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1 IntroductionOne-way functions are functions that are easy to compute but hard to invert, where the hardnesscondition refers to the average-case complexity of the inverting task. The existence of one-wayfunctions is the cornerstone of modern cryptography: almost all cryptographic primitives implythe existence of one-way functions, and most of them can be constructed based either on theexistence of one-way functions or on related (but seemingly stronger) versions of this assumption.As noted above, the hardness condition of one-way functions is an average-case complexitycondition. Clearly, this average-case hardness condition implies a worst-case hardness condition;that is, the existence of one-way functions implies that NP is not contained in BPP . A puzzlingquestion of fundamental nature is whether or not the necessary worst-case condition is a su�cientone; that is, can one base the existence of one-way functions on the assumption that NP is notcontained in BPP .More than two decades ago, Brassard [Br] observed that the inverting task associated with aone-way permutation cannot beNP-hard, unlessNP = coNP. The question was further addressed(indirectly), in the works of Feigenbaum and Fortnow [FeFo] and Bogdanov and Trevisan [BoTr],which focused on the study of worst-case to average-case reductions among decision problems.1.1 Our Main ResultsIn this paper we re-visit the aforementioned question, but do so explicitly. We study possiblereductions from a worst-case decision problem to the task of average-case inverting a polynomial-time computable function (i.e., reductions that are supposed to establish that the latter functionis one-way based on a worst-case assumption regarding the decision problem). Speci�cally, weconsider (randomized) reductions of NP to the task of average-case inverting a polynomial-timecomputable function f , and capitalize on the additional \computational structure" of the searchproblem associated with the inverting task. This allows us to strengthen previously known negativeresults, and obtain the following two main results:1. If given y one can e�ciently compute jf�1(y)j then the existence of a (randomized) reductionof NP to the task of average-case inverting f implies that NP � coAM.The result extends to functions for which the preimage size is e�ciently veri�able via anAM protocol. For example, this includes regular functions (cf., e.g., [GKL]) with e�cientlyrecognizable range. Recall that AM is the class of sets having two-round interactive proofsystems, and that it is widely believed that coNP is not contained in AM (equiv., NP isnot contained in coAM). Thus, it follows that such reductions cannot exist (unless NP �coAM).We stress that this result holds for any reduction, including adaptive ones. We note thatthe previously known negative results regarding worst-case to average-case reductions wereessentially con�ned to non-adaptive reductions (cf. [FeFo, BoTr], where [FeFo] also handlesrestricted levels of adaptivity).2. For any (polynomial-time computable) function f , the existence of a (randomized) non-adaptive reduction of NP to the task of average-case inverting f implies that NP � coAM.This result improves over the previous negative results of [FeFo, BoTr] that placed NP innon-uniform coAM (instead of in uniform coAM).These negative results can be interpreted in several ways: see discussion in Section 3.1



1.2 Relation to Feigenbaum-Fortnow and Bogdanov-TrevisanOur work is inspired by two previous works. The �rst work, by Feigenbaum and Fortnow [FeFo],posed the question of whether or not NP-complete problems can be random self-reducible. That is,can (worst case) instances of NP-complete problems be reduced to one or more random instances,where the latter instances are drawn according to a predetermined distribution. The main resultof [FeFo] is that if such (non-adaptive) reductions exist, then coNP is in a non-uniform versionof AM, denoted AMpoly. Non-uniformity was used in their work to encode statistics about thetarget distribution of the reduction.Bogdanov and Trevisan [BoTr] start by viewing the result of [FeFo] as a result about the impos-sibility of worst-case to average-case reductions for NP-complete problems. They note that evenif one cares about the average-case complexity of a problem with respect to a speci�c distribution(e.g., the uniform one) then it needs not be the case that a worst-case to average-case reductionmust make queries according to this distribution. Furthermore, the distribution of queries maydepend on the input to the reduction, and so statistics regarding it cannot be given as advice.Nevertheless, combining the ideas of [FeFo] with additional ideas (some borrowed from the studyof locally-decodable codes [KaTr]), Bogdanov and Trevisan showed that any non-adaptive reduc-tion of (worst-case) NP to the average-case complexity of NP (with respect to any sampleabledistribution) implies that coNP � AMpoly.Although a main motivation of [BoTr] is the question of basing one-way functions on worst-case NP-hardness, its focus (like that of [FeFo]) is on decision problems. Using known reductionsbetween search and decision problems in the context of distributional problems [BCGL, ImLe],Bogdanov and Trevisan [BoTr] also derive implications on the (im)possibility of basing one-wayfunctions on NP-hardness. In particular, they conclude that if there exists an NP-complete set forwhich deciding any instance is non-adaptively reducible to inverting a one-way function (or, moregenerally, to a search problem with respect to a sampleable distribution), then coNP � AMpoly.We emphasize that the techniques of [BoTr] refer explicitly only to decision problems, and donot relate to the underlying search problems (e.g., inverting a supposedly one-way function). Indoing so, they potentially lose twice: they lose the extra structure of search problems and theylose the additional structure of the task of inverting polynomial-time computable functions. Toillustrate the latter aspect, we re-formulate the problem of inverting a polynomial-time computablefunction as follows (or rather spell out what it means in terms of search problems). The problemof (average-case) inverting f on the distribution f(Un), where Un denotes the uniform distributionover f0; 1gn, has the following features:1. The problem is in NP; that is, the solution is relatively short and given an instance of theproblem (i.e., y) and a (candidate) solution (i.e., x), it is easy to verify that the solution iscorrect (i.e., y = f(x)).2. We care about the average-case complexity of the problem; that is, the probability that ane�cient algorithm given a random (e�ciently sampled) instance y (i.e., y  f(Un)) �ndsx 2 f�1(y).3. There exists an e�cient algorithm that generates random instance-solution pairs (i.e., pairs(y; x) such that y = f(x), for uniformly distributed x 2 f0; 1gn).Indeed, the �rst two items are common to all average-case NP-search problems (with respectto sampleable distributions), but the third item is speci�c to the context of one-way functions(cf. [Go, Sec. 2.1]). A generic sampleable distribution of instances is not necessarily coupled with2



a corresponding sampleable distribution of random instance-solution pairs. Indeed, capitalizingon the third item is the source of our success to obtain stronger (negative) results regarding thepossibility of basing one-way functions on NP-hardness.The works [BoTr, FeFo] fall short of a general impossibility result in two ways. First, they onlyconsider non-adaptive reductions, whereas the celebrated worst-case to average-case reductions oflattice problems (cf. [Aj, MiRe]) are adaptive. Furthermore, the positive results seem to illustratethe power of adaptive versus non-adaptive reductions.1 Second, [BoTr, FeFo] reach conclusionsinvolving a non-uniform complexity class (i.e., AMpoly). Non-uniformity seems an artifact of theirtechniques, and one may hope to conclude that coNP � AM rather than coNP � AMpoly. (Oneconsequence of the uniform conclusion is that it implies that the polynomial time hierarchy collapsesto the second level, whereas the non-uniform conclusion only implies a collapse to the third level.)1.3 The Bene�ts of Direct Study of One-Way FunctionsAs stated before, working directly with one-way functions allows us to remove both the aforemen-tioned shortcomings. That is, we get rid of the non-uniformity altogether, and obtain a meaningfulnegative result for the case of general (adaptive) reductions. Speci�cally, working directly withone-way functions allows us to consider natural special cases of potential one-way functions, whichwe treat for general (i.e., possibly adaptive) reductions.One special case of potential one-way functions, which received some attention in the past(e.g., [GKL, GIL+, DiIm, HHK+]), is that of regular one-way functions. Loosely speaking, in sucha function f , each image of f has a number of preimages that is (easily) determined by the lengthof the image. We prove that any reduction (which may be fully adaptive) of NP to inverting aregular polynomial-time computable function that has an e�ciently recognizable range (possiblyvia an AM-protocol) implies coNP � AM. More generally, this holds for any function f for whichthere is an AM-protocol for determining the number of inverses jf�1(y)j of each given y. We callsuch functions size-veri�able, and note that they contain all functions for which (given y) one cane�ciently compute jf�1(y)j.As stated above, we believe that the study of the possibility of basing one-way functions onworst-case NP-hardness is the most important motivation for the study of worst-case to average-case reductions for NP . In such a case, one should consider the possible gain from studying theformer question directly, rather than as a special case of a more general study. We believe thatthe results presented in this paper indicate such gains. Firstly, working directly in the contextof one-way function enabled us to get rid of the non-uniformity in all our results (by replacingnon-uniform advice that provide needed statistics with AM-protocols designed to provide thesestatistics). Secondly, the context of one-way function enabled us to consider meaningful types ofone-way functions and to establish even stronger results for them. We hope that this frameworkmay lead to resolving the general question of the possibility of basing any one-way function onworst-case NP-hardness via any reduction. In light of the results of this paper, we are tempted toconjecture an impossibility result (pending, as usual, on coNP 6� AM).Organization of the rest of this work. In Section 2, we provide an overview of our proofsas well as a formal statement of our main results. Detailed proofs can be found in the appendix'ssections (i.e., preliminaries are in Appendix A, the treatment of adaptive reductions is in Ap-1We comment that the power of adaptive versus non-adaptive reductions has been studied in various works (e.g.,[FFLS, HNOS, BaLa]). It is known that if NP 6� BPE, then there exists a set in NP n BPP that is adaptivelyrandom self-reducible but not non-adaptively random self-reducible.3



pendix B, and the treatment of general functions is in Appendix C). In Section 3 we discusspossible interpretations of our negative results (as well as those of [FeFo, BoTr]).2 Overview of Results and ProofsHaving observed the potential bene�t of working explicitly with the inverting task of a function f ,materializing this bene�t represents the bulk of the technical challenge and the technical noveltyof the current work.Let us �rst clarify what we mean by saying that a decision problem L is (e�ciently and ran-domly) reducible to the problem of inverting a one-way function f . We take the straightforwardinterpretation (while using several arbitrary choices, like in the threshold determining an invertingoracle):De�nition 1 (inverting oracles and reductions). A function O : f0; 1g� ! f0; 1g� is called a(average-case) f -inverting oracle if, for every n, it holds that Pr[O(f(x)) 2 f�1(f(x))] � 1=2,where the probability is taken uniformly over x 2 f0; 1gn. For a probabilistic oracle machine R,we denote by RO(w) a random variable representing the output of R on input w and access tooracle O, where the probability space is taken uniformly over the probabilistic choices of machineR (i.e., its randomness). A probabilistic polynomial-time oracle machine R is called a reduction ofL to (average-case) inverting f if, for every w 2 f0; 1g� and any f -inverting oracle O, it holds thatPr[RO(w) = �L(w)] � 2=3, where �L(w) = 1 if w 2 L and �L(w) = 0 otherwise.A reduction as in De�nition 1 may only establish that f is a weak one-way function (i.e.,that f cannot be inverted with probability exceeding 1=2 on every input length), which makesour impossibility results even stronger.2 Throughout this work, the function f will always bepolynomial-time computable, and for simplicity we will also assume that it is length preserving(i.e., jf(x)j = jxj for all x).Let us take a closer look at the reduction R. On input w, it may ask polynomially many queriesto the inverting oracle. In adaptive reductions, later queries may depend on the oracle answers toearlier queries. In non-adaptive reductions all queries are computed in advance (based solely on theinput w and the randomness r). For simplicity, we will assume throughout the introduction thatall queries are of length jwj.High-level structure of our proofs and their challenges. Our proofs all work via the contra-positive. Suppose, that there exists a reduction R from deciding an (NP-complete language) L toinverting the function f . We aim to use this reduction to give an AM-protocol for L. (A similarAM-protocol can be given for L itself, but there is no point in doing so because L 2 NP byhypothesis.)As in [FeFo, BoTr], the main backbone of our AM-protocol for L is for the veri�er to emulatethe reduction R on input w and decide whether or not w 2 L according to R's output. Of course,the veri�er cannot run the reduction fully on its own, because the reduction requires access to anf -inverting oracle. Instead, the prover will play the role of the inverting oracle, thus enabling theemulation of the reduction. Needless to say, the veri�er will check that all answers are actually2In contrast, the standard de�nition of one-way function requires that any e�cient inverting algorithm succeedswith negligible probability (i.e., probability that is smaller than 1=poly(n) on all but �nitely many n's). Here werelax the security requirement in two ways (by requiring more of a successful inverting algorithm): �rst, we requirethat the inverting algorithm be successful on any input length, and second that the success probability exceeds 1=2rather than an arbitrary small 1=poly(n). 4



f -preimages of the corresponding queries (and for starters we will assume that all queries are inthe image of f). Since we aim at a constant-round protocol, we send all queries to the prover inone round, which in the case of an adaptive reduction requires to send the randomness r of thereduction to the prover. Note that also in the non-adaptive case, we may as well just send r to theprover, because the prover may anyhow be able to determine r from the queries.The fact that r is given (explicitly or implicitly) to the prover is the source of all di�culties thatfollow. It means that the prover need not answer the queries obliviously of other queries (or of r),but may answer the queries depending on r. In such a case, the prover's answers (when consideringall possible r) are not consistent with any single oracle. Indeed, all these di�culties arise only incase f is not 1-1 (and indeed in case f is 1-1 the correct answer is fully determined by the query).We stress that the entire point of this study is the case in which f is not 1-1. In the special casethat f is 1-1 (and length preserving), inverting f cannot be NP-hard for rather obvious reasons(as has been well-known for a couple of decades; cf. [Br]).3To illustrate what may happen in the general case, consider a 2-to-1 function f . Given anarbitrary reduction of L to inverting f , consider a modi�ed reduction that tosses n additional coins�1; :::; �n, issues n additional queries, and halts without output if and only if for i = 1; :::; n the i-thadditional query is answered with the (�i + 1)-st corresponding preimage (in lexicographic order).This reduction works with probability that is very close to the original one, but a cheating provercan always cause its emulation to halt without output.A di�erent way of looking at things is that the reduction guarantees that, for any adequate(f -inverting) oracle O, with probability 2=3 over the choices of r, machine R decides correctlywhen given oracle access to O. However, it is possible that for every r there exists an oracle Orsuch that R, when using coins r, decides incorrectly when given oracle access to Or. If this is thecase (which we cannot rule out) then the prover may cheat by answering like the bad oracle Or. Inthe rest of this section, we provide an outline of how we deal with this di�culty in each of the twocases (i.e., size-veri�able functions and non-adaptive reductions).2.1 Size-Veri�able Functions (Adaptive Reductions)Recall that our aim is to present an AM-protocol for L, when we are given a general (adaptive)reduction R of the worst-case decision problem of L to average-case inverting f . We denote byq the number of queries made by R, by R(w; r; a1; :::; ai�1) the i-th query made by R on inputw and randomness r after receiving the oracle answers a1; :::; ai�1, and by R(w; r; a1; :::; aq) thecorresponding �nal decision. Recall that for simplicity, we assume that all queries are of lengthn def= jwj. In the bulk of this subsection we assume that, given y, one can e�ciently determinejf�1(y)j.A very simple case: As a warm-up we �rst assume that jf�1(y)j � poly(jyj), for every y. Inthis case, on common input w, the parties proceed as follows.1. The veri�er selects uniformly coins r for the reduction, and sends r to the prover.3Intuitively, inverting such an f (which is a search problem in which each instance has a unique solution) corre-sponds to a decision problem in NP \ coNP (i.e., given (y; i) determine the i-th bit of f�1(y)). Thus, the fact thatinverting f cannot be NP-hard (unless NP = coNP) is analogous to the fact that sets in NP \ coNP cannot beNP-hard (again, unless NP = coNP). In contrast, in case f is not 1-1, the corresponding decision problems areeither not known to be in NP \ coNP or are promise problems (cf. [ESY]) in the \promise problem class" analogueof NP \ coNP. Recall that promise problems in the latter class may be NP-hard even if NP 6= coNP (see [ESY]).5



2. Using r, the prover emulates the reduction as follows. When encountering a query y, theprover uses the lexicographically �rst element of f�1(y) as the oracle answer (and uses ? iff�1(y) = �). Thus, it obtains the corresponding list of queries y1; :::; yq, which it sends to theveri�er along with the corresponding sets f�1(y1); :::; f�1(yq).3. Upon receiving y1; :::; yq and A1; :::; Aq , the veri�er checks, for every i, that jAij = jf�1(yi)jand that f(x) = yi for every x 2 Ai. Letting ai denote the lexicographically �rst element ofAi, the veri�er checks that R(w; r; a1; :::; ai�1) = yi for every i. The veri�er accepts w (as amember of L) if and only if all checks are satis�ed and R(w; r; a1; :::; aq) = 0.Note that the checks performed by the veri�er \force" the prover to emulate a uniquely determined(perfect) inverting oracle (i.e., one that answers each query y with the lexicographically �rst elementof f�1(y)). Thus, the correctness of the reduction implies the completeness and soundness of theabove AM-protocol.In general, however, the size of f�1(y), for y in the range of f may not be bounded by apolynomial in n (where n = jyj = jwj). In this case, we cannot a�ord to have f�1(y) as part of amessage in the protocol (because it is too long). The obvious idea is to have the veri�er send anadequate random hash function h : f0; 1gn ! f0; 1g` and let the prover answer with h�1(0`)\f�1(y)(rather than with f�1(y)), where ` = b(log2 jf�1(y)j=poly(n))c. The problem is that in this casethe veri�er cannot check the \completeness" of the list of preimages (because it cannot computejh�1(0`)\f�1(y)j), which allows the prover to omit a few members of h�1(0`)\f�1(y) at its choice.Recall that this freedom of choice (of the prover) may obliterate the soundness of the protocol.The solution is that, although we have no way of determining the size of h�1(0`) \ f�1(y),we do know that its expected size is exactly jf�1(y)j=2`, where the expectation is taken over thechoice of h (assuming indeed that a random h maps each point in f0; 1gn uniformly on f0; 1g`).Furthermore, the prover cannot add elements to h�1(0`) \ f�1(y) (because the veri�er can verifymembership in this set), it can only omit elements. But if the prover omits even a single element,it ends-up sending a set that is noticeably smaller than its expected size (because the expected sizeof h�1(0`) \ f�1(y) is a polynomial in n). Thus, if we repeat the process many times, the provercannot a�ord to cheat in most of these repetitions, because in that case the statistics will deviatefrom the expectation by too much.Before turning to the speci�c implementation of this idea, we mention that the above rea-soning mimics the main idea of Feigenbaum and Fortnow [FeFo] (also used by Bogdanov andTrevisan [BoTr]). Similarly to their setting, we also have a situation in which the prover may cheat(without being detected) only in one direction. In their setting cheating was possible by claimingthat a string that in an NP-set (at the target of the reduction) is not in that set, whereas hereit is in sending a proper subset of a set of preimages under f and h (which also has an e�cientmembership test). In both settings, it is impossible to cheat in the other direction (i.e., claim thata non-member of an NP-set is in that set, or send a set containing some non-preimages).Protocol for the general case: In the following protocol we use families of hash functionsof very high quality (e.g., poly(n)-wise independent ones). Speci�cally, in addition to requiringthat a random h : f0; 1gn ! f0; 1g` maps each point uniformly, we require that, for a suitablepolynomial p and for any S � f0; 1gn of size at least p(n) �2`, with overwhelmingly high probabilityover the choice of h it is the case that jh�1(0`) \ Sj < 2jSj=2`. In particular, the probability thatthis event does not occur is so small that, when conditioning on this event, the expected size ofjh�1(0`) \ Sj is (1� 2�n) � jSj=2`. (Thus, under this conditioning and for S as above, the varianceof 2`jh�1(0`) \ Sj=jSj is smaller than 2.) 6



1. The veri�er selects uniformly m = n � q2p(n)2 = poly(n) sequences of coins, r(1); :::; r(m) forthe reduction, and sends them to the prover. In addition, for each k = 1; :::;m, i = 1; :::; qand ` = 1; :::; n, it selects and sends a random hash function hk;i;` : f0; 1gn ! f0; 1g`.To streamline the following description, for j � 0, we arti�cially de�ne hk;i;j such thath�1k;i;j(0j) def= f0; 1gn. In such a case, S \ h�1k;i;j(0j) = S, and so an instruction to do somethingwith the former set merely means using the latter set.2. For every k = 1; :::;m, the prover uses r(k) to emulate the reduction as follows. Whenencountering the i-th query, y(k)i , it determines `(k)i = b(log2 jf�1(y(k)i )j=p(n))c, and uses thelexicographically �rst element of f�1(y(k)i )\h�1k;i;`(k)i (0`(k)i ) as the oracle answer (and uses ? ifthe latter set is empty). Thus, it obtains the corresponding list of queries y(k)1 ; :::; y(k)q , which itsends to the veri�er along with the corresponding sets f�1(y(k)1 )\h�1k;1;`(k)1 (0`(k)1 ); :::; f�1(y(k)q )\h�1k;q;`(k)q (0`(k)q ).We assume that none of the latter sets has size greater than 4p(n). Note that the bad eventoccurs with negligible probability, and in such a case the prover halts and the veri�er rejects.(Otherwise, all mq sets are sent in one message.)3. Upon receiving y(1)1 ; :::; y(1)q ; :::; y(m)1 ; :::; y(m)q and A(1)1 ; :::; A(1)q ; :::; A(m)1 ; :::; A(m)q , the veri�erconducts the following checks:(a) For every k = 1; :::;m and i = 1; :::; q, the veri�er checks that for every x 2 A(k)i it holdsthat f(x) = y(k)i and hk;i;`(k)i (x) = 0`(k)i , where `(k)i = b(log2 jf�1(y(k)i )j=p(n))c. Lettinga(k)i be the lexicographically �rst element of A(k)i , it checks that R(w; r(k); a(k)1 ; :::; a(k)i�1) =y(k)i .(b) For every i = 1; :::; q, it checks that1m � mXk=1 2`(k)i � jA(k)i jjf�1(y(k)i )j > 1� 1100q � p(n) (1)where 0=0 is de�ned as 1.The veri�er accepts w if and only if all the foregoing checks are satis�ed and it holds thatR(w; r(k); a(k)1 ; :::; a(k)q ) = 0 for a uniformly selected k 2 f1; :::;mg.Analysis of the Protocol. We �rst note that the additional checks added to this protocolhave a negligible e�ect on the completeness condition: the probability that either jf�1(y(k)i ) \h�1k;i;`(k)i (0`(k)i )j > 4p(n) for some i; k or that Eq. (1) is violated for some i is exponentially vanishing.4Turning to the soundness condition, we note that the checks performed by the veri�er force the4Recall that here we refer to the case that A(k)i = f�1(y(k)i ) \ h�1k;i;`(k)i (0`(k)i ). Thus, regarding Eq. (1), we notethat the l.h.s is the average of m independent random variables, each having constant variance. Applying Cherno�bound, the probability that Eq. (1) is violated is upperbounded by exp(�
(m=(100q � p(n))2)) = exp(�
(n)).7



prover to use A(k)i � T (k)i def= f�1(y(k)i )\h�1k;i;`(k)i (0`(k)i ). Also, with overwhelmingly high probability,for every i = 1; :::; q, it holds that1m � mXk=1 2`(k)i � jf�1(y(k)i ) \ h�1k;i;`(k)i (0`(k)i )jjf�1(y(k)i )j < 1 + 1100q � p(n) (2)Combining Eq. (1) and Eq. (2), and recalling that A(k)i � T (k)i (and jf�1(y(k)i )j < 2p(n) � 2`(k)i ), itfollows that (1=m) �Pmk=1(jT (k)i n A(k)i j=2p(n)) < 2=(100q � p(n)) for every i. Thus, for each i, theprobability over a random k that A(k)i 6= T (k)i is at most 1=25q. It follows that for a random k, theprobability that A(k)i = T (k)i for all i's is at least 1 � (1=25). In this case, the correctness of thereduction implies the soundness of the foregoing AM-protocol.Extension. The above description presumes that the veri�er can determine the size of the setof f -preimages of any string. The analysis can be easily extended to the case that the veri�er canonly check the correctness of the size claimed and proved by the prover. That is, we refer to thefollowing de�nition.De�nition 2 (Size Veri�able). We say that a function f : f0; 1g� ! f0; 1g� is size veri�able if thereis a constant-round proof system for the set f(y; jf�1(y)j) : y 2 f0; 1g�g.A natural example of a function that is size veri�able (and for which the relevant set is not knownto be in BPP) is the integer multiplication function. That is, we consider the function that mapspairs of integers (which are not necessarily prime or of the same length) to their product. In thiscase the set f(y; jf�1(y)j) : y 2 f0; 1g�g is in NP (i.e., the NP-witness is the prime factorization)but is widely believed not to be in BPP (e.g., it is believed to be infeasible to distinguish productof two (n=2)-bit random primes from the product of three (n=3)-bit long random primes).Theorem 3 (Adaptive Reductions). Unless coNP � AM, there exists no reduction (even not anadaptive one) from deciding an NP-complete language to inverting a size-veri�able polynomial-timecomputable function.In other words, it is unlikely that size-veri�able one-way functions can be based on NP-hardness.We note that the result can be extended to functions that are \approximately size-veri�able" (cov-ering the \approximable preimage-size" function of [HHK+] as a special case). A formal descriptionof these results appears in Appendix B.2.2 Non-Adaptive Reductions (General Functions)We now turn to outline the proof of our second main result.Theorem 4 (General Functions). Unless coNP � AM, there exists no non-adaptive reductionfrom deciding an NP-complete language to inverting a polynomial-time computable function.Considering the AM-protocol used in the adaptive case, we note that in the current case theveri�er cannot necessarily compute (or even directly verify claims about) the size of sets of f -preimages of the reduction's queries. Indeed, known lower-bound protocols (cf. [GoSi]) could beapplied to these sets, but known upper-bound protocols (cf. [AiHa]) cannot be applied becausethey require that the veri�er has or can obtain a random (let alone secret) member of these sets.8



Fortunately, adapting the ideas of [BoTr] to the current setting, allows to overcome this di�cultyand to obtain, not only non-uniform AM-protocols (for coNP), but even uniform ones (thus,implying coNP � AM).Here R is a non-adaptive reduction of some set L 2 NP to the average-case inverting of anarbitrary (polynomial-time computable) function f , and our goal again is to show that L 2 AM.We may assume, without loss of generality, that the queries of R(w; �) are identically distributed (buttypically not independently distributed), and represent this distribution by the random variableRw; that is, Pr[Rw= y] = jfr 2 f0; 1gn0 : R(w; r)= ygj=2n0 , where n0 denotes the number of coinsused by R(w; �).A simple case (analogous to [FeFo]): We �rst consider the case that R's queries are distributedidentically to Fn def= f(Un), where Un denotes the uniform distribution over f0; 1gn. In this case, weask the prover to provide jf�1(y(k)i )j along with each query y(k)i made in the emulation of R(w; r(k)),and ask for lower-bound proofs (cf., [GoSi]) regarding the claimed sizes.5 To prevent the proverfrom understating these sizes, we compare the value of (1=qm) �Pqi=1Pmk=1 log2 jf�1(y(k)i )j to theexpected value of log2 jf�1(f(Un))j, where here and below we de�ne log2 0 as �1 (in order toaccount for the case of queries that have no preimages). Mimicking [FeFo], one may suggest thatthe latter value (i.e., Exp[log2 jf�1(Fn)j]) be given as a non-uniform advice, but we can do better:We may ask the prover to supply Exp[log2 jf�1(f(Un))j] and prove its approximate correctnessusing the following protocol.The veri�er uniformly selects x1; :::; xm 2 f0; 1gn, computes yi = f(xi) for every i, sendsy1; :::; ym to the prover and asks for jf�1(y1)j; :::; jf�1(ym)j along with lower and up-per bound constant-round interactive proofs. (As usual, the lower-bound AM-protocolof [GoSi] (or [GVW]) can be applied because membership in the corresponding setscan be easily veri�ed.) The (point is that the) upper-bound protocol of [AiHa] can beapplied here, because the veri�er has secret random elements of the corresponding sets.Recall that the lower-bound protocol (of [GoSi] or [GVW]) guarantee that the prover cannot over-state any set size by more than an " = 1=poly(n) factor (without risking detection with overwhelm-ingly high probability). Thus, we will assume throughout the rest of this section that the provernever overstates set sizes (by more than such a factor). The analysis of understated set sizes issomewhat more delicate, �rstly because (as noted) the execution of upper-bound protocols requiresthe veri�er to have a secret random element in the set, and secondly because an understatementby a factor of " is only detected with probability " (or so). Still this means that the prover cannotsigni�cantly understate many sets sizes and go undetected. Speci�cally, if the prover understatesthe size of f�1(yi) by more than an " factor for at least n=" of the yi's then it gets detected withoverwhelmingly high probability. Using a suitable setting of parameters, this establishes the valueof Exp[log2 jf�1(f(Un))j] up to a su�ciently small additive term, which su�ces for our purposes.5Furthermore, in this case the corresponding hashing functions (i.e., the hk;i;`) can be sent after all set sizes hasbeen claimed. In fact, it is important to do so (or introduce an alternative modi�cation) in order to prevent possiblecontrol of the prover on the hashing function being used. Recall that in the adaptive case, the hashing function inuse (for query y) is determined by ` = b(log2 jf�1(y)j=p(n))c, but the veri�er knows jf�1(y)j and thus the proverhas no control on the value of `. In the current context, the prover may be able to cheat a little about the value ofjf�1(y)j, without being caught, and this may (sometimes) cause a change of one unit in the value of ` (and thus allowfor a choice among two hash functions). Sending the hash function after ` is determines (by the prover) eliminatesthe potential gain from such a cheating. An alternative modi�cation is to set ` = b(� + log2 sy=p(n))c, where sy isprover's claim regarding the size of jf�1(y)j and � 2 [0; 1] is a uniformly chosen randomization selected and sent inthe veri�er's initial step. 9



Speci�cally, as in Section 2.1, such a good approximation of Exp[log2 jf�1(f(Un))j] forces the provernot to understate the value of jf�1(y(k)i )j by more than (say) a 1=10p(n) factor for more than (say)m=10 of the possible pairs (i; k). (Note that, unlike in Section 2.1, here we preferred to considerthe sum over all (i; k)'s rather than q sums, each corresponding to a di�erent i.)6A special case (analogous to one part of [BoTr]): We now allow Rw to depend on w,but restrict our attention to the natural case in which the reduction does not ask a query ywith probability that exceeds Pr[Fn = y] by too much. Speci�cally, suppose that Pr[Rw = y] �poly(jyj) � Pr[Fn = y], for every y. In this case, we modify the foregoing protocol as follows.Here it makes no sense to compare the claimed value of (1=qm)�Pqi=1Pmk=1 log2 jf�1(y(k)i )jagainst Exp[log2 jf�1(Fn)j]. Instead we should compare the former (claimed) averageto Exp[log2 jf�1(Rw)j]. Thus, the veri�er needs to obtain a good approximation tothe latter value. This is done by generating many yi's as before (i.e., yi = f(xi)for uniformly selected xi 2 f0; 1gn) along with fewer but still many yi's sampledfrom Rw, and sending all these yi's (in random order) to the prover. Speci�cally, fort � maxy2f0;1g�fPr[Rw = y]=Pr[Fn = y]g, we generate t times more yi's from Fn, andso each yi received by the prover is at least as likely to come from Fn than from Rw.The prover will be asked to provide all jf�1(yi)j's along with lower-bound proofs, andafterwards (i.e., only after committing to these jf�1(yi)j's) the veri�er will ask for upper-bound proofs for those yi's generated via Fn (for which the veri�er knows a secret anduniformly distributed xi 2 f�1(yi)).Recall that the prover cannot signi�cantly overstate the size of any jf�1(yi)j (i.e., overstate it bymore than an " = 1=poly(n) factor). If the prover signi�cantly understates the sizes of too many ofthe jf�1(yi)j's, then it is likely to similarly overstate also the sizes of many jf�1(yi)j's such that yiwas generated by sampling Fn. But in this case, with overwhelmingly high probability, the proverwill fail in at least one of the corresponding upper-bound proofs.The general case (analogous to another part of [BoTr]): We now allow Rw to dependarbitrarily on w, without any restrictions whatsoever. For a threshold parameter t to be determinedlater, we say that a query y is t-heavy if Pr[Rw = y] > t�Pr[Fn = y]. (In the special case, we assumedthat there are no poly(n)-heavy queries.) Observe that the probability that an element sampledaccording to Fn is t-heavy is at most 1=t, and thus modifying an inverting oracle such that itanswers t-heavy queries by ? e�ects the inverting probability of the oracle by at most 1=t. Thus,for t � 2, if we answer t-heavy queries by ? (and answer other f -images with a preimage), thenwe emulate a legitimate inverting oracle (which inverts f with probability at least 1=2) and thereduction R is still supposed to work well. Referring to y as t-light if it is not t-heavy, we notethat t-light queries can be handled as in the foregoing special case (provided t � poly(n)), whereast-heavy queries are accounted for by the previous discussion. The problem is to determine whethera query is t-heavy or t-light, and certainly we have no chance of doing so if many (reduction) queriesare very close to the threshold (e.g., Pr[Rw = y] = (t � n� log n) � Pr[Fn = y] for all y's). Thus,as in [BoTr], we select the threshold at random (say, uniformly in the interval [2; 3]). Next, weaugment the foregoing protocol as follows.6We stress that in both cases both choices can be made. We note that, when analyzing the completeness condition,one may prefer to analyze the deviation of the individual sums (for each i).10



� We ask the prover to provide for each query y(k)i , also the value of Pr[Rw = y(k)i ], or equiv-alently the size of fr : R(w; r) = y(k)i g. In addition, we ask for lower-bound proofs of thesesizes.� Using lower and upper bound protocols (analogously to the simple case)7, we get an estimateof Exp[log2 jfr : R(w; r) = Rwgj]. We let the veri�er check that this value is su�ciently closeto the claimed value of (1=qm) �Pqi=1Pmk=1 log2 jfr : R(w; r) = y(k)i gj, thus preventing anunderstating of the size of almost all the sets fr : R(w; r) = y(k)i g.Hence, combining these two items, the veri�er gets a good estimate of the size of fr : R(w; r) =y(k)i g for all but few (i; k)'s. That is, the veri�er can con�rm that for almost all the (i; k)'sthe claimed (by prover) size of fr : R(w; r) = y(k)i g is approximately correct.� Using the claimed (by the prover) values of Pr[Rw = y(k)i ] and Pr[Fn = y(k)i ], the veri�ermakes tentative decisions regarding which of the y(k)i 's is t-light.Note that for most (i; k), the prover's claim about Pr[Rw = y(k)i ] is approximately correct,whereas the claim about Pr[Fn = y(k)i ] can only be understated (by virtue of the lower-boundprotocol employed for the set f�1(y(k)i ).Using a protocol as in the special case, the veri�er obtains an estimate of Exp[log2 jf�1(R0w)j],where R0w denotes Rw conditioned on being t-light, and checks that this value is su�cientlyclose to the claimed average of log2 jf�1(y(k)i )j, taken only over t-light y(k)i 's. In addition, theveri�er checks that the fraction of t-light y(k)i 's (among all y(k)i 's) approximates the probabilitythat Rw is t-light.We note that estimating Exp[log2 jf�1(R0w)j] is done by generating yi's as in the special case,but with t 2 [2; 3] as determined above, and while asking for the value of both Pr[Rw = yi]and Pr[Fn = yi] for all yi's, and afterwards requiring upper-bound proofs for one of thesevalues depending on whether yi was sampled from Rw or Fn. Needless to say, these valueswill serve as basis for determining whether each yi is t-heavy or t-light, and will also yield anestimate of the probability that Rw is t-light.Recall that the veri�er accepts w if and only if all the foregoing checks (including the ones statedin the adaptive case) are satis�ed.Ignoring the small probability that we selected a bad threshold t as well as the small proba-bility that we come across a query that is close to the threshold, we analyze the foregoing pro-tocol as follows. We start by analyzing the queries yi's used in the sub-protocol for estimatingExp[log2 jf�1(R0w)j]. We �rst note that, by virtue of the lower and upper bound proofs, for almostall queries yi's generated by Rw, the sizes of fr : R(w; r) = yig must be approximately correct.Next, employing a reasoning as in the special case, it follows that for almost all t-light queries yi'swe obtain correct estimates of the size of their f -image (i.e., we verify that the almost all the sizesclaimed by the prover for the jf�1(yi)j's are approximately correct). It follows that we correctlycharacterize almost all the t-light yi's generated by Rw as such. As for (almost all) t-heavy queriesyi's generated by Rw, we may wrongly consider them t-light only if the prover has signi�cantlyoverstated the size of their preimage, because we have a good estimate of fr : R(w; r) = y(k)i g for7In the simple case we got an estimate of Exp[log2 jf�1(Fn)j], while relying on our ability to generate samples ofFn along with a uniformly distributed member of f�1(Fn). Here we rely on our ability to generate samples of Rwalong with a uniformly distributed member of fr : R(w; r) = Rwg.11



(almost all) these yi's. Recalling that an overstatement of jf�1(y(k)i )j is detected with overwhelm-ingly high probability (by the lower-bound protocol), it follows that almost all t-heavy queries yi'sgenerated by Rw are correctly characterize as such. Thus, the characterization of almost all yi's(generated by Rw) as t-light or t-heavy is correct, and so is the estimate of the probability that Rwis t-light. Recalling that for almost all the t-light yi's generated by Rw we have a correct estimateof jf�1(yi)j, we conclude that the estimate of Exp[log2 jf�1(R0w)j] is approximately correct.Next we employ parts of the foregoing reasoning to the y(k)i 's. Recalling that, for almost allqueries y(k)i , we obtained correct estimates of the size of fr : R(w; r) = y(k)i g, and that jf�1(y(k)i )jcannot be overstated, we conclude that we correctly characterize almost all t-heavy queries as such.The comparison to the estimated probability that Rw is t-light guarantees that the prover cannotclaim too many t-light y(k)i 's as t-heavy, which implies that we have correctly characterize almostall y(k)i 's as t-light or t-heavy. Recalling that jf�1(y(k)i )j can only be understated (due to the lower-bound proofs) and using the estimate of Exp[log2 jf�1(R0w)j] as an approximate lower-bound, itfollows that the claims made regarding almost all the jf�1(y(k)i )j's are approximately correct. Thus,as in the special case, the correctness of the reduction implies the completeness and soundness ofthe foregoing AM-protocol. A formal description of this result appears in Appendix C.83 Discussion: interpretations of our negative resultsNegative results of the type obtained in this work (as well as in [FeFo, BoTr]) can be interpreted inseveral ways: The straightforward view is that such results narrow down the means by which one canbase one-way functions on NP-hardness. Namely, under the assumption that NP is not containedin coAM, our results show that (1) non-adaptive randomized reductions are not suitable for basingone-way functions on NP-hardness, and (2) that one-way functions based on NP-hardness can notbe size veri�able (e.g., cannot be regular with an e�ciently recognizable range).Another interpretation is that these negative results are an indication that (worst-case) com-plexity assumptions regarding NP as a whole (i.e., NP 6� BPP) are not su�cient to base one-wayfunctions on. But this does not rule out the possibility of basing one-way functions on the worst-case hardness of a subclass of NP (e.g., the conjecture that NP \ coNP 6� BPP). This is thecase because our results (as previous ones) actually show that certain reductions of the (worst-case)decision problem of a set S to (average-case) inverting of f imply that S 2 AM \ coAM. Butno contradiction is obtained if S belongs to NP \ coNP anyhow. Indeed, the decision problemsrelated to lattices that are currently known to have worst-case to average-case reductions belongto NP \ coNP (cf. [Aj, MiRe] versus [AhRe]).Yet another interpretation is that these negative results suggest that we should turn to a morerelaxed notion of a reduction, which is uncommon in complexity theory and yet is applicable in thecurrent context. We refer to \non black-box" reductions in which the reduction gets the code (ofthe program) of a potential probabilistic polynomial-time inverting algorithm (rather than black-box access to an arbitrary inverting oracle). The added power of such (security) reductions wasdemonstrated a few years ago by Barak [Ba01, Ba02].Comment added in revision. We point out that the result we prove for size-veri�able functionsholds even if we restrict the reduction to be a worst-case reduction. Namely, unless coNP � AM,there exist no reductions from worst case NP problems to inverting a size-veri�able polynomial time8We remark that the description in the appendix di�er from the above description on some technicalities.12



computable function. (This is easily seen as the proof of Theorem 3 never utilizes the fact that theoracle accessed by the reduction is allowed to err on some of the queries). In contrast, it is knownthat reductions do exist from worst case NP problems to inverting some (general) polynomial timecomputable function (see [Go, Chap. 2, Exer. 3]). This yields a separation between inverting size-veri�able polynomial time computable functions and inverting general polynomial time computablefunction (assuming as usual coNP 6� AM).AcknowledgmentsDana Moshkovitz is grateful to Muli Safra for supporting her visit to MIT, where this research hasbeen initiated.
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AppendixA PreliminariesTo simplify the presentation we assume, without loss of generality, that the reduction always makesexactly q distinct queries.9 In addition, we assume (again without loss of generality), that theerror probability of the reduction is exponentially small (because this can be achieved by standardampli�cation).A.1 Verifying Size EstimatesLet us survey several fundamental protocols for verifying estimates on sizes of NP languages (moreaccurately, for any n, the size of the n'th slice of L � f0; 1g�, L \ f0; 1gn, which, in short, we willrefer to as L � f0; 1gn).Lower Bounds The work of Goldwasser and Sipser, showing private-coins protocols are equiv-alent to public coins protocol, has presented a protocol for proving the size of L is at least somenumber s. The idea behind it is the following: pick a random hash function h mapping f0; 1gn toa range � of size slightly smaller than s. If jLj � s, then, with high probability, any member of �will have a pre-image by h. If jLj is signi�cantly smaller than s, an arbitrary member of � is notlikely to have a pre-image by h in L. The exact parameters are detailed in the following theorem.Theorem 5 (Goldwasser-Sipser). For any NP language L � f0; 1gn, any natural 1 � s � 2n,any estimate 0 < � < 1, and any amplifying factor u = poly(n), there exists a constant-roundprivate-coin protocol between a prover P and a veri�er V such that:� If jLj � s, then there exists a prover strategy P so that Prr [V (r) = 1] � 1� 9�2u .� If jLj � (1� �)s, then for every prover strategy P 0, Prr [V (r) = 1] � 9�2u .where the probability is taken over the random coin tosses r of the veri�er.We comment that stronger bounds (i.e., u = exp(poly(n))) are available via a related protocolof [GVW].Upper Bounds It is not likely that protocols with constant number of rounds could verify thatthe size of an NP language L is at most some number s. Nevertheless, the work of Aiello andHastad showed that if the veri�er is able to sample uniformly a member x within the language,then the veri�er can also upper-bound the size of the language. The idea is again to use hashfunctions: pick a random hash function h mapping f0; 1gn to a range � of size slightly smaller thanthe claimed size, s. Given h(x), let the prover guess a short list of candidates for x. If jLj = s,there exists such short list with high probability. On the other hand, if jLj is much larger than s,there should many z's in L with h(z) = h(x), and thus the prover has a not-very-high chance tooutput a list containing x.This protocol uses signi�cantly the fact it has a uniform x in L and the fact this x is private(i.e., not known by the prover). By the work of Goldwasser and Sipser [GoSi], if the Aiello-Hastad9Repeated queries may be answered by the reduction itself (using the previously received answer), and dummyqueries may be added in case they are less than q queries.16



protocol is plugged into an AM protocol in a setting where the speci�c NP -language L can indeedbe sampled, the private sampling can be replaced by usage of public coins.The exact parameters of the protocol are detailed in the following theorem:Theorem 6 (Aiello-Hastad). For any NP language L � f0; 1gn, any natural 1 � s � 2n, anyestimate 0 < � < 1, and any amplifying factor u, there exists a constant-round private-coins protocolso that for a veri�er V (r; x) having a uniformly distributed x 2 L,� If jLj � s, then there exists a prover strategy P , so that for every x 2 L, Prr [V (r; x) = 1] �1� 9�2u .� If jLj � (1+�)s, then for every prover strategy P 0, Prr �Prx2L [V (r; x) = 1] � 1� �6� � 1� 9�2u .where the probability is taken over the random coin tosses r of the veri�er, as well as over the xuniformly distributed within L.Note that if L is much larger than s, the veri�er may erroneously accept with a very highprobability (roughly 1 � �). Nevertheless, it is su�cient for our needs. We will be interested inseveral NP -languages, L1; : : : ; Lk, and our protocol will be of the following form:1. P : sends alleged upper-bounds s1; : : : ; sk for L1; : : : ; Lk.2. V; P : initiate the Aiello-Hastad protocol in parallel to verify jLij � (1 + �)si, i = 1; : : : ; k.In this setting, as the set of cheats, f1 � i � k j jLij � (1 + �)sig, is �xed in the �rst round, theprobability it is large, but the veri�er does not reject in the second round, is very small.A.2 SamplingInterestingly, given an estimate on the size of L, a probabilistic protocol with constant numberof rounds is capable of sampling an almost-uniform member of L. This was already shown byGoldreich et al [GVW], and we slightly generalize the analysis so it handles the case in which wemerely have an estimate on the size of L, (1� )N � jLj � (1 + )N .Let us give some intuition. We would like the veri�er to pick a random index i in 1; 2; : : : ; Nand ask the prover to provide xi, the i'th member of L. This fails because the veri�er can indeedverify that xi 2 L, but does not seem to have a way verifying xi is indeed the i'th member of L.However, we can use hash functions to pull o� a similar trick. The idea is to pick a random hashfunction, and ask the prover to provide an element whose hash is some pre-determined value. Ifthe hash can be computed e�ciently, then veri�cation is resolved.Diving deeper into the implementation, we consider a family of hash functions mapping f0; 1gninto a range whose size is N shrank by some parameter. This way, when picking a hash functionat random, each value of the hash is expected to have a short list of pre-images mapped to it. Theprover can send this short list to the veri�er, and let it choose a random pre-image within it.We use 2d-independent hash functions (for some d that depends on a con�dence parameter �),as to ensure the size of the short list is close to its expectation. We take � � 13 to be our deviationparameter.Sampling Protocol:1. V: sends hash function h picked uniformly and independently at random from afamily of 2d-wise independent functions f0; 1gn ! [ ~N ], ~N = �3Nd2d2(1�) , d = dlog 1� e.17



2. P: sends a list of elements A � f0; 1gn [supposedly the pre-images of 0 by h].3. V: rejects if any of the following does not hold:� jAj � (1� �� )N= ~N .� For every x 2 A, h(x) = 0.� For every x 2 A, x 2 L.4. V: picks x uniformly and independently at random from A.The analysis is by bounding, for every S � L, the deviation of ��h�1(0) \ S�� from its expectation.This (for S = L) implies that ��h�1(0) \ L�� is large enough to prevent the veri�er from rejecting.This also implies that a random element in h�1(0)\L is close to being uniform over L. Moreover,the elements the prover is required to provide constitute almost all h�1(0) \ L, hence a uniform xamong them is still almost uniform in L. This argument is made formal in the following lemma:Lemma 7 (adapted from [GVW]). If N(1� ) � jLj � N(1 + ), for some  � 13 � �, then1. The veri�er either rejects in step 3, or it picks an element xi 2 L that is at least (�+3�+3)-statistically close to being uniform over L.2. There exists a prover strategy (being truthful), so that with probability at least 1��, the veri�erdoes not reject in step 3.B Adaptive Reductions, Size-Veri�able FunctionsIn this section we complete the proof of Theorem 3. In fact, we will extend the proof to the case thatthe preiamge sizes can only be approximately veri�ed, but we start with the cases of size-veri�ablefunctions (as stated in Theorem 3).B.1 Size Veri�able FunctionsWe generalize the description of Section 2.1 (which referred to \size computable functions") to thecase of size-veri�able functions. Following is a detailed description of the resulting protocol.Protocol for proving membership in L (for the case of size-veri�able functions f).Parameters Setting for common input w: Let n = jwj. Let � > 1=poly(n) be a deviationparameter, and � > exp(�poly(n)) be the error probability. For each s = 1; : : : ; n, letHn;` be a fam-ily of 2t-wise independent hash functions mapping f0; 1gn to f0; 1g`, where t � maxn2n; log 4qm� o.Denote � = 2t2�3 and  = 12q ; let m � 2q2q� � .1. P, V: Run m times in parallel the "Emulation of the Reduction" sub-protocol:(a) V: Send randomness r, and nq hash functions. Speci�cally, select and send h`;i 2R Hn;`for each query i = 1; : : : ; q of the reduction, and each size ` = 1; : : : ; n.(b) P: Send sizes s1; : : : ; sq, and sets of inverses A1; : : : ; Aq; denote by ai the minimalelement in Ai (in lexicographic order).Supposedly, si = ��f�1(yi)�� for yi = R(w; r; a1; : : : ; ai�1), andAi is a subset of the inversesof yi. Speci�cally, if yi has few inverses, i.e., si � 2�, then Ai = f�1(yi), whereas, if yihas many inverses, i.e., si > �, then Ai = f�1(yi) \ h`i;i(0)�1 for `i = b(log jf�1(yi)j� )c.18



To streamline the following description, when `i � 0, we arti�cially de�ne hi;`i such thath�1i;`i(0`i) def= f0; 1gn. In such a case, f�1(yi) \ h�1k;`i(0`i) = f�1(yi), and so the above canbe described succinctly by instructing the prover to send Ai = f�1(yi) \ h`i;i(0)�1.(c) P,V: Denote yi = R(w; r; a1; : : : ; ai�1). Use the size-veri�cation protocol to prove (inparallel) for each i = 1; : : : ; q, that si = ��f�1(yi)��, with con�dence �0 = �4qm ; reject ifany of the runs of the size-veri�cation protocol rejects.2. V: Accept i� all the conditions below hold:(a) In each run of the above sub-protocol:i. 8i; Ai � f0; 1gn (is non-empty and) has size less than (1 + �)2�. We denote by aithe minimal element of Ai (in lexicographic order).ii. For every i = 1; :::; q and every a 2 Ai, it holds that f(a) = R(w; r; a1; :::; ai�1) andh`i;i(a) = 0 for `i = b(log si�)c.iii. It holds that R(w; r; a1; :::; aq) = 0.(b) On average (over all runs k = 1; : : : ;m of the above sub-protocol), the size of the setsAi is close to its expectation (E [jAij] = si2`i ), namely, for all i = 1; : : : ; q,1m mXk=1����A(k)i ��� � 2`isi � > (1 � )where A(k)i denotes the set Ai the prover sent for the i-th query of run k.Analysis of the Protocol We now prove the completeness and soundness of our protocol. Forease of notation, in the following we mark the communication in each run k = 1; : : : ;m of thesub-protocol by a superscript `(k)', namely:Notations: Denote by r(k) and h(k)`;1 ; : : : ; h(k)`;q the randomness and hash functions sent by theveri�er in run k. Denote by s(k)1 ; : : : ; s(k)q and A(k)1 ; : : : ; A(k)q the sizes and sets sent by the proverin run k, and let a(k)i denote the minimal element in A(k)i . Let `(k)i = b(log ���f�1(y(k)i )���� )c for y(k)i =R(w; r(k); a(k)1 ; : : : ; a(k)i�1). Last, when `(k)i � 0, we abuse the notation and de�ne h(k)`(k)i ;i(0)�1 def=f0; 1gn (thus having f�1(y(k)i ) \ h(k)`(k)i ;i(0)�1 = f�1(y(k)i )).To show that our protocol is complete, we show that, for an honest prover and w 2 L, withhigh probability, both the reduction accepts and the statistical tests pass (namely, ���A(k)i ��� is close toits expectation, and its average deviation over all runs k is even more tightly concentrated). Thereduction accepts w.p. at least 1 � err (the success probability of the reduction), because whenthe prover is honest, its answers are independent of the randomness used by the reductions (theyare determined only by the hash functions10). The average size of A(k)i is close to its expectation,by Chebyshev analysis relying on the fact that the size of each individual set Ai is concentratedclose to its expectation with overwhelming probability. Thus, for w 2 L and an honest prover, theveri�er accepts, w.h.p..10We remark that choosing the hash functions in advance, before the queries of the reduction are knows, shouldnot obscures the fact that the hash functions are independent of the randomness of the reduction, and are chosen onrandom by the veri�er. 19



To show that our protocol is sound, we prove that, for any prover's strategy, if w =2 L, thenthe veri�er rejects, w.h.p.. Speci�cally, we show that as long as m = poly(n) is large enough, ifthe average size of Ai's is close enough to its expectation so that the veri�er does not reject oncondition 2b, then there must be at least one run k of the sub-protocol, where the prover did notomit even a single element from any of the set A(k)i i = 1; : : : ; q, namely:9k s.t. 8i = 1; : : : ; q; A(k)i = f�1(y(k)i ) \ h(k)`i;i(0)�1On this run k, the answers of the prover are independent of the randomness used by the reductions(the answers are determined only by the hash functions), and hence the reduction returns thecorrect output, w.p at least 1 �m � err, where err denotes the error probability of the reduction.(The factor of m in the error probability emanates from the prover's freedom to choose on whichrun k 2 1; : : : ;m it is "honest".) Thus, for w =2 L, the veri�er rejects, w.h.p., even when the proveris dishonest. We remark that for larger m, not only that a single run is "good", but actually,most runs are good, and therefore, we could modify our protocol to check that a random runk 2R 1; : : : ;m outputs 0, instead of checking that all runs output 0. (This modi�ed protocol is theone presented in the overview section.)We now follow the above intuition to give the formal proof. We begin by proving the concen-tration results we use, and then turn to proving completeness and soundness.Useful Concentration Results Denote by T (k)i the sets A(k)i that an honest prover sends (Tstands for "Truth"), namely, T (k)i = f�1(y(k)i ) \ h(k)`(k)i ;i(0)�1Our proof relies on two properties of the the sets T (k)i . First, the size of the sets T (k)i is concentratedclose to their expectation. This is proven by high-moment analysis in [GVW]. Second, the averagedeviation of ���T (k)i ��� from its expectation is even more tightly concentrated around its expectation.This is proven using the Chebyshev inequality, while using the former property to bound thevariance of this average. A formal statement of these properties follows.Fact 8 (GVW). For each i; k, Pr h������T (k)i ���� E [���T (k)i ���]��� � � E [���T (k)i ���]i � 2�t where the probability istaken over the random choice of h(k)`(k)i ;i 2 Hn;`(k)i .Note that E [���T (k)i ���] = ���f�1(y(k)i )���2`(k)i 2 (�; 2�), when `(k)i > 0, and E [���T (k)i ���] = ���f�1(y(k)i )���, other-wise.Lemma 9. Let s(k)i = ���f�1(y(k)i )��� for y(k)i = R(w; r(k); a(k)1 ; : : : ; a(k)i�1), namely, the prover is truthfulwhen sending the set sizes. Then for the � of our protocol and for any  > 0,Pr"����� 1m mXk=1 ���T (k)i ��� � 2`(k)is(k)i !� 1����� > # � �4qwhere the probability is taken over the random choice of h(k)`(k)i ;i 2 Hn;`(k)i .
20



Proof. The bound follows from Chebyshev inequality. In order to apply Chebyshev, we computethe expectation and variance of 1mPmk=1����T (k)i ��� � 2`(k)is(k)i �. We �rst compute the expectation. Bylinearity of expectation, E � 1mPmk=1����T (k)i ��� � 2`(k)is(k)i �� = 1mPmk=1�E h���T (k)i ���i � 2`(k)is(k)i � = 1 where thelast equality holds since E h���T (k)i ���i = s(k)i )2`(k)i . To bound the variance of 1mPmk=1����T (k)i ��� � 2`(k)is(k)i � we�rst bound the variance of ���T (k)i ��� � 2`(k)is(k)i . Since ���T (k)i ��� � 2n and E [���T (k)i ��� � 2`(k)is(k)i ] = 1, we have:var "���T (k)i ��� � 2`(k)is(k)i # � Pr"��������T (k)i ��� � 2`(k)is(k)i � 1����� � �# � (2n)2 + Pr"��������T (k)i ��� � 2`(k)is(k)i � 1����� < �# � �2 � 2�2where to reach the last inequality, we bound the �rst term by 2�t22n � �2 (applying Fact 8 and thechoice of t � 2n), and we (trivially) bound the second term by 1 � �2. Now, since Hn;`(k)i are 2t-wiseindependent (and, in particular, pairwise independent), we get: var � 1mPmk=1����T (k)i ��� � 2`(k)is(k)i �� =1m2 Pmk=1 var ����T (k)i ��� � 2`(k)is(k)i � � 2 � �m�2. Last, applying Chebyshev inequality, the lemma is obtained:Pr ����� 1mPmk=1����T (k)i ��� � 2`(k)is(k)i �� 1���� > � � 12 var[ 1mPmk=1 ���T (k)i ��� � 2`(k)is(k)i ] � 2� �m�2 = �4q where thelast equality is obtained by assigning parameters values as set in our protocol. �Completeness and Soundness We now prove the completeness and soundness of our protocol.Theorem 10 (Completeness). Let w 2 L, then when the prover is honest, the veri�er acceptsw.p. at least 1� �Proof. We now go over the conditions of the protocol and prove that they simultaneously hold,w.p. at least 1� 2�. By the properties of the size-veri�cation protocols, the veri�er accepts on step1c of the sub-protocol simultaneously for all i; k, w.p. at least 1� �.The size veri�cation protocol simultaneously accepts for all i; k w.p. at least (1� �0)qm � 1� �4for �0 = �4qm as in the protocol.We next show that condition 2a holds, w.p. at least 1 � �2 . Condition 2(a)i on the size ofthe A(k)i 's holds, w.p. at least (1 � �4mq )q � 1 � �4m (because it holds for each individual index i,w.p. at least 1 � 2�t = 1 � �4qm , by Fact 8 and the choice of t � log 4qm� ). In the following wecondition on the fact that 2(a)i holds. Note that, in this case, the inverses a(k)i 's are well de�neda(k)i = minnA(k)i o. Moreover, a(k)1 ; : : : ; a(k)q are independent of the randomness r(k) of the reduction(recall that the prover is honest and hence A(k)i = T (k)i ). Condition 2(a)ii on the correctness ofrunning the emulation trivially holds (for honest provers). Last, since a(k)1 ; : : : ; a(k)q are independentof the randomness r(k) of the reduction, then condition 2(a)iii holds w.p. at least 1� err � 1� �4m(where err denotes the error probability of R on the worst possible �xed oracle, and the inequalityis true since, we assumed w.l.o.g err = exp(�n)). Put together we get that conditions 2(a)i-2(a)iiisimultaneously hold in all m runs sub-protocol, w.p. at least �(1� �4m)(1 � �4m )�m � 1� �2 .21



Last, Lemma 9 implies that condition 2b simultaneously holds for all i = 1; : : : ; q, w.p. at least�1� 2� �m�2�q � (1� �4q )q � 1� �4 (for m � 2q2q� � as in the protocol).Put together, we get that the veri�er accepts, w.p. at least (1� �4 )(1� �4)(1� �2 ) � 1� �. �Theorem 11 (Soundness). Let w =2 L, then for any prover strategy, the veri�er rejects w.p. atleast 1� �.Proof. In the following we assume w.l.o.g that s(k)i = ���f�1(y(k)i )��� 8i; k (otherwise the veri�er rejectson the size veri�cation protocol rejects, w.p. 1 � �0 � 1 � �, and the proof is completed). Notethat this implies `(k)i = b(log ���f�1(y(k)i )���� )c 8i; k. Also, assume w.l.o.g that condition 2(a)ii of thesub-protocol always holds, namely, the prover follows the syntactic instructions of the protocol(otherwise, the veri�er rejects and the proof is completed).In the lemma below we show that if the veri�er does no reject on condition 2b of the protocol,then there is a run k of the sub-protocol where the prover does not omit any inverse, namely,A(k)i = T (k)i 8i, w.p. at least 1 � �4 . This concludes the proof, since, in this case, the inversesa(k)i used in the reduction in this k-th run are independent of its randomness r(k), and hence thereduction outputs 1 w.p. at least 1�m � err (where err denotes the error probability of R on theworst possible �xed oracle). Thus the veri�er rejects, w.p. at least 1� ( �4 +m � err) � 1� �. (Note,that the error probability of the reduction might be m � err {in contrast to err{ because the provermight choose to be truthful on the the worst possible run k 2 1; : : : ;m.)Lemma 11.1. Assume s(k)i = ���f�1(y(k)i )��� 8i; k and condition 2(a)ii holds in all runs of the sub-protocol. Then, if the veri�er does not reject on condition 2b of the protocol, then there exists a runk of the sub-protocol where A(k)i = T (k)i simultaneously hold for all i = 1; : : : ; q, w.p. at least 1� �4 .Proof. To prove the lemma assume the contrary, namely, for each run k = 1; : : : ;m there is anindex i s.t. ���A(k)i ��� � ���T (k)i ���� 1. By the pigeon hole principle, this implies there exists an index i0s.t. ���A(k)i0 ��� � ���T (k)i0 ���� 1 at least mq times. Therefore,1m mXk=1 ���A(k)i0 ��� � 2`(k)i0s(k)i0 � 0@ 1m mXk=1 ���T (k)i0 ��� � 2`(k)i0s(k)i0 1A� 1qNow, by Lemma 9, 1mPmk=1 ���T (k)i ��� � 2`(k)is(k)i � 1+ holds simultaneously for all i = 1; : : : ; q (and thus,in particular, applies to i0), w.p. at least 1� �4 . In this case,1m mXk=1 ���A(k)i0 ��� � 2`(k)i0s(k)i0 � (1 + )� 1q = 1� (where the equality is derived by assigning  = 12q as in our protocol). Thus the veri�er rejects oncondition 2b, w.p. at least 1� �4 . �B.2 Extension to Approximate-Size Veri�able FunctionsSo far we handles functions where the exact number of pre-images was e�ciently veri�able (i.e.,size veri�able functions). A natural extension is to functions where only an approximate value22



for the number of pre-images can be e�ciently veri�ed. We call such functions approximate-sizeveri�able. We show that there there exists no reduction (not even an adaptive one) from deciding anNP-complete language to inverting a polynomial-time computable function which approximate-sizeveri�able, (unless coNP � AM).An interesting applications of the extension to approximate-size veri�able functions is showingthat one cannot base on NP the existence of OWFs that are regular and range recognizable (possiblyvia an AM-protocol), even when the regularity parameter of the function is unknown. To prove thiswe show that such functions are approximate-size veri�able. We comment that the approximate-size veri�cation protocol that we present relies on the ability to sample in the range of f . This isanother demonstration of the bene�t in directly addressing OWFs rather than reducing the decisionproblems.De�nition 12 (Approximate-Size Veri�able). We say that a function f : f0; 1g� ! f0; 1g� is approximate-size veri�able if there is a constant-round proof system that, given common inputs y 2 f0; 1g� andN 2 R, an approximation parameter � and con�dence parameter �, w.p. at least 1� �, the veri�eraccepts i� ��f�1(y)�� 2 (1� �)N .With a slight adaptation of our protocol and analysis, our result also hold to approximate-sizeveri�able functions.Theorem 13. Unless coNP � AM, there exists no reduction (even not an adaptive one) fromdeciding an NP-complete language to inverting a polynomial-time computable function f which isapproximate-size veri�able.To prove the theorem we assume the contra-positive (namely, that there exists a polynomial-time reduction (possibly adaptive) from deciding L to inverting f), and present an AM protocol fordeciding L; thus proving coNP � AM. The AM-protocol for L as well as its analysis are similarto the the former case when f was exactly size-veri�able. Let us highlight the di�erences.Highlighting the di�erences in the protocol. The AM-protocol for L is an adaptation of ourformer protocol that we gave for exact size-veri�able functions f . Let us highlight the di�erencesbetween the two protocols. We change the parameter  to be  = 14q , and set the approximationparameter � to be � =  = 14q . Note that �+  = 12q which is the value of  in the former protocol.In step 1c we run the approximate-size veri�cation protocol (instead of the exact one) to prove foreach i, that ��f�1(yi)�� 2 (1� �)si, with the same con�dence �0 = �4qm as in the former protocol. Instep 2(a)i we check the Ai's (are non-empty and) have size less than (1 + �) � (1 + �)2�. Last, instep 2b we check that 1mPmk=1 ����A(k)i ��� � 2`isi � > 1� ( + �).Highlighting the main changes in the analysis. Let T (k)i = f�1(y(k)i )\h(k)`(k)i ;i(0)�1 (as before).Our bound on E [���T (k)i ���] is now slightly weaker:E [���T (k)i ���] = ���f�1(y(k)i )���2`(k)i 2 (1� �)s(k)i2`(k)i 2 ((1� �)�; (1 + �)�)This is the reason for the additional 1 + � factor on the condition of the size of Ai in step 2(a)i.Similarly, we now only know that E [���T (k)i ��� 2`(k)is(k)i ] 2 1� �, and therefore, Lemma 9 is adapted to be:23



Adaptation of Lemma 9: Let ���f�1(y(k)i )��� 2 (1��)s(k)i for y(k)i = R(w; r(k); a(k)1 ; : : : ; a(k)i�1).Then for the � of our protocol and for any  > 0,Pr"����� 1m mXk=1 ���T (k)i ��� � 2`(k)is(k)i !� 1����� > ( + �)# � �4qwhere the probability is taken over the random choice of h(k)`(k)i ;i 2 Hn;`(k)i .This is the reason for the change is step 2b. Last, for Lemma 11.1 to hold, we need � +  = 12q .This explains our choice of parameters. The complete analysis is deferred to the full version of thispaper.Application to Regular Functions with Unknown Regularity Parameter A special caseof size-veri�able functions are regular functions with e�ciently recognizable range (possibly viaan AM-protocol). Recall, that loosely speaking, for regular functions the number of pre-image ise�ciently determined by the input length. We show that our negative results also hold for func-tions where {though the number of pre-image is determined by the length{ it cannot be computede�ciently. Speci�cally, we show that such functions are approximate-size veri�able as long as theirrange is e�ciently recognizable (possibly via an AM-protocol). This implies that such functionscannot be proved one-way based on NP.Let us sketch an approximate-size veri�cation protocol for such functions. Since the number ofpre-images is equal over all y's, it su�ces to estimate ��f�1(y)�� on any arbitrary y. So, the veri�ermay choose a random x and send y = f(x), for which the prover claims and proves the size of��f�1(y)�� by utilizing the lower and upper bound protocols of [GoSi, AiHa] respectively. (Note thatwhen using the upper bound protocol, the veri�er relies on the knowledge of the pre-image x of y,namely, on the ability to e�ciently sample pairs x; f(x).)C General Functions, Non-Adaptive ReductionsIn this section we complete the proof of Theorem 4. We remark that the presentation in thissection is somewhat di�erent from the presentation in Section 2.2. The di�erence relates to thespeci�c way in which it is veri�ed that for almost all (i; k)'s the set sizes claimed for y(k)i 's (i.e.,both fr : R(w; r) = y(k)i g and jf�1(y(k)i )j) are not understated (by more than a (1�") factor). Bothin Section 2.2 and here, a signi�cant understatement is detected by comparing the claimed valuesto corresponding statistics gathered for independently selected yi (for which we can approximatelyverify thee set sizes). The di�erence is in how exactly the comparison is done. In Section 2.2 weconsidered the average of the logarithm of the set sizes (where multiplicative factors in set sizesget translated to additive error terms). In the current section, we \group" the y(k)i 's (resp., theyi's) according to the set sizes and compare the relative fraction of elements in each group (i.e.,compare the weight of the j-th group of y(k)i 's to the j-th group of yi's, for every j). Furthermore,the alternative procedure employed here requires the selection of randomized thresholds for thesizes in each group.Let us illustrate the situation as follows. Suppose that Alice got samples s1; :::; st from somedistribution X over [N ] and she is supposed to send these to Bob. Further suppose that Alice canonly understate the value of the samples she got (i.e., send c1; :::; ct such that ci � si) and thatBob can sample X by himself. We want to prevent Alice from sending Bob too many ci's that are24



signi�cantly smaller than the corresponding si's. In Section 2.2, we achieve this goal by letting Bobestimates E[log2X] and having him compare this estimate to (1=t)Pti=1 log2 ci. Clearly, if Aliceunderstates � fraction of the ci's by more than than a 1 � � factor then the calculated average ishighly likely to be �� � (log2N)=t1=3 smaller than Bob's estimate of E[log2X]. In this section, forevery j = 1; :::; N=", we let Bob compare Pr[X > � � (1 + ")j ] to jfi : ci > � � (1 + ")jgj=t, where� 2 (0:9; 1) is uniformly chosen (such that the probability that X is too close to some thresholdvalue � � (1+ ")j is very small). Indeed, also here, if Alice understates � fraction of the ci's by morethan than a 1 � "2 factor then some of the values jfi : ci > � � (1 + ")jgj=t will be too small whencompared to Pr[X > � � (1 + ")j ].C.1 Fixing of ParametersLet us assume there exists a non-adaptive randomized worst-case to average-case reduction R fromsome NP language L to � inverting an e�ciently computable family ffng.For some constant 0 < � < 1, let us construct an AM protocol, that given x 2 f0; 1gn decideswhether x 2 �L with probability at least 1 � 2�. We assume w.l.o.g that there exists an e�cientreduction from deciding L to inverting f that uses n0 random bits to perform q queries identicallydistributed according to some e�ciently samplable distribution S(U), and has error probability �small enough to satisfy � � �10q .De�ne " to be some parameter small enough with respect to �, " � �20 . Our AM -protocol forL is composed of two phases. In the �rst phase, the emulation phase, the reduction R is simulatedby the veri�er m def= l 106n03q3"2 log3(1+")m times independently in parallel, using the prover to simulate anf -inverting oracle. This phase is guaranteed to work well under an assumption, which is, roughly,that the prover's answers are "-approximations for the true answers. The purpose of the secondphase, the veri�cation phase, is to ensure this assumption indeed holds, if the veri�er does notreject, with high probability.C.2 Phase I - EmulationC.2.1 On The Distribution of QueriesOur �rst observation is that we can focus on oracles that invert only queries that are likely to beasked according to f(U).Formally, we say y is ok if the ratio between its probability according to the reduction, i.e.,according to S(U), and its probability according to f(U), is small. For every positive number n,we de�ne n0 =1, n � 1 =1, n <1, as to handle the case where a query of the reduction has nopre-images at all.De�nition 14 (relative weight). The relative weight of a query y in the reduction isŵ(y) def= ��S�1(y)�� =2n0jf�1(y)j =2nWe say y is t-ok (or simply ok , when t is clear from context), if ŵ(y) � t.If t is large enough, we can focus exclusively on oracles that invert only t-ok queries. Let O tdenote the set of all f -inverting oracles O that satisfy the following: if y is t-ok then O(y) 2 f�1(y),and, otherwise, O(y) =?. 25



Proposition 15. Let t � 11�� . For every O 2 O t ,Prr �RO(x; r) 6= L(x)� � �Proof. Ey�f(U) [ŵ(y)] =Xy ��f�1(y)��2n � ��S�1(y)�� =2n0jf�1(y)j =2n =Xy ��S�1(y)��2n0 = 1By Markov inequality, Pry�f(U) [ŵ(y) � t] � 1tThat is, Prx2U [f(x) is t-ok ] � 1 � 1t � �. That is, O is a � f -inverting oracle. The propositionfollows from the de�nition of the reduction.Description of The Emulation PhaseFix the input x 2 f0; 1gn, on which the AM protocol should decide whether x 2 L. The veri�er�rst picks at random tok � 11�� . The reason for the randomized choice is that this way, with highprobability, if a query is picked according to S(U), then it is not likely to have a relative weightwhich is close to the threshold. This issue will be addressed in the veri�cation phase.Then, the veri�er picks independently uniformly distributed randomness strings r1; : : : ; rm forthe reduction, and computes the queries that the reduction would have generated for the f -invertingoracle on those randomness strings. The prover is required to provide the following information,Info(y), regarding each query y:� ny { supposedly the number of pre-images of y by f .� ry { supposedly the number of randomness strings on which S generates query y.Given this information, the veri�er can classify which of the queries are ok , as well as generate analmost-random pre-image for each of the queries via the sampling protocol. This allows the veri�erto de�ne a partial oracle. For input x 2 f0; 1gn and randomness r 2 f0; 1gn0 , the behavior of thereduction is determined solely by the oracle's answers to y1; : : : ; yq, the queries generated for x andr. Let O tx;r denote the set of such partial oracles, assigning each yi either some xi 2 f�1(yi) if yi isok , or ?, otherwise. The veri�er can now simulate the reduction to decide whether x 2 L.Formally, the protocol is as follows:Phase I - Emulating the Reduction:1. V: picks uniformly at random `coin 2 f1; : : : ; `maxg for `max = 100�2qm , and setstok = �1 + "`ok� � 11��2. V: picks independently at random rk 2 f0; 1gn0 for k = 1; : : : ;m.3. V: computes yk1 ; : : : ; ykq , the queries of R on randomness rk, k = 1; : : : ;m.4. P: sends Info(yk1 ); : : : ;Info(ykq ), k = 1; : : : ;m.5. V,P: initiate in parallel the sampling protocol with con�dence parameter " anddeviation parameter " to produce xkj for j = 1; : : : ; q, k = 1; : : : ;m; use nykj as thesize parameter. 26



6. V: de�nes the following partial oracle, k = 1; : : : ;m:81 � j � q Ok(ykj ) def= 8>>><>>>: xkj rykj =2n0nykj =2n � tok? otherwise7. V: rejects if there exists 1 � k � m, for which the reduction R on randomness rkand oracle Ok returns \x 2 L".Analysis of The Emulation PhaseHitting Rates Our arguments crucially rely on the well known fact that whenever one samplesenough elements from some distribution, for every property, the fraction of elements that satisfythis property in the sample, is almost the same as the probability this property is satis�ed accordingto the distribution.Lemma 16 (Cherno�). Fix some sample space Y , and some subset Y 0 � Y . For every � > 0, ify1; : : : ; ym were drawn independently at random from a distribution D over Y , then with probabilityat least 1� �, ���� Prk2R[m] �yk 2 Y 0�� Pry�D �y 2 Y 0����� � �pm � Pry�D �y 2 Y 0�for � = 3qln 1� .Proof. Fix a threshold i. For every 1 � k � m, let Xk be an indicator variable for the eventyk 2 Y 0. Clearly, for any 1 � k � m, E [Xk] = Pry�D [y 2 Y 0]. Let X =Pmk=1Xk. In other words,X = m � Prk2R[m] [yk 2 Y 0]. By linearity of expectations, E [X] = m � Pry�D [y 2 Y 0]. Moreover,using the independence between the 0� 1 variables, Var [X] � E [X]. Applying Cherno�'s bound,we have Pr hjX �E [X]j > �pE [X]i � 2e��2=4 � �We show that if among the m emulations of the reduction, in some trial,1. The classi�cation whether the queries are ok is right.2. For ok queries, the number of f - pre-images claimed by the prover "-approximates the truenumber.Then, the protocol operates correctly on the input.The proof is done in three steps. The �rst step is to establish that for the randomness stringsthe veri�er samples throughout the protocol, the set of oracles yielding to an erroneous outcomeof the reduction, i.e., RO(x; r) 6= L(x), is small, with high probability. The next step is to discussalmost-uniform responses to queries, and bound the bias bad oracles might bene�t from. Next, weuse the analysis of the sampling protocol as well as the assumption to deduce the completeness andsoundness of the protocol.Theorem 17 (correctness of emulation phase). For every x 2 f0; 1gn, if there exists a trial1 � k � m in which, 27



1. for every 1 � j � q, 2nrykj =2n0nykj � tok if and only if ŵ(ykj ) � tok (ok classi�cation).2. for every 1 � j � q, if ŵ(ykj ) � tok, then nykj (1 � ") � ���f�1(ykj )��� � nykj (1 + ") (pre-imagesapproximation).Then the protocol operates correctly on input x, that is:1. If x 2 L, then there exists a prover strategy that makes the veri�er accept with probability atleast 1� � (completeness).2. If x =2 L, then for any prover strategy, the veri�er accepts with probability at most � (sound-ness).Proof. For randomness r, consider the set of bad oracles for r, Br = nO 2 O tokx;r ���RO(x; r) 6= L(x)o.By proposition 15, for every f -inverting oracle O 2 O tok , Prr [O 2 Br] � �. Hence, Er [jBrj] �� ���O tokx;r ���. By Markov inequality, for every c > 0, and, in particular, for c = 2,Prr [jBrj � cEr [jBrj]] � 1cTherefore, by lemma 16, for all rk's sampled by the veri�er, Brk is small, with high probability,i.e.,Pr" m̂k=1 jBrk j � c� ���O tokx;rk ���# � Pr ����� Prk2R[m] hjBrk j � c� ���O tokx;rk ���i� Prr hBr � c� ���O tokx;r ���i���� > 1c� � 1� �4Let us condition on this event in the rest of the analysis (We will later use a union-bound to getrid of this conditioning).Assume some k 2 [m] is such that for every j 2 J def= n1 � j � q j ykj is ok o, xkj is �-almostuniform within f�1(ykj ). Let us bound the probability the partial oracle O assigning xkj to all okqueries j 2 J , and ? to every other query, is in Brk .Denote J = fj1; : : : ; jtg. For i 2 [t], and a set of responses a1; : : : ; ai�1 to queries ykj1 ; : : : ; ykji�1 ,de�ne the good responses to the ji'th query as those that preserve small expectation (over theremaining responses) to land in Brk , i.e.,Gi def= nai 2 f�1(ykji) ���Eai+1;::: ;at [ the oracle de�ned by a1; : : : ; at is in Brk ] � c�oBy the �-almost uniformity,Pr"xkji 2 Gi j i�1̂i0=1 xkji0 2 Gi0# � 1� c� � �By the chain rule and our conditioning, the probability the induced partial oracle is not in Brk isat least (1� c� � �)t, which is, by Bernoulli inequality, at least 1 � t(c� � �). Now, let us use thisdiscussion to prove the completeness and soundness of the protocol.If x 2 L, consider an honest prover, i.e., one that supplies true information for each of theykj 's. Hence, for every 1 � k � m, Ok 2 O tokx;rk . Moreover, by lemma 7, for every 1 � k � m,28



with probability at least (1� ")q � 1 � �8 , the veri�er does not reject during the q applications(with independent randomness) of the sampling protocol. By the above discussion, the probabilitythat, in every trial 1 � k � m, Ok 2 Brk , is at most �2 . Applying union bound, we get that theprobability the veri�er rejects is at most �.If x =2 L, let k be the instantiation whose existence is ensured by the premise. Assume theveri�er does not reject. Thus, Ok 2 O tokx;rk . By the above discussion, the probability that Ok 2 Brkis at most �2 . Applying union bound, we get the probability the veri�er accepts is at most �.C.3 Phase II { Veri�cationDescription of The Veri�cation PhaseThe purpose of the veri�cation phase is to ensure the assumption required for the emulation phaseindeed holds, with high probability. The assumption is the existence of a trial 1 � k � m inwhich the veri�er has reliable information regarding all reduction's queries yk1 ; : : : ; ykq , that is, theclassi�cation of ok queries is correct and, for all ok queries, the estimate of the number of pre-imagesis accurate. To this end, the veri�er also ensures ry is a good estimate for the weight of a query yaccording to the reduction's distribution, for most queries y generated in the emulation phase.The idea behind the veri�cation is the two meta-arguments: con�dence by comparison andcon�dence by association.First, for all the queries generated in the emulation phase, the veri�er checks that ���f�1(ykj )���and ���S�1(ykj )��� are truly lower-bounded by nykj and rykj , respectively. This is done by applying theGoldwasser-Sipser protocol.Next, the veri�er generates a testing series of y's by repeating the following: either picking arandom x and computing f(x), or { with much lower probability { by picking a random u andcomputing S(u). The veri�er uses private coins for the generation process, and asks the prover tosupply Info for each query. This generation process allows the veri�er to perform two importanttests:1. For the S(u)'s, the veri�er is able to apply, not only the Goldwasse-Sipser protocol, but alsothe Aiello-Hastad protocol, using u as its secret11.2. For the f(x)'s, the veri�er is able to apply the Aiello-Hastad protocol using x as its secret.Now, the veri�er picks at random thresholds t1 < t2 < � � � and considers properties of the form� ti (e.g., whether a query y satis�es ��S�1(y)�� � ti). The random choice is made as to guaranteethat having a property can be one-sidedly veri�ed by the protocol of Goldwasser-Sipser and theprotocol of Aiello-Hastad, with high probability, despite their slight inaccuracy.The veri�er veri�es that the fraction of queries satisfying each of the properties is roughly thesame in the two ways it is sampled from each relevant distribution: for every 1 � j � q, it checksthat the fraction of k's for which rykj � ti is approximately the fraction of yk = S(uk) that satisfythis property; it checks the fraction of k's for which nykj � ti among ok queries is approximately thefraction of ok yk = S(uk)'s that satisfy this property (note: the prover cannot identify the ok S(u)'samong the f(x)'s; and for the latter the upper bound on the number of pre-images is veri�able);11note: the veri�er could not have done that for ykj , j = 1; : : : ; q, because of the correlations between di�erentqueries in the same trial; some unwanted information regarding the veri�er's \secrets" could have leaked to the proverthis way. 29



it also checks that the fraction of very ok ykj 's is approximately the same as the fraction of very okyk = S(uk).Formally, the protocol is as follows:Phase II - Veri�cation:Parameters:� � =m� 23 : estimate parameter in Goldwasser-Sipser and Aiello-Hastad protocols.1. Verifying Lower Bounds:(a) P,V: For every 1 � k � m, for every 1 � j � q, verify ���f�1(ykj )��� � (1 � �)nykjusing the Golwasser-Sipser protocol with ampli�cation parameter u = 1000qm��2 .(b) P,V: For every 1 � k � m, for every 1 � j � q, verify ���S�1(ykj )��� � (1 � �)rykjusing the Golwasser-Sipser protocol with ampli�cation parameter u = 1000qm��2 .2. Performing Testing Queries:(a) V: sends a random hybrid y1; : : : ; ym generated as follows: �x � = �tok�1000 .for every 1 � k � m independently,� With probability �, set k 2 Q1: choose uniformly xk 2 f0; 1gn, and letyk = f(xk).� With probability 1��, set k 2 Q2: choose uniformly a randomness stringuk, and let yk = S(uk).(b) P: sends [supposedly] Info(y1); : : : ;Info(ym).(c) P,V: For every k 2 Q1, check ��f�1(yk)�� � (1 + �)nyk using the Aiello-Hastadprotocol with amplifying parameter u = 1000m��2 .(d) P,V: For every k 2 Q2, check ��S�1(yk)�� � (1 + �)ryk using the Aiello-Hastadprotocol with amplifying parameter u = 1000m��2 .(e) P,V: For every k 2 Q2, check ��S�1(yk)�� � (1 � �)ryk using the Goldwasser-Sipser protocol with amplifying parameter u = 1000m��2 .3. Comparing Statistics:(a) V: picks uniformly at random `pre 2 f1; : : : ; `maxg, for `max = 100�2qm . Denotetpre = l nlog(1+")m. Set thresholdstprei = �1 + "`pre� � (1 + ")i�1 for i = 0; : : : ; tpre(b) V: picks uniformly at random `coin 2 f1; : : : ; `maxg, for `max = 100�2qm . Denotetcoin = l n0log(1+")m. Set thresholdstcoini = �1 + "`coin� � (1 + ")i�1 for i = 0; : : : ; tcoin(c) V:i. rejects if there exists query 1 � j � q and 1 � i � tcoin, such thatPrk2R[m] hrykj � tcoini i < Prk2RQ2 �ryk � tcoini �� 1100qtcoin30



ii. rejects if there exists query 1 � j � q, such thatPrk2R[m]" 2n2n0 � rykjnykj � tok# < Prk2RQ2 � 2n2n0 � ryknyk � tok�� 110qiii. rejects if there exists query 1 � j � q and 1 � i � tpre, such thatPrk2R[m]"nykj � tprei ^ 2n2n0 � rykjnykj � tok# < Prk2RQ2 �nyk � tprei ^ 2n2n0 � ryknyk � tok�� 1100qtpreNote that by our choice of parameters, the protocol is e�cient.Analysis of The Veri�cation PhaseThe analysis is done in several steps. First we address the issue of choosing the thresholds. Weexplain the problem with arbitrary choice of thresholds, and prove the randomized manner in whichwe choose them in the protocol solves it. Then, we analyze the behavior of the prover in light ofthe applications of the Goldwasser-Sipser and Aiello-Hastad protocols. In this context we applythe con�dence by association argument. Finally, we resolve the assumption of the emulation phaseby obtaining the following:1. The estimates for the ry's are mostly accurate, by comparison.2. The classi�cation of ok queries is mostly accurate, by comparison.3. The estimates for the ny's are mostly accurate for ok queries, by comparison.Marginal Issues The protocols of Goldwasser-Sipser and Aiello-Hastad only allow the veri�er tocheck the bounds it has are approximately the right bounds, i.e., within factor of either (1� �) or(1+�), respectively, of a true bound. This slight inaccuracy may pull the rug under the con�denceby comparison argument: it may cause many y's to be misclassi�ed in both directions, where theargument was based on the assumption that there are only one-sided misclassi�cations, with highprobability.The idea is to show that the properties considered in the protocol are such that there is notmuch weight on elements being misclassi�ed due to this inaccuracy, with high probability. Theproperties in question are of the form some function of y (how many pre-images it has? what isthe probability the reduction queries it? what is the ratio between the two expressions?) is greaterthan some threshold. Hence, let us analyze the following generic setting: F : Y ! R+ is somebounded non-negative function, N def= supy2Y F(y). D is some distribution over Y . t = d( Nlog(1+"))ethresholds are chosen by picking ` at random from f1; : : : ; `maxg for some large natural number`max and setting tì = �1 + "̀� � (1 + ")i�1 for i = 1; : : : ; tWe say y is (F ; �)-marginal for threshold tì if F(y) 2 [ 11+� tì ; 11�� tì ].For small i's, the margins are very narrow. For larger i's, the margins get wider, however, still,all possible margins are disjoint, as argued in the following proposition, whose proof is brought inthe appendix: 31



Proposition 18 (disjoint margins). If � � "�224 , then for all (`; i1) 6= (`0; i2),� 11 + �tì1 ; 11� �tì1�\� 11 + �t`0i2 ; 11� �t`0i2� = �Proof. The proof is omitted and will appear in the full version of this paper. This propositionimmediately allows us to deduce that only few choices of ` induce much D-weight on the margins:Lemma 19. For any function F : Y ! R+ , for any distribution D over Y , if � � "�224 , thenPr` " Pry�D " t_i=1 y is (F ; �)-marginal for tì# � �# � 1�`maxProof. By proposition 18, F(y) can be marginal with respect to at most one threshold tì , hence,at most 1� of the `max possible `'s can satisfy Pry�D �Wti=1 y is (F ; �)-marginal for tì� � �.We �x � def= 110qt . Hence, for the value of � set in the protocol, the premise of the lemma holds.Moreover, for the value of `max set in the protocol, the resulting probability is at most �100 .Cheating in Bounds Protocols We �rst show that the lower-bound and upper-bound protocolsof [AiHa, GoSi] do not make the veri�er reject in any of the trials with high probability wheninteracting with an honest prover, while are likely to cause the veri�er to reject otherwise.The �rst proposition relates to application of the Goldwasser-Sipser protocol.Proposition 20. The following hold:� If for every 1 � k � m, 1 � j � q, nykj = ���f�1(ykj )���, and rykj = ���S�1(ykj )���, the veri�er doesnot reject in step 1 with probability at least 1� �50 .� The probability the veri�er does not reject in step 1, butY1 def= nykj ��� ���f�1(ykj )��� < (1� �)nykj _ ���S�1(ykj )��� < (1� �)rykj o 6= �is at most �50 .� The probability the veri�er does not reject in step 2e, butY2 def= nykj ��� ���S�1(ykj )��� < (1� �)rykj o 6= �is at most �100 .Proof. Recall the �xing of the amplifying parameter in the protocol u = l1000qm��2 m. By theorem 5,the probability the veri�er does not reject in any of the independent executions of the Goldwasser-Sipser protocol, if given true answers, is at least�1� 9�2u�qm � 1� 9qm�2u � 1� �100where the �rst inequality is Bernoulli inequality (where we used Bernoulli inequality, (1 � x)n �1� nx, for x > 0, n 2 N). We use a union bound to conclude the �rst item.32



By theorem 5, if jY1j 6= 0 or jY2j 6= 0, the probability the prover does not reject in step 1 is atmost: � 9�2u�jY j � � �100qm�jY j � �100The last two items follow.The second proposition relates to the size estimates of the testing queries. Here we get prettyaccurate estimates in both respects (number of pre-images, weight according to distribution) notbecause we can check both, but because the prover cannot identify the ok reduction queries fromthe f(x)'s. Note - in steps 2c and 2d the veri�er reveals the secret, and exposes which y's werereduction queries and which were f(x)'s. The crucial point in our analysis will be that, in step 2b,when the prover has to supply the information about the y's, there is not enough information toidentify reduction queries with good probability.Lemma 21. The following hold:� If for every 1 � k � m, nyk = ��f�1(yk)�� and ryk = ��S�1(yk)��, the veri�er does not reject instep 2d with probability at least 1� �50 .� The probability the veri�er does not reject in step 2d, but eitherY1 = nyk j ŵ(yk) � tok ^ ��f�1(yk)�� > (1 + �)nykosatis�es jY1j � 12 ln 100�� , orY2 = �yk j k 2 Q2 ^ ��S�1(yk)�� > (1 + �)ryk	satis�es jY2j � 12 ln 100�� , is at most �50 .Proof. Recall the �xing of the amplifying parameter in the protocol u = l1000m��2 m. By theorem 6,the probability the veri�er does not reject in any of the independent executions of the Aiello-Hastadprotocol, if given true answers, is at least�1� 9�2u�m � 1� 9m�2u � 1� �100where the �rst inequality is Bernoulli inequality.By theorem 6, the probability the prover does not reject in step 2d, when jY2j � 12 ln 100�� , is atmost: �1� �6 + 9�2u�jY2j � �1� �6 + �100m�jY2j � e�jY2j( �6� �m) � �100[where we used �6 � �m � �12 ]It remains to examine jY1j. For this purpose, let us show that given the prover's view in step2b, there is a small probability any ok query in the hybrid belongs to Q2. Note that the eventk 2 Q2 is independent of events yi = y, for any y, for every i 6= k. Hence it su�ces to show thefollowing:Claim 21.1. For every 1 � k � m, for every ok query y,Pr [k 2 Q2jyk = y] � �100033



Proof. By Bays' formula,Pr [k 2 Q2jyk = y] = Pr [yk = yjk 2 Q2]Pr [k 2 Q2]Pr [yk = y]� Pr [yk = yjk 2 Q2]Pr [k 2 Q2]Pr [yk = yjk 2 Q1]Pr [k 2 Q1]= 2�n0 ��S�1(y)���2�n jf�1(y)j (1� �)� tok � �1� �� �1000 (of claim 21.1)Thus, by linearity of expectations, E [jQ2 \ Y1j] � �1000 jY1j. Hence, by Markov's inequality,Pr �jQ2 \ Y1j � 15 jY1j� � �200 . As above, by theorem 6, the probability the prover does not rejectin step 2c, is at most:�1� �6 + 9�2u�jQ1\Y1j � �1� �6 + �100m�jQ1\Y1j � e�jQ1\Y1j( �6� �m )Therefore, either jY1j is not as large as stated in the lemma, or the probability the prover does notreject in step 2c is at most �100 . The lemma follows. (of lemma 21)Con�dence By Comparison First we argue that by comparison, the veri�er has accurateestimates for the weights of the reduction's queries.Lemma 22 (coins mean). For every 1 � j � q, for every 1 � i � tcoin, if we denote:� ei;j def= Prk2R[m] h���S�1(ykj )��� � tcoini i� si def= Prk2RQ2 ���S�1(yk)�� � tcoini �then jei;j � sij � 1100qtcoin , with probability at least 1� �100qtcoin .Proof. Fix some 1 � j � q and 1 � i � t. As the members of fy1; : : : ; ymg and ny1j ; : : : ; ykjoare independently distributed according to S(U), lemma 16 implies that, with probability at least1� �100qtcoin , if pi def= Pry�S(U) ���S�1(y)�� � tcoini �, thenjei;j � sij = j(ei;j � pi) + (pi � si)j� jei;j � pij+ jpi � sij� 2 �s9 ln 1�m� 1100qtcoin34



Lemma 23 (estimates for coins). With probability at least 1� �10 , at least one of the followingtwo events occur:� the veri�er rejects during the veri�cation phase.� for every 1 � j � q, Prk2R[m] hrykj (1� ") � ���S�1(ykj )��� � rykj (1 + ")i � 1� 110qProof. By proposition 20, with probability at least 1� �100 , either the veri�er rejects in step 1b, orfor every trial 1 � k � m, for every query 1 � j � q,���S�1(ykj )��� � (1� �)rykj � (1� ")rykjLet us focus on the following event, and show it occurs with low probability:� the veri�er does not reject during the veri�cation phase.� for every trial 1 � k � m, for every query 1 � j � q, ���S�1(ykj )��� � (1� ")rykj .� there exists 1 � j0 � q, for whichPrk2R[m] h���S�1(ykj0)��� > rykj0 (1 + ")i > 110qThe last item implies the existence of a threshold tcoini0 such that for at least 110qtcoin of the ykj0 's,rkj0 < tcoini0 , however ���S�1(ykj0)��� � tcoini0 .In addition, if rykj0 � tcoini0 , then ���S�1(ykj0)��� � tcoini0 , unless 11+� � tcoini0 � ���S�1(ykj0)��� � 11�� � tcoini0 .By lemma 19 and lemma 16, with probability at least 1� �50 ,Prk2R[m] � 11 + � � tcoini0 � ���S�1(ykj0)��� � 11� � � tcoini0 � � 15qtcoinHence, with probability at least 1� 3�100 ,Prk2R[m] h���S�1(ykj0)��� � tcoini0 i � Prk2R[m] hrykj0 � tcoini0 i� 15qtcoin + Prk2R[m] h���S�1(ykj0)��� � tcoini0 ^ rykj0 < tcoini0 i� Prk2R[m] hrykj0 � tcoini0 i+ 45qtcoinSince the veri�er does not reject in step 3(c)i, it must be thatPrk2R[m] hrykj0 � tcoini0 i � Prk2RQ2 �ryk � tcoini0 �� 1100qtcoinLet us lower bound Prk2RQ2 �ryk � tcoini0 �. If ��S�1(yk)�� � tcoini0 , then ryk � tcoini0 , unless k belongs toone of the following: 35



� (margins) Y1 def= nk 2 Q2 j 11+� � tcoini0 � ��S�1(yk)�� � 11�� � tcoini0 o� (cheating) Y2 def= �k 2 Q2 j ��S�1(yk)�� > (1 + �)ryk	By lemma 19 and lemma 16, with probability at least 1 � �50 , jY1j � jQ2j100qtcoin . By lemma 21, withprobability at least 1� �100 , jY2j � jQ2j10qtcoin . Hence, with probability at least 1� 3�100 ,Prk2RQ2 ���S�1(yk)�� � tcoini0 � � Prk2RQ2 �ryk � tcoini0 �� jY1jjQ2j � jY2jjQ2j� Prk2RQ2 �ryk � tcoini0 �� 110qtcoinSumming up, Prk2R[m] h���S�1(ykj )��� � tcoini0 i � Prk2RQ2 ���S�1(yk)�� � tcoini0 �+ 1qtcoinBy lemma 22, this happens with probability at most �20 . Therefore, the probability the event occursis at most �10 , and the lemma follows.Next we argue that, by comparison, the veri�er gets accurate classi�cation of ok queries.Lemma 24 (ok mean). For every 1 � j � q, if we denote:� ej def= Prk2R[m] hŵ(ykj ) � toki� s def= Prk2RQ2 �ŵ(yk) � tok�then jej � sj � 110q , with probability at least 1� �10q .Proof. Fix some 1 � j � q. As the members of fy1; : : : ; ymg and ny1j ; : : : ; ykjo are independentlydistributed according to S(U), lemma 16 implies that, with probability at least 1 � �10q , if p def=Pry�S(U) �ŵ(y) � tok�, then jei;j � sij = j(ei;j � pi) + (pi � si)j� jei;j � pij+ jpi � sij� 2 �s9 ln 1�m� �10qThe lemma follows.Lemma 25 (classi�cation of ok queries). With probability at least 1 � �5 , at least one of thefollowing two events occur:� the veri�er rejects during the veri�cation phase.36



� for every 1 � j � q, Prk2R[m]" 2n2n0 � rykjnykj � tok $ ŵ(ykj ) � tok# � 1� 14qProof. Fix 1 � j � q.By lemma 23 and proposition 20, the following event occurs with probability at least 1 � �5 :either the veri�er rejects during the veri�cation phase, or for every query 1 � j � q,Prk2R[m]24 2n2n0 � rykjnykj � 1� �1 + " � ���S�1(ykj )������f�1(ykj )��� � (1� 3") � ŵ(ykj )35 � 1� 15qIf 2nrykj =2n0nykj � tok, then ŵ(ykj ) � tok, unless tok � ŵ(ykj ) � 11�3" � tok. By lemma 19 andlemma 16, Prk2R[m] � 11 + � � tok � ŵ(ykj0) � 11� � � tok� � 15qHence, with probability at least 1� 3�100 , either the veri�er rejects during the veri�cation, orPrk2R[m]"ŵ(ykj ) > tok ^ 2n2n0 � rykjnykj � tok# � 15q (3)But also: with probability at least 1� 3�100 , either the veri�er rejects during the veri�cation, orPrk2R[m]"ŵ(ykj ) � tok ^ 2n2n0 � rykjnykj > tok# � Prk2R[m] hŵ(ykj ) � toki� Prk2R[m]" 2n2n0 � rykjnykj � tok#+ 15qSince the veri�er does not reject in step 3(c)ii,Prk2R[m]" 2n2n0 � rykjnykj � tok# � Prk2RQ2 � 2n2n0 � ryknyk � tok�� 110qLet us lower bound Prk2RQ2 h2nryk=2n0nyk � toki. If ŵ(yk) � tok, then 2nryk=2n0nyk � tok,unless k belongs to one of the following:� (margins) Y1 def= nk 2 Q2 j 11+� � tok � ŵ(yk) � 11�� � toko.� (coins cheating) Y2 def= �k 2 Q2 j ��S�1(yk)�� < (1 + �)ryk	.� (pre-images cheating) Y3 def= nk 2 Q2 j ŵ(yk) � 11+� � tok ^ ��f�1(yk)�� > (1 + �)nyko.By lemma 19 and lemma 16, with probability at least 1 � �50 , jY1j � jQ2j100q . By lemma 20, withprobability at least 1 � �100 , either the veri�er rejects during the veri�cation, or jY2j � jQ2j100q . Bylemma 21, with probability at least 1 � �100 , either the veri�er rejects during the veri�cation, orjY2j � jQ2j100q . Hence, with probability at least 1� 3�100 ,Prk2RQ2 hŵ(yk) � toki � Prk2RQ2 � 2n2n0 � ryknyk � tok�� 110q37



By lemma 24, with probability at least 1� �100 , either the veri�er rejects during veri�cation, orPrk2R[m] hŵ(ykj ) � toki� Prk2RQ2 hŵ(yk) � toki � 110qThus, with probability at least 1� �50 , either the veri�er rejects during veri�cation, orPrk2R[m]"ŵ(ykj ) � tok ^ 2n2n0 � rykjnykj > tok# � 14q (4)Inequalities 3-4 yield the statement.Lemma 26 (pre-images mean). For every 1 � j � q, for every 1 � i � tpre, if we denote:� ei;j def= Prk2R[m] h���f�1(ykj )��� � tprei ^ ŵ(ykj ) � toki� si def= Prk2RQ2 ���f�1(yk)�� � tprei ^ ŵ(yk) � tok�then jei;j � sij � 1100qtpre , with probability at least 1� �100qtpre .Proof. Fix some 1 � j � q and 1 � i � tpre. As the members of fy1; : : : ; ymg and ny1j ; : : : ; ykjoare independently distributed according to S(U), lemma 16 implies that, with probability at least1� �100qtpre , if pi def= Pry�S(U) ���f�1(y)�� � tprei ^ ŵ(y) � tok�, thenjei;j � sij = j(ei;j � pi) + (pi � si)j� jei;j � pij+ jpi � sij� 2 �s9 ln 1�m� �100qtpreLemma 27 (estimate on number of pre-images of ok queries). With probability at least 1��10 , at least one of the following two events occur:� the veri�er rejects during the veri�cation phase.� for every query index 1 � j � q, for every threshold index 1 � i0 � tpre,Prk2R[m] h���f�1(ykj )��� � tprei0 ^ ŵ(ykj ) � tok ^ nykj < tprei0 i � 14qtpreProof. By proposition 20, with probability at least 1� �100 , either the veri�er rejects in step 1b, orfor every trial 1 � k � m, for every query 1 � j � q,���f�1(ykj )��� � (1� �)nykj38



Let 1 � i0 � tpre be some threshold index. Let 1 � j0 � q be some query index. If nykj � tprei0 ,then ���f�1(ykj )��� � tprei0 , unless 11+� � tprei0 � ���f�1(ykj )��� � 11�� � tprei0 . By lemma 19 and 16, this happenswith probability at most 15qtpre . Thus, with probability at least 1� 3�100 ,Prk2R[m] h���f�1(ykj )��� � tprei0 ^ ŵ(ykj ) � toki � Prk2R[m] hnykj � tprei0 ^ ŵ(ykj ) � toki� 15qtpre+ Prk2R[m] h���f�1(ykj )��� � tprei0 ^ ŵ(ykj ) � tok ^ nykj < tprei0 iSince the veri�er does not reject in step 3(c)iii, it must be thatPrk2R[m] hrykj � tprei0 ^ ŵ(ykj ) � toki � Prk2RQ2 hnyk � tprei0 ^ ŵ(yk) � toki� 110qtpreLet us lower bound the latter probability. If ��f�1(yk)�� � tprei0 , as well as ŵ(yk) � tok, then nyk � tprei0 ,unless k belongs to one of the following:� (margins) Y1 def= nk 2 Q2 j 11+� � tprei0 � ��f�1(yk)�� � 11�� � tprei0 o.� (cheating) Y2 def= �k 2 Q2 j ��f�1(yk)�� > (1 + �)nyk ^ ŵ(yk) � tok	.By lemma 19 and 16, with probability at least 1� �50 , jY1j � jQ2j100qtpre . By lemma 21, with probabilityat least 1� �100 , jY2j � jQ2j100qtpre . Hence, with probability at least 1� 3�100 ,Prk2RQ2 h��f�1(yk)�� � tprei0 ^ ŵ(yk) � toki � Prk2RQ2 hnyk � tprei0 ^ ŵ(yk) � toki� 110qtpreBy lemma 26, with probability at least 1� �100 ,Prk2R[m] h���f�1(ykj )��� � tprei0 ^ ŵ(ykj ) � toki� Prk2RQ2 h��f�1(yk)�� � tprei0 ^ ŵ(yk) � toki � 110qtpreHence, with probability at least 1� �10 ,Prk2R[m] h���f�1(ykj )��� � tprei0 ^ ŵ(ykj ) � tok ^ nykj < tprei0 i � 14qtpreWe tie the loose ends in the following theorem establishing the validity of the assumption inthe emulation phase.Corollary 28 (emulation assumption resolved). With probability at least 1 � �2 , at least oneof the following two events occur:� the veri�er rejects during the veri�cation phase.� there exists a trial 1 � k � m, such that for every 1 � j � q,1. rykjnykj � tok if and only if ŵ(ykj ) � tok. 39



2. if ŵ(ykj ) � tok, then nykj (1� ") � ���f�1(ykj )��� � nykj (1 + "),Proof. Let us focus on the event that the veri�er does not reject.Applying a union-bound over the j's in lemma 25, with probability at least 1� �10 , for at least34 of the k 2 [m], 81 � j � q 2n2n0 � rykjnykj � tok $ ŵ(ykj ) � tokLet us consider the estimate of the number of pre-images. By proposition 20, with probabilityat least 1� �100 , 81 � k � m 81 � j � q ���f�1(ykj )��� � (1� ")nykjLet us consider the estimate in the other direction. Let k 2 [m] be a trial, for which there existsok query 1 � j0 � q, such that ���f�1(ykj0)��� > nykj0 (1 + "). Then there necessarily exists a threshold1 � i0 � tpre, for which ���f�1(ykj0)��� � tprei0 , but nykj0 < tprei0 . Applying a union bound on lemma 27,with probability at least 1 � �10 , for at most 14 of the k 2 [m] there exist such i0; j0. The corollaryfollows.The correctness of the entire protocol, i.e., the emulation phase and the veri�cation phaseconcatenated together, immediately follows:Theorem 29 (correctness of protocol). The following hold:� (Completeness) There exists a prover strategy (being honest) for which the veri�er does notreject throughout the protocol, with probability at least 1� �.� (Soundness) The probability the veri�er does not reject in the protocol, however x 2 L, is atmost �.Proof. Completeness follows by a union-bound from theorem 17, as well as lemmata 22, 24 and 26.Soundness follows by a union-bound from corollary 28 and theorem 17.

40


