
The Round-Complexity ofBlack-Box Concurrent Zero-Knowledge
Thesis for the Ph.D. DegreebyAlon Rosen

Under the Supervision ofProfessors Oded Goldreich and Moni NaorDepartment of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceSubmitted to the Feinberg Graduate School ofthe Weizmann Institute of ScienceRehovot 76100, IsraelJune 26, 2003

AbstractZero-knowledge proof systems are interactive protocols that enable one party, called the prover, toconvince another party, called the veri�er, in the truth of a statement without revealing anythingbeyond the validity of the assertion being proved. Besides being fascinating on their own right, zero-knowledge proofs serve as an extremely useful tool for the realization of many cryptographic tasks.The original setting in which zero-knowledge proofs were investigated consisted of a single proverand veri�er executing only one instance of the protocol at a time. A more realistic setting, especiallyin the era of the Internet, is one that allows the concurrent execution of zero-knowledge protocols.The most common technique for proving the zero-knowledge property of a protocol is calledblack-box simulation. As it turns out, the usage of black-box simulation in the concurrent settingintroduces many technical di�culties. The only known way to enable black-box simulation in theconcurrent setting is to signi�cantly increase the protocol's round-complexity (i.e., the number ofmessages exchanged in the protocol).It has already been shown that for every language outside BPP there is no 4-round protocolwhose concurrent zero-knowledge (cZK) property is proved via black-box simulation. In contrast,the most e�cient cZK protocol that we know of uses ~O(log2 n) rounds, where n is a \security"parameter that is polynomially related to the number of concurrent executions. In this thesis weclose the gap between these upper and lower bounds. Our main results are:� Any cZK proof system for a language outside BPP , whose cZK property is proved usingblack-box simulation, requires
(log n= log log n) rounds of interaction.� Assuming that perfectly hiding commitments exist, every language in NP has a cZK proofsystem with O(�(n) � log n) rounds of interaction, where �(n) is any super-constant function.Moreover, the cZK property of this proof system is proved using black-box simulation.The above two results complement each other and yield an (almost) full characterization of theround-complexity of black-box cZK protocols.

AcknowledgementsI would like to express my deepest gratitude to my thesis advisors Oded Goldreich and Moni Naor.Oded and Moni are very special individuals, and each one of them has a�ected my scienti�c devel-opment in his own distinctive way. It has been a privilege to study under their guidance.Oded has agreed to take me under his supervision when Moni has left for a two year sabbatical.Soon thereafter, he suggested me a project to work on. Amazingly enough, Oded's initial suggestionturned out to yield all the results in this thesis. Oded has invested an unparalleled amount of timeand e�ort to supply me with invaluable advice about technical issues, as well as on the way my workshould be presented. There is no doubt that Oded has had a signi�cant impact both on my scienti�ctaste and on my approach to research. For that and for his devotion I thank him very much.I am deeply indebted to Moni for treating me as a peer from the �rst moment. The credit hehas given me has greatly contributed to my self-con�dence as a researcher. Moni has always beenavailable to discuss scienti�cal issues and has continuously provided me extremely interesting ideasfor research. Moni's attitude to research, as well as his approach to people, make him an idealadvisor and a person that is fun to work with. I consider myself lucky for having spent so muchtime in the presence of someone as resourceful as Moni. I know that I have bene�tted from it a lot.I am most grateful to Sha� Goldwasser. It would be hard to underestimate the contribution ofSha�'s advice and encouragement to my development as a researcher. Most people do not have theprivilege of having two advisors. With Sha� around, I often felt as if I had three.Of all the people I have interacted with during my studies, I am especially thankful to RanCanetti, Omer Reingold and Ronen Shaltiel. Ran and Omer have been continuously guiding mysteps from the earliest stages of my studies. Ronen has done so from a later stage. Thanks to Ranfor being such a great collaborator, to Omer for his kindness and support from day one, and toRonen for persistently sticking to the (hopeless) task of making me learn from his mistakes.I would like to thank the faculty members at the Weizmann Insititute for making it, togetherwith the students, such a great place to study in. Thanks to Itai Benjamini, Uri Feige, Ran Razand Adi Shamir for their enlightening courses. Special thanks to Uri, Itai and Ran for conveyingme their perspective about life as a researcher through many interesting conversations. Manythanks are due to my fellow students at the Weizmann Institute for having shared their knowledgeand ideas with me. Special thanks to my closest collaborators: Danny Harnik, Yehuda Lindell,Rafael Pass and Boaz Barak. I enjoyed very much working with you and have learnt a great dealfrom it. I hope we will have the opportunity to work together in the future. I also thank Adi Akavia,Tzvika Hartman, Robi Krauthgamer, Michael Langberg, Kobbi Nissim, Eran Ofek, Benny Pinkas,Yoav Rodeh and Udi Wieder for many fruitful discussions.I would like to thank my co-authors to the results that make up this thesis. Chapter 3 wasdone jointly with Ran Canetti, Joe Kilian and Erez Petrank [9, 10]. Chapter 4 is joint with Manojiii

Prabhakaran and Amit Sahai [41]. I would especially like to mention Joe for his generosity and forcontributing so many key ideas to the �eld of concurrent zero-knowledge.I am indebted to the people at the IBM T.J. Watson research center for an enjoyable summer.Thanks to Marc Fischlin, Rosario Gennaro, Shai Halevi, Nick Howgrave-Graham, Eyal Kushilevitzand Tal Rabin. Special thanks to Tal for being so great and for her patience during a long periodof uncertainty. I would like to thank Cynthia Dwork for her warm hospitality during a visit atMICROSOFT. Thanks also to Dalit, Yael, Efrat and Avner for the entertaining dinners during mytwo-week visit at IBM Almaden and Stanford.Most importantly, I would like to thank the members of my family for their love and encour-agement troughout the years. My parents Ora and Kalman, my brothers Erez and Oren, my wifeVered and my sons Yoav and Itamar. I wish to express the deepest love to Vered, Yoav and Itamar.Being in their presence is a wonderful experience and I consider it the greatest privilege of them all.Finally, thanks to Rivka and Yossi for their much appreciated help with raising the kids.

iv

Contents
1 Introduction 11.1 Zero-Knowledge Proof Systems . 11.1.1 Applications of ZK in Cryptography . 21.1.2 Concurrent Composition of ZK . 31.1.3 The round-complexity of black-box cZK . 41.2 Why Black-Box Simulation is Problematic . 41.2.1 The stand-alone case . 51.2.2 Composition versus Repetition . 71.2.3 The Richardson-Kilian protocol . 91.2.4 What About Non Black-Box Simulation? . 111.3 Organization . 112 Preliminaries 132.1 General . 132.1.1 Basic notation . 132.1.2 Probabilistic notation . 132.1.3 Computational indistinguishability . 132.2 Interactive Proofs . 142.3 Zero-Knowledge . 142.4 Concurrent Zero-Knowledge . 152.5 Black-Box Concurrent Zero-Knowledge . 152.6 Conventions . 162.7 Commitment Schemes . 183 Black-Box cZK Requires (almost) Logarithmically many Rounds 213.1 Proof Outline . 223.1.1 The high-level framework . 223.1.2 The schedule and additional ideas . 233.1.3 The actual analysis . 273.2 The Actual Proof (of Theorem 3.1) . 273.2.1 The concurrent adversarial veri�er . 273.2.2 The actual veri�er strategy Vg;h . 333.2.3 The decision procedure for L . 363.3 Proof of Lemma 3.2.5 (performance on no-instances) 373.3.1 The cheating prover . 383.3.2 The success probability of the cheating prover 413.3.3 Proof of Lemma 3.3.7 (legal transcripts yield useful block-pre�xes) 45v

4 cZK in Logarithmically many Rounds 594.1 A cZK proof system for NP . 594.1.1 The protocol . 604.1.2 The simulator . 614.2 High Level Analysis of the Simulation . 634.2.1 The simulator runs in polynomial-time . 634.2.2 The simulator's output is \correctly" distributed 634.2.3 The simulator (almost) never gets \stuck" . 634.3 A Detailed Description of our Protocol . 684.3.1 Blum's protocol . 684.3.2 The actual protocol . 694.4 Zero-Knowledge . 704.4.1 The simulator's strategy . 704.4.2 \Gluing" it all together . 754.5 The Simulator's Running Time . 764.6 The Simulator's Output Distribution . 774.7 The Probability of Getting \stuck" . 784.7.1 Proof of Lemma 4.7.5 (counting bad random tapes) 824.7.2 Proof of Lemma 4.7.10 (special intervals are visited many times) 884.8 Extensions . 924.8.1 Applicability to other protocols . 924.8.2 cZK arguments based on any one-way function 924.8.3 Applicability to resettable zero-knowledge . 944.8.4 Concurrent ZK arguments with poly-logarithmic e�ciency 945 cZK Without Aborts 975.1 Proof of Theorem 5.1 . 975.1.1 The schedule, aversary veri�ers and decision procedure 985.1.2 Proof of Lemma 5.1.5 (performance on no-instances) 1015.1.3 Proof of Lemma 5.1.8 (existence of useful initiation pre�xes) 1045.1.4 Proof of Lemma 5.1.9 (the structure of good sub-trees) 1055.2 Extending the proof for the Richardson-Kilian protocol 1076 Constant-Round ZK proofs for NP with a Simpler Proof of Security 1096.1 Zero-Knowledge . 1106.1.1 The Simulator . 1106.1.2 The simulator's running time . 1116.1.3 The simulator's output distribution . 1117 Conclusions and Open Problems 1137.1 Avoiding the Lower Bounds of Chapter 3 . 1137.2 Open problems . 1148 Appendix 1158.1 Alternative Description of the Recursive Schedule . 1158.2 Solving the Recursion . 115
vi

Chapter 1IntroductionThe past two and a half decades have witnessed an unprecedented progress in the �eld of Cryptogra-phy. During these years, many cryptographic tasks have been put under rigorous treatment and nu-merous constructions realizing these tasks have been proposed. By now, the scope of cryptographicconstructions ranges from simple schemes that realize "atomic" tasks such as authentication, iden-ti�cation, encryption and digital signatures, to fairly complex protocols that realize "high-level"tasks such as general secure two-party computation (the latter being so general that it capturesalmost any conceivable cryptographic task in which two mutually distrustful parties interact).The original setting in which cryptographic protocols were investigated consisted of a single ex-ecution of the protocol at a time (this is the so called stand-alone setting). A more realistic setting,especially in the era of the Internet, is one that allows the concurrent execution of protocols. Inthe concurrent setting many protocols are executed at the same time, involving multiple partiesthat may be talking with the same (or many) other parties simultaneously. The concurrent settingpresents the new risk of a coordinated attack in which an adversary controls many parties, inter-leaving the executions of the protocols while trying to extract knowledge based on the existence ofmultiple concurrent executions. It would be most desirable to have cryptographic protocols retaintheir security properties even when executed concurrently. This would enable the realization ofcryptographic tasks in a way that preserves security in a setting that is closer to the \real world".Unfortunately, security of a speci�c protocol in the stand-alone setting does not necessarilyimply its security in the (more demanding) concurrent setting. It is thus of great relevance toexamine whether the original feasibility results for cryptographic protocols still hold when manycopies of the protocol are executed concurrently.1.1 Zero-Knowledge Proof SystemsIn the course of developing tools for the design of complex cryptographic tasks, many innovativenotions have emerged. One of the most basic (and important) examples for such notions is the oneof Zero-Knowledge Interactive Proofs. Interactive proofs, introduced by Goldwasser, Micali andRacko� [28], are e�cient protocols that enable one party, known as the prover, to convince anotherparty, known as the veri�er, of the validity of an assertion. In the process of proving the assertion,the prover and the veri�er exchange messages for a predetermined number of rounds. Throughoutthe interaction, both prover and veri�er may employ proabilistic strategies and toss coins in orderto determine their next message. At the end of the process, the veri�er decides whether to acceptor reject the proof based on his view of the interaction (as well as on his coin-tosses).1

2 CHAPTER 1. INTRODUCTIONThe basic requirement is that whenever the assertion is true, the prover always convinces theveri�er (this is called the completeness condition), whereas if the assertion is false, then no matterwhat the prover does, the veri�er is convinced with very small probability, where the probabilityis taken over the veri�er's coin-tosses (this is called the soundness condition).An interactive proof is said to be zero-knowledge (ZK) if it yields nothing beyond the valid-ity of the assertion being proved. This is formalized by requiring that the view of every proba-bilistic polynomial-time adversary interacting with the prover can be simulated by a probabilisticpolynomial-time machine (a.k.a. the simulator). The idea behind this de�nition is that whateveran adversary veri�er might have learned from interacting with the prover, he could have actuallylearned by himself (by running the simulator).The concept of zero-knowledge was originally introduced by Goldwasser, Micali and Rack-o� [28]. The generality of ZK has been demonstrated by Goldreich, Micali and Wigderson [25],who showed that every language in NP can be proved in ZK, provided that one-way functionsexist (cf. Naor [37], H�astad et al. [32]). Since then, ZK proof systems have turned out to be anextremely useful tool in the realization of increasingly many cryptographic tasks.1.1.1 Applications of ZK in CryptographyWe illustrate the power of ZK proofs by giving two examples of their usefulness in Cryptography.The �rst example consists of the application of ZK proofs to the construction of identi�cationschemes (due to Feige, Fiat and Shamir [18]). The second example demostrates the applicability ofZK to the task of cryptographic protocol design (due to Goldreich, Micali and Wigderson [25, 26]).Identi�cation schemes: One of the earliest examples for the applicability of ZK is the construc-tion of identi�cation schemes [18]. Such schemes are useful in a scenario where one party, Alice,wishes to repeatedly identify herself to another party, Bob. The presumption is that Alice and Bobare acquainted with one another, and that Bob possesses some (authenticated) public informationthat is associated with a secret value known only to Alice. In order to identify herself, Alice invokesan identi�cation protocol and uses her secret information to convince Bob that she is indeed Alice.The requirement is that Alice will always be able to convince Bob, and that nobody else can foolBob into believing that she/he is Alice (even after polynomially many invocations of the protocol).A na��ve solution to this problem would be to let Alice choose a secret password s, and to publishthe value of f(s), where f is some one-way function (i.e., a function that is \easy" to evaluate onall inputs but \hard" to invert on most inputs). When Alice wishes to identify herself to Bob, shesimply sends her password s to Bob who computes y = f(s) and compares it to the value that Alicehas published. The security of the resulting scheme is supposedly guaranteed by the one-waynessof f (since it is hard to �nd the value of s given the value of f(s)). Unfortunately, this suggestionsu�ers from a severe drawback: Any adversary who impersonates Bob can obtain the value of sand later use it in order to identify himself as Alice.The solution is to use ZK proofs (or actually a variant of ZK proofs, called ZK proofs ofknowledge [18, 4]). Rather than sending over the value of s, Alice will now prove in ZK that sheknows the preimage of f(s). (Here one uses the fact that, once f is speci�ed, proving the knowledgeof a preimage under f is an NP assertion.) The ZK property then guarantees that, while Bobhas been convinced of the validity of the assertion, no impersonator can obtain the value of s andmisuse it at a later stage.It should be noted that ZK seems a much stronger property than what is required here. Inparticular, besides being unable to impersonate Alice, an adversary interacting with Alice will notbe able to do anything that he could have not been able to do prior to the interaction.

1.1. ZERO-KNOWLEDGE PROOF SYSTEMS 3Enforcing honest behaviour on protocol participants: Perhaps the most important examplefor the power of ZK is the role they play in enforcing \honest" behaviour on parties that participatein a given protocol [25, 26]. Speci�cally, ZK proofs enable participants in a protocol to prove thattheir actions are indeed consistent with the protocol's prescribed instructions without taking anyrisk of compromising the security of their own secret information (e.g., cryptographic keys). Thisapproach is made possible through the usage of ZK proofs for NP and proceeds according to thefollowing two-step paradigm:Semi-honest protocol design: Design a protocol �1 that is secure assuming that the adversariesfollow the protocol's prescribed instructions (a.k.a. \semi-honest" adversaries).Compilation to malicious model: \Compile" �1 into a protocol �2 that withstands any mali-cious behaviour by making the parties prove in ZK that they faithfully follow the instructionsof �1. Here one relies on the fact that, once �1 is speci�ed, consistency of the party's actionswith the protocol's instructions is an NP-statement, and so by [25] can be proved in ZK.Needless to say that this approach greatly facilitates the task of protocol design, since one only hasto consider adversaries that follow the protocol's instructions. In fact, in many cases it is not clearhow one could have approached the above task in a di�erent way, since one would have to take intoaccount any attack that an adversary might come up with.1.1.2 Concurrent Composition of ZKThe wide applicability of ZK proofs makes them a very useful \test case" for examining the behaviorof cryptographic protocols in the concurrent setting. On the one hand, many of the di�culties thatarise in the concurrent setting already appear in the (relatively basic) case of ZK. On the otherhand, positive solutions for the case of ZK may translate to positive solutions for much morecomplex cryptographic tasks (that use ZK protocols as a subroutine).Concurrent composition of ZK protocols was �rst considered by Feige [17]. A more extensivetreatment was given by Dwork, Naor and Sahai [15], who also argued that the task of provingthe ZK property of a protocol in the concurrent setting might encounter technical di�culties ifapproached in the straightforwad manner. Since then, concurrent composition of ZK protocols hasreceived a considerable amount of attention (cf. [17, 15, 16, 36, 8, 42, 35]).The scenario that is typically considered in the context of ZK involves a single (or many) honestprovers that are running many concurrent executions of the same ZK protocol. The honest proveris trying to protect itself from a malicious adversary that controls a subset (or all) the veri�ersit is interacting with. Since it seems unrealistic (and certainly undesirable) for honest provers tocoordinate their actions so that security is preserved, one must assume that in each instance of theprotocol the honest prover acts independently.A ZK protocol is said to be concurrent zero-knowledge (cZK) if it remains zero-knowledge underconcurrent composition. Recall that in order to demonstrate the ZK property of a protocol it isrequired to demonstrate that the view of every probabilistic polynomial-time adversary interactingwith the prover can be simulated in probabilistic polynomial-time. In the concurrent setting, theveri�ers' view may include multiple sessions running at the same time. Furthermore, the veri�ersmay have control over the scheduling of the messages in these sessions (i.e., the order in which theinterleaved execution of these sessions should be conducted). As a consequence, the simulator'stask becomes considerably more complicated.

4 CHAPTER 1. INTRODUCTION1.1.3 The round-complexity of black-box cZKThe most common technique for proving the ZK property of a protocol is called black-box simula-tion. (A black-box simulator is a simulator that has only black-box access to the adversary veri�er.)A protocol whose ZK property is proved using black-box simulation is called black-box ZK.While black-box simulation has proved to be a very useful tool for proving security in thestand-alone setting, it does not seem to be suitable for use in the concurrent setting. The onlyknown way to enable black-box simulation in the concurrent setting is to signi�cantly increasethe number of messages exchanged in the protocol [42] (a.k.a. the protocol's round-complexity).In particular, whereas the number of messages exchanged in the original (stand-alone) ZK protocolswas a constant, the number of messages in the new cZK protocols is required to grow with thenumber of concurrent executions.In the context of cZK, the round-complexity of a protocol is measured as a function of somepredetemined \security" parameter n 2 N . The requirement is that the protocol will remain secureas long as the number of concurrent executions is bounded by some polynomial in n (we stress thatthe protocol is constructed before the polynomial bound is determined). We regard a protocol ashaving \high" round complexity if the number of rounds in this protocol depends on the value of n.This should be contrasted to constant-round protocols in which the number of messages is notrequired to increase as n grows.Since the number of messages exchanged is perhaps the most important e�ciency considerationfor interactive protocols, it is natural to ask whether \high" round-complexity is inherent to thenotion of cZK. The main objective of this thesis is to investigate this question in the context ofblack-box simulation. Arguably, this is not only an issue of theoretical interest, but rather hasalso signi�cant practical consequences. Having \low" round-complexity is a fundamental propertyof any interactive protocol (especially if this protocol is a key ingredient for many other crypto-graphic protocols). Our main conclusions are:� Any cZK proof system for a language outside BPP , whose cZK property is proved usingblack-box simulation, requires
(log n= log log n) rounds of interaction.� Assuming that perfectly hiding commitments exist, every language in NP has a cZK proofsystem with O(�(n) � log n) rounds of interaction, where �(n) is any super-constant function.Moreover, the cZK property of this proof system is proved using black-box simulation.The above two results complement each other and yield an (almost) full characterization of theround-complexity of black-box cZK protocols.It should be noted that subsequently to our work, new non black-box simulation techniqueswere devised [2]. These new techniques carry a great promise and give hope that a constant-roundcZK protocol can indeed be constructed. However, the results achieved so far in the context ofconcurrent composition are only partial (see Section 1.2.4 and Chapter 7 for more details).1.2 Why Black-Box Simulation is ProblematicWe now turn to describe the main technical di�culties that are encountered when trying to establishthe cZK property of a protocol via black-box simulation. We start by giving a high-level overviewof a \typical" construction of a ZK protocol for NP . Before we proceed, we (informally) de�nethe notion of commitment schemes [37], which are a central tool in the construction.

1.2. WHY BLACK-BOX SIMULATION IS PROBLEMATIC 5Commitment schemes: Commitment schemes are the \digital" analog of sealed envelopes.They are used to enable a party, known as the sender, to commit itself to a value while keeping itsecret from the receiver (this property is called hiding). Furthermore, the commitment is bindingin the sense that in a later stage, when the commitment is opened, it is guaranteed that the\opening" can yield only a single value determined in the committing phase. For our purposes, itwill be convenient to think of commitments as a non-interactive process in which the sender sendsa single message to the receiver (somewhat analogously to an encryption scheme). The sender canthen open the commitment by sending an additional message that reveals the value committed to.1.2.1 The stand-alone caseOn a high-level, the typical ZK protocol for NP is constructed by combining many atomic ZKprotocols that proceed as follows.1 Given a speci�c NP assertion, A, and a \proof" for the validityof this assertion (typically, an NP-witness w for the validity of A), the prover uses his coin-tossesto generate two (related) messages M0 and M1 that depend on A and w. Letting P denote theprover and V denote the veri�er, the protocol proceeds as follows:P ! V : Commit to M0 and M1.V ! P : Send a random � 2 f0; 1g.P ! V : Reveal M�.The veri�er accepts if and only if the revealed message M� is \valid" (i.e., if it passes a prespec�edvalidity inspection that is related to the commonly known assertion A). To insure that the resultingprotocol is indeed an interactive proof, it is required that M0;M1 satisfy the following properties:� If A is true, it is possible to make sure that both M0 and M1 are \valid".� If A is false, then no matter what P does, either M0 or M1 is \invalid".Thus if A is true then V always accepts, whereas if A is false then V accepts with probability atmost 1/2. (Here we rely on the fact that the commitment is binding and so P cannot reveal avalue that is di�erent than what he has committed to.) To insure that the protocol is also ZK, thefollowing property is required:� Given the value of �, it is always possible make sure that M� is \valid".Indeed, the soundness property of the protocol heavily relies on the fact that P does not know thevalue of � before the protocol starts (and so V can always \surprise" P by choosing � at random).Otherwise, P (knowing � in advance) would have always been able to make V accept in the protocol(regardless of whether A is true or not).However, knowing � in advance is the key for proving the ZK property of the protocol. Consideran adversary veri�er V � that is trying to extract knowledge from the interaction (by possiblydeviating from the honest veri�er strategy). All that has to be done in order to simulate the viewof V � is to let the simulator \guess" the value of � in advance and generate M0;M1 so that M�is valid. The simulator can then \feed" V � with a commitment to M0;M1 and obtain the valueof some �0 that depends on this commitment. If indeed �0 = � then the simulator has suceeded1As a side remark, we note that the type of protocols considered here resemble Blum's protocol for Hamiltonicity [6](see Construction 4.3.1 in Page 68), and not the protocol by Goldreich, Micali andWigderson for Graph 3-coloring [25].

6 CHAPTER 1. INTRODUCTIONin his task and will output a \valid" transcript in which V � accepts. The hiding property of thecommitment guarantees us that, no matter what is the strategy applied by V �, the probability that�0 = � is 1/2. In particular, after two attempts the simulator is expected to succeed in its task.Notice that the resulting simulator is \black-box" in the sense that the only way in which V �'sstrategy is used is through the examination of its input/output behaviour.Reducing the error via parallel repetition: To make the above protocol useful, however, onemust make sure that whenever A is false, V accepts only with small probability (rather than 1/2).To achieve this, the atomic protocol described above is repeated many (say, k) times independently.V accepts if and only if it has accepted in all k repetitions. The probability of having V accept afalse statement is now reduced to 1=2k (by the independence of the repetitions).The straighforward way to conduct the repetitions would be to perform the atomic protocolssequentially (i.e., one protocol after the other, see Figure 1.1.a). This approach su�ers from thedrawback that the resulting protocol has a fairly high round-complexity. To overcome this problem,the repetitions may be conducted in parallel (i.e., the jth message of the atomic protocol is senttogether in all the k repetitions, see Figure 1.1.b).(a) (b)P V=)(==)=)(==)...=)(==)
P V)) : : :)((: : : ()) : : :)Figure 1.1: Sequential and parallel repetition.Unfortunately, repeating the protocol many times in parallel brings up the following di�culty.Whereas in the case of a single execution, the probability that the ZK simulator \guesses" the valueof � correctly is at least 1/2, the probability that he does so simultaneously for all k repetitionsis 1=2k. For large k, this probability will be very small and might cause the simulator to run fortoo long. Thus, it is not clear that the ZK property of the protocol is preserved.The solution to this problem is to let the veri�er commit to all his \challenges" in advance.Speci�cally, consider the following protocol [23]:V ! P (v1): Commit to random �1; : : : ; �k 2 f0; 1g.P ! V (p1): Commit to (M10 ;M11); (M20 ;M21); : : : ; (Mk0 ;Mk1).V ! P (v2): Reveal �1; : : : ; �k.P ! V (p2): Reveal M1�1 ;M2�2 ; : : : ;Mk�kThe veri�er accepts if and only if for all j, the message M j� is \valid". By the hiding property ofthe commitment used in (v1), we are guaranteed that when sending (p1), the prover P has \noidea" about the values of �1; : : : ; �k, and so the soundness of the original protocol is preserved.

1.2. WHY BLACK-BOX SIMULATION IS PROBLEMATIC 7To see that the resulting protocol is ZK, consider the following simulation technique. Start byobtaining the (v1) message from the veri�er V �. Then, playing the role of the prover, generatea sequence of k pairs fM j0 ;M j1gkj=1 each containing \garbage" (i.e., not ncessarily \valid"). FeedV � with the commitments to these pairs and obtain the values of �1; : : : ; �k. Once these valuesare obtained, \rewind" the interaction to Step (p1) and recompute the values of fM j0 ;M j1gkj=1 sothat for all j, the value of M j�j is \valid". Since we have not rewound past (v1) (and thus didnot modify its value), and since the commitment used in (v1) is binding, we are guaranteed thatwhen reaching (v2) for the second time, the revealed values of �1; : : : ; �k are identical to the onesrevealed in the �rst time (v2) was reached (here we also use the fact that the commitment usedin (p1) is hiding and so V � cannot distinguish a commitment to \garbage" from a commitment to\valid" M j�j 's). Using the values of the M j�j 's, the simulator can thus output a \valid" transcriptin which V � accepts, as required.But what if V � refuses to reveal some (or all) of the committed values in Step (v2)? (Recallthat V � may behave in any adversarial manner.) In such a case, the simulator does not obtainall of the values of �1; : : : ; �k and will supposedly fail in its task. Luckily, if V � deviates from hisprescribed strategy and does not reveal some �j value in (v2), then the prover in the protocol is notobligated to continue in the interaction (in particular, it aborts all k repetitions altogether). Usingthis fact, it is then possible to show (with some compications) that the simulator can eventuallysucceed in obtaining all of the values �1; : : : ; �k and thus complete its task (cf. [23]).1.2.2 Composition versus RepetitionNotice that the above analysis heavily relies on the fact that P is conducting a single execution of agiven protocol (in which the behaviour of V � in all repetitions is \linked" together). A more realisticscenario involves a single (or many) honest provers that are running many executions (sessions) ofthe same ZK protocol, but are not allowed to \link" between the various executions. This is calledprotocol composition. As in the case of protocol repetition, in the case of protocol composition thehonest prover is trying to protect itself from a malicious adversary V � that controls a subset (orall) the veri�ers it is interacting with. However, unlike the case of protocol repetition, the honestprover is not allowed to coordinate its actions between di�erent executions. As a consequence, averi�er in one execution of the protocol is not held accountable of the \misbehaviour" of a veri�erin another execution. (a) (b)P V(v1)(=(p1) =)(v2)(=(p2) =)(v1)(=(p1) =)(v2)(=(p2) =)...(v1)(=(p1) =)(v2)(=(p2) =)
P V(v1)((: : : ((p1))) : : :)(v2)((: : : ((p2))) : : :)Figure 1.2: Sequential and parallel composition of a 4-round protocol.

8 CHAPTER 1. INTRODUCTIONSequential and parallel composition: The most \basic" case of protocol composition is theone of sequential composition (Figure 1.2.a). This case has been treated in its most generality byGoldreich and Oren [27], who showed that any protocol that is (auxiliary input) ZK in a singleexecution will remain ZK under sequential composition. A more complicated case is the one ofparallel composition (Figure 1.2.b). Here, a composition theorem is not known (and in fact doeshold in general [24, 17]). Still, as recently shown by Goldreich [21], there exists a speci�c ZKprotocol for NP (speci�cally, the protocol of [23]) that remains ZK under parallel composition.Concurrent composition: A more general notion of protocol composition is the one of concur-rent composition. Unlike the case of sequential and parallel composition (in which the schedulingof messages is de�ned in advance), the scheduling of messages in the case of concurrent compo-sition is controlled by the adversary veri�er, who determines the order in which the interleavedexecution of the various sessions should be conducted. As observed by Dwork, Naor and Sahai [15],letting V � control the scheduling and coordinate between sessions introduces technical di�cultiesthat black-box simulation does not seem to handle very well. This is best seen by considering thefollowing scheduling of messages for a 4-round protocol (suggested in [15]).1 2 n(v1)(p1) () () . . . ()(): . .()(v2)(p2) ()Figure 1.3: A concurrent schedule for n sessions of a 4-round protocol.In this scheduling, the prover starts by sending the �rst two messages (i.e., (p1), (v1)) in alln sessions, only then proceeding to send the last two messages (i.e., (p2), (v2)) in the reverseorder of sessions (i.e., starting at the nth session and ending at the �rst). Suppose now thatan adversary veri�er V � is sending messages according to the above schedule while applying thefollowing \coordinated" strategy for all n sessions:� V � produces the various veri�er messages according to the honest veri�er strategy.� The veri�er coin-tosses used in a speci�c session depend on previous messages in the schedule.2� Whenever V � is not convinced in one session, he aborts the whole interaction altogether.32For example, V � could obtain random coins by applying a poly(n)-wise independent hash function (or even apseudorandom function) to the previous messages in the schedule. This would imply that the modi�cation of evenone of the previous messages, yields \fresh" randomness for the current session.3Notice that this behaviour signi�cantly deviates from the honest veri�er strategy in which the decision of whetherto reject or not is taken for each session independently of other sessions.

1.2. WHY BLACK-BOX SIMULATION IS PROBLEMATIC 9Since the view of V � consists of the concurrent interaction in all n sessions in the schedule andsince in each session V � sends messages according to the honest veri�er strategy, the simulator'stask is to produce a transcript that contains n sessions in which V � accepts (notice that the honestprover P would never cause V � to reject, and so the simulator must do so as well).The straightforward approach for simulation would be to use the 4-round protocol describedabove and let the simulator \rewind" the interaction with V � in each session (just as it has donein the \stand-alone" case). However, by doing so the following problem is encountered. In orderto suceed in the rewinding of the ith session, the simulator must obtain the (v2) message in thissession. Since by the above scheduling, this message occurs after the end of session i0 for all i0 > i,the simulator will have to make V � accept (and thus rewind) in all sessions i0 > i (otherwise,V � would have aborted the interaction at the moment session i0 ends, and the simulator wouldnever obtain (v2) in session i). Moreover, whenever the simulator rewinds session i, it modi�es thevalue of (p1) in this session. This will cause the randomness of all subsequent sessions (and so theveri�er's \challenges" in sessions i0 > i) to be modi�ed. In particular, the simulation work done forall sessions i0 > i will be lost. To conclude:� The simulator must rewind all n sessions.� To rewind session i, the simulator must rewind session i0 for all i0 > i.� By rewinding session i, the simulation work invested in sessions i0 > i is lost.Denoting by W (m) the amount of work that the simulator invests in m sessions, we obtain therecursion W (m) � 2 �W (m� 1), which solves to W (n) � 2n (because W (1) = 2). This is clearly atoo high running time for the simulator to a�ord.The above example gives intuition to the di�culties that a \rewinding" simulator will encounterin the concurrent setting. At �rst glance it may seem that this still leaves open the possibility thatan alternative black-box simulation technique might be found. Unfortunately, the technique ofrewinding the interaction with V � turns our to be inherent to black-box simulation. (Intuitively,this follows from the fact that rewinding is the only advantage that a black-box simulator might haveover the honest prover.) Using this fact (and building on the work of Goldreich and Krawczyk [24]),Kilian, Petrank and Racko� [36] have been able to trasform the above intuitive argment into animpossiblity result, and to prove that for every language outside BPP there is no 4-round protocolwhose concurrent execution is simulatable in polynomial-time using black-box simulation. Wenote that our
(log n= log log n) lower-bound on the round-complexity of black-box concurrentZK (presented in Chpater 3) is obtained by employing a new, more sophisticated, scheduling ofmessages and by have the adversary veri�er V � occasionally abort sessions (i.e., refuse to decommit)depending on the history of the interaction.1.2.3 The Richardson-Kilian protocolFor a while, it was not even clear whether there exists cZK protocols for languages outside ofBPP . Several works have (successfully) attempted to overcome the above di�culties by augmentingthe communication model with the so-called timing assumption [15, 16] or, alternatively, by usingvarious set-up assumptions (such as the public-key model [8, 13]). The feasibility of cZK in the plainmodel (i.e., without resorting to any set-up assumptions) has been established by Richardson andKilian (RK for short) [42], who were the �rst to exhibit a family of cZK protocols (parameterizedby the number of rounds) for all languages in NP.

10 CHAPTER 1. INTRODUCTIONThe RK protocol: The idea underlying the RK protocol is to transform a given constant-round ZK protocol into cZK by adding a k-round \preamble" to it (see Figure 1.4). This preamble(i.e., messages (V0); (P1); (V1); : : : ; (Pj); (Vj)) is completely independent of the common input andits sole purpose is to enable a successful simulation in the concurrent setting. Every round in thepreamble (i.e., every (Pj); (Vj) pair) is viewed as a \rewinding opportunity". Having \successfullyrewound" even one of the rounds in the preamble is su�cient in order to cheat arbitrarily in theactual proof (i.e., messages (p1); (v1); (v2)) and thus complete the simulation (cf. [20]).The RK transformation reduces the problem of proving that the resulting protocol is cZK tocoming up with a simulator that, with overwhelming probability, manages to successfully rewindevery session in the concurrent schedule (no matter what is the strategy applied by the veri�er).Clearly, the larger is the number of rounds in the preamble, the easier the simulation task is.However, the main goal is to minimize the number of rounds in the protocol.P V(V0) (=(P1) =)(V1) (=(P2) =)(V2) (=...(Pk) =)(Vk) (=(p1) =)(v1) (=(p2) =)Figure 1.4: The Richardson-Kilian k-round protocol.The RK simulator: Recall that rewinding a speci�c session in the concurrent setting may resultin loss of work done for other sessions, and cause the simulator to do the same amount of workagain. (Since all simulation work done for sessions starting after the point to which we rewindmay be lost.) Considering a speci�c session of the RK protocol (out of m = poly(n) concurrentsessions), there must be an iteration (i.e., a j 2 f1; : : : ; kg) so that at most (m � 1)=k sessions ofthe schedule start in the interval corresponding to the jth iteration (of this speci�c session). So ifwe try to rewind on the correct j, we will invest (and so waste) only work proportional to (m�1)=ksessions. The idea is to abort the rewinding attempt on the jth iteration if more than (m � 1)=ksessions are initiated in the corresponding interval (as this will rule out the incorrect j's). The samereasoning applies recursively (i.e., to the rewinding in these (m�1)=k sessions). Denoting byW (m)the amount of work invested in m sessions, we obtain the recursion W (m) = poly(m) �W (m�1k),which solves to W (m) = m�(logkm). Thus, whenever k = n, we get W (m) = mO(1). This impliesthat for any � > 0, every language in NP has an n�-round cZK proof system.The RK analysis has been subsequently improved by Kilian and Petrank [35], who have em-ployed a more sophisticated simulation technique (see Sections 4.1.2 and 4.4.1) to show that theRK protocol remains concurrent zero-knowledge even if it has O(�(n) � log2 n) rounds, where �(�)is any non-constant function (e.g., �(n) = log log n). On a high level, the key idea underlyingthe Kilian-Petrank simulation strategy is that the order and timing of the simulator's rewindingsare determined obliviously of the concurrent scheduling (which is determined \on the y" by theadversary veri�er). This is in contrast to the RK simulation strategy which heavily depends on theschedule as it is being revealed. Jumping ahead, we mention that our O(�(n) � log n) upper bound

1.3. ORGANIZATION 11on the round-complexity of cZK is obtained by conducting a fairly sophisticated analysis of theKilian Petrank simulation technique (see Chapter 4) .1.2.4 What About Non Black-Box Simulation?In a recent breakthrough result, Barak [2] constructs a constant-round protocol for all languagesin NP whose zero-knowledge property is proved using a non black-box simulator. Such a methodof simulation enables him to prove results known impossible for black-box simulation. Speci�cally,for every (predetermined) polynomial p(�), there exists a constant-round protocol that preservesits zero-knowledge property even when it is executed p(n) times concurrently (where n denotes the\security" parameter). As we show in Chapter 3, even this weaker notion is impossible to achievewhen using black-box simulation, unless NP � BPP .A major drawback of Barak's protocol is that the (polynomial) number of concurrent sessionsrelative to which the protocol should be secure must be �xed before the protocol is speci�ed.Moreover, the length of the messages in the protocol grows linearly with the number of concurrentsessions. Thus, from both a theoretical and a practical point of view, Barak's protocol is still notsatisfactory. What we would like to have is a single protocol that preserves its zero-knowledgeproperty even when it is executed concurrently for any (not predetermined) polynomial number oftimes. Such a property is indeed satis�ed by the protocols of [42, 35] (as well as by the protocolpresented in Chapter 4 of this thesis).1.3 OrganizationThe main results in this thesis are presented in Chapters 3 and 4. The results presented in Chap-ters 5 and 6 have emerged as a result of the research e�orts invested in the main results, butare interesting in their own right. It should be noted that, chronologically speaking, the resultpresented in Chapter 5 has been obtained prior to the results in presented in Chapters 3 and 4.Chapter 2 - Preliminaries: We give formal de�nitions of interactive proofs and zero-knowledge.We then turn to de�ne concurrent zero-knowledge, as well as black-box concurrent zero-knowledge.We also specify some conventions that are used in the proofs of the lower bound and the upperbound. Finally, we de�ne the notion of bit-commitment, which will be used in the construction ofour cZK protocol.Chapter 3 - Lower bound: We show that in the context of cZK,
(log n= log n log n) roundsof interaction are essential for black-box simulation of proof systems for languages outside of BPP(Theorem 3.1). In addition, we note that the lower bound holds also for the case of cZK arguments.In fact, it will hold even if the simulator knows the schedule in advance (in particular, it knowsthe number of concurrent sessions, which may just equal the security parameter), and even if thescheduling of the messages is �xed.Chapter 4 - Upper bound: We show that, assuming the existence of perfectly-hiding com-mitment schemes, every language in NP can be proved in cZK using only O(�(n) � log n) roundsof interaction, where �(n) is any super-constant function (Theorem 4.1). Our protocol retains itszero-knowledge property no matter how many times it is executed concurrently (as long as thenumber of concurrent sessions is polynomial in the size of the input). By considering so-calledzero-knowledge arguments, we are also able to achieve a similar result assuming only the existence

12 CHAPTER 1. INTRODUCTIONof one-way functions (Theorem 4.3). We also argue that our result in fact yields a generic trans-formation that takes any \standard" ZK protocol and transforms it into cZK while paying onlya \logarithmic" penatly in the round-complexity (Theorem 4.2). Additional results include theconstruction of a resettable ZK protocol with \logarithmic" number of rounds (Theorem 4.4), andthe construction of cZK arguments with polylogarithmic e�ciency (Theorem 4.5).Chapter 5 - cZK without aborts: We consider a \relaxation" of cZK and only require that theZK property is mantained if the veri�er never \aborts" any speci�c execution of the protocol duringthe concurrent interaction. We show that even in this case, black-box simulation faces di�cultiesthat are not encountered in the stand-alone setting. Speci�cally, we show that even if the veri�ernever \aborts", 7 rounds of interaction are essential for black-box simulation of proof systems forlanguages outside of BPP (Theorem 5.1). As a corollary, we obtain that the RK protocol withk = 2 is not black-box cZK, even in this restricted sense.Chapter 6 - Constant-round ZK proofs for NP with a simpler proof of security: Weconsider the task of constructing a constant-round ZK proof system for all languages in NP . Thisproblem has been previously addressed by Goldreich and Kahan [23], who constructed such proofsystems assuming the existence of a collection of claw-free functions. We show how to use a variantof the cZK protocol presented in Chapter 4 in order to construct an alternative constant-roundZK proof system for NP. The advantage of the new proof system over the one of [23] is that itadmits a considerably simpler proof of security.Chapter 7 - Conclusions and open problems: We discuss the issues arising from our results,as well as some open problems arising from Barak's non black-box simulation techniques [2]. We alsosuggest to investigate the round-complexity of cZK without aborts as an interesting open-problem.Declaration: The author, Alon Rosen, declares that this thesis summarizes his work under thesupervision of Professors Oded Goldreich and Moni Naor. The results in Chapter 3 were obtainedjointly with Ran Canetti, Joe Kilian and Erez Petrank [9, 10]. The results in Chapter 4 wereobtained by myself and independently by Manoj Prabhakaran and Amit Sahai [41]. The results inChapters 5 [43] and 6 were obtained by myself.

Chapter 2Preliminaries2.1 General2.1.1 Basic notationWe let N denote the set of all integers. For any integer k 2 N , denote by [k] the set f1; 2; : : : ; kg.For any x 2 f0; 1g�, we let jxj denote the size of x (i.e., the number of bits used in order to write it).For two machinesM;A, we let MA(x) denote the output of machineM on input x and given oracleaccess to A. The term negligible is used for denoting functions that are (asymptotically) smallerthan one over any polynomial. More precisely, a function �(�) from non-negative integers to realsis called negligible if for every constant c > 0 and all su�ciently large n, it holds that �(n) < n�c.2.1.2 Probabilistic notationDenote by x r X the process of uniformly choosing an element x in a set X. If B(�) is an event de-pending on the choice of x r X, then Prx X [B(x)] (alternatively, Prx[B(x)]) denotes the probabilitythat B(x) holds when x is chosen with probability 1=jXj. Namely,Prx X [B(x)] =Xx 1jXj � �(B(x))where � is an indicator function so that �(B) = 1 if event B holds, and equals zero otherwise. Wedenote by Un the uniform distribution over the set f0; 1gn.2.1.3 Computational indistinguishabilityLet S � f0; 1g� be a set of strings. A probability ensemble indexed by S is a sequence of randomvariables indexed by S. Namely, any X = fXwgw2S is a random variable indexed by S.De�nition 2.1.1 (Computational indistinguishability) Two ensembles X = fXwgw2S andY = fYwgw2S are said to be computationally indistinguishable if for every probabilistic polynomial-time algorithm D, there exists a negligible function �(�) so that for every w 2 S:jPr [D(Xw; w) = 1]� Pr [D(Yw; w) = 1]j < �(jwj)The algorithm D is often referred to as the distinguisher. For more details on computationalindistiguishability see Section 3.2 of [22]. 13

14 CHAPTER 2. PRELIMINARIES2.2 Interactive ProofsWe use the standard de�nitions of interactive proofs (and interactive Turing machines) [28, 22]and arguments (a.k.a computationally-sound proofs) [7]. Given a pair of interactive Turing ma-chines, P and V , we denote by hP; V i(x) the random variable representing the (local) output of Vwhen interacting with machine P on common input x, when the random input to each machine isuniformly and independently chosen.De�nition 2.2.1 (Interactive Proof System) A pair of interactive machines hP; V i is calledan interactive proof system for a language L if machine V is polynomial-time and the following twoconditions hold with respect to some negligible function �(�):� Completeness: For every x 2 L,Pr [hP; V i(x) = 1] � 1� �(jxj)� Soundness: For every x 62 L, and every interactive machine B,Pr [hB;V i(x) = 1] � �(jxj)In case that the soundness condition is required to hold only with respect to a computationallybounded prover, the pair hP; V i is called an interactive argument system.De�nition 2.2.1 can be relaxed to require only soundness error that is bounded away from1� �(jxj). This is so, since the soundness error can always be made negligible by su�ciently manyparallel repetitions of the protocol (as such may occur anyhow in the concurrent model). However,in the context of our lower bound, we do not know whether this condition can be relaxed whendealing with computationally sound proofs (i.e., when the soundness condition is required to holdonly for machines B that are implementable by poly-size circuits). In particular, in this case parallelrepetitions do not necessarily reduce the soundness error (cf. [5]).De�nition 2.2.2 (Round-Complexity) Let hP; V i be an interactive proof system for a languageL and let r : N ! N be an integer function. We say that hP; V i has round-complexity r(�) if forevery input x the number of messages exchanged is at most r(jxj). In such a case, we sometimesrefer to hP; V i as an r(�)-round interactive proof system.2.3 Zero-KnowledgeLoosely speaking, an interactive proof is said to be zero-knowledge (ZK) if it yields nothing beyondthe validity of the assertion being proved. This is formalized by requiring that the view of everyprobabilistic polynomial-time adversary V � interacting with the honest prover P can be simulatedby a probabilistic polynomial-time machine SV � (a.k.a. the simulator). The idea behind this def-inition is that whatever V � might have learned from interacting with P , he could have actuallylearned by himself (by running the simulator S). The transcript of an interaction consists of thecommon input x, followed by the sequence of prover and veri�er messages exchanged during theinteraction. We denote by viewPV �(x) a random variable describing the content of the random tapeof V � and the transcript of the interaction between P and V � (that is, all messages that V � sendsand receives during the interaction with P , on common input x).

2.4. CONCURRENT ZERO-KNOWLEDGE 15De�nition 2.3.1 (Zero-Knowledge) Let hP; V i be an interactive proof system for a languageL. We say that hP; V i is zero-knowledge, if for every probabilistic polynomial-time interactivemachine V � there exists a probabilistic polynomial-time algorithm SV � such that the ensemblesfviewPV �(x)gx2L and fSV �(x)gx2L are computationally indistinguishable.To make De�nition 2.3.1 useful in the context of protocol composition, Goldreich and Oren [27]suggested to augment the de�nition so that the corresponding conditions hold also with respectto all z 2 f0; 1g�, where both V � and SV � are allowed to obtain z as auxiliary input. Jumpingahead, we comment that in the context of black-box simulation,, the original de�nition implies theaugmented one (i.e., any black-box ZK protocol is also ZK w.r.t. auxuliary inputs). Since in thiswork we only consider the notion of black-box ZK, we may ignore the issue of auxiliary inputswhile being guaranteed that all results hold with repsect to the augmented de�nition as well.2.4 Concurrent Zero-KnowledgeLet hP; V i be an interactive proof (resp. argument) for a language L, and consider a concurrentadversary (veri�er) V � that, given input x2L, interacts with an unbounded number of independentcopies of P (all on common input x). The concurrent adversary V � is allowed to interact with thevarious copies of P concurrently, without any restrictions over the scheduling of the messages in thedi�erent interactions with P (in particular, V � has control over the scheduling of the messages inthese interactions). In order to control the scheduling, the concurrent adversary V � concatenatesevery message that it sends with the session and round number to which the next scheduled messagebelongs. The convention is that the reply sent by the prover should have session and message indicesas speci�ed in the preceding veri�er message (in case it does not, the veri�er V � is allowed to rejectthe corresponding session). As before, the transcript of a concurrent interaction consists of thecommon input x, followed by the sequence of prover and veri�er messages exchanged during theinteraction. We denote by viewPV �(x) a random variable describing the content of the random tapeof V � and the transcript of the concurrent interaction between P and V � (that is, all messages thatV � sends and receives during the concurrent interactions with P , on common input x).De�nition 2.4.1 (Concurrent Zero-Knowledge) Let hP; V i be an interactive proof system fora language L. We say that hP; V i is concurrent zero-knowledge, if for every probabilistic polynomial-time concurrent adversary V � there exists a probabilistic polynomial-time algorithm SV � such thatthe ensembles fviewPV �(x)gx2L and fSV �(x)gx2L are computationally indistinguishable.In the context of concurrent ZK, the round-complexity of a protocol is measured as a function ofsome predetemined \security" parameter n 2 N . The requirement is that the protocol will remainsecure as long as the number of concurrent executions is bounded by some polynomial in n (westress that the protocol is constructed before the polynomial bound is determined). In this work,we use the convention that the \security" paramter n is equal (or polynomially related) to jxj.2.5 Black-Box Concurrent Zero-KnowledgeLoosely speaking, the de�nition of black-box zero-knowledge requires that there exists a \universal"simulator, S, so that for every x 2 L and every probabilistic polynomial-time adversary V �, thesimulator S produces a distribution that is indistinguishable from viewPV �(x) while using V � as anoracle (i.e., in a \black-box" manner). Essentially, the de�nition of black-box simulation says that

16 CHAPTER 2. PRELIMINARIESthe black-box simulator mimics the interaction of the prover P with any polynomial-time veri�erV � relative to any random input r it might choose. The simulator does so merely by using oraclecalls to V �(x; r) (which speci�es the next message that V � sends on input x and random input r).The simulation is indistinguishable from the true interaction even if the distinguisher (i.e., D) isgiven access to the oracle V �(x; r). For more details see Section 4.5.4.2 of [22].Before we proceed with the formal de�nition for the case of cZK, we will have to overcome atechnical di�culty arising from an inherent di�erence between the concurrent setting and \stand-alone" setting. In \stand-alone" zero-knowledge the length of the output of the simulator dependsonly on the protocol and the size of the common input x. It is thus reasonable to require thatthe simulator runs in time that depends only on the size of x, regardless of the running time ofits black-box. However, in black-box concurrent zero-knowledge the output of the simulator is anentire schedule, and its length depends on the running time of the concurrent adversary. Therefore,if we naively require that the running time of the simulator is a �xed polynomial in the size of x,then we end up with an unsatis�able de�nition. (As for any simulator S there is an adversary V �that generates a transcript that is longer than the running time of S.)One way to solve the above problem is to have for each �xed polynomial q(�), a simulator Sqthat \only" simulates all q(�)-sized circuits V �. Clearly, the running time of the simulator nowdepends on the running time of V � (which is an upper bound on the size of the schedule), andthe above problem does not occur anymore. Another (less restrictive) way to overcome the aboveproblem would be to consider a simulator Sq that "only" simulates all adversaries V � which runat most q(jxj) sessions during their execution (we stress that q(�) is chosen after the protocol isdetermined). Such simulators should run in worst-case time that is a �xed polynomial in q(jxj) andin the size of the common input x. In the sequel we choose to adopt the latter formalization.De�nition 2.5.1 (Black-Box Concurrent Zero-Knowledge) Let hP; V i be an interactive proofsystem for a language L. We say that hP; V i is black-box concurrent zero-knowledge, if for everypolynomial q(�), there exists a probabilistic polynomial-time algorithm Sq, so that for every con-current adversary circuit V � that runs at most q(jxj) concurrent sessions, Sq(x) runs in timepolynomial in q(jxj) and jxj, and satis�es that the ensembles fviewPV �(x)gx2L and fSV �q (x)gx2L arecomputationally indistinguishable.2.6 ConventionsDeviation gap and expected polynomial-time simulators: The deviation gap of a simulatorS for a proof-system hP; V i is de�ned as follows. Consider a distinguisher D that is required todecide whether its input consists of viewPV �(x) or to the transcript that was produced by S. Thedeviation gap of D is the di�erence between the probability that D outputs 1 given an output ofS, and the probability that D outputs 1 given viewPV �(x). The deviation gap of S is the deviationgap of the best polynomial time distinguisher D. In our de�nitions of concurrent zero-knowledge(De�nitions 2.4.1 and 2.5.1) the deviation gap of the simulator is required to be negligible in jxj.For our lower bound, we allow simulators that run in strict (worst case) polynomial time, andhave deviation gap at most 1=4. As for expected polynomial time simulators, one can use a standardargument to show that any simulator running in expected polynomial time, and having deviationgap at most 1=8 can be transformed into a simulator that runs in strict (worst case) polynomialtime, and has deviation gap at most 1=4. In particular, our lower bound (on simulators that run instrict polynomial time, and have deviation gap at most 1=4) extends to a lower bound on simulatorsrunning in expected polynomial time (and have deviation gap as large as 1=8).

2.6. CONVENTIONS 17Query conventions: In the lower bound, k-round protocols consist of protocols in which 2k+2messages are exchanged subject to the following conventions. The �rst message is a �xed initiationmessage by the veri�er, denoted v1, which is answered by the prover's �rst message denoted p1.The following veri�er and prover messages are denoted v2; p2; : : : ; vk+1; pk+1, where vk+1 is anACCEPT/REJECTmessage indicating whether the veri�er has accepted its input, and the last message(i.e., pk+1) is a �xed acknowledgment message sent by the prover.1 Clearly, any protocol in which2k messages are exchanged can be modi�ed to �t this form (by adding at most two messages).Both in the lower bound and the upper bound, we impose the following technical restrictionson the simulator (we claim that each of these restrictions can be satis�ed by any simulator): As in(cf. [24]), the queries of the simulator are pre�xes of possible execution transcripts (in the concurrentsetting).2 Such a pre�x is a sequence of alternating prover and veri�er messages (which may belongto di�erent sessions as determined by the �xed schedule) that ends with a prover message. Theanswer to the queries made by the simulator consists of a single veri�er message (which belongs tothe next scheduled session), and is determined by the output of the machine V � when applied tothe corresponding query (that is, the answer to query q is the message V �(q)). In the case of theupper bound, we assume that the veri�er's answers are always sent along with the identi�ers ofthe next scheduled message (as determined by V �). That is, every veri�er message is concatenatedwith the session and round number to which the next scheduled message belongs. In the case of thelower bound, this is not necessary since we are considering a �xed scheduling that is determinedin advance and known to everybody. We assume that the simulator never repeats the same querytwice. In addition, we assume that before making a query q = (b1; a1; : : : ; bt; at), where the a's areprover messages, the simulator has made queries to all relevant pre�xes (i.e., (b1; a1; : : : ; bi; ai), forevery i < t), and has obtained the bi's as answers. Finally, we assume that before producing output(b1; a1; : : : ; bT ; aT), the simulator makes the query (b1; a1; : : : ; bT ; aT).On the simulator's \behaviour": Similarly to all known black-box simulators, the simulatorpresented in Chapter 4 will go about the simulation task by means of "rewinding" the adversaryV � to past points in the interaction. That is, the simulator will explore many possible concurrentinteractions with V � by feeding it with di�erent queries of the same length (while examiningV �'s output on these queries).3 As will turn out from our proof, before making a query q =(p1; v1; : : : ; vt�1; pt), where the p's are prover messages, the simulator will always make queries toall relevant pre�xes (i.e., (p1; v1; : : : ; vi�1; pi), for every i < t), and will obtain the vi's as answers.In addition, the simulator will never make an illegal query (except with negligible probability).That is, the simulator will always feed the veri�er with messages in the prescribed format, and willmake sure that the session and message numbers of any prover message in the query are indeedconsistent with the identi�ers appearing in the preceding veri�er message. Actually, in order tosucced, the simulator does deviate from the prescribed prover strategy (and indeed sends messagesthat would have not been sent by an honest prover). However, it will do so in a way that cannotbe noticed by any probabilistic polynomial-time procedure (unless perfectly-binding commitmentsdo not exist). What we actually mean by saying that illegal queries are never made is that thesimulator will never send an ill-formed message (i.e., one that would cause an honest veri�er V toimmediately reject the protocol).1The pk+1 message is an arti�cial message included in order to \streamline" the description of the adversarialschedule (the schedule will be de�ned in Section 3.2.1).2 For sake of simplicity, we choose to omit the input x from the transcript's representation (as it is implicit in thedescription of the veri�er anyway).3Recall that every query made by the simulator corresponds to a speci�c execution transcript, and that the query'slength corresponds to the number of messages exchanged so far.

18 CHAPTER 2. PRELIMINARIESDealing with ABORT messages: Since the adversary veri�er V � may arbitrarily deviate from theprescribed strategy, it may be the case that throughout its interaction with the prover (simulator),V � occasionally sends ill-formed messages (in other words, V � may potentially refuse to decommitto a previous commitment). Clearly, such an action on behalf of the veri�er is considered illegal, andthe interaction in the relevant session stops (i.e., there is no need to continue exchanging messagesin this session). Without loss of generality, such ill-formed messages are always interpreted as somepredetermined ABORT message. For the sake of concreteness, we assume that whenever an ABORTmessage is sent by the veri�er, the prover and veri�er keep exchanging ABORT messages until therelevant session is completed. We stress that, as far as the prover (simulator) is concerned, illegalactions on behalf of the veri�er in one session do not have any e�ect on the interaction in othersessions (since in the concurrent setting each prover/veri�er pair is assumed to act independently).2.7 Commitment SchemesCommitment schemes are used to enable a party, known as the sender, to commit itself to avalue while keeping it secret from the receiver (this property is called hiding). Furthermore, thecommitment is binding, and thus in a later stage when the commitment is opened, it is guaranteedthat the \opening" can yield only a single value determined in the committing phase.Perfectly-binding commitment schemes: In a perfectly binding commitment scheme, thebinding property holds even for an all-powerful sender, while the hiding property is only guaranteedwith respect to a polynomial-time bounded receiver. For simplicity, we present the de�nition fora non-interactive, commitment scheme for a single bit. String commitment can be obtained byseparately committing to each bit in the string.We denote by Cr(b) the output of the commitment scheme C upon input b 2 f0; 1g and usingthe random string r 2R f0; 1gn (for simplicity, we assume that C uses n random bits where n 2 Nis the security parameter).De�nition 2.7.1 (Perfectly-binding commitment) A perfectly-binding bit commitment schemeis a probabilistic algorithm C satisfying the following two conditions:� Perfect Binding: Cr(0) 6= Cs(1) for every r; s 2 f0; 1gn and n 2 N .� Computational Hiding: The probability ensembles fCUn(0)gn2N and fCUn(1)gn2N are com-putationally indistinguishable.Non-interactive perfectly-binding commitment schemes can be constructed using any 1{1 one-way function (see Section 4.4.1 of [22]). Allowing some minimal interaction (in which the receiver�rst sends a single message), (almost) perfectly-binding commitment schemes can be obtained fromany one-way function [37, 32].Perfectly-hiding commitment schemes: In a perfectly hiding commitment scheme, the bindingproperty is guaranteed to hold only with respect to a probabilistic polynomial-time sender. On theother hand, the hiding property is information-theoretic. That is, the distributions of commitmentsto 0 and commitments to 1 are identical (statistically-close), and thus even an all-powerful receivercannot know the value committed to by the sender. We stress that the binding property guaranteesthat a cheating probabilistic polynomial-time sender can �nd only one decommitment, even thoughdecommitments to both 0 and 1 exist (which in particular means that an all powerful sender canalways decommit both to 0 and to 1). See [22] (Section 4.8.2) for a full de�nition.

2.7. COMMITMENT SCHEMES 19Perfectly hiding commitment schemes can be constructed from any one-way permutation [38].However, constant-round schemes are only known to exist under stronger assumptions; speci�cally,assuming the existence of collision-resistant hash functions [39, 14] or the existence of a collectionof certi�ed clawfree functions [23] (see also [22], Section 4.8.2.3).

20 CHAPTER 2. PRELIMINARIES

Chapter 3Black-Box cZK Requires (almost)Logarithmically many RoundsIn this chapter we prove that in the context of black-box cZK,
(log n= log log n) rounds of inter-action are essential for non-trivial proof systems. This bound is the �rst to rule out the possibilityof constant-round cZK, when proven via black-box simulation. Furthermore, the bound almostmatches the number of rounds in the best known cZK protocol for languages outside BPP [41](see Chapter 4). The central result of this chapter is stated in the following theorem.Theorem 3.1 (Lower Bound) Let r : N ! N be a function so that r(n) = o(log nlog log n). Supposethat hP; V i is an r(�)-round proof system for a language L, and that concurrent executions of P canbe simulated in polynomial-time using black-box simulation. Then L 2 BPP. The theorem holdseven if the proof system is only computationally-sound (with negligible soundness error) and thesimulation is only computationally-indistinguishable (from the actual executions).The proof of Theorem 3.1 builds on the works of Goldreich and Krawczyk [24], Kilian, Petrankand Racko� [36], and Rosen [43]. On a very high level, the proof proceeds by constructing a speci�cconcurrent schedule of sessions, and demonstrating that a black-box simulator cannot successfullygenerate a simulated accepting transcript for this schedule unless it \rewinds" the veri�er manytimes. The work spent on these rewindings will be super-polynomial unless the number of roundsused by the protocol obeys the bound, or L 2 BPP .While the general outline of the proof remains roughly the same as in [24, 36, 43], the actualschedule of sessions, and its analysis, are new. One main idea that, together with other ideas,enables the proof of the bound is to have the veri�er abort sessions depending on the history of theinteraction. A more detailed outline, presenting both the general structure and the new ideas inthe proof, appears in the next section.Remark: The concurrent schedule in our proof is �xed and known to everybody. As a consequence,Theorem 3.1 is actually stronger than stated. It will hold even if the simulator knows the schedulein advance (in particular, it knows the number of concurrent sessions), and even if the scheduleof the messages does not change dynamically (as a function of the history of the interaction).Moreover, the actual scheduling and the number of sessions are known even before the protocolitself is determined. 21

22 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS3.1 Proof OutlineThis section contains an outline of the proof of Theorem 3.1. The actual proof will be given inSections 3.2 and 3.3. To facilitate reading, we partition the outline into two parts: The �rst partreviews the general framework. (This part mainly follows previous works, namely [24, 36, 43].) Thesecond part concentrates on the actual schedule and the speci�cs of our lower bound argument.3.1.1 The high-level frameworkConsider a k-round Concurrent Zero Knowledge proof system hP; V i for language L, and let S bea black-box simulator for hP; V i. We use S to construct a BPP decision procedure for L. For thispurpose, we construct a family fVhg of \cheating veri�ers". To decide on an input x, run S with acheating veri�er Vh that was chosen at random from the constructed family, and decide that x 2 Li� S outputs an accepting transcript of Vh.The general structure of the family fVhg is roughly as follows. A member Vh in the family isidenti�ed via a hash function h taken from a hash-function family H having \much randomness"(or high independence). Speci�cally, the independence of H will be larger than the running timeof S. This guarantees that, for our purposes, a function drawn randomly from H behaves like arandom function. We de�ne some �xed concurrent schedule of a number of sessions between Vhand the prover. In each session, Vh runs the code of the honest veri�er V on input x and randominput h(a), where a is the current history of the (multi-session) interaction at the point where thesession starts. Vh accepts if all the copies of V accept.The proof of validity of the decision procedure is structured as follows. Say that S succeeds ifit outputs an accepting transcript of Vh. It is �rst claimed that if x 2 L then a valid simulator Smust succeed with high probability. Roughly speaking, this is so because each session behaves likethe original proof system hP; V i, and hP; V i accepts x with high probability. Demonstrating thatthe simulator almost never succeeds when x =2 L is much more involved. Given S we construct a\cheating prover" P � that makes the honest veri�er V accept x with probability that is polynomiallyrelated to the success probability of S. The soundness of hP; V i now implies that in this case Ssucceeds only with negligible probability. See details below.Session-pre�xes and useful session-pre�xes: In order to complete the high-level descriptionof the proof, we must �rst de�ne the following notions that play a central role in the analysis.Consider the conversation between Vh and a prover. A session-pre�x a is a pre�x of this conversationthat ends at the point where some new session starts (including the �rst veri�er message in thatsession). (Recall that V 's random input for that new session is set to h(a).) Next, considerthe conversation between S and Vh in some run of S. (Such a conversation may contain manyinterleaved and incomplete conversations of Vh with a prover.) Roughly speaking, a message sentby S to the simulated Vh is said to have session pre�x a if it relates to the session where the veri�errandomness is h(a). A session-pre�x a is called useful in a run of S if:1. It was accepted (i.e., Vh sent an ACCEPT message for session-pre�x a).2. Vh has sent exactly k + 1 messages for session-pre�x a.Loosely speaking, Condition 2 implies that S did not rewind the relevant session-pre�x, whererewind session-pre�x a is an informal term meaning that S rewinds Vh to a point where Vh providesa second continuation for session-pre�x a. By rewinding session-pre�x a, the simulator is able toobtain more than k+1 veri�er messages for session-pre�x a. This is contrast to an actual executionof the protocol hP; V i in which V sends exactly k + 1 messages.

3.1. PROOF OUTLINE 23The construction of the cheating prover: Using the above terms, we sketch the constructionof the cheating prover P �. It �rst randomly chooses a function h r H and an index (of a session-pre�x) i. It then emulates an interaction between S and Vh, with the exception that P � uses themessages sent by S that have the ith session-pre�x as the messages that P � sends to the actualveri�er it interacts with; similarly, it uses the messages received from the actual veri�er V instead ofVh's messages in the ith session-pre�x. The strategy of the cheating prover is depicted in Figure 3.1.S VhEmulated interactionbetween S and Vh(Multiple sessions) P � Actual interactionbetween P � and V(Single session)
V

Figure 3.1: Describes the strategy of the cheating prover P �. The box on the left hand side repre-sents the (multiple session) emulation of the interaction between S and Vh (executed \internally"by P �). The box on the right hand side represents the actual execution of a single session betweenP � and V . (Recall that P � relays some of the actual interaction messages to its internal emulation.)The success probability of the cheating prover: We next claim that if the session-pre�xchosen by P � is useful, then hP �; V i(x) accepts. The key point is that whenever P � choosesan useful session-pre�x, the following two conditions (corresponding to the two conditions in thede�nition of a useful session-pre�x) are satis�ed:1. The session corresponding to the ith session-pre�x is accepted by Vh (and so by V).2. P � manages to reach the end of the hP �; V i interaction without \getting into trouble".1Loosely speaking Item (1) is implied by Condition (1) in the de�nition of a useful session-pre�x.As for Item (2), this just follows from the fact that S does not rewind the ith session-pre�x (asimplied by Condition (2) in the de�nition of a useful session-pre�x). In particular, P � (playing therole of Vh) will not have to send the jth veri�er message with the ith session-pre�x more than onceto S (since the number of messages sent by Vh for that session-pre�x is exactly k + 1).Since the number of session-pre�xes in an execution of S is bounded by a polynomial, it followsthat if the conversation between S and Vh contains a useful session-pre�x with non-negligibleprobability, then hP �; V i(x) accepts with non-negligible probability.3.1.2 The schedule and additional ideasUsing the above framework, the crux of the lower bound is to come up with a schedule and Vh'sthat allow demonstrating that whenever S succeeds, the conversation between S and Vh contains auseful session-pre�x (as we have argued above, it is in fact su�cient that the conversation betweenS and Vh contains a useful session-pre�x with non-negligible probability). This is done next.1The problem is that P � does not know V 's random coins, and so it cannot compute the veri�er's answers byhimself. Thus, whenever P � is required in the emulation to send the jth veri�er message in the protocol more thanonce to S it might get into trouble (since it gets the jth veri�er message only once from V).

24 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSThe 2-round case: Our starting point is the schedule used in [36] to demonstrate the impossibil-ity of black-box concurrent zero-knowledge with protocols in which 4 messages are exchanged (i.e.,v1; p1; v2; p2). The schedule is recursive and consists of n concurrent sessions (n is polynomiallyrelated to the security parameter). Given parameter m � n, the scheduling on m sessions (denotedRm) proceeds as follows (see Figure 3.2 for a graphical description):1. If m = 1, the relevant session exchanges all of its messages (i.e., v1; p1; v2; p2).2. Otherwise (i.e., if m > 1):Initial message exchange: The �rst session (out of m) exchanges 2 messages (i.e., v1; p1);Recursive call: The schedule is applied recursively on the remaining m� 1 sessions;Final message exchange: The �rst session (out of m) exchanges 2 messages (i.e., v2; p2).At the end of each session Vh continues in the interaction if and only if the transcript of the sessionthat has just terminated would have been accepted by the prescribed veri�er V . This means thatin order to proceed beyond the ending point of the `th session, the simulator must make the honestveri�er accept the sth session for all s > `.(a) (b)1 2 mv1p1 () () . . . ()(): . .()v2p2 ()
1 2 mv1p1 () Rm�1v2p2 ()Figure 3.2: The \telescopic" schedule used to demonstrate impossibility of black-box concurrentzero-knowledge in 2 rounds. Columns correspond to n individual sessions and rows correspond tothe time progression. (a) Depicts the schedule explicitly. (b) Depicts the schedule in a recursivemanner (Rm denotes the recursive schedule for m sessions).Suppose now that S succeeds in simulating the above Vh but the conversation between S andVh does not contain a useful session-pre�x. Since Vh proceeds beyond the ending point of a sessiononly if this session is accepted, then the only reason for which the corresponding session-pre�x canbe non-useful is because S has rewound that session-pre�x. Put in other words, a session-pre�xbecomes non-useful if and only if S resends the �rst prover message in the protocol (i.e., p1).2 Thisshuld cause Vh to resend the second veri�er message (i.e., v2), thus violating Condition (2) in thede�nition of a useful session-pre�x (see 22).2Notice that the �rst prover message in the protocol (i.e., p1) is the only place in which rewinding the interactionmay cause a session-pre�x to be non-useful. The reason for this is that the �rst veri�er message in the protocol (i.e.,v1) is part of the session-pre�x. Rewinding past this message (i.e., v1) would modify the session-pre�x itself. As forp2, it is clear that rewinding this message would not cause any change in veri�er messages that correspond to therelevant session-pre�x (since, v1 and v2 occur after p2 anyway).

3.1. PROOF OUTLINE 25The key observation is that whenever the �rst prover message in the `th session is modi�ed,then so is the session-pre�x of the sth session for all s > `. Thus, whenever S resends the �rstprover message in the `th session, it must do so also in the sth session for all s > ` (since otherwisethe \fresh" session-pre�x of the sth session, that is induced by resending the above message, willbe useful). But this means that the work W (m), invested in the simulation of a schedule withm levels, must satisfy W (m) � 2 � W (m � 1) for all m. Thus, either the conversation betweenVh and S contains a useful session-pre�x (in which case we are done), or the simulation requiresexponential-time (since W (m) � 2 �W (m� 1) solves to W (n) � 2n�1).The k-round case { �rst attempt: A �rst attempt to generalize this schedule to the case of krounds may proceed as follows. Given parameter m � n do:1. If m = 1, the relevant session exchanges all of its messages (i.e., v1; p1; : : : ; vk+1; pk+1).2. Otherwise, for j = 1; : : : ; k + 1:Message exchange: The �rst session (out of m) exchanges two messages (i.e., vj ; pj);Recursive call: If j < k + 1, the scheduling is applied recursively on bm�1k c new sessions;(This is done using the next bm�1k c remaining sessions out of 2; : : : ;m.)As before, at the end of each session Vh continues in the interaction if and only if the transcript ofthe session that has just terminated would have been accepted by the prescribed veri�er V . Theschedule is depicted in Figure 3.3. 1 2 mv1p1 () Rm�1kv2p2 (): :: :: :vj�1pj�1 () Rm�1kvjpj (): :: :: :vkpk () Rm�1kvk+1pk+1 ()Figure 3.3: First attempt to generalize the recursive schedule for k-round protocols.

26 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSThe crucial problem of the above schedule is that one can come up with a k-round protocol anda corresponding simulator that manages to succesfully simulate Vh and cause all session-pre�xesin its conversation with Vh to be non-useful. Speci�cally, there exist protocols (cf. [42]) in whichthe simulator is required to successfully rewind an honestly behaving veri�er exactly once for everysession. Whereas in the case of 2-rounds this could have had devastating consequences (since, inthe case of the previous schedule, it would have impliedW (m) � (k+1) �W (m�1) = 2 �W (m�1),which solves to W (n) � 2n�1), in the general case (i.e., when k + 1 > 2) any rewinding of theschedule that we have suggested would have forced the simulator to re-invest simulation \work"only for m�1k sessions. Note that such a simulator satis�es W (m) = (k+1) �W (m�1k), which solvesto kO(logk n) = nO(1). In particular, by investing polynomial amount of work the simulator is ableto make all session-pre�xes not useful while succesfully simulating all sessions.The k-round case { second attempt: One method to circumvent this di�culty was usedin [43]. However, that method extends the lower bound only up to 3 rounds (more precisely, 7messages). Here we use a di�erent method. What we do is let the cheating veri�er abort (i.e., refuseto answer) every message in the schedule with some predetermined probability (independently ofother messages). To do this, we �rst add another, binary hash function, g, to the speci�cationof Vh. This hash function is taken from a family G with su�cient independence, so that it lookslike a random binary function. Now, before generating the next message in some session, Vg;h �rstapplies g to some predetermined part of the conversation so far. If g returns 0 then Vg;h aborts thesession by sending an ABORT message. If g returns 1 then Vg;h is run as usual.The rationale behind the use of aborts can be explained as follows. Recall that a session-pre�xa stops being useful only when Vg;h sends more than k messages whose session-pre�x is a. Thismeans that a stops being useful only if S rewinds the session-pre�x a and in addition g returns 1in at least two of the continuations of a. This means that S is expected to rewind session-pre�xa several times before it stops being useful. Since each rewinding of a involves extra work of Son higher-level sessions, this may force S to invest considerably more work before a session stopsbeing useful.A bit more speci�cally, let p denote the probability, taken over the choice of g, that g returns 1on a given input. In each attempt, the session is not aborted with probability p. Thus S is expectedto rewind a session pre�x 1=p times before it becomes non-useful. This gives hope that, in orderto make sure that no session-pre�x is useful, S must do work that satis�es a condition of the sort:W (m) �
(1=p) �W �m�1k � (3.1)This would mean that the work required to successfully simulate n sessions and make all session-pre�xes non-useful is at least
(p� logk n). Consequently, when the expression p� logk n is super-polynomial there is hope that the conversation between S and Vh contains a useful session-pre�xwith non-negligible probability.The k-round case { �nal version: However, demonstrating Eq. (3.1) brings up the followingdi�culty. Once the veri�er starts aborting sessions, the probability that a session is ever completedmay become too small. As a consequence, it is not clear anymore that the simulator must investsimulation \work" for all sessions in the schedule. It may very well be the case that the simulatorwill go about the simulation task while \avoiding" part of the simulation \work" in some recursiveinvocations (as some of these invocations may be aborted anyway during the simulation). In

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 27other words, there is no guarantee that the recursive \work" invested by the simulator behaveslike Eq. (3.1).To overcome this problem, we replace each session in the above schedule (for k rounds) witha \block" of, say, n sessions (see Figure 3.4 in Page 29). We now have n2 sessions in a schedule.(This choice of parameters is arbitrary, and is made for convenience of presentation.) Vg;h acceptsa block of n sessions if at least 1/2 of the non-aborted sessions in this block were accepted and nottoo many of the sessions in this block were aborted. Once a block is rejected, Vg;h halts. At the endof the execution, Vg;h accepts if all blocks were accepted. The above modi�cation guarantees that,with a careful setting of the parameters, the simulator's recursive \work" must satisfy Eq. (3.1), atleast with overwhelming probability.Setting the value of p: It now remains to set the value of p so that Eq. (3.1) is established.Clearly, the smaller p is chosen to be, the larger p� logk n is. However, p cannot be too small,or else the probability of a session to be ever completed will be too small, and Condition (1) inthe de�nition of a useful session-pre�x (See Page 22) will not be satis�ed. Speci�cally, a k-roundprotocol is completed with probability pk. We thus have to make sure that pk is not negligible (andfurthermore that pk � n� 1).In the proof we set p = n�1=2k. This will guarantee that a session is completed with probabilitypk = n�1=2 (thus Condition (1) has hope to be satis�ed). Furthermore, since p� logk n is super-polynomial whenever k = o(log n= log log n), there is hope that Condition (2) in the de�nition of auseful session-pre�x (See Page 22) will be satis�ed for k = o(log n= log log n).3.1.3 The actual analysisDemonstrating that there exist many accepted session-pre�xes is straightforward. Demonstratingthat one of these session-pre�xes is useful requires arguing on the dependency between the expectedwork done by the simulator and its success probability. This is a tricky business, since the choicesmade by the simulator (and in particular the amount of e�ort spent on making each session non-useful) may depend on past events.We go about this task by pinpointing a special (combinatorial) property that holds for anysuccessful run of the simulator, unless the simulator runs in super-polynomial time (Lemma 3.3.9).Essentially, this property states that there exists a block of sessions such that none of the session-pre�xes in this block were rewound too many times. Using this property, we show (in Lemma3.3.7) that the probability (over the choices of Vg;h and the simulator) that a run of the simulatorcontains no useful session-pre�x is negligible.3.2 The Actual Proof (of Theorem 3.1)Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-rem 3.1 exists, we will describe a probabilistic polynomial-time decision procedure for L, based onS. The �rst step towards describing the decision procedure for L involves the construction of anadversary veri�er in the concurrent model. This is done next.3.2.1 The concurrent adversarial veri�erThe description of the adversarial strategy proceeds in several steps. We start by describing theunderlying �xed schedule of messages. Once the schedule is presented, we describe the adversary'sstrategy regarding the contents of the veri�er messages.

28 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSThe scheduleFor each x 2 f0; 1gn, we consider the following concurrent scheduling of n2 sessions, all run oncommon input x.3 The scheduling is de�ned recursively, where the scheduling of m � n2 sessions(denoted Rm) proceeds as follows:41. If m � n, sessions 1; : : : ;m are executed sequentially until they are all completed;2. Otherwise, for j = 1; : : : ; k + 1:Message exchange: Each of the �rst n sessions exchanges two messages (i.e., vj ; pj);(These �rst n sessions out of f1; : : : ;mg will be referred to as the main sessions of Rm.)Recursive call: If j < k + 1, the scheduling is applied recursively on bm�nk c new sessions;(This is done using the next bm�nk c remaining sessions out of 1; : : : ;m.)The schedule is depicted in Figure 3.4. We stress that the veri�er typically postpones its answer(i.e., vj) to the last prover's message (i.e., pj�1) till after a recursive sub-schedule is executed, andthat in the jth iteration of Step 2, bm�nk c new sessions are initiated (with the exception of the�rst iteration, in which the �rst n (main) sessions are initiated as well). The order in which themessages of various sessions are exchanged (in the �rst part of Step 2) is �xed but immaterial.Say that we let the �rst session proceed, then the second and so on. That is, we have the orderv(1)j ; p(1)j ; : : : ; v(n)j ; p(n)j , where v(i)j (resp., p(i)j) denotes the veri�er's (resp., prover's) jth message inthe ith session.The set of n sessions that are explicitly executed during the message exchange phase of therecursive invocation (i.e., the main sessions) is called a recursive block. (Notice that each recursiveblock corresponds to exactly one recursive invocation of the schedule.) Taking a closer look at theschedule we observe that every session in the schedule is explicitly executed in exactly one recursiveinvocation (that is, belongs to exactly one recursive block). Since the total number of sessions inthe schedule is n2, and since the message exchange phase in each recursive invocation involves theexplicit execution of n sessions (in other words, the size of each recursive block is n), we have thatthe total number of recursive blocks in the schedule equals n. Since each recursive invocation of theschedule involves the invocation of k additional sub-schedules, the recursion actually correspondsto a k-ary tree with n nodes. The depth of the recursion is thus blogk((k � 1)n + 1)c, and thenumber of \leaves" in the recursion (i.e., sub-schedules of size at most n) is at least b (k�1)n+1k c.Identifying sessions according to their recursive block: To simplify the exposition of theproof, it will be convenient to associate every session appearing in the schedule with a pair ofindices (`; i) 2 f1; : : : ; ng � f1; : : : ; ng, rather than with a single index s 2 f1; : : : ; n2g. Thevalue of ` = `(s) 2 f1; : : : ; ng will represent the index of the recursive block to which session sbelongs (according to some canonical enumeration of the n invocations in the recursive schedule,say according to the order in which they are invoked), whereas the value of i = i(s) 2 f1; : : : ; ngwill represent the index of session s within the n sessions that belong to the `th recursive block (inother words, session (`; i) is the ith main session of the `th recursive invocation in the schedule).Typically, when we explicitly refer to messages of session (`; i), the index of the corresponding3Recall that each session consists of 2k + 2 messages, where k def= k(n) = o(log n= log log n).4In general, we may want to de�ne a recursive scheduling for sessions i1; : : : ; im and denote it by Ri1;:::;im (seeSection 8.1 in the Appendix for a more formal description of the schedule). We choose to simplify the exposition byrenaming these sessions as 1; : : : ;m and denote the scheduling by Rm.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 29recursive block (i.e., `) is easily deducible from the context. In such cases, we will sometimes omitthe index ` from the \natural" notation v(`;i)j (resp. p(`;i)j), and stick to the notation v(i)j (resp. p(i)j).Note that the values of (`; i) and the session index s are completely interchangeable (in particular,` = s div n and i = s mod n).De�nition 3.2.1 (Identi�ers of next message) The schedule de�nes a mapping from partialexecution transcripts ending with a prover message to the identi�ers of the next veri�er message;that is, the session and round number to which the next veri�er message belongs. (Recall thatsuch partial execution transcripts correspond to queries of a black-box simulator and so the map-ping de�nes the identi�er of the answer:) For such a query q = (b1; a1; : : : ; bt; at), we denote by�sn(q) = (`; i) 2 f1; : : : ; ng � f1; : : : ; ng the session to which the next veri�er message belongs, andby �msg(q) = j 2 f1; : : : ; k + 1g its index within the veri�er's messages in this session.We stress that the identi�ers of the next message are uniquely determined by the number of messagesappearing in the query (and are not a�ected by the contents of these messages).1 2 n n+ 1 mv1p1 () () : . . () Rm�nkv2p2 () () : . . (): :: :: :vj�1pj�1 () () : . . () Rm�nkvjpj () () : . . (): :: :: :vkpk () () : . . () Rm�nkvk+1pk+1 () () : . . ()Figure 3.4: The recursive schedule Rm form sessions. Columns correspond to m individual sessionsand rows correspond to the time progression.

30 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSTowards constructing an adversarial veri�erOnce the identi�ers of the next veri�er message are deduced from the query's length, one has tospecify a strategy according to which the contents of the next veri�er message will be determined.Loosely speaking, our adversary veri�er has two options: It will either send the answer that wouldhave been sent by an honest veri�er (given the messages in the query that are relevant to the currentsession), or it will choose to deviate from the honest veri�er strategy and abort the interaction inthe current session (this will be done by answering with a special ABORT message). Since in anon-trivial zero-knowledge proof system the honest veri�er is always probabilistic (cf. [27]), andsince the \abort behaviour" of the adversary veri�er should be \unpredictable" for the simulator,we have that both options require a source of randomness (either for computing the contentsof the honest veri�er answer or for deciding whether to abort the conversation). As is alreadycustomary in works of this sort [24, 36, 43], we let the source of randomness be a hash functionwith su�ciently high independence (which is \hard-wired" into the veri�er's description), andconsider the execution of a black-box simulator that is given access to such a random veri�er.(Recall that the simulator's queries correspond to partial execution transcripts and thus containthe whole history of the interaction so far.)Determining the randomness for a session: Focusing (�rst) on the randomness required tocompute the honest veri�er's answers, we ask what should the input of the above hash functionbe. A naive solution would be to let the randomness for a session depend on the session's index.That is, to obtain randomness for session (`; i) = �sn(q) apply the hash function on the value(`; i). This solution will indeed imply that every two sessions have independent randomness (asthe hash function will have di�erent inputs). However, the solution seems to fail to capture thedi�culty arising in the simulation (of multiple concurrent sessions). What we would like to have isa situation in which whenever the simulator rewinds a session (that is, feeds the adversary veri�erwith a di�erent query of the same length), it causes the randomness of some other session (say, onelevel down in the recursive schedule) to be completely modi�ed. To achieve this, we must causethe randomness of a session to depend also on the history of the entire interaction. Changing evena single message in this history would immediately result in an unrelated instance of the currentsession, and would thus force the simulator to redo the simulation work on this session all over again.So where in the schedule should the randomness of session (`; i) be determined? On the onehand, we would like to determine the randomness of a session as late as possible (in order tomaximize the e�ect of changes in the history of the interaction on the randomness of the session).On the other hand, we cannot a�ord to determine the randomness after the session's initiatingmessage is scheduled (since the protocol's speci�cation may require that the veri�er's randomnessis completely determined before the �rst veri�er message is sent). For technical reasons, the point inwhich we choose to determine the randomness of session (`; i) is the point in which recursive blocknumber ` is invoked. That is, to obtain the randomness of session (`; i) = �sn(q) we feed the hashfunction with the pre�x of query q that ends just before the �rst message in block number ` (thispre�x is called the block-pre�x of query q and is de�ned below). In order to achieve independencewith other sessions in block number `, we will also feed the hash function with the value of i.This (together with the above choice) guarantees us the following properties: (1) The input to thehash function (and thus the randomness for session (`; i)) does not change once the interaction inthe session begins (that is, once the �rst veri�er message is sent). (2) For every pair of di�erentsessions, the input to the hash function is di�erent (and thus the randomness for each session isindependent). (3) Even a single modi�cation in the pre�x of the interaction up to the �rst messagein block number `, induces fresh randomness for all sessions in block number `.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 31De�nition 3.2.2 (Block-pre�x) The block-pre�x of a query q satisfying �sn(q) = (`; i), is thepre�x of q that is answered with the �rst veri�er message of session (`; 1) (that is, the �rstmain session in block number `). More formally, bp(q) = (b1; a1; : : : ; b ; a) is the block-pre�xof q = (b1; a1; : : : ; bt; at) if �sn(bp(q)) = (`; 1) and �msg(bp(q)) = 1. The block-pre�x will be said tocorrespond to recursive block number `.5 (Note that i may be any index in f1; : : : ; ng, and that atneed not belong to session (`; i).)Determining whether and when to abort sessions: Whereas the randomness that is usedto compute the honest veri�er's answers in each session is determined before a session begins, therandomness that is used in order to decide whether to abort a session is chosen independently everytime the execution of the schedule reaches the next veri�er message in this session. As before, therequired randomness is obtained by applying a hash function on the suitable pre�x of the executiontranscript. This time, however, the length of the pre�x increases each time the execution of thesession reaches the next veri�er message (rather than being �xed for the whole execution of thesession). This way, the decision of whether to abort a session also depends on the contents ofmessages that were exchanged after the initiation of the session has occurred. Speci�cally, in orderto decide whether to abort session (`; i) = �sn(q) at the jth message (where j = �msg(q)), we feedthe hash function with the pre�x (of query q) that ends with the (j�1)st prover message in the nthmain session of block number `. (As before, the hash function is also fed with the value of i (in orderto achieve independence from other sessions in the block).) This pre�x is called the iteration-pre�xof query q and is de�ned next (see Figure 3.5 for a graphical description of the block-pre�x anditeration-pre�x of a query).De�nition 3.2.3 (Iteration-pre�x) The iteration-pre�x of a query q satisfying �sn(q) = (`; i)and �msg(q) = j > 1, is the pre�x of q that ends with the (j�1)st prover message in session(`; n) (that is, the nth main session in block number `). More formally, ip(q) = (b1; a1; : : : ; b�; a�)is the iteration-pre�x of q = (b1; a1; : : : ; bt; at) if a� is of the form p(n)j�1 (where p(n)j�1 denotes the(j�1)st prover message in the nth main session of block number `). This iteration-pre�x is saidto correspond to the block-pre�x of q. (Again, note that i may be any index in f1; : : : ; ng, andthat at need not belong to session (`; i). Also, note that the iteration-pre�x is de�ned only for�msg(q) > 1.)We stress that two queries q1; q2 may have the same iteration-pre�x even if they do not correspondto the same session. This could happen whenever bp(q1) = bp(q2) and �msg(q1) = �msg(q2) (whichis possible even if �sn(q1) 6= �sn(q2)).Motivating De�nitions 3.2.2 and 3.2.3: The choices made in De�nitions 3.2.2 and 3.2.3are designed to capture the di�culties encountered whenever many sessions are to be simulatedconcurrently. As was previously mentioned, we would like to create a situation in which everyattempt of the simulator to rewind a speci�c session will result in loss of work done for othersessions (and so will cause the simulator to do the same amount of work all over again). In orderto force the simulator to repeat each such rewinding attempt many times, we make each rewindingattempt fail with some predetermined probability (by letting the veri�er send an ABORT messageinstead of a legal answer).65In the special case that ` = 1 (that is, we are in the �rst block of the schedule), we de�ne bp(q) =?.6Recall that all of the above is required in order to make the simulator's work accumulate to too much, andeventually cause its running time to be super-polynomial.

32 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS1 2 n n+ 1v1p1 () () : . . () Rm�nkv2p2 () () : . . (): :: :: :vj�1pj�1 () () : . . () Rm�nkvjpj () �� ��...
...

...
........................

...(b)

(a)

Figure 3.5: Determining the pre�xes of query q (in this example, query q ends with a p(1)j messageand is to be answered by v(2)j , represented by the marked arrow): (a) indicates the block-pre�xof q (i.e., messages up to this point are used by Vg;h to determine the randomness to be used forcomputing message v(2)j). (b) indicates the iteration-pre�x of q (i.e., messages up to this point areused by Vg;h to determine whether or not message v(2)j will be set to ABORT).To see that De�nitions 3.2.2 and 3.2.3 indeed lead to the ful�llment of the above requirements,we consider the following example. Suppose that at some point during the simulation, the adversaryveri�er aborts session (`; i) at the jth message (while answering query q). Further suppose that (forsome unspeci�ed reason) the simulator wants to to get a \second chance" in receiving a legal answerto the jth message in session (`; i) (hoping that it will not receive the ABORT message again). Recallthat the decision of whether to abort a session depends on the outcome of a hash function whenapplied to the iteration-pre�x ip(q), of query q. In particular, to obtain a \second chance", theblack-box simulator has no choice but to change at least one prover message in the above iteration-pre�x (in other words, the simulator must rewind the interaction to some message occurring initeration-pre�x ip(q)). At �rst glance it may seem that the e�ect of changes in the iteration-pre�xof query q is con�ned to the messages that belong to session (`; i) = �sn(q) (or at most, to messagesthat belong to other sessions in block number `). However, taking a closer look at the schedule, weobserve that every iteration-pre�x (and in particular ip(q)) can also be viewed as the block-pre�x ofa recursive block one level down in the recursive construction. Viewed this way, it is clear that thee�ect of changes in ip(q) is not con�ned only to messages that correspond to recursive block number`, but rather extends also to sessions at lower levels in the recursive schedule. By changing even asingle message in iteration-pre�x ip(q), the simulator is actually modifying the block-pre�x of allrecursive blocks in a sub-schedule one level down in the recursive construction. This means thatthe randomness for all sessions in these blocks is completely modi�ed (recall that the randomnessof a session is determined by applying a hash function on the corresponding block-pre�x), and thatall the simulation work done for these sessions is lost. In particular, by changing even a singlemessage in iteration-pre�x ip(q), the simulator will �nd himself doing the simulation work for theselower-level sessions all over again.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 33Having established the e�ect of changes in iteration-pre�x ip(q) on sessions at lower levels in therecursive schedule, we now turn to examine the actual e�ect on session (`; i) = �sn(q) itself. Onepossible consequence of changes in iteration-pre�x ip(q) is that they may also e�ect the contentsof the block-pre�x bp(q) of query q (notice that, by de�nition, the block-pre�x bp(q) of query qis contained in the iteration-pre�x ip(q) of query q). Whenever this happens, the randomnessused for session (`; i) is completely modi�ed, and all simulation work done for this session will belost. A more interesting consequence of a change in the contents of iteration-pre�x ip(q), is thatit will result in a completely independent decision of whether session (`; i) is to be aborted at thejth message (the decision of whether to abort is taken whenever the simulator makes a query qsatisfying �sn(q) = (`; i), and �msg(q) = j). In other words, each time the simulator attempts to geta \second chance" in receiving a legal answer to the jth message in session (`; i) (by rewinding theinteraction to a message that belongs to iteration-pre�x ip(q)), it faces the risk of being answeredwith an ABORT message independently of all previous rewinding attempts.3.2.2 The actual veri�er strategy Vg;hWe consider what happens when a simulator S (for the above schedule) is given oracle access to averi�er strategy Vg;h de�ned as follows (depending on hash functions g; h and the input x). Recallthat we may assume that S runs in strict polynomial time: we denote such time bound by tS(�).Let G denote a small family of tS(n)-wise independent hash functions mapping poly(n)-bit longsequences into a single bit of output, so that for every � we have Prg G[g(�) = 1] = n�1=2k. Let Hdenote a small family of tS(n)-wise independent hash functions mapping poly(n)-bit long sequencesto �V (n)-bit sequences, so that for every � we have Prh H [h(�) = 1] = 2��V (n) (where �V (n) isthe number of random bits used by an honest veri�er V on an input x 2 f0; 1gn).7 We describea family fVg;hgg2G;h2H of adversarial veri�er strategies (where x is implicit in Vg;h). On queryq = (b1; a1; : : : ; at�1; bt; at), the veri�er acts as follows:1. First, Vg;h checks if the execution transcript given by the query is legal (i.e., corresponds to apossible execution pre�x), and halts with a special ERROR message if the query is not legal.82. Next, Vg;h determines the block-pre�x, bp(q) = (b1; a1; : : : ; b ; a), of query q. It also deter-mines the identi�ers of the next-message (`; i) = �sn(q) and j = �msg(q), the iteration-pre�xip(q) = (b1; a1; : : : ; b� ; p(n)j�1), and the j�1 prover messages of session i appearing in query q(which we denote by p(i)1 ; : : : ; p(i)j�1).(Motivating discussion: The next message is the jth veri�er message in the ith session of block `.The value of the block-pre�x, bp(q), is used in order to determine the randomness of session (`; i),whereas the value of the iteration-pre�x, ip(q), is used in order to determine whether session (`; i)is about to be aborted at this point (i.e., jth message) in the schedule (by answering with a specialABORT message).)3. If j = 1, then Vg;h answers with the veri�er's �xed initiation message for session i (i.e., v(i)1).4. If j > 1, then Vg;h determines bi;j = g(i; ip(q)) (i.e., a bit deciding whether to abort session i):7We stress that functions in such families can be described by strings of polynomial length in a way that enablespolynomial time evaluation (cf. [34, 11, 12, 1]).8In particular, Vg;h checks whether the query is of the prescribed format (as described in Section 2.6, and asdetermined by the schedule), and that the contents of its messages is consistent with Vg;h's prior answers. (That is,for every proper pre�x q0 = (b1; a1; : : : ; bu; au) of query q = (b1; a1; : : : ; bt; at), the veri�er checks whether the valueof bu+1 (as it appears in q) is indeed equal to the value of Vg;h(q0).)

34 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS(a) If bi;j = 0, then Vg;h sets v(i)j = ABORT (indicating that Vg;h aborts session i).(b) If bi;j = 1, then Vg;h determines ri = h(i; bp(q)) (as coins to be used by V), and computesthe message v(i)j = V (x; ri; p(i)1 ; : : : ; p(i)j�1) that would have been sent by the honest veri�eron common input x, random-pad ri, and prover's messages p(i)1 ; : : : ; p(i)j�1.(c) Finally, Vg;h answers with v(i)j .Dealing with ABORT messages: Note that, once Vg;h has aborted a session, the interaction inthis session essentially stops, and there is no need to continue exchanging messages in this session.However, for simplicity of exposition we assume that the veri�er and prover stick to the �xedschedule of Section 3.2.1 and exchange ABORT messages whenever an aborted session is scheduled.Speci�cally, if the jth veri�er message in session i is ABORT then all subsequent prover and veri�ermessages in that session will also equal ABORT.On the arguments to g and h: The hash function h, which determines the random input forV in a session, is applied both on i (the identi�er of the relevant session within the current block)and on the entire block-pre�x of the query q. This means that even though all sessions in a speci�cblock have the same block-pre�x, for every pair of two di�erent sessions, the corresponding randominputs of V will be independent of each other (as long as the number of applications of h does notexceed tS(n), which is indeed the case in our application). The hash function g, which determineswhether and when the veri�er aborts sessions, is applied both on i and on the entire iteration-pre�xof the query q. As in the case of h, the decision whether to abort a session is independent fromthe same decision for other sessions (again, as long as g is not applied more than tS(n) times).However, there is a signi�cant di�erence between the inputs of h and g: Whereas the input of his �xed once i and the block-pre�x are �xed (and is une�ected by mesages that belong to thatsession), the input of g varies depending on previous messages sent in that session. In particular,whereas the randomness of a session is completely determined once the session begins, the decisionof whether to abort a session is taken independently each time that the schedule reaches the nextveri�er message of this session.On the number of di�erent pre�xes that occur in interactions with Vg;h: Since the num-ber of recursive blocks in the schedule is equal to n, and since there is a one-to-one correspondencebetween recursive blocks and block-pre�xes, we have that the number of di�erent block-pre�xesthat occur during an interaction between an honest prover P and the veri�er Vg;h is always equalto n. Since the number of iterations in the message exchange phase of a recursive invocation ofthe schedule equals k + 1, and since there is a one-to-one correspondence between such iterationsand iteration-pre�xes9 we have that the number of di�erent iteration-pre�xes that occur during aninteraction between and honest prover P and the veri�er Vg;h, is always equal to k � n (that is, kdi�erent iteration-pre�xes for each one of the n recursive invocations of the schedule). In contrast,the number of di�erent block-pre�xes (resp., iteration-pre�xes), that occur during an executionof a black-box simulator S that is given oracle access to Vg;h, may be considerably larger than n(resp., k � n). The reason for this is that there is nothing that prevents the simulator from feedingVg;h with di�erent queries of the same length (this corresponds to the so called rewinding of aninteraction). Still, the number of di�erent pre�xes in an execution of S is always upper boundedby the running time of S; that is, tS(n).9The only exception is the �rst iteration in the message exchange phase. Since only queries q that satisfy �msg(q)>1have an iteration-pre�x, the �rst iteration will never have a corresponding iteration-pre�x.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 35On the probability that a session is never aborted: A typical interaction between anhonest prover P and the veri�er Vg;h will contain sessions whose execution has been aborted priorto completion. Recall that at each point in the schedule, the decision of whether or not to abort thenext scheduled session depends on the outcome of g. Since the function g returns 1 with probabilityn�1=2k, a speci�c session is never aborted with probability (n�1=2k)k = n�1=2. Using the fact thatwhenever a session is not aborted, Vg;h operates as the honest veri�er, we infer that the probabilitythat a speci�c session is eventually accepted by Vg;h is at least 1=2 times the probability that thevery same session is never aborted (where 1=2 is an arbitrary lower bound on the completenessprobability of the protocol). In other words, the probability that a session is accepted by Vg;h isat least n�1=22 . In particular, for every set of n sessions, the expected number of sessions that areeventually accepted by Vg;h (when interacting with the honest prover P) is at least n � n�1=22 = n1=22 ,and with overwhelming high probability at least n1=24 sessions are accepted by Vg;h.A slight modi�cation of the veri�er strategy: To facilitate the analysis, we slightly modifythe veri�er strategy Vg;h so that it does not allow the number of accepted sessions in the historyof the interaction to deviate much from its \expected behavior". Loosely speaking, given a pre�xof the execution transcript (ending with a prover message), the veri�er will check whether therecursive block that has just been completed contains at least n1=24 accepted sessions. (To this end,it will be su�cient to inspect the history of the interaction only when the execution of the schedulereaches the end of a recursive block. That is, whenever the schedule reaches the last prover messagein the last session of a recursive block (i.e., some p(n)k+1 message).) The modi�ed veri�er strategy(which we continue to denote by Vg;h), is obtained by adding to the original strategy an additionalStep 1' (to be executed after Step 1 of Vg;h):1'. If at is of the form p(n)k+1 (i.e., in case query q = (b1; a1; : : : ; bt; at) ends with the last provermessage of the nth main session of a recursive block), Vg;h checks whether the transcriptq = (b1; a1; : : : ; bt; p(n)k+1) contains the accepting conversations of at least n1=24 main sessionsin the block that has just been completed. In case it does not, Vg;h halts with a specialDEVIATION message (indicating that the number of accepted sessions in the block that hasjust been completed deviates from its expected value).Motivating discussion: Since the expected number of accepted sessions in a speci�c block isat least n1=22 , the probability that the block contains less than n1=24 accepted sessions is negligible.Still, the above modi�cation is not superuous (even though it refers to events that occur only withnegligible probability): It allows us to assume that every recursive block that is completed duringthe simulation (including those that do not appear in the simulator's output) contains at leastn1=24 accepted sessions. In particular, whenever the simulator feeds Vg;h with a partial executiontranscript (i.e., a query), we are guaranteed that for every completed block in this transcript, thesimulator has indeed \invested work" to simulate the at least n1=24 accepted sessions in the block.A slight modi�cation of the simulator: Before presenting the decision procedure, we slightlymodify the simulator so that it never makes a query that is answered with either the ERROR orDEVIATION messages by the veri�er Vg;h. Note that the corresponding condition can be easilychecked by the simulator (which can easily produce this special message by itself),10 and that10We stress that, as opposed to the ERROR and DEVIATION messages, the simulator cannot predict whether its queryis about to be answered with the ABORT message.

36 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSthe modi�cation does not e�ect the simulator's output. From this point on, when we talk of thesimulator (which we continue to denote by S) we mean the modi�ed one.3.2.3 The decision procedure for LWe are now ready to describe a probabilistic polynomial-time decision procedure for L, based onthe black-box simulator S and the veri�er strategies Vg;h. On input x 2 f0; 1gn, the procedureoperates as follows:1. Uniformly select hash functions g r G and h r H.2. Invoke S on input x providing it black-box access to Vg;h (as de�ned above). That is, theprocedure emulates the execution of the oracle machine S on input x along with emulatingthe answers of Vg;h, where g and h are as determined in Step 1.3. Accept if and only if S outputs a legal transcript (as determined by Steps 1 and 1' of Vg;h).11By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze itsperformance.Lemma 3.2.4 (Performance on yes-instances) For all but �nitely many x 2 L, the aboveprocedure accepts x with probability at least 2=3.Proof Sketch: Let x 2 L, g r G, h r H, and consider the honest prover P . We show below that,except for negligible probability (where the probability is taken over the random choices of g, h,and P 's coin tosses), when Vg;h interacts with P , all recursive blocks in the resulting transcriptcontain the accepting conversations of at least n1=24 main sessions. Since for every g and h thesimulator SVg;h(x) must generate a transcript whose deviation gap from hP; Vg;hi(x) is at most 1=4,it follows that SVg;h(x) has deviation gap at most 1=4 from hP; Vg;hi(x) also when g r G and h r H.Consequently, when S is run by the decision procedure for L, the transcript SVg;h(x) will not belegal with probability at most 1=3. Details follow.Let � denote the random variable describing the transcript of the interaction between the honestprover P and Vg;h, where the probability is taken over the choices of g, h, and P . Let s 2 f1; : : : ; n2g.We �rst calculate the probability that the sth session in � is completed and accepted (i.e., Vg;h sendsthe message v(s)k+1 = ACCEPT), conditioned on the event that Vg;h did not abandon the interactionbeforehand (i.e., Vg;h did not send the DEVIATION message before).12 For uniformly selected g r G,the probability that Vg;h does not abort the session in each of the k rounds, given that it has notalready aborted, is n�1=2k. Thus, conditioned on the event that Vg;h did not output DEVIATIONbeforehand, the session is completed (without being aborted) with probability (n�1=2k)k = n�1=2.The key observation is that if h is uniformly chosen from H then, conditioned on the event thatVg;h did not output DEVIATION beforehand and the current session is not aborted, the conversation11Recall that we are assuming that the simulator never makes a query that is ruled out by Steps 1 and 1' ofVg;h. Since before producing output (b1; a1; : : : ; bT ; aT) the simulator makes the query (b1; a1; : : : ; bT ; aT), chekingthe legality of the transcript in Step 3 is not really necessary (as, in case that the modi�ed simulator indeed reachesthe output stage \safely", we are guaranteed that it will produce a legal output). In particular, we are alwaysguaranteed that the simulator either produces execution transcripts in which every recursive block contains at leastn1=2=4 sessions that were accepted by Vg;h, or it does not produce any output at all.12Note that, since we are dealing with the honest prover P , there is no need to consider the ERROR message at all(since in an interaction with the honest prover P , the adversary veri�er Vg;h will never output ERROR anyway).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 37between Vg;h and P is distributed identically to the conversation between the honest veri�er Vand P on input x. By the completeness requirement for zero-knowledge protocols, we have thatV accepts in such an interaction with probability at least 1=2 (this probability is actually higher,but 1=2 is more than enough for our purposes). Consequently, for uniformly selected g and h,conditioned on the event that Vg;h did not output DEVIATION beforehand, the probability that asession is accepted by Vg;h is at least n�1=22 .We calculate the probability that � contains a block such that less than n1=24 of its sessions areaccepted. Say that a block B in a transcript has been completed if all the messages of sessionsin B have been sent during the interaction. Say that B is admissible if the number of acceptedsessions that belong to block B in the transcript is at least n1=24 . Enumerating blocks in the orderin which they are completed (that is, when we refer to the `th block in � , we mean the `th blockthat is completed in �), we denote by ` the event that all the blocks up to and including the `thblock are admissible in � .For i 2 f1; : : : ; ng de�ne a boolean indicator �ì to be 1 if and only if the ith session in the`th block is accepted by Vg;h. We have seen that, conditioned on the event `�1, each �ì is 1w.p. at least n�1=22 . As a consequence, for every `, the expectation of Pni=1 �ì (i.e., the numberof accepted main sessions in block number `) is at least n1=22 . Since, conditioned on `�1, the �ì 'sare independent of each other, we can apply the Cherno� bound, and infer that Pr [`j`�1] >1 � e�
(n1=2). Furthermore, since no session belongs to more than one block, we have: Pr [`] �Pr [lj`�1] � Pr [l�1]. It follows (by induction on the number of completed blocks in a transcript),that all blocks in � are admissible with probability at least (1� e�
(n1=2))n > 1�n � e�
(n1=2). Thelemma follows.Lemma 3.2.5 (Performance on no-instances) For all but �nitely many x 62 L, the above pro-cedure rejects x with probability at least 2=3.We can actually prove that for every positive polynomial p(�) and for all but �nitely many x 62 L,the above procedure accepts x with probability at most 1=p(jxj). Assuming towards contradictionthat this is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheatingprover that fools the honest veri�er V with success probability at least 1=poly(n) in contradictionto the soundness (and even computational-soundness) of the proof system.3.3 Proof of Lemma 3.2.5 (performance on no-instances)Let us �x an x 2 f0; 1gn n L as above.13 Denote by AC = ACx the set of triplets (�; g; h) so that oninput x, internal coins � and oracle access to Vg;h, the simulator outputs a legal transcript (whichwe denote by SVg;h� (x)). Recall that our contradiction assumption is that Pr�;g;h[(�; g; h) 2 AC] >1=p(n), for some �xed positive polynomial p(�). Before proceeding with the proof of Lemma 3.2.5,we formalize what we mean by referring to the \execution of the simulator".De�nition 3.3.1 (Execution of simulator) Let x; � 2 f0; 1g�, g 2 G and h 2 H. The executionof simulator S, denoted execx(�; g; h), is the sequence of queries made by S, given input x, randomcoins �, and oracle access to Vg;h(x).13Actually, we need to consider in�nitely many such x's.

38 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSSince the simulator has the ability to \rewind" the veri�er Vg;h and explore Vg;h's output on variousexecution pre�xes (i.e., queries) of the same length, the number of distinct block-pre�xes that appearin execx(�; g; h) may be strictly larger than n (recall that the schedule consists of n invocationsto recursive blocks, and that in an interaction between the honest prover P and Vg;h there is aone-to-one correspondence between recursive blocks and block-pre�xes). As a consequence, the `thdistinct block-pre�x appearing in execx(�; g; h) does not necessarily correspond to the `th recursiveblock in the schedule. Nevertheless, given execx(�; g; h) and `, one can easily determine for the`th distinct block-pre�x in the execution of the simulator the index of its corresponding block inthe schedule (say, by extracting the `th distinct block-pre�x in execx(�; g; h), and then analyzingits length).In the sequel, given a speci�c block-pre�x bp, we let `(bp) 2 f1; : : : ; ng denote the index ofits corresponding block in the schedule (as determined by bp's length). Note that two di�erentblock-pre�xes bp1 and bp2 in execx(�; g; h) may satisfy `(bp1)= `(bp2) (as they may correspond totwo di�erent instances of the same recursive block). In particular, session (`(bp1); i) may have morethan a single occurrence during the execution of the simulator (whereas in an interaction of thehonest prover P with Vg;h each session index will occur exactly once). This means that wheneverwe refer to an instance of session (`; i) in the simulation, we will also have to explicitly specify towhich block-pre�x this instance corresponds.In order to avoid cumbersome statements, we will abuse the notation `(bp) and also use it inorder to specify to which instance the recursive block `(bp) corresponds. That is, whenever we referto recursive block number `(bp) we will actually mean: \the speci�c instance of recursive blocknumber ` (= `(bp)) that corresponds to block-pre�x bp in execx(�; g; h)". Viewed this way, for`(bp1) = `(bp2), sessions (`(bp1); i) and (`(bp2); i) actually correspond to two di�erent instances of thesame session in the schedule.3.3.1 The cheating proverThe cheating prover (denoted P �) starts by uniformly selecting a triplet (�; g; h) while hopingthat (�; g; h) 2 AC. It next selects uniformly a pair (�; �) 2 f1; : : : ; tS(n)g � f1; : : : ; ng, wherethe simulator's running time, tS(n), acts as a bound on the number of (di�erent block-pre�xesinduced by the) queries made by S on input x 2 f0; 1gn. The prover next emulates an execution ofSVg;h(r)� (x) (where h(r), which is essentially equivalent to h, will be de�ned below), while interactingwith V (x; r) (that is, the honest veri�er, running on input x and using coins r). The prover handlesthe simulator's queries as well as the communication with the veri�er as follows: Suppose that thesimulator makes query q = (b1; a1; : : : ; bt; at), where the a's are prover messages.1. Operating as Vg;h, the cheating prover determines the block-pre�x bp(q) = (b1; a1; : : : ; b ; a).It also determines (`; i) = �sn(q), j = �msg(q), the iteration-pre�x ip(q) = (b1; a1; : : : ; b� ; p(n)j�1),and the j�1 prover messages p(i)1 ; : : : ; p(i)j�1 appearing in the query q (as done by Vg;h in Step 2).(Note that by the modi�cation of S there is no need to perform Steps 1 and 1' of Vg;h.)2. If j = 1, the cheating prover answers the simulator with the veri�er's �xed initiation messagefor session i (as done by Vg;h in Step 3).3. If j > 1, the cheating prover determines bi;j = g(i; ip(q)) (as done by Vg;h in Step 4).4. If bp(q) is the �th distinct block-pre�x resulting from the simulator's queries so far and if, inaddition, i equals �, then the cheating prover operates as follows:

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 39(a) If bi;j = 0, then the cheating prover answers the simulator with ABORT.Motivating discussion for substeps b and c: The cheating prover has now reached a pointin the schedule in which it is supposed to feed the simulator with v(i)j . To do so, it �rst forwardsp(i)j�1 to the honest veri�er V (x; r), and only then feeds the simulator with the veri�er's answerv(i)j (as if it were the answer given by Vg;h(r)). We stress the following two points: (1) Thecheating prover cannot forward more than one p(i)j�1 message to V (since P � and V engage in anactual execution of the protocol hP; V i). (2) The cheating prover will wait and forward p(i)j�1 tothe veri�er only when v(i)j is the next scheduled message.(b) If bi;j = 1 and the cheating prover has only sent j�2 messages to the actual veri�er, thecheating-prover forwards p(i)j�1 to the veri�er, and feeds the simulator with the veri�er'sresponse (i.e., which is of the form v(i)j).14(We comment that by our conventions regarding the simulator, it cannot be the case that thecheating prover has sent less than j�2 prover messages to the actual veri�er. The pre�xes ofthe current query dictate j�2 sequences of prover messages with distinct lengths, so that noneof these sequences was answered with ABORT. In particular, the last message of each one of thesesequences was already forwarded to the veri�er.)(c) If bi;j = 1 and the cheating prover has already sent j�1 messages (or more) to the actualveri�er then it retrieves the (j�1)st answer it has received and feeds it to the simulator.(We comment that this makes sense provided that the simulator never makes two queries withthe same block-pre�x and the same number of prover messages, but with a di�erent sequence ofsuch messages. However, for j � 2 it may be the case that a previous query regarding the sameblock-pre�x had a di�erent p(i)j�1 message. This is the case in which the cheating prover may failto conduct Step 4c (see further discussion below).)5. If either bp(q) is NOT the �th distinct block-pre�x resulting from the queries so far, or if i isNOT equal to �, the prover emulates Vg;h in the obvious manner (i.e., as in Step 4 of Vg;h):(a) If bi;j = 0, then the cheating prover answers the simulator with ABORT.(b) If bi;j = 1, then the cheating prover determines ri = h(i; bp(q)), and then answers thesimulator with V (x; ri; p(i)1 ; : : : ; p(i)j�1), where all notations are as above.On the e�ciency of the cheating prover: Notice that the strategy of the cheating provercan be implemented in polynomial-time (that is, given that the simulator's running time, tS(�),is polynomial as well). Thus, Lemma 3.2.5 (and so Theorem 3.1) will also hold if hP; V i is anargument system (since, in the case of argument systems, the existence of an e�cient P � leads tocontradiction of the computational soundness of hP; V i).The cheating prover may \do nonsense" in Step 4c: The cheating prover is hoping toconvince an honest veri�er by focusing on the �th session in recursive block number `(bp�), wherebp� denotes the �th distinct block-pre�x in the simulator's execution. Prover messages in session14Note that in the special case that j = 1 (i.e., when the veri�er's response is the �xed initiation message v(i)1), thecheating prover cannot really forward p(i)j�1 to the honest veri�er (since no such message exists). Still, since v(i)1 isa �xed initiation message, the cheating prover can produce v(i)1 without actually having to interact with the honestveri�er (as it indeed does in Step 2 of the cheating prover strategy).

40 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS(`(bp�); �) are received from the (multi-session) simulator and are forwarded to the (single-session)veri�er. The honest veri�er's answers are then fed back to the simulator as if they were answersgiven by Vg;h(r) (de�ned below). For the cheating prover to succeed in convincing the honest veri�erthe following two conditions must be satis�ed: (1) Session (`(bp�); �) is eventually accepted by Vg;h(r).(2) The cheating prover never \does nonsense" in Step 4c during its execution. Let us clarify themeaning of this \nonsense".One main problem that the cheating prover is facing while conducting Step 4c emerges from thefollowing fact: Whereas the black-box simulator is allowed to \rewind" Vg;h(r) (impersonated by thecheating prover) and attempt di�erent execution pre�xes before proceeding with the interactionof a session, the prover cannot do so while interacting with the actual veri�er. In particular, thecheating prover may reach Step 4c with a p(�)j�1 message that is di�erent from the p(�)j�1 messagethat was previously forwarded to the honest veri�er (in Step 4b). Given that the veri�er's answerto the current p(�)j�1 message is most likely to be di�erent than the answer which was given to the\previous" p(�)j�1 message, by answering (in Step 4c) in the same way as before, the prover action\makes no sense".15We stress that, at this point in its execution, the cheating prover might as well have stoppedwith some predetermined \failure" message (rather than \doing nonsense"). However, for simplicityof presentation, it is more convenient for us to let the cheating prover \do nonsense".The punchline of the analysis is that with noticeable probability (over choices of (�; g; h)), thereexists a choice of (�; �) so that the above \bad" event will not occur for session (`(bp�); �). That is,using the fact that the success of a \rewinding" also depends on the output of g (which determineswhether and when sessions are aborted) we show that, with non-negligible probability, Step 4c isnever reached with two di�erent p(�)j�1 messages. Speci�cally, for every j 2 f2; : : : ; k+1g, once ap(�)j�1 message is forwarded to the veri�er (in Step 4b), all subsequent p(�)j�1 messages are either equalto the forwarded message or are answered with ABORT (here we assume that session (`(bp�); �) iseventually accepted by Vg;h(r), and every p(�)j�1 message is forwarded to the veri�er at least once).De�ning h(r) (mentioned above): Let (�; g; h) and (�; �) be the initial choices made by thecheating prover, let bp� be the �th block-pre�x appearing in execx(�; g; h), and suppose that thehonest veri�er uses coins r. Then, the function h(r) = h(r;�;g;h;�;�) is de�ned to be uniformlydistributed among the functions h0 which satisfy the following conditions: The value of h0 whenapplied on (�; bp�) equals r, whereas for (�0; �0) 6= (�; �) the value of h0 when applied on (�0; bp�0)equals the value of h on this pre�x. (The set of such functions h0 is not empty due to the hypothesisthat the functions are selected in a family of tS(n)-wise independent hash functions.) We note thatreplacing h by h(r) does not e�ect Step 5 of the cheating prover, and that the cheating prover doesnot know h(r). In particular, whenever the honest veri�er V uses coins r, one may think of thecheating prover as if it is answering the simulator's queries with the answers that would have beengiven by Vg;h(r).Claim 3.3.2 For every value of �; g; � and �, if h and r are uniformly distributed then so is h(r).15We stress that the cheating prover does not know the random coins of the honest veri�er, and so it cannot computethe veri�er's answers by himself. In addition, since P � and V are engaging in an actual execution of the speci�edprotocol hP; V i (in which every message is sent exactly once), the cheating prover cannot forward the \recent" p(�)j�1message to the honest veri�er in order to obtain the corresponding answer (because it has already forwarded theprevious p(�)j�1 message to the honest veri�er).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 41Proof Sketch: Fix some simulator coins � 2 f0; 1g�, g 2 G, block-pre�x index � 2 f1; : : : ; tS(n)g,and session index � 2 f1; : : : ; ng. The key for proving Claim 3.3.2 is to view the process of pickinga function h 2 H as consisting of two stages. The �rst stage is an iterative process in which up totS(n) di�erent arguments are adversarially chosen, and for each such argument the value of h on thisargument is uniformly selected in its range. In the second stage, a function h is chosen uniformlyfrom all h's in H under the constraints that are introduced in the �rst stage. The iterative processin which the arguments are chosen (that is, the �rst stage above) corresponds the simulator's choiceof the various block-pre�xes bp (along with the indices i), on which h is applied.At �rst glance, it seems obvious that the function h(r), which is uniformly distributed amongstall functions that are de�ned to be equal to h on all inputs (except for the input (�; bp�) on which itequals r) is uniformly distributed in H. Taking a closer look, however, one realizes that a rigorousproof for the above claim is more complex than one may initially think, since it is not even clearthat an h that is de�ned by the above process actually belongs to the family H.The main di�culty in proving the above lies in the fact that the simulator's queries may \adap-tively\ depend on previous answers it has received (which, in turn, may depend on previous out-comes of h). The key obervation used in order to overcome this di�culty is that for every familyof tS(n)-wise independent functions and for every sequence of at most tS(n) arguments (and inparticular, for an adaptively chosen sequence), the values of a uniformly chosen function whenapplied to the arguments in the sequence are uniformly and independently distributed. Thus, aslong as the values assigned to the function in the �rst stage of the above process are uniformly andindependently distributed (which is indeed the case, even if we constraint one output to be equalto r), the process will yield a uniformly distributed function from H.3.3.2 The success probability of the cheating proverWe start by introducing two important notions that will play a central role in the analysis of thesuccess probability of the cheating prover.Grouping queries according to their iteration-pre�xesIn the sequel, it will be convenient to group the queries of the simulator into di�erent classes basedon di�erent iteration-pre�xes. (Recall that the iteration-pre�x of a query q (satisfying �sn(q)=(`; i)and �msg(q)=j>1) is the pre�x of q that ends with the (j�1)st prover message in session (`; n).).Grouping by iteration-pre�xes particularly makes sense in the case that two queries are of the samelength (see discussion below). Nevertheless, by De�nition 3.2.3, two queries may have the sameiteration-pre�x even if they are of di�erent lengths (see below).De�nition 3.3.3 (ip-di�erent queries) Two queries, q1 and q2 (of possibly di�erent lengths),are said to be ip-di�erent, if and only if they have di�erent iteration-pre�xes (that is, ip(q1) 6= ip(q2)).By De�nition 3.2.3, if two queries, q1 and q2, satisfy ip(q1) = ip(q2), then the following twoconditions must hold: (1) �sn(q1) = (`; i1), �sn(q2) = (`; i2) and; (2) �msg(q1) = �msg(q2). However,it is not necessarily true that i1 = i2. In particular, it may very well be the case that q1; q2 havedi�erent lengths (i.e., i1 6= i2) but are not ip-di�erent (note that if i1 = i2 then q1 and q2 are ofequal length). Still, even if two queries are of the same length and have the same iteration-pre�x, itis not necessarily true that they are equal, as they may be di�erent at some message which occursafter their iteration-pre�xes.

42 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSMotivating De�nition 3.3.3: Recall that a necessary condition for the success of the cheatingprover is that for every j, once a p(�)j�1 message has been forwarded to the veri�er (in Step 4b), allsubsequent p(�)j�1 messages (that are not answered with ABORT) are equal to the forwarded message.In order to satisfy the above condition it is su�cient to require that the cheating prover neverreaches Steps 4b and 4c with two ip-di�erent queries of equal length. The reason for this is that iftwo queries of the same length have the same iteration-pre�x, then they contain the same sequenceof prover messages for the corresponding session (since all such messages are contained in theiteration-pre�x), and so they agree on their p(�)j�1 message. In particular, once a p(�)j�1 message hasbeen forwarded to the veri�er (in Step 4b), all subsequent queries that reach Step 4c and are ofthe same lenght will have the same p(�)j�1 messages as the �rst such query (since they have the sameiteration-pre�x).In light of the above discussion, it is only natural to require that the number of ip-di�erentqueries that reach Step 4c of the cheating prover is exactly one (as, in such a case, the abovenecessary condition is indeed sati�ed).16 Jumping ahead, we comment that the smaller is thenumber of ip-di�erent queries that correspond to block-pre�x bp�, the smaller is the probabilitythat more than one ip-di�erent query reaches Step 4c. The reason for this lies in the fact thatthe number of ip-di�erent queries that correspond to block-pre�x bp� is equal to the number ofdi�erent iteration-pre�xes that correspond to bp�. In particular, the smaller is the number of suchiteration-pre�xes, the smaller is the probability that g will evaluate to 1 on more than a singleiteration-pre�x (thus reaching Step 4c with more than one ip-di�erent query).Useful block-pre�xesThe probability that the cheating prover makes the honest veri�er accept will be lower bounded bythe probability that the �th distinct block-pre�x in execx(�; g; h) is �-useful (in the sense hintedabove and de�ned next):De�nition 3.3.4 (Useful block-pre�x) A block-pre�x bp = (b1; a1; : : : ; b ; a), that appears inexecx(�; g; h), is called i-useful if it satis�es the following two conditions:1. For every j2f2; ::; k+1g, the number of ip-di�erent queries q in execx(�; g; h) that correspondto block-pre�x bp and satisfy �sn(q)=(`(bp); i), �msg(q)=j, and g(i; ip(q))=1, is exactly one.2. The (only) query q in execx(�; g; h) that corresponds to block-pre�x bp and that satis�es�sn(q) = (`(bp); i), �msg(q) = k+1, and g(i; ip(q)) = 1, is answered with ACCEPT by Vg;h.If there exists an i 2 f1; : : : ; ng, so that a block-pre�x is i-useful, then this block-pre�x is calleduseful.Condition 1 in De�nition 3.3.4 states that for every �xed value of j there exists exactly one iteration-pre�x, ip, that corresponds to queries of the block-pre�x bp and the jth message so that g(i; ip)evaluates to 1. Condition 2 asserts that the last veri�er message in the ith main session of recursiveblock number ` = `(bp) is equal to ACCEPT. It follows that if the cheating prover happens to select(�; g; h; �; �) so that block-pre�x bp� (i.e., the �th distinct block-pre�x in execx(�; g; h(r))) is �-useful, then it convinces V (x; r); the reason being that (by Condition 2) the last message in session16In order to ensure the cheating prover's success, the above requirement should be augmented by the conditionthat session (`(bp�); �) is accepted by Vg;h(r) .

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 43(`(bp�); �) is answered with ACCEPT,17 and that (by Condition 1) the emulation does not get intotrouble in Step 4c of the cheating prover (to see this, notice that each prover message in session(`(bp�); �) will end up reaching Step 4c only once).Let hP �; V i(x) = hP �(�; g; h; �; �); V (r)i(x) denote the random variable representing the (local)output of the honest veri�er V when interacting with the cheating prover P � on common inputx, where �; g; h; �; � are the initial random choices made by the cheating prover P �, and r is therandomness used by the honest veri�er V . Adopting this notation, we will say that the cheatingprover P � = P �(x; �; g; h; �; �) has convinced the honest veri�er V = V (x; r) if hP �; V i(x) = ACCEPT.With these notations, we are ready to formalize the above discussion.Claim 3.3.5 If the cheating prover happens to select (�; g; h; �; �) so that the �th distinct block-pre�x in execx(�; g; h(r)) is �-useful, then the cheating prover convinces V (x; r) (i.e., hP �; V i(x)=ACCEPT).Proof: Let us �x x 2 f0; 1gn, � 2 f0; 1g�, g 2 G, h 2 H, r 2 f1; : : : ; �V (n)g, � 2 f1; : : : ; ng,and � 2 f1; : : : ; tS(n)g. We show that if the �th distinct block-pre�x in execx(�; g; h(r)) is �-useful,then the cheating prover P �(x; �; g; h; �; �) convinces the honest veri�er V (x; r).By de�nition of the cheating-prover, the prover messages that are actually forwarded to the hon-est veri�er (in Step 4b) correspond to session (`(bp�); �). Speci�cally, messages that are forwarded bythe cheating prover are of the form p(�)j�1, and correspond to queries q, that satisfy �sn(q) = (`(bp�); �),�msg(q) = j and g(�; ip(q)) = 1. Since the �th distinct block-pre�x in execx(�; g; h(r)) is �-useful,we have that for every j 2 f2; : : : ; k+1g, there is exactly one query q that satis�es the above condi-tions. Thus, for every j 2 f2; : : : ; k+1g, the cheating prover never reaches Step 4c with two di�erentp(�)j�1 messages. Here we use the fact that if two queries of the same length are not ip-di�erent (i.e.,have the same iteration-pre�x) then the answers given by Vg;h(r) to these queries are identical (seediscussion above). This in particular means that P � is answering the simulator's queries with theanswers that would have been given by V g;h(r) itself. (Put in other words, whenever the �th distinctblock-pre�x in execx(�; g; h(r)) is �-useful, the emulation does not \get into trouble" in Step 4c ofthe cheating prover.)At this point, we have that the cheating prover never fails to perform Step 4c, and so theinteraction that it is conducting with V (x; r) reaches \safely" the (k+1)st veri�er message in theprotocol. To complete the proof we have to show that at the end of the interaction with thecheating-prover, V (x; r) outputs ACCEPT. This is true since, by Condition 2 of De�nition 3.3.4,the query q, that corresponds to block-pre�x bp�, satis�es �sn(q) = (`(bp�); �), �msg(q) = j andg(�; ip(q)) = 1, is answered with ACCEPT. Here we use the fact that V (x; r) behaves exactly asVg;h(r) behaves on queries that correspond to the �th distinct block-pre�x in execx(�; g; h(r)).Reduction to rareness of legal transcripts without useful block-pre�xesThe following lemma (Lemma 3.3.6) establishes the connection between the success probabilityof the simulator and the success probability of the cheating-prover. Loosely speaking, the lemmaasserts that if S outputs a legal transcript with non-negligible probability, then the cheating proverwill succeed in convincing the honest veri�er with non-negligible probability. Since this is in con-tradiction to the computational soundness of the proof system, we have that Lemma 3.3.6 actually17Notice that V (x; r) behaves exactly as Vg;h(r) behaves on queries that correspond to the �th distinct iteration-pre�x in execx(�; g; h(r)).

44 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSimplies the correctness of Lemma 3.2.5 (recall that the contradiction hypothesis of Lemma 3.2.5 isthat the probability that the simulator outputs a legal transcript is non-negligible).Lemma 3.3.6 Suppose that Pr�;g;h[(�; g; h) 2 AC] > 1=p(n) for some �xed polynomial p(�). Thenthe probability (taken over �; g; h; �; �; r), that hP �; V i(x) = ACCEPT is at least 12�p(n)�tS(n)�n .Proof: De�ne a Boolean indicator useful�;�(�; g; h) to be true if and only if the �th distinct block-pre�x in execx(�; g; h) is �-useful. Using Claim 3.3.5, we have:Pr�;g;h;�;�;r [hP �; V i(x) = ACCEPT] � Pr�;g;h;�;�;r huseful�;�(�; g; h(r))i (3.2)where the second probability refers to an interaction between S and Vg;h(r). Since for every valueof �; g; � and �, when h and r are uniformly selected the function h(r) is uniformly distributed (seeClaim 3.3.2), we infer that:Pr�;g;h;�;�;r huseful�;�(�; g; h(r))i = Pr�;g;h0;�;� �useful�;�(�; g; h0)� (3.3)On the other hand, since � and � are distributed independently of (�; g; h), we have:Pr�;g;h;�;� [useful�;�(�; g; h)] = tS(n)X̀=1 nXi=1Pr�;g;h;�;� [useful`;i(�; g; h) & (� = ` & � = i)]= tS(n)X̀=1 nXi=1Pr�;g;h [useful`;i(�; g; h)] � Pr�;� [� = ` & � = i]= tS(n)X̀=1 nXi=1Pr�;g;h [useful`;i(�; g; h)] � 1tS(n) � n� Pr�;g;h [9`; i s.t. useful`;i(�; g; h)] � 1tS(n) � n (3.4)where tS(n) is the bound used by the cheating prover (for the number of distinct block-pre�xes inexecx(�; g; h)). Combining Eq. (3.2), (3.3), (3.4) we get:Pr�;g;h;�;�;r [hP �; V i(x) = ACCEPT] � Pr�;g;h [9`; i s.t. useful`;i(�; g; h)] � 1tS(n) � n (3.5)Recall that by our hypothesis, Pr[(�; g; h) 2 AC] > 1=p(n) for some �xed polynomial p(�). We canthus rewrite and lower bound the value of Pr�;g;h [9`; i s.t. useful`;i(�; g; h)] in the following way:Prh9`; i s.t. useful`;i(�; g; h)i= 1� Prh8`; i :useful`;i(�; g; h)i= 1� Prh(8`; i :useful`;i(�; g; h)) & ((�; g; h)62AC)i� Prh(8`; i :useful`;i(�; g; h)) & ((�; g; h)2AC)i� 1� Prh(�; g; h) 62 ACi� Prh(8`; i :useful`;i(�; g; h)) & (�; g; h) 2 ACi> 1=p(n)� Prh(8`; i :useful`;i(�; g; h)) & (�; g; h) 2 ACi

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 45where all the above probabilities are taken over (�; g; h). It follows that in order to show thatPr�;g;h;�;�;r [hP �; V i(x) = ACCEPT] > 12�p(n)�tS(n)�n , it will be su�cient to prove that for every �xedpolynomial p0(�) it holds that:Pr�;g;h [(8`; i :useful`;i(�; g; h)) & (�; g; h) 2 AC] < 1=p0(n)Thus, Lemma 3.3.6 is satis�ed provided that Pr�;g;h [8`; i :useful`;i(�; g; h) & (�; g; h) 2 AC] is neg-ligible. Consequently, Lemma 3.3.6 will follow by establishing Lemma 3.3.7, stated next.Lemma 3.3.7 The probability (taken over �; g; h), that for all pairs (`; i) useful`;i(�; g; h) does nothold and that (�; g; h) 2 AC, is negligible. That is, the probability that execx(�; g; h) does notcontain a useful block-pre�x and S outputs a legal transcript is negligible.This completes the proof of Lemma 3.3.6. In the rest of this section we prove Lemma 3.3.7.3.3.3 Proof of Lemma 3.3.7 (legal transcripts yield useful block-pre�xes)The proof of Lemma 3.3.7 will proceed as follows. We �rst de�ne a special kind of block-pre�xes,called potentially-useful block-pre�xes. Loosely speaking, these are block-pre�xes in which the sim-ulator does not make too many \rewinding" attempts (each \rewinding" corresponds to a di�erentiteration-pre�x). Intuitively, the larger the number of \rewinds" is, the smaller is the probabilitythat a speci�c block-pre�x is useful. A block-pre�x with a small number of \rewinds" is thus morelikely to cause its block-pre�x to be useful. Thus our basic approach will be to show that:1. In every \successful" execution (i.e., producing a legal transcript), the simulator generates apotentially-useful block-pre�x. This is proved by demonstrating, based on the structure ofthe schedule, that if no potentially-useful block-pre�x exists, then the simulation must takesuper-polynomial time.2. Any potentially-useful block-pre�x is in fact useful with considerable probability. The argu-ment that demonstrates this claim proceeds basically as follows. Consider a speci�c block-pre�x bp, let ` = `(bp), and focus on a speci�c instance of session (`; i) (that is, the speci�cinstance of session (`; i) that corresponds to block-pre�x bp). Suppose that block-pre�x bpis potentially-useful and that the above instance of session (`; i) happens to be accepted byVg;h. This means that there exist k queries with block-pre�x bp that consist of the \mainthread" that leads to acceptance (i.e., all queries that were not answered with ABORT). Recallthat the decision to abort a session (`; i) is made by applying the function g to i and theiteration-pre�x of the corresponding query. Thus, if there are only few di�erent iteration-pre�xes that correspond to block-pre�x bp (which, as we said, is potentially-useful), thenthere is considerable probability that all the queries having block-pre�x bp, but which donot belong to that \main thread", will be answered with ABORT (that is, g will evaluate to 0on the corresponding input). If this lucky event occurs, then block-pre�x bp will indeed beuseful (recall that for a block-pre�x to be useful we require that there exists a correspondingsession that is accepted by Vg;h and satis�es that for every j 2 f2; : : : ; k+1g there is a singleiteration-pre�x that makes g evaluate to 1 at the jth message of this session).Returning to the actual proof, we start by introducing the necessary de�nition (of a potentially-useful block-pre�x). Recall that, for any g 2 G and h 2 H, the running time of the simulator Swith oracle access to Vg;h is bounded by tS(n). Let c be a constant such that tS(n) � nc for allsu�ciently large n.

46 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSDe�nition 3.3.8 (Potentially-useful block-pre�x) A block-pre�x bp = (b1; a1; ::; b ; a), thatappears in execx(�; g; h), is called potentially-useful if it satis�es the following two conditions:1. The number of ip-di�erent queries that correspond to block-pre�x bp is at most kc+1.2. The execution of the simulator reaches the end of the block that corresponds to block-pre�x bp.That is, execx(�; g; h) contains a query q, that ends with the (k+1)st prover message in thenth main session of recursive block number `(bp) (i.e., some p(`(bp);n)k+1 message).We stress that the bound kc+1 in Condition 1 above refers to the same constant c > 0 that is usedin the time bound tS(n) � nc. Using De�nition 3.3.3 (of ip-di�erent queries), we have that a boundof kc+1 on the number of ip-di�erent queries that correspond to block-pre�x bp induces an upperbound on the total number of iteration-pre�xes that correspond to block-pre�x bp. Note that thisis in contrast to the de�nition of a useful block-pre�x (De�nition 3.3.4), in which we only havea bound on the number of ip-di�erent queries of a speci�c length (i.e., the number of ip-di�erentqueries that correspond to speci�c message in a speci�c session).Turning to Condition 2 of De�nition 3.3.8 we recall that the query q ends with a p(`(bp);n)k+1message (i.e., the last prover message of recursive block number `(bp)). Technically speaking, thismeans that q does not actually correspond to block-pre�x bp (since, by de�nition of the recursiveschedule, the answer to query q is a message that does not belong to recursive block number `(bp)).Nevertheless, since before making query q, the simulator has made queries to all pre�xes of q, weare guaranteed that for every i2f1; : : : ; ng and j2f1; : : : ; k+1g, the simulator has made a query qi;jthat is a pre�x of q, corresponds to block-pre�x bp, and satis�es �sn(q)=(`(bp); i) and �msg(q)= j.(In other words, all messages of all sessions in recursive block number `(bp) have occurred duringthe execution of the simulator.) Furthermore, since the (modi�ed) simulator does not make a querythat is answered with a DEVIATION message (in Step 1' of Vg;h) and it does make the query q , weare guaranteed that the partial execution transcript induced by the query q contains the acceptingconversations of at least n1=24 sessions in recursive block number `(bp). (The latter observation willbe used only at a later stage (while proving Lemma 3.3.7).)It is worth noting that whereas the de�nition of a useful block-pre�x refers to the contentsof iteration-pre�xes (induced by the queries) that are sent by the simulator, the de�nition of apotentially-useful block-pre�x refers only to their quantity (neither to their contents nor to thee�ect of the application of g on them).18 It is thus natural that statements referring to potentially-useful block-pre�xes tend to have a combinatorial avor. The following lemma is no exception. Itasserts that every \successful" execution of the simulator must contain a potentially-useful block-pre�x (or, otherwise, the simulator will run in super-polynomial time).Lemma 3.3.9 For any (�; g; h) 2 ACx, execx(�; g; h) contains a potentially-useful block-pre�x.Proof of Lemma 3.3.9 (existence of potentially-useful block-pre�xes)The proof of Lemma 3.3.9 is by contradiction. We assume the existence of a triplet (�; g; h) 2 ACso that every block-pre�x in execx(�; g; h) is not potentially-useful, and show that this impliesthat SVh� (x) made strictly more than nc queries (which contradicts the explicit hypothesis that therunning time of S is bounded by nc).18In particular, whereas the de�nition of a useful block-pre�x refers to the outcome of g on iteration-pre�xes thatcorrespond to the relevant block-pre�x, the de�nition of a potentially-useful block-pre�x refers only to the number ofip-di�erent queries that correspond to the block-pre�x (ignoring the outcomes of g on the relevant iteration-pre�xes).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 47The query{and{answer tree: Throughout the proof of Lemma 3.3.9, we will �x an arbitrary(�; g; h) 2 AC as above, and study the corresponding execx(�; g; h). A key vehicle in this study isthe notion of a query{and{answer tree introduced in [36] (and also used in [43]).19 This is a rootedtree (corresponding to execx(�; g; h)) in which vertices are labeled with veri�er messages and edgesare labeled with prover's messages. The root is labeled with the �xed veri�er message initializingthe �rst session, and has outgoing edges corresponding to the prover's messages initializing thissession. In general, paths down the tree (i.e., from the root to some vertices) correspond to queries.The query associated with such a path is obtained by concatenating the labeling of the vertices andedges along the path in the order traversed. We stress that each vertex in the query{and{answertree corresponds to a query actually made by the simulator.The index of the veri�er (resp., prover) message labeling a speci�c vertex (resp., edge) in thetree is completely determined by the level in which the vertex (resp., edge) lies. That is, all vertices(resp., edges) in the !th level of the tree are labeled with the !th veri�er (resp., prover) messagein the schedule (out of a total of n2 �(k+1) scheduled messages). For example, if ! = n2 �(k+1)all vertices (resp., edges) at the !th level (which is the lowest possible level in the tree) are labeledwith v(n;n)k+1 (resp., p(n;n)k+1). The di�erence between \sibling" vertices in the same level of the tree liesin the di�erence in the labels of their incoming edges (as induced by the simulator's \rewinds").Speci�cally, whenever the simulator \rewinds" the interaction to the !th veri�er message in theschedule (i.e., makes a new query that is answered with the !th veri�er message), the correspondingvertex in the tree (which lies at the !th level) will have multiple descendants one level down in thetree (i.e., at the (!+1)st level). The edges to each one of these descendants will be labeled with adi�erent prover message.20 We stress that the di�erence between these prover messages lies in thecontents of the corresponding message (and not in its index).By the above discussion, the outdegree of every vertex in the query{and{answer tree correspondsto the number of \rewinds" that the simulator has made to the relevant point in the schedule (theorder in which the outgoing edges appear in the tree does not necessarily correspond to the orderin which the \rewinds" were actually performed by the simulator). Vertices in which the simulatordoes not perform a \rewinding" will thus have a single outgoing edge. In particular, in case thatthe simulator follows the prescribed prover strategy P (sending each scheduled message exactlyonce), all vertices in the tree will have outdegree one, and the tree will actually consist of a singlepath of total length n2 � (k+1) (ending with an edge that is labeled with a p(n;n)k+1 message).Recall that, by our conventions regarding the simulator, before making a query q the simulatorhas made queries to all pre�xes of q. Since every query corresponds to a path down the tree,we have that every particular path down the query{and{answer tree is developed from the rootdownwards (that is, within a speci�c path, a level ! < !0 vertex is always visited before a level!0 vertex). However, we cannot say anything about the order in which di�erent paths in the treeare developed (for example, we cannot assume that the simulator has made all queries that end ata level ! vertex before making any other query that ends at a level !0 > ! vertex, or that it hasvisited all vertices of level ! in some speci�c order). To summarize, the only guarantee that wehave about the order in which the query{and{answer tree is developed is implied by the conventionthat before making a speci�c query, the simulator has made queries to all relevant pre�xes.Satis�ed path: A path from one node in the tree to some of its descendants is said to satisfysession i if the path contains edges (resp., vertices) for each of the messages sent by the prover19The query{and{answer tree should not be confused with the tree that is induced by the recursive schedule.20In particular, the shape of the query{and{answer tree is completely determined by the contents of prover messagesin execx(�; g; h) (whereas the contents of veri�er answers given by Vg;h have no e�ect on the shape of the tree).

48 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS(resp., veri�er) in session i. A path is called satis�ed if it satis�es all sessions for which the veri�er's�rst message appears along the path. One important example for a satis�ed path is the path thatstarts at the root of the query{and{answer tree and ends with an edge that is labeled with a p(n;n)k+1message. This path contains all n2 � (k+1) messages in the schedule (and so satis�es all n2 sessionsin the schedule). We stress that the contents of messages (occurring as labels) along a path arecompletely irrelevant to the question of whether the path is satis�ed or not. In particular, a pathmay be satis�ed even if some (or even all) of the vertices along it are labeled with ABORT.Recall that, by our conventions, the simulator never makes a query that is answered with theDEVIATION message. We are thus guaranteed that, for every completed block along a path inthe tree, at least n1=24 sessions are accepted by Vg;h. In particular, the vertices corresponding tomessages of these accepted sessions cannot be labeled with ABORT.Good sub-tree: Consider an arbitrary sub-tree (of the query{and{answer tree) that satis�es thefollowing two conditions:1. The sub-tree is rooted at a vertex corresponding to the �rst message of some session so thatthis session is the �rst main session of some recursive invocation of the schedule.2. Each path in the sub-tree is truncated at the last message of the relevant recursive invocation.The full tree (i.e., the tree rooted at the vertex labeled with the �rst message in the schedule)is indeed such a tree, but we will need to consider sub-trees which correspond to m sessions inthe recursive schedule construction (i.e., correspond to Rm). We call such a sub-tree m-good if itcontains a satis�ed path starting at the root of the sub-tree. Since (�; g; h)2AC, we have that thesimulator has indeed produced a \legal" transcript as output. It follows that the full tree contains apath from the root to a leaf that contains vertices (resp., edges) for each of the messages sent by theveri�er (resp., prover) in all n2 sessions of the schedule (as otherwise the transcript SVg;h� (x) wouldhave not been legal). In other words, the full tree contains a satis�ed path and is thus n2-good.Note that, by the de�nition of the recursive schedule, two m-good sub-trees are always disjoint.On the other hand, if m0 < m, it may be the case that an m0-good sub-tree is contained in anotherm-good sub-tree. As a matter of fact, since an m-good sub-tree contains all messages of all sessionsin a recursive block corresponding to Rm, then it must contain at least k disjoint m�nk -good sub-trees (i.e., that correspond to k the recursive invocations of Rm�nk made by Rm).The next lemma (which can be viewed as the crux of the proof) states that, if the contradictionhypothesis of Lemma 3.3.9 is satis�ed, then the number of disjoint m�nk -good sub-trees that arecontained in an m-good sub-tree is actually considerably larger than k.Lemma 3.3.10 Suppose that every block-pre�x that appears in execx(�; g; h) is not potentially-useful. Then for every m � n, every m-good sub-tree contains at least kc+1 disjoint m�nk -goodsub-trees.Denote by W (m) the size of an m-good sub-tree. (That is, W (m) actually represents the workperformed by the simulator on m concurrent sessions in our �xed scheduling.) It follows (fromLemma 3.3.10) that any m-good sub-tree must satisfy:W (m) � (1 if m � nkc+1 �W �m�nk � if m > n (3.6)Since for all but �nitely many n, Eq. (3.6) solves to W (n2) > nc (see Section 8.2 in the Appendix),and since every vertex in the query{and{answer tree corresponds to a query actually made by the

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 49simulator, it follows that the hypothesis that the simulator runs in time that is bounded by nc (andhence the full n2-good tree must have been of size at most nc) is contradicted. Thus, Lemma 3.3.9will actually follow from Lemma 3.3.10.Proof (of Lemma 3.3.10): Let T be an arbitrary m-good sub-tree of the query{and{answertree. Considering the m sessions corresponding to an m-good sub-tree, we focus on the n mainsessions of this level of the recursive construction. Let BT denote the recursive block to whichthe indices of these n sessions belong. A T -query is a query q whose corresponding path down thequery{and{answer tree ends with a node that belongs to T (recall that every query q appearingin execx(�; g; h) corresponds to a path down the full tree), and that satis�es �sn(q) 2 BT .21 We�rst claim that all T -queries q in execx(�; g; h) have the same block-pre�x. This block-pre�xcorresponds to the path from the root of the full tree to the root of T , and is denoted by bpT .Fact 3.3.11 All T -queries in execx(�; g; h) have the same block-pre�x (denoted bpT).Proof: Assume, towards contradiction, that there exist two di�erent T -queries q1; q2 so thatbp(q1) 6= bp(q2). In particular, bp(q1) and bp(q2) must di�er in a message that precedes the �rstmessage of the �rst main session in BT . (Note that if two block-pre�xes are equal in all messagespreceding the �rst message of the �rst session of the relevant block then, by de�nition, they areequal.22) This means that the paths that correspond to q1 and q2 split from each other before theyreach the root of T (remember that T is rooted at a node corresponding to the �rst main session ofrecursive block BT). But this contradicts the fact that both paths that correspond to these queriesend with a node in T , and the fact follows.Using the hypothesis that no block-pre�x in execx(�; g; h) is potentially-useful, we prove:Claim 3.3.12 Let T be anm-good sub-tree. Then the number of ip-di�erent queries that correspondto block-pre�x bpT is at least kc+1.Proof: Since all block-pre�xes that appear in execx(�; g; h) are not potentially-useful (by thehypothesis of Lemma 3.3.10), this holds as a special case for block-pre�x bpT . Let ` = `(bpT) be theindex of the recursive block that corresponds to block-pre�x bpT in execx(�; g; h). Since block-pre�x bpT is not potentially-useful, at least one of the two conditions of De�nition 3.3.8 is violated.In other words, one of the following two conditions is satis�ed:1. The number of ip-di�erent queries that correspond to block-pre�x bpT is at least kc+1.2. The execution of the simulator does not reach the end of the block that corresponds toblock-pre�x bpT (i.e., there is no query in execx(�; g; h) that ends with a p(`;n)k+1 message thatcorresponds to block-pre�x bpT).Now, since T is an m-good sub-tree, then it must contain a satis�ed path. Such a path starts atthe root of T and satis�es all sessions whose �rst veri�er message appears along the path. The keyobservation is that every satis�ed path that starts at the root of sub-tree T must satisfy all the21Note that queries q that satisfy �sn(q) 2 BT do not necessarily correspond to a path that ends with a node in T(as execx(�; g; h) may contain a di�erent sub-tree T 0 that satis�es BT = BT 0). Also note that there exist queries q,whose corresponding path ends with a node that belongs to T , but satisfy �sn(q) 62 BT . This is so, since T may alsocontain vertices that correspond to messages in sessions which are not main sessions of BT (in particular, all sessionsthat belong to the lower level recursive blocks that are invoked by block BT).22Recall that the index of the relevant block is determined by the length of the corresponding block-pre�x

50 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSmain sessions in BT (to see this, notice that the �rst message of all main sessions in BT will alwaysappear along such a path), and so it contains all messages of all main session in recursive blockBT . In particular, the sub-tree T contains a path that starts at the root of T and ends with anedge that is labeled with the last prover message in session number (`; n) (i.e., a p(`;n)k+1 message).In other words, the execution of the simulator does reach the end of the block that corresponds toblock-pre�x bpT (since, for the above path to exist, the simulator must have made a query thatends with a p(`;n)k+1 message that corresponds to block-pre�x bpT), and so Condition 2 above doesnot apply. Thus, the only reason that may cause block-pre�x bpT not to be potentially-useful isCondition 1. We conclude that the number of ip-di�erent queries that correspond to block-pre�xbpT is at least kc+1, as required.The following claim establishes the connection between the number of ip-di�erent queries thatcorrespond to block-pre�x bpT and the number of m�nk -good sub-trees contained in T . Looselyspeaking, this is achieved based on the following three observations: (1) Two queries are said tobe ip-di�erent if and only if they have di�erent iteration-pre�xes. (2) Every iteration-pre�x is ablock-pre�x of some sub-schedule one level down in the recursive construction (consisting of m�nksessions). (3) Every such distinct block-pre�x yields a distinct m�nk -good sub-tree.Claim 3.3.13 Let T be an m-good sub-tree. Then for every pair of ip-di�erent queries that corre-spond to block-pre�x bpT , the sub-tree T contains two disjoint m�nk -good sub-trees.Once Claim 3.3.13 is proved, we can use it in conjunction with Claim 3.3.12 to infer that T containsat least kc+1 disjoint m�nk -good sub-trees.Proof: Before we proceed with the proof of Claim 3.3.13, we introduce the notion of an iteration-su�x of a query q. This is the su�x of q that starts at the ending point of the query's iteration-pre�x.A key feature satis�ed by an iteration-su�x of a query is that it contains all the messages of allsessions belonging to some invocation of the schedule one level down in the recursive construction(this follows directly from the structure of our �xed schedule).De�nition 3.3.14 (Iteration-su�x) The iteration-su�x of a query q (satisfying j = �msg(q) >1), denoted is(q), is the su�x of q that begins at the ending point of the iteration-pre�x of query q.That is, for q = (b1; a1; : : : ; at; bt) if ip(q) = (b1; a1; : : : ; b��1; a�) then is(q) = (a�; b�+1; : : : ; at; bt).23Let q be a query, and let (`; i) = �sn(q), j = �msg(q). Let P(q) denote the path corresponding toquery q in the query-and-answer tree. Let Pip(q) denote the sub-path of P(q) that correspondsto the iteration-pre�x ip(q) of q, and let Pis(q) denote the sub-path of P(q) that corresponds tothe iteration-su�x is(q) of q. That is, the sub-path Pip(q) starts at the root of the full tree, andends at a p(`;n)j�1 message, whereas the sub-path Pis(q) starts at a p(`;n)j�1 message and ends at a v(`;i)jmessage (in particular, path P(q) can be obtained by concatenating Pip(q) with Pis(q)24).Fact 3.3.15 For every query q 2 execx(�; g; h), the sub-path Pis(q) is satis�ed. Moreover:1. The sub-path Pis(q) satis�es all m�nk sessions of a recursive invocation one level down in therecursive construction (i.e., corresponding to Rm�nk).2. If q corresponds to block-pre�x bpT , then the sub-path Pis(q) is contained in T .23This means that a� is of the form p(`;n)j�1 , where (`; i)=�sn(q) and j=�msg(q).24To be precise, one should delete from the resulting concatenation one of the two consecutive edges which arelabeled with a� = p(`;n)j�1 (one edge is the last in Pip(q) and the other edge is the �rst in Pis(q)).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 51Proof: Let (`; i)=�sn(q) and j=�msg(q). By nature of our �xed scheduling, the vertex in whichsub-path Pis(q) begins precedes the �rst message of all (nested) sessions in the (j�1)st recursiveinvocation made by recursive block number ` (i.e., an instance of Rm�nk which is invoked by Rm).Since query q is answered with a v(`;i)j message, we have that the sub-path Pis(q) eventually reachesa vertex labeled with v(`;i)j . In particular, the sub-path Pis(q) (starting at a p(`;n)j�1 edge and endingat a v(`;i)j vertex) contains the �rst and last messages of each of the above (nested) sessions, andso contains edges (resp., vertices) for each prover (resp., veri�er) message in these sessions. Butthis means (by de�nition) that all these (nested) sessions are satis�ed by Pis(q). Since the above(nested) sessions are the only sessions whose �rst message appears along the sub-path Pis(q), wehave that Pis(q) is satis�ed. To see that whenever q corresponds to block-pre�x bpT the sub-pathPis(q) is contained in the sub-tree T , we observe that both its starting point (i.e., a p(`;n)j�1 edge)and its ending point (i.e., a v(`;i)j vertex) are contained in T .Fact 3.3.16 Let q1; q2 be two ip-di�erent queries. Then Pis(q1) and Pis(q2) are disjoint.Proof: Let q1 and q2 be two ip-di�erent queries, let (`1; i1) = �sn(q1); (`2; i2) = �sn(q2), and letj1 = �msg(q1); j2 = �msg(q2). Recall that queries q1 and q2 are said to be ip-di�erent if and onlyif they have di�erent iteration-pre�xes. Since q1 and q2 are assumed to be ip-di�erent, then so areiteration-pre�xes ip(q1) and ip(q2). In particular, the paths Pip(q1) and Pip(q2) are di�erent. Wedistinguish between the following two cases:1. Path Pip(q1) splits from Pip(q2): In such a case, the ending points of paths Pip(q1) andPip(q2) must belong to di�erent sub-trees of the query{and{answer tree. Since the startingpoint of an iteration-su�x is the ending point of the corresponding iteration-pre�x, we musthave that paths Pis(q1) and Pis(q2) are disjoint.2. Path Pip(q1) is a pre�x of path Pip(q2): That is, both Pip(q1) and Pip(q2) reach a v(`1;n)j1�1vertex, while path Pip(q2) continues down the tree and reaches a v(`2;n)j2�1 vertex. The keyobservation in this case is that either `1 is strictly smaller than `2, or j1 is strictly smallerthan j2. The reason for this is that in case both `1 = `2 and j1 = j2 hold, iteration-pre�xip(q1) must be equal to iteration-pre�x ip(q2),25 in contradiction to our hypothesis. Sincepath Pis(q1) starts at a p(`1;n)j1�1 vertex and ends with a v(`1;i1)j1 vertex, and since path Pis(q2)starts with a p(`2;n)j2�1 vertex, we have that the ending point of path Pis(q1) precedes the startingpoint of path Pis(q2) (this is so since if j1 < j2, the p(`1;i1)j1 message will always precede/equalthe p(`2;n)j2�1 message). In particular, paths Pis(q1) and Pis(q2) are disjoint.It follows that for every two ip-di�erent queries, q1 and q2, sub-paths Pis(q1) and Pis(q2) aredisjoint, as required.Back to the proof of Claim 3.3.13, let q1 and q2 be two ip-di�erent queries that correspond toblock-pre�x bpT (as guaranteed by the hypothesis of Claim 3.3.13), and let Pis(q1) and Pis(q2) beas above. Consider the two sub-trees, T1 and T2, of T that are rooted at the starting point of sub-paths Pis(q1) and Pis(q2) respectively (note that by, Fact 3.3.15, T1 and T2 are indeed sub-trees25That is, unless bp(q1) 6= bp(q2). But in such a case, paths Pip(q1) and Pip(q2) must split from each other (sincethey di�er in some message that belongs to their block-pre�x), and we are back to Case 1.

52 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSof T). By de�nition of our recursive schedule, T1 and T2 correspond to m�nk sessions one leveldown in the recursive construction (i.e., to an instance of Rm�nk). Using Fact 3.3.15 we infer thatsub-path Pis(q1) (resp., Pis(q2)) contains all messages of all sessions in T1 (resp., T2), and so thesub-tree T1 (resp., T2), is m�nk -good. In addition, since sub-paths Pis(q1) and Pis(q2) are disjoint(by Fact 3.3.16) and since, by de�nition of an m�nk -good tree, two di�erent m�nk -good trees arealways disjoint, then T1 and T2 (which, being rooted at di�erent vertices, must be di�erent) arealso disjoint. It follows that for every pair of di�erent queries that correspond to block-pre�x bpT ,the sub-tree T contains two disjoint m�nk -good sub-trees.We are �nally ready to establish Lemma 3.3.10 (using Claims 3.3.12 and 3.3.13). By Claim 3.3.12,we have that the number of di�erent queries that correspond to block-pre�x bpT is at least kc+1.Since (by Claim 3.3.13), for every pair of di�erent queries that correspond to block-pre�x bpT thesub-tree T contains two disjoint m�nk -good sub-trees, we infer that T contains a total of at leastkc+1 disjoint m�nk -good sub-trees (corresponding to the (at least) kc+1 di�erent queries mentionedabove). Lemma 3.3.10 follows.Back to the Proof of Lemma 3.3.7 (existence of useful block-pre�xes)Once the correctness of Lemma 3.3.9 is established, we may proceed with the proof of Lemma 3.3.7.Let x 2 f0; 1gn. We bound from above the probability, taken over the choices of � 2 f0; 1g�; g r Gand h r H, that (�; g; h) 2 AC and that for all ` 2 f1; : : : ; tS(n)g and all i 2 f1; : : : ; ng, the `thdistinct block-pre�x in execx(�; g; h) is not i-useful. Speci�cally, we would like to show that:Pr�;g;h" (8`; i :useful`;i(�; g; h)) & ((�; g; h) 2 AC) # (3.7)is negligible. De�ne a Boolean indicator pot�use`(�; g; h) to be true if and only if the `th dis-tinct block-pre�x in execx(�; g; h) is potentially-useful. As proved in Lemma 3.3.9, for any(�; g; h) 2 AC there exists an index ` 2 f1; : : : ; tS(n)g, so that the `th block-pre�x in execx(�; g; h)is potentially-useful. In other words, for every (�; g; h) 2 AC, pot�use`(�; g; h) holds for some valueof `. Thus, Eq. (3.7) is upper bounded by:Pr�;g;h 24tS(n)_̀=1 pot�use`(�; g; h) & (8i2f1; : : : ; ng :useful`;i(�; g; h))35 (3.8)Consider a speci�c ` 2 f1; : : : ; tS(n)g so that pot�use`(�; g; h) is satis�ed (i.e., the `th block pre�xin execx(�; g; h) is potentially-useful). By Condition 2 in the de�nition of a potentially-usefulblock-pre�x (De�nition 3.3.8), the execution of the simulator reaches the end of the correspondingblock in the schedule. In other words, there exists a query q 2 execx(�; g; h) that ends with the(k+1)st prover message in the nth main session of recursive block number `(bp`), where bp` denotesthe `th distinct block-pre�x in execx(�; g; h), and `(bp`) denotes the index of the recursive block thatcorresponds to block-pre�x bp` in execx(�; g; h). Since, by our convention and the modi�cation ofthe simulator, S never generates a query that is answered with a DEVIATION message, we have thatthe partial execution transcript induced by query q must contain the accepting conversations of atleast n1=24 main sessions in block number `(bp`) (as otherwise query q would have been answeredwith the DEVIATION message in Step 1' of Vg;h).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 53Let q(bp`) = q(bp`)(�; g; h) denote the �rst query in execx(�; g; h) that is as above (i.e., thatends with the (k + 1)st prover message in the nth main session of recursive block number `(bp`),where bp` denotes the dth block-pre�x appearing in execx(�; g; h)).26 De�ne an additional Booleanindicator accept`;i(�; g; h) to be true if and only if query q(bp`) contains an accepting conversationfor session (`(bp`); i) (that is, no prover message in session (`(bp`); i) is answered with ABORT, andthe last veri�er message of this session equals ACCEPT).27 It follows that for every ` 2 f1; : : : ; tS(n)gthat satis�es pot�use`(�; g; h) (as above), there exists a set S � f1; : : : ; ng of size n1=24 such thataccept`;i(�; g; h) holds for every i 2 S. Thus, Eq. (3.8) is upper bounded by:Pr�;g;h 266664tS(n)_̀=1 _S�f1;:::;ngjSj=n1=24 �pot�use`(�; g; h) & �8i 2 S; :useful`;i(�; g; h) & accept`;i(�; g; h)��377775 (3.9)Using the union bound, we upper bound Eq. (3.9) by:tS(n)X̀=1 XS�f1;:::;ngjSj=n1=24 Pr�;g;h hpot�use`(�; g; h) & �8i 2 S; :useful`;i(�; g; h) & accept`;i(�; g; h)�i (3.10)The last expression is upper bounded using the following lemma, that bounds the probability that aspeci�c set of di�erent sessions corresponding to the same (in index) potentially-useful block-pre�xare accepted (at the �rst time that the recursive block to which they belong is completed), but stilldo not turn it into a useful block-pre�x. In fact, we prove something stronger:Lemma 3.3.17 For every � 2 f0; 1g�, every h 2 H, every ` 2 f1; : : : ; tS(n)g, and every set ofindices S � f1; : : : ; ng, so that jSj > k:Prg hpot�use`(�; g; h) & �8i 2 S; :useful`;i(�; g; h) & accept`;i(�; g; h)�i < �n�(12+ 14k)�jSjProof: Let x 2 f0; 1g�. Fix some � 2 f0; 1g�, h 2 H, ` 2 f1; : : : ; tS(n)g and a set S � f1; : : : ; ng.Denote by bp` = bp`(g) the `th distinct block-pre�x in execx(�; h; g), and by `(bp`) the index of itscorresponding recursive block in the schedule. We bound the probability, taken over the choice ofg r G, that for all i 2 S block-pre�x bp` is not i-useful, even though it is potentially-useful and forall i 2 S the query q(bp`) contains an accepting conversation for session (`(bp`); i).26Since the simulator is allowed to feed Vg;h with di�erent queries of the same length, we have that the executionof the simulator may reach the end of the corresponding block more than once (and thus, execx(�; g; h) may containmore than a single query that ends with the (k+1)st prover message in the nth main session of block number `(bp`)).Since each time that the simulator reaches the end of the corresponding block, the above set of accepted sessions maybe di�erent, we are not able to pinpoint a speci�c set of accepted sessions without explicitly specifying to which oneof the above queries we are referring. We solve this problem by explicitly referring to the �rst query that satis�es theabove conditions (note that, in our case, such a query is always guaranteed to exist).27Note that the second condition implies the �rst one. Namely, if the last veri�er message of session (`(bp`); i)equals ACCEPT, then no prover message in this session could have been answered with ABORT.

54 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDSA technical problem resolved: In order to prove Lemma 3.3.17 we need to focus on the `thdistinct block-pre�x in execx(�; h; g) (denoted by bp`) and analyze the behaviour of a uniformlychosen g when applied to the various iteration-pre�xes that correspond to bp`. However, trying todo so we encounter a technical problem. This problem is caused by the fact that the contents ofblock-pre�x bp` depends on g.28 In particular, it does not make sense to analyze the behaviour of auniformly chosen g on iteration-pre�xes that correspond to an \undetermined" block-pre�x (sinceit is not possible to determine the iteration-pre�xes that correspond to bp` when bp` itself is notdetermined). To overcome the above problem, we rely on the following observations:1. Whenever �; h and ` are �xed, the contents of block-pre�x bp` is completely determined bythe output of g on inputs that have occurred before bp` has been reached (i.e., has appearedas a block-pre�x of some query) for the �rst time.2. All iteration-pre�xes that correspond to block-pre�x bp` occur after bp` has been reached forthe �rst time.It is thus possible to carry out the analysis by considering the output of g only on inputs that haveoccurred after bp` has been determined. That is, �xing �; h and ` we distinguish between: (a) theoutputs of g that have occurred before the `th distinct block-pre�x in execx(�; g; h) (i.e., bp`) hasbeen reached, and (b) the outputs of g that have occurred after bp` has been reached. For everypossible outcome of (a) we will analyze the (probabilistic) behaviour of g only over the outcomesof (b). (Recall that once (a)'s outcome has been determined, the identities (but not the contents)of all relevant pre�xes are well de�ned.) Since for every possible outcome of (a) the analysis willhold, it will in particular hold over all choices of g.More formally, consider the following (alternative) way of describing a uniformly chosen g 2 G(at least as far as execx(�; g; h) is concerned). Let g1; g2 be two tS(n)-wise independent hashfunctions uniformly chosen from G and let �; h; ` be as above. We de�ne g(g1;g2) = g(�;h;`;g1;g2) tobe uniformly distributed among the functions g0 that satisfy the following conditions: the value ofg0 when applied to an input � that has occurred before bp` has been reached (in execx(�; g; h)) isequal to g1(�), whereas the value of g0 when applied to an input � that has occurred after bp` hasbeen reached is equal to g2(�).Similarly to the proof of Claim 3.3.2 it can be shown that for every �; h; ` as above, if g1 andg2 are uniformly distributed then so is g(g1;g2). In particular:Prg hpot�use`(�; g; h) & �8i 2 S; :useful`;i(�; g; h) & accept`;i(�; g; h)�i= Prg1;g2 hpot�use`(�; g(g1;g2); h) & �8i 2 S; :useful`;i(�; g(g1;g2); h) & accept`;i(�; g(g1 ;g2); h)�iBy �xing g1 and then analyzing the behaviour of a uniformly chosen g2 on the relevant iteration-pre�xes the above technical problem is resolved. This is due to the following two reasons: (1) Forevery choice of �; h; ` and for every �xed value of g1, the block-pre�x bp` is completely determined(and the corresponding iteration-pre�xes are well de�ned). (2) Once bp` has been reached, theoutcome of g(g1;g2) when applied to the relevant iteration-pre�xes is completely determined by thechoice of g2. Thus, all we need to show to prove Lemma 3.3.17 is that for every choice of g1Prg2 hpot�use`(�; g(g1;g2); h) & �8i 2 S; :useful`;i(�; g(g1 ;g2); h) & accept`;i(�; g(g1;g2); h)�i (3.11)is upper bounded by (n�(1=2+1=4k))jSj.28Clearly, the contents of queries that appear in execx(�; g; h) may depend on the choice of the hash function g.(This is because the simulator may dynamically adapt its queries depending on the outcome of g on iteration-pre�xesof past queries.) As a consequence, the contents of bp` = bp`(g) may vary together with the choice of g.

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 55Back to the actual proof of Lemma 3.3.17: Consider the block-pre�x bp`, as determinedby the choices of �; h; ` and g1, and focus on the iteration-pre�xes that correspond to bp` inexecx(�; g; h). We next analyze the implications of bp` being not i-useful, even though it is poten-tially useful and for all i 2 S query q(bp`) contains an accepting conversation for session (`(bp`); i).Claim 3.3.18 Let � 2 f0; 1g�, g 2 G, h 2 H, d 2 f1; : : : ; tS(n)g and S � f1; : : : ; ng. Suppose thatthe indicator �pot�use`(�; g; h) & (8i 2 S;:useful`;i(�; g; h) & accept`;i(�; g; h))� is true. Then:1. The number of di�erent iteration-pre�xes that correspond to block-pre�x bp` is at most kc+1.2. For every j 2 f2; : : : ; k+1g, there exists an iteration-pre�x ipj (corresponding to block-pre�x bp`), so that for every i 2 S we have g(i; ipj) = 1.3. For every i 2 S, there exist an (additional) iteration-pre�x ip(i) (corresponding to block-pre�x bp`), so that for every j2f2; : : : ; k + 1g, we have ip(i) 6= ipj, and g(i; ip(i)) = 1.In accordance with the discussion above, Claim 3.3.18 will be invoked with g = g(g1;g2).Proof: Loosely speaking, Item (1) follows directly from the hypothesis that block-pre�x bp` ispotentially-useful. In order to prove Item (2) we also use the hypothesis that for all i 2 S queryq(bp`) contains an accepting conversation for session (`(bp`); i), and in order to to prove Item (3) weadditionally use the hypothesis that for all i 2 S block-pre�x bp` is not i-useful. Details follow.Proof of Item 1: The hypothesis that block-pre�x bp` is potentially-useful (i.e., pot�use`(�; g; h)holds), implies that the number of iteration-pre�xes that correspond to block-pre�x bp` is atmost kc+1 (as otherwise, the number of ip-di�erent queries that correspond to bp` would havebeen greater than kc+1).Proof of Item 2: Let i 2 S and recall that accept`;i(�; g; h) holds. In particular, we have thatquery q(bp`) (i.e., the �rst query in execx(�; g; h) that ends with the (k+1)st prover messagein the nth main session of recursive block number `(bp`)) contains an accepting conversation forsession (`(bp`); i). That is, no prover message in session (`(bp`); i) is answered with ABORT, andthe last veri�er message of this session equals ACCEPT. Since by our conventions regardingthe simulator, before making query q(bp`) the simulator has made queries to all relevantpre�xes, then it must be the case that all pre�xes of query q(bp`) have previously occurred asqueries in execx(�; g; h). In particular, for every i 2 S and for every j 2 f2; : : : ; k + 1g, theexecution of the simulator must contain a query qi;j that is a pre�x of q(bp`) and that satis�esbp(qi;j) = bp`, �sn(qi;j)=(`(bp`); i), �msg(qi;j)=j, and g(i; ip(qi;j)) = 1. (If g(i; ip(qi;j)) wouldhave been equal to 0, query q(bp`) would have contained a prover message in session (`(bp`); i)that is answered with ABORT, in contradiction to the fact that accept`;i(�; g; h) holds.) Sincefor every j 2 f2; : : : ; k+1g and for every i1; i2 2 S we have that ip(qi1;j) = ip(qi2;j) (as queriesqi;j are all pre�xes of q` and jip(qi1;j)j = jip(qi2;j)j), we can set ipj = ip(qi;j). It follows thatfor every j 2 f2; : : : ; k+1g, iteration-pre�x ipj corresponds to block-pre�x bp` (as queries qi;jall have block-pre�x bp`), and for every i 2 S we have that g(i; ipj) = 1.Proof of Item 3: Let i 2 S and recall that in addition to the fact that accept`;i(�; g; h) holds, wehave that useful`;i(�; g; h) does not hold. Notice that the only reason for which useful`;i(�; g; h)

56 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDScan be false (i.e., the `th block-pre�x is not i-useful), is that Condition 1 in De�nition 3.3.4is violated by execx(�; g; h). (Recall that accept`;i(�; g; h) holds, and so Condition 2 inDe�nition 3.3.4 is indeed satis�ed by query qi;k+1 (as de�ned above): This query correspondsto block-pre�x bp`, satis�es �sn(qi;k+1) = (`(bp`); i), �msg(qi;k+1) = k + 1, g(i; ip(qi;k+1)) = 1,and is answered with ACCEPT.)For Condition 1 in De�nition 3.3.4 to be violated, there must exists a j 2 f2; : : : ; k+1g,with two ip-di�erent queries, q1 and q2, that correspond to block-pre�x bp`, satisfy �sn(q1)=�sn(q2) = (`(bp`); i), �msg(q1) = �msg(q2) = j, and g(i; ip(q1)) = g(i; ip(q2)) = 1. Since,by de�nition, two queries are considered ip-di�erent only if they di�er in their iteration-pre�xes, we have that there exist two di�erent iteration-pre�xes ip(q1) and ip(q2) (of thesame length) that correspond to block-pre�x bp` and satisfy g(i; ip(q1)) = g(i; ip(q2)) = 1.Since iteration-pre�xes ip2; : : : ; ipk+1 (from Item 2 above) are all of distinct length, and sincethe only iteration-pre�x in ip2; : : : ; ipk+1 that can be equal to either ip(q1) or ip(q2) is ipj(note that this is the only iteration-pre�x having the same length as ip(q1) and ip(q2)), then itmust be the case that at least one of ip(q1); ip(q2) is di�erent from all of ip2; : : : ; ipk+1 (recallthat ip(q1) and ip(q2) are di�erent, which means that they cannot be both equal to ipj). Inparticular, for every i 2 S (that satis�es useful`;i(�; g; h) & accept`;i(�; g; h)), there exists atleast one (extra) iteration-pre�x, ip(i) 2 fip(q1); ip(q2)g, that corresponds to block-pre�x bp`,di�ers from ipj for every j 2 f2; : : : ; k + 1g, and satis�es g2(i; ip(i)) = 1.This completes the proof of Claim 3.3.18.Recall that the hash function g2 is chosen at random from a tS(n)-wise independent family. Sincefor every pair of di�erent iteration-pre�xes the function g2 will have di�erent inputs, then g2 willhave independent outputs when applied to di�erent iteration-pre�xes (since no more than tS(n)queries are made by the simulator). Similarly, for every pair of di�erent i; i0 2 S, g2 will havedi�erent input, and thus independent output. Put in other words, all outcomes of g2 that arerelevant to block-pre�x bp` are independent of each other. Since a uniformly chosen g2 will output1 with probability n�1=2k, we may view every application of g2 on iteration-pre�xes that correspondto bp` as an independently executed experiment that succeeds with probability n�1=2k.29Using Claim 3.3.18:1 (i.e., Item 1 of Claim 3.3.18), the applications of g2 which are relevant tosessions f(`(bp`); i)gi2S can be viewed as a sequence of at most kc+1 experiments (corresponding toat most kc+1 di�erent iteration-pre�xes). Each of these experiments consists of jSj independentsub-experiments (corresponding to the di�erent i 2 S), and each sub-experiment succeeds withprobability n�1=2k. Claim 3.3.18:2 now implies that at least k of the above experiments will fullysucceed (that is, all of their sub-experiments will succeed), while Claim 3.3.18:3 implies that forevery i 2 S there exists an additional successful sub-experiment (that is, a sub-experiment of oneof the kc+1 � k remaining experiments). Using the fact that the probability that a sub-experimentsucceeds is n�1=2k, we infer that the probability that an experiment fully succeeds is equal to(n�1=2k)jSj. In particular, the probability in Eq. (3.11) is upper bounded by the probability thatthe following two events occur (these events correspond to Claims 3.3.18:2 and 3.3.18:3 respectively):29We may describe the process of picking g2 r G as the process of independently letting the output of g2 be equalto 1 with probability n�1=2k (each time a new input is introduced). Note that we will be doing so only for inputs thatoccur after block-pre�x bp` has been determined (as, in the above case, all inputs for g2 are iteration-pre�xes thatcorrespond to block-pre�x bp`, and such iteration-pre�xes will occur only after bp` has already been determined).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 57Event 1: In a sequence of (at most kc+1) experiments, each succeeding with probability (n�1=2k)jSj,there exist k successful experiments. (The success probability corresponds to the probabilitythat for every i 2 S, we have g2(i; ipj) = 1 (see Claim 3.3.18:2).)Event 2: For every one out of jSj sequences of the remaining (at most kc+1�k) sub-experiments,each succeeding with probability n�1=2k, there exists at least one successful experiment. (In thiscase, the success probability corresponds to the probability that iteration-pre�x ip(i) satis�esg2(i; ip(i))=1 (see Claim 3.3.18:3).)For i 2 jSj and j 2 [kc+1], let us denote the success of the ith sub-experiment in the jth experimentby �i;j. By the above discussion for every i; j, the probability that �i;j holds is n�1=2k (indepen-dently of other �i;j's). We now have that, for Event 1 above to suceed, there must exists a setof k experiments, K � [kc+1], so that for all (i; j) 2 S �K, the event �i;j holds. For Event 2 tosuceed, it must be the case that, for every i 2 S, there exist one additional experiment (i.e., somej 2 [kc+1] nK) so that �i;j holds. It follows that Eq. (3.11) is upper bounded by:XK�[kc+1]jKj=k Pr�8j 2 K; 8i 2 S s:t: �i;j� � Pr�8i 2 S; 9j 2 [kc+1] nK s:t: �i;j�= kc+1k ! � ��n� 12k �jSj�k � �1� �1� n� 12k �kc+1�k�jSj< �kc+1�k � ��n� 12k �jSj�k � �kc+1 � n� 12k �jSj (3.12)= �kc+1�k+jSj � �n� 12k �k�jSj+jSj= �kc+1�k+jSj � �n� 14k �jSj �n�(12+ 14k)�jSj< �n�(12+ 14k)�jSj (3.13)where Eq. (3.12) holds whenever kc+1 � k = o(n1=2k) (which is satis�ed if k = o(log nlog log n)),and Eq. (3.13) holds whenever (kc+1)k+jSj � (n�1=4k)jSj < 1 (which is satis�ed if both jSj > kand k = o(log nlog log n)). This means that Eq. (3.11) is upper bounded by (n�(1=2+1=4k))jSj, and theproof of Lemma 3.3.17 is complete.Using Lemma 3.3.17, we upper bound Eq. (3.10) bytS(n) � nn1=24 ! � �n�(12+ 14k)�n1=24 < tS(n) � �4 � e � nn1=2 �n1=24 � �n�(12+ 14k)�n1=24= tS(n) � � 4 � en1=4k�n1=24< tS(n) � 2�n1=24 (3.14)where Inequality 3.14 holds whenever 8 � e < n1=4k (which holds for k < log n4�(3+log e)). This completesthe proof of Lemma 3.3.7 (since poly(n) � 2�
(n1=2) is negligible).

58 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

Chapter 4cZK in Logarithmically many RoundsIn this chapter we present a black-box cZK protocol whose number of rounds matches the lowerbound established in Chapter 3. Speci�cally, assuming the existence of perfectly-hiding commit-ment schemes (which exist assuming the existence of a collection of claw-free functions [29]), weshow that every language in NP can be proved in cZK using logarithmically many rounds ofinteraction. This is formally stated in the following theorem.Theorem 4.1 (Upper Bound) Assume the existence of perfectly-hiding commitment schemes,and let � : N ! N be any super-constant function. Then, there exists an O(�(n) � log n)-roundblack-box concurrent zero-knowledge proof system for every language L 2 NP.The proof of Theorem 4.1 builds on the protocol by Richardson and Kilian [42] and on thesimulator by Kilian and Petrank [35]. However, our analysis of the simulator's execution is moresophisticated and thus yields a stronger result. We introduce a novel counting argument thatinvolves a direct analysis of the underlying probability space. This is in contrast to previous resultsthat required subtle manipulations of conditional probabilities. We also present a new variant ofthe RK protocol [42] which is both simpler and more amenable to analysis than the original version.4.1 A cZK proof system for NPWe start by presenting a high-level description of our protocol, as well as a description of theblack-box simulator that establishes its zero-knowledge property. Our protocol is inspired by theRichardson-Kilian (RK) protocol [42] and uses the well known 3-round protocol for Hamiltonicityby Blum [6] as a building block. The crucial property of Blum's protocol that we need in order toconstruct a concurrent zero-knowledge simulator is that the simulation task becomes trivial as soonas the veri�er's message is known in advance. That is, if the prover knows the veri�er's \challenge"prior to the beginning of the protocol then it can always make the veri�er accept (regardless ofwhether the graph is Hamiltonian). This is done by adjusting the prover's messages accordingto the contents of the veri�er's \challenge" (which, as we said, is known in advance). We stressthat the choice of Blum's protocol as a building block is arbitrary (and is made just for clarity ofpresentation). In fact, the above property is satis�ed by many other known protocols (in particular,any one of these protocols could have been used as a building block for our construction).Much alike the RK protocol [42], our protocol is designed to overcome di�culties that areencountered whenever many sessions are to be black-box simulated concurrently. This is done byadding a \preamble" to the protocol, which is completely independent of the common input andwhose sole purpose is to enable a successful simulation in the concurrent setting. Every round in thepreamble is viewed as a \rewind opportunity". Having successfully rewound even one of the rounds59

60 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSin the preamble is su�cient in order to reveal the veri�er's \challenge" in the Hamiltonicity proofsystem. As mentioned above, knowing the veri�er's \challenge" in advance enables the simulatorto cheat arbitrarily in the Hamiltonicity proof (regardless of whether the graph is Hamiltonian).4.1.1 The protocolWe let k be any super-logarithmic function in n. Our protocol consists of two stages. In the�rst stage (or preamble), which is independent of the actual common input, the veri�er commitsto a random n-bit string �, and to two sequences, f�0i;jgki;j=1, and f�1i;jgki;j=1, each consisting ofk2 random n-bit strings (this �rst message is called the initial commitment of the protocol). Thesequences are chosen under the constraint that for every i; j the value of �0i;j � �1i;j equals �. Thisis followed by k iterations so that in the jth iteration the prover sends a random k-bit string,rj = r1;j; : : : ; rk;j, and the veri�er decommits to �r1;j1;j ; : : : ; �rk;jk;j .In the second stage, the prover and veri�er engage in the 3-round protocol for Hamiltonicity,where the \challenge" sent by the veri�er in the second round of the Hamiltonicity protocol equals� (at this point the veri�er also decommits to all the values �; f�1�ri;ji;j gki;j=1 that were not revealedin the �rst stage). The protocol is depicted in Figure 4.1.A cZK Proof System for NPCommon Input: A directed graph G = (V;E) with n def= jV j.Auxiliary Input to Prover: A directed Hamiltonian Cycle, C � E, in G.Additional parameter: A super-logarithmic function k(n).Stage 1: Commitment to challenge � 2 f0; 1gn (independent of common input):P ! V : Send �rst message for perfectly hiding commitment scheme.V ! P : Commit to random �; f�0i;jgki;j=1; f�1i;jgki;j=1 s.t. �0i;j � �1i;j = � for all i; j.For j = 1; : : : ; k:P ! V : Send a random k-bit string rj = r1;j ; : : : ; rk;j .V ! P : Decommit to �r1;j1;j ; : : : ; �rk;jk;j .end (for);Stage 2: Engage in Blum's 3-round Hamiltonicity protocol using � as challenge:P ! V : Use C to produce �rst prover message of Hamiltonicity protocol.V ! P : Decommit to � and to f�1�ri;ji;j gki;j=1.P ! V : Answer � with second prover message of Hamiltonicity protocol.Figure 4.1: Our concurrent zero-knowledge protocol. The �rst stage is independent of the commoninput. The second stage consists of a 3-round proof of Hamiltonicity, where the \challenge" sentby V is the n-bit string � committed to in the �rst message of the �rst stage.Intuitively, since in an actual execution of the protocol, the prover does not know the value of�, the protocol constitutes a proof system for Hamiltonicity (with soundness error 2�n). However,knowing the value of � in advance allows the simulation of the protocol: Whenever the simulatormay cause the veri�er to reveal both �0i;j and �1i;j for some i; j (this is done by the means ofrewinding the veri�er after the values �r1;j1;j ; : : : ; �rk;jk;j have been revealed), it can simulate the rest of

4.1. A CZK PROOF SYSTEM FOR NP 61the protocol (and speci�cally Stage 2) by adjusting the �rst message of the Hamiltonicity protocolaccording to the value of � = �0i;j��1i;j (which, as we said, is obtained before entering the Stage 2).4.1.2 The simulator(V0); (P1); (V1); : : : ; (Pk); (Vk) denote the 2k + 1 �rst stage messages in our protocol and let(p1); (v1); (p2) denote the three (second stage) messages in the Hamiltonicity proof system. Looselyspeaking, the simulator is said to rewind the the jth round if after receiving a (Vj) message, it \goesback" to some point preceding the corresponding (Pj) message and \re-executes" the relevant partof the interaction until (Vj) is reached again.The simulator is said to successfully rewind the jth round, if it manages to receive (Vj) as answerto two di�erent (Pj) messages. Note that, once this happens, the simulator has obtained both �0i;jand �1i;j for some i 2 f1; : : : ; kg. Thus, if the simulator successfully rewinds even one of the roundsin the �rst stage then it reveals the veri�er's \challenge" (which is equal to �0i;j � �1i;j). Once the\challenge" is revealed, the simulator can cheat arbitrarily in the second stage of the protocol.To simplify the analysis, we let the simulator always pick the (Pj)'s uniformly at random. Sincethe length of the (Pj) messages is super-logarithmic, the probability that any two (Pj) messagessent during the simulation are equal is negligible.Motivating discussion: The binding property of the initial commitment guarantees us that,once �0i;j and �1i;j have been revealed, the veri�er cannot \change his mind" and decommit to� 6= �0i;j � �1i;j at a later stage. However, this remains true only if we have not rewound past theinitial commitment. As observed by Dwork, Naor and Sahai [15], rewinding a speci�c session inthe concurrent setting may result in rewinding past the initial commitment of other sessions. Thismeans that the \work" done for these sessions may be lost (since once we rewind past the initialcommitment of a session all �ri;ji;j values that we have gathered in this session become irrelevant).Consequently, the simulator may �nd himself doing the same amount of \work" again.The big question is how to design a simulation strategy that will manage to overcome the abovedi�culty. One possible approach would be to try and rewind every session at the location that will"minimize the damage". This is the approach taken by Richardson and Kilian [42]. Speci�cally,for every speci�c session (out of m concurrent sessions), there must be a j 2 f1; : : : ; kg so that atmost (m�1)=k other sessions start in the interval corresponding to the jth iteration (of this speci�csession). So if we try to rewind on the correct j, we will invest (and so waste) only work proportionalto (m� 1)=k sessions. The idea is to avoid the rewinding attempt on the jth iteration if more than(m� 1)=k sessions are initiated in the corresponding interval (this will rule out the incorrect j's).The same reasoning applies recursively (i.e., to the rewinding in these (m� 1)=k sessions).The drawback of this approach is that it works only when the number of iterations in the pream-ble is polynomially related to the number of concurrent sessions. Speci�cally, denoting by W (m)the amount of work invested in m sessions, we obtain the recursion W (m) = poly(m) �W (m�1k),which solves to W (m) =m�(logkm). Thus, whenever k = n, we get W (m) = mO(1), whereas takingk to be a constant (or even poly-logarithmic) will cause W (m) to be quasi-polynomial.A totally di�erent approach is taken by Kilian and Petrank [35]. Rather than concentrating oneach session separately and decide on the rewindings according to the schedule as it is being revealed,determine the rewindings obliviously of the concurrent scheduling (which is determined "on the y"by the adversary veri�er). Speci�cally, the order and timing of the simulator's rewindings aredetermined recursively and depend only on: (1) The length of the execution transcript determinedso far. (2) The total number of concurrent sessions (which, by de�nition, is determined prior tothe simulation process). This is essentially the approach taken by us.

62 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSProcedure solve(`; hist; T):1. Bottom level (` = 1):� If session s does not appear in hist, delete all session s messages from T .� Uniformly choose a �rst stage prover message p, and feed V � with (hist; p).� Store V �'s answer v, in T .� Output T , (p; v).2. Recursive step (` > 1):� Set T1, (~p1; ~v1; : : : ; ~p`=2; ~v`=2) solve(`=2, hist, T).� Set T2, (p1; v1; : : : ; p`=2; v`=2) solve(`=2, hist, T1).� Set T3, (~p`=2+1; ~v`=2+1; : : : ; ~p`; ~v`) solve(`=2, (hist; p1; v1; : : : ; p`=2; v`=2), T2).� Set T4, (p`=2+1; v`=2+1; : : : ; p`; v`) solve(`=2, (hist; p1; v1; : : : ; p`=2; v`=2), T3).� Output T4, (p1; v1; : : : ; p`; v`).Figure 4.2: The rewinding strategy of our simulator. We stress that the actual \work" is madeat the bottom level of the recursion. Even though messages (~p1; ~v1; : : : ; ~p`; ~v`) do not explicitlyappear in the output, some of them (i.e., the ones that are still \relevant") do appear in the tableT4. Notice that the timing of the rewinds is oblivious of the scheduling.The rewinding strategy: The rewinding strategy of our simulator is speci�ed by the solveprocedure. The goal of the solve procedure is to supply the simulator with V �'s \challenges"before reaching the second stage in the protocol. As discussed above, this is done by rewinding theinteraction with V � while trying to achieve two \di�erent" answers to some (Vj) message.The timing of the rewinds performed by the solve procedure depends only the number of �rststage veri�er messages received so far (and on the size of the schedule). For the sake of simplicity,we currently ignore second stage messages and refrain from specifying the way they are handled.On a very high level, the solve procedure splits the (�rst stage) messages it is about to exploreinto two halves and invokes itself recursively twice for each half (completing the two runs of the�rst half before proceeding to the two runs of the second half).At the top level of the recursion, the messages that are about to be explored consist of theentire schedule, whereas at the bottom level the procedure explores only a single message (at thislevel, the veri�er message explored is stored in a special "data-structure", denoted T). The solveprocedure always outputs the sequence of \most recently explored" messages.The input to the solve procedure consists of a triplet (`; hist;T). The parameter ` correspondsto the number of veri�er messages to be explored, the string hist consists of the messages in the\most recently visited" history of interaction, and T is a table containing the contents of all themessages explored so far (to be used whenever the second stage is reached in some session).1The simulation is performed by invoking the solve procedure with the appropriate parameters.Speci�cally, whenever the schedule contains m = poly(n) sessions, the solve procedure is invokedwith input (m(k+1); �; �) (wherem(k+1) is the total number of �rst stage veri�er messages in aschedule of size m). The solve procedure is depicted in Figure 4.2.1The messages stored in T are used in order to determine the veri�er's \challenge" according to \di�erent" answersto (Vj). They are kept \relevant" by constantly keeping track of the sessions that are rewound past their initial com-mitment. That is, whenever the solve procedure rewinds past the (V0) message of a session, all messages belongingto this session are deleted from T (since, once this happens, they become irrelevant to the rest of the simulation).

4.2. HIGH LEVEL ANALYSIS OF THE SIMULATION 634.2 High Level Analysis of the SimulationIn order to prove the correctness of the simulation, it will be su�cient to show that for everyadversary veri�er V �, the three conditions corresponding to the following subsections are satis�ed.4.2.1 The simulator runs in polynomial-timeEach invocation of the solve procedure with parameter ` > 1 involves four recursive invocationsof the solve procedure with parameter `=2. In addition, the work invested at the bottom of therecursion (i.e., when ` = 1) is upper bounded by poly(n). Thus, the recursive work W (m � (k+1)),that is invested by the solve procedure in order to handle m � (k+1) (�rst stage) veri�er messagessatis�es W (m � (k + 1)) � (m � (k + 1))2 � poly(n) = poly(n) (see Section 4.5 for details).4.2.2 The simulator's output is \correctly" distributedIndistinguishability of the simulator's output from V �'s view (of m = poly(n) concurrent interac-tions with P) is shown assuming that the simulator does not get \stuck" during its execution (seebelow). Since the simulator S will get \stuck" only with negligible probability, indistinguishabilitywill immediately follow. The key for proving the above lies in the following two properties:� First stage messages output by S are identically distributed to �rst stage messages sent by P .This property is proved based on the de�nition of the simulator's actions. (We note that thisproperty is easier to prove for our protocol than it is for the RK protocol.)� Second stage messages output by S are computationally indistinguishable from second stagemessages sent by P . This property is proved based on the zero-knowledge property of theunderlying protocol (in our case, Blum's Hamiltonicity protocol).4.2.3 The simulator (almost) never gets \stuck"This is the most challenging part of the proof. What is required is to show that whenever asession (out of m = poly(jxj) sessions in the schedule) reaches the second stage in the protocol,the simulator has already managed to obtain the value of the "challenge" corresponding to thissession (at least with overwhelming probability). We assume, for simplicity of presentation, thatthe concurrent scheduling applied by V � is �xed in advance (where by \�xed schedule" we mean aschedule that does not vary \dynamically" as a function of the messages that V � has seen so far).The ideas for coping with \dynamic" schedulings are presented in the actual proof.Partitioning the schedule into rewind intervals: The execution of the solve procedureinduces a partitioning of the 2 �m � (k+1) (prover and veri�er) messages in the schedule into disjointrewind intervals. At the top level of the recursion there are two disjoint intervals of length m � (k+1)and at the bottom of the recursion there are m � (k+1) disjoint intervals of length 2. In general,at the wth level of the recursion (out of d = log2(m � (k+1)) possible levels) there are 2w disjointintervals of m(k + 1)=2w+1 messages each.Notice that rewind intervals may contain messages from all sessions. Also notice, that a rewindinterval may be \visited" multiple times during the execution of the solve procedure (in particular,a level-w interval is visited exactly 2w times during the simulation). The �xed schedule assumptionimplies that each time an interval is \visited", it will contain the same scheduling of messages.

64 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSMinimal rewind intervals: We denote by [a; b] an interval starting with prover message a andending with veri�er message b. Focusing on messages of a speci�c session, we note that for everypair of messages (Pj); (Vj) in this session we can associate a level-w interval [aj; bj] so that:1. Both (Pj) and (Vj) are contained in [aj ; bj].2. None of the level-(w + 1) sub-intervals of [aj; bj] contains both (Pj) and (Vj).We call such a rewind interval a j-minimal interval. Notice that for every j 2 f1; : : : ; kg there isonly one j-minimal interval [aj; bj] (and that for every j 6= j0 the interval [aj ; bj] is di�erent from[aj0 ; bj0]). d daj�1 d [(P(j�1)) b [(V(j�1)) d [bbj�1 b [(Pj) daj+1 daj [(Vj)(P(j+1)) bbj [d [(V(j+1)) b bbj+1 b [Figure 4.3: Demonstrates the way in which minimal intervals are determined. Also demonstratespossible containments between minimal intervals of di�erent iterations. In this example, the in-tervals [aj�1; bj�1] and [aj+1; bj+1] are disjoint (as well as the intervals [aj�1; bj�1] and [aj ; bj]),whereas the interval [aj+1; bj+1] contains [aj; bj].In some sense j-minimal intervals correspond to the shortest interval in which the simulator canrewind message (Vj) (that is, while potentially changing the value of (Pj)). Intuitively, for such arewinding to be useful, the interval should not contain message (V0). Otherwise, the value that wasrevealed in some run of the interval becomes irrelevant once the rewinding is performed (since allthe relevant values in the T table are deleted whenever we rewind past (V0)). Likewise, the intervalshould not contain message (p1). Otherwise, the simulation faces the risk of getting \stuck" beforeit manages to reveal multiple (Pj); (Vj) pairs of messages (by running the interval twice).To rule out the above possibilities we focus on j-minimal intervals that do not contain neither(V0) nor (p1) (such intervals are said to be good). It can be seen that the number of minimalintervals that do not contain neither (V0) nor (p1) is at least k�2d. This just follows from the factthat in every level the (V0) (resp. (p1)) message is contained in exactly one interval. In particular,the number of minimal intervals that are \spoiled" by (V0) (resp. (p1)) is at most d.At this point, the simulator's task may seem easy to achieve. Indeed, if V � acts according to theprescribed veri�er strategy, then all that the simulator has to do is to run a good interval twice.2Since V � is acting honestly, we are guaranteed that, with overwhelming probability, in each of thetwo runs the simulator obtains a "di�erent" (Vj) message. In such a case, it will be su�cientto require that there exists a good interval. By the above discussion this is guaranteed wheneverk > 2d (and since d = O(log n), setting k = w(log n) will do).2Observe that whenever [aj ; bj] is reached during the simulation then it is run twice.

4.2. HIGH LEVEL ANALYSIS OF THE SIMULATION 65Dealing with ABORTmessages: Unfortunately, the adversary veri�er V � may arbitrarily deviatefrom the prescribed strategy. In particular, it may be the case that throughout its interaction withthe prover (simulator), V � occasionally sends an ABORTmessage (in other words, V � may potentiallyrefuse to decommit to a previous commitment). Clearly, such an action on behalf of the veri�er isconsidered illegal, and the interaction in the relevant session stops (i.e., there is no need to continueexchanging messages in this session). This may seem as good news (since, once this happens, thesimulator does not really need to "invest" any more work in the corresponding session).The problem is that V � does not always refuse to decommit (but may refuse with some prob-ability 0 � p � 1, which is not known in advance by the simulator). Thus, if we focus on twoconsecutive runs of a speci�c interval, the simulator may �nd himself in a situation in which the�rst run is answered with ABORT whereas the second run of the interval is \properly answered".This means that the simulator has not managed to obtain the \challenge" from the two runs ofthis interval, and it thus faces the risk of getting \stuck" at a later stage of the interaction.One na��ve solution would be to let the simulator always output the run in which V � has refusedto decommit (that is, whenever it gets \stuck"). The problem with this solution is that it \skews"the distribution of transcripts outputted by the simulator towards transcripts that contain too manyill-formed messages. This may cause a too large deviation of the simulator's output distributionfrom the distribution of \real" interactions (between V � and the honest prover P).In our solution we have chosen to let the simulator always output the \most recently explored"run. This choice guarantees that the simulator indeed produces the \correct" distribution of �rststage messages (in the sense discussed above). However it makes him face the risk that V � abortsin the �rst run of an interval and \properly answers" in the second run.Achieving \independent" rewinds: Let pj denote the probability that V � sends a \proper"(Vj) message. Using this notation, the probability that V � aborts in the �rst run of [aj ; bj] but\properly answers" in the second run is equal to (1 � pj) � pj � 1=4 (we call this a \bad" event).Let k0 < k be the number of good intervals in the simulation. At �rst glance, it may seem thatthe probability of the above \bad" event to occur in all good intervals is upper bounded by (1=4)k0(which means that the probability of getting \stuck" is negligible whenever k0 = !(log n)).However, this reasoning applies only when all runs of the good intervals are independent. Un-fortunately, very strong dependencies may exist between di�erent good intervals. This will happenwhenever one good interval contains another good interval. In such a case, aborting in the �rst runof one interval, may immediately imply abort in the �rst run of the other interval.The solution is to focus on a set of disjoint intervals. Such intervals do not su�er from thedependencies described above, and can be shown to be \bad" independently from other (disjoint)intervals. The abundance of disjoint intervals can be easily guaranteed by taking k su�cientlylarge. Speci�cally, if k = !(log2 n) (as in the Kilian-Petrank simulator [35]), then there mustexist a level in the recursion (out of d = log(m � (k+1)) = O(log n) levels) that contains at leastk0 = !(log2 n)=d = !(log n) good intervals. Since same level intervals are all disjoint, then theirruns are \independent". In particular, the probability that for all of them the \bad" event willoccur is negligible.Special intervals: Unfortunately, the argument establishing the abundance of disjoint intervalsdoes not extend to the case when k = ~O(log n). Here we are not guaranteed that there existsa level with many good intervals. In fact, there may exists only few (i.e., k0 = o(log n)) disjointintervals. To overcome this obstacle, we use a completely di�erent approach. Rather than provingthe existence of a large set of disjoint intervals (each being executed twice), we prove the existenceof a (possibly small) set of disjoint intervals and guarantee that the total number of executions of

66 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSthese intervals is large. By doing so, we exploit the fact that, from the time that (V0) is visiteduntil the time that (p1) is reached, the simulator typically visits each rewinding interval many times(and not just twice as we assumed before).Speci�cally, for every scheduling applied by V �, we de�ne our set of intervals as the set of allminimal intervals that do not contain any other minimal interval (i.e., intervals [aj; bj] that do notcontain [aj0 ; bj0] for any j0 6= j). We call such intervals special intervals. Notice that all specialintervals are disjoint. We let S � f1; : : : ; kg denote the set of all indices j for which [aj ; bj] isspecial. For simplicity, assume that S = f1; : : : ; jSjg.Our goal will be to bound (from below) the total number of times that special intervals arevisited. To do so, we introduce a notion of \distance" between consecutive special intervals. This\distance" is supposed to reect the number of times that a certain special interval has beenexecuted since the last time that the preceding special interval has been visited. For every j 2 S,we let dj denote the \distance" of [aj ; bj] from [aj�1; bj�1].3 Using this de�nition we show that,no matter what is the scheduling strategy applied by V �, the following two conditions are alwayssatis�ed:1. The number of \independent" runs of [aj ; bj] since [aj�1; bj�1] has been last visited is 2dj .2. Pj2S dj � k � d.Loosely speaking, Item 1 follows from the de�nition of dj and from the fact that [aj ; bj] and[aj�1; bj�1] are disjoint. As for Item 2, this is a combinatorial statement on binary trees, that isproved by induction on the number of minimal intervals in the \recursion tree".Bounding the failure probability: Recall that we are interested in the probability that the\bad" event occurs during the simulation. Whereas in the previous analysis, this happened only iffor all intervals the �rst run was aborted and the second was \properly answered", in the currentanalysis the simulator will fail only if for every j 2 f1; : : : ; jSjg, it holds that the �rst 2dj � 1 runsof the interval [aj ; bj] are aborted and the last one is "properly answered" (since otherwise thesimulator has managed to obtain two \di�erent" answers to (Vj)).Let R be the set of all random tapes used by the simulator. A speci�c � 2 R is said to be\bad" if the \bad" event occurs during a simulation that uses � as random tape (if the \bad" eventdoes not occur during the simulation then � is called \good"). We shall show that the fraction of"bad" tapes � 2 R is negligible. To do this we will show that every \bad" random tape can bemapped into a set of super-polynomially many other \good" random tapes so that every two \bad"random tapes are mapped to two disjoint sets of \good" random tapes. This would imply that forevery random tape that leads to the simulator's failure there exist super-polynomially many othertapes that do not. Since the simulator picks a random tape uniformly amongst all possible randomtapes, it follows that the simulator's failure probability is negligible.Mapping a \bad" random tape to many \good" ones: Let u1; : : : ; ujSj (where for everyj 2 f1; : : : ; jSjg, the value of uj is chosen in f1; : : : ; 2djg). We map a random tape � 2 R intoanother random tape �0 2 R by swapping the portion of � used to produce prover messages inthe uthj run of [aj ; bj] with the portion used in the (2dj)th run (this is done for all j 2 S). Theswappings are made possible due to the following facts: (1) Prover messages in interval [aj ; bj] areproduced using "fresh" randomness each time it is visited. (2) If two intervals [aj ; bj] and [aj0 ; bj0]3The value dj is de�ned as the "recursive depth" of [aj ; bj] relative to the \common ancestor" of [aj ; bj] and[aj�1; bj�1] (i.e., relative to the smallest rewind interval containing both [aj ; bj] and [aj�1; bj�1]).

4.2. HIGH LEVEL ANALYSIS OF THE SIMULATION 67are disjoint then so is the randomness used to produce their corresponding prover messages (recallthat all special intervals are disjoint).We claim that if � is a \bad" random tape, then after the swappings have been applied, theresulting tape �0 is \good". To see this, consider the smallest j 2 S for which uj 6= 2dj (i.e., forwhich the uthj run of [aj ; bj] and the (2dj)th run have been actually swapped). The key observationis that, once the swappings have been applied to �, the last run of [aj ; bj] is aborted (and one ofthe �rst 2dj � 1 runs is \properly answered").4 In other words, there exists a j 2 S for which the\bad" event does not occur during the simulation (and so �0 is \good").5The above argument will apply as long as the sequence u1; : : : ; ujSj causes the randomness of atleast one special interval to be swapped. The number of possibilities to choose u1; : : : ; ujSj so thatthis happens (i.e., the randomness of at least one special interval is swapped) is:Yj2S 2dj � 1 = 2Pj2S dj � 1 � 2k�d � 1(the sequence u1; : : : ; ujSj = 2d1 ; : : : ; 2djSj being the only one that leaves the coin tosses intact).Overall, we get that a single \bad" random tape � 2 R can be mapped to as many as 2k�d � 1other \good" random tapes. As we show below, any two such \bad" tapes will be mapped to disjointsets of \good" tapes and so the fraction of \bad" random tapes is at most 2k�d = 2k�O(logn). Thus,whenever k = !(log n), the probability that the simulator gets \stuck" is negligible.De�ning an \inverse" mapping: To argue that any two "bad" random tapes are mapped todisjoint sets of \good" tapes we will de�ne an \inverse" to the above mapping. To do this, we shouldbe able, given a \good" random tape �0 2 R, to determine the value of uj for every j 2 f1; : : : ; jSjg(that is, we should be able to determine with which run of [aj ; bj] the last run was swapped).In order to to determine the value of the uj 's we will run the simulation with �0 as randomtape and examine for which special intervals one of the �rst 2dj � 1 runs is \properly answered"and the last run is aborted by V �. Once uj is determined for some interval, we will swap back itsrandomness and continue to inspect and swap the next special interval.If we take care of inspecting the intervals and reversing the swapping of their randomness\inductively", we are guaranteed that for every interval that we are examining exactly one of theruns is \properly answered" and the others are aborted. Loosely speaking, this follows from thefact that the \good" tape that we are trying to invert originates from a \bad" tape in which everyinterval is aborted in the �rst 2dj � 1 runs and \properly answered" in the last run.The reason for which the order of swapping is important is that V �'s answer in a speci�c intervalalso depends on the randomness used to run the \most recent execution" of previous intervals (since,whenever we reach a speci�c interval, the outcome of these \recent" runs appears in the history ofthe interaction). In order to be able to say something meaningful about an interval's run we mustmake sure that, whenever we inspect the run of the simulator on this interval, the history of theinteraction up to the starting point of the interval is consistent with the outcome of running thesimulator with the "bad" tape that we are aiming to obtain.As soon as we reach the last special interval we know that the resulting tape is the original\bad" random tape (since all along the way we preserve the \invariant" that the randomness usedso far is consistent with the original \bad" random tape).4Here we rely on the fact that the simulator's coin tosses completely determine the outcome of an interval's run(that is, modulo the history of the interaction up to the starting point of the interval).5To see that the simulator does not get \stuck" when using �0 as its random tape, notice that when reaching thesecond stage of the corresponding session, the simulator will not have to do anything in order to successfully producea second stage transcript (since all second stage messages should appear as being aborted anyway).

68 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS4.3 A Detailed Description of our Protocol4.3.1 Blum's protocolWe consider n parallel repetitions of the following basic proof system for the Hamiltonian Cycle(HC) problem which is NP-complete (and thus get proof systems for any language in NP) [6, 22].We consider directed graphs (and the existence of directed Hamiltonian cycles).Construction 4.3.1 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (cp1): Select a random permutation, �, of the vertices V , and commit(using a perfectly-binding commitment scheme) to the entries of the adjacency matrix ofthe resulting permuted graph. That is, send an n-by-n matrix of commitments so that the(�(i); �(j))th entry is a commitment to 1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (cv1): Uniformly select � 2 f0; 1g and send it to the prover.� Prover's second step (cp2): If � = 0, send � to the veri�er along with the revealing (i.e., preim-ages) of all commitments. Otherwise, reveal only the commitments to entries (�(i); �(j)) with(i; j) 2 C. In both cases also supply the corresponding decommitments.� Veri�er's second step (cv2): If � = 0, check that the revealed graph is indeed isomorphic, via �,to G. Otherwise, just check that all revealed values are 1 and that the corresponding entriesform a simple n-cycle. In both cases check that the decommitments are proper (i.e., that they�t the corresponding commitments). Accept if and only if the corresponding condition holds.A key propery of the above protocol (which is also satis�ed by many other known protocols) isthat if the prover knows the contents of veri�er's \challenge" message � (i.e., as determined inStep (cv1)) prior to sending its own �rst message (i.e., as determined in Step (cp1)), then it is ableto convince the veri�er that G contains an Hamiltionian cycle even without knowing such a cycle(actually, it will convince the veri�er even if the graph does not contain an Hamiltionian cycle).The reason for this is that in such a case, the prover can set up its �rst message according to� in a way that will always make the veri�er accept in Step (cv2). Speci�cally, knowing in advancethat � = 0, the prover will commit to the entries of the adjacency matrix of the permuted graph(as speci�ed in Step (cp1) of Construction 4.3.1), thus being able to reveal a permutation � and thepreimages of all commitments in Step (cp2). On the other hand, knowing in advance that � = 1,the prover will commit to the full graph Kn, thus being able to open an arbitrary cycle in thesupposedly permuted graph.As a side remark, we observe that the above property is in fact su�cient in order to prove thata single execution of Construction 4.3.1 is black-box zero-knowledge in the \stand alone" setting.6All that the simulator has to do is to try and "guess" the value of � prior to determining the valueof the prover's �rst message (and keep trying until it suceeds).6This is in contrast to the protocol obtained by conducting n parallel repetitions of the basic Hamiltonicity proofsystem (from Construction 4.3.1), which cannot be proved to be black-box zero-knowldege (unless NP � BPP) [24].

4.3. A DETAILED DESCRIPTION OF OUR PROTOCOL 694.3.2 The actual protocolUsing Construction 4.3.1 as a building block, we are now ready to present a concurrent zero-knowledge proof system for Hamiltonicity. Since Hamiltonicity is NP-complete, it will follow thatevery language in NP can be proved in concurrent zero-knowledge.Construction 4.3.2 (A cZK proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j, and a parameter k = k(n)(determining the number of rounds).� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� First stage: This stage involves 2k + 2 rounds and is independent of the common input G.1. Prover's preliminary step (P0): Uniformly select a �rst message for a (2-round)perfectly-hiding commitment scheme and send it to the veri�er.2. Veri�er's preliminary step (V0): Uniformly select � 2 f0; 1gn, and two sequences,f�0i;jgki;j=1, f�1i;jgki;j=1, each consisting of k2 random n-bit strings. The sequences arechosen under the constraint that for every i; j the value of �0i;j ��1i;j equals �. Commit(using the perfectly-hiding commitment scheme) to all 2k2+1 selected strings. Thecommitments are denoted �; f�0i;jgki;j=1, f�1i;jgki;j=1.3. For j = 1; : : : ; k:(a) Prover's jth step (Pj): Uniformly select a k-bit string rj = r1;j ; : : : ; rk;j 2 f0; 1gkand send it to the veri�er.(b) Veri�er's jth step (Vj): Reveal the values (preimages) of �r1;j1;j ; : : : ; �rk;jk;j .4. The prover proceeds with the execution if and only if for every j 2 f1; : : : ; kg, theveri�er has properly decommited to the values of �r1;j1;j ; : : : ; �rk;jk;j (i.e., that for everyi 2 f1; : : : ; kg, �ri;ji;j is a valid decommitment of �ri;ji;j).� Second stage: The prover and veri�er engage in n (parallel) executions of a slightly modi�edversion of the basic Hamiltonicity protocol (described in Construction 4.3.1):1. Prover's �rst step (p1): Send the �rst message in the Hamiltonicity proof system (i.e.,n parallel copies of Step (cp1) in Construction 4.3.1).2. Veri�er's �rst step (v1): Reveal the value (i.e., preimage) of � (which is supposed to beequal to �). Also reveal the value of all k2 commitments that have not been revealed inthe �rst stage (i.e., the values of all f�1�ri;ji;j gki;j=1).3. Prover's second step (p2): Check that the veri�er has properly decommited to the valuesof � and f�1�ri;ji;j gki;j=1 (in particular, check that �0i;j � �1i;j indeed equals � for all j).If so, send the third message in the basic Hamiltonicity proof system (i.e., n parallelcopies of Step (cp2) in Construction 4.3.1).4. Veri�er's second step (v2): Conduct the veri�cation of the prover's proofs (i.e., asdescribed in Step (cv2) of Construction 4.3.1), and accept if and only if all correspondingconditions hold.We next argue that Construction 4.3.2 indeed constitutes an interactive-proof for the language HC.

70 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSCompletenessCompleteness of the above proof system (i.e., Construction 4.3.2) follows from the perfect com-pleteness of the basic Hamiltonicity proof system (i.e., Construction 4.3.1). Suppose that the inputgraph G is indeed Hamiltonian. Then if the prover follows the prescribed program P , the veri�erwill always accept (i.e., accept with probability 1). Speci�cally, in order to successfully conduct the�rst stage, all that the prover has to do is to send an initialization message for the perfectly-hidingcommitments scheme, and k uniformly and independently chosen k-bit strings, one string per eachround in the �rst stage (this can be done even wihtout knowing an Hamiltonian cycle in G). As forthe second stage, since the prover knows an Hamiltionian cycle C � E in G, then no matter whatis the \challenge" sent by the veri�er in Step (v1), the perfect completeness of Construction 4.3.1guarantees that the prover will be always able to answer properly in Step (p2) (thus making theveri�er accept).SoundnessSoundness of the above proof system (i.e. Construction 4.3.2) follows from soundness of the basicHamiltonicity proof system (i.e., Construction 4.3.1), and from the perfectly-hiding property of thecommitment sent by the veri�er in Step (V0). Suppose that the input graph G is not Hamiltonian.Then no matter what the prover does, the k2 values, f�ri;1i;1 gki=1; : : : ; f�ri;ki;k gki=1, that are revealed bythe veri�er in the �rst stage are uniformly and independently chosen (and so reveal no informationabout the actual value of �). Since the commitment scheme used by the veri�er in Step (V0) isperfectly-hiding, we deduce that when reaching Step (p1) the prover has \no idea" about the valueof the \challenge" � that is about to be revealed in Step (v2) (i.e., as far as the information availableto the prover is concerned each possiblity is almost equally likely). In other words, even though thecheating prover reaches the second stage (i.e., Step (p1)) after seeing all messages in the �rst stage,the messages in the second stage are (almost) statistically independent of the veri�er's messagesin the �rst stage. A standard argument can be then used to demonstrate how a cheating proverfor Construction 4.3.2 is transformed into an (all-powerful) cheating prover for Construction 4.3.1(with only a negligible di�erence in the cheating probability), in contradiction to the soundnessproperty of Construction 4.3.1. Hence, we get:Proposition 4.3.3 Construction 4.3.2 constitutes an interactive proof system for Hamiltonicity.4.4 Zero-KnowledgeIn order to demonstrate the zero-knowledge property of Construction 4.3.2, we will show thatfor every polynomial p(�) there exists a \universal" black-box simulator, Sp, so that for everyG = (V;E) 2 HC and concurrent adversary veri�er V � (running at most p(jV j) concurrent sessions),Sp(G) runs in time poly(n) (where n = jV j), and satis�es that the ensemble fviewPV �(G)gG2HC iscomputationally indistinguishable from the ensemble fSV �p (G)gG2HC .4.4.1 The simulator's strategyWe assume that the number of sessions that are run by the concurrent adversary veri�er V � is �xedin advance and known to everybody. We denote it by m (= poly(n)). The simulator Sm startsby selecting and �xing a random tape r for V �. It then proceeds by exploring various pre�xesof possible interactions between P and V �. This is done while having only "black-box" access

4.4. ZERO-KNOWLEDGE 71to V �'s strategy (as described in Section 2.6). For simplicity of presentation, we partition thedescription of the simulator's strategy into two disjoint (but not independent) procedures. The�rst procedure handles the messages that are exchanged in the �rst stage of the protocol. This isdone while completely ignoring the messages of the second stage. The second procedure handlesthe messages in the second stage while using auxiliary information produced by the �rst procedure.This information is located in some \global" data-structure that is dynamically updated (by the �rstprocedure) as the simulation proceeds. To complete the simulator's description we describe how thetwo procedures can be merged into one super-procedure that with overwhelming probability outputsa "legal" transcript (representing a concurrent interaction between P and V �). The analysis of thesimulator's running time and output distribution are then presented in Sections 4.5, 4.6 and 4.7.Handling �rst stage messagesFirst stage messages are handled by the solve procedure. The goal of this procedure is to supplythe simulator with the values of V �'s \challenges" before it reaches the second stage in the protocol(where by \challenges" we refer to messages that correspond to Step (v1) of Construction 4.3.2).To this end, the solve procedure tries to make sure that for every session (out of m concurrentsessions) there exists i; j 2 f1; : : : ; kg � f1; : : : ; kg for which the veri�er V � has properly revealedthe values of both �0i;j and �1i;j (during the simulation process). This should always take placeprior to reaching the second stage of the corresponding session (or otherwise, the simulator will get"stuck"). Once both �0i;j and �1i;j are revealed, the value of V �'s challenge (which should be equalto �0i;j � �1i;j) can be easily determined, and the required goal is indeed achieved.In order to receive both �0i;j and �1i;j (i.e., in some (Vj) message of a speci�c session), thesimulator must explore at least two di�erent interaction pre�xes in which the corresponding (Pj)message is di�erent. The way this is done is by means of \rewinding" the interaction with V � to apoint in the schedule that precedes the (Pj) message (while hoping that the (Pj) message is indeedmodi�ed in the process).7The rewinding strategy of the solve procedure is recursive and is essentially identical to thesimulation strategy suggested by Kilian-Petrank [35]. The key idea underlying this simulationstrategy is that the order and timing of the simulator's rewinds are determined obliviously of theconcurrent scheduling (which is determined \on the y" by the adversary veri�er V �). Speci�cally,the order and timing of the rewinds depend only on m, the number of concurrent sessions (which,by de�nition, is determined prior to the simulation process), and on the length of the executionpre�x explored so far.8The \global" data-structure: To store the values it has discovered about the veri�er's "chal-lenge" in session s 2 f1; : : : ;mg, the solve procedure will write information into a table denotedT . This table will contain the (�rst stage) veri�er messages that have been revealed so far (such7Note that great care should be taken in planning the rewinding strategy. As we have previously mentioned,rewinding a speci�c session in the concurrent setting may result in loss of work done for other sessions, and causethe simulator to do the same amount of work again. In particular, all simulation work done for sessions startingafter the point to which to rewind may be lost (since the revealed values of �0i;j and �1i;j become irrelevant once werewind to a point preceding the veri�er's preliminary commitment in Step (V0)). Conducting a \wasteful" rewindingstrategy may cause the work done by the simulator to accumulate to too much (thus causing the simulator to run insuper-polynomial time).8This is in contrast to the rewinding strategy of the Richardson-Kilian simulator [42] which heavily depends onthe schedule as it is being revealed (remember that the scheduling is dynamically determined by the adversary veri�erand is not necessarily known to the simulator in advance).

72 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSmessages may consist of the opened values of some f�rji;jgki=1's or, alternatively, of an ABORT mes-sage). As we have already mentioned, \rewinds" that take place during the simulation process mayrender part of the data stored in the T table irrelevant. In particular, whenever the interaction isrewound to a point that precedes the veri�er's preliminary commitment in session s (i.e., a (V0)message), all the values corresponding to session s in the T table are not relevant any more. Insuch cases, these values should be deleted from the table and the accumulation of information forsession s should restart from scratch.The input of the solve procedure: The solve procedure is given three arguments as input.The �rst argument, denoted `, is a parameter determining the total number of veri�er messagesthat the solve procedure should handle. At the top level of the recursion, the argument ` equalsm � (k + 1), which is the total number of (�rst stage) veri�er messages in a schedule of m sessions(that is, including the veri�er's preliminary step, (V0)). At the bottom level of the recursion, thesolve procedure should handle a single (�rst stage) veri�er message (that is, ` equals 1).The second argument given to the solve procedure, denoted hist, is a sequence of alternatingprover and veri�er messages which corresponds to the \most recently visited" history of the in-teraction (as induced by the simulator's queries). In accordance with our conventions, all queriesmade by the relevant invocation of the solve procedure will have hist as their pre�x. At the toplevel of the recursion, the hist argument is initialized as an empty list and becomes increasinglylonger as the simulation proceeds (its eventual length being 2m � (k + 1)). In intermediate stagesof the recursion the hist argument may initially be of arbitrary length and is eventually augmentedwith a su�x containing a total of 2` (prover and veri�er) messages.The third argument of the solve procedure is the table T . As mentioned above, this argumentis used in order to store the �rst stage messages revealed so far. In order to keep these messagesrelevant, the solve procedure will inspect the hist argument to see for which sessions the (V0)message does not appear in the history of the interaction. Since for such sessions, any value thatis possibly stored in the T table is not relevant for the rest of the simulation (see above discussionabout the \global" data-structure), the solve procedure will delete this value from the T tableand will restart the accumulation of information for these sessions from scratch.The solve procedure: We are now ready to proceed with the description of the solve proce-dure. Given `, hist and T as inputs, the solve procedure acts as follows (see also Figure 4.2):If ` = 1 (i.e., we are at the bottom level of the recursion):1. If (V0) message of session s does not appear in hist, delete all session s messages from T .2. Uniformly choose a �rst stage prover message p, and feed V � with q = (hist;p).3. Store V �'s answer v, in T .94. Output (p; v), T .If ` > 1 (i.e., we are at some intermediate level of the recursion):1. Invoke the solve procedure recursively with parameters `=2, hist and T . The recursiveinvocation outputs a table T1, as well as a transcript of ` (�rst stage) messages denoted(~p1; ~v1; : : : ; ~p`=2; ~v`=2).9The message v = V �(q) consists of a �rst stage veri�er message in session s 2 f1; : : : ;mg. It is either of the form(V0) or (Vj) for some j 2 f1; : : : ; kg (supposedly containing the \legal" openings of �r1;j1;j ; : : : ; �rk;jk;j).

4.4. ZERO-KNOWLEDGE 732. "Rewind" the interaction and perform Step 1 again. That is, invoke the solve procedurerecursively with parameters `=2, hist and T . The recursive invocation outputs a tableT2, as well as a transcript of ` (�rst stage) messages denoted (p1; v1; : : : ; p`=2; v`=2).103. Augment the hist argument with the \most recently visited" transcript (that is, thetranscript (p1; v1; : : : ; p`=2; v`=2) computed in Step 2) and invoke recursively the solveprocedure with parameters `=2, (hist; p1; v1; : : : ; p`=2; v`=2) and T2. The recursive invoca-tion outputs a table T3, as well as a transcript of the ` subsequent (�rst stage) messagesdenoted (~p`=2+1; ~v`=2+1; : : : ; ~p`; ~v`).4. "Rewind" the interaction and perform Step 3 again. That is, invoke the solve proce-dure recursively with parameters `=2, (hist; p1; v1; : : : ; p`=2; v`=2) and T2. The recursiveinvocation outputs a table T4, as well as a transcript of the ` subsequent (�rst stage)messages denoted (p`=2+1; v`=2+1; : : : ; p`; v`).115. Output T4 and the \most recently visited" transcript, which consists of the messages(p1; v1; : : : ; p`; v`).Some comments: Notice that the order and timing of the \rewinds" performed by the solveprocedure are determined obliviously of the concurrent schedule (whereas the order in which theT table is updated does depend on the scheduling of the various messages in the various sessions).Also note that, as opposed to the [42, 35] simulation strategies, the values of the (�rst stage)prover messages (i.e., of (Pj) messages) do not depend on the values revealed by the veri�erin the corresponding answers (i.e., in the (Vj) messages), but are rather chosen uniformly andindependently each time. Since the transcript output by the simulator consists of the prover/veri�ermessages that were \most recently visited" by the solve procedure, the �rst stage messages thateventually appear in the simulator's output are identically distributed to \real" �rst stage messages(i.e., messages that are actually exchanged between an honest prover P and the veri�er V �).Updating the T table: The T table is updated only when visiting the bottom level of therecursion. Given a �rst stage veri�er message v, the solve procedure determines the sessionnumber, s 2 f1; : : : ;mg, of the corresponding (Vj) message (according to the session identi�ers thatappear in v) and stores (Vj) in T . The (Vj) message may either contain a sequence �r1;j1;j ; : : : ; �r1;j1;jof n-bit strings or an ABORT message. Since the (Pj) message to which (Vj) is given as answer mayoccur in the schedule much earlier than (Vj) does, the simulator may perform rewinds that do notreach (Pj) (and so do not change its value), but repeatedly obtain di�erent (Vj)'s as answer. Insuch cases, the solve procedure will always store the \recently obtained" (Vj) message instead ofprevious ones (that were given as answer to the same (Pj)).Note that since the schedule may vary \dynamically" as a function of the history of the inter-action, it may be the case that not all messages in a speci�c session s 2 f1; : : : ;mg are \visited"the same number of times by the solve procedure. In particular, the number of veri�er messagesthat appear in T may di�er from session to session and from iteration to iteration (within a speci�csession). A detailed analysis of the contents of the T table whenever the simulator reaches thesecond stage in session s appears in Section 4.7.10We stress that corresponding messages in the (~p1; ~v1; : : : ; ~p`=2; ~v`=2) and the (p1; v1; : : : ; p`=2; v`=2) sequences do notnecessarily belong to the same sessions s 2 f1; : : : ;mg. This is because the concurrent schedule may be \dynamically"determined by V � as a function of the history of the interaction (in particular, di�erent values of ~p1; : : : ; ~p`=2 andp1; : : : ; p`=2 may cause the corresponding answers of V � to belong to di�erent sessions).11Again, notice that corresponding messages in the (~p`=2+1; ~v`=2+1; : : : ; ~p`; ~v`) and the (p`=2+1; v`=2+1; : : : ; p`; v`)sequences do not necessarily belong to the same session.

74 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSHandling second stage messagesSecond stage messages are handled by the prove procedure. The goal of this procedure is toproduce a second stage transcript that is indistinguishable from actual second stage transcripts(that is, between P and V �). This should be done while avoiding a situation in which the basicHamiltonicity proof system that is conducted in the second stage of the protocol is rejected by theveri�er V � (since in such cases the simulator may get "stuck"). The key for the success of theprove procedure lies in the success of the solve procedure to discover the "challenge" sent by V �already during the �rst stage of the protocol. Given that the solve procedure has indeed succeededin discovering the \challenge", the task of the prove procedure is trivial (whereas if the solveprocedure did not succeed to discover the \challenge" then the prove procedure is bound to fail).One other case in which the task of the prove procedure is trivial is when the \current history"of the interaction contains an ABORT message on behalf of the veri�er V � (that is, in the relevantsession). In such cases the interaction in the relevant session stops and the prove procedure doesnot need to do anything in order to produce a "legal" second stage transcript.The prove procedure: The prove procedure is invoked either when the concurrent schedulereaches the �rst prover message in the second stage of session s2f1; : : : ;mg (that is, a (p1) message)or when it reaches the second prover message in the second stage (that is, a (p2) message). Notethat this may happen many times during the simulation process (as induced by the adversaryveri�er's scheduling strategy and the \rewinds" of the solve procedure). On input s2f1; : : : ;mgand a partial execution transcript (denoted hist), the prove procedure acts as follows:1. Start by checking whether the hist argument contains an ABORT message on behalf of theveri�er (in session s). Speci�cally, for every j 2 f1; : : : ; kg, check whether the (Vj) messageof session s (as it appears in hist) consists of an ABORT message. If it does (for some j), abortsession s (just as an honest prover P would have done in such a case).2. Otherwise (i.e., the hist argument does not contain an ABORT message in session s), searchthe T table for a pair �0i;j; �1i;j belonging to session s:(a) If the T table does not contain such a pair (that is, if for every i; j the T table containsonly �bi;j for some �xed b 2 f0; 1g, and possibly some additional ABORTmessages), output? (indicating failure of the simulation).(b) If the T table indeed contains a pair �0i;j and �1i;j belonging to session s, compute thevalue of V �'s \challenge", � = �0i;j��1i;j and invoke the convince subroutine with input(�; hist). The convince subroutine handles the execution of second stage messages inthe protocol (and is described below).(c) Let p denote the output of the convince subroutine (where p is either of the form (p1)or (p2), depending on our location in the schedule). Output p.The convince subroutine: Given the value of � = �1�2 : : : �n and hist, the convince subrou-tine handles the `th (parallel) execution in the second stage of session s in the following way:

4.4. ZERO-KNOWLEDGE 75� Prover's �rst step (p1): If �` = 0, act according to Step (cp1) in Construction 4.3.1. Specif-ically, select a random permutation, �, of the vertices V , and commit (using a perfectly-binding commitment scheme) to the entries of the adjacency matrix of the resulting permutedgraph. That is, output an n-by-n matrix of commitments so that the (�(i); �(j))th entry isa commitment to 1 if (i; j) 2 E, and is a commitment to 0 otherwise.Otherwise (i.e., if �` = 1), commit to the entries of the adjacency matrix of the full graphKn. That is, output an n-by-n matrix of commitments so that for every (i; j) 2 f1; : : : ; ng,the (i; j)th entry is a commitment to 1.� Prover's second step (p2): Check (in hist) that V � has properly decommited to all relevantvalues (in particular, check that the `th bit of �0j � �1j indeed equals �` for all j) and abortotherwise.If �` = 0, output � along with the revealing (i.e., preimages) of all commitments.Otherwise (i.e., if �` = 1), output only the openings of commitments to entries (�(i); �(j))with (i; j) 2 C where C is an arbitrary Hamiltonian cycle in Kn. In both cases also supplythe corresponding decommitments.Some comments: Note that the convince subroutine never causes the veri�er V � to reject inthe second stage (that is, unless V � sends an ABORT message instead of the corresponding (v1)message). The reason for this is that it is always invoked with the correct value of � (which waspreviously revealed by the solve procedure). In particular, once the prove procedure has \safely"reached Step 2b the success of the prove procedure is guaranteed.The actions taken by the convince subroutine are identical to the actions taken by the simu-lator of Blum's basic Hamiltonicity protocol. As a consequence, the distribution of the simulatedsecond stages in our protocol are identical to the distribution produced by Blum's simulator. Thisfact will be used later in order to reduce the indistiguishability property of our simulator's outputto the indistiguishability property of Blum's simulator's output.4.4.2 \Gluing" it all togetherThe simulate procedure which merges the solve and prove procedures together handles allmessages sent by V � during the simulation process (that is, both �rst stage and second stagemessages). In general, the simulate procedure is obtained by incorporating the prove procedureinto the solve procedure in a way that enables the solve procedure to handle also second stagemessages (see Figure 4.4 for a \pseudocode" description of the simulate procedure).The two main modi�cations applied to the solve procedure (in order to obtain the simulateprocedure) are the following: (1) If ` = 1 (that is, at the bottom level of the recursion), thesimulate procedure will keep exchanging messages until it reaches a �rst stage veri�er message.This is done while augmenting the hist argument with the corresponding outcomes of the proveprocedure (according to the schedule that is being revealed by V �). Once a �rst stage message isreached, the simulate procedure acts exactly as the solve procedure. (2) Similarly to the solveprocedure, the output of the simulate procedure is a partial execution transcript. However, unlikethe solve procedure, the ouptut length of the simulate procedure is greater than 2` (since, besides2` �rst stage messages, it will also contain second stage messages).

76 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSProcedure simulate(`; hist; T):1. If ` = 1,(a) If session s does not appear in hist, delete all session s messages in T .(b) As long as no �rst stage veri�er message has been reached, do:i. If next scheduled message, pu, is a �rst stage prover message:Uniformly choose pu, and set vu V �(hist; p1; v1; : : : ; pu�1; vu�1; pu).ii. If next scheduled message, pu, is a second stage prover message:Set pu prove(i; (hist; p1; v1; : : : ; pu�1; vu�1)), and vu V �(hist; p1; v1; : : : ; vu�1; pu).(c) As soon as a �rst stage message v� has been reached store v� in T .(d) Output T and (p1; v1; : : : ; p�; v�).Remark: Note that v� is the only �rst stage veri�er message in (p1; v1; : : : ; p�; v�).2. Otherwise (i.e., if ` > 1),(a) Set T1, (~p1; ~v1; : : : ; ~p~�; ~v~�) simulate(`=2; hist; T).(b) Set T2, (p1; v1; : : : ; p�; v�) simulate(`=2; hist; T1).(c) Set T3, (~p�+1; ~v�+1; : : : ; ~p�+~� ; ~v�+~�) simulate(`=2; (hist; p1; v1; : : : ; p�; v�); T2).(d) Set T4, (p�+1; v�+1; : : : ; p�+� ; v�+�) simulate(`=2; (hist; p1; v1; : : : ; p�; v�); T3).(e) Output T4 and (p1; v1; : : : ; p�+� ; v�+�).Remark: (1) The value of ~� (resp. ~�) is not necessarily equal to the value of � (resp. �). (2)The sequence (p1; v1; : : : ; p�+� ; v�+�) contains exactly 2` �rst stage prover and veri�er messages(as well as arbitrarily many second stage messages). In particular, �+ � � `.Figure 4.4: The simulate procedure - Handles both �rst and second stage messages. It is obtainedby merging the solve and prove procedures (with the help of the table T).4.5 The Simulator's Running TimeWe start by showing that the simulator's running time is polynomial both in m and in n = jV j.Since m = poly(n) it will follow that the simulator runs in polynomial-time in n.Using the fact that the total number of sessions run by the adversary veri�er V � is at mostm, weinfer that the number of invocations of the prove procedure at the bottom level of the recursion(i.e., when ` = 1) is upper bounded by m. In particular, the work invested by the simulateprocedure at the bottom level of the recursion is upper bounded by poly(n) �m = poly(n) (wherethe poly(n) factor in the poly(n) �m term results from the polynomial amount of work invested ineach invocation of the prove procedure). Since each invocation of the simulate procedure withparameter ` > 1 involves four recursive invocations of the simulate procedure with parameter `=2,we have that the work W (`), that is invested by the simulate procedure in order to handle ` (�rststage) veri�er messages satis�es: W (`) � (poly(n) If ` = 14 �W (`=2) If ` > 1 (4.1)Since the total number of �rst stage veri�er messages in the m sessions of the concurrent scheduleequals m � (k + 1), the total running time of the simulation process (which consists of a single

4.6. THE SIMULATOR'S OUTPUT DISTRIBUTION 77invocation of the simulate procedure with parameter m � (k + 1)) equals W (m � (k + 1)). Astraightforward solution of the recursive formula in Eq. (4.1) establishes that W (m � (k + 1)) isupper bounded by: 4log2(m�(k+1)) � poly(n) = (m � (k + 1))2 � poly(n) = poly(n)Hence, we have:Proposition 4.5.1 For every m=poly(n), the simulator Sm runs in (strict) polynomial-time in n.4.6 The Simulator's Output DistributionWe now turn to show that for every G 2 HC, the simulator's output distribution is computationallyindistinguishable from V �'s view of interactions with the honest prover P . Speci�cally,Proposition 4.6.1 The ensemble fSV �m (G)gG2HC is computationally indistinguishable from theensemble fviewPV �(G)gG2HC .Proof: As a hybrid experiment, consider what happens to the output distribution of the simulatorSm if we (slightly) modify its simulation strategy in the following way: Suppose that on inputG = (V;E) 2 HC, the simulator Sm obtains a directed Hamiltonian Cycle C � E in G (as auxiliaryinput) and uses it in order to produce real prover messages whenever it reaches the second stageof the protocol. Speci�cally, whenever it reaches the second stage of session s 2 f1; : : : ;mg, thehybrid simulator inspects the T table and checks whether the prove procedure should output ? (inwhich case it also does). If the prove procedure does not have to output ?, the hybrid simulatorfollows the prescribed prover strategy and generates prover messages for the corresponding secondstage (by using the cycle it possesses rather than invoking the prove procedure). We claim thatthe ensemble consisting of the resulting output (which we denote by bSV �m (G;C)) is computationallyindistinguishable from fSV �m (G)gG2HC . Namely,Claim 4.6.2 The ensemble fSV �m (G)gG2HC is computationally indistinguishable from the ensemblef bSV �m (G;C)gG2HC .Proof Sketch: The claim is proved using a standard hybrid argument. It reduces the indistin-guishability of two neighbouring hybrids to the indistinguishability of Blum's simulator's output(that is, if the output of Blum's simulator [6] is computationally indistinguishable from the viewof real executions of the basic Hamiltonicity proof system, then so are neighbouring hybrids). Thelatter is proved to hold based on the computational-secrecy property of the commitment schemethat is used by the prover in Step (cp1) of Construction 4.3.1 (see [6, 22] for further details).We consider m+ 1 hybrid distributions that are induced by the output of the following hybridsimulation procedure. For s 2 f0; : : : ;mg, given G 2 HC, a Hamiltonian cycle C in G and black-box access to V �, the sth hybrid simulation procedure (which we denote by Hs), handles �rst stagemessages exactly as the \original" simulator Sm would have handled. For every session index s0 � s,the hybrid simulator Hs handles also second stage messages exactly as Sm does (that is, by invokingthe prove procedure), whereas for every session index s0 > s, the hybrid simulator Hs handlesthe relevant second stage messages exactly as the "modi�ed" simulator bSm does (that is, by usingthe cycle it possesses in order to produce real prover messages). Note that the output of HV �m isidentically distributed to the output of SV �m , whereas the output of HV �0 is identically distributedto the output of bSV �m . Also note that for every s 2 f0; : : : ;mg, the distribution HV �s (G;C) is

78 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSe�ciently constructible (speci�cally, given a Hamiltonian cycle C in G, it is easy to follow SV �m (G)'sstrategy, while producing real prover messages whenever necessary). Thus, indistinguishability ofthe ensemble fSV �m (G)gG2HC from the ensemble f bSV �m (G)gG2HC follows from indistinguishabilityof fHs�1(G;C)gG2HC and fHs(G;C)gG2HC .Claim 4.6.3 For all s 2 f1; : : : ;mg, the ensembles fHs�1(G;C)gG2HC and fHs(G;C)gG2HC arecomputationally indistinguishable.Proof Sketch: Follows from indistinguishability of Blum's simulator's output (by applying anadditional hybrid argument). Uses the extra property that the output is indistinguishable even ifthe distinguisher has a-priori knowledge of a Hamiltonian Cycle C in G.This completes the proof of Claim 4.6.2.We next consider what happens to the output distribution of the hybrid simulator bSm if we assumethat it does not output ? (i.e., does not get \stuck"). It turns out that in such a case, the resultingoutput distribution is identical to the distribution of fviewPV �(G)gG2HC . Namely,Claim 4.6.4 The ensemble f bSV �m (G;C)gG2HC conditioned on it not being ?, is identically dis-tributed to the ensemble fviewPV �(G)gG2HC .Proof: Notice that the �rst stage messages that appear in the output of the \original" simulator(that is, Sm) are identically distributed to the �rst stage messages that are produced by an honestprover P (since they are uniformly and independently chosen). Since the �rst stage messages thatappear in the output of the \modi�ed" simulator (that is, bSm) are identical to the ones appearing inthe output of Sm, we infer that they are identically distributed to the �rst stage messages that areproduced by an honest prover P . Using the fact that the second stage messages that appear in theoutput of the \modi�ed" simulator are (by de�nition) identically distributed to the second stagemessages that are produced by an honest prover P , we infer that the ensemble f bSV �m (G;C)gG2HCis identically distributed to fviewPV �(G)gG2HC .As we show in Proposition 4.7.1 (see next section), bSm outputs ? only with negligible probability.In particular, the ensemble f bSV �m (G;C)gG2HC is computationally indistinguishable from (and infact statistically close to) the ensemble f bSV �m (G;C)gG2HC , conditioned on it not being ?. Namely,Claim 4.6.5 The ensemble f bSV �m (G;C)gG2HC is computationally indistinguishable from the en-semble f bSV �m (G;C)gG2HC conditioned on it not being ?.It can be seen that Claims 4.6.2, 4.6.4 and 4.6.5 imply the correctness of Proposition 4.6.1.4.7 The Probability of Getting \stuck"We next analyze the probability that the simulate procedure gets "stuck" during its execution. Weare particularly interested in the probability that any speci�c invocation of the prove procedurereturns ? during the simulation process (note that this is the only reason for which the simulatormay get \stuck"). As will turn out from our analysis, any speci�c invocation of the prove procedurewill return ? with probability at most 1=2
(k). Since the number of invocations of the proveprocedure is polynomial in n, it follows that the simulate procedure outputs ? with probability

4.7. THE PROBABILITY OF GETTING \STUCK" 79poly(n) � 1=2
(k). By setting the number of rounds in the protocol to be k(n) = �(n) � log n, where�(�) is any super-constant function (e.g., �(n) = log log n), we are guaranteed that the simulateprocedure outputs ? with negligible probability. Speci�cally:Proposition 4.7.1 Let � : N ! N be any super-constant function, let k(n) = �(n) � log n,and consider any instantiation of Construction 4.3.2 with parameter k = k(n). Then the prob-ability of getting \stuck" during the simulation is negligible. Speci�cally, for every su�ciently largeG = (V;E) 2 HC: Pr h bSV �m (G) = ?i < 1n�(n)=8where n = jV j and the probability above is taken over the simulator's coin tosses.Proof: We consider executions of the hybrid simulator bSm, given input G = (V;E), random coins�, and black-box access to V � (we let bSV �m;�(G) denote the resulting output).Let qS(n) be a (polynomial) bound on the total number of invocations of the prove procedureduring an execution of the simulator (note that qS(n) is upper bounded by the simulator's runningtime). As we have mentioned before, the (hybrid) simulator bSm gets \stuck" (i.e., outputs ?) ifand only if there exists a session s 2 f1; : : : ;mg and an index ` 2 f1; : : : ; qS(n)g so that the `thinvocation of the prove procedure (for session s) outputs ?. Let hists;` = hists;`(�) be a randomvariable describing the contents of the hist argument at the moment that the prove procedure isinvoked for the `th time (with s as its �rst argument). Using the union-bound we have:Pr� h bSV �m;�(G) = ?i � mXi=1 qS(n)X̀=1 Pr� [prove(s; hists;`(�)) = ?] (4.2)Eq. (4.2) will be bounded using the following lemma. This lemma, which in some sense is thecrux of the proof (of the zero-knowledge property), establishes an upper bound on the probabilitythat a speci�c invocation of the prove procedure outputs ?.Lemma 4.7.2 For every (s; `)2 f1; : : : ;mg � f1; : : : ; qS(n)g and all su�ciently large G 2 HC:Pr� [prove(s; hists;`(�)) = ?] < 12k=4Combining Lemma 4.7.2, Eq. (4.2) and the hypothesis of Proposition 4.7.1 we infer that for allsu�ciently large n = jV j: Pr� h bSV �m;�(G) = ?i � m � qS(n) � 12k=4= m � qS(n)2k=8 � 12k=8< 1n�(n)=8 (4.3)Where Eq. (4.3) holds whenever m � qS(n) < 2k=8 (which is satis�ed whenever k(n) is equal to�(n) � log n, and n is su�ciently large). This completes the proof of Proposition 4.7.1.

80 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSProof of Lemma 4.7.2: Let s 2 f1; : : : ;mg and ` 2 f1; : : : ; qS(n)g. We next show that theprobability that the `th invocation of the prove procedure outputs ? is upper bounded by 1=2k=4.Throughout the analysis we will assume that the simulator never sends the same prover messagetwice during its execution. Such an assumption is justi�ed by the fact that prover messages in theprotocol are k-bits long. In particular, the probability that any two uniformly chosen (Pj) messagesare equal is at most 1=2k. Since for every session, the number of prover messages sent is at mostpoly(n), then the overall probability of sending the same prover message twice is at most poly(n)=2k.By taking n to be su�ciently large this probability is upper bounded 1=2k=2.We thus set our goal to bound the probability that the prove procedure outputs ? assumingthe simulator never sends the same prover message twice. By the above discussion, it will besu�cient to bound this probability by 1=2k=2. The probability that the prove procedure outputs? would be then upper bounded by 1=2k=2 + 1=2k=2 = 2=2k=2 < 1=2k=4.From now on, we focus on messages that belong to session s and ignore messages from othersessions (unless otherwise speci�ed). For every choice � of the simulator's randomness we focuson an invocation of the prove procedure with input (s; hists;`) = (s; hists;`(�)). We associate theinvocation of the prove procedure with the value of the (V0) message that appears in the hists;`(�)argument. We will analyze the execution of the simulator from the time (V0) has been last visiteduntil the time that prove(s; hists;`) is invoked.The contents of the T table: For every j 2 f1; : : : ; kg, we consider the sequence of (�rst stage)veri�er messages, (Vj), that appear in the T table at the moment that prove(s; hists;`) is invoked.Let �j denote the length of this sequence. The value �j actually corresponds to the number oftimes that the (Vj) message has been visited since all session s messages have been last deletedfrom T . (Recall that this happens whenever a (V0) message is visited by the simulate procedure.)Note that �j is not necessarily equal for all j 2 f1; : : : ; kg.For u 2 f1; : : : ; �jg, let (Pj)u; (Vj)u denote the uth pair of (Pj); (Vj) messages that was visitedby the simulate procedure since (V0) has been last visited.12 (Using this notation, the jth abovesequence can be written as (Vj)1; (Vj)2; : : : ; (Vj)�j .) We now have the following claim.Claim 4.7.3 Suppose that prove(s; hists;`) = ?. Then for all j 2 f1; : : : ; kg:1. (Vj)u = ABORT for all u < �j.2. (Vj)�j 6= ABORT.Proof: Going back to the description of the prove procedure we observe that the only reason forwhich it outputs ? is that it has reached Step (2a). Put in other words, the prove procedure willoutput ? if and only if:1. The hists;` argument does not contain an ABORT message in session s.2. The T table does not contain a pair �0i;j; �1i;j belonging to session s.We start by showing that for all j 2 f1; : : : ; kg, it holds that (Vj)�j 6= ABORT. Consider thesequence of �rst stage veri�er messages that appear in hists;` and belong to session s. Notice that12Note that the (Pj) message may occur in the schedule much earlier than (Vj) does. In particular, the simulatormay perform rewinds that do not reach (Pj) (and so do not change its value), but repeatedly obtain di�erent (Vj)'sas answer. In such cases, the (Vj)u message stored in T as answer to (Pj)u will always correspond to the "mostrecently obtained" (Vj) message that was given as answer to (Pj)u (see discussion in Page 73).

4.7. THE PROBABILITY OF GETTING \STUCK" 81this sequence contains all k + 1 �rst stage messages in session s (since prove(s; hists;`) is alwaysinvoked only after the �rst stage of session s has been completed). Using the fact that the hists;`argument consists of the \most recently visited" execution transcript in the simulation, we havethat the sequence of �rst stage veri�er messages that appear in hists;` and belong to session s canbe written as (V0); (V1)�1 ; (V2)�2 ; : : : ; (Vk)�k . Since, by Condition (1) above, the hists;` argumentdoes not contain an ABORT message in session s it immediately follows that for all j 2 f1; : : : ; kg, itholds that (Vj)�j 6= ABORT.Suppose now for contradiction that there exists a j 2 f1; : : : ; kg and a u 2 f1; : : : ; �j � 1g sothat (Vj)u 6= ABORT. Since we are assuming that all (Pj)'s in the simulation are di�erent, thenso are (Pj)u and (Pj)�j . Since both (Vj)u and (Vj)�j are not equal to ABORT it immediatelyfollows that the table contains a pair �0i;j; �1i;j belonging to session s.13 This is in contradiction toCondition (2) above and thus to our hypothesis that the prove procedure outputs ?.De�nition 4.7.4 (Bad random tapes) Let R be the set of all random tapes used by the simu-lator and let � 2 R. For any j 2 f1; : : : ; kg de�ne a Boolean indicator badj(�) = bads;`;j(�) to betrue if and only if when S uses � as random tape it holds that:1. (Vj)u = ABORT for all u < �j.2. (Vj)�j 6= ABORT.By Claim 4.7.3, we have:Pr� "prove(s; hists;`(�)) = ?# � Pr� 24 k̂j=1 badj(�)35 (4.4)We shall show that for all su�ciently large n, the fraction of \bad" tapes � 2 R for whichVkj=1 badj(�) holds is at most 1=2k�3d where d (= log2(m � (k + 1))) is the depth of the simu-lator's recursion. To do this we will show that every \bad" random tape can be mapped into a setof 2k�3d � 1 random tapes for which badj(�) does not hold for some j. Moreover, this will be doneso that every two \bad" random tapes are mapped to two disjoint sets of \good" random tapes.Put in other words, for every random tape that causes Vkj=1 badj(�) to hold, there exist 2k�3d � 1other tapes that do not. Since the simulator picks a random tape uniformly amongst all possiblerandom tapes, it will then follow that the probability that Vkj=1 badj(�) holds is at most 1=2k�3d.Lemma 4.7.5 (Counting bad random tapes) Let B � R be the set of all � 2 R for whichVkj=1 badj(�) holds. Then, there exists a mapping f : R �! 2R such that for every � 2 B:1. jf(�)j � 2k�3d.2. For all �0 2 B n f�g, the sets f(�) and f(�0) are disjoint.3. The sets f(�) n f�g and B are disjoint.The proof of Lemma 4.7.5 is the most involved part in the simulator's analysis. Before we prove it(in Section 4.7.1), we show how it can be used in order to complete the proof of Lemma 4.7.2. Westart with the following corollary of Lemma 4.7.5.13To see this notice that, if (Pj)u = r1;j ; : : : ; rk;j and (Pj)�j = s1;j ; : : : ; sk;j are di�erent, then there must existi 2 f1; : : : ; kg so that ri;j 6= si;j . Since both (Vj)u and (Vj)�j are not equal to ABORT, then the values of both �ri;ji;jand �si;ji;j must have been revealed by V �.

82 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSCorollary 4.7.6 Let B � R be as above. Then jBj=jRj � 12k�3d .Proof: Consider the set: G def= [�2B�f(�) n f�g�By Condition (3) in Lemma 4.7.5 it holds that G � R n B. We thus have:jRj � jBj = jR n Bj� jGj= X�2B jf(�) n f�gj (4.5)� jBj � �2k�3d � 1� (4.6)Where Eq. (4.5) follows from Condition (2) in Lemma 4.7.5 and Eq. (4.6) follows from Condition (1)in Lemma 4.7.5.Using Corollary 4.7.6 we are now able to complete the proof of Lemma 4.7.2:Pr� 24 k̂j=1badj(�)35 = Pr� [� 2 B]= jBjjRj� 12k�3d (4.7)Since k = !(log n) and d = logm � (k+1) = O(log n) then for all su�ciently large n's it holds that1=2k�3d < 1=2k=2. By combining Eq. (4.7) with Eq. (4.4) we infer that for all su�ciently large n's:Pr� "prove(s; hists;`(�)) = ?# < 12k=2This completes the proof of Lemma 4.7.2.4.7.1 Proof of Lemma 4.7.5 (counting bad random tapes)The proof of Lemma 4.7.5 will proceed as follows. We �rst de�ne the notion of rewind intervals.Loosely speaking, these are segments of the concurrent schedule that are induced by the variousrewindings of the simulator and are executied multiple times during the simulation. We then focuson a subset of "special" intervals. These intervals satify some useful properties that enable us touse them in order to de�ne the desired mapping f : R ! 2R. Using the properties of the "special"intervals we can then argue that the mapping f indeed satis�es the required properties.Throughout the proof of Lemma 4.7.5, we consider the actions taken during the executionof the solve procedure (rather than considering the full execution of the simulate procedure).This renders our analysis much \cleaner" since we only have to refer only to �rst stage messages(namely, (P0); (V0); (P1); (V1); : : : ; (Pk); (Vk)), and can ignore second stage messages (namely(p1); (v1); (p2)). Extension of the analysis to the simulate procedure case can be then achievedin a straightforward way (the reason this is possible is that the timing of the simulator's \rewinds"depends only on the number of �rst stage messages exchanged so far).

4.7. THE PROBABILITY OF GETTING \STUCK" 83Partitioning the schedule into rewind intervals: The execution of the solve procedureinduces a partitioning of the 2 �m � (k+1) (prover and veri�er) messages in the schedule into disjointrewind intervals. At the top level of the recursion there are two disjoint intervals of length m � (k+1)and at the bottom of the recursion there are m � (k+1) disjoint intervals of length 2. In general,at the wth level of the recursion (out of d = log2(m � (k+1)) possible levels) there are 2w disjointintervals of m(k + 1)=2w+1 messages each.Notice that rewind intervals may contain messages from all sessions. Also notice, that a rewindinterval may be \visited" multiple times during the execution of the solve procedure (in particular,a level-w interval is visited exactly 2w times during the simulation). Since the scheduling of messagesmay vary "dynamically" with the history of the interaction, a speci�c interval may contain adi�erent scheduling of messages each time it is visited.Minimal rewind intervals: We denote by [a; b] an interval starting with prover message a andending with veri�er message b. Consider the scheduling of messages as they appear in the hists;`argument (i.e., at the moment that prove(s; hists;`) is invoked). Focusing on messages of session s,we note that for every pair of messages (Pj); (Vj) in this session we can associate a level-w interval[aj ; bj] so that:1. Both (Pj) and (Vj) are contained in [aj ; bj].2. None of the level-(w + 1) sub-intervals of [aj; bj] contains both (Pj) and (Vj).We call such a rewind interval a j-minimal interval. Notice that for every j 2 f1; : : : ; kg there is onlyone j-minimal interval [aj ; bj] and that for every j 6= j0 the interval [aj ; bj] is di�erent from [aj0 ; bj0].d daj�1 d [(P(j�1)) b [(V(j�1)) d [bbj�1 b [(Pj) daj+1 daj [(Vj)(P(j+1)) bbj [d [(V(j+1)) b bbj+1 b [Figure 4.5: Demonstrates the way in which minimal intervals are determined. Also demonstratespossible containments between minimal intervals of di�erent iterations. In this example, the in-tervals [aj�1; bj�1] and [aj+1; bj+1] are disjoint (as well as the intervals [aj�1; bj�1] and [aj ; bj]),whereas the interval [aj+1; bj+1] contains [aj; bj].In some sense j-minimal intervals correspond to the shortest interval in which the simulator canrewind message (Vj) (that is, while potentially changing the value of (Pj)). Intuitively, for such arewinding to be useful, the interval should not contain message (V0). Otherwise, the values thatwere revealed in some run of the interval become irrelevant once rewinds are performed (since allthe relevant values in the T table are deleted whenever we rewind past (V0)). Likewise, the intervalshould not contain message (p1). Otherwise, the simulation faces the risk of getting \stuck" beforeit manages to reveal multiple (Pj); (Vj) pairs of messages (by running the interval multiple times).

84 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSIt can be seen that the number of minimal intervals that do not contain neither (V0) nor (p1)is at least k0 = k� 2d (for simplicity, these intervals will be indexed by f1; : : : ; k0g). The reason forthis is that in every level of the recursion the (V0) (resp. (p1)) message is contained in exactly oneinterval. In particular, the number of minimal intervals that are \spoiled" by (V0) (resp. (p1)) is atmost d. This guarantees that (V0) and (p1) are not visited during single invocations of [aj ; bj]. Forthe sake of our analysis, however, we will want to make sure that (V0) and (p1) are not visited alsoduring multiple invocations of [aj; bj]. In such a case, requiring that [aj ; bj] does not contain neither(V0) nor (p1) may not be su�cient.14 Jumping ahead, we remark that what we will have to requireis that for some intervals, even intervals containing them do not contain neither (V0) nor (p1).Special rewind intervals: In order to de�ne the mapping f : R! 2R, we will need to focus ona speci�c set of disjoint minimal intervals (called special intervals). An important fact that we willextensively use is that if two intervals are disjoint then so is the portion of the random tape thatused to run them (i.e., in order to produce uniformly chosen (Pj) messages for the correspondinginterval). Another important fact is that in each run of the interval, the solve procedure makesuse of \fresh" randomness (i.e., randomness used in one run is never used in a later run).De�nition 4.7.7 (Special intervals) A minimal interval [aj; bj] is said to be special if it doesnot contain any other minimal interval (i.e., if [aj ; bj] does not contain [aj0 ; bj0] for any j0 6= j).Notice that all special intervals are disjoint. We let S � f1; : : : ; k0g denote the set of all indices jfor which [aj ; bj] is special. For simplicity, assume that S = f1; : : : ; jSjg.For j 2 S, let �j be the number of times [aj; bj] is run since [aj�1; bj�1] is \last" visited (whereby \last" we mean during the time (V0) is visited until (p1) is reached). A trivial upper boundon �j is 2w, where w is the recursive depth of interval [aj ; bj]. However, since we restrict ourselvesto the time between (V0) is visited until (p1) is reached, the value of �j is typically smaller that2w and is in fact upper bounded by �j (recall that �j denotes the number of times (Vj) has beenvisited since the T table was initialized). Notice that �j may be actually smaller than �j since weare counting only the runs of [aj ; bj] that have occurred after [aj�1; bj�1] was \last" visited.The mapping f : We are �nally ready to de�ne the mapping f : R ! 2R (Figure 4.6). Thismapping makes use of another mapping hS : R� [�1]� : : : � [�jSj]! R (Figure 4.7) that dependson the set S (as determined by the schedule at the moment that prove(s; hists;`) is invoked).At a high level, given input � and u1; : : : ; ujSj, the mapping hS takes the portion of the randomtape � that corresponds to the uthj run of interval [aj ; bj] and swaps it with the portion thatcorresponds to the "last" (i.e., �thj) run of this interval (in case uj = �j then hS leaves the runs of[aj ; bj] intact). This is done for all j 2 S. As we have observed above, di�erent runs of a speci�cinterval use disjoint portions of the random tape. In particular, swapping the randomness of tworuns of [aj ; bj] is an operation that makes sense. Moreover, since disjoint intervals use disjointportions of the random tape, for every j 6= j0 swapping two runs of [aj ; bj] will not interfere withswapping two runs of [aj0 ; bj0].The mapping f will be obtained by invoking hS(�; u1; : : : ; ujSj) with all possible values ofu1; : : : ; ujSj 2 [�1] � : : : � [�jSj] as input. The set S and the values �1; : : : ; �jSj used in order tode�ne the mapping hS are determined by the mapping f . This is done by running and monitoring14For example, if the interval containing [aj ; bj] contains either (V0) or (p1), then, in some cases, the number of\safe" invocations of [aj ; bj] is not more than two (even though [aj ; bj] itself does not contain (V0) or (p1)).

4.7. THE PROBABILITY OF GETTING \STUCK" 85the simulation with random tape � and black-box access to V �. Once prove(s; hists;`) is reached,f can inspect the scheduling of messages as it appears in hists;` and determine the set S.15Notice that the mapping f can be computed e�ciently. However, this fact is immaterial for thecorrectness of the analysis since all we have to do is to estasblish the existence of such a mapping(regardless of its e�ciency).Mapping f : R �! 2RInput: A random tape � 2 ROutput: A set of random tapes G � 2R1. Determine the set of special indices S � f1; : : : ; k0g:(a) Run the simulator given random tape � and black-box access to V �.(b) Check for which j, interval [aj ; bj] is special (as induced by V �'s scheduling).2. For j 2 S, let �j be the number of times [aj ; bj] is run since [aj�1; bj�1] is \last" visited.3. Let u = u1; : : : ; ujSj denote a sequence in � def= [�1]� : : :� [�jSj]. SetG = [u2��hS(�; u)	4. Output G.Figure 4.6: Mapping a single \bad" random tape to a set of \good" random tapes.Mapping hS : R� [�1]� : : :� [�jSj] �! RInput: A random tape � 2 R and a sequence u = u1; : : : ; ujSj 2 [�1]� : : :� [�jSj]Output: A random tape �u1;:::;ujSj 2 R1. Set �u0 �.2. For j = 1; : : : ; jSj:(a) Let �w denote the portion of �u1;:::;uj�1 that is used in wth run of [aj ; bj].(b) Swap the locations of �uj and ��j within �u1;:::;uj�1 .(c) Denote by �u1;:::;uj the resulting string.3. Output �u1;:::;ujSj .Figure 4.7: Mapping a \bad" random tape to a \good" random tape.The following Claim will establish Item (3) of Lemma 4.7.5.Claim 4.7.8 Let � 2 B be a bad random tape. Then the sets f(�) n f�g and B are disjoint.15Here we implicitly assume that all invocations of the prove procedure prior to the `th invocations did not return?. This issue can be handled by conducting the analysis inductively while assuming that all previous invocations ofthe prove procedure did not return ?.

86 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSProof: It will be su�cient to show that for every u1; : : : ; ujSj 6= �1; : : : ; �jSj, the random tape�u1;:::;ujSj = hS(�; u1; : : : ; ujSj) does not belong to B (notice that hS(�; �1; : : : ; �jSj) = �).Consider the smallest j 2 S for which uj 6= �j . We start by observing that, up to the point inwhich [aj ; bj] is run for the �rst time (after the \last" run of interval [aj�1; bj�1]), the randomnessused by the simulator when running with �u1;:::;ujSj is equal to the randomness used by the simulatorwhen running with �. This means that all runs of [aj ; bj] that occur after [aj�1; bj�1] has been \last"visited will have the same "history" of interaction regardless of whether �u1;:::;ujSj or � is used.The key observation for proving the claim is that, modulo the history of the interaction atthe starting point of an interval, the randomness used in a speci�c run of an interval completelydetermines its outcome (remember that V �'s random tape is �xed in advance). Since the lastoccurrence of (Vj) in T corresponds to the \last" time [aj ; bj] is visited, then the portion of therandom tape used for the �thj run of [aj ; bj] completely determines the value of (Vj)�j (which is thelast occurrence of (Vj) in T).Notice that, when using �u1;:::;ujSj as random tape, the randomness used in � in order to performthe �thj run of [aj ; bj] is instead used for the uthj run of interval [aj ; bj]. Since the randomness usedin a speci�c run of an interval completely determines its outcome, the value of (Vj) in the uthj runof [aj ; bj] is now equal to (Vj)�j . Recall that � 2 B. This in particular means that, when using �as random tape, it holds that (Vj)�j 6= ABORT (by Condition (2) in De�nition 4.7.4). Denoting the(Vj) message that appears in the uthj run of interval [aj; bj] by (Vj)u we then have that, when thesimulator uses �u1;:::;ujSj as random tape, (Vj)u = (Vj)�j 6= ABORT.Since uj < �j , then (Vj)u does not appear in hists;` (since it appears in the outcome of the uthjrun of [aj ; bj] and the \most recently visited" run when prove(s; hists;`) is invoked is the �thj run).In addition since whenever prove(s; hists;`) is invoked, some (Vj) message must appear in hists;`,we infer that there exist a (Vj) that occurs after (Vj)u does. This message corresponds to (Vj)�0jwhere �0j is the number of occurrences of (Vj) in T when using �u1;:::;ujSj as random tape.We thus have that, when using �u1;:::;ujSj as random tape, there must exist a u < �0j for which(Vj)u 6= ABORT. By Condition (1) in De�nition 4.7.4 this implies that �u1;:::;ujSj 62 B.We now turn to establish Item (2) of Lemma 4.7.5. Let g : B � f0; 1gk � [�1]� : : : � [�jSj]! R bea mapping de�ned as: g(�; S; u) def= hS(�; u)where � 2 B. To show that for all � 6= �0 2 B, the sets f(�) and f(�0) are disjoint it will be su�cientto show that g is one-to-one. In such a case we would have that for any two S 6= S0 � f1; : : : ; k0g,it holds that hS(�; u) 6= hS0(�0; u0) (regardless of the values of �; u and �0; u0) and so the setsf(�) = Su fhS(�; u)g and f(�0) = Su fhS0(�0; u)g are disjoint.Claim 4.7.9 Let g : B � f0; 1gk � [�1]� : : :� [�jSj]! R be as above. Then, g is one-to-one.Proof: To argue that g is one-to-one we will de�ne an inverse mapping g�1 so that for everyrandom tape �0 2 range(g), the value of g�1(�0) = (�; S; u) satis�es g(�; S; u) = �0.Given �0 2 range(g), the basic idea for de�ning g�1 is to recognize the subset of intervals whoserandomness was swapped by f (while \producing" �0 from some � 2 B) and to reverse the swapping(i.e. to swap back the randomness of these intervals). The main di�culty in doing so lies in thetask of recognizing which are these intervals whose randomness is to be swapped (i.e., to recognizewhat is the set S that corresponds to a run of the simulator with � 2 B as random tape).

4.7. THE PROBABILITY OF GETTING \STUCK" 87The solution to this problem will be to inspect the intervals and reverse the swapping of theirrandomness \inductively". The reason for which the order of swapping is important is that V �'sanswer in a speci�c interval also depends on the randomness used to run the \most recent execution"of previous intervals (since, whenever we reach a speci�c interval, the outcome of these \recent"runs appears in the history of the interaction). In order to be able to say something meaningfulabout an interval's run we must make sure that, whenever we inspect the run of the simulator onthis interval, the history of the interaction up to the starting point of the interval is consistentwith the outcome of running the simulator with the bad tape � 2 B that �0 \originates" from. Theprocess describing the mapping g�1 is depicted in Figure 4.8.Mapping g�1 : R �! B � f0; 1gk � [�1]� : : :� [�jSj]Input: A random tape � 2 range(g) � R.Output: A random tape �0 2 B, a set S � f1; : : : ; k0g and a sequence u 2 [�1]� : : :� [�jSj].1. Set �u0 � and S = �.2. For j = 1; : : : ; k0:(a) Run the simulator given random tape �u1;:::;uj�1 and black-box access to V �.(b) Find unique uj so that uthj run of [aj ; bj] is \properly answered".(c) If uj < �j :i. Set S S [fjg.ii. Let �w denote the portion of �u1;:::;uj�1 that is used in wth run of [aj ; bj].iii. Swap the locations of �uj and ��j within �u1;:::;uj�1 .iv. Denote by �u1;:::;uj the resulting string.(d) Otherwise, continue to next j 2 f1; : : : ; k0g.3. Output �0 = �u1;:::;ujSj , S and u = u1; : : : ; ujSj.Figure 4.8: Mapping a \good" tape back to the original \bad" tape.Since the tape �0 2 range(g) that we are trying to invert originates from a bad tape � 2 B thenfor every j 2 f1; : : : ; k0g, when using � as random tape, the interval [aj ; bj] is aborted in all butthe last runs of [aj ; bj], where by last run we mean the last time [aj; bj] is executed prior to theinvocation of prove(s; hists;`). Notice that, once prove(s; hists;`) is invoked, we can determine thevalue of �j by simply counting the number of times [aj ; bj] has been visited from the time (V0)was visited until (p1) is reached. If it happens to be the case that when using �0 as random tapethe last (i.e., �thj) run of the currently inspected interval [aj; bj] is not properly answered, then weknow that the randomness of [aj; bj] has been swapped by f and should be swapped back.If along the way we preserve the \invariant" that the randomness used so far is consistent withthe original bad random tape � 2 B then it must be the case that, for the above interval, thereexists a unique uj < �j so that the uthj run of [aj; bj] is properly answered. We can thus swap therandomness used for the uthj run with the randomness used for the �thj run. As soon as we reachthe last special interval we know that the resulting tape is the original \bad" random tape (sinceall along the way we have preserved the \invariant" that the randomness used so far is consistentwith the original � 2 B).

88 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSAll that remains in order to complete the proof, is to establish Item (1) of Lemma 4.7.5. To doso, we will need to argue that for all � 2 B it holds that jf(�)j � 2k�3d. This will be achieved byproving the following lemma.Lemma 4.7.10 Let d = log2(m � (k+1)). Then, there exist values d1; : : : ; djSj 2 f1; : : : ; dg so that:1. For all j 2 S, it holds that �j = 2dj .2. Pj2S dj � k0 � d.Corollary 4.7.11 Let � 2 B be a bad random tape. Then jf(�)j � 2k�3d.Proof: By the de�nition of f : R �! 2R and by Claim 4.7.9, we have:jf(�)j = ����� [u2� fhS(�; u)g����� = Xu2� jfhS(�; u)gjSince jfhS(�; u)gj = 1, then the size of f(�) is in fact equal to the number of u's in �. The size of� def= [�1]� : : :� [�jSj] is precisely Qj2S �j , and so:jf(�)j = Yj2S �j= Yj2S 2dj (4.8)= 2Pj2S dj� 2k0�d (4.9)where Eq. (4.8) and Eq. (4.9) follow from Items (1) and (2) of Lemma 4.7.10 respectively. Finally,since k0 = k � 2d, we get that jf(�)j � 2k�3d, as required.4.7.2 Proof of Lemma 4.7.10 (special intervals are visited many times)A central tool in the proof of Lemma 4.7.10 will be the notion of the recursion tree. This is a fullbinary tree whose nodes correspond to the rewind intervals as induced by the recursive calls of thesolve procedure. Every node [a; b] in the recursion tree has two descendants. Each one of thedescendants corresponds to one of the recursive calls made during some visit to [a; b]. The root ofthe tree corresponds to a rewind interval of size m � (k+1). At the bottom level of the recursion treethere are m � (k+1) nodes each corresponding to distinct interval of length 2. In general, at the wthlevel of the tree (out of d = log2(m � (k+1)) possible levels) there are 2w nodes, each correspondingto a distinct interval of length m(k + 1)=2w+1.It can be seen that, for any two nodes labeled [a; b] and [a0; b0] in the recursion tree, [a; b] is adescendant of [a0; b0] if and only if interval [a; b] is contained in [a0; b0]. The distance of [a; b] from[a0; b0] is determined in the straightforward manner by considering the distance between these nodesin the binary tree. Recall that we are focusing on the scheduling as it appears in hists;` (i.e., atthe moment that prove(s; hists;`) is invoked). This scheduling induces a speci�c labeling of thetree's nodes acording to the messages that appear at each one of the rewind intervals at that time.It also determines the identity of the nodes that correspond to minimal intervals, as well as the

4.7. THE PROBABILITY OF GETTING \STUCK" 89nodes that correspond to special intervals. By De�nition 4.7.7, nodes that correspond to a specialinterval do not have any descendant that corresponds to a minimal interval.Let S � f1; : : : ; k0g be the set of all indices j for which interval [aj ; bj] is special. Let j 2 Sand let [Aj ;Bj] be the common ancestor of [aj�1; bj�1] and [aj; bj] in the recursion tree. That is,[Aj;Bj] is the \deepest" node in the tree that has both [aj�1; bj�1] and [aj ; bj] as descendants (thiscorresponds to the smallest rewind interval that contains both [aj�1; bj�1] and [aj; bj]).De�ning the dj's - �rst step: We are now redy to de�ne the value of the dj 's. This will proceedin two steps. We �rst de�ne a sequence of values c1; : : : ; cjSj. For any j 2 S, the value of cj willreect the overall number of times that interval [aj ; bj] is visited after [aj0 ; bj0] is last visited. Wethen turn to show how to "correct" the values of the cj 's so to take into consideration only thosevisits that have occurred before (p1) has been reached. The resulting sequence of values d1; : : : ; djSjwill then faithfully reect the number of times that [aj ; bj] is visited after [aj0 ; bj0] is last visited (asrequired by the de�nition of the �j's). The values c1; : : : ; cjSj are de�ned as follows:� If j = 1, then cj = 1.� If j > 1, then cj equals to the distance of [aj ; bj] from [Aj ;Bj].Notice that for all j 2 S, it holds that cj � 1. Figure 4.9 demonstrates the way in which c1; : : : ; cjSjare de�ned. d daj�1 d [(P(j�1)) b [(V(j�1)) d [bbj�1 b [(Pj) daj+1 daj [(Vj)(P(j+1)) bbj [(V(j+1)) d [(P(j+2))(V(j+2)) b bbj+1 b [aj+2bj+2Figure 4.9: Demonstrates the de�nition of the cj 's. In this example the special intervals are[aj�1; bj�1], [aj ; bj] and [aj+2; bj+2] (and j+1 62 S). Notice that the distance of [aj+2; bj+2] fromits common ancestor with [aj ; bj] is 2, and so cj+2 = 2 (the common ancestor being [aj+1; bj+1]).Similarly, the distance of [aj ; bj] from its common ancestor with [aj�1; bj�1] is also 2 and so cj = 2.Claim 4.7.12 Let j 2 S. Then, for every invocation of the common ancestor of [aj�1; bj�1] and[aj ; bj], the number of times that [aj ; bj] is visited after [aj�1; bj�1] is last visited is precisely 2cj .Proof: Let j 2 S and let [Aj ;Bj] be the common ancestor of [aj�1; bj�1] and [aj ; bj]. By de�nition,the value of cj equals the recursive depth of [aj ; bj] relative to [Aj ;Bj]. We thus know that for everyinvocation of interval [Aj ;Bj], the interval [aj ; bj] is invoked precisely 2cj times. To see that all2cj invocations of [aj ; bj] occur after the last invocation of [aj�1; bj�1], we recall that [aj�1; bj�1] and[aj ; bj] are contained in di�erent halves of the common ancestor [Aj ;Bj]. By de�nition of the solveprocedure, the two invocations of the second half of an interval occur only after the two invocationsof the �rst half have occured. Thus all 2cj invocations of [aj ; bj] (which occur as a result of the two

90 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSrecursive invocations of the second half of [Aj;Bj]) occur after all invocations of [aj�1; bj�1] (whichoccur as a result of the two recursive invocations of the �rst half of [Aj ;Bj]).Interfering intervals: Consider any run of the simulator from the time that message (V0)was visited until message (p1) is reached. Since this run involves the exchange of messages(P0); (V0); (P1); (V1); : : : ; (Pk); (Vk), then it must have been caused by some invocation of aninterval [A;B] that contains [aj ; bj] for all j 2 f1; : : : ; k0g. Notice that for all j 2 S the interval[A;B] contains [Aj;Bj]. In particular, for every j 2 S, by the time that (p1) is reached, the interval[Aj;Bj] is invoked at least once. By, Claim 4.7.12, this implies that for all j 2 S, the number oftimes that [aj ; bj] is visited after the last visit of [aj�1; bj�1] is precisely 2cj .At �rst glance this seems to establish that �j = 2cj . However, this is not necessarily true. Thereason for this is that, by de�nition, the value of �j reects only the number of visits to [aj ; bj]before (p1) is reached. It might very well be the case that not all of the 2cj runs of [aj ; bj] haveoccurred before (p1) is reached.Speci�cally, whenever the second half of the common ancestor [Aj;Bj] contains the message(p1), only one of its invocations will occur prior to reaching (p1). This already cuts the number ofvisits to [aj ; bj] by a factor of two. The situation is made even worse by the fact that every intervalthat lies \in between" [Aj;Bj] and [aj ; bj] and that contains (p1) can be invoked at most once beforereaching (p1) (such intervals are said to be interfering to [aj; bj]). Thus, the number of invocationsof [aj ; bj] before (p1) is reached decreases exponentially with the number of interfering intervals.For every j 2 S, let ej denote the number of intervals interfering to [aj; bj]. Notice that for allj 2 S, it holds that cj > ej (since for all j 2 f1; : : : ; k0g interval [aj ; bj] does not contain (p1)).d daj�1 d [(P(j�1)) b [(V(j�1)) d [bbj�1 b [(Pj) dc daj [(Vj) bbj [d [(p1) b bd b [Figure 4.10: Demonstrates the de�nition of interfering intervals. In this example the special inter-vals are [aj�1; bj�1] and [aj ; bj]. Notice that [c; d] lies \in between" [aj ; bj] and its common ancestorwith [aj�1; bj�1]. Since the interval [c; d] contains (p1), then it is interfering to [aj ; bj]. This meansthat ej equals 1 (whereas cj = 2), and that the number of invocations of [aj ; bj] prior to reaching(p1) (and after visiting [aj�1; bj�1] for the last time) is equal to 2cj�ej = 2 (whereas, without takinginterference into account, it would have been 2cj = 4).Claim 4.7.13 Let j 2 S. Then, for every invocation of the common ancestor of [aj�1; bj�1] and[aj ; bj], the number of times that [aj ; bj] is visited after [aj�1; bj�1] is last visited and before (p1) isreached is precisely 2cj�ej .Proof Sketch: Let j 2 S and let [Aj ;Bj] be the common ancestor of [aj�1; bj�1] and [aj ; bj]. Byde�nition, the number of \non-interfering" intervals that: (1) are contained in [Aj ;Bj], (2) contain

4.7. THE PROBABILITY OF GETTING \STUCK" 91[aj ; bj] but, (3) do not contain (p1), is exactly cj � ej . The key observation is that no such \non-interfering" interval contains an interfering interval (since otherwise it would have contained (p1)as well). Thus, prior to reaching (p1), all these intervals are invoked at least twice by the intervalcontaining them. This means that the total number of invocations of [aj ; bj] (which is contained inall of these intervals) is exactly 2cj�ej .We are �nally ready to de�ne d1; : : : ; djSj. For any j 2 S, letdj def= cj � ejTo complete the proof of Lemma 4.7.10 we need to prove the following claim.Claim 4.7.14 Let d1; : : : ; djSj be de�ned as above. Then,Xj2S dj � k0 � dProof: The proof is by induction on k0. For any choice of k0, let S � f1; : : : ; k0g, f(cj ; dj ; ej)gj2Sbe as above. We will show that for every k0 � d, it holds that that Pj2S(cj � ej) � k0 � d. Westress that throughout the proof, we do not make use of any property of the schedule (besides usingthe \binary-tree structure" and the depth, d, of the simulator's execution).Base case (k0 = d+ 1): Since jSj � 1, and for all j 2 S, it holds that cj � ej > 0, we have:Xj2S(cj � ej) � 1 = k0 � dInduction step (k0 > d): Consider the k0�1 intervals that are obtained by removing the index jSj(i.e., the index corresponding to the \latest" special interval [ajSj; bjSj]). Let S0 � f1; : : : ; k0gnfjSjgdenote the set of special intervals after the removal of the index jSj. Notice that S � S0. This isbecause any interval that was special before the removal of jSj will remain special after the removal.Moreover, for all j 2 S \ S0, the value of cj � ej has not been changed by the removal of jSj (sinceit is always de�ned relative to the \preceding" element in jSj). We now have two cases.Case 1: There exists J 2 S0 n S so that the interval [aJ ; bJ] is special. That is, by removing[ajSj; bjSj] we have caused [aJ ; bJ] to be special (even though it was not special before). This couldhave happened only if the unique interval previously contained by [aJ ; bJ] was [ajSj; bjSj] (otherwise,[aJ ; bJ] would have not become special after removing [ajSj; bjSj]). In particular, [aJ ; bJ] does notcontain the intervals [ajSj�1; bjSj�1] (i.e., the special interval preceding [ajSj; bjSj]) and [AjSj;BjSj](i.e., the common ancestor of [ajSj�1; bjSj�1] and [ajSj; bjSj]). This means that both [aJ ; bJ] and[ajSj; bjSj] have the same common ancestor with [ajSj�1; bjSj�1]. Since [aJ ; bJ] contains [ajSj; bjSj]then cjSj > cJ . In addition, since the set of intervals interfering to [aJ ; bJ] is equal to the set ofintervals interfering to [ajSj; bjSj] then ejSj = eJ . As a consequence, cjSj � ejSj > cJ � eJ . Using theinduction hypothesis (for k0 � 1), we get:Xj2S(cj � ej) = Xj2S0nfJg(cj � ej) + (cjSj � ejSj) � Xj2S0nfJg(cj � ej) + (cJ � eJ + 1)� Xj2S0(cj � ej) + 1� (k0 � 1)� d+ 1= k0 � d

92 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSCase 2: S0 = S. Using the induction hypothesis, and the fact that cjSj � ejSj > 0, we get:Xj2S(cj � ej) = Xj2S0(cj � ej) + (cjSj � ejSj)� Xj2S0(cj � ej) + 1� (k0 � 1)� d+ 1= k0 � dIn both cases, we obtain the desired result. This completes the proof of Claim 4.7.14.Using, Claims 4.7.13 and 4.7.14, we have:1. For all j 2 S, it holds that �j = 2dj .2. Pj2S dj � k0 � d.This completes the proof of Lemma 4.7.10.4.8 Extensions4.8.1 Applicability to other protocolsTheorem 4.1 is proved by adding an O(�(n) � log n)-round \preamble" to the well known 3-roundprotocol for Hamiltonicity by Blum [6]. The crucial property of Blum's protocol that we need inorder to prove concurrent zero-knowledge is that it is a \challenge{response" type of protocol sothat the simulation task becomes trivial if the veri�er's \challenge" is known in advance. Using ourmehtodology, it is possible to transform any such protocol into concurrent zero-knowledge, whilepaying only a logarithmic cost in the round complexity.Denote by CRZK(r(�)) the class of all languages L � f0; 1g� having an r(�)-round "challenge{response" interactive proof (resp. argument) system, so that the simulation task becomes \trivial"if the veri�er's "challenges" are known in advance. We now have the following theorem.Theorem 4.2 (A generic transformation for CRZK) Let � : N ! N be any super-constantinterger function, and let r : N ! N be any integer function. Then, assuming the existence ofperfectly-hiding commitment schemes (resp. one-way functions), every language L 2 CRZK(r(�))has an (r(n) +O(�(n) � log n))-round concurrent zero-knowledge proof (resp. argument) system.In light of Theorem 4.2, Construction 4.3.2 may be viewed as a generic transformation that enhancessuch protocols and makes them secure in the concurrent setting with only a logarithmic increase inthe round complexity. Examples for protocols satsfying the above property are the well known pro-tocols for graph 3-coloring [25], for proving the knowledge of a square root modulo a composite [20],as well as the protocol for proving knowledge of discrete logarithms modulo a prime [44].4.8.2 cZK arguments based on any one-way functionUsing Construction 4.3.1 as a building block, we are able to present a cZK argument systemfor Hamiltonicity, while assuming only the existence of one-way functions. Since Hamiltonicity isNP-complete, it will follow that every language in NP can be argued in cZK.

4.8. EXTENSIONS 93Construction 4.8.1 (A cZK argument system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j, and a parameter k = k(n)(determining the number of rounds).� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� First stage: This stage involves 2k + 2 rounds and is independent of the common input G.1. Prover's preliminary step (P0): Uniformly select a �rst message for a (2-round)perfectly-hiding commitment scheme and send it to the veri�er.2. Veri�er's preliminary step (V0): Uniformly select � 2 f0; 1gn, and two sequences,f�0i;jgki;j=1, f�1i;jgki;j=1, each consisting of k2 random n-bit strings. The sequences arechosen under the constraint that for every i; j the value of �0i;j ��1i;j equals �. Commit(using the perfectly-hiding commitment scheme) to all 2k2+1 selected strings. Thecommitments are denoted �; f�0i;jgki;j=1, f�1i;jgki;j=1.3. For j = 1; : : : ; k:(a) Prover's jth step (Pj): Uniformly select a k-bit string rj = r1;j ; : : : ; rk;j 2 f0; 1gkand send it to the veri�er.(b) Veri�er's jth step (Vj): Reveal the values (preimages) of �r1;j1;j ; : : : ; �rk;jk;j .4. The prover proceeds with the execution if and only if for every j 2 f1; : : : ; kg, theveri�er has properly decommited to the values of �r1;j1;j ; : : : ; �rk;jk;j (i.e., that for everyi 2 f1; : : : ; kg, �ri;ji;j is a valid decommitment of �ri;ji;j).� Second stage: The prover and veri�er engage in n (parallel) executions of a slightly modi�edversion of the basic Hamiltonicity protocol (described in Construction 4.3.1):1. Prover's �rst step (p1): Send the �rst message in the Hamiltonicity proof system (i.e.,n parallel copies of Step (cp1) in Construction 4.3.1).2. Veri�er's �rst step (v1): Send the value of �, as well as the value of all k2 commitmentsthat have not been revealed in the �rst stage (i.e., f�1�ri;ji;j gki;j=1). In addition prove(using an ordinary zero-knowledge argument of knowledge) the knowledge of k + 1strings, s; s1; : : : ; sk, so that Cs(�) = � and Csj (�1�rjj) = �1�rjj for all j.3. Prover's second step (p2): Check that the veri�er has properly decommited to the valuesof � and f�1�ri;ji;j gki;j=1 (in particular, check that �0i;j � �1i;j indeed equals � for all j).If so, send the third message in the basic Hamiltonicity proof system (i.e., n parallelcopies of Step (cp2) in Construction 4.3.1).4. Veri�er's second step (v2): Conduct the veri�cation of the prover's proofs (i.e., asdescribed in Step (cv2) of Construction 4.3.1), and accept if and only if all correspondingconditions hold.Completeness and soundness of Construction 4.8.1 are proved in a similar way to Construc-tion 4.3.2. The main di�erence is in the proof of soundness. This time, rather than using theperfect secrecy of the commitments used in Step (V0) of Construction 4.3.2, we use the zero-knowedge property of the argument used in Step (v1), as well as the computational secrecy of thecommitments used in Step (V0) of Construction 4.8.1. We thus have:Proposition 4.8.2 Suppose there exist one-way functions. Then Construction 4.8.1 constitutesan interactive argument system for Hamiltonicity.

94 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDSUsing the same simulator as the one used for Construction 4.3.2 and with some more work on theanalysis of its success probability and output distribution (building on the soundness of the ZKargument used in Step (v1)), we obtain.Theorem 4.3 (cZK argument) Suppose there exist one-way functions. Let � : N ! N be anysuper-constant function, and let k(n) = �(n) � log n. Then, any instantiation of Construction 4.8.1with parameter k = k(n) is concurrent zero-knowledge.4.8.3 Applicability to resettable zero-knowledgeOur result also enables improvement in the round complexity of resettable zero-knowledge [8].Speci�cally, using a general transformation of (certain) concurrent zero-knowledge protocols intoresettable zero-knowledge [8], we obtain:Theorem 4.4 (Resettable ZK) Assuming the existence of perfectly-hiding commitment schemes(resp. one-way functions), there exists an ~O(log n)-round resettable zero-knowledge proof (resp. ar-gument) system for every language L 2 NP.Theorem 4.4 is proven by employing a general transformation (by Canetti et al. [8]) that ap-plies to a subclass of cZK protocols. When applied to the cZK proof system presented in Con-struction 4.3.2 (as well as Construction 4.8.1), the transformation yields a resettable ZK proof(resp. argument) system. The class of protocols to which the [8] transformation applies is theclass of admissible protocols. Loosely speaking, the class of admissible protocols consists of all cZKprotocols in which the �rst veri�er message \essentially determines" all its subsequent messages.What we mean by \essentially determines" is that the only freedom retained by the veri�er is eitherto abort (or act so that the prover aborts) or to send a practically predetermined message. Recallthat, in our case, the �rst veri�er message is a sequence of commitments that are revealed (i.e.,decommited) in subsequent veri�er steps. In such a case, the veri�er's freedom in subsequent stepsis con�ned to either send an illegal decommitment (which is viewed as aborting and actually causesthe prover to abort) or properly decommit to the predetermined value. It follows that our cZKprotocol satis�es the \admissibility" property required by [8], and can be thus transformed intoresettable ZK. For more details, see [8].4.8.4 Concurrent ZK arguments with poly-logarithmic e�ciencyAnother application of our work is the existence of concurrent zero-knowledge arguments with poly-logarithmic e�ciency. Denote by cZK(r(�);m(�)) the class of all languages L � f0; 1g� having azero-knowledge argument system, so that on common input x 2 f0; 1g�, the number of messagesexchanged is at most r(jxj), and the total length of the messages exchanged is at most m(jxj).In case that m(n) = polylog(n), the argument system is said to have poly-logarithmic e�ciency.Zero-knowledge arguments with poly-logarithmic e�ciency have been constructed by Kilian [33],while assuming the existence of strong collision resistant hash functions (i.e., so that for some � > 0forming collisions with probability greater than 2�k� requires at least 2k� time). We now have thefollowing theorem.Theorem 4.5 (cZK with poly-logarithmic e�ciency) Assuming the existence of strong colli-sion resistant hash functions, NP is contained in cZK(~O(log);polylog). That is, for every languageL 2 NP, there exists an ~O(log n)-round black-box concurrent zero-knowledge argument system withpoly-logarithmic e�ciency.

4.8. EXTENSIONS 95Theorem 4.5 is proved by applying the transformation referred to in Section 4.8.1 to the protocolof Kilian [33]. The theorem will follow by noting that the preamble of Construction 4.3.2 canbe constructed with polylogarithmic e�ciency, and that Kilian's arguments satisfy the propertyrequired by Theorem 4.2.

96 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Chapter 5cZK Without AbortsThe lower bound presented in Chapter 4 heavily relies on the fact that the adversary veri�er isallowed to occasionally abort the concurrent interaction. In this chapter, we consider concurrentcomposition of ZK in which the veri�er is never allowed to abort during the interaction (we call suchexecutions non-aborting concurrent executions). This restriction on the veri�er strategy is quitereasonable and it is not inconceivable that it might enable the construction of constant-round cZKprotocols (in particular, the lower-bound presented in Chapter 4 does not apply in such a setting).Determining the round-complexity of cZK protocols with non-aborting concurrent executions thusseems to be an interesting question (see also Chapter 7). In this Chapter we make a preliminary steptowards achieving this task by showing that even in the non-aborting case the task of concurrentcomposition is \non-trivial".Theorem 5.1 Suppose that (P; V) is a 7-round proof system for a language L, and that non-aborting concurrent executions of P can be simulated in polynomial-time using black-box simula-tion. Then L 2 BPP. This holds even if the proof system is only computationally-sound (withnegligible soundness error) and the simulation is only computationally-indistinguishable (from theactual executions).The proof of Theorem 5.1 builds on the works of Goldreich and Krawczyk [24] and Kilian,Petrank and Racko� [36]. It utilizes a �xed scheduling of the concurrent executions. This schedulingis de�ned recursively and is more sophisticated than the one proposed by [15] and used by [36].It also exploits a special property of the �rst message sent by the veri�er. At the end of thischapter (Section 5.2) we show hot to extend Theorem 5.1 so to prove that the 9-round version ofthe Richardson-Kilian protocol [42] (i.e., with parameter k = 2) cannot be black-box simulatedunder non-aborting concurrent executions.5.1 Proof of Theorem 5.1The high level structure of the proof roughly follows the one the proof presented in Chapter 3.That is, we construct a concurrent schedule of sessions, and demonstrate that a black-box simulatorcannot successfully generate a simulated accepting transcript for this schedule unless it \rewinds"the veri�er many times. The work spent on these rewinds will be super-polynomial unless thenumber of rounds used by the protocol obeys the bound, or L 2 BPP . The main di�erence liesin the fact that the adversary veri�er considered in the current proof never aborts. This obviouslyfacilitates the simulator's task. Still, since the bound we are proving here is considerably moremodest than the one proved in Chapter 3, the resulting proof ends up being much simpler.97

98 CHAPTER 5. CZK WITHOUT ABORTS5.1.1 The schedule, aversary veri�ers and decision procedureThe scheduleFor each x 2 f0; 1gn, we consider the following concurrent scheduling of n sessions all run oncommon input x. The scheduling is de�ned recursively, where the scheduling ofm sessions (denotedRm) proceeds in 3 phases:First phase: Each of the �rst m= logm sessions exchanges three messages (i.e., p1; v1; p2), thisis followed by a recursive application of the scheduling on the next m= logm sessions.Second phase: Each of the �rstm= logm sessions exchanges two additional messages (i.e., v2; p3),this is followed by a recursive application of the scheduling on the last m� 2 � mlogm sessions.Third phase: Each of the �rstm= logm sessions exchanges the remaining messages (i.e.,v3,p4,v4).The schedule is depicted in Figure 5.1. We stress that the veri�er typically postpones its answer(i.e., v(i)j) to the last prover's message (i.e., p(i)j) till after a recursive sub-schedule is executed, andthat it is crucial that in the �rst phase each session will �nish exchanging its messages before thenext sessions begins (whereas the order in which the messages are exchanged in the second andthird phases is immaterial). 1 2 mlogm mlogm+1 2�mlogm+1 mp1)v1p2 ())() � � �)() R mlogm()� � �()v2p3 () Rm�2� mlogm()(� � �()(v3p4 ()v4 (Figure 5.1: The �xed schedule { recursive structure for m sessions.

5.1. PROOF OF THEOREM 5.1 99De�nition 5.1.1 (Identi�ers of next message) The �xed schedule de�nes a mapping from par-tial execution transcripts ending with a prover message to the identi�ers of the next veri�er mes-sage; that is, the session and round number to which the next veri�er message belongs. (Recallthat such partial execution transcripts correspond to queries of a black-box simulator and sothe mapping de�nes the identi�er of the answer:) For such a query q = (a1; b1; :::; at; bt; at+1),we let �sn(q) 2 f1; :::; ng denote the session to which the next veri�er message belongs, and by�msg(q) 2 f1; :::; 4g its index within the veri�er's messages in this session.De�nition 5.1.2 (Initiation-pre�x) The initiation-pre�x ip of a query q is the pre�x of q endingwith the prover's initiation message of session �sn(q). More formally, ip = a1; b1; :::; a`; b`; a`+1, isthe initiation-pre�x of q = (a1; b1; :::; at; bt; at+1) if a`+1 is of the form p(i)1 for i = �sn(q). (Notethat �msg(q) may be any index in f1; :::; 4g, and that at+1 need not belong to session i.)De�nition 5.1.3 (Prover-sequence) The prover-sequence of a query q is the sequence of allprover messages in session �sn(q) that appear in the query q. The length of such a sequence is�msg(q) 2 f1; : : : ; 4g. In case the length of the prover-sequence equals 4, both query q and itsprover-sequence are said to be terminating (otherwise, they are called non-terminating). The prover-sequence is said to correspond to the initiation-pre�x ip of the query q. (Note that all queries havingthe same initiation-pre�x agree on the �rst element of their prover-sequence, since this message ispart of the initiation-pre�x.)We consider what happens when a black-box simulator (for the above schedule) is given oracleaccess to a veri�er strategy Vh de�ned as follows (depending on a hash function h and the input x).The veri�er strategy VhOn query q = (a1; b1; :::; at; bt; at+1), where the a's are prover messages (and x is implicit in Vh),the veri�er answers as follows:1. First, Vh checks if the execution transcript given by the query is legal (i.e., consistent withVh's prior answers), and answers with an error message if the query is not legal. (In fact thisis not necessary since by our convention the simulator only makes legal queries. From thispoint on we ignore this case.)2. More importantly, Vh checks whether the query contains the transcript of a session in whichthe last veri�er message indicates rejecting the input. In case such a session exists, Vh refusesto answer (i.e., answers with some special \refuse" symbol).3. Next, Vh determines the initiation-pre�x, denoted a1; b1; :::; a`; b`; a`+1, of query q. It alsodetermines i = �sn(q), j = �msg(q), and the prover-sequence of query q, denoted p(i)1 ; :::; p(i)j .4. Finally, Vh determines ri = h(a1; b1; :::; a`; b`; a`+1) (as coins to be used by V), and answerswith the message V (x; ri; p(i)1 ; :::; p(i)j) that would have been sent by the honest veri�er oncommon input x, random-pad ri, and prover's messages p(i)1 ; :::; p(i)j .Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-rem 5.1 exists, we now descibe a probabilistic polynomial-time decision procedure for L, based onS. Recall that we may assume that S runs in strict polynomial time: we denote such time boundby tS(�). On input x 2 L\f0; 1gn and oracle access to any (probabilistic polynomial-time) V �, the

100 CHAPTER 5. CZK WITHOUT ABORTSsimulator S must output transcipts with distribution having computational deviation of at most1=6 from the distribution of transcripts in the actual concurrent executions of V � with P .A slight modi�cation of the simulator: Before presenting the procedure, we slightly modifythe simulator so that it never makes a query that is refused by a veri�er Vh. Note that this conditioncan be easily checked by the simulator, and that the modi�cation does not e�ect the simulator'soutput. From this point on, when we talk of the simulator (which we continue to denote by S) wemean the modi�ed one.Decision procedure for LOn input x 2 f0; 1gn, proceed as follows:1. Uniformly select a function h out of a small family of tS(n)-wise independent hash functionsmapping poly(n)-bit long sequences to �V (n)-bit sequences, where �V (n) is the number ofrandom bits used by V on an input x 2 f0; 1gn.2. Invoke S on input x providing it black-box access to Vh (as de�ned above). That is, theprocedure emulates the execution of the oracle machine S on input x along with emulatingthe answers of Vh.3. Accept if and only if all sessions in the transcript output by S are accepting.By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze itsperformance.Lemma 5.1.4 (Performance on yes-instances) For all but �nitely many x 2 L, the aboveprocedure acccepts x with probability at least 2=3.Proof Sketch: The key observation is that for uniformly selected h, the behavior of Vh in actual(concurrent) interactions with P is identical to the behavior of V in such interactions. The reasonis that, in such actual interactions, a randomly selected h determines uniformly and independentlydistributed random-pads for all n sessions. Since with high probability (say at least 5/6), V acceptsin all n concurrent sessions, the same must be true for Vh, when h is uniformly selected. Since thesimulation deviation of S is at most 1=6, it follows that for every h the probability that SVh(x)is a transcript in which all sessions accept is lower bounded by ph � 1=6, where ph denotes theprobability that Vh accepts x (in all sessions) when interacting with P . Taking expectation overall possible h's, the lemma follows.Lemma 5.1.5 (Performance on no-instances) For all but �nitely many x 62 L, the above pro-cedure rejects x with probability at least 2=3.We can actually prove that for every polynomial p and all but �nitely many x 62 L, the aboveprocedure accepts x with probability at most 1=p(jxj). Assuming towards the contradiction thatthis is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheatingprover that fools the honest veri�er V with success probability at least 1=poly(n) (in contradictionto the computational-soundness of the proof system). Loosely speaking, the argument capitalizeson the fact that rewinding of a session requires the simulator to work on a new simulation sub-problem (one level down in the recursive construction). New work is required since each di�erent

5.1. PROOF OF THEOREM 5.1 101message for the rewinded session forms an unrelated instance of the simulation sub-problem (byvirtue of de�nition of Vh). The schedule causes work involved in such rewinding to accumulate totoo much, and so it must be the case that the simulator does not rewind some (full instance ofsome) session. In this case the cheating prover may use such a session in order to fool the veri�er.5.1.2 Proof of Lemma 5.1.5 (performance on no-instances)Let us �x an x 2 f0; 1gn n L as above.1 De�ne by AC = ACx the set of pairs (�; h) so that on inputx, coins � and oracle access to Vh, the simulator outputs a transcript, denoted SVh� (x), in which alln sessions accept. Recall that our contradiction assumption is that Pr�;h[(�; h) 2 AC] > 1=p(n), forsome �xed polynomial p(�).The cheating proverThe cheating prover starts by uniformly selecting a pair (�; h) and hoping that (�; h) is in AC. Itnext selects uniformly two elements ` and � in f1; :::; qS(n)g, where qS(n) < tS(n) is a bound onthe number of queries made by S on input x 2 f0; 1gn. The prover next emulates an execution ofSVh0� (x) (where h0, which is essentially equivalent to h, will be de�ned below), while interacting withthe honest veri�er V . The prover handles the simulator's queries as well as the communication withthe veri�er as follows: Suppose that the simulator makes query q = (a1; b1; :::; at; bt; at+1), wherethe a's are prover messages.1. Operating as Vh, the cheating prover �rst determines the initiation-pre�x, ip correspondingto the current query q. Let ip = a1; b1; :::; a`; b`; a`+1, (Note that by our convention and themodi�cation of the simulator there is no need to perform Steps 1 and 2 of Vh.)2. If ip is the `th distinct initiation-pre�x resulting from the simulator's queries so far then thecheating prover operates as follows:(a) The cheating prover determines i = �sn(q), j = �msg(q), and the prover-sequence of q,denoted p(i)1 ; :::; p(i)j (as done by Vh in Step 3).(b) If the query q is non-terminating (i.e., j � 3), and the cheating prover has only sentj � 1 messages to the actual veri�er then it forwards p(i)j to the veri�er, and feeds thesimulator with the veri�er's response (i.e., which is of the form v(i)j).2(c) If the query q is non-terminating (i.e., j � 3), and the cheating prover has already sentj messages to the actual veri�er, the prover retrieves the jth message it has received andfeeds it to the simulator.3(d) Whenever the query q is terminating (i.e., j = 4), the cheating prover operates as follows:1In a formal proof we need to consider in�nitely many such x's.2We comment that by our conventions regarding the simulator, it cannot be the case that the cheating prover hassent less than j � 1 messages to the actual veri�er: The pre�xes of the current query dictate j � 1 such messages.3 We comment that the cheating prover may fail to conduct Step 2c. This will happen whenever the simulatormakes two queries with the same initiation-pre�x and the same number of prover messages in the correspondingsession, but with a di�erent sequence of such messages. Whereas this will never happen when j = 1 (as once theinitiation-pre�x is �xed then so is the value of p(i)1), it may very well be the case that for j 2 f2; 3g a previous queryregarding initiation-pre�x ip had a di�erent p(i)j message. In such a case the cheating prover will indeed fail. Thepunchline of the analysis is that with noticeable probability this will not happen.

102 CHAPTER 5. CZK WITHOUT ABORTSi. As long as the �th terminating query corresponding to the above initiation-pre�x hasnot been made, the cheating prover feeds the simulator with v(i)4 = 0 (i.e., sessionrejected).ii. Otherwise, the cheating prover operates as in Step 2b (i.e., it forwards p(i)4 to theveri�er, and feeds the simulator with the veri�er's response { some v(i)4 message).43. If ip is NOT the `th distinct initiation-pre�x resulting from the queries so far then theprover emulates Vh in the obvious manner (i.e., as in Step 4 of Vh): It �rst determinesri = h(a1; b1; :::; a`; b`; a`+1), and then answers with V (x; ri; p(i)1 ; :::; p(i)j), where all notationsare as above.De�ning h0 (mentioned above): Let (�; h) and ` be the initial choices made by the cheatingprover, and suppose that the honest veri�er uses coins r. Then, the function h0 is de�ned to beuniformly distributed among the functions h00 which satisfy the following conditions: The valueof h00 on the `th initiation-pre�x equals r, whereas for every `0 6= `, the value of h00 on the `0thinitiation-pre�x equals the value of h on this pre�x. (Here we use the hypothesis that the functionsare selected in a family of tS(n)-wise independent hash functions. We note that replacing h by h0does not e�ect Step 3 of the cheating prover, and that the prover does not know h0.)The probability that the cheating prover makes the honest veri�er accept is lower bounded bythe probability that both (�; h0) 2 AC and the messages forwarded by the cheating prover in Step 2are consistent with an accepting conversation with Vh0 . For the latter event to occur, it is necessarythat the `th distinct initiation-pre�x will be useful (in the sense hinted above and de�ned now). Itis also necessary that � was \successfully" chosen (i.e., the �th terminating query which correspondsto the `th initiation-pre�x is accepted by Vh0).De�nition 5.1.6 (Accepting query) A terminating query q = (a1; b1; :::; at; bt; at+1) (i.e., forwhich �msg(q) = 4) is said to be accepting if Vh0(a1; b1; :::; at; bt; at+1) equals 1 (i.e., session �sn(q)is accepted by Vh0).De�nition 5.1.7 (Useful initiation-pre�x) A speci�c initiation-pre�x ip in an execution ofSVh0� (x) is called useful if the following conditions hold:1. During its execution, SVh0� (x) made at least one accepting query that corresponds to theinitiation-pre�x ip.2. As long as no accepting query corresponding to the initiation-pre�x ip was made during theexecution of SVh0� (x), the number of (non-terminating) di�erent prover-sequences that corre-spond to ip is at most 3, and these prover-sequences are pre�xes of one another.5Otherwise, the pre�x is called unuseful.4We note that once the cheating prover arrives to this point, then it either succeds in the cheating task orcompletely fails (depending on the veri�er's response). As a consequence, it is not essential to de�ne the cheatingprover's actions from this point on (as in both cases the algorithm will be terminated).5In other words, we allow for many di�erent terminating queries to occur (as long as they are not accepting). Onthe other hand, for j 2 f1; 2; 3g only a single query that has a prover sequence of length j is allowed. This requirementwill enable us to avoid situations in which the cheating prover will fail (as described in Footnote 3).

5.1. PROOF OF THEOREM 5.1 103The success probabilityDe�ne a Boolean indicator �(�; h0; `) to be true if and only if the `th distinct initiation-pre�x in anexecution of SVh0� (x) is useful. De�ne an additional Boolean indicator (�; h0; `; �) to be true if andonly if the �th terminating query among all terminating queries that correspond to the `th distinctinitiation-pre�x (in an execution of SVh0� (x)) is the �rst one to be accepting. It follows that if thecheating prover happens to select (�; h; `; �) so that both �(�; h0; `) and (�; h0; `; �) hold then itconvinces V (x; r); the �rst reason being that the �th such query is answered by an accept message6,and the second reason being that the emulation does not get into trouble (in Steps 2c and 2d). Tosee this, notice that all �rst (� � 1) queries having the `th distinct initiation-pre�x satisfy exactlyone of the following conditions:1. They have non-terminating prover-sequences that are pre�xes of one another (which impliesthat the cheating prover never has to forward such queries to the veri�er twice).2. They have terminating prover-sequences which should be rejected (recall that as long as the�th terminating query has not been asked by SVh0� (x), the cheating prover automatically rejectsany terminating query).Thus, the probability that when selecting (�; h; `; �) the cheating prover convinces V (x; r) is atleast: Pr � (�; h0; `; �) & �(�; h0; `)�= Pr � (�; h0; `; �) j �(�; h0; `)� � Pr ��(�; h0; `)�� Pr � (�; h0; `; �) j �(�; h0; `)� � Pr �(�; h0) 2 AC & �(�; h0; `)� (5.1)Note that if the `th distinct initiation-pre�x is useful, and � is uniformly (and independently) se-lected in f1; :::; qS(n)g, the probability that the �th query corresponding to the `th distinct initiation{pre�x is the �rst to be accepting is at least 1=qS(n). Thus, Eq. (5.1) is lower bounded by:Pr [(�; h0) 2 AC & �(�; h0; `)]qS(n) (5.2)Using the fact that, for every value of ` and �, when h and r are uniformly selected the functionh0 is uniformly distributed, we infer that ` is distributed independently of (�; h0). Thus, Eq. (5.2)is lower bounded by Pr[(�; h0) 2 AC] � Pr[9i s.t. �(�; h0; i) j (�; h0) 2 AC]qS(n)2 (5.3)Thus, Eq. (5.3) is noticeable (i.e., at least 1=poly(n)) provided that so is the value ofPr[9i s.t. �(�; h0; i) j (�; h0) 2 AC]The rest of the proof is devoted to establishing the last hypothesis. In fact we prove a much strongerstatement:Lemma 5.1.8 For every (�; h0) 2 AC, the execution of SVh0� (x) contains a useful initiation-pre�x(that is, there exists an i s.t. �(�; h0; i) holds).6We use the fact that V (x; r) behaves exactly as Vh0 (x) behaves on queries for the `th distinct initiation-pre�x.

104 CHAPTER 5. CZK WITHOUT ABORTS5.1.3 Proof of Lemma 5.1.8 (existence of useful initiation pre�xes)The proof of Lemma 5.1.8 is by contradiction. We assume the existence of a pair (�; h0) 2 AC sothat all initiation-pre�xes in the execution of SVh0� (x) are unuseful and show that this implies thatSVh0� (x) made at least n
� log nlog log n� � poly(n) queries which contradicts the assumption that it runsin polynomial-time.The query{and{answer treeThroughout the rest of the proof, we �x an arbitrary (�; h0) 2 AC so that all initiation-pre�xesin the execution of SVh0� (x) are unuseful, and study this execution. A key vehicle in this study isthe notion of a query{and{answer tree introduced in [36]. This is a rooted tree in which verticesare labeled with veri�er messages and edges are labeled by prover's messages. The root is labeledby the empty string, and it has outgoing edges corresponding to the possible prover's messagesinitializing the �rst session. In general, paths down the tree (i.e., from the root to some vertices)correspond to queries. The query associated with such a path is obtained by concatenating thelabeling of the vertices and edges in the order traversed. We stress that each vertex in the treecorresponds to a query actually made by the simulator.Satis�ed sub-path: A sub-path from one node in the tree to some of its descendants is said tosatisfy session i if the sub-path contains edges (resp., vertices) for each of the messages sent by theprover (resp., veri�er) in session i, and if the last such message (i.e., v(i)4) indicates that the veri�eraccepts session i. A sub-path is called satis�ed if it satis�es all sessions for which the �rst prover'smessage appears on the sub-path.Forking sub-tree: For any i and j 2 f2; 3; 4g, we say that a sub-tree (i; j)-forks if it containstwo sub-paths, p and r, having the same initiation-pre�x, so that1. p and r di�er in the edge representing the jth prover message for session i (i.e., a p(i)j message).2. Each of p and r reaches a vertex representing the jth veri�er message (i.e., some v(i)j).In such a case, we may also say that the sub-tree (i; j)-forks on p (or on r).Good sub-tree: Consider an arbitrary sub-tree rooted at a vertex corresponding to the �rstmessage in some session so that this session is the �rst at some level of the recursive constructionof the schedule. The full tree is indeed such a tree, but we will need to consider sub-trees whichcorrespond to m sessions in the recursive schedule construction. We call such a sub-tree m-good ifit contains a sub-path satisfying all m sessions for which the prover's �rst message appears in thesub-tree (all these �rst messages are in particular contained in the sub-path). Since (�; h0) 2 AC itfollows that the full tree contains a path from the root to a leaf representing an accepting transcript.The path from the root to this leaf thus satis�es all sessions (i.e., 1 through n) which implies thatthe full tree is n-good.The structure of good sub-trees: The crux of the entire proof is given in the following lemma.Lemma 5.1.9 Let T be an m-good sub-tree. Then, at least one of the following holds:

5.1. PROOF OF THEOREM 5.1 1051. T contains at least two di�erent �m� 2 � mlogm�-good sub-trees.2. T contains at least mlogm di�erent � mlogm�-good sub-trees.Denote by W (m) the size of an m-good sub-tree (where W (m) stands for the work actually per-formed by the simulator on m concurrent sessions in our �xed scheduling). It follows (from Lemma5.1.9) that any m-good sub-tree must satisfyW (m) � min� mlogm �W � mlogm� ; 2 �W �m� 2 � mlogm�� (5.4)Since Eq. (5.4) solves to n
� lognlog logn� (proof omitted), and since every vertex in the query{and{answer tree corresponds to a query actually made by the simulator, then the assumption that thesimulator runs in poly(n)-time (and hence the tree is of poly(n) size) is contradicted. Thus, Lemma5.1.8 follows from Lemma 5.1.9.5.1.4 Proof of Lemma 5.1.9 (the structure of good sub-trees)Considering the m sessions corresponding to an m-good sub-tree, we focus on the m= logm sessionsdealt explicitly at this level of the recursive construction (i.e., the �rst m= logm sessions, which wedenote by F def= f1; :::;m= logmg).Claim 5.1.10 Let T be an m-good sub-tree. Then for any session i 2 F , there exists j 2 f2; 3gsuch that the sub-tree (i; j)-forks.Proof: Consider some i 2 F , and let pi be the �rst sub-path reached during the execution ofSVh0� (x) which satis�es session i (since the sub-tree is m-good such a sub-path must exist, and sincei 2 F every such sub-path must be contained in the sub-tree). Recall that by the contradictionassumption for the proof of Lemma 5.1.8, all initiation-pre�xes in the execution of SVh0� (x) areunuseful. In particular, the initiation-pre�x corresponding to sub-path pi is unuseful. Still, pathpi contains vertices for each prover message in session i and contains an accepting message bythe veri�er. So the only thing which may prevent the above initiation-pre�x from being useful ishaving two (non-terminating) queries with the very same initiation-pre�x (non-terminating) prover-sequences of the same length. Say that these sequences �rst di�er at their jth element, and notethat j 2 f2; 3g (as the prover-sequences are non-terminating and the �rst prover message, p(i)1 , isconstant once the initiation-pre�x is �xed). Also note that the two (non-terminating) queries wereanswered by the veri�er (rather than refused), since the (modi�ed) simulator avoids queries whichwill be refused. By associating a sub-path to each one of the above queries we obtain two di�erentsub-paths (having the same initiation-pre�x), that di�er in some p(i)j edge and eventually reach av(i)j vertex (for j 2 f2; 3g). The required (i; j)-forking follows.Claim 5.1.11 If there exists a session i 2 F such that the sub-tree (i; 3)-forks, then the sub-treecontains two di�erent �m�2� mlogm�-good sub-trees.Proof: Let i 2 F such that the sub-tree (i; 3)-forks. That is, there exist two sub-paths, pi andri, that di�er in the edge representing a p(i)3 message, and that eventually reach some v(i)3 vertex.

106 CHAPTER 5. CZK WITHOUT ABORTSIn particular, paths pi and ri split from each other before the edge which corresponds to the p(i)3message occurs along these paths (as otherwise the p(i)3 edge would have been identical in bothpaths). By nature of the �xed scheduling, the vertex in which the above splitting occurs precedesthe �rst message of all (nested) sessions in the second recursive construction (that is, sessions2� mlogm+1;:::;m). It follows that both pi and ri contain the �rst and last messages of each of these(nested) sessions (as they both reach a v(i)3 vertex). Therefore, by de�nition of Vh, all these sessionsmust be satis�ed by both these paths (or else Vh would have not answered with a v(i)3 messagebut rather with a \refuse" symbol). Consider now the corresponding sub-paths of pi and ri whichbegin at edge p(k)1 where k = 2 � mlogm + 1 (i.e., p(k)1 is the edge which represents the �rst messageof the �rst session in the second recursive construction). Each of these new sub-paths is containedin a disjoint sub-tree corresponding to the recursive construction, and satis�es all of its �m�2� mlogm�sessions. It follows that the (original) sub-tree contains two di�erent �m�2� mlogm�-good sub-trees andthe claim follows.Claim 5.1.12 If for every session i 2 F the sub-tree (i; 2)-forks, then the sub-tree contains at leastjFj = mlogm di�erent � mlogm�-good sub-trees.In the proof of Claim 5.1.12 we use a special property of (i; 2)-forking: The only location in whichthe splitting of path ri from path pi may occur, is a vertex which represents a v(i)1 message. Anysplitting which has occured at a vertex which precedes the v(i)1 vertex would have caused theinitiation-pre�xes of (session i along) paths pi and ri to be di�erent (by virtue of the de�nition ofVh, and since all vertices preceding v(i)1 are part of the initiation-pre�x of session i).Proof: Since for all sessions i 2 F the sub-tree (i; 2)-forks, then for every such i there exist twosub-paths, pi and ri, that split from each other in a v(i)1 vertex and that eventually reach somev(i)2 vertex. Similarly to the proof of Claim 5.1.11, we can claim that each one of the above pathscontains a \special" sub-path (denoted pi and ri respectively), that starts at a v(i)1 vertex, endsat a v(i)2 vertex, and satis�es all mlogm sessions in the �rst recursive construction (that is, sessionsmlogm+1;:::;2� mlogm). Note that paths pi and ri are completely disjoint. Let i1; i2 be two di�erent sesionsin F (without loss of generality i1 < i2), and let pi1 ; ri1 ; pi2 ; ri2 be their corresponding \special"sub-paths. The key point is that for every i1; i2 as above, it cannot be the case that both \special"sub-paths corresponding to session i2 are contained in the sub-paths corresponding to session i1(to justify this, we use the fact that pi2 and ri2 split from each other in a v(i2)1 vertex and that forevery i 2 fi1; i2g, paths pi and ri are disjoint).This enables us to associate a distinct � mlogm�-good sub-tree to every i 2 F (i.e., which eithercorresponds to path pi, or to path ri). Which in particular means that the tree contains at leastjFj di�erent � mlogm�-good sub-trees.We are �nally ready to analyze the structure of the sub-tree T . Since for every i 2 F there mustexist j 2 f2; 3g such that the sub-tree (i; j)-forks (Claim 5.1.10), then it must be the case thateither T contains two distinct �m�2� mlogm�-good sub-trees (Claim 5.1.11), or T contains at least mlogmdistinct � mlogm�-good sub-trees (Claim 5.1.12). This completes the proof of Lemma 5.1.9 which inturn implies Lemmata 5.1.8 and 5.1.5. The proof of Theorem 5.1 is complete.

5.2. EXTENDING THE PROOF FOR THE RICHARDSON-KILIAN PROTOCOL 1075.2 Extending the proof for the Richardson-Kilian protocolRecall that the Richardson-Kilian protocol [42] consists of two stages. We will treat the �rst stageof the RK protocol (which consists of 6 rounds) as if it were the �rst 6 rounds of any 7-roundprotocol, and the second stage (which consists of a 3-round WI proof) as if it were the remaining7th message. An important property which is satis�ed by the RK protocol is that the coin tossesused by the veri�er in the second stage are independent of the coins used by the veri�er in the �rststage. We can therefore de�ne and take advantage of two (di�erent) types of initiation-pre�xes.A �rst-stage initiation pre�x and a second-stage initiation pre�x (which is well de�ned only giventhe �rst one). These initiation-pre�xes will determine the coin tosses to be used by Vh in eachcorresponding stage of the protocol (analogously to the proof of Theorem 5.1).The cheating prover will pick a random index for each of the above types of initiation-pre�xes(corresponding to ` and � in the proof of Theorem 3.1). The �rst index (i.e., `) is treated exactlyas in the proof of Theorem 3.1, whereas the second index (i.e., �) will determine which of theWI session corresponding to the second-phase initiation-pre�x (and which also correspond to thevery same `th �rst-phase initiation-pre�x) will be actually executed between the cheating proverand the veri�er. As long as the �th second-stage initiation pre�x will not be encountered, thecheating prover will be able to impersonate Vh while always deciding correctly whether to reject orto accept the corresponding \dummy" WI session (as the second-stage initiation-pre�x completelydetermines the coins to be used by Vh in the second stage of the protocol). As in the proof ofTheorem 3.1, the probability that the �th second-stage initiation pre�x (that corresponds to the`th �rst-phase initiation-pre�x) will make the veri�er accept is non-negligible. The existence of auseful pair of initiation-pre�xes (i.e., ` and �) is proved essentially in the same way as in the proofof Theorem 3.1.

108 CHAPTER 5. CZK WITHOUT ABORTS

Chapter 6Constant-Round ZK proofs for NPwith a Simpler Proof of SecurityIn this chapter we consider the task of constructing a constant-round ZK proof system for alllanguages in NP. This problem has been previously addressed by Goldreich and Kahan [23], whoconstructed a 5-round proof system assuming the existence of a collection of claw-free functions.We show how to use a variant of the cZK protocol presented in Chapter 4 in order to construct a7-round ZK proof system for NP. The advantage of the new proof system over the one of [23] isthat it admits a considerably simpler proof of security. Consider the following protocol, which is avariant of Construction 4.3.2 in which the preamble has only one iteration (rather than k iterationsas in Construction 4.3.2).A 7-round ZK Proof System for NPCommon Input: A directed graph G = (V;E) with n def= jV j.Auxiliary Input to Prover: A directed Hamiltonian Cycle, C � E, in G.Additional parameter: A super-logarithmic function k(n).Stage 1: Commitment to challenge � 2 f0; 1gn (independent of common input):P ! V (P1): Send �rst message for perfectly hiding commitment scheme.V ! P (V1): Commit to random �; f�0i gki=1; f�1i gki=1 s.t. �0i � �1i = � for all i.P ! V (P2): Send a random k-bit string r = r1; : : : ; rk.V ! P (V2): Decommit to �r11 ; : : : ; �rkk .Stage 2: Engage in Blum's 3-round Hamiltonicity protocol using � as challenge:P ! V (p1): Use C to produce �rst prover message of Hamiltonicity protocol.V ! P (v1): Decommit to � and to f�1�rii gki=1.P ! V (p2): Answer � with second prover message of Hamiltonicity protocol.Figure 6.1: A 7-round ZK proof for NP .Using the same arguments as in Section 4.3.2, it can be seen that the resulting protocol is bothcomplete and sound. In particular, the construction above is an interactive proof system for HC.The following theorem states that it is also ZK.109

110 CHAPTER 3. CONSTANT-ROUND ZK PROOFS FOR NPTheorem 6.1 (Constant-round ZK proof for NP) Assume the existence of perfectly-hidingcommitment schemes. Then, the protocol described in Figure 6.1 is a ZK proof system for HC.6.1 Zero-KnowledgeIn order to demonstrate the ZK property of the protocol, we will show that there exists a "universal"black-box simulator, S, so that for every G = (V;E) 2 HC and adversary veri�er V � that runs inpolynomial time (in n = jV j), S(G) runs in expected time poly(n), and satis�es that the ensemblefviewPV �(G)gG2HC is computationally indistinguishable from the ensemble fSV �(G)gG2HC .6.1.1 The SimulatorOn input G = (V;E) with n = jV j, the simulator S starts by selecting and �xing a random tapes 2 f0; 1gpoly(n) for V �. It then proceeds by exploring various pre�xes of possible interactionsbetween P and V �. This is done while having only black-box access to V �.Step (S1): Randomly generate a (P1) message and obtain (V1) = V �(G; (P1); s).Step (S2): Randomly generate a (P2) message and obtain (V2) = V �(G; (P1); (P2); s).1. If (V2) 6= ABORT, proceed to Step (S3).2. If (V2) = ABORT, output h(P1); (V1); ABORTi and stop.Step (S3): For j = 1; 2; : : :1. Randomly generate (P2)j and obtain (V2)j = V �(G; (P1); (P2)j ; s).2. If (V2)j 6= ABORT, proceed to Step (S4).3. If (V2)j = ABORT continue.end(for)Step (S4): Let (P2) = r1; : : : ; rk be the prover message generated in Step (S2) of the simulationand let (P2)j = r01 : : : ; r0k be the last prover message generated in Step (S3):1. If (P2) = (P2)j , output ? and stop.2. If (P2) 6= (P2)j , there exists i 2 f1; : : : ; kg so that ri 6= r0i. Let � = �rii � �r0ii .3. Use � to produce an accepting transcript (p1); (v1); (p2) for G 2 HC (as in Page 74).4. Output h(P1); (V1); (P2); (V2); (p1); (v1); (p2)i and stop.Figure 6.2: The black-box simulator S.Notice that simulator always picks the (P2)j messages uniformly at random. Since the length of the(P2)'s is super-logarithmic, the probability that any two (P1) messages sent during the simulationare equal is negligible (see Section 6.1.3 for further details). We note that in previous simulators(cf. [23]), the values of the (Pj) messages depended on the values revealed by the veri�er in thecorresponding (V2) answers, and were not chosen uniformly and independently each time. This isthe main reason in the complication of previous analysises of the simulator's output distribution.

6.1. ZERO-KNOWLEDGE 1116.1.2 The simulator's running timeFor any G 2 HC, for any choice of s and of (P1), let � = �(G; (P1); s) denote the probability thatthe veri�er V � does not send an ABORT message in message (V2). The probability � is taken overthe random choices of message (P2). (Or, in other words, over the coin-tosses used by the simulatorto generate (P2) during the simulation (both in Steps (S2) and (S3).1).)Using this notation, the simulator proceeds to Step (S3) with probability � and is then expectedto reach Step (S4) after repeatedly rewinding in Step (S3).1 for 1=� times (since the probability ofsuccessfully rewinding in each one of the rewinds is precisely �, independently of other rewinds).For i 2 f1; 2; 3; 4g, let pi(�) be a polynomial bound on the work required in order to performStep (Si) of the simulation (where in Step (S3), the value p3(�) represents the work of a singleexecution of Step (S3).1). The expected running time of the simulator is then:p1(n) + (1� �) � p2(n) + � � �p2(n) + 1� � p3(n) + p4(n)� � p1(n) + p2(n) + p3(n) + p4(n)= poly(n)Since the above holds for any choice of s and (P1), then it is also true for randomly chosen sand (P1) (and o�course for any G 2 HC). We thus have,Proposition 6.1.1 The simulator S runs in expected polynomial-time (in n = jV j).6.1.3 The simulator's output distributionWe now turn to show that for every G 2 HC, the simulator's output distribution is computationallyindistinguishable from V �'s view of interactions with the honest prover P . Speci�cally,Proposition 6.1.2 Suppose that the commitment used in Step (p1) is hiding. Then, the ensemblefSV �(G)gG2HC is computationally indistinguishable from the ensemble fviewPV �(G)gG2HC .Proof: As a hybrid experiment, consider what happens to the output distribution of the simulatorS if we (slightly) modify its simulation strategy in the following way: Suppose that on inputG = (V;E) 2 HC, the simulator S obtains a directed Hamiltonian Cycle C � E in G (as auxiliaryinput) and uses it in order to produce real prover messages whenever it reaches the second stage ofthe protocol. Speci�cally, when it reaches the second stage, the hybrid simulator checks whether theoriginal simulator S should output ? (in which case it also does). If S does not have to output ?,the hybrid simulator follows the prescribed prover strategy and generates prover messages for thecorresponding second stage (by using the cycle it possesses rather than its prior knowledge of �).We claim that the ensemble consisting of the resulting output (which we denote by bSV �(G;C)) iscomputationally indistinguishable from fSV �(G)gG2HC . Namely,Claim 6.1.3 Suppose that the commitment used in Step (p1) is hiding. Then, the ensemblefSV �(G)gG2HC is computationally indistinguishable from the ensemble f bSV �(G;C)gG2HC .Proof Sketch: The claim is proved by reducing the proof to the indistinguishability of Blum'ssimulator's output (that is, if the output of Blum's simulator [6] is computationally indistinguishablefrom the view of real executions of the basic Hamiltonicity proof system, then fSV �(G)gG2HCand f bSV �(G;C)gG2HC are indistinguishable as well). The latter is proved to hold based on thecomputational-hiding property of the commitment scheme that is used by the prover in Step (cp1)of Construction 4.3.1 (see [6, 22] for further details). Here we also use the extra property that the

112 CHAPTER 3. CONSTANT-ROUND ZK PROOFS FOR NPoutput of Blum's simulator is indistinguishable from true interactions even if the distinguisher hasa-priori knowledge of a Hamiltonian Cycle C in G.We next consider what happens to the output distribution of the hybrid simulator bS if we assumethat it does not output ?. It turns out that in such a case, the resulting output distribution isidentical to the distribution of fviewPV �(G)gG2HC . Namely,Claim 6.1.4 The ensemble f bSV �(G;C)gG2HC conditioned on it not being ?, is identically dis-tributed to the ensemble fviewPV �(G)gG2HC .Proof: Notice that the �rst stage messages that appear in the output of the \original" simulator(that is, S) are identically distributed to the �rst stage messages that are produced by an honestprover P (since they are uniformly and independently chosen). Since the �rst stage messages thatappear in the output of the \modi�ed" simulator (that is, bS) are identical to the ones appearing inthe output of S, we infer that they are identically distributed to the �rst stage messages that areproduced by an honest prover P . Using the fact that the second stage messages that appear in theoutput of the \modi�ed" simulator are (by de�nition) identically distributed to the second stagemessages that are produced by an honest prover P , we infer that the ensemble f bSV �(G;C)gG2HCis identically distributed to fviewPV �(G)gG2HC .As we will show in Proposition 6.1.6 below, bS outputs ? only with negligible probability. Inparticular, the ensemble f bSV �(G;C)gG2HC is computationally indistinguishable from (and in factstatistically close to) the ensemble f bSV �(G;C)gG2HC , conditioned on it not being ?. Namely,Claim 6.1.5 The ensemble f bSV �(G;C)gG2HC is computationally indistinguishable from the en-semble f bSV �(G;C)gG2HC conditioned on it not being ?.As we have mentioned above, Claim 6.1.5 follows by establishing the following claim.Claim 6.1.6 For any G = (V;E) 2 HC, the probability that bSV �(G;C) = ? is negligible (in jV j).Proof: Let G 2 HC with n = jV j. We will show that for any choice of s 2 f0; 1gpoly(n) and (P1)the probability of bS outputting ? (over random choices of (P2) = r 2 f0; 1gk) is precisely 1=2k.Since k is super-logarithmic it will immediately follow that the probability that bSV �(G;C) = ?is negligible. Let eV � = eV �((P1); s) denote the \residual" strategy of V � when h(P1); si are �xed(i.e., eV �(G; r) def= V �(G; (P1); r; s)), and let � be as in Section 6.1.2. We then have:Prrh bSeV �(G;C) = ?i = Prrh bSeV �(G;C) = ? j bS reaches (S3)i � Prrh bS reaches (S3)i= Prrh bSeV �(G;C) = ? j bS reaches (S3)i � �= Prrh(P2) = (P2)ji � � (6.1)Now, since (P2) and (P2)j are uniformly and independently chosen in f0; 1gk , and since the numberof r 2 f0; 1gk for which eV �(G; r) is not equal to ABORT is precisely 2k � �, then it holds thatPr[(P2) = (P2)j] = 1=(2k � �). Using Eq. (6.1) we infer that:Prrh bSeV �(G) = ?i = 12k � � � � = 12kas required.It can be seen that Claims 6.1.3, 6.1.4 and 6.1.5 imply the correctness of Proposition 6.1.2.

Chapter 7Conclusions and Open Problems7.1 Avoiding the Lower Bounds of Chapter 3The lower bound presented in Chapter 3 of this thesis draws severe limitations on the ability ofblack-box simulators to cope with the standard concurrent zero-knowledge setting. This suggeststwo main directions for further research in the area.Alternative models: One �rst possibility that comes into mind would be to consider relaxationsof and augmentations to the standard model. Indeed, several works have managed to \bypass" thedi�culty in constructing concurrent zero-knowledge protocols by modifying the standard model ina number of ways. Dwork, Naor and Sahai augment the communication model with assumptionson the maximum delay of messages and skews of local clocks of parties [15, 16]. Damg�ard uses acommon reference string [13], and Canetti et.al. use a public registry �le [8].A di�erent approach would be to try and achieve security properties that are weaker thanzero-knowledge but are still useful. For example, Feige and Shamir consider the notion of witnessindistinguishability [17, 19], which is preserved under concurrent composition.Beyond black-box simulation: Loosely speaking, the only advantage that a black-box simula-tor may have over the honest prover is the ability to \rewind" the interaction and explore di�erentexecution paths before proceeding with the simulation (as its access to the veri�er's strategy isrestricted to the examination of input/output behavior). As we show in Chapter 3, such a modeof operation (i.e., the necessity to rewind every session) is a major contributor to the hardness ofsimulating many concurrent sessions. It is thus natural to think that a simulator that deviates fromthis paradigm (i.e., is non black-box, in the sense that is does not have to rewind the adversaryin order to obtain a faithful simulation of the conversation), would essentially bypass the mainproblem that arises while trying to simulate many concurrent sessions.Hada and Tanaka [30] have considered some weaker variants of zero-knowledge, and exhibited athree-round protocol for NP (whereas only BPP has three-round block-box zero-knowledge [24]).Their protocol was an example for a zero-knowledge protocol not proven secure via black-boxsimulation. Alas, their analysis was based in an essential way on a strong and highly non-standardhardness assumption.As mentioned before, Barak [2] constructs a constant-round protocol for all languages in NPwhose zero-knowledge property is proved using a non black-box simulator. It should be noted,however, that Barak's new techniques are still not known to yield a satisfactory solution to theproblem of \full-edged" concurrent composition (even when allowing arbitrarily many rounds inthe protocol). 113

114 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS7.2 Open problemsThe main conclusion of this work is that the round-complexity of black-box cZK is essentiallylogarithmic. Speci�cally, by combining Theorem 3.1 with Theorem 4.1, we have:Corollary The round-complexity of black-box concurrent zero-knowledge is ~�(log n) rounds.1Still, in light of Barak's recent result [2], constant-round cZK protocols (with non black-box simu-lators) do not seem out of reach. A natural open question is whether there exists a constant-round(non black-box) cZK protocol for all languages in NP .Open Problem 1 Is there a cZK protocol for NP with a constant number of rounds?As a �rst step, it would be interesting to determine whether non black-box simulation techniquescan at all improve over black-box simulation techniques in the context of concurrent composition.Open Problem 2 Is there a cZK protocol for NP with a sublogarithmic number of rounds?It would be in fact interesting to see whether Barak's non black-box simulation techniques can atall be extended to handle unbounded concurrency (regardless of the number of rounds).Regarding cZK without aborts. Here the situation is not resolved as well. In particular,assuming that the veri�er never aborts is not known to enable any improvement in the round-complexity of cZK protocols. On the other hand, the best lower bound to date shows that 7 roundare not su�cient for black-box simulation. It would be interesting to close the gap between thecurrently known upper and lower bounds (presented in Chapter 4 and Chapter 5 respectively).Open Problem 3 Determine the exact round-complexity of cZK without aborts.The latter question mainly refers to black-box simulation, though it is also interesting (and open)in the context of non black-box simulation.

1f(n) = ~�(h(n)) if both f(n) = ~O(h(n)) and f(n) = ~
(h(n)). f(n) = ~O(h(n)) (resp. f(n) = ~
(h(n))) if there existconstants c1; c2 > 0 so that for all su�ciently large n, f(n) � c1 �h(n)=(log h(n))c2 (resp. f(n) � c1 �h(n)=(log h(n))c2).

Chapter 8Appendix8.1 Alternative Description of the Recursive ScheduleThe schedule consists of n2 sessions (each session consists of k+1 prover messages and k+1 veri�ermessages). It is de�ned recursively, where for each m � n2, the schedule for sessions i1; : : : ; im(denoted Ri1;:::;im) proceeds as follows:1. If m � n, execute sessions i1; : : : ; im sequentially until they are all completed;2. Otherwise, For j = 1; : : : ; k + 1:(a) For ` = 1; : : : ; n:i. Send the jth veri�er message in session i` (i.e., v(i`)j);ii. Send the jth prover message in session i` (i.e., p(i`)j);(b) If j < k + 1, invoke a recursive copy of Ri(n+(j�1)�t+1);:::;i(n+j�t) (where t def= bm�nk c);(Sessions i(n+(j�1)�t+1); : : : ; i(n+j�t) are the next t remaining sessions out of i1; : : : ; im.)8.2 Solving the RecursionClaim 8.2.1 Suppose that Eq. (3.6) holds. Then for all su�ciently large n, W (n2) > nc.Proof: By applying Eq. (3.6) iteratively logk(n� 1) times, we get:W (n2) � �kc+1�logk(n�1) �W (n)� �kc+1�logk(n�1) � 1= (n� 1)c+1> nc (8.1)where Eq. (8.1) holds for all su�ciently large n.
115

116 CHAPTER 8. APPENDIX

Bibliography[1] N. Alon, L. Babai, and A. Itai A Fast and Simple Randomized Parallel Algorithm for theMaximal Independent Set Problem. Journal of ALgorithms, 7, pages 567{583, 1986.[2] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106{115,2001.[3] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. In 34th STOC,pages 484{493, 2002.[4] M. Bellare, O. Goldreich. On De�ning Proofs of Knowledge. In CRYPTO92. Springer LNCS0740. Pages 390-420, 1992.[5] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Compu-tationally Sound Protocols? In 38th FOCS, pages 374{383, 1997.[6] M. Blum. How to prove a Theorem So No One Else Can Claim It. Proc. of the InternationalCongress of Mathematicians, Berekeley, California, USA, pages 1444-1451, 1986.[7] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. JCSS,Vol. 37, No. 2, pages 156{189, 1988.[8] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In 32ndSTOC, pages 235{244 ,2000.[9] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires~
(log n) Rounds. In 33rd STOC, pages 570{579 2001.[10] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Re-quires (almost) Logarithmically many Rounds. In SIAM Jour. on Computing, , Vol. 32, No. 1,pages 1{47, 2002.[11] M.N. Wegman, and J.L. Carter. New Hash Functions and Their Use in Authentication andSet Equality. JCSS 22, 1981, pages 265{279.[12] B. Chor, and O. Goldreich On the power of Two-Point Based Sampling. Jour. of Complexity,Vol. 5, 1989, pages 96-106.[13] I. Damgard. E�cient Concurrent Zero-Knowledge in the Auxiliary String Model. In Euro-Crypt2000, LNCS 1807, pages 418{430, 2000.[14] I. Damgard, T. Pedersen and B. P�tzmann. On the Existence of Statistically Hiding BitCommitment Schemes and Fail-Stop Signatures. In Crypto93, Springer-Verlag LNCS Vol. 773,pages 250{265, 1993. 117

118 BIBLIOGRAPHY[15] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages 409{418,1998.[16] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Con-straints. In Crypto98, Springer LNCS 1462 , pages 442{457, 1998.[17] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowledge Interactive Proofs. WeizmannInstitute of Science, 1990.[18] U. Feige, A. Fiat and A. Shamir. Zero Knowledge Proofs of Identity. Journal of Cryptology,Vol. 1(2), pages 77-94,1988.[19] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22ndSTOC, pages 416{426, 1990.[20] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation and Sig-nature Problems. In Crypto86, Springer LNCS 1233, pages 186-189, 1987.[21] O. Goldreich. Concurrent Zero-Knowledge with Timing { Revisited. In 34th STOC, pages332-340, 2002.[22] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press, 2001.[23] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Sys-tems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167{189, 1996.[24] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAMJ. Computing, Vol. 25, No. 1, pages 169{192, 1996.[25] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp. 691{729,1991.[26] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A CompletenessTheorem for Protocols with Honest Majority. In 19th STOC, pages 218{229, 1987.[27] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems. Jour.of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[28] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM J. Comput., Vol. 18, No. 1, pp. 186{208, 1989.[29] S. Goldwasser, S. Micali and R.L. Rivest. A Digital Signature Scheme Secure Against AdaptiveChosen Message Attacks. SIAM J. Comput., Vol. 17, No. 2, pp. 281{308, 1988.[30] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In Crypto98,Springer LNCS 1462, pages 408{423, 1998.[31] D. Harnik, M. Naor, O. Reingold and A. Rosen. Completeness in Two-Party Secure Compu-tation Revisited. Unpublished manuscript.[32] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generatorfrom any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages 1364{1396, 1999.

BIBLIOGRAPHY 119[33] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages723{732, 1992.[34] A. Jo�e. On a set of Almost Deterministic k-Independent Random Variables. The annals ofProbability, 1974, Vol. 2, No. 1, pages 161-162.[35] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmicRounds. In 33rd STOC, pages 560{569, 2001.[36] J. Kilian, E. Petrank, and C. Racko�. Lower Bounds for Zero-Knowledge on the Internet. In39th FOCS, pages 484{492, 1998.[37] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages 151{158, 1991.[38] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP canbe Based on General Assumptions. Jour. of Cryptology, Vol. 11, pages 87{108, 1998.[39] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-tions. In 21st STOC, pages 33{43, 1989.[40] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a ConstantNumber of Rounds. To appear in FOCS 2003.[41] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with Logarithmic RoundComplexity. Proceedings of the 43rd annual IEEE symposium on Foundations of ComputerScience (FOCS 2002), 2002.[42] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. InEuroCrypt99, Springer LNCS 1592, pages 415{431, 1999.[43] A. Rosen. A note on the round-complexity of Concurrent Zero-Knowledge. In Crypto2000,Springer LNCS 1880, pages 451{468, 2000.[44] C.P. Schnorr. E�cient Signature Generation by Smart Cards. Jour. of Cryptology Vol. 4 (3),pages 161-174, 1991.[45] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162{167, 1986.

