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1 Introduction and High Level DescriptionTrying to address the open problem of providing a probabilistic time hierarchy, Barak [1]presented a time hierarchy for slightly non-uniform probabilistic machines. Speci�cally, heshowed that, in presence of double-logarithmic advice, there exists a hierarchy of probabilisticpolynomial-time. Recently, Fortnow and Santhanam [2] showed that a similar hierarchy holdsin the presence of a single-bit advice. Their argument is based on an implicit translationtechnique, which allow to translate separation results for short (say logarithmic) adviceinto separations for a single-bit advice. In this note, we make this technique explicit, byintroducing an adequate translation lemma and showing that applying it to Barak's result [1]yields the aforementioned result of [2].Interestingly (as in [2]), we rely on the fact that Barak [1] actually shows a time separationthat holds even when the more time-restricted machine is given a somewhat longer advice.In contrast, arguably, the more natural statement of such results refers to machines that usethe same advice length.1The basic idea underlying the proof in [2] is that short advice can be incorporated in the(length of the) instance of a padded language, while using a single bit of advice to indicatewhether or not the resulting instance length encodes a valid advice. For this to work, thelength of the resulting instance should indicate a unique length of the original instance aswell as a value of a corresponding advice (for this instance length).Suppose we wish to treat a language L that is decidable (within some time) using eightbits of advice. Viewing the possible values of the advice as integers in f0; 1; :::; 255g, wede�ne a (padded) language L0 as follows: the pair (x; 0255jxj+i) is in L0 if and only if x 2 Land i is an adequate advice for instances of length jxj. Note that L0 can be decided using asingle bit of advice that indicates whether the instance length encodes a valid advice for L.Speci�cally, the advice bit for length m instances (of L0) is 1 if and only if m mod 256 is avalid advice for instances of length bm=256c (of L). Thus, on input y = (x; 0255jxj+i), wherei 2 f0; :::; 255g, we accept if and only if the advice bit is 1 and the original machine acceptsx when given advice i.Note that we should also show that if L is undecidable using less time (and, say, nine bitsof advice) then L0 is correspondingly hard (even using a single bit of advice). This is shownby using a machine for deciding L0 as a subroutine for deciding L, while using part of theadvice (given for deciding L) for determining an adequate instance for L0. In other words,we present a non-uniform reduction of L to L0, where the non-uniformity is accounted bythe longer advice allowed in deciding L.2 Detailed Technical PresentationWe assume that the machine model supports some trivial computations with little overhead.Speci�cally, we refer to computing the square root of the length of the input in linear time.1That is, in order to show, say, that BPtime(n3)=1 is not contained in BPtime(n2)=1, we use the fact thatBarak showed that BPtime(n6)= logn is not contained in BPtime(n4)=2 logn (rather than BPtime(n6)= lognis not contained in BPtime(n4)= logn). 1



We state our main (translation) lemma for probabilistic machines. An analogous lemmaholds for deterministic (and non-deterministic) machines.Lemma 1 (Translation Lemma): Let f(m) be a �xed function growing roughly as pm, andsuppose that 1m 7! f(m) can be computed in linear time. Suppose that L is a language that isdecided by some advice-taking probabilistic machine M , with AM(n) � logn bits of advice intime TM(n). Suppose further that L is not decided by any a(n)-advice probabilistic machinein time t(n), where a(n) � AM(n). Then there exists a language L0 = L0M that is decidedby some probabilistic machine M 0 with 1 bit of advice in time m + TM(f(m)), on inputs oflength m, but is not decidable by any (a(f(m))�AM (f(m)))-advice probabilistic machine intime t(f(m))�m.Before proving the Translation Lemma let us spell-out its implication. Below, we denoteby BPtime(T )=A the class of languages decidable by advice-taking probabilistic machines oftime complexity T and advice complexity A.Corollary 2 Let T;A; t; a : N! N such that a(n) � A(n).If BPtime(T )=A contains sets not in BPtime(t)=athen BPtime(T 0)=1 contains sets not in BPtime(t0)=a0, where T 0(m) def= T (pm)+m, t0(m) def=t(pm)�m and a0(m) def= a(pm)� A(pm).For example, we can apply Corollary 2 to Barak's result [1] that asserts the existence of alanguage L in, say, BPtime(n6)= log logn n BPtime(n4)= logn. Doing so, we conclude thatthere exists a language in BPtime(m3)=1 n BPtime(m2)=(0:5 logm � log logm). (Thus, weestablish the aforementioned result of [2].)Note that in order to obtain an interesting consequence out of Corollary 2, we needa(n) � A(n) + 1. The reason is that only this setting yields that the separation is due tothe time complexity (rather than being due to (higher) non-uniformity, as could be the casewhen a(n) = A(n), which implies a0(m) = 0 < 1).Proof of the Translation Lemma: De�ne L0 to consists of pairs (x; 0n2+advM (n)) suchthat x 2 L, jxj = n, and advM(n) is a correct advice for M on inputs of length n, writtenas an integer in f0; : : : ; 2AM (n) � 1g � f0; :::; n� 1g.De�ne f(m) def= bpmc. That is, for every m 2 fn+ n2 + 0; :::; n+ n2 + n� 1g (which inturn is contained in fn2; :::; (n+ 1)2 � 1g), it holds that f(m) = n. Below, n (resp., m) willalways denote the length of instances to L (resp., L0).We �rst show that L0 is decidable by a probabilistic machine M 0 taking one bit of adviceand running in time m+ TM (f(m)). Machine M 0 parses its input y 2 f0; 1gm into the form(x; 0n2+i), where jxj = n = f(m). Given the advice bit �, machineM 0 always rejects if � = 0and invokes M on input x and advice i (viewed as an AM (n)-bit long string) otherwise.Thus, M accepts y = (x; 0n2+i) using advice � if and only if � = 1 and M accepts x usingadvice i. The (bit) advice regarding m-bit inputs is determined in correspondence to theaforementioned parsing: the advice bit is 1 if and only if m = f(m) + f(m)2 + advM(f(m)).2



Indeed, this setting of the advice guarantees that M 0 accepts y = (x; 0jxj2+i) if and only ifx 2 L and i = advM(jxj). Thus, using the adequate advice, M 0 decides L0, and, indeed, therunning time of M 0 is as stated.We next show that L0 is not decidable by any probabilistic machine in time t(f(m))�mthat takes a (a(f(m)) � AM(f(m)))-bit long advice. Actually, we will show that if L0 isdecidable by some probabilistic machine in time t0(m) with a0(m) bits of advice, then L isdecidable by a probabilistic machine in time t0(n + n2 + advM(n)) + O(n2) with AM(n) +a0(n + n2 + advM(n)) bits of advice. Suppose that M 0 is a machine deciding L0 as in thehypothesis, and let advM 0(m) be the advice it uses for m-bit inputs. Then consider thefollowing machine M 00 (designed to decide L) whose advice on inputs of length n is the pair(advM(n); advM 0(n+ n2 + advM(n))). On input x and advice (i; j), machine M 00 invokes M'on input (x; 0n2+i) with advice j. Thus, M 00 accepts x when given the adequate advice ifand only ifM 0 accepts (x; 0jxj2+advM (jxj)) when given the adequate advice. It follows that M 00decides L, and does so within the stated complexities.Remark: Note that once L0 is de�ned, the proof proceeds in two steps:1. Assuming that L 2 BPtime(T )=A, we establish that L0 2 BPtime(T 0)=1, whereT 0(m) = m + T (f(m)).2. Assuming that L0 2 BPtime(t0)=a0, we establish that L 2 BPtime(t)=a, where t(n) =t0(n2 +O(n)) +O(n2)) and a(n) = A(n) + a0(n2 +O(n)).References[1] B. Barak. A Probabilistic-Time Hierarchy Theorem for "Slightly Non-uniform"Algorithms. In Random'02, LNCS 2483, pages 194{208, 2002.[2] L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomialtime. In 45th FOCS, pages 316{324, 2004.
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