On Basing One-Way Functions on NP-Hardness

Adi Akavia* Oded Goldreicht Shafi Goldwasser* Dana Moshkovitz$

April 8, 2005

Abstract

We consider the possibility of basing one-way functions on NP-Hardness; that is, we study possible
reductions from a worst-case decision problem to the task of average-case inverting a polynomial-
time computable function f (i.e., reductions that are supposed to establish that the latter function
is one-way based on a worst-case assumption regarding the decision problem). Our main findings are
the following two negative results:

1. If given y one can efficiently compute |f~*(y)| then the existence of a (randomized) reduction
of NP to the task of average-case inverting f implies that NP C coAM. Thus, it follows that
such reductions cannot exist (unless NP C coAM).

The result extends to functions for which the preimage size is efficiently verifiable via an AM
protocol. For example, this includes regular functions with efficiently recognizable range.

We stress that this result holds for any reduction, including adaptive ones. We note that the pre-
viously known negative results regarding worst-case to average-case reductions were essentially
confined to non-adaptive reductions, whereas known positive results (regarding computational
problems in the geometry of numbers) use adaptive reductions.

2. For any function f, the existence of a (randomized) non-adaptive reduction of NP to the task
of average-case inverting f implies that NP C coAM.
This result improves over the previous negative results (for this case) that placed AP in non-
uniform coAM.

Our work builds on the previous works of Feigenbaum and Fortnow (SIAM Journal on Computing,
1993) and Bogdanov and Trevisan (44th FOCS, 2003), while capitalizing on the additional “com-
putational structure” of the search problem associated with the task of inverting polynomial-time
computable functions. We believe that our results illustrate the gain of directly studying the context
of one-way functions rather than inferring results for it from a the general study of worst-case to
average-case reductions.

Area: Cryptography and Complexity.

Keywords:

One-Way Functions, Worst-Case to Average-Case reductions, Adaptive versus Non-adaptive

reductions, Interactive Proof Systems.

Note: Section 3 (on page 11) is kind of discretionary.

*akavia@mit.edu
foded.goldreich@weizmann.ac.il
tshafi@theory.csail.mit.edu
$dana.moshkovitz@weizmann.ac.il

1 Introduction

One-way functions are functions that are easy to compute but hard to invert, where the hardness
condition refers to the average-case complexity of the inverting task. The existence of one-way functions
is the cornerstone of modern cryptography: almost all cryptographic primitives imply the existence of
one-way functions, and most of them can be constructed based either on the existence of one-way
functions or on related (but seemingly stronger) versions of this assumption.

As noted above, the hardness condition of one-way functions is an average-case complexity con-
dition. Clearly, this average-case hardness condition implies a worst-case hardness condition; that is,
the existence of one-way functions implies that AP is not contained in BPP. A puzzling question of
fundamental nature is whether or not the necessary worst-case condition is a sufficient one; that is, can
one base the existence of one-way functions on the assumption that AP is not contained in BPP.

More than two decades ago, Brassard [Br| observed that the inverting task associated with a one-
way permutation (or, more generally, a 1-1 one-way function) cannot be N'P-hard, unless NP = coNP.
The question was further addressed (indirectly), in the works of Feigenbaum and Fortnow [FeFo| and
Bogdanov and Trevisan [BoTr|, which focused on the study of worst-case to average-case reductions
among decision problems.

1.1 Our Main Results

In this paper we re-visit the aforementioned question, but do so explicitly. We study possible reductions
from a worst-case decision problem to the task of average-case inverting a polynomial-time computable
function (i.e., reductions that are supposed to establish that the latter function is one-way based on
a worst-case assumption regarding the decision problem). Specifically, we consider (randomized) re-
ductions of NP to the task of average-case inverting a polynomial-time computable function f, and
capitalize on the additional “computational structure” of the search problem associated with the in-
verting task. This allows us to strengthen previously known negative results, and obtain the following
two main results:

1. If given y one can efficiently compute |f~!(y)| then the existence of a (randomized) reduction of
NP to the task of average-case inverting f implies that NP C coAM.
The result extends to functions for which the preimage size is efficiently verifiable via an AM
protocol. For example, this includes regular functions (cf., e.g., [GKL]) with efficiently recognizable
range. Recall that AM is the class of sets having two-round interactive proof systems, and that
it is widely believed that coN'P is not contained in AM (equiv., NP is not contained in coAM).
Thus, it follows that such reductions cannot exist (unless NP C coAM).

We stress that this result holds for any reduction, including adaptive ones. We note that the
previously known negative results regarding worst-case to average-case reductions were essentially
confined to non-adaptive reductions (cf. [FeFo, BoTr|, where [FeFo] also handles restricted levels
of adaptivity).

2. For any (polynomial-time computable) function f, the existence of a (randomized) non-adaptive
reduction of NP to the task of average-case inverting f implies that NP C coAM.

This result improves over the previous negative results of [FeFo, BoTr] that placed NP in non-
uniform coAM (instead of in uniform coAM).

These negative results can be interpreted in several ways: see discussion in Section 3.

1.2 Relation to Feigenbaum-Fortnow and Bogdanov-Trevisan

Our work is inspired by two previous works. The first work, by Feigenbaum and Fortnow [FeFo|, posed
the question of whether or not ANP-complete problems can be random self-reducible. That is, can
(worst case) instances of N'P-complete problems be reduced to one or more random instances, where
the latter instances are drawn according to a predetermined distribution. The main result of [FeFo] is

that if such (non-adaptive) reductions exist, then coNP is in a non-uniform version of AM, denoted
AMoly. Non-uniformity was used in their work to encode statistics about the target distribution of
the reduction.

Bogdanov and Trevisan [BoTr] start by viewing the result of [FeFo| as a result about the impossibility
of worst-case to average-case reductions for NP-complete problems. They note that even if one cares
about the average-case complexity of a problem with respect to a specific distribution (e.g., the uniform
one) then it needs not be the case that a worst-case to average-case reduction must make queries
according to this distribution. Furthermore, the distribution of queries may depend on the input to
the reduction, and so statistics regarding it cannot be given as advice. Nevertheless, combining the
ideas of [FeFo] with additional ideas (some borrowed from the study of locally-decodable codes [KaTr]),
Bogdanov and Trevisan showed that any non-adaptive reduction of (worst-case) NP to the average-case
complexity of NP (with respect to any sampleable distribution) implies that coN'P C AM 1.

Although a main motivation of [BoTr] is the question of basing one-way functions on worst-case
NP-hardness, its focus (like that of [FeFo]) is on decision problems. Using known reductions between
search and decision problems in the context of distributional problems [BCGL, ImLe], Bogdanov and
Trevisan [BoTr| also derive implications on the (im)possibility of basing one-way functions on NP-
hardness. In particular, they conclude that if there exists an NP-complete set for which deciding any
instance is non-adaptively reducible to inverting a one-way function (or, more generally, to a search
problem with respect to a sampleable distribution), then coN'P C AM ey .

We emphasize that the techniques of [BoTr] refer explicitly only to decision problems, and do not
relate to the underlying search problems (e.g., inverting a supposedly one-way function). In doing so,
they potentially lose twice: they lose the extra structure of search problems and they lose the additional
structure of the task of inverting polynomial-time computable functions. To illustrate the latter aspect,
we re-formulate the problem of inverting a polynomial-time computable function as follows (or rather
spell out what it means in terms of search problems). The problem of (average-case) inverting f on the
distribution f(U,), where U,, denotes the uniform distribution over {0,1}", has the following features:

1. The problem is in NP; that is, the solution is relatively short and given an instance of the problem
(i.e., y) and a (candidate) solution (i.e., x), it is easy to verify that the solution is correct (i.e.,
y = f(2)).

2. We care about the average-case complexity of the problem; that is, the probability that an efficient
algorithm given a random (efficiently sampled) instance y (i.e., y « f(Uy,)) finds x € f~1(y).

3. There exists an efficient algorithm that generates random instance-solution pairs (i.e., pairs (y, x)
such that y = f(x), for uniformly distributed = € {0,1}").

Indeed, the first two items are common to all average-case NP-search problems (with respect to sam-
pleable distributions), but the third item is specific to the context of one-way functions (cf. [Go,
Sec. 2.1]). A generic sampleable distribution of instances is not necessarily coupled with a corresponding
sampleable distribution of random instance-solution pairs. Indeed, capitalizing on the third item is the
source of our success to obtain stronger (negative) results regarding the possibility of basing one-way
functions on N'P-hardness.

The works [BoTr, FeFo] fall short of a general impossibility result in two ways. First, they only
consider non-adaptive reductions, whereas the celebrated worst-case to average-case reductions of lattice
problems (cf. [Aj, MiRe]) are adaptive. Furthermore, the positive results seem to illustrate the power
of adaptive versus non-adaptive reductions.! Second, [BoTr, FeFo] reach conclusions involving a non-
uniform complexity class (i.e., AMpoly). Non-uniformity seems an artifact of their techniques, and

We comment that the power of adaptive versus non-adaptive reductions has been studied in various works (e.g.,
[FFLS, HNOS, BalLa]). It is known that if NP ¢ BPE, then there exists a set in NP \ BPP that is adaptively random
self-reducible but not non-adaptively random self-reducible.

one may hope to conclude that coN'’P C AM rather than coN’P C AM,qy. (One consequence of the
uniform conclusion is that it implies that the polynomial time hierarchy collapses to the second level,
whereas the non-uniform conclusion only implies a collapse to the third level.)

1.3 The Benefits of Direct Study of One-Way Functions

As stated before, working directly with one-way functions allows us to remove both the aforementioned
shortcomings. That is, we get rid of the non-uniformity altogether, and obtain a meaningful negative
result for the case of general (adaptive) reductions. Specifically, working directly with one-way functions
allows us to consider natural special cases of potential one-way functions, which we treat for general
(i.e., possibly adaptive) reductions.

One special case of potential one-way functions, which received some attention in the past (e.g., [GKL,
GIL+, Dilm, HHK+]), is that of regular one-way functions. Loosely speaking, in such a function f,
each image of f has a number of preimages that is (easily) determined by the length of the image. We
prove that any reduction (which may be fully adaptive) of N'P to inverting a regular polynomial-time
computable function that has an efficiently recognizable range (possibly via an AM-protocol) implies
coN'P C AM. More generally, this holds for any function f for which there is an AM-protocol for
determining the number of inverses |f~!(y)| of each given y. We call such functions size-verifiable, and
note that they contain all functions for which (given y) one can efficiently compute |f~1(y)|.

As stated above, we believe that the study of the possibility of basing one-way functions on worst-case
NP-hardness is the most important motivation for the study of worst-case to average-case reductions
for N'P. In such a case, one should consider the possible gain from studying the former question directly,
rather than as a special case of a more general study. We believe that the results presented in this paper
indicate such gains. Firstly, working directly in the context of one-way function enabled us to get rid
of the non-uniformity in all our results (by replacing non-uniform advice that provide needed statistics
with AM-protocols designed to provide these statistics). Secondly, the context of one-way function
enabled us to consider meaningful types of one-way functions and to establish even stronger results for
them. We hope that this framework may lead to resolving the general question of the possibility of
basing any one-way function on worst-case NP-hardness via any reduction. In light of the results of
this paper, we are tempted to conjecture an impossibility result (pending, as usual, on coN'P € AM).

Organization of the rest of this work. In Section 2, we provide an overview of our proofs as well
as a formal statement of our main results. Detailed proofs can be found in the appendix’s sections
(i.e., preliminaries are in Appendix A, the treatment of adaptive reductions is in Appendix B, and the
treatment of general functions is in Appendix C). In Section 3 we discuss possible interpretations of
our negative results (as well as those of [FeFo, BoTr]).

2 Overview of Results and Proofs

Having observed the potential benefit of working explicitly with the inverting task of a function f,
materializing this benefit is the bulk of the technical challenge and the technical novelty of this work.

Let us first clarify what we mean by saying that a decision problem L is (efficiently and randomly)
reducible to the problem of inverting a one-way function f. We take the straightforward interpretation
(while using several arbitrary choices, like in the threshold determining an inverting oracle):

Definition 1 (inverting oracles and reductions). A function O : {0,1}* — {0,1}* is called a (average-
case) f-inverting oracle if, for every n, it holds that Pr[O(f(z)) € f~1(f(x))] > 1/2, where the probability
is taken uniformly over x € {0,1}". For a probabilistic oracle machine R, we denote by R®(w) a random
variable representing the output of R on input w and access to oracle O, where the probability space
is taken uniformly over the probabilistic choices of machine R (i.e., its randomness). A probabilistic
polynomial-time oracle machine R is called a reduction of L to (average-case) inverting f if, for every

w € {0,1}* and any f-inverting oracle O, it holds that Pr[R® (w) = xr(w)] > 2/3, where x1(w) = 1 if
w € L and xp(w) = 0 otherwise.

A reduction as in Definition 1 may only establish that f is a weak one-way function (i.e., that f
cannot be inverted with probability exceeding 1/2 on every input length), which makes our impossibility
results even stronger.? Throughout this work, the function f will always be polynomial-time computable,
and for simplicity we will also assume that it is length preserving (i.e., | f(z)| = |z| for all).

Let us take a closer look at the reduction R. On input w, it may ask polynomially many queries to
the inverting oracle. In adaptive reductions, later queries may depend on the oracle answers to earlier
queries. In non-adaptive reductions all queries are computed in advance (based solely on the input w
and the randomness r). For simplicity of presentation, we assume all queries are of length |w].

High-level structure of our proofs and their challenges. Our proofs all work via the contra-
positive. Suppose, that there exists a reduction R from deciding an (NP-complete language) L to
inverting the function f. We aim to use this reduction to give an AM-protocol for L. (A similar
AM-protocol can be given for L itself, but there is no point in doing so because L € N'P by hypothesis.)

As in [FeFo, BoTr], the main backbone of our AM-protocol for L is for the verifier to emulate
the reduction R on input w and decide whether or not w € L according to R’s output. Of course, the
verifier cannot run the reduction fully on its own, because the reduction requires access to an f-inverting
oracle. Instead, the prover will play the role of the inverting oracle, thus enabling the emulation of the
reduction. Needless to say, the verifier will check that all answers are actually f-preimages of the
corresponding queries (and for starters we will assume that all queries are in the image of f). Since we
aim at a constant-round protocol, we send all queries to the prover in one round, which in the case of
an adaptive reduction requires to send the randomness r of the reduction to the prover. Note that also
in the non-adaptive case, we may as well just send r to the prover, because the prover may anyhow be
able to determine r from the queries.

The fact that r is given (explicitly or implicitly) to the prover is the source of all difficulties that
follow. It means that the prover need not answer the queries obliviously of other queries (or of r), but
may answer the queries depending on r. In such a case, the prover’s answers (when considering all
possible r) are not consistent with any single oracle. Indeed, all these difficulties arise only in case f is
not 1-1 (and indeed in case f is 1-1 the correct answer is fully determined by the query). We stress that
the entire point of this study is the case in which f is not 1-1. In the special case that f is 1-1 (and
length preserving), inverting f cannot be A'P-hard for rather obvious reasons (as has been well-known
for a couple of decades; cf. [Br]).?

To illustrate what may happen in the general case, consider a 2-to-1 function f. Given an arbitrary
reduction of L to inverting f, consider a modified reduction that tosses n additional coins py, ..., pn,
issues n additional queries, and halts without output if and only if for i« = 1,...,n the i-th additional
query is answered with the (p; + 1)-st corresponding preimage (in lexicographic order). This reduction
works with probability that is very close to the original one, but a cheating prover can always cause its
emulation to halt without output.

2In contrast, the standard definition of one-way function requires that any efficient inverting algorithm succeeds with
negligible probability (i.e., probability that is smaller than 1/poly(n) on all but finitely many n’s). Here we relax the
security requirement in two ways (by requiring more of a successful inverting algorithm): first, we require that the inverting
algorithm be successful on any input length, and second that the success probability exceeds 1/2 rather than 1/poly(n).

3Intuitively, inverting such an f (which is a search problem in which each instance has a unique solution) corresponds
to a decision problem in AP N coNP (i.e., given (y,4) determine the i-th bit of f~'(y)). Thus, the fact that inverting f
cannot be AN'P-hard (unless NP = coNP) is analogous to the fact that sets in NP N coNP cannot be AN'P-hard (again,
unless NP = coNP). In contrast, in case f is not 1-1, the corresponding decision problems are either not known to be
in NP N coN'P or are promise problems (cf. [ESY]) in the “promise problem class” analogue of NP N coNP. Recall that
promise problems in the latter class may be N'P-hard even if NP # coN'P (see [ESY]).

A different way of looking at things is that the reduction guarantees that, for any adequate (f-
inverting) oracle O, with probability 2/3 over the choices of r, machine R decides correctly when given
oracle access to 0. However, it is possible that for every r there exists an oracle O, such that R, when
using coins r, decides incorrectly when given oracle access to O,. If this is the case (which we cannot
rule out) then the prover may cheat by answering like the bad oracle O,. In the rest of this section,
we provide an outline of how we deal with this difficulty in each of the two cases (i.e., size-verifiable
functions and non-adaptive reductions).

2.1 Size-Verifiable Functions (Adaptive Reductions)

Recall that our aim is to present an AM-protocol for L, when we are given a general (adaptive) reduction
R of the worst-case decision problem of L to average-case inverting f. We denote by ¢ the number of
queries made by R, by R(w,r,aq,...,a;—1) the i-th query made by R on input w and randomness r after
receiving the oracle answers ay, ..., a;—1, and by R(w, , ay, ..., aq) the corresponding final decision. Recall

that for simplicity, we assume that all queries are of length n def |w|. In the bulk of this subsection we
assume that, given y, one can efficiently determine |f~!(y)|.

A very simple case: As a warm-up we first assume that |f~*(y)| < poly(|y|), for every y. In this
case, on common input w, the parties proceed as follows.

1. The verifier selects uniformly coins r for the reduction, and sends r to the prover.

2. Using r, the prover emulates the reduction as follows. When encountering a query y, the prover
uses the lexicographically first element of f~!(y) as the oracle answer (and uses L if f~!(y) = ¢).
Thus, it obtains the corresponding list of queries yi, ..., y4, which it sends to the verifier along with
the corresponding sets £~ (y1), ..., f (yq)-

3. Upon receiving y1, ..., y, and Ai, ..., Ay, the verifier checks, for every i, that |A;| = |f~1(y;)| and
that f(x) = y; for every z € A;. Letting a; denote the lexicographically first element of A;, the
verifier checks that R(w,r,a,...,a;—1) = y; for every i. The verifier accepts w (as a member of
L) if and only if all checks are satisfied and R(w,r, a1, ...,a,) = 0.

Note that the checks performed by the verifier “force” the prover to emulate a uniquely determined
(perfect) inverting oracle (i.e., one that answers each query y with the lexicographically first element of
f~1(y)). Thus, the correctness of the reduction implies the completeness and soundness of the above
AM-protocol.

In general, however, the size of f~!(y), for y in the range of f may not be bounded by a polynomial
in n (where n = |y| = |w|). In this case, we cannot afford to have f~!(y) as part of a message in the
protocol (because it is too long). The obvious idea is to have the verifier send an adequate random
hash function A : {0,1}" — {0,1}* and let the prover answer with h=1(0°) N f~!(y) (rather than with
' (y)), where £ = |(logy | f~'(y)|/poly(n))]. The problem is that in this case the verifier cannot check
the “completeness” of the list of preimages (because it cannot compute |h=1(0°)N f~1(y)|), which allows
the prover to omit a few members of h=1(0) N f~1(y) at its choice. Recall that this freedom of choice
(of the prover) may obliterate the soundness of the protocol.

The solution is that, although we have no way of determining the size of A=1(0¢) N f~1(y), we do
know that its expected size is exactly |f~!(y)|/2¢, where the expectation is taken over the choice of h
(assuming indeed that a random h maps each point in {0,1}" uniformly on {0,1}¢). Furthermore, the
prover cannot add elements to h=1(0°) N f~!(y) (because the verifier can verify membership in this set),
it can only omit elements. But if the prover omits even a single element, it ends-up sending a set that is
noticeably smaller than its expected size (because the expected size of h~1(0°) N f~1(y) is a polynomial
in n). Thus, if we repeat the process many times, the prover cannot afford to cheat in most of these
repetitions, because in that case the statistics will deviate from the expectation by too much.

Before turning to the specific implementation of this idea, we mention that the above reasoning
mimics the main idea of Feigenbaum and Fortnow [FeFo] (also used by Bogdanov and Trevisan [BoTr]).

Similarly to their setting, we also have a situation in which the prover may cheat (without being
detected) only in one direction. In their setting cheating was possible by claiming that a string that is
in an NP-set (at the target of the reduction) is not in that set, whereas here it is in sending a proper
subset of a set of preimages under f and h (which also has an efficient membership test). In both
settings, it is impossible to cheat in the other direction (i.e., claim that a non-member of an NP-set is
in that set, or send a set containing some non-preimages).

Protocol for the general case: In the following protocol we use families of hash functions of very
high quality (e.g., poly(n)-wise independent ones). Specifically, in addition to requiring that a random
h: {0,1}™ — {0,1} maps each point uniformly, we require that, for a suitable polynomial p and for
any S C {0,1}" of size at least p(n) - 2, with overwhelmingly high probability over the choice of h it
is the case that |h=1(0%) N S| < 2|S|/2°. In particular, the probability that this event does not occur is
so small that, when conditioning on this event, the expected size of |h=1(0°) N S| is (1 +27") -|S|/2¢.
(Thus, under this conditioning and for S as above, the variance of 2¢/|[h=1(0°) N S|/|S]| is less than 2.)

1. The verifier selects uniformly m = n - ¢>p(n)? = poly(n) sequences of coins, rO ™ for the
reduction, and sends them to the prover. In addition, for each £k = 1,...m, ¢ = 1,...,q and
¢=1,...,n, it selects and sends a random hash function hy ;¢ : {0,1}" — {0, 1}*.

To streamline the following description, for j < 0, we artificially define Ay, ; ; such that hk i (07) = def

{0,1}™. In such a case, SN hy ; ;0 7) = S, and so an instruction to do something with the former
set merely means using the latter set.

2. For every k = 1,...,m, the prover uses 7‘() to emulate the reduction as follows. When encountering

the i-th query, yl(k), 1t determlnes B = |(logy | f~ ()\ /p(n))], and uses the lexicographically

first element of f~ ()ﬂh_ e (04) as the oracle answer (and uses L if the latter set is empty).

Thus, it obtains the corresponding list of queries y§k), ,ygk) which it sends to the verifier along
: (k)

with the corresponding sets f~!(y; (k)) N hk 1 Z(k)(Oegk)), U (y((]k)) N hk ! Z(k)(Oéqk).

We assume that none of the latter sets has size greater than 4p(n). Note that the bad event occurs
with negligible probability, and in such a case the prover halts and the verifier rejects. (Otherwise,
all mq sets are sent in one message.)

3. Upon receiving yg),...,ygl), ...,y§m), ...,y((]m) and Agl), ...,Agl),...,Agm),...,A((]m), the verifier con-
ducts the following checks:

(a) For every k =1,....,mand i =1,...,¢q, the Veriﬁer checks that for every x € AZ(-k) it holds that
flx) =y and b, o (2) = o@i- , where 6% = | (logy | F~1(y™)| /p(n))]. Letting a{* be the

lexicographically first element of AZ(-), it checks that R(w, r(k),agk),. (k))= (k).

S
(b) For every i = 1,...,q, it checks that
1 24 |4 1
w2 1|(kz)|>1_100- (n) @)
= [f7H)l 4P

where 0/0 is defined as 1.

The verifier accepts w if and only if all the foregoing checks are satisfied and it holds that
R(w,r®), agk),. (k)) = 0 for a uniformly selected k € {1,...,m}.

Analysis of the Protocol. We first note that the additional checks added to this protocol have a
negligible effect on the completeness condition: the probability that either |f~ () N h; e (ng('k))\ >

4p(n) for some i,k or that Eq. (1) is violated for some i is exponentially vanishing.* Turning to the

k)C

soundness condition, we note that the checks performed by the verifier force the prover to use AZ(

Ti(k) def f- ((k)) Nh~- 1£)(Oéz('k)). Also, with overwhelmingly high probability, for every ¢ = 1,...,q, it
holds that) k _ (k)
m 20 F) AT (0]
. > m clp—r (2)
k .
m o 1) 100g - p(n)

Combining Eq. (1) and Eq (2) and recalling that Agk) - Tl-(k) (and |f_1(yl(k))| < 2p(n)- ZZEM), it follows
that (1/m) - ZZ”:I(\T \A \/2p()) < 2/(100q - p(n)) for every i. Thus, for each 4, the probability
over a random k that AZ(-k #+ TZ- is at most 1/25¢. It follows that for a random k, the probability that

Af-k) = Ti(k) for all ’s is at least 1 — (1/25). In this case, the correctness of the reduction implies the
soundness of the foregoing AM-protocol.

The above description presumes that the verifier can determine the size of the set of f-preimages
of any string. The analysis can be easily extended to the case that the verifier can only check the
correctness of the size claimed and proved by the prover. That is, we refer to the following definition.

Definition 2 (Size Verifiable). We say that a function f: {0,1}" — {0,1}" is size verifiable if there is
a constant-round proof system for the set {(y,|f~*(y)|) : y € {0,1}*}.

A natural example of a function that is size verifiable (and for which the relevant set is not known
to be in BPP) is the integer multiplication function. That is, we consider the function that maps pairs
of integers (which are not necessarily prime or of the same length) to their product. In this case the
set {(y, |f~1(y)|) : y € {0,1}"} is in NP (i.e., the NP-witness is the prime factorization) but is widely
believed not to be in BPP (e.g., it is believed to be infeasible to distinguish product of two (n/2)-bit
random primes from the product of three (n/3)-bit long random primes).

Theorem 3 (Adaptive Reductions). Unless coN'P C AM, there exists no reduction (even not an
adaptive one) from deciding an NP-complete language to inverting a size-verifiable polynomial-time
computable function.

Namely, it is unlikely that size-verifiable one-way functions can be based on NP-hardness. We
note that the result can be extended to functions that are “approximately size-verifiable” (covering the
“approximable preimage-size” function of [HHK+] as a special case). For formal proofs see Appendix B.

2.2 Non-Adaptive Reductions (General Functions)

We now turn to outline the proof of our second main result.

Theorem 4 (General Functions). Unless coN'P C AM, there exists no non-adaptive reduction from
deciding an NP-complete language to inverting a polynomial-time computable function.

Considering the AM-protocol used in the adaptive case, we note that in the current case the verifier
cannot necessarily compute (or even directly verify claims about) the size of sets of f-preimages of the
reduction’s queries. Indeed, known lower-bound protocols (cf. [GoSi]) could be applied to these sets,
but known upper-bound protocols (cf. [AiHa]) cannot be applied because they require that the verifier
has or can obtain a random (let alone secret) member of these sets. Fortunately, adapting the ideas

(k)
“Recall that here we refer to the case that Al(.k) = f- (yfk)) Nnht (Oeik). Thus, regarding Eq. (1), we note that

ki [(k)
the Lh.s is the average of m independent random variables, each having ‘constant variance. Applying Chernoff bound, the
probability that Eq. (1) is violated is upperbounded by exp(—Q(m/(100q - p(n))?)) = exp(—Q(n)).

of [BoTr] to the current setting, allows to overcome this difficulty and to obtain, not only non-uniform
AM-protocols (for coNP), but even uniform ones (thus, implying coNP C AM).

Here R is a non-adaptive reduction of some set L € NP to the average-case inverting of an arbitrary
(polynomial-time computable) function f, and our goal again is to show that L € AM. We may
assume, without loss of generality, that the queries of R(w,-) are identically distributed (but typically
not independently distributed), and represent this distribution by the random variable R,,; that is,
Pr[R,=y] = |{r € {0,1}" : R(w,r)=y}|/2", where n/ denotes the number of coins used by R(w,).

A simple case (analogous to [FeFo|): We first consider the case that R’s queries are distributed

identically to F), def f(Uy,), where U, denotes the uniform distribution over {0,1}". In this case, we

ask the prover to provide |f _l(yi(k))] along with each query ygk) made in the emulation of R(w,r®)),
and ask for lower-bound proofs (cf., [GoSi]) regarding the claimed sizes.> To prevent the prover from
understating these sizes, we compare the value of (1/gm)- > 7, >™i" , log, |f_1(y2-(k))| to the expected
value of logy |f~1(f(Uy))|, where here and below we define log, 0 as —1 (in order to account for the
case of queries that have no preimages). Mimicking [FeFo|, one may suggest that the latter value (i.e.,
Expllog, | f~1(F,)|]) be given as a non-uniform advice, but we can do better: We may ask the prover
to supply Exp[logs |f~1(f(Uy,))|] and prove its approximate correctness using the following protocol.

The verifier uniformly selects x1, ...,z € {0,1}", computes y; = f(x;) for every i, sends
Y1, ..., Ym to the prover and asks for |f~'(y1)|,...,|f " (ym)| along with lower and upper
bound constant-round interactive proofs. (As usual, the lower-bound AM-protocol of [GoSi]
(or [GVW]) can be applied because membership in the corresponding sets can be easily
verified.) The (point is that the) upper-bound protocol of [AiHa] can be applied here,
because the verifier has secret random elements of the corresponding sets.

Recall that the lower-bound protocol (of [GoSi] or [GVW]) guarantee that the prover cannot overstate
any set size by more than an e = 1/poly(n) factor (without risking detection with overwhelmingly high
probability). Thus, we will assume throughout the rest of this section that the prover never overstates
set sizes (by more than such a factor). The analysis of understated set sizes is somewhat more delicate,
firstly because (as noted) the execution of upper-bound protocols requires the verifier to have a secret
random element in the set, and secondly because an understatement by a factor of ¢ is only detected with
probability e (or so). Still this means that the prover cannot significantly understate many sets sizes and
go undetected. Specifically, if the prover understates the size of f~!(y;) by more than an ¢ factor for at
least n/e of the y;’s then it gets detected with overwhelmingly high probability. Using a suitable setting
of parameters, this establishes the value of Exp[logs |f~1(f(Uyn))|] up to a sufficiently small additive
term, which suffices for our purposes. Specifically, as in Section 2.1, such a good approximation of
Expllogs | f~1(f(Uy))|] forces the prover not to understate the value of |f_1(y§k))| by more than (say) a
1/10p(n) factor for more than (say) m/10 of the possible pairs (i, k). (Note that, unlike in Section 2.1,
here we preferred to consider the sum over all (i,k)’s rather than ¢ sums, each corresponding to a
different 4.)%

SFurthermore, in this case the corresponding hashing functions (i-e., the hy,;¢) can be sent after all set sizes has been
claimed. In fact, it is important to do so (or introduce an alternative modification) in order to prevent possible control
of the prover on the hashing function being used. Recall that in the adaptive case, the hashing function in use (for query
y) is determined by £ = |(log, |f~*(v)|/p(n))], but the verifier knows |f~*(y)| and thus the prover has no control on the
value of £. In the current context, the prover may be able to cheat a little about the value of |f~*(y)|, without being
caught, and this may (sometimes) cause a change of one unit in the value of ¢ (and thus allow for a choice among two
hash functions). Sending the hash function after ¢ is determines (by the prover) eliminates the potential gain from such
a cheating. An alternative modification is to set £ = [(p + log, sy/p(n))], where s, is prover’s claim regarding the size of
|f~*(y)| and p € [0, 1] is a uniformly chosen randomization selected and sent in the verifier’s initial step.

SWe stress that in both cases both choices can be made. We note that, when analyzing the completeness condition, one
may prefer to analyze the deviation of the individual sums (for each).

A special case (analogous to one part of [BoTr]|): We now allow R,, to depend on w, but restrict
our attention to the natural case in which the reduction does not ask a query y with probability that
exceeds Pr[F,, = y] by too much. Specifically, suppose that Pr[R, = y] < poly(|y|) - Pr[F,, = y], for
every y. In this case, we modify the foregoing protocol as follows.

Here it makes no sense to compare the claimed value of (1/gm)->7 > " log, | f _l(yi(k))]
against Exp[logs |f~1(F},)|]. Instead we should compare the former (claimed) average to
Expllogs |f 1 (Ry)|]. Thus, the verifier needs to obtain a good approximation to the latter
value. This is done by generating many y;’s as before (i.e., y; = f(x;) for uniformly selected
x; € {0,1}") along with fewer but still many y;’s sampled from R,,, and sending all these y;’s
(in random order) to the prover. Specifically, for ¢ > max, ¢ 13« {Pr[Rw = y|/Pr[F}, = y]},
we generate ¢t times more y;’s from F},, and so each y; received by the prover is at least as

likely to come from F;, than from R,,.
The prover will be asked to provide all |f~!(y;)|’s along with lower-bound proofs, and after-

wards (i.e., only after committing to these |f~!(y;)|’s) the verifier will ask for upper-bound
proofs for those y;’s generated via F), (for which the verifier knows a secret and uniformly
distributed x; € f~1(y;)).
Recall that the prover cannot significantly overstate the size of any |f~1(y;)| (i.e., overstate it by more
than an ¢ = 1/poly(n) factor). If the prover significantly understates the sizes of too many of the
|f~1(y:)|’s, then it is likely to similarly understate also the sizes of many |f~!(y;)|’s such that y; was
generated by sampling F,,. But in this case, with overwhelmingly high probability, the prover will fail
in at least one of the corresponding upper-bound proofs.

The general case (analogous to another part of [BoTr|): We now allow R,, to depend arbitrarily
on w, without any restrictions whatsoever. For a threshold parameter ¢ to be determined later, we say
that a query y is t-heavy if Pr[R,, = y] > t-Pr[F,, = y|. (In the special case, we assumed that there are no
poly(n)-heavy queries.) Observe that the probability that an element sampled according to F), is t-heavy
is at most 1/¢, and thus modifying an inverting oracle such that it answers t-heavy queries by L affects
the inverting probability of the oracle by at most 1/¢. Thus, for ¢t > 2, if we answer t-heavy queries by
1 (and answer other f-images with a preimage), then we emulate a legitimate inverting oracle (which
inverts f with probability at least 1/2) and the reduction R is still supposed to work well. Referring
to y as t-light if it is not ¢-heavy, we note that ¢-light queries can be handled as in the foregoing special
case (provided t < poly(n)), whereas t-heavy queries are accounted for by the previous discussion. The
problem is to determine whether a query is t-heavy or t-light, and certainly we have no chance of doing
so if many (reduction) queries are very close to the threshold (e.g., Pr[R,, = y] = (t£n~1°8").Pr[F, = y]
for all y’s). Thus, as in [BoTr], we select the threshold at random (say, uniformly in the interval [2, 3]).
Next, we augment the foregoing protocol as follows.

(k)

)

(k)

e We ask the prover to provide for each query y, ’, also the value of Pr[R,, =y, '], or equivalently

the size of {r : R(w,r) = yl(k)} In addition, we ask for lower-bound proofs of these sizes.
e Using lower and upper bound protocols (analogously to the simple case)”, we get an estimate of

Exp[logy [{r : R(w,r) = Ry }|]. We let the verifier check that this value is sufficiently close to the
claimed value of (1/gm) - Y% S logy [{r : R(w,r) = yz-(k)}], thus preventing an understating
of the size of almost all the sets {r : R(w,r) = yl(k)}
Hence, combining these two items, the verifier gets a good estimate of the size of {r : R(w,r) =
yl(k)} for all but few (i,k)’s. That is, the verifier can confirm that for almost all the (i,k)’s the
claimed (by prover) size of {r : R(w,r) = yfk)} is approximately correct.

"In the simple case we got an estimate of Expllog, |f*1(f<’n)|]7 while relying on our ability to generate samples of F),

along with a uniformly distributed member of fﬁl(Fn). Here we rely on our ability to generate samples of R, along with
a uniformly distributed member of {r : R(w,r) = Ry }.

e Using the claimed (by the prover) values of Pr[R,, = Z(k)] and Pr[F,, = ygk)], the verifier makes
tentative decisions regarding which of the y(k)’s is t-light.

(1

the claim about Pr[F), = y(k)] can only be understated (by the lower-bound on f _l(ygk))).

)

Note that for most (i, k), the prover’s claim about Pr[R,, =y, ’| is approximately correct, whereas

Using a protocol as in the special case, the verifier obtains an estimate of Expllog, |f~(R.,)I],

where R!, denotes R, conditioned on being t-light, and checks that this value is sufficiently close
(k)

to the claimed average of log, | f _1(y§k))|, taken only over t-light y,"’’s. In addition, the verifier

(k)

i

checks that the fraction of t-light yi(k)’s (among all y
is t-light.

s) approximates the probability that R,

We note that estimating Expllog, |f~1(R.,)|] is done by generating y;’s as in the special case,
but with ¢ € [2,3] as determined above, and while asking for the value of both Pr[R, = ;]
and Pr[F,, = y;] for all y;’s, and afterwards requiring upper-bound proofs for one of these values
depending on whether y; was sampled from R, or F},. Needless to say, these values will serve as
basis for determining whether each y; is t-heavy or t-light, and will also yield an estimate of the
probability that R, is ¢-light.

Recall that the verifier accepts w if and only if all the foregoing checks (including the ones stated in the
adaptive case) are satisfied.

Ignoring the small probability that we selected a bad threshold ¢ as well as the small probability that
we come across a query that is close to the threshold, we analyze the foregoing protocol as follows. We
start by analyzing the queries y;’s used in the sub-protocol for estimating Exp[log, | f~1(R.,)[]. We first
note that, due to the lower and upper bound proofs, for almost all queries ¥;’s generated by R,,, the sizes
of {r : R(w,r) = y;} must be approximately correct. Next, employing a reasoning as in the special case,
it follows that for almost all ¢-light queries y;’s we obtain correct estimates of the size of their f-image
(i.e., we verify that the almost all the sizes claimed by the prover for the |f~!(y;)|’s are approximately
correct). It follows that we correctly characterize almost all the ¢-light y;’s generated by R, as such.
As for (almost all) t-heavy queries y;’s generated by R,,, we may wrongly consider them ¢-light only if
the prover has significantly overstated the size of their preimage, because we have a good estimate of
{r: R(w,r) = yi(k)} for (almost all) these y;’s. Recalling that an overstatement of]f_l(yi(k))] is detected
with overwhelmingly high probability (by the lower-bound protocol), it follows that almost all t-heavy
queries y;’s generated by R,, are correctly characterize as such. Thus, the characterization of almost
all y;’s (generated by R,,) as t-light or t-heavy is correct, and so is the estimate of the probability that
R, is t-light. Recalling that for almost all the ¢-light y;’s generated by R,, we have a correct estimate
of | f~(y;)|, we conclude that the estimate of Exp[log, |f~1(R.,)|] is approximately correct.

Next we employ parts of the foregoing reasoning to the yl-(k)’s. Recalling that, for almost all queries
yi(k), we obtained correct estimates of the size of {r : R(w,r) = yi(k)}, and that |f_1(yz(k))| cannot
be overstated, we conclude that we correctly characterize almost all ¢-heavy queries as such. The

comparison to the estimated probability that R, is t-light guarantees that the prover cannot claim too
Z(k) i(k)as

t-light or t-heavy. Recalling that |f _l(yi(k))] can only be understated (due to the lower-bound proofs)

and using the estimate of Expl[log, | f~*(R.,)|] as an approximate lower-bound, it follows that the claims

many t-light y.;"’’s as t-heavy, which implies that we have correctly characterize almost all y as

made regarding almost all the |f _1(yi(k))|’s are approximately correct. Thus, as in the special case,
the correctness of the reduction implies the completeness and soundness of the foregoing AM-protocol.
A formal description of this result appears in Appendix C. (We remark that the description in the
appendix differ from the above description on some technicalities.)

10

3 Discussion: interpretations of our negative results

Negative results of the type obtained in this work (as well as in [FeFo, BoTr]) can be interpreted in
several ways: The straightforward view is that such results narrow down the means by which one can
base one-way functions on N P-hardness. Namely, under the assumption that NP is not contained
in coAM, our results show that (1) non-adaptive randomized reductions are not suitable for basing
one-way functions on N'P-hardness, and (2) that one-way functions based on N'P-hardness can not be
size verifiable (e.g., cannot be regular with an efficiently recognizable range).

Another interpretation is that these negative results are an indication that (worst-case) complexity
assumptions regarding NP as a whole (i.e., NP € BPP) are not sufficient to base one-way functions
on. But this does not rule out the possibility of basing one-way functions on the worst-case hardness of a
subclass of NP (e.g., the conjecture that NP NcoN'P £ BPP). This is the case because our results (as
previous ones) actually show that certain reductions of the (worst-case) decision problem of a set S to
(average-case) inverting of f imply that S € AMNcoAM. But no contradiction is obtained if S belongs
to NP N coNP anyhow. Indeed, the decision problems related to lattices that are currently known to
have worst-case to average-case reductions belong to NP N coN'P (cf. [Aj, MiRe] versus [AhRe]).

Yet another interpretation is that these negative results suggest that we should turn to a more
relaxed notion of a reduction, which is uncommon in complexity theory and yet is applicable in the
current context. We refer to “non black-box” reductions in which the reduction gets the code (of the
program) of a potential probabilistic polynomial-time inverting algorithm (rather than black-box access
to an arbitrary inverting oracle). The added power of such (security) reductions was demonstrated a
few years ago by Barak [Ba0l, Ba02].

Acknowledgments

Dana Moshkovitz is grateful to Muli Safra for supporting her visit to MIT, where this research has been
initiated.

11

References

[AhRe]

[AiHa]

[AJ]

[BaLa]

[Ba01]

[Ba02]

D. Aharonov and O. Regev. Lattice Problems in NP intersect coNP. In 45th IEEE Symposium
on Foundations of Computer Science, 2004.

W. Aiello and J. Hastad. Perfect Zero-Knowledge Languages can be Recognized in Two Rounds.
In 28th IEEE Symposium on Foundations of Computer Science, pages 439448, 1987.

M. Ajtai. Generating hard instances of lattice problems. In 28th ACM Symposium on the
Theory of Computing, pages 99-108, 1996.

L. Babai and S. Laplante. Stronger seperations for random-self-reducability, rounds, and advice.
In IEEE Conference on Computational Complexity 1999, pages 98-104, 1999.

B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium on
Foundations of Computer Science, pages 106—115, 2001.

B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared
Random String Model. In 43th IEEE Symposium on Foundations of Computer Science, to
appear, 2002.

[BCGL] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Complexity.

[BoTr]

[Br]

[Dilm]

[ESY]

[FeFo

[FFLS]

Journal of Computer and System Science, Vol. 44, No. 2, April 1992, pages 193-219.

A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems. In
Proc. 44th IEEE Symposium on Foundations of Computer Science, pages 308-317, 2003.

G. Brassard. Relativized Cryptography. In 20th IEEE Symposium on Foundations of Computer
Science, pages 383-391, 1979.

G. Di-Crescenzo and R. Impagliazzo. Security-preserving hardness-amplification for any regular
one-way function In 31st ACM Symposium on the Theory of Computing, pages 169178, 1999.

S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Applications
to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159-173, 1984.

J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journal on
Computing, 22:994-1005, 1993. Extended Abstract appeared in Proc. of IEEE Structures’91.

J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman. The power of adaptiveness and ad-
ditional queries in random-self-reductions. Computational Complexity, 4:158-174, 1994. First
appeared in Proceedings of the 7th Annual IEEE Conference on Structure in Complexity Theory,
1992, pp. 338-346.

O. Goldreich. Foundation of Cryptography — Basic Tools. Cambridge University Press, 2001.

O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman. Security Preserv-
ing Amplification of Hardness. In 31st IEEE Symposium on Foundations of Computer Science,
pages 318-326, 1990.

O. Goldreich, H. Krawczyk and M. Luby. On the Existence of Pseudorandom Generators. SIAM
Journal on Computing, Vol. 22-6, pages 1163-1175, 1993.

12

[GVW] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a laconic provers.
Computational Complexity, Vol. 11, pages 1-53, 2003. Extended abstract in 28th ICALP,
Springer, LNCS 2076, pages 334-345, 2001.

[GoSi] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.
Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation, S.
Micali, ed.), pages 73-90, 1989. Extended abstract in 18th STOC, pages 59-68, 1986.

[HHK+] I. Haitner, O. Horvitz, J. Katz, C.Y. Koo, R. Morselli and R. Shaltiel. Reducing complexity
assumptions for statistically-hiding commitment. To appear in Furocrypt, 2005.

[HNOS] E. Hemaspaandra, A.V. Naik, M. Ogiwara, and A.L. Selman. P-selective sets, and reducing
search to decision vs. self-reducibility. Journal of Computer and System Science, Vol. 53 (2),
pages 194-209, 1996.

[ImLe] R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP Instances than Picking
Uniformly at Random. In 31st IEEE Symposium on Foundations of Computer Science, 1990,
pages 812-821.

[KaTr] J. Katz and L. Trevisan. On The Efficiency Of Local Decoding Procedures For Error-Correcting
Codes. In 32nd ACM Symposium on the Theory of Computing, pages 80-86, 2000.

[MiRe] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
In 45th IEEE Symposium on Foundations of Computer Science, pages 372—-381, 2004.

13

Appendix

A Preliminaries

To simplify the presentation we assume, without loss of generality, that the reduction always makes
exactly ¢ distinct queries.® In addition, we assume (again without loss of generality), that the error
probability of the reduction is exponentially small (because this can be achieved by standard amplifi-
cation).

A.1 Verifying Size Estimates

Let us survey several fundamental protocols for verifying estimates on sizes of NP languages (more
accurately, for any n, the size of the n’th slice of L C {0,1}*, L N {0,1}", which, in short, we will refer
toas L C {0,1}").

Lower Bounds The work of Goldwasser and Sipser, showing private-coins protocols are equivalent
to public coins protocol, has presented a protocol for proving the size of L is at least some number s.
The idea behind it is the following: pick a random hash function h mapping {0,1}" to a range T of size
slightly smaller than s. If |L| > s, then, with high probability, any member of " will have a pre-image
by h. If |L| is significantly smaller than s, an arbitrary member of T' is not likely to have a pre-image
by h in L. The exact parameters are detailed in the following theorem.

Theorem 5 (Goldwasser-Sipser). For any NP language L C {0,1}", any natural 1 < s < 2™, any
estimate 0 < p < 1, and any amplifying factor u = poly(n), there exists a constant-round private-coin
protocol between a prover P and a verifier V' such that:

e If|L| > s, then there exists a prover strategy P so that Pr, [V (r)=1]>1— ;9%.

e If|L| < (1—p)s, then for every prover strategy P’, Pr,. [V (r) =1] < p%’u.
where the probability is taken over the random coin tosses r of the verifier.

We comment that stronger bounds (i.e., u = exp(poly(n))) are available via a related protocol
of [GVW].

Upper Bounds [t is not likely that protocols with constant number of rounds could verify that the
size of an NP language L is at most some number s. Nevertheless, the work of Aiello and Hastad
showed that if the verifier is able to sample uniformly a member x within the language, then the verifier
can also upper-bound the size of the language. The idea is again to use hash functions: pick a random
hash function h mapping {0,1}" to a range T of size slightly smaller than the claimed size, s. Given
h(z), let the prover guess a short list of candidates for x. If |L| = s, there exists such short list with
high probability. On the other hand, if |L| is much larger than s, there should many z’s in L with
h(z) = h(z), and thus the prover has a not-very-high chance to output a list containing x.

This protocol uses significantly the fact it has a uniform z in L and the fact this z is private (i.e.,
not known by the prover). By the work of Goldwasser and Sipser [GoSi], if the Aiello-Hastad protocol
is plugged into an AM protocol in a setting where the specific N P-language L can indeed be sampled,
the private sampling can be replaced by usage of public coins.

The exact parameters of the protocol are detailed in the following theorem:

8Repeated queries may be answered by the reduction itself (using the previously received answer), and dummy queries
may be added in case they are less than ¢ queries.

14

Theorem 6 (Aiello-Hastad). For any NP language L C {0,1}", any natural 1 < s < 2™, any
estimate 0 < p < 1, and any amplifying factor u, there exists a constant-round private-coins protocol so
that for a verifier V(r,z) having a uniformly distributed x € L,

9

e If|L| < s, then there exists a prover strategy P, so that for everyx € L, Pr, [V (r,x) =1] > 1— -
9

o If |L| = (1 + p)s, then for every prover strategy P', Pr, [Proer [V(r,z) =1] <1—£] >1— e

where the probability is taken over the random coin tosses r of the verifier, as well as over the x uniformly
distributed within L.

Note that if L is much larger than s, the verifier may erroneously accept with a very high probability
(roughly 1—p). Nevertheless, it is sufficient for our needs. We will be interested in several N P-languages,
Lq,..., L, and our protocol will be of the following form:

1. P : sends alleged upper-bounds sq,..., s, for Ly,..., L.
2. V, P : initiate the Aiello-Hastad protocol in parallel to verify |L;| < (14 p)s;, i =1,..., k.

In this setting, as the set of cheats, {1 < i < k||L;] > (1+ p)s;}, is fixed in the first round, the proba-
bility it is large, but the verifier does not reject in the second round, is very small.

A.2 Sampling

Interestingly, given an estimate on the size of L, a probabilistic protocol with constant number of
rounds is capable of sampling an almost-uniform member of L. This was already shown by Goldreich
et al [GVW], and we slightly generalize the analysis so it handles the case in which we merely have an
estimate on the size of L, (1 —~v)N < |L| < (1+7)N.

Let us give some intuition. We would like the verifier to pick a random index ¢ in 1,2,..., N and
ask the prover to provide x;, the i’th member of L. This fails because the verifier can indeed verify that
x; € L, but does not seem to have a way verifying x; is indeed the i’th member of L. However, we can
use hash functions to pull off a similar trick. The idea is to pick a random hash function, and ask the
prover to provide an element whose hash is some pre-determined value. If the hash can be computed
efficiently, then verification is resolved.

Diving deeper into the implementation, we consider a family of hash functions mapping {0, 1}" into
a range whose size is N shrank by some parameter. This way, when picking a hash function at random,
each value of the hash is expected to have a short list of pre-images mapped to it. The prover can send
this short list to the verifier, and let it choose a random pre-image within it.

We use 2d-independent hash functions (for some d that depends on a confidence parameter 4), as to
ensure the size of the short list is close to its expectation. We take ¢ < % to be our deviation parameter.

Sampling Protocol:

1. V: sends hash function h picked uniformly and independently at random from a family
of 2d-wise independent functions {0,1}" — [N], N = %, d = [log 1].
2. P: sends a list of elements A C {0,1}" [supposedly the pre-images of 0 by h].
3. V: rejects if any of the following does not hold:
o |4 (1—e—7)N/N.
e For every z € A, h(xz) = 0.
e Forevery x € A,z € L.

15

4. V: picks x uniformly and independently at random from A.

The analysis is by bounding, for every S C L, the deviation of ‘h_l(O) ns | from its expectation.
This (for S = L) implies that |h~*(0) N L| is large enough to prevent the verifier from rejecting. This
also implies that a random element in h=1(0) N L is close to being uniform over L. Moreover, the
elements the prover is required to provide constitute almost all h=1(0) N L, hence a uniform among
them is still almost uniform in L. This argument is made formal in the following lemma:

Lemma 7 (adapted from [GVW)]). If N(1 —v) < |L| < N(1+7), for some v < § —¢, then

1. The verifier either rejects in step 3, or it picks an element x; € L that is at least (§ + 3¢ + 37)-
statistically close to being uniform over L.

2. There exists a prover strategy (being truthful), so that with probability at least 1 — &, the verifier
does not reject in step 3.

B Adaptive Reductions, Size-Verifiable Functions

In this section we complete the proof of Theorem 3. In fact, we will extend the proof to the case that
the preiamge sizes can only be approximately verified, but we start with the cases of size-verifiable
functions (as stated in Theorem 3).

B.1 Size Verifiable Functions

We generalize the description of Section 2.1 (which referred to “size computable functions”) to the case
of size-verifiable functions. Following is a detailed description of the resulting protocol.

Protocol for proving membership in L (for the case of size-verifiable functions f).
Parameters Setting for common input w: Let n = |w|. Let € > 1/poly(n) be a deviation
parameter, and 0 > 1/poly(n) be the error probability. For each s = 1,...,n, let H, ¢ be a family of

2t-wise independent hash functions mapping {0,1}" to {0,1}*, where ¢t > max {Zn log 4‘””}. Denote

A =2 63 and v = q;letm22 Ti'

1. P, V: Run m times in parallel the " Emulation of the Reduction” sub-protocol:

(a) V: Send randomness r, and ng hash functions. Specifically, select and send hy; €r Hy, for
each query ¢ = 1,...,q of the reduction, and each size £ =1,...,n.

(b) P: Send sizes s1,...,sq, and sets of inverses Aq,..., Ay; denote by a; the minimal element in
A; (in lexicographic order).
Supposedly, s; = |f_1(yi)| for y; = R(w,r,aq,...,a;—1), and A; is a subset of the inverses
of y;. Specifically, if y; has few inverses, i.e., s; < 2A, then A; = f~1(y;), whereas, if y; has
many inverses, i.e., s; > A, then 4; = f~1(y;) N hy, ;(0)7! for ¢; = |(log E |)J
To streamline the following description, when ¢; < 0, we artificially deﬁne hi e, such that
h;zli(OZi) & {0,1}". In such a case, f~1(y;) N h,;éi (0%) = f~'(y;), and so the above can be
described succinctly by instructing the prover to send A; = f~1(y;) N he, ;(0) L.

(¢) P,V: Denote y; = R(w,r,a1,...,a;,— 1) Use the size-verification protocol to prove (in parallel)
foreach i =1,...,q, that s; = |f (vi) | with confidence §' = reject if any of the runs
of the size-verification protocol rejects.

4m7

16

2. V: Accept iff all the conditions below hold:

(a) In each run of the above sub-protocol:
i. Vi, A; C {0,1}" (is non-empty and) has size less than (1 + €)2A. We denote by a; the
minimal element of A; (in lexicographic order).
ii. For every i = 1,...,q and every a € A;, it holds that f(a) = R(w,r,a1,...,a;—1) and
hy, i(a) = 0 for ¢; = [(log %)J
ili. It holds that R(w,r, a1, ...,aq) = 0.
(b) On average (over all runs & = 1,...,m of the above sub-protocol), the size of the sets A; is
close to its expectation (E[|4;|] =) namely, for alli=1,...,¢,

—Z((A(kt R

where Af-k) denotes the set A; the prover sent for the i-th query of run k.

Analysis of the Protocol We now prove the completeness and soundness of our protocol. For ease
of notation, in the following we mark the communication in each run k = 1,...,m of the sub-protocol
by a superscript ‘(k)’, namely:

Notations: Denote by 7*) and hg? e ,hgi]) the randomness and hash functions sent by the verifier in

run k. Denote by s(k) .. ,s,gk) and Agk), ... ,Agk) the sizes and sets sent by the prover in run k, and let
1 (k)

al(-) denote the minimal element in Agk). Let KZ(-k) = [(lo M)J for y(k) = R(w,r® agk), . ,agk)l).

Last, when KZ(-k) < 0, we abuse the notation and define hé(k)) (0)t =l {0,1}" (thus having f~*(y,)) N
k _ L1y (k b
Py O~ = 17)).

To show that our protocol is complete, we show that, for an honest prover and w € L, with high

probability, both the reduction accepts and the statistical tests pass (namely, ‘A(k)

. ‘ is close to its
expectation, and its average deviation over all runs k is even more tightly concentrated). The reduction
accepts w.p. at least 1 — err (the success probability of the reduction), because when the prover is
honest, its answers are independent of the randomness used by the reductions (they are determined only
by the hash functions?). The average size of Agk) is close to its expectation, by Chebyshev analysis
relying on the fact that the size of each individual set A; is concentrated close to its expectation with
overwhelming probability. Thus, for w € L and an honest prover, the verifier accepts, w.h.p..

To show that our protocol is sound, we prove that, for any prover’s strategy, if w ¢ L, then the
verifier rejects, w.h.p.. Specifically, we show that as long as m = poly(n) is large enough, if the average
size of A;’s is close enough to its expectation so that the verifier does not reject on condition 2b, then
there must be at least one run k of the sub-protocol, where the prover did not omit even a single element

from any of the set Agk) 1=1,...,q, namely:
kst Vi=1,....q, A" =) nng0)

On this run &, the answers of the prover are independent of the randomness used by the reductions
(the answers are determined only by the hash functions), and hence the reduction returns the correct

9We remark that choosing the hash functions in advance, before the queries of the reduction are knows, should not
obscures the fact that the hash functions are independent of the randomness of the reduction, and are chosen on random
by the verifier.

17

output, w.p at least 1 —m -err, where err denotes the error probability of the reduction. (The factor of
m in the error probability emanates from the prover’s freedom to choose on which run k € 1,...,m it is
"honest”.) Thus, for w ¢ L, the verifier rejects, w.h.p., even when the prover is dishonest. We remark
that for larger m, not only that a single run is ”good”, but actually, most runs are good, and therefore,
we could modify our protocol to check that a random run k €gr 1,...,m outputs 0, instead of checking
that all runs output 0. (This modified protocol is the one presented in the overview section.)

We now follow the above intuition to give the formal proof. We begin by proving the concentration
results we use, and then turn to proving completeness and soundness.

Useful Concentration Results Denote by Ti(k) the sets AZ(-k) that an honest prover sends (7 stands
for ”Truth”), namely,

T =W nng o7

Our proof relies on two properties of the the sets Ti(k). First, the size of the sets Tl-(k) is concentrated
close to their expectation. This is proven by high-moment analysis in [GVW]. Second, the average

k)

deviation of ‘TZ(‘ from its expectation is even more tightly concentrated around its expectation. This

is proven using the Chebyshev inequality, while using the former property to bound the variance of this
average. A formal statement of these properties follows.

‘ _

taken over the random choice of A e .
Zl(_k),z n!i

Fact 8 (GVW). For each ik, Pr[

1)) 2 cul;

)M < 27t where the probability is

_ e

Note that E[|7; ‘] EvCE € (A,2A), when EE)

‘ ‘ ft ‘ otherwise.

Lemma 9. Let sl(-k) = ‘f‘l(ygk))‘ for ygk) = R(w,r®), agk), . ,al(-]i)ﬂ, namely, the prover is truthful

when sending the set sizes. Then for the € of our protocol and for any ~v > 0,
(k)
1 — (k) 24
Pr[az@) !

k=1 i
where the probability is taken over the random choice of h;fk),) € Hn o)
i o "

e
7_4(]

Proof. The bound follows from Chebyshev inequality. In order to apply Chebyshev, we compute the
(k)
)‘ 2 (Zk) > We first compute the expectation. By linearity

of expectation, [% Py < >] =Ly < [

sF)
] % k). To bound the variance of L 37", <

2

expectation and variance of + Zk 1

o(F)
.21

)H .2 —) = 1 where the last equality
S

(k)
(k)‘ . %) we first bound the

holds since E [

((k)

Ti(k)‘ 2% Gince ‘ < 2" and E[|T})‘ . %] =1, we have:
s &
(k) (k) (k)
o] 26 ol 26 p| 2%
var Ti()" (k)] < Pr TZ.()‘- 1 26]-(2")2+Pr Ti()‘-w—l <e| <2

18

where to reach the last inequality, we bound the first term by 27¢22" < ¢2 (applying Fact 8 and the
choice of ¢t > 2n), and we (trivially) bound the second term by 1 -¢2. Now, since H () are 2t-

o
)‘ C24 _
s

wise independent (and, in particular, pairwise independent), we get: var [pya <

o)
ng > e var Ti(k)‘ . 2&) <2 (%)2 Last, applying Chebyshev inequality, the lemma is obtained:
i
)| 2t 1 1\ m)| 24" 2 s
[Yoy < ‘ S) — 1‘ > 7} < szvar(y Yl |T; ‘ : s(.k)] <2 <Vim> = 1; Where the last
equality is obtained by assigning parameters values as set in our protocol. O

Completeness and Soundness We now prove the completeness and soundness of our protocol.

Theorem 10 (Completeness). Let w € L, then when the prover is honest, the verifier accepts w.p.
at least 1 — 0

Proof. We now go over the conditions of the protocol and prove that they simultaneously hold, w.p.
at least 1 — . By the properties of the size-verification protocols, the verifier accepts on step 1c of the
sub-protocol simultaneously for all ¢, k, w.p. at least 1 — 4.

The size verification protocol simultaneously accepts for all ¢,k w.p. at least (1 — ") > 1 — % for

§ = zlqim as in the protocol.

We next show that condition 2a holds, w.p. at least 1 — %. Condition 2(a)i on the size of the Agk)’s

holds, w.p. at least (1 — %q)q >1- i (because it holds for each individual index i, w.p. at least

1-27t=1- 4q—m, by Fact 8 and the ch01ce of t > log 4qm) In the following we condition on the fact that

2(a)i holds. Note that, in this case, the inverses az(-k) s are well defined az(-k) = min {Al(-k)}. Moreover,

gk), . ,agk) are independent of the randomness r*) of the reduction (recall that the prover is honest

and hence AZ(-k) = Ti(k)). Condition 2(a)ii on the correctness of running the emulation trivially holds
(for honest provers). Last, since agk), . ,agk) are independent of the randomness 7¥) of the reduction,
then condition 2(a)iii holds w.p. at least 1 —err > 1— % (where err denotes the error probability of R
on the worst possible fixed oracle, and the inequality is true since, we assumed w.l.o.g err = exp(—n)).
Put together we get that conditions 2(a)i-2(a)iii simultaneously hold in all m runs sub-protocol, w.p.
at least ((1— —)(1 - —))m >1- g.

Last, Lemma 9 implies that condition 2b simultaneously holds for all ¢ = 1,...,q, w.p. at least

2\ 4
<1 -2 (VLm) > >(1-— —)‘1 >1-4< (for m > 2 qu as in the protocol).
Put together, we get that the verifier accepts, w.p. at least (1 — %)(1 - g)(l - g) >1-9. O

Theorem 11 (Soundness). Let w ¢ L, then for any prover strategy, the verifier rejects w.p. at least
1-46.

Proof. In the following we assume w.l.o.g that sgk) = ‘f‘l(yi(k))‘ Vi, k (otherwise the verifier rejects

on the size verification protocol rejects, w.p. 1 — ¢ > 1 — 4, and the proof is completed). Note that

(k)
this implies E(=|(lo M)J Vi, k. Also, assume w.l.o.g that condition 2(a)ii of the sub-protocol

always holds, namely, the prover follows the syntactic instructions of the protocol (otherwise, the verifier
rejects and the proof is completed).
In the lemma below we show that if the verifier does no reject on condition 2b of the protocol, then

there is a run £ of the sub-protocol where the prover does not omit any inverse, namely, Agk) = Ti(k) Vi,

19

(k)
7

in this k-th run are independent of its randomness r*), and hence the reduction outputs 1 w.p. at least
1 —m - err (where err denotes the error probability of R on the worst possible fixed oracle). Thus the
verifier rejects, w.p. at least 1 — (g +m-err) > 1—4¢. (Note, that the error probability of the reduction
might be m - err —in contrast to err— because the prover might choose to be truthful on the the worst

possiblerun k € 1,...,m.)

w.p. at least 1 — %. This concludes the proof, since, in this case, the inverses a; ’ used in the reduction

Lemma 11.1. Assume sl(-k) = ‘f‘l(yi(k))‘ Vi, k and condition 2(a)ii holds in all runs of the sub-protocol.

Then, if the verifier does not reject on condition 2b of the protocol, then there exists a run k of the sub-
(k)

protocol where A;" = Ti(k) simultaneously hold for allt=1,...,q, w.p. at least 1 — %.

Proof. To prove the lemma assume the contrary, namely, for each run £ = 1,...,m there is an index
i s.t. ‘Agk) < ‘Ti(k)‘ — 1. By the pigeon hole principle, this implies there exists an index iy s.t.
‘Agf)‘ < TZ(Ok)‘ — 1 at least % times. Therefore,
k) k)
if:w 2o (L) 2) L
0 k) — 20 k
m 1 Sz('o) m —1 Sz('()) q

(k)
2t

Now, by Lemma 9, % Doy Ti(k)‘ RN < 1+ v holds simultaneously for all i = 1,...,q (and thus, in

particular, applies to ig), w.p. at least 1 — %. In this case,

m
1y 4]
m to
k=1
(where the equality is derived by assigning v = % as in our protocol). Thus the verifier rejects on
condition 2b, w.p. at least 1 — %. [| O

olly 1
i

<(4+7)--=1-7v
NG () .

10

B.2 Extension to Approximate-Size Verifiable Functions

So far we handles functions where the ezact number of pre-images was efficiently verifiable (i.e., size
verifiable functions). A natural extension is to functions where only an approzimate value for the
number of pre-images can be efficiently verified. We call such functions approximate-size verifiable. We
show that there there exists no reduction (not even an adaptive one) from deciding an NP-complete
language to inverting a polynomial-time computable function which approximate-size verifiable, (unless
coN'P C AM).

An interesting applications of the extension to approximate-size verifiable functions is showing that
one cannot base on NP the existence of OWFs that are regular and range recognizable (possibly via an
AM-protocol), even when the reqularity parameter of the function is unknown. To prove this we show
that such functions are approximate-size verifiable. We comment that the approximate-size verification
protocol that we present relies on the ability to sample in the range of f. This is another demonstration
of the benefit in directly addressing OWFs rather than reducing the decision problems.

Definition 12 (Approximate-Size Verifiable). We say that a function f: {0,1}* — {0,1}" is approximate-
size verifiable if there is a constant-round proof system that, given common inputsy € {0,1}" and N € R,
an approrimation parameter p and confidence parameter &, w.p. at least 1 — 9, the verifier accepts iff

|/~ (y)| € 1 £p)N.

20

With a slight adaptation of our protocol and analysis, our result also hold to approximate-size
verifiable functions.

Theorem 13. Unless coN'P C AM, there exists no reduction (even not an adaptive one) from deciding
an NP-complete language to inverting a polynomial-time computable function f which is approximate-
size verifiable.

To prove the theorem we assume the contra-positive (namely, that there exists a polynomial-time
reduction (possibly adaptive) from deciding L to inverting f), and present an AM protocol for deciding
L; thus proving coNP C AM. The AM-protocol for L as well as its analysis are similar to the the
former case when f was exactly size-verifiable. Let us highlight the differences.

Highlighting the differences in the protocol. The AM-protocol for L is an adaptation of our
former protocol that we gave for exact size-verifiable functions f. Let us highlight the differences
between the two protocols. We change the parameter v to be v = 4—1q, and set the approximation
parameter p to be p =y = ﬁ. Note that p+~v = 2%] which is the value of v in the former protocol. In
step lc we run the approximate-size verification protocol (instead of the exact one) to prove for each i,

that | f~!(y;)| € (1 £ p)s;, with the same confidence &' = zlqim as in the former protocol. In step 2(a)i

we check the A;’s (are non-empty and) have size less than (1 + p) - (1 +€)2A. Last, in step 2b we check
that L > < Agk)‘ . %) >1—(v+p).

Highlighting the main changes in the analysis. Let Ti(k) = f‘l(yi(k)) N h;fk)) (0)~! (as before).

Our bound on E[

Ti(k) ‘] is now slightly weaker:

~1, (k) (k)

E[241@) 24@)

This is the reason for the additional 1+ p factor on the condition of the size of A; in step 2(a)i. Similarly,

(k)

Ti(k)‘ 22(11@)] € 1+ p, and therefore, Lemma 9 is adapted to be:
Si

we now only know that E[

Adaptation of Lemma 9: Let ‘f‘l(yi(k))‘ € (1:|:p)82(-k) for yi(k) = R(w,r®), agk), .. ,agli)l).
Then for the € of our protocol and for any v > 0,

m (k)
1 (k)] 25
Pr[EZ<Ti K S(k)>_1

k=1 i
where the probability is taken over the random choice of h;]&)) € Hn o)
i ot i

0
< =
= 4q

> (y+p)

This is the reason for the change is step 2b. Last, for Lemma 11.1 to hold, we need p + v = 2—1q. This
explains our choice of parameters. The complete analysis is deferred to the full version of this paper.

Application to Regular Functions with Unknown Regularity Parameter A special case of
size-verifiable functions are regular functions with efficiently recognizable range (possibly via an AM-
protocol). Recall, that loosely speaking, for regular functions the number of pre-image is efficiently
determined by the input length. We show that our negative results also hold for functions where —though

21

the number of pre-image is determined by the length— it cannot be computed efficiently. Specifically, we
show that such functions are approzimate-size verifiable as long as their range is efficiently recognizable
(possibly via an AM-protocol). This implies that such functions cannot be proved one-way based on
NP.

Let us sketch an approximate-size verification protocol for such functions. Since the number of
pre-images is equal over all y’s, it suffices to estimate | f _1(y)‘ on any arbitrary y. So, the verifier may
choose a random z and send y = f(z), for which the prover claims and proves the size of ‘ f _l(y)| by
utilizing the lower and upper bound protocols of [GoSi, AiHa] respectively. (Note that when using the
upper bound protocol, the verifier relies on the knowledge of the pre-image = of y, namely, on the ability
to efficiently sample pairs z, f(x).)

C General Functions, Non-Adaptive Reductions

In this section we complete the proof of Theorem 4. We remark that the presentation in this section is
somewhat different from the presentation in Section 2.2. The difference relates to the specific way in
which it is verified that for almost all (4, k)’s the set sizes claimed for yi(k)’s (i.e., both {r : R(w,r) = yl(k)}
and \f‘l(yl(k))]) are not understated (by more than a (1 — ¢) factor). Both in Section 2.2 and here,
a significant understatement is detected by comparing the claimed values to corresponding statistics
gathered for independently selected y; (for which we can approximately verify thee set sizes). The
difference is in how exactly the comparison is done. In Section 2.2 we considered the average of the

logarithm of the set sizes (where multiplicative factors in set sizes get translated to additive error terms).

(k)

In the current section, we “group” the y,"’’s (resp., the y;’s) according to the set sizes and compare

the relative fraction of elements in each group (i.e., compare the weight of the j-th group of yi(k)’s to
the j-th group of y;’s, for every j). Furthermore, the alternative procedure employed here requires the
selection of randomized thresholds for the sizes in each group.

Let us illustrate the situation as follows. Suppose that Alice got samples sq, ..., s; from some dis-
tribution X over [N] and she is supposed to send these to Bob. Further suppose that Alice can only
understate the value of the samples she got (i.e., send cy,...,¢; such that ¢; < s;) and that Bob can
sample X by himself. We want to prevent Alice from sending Bob too many ¢;’s that are significantly
smaller than the corresponding s;’s. In Section 2.2, we achieve this goal by letting Bob estimates
Eflogy X] and having him compare this estimate to (1/t) S.f_, logs ;. Clearly, if Alice understates o
fraction of the ¢;’s by more than than a 1 — § factor then the calculated average is highly likely to be
a3 — (logy N)/t*/? smaller than Bob’s estimate of E[logy X]. In this section, for every j = 1, ..., N/e, we
let Bob compare Pr[X > p- (1 +¢)/] to [{i:¢; > p- (14 ¢)}|/t, where p € (0.9,1) is uniformly chosen
(such that the probability that X is too close to some threshold value p- (1+¢)7 is very small). Indeed,
also here, if Alice understates a fraction of the ¢;’s by more than than a 1 — &2 factor then some of the

values |{i : ¢; > p- (1 +¢)7}|/t will be too small when compared to Pr[X > p- (1 +¢)/].

C.1 Fixing of Parameters

Let us assume there exists a non-adaptive randomized worst-case to average-case reduction R from some
NP language L to A inverting an efficiently computable family {f,}.

For some constant 0 < § < 1, let us construct an AM protocol, that given z € {0,1}" decides whether
x € L with probability at least 1 — 20. We assume w.l.o.g that there exists an efficient reduction from
deciding L to inverting f that uses n’ random bits to perform g queries identically distributed according
to some efficiently samplable distribution S(U), and has error probability n small enough to satisfy

)
77§1—0q-

22

Define ¢ to be some parameter small enough with respect to 7, ¢ < %. Our AM-protocol for L is
composed of two phases. In the first phase, the emulation phase, the reduction R is simulated by the

. def T 100n/3¢
Verlﬁer m = lrm
oracle. This phase is guaranteed to work well under an assumption, which is, roughly, that the prover’s
answers are e-approximations for the true answers. The purpose of the second phase, the verification

phase, is to ensure this assumption indeed holds, if the verifier does not reject, with high probability.

—‘ times independently in parallel, using the prover to simulate an f-inverting

C.2 Phase I - Emulation
C.2.1 On The Distribution of Queries

Our first observation is that we can focus on oracles that invert only queries that are likely to be asked
according to f(U).

Formally, we say y is ok if the ratio between its probability according to the reduction, i.e., according
to S(U), and its probability according to f(U), is small. For every positive number n, we define § = oo,
n-00 =00, n < 00, as to handle the case where a query of the reduction has no pre-images at all.

Definition 14 (relative weight). The relative weight of a query y in the reduction is

W (y) d;f |S_1(Z/)| /2n/
|f=1)l /2n

We say y is t-ok (or simply ok , when t is clear from context), if w(y) < t.

If ¢ is large enough, we can focus exclusively on oracles that invert only t-ok queries. Let Q! denote
the set of all f-inverting oracles O that satisfy the following: if y is t-ok then O(y) € f~(y), and,
otherwise, O(y) =L.

Proposition 15. Let t > ;—=x. For every O € 0,

Pr[RO(z,r) # L(z)] <1

Proof.
) W] 5 w)| /2" !5
Ey s [0(y)] = Zy: on I f L (y)| /2" Z
By Markov inequality,
1
Pr [w(y) >t < -
or [oly) 24 < 5
That is, Prycy [f(x) is t-ok | > 1— % > A. That is, O is a A f-inverting oracle. The proposition follows
from the definition of the reduction. [

Description of The Emulation Phase

Fix the input x € {0,1}", on which the AM protocol should decide whether = € L. The verifier first
picks at random t°F > 1_1 ~- The reason for the randomized choice is that this way, with high probability,
if a query is picked according to S(U), then it is not likely to have a relative weight which is close to
the threshold. This issue will be addressed in the verification phase.

Then, the verifier picks independently uniformly distributed randomness strings r*,...,7™ for the
reduction, and computes the queries that the reduction would have generated for the f-inverting oracle
on those randomness strings. The prover is required to provide the following information, Info(y),
regarding each query y:

23

e 1, — supposedly the number of pre-images of y by f.
e 7, — supposedly the number of randomness strings on which S generates query y.

Given this information, the verifier can classify which of the queries are ok , as well as generate an
almost-random pre-image for each of the queries via the sampling protocol. This allows the verifier to
define a partial oracle. For input z € {0,1}" and randomness r € {0, 1}",, the behavior of the reduction
is determined solely by the oracle’s answers to yi,...,¥,, the queries generated for x and r. Let (O)I;’T
denote the set of such partial oracles, assigning each y; either some x; € f~!(y;) if y; is ok , or L,
otherwise. The verifier can now simulate the reduction to decide whether = € L.

Formally, the protocol is as follows:

Phase I - Emulating the Reduction:

1. V: picks uniformly at random l.pi, € {1,. .., lpas} for £ = gég—om, and sets

e 1) g

2. V: picks independently at random r* € {0, 1}"1 fork=1,...,m.

3. V: computes y'f, . ,yg, the queries of R on randomness ¥, k= 1,...,m.

4. P: sends Info(yf), . .. ,Info(yf;), k=1,...,m.

5. V,P: initiate in parallel the sampling protocol with confidence parameter ¢ and devi-
ation parameter € to produce :139C for j =1,...,¢9, k =1,...,m; use My as the size
parameter.

6. V: defines the following partial oracle, k = 1,...,m:

"
. d J n =

1 otherwise

7. V: rejects if there exists 1 < k < m, for which the reduction R on randomness r* and
oracle Oy, returns “x € L”.

Analysis of The Emulation Phase

Hitting Rates Our arguments crucially rely on the well known fact that whenever one samples
enough elements from some distribution, for every property, the fraction of elements that satisfy this
property in the sample, is almost the same as the probability this property is satisfied according to the
distribution.

Lemma 16 (Chernoff). Fiz some sample space Y, and some subset Y' C Y. For every § > 0, if
Y1, -+, Ym were drawn independently at random from a distribution D over Y, then with probability at
least 1 — 0,

Pr [yk € Y’] — yli% [y € Y’] <

. !/

3>

for A=3 ln%.

24

Proof. Fix a threshold i. For every 1 < k < m, let X}, be an indicator variable for the event y, € Y.
Clearly, for any 1 < k < m, E[X}] = Pryoply€Y’]. Let X = 3", X). In other words, X =
m - Prye pim) [yr € Y']. By linearity of expectations, E [X] = m - Pry.p [y € Y']. Moreover, using the
independence between the 0 — 1 variables, Var [X] < E [X]. Applying Chernoff’s bound, we have

Pr[|X — E[X]| > \W/E [X]] <2e M/ <

We show that if among the m emulations of the reduction, in some trial,
1. The classification whether the queries are ok is right.
2. For ok queries, the number of f- pre-images claimed by the prover e-approximates the true number.

Then, the protocol operates correctly on the input.

The proof is done in three steps. The first step is to establish that for the randomness strings the
verifier samples throughout the protocol, the set of oracles yielding to an erroneous outcome of the
reduction, i.e., RO (z,7) # L(x), is small, with high probability. The next step is to discuss almost-
uniform responses to queries, and bound the bias bad oracles might benefit from. Next, we use the
analysis of the sampling protocol as well as the assumption to deduce the completeness and soundness
of the protocol.

Theorem 17 (correctness of emulation phase). For every x € {0,1}", if there exists a trial
1 <k <m in which,

1. for every 1 < j < q, 2"r /2”/ny;_€ <t if and only if w(yf) < t° (ok classification).
J J

2. for every 1 < j < q, if w(y;“) < t°%% then n(l—e) < ‘f‘l(yf)‘ < ng(l +¢€) (pre-images
J J

approximation).
Then the protocol operates correctly on input x, that is:

1. If x € L, then there exists a prover strategy that makes the verifier accept with probability at least
1 — ¢ (completeness).

2. If v ¢ L, then for any prover strategy, the verifier accepts with probability at most § (soundness).

Proof. For randomness r, consider the set of bad oracles for r, B, = {O € @gﬂ;

RO (x,r) # L(m)} By

tok

proposition 15, for every f-inverting oracle O € O, Pr, [O € B,] <n. Hence, E, [|B;|]] <17 ‘@r,r .

By
Markov inequality, for every ¢ > 0, and, in particular, for ¢ = 2,

1
Pr{|B;| 2 cE, [|B:]]] < -

Therefore, by lemma, 16, for all 7¥’s sampled by the verifier, B,« is small, with high probability, i.e.,

e

tok

Pr

Pr [!Brk! > en (@)

ker[m]

] —Pr [BT, >cn ‘@fi

x,rk

W

" k
/\ |Bx| < en ‘@fmk
k=1

zPr[

Let us condition on this event in the rest of the analysis (We will later use a union-bound to get rid of
this conditioning).

25

. . d
Assume some k € [m] is such that for every j € J 2] {1 <j<gq |y§€ is ok }, :179C is e-almost uniform

within f _1(y§“). Let us bound the probability the partial oracle O assigning :1:;€ to all ok queries j € J,
and L to every other query, is in B,«.

Denote J = {j1,...,jt}. For i € [t], and a set of responses aq,...,a;—1 to queries yfl,...,yfiil,
define the good responses to the j;’th query as those that preserve small expectation (over the remaining
responses) to land in B,«, i.e.,

G; def {ai € f_l(y;?i) ‘Eaiﬂ,...,at [the oracle defined by aq,...,a; is in B,x]| < cn}

By the e-almost uniformity,

i—1
Pr [xi € G, | /\ x?i, €EGy| >1—cn—e
i"=1

By the chain rule and our conditioning, the probability the induced partial oracle is not in B, is at
least (1 —cn—€)!, which is, by Bernoulli inequality, at least 1 —¢(cn —¢). Now, let us use this discussion
to prove the completeness and soundness of the protocol.

If z € L, consider an honest prover, i.e., one that supplies true information for each of the yf’s.
Hence, for every 1 < k <m, Oy € @g’ik Moreover, by lemma 7, for every 1 < k < m, with probability
at least (1—¢)? > 1 — g, the verifier does not reject during the ¢ applications (with independent
randomness) of the sampling protocol. By the above discussion, the probability that, in every trial
1<k <m, Op € B,x, is at most g. Applying union bound, we get that the probability the verifier
rejects is at most 9.

If ¢ L, let k be the instantiation whose existence is ensured by the premise. Assume the verifier
does not reject. Thus, Oy € (O);Oik By the above discussion, the probability that Oy € B, is at most

%. Applying union bound, we get the probability the verifier accepts is at most 9. [|

C.3 Phase Il — Verification
Description of The Verification Phase

The purpose of the verification phase is to ensure the assumption required for the emulation phase
indeed holds, with high probability. The assumption is the existence of a trial 1 < k < m in which the
verifier has reliable information regarding all reduction’s queries y’f, . ,yf;, that is, the classification of
ok queries is correct and, for all ok queries, the estimate of the number of pre-images is accurate. To
this end, the verifier also ensures r, is a good estimate for the weight of a query y according to the
reduction’s distribution, for most queries y generated in the emulation phase.

The idea behind the verification is the two meta-arguments: confidence by comparison and confidence
by association.

First, for all the queries generated in the emulation phase, the verifier checks that ‘ f _l(yf)‘ and

‘S -1 (yf)‘ are truly lower-bounded by n,x and r x, respectively. This is done by applying the Goldwasser-
Sipser protocol. ’ ’

Next, the verifier generates a testing series of y’s by repeating the following: either picking a random
x and computing f(x), or — with much lower probability — by picking a random u and computing S(u).
The verifier uses private coins for the generation process, and asks the prover to supply Info for each
query. This generation process allows the verifier to perform two important tests:

26

1. For the S(u)’s, the verifier is able to apply, not only the Goldwasse-Sipser protocol, but also the
Aiello-Hastad protocol, using u as its secret!?.

2. For the f(x)’s, the verifier is able to apply the Aiello-Hastad protocol using x as its secret.

Now, the verifier picks at random thresholds ¢; < to < --- and considers properties of the form
> t; (e.g., whether a query y satisfies ‘S _1(y)‘ > t;). The random choice is made as to guarantee that
having a property can be one-sidedly verified by the protocol of Goldwasser-Sipser and the protocol of
Aiello-Hastad, with high probability, despite their slight inaccuracy.

The verifier verifies that the fraction of queries satisfying each of the properties is roughly the same
in the two ways it is sampled from each relevant distribution: for every 1 < j < ¢, it checks that the
fraction of k’s for which Tyk > t; is approximately the fraction of yr = S(uy) that satisfy this property;
it checks the fraction of k’s for which n . > ¢; among ok queries is approximately the fraction of ok

yr = S(ug)’s that satisfy this property (nojte: the prover cannot identify the ok S(u)’s among the f(x)’s;
and for the latter the upper bound on the number of pre-images is verifiable); it also checks that the
fraction of very ok y;’s is approximately the same as the fraction of very ok y, =S (ug).

Formally, the protocol is as follows:

Phase II - Verification:
Parameters:

_2
3

e p=m" 3 : estimate parameter in Goldwasser-Sipser and Aiello-Hastad protocols.

1. Verifying Lower Bounds:

(a) P,V: For every 1 < k < m, for every 1 < j < g, verify ‘f‘l(y;?)‘ > (1—p)n

1000gm
6p2

(b) P,V: For every 1 < k < m, for every 1 < j < ¢, verify ‘S‘l(y;?)‘ > (1= p)rys using
J

yy using

the Golwasser-Sipser protocol with amplification parameter u =

the Golwasser-Sipser protocol with amplification parameter u = %.
2. Performing Testing Queries:
(a) V: sends a random hybrid yi, ...,y generated as follows: fix o = m. for

every 1 < k < m independently,
e With probability a, set k € Q1: choose uniformly z; € {0,1}", and let y, =
f(zg).
e With probability 1 — «, set k € (Q2: choose uniformly a randomness string uy,
and let yr = S(ug).
(b) P: sends [supposedly| Info(y1), ... Info(ym,).
(¢) P,V: For every k € @1, check ‘f‘l(yk)l §0 (1 + p)ny, using the Aiello-Hastad

protocol with amplifying parameter u = 0(;)6 7
(d) P,V: For every k € Qa, check [S™*(yx)| < (1 + p)ry, using the Aiello-Hastad

protocol with amplifying parameter u = 10(;362”1
(e) P,V: For every k € Q2, check ‘S _1(yk)‘ > (1 — p)ry, using the Goldwasser-Sipser

protocol with amplifying parameter u = —2—10606 L

3. Comparing Statistics:

Opote: the verifier could not have done that for y;ﬂ j=1,...,q, because of the correlations between different queries in

the same trial; some unwanted information regarding the verifier’s “secrets” could have leaked to the prover this way.

27

gmer — g%. Denote

(a) V: picks uniformly at random ¢, € {1,...,0nqs}, for
tpre = ’Vm—| . Set thresholds

th"* =0 and t#"° = <1 + Eli‘e) (A 4e) T fori=1,... tpe
(b) V: picks uniformly at random l.in, € {1,...,lmas}, for £M%% = %. Denote

!

teoin = Log(”Ta)w Set thresholds

te”"* =0 and " = (1 + gcom) (14 6)2_1 fori=1,...,tcoin
(c¢) V:
i. rejects if there exists query 1 < j < g and 1 < i < teoin, such that
. , 1
Pr [7‘ > t@m] < Pr |r, >t — ———
ke r[m] y;ﬂ - kerQ2 [Ye=] 100qtcoin

ii. rejects if there exists query 1 < j < g, such that

n T,k n
keg[m] | 27 Ty kerQ2 [2 my, 10q

iii. rejects if there exists query 1 < j < g and 1 <7 <y, such that

on Tyk oy
Pr |nge >N o2 <t < Pr [nykztf"%—,-ﬂgtok}—i
J 2n ny;_g kERQ2 2n Ny, 100qtpre

Note that by our choice of parameters, the protocol is efficient.

Analysis of The Verification Phase

The analysis is done in several steps. First we address the issue of choosing the thresholds. We explain
the problem with arbitrary choice of thresholds, and prove the randomized manner in which we choose
them in the protocol solves it. Then, we analyze the behavior of the prover in light of the applications
of the Goldwasser-Sipser and Aiello-Hastad protocols. In this context we apply the confidence by
association argument. Finally, we resolve the assumption of the emulation phase by obtaining the
following:

1. The estimates for the r,’s are mostly accurate, by comparison.
2. The classification of ok queries is mostly accurate, by comparison.

3. The estimates for the n,’s are mostly accurate for ok queries, by comparison.

Marginal Issues The protocols of Goldwasser-Sipser and Aiello-Hastad only allow the verifier to
check the bounds it has are approzimately the right bounds, i.e., within factor of either (1 — p) or
(1 + p), respectively, of a true bound. This slight inaccuracy may pull the rug under the confidence by
comparison argument: it may cause many y’s to be misclassified in both directions, where the argument
was based on the assumption that there are only one-sided misclassifications, with high probability.

28

The idea is to show that the properties considered in the protocol are such that there is not much
weight on elements being misclassified due to this inaccuracy, with high probability. The properties in
question are of the form some function of y (how many pre-images it has? what is the probability the
reduction queries it? what is the ratio between the two expressions?) is greater than some threshold.

Hence, let us analyze the following generic setting: F : Y — R™T is some bounded non-negative function,
de

N supyey F(y). D is some distribution over Y. t = [(ﬁﬂ thresholds are chosen by picking ¢
at random from {1,..., f;q,} for some large natural number ¢,,,, and setting

tf:<1+%)-(l+a)i_l fori=1,...,t

We say y is (F, p)-marginal for threshold t¢ if F(y) € [%ﬁtf, %ptf].
For small i’s, the margins are very narrow. For larger i’s, the margins get wider, however, still,
all possible margins are disjoint, as argued in the following proposition, whose proof is brought in the

appendix:

Proposition 18 (disjoint margins). If p < < then for all (¢,i1) # (¢, i9),

24
1, 1, 1 » 1
=t T ¢t~ ¢ =
[1+p l-p “} N [Hp P l—p ¢
Proof. The proof is omitted and will appear in the full version of this paper. m This proposition

immediately allows us to deduce that only few choices of ¢ induce much D-weight on the margins:

Lemma 19. For any function F : Y — R*, for any distribution D over Y, if p < %, then

t
f;r [Pr [\/ y is (F, p)-marginal for tf] > u] <

y~D i=1 Hemazx
Proof. By proposition 18, F(y) can be marginal with respect to at most one threshold tf, hence, at
most % of the £, possible £’s can satisfy Pry.p [\/';f:1 y is (F, p)-marginal for tﬂ > .]

We fix u def %qt. Hence, for the value of p set in the protocol, the premise of the lemma holds.

Moreover, for the value of £,,, set in the protocol, the resulting probability is at most %.

Cheating in Bounds Protocols We first show that the lower-bound and upper-bound protocols of
[AiHa, GoSi] do not make the verifier reject in any of the trials with high probability when interacting
with an honest prover, while are likely to cause the verifier to reject otherwise.

The first proposition relates to application of the Goldwasser-Sipser protocol.

Proposition 20. The following hold:

o If foreveryl <k <m,1<j<gq, Myl = ‘f_l(yf)

, and Ty = ‘S‘l(yé‘?)

, the verifier does not

reject in step 1 with probability at least 1 — %.

o The probability the verifier does not reject in step 1, but

y, %/ {yf ‘ ‘f—l(y;_c)‘ < (1= p)nyp v ‘S—l(y;?)‘ <(1- p)ry;c} #* ¢

.)
1S at most 50

29

e The probability the verifier does not reject in step 2e, but

nY |5 wh| < -ory} £ 0

.)
18 at most 100 -

Proof. Recall the fixing of the amplifying parameter in the protocol u = Pogggﬂ. By theorem 5, the

probability the verifier does not reject in any of the independent executions of the Goldwasser-Sipser
protocol, if given true answers, is at least

qm
L e LA
p2u p2u 100

where the first inequality is Bernoulli inequality (where we used Bernoulli inequality, (1 —z)" > 1 —nx,
for > 0, n € N). We use a union bound to conclude the first item.
By theorem 5, if |Y7| # 0 or |Y2| # 0, the probability the prover does not reject in step 1 is at most:

9 \!YI 5 Y| 5
- < < 2
<p2u> - <100qm> ~ 100

The last two items follow. [

The second proposition relates to the size estimates of the testing queries. Here we get pretty
accurate estimates in both respects (number of pre-images, weight according to distribution) not because
we can check both, but because the prover cannot identify the ok reduction queries from the f(x)’s.
Note - in steps 2c and 2d the verifier reveals the secret, and exposes which y’s were reduction queries
and which were f(x)’s. The crucial point in our analysis will be that, in step 2b, when the prover has
to supply the information about the y’s, there is not enough information to identify reduction queries
with good probability.

Lemma 21. The following hold:

o If for every 1 <k <m, ny, = |7 ()| and ry, =[S~ ()
2d with probability at least 1 — %.

, the verifier does not reject in step

o The probability the verifier does not reject in step 2d, but either

vi= Lo o) < % A £)| > (0)y, |

100
satisfies |Y1| > 1212} = or
Yo={yr |k € QNS ()| > (1 +p)ry, }
100
satisfies |Ya| > 1211 & is at most %.

Proof. Recall the fixing of the amplifying parameter in the protocol u = ’71%0{27’1—" By theorem 6,

the probability the verifier does not reject in any of the independent executions of the Aiello-Hastad
protocol, if given true answers, is at least

m
O, m o
p*u p2u 100

30

where the first inequality is Bernoulli inequality.

100
By theorem 6, the probability the prover does not reject in step 2d, when |Ys| > 121]:) 4 is at most:
[Yz| Y2
1_B_|_i < 1_£+L §6—|Y2\(§—%)§i
6 p3u 6 100m 100
[where we used & — % > 4]

It remains to examine |Y7|. For this purpose, let us show that given the prover’s view in step 2b,
there is a small probability any ok query in the hybrid belongs to (). Note that the event k& € Q) is
independent of events y; = y, for any y, for every i # k. Hence it suffices to show the following:

Claim 21.1. For every 1 < k < m, for every ok query y,

Prlk € Qalyx = y] < 1000

Proof. By Bays’ formula,

Pr [yr = ylk € Q2]Pr [k € Q2]
Pr [y =]

Pr [y, = ylk € Q2]Pr [k € Q2]

Prikc Qalyr =yl =

<

Pr [y, = ylk € Q1]Pr [k € Q1]
25T (y)|e

27| f~Hy)| (1 -)

ok «
< t

l—«
1)

< -
— 1000

m(of claim 21.1)
Thus, by linearity of expectations, E [|Q2 NY1|] < % |Y1]. Hence, by Markov’s inequality,
Pr [|Q2 NnYy| > % |Y1|] < %0. As above, by theorem 6, the probability the prover does not reject in step
2c, is at most:

|Q1NY1| |Q1NY1]|
P9 B < elamil(5-£)
6 pu - 6 100m

Therefore, either |Y7| is not as large as stated in the lemma, or the probability the prover does not reject

in step 2c is at most 16%' The lemma follows. m(of lemma 21)

Confidence By Comparison First we argue that by comparison, the verifier has accurate estimates
for the weights of the reduction’s queries.

Lemma 22 (coins mean). For every 1 < j <gq, for every 1 < i < teyin, if we denote:
d _ .
® 6 j éf PrkER[m] HS 1(yf)‘ > thozn]

® 5 déf PrkERQz Hs_l(yk)‘ 2 thom]

1

T00gto with probability at least 1 —

L a. __6
then |e; j — si| < 100qtcoin *

31

Proof. Fix some 1 < j < gand 1 < i < t. As the members of {y1,...,yn} and {yjl,,yf} are

independently distributed according to S(U), lemma 16 implies that, with probability at least 1 —
. def _ .

IOOqiwm’ if pi = Pryosw) [|S71 ()] = 57, then

leij —sil = (€ —pi) + (pi — si)|
< leij —pil + Ipi — sl
1
m
1

100qtcoin
|
Lemma 23 (estimates for coins). With probability at least 1 — %, at least one of the following two

events occur:
e the verifier rejects during the verification phase.
o for every 1 < j <gq,

1
_ &)< |§ 1,k ‘ < >1_
keifm] [Tyf(l &)< ‘S ()] = ryf(l te) 21 10q

Proof. By proposition 20, with probability at least 1 — %, either the verifier rejects in step 1b, or for

every trial 1 < k < m, for every query 1 < j < g,
7 wh| 2 (1= = (1=)y
Let us focus on the following event, and show it occurs with low probability:
e the verifier does not reject during the verification phase.

o for every trial 1 < k < m, for every query 1 < j <g,

S| = (1 -2y

yk-

e there exists 1 < jy < ¢, for which

L HS‘I(yfo)

>, (1+9)] > 5

1

The last item implies the existence of a threshold tfgi” such that for at least 57—

of the yj s,

> tqoin .

k i 10,k
o < e, however ‘S (5| =t

1 coin

In addition, if ry% > tfoom, then ‘S‘l(yfo) s

> tfgi", unless —— tfoom < ‘S _1(ny)

lemma 19 and lemma 16, with probability at least 1 — %,
Pr . tqoin < ‘S—l(yk) < 1 . tgoin < 1
kerm] |1+p " — 0= 1—p " | = Bqteoin

32

Hence, with probability at least 1 —

s e

100 ?

> tqoin:| > Pr [7" po> tcom] _
— Yo kER[m} yJO 10

s

coin coin
2 tio A Tyéro < tio]

+
kER[m] 5qtcoin k‘ER[m]

- 4
e > tqom]
5qtcoin

V
=
=

Since the verifier does not reject in step 3(c)i, it must be that

- 1
Pr [r > tcom} > Pr |r, >t — ———
ke r[m] y;CO ~ kerQ2 [Yk = 0] 100¢t coin
Let us lower bound Prye g, [ry, = tfgm] If [S~yp)| > tcom then r,, > tcom unless £ belongs to one
of the following;:
e (margins) Y1 = {k‘ € Q| 1= jE St < ST ()| < 1%;) . tggin}
e (cheating) Y2 = {k‘ € Qo || (yr)| > 1+ p)ry, }
By lemma 19 and lemma 16, with probability at least 1 — 50, V1| < 10(|)§t2c‘oin' By lemma 21, with
probability at least 1 — 100, Y| < logi'm. Hence, with probability at least 1 — %‘50,
: Vi Yo
St > 0" > Pr [ry, >to" -
W, STl 2 657] = Py T = 57— 15,1~ 1y
- 1
> Pr |r, >t - ——
T k€ErQ2 [Yk = 0] 10¢tcoin
Summing up,
, 1
S ‘ > tqozn] > S > tcozn +
kER H y] ° o k‘GRQQ H ‘ o] Qlcoin

By lemma 22, this happens with probability at most 2—0. Therefore, the probability the event occurs is
at most 10, and the lemma follows. [|
Next we argue that, by comparison, the verifier gets accurate classification of ok queries.

Lemma 24 (ok mean). For every 1 < j < gq, if we denote:

def N
) Ej é PrkER[m] [w(y;“) 2 tok}

d ~
® s éf PrkERQz [w(yk) > t0k]

then |e; — s| < with probability at least 1 —

o
10 ’ 10q *

Proof. Fix some 1 < j < ¢g. As the members of {yi,...,yn} and {yjl,,y;“} are independently

def

distributed according to S(U), lemma 16 implies that, with probability at least 1 — if p =

Pr, s [W(y) > t°k], then

10q’

|€i,j - 3i| = |(€z’,j —pz‘) + (pz' - 32)|
< ey — il + |pi — si
1
m
1)
< R
— 10q

The lemma, follows.
Lemma 25 (classification of ok queries). With probability at least 1— %, at least one of the following

two events occur:

e the verifier rejects during the verification phase.

o for every 1 < j <gq,
Y5 ok , . ook ok
T — <t w(ys;) >t >1—-—
keg[m) [2“ o —wly;) =] - 4q
J
9. either

Proof. Fix1<j <gq.
By lemma 23 and proposition 20, the following event occurs with probability at least 1 — :

the verifier rejects during the verification phase, or for every query 1 < j < g,

oy 1o, |STHY))
keplm) |27 ne — 1+4¢ ‘f—l(y’?)‘ 5q
J

L_.t°%. By lemma 19 and lemma 16,

If 2"ryk/2"’ny§ < t°% then w(y;“) <t unless t°F < w(yf) < 1%
Pr —.t°k<w(y’?)<L-t°’“ <1
kegim] [1+ p - 7= 1—p ~ 5¢q

Hence, with probability at least 1 — %‘50, either the verifier rejects during the verification, or

ok ok mo Ty ok 1
Pr |w(y;) >t N — - —L <t < —
kEr[m) J 27y 5q

J

But also: with probability at least 1 — %, either the verifier rejects during the verification, or
n 1

9q

2" . Ti; < ok
kGR[m}

o) <tk - P =
Y;

Pr|i(yf) <tF A = . skl < pp
ker|m] [(yj) - 2n n, k ker|m]

Since the verifier does not reject in step 3(c)ii,

ﬁ.%_?<t0k > Pr z.%<t0k _
- T kerQ2 2nl Ny, - 10q

Let us lower bound Prye 0, [2"7‘%/2”,71% < t"k}. If w(yy) < t°F, then 2y, /2"'n,, < t°F, unless k

belongs to one of the following:

def .
ke Q| ok 1o <) < 15 -1},

e (margins) Y; =

e (coins cheating) Y5 = {keQa||S™)| < A+ p)ry,}.
ke Qu i) < o5t AL ()| > (1+ p)ny, |-

e (pre-images cheating) Y3

34

By lemma 19 and lemma 16, with probability at least 1 — %, V1| < ‘1%25‘ By lemma 20, with probability
at least 1 — 100, either the verifier rejects during the verification, or |Ys| < ‘1%25[‘1 By lemma 21, with

< |Q2|

probability at least 1 — either the verifier rejects during the verification, or |Ya| T00g . Hence, with

1007
probability at least 1 — 100,

n

Pr Ty ok| _
k€rQ2 |27 ny, ~ 10q

Pr [w <t°k] <
k. (yr) < <

By lemma 24, with probability at least 1 — 100, either the verifier rejects during verification, or

Pr [w(y}“)gtok}— Pr [w(yk) tOk}

ke rlm] kERQ2 = 10q

Thus, with probability at least 1 — 50, either the verifier rejects during verification, or

Aok ok 2" Ty? ok 1
Pr |w(y;) <t N — - —L >t < — 4)
ke p[m] J 27 4q
J
Inequalities 3-4 yield the statement. [|

Lemma 26 (pre-images mean). For every 1 < j < g, for every 1 < i < t,.¢, if we denote:
def _
® ¢ = Pricpim Hf 1(1/?)‘ >t A w(yj) tOk}

o 5 Pricao, [[F7)| = 77 A i(ye) < t94]

then |e; j — si| < , with probability at least 1 —

1 __6
T00qtpre T00qtpre *

Proof. Fix some 1 < j < g and 1 < i < t,.. As the members of {y1,...,yn} and {yjl, ,yf} are
independently distributed according to S(U), lemma 16 implies that, with probability at least 1—

100qtme
. def _ N
if pi = Prysy [/ @) = 877 A dly) < 4], then
’ei,j -8 = ’(ei,j —pi) + (pi — s3)|
< leij — pil + [pi — si
1
< 9 91ln 5
m
1)
100gtyre
||

Lemma 27 (estimate on number of pre-images of ok queries). With probability at least 1 —
at least one of the following two events occur:

10’

e the verifier rejects during the verification phase.

o for every query index 1 < j < q, for every threshold index 1 < iy < tP™¢,

1
4qtpre

Lol bl 2 e v <oy <]

35

Proof. By proposition 20, with probability at least 1 —
every trial 1 < k < m, for every query 1 < j <g,

100, either the verifier rejects in step 1b, or for

(f‘l(yf)(> (1—p)ny

J

Let 1 <ig < tpe be some threshold index. Let 1 < jo < ¢ be some query index. If n, > t©, then
J

‘f‘l yf tfore, unless m t‘me < ‘f y] ‘ < p tpre. By lemma 19 and 16, this happens with
probability at most 5qt . Thus, with probablhty t least 1 — %50,
1
Pr H -t ’?‘>t’?’“eAw K <t°k] > Pr [n > 7 A w(yk <t°k]
ke rlm] AR v5) < = képlm L ¥ = o v7) < 5qtpre
+ Pr Hf—l(y])‘ >t A (yF) < 7 A Mgk < t’”e]
ker[m]
Since the verifier does not reject in step 3(c)iii, it must be that
1
Pr [7‘ > 77 Ay <t°k} > Pr [n > 7 A <t°k]—
ker[m] vy (v7) = T kegQ, L ¥F T 0 () < 10gtpre

Let us lower bound the latter probability. If | f~*(yx)| > to <, as well as w(yg) < t°F then n,, > o
unless k£ belongs to one of the following:

o (margins) Vi L (ke Qo |k < [N ww)| < 51}
e (cheating) Y3 = {k: € Qo ||fHyk)| > (1 + p)ny, Aw(yg) < tok1.
By lemma 19 and 16, with probability at least 1 — 50, Y1 < 1 Q | . By lemma 21, with probability at
least 1 — 100, Y| < 100qt| Hence, with probability at least 1 100,
1
) > 2 A <t°k} > P [> 1P A gp <t0’“]—
kG Q2 [‘f | D) = - kEreer M = o Dye) < 10¢tpre
By lemma 26, with probability at least 1 — 100,
1
P H -1 ’?‘>t’-”‘6AA "?<t°k]— [)| > A <t°’1 <
kERfm] f (y]) — 10 w(y]) — ke QQ ‘f | w(yk) — — 10qtpre

Hence, with probability at least 1 — {5

1
Aqtpre

-1/, k pre ~rok ok pre
keﬁfm} Hf (yj)‘ =ty AD(y7) SEE AN <ty]

|
We tie the loose ends in the following theorem establishing the validity of the assumption in the
emulation phase.

Corollary 28 (emulation assumption resolved). With probability at least 1 — , at least one of the
following two events occur:

e the verifier rejects during the verification phase.

36

e there exists a trial 1 < k < m, such that for every 1 < j <,

Tyk . PN
1. =< t°% if and only if w(yf) < toF,

i

2. if w(yf) <t then ny;_c(l —e) < ‘f‘l(yf)‘ < ny;_c(l +e),

Proof. Let us focus on the event that the verifier does not reject.
Applying a union-bound over the j’s in lemma 25, with probability at least 1 —
the k € [m],

J 3
15, for at least 5 of

n T‘yl_c
VI<j<q - —= <tF oa(yh) <o
2n Ny J
J
Let us consider the estimate of the number of pre-images. By proposition 20, with probability at
least 1 — -2
100°

Vi<k<mVl<j<gq ‘f‘l(yf)‘z(l—e)nyk
J

Let us consider the estimate in the other direction. Let k € [m] be a trial, for which there exists ok query
1 < jo < g, such that ‘f‘l(yfo) > ny (1 +¢). Then there necessarily exists a threshold 1 < iy < ¢P™¢,
Jo0
: —1(,k
for which ‘f (Y5)

least 1 — %, for at most % of the k € [m] there exist such ig, jo. The corollary follows. [|
The correctness of the entire protocol, i.e., the emulation phase and the verification phase concate-
nated together, immediately follows:

>t ¢, but nx <t Applying a union bound on lemma 27, with probability at
B

Theorem 29 (correctness of protocol). The following hold:

e (Completeness) There exists a prover strateqy (being honest) for which the verifier does not reject
throughout the protocol, with probability at least 1 — 4.

e (Soundness) The probability the verifier does not reject in the protocol, however x € L, is at most

J.

Proof. Completeness follows by a union-bound from theorem 17, as well as lemmata 22, 24 and 26.
Soundness follows by a union-bound from corollary 28 and theorem 17. [

37

