modular squaring, 405{407RSA, 402with trapdoor, 391, 399{407, 409PCP, see Probabilistically CheckableProofsProbability ensembles, 370e�ciently constructible, 383{391Proofs of Identity, see Identi�cationSchemesProofs of KnowledgeAbility, see Proofs of AbilityProtocols, see Cryptographic Proto-colsPseudorandom Functions, 397non-uniform hardness, 397{398Pseudorandom Generators, 392

Computational Indistinguishabil-ity, see Computational In-distinguishabilitynon-uniform hardness, 382Rabin functionhard-core, 407Random Oracle Model, see RandomOracle MethodologyReducibility Argument, see TechniquesRSA functionhard-core function, 402Signatures, see Signature SchemesSimulation paradigm, see TechniquesTechniquesAveraging Argument, 376Hybrid Argument, 381, 390, 412Reducibility Argument, 375, 377,391, 396, 401the simulation paradigm, 370,412Trapdoor Permutations, see One-WayPermutationsZero-KnowledgeProofs of Knowledge, see Proofsof KnowledgeWitness Hiding, see Witness Hid-ingWitness Indistinguishability, seeWitness Indistinguishabil-ityZK as a class, see Complexity classesthe notion, see Zero-KnowledgeZKIP, see Zero-Knowledge

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

